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    Ernesto Carafoli 

 This book on the Regulation of Ca 2+ -
ATPases, V-ATPases, and F-ATPases 
is dedicated to Professor Ernesto Carafoli 
for his outstanding leadership in the fi eld 
of membrane biology. Dr. Ernesto Carafoli 
was born in 1932 in Italy. He received his 
M.D. from the University of Modena, Italy, 
in the year 1957 and thereafter joined as an 
Assistant Professor of General Pathology 
in the same University. He was a Fogarty 
International postdoc fellow in the 
laboratory of Dr. Albert Lehninger at the 
Johns Hopkins University School of 
Medicine, Baltimore, during 1963–1965 
and he was Visiting Lecturer in the same 
Laboratory in 1968–1969. In 1973, he moved 



to the Swiss Federal Institute of Technology, 
Zurich, as a Professor of Biochemistry. 
After serving the Department for 25 years, 
he returned to Italy in 1998 and joined the 
University of Padova as Professor 
of Biochemistry and later as the Director 
of the Venetian Institute of Molecular 
Medicine (VIMM) at Padova of which he was 
a co-founder. Currently he is associated 
with the VIMM, Italy. 

 Dr. Carafoli’s research earned him a good 
number of International honors and awards. 
He is the fellow of the International Society 
of Heart Research, member of the European 
Molecular Biology Organization (EMBO), 
Honorary Member of the American Society 
of Biochemistry and Molecular Biology, 
and has been Welcome visiting Professor 
at the Case Western Reserve University, Ohio 
(1996). He is a fellow of the International 
Academy of Cardiovascular Sciences (2002) 
and “Grande Uffi ciale” of Order of Merit 
of the Republic of Italy (2006). He was 
awarded the “Medal of Merit,” the highest 
honor by the International Academy of 
Cardiovascular Sciences in 2009. He served 
as editor of numerous internationally reputed 
journals. Currently, he is the chief editor 
of Biochemical and Biophysical Research 
Communications. 

 Dr. Carafoli is an expert of the 
Ca 2+ ATPase (pump) of plasma membrane 
(PMCA). His important contributions 
include the discovery that the enzyme 
is activated by the acidic phospholipids 
in the membrane, isolation and purifi cation 
of the enzyme using a calmodulin affi nity 
procedure, its reconstitution in liposomes, 

 



the determination of its Ca 2+  vs. charge 
stoichiometry, the fi nding that the isolated 
enzyme is activated by limited proteolysis. 
His further work has led to the discovery that 
the pump is regulated by a phosphorylation/
dephosphorylation cycle. 

 Dr. Carafoli has cloned the human PMCA 
pump and has established the chromosomal 
localization of the four human genes 
encoding its basic isoforms. He used 
synthetic, photoactivatable version of the 
C-terminal calmodulin domain of PMCA 
and revealed that the domain functions 
are auto-inhibitory. The domain inhibits 
by interacting with two “receptor” sites in 
the pump located in close proximity to the 
active site. Another important contribution 
of Dr. Carafoli was the discovery that single 
amino acid mutations in one of its 
transmembrane domains render the PMCA 
very similar to sarcoplasmic reticulum Ca 2+  
pump (SERCA). An extension of the work on 
the pump is the fi nding of a striking isoform 
specifi c effect of Ca 2+  on the transcription 
of its genes in neurons. Of particular interest 
was the fi nding of a very rapid, 
calcineurin-mediated downregulation 
of transcription of the gene for isoform 4. 
Another important accomplishment has been 
the total synthesis of functionally competent 
phospholamban and the elucidation of its 
complete tertiary structure by NMR methods. 

 More recently, his research interest has 
turned to the characterization of mutant 
forms of PMCA. Mutations in the gene of 
PMCA2, which is expressed in the stereocilia 
of the hair cells of the Corti organ, have 
been found in some forms of hereditary 

 



deafness, and mutations of PMCA3 gene 
have been found to be associated with a 
cerebellar ataxia phenotype. 

 Dr. Carafoli has published about 
500 research articles in internationally 
peer-reviewed high impact factor journals 
on the topics of muscle biochemistry, 
membrane biochemistry, mitochondrial 
bioenergetics, membrane transport of Ca 2+  
(specifi cally PMCA), and regulation of Ca 2+  
metabolism. They have more than 35,000 
citations. He wrote about 100 book chapters 
and 70 invited research articles on the 
above-mentioned topics. 

 Dr. Carafoli undoubtedly is a legendary 
fi gure especially in the fi eld of the plasma 
membrane Ca 2+  ATPase. He has excellent 
ability to motivate young researchers. 
His insight to explore and amalgamate 
classical studies with modern notions 
is amazing. He is truly a genius. We feel 
honored to dedicate this book to Dr. Ernesto 
Carafoli and wish him good health 
and success in his long fruitful activities. 
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  Pref ace   

   This is my delight, thus to wait and watch at the wayside where shadow chases light and 
rain comes in the wake of summer. Messengers with tidings from unknown skies greet me 
and speed along the road. My heart is glad within and breath of the passing breeze is sweet. 

 Rabindranath Tagore 
 (Gitanjali: Song of offerings) 

   The biological membranes of cellular organization enfold an important group of 
membrane proteins called the ATPases, which not only are versatile in maintain-
ing chemical gradient and electrical potential across the membrane but also bring 
metabolites necessary for cell metabolism and drive out toxins, waste products, 
and solutes that otherwise can curb cellular functions. ATPases are distributed 
virtually in all forms starting from unicellular to multicellular and also in viruses. 
There are different types of ATPases, which differ in function and structure and 
in the type of ions they transport. The three main types of the ion pump ATPase 
family are (1) P-type ATPases that transport different ions across membranes. 
Plasma membrane Ca 2+ ATPase (PMCA) utilizes ATP as the energy to extrude 
Ca 2+  from the cells. The main calcium controlling organelle in the cell is within 
the sarco(endo)plasmic reticulum (SERCA). This pump transports Ca 2+  from the 
cytosol to the lumen of the SR (or ER). The involvement of phospholamban in 
the regulation of SERCA by phosphorylation has been described. Interactions of 
SR Ca 2+ ATPase with phospholamban was shown to have functional roles in dif-
ferent types of diseases, for example, pulmonary hypertension; (2) F-type ATPase 
in mitochondria, chloroplasts, and bacterial plasma membranes produce ATP 
using the proton gradient; and (3) V-type ATPase catalyzes ATP hydrolysis to 
transport solutes and maintains acidic pH in organelles like lysosomes. Genetic 
defects in either of the ATPases cause several diseases. For example, mutations 
expressed in osteoclasts and intercalated cells lead to diseases such as osteopo-
rosis, tumor cell invasion, and renal tubule acidosis. Furthermore, H + -ATPase 
gene mutations cause distal renal tubular acidosis, a condition characterized by 
impaired renal acid secretion resulting in metabolic acidosis. A number of 
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researches have demonstrated the involvement of several members of the ATPase 
family in the cell pathology and diseases, thereby penetrating exciting new areas 
of our understanding. 

 In this book, the authors summarize recent knowledge about the molecular 
mechanisms associated with Ca 2+ -ATPase, V-ATPase, and F-ATPase in intracellular 
and extracellular Ca 2+  transport, mitochondrial ATP synthase, vesicular H +  trans-
port, and lysosomal pH regulation. This book thereby bridges the gap between fun-
damental research and biomedical and pharmaceutical applications. It also provides 
an informative resource to improve ATPase research and modern therapeutic 
approaches toward different life-threatening diseases that are associated with dys-
regulation of the ATPases. 

 This book contains 29 chapters, which have been arranged under four parts, 
namely: (1) Plasma Membrane Ca 2+ -ATPases; (2) Sarco(endo)plasmic Reticulum 
ATPases; (3) Vacuolar ATPases; and (4) F 1 ,F o - and other ATPases, for the conve-
nience of our readers. It is hoped that the readers will fi nd each chapter stimulating 
and thought inciting, which will add new dimensions of future ATPase research. It 
is well said that: all endings are also beginnings, we just don’t know it at the time! 

 As editors of the book, we are indebted to the authors for the time and energy 
they spent in shaping the book, an advancement of knowledge in the fi eld that it 
bears. We would like to thank Prof. Rattan Lal Hangloo, Vice Chancellor, University 
of Kalyani for his encouragement. We remain thankful to Dr. Vijayan Elimban and 
Ms. Eva Little (St. Boniface Hospital Research Centre, University of Manitoba, 
Winnipeg, Canada) for all their meticulous work helping to get this book into print. 
Finally, we express our gratitude to Dr. Meran Owen (Senior Publishing Editor, 
Springer—London) as well as Ms. Lesley Poliner (Project Coordinator, Springer—
New York) for their understanding, cooperation, and support during the preparation 
of this book.  

  Kalyani, India     Sajal     Chakraborti    
 Winnipeg, MB, Canada     Naranjan     S.     Dhalla     
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    Chapter 1   
 The Plasma Membrane Calcium ATPase: 
Historical Appraisal and Some New Concepts                     

       Ernesto     Carafoli    

    Abstract     The plasma membrane calcium ATPase (PMCA pump) was discovered 
nearly 50 years ago. Among its functional properties, the wealth of regulatory 
mechanisms singles it out from all other members of the P-type ion pumps super-
family. The cytosolic C-terminal tail of the protein contains a binding domain for 
calmodulin, which binds to sites near the active site and maintains the enzyme auto-
inhibited in the resting state. Calmodulin removes the C-terminal domain from 
these docking sites, relieving the inhibition. Other pump regulators are the acidic 
phospholipids of the inner leafl et of the membrane, which are in principle suffi cient 
for 50 % of maximal pump activity. The activation by acidic phospholipids could 
perhaps also be involved in the process of apoptosis, which is known to transfer the 
activatory phosphatidylserine to the outer leafl et of the membrane bilayer: the 
decreased Ca 2+  ejection activity of the pump could amplify the cytosolic Ca 2+  over-
load frequently involved in apoptosis. Another novel concept on the PMCA pump 
is the conclusion that its Ca 2+  ejection activity is less important to the total regula-
tion of cytosolic Ca 2+  than that of the SERCA pump and the plasma membrane Na/
Ca exchanger. The main role of the PMCA pump is instead the regulation of Ca 2+  in 
restricted cytosolic domains in which it interacts with numerous important enzymes. 
The local regulation of Ca 2+  necessarily confers to the activation by calmodulin an 
oscillatory character: as Ca 2+  decreases in the local pump environment, calmodulin 
will leave the pump, terminating its activation.  

  Keywords     Calcium signaling   •   Calcium ATPases   •   Calcium pumps   •   Calmodulin   
•   Acidic phospholipids   •   Local calcium homeostasis  

        E.   Carafoli      (*) 
  Venetian Institute of Molecular Medicine ,  University of Padova , 
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1         Introduction 

 The plasma membrane Ca 2+  ATPase (PMCA pump) was discovered nearly 50 years 
ago [ 1 ]. Studies  in   the following years have characterized it as the most complex 
member of the superfamily of P-type ion pumps [ 2 ]. One of its properties should be 
mentioned at the outset, as it has seriously complicated the study of the pump: it is 
its great propensity to aggregate in the purifi ed state. The pump dimerizes through 
its C-terminal calmodulin-binding domain [ 3 ], but in the isolated state, aggregates 
are invariably formed which are much larger. They have so far defeated all attempts 
to monomerize the pump in a functionally active state. Perhaps the most important 
structural property that sets the PMCA pump apart from all other members of the 
superfamily is the presence of a long cytosolic C-terminal tail, which has an essen-
tial role in the regulation of the activity of the enzyme: it is the locus of interaction 
of regulatory partners, chief among them calmodulin, and is the structure responsi-
ble for the mechanism of autoinhibition, which is a distinctive properties of the 
PMCA pump. Another distinctive property is the wealth of regulatory mechanisms, 
which act with different and still incompletely understood mechanisms. Traditionally, 
the most important among them have been calmodulin and acidic phospholipids, 
but others have recently emerged, e.g., protein partners that may interact with the 
pump in a spatially confi ned cell environment.  

2     General Properties of the Plasma Membrane Ca 2+  Pump: 
A Succinct Summary 

 The tertiary structure of the PMCA pump is not available, but molecular modeling 
work on the SERCA pump template (Fig.  1.1 ) shows a topology of ten transmem-
brane domains and three main  cytosolic   protrusions that correspond to the A, N, and 
P cytosolic domains of the SERCA pump. It also shows that, as in the case of the 
SERCA pump, a large conformational change occurs when the pump binds Ca 2+ : 
the change affects both the transmembrane helices and the cytosolic portion, but is 
most evident in the latter, which becomes far more “open” in the presence of Ca 2+ . 
The PMCA pump has long been known to have a unique, unstructured C-terminal 
cytosolic tail of about 150 residues that contains a canonical calmodulin-binding 
domain (a second, lower-affi nity domain that binds calmodulin and has recently 
been identifi ed downstream of the fi rst in some splicing variants of the pump [ 4 ]). 
The C-terminal tail also contains consensus sites for two activatory kinases: that for 
PKA is isoform specifi c and is located downstream of the calmodulin-binding 
domain [ 5 ], whereas PKC has two target sites that are not isoform specifi c [ 6 ], a Thr 
within the  calmodulin-binding   domain and a Ser further downstream. One early 
fi nding on the PMCA pump which was made before its purifi cation is its activation 
by acidic phospholipids [ 7 ]. The fi nding was extended to the purifi ed pump [ 8 ], and 
it was calculated that the amount of acidic phospholipids in the environment of the 
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erythrocyte membrane was in principle suffi cient for about 50 % of maximal pump 
activity [ 9 ]. The mechanism of the activation by acidic phospholipids is still not 
understood, but it has been found that they reduce the  K  m  Ca 2+  to even lower levels 
than calmodulin does [ 10 ] and that they interact with the calmodulin-binding 
domain and the fi rst loop that protrudes into the cytosol between transmembrane 
domains 2 and 3 [ 11 ].

   As all P-type pumps, the PMCA pump conserves temporarily the energy of the 
ATP that is hydrolyzed during the reaction cycle in the form of an aspartyl- 
phosphate. Interestingly, the PMCA pump transfers one Ca 2+  across the membrane 
for each hydrolyzed ATP, instead of the two Ca 2+  per ATP  transferred   by the SERCA 
pump: thus, it has only one Ca 2+ -binding site, which corresponds to site two of the 
SERCA pump; this is so because one conserved acidic residue in transmembrane 
domain 5, which is essential for the formation of Ca 2+ -binding site 1 in the SERCA 
pump, is absent in the PMCA pump—its insertion by mutagenesis in transmem-
brane domain 5 evidently completes the missing binding site for Ca 2+ , restoring the 
Ca 2+ /ATP stoichiometry of the PMCA pump to 2 [ 12 ]. 

 The PMCA pump was cloned in 1988 [ 13 ,  14 ]. At the time of the cloning, some 
of its important domains had been already recognized and sequenced, e.g., the 

  Fig. 1.1     Structure   of the PMCA pump (isoform 3): Ca 2+ -induced structural changes). Cartoon 
representation ( green ), superimposed on a space fi lling representation ( gray ) of the Ca 2+ -free ( left ) 
and Ca 2+ -bound ( right ) structures of the pump, were built on the basis of the respective SERCA 
structures (PDB 3W5B and 1SU4, respectively). The  blue dots  represent the catalytic aspartate. 
The N-terminus and the C-terminus of the pump are shown as  yellow  and  magenta dots , 
respectively       
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calmodulin-binding domain [ 5 ]. Other domains were identifi ed after the cloning, 
including the sites that interact  with   acidic phospholipids [ 11 ] and the sites that are 
responsible for the process of autoinhibition [ 15 ,  16 ], in which the C-terminal tail of 
the pump folds over under resting conditions of low Ca 2+  and binds with its 
calmodulin- binding domain to two sites in the main body of the pump. One is close 
to the active site in the main cytosolic protruding unit, and the other is located in the 
large cytosolic unit that protrudes between transmembrane domains 2 and 3. When 
Ca 2+  in the environment increases, calmodulin becomes associated with its binding 
domain, somehow removing it from the main body of the pump and restoring 
activity. 

 Soon after its successful cloning, it was found that four separate mammalian 
genes produce four distinct basic isoforms of the pump [see [ 17 ] for a comprehen-
sive review]. The four basic pumps have a sequence identity of about 80 %: the 
differences do not concern the catalytic core of the pumps, but the regions that are 
involved in the regulation of their activity [ 18 ]. Two of the basic pumps are expressed 
ubiquitously (PMCA1 and 4), and two (PMCA2 and 3) are restricted to some tis-
sues, with preference for the brain. Until a few years ago it was assumed that both 
ubiquitous isoforms were housekeeping pumps, but recent work has instead shown 
that isoform 4  has   specifi c roles in some tissues, e.g., the testis [ 19 ]. As expected, 
the catalytic properties of the four pumps are the same, but the rate of activation by 
Ca 2+  (and also the rate of inactivation by its removal) is slower in the two ubiquitous 
isoforms, which are therefore characterized as “slow” pumps: their role correlates 
with the type of Ca 2+  signals in tissues, which could be slow or fast [ 20 ]. A striking 
difference between the ubiquitous and the tissue restricted isoforms if the affi nity 
for calmodulin, which is signifi cantly higher in the latter pumps. Concerning 
calmodulin, one striking property of PMCA2 which is not yet molecularly under-
stood is its peculiar ability to express high activity in the absence of calmodulin [ 21 , 
 22 ]. PMCA2, therefore, continuously pumps Ca 2+  very effectively irrespective of 
the presence of its most important activator: this property may respond to particular 
Ca 2+  homeostasis demands of specialized cell types, e.g., the outer hair cells of the 
inner ear [ 23 ]. The sustained Ca 2+  ejection ability of the PMCA2 pump in the 
absence of calmodulin does not refl ect differences in the C-terminal calmodulin- 
binding domain, the sequence of which is the same in the four basic pump variants 
in  the   portion. It evidently refl ects differences in the domain(s) of the main body of 
the PMCA2 molecule that mediate(s) the autoinhibition process. In addition to the 
four basic isoforms, a large number of additional pump variants are produced by the 
alternative splicing of the primary transcripts of the four genes. The splicing inserts, 
naturally, do not involve the catalytic portion of the pump. They occur at site A in 
the cytosolic loop protruding between transmembrane domains 2 and 3 and at site C 
within the C-terminal calmodulin-binding domain. The number of the inserted 
exons, at both site A and site C, varies with the pump and the tissues: it confers to 
the variants properties that satisfy the functional Ca 2+  homeostasis requirements of 
given cell types, and may be responsible for their targeting to particular domains of 
the plasma membrane [ 24 ]. The alternative spicing process is peculiarly complex in 
the PMCA2 pump, adding to it another property that singles it out from the other 
three basic pumps.  
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3     Emerging New Concepts on the Regulation and Function 
of PMCA Pumps 

3.1     Local or General Action of the PMCA Pumps 

 The correct functioning of PMCA pumps is essential to all animal cells: this is 
clearly underlined by the increasing number of pathologies of numerous tissues that 
recognize the malfunction  of   PMCA pumps as the causative factor. Naturally, the 
mechanistic function of PMCA pumps is to eject Ca 2+  from cells: however, in most 
cells this function of the PMCA pumps is quantitatively overshadowed by that of 
more powerful systems, i.e., the SERCACa 2+  pump of the endo(sarco)plasmic retic-
ulum and—in excitable cells—the Na + /Ca 2+  exchanger of the plasma membrane 
(cells like the erythrocytes are obviously exceptions). Prima facie, then, considering 
the quantitative aspects of the cytosolic homeostasis of Ca 2+ , the coexistence of 
PMCA pumps alongside the other systems does not have a logical rationale. The 
simplest way out of the conundrum would be by proposing that the  raison d ’ être  of 
PMCA pumps would not be the bulk homeostasis of cytosolic Ca 2+ , but its selective 
regulation in the microdomains surrounding the cytosolic portion of the pump. The 
concept, in essence, proposes that the role of the PMCA pump in the total extrusion 
of cell Ca 2+  in many—perhaps most—cell types could be minor or even quantita-
tively irrelevant: its main function would be the locally restricted regulation of cyto-
solic Ca 2+ . Ca 2+  can still be used as a signaling agent even in cells that experience 
large physiological oscillations in its concentration because the pools controlled by 
the activity of the PMCA pumps would be spatially restricted: for instance, in the 
cardiomyocytes the general Ca 2+  pool to be used for contractility is separated from 
the pool used for signaling purposes [ 25 ]. Mohamed et al. [ 26 ] have nicely shown 
that the PMCA 4 pump is indeed only involved in heart Ca 2+  signaling, not in its 
general the beat-to-beat control in the contraction/relaxation process. A necessary 
prerequisite of such signaling role of the PMCA pump would be its localization to 
spatially restricted microdomains of the plasma membrane in which the pump 
would preferentially interact with enzyme partners. That the PMCA pump is spe-
cifi cally localized to caveolae has indeed been shown more than 20 years ago [ 27 ]. 
Others have confi rmed the fi nding [ 28 ] and have extended it to show that in the sub- 
plasma membrane domain of caveolae, which are important sites of cell signaling 
[ 29 ], the PMCA pump indeed interacts specifi cally with important signaling part-
ners [ 30 ]. In the heart, the interaction with neuronal nitric oxide synthase (nNOS) 
regulates indirectly cardiac contractility by acting on a spatially confi ned cyclic 
nucleotide microdomain [ 26 ].  

3.2     Acidic Phospholipids 

   The preferred localization of the PMCA pump to the caveolae, or to similar domains 
like rafts  and   dendritic spines, brings back the matter of the regulation of the pump 
by phospholipids. These specialized plasma membrane domains have particular 
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phospholipid composition and fl uidity and  could   modulate the activity of the PMCA 
pumps by their lateral mobility [ 31 – 33 ]. It has also been shown that the association 
of the PMCA pumps with caveolae or rafts, and thus its regulation, could be isoform 
specifi c [ 34 ]. But the regulation of the activity of the PMCA pumps by acidic phos-
pholipids could come into play in a condition of wider general signifi cance: the 
apoptotic death of cells [ 35 ]. As is well known, an early event of apoptosis is the 
externalization of phosphatidylserine by scramblases (one of which is Ca 2+  depen-
dent) to make cells recognizable by phagocytes [ 36 ,  37 ]. Phosphatidylserine is 
mostly localized to the inner leafl et of the plasma membrane bilayer, where its con-
centration around the PMCA pump (see above) has been calculated to activate it to 
about 50 % of maximal [ 9 ]. An interesting mechanism could thus be proposed in 
which scramblases would become activated in apoptotic cells in response to the 
increase of cytosolic Ca 2+ . They would transfer phosphatidyl serine to the external 
lipid monolayer, depriving the PMCA pump of an important activating factor and 
amplifying the cytosolic Ca 2+  overload that would eventually execute the apoptotic 
death of the cell. 

 The matter of the activation of the PMCA pump by phospholipids deserves some 
additional discussion: the (acidic) phospholipids of the inner leafl et of the plasma 
membrane bilayer are supposed to be physically separated from the catalytic core of 
the pump that protrudes into the cytosol. Therefore, their direct involvement in the 
operation of the reaction cycle of the pump cannot be easily envisaged, as it would 
demand that the cytosolic portions of the pump somehow establish contact with the 
surface of the lipid bilayer. The activatory effects of acidic phospholipids could 
instead be linked to something structural, i.e., to the modulation of the access of 
Ca 2+  to its binding site within the membrane. Surprisingly, however, a report has 
appeared in which acidic phospholipids have been shown to act on the reaction 
cycle proper, as they accelerate the dephosphorylation of the pump [ 38 ]. 

 Another issue in the matter of the activation by phospholipids is the time scale of 
their effects: changes of the phospholipid environment of the pump are unlikely to 
be as rapid as those, for instance, of calmodulin, suggesting that phospholipids 
could be longer range modulators of pump activity. One possible exception would 
be the doubly phosphorylated product of phosphatidylinositol (PIP2), which is the 
only phospholipid that changes rapidly concentration in response to plasma mem-
brane agonists. A reversible, rapid activation of the PMCA pump by PIP2 has actu-
ally been proposed [ 39 ]. 

 One last point on acidic phospholipids deserves some discussion: its functional 
interplay with the activation by protein kinases. Both PKA and PKC (see above) 
activate the PMCA pump (the effect of PKC has aspects that are somewhat contro-
versial). The activity of PKC requires diacylglycerol (DAG), which comes from the 
hydrolysis of PIP2, and the most important adenylyl cyclase is activated by Ca 2+ , the 
increase of which in the cytosol is promoted by InsP3, which also comes from the 
hydrolysis of PIP2. So, here we have a seemingly paradoxical situation: the activa-
tion of the PMCA pump by the protein kinases demands the disappearance of PIP2, 
which is the most powerful pump activatory phospholipid: possibly, as suggested 
elsewhere [ 35 ] one should consider temporal, or even spatial, factors in the effect of 
the kinases with respect to the suppression of the effect of PIP2.    
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3.3     The Autoinhibition of the Pump 

  The fi rst indication that the PMCA pump at rest was in an autoinhibited state medi-
ated by the C-terminal CaM-binding domain came from experiments in which the 
proteolytic removal of the C-terminal tail of the pump, including its CaM-binding 
domain by calpain, irreversibly removed the autoinhibition [ 5 ,  9 ]. The indication 
was directly verifi ed by experiments in which the  autoinhibited   state was induced by 
adding synthetic peptides corresponding to the CaM-binding domain to the pump 
that had been made fully active by C-terminal truncation [ 15 ]. The proposal that the 
C-terminal tail of the pump would “close” the access route to the active site was 
provided by experiments in which blue and green fl uorescent proteins were fused to 
the N- and C-termini of the pump [ 40 ]. The distance between the two fl uorophores 
was about 45  A  in the autoinhibited state and became greater when the pump was 
activated by CaM (or acidic phospholipids). Other pump regions distant from the 
CaM-binding domain and from the C-terminal tail could also have a role in the 
autoinhibition process, i.e., the “stalk” region, in which Asp-170 could help in the 
stabilization of the autoinhibited state [ 40 ,  41 ]. The “stalk” region has been pro-
posed to form basic pockets that would be suitable for the binding of the head groups 
of PIP2, which would be protected from the degradation by phospholipase C.   

3.4     The Regulation of the PMCA Pump by Calmodulin 

 The built-in stop mechanism in the activation of the PMCA pump discussed for the 
effect of the protein kinases has more general signifi cance and can be extended to 
the case of CaM. Once Ca 2+  increases in the microenvironment of the autoinhibited 
pump, CaM becomes bound by the pump and  activates   the ejection of Ca 2+ . However, 
as this occurs, Ca 2+  decreases in the microenvironment of the pump, leading to the 
detachment of CaM and to the restoration of the autoinhibited state. Thus, by defi ni-
tion, the activation of the pump by CaM cannot be permanent, but must necessarily 
follow an oscillatory pattern, in which bursts of activation are followed by periods 
of relative inactivity. Only conditions of sustained cytosolic Ca 2+  overload, as fre-
quently occurring in pathology, can produce permanent activations of the pump. 
These conditions would probably also activate calpains, which would cleave out the 
C-terminal tail of the pump, contributing to its permanent state of maximal activa-
tion and to the amplifi cation of the Ca 2+  overload condition.   

4     Conclusions 

 The PMCA pumps stand out from all other pumps of the P-type superfamily because 
of the wealth and complexity of their regulatory mechanisms. They have been dis-
cussed in this contribution, which has tried to put them in their respective roles and 
functional perspectives. The discussion has emphasized aspects of the regulation of 
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the pump which have not been considered so far: the most interesting concept that 
has emerged is that the pump, in the physiological conditions prevailing in the cell 
cytosol, can only be activated by its most important partner, calmodulin, in tempo-
rarily limited bursts. The contribution has also underlined the concept that the main 
role of the PMCA pumps is not to contribute a quantitatively important fraction of 
the total Ca 2+  ejection activity of cells: it is the regulation of Ca 2+ , and of the partners 
of the pumps sensitive to it, in selected microdomains within the cells.     
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    Chapter 2   
 The Plasma Membrane Ca 2+  ATPases: 
Isoform Specifi city and Functional Versatility                     

       Tito     Calì    ,     Denis     Ottolini    , and     Marisa     Brini    

    Abstract     Plasma membrane Ca 2+  ATPases are single polypeptides of about 
1100–1250 amino-acid residues with a molecular mass of 125–140 kDa. They 
contain ten membrane spanning segments and their N- and C-terminals are both on 
the cytosolic side. The bulk of their mass is also in the cytoplasm and contains three 
major intracellular domains: the A (actuator), N (nucleotide-binding), and P (catalytic 
phosphorylation) domains. Four basic isoforms are encoded by four distinct genes, 
and their transcripts originated a huge number of alternative splicing variants that in 
most cases are also translated in the corresponding protein variants. Emerging 
evidence underlines that PMCA pumps, in addition to maintain resting cytosolic 
Ca 2+  levels against a steep concentration gradient (i.e., nM versus mM), play a local 
control in specifi c sub-plasma membrane domains by tethering Ca 2+ -/calmodulin- 
dependent enzymes and reducing their activity, i.e., by decreasing Ca 2+  concentra-
tion in the microenvironment where they are confi ned. This aspect of pump activity 
confers to PMCA pump a key role as signal transducer and justifi es the existence of 
so many PMCA variants that could be specialized in tuning the activity of different 
partners with different Ca 2+  sensitivity.  

  Keywords     Plasma membrane Ca 2+  pump   •   Isoforms   •   Ca 2+  signaling  

1         Introduction 

 Ca 2+  controls the most important cell functions in all eukaryotic organisms. 
Fertilization, muscle contraction, secretion, several phases of metabolism, gene 
transcription, apoptotic death, etc. are fi nely orchestrated by the functional versatility 
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of Ca 2+  signaling and its exquisite spatial and temporal regulation. The specifi city of 
cellular  Ca 2+  signals   depends on the coordinated interplay between numerous soluble 
Ca 2+ -binding proteins and membrane Ca 2+  transporters which differ both in their 
mechanism and sensitivity for Ca 2+  handling, in their distribution in the intracellular 
compartments and in their regulation. Ca 2+ -transporting proteins include ion channels, 
pumps, and exchangers that drive Ca 2+  ions across the plasma membrane and across 
the membranes of intracellular organelles [ 1 ]. 

 Three differently located Ca 2+  ATPase types (pumps) have been described in 
animal cells: the sarcoplasmic/endoplasmic Ca 2+  ATPase (SERCA pump) located in 
the membranes of endo(sarco) plasmic   reticulum (including the nuclear envelope), 
the secretory pathway Ca 2+  ATPase (SPCA pump) in those of the Golgi network, 
and the plasma membrane Ca 2+  ATPase (PMCA pump) in the plasma membrane. 

 Animal  Ca 2+  pump types   belong to the family of P-type ATPases. The name 
comes from their mechanism for Ca 2+  transport: the energy from ATP hydrolysis is 
conserved in the form of a phosphorylated enzyme intermediate (hence P-type) 
where ATP phosphorylation of an invariant aspartate residue in a highly conserved 
sequence S D KTGT[L/I/V/M][T/I/S] allows the translocation of Ca 2+  across the 
membrane [ 2 ]. Structural works on the  SERCA pump   and the solution of its three- 
dimensional structure have better elucidated the reaction cycle of P-type ATPases. 
The polypeptide chain of the pump folds in four main domains: one transmembrane 
domain M (composed by ten transmembrane helices) and three cytosolic domains—
the actuator domain A and the phosphorylation domain P (both connected with the 
M domain) and the nucleotide-binding domain N, which is connected to the domain 
P [ 3 ]. Upon binding of Ca 2+  and its translocation, a series of structural changes 
involving both the protruding cytoplasmic portion and the  transmembrane   domain 
results in the “opening” of the “compact” structure of the cytosolic portion (Fig.  2.1 ). 
The mechanism of action is the same for all the Ca 2+  pumps, with the difference that 
SERCA pump transports two Ca 2+  ions instead of one and that SPCA is also able to 
transport Mn 2+  in addition to Ca 2+ . Despite of the common mechanism for Ca 2+  
transport, the existence of a multitude of variants for each of the three Ca 2+  pumps, 
either encoded by different genes or generated by alternative splicing mechanisms, 
suggests that the cell needs to differentiate their action in Ca 2+  extrusion, possibly 
by activating the proper Ca 2+  pump in a precise moment or cell district.

   In this chapter the focus will be on the plasma membrane Ca 2+  pumps (PMCA) 
and the specifi city and functional versatility of its isoforms.  

2     General Properties of the Plasma Membrane Ca 2+  Pumps 

 The  PMCA pump   has high Ca 2+  affi nity and low transport capacity, with a 1:1 Ca 2+ /
ATP stoichiometry. It was cloned in 1988 [ 4 ,  5 ], and its sequence revealed the same 
essential membrane organization and topology properties of the  SERCA pump  . 
Later, molecular modeling work based on the structure of the SERCA pump predicts 
the same general features, with ten transmembrane domains and the large cytosolic 
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headpiece divided into the three main cytosolic A, N, and P domains (Fig.  2.2 ). The 
catalytic phosphorylation site (S D KTGLT) and other important consensus domains 
are conserved, but the existence of two prominent domains makes the PMCA pump 
different with respect to the other two Ca 2+  ATPases. Specifi cally, a 40-residue-long 
domain responsible for the binding of activatory phospholipids is present in the fi rst 
cytosolic loop between transmembrane domains 2 and 3, and a 120-amino-acid-
long tail protruding from transmembrane domain 10 and containing the domain that 
binds calmodulin, i.e., the natural activator of the pump, is present in the C-terminal 
region [ 6 ]. Under nonactivated conditions,  the   C-terminal tail of the pump is pro-
posed to interact with two sites in the fi rst and second cytosolic loops of the enzyme 
to maintain the pump auto-inhibited [ 7 ,  8 ]. Calmodulin interacts with its binding 
domain removing it from the docking sites next to the active center, freeing the 
pump from autoinhibition [ 9 ,  10 ]. A second calmodulin-binding domain has recently 
been identifi ed in some splicing variants of the pump [ 11 ], and it has been suggested 

  Fig. 2.1    Three-dimensional structure of the  PMCA pump  . The structure of the PMCA (in  green ) 
was deduced from that of the SERCA pump (PDB3W5B and 1SU4) and superimposed on it (in 
 purple ). The structure is shown in the two conformational forms: the Ca 2+ -free (closed) and the 
Ca 2+ -bound (open) form. Upon Ca 2+  binding, the cytosolic portion of the pump undergoes to a 
transition from a compact arrangement in the absence of Ca 2+  to a looser one in its presence. The 
transmembrane domain M and the three cytosolic domains A, N, and P are shown. The aspartic 
catalytic residue position is shown as  blue sphere . The  orange  and the  red spheres  represent the 
N- and C-terminals, respectively, of the two pumps. In the Ca 2+ -bound conformation, those of the 
PMCA and the SERCA pumps perfectly overlap       
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that, together with the original calmodulin-binding domain, it permits the regulation 
of the pump both in the nanomolar range and in the micromolar range of Ca 2+  con-
centration, according to a bi-modular mechanism of control [ 11 ].

   In addition to calmodulin binding, the PMCA pump has other mechanisms of 
activation. Among them are the ability of the calmodulin-binding domain to bind 
also acidic phospholipids [ 12 ], the presence of Ca 2+ -binding motifs upstream and 
downstream of the calmodulin-binding domain [ 13 ], an oligomerization (polymer-
ization) process  involving   the calmodulin-binding sequence in the C-terminal tail of 
the pump, the cleavage by calpain, and phosphorylation by protein kinase C and 
protein kinase A (the latter only occurs in one of the isoforms). The cleavage by 
calpain occurs immediately upstream of the C-terminal calmodulin-binding domain 
[ 14 ] and activates the pump irreversibly, making it calmodulin insensitive. This irre-
versible mechanism of activation could become signifi cant in conditions of patho-
logical Ca 2+  overload that would demand increased Ca 2+  exporting ability [ 15 ]. PKC 
and PKA consensus sequences have been found in the C-terminal tail of the pump, 
and regulation of PMCA by PKC has been reported in a variety of cell types [ 16 , 
 17 ]. The physiological relevance of the mechanism of phosphorylation is still 
unclear; however, a number of studies suggest that it could affect various PMCA 
isoforms and splicing variants in different ways according to their C-terminal 
sequence characteristics (for a review, refer to [ 18 ]).  

  Fig. 2.2     Topology model   of PMCA. The pump is organized in the membrane with ten transmem-
brane domains connected on the external side by short loops. The cytosolic portion of the pump 
contains the catalytic center and other functionally important domains. The ATP binding site, the 
acidic phospholipid-binding domain, and the calmodulin-binding domain are shown with different 
colors       
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3     Isoforms of the PMCA Pump 

 The PMCA pump is the product of a multigene family. In mammals four basic 
genes ( ATP2B1 – ATP2B4 ) exist, and their transcripts undergo a complex alternative 
splicing process that  increases   the total number of isoforms to about 30 [ 18 – 20 ]. 
The four gene products (isoforms 1–4) differ in tissue distribution and calmodulin 
affi nity. Pumps 1 and 4 are ubiquitous and have lower calmodulin affi nity 
( K  d  ~ 30–50 nM), pumps 2 and 3 have higher calmodulin sensitivity ( K  d  ~ 2–8 nM), 
and their expression is restricted to some tissues: PMCA2 is expressed prominently 
in the nervous system and in the mammary gland, PMCA3 in the nervous and muscle 
system [ 18 ]. 

 All the four PMCA transcripts undergo alternative splicing at two sites (site A 
and site C), thus originating a large number of variants which differ for distribution, 
interaction with different proteins, and calmodulin affi nity. Site A is located 
upstream of the phospholipid-binding domain in the fi rst cytosolic loop of the pump, 
site C in the C-terminal calmodulin-binding domain. 

 The splicing process at site A leads to the insertion of one exon (in the case of 
PMCA1, PMCA3, and PMCA4) or up three exons in PMCA2, thus generating variants 
 w  (three exons included),  x  (two exons included), and  y  (only one exon). The site A 
inserts are always in frame:  they   affect the properties of the pumps, but do not sub-
stantially alter their structure. The  z  variants display no insertion. Variant  z  is not 
found in PMCA1, as all mature transcripts of this isoform invariably contain an exon. 

 The splicing process at site C is characterized by the inclusion of one (in the case 
of PMCA1, PMCA3, and PMCA4) or two (in the case of PMCA2) full extra exons 
that results in changes in reading  frame   and in the introduction of premature stop 
codons. The mature proteins are truncated and they are designated as  a  variant. The 
insertion of portions of exon can also occur leading to variants  c ,  d ,  e , and  f  according 
to the different isoforms, but their existence and signifi cance at protein levels is not 
clear. Pumps in which no insertions occur at site C are designated as  b  or full- length 
variants. In the case of PMCA2 and PMCA3, site C splicing is more complex: two 
or three, and not only one, novel exons can be included or excluded, thus generating 
additional C-terminal variants. For a detailed description of splicing variants, the 
reader could refer to [ 6 ]. 

 Differential activity of the splice variants has been studied mainly for those variants 
generated by the splicing occurring at the C-terminal and focusing on distinguishing 
the full length from the truncated variants. 

 Studies on  the   pump activity performed both on microsomal fraction enriched in 
specifi c isoforms or, in vitro, on specifi c PMCA isoforms purifi ed from eukaryotic 
overexpression systems such as recombinant baculovirus-infected insect Sf9 cells 
have revealed some differences between the isoforms. These studies are adequate to 
defi ne isoform functional characteristics with respect to enzyme kinetics ( V  max ,  K  m  
for Ca 2+ ) and regulation by calmodulin, phosphorylation, and phospholipids. They 
have revealed that the C-terminal truncation determined by the C inserts in the  a  
variants lowers, as expected, the affi nity of the pumps for calmodulin [ 21 ,  22 ] and 
that phospholipids mimic the effect of calmodulin [ 23 ]. 
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 Unfortunately, these studies can provide only limited information concerning the 
true physiological properties of the isoforms that should be investigated in living 
cells. One of the major problems in studying PMCA activity in intact cells is that in 
most cell lines more than one PMCA isoform is expressed (most cells express at 
least PMCA1 and PMCA4) and multiple splice variants may be present simultane-
ously. Therefore, assignment of Ca 2+  extrusion characteristics to  a   particular isoform 
or splice variant is not readily possible in vivo. In addition, the absence of specifi c 
PMCA inhibitors further complicates this type of analysis. A few studies, however, 
were informative. 

 Ca 2+  measurements performed in intact cells overexpressing the different 
isoforms and comparing the ability of  a  and  b  variants in counteracting the cytosolic 
transients generated upon cell stimulation have revealed that the neuron-specifi c 
PMCA2 and PMCA3 isoforms were much more effective in counteracting cytosolic 
transients generated by cell stimulation than the  ubiquitously   expressed PMCA1 
and PMCA4 isoforms [ 22 ]. Instead, they have not shown major differences in Ca 2+  
extrusion ability between truncated and full-length variants of PMCA3 and 
PMCA4 isoforms, thus suggesting that either in intact cells calmodulin was not a 
limiting factor or their differences in calmodulin affi nity were overcome under 
condition of their maximal activation [ 22 ]. The  analysis   of the joint contribution of 
site A and site C splicing on the Ca 2+ -handling ability of PMCA2 pump has instead 
revealed that  z / a ,  w / b , and  z / b  splicing variants are all very active, with difference 
to the doubly inserted  w / a  variant that had only limited ability to rapidly increase 
activity when challenged with a Ca 2+  pulse, but had about the same highly non-
stimulated (basal) activity of the full-length  z / b  variant [ 24 ]. This fi nding opened 
the question on whether site A splicing could have an effect in the modulation of 
phospholipid activation by altering the overall conformation of the second cyto-
solic loop of the pump. By measuring the ATPase activity in microsomal mem-
branes of transfected CHO cells, we have found that the PMCA2 w / a  variant, as 
expected, was much less sensitive to calmodulin than the  z / b  and  w / b  isoforms. 
However, it was also less sensitive to phosphatidylserine, thus underlining the role 
of the calmodulin-binding domain in the regulation of pump activity by acidic 
phospholipids. The fi nding that the  z / b  and  w / b  isoforms had the same response to 
phosphatidylserine stimulation had indicated that the splicing insertion upstream 
of the phospholipid-binding domain failed to modify the phospholipid sensitivity 
of the pump [ 25 ]. 

 As to the possible physiological meaning of the splicing at site A, an interesting 
suggestion comes from the fi nding that, in the case of PMCA2, the insertion of the 
three exons at site A (which corresponds to a 45-amino-acid insertion, the  w  form) 
targets the pump to the apical domain  of   polarized cells, whereas smaller inserts 
sort the protein to the basolateral domain of the plasma membrane [ 26 ]. 
Interestingly, it has been later demonstrated that the splicing differentially affects 
the lipid interactions of PMCA pump with the membrane and that the apical local-
ization of this PMCA variant is lipid raft-dependent and sensitive to cholesterol 
depletion [ 27 ]. 
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 A recent elegant analysis performed in intact cells has shed light on the action of 
three PMCA isoforms (PMCA4a, PMCA4b, and PMCA2b) on regulating the pattern 
of the store-operated Ca 2+  entry (SOCE), i.e., the infl ux of Ca 2+  from the extracellular 
ambient induced as a  consequence   of store depletion [ 28 ]. The study has shown that 
the slow activating PMCA4b isoform produced long-lasting Ca 2+  oscillations in 
response to SOCE, whereas the activation of the fast PMCA2b isoform resulted in 
rapid and highly PMCA abundance-sensitive  clearance   of SOCE- mediated Ca 2+  
transients. At variance, the activation of the PMCA4a variant reduced cytosolic 
Ca 2+  transient induced by Ca 2+  entry, but resulted in the establishment of a basal 
cytosolic Ca 2+  concentration higher than that before SOCE activation, indicating 
that this isoform is suitable to respond to repeated stimuli. The mathematical model-
ing indicated that the distinct properties of PMCA isoforms are well suited to dif-
ferentially affect the shape and the kinetics of the Ca 2+  transients generated by 
SOCE activation and thus their relative abundance in different cell types may lead 
to different activation of downstream signaling pathways [ 28 ]. 

 At the end of this paragraph discussing the properties of the different PMCA 
isoforms and splicing variants, it is important to underline that the expression of 
some PMCA variants changes during embryonic development and during differen-
tiation both in vivo and in vitro. In muscle, the alternative splicing events occur 
during myogenic differentiation, and, even in L6 myoblasts cell lines, they can be 
induced by the application of the muscle differentiation factor myogenin [ 29 ]. 
Interestingly, the induction of the splice form 1c of PMCA1 occurs upon myotube 
formation [ 30 ,  31 ]. Nerve growth factor treatment of PC12 pheochromocytoma 
cells leads to the appearance of the “differentiation-specifi c” splice  variants   of 
PMCAs 1, 2, and 4 (i.e., 1c, 2a, 4a) [ 29 ]. Similarly, a marked upregulation of 
PMCA1a, PMCA2, and PMCA3 at the mRNA and protein level occurs in rat cer-
ebellar granule cells kept under depolarizing conditions for several days (leading 
to increased Ca 2+  infl ux) [ 32 ]. In contrast, elevation of intracellular Ca 2+  resulted in 
a rapid (within hours) and specifi c downregulation of the PMCA4a splice variant 
by a process mediated by the Ca 2+ -/calmodulin-sensitive phosphatase calcineurin 
[ 33 ]. In the human neuroblastoma cell line IMR32, differentiation is accompanied 
by a marked upregulation of PMCA isoforms 2 and 4 (and to a lesser extent, of 
PMCA1) which in turn leads to an improved Ca 2+  extrusion effi ciency [ 34 ]. Another 
interesting example is the upregulation of PMCA4b expression occurring during 
colon and gastric cancer cell differentiation that closely correlates with the induc-
tion of established differentiation markers, suggesting that an increase in the 
PMCA-dependent Ca 2+  transport activity characterizes the differentiation of these 
cancer cells [ 35 ]. 

 In the last years another important distinguishing aspect of the isoforms has 
received increasing interest: the identifi cation of a number of protein partners that 
specifi cally interact with them has opened the discussion on the possibility that 
PMCA Ca 2+  extrusion may be locally tuned to control specifi c microdomains and 
thus the activity of the resident enzymes/proteins. These aspects are discussed in 
detail in the next two paragraphs.  
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4     Why So Many PMCA Variants? 

 Emerging evidence suggests that in addition to their function as calcium transporters, 
PMCAs also participate in the regulation of calcium-dependent signal transduction 
pathways via the interaction with partner proteins. The existence of so many PMCA 
pump isoforms, including the splice variants, could be rationalized by the fi nding 
that they are selectively recruited to plasma membrane compartments/domains by 
the interaction with specifi c proteins and that, through a local control of Ca 2+  con-
centration, they may regulate the activity of enzymes recruited in functional com-
plexes. Thus, the meaning of the interaction is double: by one side, specifi c 
interactors engage PMCA to sub-plasma membrane domains, and by the other, the 
Ca 2+ -ejection properties of PMCA, by maintaining intracellular calcium low in cel-
lular  microdomains   where the tethering with calcium-dependent signaling proteins 
occurs, negatively modulate Ca 2+ -sensitive transduction pathways (Fig.  2.3 ). In 
agreement with this interpretation, different regulatory interactions have been iden-
tifi ed. The identifi cation of some protein partners has, however, only partially 
refl ected differences among isoforms. The preferential site of interaction is the 
PDZ-binding domain in the C-terminal tail of the  b  variants. PMCA2 and PMCA4 
have been shown to interact with several members of the MAGUK (membrane-
associated guanylate kinases, or SAP) family of protein kinases which contain PDZ 
domains and are associated with the cortical actin cytoskeleton [ 36 ,  37 ].

  Fig. 2.3    A schematic 
cartoon showing the 
double physiological role 
of PMCA Ca 2+  extrusion 
activity. PMCA contributes 
both to the global 
regulation of cytosolic Ca 2+  
levels and to  the   generation 
of restricted low-calcium 
microenvironments, where 
different Ca 2+ -/calmodulin- 
dependent enzymes can be 
tethered by the interaction 
with the PMCA and their 
activity downregulated by 
the very low Ca 2+  levels. 
 CaM , calmodulin       
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   Another PDZ domain-containing protein, NHERF2 (Na + /H +  exchanger regulatory 
factor 2), has  been   shown to interact with PMCA2 b , but not with PMCA4 b  [ 38 ]. 
Interestingly, the specifi c interaction with NHERF2 enhances the apical concentra-
tion of PMCA2 w / b  by anchoring the pump to the apical membrane cytoskeleton [ 39 ]. 
The PDZ-binding domain of PMCA4 b  also interacts with neuronal nitric oxide syn-
thase (nNOS, NOS-1) in a complex in which alpha-syntrophin [ 40 ] and both the 
PMCA4 and PMCA2 interact through a portion located between transmembrane 
domains 4 and 5 with endothelial NOS (eNOS, NOS-3) [ 41 ]. The decrease in Ca 2+  
concentrations in the immediate vicinity of the enzyme downregulates the production 
of NO by synthase, thus playing a crucial role in the pathophysiology of the cardio-
vascular system. 

 In addition to the C-terminal domain, other regions of the pumps also interact with 
protein partners. The main intracellular loop joining transmembrane domains 4 and 5, 
as mentioned above, interacts with eNOS, but also binds RASSF1 (tumor suppressor 
RAS-associated factor 1), inhibiting the epidermal growth factor- mediated activation 
of the RAS  signaling   pathway [ 42 ]. The main intracellular loop interacts with alpha-
syntrophin (see above) and with the catalytic subunit of the Ca 2+ -sensitive signal 
transduction phosphatase calcineurin. Both PMCA2 and PMCA4 have been shown 
to functionally interact with it, but the strongest interaction was observed with 
PMCA2, and it results in inhibition of the calcineurin/nuclear factor of activated T-cell 
signaling pathway [ 41 ]. No interaction was instead detected with PMCA1 [ 43 ]. 

 Another important interaction is that occurring between the N-terminal cytosolic 
region of the PMCA1, PMCA3, and PMCA4, but not of the PMCA2 pump and the 
epsilon isoform of 14-3-3 protein [ 44 ,  45 ]. This interaction is peculiar since it 
affects pump activity rather than that of the partner as in the case of  the   other 
described interactors. 

 Finally, it is worth to mention that a novel role for the plasma membrane Ca 2+  
ATPase in the regulation of Ca 2+  signaling is recently emerged in a paper describing 
the action of PMCA in the  control   of phosphatidylinositol 4,5-bisphosphate levels 
[ 46 ]. It has been found that PMCAs protect PtdIns(4,5)P 2  in the plasma membrane 
from the hydrolysis by phospholipase C (PLC). Two mechanisms have been pro-
posed for this action: the fi rst one is that Ca 2+  extrusion operated by the PMCA was 
responsible for limiting Ca 2+  availability to sustain PLC activity, and the second one 
is that PMCA binds to PtdIns(4,5)P 2  and thus reduces the accessibility for PLC and 
leads to less inositol 1,4,5-triphosphate (InsP 3 ) production and consequently dimin-
ished Ca 2+  release from intracellular Ca 2+  stores [ 46 ].  

5     Functional Versatility 

 Transgenic animals with altered expression of PMCAs are being used to evaluate the 
physiological signifi cance of the different isoforms. The identifi cation/generation of 
mice  harboring   mutations in the gene coding for PMCA pumps has permitted a better 
understanding of the involvement of specifi c PMCA isoforms in the regulation of 
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Ca 2+  homeostasis of the cells that express them. In the last 10 years, the discovery 
of human diseases linked to defects in specifi c isoforms has also contributed to dissect 
the importance of PMCA isoforms for specifi c tissues or organs, since the clinical 
phenotypes linked to PMCA mutations are generally more restricted than their 
distribution and abundance. 

 As mentioned, PMCA1 and PMCA4 have wide tissue distribution and have 
traditionally been considered as the housekeeping enzymes: however, they have 
now been shown to play a critical and exquisite signal transduction role. For 
instance, ablation of PMCA4 gene in mice has profound  effect   on the reproductive 
function, since it greatly limits sperm motility and generates male infertility [ 47 ]. 
PMCA4 ablation has also a specifi c effect on the heart-pumping activity: by failing 
to modulate the activity of NOS-1, it profoundly affects the process of the excita-
tion/contraction coupling of the cardiomyocyte and thus leads to cardiac hypertro-
phy and alteration in cardiac rhythm [ 48 ,  49 ]. 

 A genome-wide association study aimed at identifying genetic factors that infl u-
ence blood pressure and hypertension risk has located the most signifi cant single 
nucleotide polymorphism in the gene for the PMCA1 pump [ 50 ,  51 ], thus ensuring 
also for this isoform a possible role in sudden cardiac death, blood pressure control, 
and hypertension. 

 At variance with PMCA1 and PMCA4, the PMCA2 and PMCA3 pumps have 
restricted tissue distribution: they are particularly abundant in neurons. PMCA2 
ablation in mice generates cerebellar ataxia and hearing loss [ 52 – 54 ]. PMCA3 
knockout mice have not been reported so far, possibly because PMCA3 ablation is 
embryonically lethal. 

 Several genetic pathologies linked to the dysfunction of the PMCA pumps have 
now been described in humans. The fi rst described disease phenotype related to a 
PMCA pump defect is a form of hereditary deafness that involves the PMCA2 iso-
form of the pump, which is abundantly  expressed   in the stereocilia of the hair cells 
of the Corti organ in the inner ear. The tight control of the homeostasis of Ca 2+  in the 
endolymph is essential for the functioning of the stereocilia bundle that gates mech-
anoelectrical channels through which K +  (and Ca 2+ ) fl ow into the hair cell to gener-
ate (or modulate) the acoustic signals. Two human families with a hereditary 
deafness phenotype caused by two different point mutations in the PMCA2 gene 
were described [ 24 ,  55 ], and curiously, at variance with mice, in humans the PMCA 
mutations act as modifi er of a phenotype caused by mutations in other genes (i.e., 
cadherin 23) or through a digenic mechanism, where both mutations in cadherin 23 
and in PMCA2 genes are necessary to develop the hearing loss phenotype. 

 Interestingly, mutations in PMCA3 gene have been recently identifi ed in two 
families affected  by   cerebellar ataxia [ 56 ,  57 ]: their mechanism of action is possibly 
different since in the fi rst family the mutation is responsible per se of the X-linked 
phenotype [ 56 ] and in the second one the phenotype was developed only when the 
patient also inherited mutations in the  LAMA1  gene, which encodes the extracellu-
lar matrix protein laminin subunit 1α [ 57 ]. 

 Molecular studies of the mutant PMCA3 pumps expressed in model cells have 
shown that the mutations impaired pump ability to extrude Ca 2+  both in resting condition 
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and upon cell stimulation [ 56 ,  57 ]. A missense mutation (Tyr543Met) in the PMCA3 
pump gene has also been detected in human pancreatic cancer cells [ 58 ], but the effects 
of the mutation on the activity of the pump have not been investigated.  

6     Conclusions 

 The data from several groups largely support the view that the PMCA pumps are not 
uniquely in place to keep resting cytosolic Ca 2+  concentration and counteract Ca 2+  
transients generated by cell stimuli and thus turn off activatory signals, but that they 
can themselves regulate the activity of specifi c enzymatic complexes by locally 
controlling Ca 2+  environments. Surprisingly and interestingly, defects in pump 
activity, generally, do not lead to global cell impairment that conduces to cell death 
but originated disease conditions that compromise only specifi c cell populations or 
tissues, despite the distribution of mutated isoform is not confi ned to them. This 
aspect is particularly fascinating and suggests that the expression of specifi c PMCA 
isoforms could be orchestrated by the cell to fi nely tune Ca 2+  homeostasis in specifi c 
environments and according to specifi c requirements. A lot of work is still necessary 
to profoundly understand the complexity of the system and to develop specifi c drugs 
that could modulate PMCA activity in an isoform-specifi c manner and could thus be 
suitable to therapeutical approaches to target PMCA inactivating mutations.     
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    Chapter 3   
 PMCA2 w / a  Splice Variant: A Key Regulator 
of Hair Cell Mechano-transduction Machinery                     

       Mario     Bortolozzi     and     Fabio     Mammano    

    Abstract     Sensory hair cells of the inner ear detect sound stimuli, inertial or gravi-
tational forces. These mechanical inputs cause defl ection of the cell stereociliary 
bundle and activate a small number of cation-selective mechano-transduction 
(MET) channels that admit K +  and Ca 2+  ions into the cytoplasm. Stereociliary Ca 2+  
levels are homeostatically regulated by an unusual splicing isoform ( w / a ) of plasma 
membrane calcium-pump isoform 2 (PMCA2 w / a ), ablation or missense mutations 
of which cause deafness and loss of balance in humans and mice. At variance with 
other PMCA2 isoforms, PMCA2 w / a  expressed in CHO transfectants increases only 
marginally its activity in response to a rapid increase of the cytoplasmic free Ca 2+  
concentration ([Ca 2+ ] c ). In this expression system, deafness-related mutations of 
PMCA2 w / a  decrease the pump ability to extrude Ca 2+  both at steady state and in 
response to a [Ca 2+ ] c  rise. Consistent with these fi ndings, mouse strains in which the 
pump is genetically ablated or mutated show hearing impairment correlated with 
defects in homeostatic regulation of stereociliary Ca 2+ , decreased sensitivity of the 
MET channels to hair bundle displacement, and morphological abnormalities in 
the organ of Corti. These results highlight a critical role played by PMCA2 w / a  
in the control of hair cell function and survival and provide mechanistic insight into 
the etiology of deafness and vestibular disorders.  
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  Keywords     Inner ear   •   Utricle   •   Hair cell stereocilia   •   Ca 2+  imaging   •   Ca 2+  uncaging   
•   Patch clamp   •   Immunofl uorescence   •   Confocal microscopy   •   Electron 
microscopy  

1         Introduction 

 Two Ca 2+  exporting systems maintain cytosolic Ca 2+  of eukaryotic cells at the low 
 concentration   demanded by the signaling function. In cardiomyocytes and possibly 
in other excitable cells as well, the larger capacity Na + /Ca 2+  exchanger is the most 
important system, whereas the plasma membrane Ca 2+ -ATPase (PMCA) pump has 
the primary role in most other cell types [ 1 ]. Of the four basic isoforms of the 
PMCA pump, two operate in all tissues (PMCA1 and PMCA4) while the other two 
(PMCA2 and PMCA3) in specialized tissues, such as the muscle and, especially, 
brain [ 1 ,  2 ]. PMCA2 is expressed at high levels in vestibular and outer hair cell 
stereocilia and apical membranes and at moderate levels in inner  hair   cell stereocilia 
and in the spiral ganglion [ 3 – 7 ]. This pump has properties that set it apart from all 
other PMCAs [ 8 ]: it has very high affi nity for the activator calmodulin, yet its activ-
ity is only modestly activated by it [ 8 ,  9 ]. Unlike the other three PMCA basic iso-
forms, PMCA2 has peculiarly high activity in the absence of the activator 
calmodulin, i.e., it pumps Ca 2+  out of cells at a relatively high constant rate. 

 Several splice variants of the four PMCAs have been detected in inner ear cDNAs 
[ 3 ]. Alternative splicing is peculiarly complex in PMCA2 (Fig.  3.1a ), as it  involves   
the insertion of up to three novel exons at site A, in the cytosolic loop connecting 
transmembrane domains 2 and 3, and of two at site C in the C-terminal tail of the 
pump [ 10 ]. The site A insertions are in frame, creating variant  w  when three exons 
are inserted or the normal variant  z  without site A inserts. The expression of the 
splice variant PMCA2x is induced only by a transient rise of intracellular Ca 2+ , indi-
cating that phosphorylation/dephosphorylation is an essential mechanism for the 
function of various spliceosomal proteins [ 11 ,  12 ]. The insert at site C creates instead 

Fig. 3.1 (continued) form are indicated by  red dashed lines . The sizes of alternatively spliced 
exons are given as nucleotide numbers. PL = phospholipid-binding domain; P = location of the 
aspartyl phosphate formation. ( b ) Schematics of the hair cell stereociliary bundle in the resting and 
defl ected state. The  boxed area  is magnifi ed to illustrate the prevailing view of the molecular com-
position of the transduction complex, which includes a tip link connecting the top of a shorter 
stereocilium and the side wall of its taller neighbour, upper tip-link densities (tripartite complex of 
myosin-7a, harmonin-b, and sans) and the lower tip-link densities (myosin XVa, whirlin, Eps8, and 
CIB2) [ 18 ]. Cadherin-23 and protocadherin-15 form the upper and lower parts of the tip link, 
respectively. The molecular machinery of the MET complex is anchored to the cytoplasmic region 
of protocadherin-15 [ 64 – 66 ]. Stereociliary Ca 2+  concentration is regulated by the extrusion activity 
of the PMCA2 w / a  pump.       
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  Fig. 3.1    PMCA2 and the hair cell mechano-transduction machinery. ( a ) Topology domains and 
splicing variants of the human PMCA2 isoforms. Splice site “C” lies  within   the calmodulin- 
binding domain ( yellow cylinder ; CaM = calmodulin). Constitutively spliced exons are indicated as 
 black boxes ; alternatively inserted exons are shown in  green ; the resulting splice variants are 
labeled by their  lower case  symbols; the positions of the translation stop codons for each splice 
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a novel stop codon, leading to truncation of the pump in variant  a , variant  b  being 
the normal full-length pump and  c  a C-terminal shortened version due to a change in 
the reading frame. The site C insertions eliminate about half of the calmodulin-
binding domain; those at site A occur next to a domain that binds activatory acidic 
phospholipids, which, however, also bind to the calmodulin-binding domain [ 13 ]. 
As expected, the site C insertions lower the affi nity of PMCA pumps for calmodulin 
[ 14 ], but do not compromise the activation by acidic phospholipids, which is alterna-
tive to that by calmodulin [ 15 ]. The site A insertion, by contrast, could impair the 
activation by acidic phospholipids, particularly in the C-terminally truncated pump 
variants, in which the C-terminal phospholipid-binding domain is also compro-
mised. PMCA1 b  prevails in basolateral membranes, whereas the C-terminally trun-
cated PMCA2 a  is the only isoform detected in the stereocilia of hair cells [ 4 ]. Recent 
work has shown that the truncated isoform in the stereocilia of cochlear outer hair 
cells (OHCs; [ 16 ]) is also spliced at site A and is thus the  w / a  variant [ 17 ].

   A  few   words are in order here to summarize the basics of mechano-transduction 
in hair cells [ 18 ] and the role played by PMCA2 w / a  in hearing [ 19 ] (Fig.  3.1b ). It is 
currently thought that defl ection of the stereociliary bundle in the direction of the 
taller stereocilia increases tension in the tip link, a fi lament stretched between the 
tops of stereocilia. This mechanical stimulus is conveyed to MET channels, which 
open to allow cations to fl ow into the cell [ 20 ]. The apical surface of hair cells is 
bathed in endolymph, which is rich in K +  but low in Na +  and Ca 2+  [ 21 ]; thus, K +  car-
ries most of the transduction current. However, due to the high permeability of MET 
channels to Ca 2+ , its infl ux is signifi cant despite the low Ca 2+  levels of the endo-
lymph, which are much lower than those of other extracellular fl uids [ 22 – 26 ]: 20–23 
μM in the rodent cochlea [ 27 ,  28 ] and 200–250 μM in the vestibular system, possi-
bly due to the presence there of calcium carbonate crystals [ 29 ,  30 ]. Irrespective of 
the hair cell type, Ca 2+  entering through  MET channels is   rapidly sequestered by 
buffers in the stereocilia [ 31 ,  32 ]. Ca 2+  is then shuttled back to endolymph by the 
PMCA2 w / a  pump [ 33 ,  34 ]. Various laboratories estimated the density of this pump 
in stereocilia membrane at 2000–2200/μm 2  [ 5 ,  34 – 37 ], from which a fi gure of about 
200 ions⁄s per pump has been inferred for the extrusion rate [ 5 ]. PMCA2 w / a  action 
is thought to increase Ca 2+  in the immediate proximity of the hair bundle [ 34 ], pos-
sibly with the complicity of the acellular structures overlying the hair cells in the 
cochlea [ 38 ] and, particularly, in the vestibular system [ 30 ], where the pump would 
also contribute to the formation and maintenance of the otoconia [ 39 ]. 

 Mutations of the  ATP2b2  gene, coding for PMCA2, have been causally linked to 
 hereditary   deafness, loss of balance, and ataxia in mice [ 39 – 45 ] and humans [ 46 , 
 47 ]. In some cases, these mutations lead to the truncation of the protein product and 
to its eventual disappearance from the stereocilia of hair cells. Other mutations, 
which do not compromise the reading frame of the gene and are thus compatible 
with the expression of the full-length PMCA2 w / a  variant of the pump, affect resi-
dues that are highly conserved in all PMCA isoforms across species and in other 
P-type pumps. 

 Here, we recapitulate work carried out in our laboratory to analyze the functional 
consequences of PMCA2 w / a  mutations in expression systems as well as in vestibular 
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and cochlear hair cells derived from mutant mice, in collaboration with research teams 
led by Ernesto Carafoli, Marisa Brini, Paolo Gasparini, Karen Steel, Steve Brown, 
and the late Edoardo Arslan. A limited number of key results generated by other labo-
ratories are also reviewed, aiming to convey a broader message to the reader.  

2     Comparative Analysis of the Ca 2+  Handling Activity 
of PMCA2 Splice Variants and Mutants Expressed 
in Transiently Transfected CHO Cells 

  Historically, the fi rst deafness-linked point mutation of PMCA2 w / a  is a G-S  replace-
ment   at amino acid 283, PMCA2 w / a (G283S) [ 40 ] in the fi rst cytosolic loop of the 
pump (Fig.  3.1a ), which was identifi ed in the  deafwaddler  ( dfw ) mouse strain [ 48 ]. 
The same amino acidic change at nearby position 293, PMCA2 w / a (G293S), was 
later found in a human family with hearing defects [ 47 ]. In the  N -ethyl- N -
nitrosourea-induced  Oblivion  ( Obl ) mouse mutant, S is replaced by F at position 
922 of PMCA2 w / a (S922F) in the sixth transmembrane domain [ 44 ]. The  Tommy  
mouse mutant carries the mutation PMCA2 w / a (E629K), which affects a highly 
conserved residue located in the second intracellular loop of the pump [ 45 ]. In the 
 z / b  nomenclature of the pump, the  Tommy  mutation is classifi ed as p.E584K and 
occurs only two residues upstream the site of the human mutation p.V586M reported 
in Ref. [ 46 ]. 

 Mammalian expression plasmids for the wild-type (wt) pump, the  dfw  mouse 
mutation PMCA2 w / a (G283S) and the human PMCA2 w / a (G293S) mutation, and 
 z / b ,  z / a , and  w / b  splice  isoforms   were generated and transfected in CHO cells [ 47 ]. 
Appropriate controls (Western blots and quantitative immunocytochemistry) estab-
lished that all variants of the pump were expressed at equivalent levels and were 
correctly delivered to the plasma membrane (Fig.  3.2a–g ). CHO cells were co- 
transfected with the Ca 2+ -sensitive photoprotein aequorin [ 49 ] and stimulated with 
ATP, an InsP 3 -linked agonist that acts on P2Y purinergic receptors (Fig.  3.2h , i). We 
think that, under these experimental conditions, the height of the Ca 2+  transient gen-
erated by the opening of the InsP 3  receptor is controlled primarily by the PMCA 
pumps and not by the SERCA pump. Indeed, in control experiments, the  latter   was 
silenced using the specifi c inhibitor 2,5-di- tert -butyl-1,4 benzohydroquinone, with 
marginal changes in the height of the Ca 2+  peak and in the kinetics of the return of 
the traces to baseline. The post-peak decay kinetics of the traces is expected to be 
infl uenced by Ca 2+  infl ux through store-operated calcium channels. No efforts were 
made to eliminate their contribution to the shape of the Ca 2+  curves, as it was felt 
that the effects would have been the same for all pump variants.

   Two of the splice variants ( z / a  and  w / b ) have essentially the same effect on the 
Ca 2+  peak of the full-length, non-spliced PMCA2 z / b  pump, which is a very active 
PMCA isoform [ 8 ] (Fig.  3.2h ). By contrast, the doubly spliced variant PMCA2 w / a  
is less able to control the peak height, meaning that it reacts less to the surge of the 
Ca 2+  pulse. However, when the function of the pump becomes the long-term control 
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  Fig. 3.2    Immunolocalization and activity of recombinant PMCA2 pumps in transiently trans-
fected CHO cells. ( a – d ) Expression of PMCA2 variants in CHO cells  w / b  ( a ),  z / a  ( b ),  z / b  ( c ), and 
 w / a  ( d ). Pump immunoreactivity to the 5F10 antibody was revealed by an Alexa Fluor 
488- conjugated secondary antibody. ( e  and  f ) PMCA mutants on the  w / a  construct G283S ( e ) and 
G293S ( f ) were stained with the primary 2N antibody, and the interaction was  visualized   by an
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of post-peak Ca 2+ , i.e., when only nonactivated pumping is presumably required, all 
variants, including PMCA2 w / a , are equivalent (the  z / b  is slightly more effi cient; see 
histograms in Fig.  3.2h ). 

 The  dfw  mutant PMCA2 w / a (G283S) and the human mutant PMCA2 w / a (G293S) 
are as ineffective as the wt PMCA2 w / a  in handling the Ca 2+  peak (Fig.  3.2i ). Instead, 
the declining phase of the Ca 2+  curve, measured by the half peak decay time, was 
much slower in the PMCA2 w / a (G283S) and PMCA2 w / a (G293S) mutants than in 
the wt PMCA2 w / a  (wt, 7.4 ± 1.0 s; PMCA2 w / a (G283S), 32.9 ± 4.4 s; 
PMCA2 w / a (G293S), 11.3 ± 2.3;  p  < 0.01). The defect is more pronounced in the 
PMCA2 w / a (G283S) than in the PMCA2 w / a (G293S) mutant, and these differences 
are exacerbated if the mutations are inserted in the backbone of the full-length pump 
(PMCA2 z / b ). 

 The resting activity of the  Obl  and  Tommy  mutant pumps, i.e., PMCA2 w / a (S922F) 
[ 44 ] and PMCA2 w / a (E629K) [ 45 ], is lower than that of the  dfw  pump, i.e., 
PMCA2 w / a (G283S), and both exhibit a half peak decay time which is signifi cantly 
longer than that of the wt PMCA2 w / a  pump (wt, 6.7 ± 0.7 s; Obl, 39.4 ± 6.7 s; 
Tommy, 45.5 ± 6.0 s;  p  < 0.01).   

3     Ca 2+  Homeostasis in Hair Cells of Mutant Mice 

  To substantiate the above results, the PMCA2 ability to extrude Ca 2+  was investi-
gated in  situ   using neonatal organotypic cultures of utricle sensory epithelium col-
lected between postnatal days 0 and 3 (P0–P3) and observed between P1 and P4. 
The choice of utricles for these experiments was dictated, on the one hand, by the 
larger dimension of the sensory hair bundle in vestibular hair cells compared to 
cochlear hair cells and, on the other hand, by the ease with which the utricular 
preparation can be mounted to acquire confocal images with the cell main axis rest-
ing in the focal plane (Fig.  3.3a ). In this preparation, hair cells were stimulated by 
the rapid photorelease of Ca 2+  from a cytosolic caged precursor ( o-nitrophenyl- 
EGTA , Fig.  3.3b ). The hair cell dissipates this sudden increase of [Ca 2+ ] c  by the 
action of endogenous buffers, uptake by mitochondria [ 50 ], and transport by Ca 2+ -
ATPases [ 39 ]. The ability of PMCA2 to extrude Ca 2+  depends, among other things, 
also on the [Ca 2+ ] c  levels; thus, we decided to select only experiments with similar 
Δ f / f  0  = ( f  −  f  0 )/ f  0  transients, where  f  is fl uorescence at time  t  and  f  0  is pre-stimulus 

Fig. 3.2 (continued) Alexa Fluor 488-conjugated secondary antibody (scale bars, 20 μm). ( g ) 
Quantifi cation of PMCA2 concentration in the plasma membrane by immunofl uorescence levels. 
Standard deviations are indicated by the bars. ( h ) CHO cells transiently transfected with the indi-
cated PMCA2 variants, with or without the cytAEQ Ca 2+  reporter, were stimulated by bath applica-
tion of 100 μM ATP to produce a transient increase of [Ca 2+ ] c . The histograms show the means ± SD 
of [Ca 2+ ] c  peaks and half peak decay times. ( i ) CHO cells transiently transfected with the normal 
PMCA2 w / a  and the PMCA2 w / a (G283S) and the human PMCA2 w / a (G293S) mutants. The traces 
are representative of at least eight experiments. *,  p  < 0.01 estimated with respect to PMCA2 w / a        

3 PMCA2w/a in Inner Ear



34

  Fig. 3.3    Ca 2+  imaging in vestibular hair cells of wt and mutant mice. ( a ) Fixing a mouse utricular 
macula to the lateral side of a glass capillary permits to visualize hair bundles in the focal plane of 
the microscope objective and to estimate [Ca 2+ ] c  changes in the stereocilia and cell body by Ca 2+  
imaging. ( b ) UV laser light (375 nm), controlled by a transistor–transistor logic (TTL) signal gen-
erated by a computer connected to the scanning system of a confocal microscope (Bio-Rad 2100), 
was delivered for 100 ms to elicit a homogeneous [Ca 2+ ] c  increase in an area covering a few hair 
cells. [Ca 2+ ] c  was detected by Fluo-4 (excitation wavelength, 488 nm; emission, 528 nm). ( c ) Time 
sequence of confocal images acquired before and after UV photolysis of caged Ca 2+  in hair cells of 
a utricle culture (P2) from a PMCA2 KO mouse. Timing relative to the onset of the UV light deliv-
ery is shown on each numbered frame; the amplitude of the Δ f / f  0  signal is encoded by the color 
scale bar beneath frame 1. ( d ) Time course of normalized fl uorescence ratio changes (Δ f / f  0 )  n  
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fl uorescence (Fig.  3.3c ). To quantify the recovery of [Ca 2+ ] c  after Ca 2+  uncaging, we 
used the time constant  τ  of a single-exponential fi t to the Δ f / f  0  trace obtained by 
spatially averaging the Ca 2+  transient within the stereocilia and body compartments 
(Fig.  3.3d ; solid lines, stereocilia; dashed lines, cell body; [ 47 ]). In wt mice, the 
recovery to baseline Ca 2+  was slightly, but signifi cantly ( p  < 10 −4 ), faster in the ste-
reocilia (time constant  τ  = 2.2 ± 0.2 s,  n  = 18) than in the cell body ( τ  = 4.0 ± 0.3 s, 
 n  = 18) (Fig.  3.3e ). This result confi rms the hypothesis that stereocilia act as Ca 2+  
microdomains [ 32 ] in which Ca 2+  gradients generated during mechano-transduction 
[ 25 ] are dissipated independently from the cell body [ 33 ].  τ  was signifi cantly larger 
in  dfw  than in wt and, particularly, in PMCA2 KO mice. These results show that 
ablation of PMCA2, or impairment of its activity, decreased the Ca 2+  clearing rate 
of the stereocilia, making it similar to the slower rate of cell soma. Similar experi-
ments were performed also for  Obl  [ 44 ] and  Tommy  [ 45 ] mutant mice, and the 
results are summarized in Table  3.1 .

    Hearing the lowest sounds requires  hair cell stereocilia   to detect displacements 
of atomic dimensions, of the order of 0.2 nm [ 51 ]. In the mouse cochlea, their oper-
ating range is about 500 nm [ 52 ]. To assay the impact of PMCA2 w / a  dysfunction on 
mechano-transduction, organotypic cochlear cultures from wt and mutant P0–P3 
mice were studied between P1 and P4 ([ 47 ]) by a combination of patch-clamp 
recording and mechanical stimulation of the hair cell stereocilia (Fig.  3.4a ). The 
amplitude and kinetics of MET channel currents in PMCA2 KO and homozygous 
 dfw  hair cells  were   qualitatively similar to those of wt controls. However, the curves 

   Table 3.1     Activities   of PMCA2 w / a  in hair cells of mutant mice   

 Mouse 
 Stereociliary Ca 2+  clearance 
time constant ( τ ) 

 Ca 2+  clearance ratio 
( τ  mutant / τ  background ) 

 Strain genetic 
background 

 2.2 ± 0.2 s ( dfw )  1 
 2.8 ± 0.4 s ( Obl ) 
 2.8 ± 0.3 s ( Tommy ) 

  Tommy  heterozygous  3.8 ± 0.8 s  1.4 ± 0.3 
  Obl  heterozygous  4.2 ± 1 s  1.5 ± 0.4 
  Tommy  homozygous  4.5 ± 0.9 s  1.6 ± 0.3 
  dfw  homozygous  4.8 ± 0.6 s  2.2 ± 0.6 
  Obl  homozygous  6.9 ± 1.3 s  2.5 ± 0.5 
 PMCA2 KO  7.2 ± 0.8 s  3.3 ± 0.4 

  Ca 2+  clearing rate of the stereocilia in the case of PMCA2 ablation or impairment of its activity. For 
each mouse strain, the corresponding genetic background was taken as reference  

Fig. 3.3 (continued) evoked by UV photolysis of caged Ca 2+ . Each data point is averaged over 
 n  > 13 cells in 2–4 mice of each type for wt controls ( blue traces ), homozygous  dfw  ( green traces ), 
and PMCA2 KO mice ( black traces );  solid lines , stereocilia;  dashed lines , cell body, excluding 
stereocilia. The  arrowheads  below the time axis show the time of frame capture in ( c ). ( e ) Decay 
time constants  τ  were derived by a single-exponential fi t. ANOVA test yielded  p  < 10  − 4  and  p  = 0.03 
for compatibility of stereociliary  τ  of wt- dfw  and  dfw -KO, respectively       

3 PMCA2w/a in Inner Ear



36

relating bundle displacement ( X ) to MET channel open probability,  P  open  ( X ), were 
shifted positively in  dfw  and PMCA2 KO mice with respect to wt controls (Fig. 
 3.4b ). The shift was more pronounced in the KO mice (175 nm) than in the  dfw  mice 
(117 nm). These results are consistent with those obtained with vanadate, which 
blocks Ca 2+  extrusion in auditory hair cells [ 53 ] and induces a similar (~200 nm) 
shift in the  P  open  ( X ) curve [ 54 ]. 

4        Measurements of Auditory-Evoked Brainstem Responses 

   Auditory-evoked potentials originating from the brainstem (ABRs) in mice are sim-
ilar to  those   of humans, refl ecting the synchronous short-latency synaptic activity of 
successive nuclei  along   the peripheral afferent auditory neural pathway. In the 
mouse, the normal response to suprathreshold stimuli appears as a series of four to 
fi ve consecutive robust potentials, labeled with Roman numerals I–V [ 55 ]. 

 Hearing threshold was measured from the IV wave ABR evoked by click and 
tone bursts at different sound frequencies in wt, heterozygous, and homozygous 
 Tommy  mice aged between P18 and P45 (Fig.  3.5a , [ 45 ]). Profound hearing impair-
ment was found in the homozygote from P18 (measurements at younger stages were 
not performed due to diffi culties intrinsic in the ABR technique; the reader should be 
aware that wt mice acquire hearing around P12). A signifi cant difference ( p  < 0.001, 
 n  = 5) between wild-type and  Tommy  heterozygote thresholds was observed with 
clicks as well as tone bursts at frequencies of 14 kHz and above (Fig.  3.5b ). We also 
measured auditory thresholds in  Obl  mice at different ages (Fig.  3.5b  shows only 

  Fig. 3.4    Open probability of MET channels in outer hair cells. ( a ) Schematic diagram of hair 
bundle stimulation by a glass probe and simultaneous recording of  membrane   current by patch 
clamp. ( b ) Plots of peak MET current versus displacement, Δ x , of hair bundle tip. Positive Δ x  steps 
indicate (excitatory) glass probe movements toward the highest stereocilia. Peak current was mea-
sured as the difference in current relative to that obtained with a large negative displacement, 
where all transducer channels are assumed to be closed and normalized to yield a measure of chan-
nel open probability ( P  open , ordinates). For fi tting formula and parameters, see Ref. [ 47 ]       
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data between P59 and P62). Hearing impairment in heterozygous ( Obl /+) mice 
increased from P20 to P90, whereas ABRs were absent in homozygous siblings 
( Obl / Obl ) of all ages. In addition,  Obl / Obl  mutants were small and affected by 
severe vestibular dysfunction from the second postnatal week. Mutant  dfw  mice 
were analyzed by McCullog and Tempel (Ref. [ 42 ]), together with two functional 
null allele mice,  dfw 2J and  dfw 3J. ABRs were normal in heterozygous  dfw /+ mice 
(at P37), whereas  dfw 2J/+ and  dfw 3J/+ mice showed large auditory threshold shifts 
particularly at high frequencies (>24 kHz);  dfw / dfw  mice were profoundly deaf [ 42 ].  

5        Organ of Corti Degeneration due to PMCA2 Mutations 

  We performed confocal imaging immunoassays to monitor the progressive degen-
eration of the organ of Corti, which correlates with the lack of auditory function in 
the heterozygote  and   homozygote mutant mice we have studied. By immunolabel-
ing transversal and orthogonal sections of the cochlea, we observed a progressive 
base to apex loss of PMCA2 in the hair cells of homozygous  Tommy  mice after P40. 
At P60, PMCA2 immunofl uorescence signal was virtually absent in the basal part 

  Fig. 3.5    Hearing performance of wild-type and mutant mice assessed by ABR. ( a ) Representative 
ABR recordings in response to click stimuli from wt (P31,  black traces ), heterozygous (P27,  blue 
traces ), and homozygous (P24,  red traces )  Tommy  mice. ( b )  ABR   thresholds for click and tone bursts 
at different frequencies obtained from several mutant mice. At 100 dB, PMCA2 KO mice, as well as 
homozygous dfw, dfw2J, and dfw3J mice were completely deaf at every frequency [ 39 ] [ 42 ].  Bars  
represent standard error of the mean. Note that click responses are plotted at an arbitrary point on the 
frequency axis (the position does not refl ect the frequency content of click stimuli)       
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of the cochlea, and signs of hair cell degeneration were evident by the lack of sev-
eral nuclei stained with DAPI (Fig.  3.6a , [ 45 ]).

   In  Obl  mutants, the gross morphology of the middle ear ossicles and inner ear 
appeared normal. Scanning electron microscopy in mutants at 3–4 months of age 
showed degeneration of hair cells, with the basal turn more severely affected than 
the apex and OHCs more affected than IHCs, a pattern that is commonly reported in 
damaged cochleas (Fig.  3.6b , [ 44 ]).  Obl / Obl  homozygotes were more severely 
affected than heterozygotes. However, there were many remaining hair cells with 
relatively normal appearance in the mutants, including a W-shaped arrangement of 
stereocilia, especially in the apical turn. Stereocilia fusion was seen in some, an 
early indicator of hair cell degeneration. At P20, no signifi cant hair cell loss was 
detected in  Obl /+ mutants compared to their littermate controls, despite the fact that 
these mice did show signifi cantly raised ABR thresholds (Fig.  3.5b ). Hair cell 
counts from the basal and middle turns at P75 showed no signifi cant OHC degen-
eration in the middle turn and no signifi cant IHC loss throughout the cochlea in 
 Obl /+ heterozygotes. By P121, there was signifi cant OHC and IHC loss in basal and 
middle turns in  Obl /+. This suggests that the hair cell loss seen in these mutants is a 
secondary consequence of the hair cell not functioning correctly, rather than being 
the primary cause of raised thresholds in  Obl /+ mutants. 

 In  Obl / Obl  mutants at P30, there was highly variable hair cell degeneration, both 
within and between animals. In some regions there was scattered hair cell loss with 
a pattern similar to that seen in heterozygotes (Fig.  3.6b, G ′, H′), while in some 
regions toward the base, there was complete degeneration of the organ of Corti with 
a complete absence of specialized cells, including supporting cells such as pillar 
cells (Fig.  3.6b , I′).   

6     Mutations in Humans 

 A mutational screening of the PMCA2 gene (GenBank accession number 
NM_001001331.1) on samples of 450 subjects coming from different countries 
identifi ed a missense mutation associated with autosomal dominant hearing loss 
[ 47 ]. The mutated allele was a G to A transition at position 877 in exon 5 of the 

Fig. 3.6 (continued) (Alexa Fluor 488-conjugated,  green ), and nuclei were stained with DAPI 
( blue ).  Scale bar , 15 μm. ( b ) At 3–4 months of age,  Obl  wt mice (genetic background) show three 
rows of OHCs and one row of IHCs in the apex ( a ′), middle ( b ′), and base ( c ′) of the cochlea. 
 Obl /+ mice exhibit extensive OHC loss and some IHC loss in the base of the cochlea ( f ′) and a few 
missing OHC in the middle of the cochlea ( e ′). The apex appears normal ( d ′). At 1 month of age, 
the phenotype of  Obl / Obl  mice is extremely variable. In some regions of the base, middle, and 
apex, the phenotype is similar to that seen in  Obl /+ mice. However, in other parts of the apex ( g ′) 
and middle ( h ′) regions of the cochlea, there are missing patches of OHCs. In some regions of the 
base, there is a complete degeneration of the organ of Corti, with no IHC, OHC, or supporting cells 
such as pillar cells present ( i ′). Scale bar, 10 μm       
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  Fig. 3.6    Organ of Corti morphological analysis by confocal immunofl uorescence and scanning 
electron microscopy. ( a ) Shown are cochlea whole mounts (horizontal sections, orthogonal to the 
modiolus) from P60 wt ( left column ) and homozygous ( right column )  Tommy  mice. Images from 
apical, medial, and basal regions were obtained by  maximal   back projection of 20 confocal optical 
sections from a 2 μm step z-stack. PMCA2 expression was probed by a PMCA2 selective antibody 
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nucleotide sequence, leading to the replacement of a highly conserved glycine with 
a serine at position 293 in the  cytosolic   loop connecting transmembrane domains 2 
and 3 (the region in which the mutation G283S of  dfw  maps). The mutated allele 
was detected in an Italian patient affected by severe bilateral sensorineural hearing 
impairment without vestibular involvement. Two hundred chromosomes of indi-
viduals coming from the same geographical area of the patient were negative for the 
presence of the mutated allele. The  G293S mutation   was inherited from the mother 
who had normal hearing. The father and a brother of the patient, with normal hear-
ing, were also negative for the G293S mutation. Considering the recent fi nding of a 
contribution of the PMCA2 gene mutation as a modifi er of the hearing loss pheno-
type [ 46 ], the whole family was analyzed for the presence of mutations in other 
genes which are also frequently involved in hereditary hearing loss [ 47 ], connexin 
30 (GJB6), Myosin 6 (MYO6), and CDH23; mitochondrial DNA was also screened. 
The screening on the CDH23 gene (GenBank accession number NM_022124.2) 
identifi ed a T to S substitution at position 1999 (C5996G) in the affected son but not 
in the mother (Fig.  3.7 ).  This   mutated allele, which had already been described in a 
mutation database as a polymorphism, was inherited by the patient from his healthy 
father and was also present in the healthy brother. Negative results were obtained 
for the other DNA sequences analyzed.

   As ablation [ 39 ] or missense mutations of the PMCA2 Ca 2+  pump of the stereo-
cilia cause deafness and loss of balance, Ca 2+  concentration in endolymph is 
expected to fall  causing   an alteration of the mechano-transduction process. This 
may provide a clue as to why, both in humans [ 47 ] and mice [ 56 ], PMCA2  mutations 
potentiated the deafness phenotype induced by coexisting mutations of cadherin- 23 
( Usher syndrome type  1D), a single-pass membrane Ca 2+ -binding protein that is 
abundantly expressed in the stereocilia (Fig.  3.1b ). 

 The cooperation of the  cadherin-23   and the PMCA2 pump is evidently critical in 
the molecular events that ultimately permit the neural encoding of the  acoustic   sig-
nal. It is thus easy to appreciate the importance of their mutations in the generation 

  Fig. 3.7    Association of digenic mutations of PMCA2 and CDH23 with  hearing   loss. ( a ) Pedigree 
of an Italian family.  Black symbols  denote the family members affected. Genotypes of PMCA2 and 
CDH23 are indicated for each individual [ 47 ]. ( b ) Representative chromatogram of CDH23 
C5996G and PMCA2 G877A, respectively, which were identifi ed from the family       
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of the hearing loss phenotype: indeed, a G753A polymorphism of cadherin-23 was 
detected in the original  dfw  mice [ 57 ]. Furthermore, in one human family, a homo-
zygous mutation in cadherin-23 (F1888S) caused the hearing loss in fi ve siblings, 
whereas a coexistent heterozygous PMCA2 pump mutation (V586M in the  z / b  
nomenclature) was associated with increased loss in the three most severely affected 
siblings [ 46 ]. 

 The link between  cadherin-23 and   the PMCA2 pump, therefore, is important. 
However, it is not obligatory, as shown by the results of the  Tommy  mutant  described   
here and those on the  Obl  mutant [ 44 ]. Evidently, the biochemical defect of the 
homeostasis of Ca 2+  in the stereocilia of OHCs has different degrees of severity. 
Homozygous cadherin-23 mutations that impair the ability of the protein to bind 
Ca 2+ , as detected in one of the human families described [ 46 ], may be suffi cient to 
disrupt the opening properties of the MET channels, generating the hearing loss 
phenotype, which is then only exacerbated by the concomitant PMCA2 pump muta-
tion. On the other hand, homozygous PMCA2 pump mutations, as was the case for 
the  Obl  mutant and is the case for the  Tommy  mutant, may per se be suffi cient to 
decrease the Ca 2+  concentration in the endolymph to a degree that would affect the 
function of the otherwise normal cadherin-23 in the tip links and to generate the 
hearing loss phenotype, without the contribution of cadherin-23 mutations.  

7     Conclusions 

 Isoform 2 of the PMCA pump (Fig.  3.1a ) has properties that distinguish it from 
other PMCA isoforms: when tested in the cellular environment, it is two to three 
times more active than the two ubiquitous pumps in pumping Ca 2+  out of the cell 
[ 8 ]. In the isolated state, it shows very high calmodulin affi nity ( K  d , 2–4 nM) [ 14 ], 
i.e., it becomes fully activated under conditions (e.g., calmodulin and/or Ca 2+  con-
centration) that would activate very poorly isoforms 1 and 4. PMCA2 also has pecu-
liarly high activity in the absence of activators [ 9 ]. But the property that distinguishes 
PMCA2 most clearly is the complexity of alternative splicing. Mutant PMCA2 w / a  
pumps are unable to handle a sudden surge of [Ca 2+ ] c  by increasing their activity 
(Fig.  3.2 ) and also fail to operate effi ciently at the nonactivated level. 

 Within the hair cell stereocilia, the control of Ca 2+  is vital to a number of aspects 
of the mechano-transduction process, e.g., the regulation of adaptation, the ability 
to sense the defl ection of the ciliary bundle with high sensitivity [ 51 ,  58 ], and the 
breaking and regeneration of tip links [ 59 ]. These peculiar functions of the Ca 2+  
signal have in all likelihood dictated the choice of the PMCA2 w / a  isoform (Figs.  3.3  
and  3.4 ). Since resting stereociliary Ca 2+  is very low [ 25 ,  33 ], it makes sense to 
control it with a pump variant which decreases Ca 2+  to lower concentrations than 
other isoforms [ 14 ] even if it is insensitive to calmodulin (and, presumably, to acidic 
phospholipids). The relative insensitivity of the  w / a  pump to calmodulin makes 
good sense, as its very high concentration in the stereocilia (70 μM [ 60 ]) would 
produce permanent maximal activation of pump isoforms normally sensitive to it. 

3 PMCA2w/a in Inner Ear



42

These properties evidently satisfy the Ca 2+  homeostasis demands of the endolymph 
and of the stereocilia, controlling hearing function (Fig.  3.5 ). Even if Ca 2+  in the 
endolymph is very low, the measured value of 23 μM [ 28 ] is considerably higher 
than that necessary for the integrity of the tip links, which is only compromised 
below 1 μM [ 61 ]. In fact, even the inactivating  dfw  mutation only lowers the endo-
lymph Ca 2+  concentration to about 6 μM [ 28 ]. However, a number of in vitro studies 
have shown that the generation of MET currents, for instance, in chickens, requires 
a minimum of 20 μM extracellular Ca 2+  and is not elicited at 10 μM [ 23 ]. A dimin-
ished Ca 2+  removal from the hair cell affects MET currents and adaptation, the pro-
cess by which hair cells continuously readjust their sensitivity to the ciliary bundle 
displacements [ 34 ,  35 ,  62 ,  63 ]. Indeed, the pharmacological blockade of the PMCA2 
pump shifted the current-displacement ( I – X ) curve in the positive direction and 
reduced its slope considerably [ 50 ]. Similar effects have been reported by  dfw  muta-
tion or PMCA2 KO in Fig.  3.4 . 

 PMCA2 mutation might therefore completely disrupt Ca 2+  homeostasis, with the 
basal turn of the cells more severely affected than the apex and with OHCs more 
affected than IHCs, as found in both the  Obl  and  Tommy  mice (Fig.  3.6 ). As the only 
cochlear PMCA2 exposed to endolymph is that of the stereocilia [ 4 ,  28 ], this may 
provide a clue as to why, in some cases, mutations in the gene of the PMCA2 pump 
potentiated the deafness phenotype induced by coexisting mutations of cadherin-23 
(USH1D).     
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    Chapter 4   
 PMCA3: A Mysterious Isoform of Calcium 
Pump                     

       Tomasz     Boczek     and     Ludmila     Zylinska    

    Abstract     Calcium ion as a powerful, universal extracellular and intracellular carrier 
of information involves precise controlling system to convey proper signals to the 
cells. The most sensitive for changes in cytosolic Ca 2+  concentration is a family of 
plasma membrane calcium (PMCA) pump encoded by four independent genes 
(PMCA1–4). Differences in tissue-specifi c expression of the isoforms and splicing 
variants in excitable and non-excitable cells are considered to refl ect a unique pro-
fi le of calcium signaling in particular cells. Among PMCA isoforms, PMCA3 
appears to be the least known, although it was cloned in 1989. Using different tech-
niques, its developmental and cell- and tissue-dependent expression has been 
reported in a number of studies; nonetheless, our knowledge about PMCA3 role in 
the cells is still scarce. Low expression and restricted localization may indicate less 
important role of PMCA3 in comparison with other isoforms. However, its high 
Ca 2+  and calmodulin affi nity, low sensitivity to calpain degradation, and resistance 
to the stress conditions could offer some unique function. The present article focuses 
on the PMCA3 characteristics, especially in the light of new fi ndings suggesting 
that this isoform could be critical for the maintenance of cytosolic Ca 2+  concentra-
tion acting as a second line of defense against calcium overload.  

  Keywords     Plasma membrane calcium pump   •   Gene   •   Isoforms   •   Calcium homeo-
stasis   •   Brain   •   Tissues   •   PC12 cells  

1         Introduction 

 Since fi rst cloning data were released, it became apparent that PMCA3 belongs to 
multigene family of four distinct members (PMCA1-4) recognized in mammals, 
responsible for ATP-dependent Ca 2+  extrusion to the extracellular milieu. The amino 
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acid sequence of PMCA3 shares 70–80 % homology with other PMCA isoforms [ 1 ] 
and high conservancy of critical functional region with other P-type ATPases [ 2 ]. 

 PMCA3 due to its specifi c kinetic parameters is classifi ed as fast responsive iso-
form and thus may be of  great   importance for cellular protection from Ca 2+  over-
load. Studies on C-terminally truncated PMCA3 variants revealed that COOH tail is 
critical for key properties of the isoform, e.g., calmodulin (CaM) sensitivity, Ca 2+  
affi nity, or sensitivity to other regulatory molecules. The truncation at the 1117th 
residue [ 3 ], which is located within CaM-binding domain [ 4 ], generated the pump 
surprisingly reacting with CaM with an affi nity ( K  M  of 5–10 nM) similar to that for 
PMCA2 which has the highest CaM affi nity among all PMCAs [ 5 ]. Basic ATPase 
activity of partially purifi ed truncated enzyme (~200 nmol ATP/min/mg protein) 
was stimulated about threefold by CaM in the presence of Ca 2+  [ 3 ]. Moreover, the 
shortened PMCA3 was as effective in controlling of cytosolic Ca 2+  concentration 
([Ca 2+ ] c ) as the corresponding full-length protein ( K  M  for CaM of 8 nM). On the 
other hand, truncation after the 15th residue of the CaM-binding domain produced 
an enzyme only negligibly stimulated by CaM ( K  M  of 15 nM) [ 6 ]. For this PMCA3 
variant, the average ATPase activity was increased only by 1.41-fold by CaM, but 
the pump was activated by Ca 2+  at the rates even faster than for the full-length vari-
ants of PMCA2 or PMCA4 [ 7 ]. PMCAs activity can be also modulated by several 
independent mechanisms, but this has not been rigorously tested for PMCA3. 
Despite extensive studies aimed to resolve the sense of existence of four isoforms of 
one protein, up to date no unifying explanations of this paradox have been proposed. 
In contrast to other three PMCA isoforms, these studies provided only parsimonious 
insight into the function of PMCA3 which still remains the most mysterious iso-
form of calcium pump. This review continues the earlier discussion on calcium 
pump started by E. Carafoli in the 1980s of the last century [ 8 ] but also gives a 
special emphasis on the latest progress regarding the unique aspects of PMCA3 
functioning.  

2     PMCA3 Gene Structure and Chromosomal Localization 

 Several recent reports indicate that regulation of PMCA3 gene expression may be of 
great importance for developmental progression, tissue specifi city, and alternative 
splicing patterns. The  ATP2B3 gene   encoding isoform 3 of plasma membrane Ca 2+ -
ATPase in human is  located   from base pair 153.518.446 to 153.582.928 on the long 
arm of the X chromosome at position 28 (Fig.  4.1 ) [ 9 ]. The gene has 22 exons of the 
total length of about 6.4 kbp. The smallest in size exon 6 consists as little as 42 bp. 
The fi rst exon specifi es 126 nucleotides of the 5′ untranslated region and the codons 
for 69 amino acids of N-terminal tail [ 10 ]. The introns range in size from about 100 
bp to 14.8 kbp and have boundaries with consensus sites for splice junctions. A 
single gene product of approximately 7 kbp was originally detected in the hybrid-
ization studies [ 10 ].
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    Rat  Atp2b3  gene   consists of 24 exons ranging in size from 42 bp (exon 8) to 945 
bp (exon 24) and is also located on the X chromosome [ 11 ]. The exons with the total 
 known   length of ~5.3 kbp are distributed across all of 75.629 bp of the gene. The 5′ 
untranslated region is separated by two introns dispersing this untranslated sequence 
across 20 kbp of genomic DNA. The polyadenylation signal is located following 
exon 23 and about 2 kbp downstream from exon 24 to produce mRNA of 4.5 kbp or 
7.5 kbp, respectively. 

 The human and rat PMCA3 genes share high sequence similarity. The pairwise 
alignment revealed 89 % identity in the coding region, 66 % identity in the fi rst 250 
bp of 3′ untranslated region, and 77 % identity within available 125 bp located in 5′ 
untranslated sequence. Additionally, fi rst 6 exons of the human ATP2B3 gene 
exactly correspond to exons 3–8 of the rat sequence, and the positions of introns are 
nearly identical in both species [ 10 ,  11 ].  

3     PMCA3 Splicing Variants 

  The  Atp2b3  transcripts are affected by alternative splicing at two major sites called 
A and C sites [ 12 ]. The A site is located upstream of the phospholipid-sensitive 
basic  region   of PMCA in the fi rst cytosolic loop. The C site is found in the COOH- 
terminal tail within the calmodulin-binding domain; therefore, it specifi es the 

  Fig. 4.1     Localization   of ATP2B3 on human X chromosome ( left ) and the genomic context of 
PMCA3 gene in human and rat ( right )       
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affi nity of PMCA for Ca 2+ /calmodulin complex. The alternative splicing at A site 
affects a single exon (exon 8 in the rat PMCA3 gene) encoding 13 amino acids of 
the fi rst intracellular loop. This exon can be either inserted or excluded from the 
mature transcripts yielding two splice variants: PMCA3x (exon included) and 
PMCA3z (exon excluded) [ 13 ]. In both human and rat, the size of this exon is 42 
nucleotides [ 10 ,  11 ] (Fig.  4.2 ).

   In contrast to splice site A, the splicing at site C is much more complex and 
involves additional splice sites located inside the exons, read-through of the penul-
timate exon, and incorporation of full extra exons [ 10 – 15 ]. In PMCA3, at least two 
exons are subject to alternative splicing. These are 68 bp exon (exon 22 in the rat) 
and 154 bp exon (exon 23 in the rat) containing multiple internal donor sites. 
PMCA3 pump with no insertion at C site is designated as 3b. The insertion of full 
154 bp exon leads to the generation of variant 3a or either 3c or 3d when internal 
splice donors within this exon at positions of 87 or 114, respectively, are utilized. 
Variant 3e is formed when 88 bp of the following intron and a poly(A) tail are 
added to 154 bp exon. This read-through affects the reading frame which terminates 
three codons into the intron. As a result, PMCA3e has the calmodulin-binding 
domain as PMCA3a but also has an alternative C-terminal sequence in which three 
amino acids, Ser-Glu-Ser, replace the last eight amino acids in PMCA3a. The 
mRNA encoding PMCA3f version contains 68 bp exon located in the 5′ to 154 bp 
exon, and, in most of the cases, the alternative 3′ sequence is derived from the 
intron following 154 bp exon similar to PMCA3e. Because the unique 68 bp exon 
contains an in-frame translocation termination codon after 45 bp, the second part of 

  Fig. 4.2     Schematic   model of PMCA ( upper panel ) showing localization of splice A and C sites. 
The ten putative transmembrane regions are numbered and indicated as  red boxes . Alternative 
splicing products ( lower panel ) of rat  Atp2b3  gene. Exons are shown as  boxes  with the  numbers  
representing the length of each exon. Human ATP2B3 presents virtually identical splicing pattern       

 

T. Boczek and L. Zylinska



51

calmodulin- binding domain is replaced by a sequence not found in the a or b variants, 
and the pump is truncated 15 residues downstream of the splice. Therefore, each of 
the mRNAs where 68 bp exon was inserted before (or instead) of 154 bp exon at C 
site encodes the shortest C-terminus among all PMCA isoforms [ 11 ,  13 ]. 

 The combinatorial splicing possibilities at both splicing sites may theoretically 
generate a large number of PMCA3 variants including PMCA3x/b, PMCA3x/a, 
PMCA3z/a, PMCA3z/b, PMCA3x/c, PMCA3x/f, etc. Despite yet unresolved func-
tional consequences of alterations in C-terminus of PMCA3, given the widespread 
occurrence of variations in COOH-terminal tail among other Ca 2+ -transporting 
ATPase, it is unlikely that these, sometimes only minor sequence variations, have 
only little if any signifi cance.   

4     PMCA3 Expression in Cells and Tissues 

4.1     The Brain 

  Among all main PMCA isoforms, PMCA3 is the least known one. From the avail-
able data the general observation is that the expression of particular PMCA3 splice 
variants strongly  depends   on developmental steps of the selected cells, fi nally being 
restricted to only few tissues [ 14 ]. As a general phenomenon, upregulation of 
PMCA3 during neuronal differentiation was shown in several reports, and this 
appears to be independent of the in vivo or in vitro conditions. Ca 2+  itself can also 
affect PMCA3 expression in neurons, and this effect seems to be an essential com-
ponent of differentiation and survival following Ca 2+  overload. 

 In rat brain changes in PMCA3 expression during development were observed, 
and PMCA3a variant became visible on embryonic day 18, reaching steady-state 
level at postnatal day 3, whereas mRNA of PMCA3b was detected on embryonic 
day 10 and reached steady-state expression on embryonic day 18 [ 16 ]. 

 PMCA3 protein was also fi rst identifi ed in the brain, and both splice variants—a 
and b—were the major forms detected in nervous tissue [ 17 ]. The abundant pres-
ence was shown in the granule layer of cerebellum, the brain region primarily 
involved in motor and cognitive functions [ 18 ]. PMCA3 was expressed throughout 
the neuropil, in the plasma membrane of granule cells, in cerebellar glomeruli, and 
in the presynaptic terminals of parallel excitatory fi bers [ 19 ,  20 ]. Although PMCA3 
is expressed in large amount in the cerebellum of adult rats, it is only minimally 
present in the neonatal cerebellum. In granule cells it became highly expressed after 
7–9 days of culturing under membrane-depolarizing conditions, and the expression 
was strongly dependent on the activity of L-type Ca 2+  channel and glutamate- 
operated Ca 2+  channels [ 21 ]. 

 In developing chick cerebellum, both variants, PMCA3a and PMCA3b, were 
expressed in the membrane fraction from the embryonic day 10 and did not change 
signifi cantly after hatching [ 22 ]. PMCA3 was detected in the soma and dendritic 
branches of Purkinje cells, and its level correlated with cell maturation. Also, a high 
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expression was observed in interneurons of the molecular and granular layers, 
which may indicate some relation to different requirements of Ca 2+  at defi nite stages 
of development. 

 In mouse, determination of PMCA3 protein examined in the cortex, cerebellum, 
and hippocampus during postnatal development (P0, P8, P15, P30) revealed that its 
presence was comparatively lower at all examined stages in relation to other PMCA 
isoforms [ 23 ]. PMCA3 displayed similar expression pattern during development in 
three brain areas, being the highest in hippocampus. This correlated with functional 
cell maturation, mainly with the formation of synapses. Developmental diversity of 
PMCA3 expression and its functional specialization was studied at tissue and cel-
lular levels in vitro and in vivo [ 18 ,  23 – 25 ]. In the rat hippocampus at postnatal day 
1 PMCA3 was very weakly visible, but increased markedly at 30 days of age being 
the strongest in the neuropil of CA3 and dentate gyrus. 

 Also, a specifi c shift from ubiquitous splice form “a” to a neuro-specifi c form 
“b” was observed [ 25 ]. This process occurred in parallel with synaptic development 
suggesting rearrangement of Ca 2+  signaling necessary for synaptic transmission. In 
the human hippocampus, in situ hybridization assays showed that PMCA3 mRNA 
was weakly detected throughout the hippocampal formation that could refl ect its 
lesser functional signifi cance in Ca 2+  handling [ 26 ]. The potential role of PMCA3 in 
the hippocampus was studied by analyzing the changes in PMCA expression after 
kainate-induced neurodegeneration [ 27 ]. Interestingly, in opposite to PMCA1 and 
PMCA2, mRNA level for PMCA3 was not altered what suggests its unusual resis-
tance to toxic conditions. In gerbil brain, a distribution pattern of PMCA3 protein 
was found to be enriched in the membrane preparations from hippocampus and 
cerebellum, but not in cerebral cortex [ 28 ]. Interestingly, PMCA3 appeared to be 
less sensitive to ischemia/reperfusion-induced degradation in both the hippocampus 
and the cerebral cortex. 

 PMCA3 transcripts as well as PMCA3 protein were detected in the rat spinal 
cord, with signifi cant presence in all of the layers of gray matter [ 29 ]. Additionally, 
its amount remained unaffected during spinal cord injury indicating an unaltered 
function of this isoform under given pathological conditions. 

 In the choroid plexus of mouse embryo, PMCA3 was seen after day 16, but large 
quantity of this isoform was found in the adult rats, mouse, and humans, where it 
putatively participated in the regulation of cerebrospinal fl uid production [ 18 ,  30 ,  31 ].   

4.2     The Eye 

 In the mouse retina, PMCA3 was predominantly localized in the plasma membrane 
of third-order neurons, which are used for Ca 2+  clearance from retinal spiking neurons 
during large depolarization [ 32 ]. In postnatal and adult rat retina, PMCA3 expression 
showed spatial and temporal changes [ 33 ]. It was upregulated during postnatal devel-
opment and prominently expressed in the inner retina. Since PMCA3 co-localized 
with the cholinergic amacrine cell marker—choline acetyltransferase—the authors 
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suggested that  PMCA3   could play a role in the cholinergic activity of the developing 
retina. The presence of PMCA3 transcripts was detected in human corneal epithe-
lium, and PMCA3 immunoreactivity was located in basal cell nuclei in the central 
cornea, but in the limbal, basal, and wing cells, a perinuclear location was revealed 
[ 34 ]. Further study showed a presence of PMCA3a splice variant in the corneas of 
fi ve different donors, although its level varied in individual samples [ 35 ]. The signifi -
cance of this result remains unresolved yet.  

4.3     Other Tissues 

 The presence of PMCA3 at mRNA and protein level was also examined in several 
other tissues, but few studies showing a physiological signifi cance of this isoform 
are available. Generally,  low   amount of PMCA3 in relation to other isoforms may 
indicate its complementary action during calcium-induced signaling; however, a 
possible protective role, especially under stress conditions, cannot be ruled out. 

 In the rat skeletal muscle, PMCA3f is the main isoform and exhibits a fast reac-
tion to calcium increase [ 36 ]. Although PMCA3 possesses high affi nity for CaM 
( K  M  of 5–10 nM), its activity is relatively independent of CaM [ 6 ,  37 ]. 

 PMCA3 at mRNA level was shown to be expressed in cultured trophoblasts iso-
lated from  human   term placenta that could play some role in placental transfer of 
maternal calcium during fetal development [ 38 ]. A statistically signifi cant positive 
relationships between PMCA3 mRNA amount and neonatal bone mineral content, 
bone area, placental weight, and birth weight were observed by Martin et al. [ 39 ]. 
Increased levels of PMCA3 might thereby enhance placental calcium transfer and 
mineralization of the fetal skeleton. 

 A remarkable combination of PMCA3 variants—3z/a and 3z/c—was revealed in 
the rat pancreatic insular cells, and they were detected at both mRNA and protein 
levels [ 40 ]. The presence of this fast-reacting calcium isoform in non-neuronal cells 
may indicate its peculiar contribution to Ca 2+ -regulated function of pancreas. 

 PMCA3 presence was examined in three major zones of the rat kidney—the 
cortex, outer medulla, and inner medulla [ 41 ]. Only in the cortex and outer medulla, 
the presence of PMCA 3a and 3c variants  was   detected, and the mRNAs were 
largely abundant in descending thin limb of Henle. However, they were also found 
in the glomeruli and cortical thin ascending limb that may suggest specifi c function 
of PMCA3 in distinct kidney zones.  

4.4     Cell Lines 

 Developmental expression of PMCA3 was also examined using different cell lines, 
where chemically induced differentiation is allowed to elucidate the importance of 
specifi c growth conditions on gene expression profi le. In neuroblastoma cell line, 
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IMR-32  differentiation   induced by 1 mM dibutyryl-cAMP in combination with 2.5 
μM 5-bromouridine caused a large increase in PMCA3, showing its role in mainte-
nance of calcium balance as well as in synaptic transmission [ 42 ]. 

 PC12 cell line is a neoplastic counterpart of chromaffi n cells originally derived 
from transplantable pheochromocytoma of rat adrenal medulla [ 43 ]. Upon the  neu-
rotrophin   exposure, PC12 cells differentiate into sympathetic-like neurons, become 
electrically excitable, express neuronal markers, and extend neurites; thereby, this 
line is frequently used as a model for the study of neuronal functions. Both forms, 
undifferentiated and differentiated cells, express 3a, 3b, and 3c variants of PMCA, 
but the physiological signifi cance of these variants remains still unclear [ 44 ].   

5     Functional Study of PMCA3 

  The studies from last few years revealed that besides main Ca 2+ -transporting func-
tion, calcium pumps play an important role in forming of multiprotein signaling 
complexes in the specifi c plasma membrane domains. However, PMCA3 isoform 
appears to interact scarcely.  Among   proteins, which were recognized to interact 
with PMCAs, a small-sized, cytosolic protein named PISP (PMCA-interacting 
single- PDZ protein) was shown to bind to all PMCA b-spliced forms including 
PMCA3b variant [ 45 ]. Interestingly, binding to the C-terminal tail of the pump did 
not alter the activity of the enzyme. Formation of this complex was proposed to act 
as a “chaperone” during the transit from the endoplasmic reticulum to the plasma 
membrane. 

 In the brain, Ca 2+ -regulated synaptic function depends on controlled calcium cur-
rents, which include the action of  N -methyl- D -aspartate (NMDA) and metabotropic 
glutamate receptors (mGluR). A family of Homer scaffolding proteins was shown 
to participate in this regulation, and one of them, Ania-3, expressed in close proxim-
ity to the postsynaptic density, binds to the b-spliced variants of PMCA and also to 
PMCA3b, and the PDZ domain was required for this interaction [ 46 ]. Inhibitory 
effect on calcium pump activity was exerted by binding of 14-3-3 proteins that 
belong to the small acidic modulatory proteins regulating many vital cell functions 
such as transcription, cell cycle, signal transduction, cellular spreading and migra-
tion, and many others. Up to now, more than 200 signaling proteins have been 
described as 14-3-3 ligands [ 47 ]. Using a two-hybrid screening system, it was found 
that PMCA3 interacted not only with ε isoform of 14-3-3 protein but with ζ isoform 
as well [ 48 ]. 

 Although, as described above, protein-protein interactions were detected for 
PMCA3, their physiological and biological signifi cance remains unclear. In 
opposite, the recent report has shown the local functional coupling between neu-
ronal presynaptic glycine transporter (GlyT2), PMCA3, and Na + /Ca 2+  exchanger 
1 (NCX1) [ 49 ]. The authors suggest that this association may help in correcting 
the local imbalance of Na +  produced during high activity periods of glycine‐3Na +  
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co- transport by GlyT2, after neurotransmitter release. In contrast to PISP and 
Ania-3 proteins, PMCA3‐GlyT2 interaction does not require PDZ‐domain presence. 
Interestingly, the formation of this complex occurs in lipid raft domains, where 
the highest presence of PMCAs protein was identifi ed [ 50 ]. Also, the association 
of nearly 60 % of PMCAs with lipid rafts in synaptic membranes of the rat cortex 
exhibited higher activity than non-raft PMCAs [ 51 ]. Due to higher level of cho-
lesterol in aging brain, which is suggested to create a lipid domain more ordered, 
a stabilization of the active conformation of the enzyme may represent a novel 
CaM- independent mechanism of PMCA regulation. Since PMCAs amount and 
activity decline with age, the potential protective action of cholesterol could be 
particularly important, at least in some biologically meaningful range. Even if 
PMCA3 represents a minor fraction of total PMCA protein in raft and non-raft 
domains, its high Ca 2+  and CaM affi nity, as well as low sensitivity for calpain-
mediated degradation, may place this isoform among cellular second-line defense 
systems against Ca 2+  overload.   

6     PMCA3 Mutations 

 Recently, several reports described some mutations in ATP2B3 gene in human, 
which could help to clarify the function of PMCA3 isoform in controlling of cal-
cium homeostasis. 

 Using X-exome sequencing, Zanni et al. [ 52 ] identifi ed a missense mutation (Gly 
at 1107 was replaced by Asp) in CaM-binding domain of PMCA3 in a family with 
X-linked congenital cerebellar ataxia. The functional consequence of this mutation 
was analyzed on model cells (HeLa) co-transfected with expression plasmids 
encoding mutated pump, and the reduced  PMCA3   transport activity, as well as a 
delayed return of Ca 2+  to baseline, was detected. The authors suggested a possible 
inability of the mutant pump to form multiprotein complexes; thereby, the regula-
tion of local calcium concentration could be disturbed. 

  Somatic hotspot mutations in ATP2B3   were identifi ed in approximately 7 % of 
aldosterone-producing adenomas (APAs) using exome sequencing technique [ 53 ]. 
Thus,    a direct inactivation of PMCA3 could increase intracellular Ca 2+  concentra-
tion, thereby leading to altered calcium- and aldosterone-induced signaling. Under 
ex vivo conditions, electrophysiological studies on primary cultured adenoma cells 
with different underlying mutations showed substantially higher levels of depolar-
ization in ATP2B3-mutant cells (7 cells from 2 cases) compared to cells from nor-
mal adjacent tissue. This indicates that adenoma cells with mutations in ATPase 
gene have profoundly altered electrophysiological properties. 

 Further study showed that among 112 screened APAs, somatic mutations in 
ATP2B3 were present in 0.9 % of samples, and three additional different in-frame 
DNA deletions leading to either p.Leu425_Val426del or p.Val426_ Val427del were 
identifi ed [ 54 ].  
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7     PMCA3 Downregulation Assays 

 As  was   stated above, data on PMCA3 are fairly limited in comparison to the other 
three basic isoforms. For instance, its gene has never been knocked out suggesting 
an important contribution of  Atp2b3  products in the early development. Our work 
on pheochromocytoma-derived PC12 cells which originate from the neural crest, a 
tissue that further develops into sympathetic and parasympathetic ganglia, sheds 
some light on the mysterious aspects of PMCA3 functioning. In a model of stable 
transfection, knockdown of  Atp2b3  in non-differentiated PC12 cells by an antisense 
mRNA had profound consequences on Ca 2+  homeostasis. PMCA3-defi cient cells 
maintained permanently higher resting [Ca 2+ ] c , enhanced Ca 2+  uptake upon stimula-
tion, and were unable to remove Ca 2+  effi ciently following membrane depolariza-
tion [ 55 ]. Impaired Ca 2+  clearing potency and the resulting prolonged calcium signal 
did not, however, lead to the initiation of death cascades. Although it is thought that 
PMCA isoforms cannot fully compensate for each other, an increased synthesis of 
PMCA4 in response to PMCA3 downregulation seems to effi ciently protect cells 
from Ca 2+  overload and subsequent death. Taking multidirectional action of calcium 
into consideration, PMCA3-dependent Ca 2+ -activated transduction pathways, or 
even elevated [Ca 2+ ] c  by itself, could trigger a spontaneous neuritogenesis-like 
transformation observed in PMCA3-defi cient line [ 56 ]. Reconstructed 3D micro-
graphs of these cells showed the extension of neuronal protrusions and appearance 
of growth cone-like areas with accompanying upregulation of growth-associated 
protein 43 (GAP43), a neuronal growth cones marker. This apparent shift toward 
neuronal phenotype involved a signifi cant rearrangement of gene expression pattern 
involving genes engaged in, e.g., differentiation, signaling and neurogenesis, or 
transcriptional regulation [ 57 ]. Among the genes affected by PMCA3 knockdown, 
the transcripts of calmodulin gene I and II were found to be  increased   giving rise to 
higher calmodulin (CaM) protein level. This observation is of particular importance 
since CaM is a protein activator of PMCA and may indicate PMCA3 participation 
in CaM gene expression regulation. 

 In PC12 line, differentiation is mediated by signaling pathways triggered by 
mitogen-activated protein kinases (MAPKs) [ 58 ]. However, in our PMCA3-depleted 
model, neurogenesis seems to be driven by different, so far unidentifi ed, signaling 
pathways as the activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) 
and p38 MAPK was markedly inhibited [ 57 ]. Strong, but yet plausible, candidate 
bringing together higher [Ca 2+ ] c , intracellular signaling and modifi ed gene expres-
sion profi le seems to be calcineurin (CaN). The synthesis and activity of this protein 
phosphatase was elevated in PMCA3-defi cient cells, and intensifi cation of CaN/
PMCA4 complex formation was assumed to regulate  CaN activity and   dopamine 
release [ 55 ]. The observation of dopamine secretion recovery after inhibition of 
CaN activity pointed out an existence of a feedback mechanism based on the inter-
play between Ca 2+ /PMCA4/CaN by which PMCA3 may be involved in coordina-
tion of secretory pathways. 

 Further studies showed that CaN-dependent nuclear factor of activated T cells 
(NFAT) signaling  is   largely responsible for reduction in dopamine secretion in 
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PMCA3-downregulated cells. In these cells, NFAT overactivation and subsequent 
nuclear translocation led to repression of  Vamp1  and  Vamp2  encoding proteins 
involved in neurotransmitter release [ 59 ]. Therefore, NFAT signaling in our model 
line may regulate exocytosis by limiting the  membrane   fusion step. These fi ndings 
reinforce the hypothesis on the existence of PMCA3/NFAT regulatory loop. Our 
recent report has revealed that this relationship may also involve transcriptional 
regulation of  Atp2b3  [ 60 ]. Regarding the PMCA3 splicing pattern, a brain-specifi c 
variant PMCA3x/a was predominant upon NFAT inhibition, while the expression of 
other splicing forms generated at C site was completely abolished. It is therefore 
very likely that higher NFAT activity in PMCA3-defi cient cells is involved in 
PMCA3 alternative splicing and NFAT-mediated transcription is necessary for the 
formation of PMCA3e,f,c,b variants. 

 In the next set of experiments, we used unique capacity of PC12 line to change 
their phenotype into sympathetic-like neurons to resolve any potential role of 
PMCA3 in differentiation process. Stimulation of PMCA3-defi cient cells with cAMP 
derivative induced prominent neurite sprouting and resulted in more intensive differ-
entiation during 2-day period as assessed by the  number   of cells bearing neurites and 
the neurite length [ 61 ]. However, retraction of growth cones and preferable formation 
of varicosities were observed as morphological response to PMCA3 depletion. 

 The knockdown of PMCA3 in differentiated cells reduced the ability to control 
cellular homeostasis of Ca 2+  and led to signifi cant increase in resting [Ca 2+ ] c  [ 61 ] in 
a manner similar to non-differentiated line. However, upon differentiation, the effi -
cient protection  from   consequences of abnormally prolonged calcium signal had to 
be provided by much more sophisticated adaptive mechanisms. In addition to previ-
ously observed upregulation of PMCA4, which seems to play a role of “main cel-
lular bodyguard,” PMCA3-defi cient cells were equipped with higher level of 
PMCA1. Another compensatory change involved increased level of  sarco-
 / endoplasmic  reticulum Ca 2+ -ATPase 2 and 3 (SERCA 2 and 3), thereby giving the 
ability for more effective Ca 2+  packing into the endoplasmic reticulum (ER). Our 
experimental verifi cation with SERCA inhibitor—thapsigargin—revealed higher 
Ca 2+  accumulation in the ER as another mechanism by which PMCA3-downregulated 
cells aimed to decrease [Ca 2+ ] c . The partial loss of PMCA3 also potentiated Ca 2+  
infl ux through the plasma membrane voltage-dependent calcium channels (VDCCs) 
and slowed the return to baseline of the Ca 2+  transients induced by depolarizing KCl 
concentration [ 61 ]. Our functional studies with VDCCs inhibitors showed that 
observed KCl- evoked   increase in Ca 2+  infl ux was due to higher content of P/Q and 
L-type channels. Of particular interest is the prominent upregulation of P/Q chan-
nels that may be related to acquisition of specifi c secretory properties of PMCA3- 
defi cient cells, since this type of VDCCs is closely related to neurotransmitter 
release. These fi ndings strengthen our hypothesis regarding the contribution of 
PMCA3 to regulation of secretory pathways and, in overall, indicate that this iso-
form is apparently involved in the control of differentiation process. 

 PMCA3, like other PMCA isoforms, operates as Ca 2+ /H +  countertransporter 
linking the extrusion of Ca 2+  to the inward proton transport. Based on the kinetic 
properties, one may expect that  PMCA3 action   generates large quantities of protons 
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leading to cellular acidifi cation. If this is true, then partial deprivation of PMCA3 
activity should reduce the amount of H +  entering cytosol potentially altering organ-
ellar pH homeostasis. Indeed, our differentiated PMCA3-defi cient cells maintained 
resting mitochondrial pH at 7.62 ± 0.01 and cytosolic at 7.49 ± 0.02, values in both 
compartments higher than in naive cells [ 62 ]. Mitochondrial pH decrease during 
cytosolic Ca 2+  elevations evoked by Ca 2+  infl ux through VDCCs was, however, par-
tially attenuated even despite potentiation of [Ca 2+ ] c  transients in our model line. In 
such conditions, pH gradient across the inner mitochondrial membrane followed the 
changes in mitochondrial/cytosolic H +  fl uxes which were largely driven by  the   elec-
tron transport chain. Because SERCA and Na + /Ca 2+  exchanger modulated pH 
response in a neglectable manner during Ca 2+  loads, PMCA3 can be considered as 
an important regulator of intracellular pH of differentiated PC12 cells. 

 The increase in steady-state mitochondrial pH could indicate higher capacity of 
mitochondria to produce ATP. Nonetheless, our further studies on energy metabo-
lism of PMCA3-defi cient cells, as well as the experiments with oligomycin, indi-
cated rather low rate of  ATP turnover   and state of mitochondria close to state 4 [ 62 ]. 
In parallel, we demonstrated higher glucose consumption and concomitant lactate 
release in these cells but also a compensatory ATP generation via the Pasteur effect 
in the presence of oligomycin [ 63 ]. Increased percentage of necrotic cells observed 
following short-time hexokinase inhibition seems to additionally support our pre-
sumption of paramount importance of anaerobic glycolysis for ATP supply in 
PMCA3 downregulated line. Mitochondrially generated ATP in this line is critical 
to sustain neuronal differentiation as the inhibition of ATP synthase decreased the 
expression of neuronal marker βIII-tubulin and initiated massive cell death. These 
results provide an evidence for an important role of PMCA3 in the regulation of 
bioenergetic pathways and maintenance of ATP level during differentiation 
process. 

 Using rat pituitary GH3 line, a model system of excitable endocrine cells, we 
next confi rmed that  disturbance   of Ca 2+  homeostasis caused by PMCA3 downregu-
lation is not restricted only to (pseudo)neuronal lines but may represent a more 
general phenomenon [ 64 ]. The most prominent fi nding in GH3 cells with decreased 
PMCA3 level was an upregulation of glutamate decarboxylase 65 kDa isoform 
(GAD65) expression, which correlated with augmented protein amount. Glutamate 
decarboxylase (GAD) is responsible for γ-aminobutyric acid (GABA) synthesis, 
and, in addition to 65 kDa isoform, it also exists as GAD67. Although the expres-
sion of the latter was not affected by PMCA3 downregulation, the total enzymatic 
activity of GAD was lower than in naive cells. This suggests a functional connection 
between PMCA3 and GAD65, which is thought to preferentially produce GABA 
for secretion. In view of our fi ndings, PMCA3 function could be related to the regu-
lation of GABA synthesis and degradation that additionally highlights its involve-
ment in the process of neurotransmitters synthesis and release. 

 Our studies on  Atp2b3  knockdown cell models clearly demonstrate that PMCA3 
function is not only limited to Ca 2+  extrusion but may be extended on many impor-
tant processes. Therefore, it is of high priority to make efforts for generating 
knockout animals to elucidate the role of PMCA3 in the early development. On the 
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other hand, the overexpression studies in cells lacking PMCA3 may also provide 
valuable data regarding such restricted localization and sophisticated function of 
this isoform.  

8     Conclusions 

 The expression of PMCA3 determined under a wide range of experimental condi-
tions and during developmental stages of the cells seems to refl ect its unique char-
acteristic and function. Based on the available data, PMCA3 seems to be a defi ned 
component of the plasma membrane signal-processing machinery, although its pre-
cise role is far to be fully clarifi ed. The regulatory function of PMCA3 could be 
recognized to operate through the action of subcellular microdomains, several of 
which exist in a single cell. The expressional level appears to be not only gene spe-
cifi c but even transcript specifi c and strongly depends on the cell type. PMCA3 co- 
localization with other isoforms, as well as with some proteins modulating 
calcium-induced events, suggests that it may enable the cells to govern their vital 
activities. Being a fast-acting calcium pump with relative resistance to the stress 
conditions, as was shown in several studies, PMCA3 may signifi cantly contribute to 
the maintaining of cellular calcium homeostasis when other isoforms are less 
effective.     
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    Chapter 5   
 The ATP2B Plasma Membrane Ca 2+  ATPase 
Family: Regulation in Response to Changing 
Demands of Cellular Calcium Transport                     

       Emanuel     E.     Strehler    

    Abstract     The mammalian ATP2B family of plasma membrane calcium ATPases 
(PMCAs) consists of over 30 members generated from four genes and via complex 
alternative RNA splicing. Regulation occurs at the level of ATP2B gene transcrip-
tion, splicing, translation, and posttranslational modifi cation. PMCA isoforms and 
splice variants vary in their functional properties and are differentially regulated by 
intrinsic factors such as calmodulin and lipids, as well as by dynamic interaction 
with a large number of scaffolding and signaling proteins. A major emerging theme 
is the functional integration of different PMCAs in multiprotein complexes to allow 
reciprocal cross talk between localized PMCA-mediated Ca 2+  control and the func-
tion of other members in the complex. The same PMCA isoform may be responsible 
for bulk calcium export in the cells of one tissue but control the local activity of a 
signaling microdomain in the cells of another. Regulation of the PMCAs must 
therefore be understood in the physiological context of the tissues and cells where 
they are expressed.  

  Keywords     Alternative splicing   •   ATP2B ion pumps   •   Calcium microdomain   
•   Calcium signaling   •   Plasma membrane calcium ATPase   •   PMCA   •   Signaling 
cross talk  

1         Introduction 

 Calcium is an abundant and essential element in all living systems, and is used for 
both structural (skeleton, teeth) and signaling purposes. Cells expend a large amount 
of energy to control calcium fl uxes and to maintain calcium homeostasis. As an 
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important signaling agent, ionized  free   calcium (Ca 2+ ) must be very tightly regulated. 
Accordingly, cells have evolved membrane-intrinsic transport systems specifi cally 
dedicated to Ca 2+  transport across biological membranes [ 1 ,  2 ]. Plasma membrane 
Ca 2+  ATPases (PMCAs) are present in all eukaryotic cells and belong to the large 
superfamily of P-type ATP-driven ion pumps characterized by the formation of a 
phosphorylated enzyme intermediate [ 3 ]. Among the P-type ion pumps, the PMCAs 
are classifi ed as ATP2B subfamily of Ca 2+  pumps, with ATP2A and ATP2C repre-
senting the Ca 2+  pumps of the sarco/endoplasmic reticulum and the Golgi compart-
ment, respectively [ 4 ,  5 ]. Following the early realization that PMCAs represent a 
dedicated Ca 2+  extrusion system capable of removing “excess” Ca 2+  across the 
plasma membrane to maintain long-term intracellular Ca 2+  balance, subsequent 
studies have shown a remarkable complexity not only in the number of PMCA iso-
forms expressed in different cells and tissues but also in the mechanisms by which 
these calcium pumps are regulated. This review will start with an overview of the 
molecular complexity of the mammalian PMCA family and then highlight different 
mechanisms of regulation of these proteins and their integration in the physiological 
demands of cellular Ca 2+  handling.  

2     Overview of the Mammalian ATP2B Gene Family Coding 
for Plasma Membrane Ca 2+  ATPases (PMCAs) 

 The  known   mammalian genomes contain four separate PMCA genes (nomenclature 
for the human genes: ATP2B1, ATP2B2, ATP2B3, ATP2B4) located on different 
chromosomes (12q21.3, 3p25.3, Xq28, and 1q32.1 for human ATP2B1–4, respec-
tively). The genes are large, with ~20–25 protein-coding exons spread over 50 to 
>100 kb, and additional 5′ untranslated exons separated by large introns in the 5′ 
region [ 6 ]. The human genes, for example, are ~120 kb for ATP2B1, ~380 kb for 
ATP2B2, ~ 65 kb for ATP2B3, and ~120 kb for ATP2B4 (Fig.  5.1 ). Several exons 
are subject to alternative splicing resulting in a multitude of PMCA splice variants 
differing in specifi c regions of the protein. The two major regions affected by alter-
native splicing are located in the fi rst intracellular loop (site A) and the C-terminal 
tail (site C; see scheme in Fig.  5.2 ). A remarkable feature of all PMCA genes is the 
presence of at least one exon containing only 5′ untranslated (5′ UTR) sequence; 
the ATP2B2 gene has at least four separate upstream exons specifying 5′ UTR 
sequences (Fig.  5.1 ). In addition, some of these upstream exons are alternatively 
 spliced   and incorporated due to alternative promoters [ 7 ]. The complex upstream 
gene structure and multiple transcriptional start sites are suggestive of complex 
transcriptional regulation of the ATP2B genes.

    The PMCAs contain ~1200 amino acid residues and have molecular masses of 
~125–140 kDa [ 8 ]. Alternative splicing (at site A) of one to three small exons cod-
ing for integer multiples of triplet codons leads to changes in the length of the fi rst 
intracellular loop, which can thus differ by up to 45 residues (comparing human 
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PMCA2 splice variants 2z and 2w). The PMCA site-A variants are indicated by 
lower case letters w, x, y, z [ 9 ];  a splice variant   inserting yet a fourth optional exon 
coding for an additional 12 amino acids has been identifi ed in the bullfrog and has 
been named variant “v” [ 10 ]. The cytosolic loop affected by site-A splicing is part 
of the A (actuator) domain of the pumps and as such, is intimately involved in the 
structural transitions that accompany the Ca 2+  pumping reaction cycle [ 11 ]. This 
loop also contains a region sensitive to acidic phospholipids and participates in the 
autoregulation (auto-inhibition) of the pump in the basal state, i.e., at low [Ca 2+ ] i  and 
in the absence of calmodulin (CaM) [ 12 ,  13 ]. Interestingly, however, the site A 
splice variants have not been found to differ signifi cantly in their in vitro functional 
properties [ 14 ] or acidic lipid sensitivity when over-expressed in transfected CHO 
cells [ 15 ]. The effect of alternative splicing at site A on PMCA regulation may 
instead be indirect, e.g., by altering membrane targeting [ 16 ] and lipid partitioning, 
or by affecting signaling cross talk via specifi c lipid sequestration [ 17 ] or as yet 
unknown protein interactions. 

 Alternative splicing at site C is complex and can either insert additional amino 
acids into the C-terminal tail (splice variants c, d) or truncate the C-tail due to a shift 
in reading frame and the earlier occurrence of a stop codon (splice variants a, e, f) 
[ 9 ,  18 ]. The alternative splicing affects a major regulatory region of the PMCAs, 
i.e., the CaM-binding domain [ 19 ]. In addition,    the splice variants with an altered 
reading frame and earlier stop codon also show major differences in their regulation 
by other proteins, most notably by PDZ domain-containing signaling and  scaffolding 
proteins (see below) [ 20 ]. Because of the potential for combinatorial use of the 
alternative splice options at sites A and C, over 30 PMCA isoform variants can be 
generated from the four mammalian genes and >20 of these have been detected at 
various levels in different tissues [ 21 ]. Tables summarizing the various splice 
options have been published in many recent reviews [ 18 ,  19 ,  21 ,  22 ] and the reader 
is referred to these for further information.  

  Fig. 5.1    Exon–intron structure of the human ATP2B genes. The four genes are aligned with 
 respect   to their ATG initiation codon in exon 1 and their length is shown to scale. Upstream exons 
( blue boxes ) have negative numbers, the last exon (exon 21) containing the bulk of the 3′ UTR is 
also labeled. Constitutively spliced exons are shown as  black boxes . A scale bar (50 kb) is indi-
cated on the  lower left        
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3     ATP2B Gene Regulation 

  The transcriptional regulation of ATP2B genes is not well understood, but they are 
clearly differentially regulated during embryonic development and in different 
organs and cell types  in   response to numerous stimuli [ 23 ,  24 ]. In situ hybridization 

  Fig. 5.2     Scheme   of the mammalian PMCA and alternative splice options. A model of the PMCA 
in the plasma membrane is shown on the  top . The cytosolic (IN) and extracellular (OUT) sides are 
indicated. The ten membrane-spanning regions of the PMCA are numbered, and the N- and 
C-terminus are labeled. The phospholipid-binding region in the fi rst cytosolic loop (PL), the oblig-
atory aspartate residue phosphorylated during the enzyme reaction cycle (P), the ATP binding 
region (ATP), and the CaM-binding domain (CBD) are also indicated. Major functional domains 
of the PMCA are labeled in  black pentagons  as A (actuator), P (phosphorylation), N (nucleotide- 
binding), and R (regulatory).  Arrows  indicate where alternative splicing results in isoform vari-
ability in the fi rst cytosolic loop (splice site A) and the C-terminal tail (splice site C). Splicing at 
site C can result in a change in reading frame, this is exemplifi ed by two different C-termini shown 
for variants a and b. Exon arrangements resulting in splice variants at site A and site C are shown 
on the  bottom. Flanking gray boxes  represent constitutively spliced exons, alternatively spliced 
exons are shown as separate  boxes  in different shades of  gray , and the resulting splice variants are 
labeled by their  lowercase symbol  on the  left . Note that splice options c, d, and e use different 
splice donor sites within the same exon (indicated by  black vertical lines ); complete insertion of 
this exon gives rise to splice variant a       

 

E.E. Strehler



67

studies during mouse embryogenesis have shown that  Atp2b1  is transcribed very 
early on, including in embryonic stem cells [ 25 ], and continues to be expressed in 
virtually all tissues throughout life, albeit at varying levels [ 26 ]. It is therefore not 
surprising that germ-line knockout of both copies of the Atp2b1 gene is embryonic 
lethal [ 27 ]. However, although PMCA1 is often referred to as “housekeeping” iso-
form, the ATP2B1 gene is subject to tight regulation at the transcriptional and post-
transcriptional level. The early response transcription factor c-myb, for example, 
was shown to repress  Atp2b1  transcription during the G1/S phase of the cell cycle 
in mouse vascular smooth muscle cells, likely by interacting with myb-binding sites 
in the promoter region of the gene [ 28 ]. Similarly, c-myc can bind directly to a regu-
latory region in the Atp2b4 gene promoter and mediates transcriptional downregu-
lation of PMCA4 during B lymphocyte differentiation [ 29 ]. Early promoter studies 
on the mouse Atp2b1 gene identifi ed numerous general and specifi c transcription 
factor binding sites [ 30 ] and showed both protein kinase C (PKC) and protein kinase 
A (PKA) dependent transcriptional (up)regulation of PMCA1 expression [ 31 ]. 
These kinases are mediators of hormone-induced second messenger (Ca 2+ , cAMP) 
regulation of PMCA expression and likely work through transcription factors such 
as CREB. The ATP2B1 gene is also subject to transcriptional regulation by the 
active form of vitamin D, 1,25-(OH) 2 -D3, which strongly induces PMCA1 expres-
sion in the small intestine, kidney distal tubules, and osteoblasts [ 32 – 36 ]. 

 The transcriptional regulation of the ATP2B genes is evidently tissue-specifi c 
and may change with the differentiation state and in response to external stimuli. 
Thus, depolarization and a rise in Ca 2+  in cerebellar granule cells result in opposite 
regulation of ATP2B1–B3 and ATP2B4: ATP2B4 is downregulated at the transcrip-
tional level in a calcineurin-dependent manner, presumably via calcineurin- mediated 
increased nuclear translocation of the transcription factor NFAT [ 37 ]. By contrast, 
ATP2B2 is upregulated in cerebellar development by a transcription factor gener-
ated from an internal ribosomal entry site in the voltage-gated calcium channel gene 
CACNA1A [ 38 ]. Another striking example of tissue-specifi c and (likely) hormonal 
control of transcription of a PMCA gene is that of  Atp2b2  in the lactating mammary 
gland: the transcript and protein levels of PMCA2 are induced up to 100-fold start-
ing at parturition and during lactation in mice [ 39 ,  40 ]. Interestingly, the mammary 
gland PMCA2 transcripts are generated by using an alternative promoter and incor-
porating alternatively spliced 5′ UTR exons of the ATP2B2 gene different from the 
promoter and 5′ UTR exons used by neuronal cells [ 7 ]. As mentioned above, alter-
native promoters and alternatively spliced 5′ exons may be present in other ATP2B 
genes (e.g., ATP2B1), further broadening the potential for tissue-specifi c and physi-
ological context-specifi c regulation [ 41 ].   

4     Regulation at the Level of Alternative Splicing 
and RNA Stability 

  Alternative splicing of the ATP2B primary transcripts must be carefully regulated 
because the amino acid changes due to alternative exon usage at sites A and C result 
in signifi cant changes in the functional properties of the encoded PMCA isoforms. 
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Evidence for cell-type  and   differentiation-specifi c alternative splicing of ATP2B 
transcripts is widespread. Cochlear outer hair cells almost exclusively express the 
w/a splice variant of PMCA2, whereas lactating mammary cells express only the 
w/b variant [ 10 ,  40 ,  42 ]. In differentiating hippocampal neurons, splicing of 
ATP2B1, B2, and B3 transcripts shifts from the b- to the a-variant [ 43 ], and a recent 
study in a mouse carotid artery injury model showed that ATP2B4 splicing shifted 
from the a- to the b-variant in the injured carotids [ 44 ]. The factors and mechanisms 
regulating alternative splicing of ATP2B pre-mRNAs are still incompletely under-
stood. Changes in second messengers, including Ca 2+  as an important feedback 
regulator, are clearly playing a role (see for example Ref. [ 45 ]), and these likely 
impact different components of the spliceosome or specifi c RNA-binding proteins 
that either promote or repress the use of specifi c splice sites [ 46 ,  47 ]. In one example 
Ca 2+ , working through CaM kinase IV, has been shown to affect alternative splicing 
in neuronal cells via CaMKIV-responsive RNA elements (CaRREs) [ 48 ]. CaRREs 
are indeed present in relevant regions of ATP2B genes [ 47 ] and may be recognized 
by the RNA binding protein hnRNP-L which is directly phosphorylated by CaMKIV 
[ 49 ]. The transcription factors NFAT1 and NFAT3, possibly working with the his-
tone deacetylase HDAC4, were also recently shown to affect alternative splicing of 
several ATP2B transcripts in PC12 cells [ 50 ]: Inhibition of NFAT1/3 resulted in an 
increased expression of the “fast” PMCA2x/c, 3x/a, and 4x/a variants primarily at 
the expense of the “b” variants. For a more detailed discussion of the regulation of 
alternative splicing in the ATP2B gene family, the reader is referred to a recent 
review by J. Krebs [ 18 ].  

  The pattern of alternative splicing also depends on the RNA secondary structure, 
which may be infl uenced by the length and sequence of the 5′ and 3′ UTR regions. 
Because several ATP2B  genes   contain alternative promoters and multiple transcrip-
tion initiation sites, the promoter and fi rst exon choice could infl uence the splicing 
of downstream exons. Similarly, alternative poly-adenylation sites have been docu-
mented in the ATP2B genes, resulting in vastly different lengths of 3′ UTR sequences 
as demonstrated in Northern blots from various tissues [ 51 ,  52 ]. However, no exper-
imental evidence has as yet been provided for a role of the untranslated regions in 
alternative splicing of the ATP2B pre-mRNAs. 

 Posttranscriptional regulation of PMCA expression at the level of mRNA stabil-
ity also deserves attention but has not yet been carefully evaluated. The differences 
mentioned above in the 3′ UTR regions and poly-adenylation sites of several ATP2B 
mRNAs may play an important role in the control of their half-lives. In rat aortic 
and brain vessel endothelial cells ATP2B1 transcripts have been estimated to have a 
short half-life of 2–3 h [ 31 ,  53 ], a fi nding that is corroborated by the signifi cant 
changes in ATP2B1 mRNA levels during the cell cycle in proliferating vascular 
smooth muscle cells [ 54 ]. Thus, when rapid turnover of a specifi c PMCA isoform is 
required such as during cell proliferation or in response to external stimuli demand-
ing altered basal Ca 2+  levels, regulation at the level of ATP2B mRNA stability may 
be particularly important. However, systematic analyses of the correlation between 
the 3′ UTR length, poly-A site choice, and mRNA stability have not yet been per-
formed for any of the ATP2B genes.   
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5     Regulation at the Level of Protein Translation 
and Stability 

 The vast majority of studies in which ATP2B expression was determined at the 
mRNA (Northern blots, in situ hybridization, RT-PCR) and at the protein level 
(Western blots, immunohistochemistry) report a tight correlation, i.e., PMCA pro-
tein levels generally refl ect RNA abundance for the particular PMCA. This holds 
true for most overexpression studies where  recombinant   cDNAs (usually comprised 
of only the protein-coding sequence) are transiently or stably transfected into recipi-
ent cells. Antisense knockdown (siRNA) studies similarly show a good correlation 
between decreased RNA levels and loss of the specifi c PMCA protein, although the 
analysis of the effects of such treatment requires consideration of the PMCA half- 
life and is therefore usually performed at least 24–48 h after (transient) mRNA 
knockdown [ 55 – 58 ]. However, as in the case of ATP2B RNA stability, very little 
information is available on the half-lives of the endogenous PMCA isoforms in 
physiological conditions. 

 The translational regulation of ATP2B mRNAs is another area that has not yet 
received appropriate attention in the fi eld. The incorporation of alternative 5′ UTR 
sequences (as well as of alternative exon sequences) may profoundly infl uence the 
effi ciency of  translation   initiation due to different secondary RNA structures in the 
vicinity of the AUG start codon. Specifi c sequences in the 5′ or 3′ UTR may also 
play a role in targeting some ATP2B mRNAs to cellular compartments for local 
translation; this could be of particular relevance for ATP2B2 and ATP2B3, which 
are mainly expressed in neurons and where specifi c splice variants are concen-
trated in membrane microdomains such as presynaptic boutons or postsynaptic 
spines [ 59 – 61 ]. 

 Information on posttranslational regulation of PMCA stability is also scarce 
although several recent studies have begun to shed some light on this issue. As 
already mentioned, early half- life   estimates from pulse-chase experiments in endo-
thelial cells showed that the PMCA1 isoform is comparatively unstable. A similar 
fi nding was reported by Guerini and coworkers who noted that PMCA1b was 
remarkably unstable due to its high susceptibility to degradation by the calcium- 
sensitive protease calpain [ 62 ]. Proteolytic cleavage of the PMCA by calpain allows 
rapid regulation of the Ca 2+  extrusion capacity of a cell. For example, upon platelet 
activation by thrombin 50 % of PMCA4b was found to be cleaved by calpain within 
~5 min [ 63 ]. Initially, this may result in a constitutively active 124 kDa fragment 
capable of preventing Ca 2+  overload, but a subsequent reduction in active PMCA at 
the membrane is required to allow normal progression of clot formation. A similar 
Ca 2+ -dependent feedback regulation of the PMCA by calpain appears to be opera-
tive in physiological stimulation as well as (NMDA/Ca 2+ -induced) excitotoxicity in 
neurons: Limited cleavage of the PMCA is required for normal Ca 2+  signal control, 
but excessive calpain cleavage will lead to excitotoxicity and cell death [ 64 – 66 ]. 

 The examples above illustrate instances of the regulated degradation of specifi c 
PMCAs. Much less is known about the “constitutive” pathways of PMCA turnover 
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and the mechanisms of their degradation. Several reports have shown that PMCAs 
may be “fl agged” for destruction, e.g., by posttranslational modifi cations such as 
oxidation and glycation, and these modifi cations result  in   PMCA inhibition [ 67 – 71 ]. 
The most plausible routes for the eventual demise of the pumps involve endocytosis 
followed by lysosomal degradation. Alternatively, PMCA turnover may also occur 
by shedding of PMCA-enriched membrane vesicles, as appears to be the case at the 
apical membrane of lactating mammary epithelial cells [ 40 ] or in the male and 
female reproductive tract [ 72 ,  73 ].  

6     Regulation by (Reversible) Posttranslational Modifi cation 

 Besides proteolytic cleavage and generally irreversible modifi cations such as oxida-
tion and glycation mentioned above, the PMCAs are highly regulated by phosphor-
ylation in an isoform- and splice variant-specifi c manner. Ser/Thr phosphorylation 
by prominent signaling kinases including PKA and PKC has been shown to enhance 
the activity of most isoforms; however, the precise effect (stimulation or decrease of 
pump activity) is dependent on the isoform  and   splice variant under study [ 74 – 80 ]. 
Phosphorylation of a specifi c tyrosine residue (Tyr-1176) in PMCA4, likely by the 
focal adhesion kinase FAK, is operative in platelet activation and results in an inhi-
bition of PMCA activity [ 81 – 83 ]. The regulation of different PMCAs by phosphor-
ylation has been extensively covered in many earlier reviews [ 84 – 86 ] and will 
therefore not be further discussed here. It is worth mentioning, however, that virtu-
ally nothing is known about the “off” mechanism of PMCA phosphorylation, i.e., 
about the specifi c Ser/Thr- and Tyr-phosphatases that are required for removal of 
the phosphates to make this type of regulation truly reversible.  

7     Regulation by Calmodulin, the Lipid Environment, 
and Oligomerization 

 The “mother of all regulation” for the PMCAs is that by CaM, as evidenced by the 
extensive  literature   dealing with the affi nity, Ca 2+  dependence, kinetics, mechanism 
of action, regulation, and functional outcomes of CaM interaction with the PMCAs 
(see for example Refs. [ 84 ,  87 – 89 ] for early reviews). All PMCA isoforms and splice 
variants are sensitive to CaM and in all instances, the binding of Ca 2+ -CaM activates 
the pump by releasing auto-inhibitory intramolecular interactions of the C-tail with 
the two major cytosolic loops in the pump [ 13 ,  86 ]. However, there are large differ-
ences in the extent of activation of the basal activity of the various PMCA isoforms 
by CaM, and perhaps more importantly in the kinetics of CaM regulation. The dif-
ferences in the  rates   of activation and termination of CaM regulation profoundly 
affect how different PMCA isoforms impact the timing and shape of Ca 2+  signals, 
and have allowed the distinction of “fast” and “slow” PMCAs with different “mem-
ory” for past activation [ 90 – 92 ]. The specifi c expression pattern of these pumps 
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refl ects the physiological demands and the type of Ca 2+  signaling in different cells: 
Fast pumps such as PMCA2x/b are prominent in excitable cells with frequent and 
rapid Ca 2+  swings whilst slow pumps (PMCA4x/b) are dominant in non- excitable 
cells with very different demands on the shape and timing of Ca 2+  signals. 

 As integral membrane proteins, the PMCAs are highly sensitive to their  lipid 
environment.   Numerous studies have investigated the effect of membrane phospho-
lipids, free fatty acids and cholesterol on the activity and CaM regulation of PMCAs, 
with most studies focusing on the (erythrocyte) PMCA4x/b [ 87 ,  93 – 96 ]. Acidic 
phospholipids, notably the multiply charged phosphatidylinositol bisphosphate 
(PIP 2 ), are potent activators of PMCA4b and have been shown to directly bind to 
two distinct regions in the pump, one within the C-tail overlapping the CaM-binding 
domain and one in the fi rst intracellular loop close to the third membrane-spanning 
segment [ 12 ]. Although the precise mechanism of direct phospholipid regulation of 
the PMCA is not fully understood, it likely involves lipid binding to membrane- 
proximal regions of the C-tail and intracellular loop to “loosen” autoinhibitory 
interactions, thereby facilitating access of substrates or conformational changes 
during the reaction cycle [ 97 – 99 ]. The type and shape of lipids surrounding the 
PMCAs in the lipid bilayer obviously affect pump function; on a longer time-scale 
PMCAs may thus also be regulated by changes in the lipid  composition   of the mem-
brane. The fatty acid chain length, degree of unsaturation, type of head groups, as 
well as the cholesterol content impact the thickness and fl uidity of the bilayer, which 
will impose conformational constraints on the membrane domain of the PMCAs 
and modulate their activity [ 100 – 102 ]. The membrane lipid composition plays an 
essential role in the partitioning of different PMCAs into membrane micro- or nano- 
domains (lipid rafts). Several studies have investigated the relative distribution and 
activity of different PMCA isoforms in sphingolipid- and cholesterol-rich lipid rafts 
in various cell types [ 103 ,  104 ]. PMCA4b is specifi cally concentrated in caveolae, 
which are specifi c membrane compartments found in many cell types including 
cardiomyocytes and endothelial cells [ 105 – 108 ]. The local enrichment of the 
PMCA in specifi c lipid microdomains may also facilitate the dimerization/oligo-
merization of pump molecules, which has been shown to happen via their regulatory 
C-tails and is thought  to   result in CaM-independent activation of pump function 
[ 109 – 112 ]. This could serve to maintain a high constitutive Ca 2+  effl ux activity in 
these specifi c membrane domains, allowing the cell to create and maintain local 
areas of low [Ca 2+ ] without compromising its bulk cytosolic Ca 2+  level.  

8     Integrated Regulation of PMCA Function in Cellular 
Calcium Signaling 

 Many of the studies on the regulation and functional properties of individual PMCA 
isoforms have been carried out on purifi ed or highly enriched preparations of the 
pump in vitro.  While   these studies were and still are necessary to gain a detailed 
understanding of the structural and functional characteristics of each isoform or 
splice variant, they fail to address the integrated role played by the PMCAs in their 
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physiological context. This gap is now rapidly being fi lled, in part due to improved 
technology to analyze calcium signaling with high spatial and temporal resolution 
in living cells, but also because of the increased use of cell, organ and animal mod-
els amenable to genetic and environmental manipulation. The emerging concept 
shows that a crucial function of the PMCAs is their tightly integrated participation 
in all aspects of cellular calcium signaling [ 102 ,  113 ,  114 ]. In fact, it may be argued 
that the original role ascribed to the PMCA, i.e., that of maintaining the basal rest-
ing level of intracellular [Ca 2+ ], is secondary to their other roles in cellular Ca 2+  
handling. In some physiological contexts such as during lactation, a specifi c PMCA 
isoform (PMCA2w/b) has as its main function the massive export of Ca 2+  into the 
milk from the apical (luminal) side of breast epithelial cells. Similarly, in entero-
cytes of the small intestine, PMCA1x/b is responsible for the bulk transport of Ca 2+  
into the blood at the basolateral side to maintain dietary calcium absorption. The 
expression, splicing, targeting, local regulation, and eventual removal of the 
PMCA2w/b and PMCA1x/b in these tissues are under tight control by external fac-
tors including sex steroids and 1,25-(OH) 2  D3, respectively. In other cell types, the 
same or a different PMCA isoform/splice variant may have an entirely different 
function, e.g., to control  the   spiking frequency and signal shape of local Ca 2+  signals 
in presynaptic nerve terminals or postsynaptic spines. In these latter cases, the 
PMCAs have little, if any, effect on bulk cytosolic Ca 2+ ; other PMCA(s) or different 
calcium extrusion systems such as the Na + /Ca 2+  exchangers (NCX) may instead 
perform this function in the cell. 

 It is now amply clear that the PMCAs are not working in isolation but are con-
stantly “sensing” the physiological state of the cell by dynamically interacting with 
other proteins and lipids. Besides CaM, a large and growing number of proteins have 
been shown to interact with the PMCAs [ 113 – 115 ]. Some of these proteins bind 
specifi cally only to a certain isoform or type of splice variant, whereas others interact 
promiscuously with most isoforms and splice variants. The C-terminus of all b(c/d) 
splice variants contains a consensus sequence for interaction with PDZ domain pro-
teins, and many different PDZ proteins are now known to bind  to   the PMCA b splice 
variants [ 20 ,  115 ]. These PDZ proteins have different functional modalities includ-
ing scaffolding, membrane traffi cking/recycling, and signaling. Other proteins 
involved in signaling cross talk or direct activation or inhibition regulate several 
PMCA isoforms by interacting with the N-terminal tail or intracellular loops of the 
molecule [ 116 ]. These include inhibitory interactions of 14-3-3e and Homer-2 with 
sequences in the N-tail of multiple PMCAs [ 117 – 119 ]. The interaction of a PPXXF 
motif in the N-tail of PMCA4 with Homer-2 at the apical pole of parotid gland acinar 
cells illustrates the tight cross talk between a specifi c PMCA isoform and its signal-
ing partner: Knockdown of Homer-2 results in a parallel increase in PMCA4 expres-
sion and Ca 2+  extrusion activity in acinar cells, whereas increased expression of 
Homer-2 downregulates PMCA4 expression and activity [ 119 ]. 

 Numerous examples of the integrated regulation of PMCA function by differen-
tial and dynamic protein–protein interactions have been reported in the recent litera-
ture. In rat coagulating (prostate) gland epithelial cells, PMCA1b, but not 4b, was 
found to be localized in the apical membrane and released by apocrine secretion in 
a process controlled by androgens: Upon androgen deprivation, the PMCA1b was 
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no longer released in aposomes and instead accumulated in  a   cytoplasmic compart-
ment [ 120 ]. Rapid agonist-induced recruitment of PMCA1b to the plasma mem-
brane has also been demonstrated in HT29 human colorectal carcinoma cells. 
Muscarinic G-protein coupled receptor activation by acetylcholine resulted in a sig-
nifi cant increase in PMCA1b in the plasma membrane, and this effect was depen-
dent on Ca 2+  and the PDZ protein NHERF2 [ 121 ]. Here, G-protein coupled receptor 
activation leads to phospholipase C activation, IP3 release, and Ca 2+  infl ux from the 
ER, promoting the targeting of NHERF2 to recruit and retain the PMCA1b in the 
plasma membrane. The  role   of NHERF2 as a “recruiter” of specifi c PMCA iso-
forms to a particular membrane domain has also been demonstrated for PMCA2w/b: 
Co-expression of NHERF2 increased the amount of PMCA2w/b in the apical mem-
brane of polarized kidney epithelial cells and reduced its internalization likely via 
anchoring the pump to the underlying membrane cytoskeleton [ 122 ,  123 ]. Anchoring 
to the membrane cytoskeleton appears to be important for sustained PMCA func-
tion, as actin polymerization increased and disruption of polymerization decreased 
PMCA-mediated Ca 2+  effl ux during T-cell stimulation [ 124 ]. The polymerization 
state of actin may itself regulate PMCA activity [ 125 ], but the major role of anchor-
ing of the PMCA is likely the maintenance of suffi cient effl ux capacity within a 
particular membrane domain. During immunological synapse formation preceding 
T-cell stimulation, the PMCA (4b) is retargeted to a different membrane microdo-
main by stimulus-induced interaction with other molecules involved in cellular Ca 2+  
signaling, i.e., STIM1 [ 126 ,  127 ], providing an example for Ca 2+  dependent feed-
back regulation of PMCA localization and activity. 

 Integration of specifi c PMCAs in multi-protein signaling complexes to provide 
local Ca 2+  control has also been demonstrated in rod photoreceptor synaptic termi-
nals, where the proper localization and function of PMCA1b was shown to depend 
on the two PDZ domain  containing   proteins MPP4 and PSD95 [ 128 ,  129 ]. Recent 
examples of the importance of the integration of PMCAs in multiprotein complexes 
for local signaling include the fi nding of a tight functional coupling of PMCA iso-
forms 2 and 3 and the Na + /Ca 2+  exchanger NCX1 with the presynaptic glycine trans-
porter GlyT2 in lipid raft subdomains in rat brainstem and spinal cord neurons 
[ 130 ]. In the most recent example, PMCA4b was found to cross talk with the 
G-protein coupled estrogen receptor GPER1/GPR30 in endothelial cells: Receptor 
stimulation resulted in PMCA4b inhibition by tyrosine phosphorylation and inde-
pendently by physical interaction mediated by the PDZ protein PSD95. Conversely, 
the interaction stimulated receptor signaling, demonstrating a tightly connected 
interplay between Ca 2+  signaling and GPER-mediated downstream phosphorylation 
of ERK1/2 via the formation of a heteromeric complex [ 131 ].  

9     Conclusions 

 It is ironic that we may have been slow in recognizing the most important functions 
of the PMCAs because the initial identifi cation and all successful biochemical char-
acterizations were made on the pump from red blood cells, yet in these cells much 
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of the signaling complexity found elsewhere is absent. It is now abundantly clear 
that most PMCAs are not acting as “isolated” pumps dedicated solely to maintain-
ing low bulk cytosolic Ca 2+ ; rather they are tightly integrated with scaffolding and 
other signaling proteins in specifi c membrane domains to provide “holistic” cal-
cium control in the context of changing cellular demands, which are  under   external 
regulation by hormones, neurotransmitters and other factors impacting the cell. The 
regulation of PMCAs includes dynamic changes in their abundance by (1) changing 
transcription, splicing, and translation, (2) controlling the forward traffi cking, lipid 
partitioning, anchoring and retention in membrane domains, and (3) recycling, 
shedding to the extracellular milieu, or removal followed by degradation. In addi-
tion, the activity of the PMCAs is regulated by posttranslational modifi cation 
including phosphorylation, oxidation, and partial proteolysis, by direct interaction 
with stimulatory or inhibitory proteins and lipids, and by redistribution and associa-
tion with different protein complexes. Different PMCA isoforms and splice variants 
are differently impacted by these regulatory mechanisms and show inherent differ-
ences in their functional properties including in their basal rates and stimulation 
kinetics. An important emerging concept is that many PMCAs work as integrated 
members of teams where they both regulate and are regulated by other members of 
the signaling/scaffolding protein complex. Thus, replacement of one isoform by 
another in a specifi c cell type will generally not correct the pathology caused by the 
absence or mutation of the former. Systems-level approaches will be needed to fully 
understand the unique role played by each PMCA isoform in cell physiology and 
pathophysiology, and may contribute to the development of specifi c modifi ers of the 
pumps to address the many diseases involving these important calcium 
transporters.       Acknowledgements   I am grateful to M.-A. Strehler-Page for help with 
the preparation of Fig.  5.1 . This work was supported in part by the Mayo Foundation 
for Medical Research.  

   References 

    1.    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signal-
ling. Nat Rev Mol Cell Biol 1:11–21  

    2.    Brini M, Carafoli E (2000) Calcium signalling: a historical account, recent developments and 
future perspectives. Cell Mol Life Sci 57:354–370  

    3.    Pedersen PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and signifi cance 
to cell function. Trends Biochem Sci 12:146–150  

    4.    Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266  
    5.    Thever MD, Saier MH (2009) Bioinformatic characterization of P-type ATPases encoded 

within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 229:115–130  
    6.    Strehler EE, Treiman M (2004) Calcium pumps of plasma membrane and cell interior. Curr 

Mol Med 4:323–335  
     7.    Silverstein RS, Tempel BL (2006) Atp2b2, encoding plasma membrane Ca 2+ -ATPase type 2, 

(PMCA2) exhibits tissue-specifi c fi rst exon usage in hair cells, neurons, and mammary glands 
of mice. Neuroscience 141:245–257  

    8.    Carafoli E (1992) The Ca 2+  pump of the plasma membrane. J Biol Chem 267:2115–2118  

E.E. Strehler



75

     9.    Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity 
among plasma membrane calcium pumps. Physiol Rev 81:21–50  

     10.    Dumont RA, Lins U, Filoteo AG et al (2001) Plasma membrane Ca 2+  ATPase isoform 2a is 
the PMCA of hair bundles. J Neurosci 21:5066–5078  

    11.    Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-type 
ATPase structure revisited. Curr Opin Struct Biol 20:431–439  

     12.    Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identifi cation of two domains which 
mediate the binding of activating phospholipids to the plasma-membrane Ca 2+  pump. Eur 
J Biochem 204:939–946  

     13.    Carafoli E (1994) Biogenesis: plasma membrane calcium ATPase: 15 years of work on the 
purifi ed enzyme. FASEB J 8:993–1002  

    14.    Hilfi ker H, Guerini D, Carafoli E (1994) Cloning and expression of isoform 2 of the human 
membrane Ca 2+  ATPase. J Biol Chem 269:26178–26183  

    15.    Brini M, Di Leva F, Ortega CK et al (2010) Deletions and mutations in the acidic lipid- 
binding region of the plasma membrane Ca 2+  pump. J Biol Chem 285:30779–30791  

    16.    Chicka MC, Strehler EE (2003) Alternative splicing of the fi rst intracellular loop of plasma 
membrane Ca 2+ -ATPase isoform 2 alters its membrane targeting. J Biol Chem 278:
18464–18470  

    17.    Penniston JT, Padányi R, Pászty K et al (2014) Apart from its known function, the plasma 
membrane Ca 2+  ATPase can regulate Ca 2+  signaling by controlling phosphatidylinositol 
4,5-bisphosphate levels. J Cell Sci 127:72–84  

      18.   Krebs J (2015) The plethora of PMCA isoforms: alternative splicing and differential expres-
sion. Biochim Biophys Acta 1853:2018-2024  

     19.    Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:
1341–1378  

     20.    Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca 2+ -pumps: 
structural diversity as the basis for functional versatility. Biochem Soc Trans 35:919–922  

     21.    Strehler EE (2013) Plasma membrane calcium ATPases as novel candidates for therapeutic 
agent development. J Pharm Pharm Sci 16:190–206  

    22.    Giacomello M, De Mario A, Scarlatti C et al (2013) Plasma membrane calcium ATPases and 
related disorders. Int J Biochem Cell Biol 45:753–762  

    23.    Ritchie MF, Zhou Y, Soboloff J (2011) Transcriptional mechanisms regulating Ca 2+  homeo-
stasis. Cell Calcium 49:314–321  

    24.    Naranjo JR, Mellstrom B (2012) Ca 2+ -dependent transcriptional control of Ca 2+  homeostasis. 
J Biol Chem 287:31674–31680  

    25.    Yanagida E, Shoji S, Hirayama Y et al (2004) Functional expression of Ca 2+  signaling path-
ways in mouse embryonic stem cells. Cell Calcium 36:135–146  

    26.    Zacharias DA, Kappen C (1999) Developmental expression of the four plasma membrane 
calcium ATPase (Pmca) genes in the mouse. Biochim Biophys Acta 1428:397–405  

    27.    Okunade GW, Miller ML, Pyne GJ et al (2004) Targeted ablation of plasma membrane Ca 2+ -
ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical 
role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 
279:33742–33750  

    28.    Afroze T, Husain M (2000) c-myb-Binding sites mediate G 1 /S-associated repression of the 
plasma membrane Ca 2+ -ATPase-1 promoter. J Biol Chem 275:9062–9069  

    29.    Habib T, Park H, Tsang M et al (2007) Myc stimulates B lymphocyte differentiation and 
amplifi es calcium signaling. J Cell Biol 179:717–731  

    30.    Du Y, Carlock L, Kuo TH (1995) The mouse plasma membrane Ca 2+  pump isoform 1 pro-
moter: cloning and characterization. Arch Biochem Biophys 316:302–310  

     31.    Kuo TH, Liu B-F, Diglio C, Tsang W (1993) Regulation of the plasma membrane calcium 
pump gene expression by two signal transduction pathways. Arch Biochem Biophys 
305:428–433  

    32.    Zelinski JM, Sykes DE, Weiser MW (1991) The effect of Vitamin D on rat intestinal plasma 
membrane Ca-pump mRNA. Biochem Biophys Res Commun 179:749–755  

5 Regulation of ATP2B Calcium Pumps



76

   33.    Cai Q, Chandler JS, Wasserman RH et al (1993) Vitamin D and adaptation to dietary calcium 
and phosphate defi ciencies increase intestinal plasma membrane calcium pump expression. 
Proc Natl Acad Sci U S A 90:1345–1349  

   34.    Pannabecker TL, Chandler JS, Wasserman RH (1995) Vitamin-D-dependent transcriptional 
regulation of the intestinal plasma membrane calcium pump. Biochem Biophys Res Commun 
213:499–505  

   35.    Glendenning P, Ratajczak T, Dick IM, Prince RL (2000) Calcitriol upregulates expression 
and activity of the 1b isoform of the plasma membrane calcium pump in immortalized distal 
kidney tubular cells. Arch Biochem Biophys 380:126–132  

    36.    Glendenning P, Ratajczak T, Dick IM, Prince RL (2001) Regulation of the 1b isoform of the 
plasma membrane calcium pump by 1,25-dihydroxyvitamin D3 in rat osteoblast-like cells. 
J Bone Miner Res 16:525–534  

    37.    Guerini D, Wang X, Li L, Genazzani A, Carafoli E (2000) Calcineurin controls the expres-
sion of isoform 4CII of the plasma membrane Ca 2+  pump in neurons. J Biol Chem 
275:3706–3712  

    38.    Du X, Wang J, Zhu H et al (1999) Second cistron in  CACNA1A  gene encodes a transcription 
factor mediating cerebellar development and SCA6. Cell 154:118–133  

    39.    Reinhardt TA, Horst RL (1999) Ca 2+ -ATPases and their expression in the mammary gland of 
pregnant and lactating rats. Am J Physiol 276:C796–C802  

      40.    Reinhardt TA, Filoteo AG, Penniston JT, Horst RL (2000) Ca 2+ -ATPase protein expression in 
mammary tissue. Am J Physiol Cell Physiol 279:C1595–C1602  

    41.    Ayoubi TA, Van de Ven WJM (1995) Regulation of gene expression by alternative promoters. 
FASEB J 10:453–460  

    42.    Hill JK, Williams DE, LeMasurier DE et al (2006) Splice-site A choice targets plasma- 
membrane Ca 2+ -ATPase isoform 2 to hair bundles. J Neurosci 26:6172–6180  

    43.    Kip SN, Gray NW, Burette A et al (2006) Changes in the expression of plasma membrane 
calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus 
16:20–34  

    44.    Afroze T, Ge Y, Khoshbin A et al (2014) Calcium effl ux activity of plasma membrane Ca 2+  
ATPase-4 (PMCA4) mediates cell cycle progression in vascular smooth muscle cells. J Biol 
Chem 289:7221–7231  

    45.    Zacharias DA, Strehler EE (1996) Change in plasma membrane Ca 2+ -ATPase splice-variant 
expression in response to a rise in intracellular Ca 2+ . Curr Biol 6:1642–1652  

    46.    Grabowski PJ, Black DL (2001) Alternative RNA splicing in the nervous system. Prog 
Neurobiol 65:289–308  

     47.    Li Q, Lee J-A, Black DL (2007) Neuronal regulation of alternative pre-mRNA splicing. Nat 
Rev Neurosci 8:819–831  

    48.    Xie J, Black DL (2001) A CaMK IV-responsive RNA element mediates depolarization- 
induced alternative splicing of potassium channels. Nature 410:936–939  

    49.    Liu G, Razanau A, Hai Y et al (2012) A conserved serine of heterogeneous nuclear ribonu-
cleoprotein L (hnRNPL) mediates depolarization-regulated alternative splicing of potassium 
channels. J Biol Chem 287:22709–22716  

    50.    Kosiorek M, Podszywalow-Bartnicka P, Zylinska L, Pikula S (2014) NFAT1 and NFAT3 
cooperate with HDAC4 during regulation of alternative splicing of PMCA isoforms in PC12 
cells. PLoS One 9:e99116  

    51.    Greeb J, Shull GE (1989) Molecular cloning of a third isoform of the calmodulin-sensitive 
plasma membrane Ca 2+ -transporting ATPase that is expressed predominantly in brain and 
skeletal muscle. J Biol Chem 264:18569–18576  

    52.    De Jaegere S, Wuytack F, Eggermont JA et al (1990) Molecular cloning and sequencing of 
the plasma-membrane Ca 2+  pump of pig smooth muscle. Biochem J 271:655–660  

    53.    Kuo TH, Wang KKW, Carlock L et al (1991) Phorbol ester induces both gene expression and 
phosphorylation of the plasma membrane Ca 2+  pump. J Biol Chem 266:2520–2525  

    54.    Husain M, Jiang L, See V et al (1997) Regulation of vascular smooth muscle cell prolifera-
tion by plasma membrane Ca 2+ -ATPase. Am J Physiol 272:C1947–C1959  

E.E. Strehler



77

    55.    Sasamura S, Furukawa K-I, Shiratori M et al (2002) Antisense-inhibition of plasma 
membrane Ca 2+  pump induces apoptosis in vascular smooth muscle cells. Jpn 
J Pharmacol 90:164–172  

   56.    Szemraj J, Kawecka I, Bartkowiak J, Zylinska L (2004) The effect of antisense oligonucle-
otide treatment of plasma membrane Ca 2+ -ATPase in PC12 cells. Cell Mol Biol Lett 
9:451–464  

   57.    Kurnellas MP, Li H, Jain MR et al (2010) Reduced expression of plasma membrane calcium 
ATPase 2 and collapsin response mediator protein 1 promotes death of spinal cord neurons. 
Cell Death Differ 17:1501–1510  

    58.    Curry MC, Luk NA, Kenny PA et al (2012) Distinct regulation of cytoplasmic calcium sig-
nals and cell death pathways by different plasma membrane calcium ATPase isoforms in 
MDA-MB-231 breast cancer cells. J Biol Chem 287:28598–28608  

    59.    Jensen TP, Filoteo AG, Knöpfel T, Empson RM (2007) Presynaptic plasma membrane Ca 2+  
ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. 
J Physiol 579(1):85–99  

   60.    Burette AC, Strehler EE, Weinberg RJ (2009) “Fast” plasma membrane calcium pump 
PMCA2a concentrates in GABAergic terminals in the adult rat brain. J Comp Neurol 
512:500–513  

    61.    Burette AC, Strehler EE, Weinberg RJ (2010) A plasma membrane Ca 2+  ATPase isoform at 
the postsynaptic density. Neuroscience 169:987–993  

    62.    Guerini D, Pan B, Carafoli E (2003) Expression, purifi cation, and characterization of isoform 
1 of the plasma membrane Ca 2+  pump. J Biol Chem 278:38141–38148  

    63.    Brown CS, Dean W (2007) Regulation of plasma membrane Ca 2+ -ATPase in human platelets 
by calpain. Platelets 18:207–211  

    64.    Lehotsky J, Kaplan P, Murin R, Raeymaekers L (2002) The role of plasma membrane Ca 2+  
pump (PMCA) in pathologies of mammalian cells. Front Biosci 7:d53–d84  

   65.    Pottorf WJ II, Johanns TM, Derrington SM et al (2006) Glutamate-induced protease- mediated 
loss of plasma membrane Ca 2+  pump activity in rat hippocampal neurons. J Neurochem 
98:1646–1656  

    66.    Ferragamo MJ, Reinardy JL, Thayer SA (2009) Ca 2+ -dependent, stimulus-specifi c modulation 
of the plasma membrane Ca 2+  pump in hippocampal neurons. J Neurophysiol 101:2563–2571  

    67.    Zaidi A, Michaelis ML (1999) Effects of reactive oxygen species on brain synaptic plasma 
membrane Ca 2+ -ATPase. Free Radic Biol Med 27:810–821  

   68.    Jiang L, Bechtel MD, Galeva NA et al (2012) Decreases in plasma membrane Ca 2+ -ATPase 
in brain synaptic membrane rafts from aged rats. J Neurochem 123:689–699  

   69.    Zaidi A (2010) Plasma membrane Ca 2+ -ATPases: targets of oxidative stress in brain aging and 
neurodegeneration. World J Biol Chem 1:271–280  

   70.    González Flecha FL, Castello PR, Gagliardino JJ, Rossi JP (1999) Molecular characteriza-
tion of the glycated plasma membrane calcium pump. J Membr Biol 171:25–34  

    71.    Horakova L, Strosova MK, Spickett CM, Blaskovic D (2013) Impairment of calcium ATPases 
by high glucose and potential pharmacological protection. Free Radic Res 47:81–92  

    72.    Patel R, Al-Dossary AA, Stabley DL et al (2013) Plasma membrane Ca 2+ -ATPase 4 in murine 
epididymis: secretion of splice variants in the luminal fl uid and a role in sperm maturation. 
Biol Reprod 89:1–11  

    73.    Al-Dossary AA, Strehler EE, Martin-DeLeon PA (2013) Expression and secretion of plasma 
membrane Ca 2+ -ATPase 4a (PMCA4a) during murine estrus: association with oviductal exo-
somes and uptake in sperm. PLoS One 8:e80181  

    74.    James PH, Pruschy M, Vorherr T et al (1989) Primary structure of the cAMP-dependent 
phosphorylation site of the plasma membrane calcium pump. Biochemistry 28:4253–4258  

   75.    Wang KKW, Wright LC, Machan C et al (1991) Protein kinase C phosphorylates the carboxyl 
terminus of the plasma membrane Ca 2+ -ATPase from human erythrocytes. J Biol Chem 
266:9078–9085  

5 Regulation of ATP2B Calcium Pumps



78

   76.    Hofmann F, Anagli J, Carafoli E, Vorherr T (1994) Phosphorylation of the calmodulin binding 
domain of the plasma membrane Ca 2+  pump by protein kinase C reduces interaction with 
calmodulin and with its pump receptor site. J Biol Chem 269:24298–24303  

   77.    Enyedi A, Elwess NL, Filoteo AG et al (1997) Protein kinase C phosphorylates the “a” forms 
of plasma membrane Ca 2+  pump isoforms 2 and 3 and prevents binding of calmodulin. J Biol 
Chem 272:27525–27528  

   78.    Enyedi A, Verma AK, Filoteo AG, Penniston JT (1996) Protein kinase C activates the plasma 
membrane Ca 2+  pump isoform 4b by phosphorylation of an inhibitory region downstream of 
the calmodulin-binding domain. J Biol Chem 271:32461–32467  

   79.    Verma AK, Paszty K, Filoteo AG et al (1999) Protein kinase C phosphorylates plasma mem-
brane Ca 2+  pump isoform 4a at its calmodulin binding domain. J Biol Chem 274:527–531  

    80.    Zylinska L, Guerini D, Gromadzinska E, Lachowicz L (1998) Protein kinases A and C phos-
phorylate purifi ed Ca 2+ -ATPase from rat cortex, cerebellum and hippocampus. Biochim 
Biophys Acta 1448:99–108  

    81.    Dean WL, Chen D, Brandt PC, Vanaman TC (1997) Regulation of platelet plasma membrane 
Ca 2+ -ATPase by cAMP-dependent and tyrosine phosphorylation. J Biol Chem 
272:15113–15119  

   82.    Wan TC, Zabe M, Dean WL (2003) Plasma membrane Ca 2+ -ATPase isoform 4b is phos-
phorylated on tyrosine 1176 in activated human platelets. Thromb Haemost 89:122–131  

    83.    Dean WL (2010) Role of platelet plasma membrane Ca 2+ -ATPase in health and disease. 
World J Biol Chem 1:265–270  

     84.    Wang KKW, Villalobo A, Roufogalis BD (1992) The plasma membrane calcium pump: a 
multiregulated transporter. Trends Cell Biol 2:46–52  

   85.    Monteith GR, Roufogalis BD (1995) The plasma membrane calcium pump—a physiological 
perspective on its regulation. Cell Calcium 18:459–470  

     86.    Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca 2+  pump. J Membr 
Biol 165:101–109  

     87.    Schatzmann HJ (1982) The plasma membrane calcium pump of erythrocytes and other ani-
mal cells. In: Carafoli E (ed) Membrane transport of calcium. Academic, London, pp 41–108  

   88.    Penniston JT (1983) Plasma membrane Ca 2+ -ATPases as active Ca 2+  pumps. In: Cheung WY 
(ed) Calcium and cell function. Academic, New York, pp 99–147  

    89.    Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153  
    90.    Caride AJ, Filoteo AG, Penheiter AR et al (2001) Delayed activation of the plasma membrane 

calcium pump by a sudden increase in Ca 2+ : fast pumps reside in fast cells. Cell Calcium 
30:49–57  

   91.    Caride AJ, Penheiter AR, Filoteo AG et al (2001) The plasma membrane calcium pump dis-
plays memory of past calcium spikes. Differences between isoforms 2b and 4b. J Biol Chem 
276:39797–39804  

    92.    Caride AJ, Filoteo AG, Penniston JT, Strehler EE (2007) The plasma membrane Ca 2+  pump 
isoform 4a differs from isoform 4b in the mechanism of calmodulin binding and activation 
kinetics. J Biol Chem 282:25640–25648  

    93.    Niggli V, Adunyah ES, Carafoli E (1981) Acidic phospholipids, unsaturated fatty acids and 
proteolysis mimic the effect of calmodulin on the purifi ed erythrocyte Ca 2+ -ATPase. J Biol 
Chem 256:8588–8592  

   94.    Missiaen L, Raeymaekers L, Wuytack F et al (1989) Phospholipid-protein interactions of the 
plasma-membrane Ca 2+ -transporting ATPase. Biochem J 263:287–294  

   95.    Rossi JP, Delfi no JM, Caride AJ, Fernándes HN (1995) Interaction of unsaturated fatty acids 
with the red blood cell Ca 2+ -ATPase. Studies with a novel photoactivatable probe. 
Biochemistry 34:3802–3812  

    96.    Tang D, Dean WL, Borchman D, Paterson CA (2006) The infl uence of membrane lipid struc-
ture on plasma membrane Ca 2+ -ATPase activity. Cell Calcium 39:209–216  

    97.    Lehotsky J (1995) Plasma membrane Ca 2+ -pump functional specialization in the brain. 
Complex of isoform expression and regulation by effectors. Mol Chem Neuropathol 
25:175–187  

E.E. Strehler



79

   98.    Duan J, Zhang J, Zhao Y et al (2006) Ganglioside GM2 modulates the erythrocyte Ca 2+ -
ATPase through its binding to the calmodulin-binding domain and its “receptor”. Arch 
Biochem Biophys 434:155–159  

    99.    Perez-Gordones MC, Lugo MR, Winkler M et al (2009) Diacylglycerol regulates the plasma 
membrane calcium pump function from human erythrocytes by direct interaction. Arch 
Biochem Biophys 489:55–61  

    100.    Mangialavori IC, Caride AJ, Rossi RC et al (2011) Diving into the lipid bilayer to investigate 
the transmembrane organization and conformational state transitions of P-type ion ATPases. 
Curr Chem Biol 5:118–129  

   101.    Mangialavori I, Villamil Giraldo AM, Pignataro MF et al (2011) Plasma membrane calcium 
pump (PMCA) differential exposure of hydrophobic domains after calmodulin and phospha-
tidic acid activation. J Biol Chem 286:18397–18404  

     102.    Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new 
ways to look at an old enzyme. J Biol Chem 289:10261–10268  

    103.    Sepúlveda MR, Berrocal-Carrillo M, Gasset M, Mata AM (2006) The plasma membrane 
Ca 2+ -ATPase isoform 4 is localized in lipid rafts of cerebellum synaptic plasma membranes. 
J Biol Chem 281:447–453  

    104.    Jiang L, Fernandes D, Mehta N et al (2007) Partitioning of the plasma membrane Ca 2+ -
ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. J Neurochem 
102:378–388  

    105.    Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell 
Biol 120:1147–1157  

   106.    Schnitzer JE, Oh P, Jacobson BS, Dvorak AM (1995) Caveolae from luminal plasmalemma 
of rat lung endothelium: microdomains enriched in caveolin, Ca 2+ -ATPase, and inositol tri-
phosphate receptor. Proc Natl Acad Sci U S A 92:1759–1763  

   107.    Tortelote GG, Valverde RHF, Lemos T et al (2004) The plasma membrane Ca 2+  pump from 
proximal kidney tubules is exclusively localized and active in caveolae. FEBS Lett 
576:31–35  

    108.    Zhang J, Xiao P, Zhang X (2009) Phosphatidylserine externalization in caveolae inhibits Ca 2+  
effl ux through plasma membrane Ca 2+ -ATPase in ECV304. Cell Calcium 45:177–184  

    109.    Kosk-Kosicka D, Bzdega T (1998) Activation of the erythrocyte Ca 2+ -ATPase by either self- 
association or interaction with calmodulin. J Biol Chem 263:18184–18189  

   110.    Kosk-Kosicka D, Bzdega T, Wawrzynow A (1989) Fluorescence energy transfer studies of 
purifi ed erythrocyte Ca 2+ -ATPase. Ca 2+ -regulated activation by oligomerization. J Biol Chem 
264:19495–19499  

   111.    Vorherr T, Kessler T, Hofmann F, Carafoli E (1991) The calmodulin-binding domain medi-
ates the self-association of the plasma membrane Ca 2+  pump. J Biol Chem 266:22–27  

    112.    Levi V, Rossi JPFC, Castello PR et al (2002) Structural signifi cance of the plasma membrane 
calcium pump oligomerization. Biophys J 82:437–446  

     113.    Strehler EE, Caride AJ, Filoteo AG et al (2007) Plasma membrane Ca 2+  ATPases as dynamic 
regulators of cellular calcium handling. Ann N Y Acad Sci 1099:226–236  

    114.    Holton ML, Wang W, Emerson M et al (2010) Plasma membrane calcium ATPases as novel 
regulators of signal transduction pathways. World J Biol Chem 1:201–208  

     115.    Di Leva F, Domi T, Fedrizzi L et al (2008) The plasma membrane Ca 2+  ATPase of animal 
cells: structure, function and regulation. Arch Biochem Biophys 476:65–74  

    116.    Oceandy D, Mohamed TM, Cartwright EJ, Neyses L (2011) Local signals with global impacts 
and clinical implications: lessons from the plasma membrane calcium pump (PMCA4). 
Biochim Biophys Acta 1813:974–978  

    117.    Rimessi A, Coletto L, Pinton P et al (2005) Inhibitory interaction of the 14-3-3e protein with 
isoform 4 of the plasma membrane Ca 2+ -ATPase pump. J Biol Chem 280:37195–37203  

   118.    Linde CI, Di Leva F, Domi T et al (2008) Inhibitory interaction of the 14-3-3 proteins with 
ubiquitous (PMCA1) and tissue-specifi c (PMCA3) isoforms of the plasma membrane Ca 2+  
pump. Cell Calcium 43:550–561  

5 Regulation of ATP2B Calcium Pumps



80

     119.    Yang Y-M, Lee J, Jo H et al (2014) Homer2 protein regulates plasma membrane Ca 2+ -ATPase- 
mediated Ca 2+  signaling in mouse parotid gland acinar cells. J Biol Chem 289:24971–24979  

    120.    Post H, Gutberlet J, Wiche R et al (2008) The localization of PMCA1b in epithelial cells and 
aposomes of the rat coagulating gland is infl uenced by androgens. Prostate 68:1076–1085  

    121.    Kruger WA, Yun CC, Monteith GR, Poronnik P (2009) Muscarinic-induced recruitment of 
plasma membrane Ca 2+ -ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol 
Chem 284:1820–1830  

    122.    Padányi R, Xiong Y, Antalffy G et al (2011) Apical scaffolding protein NHERF2 modulates 
the localization of alternatively spliced plasma membrane Ca 2+  pump 2b variants in polarized 
epithelial cells. J Biol Chem 285:31704–31712  

    123.    Enyedi A, Strehler EE (2011) Regulation of apical membrane enrichment and retention of 
plasma membrane Ca 2+  ATPase splice variants by the PDZ-domain protein NHERF2. 
Commun Integr Biol 4:340–343  

    124.    Rivas FV, O’Keefe JP, Alegre M-L, Gajewski TF (2004) Actin cytoskeleton regulates cal-
cium dynamics and NFAT nuclear duration. Mol Cell Biol 24:1628–1639  

    125.    Dalghi MG, Fernandez MM, Ferreira Gomes M et al (2013) Plasma membrane calcium 
ATPase activity is regulated by actin oligomers through direct interaction. J Biol Chem 
288:23380–23393  

    126.    Quintana A, Pasche M, Junker C et al (2011) Calcium microdomains at the immunological 
synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium sig-
nals for effi cient T-cell activation. EMBO J 30:3895–3912  

    127.    Ritchie MF, Samakai E, Soboloff J (2012) STIM1 is required for attenuation of PMCA- 
mediated Ca 2+  clearance during T-cell activation. EMBO J 31:1123–1133  

    128.    Yang J, Pawlyk B, Wen X-H et al (2007) Mpp4 is required for proper localization of plasma 
membrane calcium ATPases and maintenance of calcium homeostasis at the rod photorecep-
tor synaptic terminals. Hum Mol Genet 16:1017–1029  

    129.    Aartsen WM, Arsanto J-P, Chauvin J-P et al (2009) PSD95b regulates plasma membrane 
Ca(2+) pump localization at the photoreceptor synapse. Mol Cell Neurosci 41:156–165  

    130.    deJuan-Sanz J, Nunez E, Zafra F et al (2014) Presynaptic control of glycine transporter 2 
(GlyT2) by physical and functional association with plasma membrane Ca 2+ -ATPase (PMCA) 
and Na + -Ca 2+  exchanger (NCX). J Biol Chem 289:34308–34324  

    131.   Tran Q-K, Ver Meer M, Burghard MA et al (2015) Hetero-oligomeric complex between the 
G protein-coupled estrogen receptor 1 and the plasma membrane Ca 2+  ATPase 4b. J Biol 
Chem 290:13293–13307    

E.E. Strehler



81© Springer International Publishing Switzerland 2016 
S. Chakraborti, N.S. Dhalla (eds.), Regulation of Ca2+-ATPases,V-ATPases 
and F-ATPases, Advances in Biochemistry in Health and Disease 14, 
DOI 10.1007/978-3-319-24780-9_6

    Chapter 6   
 The Plasma Membrane Ca 2+  ATPase 
and the Na/Ca Exchanger in β-cell Function 
and Diabetes                     

       André     Herchuelz      and     Nathalie     Pachera   

    Abstract     The rat pancreatic β cell expresses six splice variants of the plasma 
membrane Ca 2+  ATPase (PMCA) and two splice variants of the Na/Ca exchanger 1 
(NCX1). In the β cell, Na/Ca exchange displays a high capacity, contributes to both 
Ca 2+  outfl ow and infl ow, and participates to the control of insulin release. Gain-of- 
function studies show that overexpression of PMCA2 or NCX1 leads to endoplas-
mic reticulum (ER) Ca 2+  depletion with subsequent ER stress, decrease in β-cell 
proliferation, and β-cell death by apoptosis. Loss-of-function studies show, on the 
contrary, that heterozygous inactivation of NCX1 (Ncx1 +/− ) leads to an increase in 
β-cell function and a fi vefold increase in both β-cell mass and proliferation. The 
mutation also increases β-cell resistance to hypoxia, and  Ncx1  +/−  islets show a 2–4 
times higher rate of diabetes cure than Ncx1 +/+  islets when transplanted in diabetic 
animals. Thus, downregulation of the Na/Ca exchanger leads to various changes in 
β-cell function that are opposite to the major abnormalities seen in diabetes. 
Preliminary data indicate that heterozygous inactivation of PMCA2 leads to related 
though not completely similar results. These provide two unique models for the 
prevention and treatment of β-cell dysfunction in diabetes and following islet trans-
plantation. In addition, the β-cell includes the mutually exclusive exon B in the 
alternative splicing region of NCX1, which confers a high sensitivity of its NCX 
splice variants (NCX1.3 and 1.7) to the inhibitory action of compounds like KBR- 
7943. Hence, it is possible to develop NCX1 inhibitors acting preferentially on the 
β-cell to stimulate its proliferation in diabetes.  

  Keywords     Plasma membrane Ca 2+ -ATPase   •   PMCA   •   Sodium–calcium exchange   
•   Na/Ca exchange   •   Calcium   •   Ca 2+    •   Β cell   •   Diabetes  

        A.   Herchuelz      (*) •    N.   Pachera    
  Laboratoire de Pharmacodynamie et de Thérapeutique, Faculté de Médicine ,  Université Libre 
de Bruxelles (ULB) ,   Route de Lennik, 808-Bâtiment GE B-1070 ,  Bruxelles ,  Belgium   
 e-mail: herchu@ulb.ac.be  

mailto:herchu@ulb.ac.be


82

1         Introduction 

 Calcium (Ca 2+ ) plays an important role in the process of glucose-induced insulin 
release from the pancreatic β-cell. When stimulated by glucose, the β-cell displays 
a complex series of events that leads to a rise in cytosolic free Ca 2+  concentration 
([Ca 2+ ] i ) that triggers insulin release. 

 The β-cell is  equipped   with a double system responsible for Ca 2+  extrusion: the 
plasma membrane Ca 2+  ATPase (PMCA) and the Na/Ca exchanger (NCX) [ 1 ,  2 ]. 
The PMCA belongs to the P-type family of transport ATPases which form a phos-
phorylated intermediate during the reaction cycle [ 3 ]. The β-cell expresses the four 
main isoforms of the PMCA, namely, PMCA1, PMCA2, PMCA3, and PMCA4 [ 4 ]. 
Six alternative splice mRNA variants, characterized at splice sites A and C, were 
detected in the β-cell (rPMCA1xb, 2yb, 2wb, 3za, 3zc, 4xb), plus one additional 
variant in pancreatic islet cells (PMCA4za). At the mRNA and protein level, fi ve 
variants predominated (1xb, 2wb, 3za, 3zc, 4xb), while one additional isoform (4za) 
 predominated   at the protein level only. This provides evidence for the presence of 
PMCA2 and PMCA3 isoforms at the protein level in nonneuronal tissue. Hence, the 
pancreatic β-cell is equipped with multiple PMCA isoforms with possible differen-
tial regulation, providing a full range of PMCAs for [Ca 2+ ] i  regulation [ 4 ]. 

 The  Na/Ca exchanger   is an electrogenic transporter located at the plasma membrane 
that couples the exchange of three Na +  for one Ca 2+ . The Na/Ca exchanger has been 
cloned in 1990 [ 5 ], and  four   isoforms have been identifi ed : NCX1, NCX2, NCX3, 
and NCX4 [ 6 ,  7 ]. The rat β-cell expresses two splice variants of the isoform NCX1, 
namely, NCX1.3 and NCX1.7, the mouse β-cell expressing in addition NCX1.2 [ 8 ]. 
PCR amplifi cation did not yield any DNA fragment for NCX2, and NCX3 was not 
looked for [ 9 ]. In the rat pancreatic β-cell, Na/Ca exchange displays a quite high 
capacity and participates in the control of [Ca 2+ ] i  and of insulin release [ 10 ]. 

 In previous work, by performing loss- and gain-of-function studies (use of antisense 
oligonucleotides targeting NCX1 or overexpression of NCX1), we observed that the 
Na/Ca exchanger contributed signifi cantly to Ca 2+  outfl ow from the cell (70 %) but 
also to Ca 2+  entry in the β-cell. Indeed, during the upstroke of the action potentials, 
the Na/Ca exchanger may reverse and contribute to Ca 2+  entry (about 25 % of the 
initial peak) [ 11 ,  12 ]. 

 By performing PMCA overexpression studies, we could demonstrate that the PMCA 
also contributes to Ca 2+  outfl ow  out   of the cell [ 13 ]. Surprisingly, in the clone showing 
the highest level of overexpression, the rise in [Ca 2+ ] i  induced by membrane depolariza-
tion (K + : 50 mM) was almost completely abolished. This is striking because the PMCA 
is considered as a high-affi nity, low-capacity system at variance with the Na/Ca 
exchanger which is a low-affi nity, high-capacity system. Hence, the overexpression of 
a low-capacity system was not expected to reduce the rise in [Ca 2+ ] i  to such an extent. 

 Different lines of evidence suggest that glucose, the main physiological stimulus 
of insulin release, stimulates β-cell Na/Ca exchange activity [ 12 ,  14 ]. Previous work 
on the PMCA shows, on the contrary, that glucose inhibits PMCA activity [ 15 ]. 

A. Herchuelz and N. Pachera



83

To understand the respective role of these two mechanisms, we studied the effect of 
glucose on PMCA and NCX transcription, expression, and activity in rat pancreatic 
islet cells [ 16 ]. Glucose (11.1 and 22.2 mM) induced a parallel decrease in PMCA 
transcription, expression, and activity. In contrast the sugar induced a parallel 
increase in NCX transcription, expression, and activity. The effects of the sugar were 
mimicked by the metabolizable insulin secretagogue α-ketoisocaproate and persisted 
in the presence of the Ca 2+  channel blocker nifedipine. The above results are compatible 
with the view that when stimulated by glucose, the β-cell switches from a low-effi ciency 
Ca 2+ -extruding mechanism, the PMCA, to a high-capacity system, the Na/Ca 
exchanger, in order to better face the increase in Ca 2+  infl ow. These effects of glucose 
do not result from a direct effect of the sugar itself and are not mediated by the 
increase in intracellular free Ca 2+  concentration induced by the sugar [ 16 ].  

2     NCX and PMCA in Diabetes 

 Evidences suggest that programmed cell death (apoptosis) represents the main 
mechanism of β-cell death in animal models of type 1 diabetes mellitus (T1DM) and 
possibly also in human T1DM [ 17 ]. On the other hand, type 2 diabetes mellitus 
(T2DM) is a complex disease characterized by both insulin resistance and β-cell 
dysfunction. One of the earliest abnormality occurring in this disease is the alteration 
in pulsatile insulin release with the suppression of the fi rst phase of insulin response 
to glucose, both defects being present well before the development of overt hyperglyce-
mia and clinical diabetes [ 18 ]. The second phase of insulin release is also diminished, 
and a number of abnormalities of continuous insulin release have been observed [ 19 , 
 20 ]. In addition to a defect in β-cell function, a reduction in islet and β-cell mass has 
been observed [ 21 ,  22 ]. This reduction could be related to increased programmed 
cell death (apoptosis), to a decrease in β-cell replication, or both [ 23 ]. 

 Ca 2+  is not solely of importance in cell signaling but may also trigger programmed 
cell death (apoptosis) and regulate death-specifi c enzymes. Therefore, the development 
of strategies to control Ca 2+  homeostasis may represent a potential approach to prevent 
or enhance cell apoptosis. To test this hypothesis, the  Na/Ca exchanger (NCX1.7 
isoform)   was stably overexpressed in insulin-secreting tumoral cells [ 24 ]. NCX 
overexpression increased apoptosis induced by sarco-endoplasmic reticulum (ER) 
Ca 2+  ATPase (SERCA) inhibitors but not by agents increasing [Ca 2+ ] i  through open-
ing of plasma membrane Ca 2+  channels. NCX overexpression reduced the rise in 
[Ca 2+ ] i  induced by all agents, depleted ER Ca 2+  stores, sensitized the cells to Ca 2+ -
independent proapoptotic signaling pathways, and reduced cell proliferation by 
about 40 %. ER Ca 2+  stores depletion was accompanied by the activation of the 
ER-specifi c caspase (caspase-12), the activation being enhanced by SERCA inhibi-
tors. Hence, Na/Ca exchanger overexpression, by depleting ER Ca 2+  stores, triggers 
the activation of caspase-12 and increases apoptotic cell death [ 24 ]. By increasing 
apoptosis and decreasing cell proliferation, overexpression of Na/Ca exchanger 
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may represent a new potential approach in cancer gene therapy. On the other hand, 
the latter results open the way to the development of new strategies to control 
cellular Ca 2+  homeostasis that could on the contrary prevent the process of apoptosis 
that mediates, in part, β-cell destruction in T1DM and T2DM [ 24 ]. 

  Type 1 cytokines  , such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF- α), 
and interferon-γ (IFN-γ), are early mediators of β-cell death in type 1 diabetes mellitus 
[ 17 ], and a combination of IL-1β + IFN-γ has been shown to decrease the expression 
of the ER Ca 2+ -pump SERCA2b in the β cell [ 25 – 27 ]. Therefore, we wondered 
whether cytokines could not induce β-cell death by depleting ER Ca 2+  stores, namely, 
by a mechanism similar to that induced by Na/Ca overexpression. By using fura-2 and 
furaptra to monitor cytosolic and ER free Ca 2+  concentration, we could show that 
cytokines, like NCX overexpression, induce a severe depletion of ER Ca 2+  stores with 
activation of ER stress [ 28 ]. 

 Chronic exposure to high free fatty acid (FFA) concentrations causes β-cell 
apoptosis [ 23 ,  29 ,  30 ] and  may   contribute to the increased β-cell apoptosis rates in 
T2D [ 31 ], a phenomenon called lipotoxicity [ 32 ]. Interestingly, we could recently 
show that saturated FFAs also induce ER stress via ER Ca 2+  depletion with resulting 
β-cell apoptosis [ 33 ]. 

 In summary, ER Ca 2+  depletion with resulting ER stress appears as a mechanism 
common to various conditions leading to β-cell death. In order to further evaluate 
such a view, we examined whether PMCA overexpression may lead to  a   similar 
picture and explored in further details the pathways triggered by ER stress. On the 
other hand, our data also suggest that the opposite effect, namely, a reduction in Na/
Ca exchange or PMCA activity, may lead to an increase in ER Ca 2+  stores and perhaps 
reduce β-cell apoptosis. These hypotheses have been tested and are presented in the 
following paragraphs [ 34 ,  35 ].  

3     Effect of PMCA Overexpression on β-Cell Death 

   In this study,  clonal β-cells (BRIN-BD11)   were examined for the effect of PMCA 
overexpression on cytosolic, ER, and mitochondrial [Ca 2+ ] using a combination of 
aequorins with different Ca 2+  affi nities and on the ER  and   mitochondrial pathways 
of apoptosis [ 34 ]. Overexpression of PMCA decreased [Ca 2+ ] in the cytosol, the 
ER, and the mitochondria and induced apoptosis. Figure  6.1  shows that PMCA2- 
overexpressing      clones displayed an increased rate of basal apoptosis (Fig.  6.1a ). 
The sarco-endoplasmic reticulum Ca 2+  ATPase (SERCA) inhibitors cyclopiazonic 
acid (CPA, 50 μM) and thapsigargin (500 nM) increased apoptosis levels in all 
clones, but this was more marked in PMCA2-overexpressing cells (Fig.  6.1a ). The 
rate of apoptosis induced by CPA was signifi cantly higher in clone 2 than in clone 
5, namely, in the clone showing the highest level of PMCA2 overexpression 
(Fig.  6.1a ) indicating that Ca 2+  depletion in itself is instrumental. PMCA2-
overexpressing cells also displayed increased levels of caspase 3 cleavage 
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compared to control cells, in the absence or presence of CPA (Fig.  6.1b ). Under 
these conditions, the rate of caspase 3 cleavage tended to be higher in clone 2 than 
in clone 5.

   PMCA overexpression activated the IRE1α-XBP1s but inhibited the PERK-
eiF2α- CHOP and the ATF6-BiP pathways of the ER unfolded protein response. 
Increased Bax/Bcl-2 expression ratio (proapoptotic/antiapoptotic Bcl-2 family 
members) was observed in PMCA-overexpressing β-cells. This was followed by 
Bax translocation to the mitochondria with subsequent cytochrome c release, open-
ing on the permeability transition pore, loss of mitochondrial membrane potential, 
and apoptosis. Interestingly, [Ca 2+ ] was not solely decreased in the cytoplasm and 
the ER of PMCA2-overexpressing cells, but also in the mitochondria. Indeed, in 

  Fig. 6.1    Effect  of   PMCA2 overexpression on cells viability and caspase 3 cleavage. ( a ) Cell viability. 
Non-transfected BRIN BD-11 cells (Ctrl) or different clones of BRIN cells transfected with PMCA2, 
clone 2 (Cl 2) or 5 (Cl 5), and/or aequorin targeted to the cytosol (Cyt-Aeq) or the mitochondria (Mit-
Aeq) were untreated ( black bars ) or treated for 24 h with CPA ( white bars ), thapsigargin ( stripe bars ), 
or the solvent DMSO ( dotted bars ). Apoptosis levels were evaluated by observation under a micro-
scope after HO-PI staining. The data are expressed as the percentage of apoptotic cells over the total 
number of cells counted ± SEM. Results are means of three to fi ve independent experiments. * P  < 0.05; 
** P  < 0.01; vs. respective non-transfected control. ( b ) Caspase 3 cleavage. Western blot analyses of 
non-transfected (Ctrl) and PMCA2-transfected cells, clone 2 (Cl 2) or clone 5 (Cl 5) using an antibody 
directed against the cleaved caspase 3 fragment.  Upper panel : representative blot of caspase 3 and 
β-actin expression.  Lower panel : quantitative assessment of cleaved caspase 3 levels normalized to the 
β-actin levels. Results are means of fi ve independent experiments. * P  < 0.05 vs. respective non-treated 
control. # P  < 0.05 vs. respective non-transfected condition. This research was originally published in 
J. Biol. Chem; Jiang L, Allagnat F, Nguidjoe E, Kamagate A, Pachera A, Vanderwinden J-M, Brini M, 
Carafoli E,. Eizirik DL, Cardozo AK, Herchuelz A (2010) Plasma membrane Ca 2+ -ATPase 
overexpression depletes both mitochondrial and endoplasmic reticulum Ca 2+  stores and triggers 
apoptosis in insulin- secreting BRIN-BD11 cells. J Biol Chem 285: 30634–30643, 2010. Reproduced 
with permission       
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various models of cell death due to ER Ca 2+  release and ER Ca 2+  depletion, cell 
death is attributed to the uptake of Ca 2+  by the mitochondria with resulting opening 
of the mitochondrial permeability transition pore (MPTP) and loss of the mitochon-
drial electrochemical gradient [ 36 ]. Although the two latter changes were observed 
in our cells, they cannot be attributed to mitochondrial Ca 2+  overload [ 34 ]. 

 Thus, Pmca2 overexpression like Ncx1 overexpression induces β-cell Ca 2+  deple-
tion and β-cell death, but the mechanisms leading to β-cell death could be different.    

4     Effect of Ncx1 Heterozygous Inactivation on Pancreatic 
β-Cell Function 

  If it  is   possible to increase apoptosis and to decrease β-cell proliferation by increasing 
the activity of the Na/Ca exchanger, it may be possible to obtain the opposite effects 
by downregulating such a mechanism. In order to test this hypothesis, we generated 
Ncx1 heterozygous defi cient mice (Ncx1 +/− ) [ 35 ]. 

 Evidence was obtained that the expression of the exchanger in the β-cell was 
reduced at the mRNA but also at the functional level. For instance, the uptake of 
 45 Ca induced by the removal of extracellular Na +  (reverse Na/Ca exchange) was 
reduced by half (Fig.  6.2a ), while the increase in cytosolic free Ca 2+  concentration 
([Ca 2+ ] i ) induced by the same maneuver (Fig.  6.2b ) was reduced by 24 % ( P  < 0.05) 
in Ncx1 +/−  compared to Ncx1 +/+  islets.

   We then measured the effect of glucose-induced insulin release from pancreatic 
islets. Figure  6.2c, d  shows the effect of an increase in glucose concentration from 2.8 
to 11.1 mM on insulin release from perfused islets (c: representative experiment, d: 
mean of 4–6 experiments). In Ncx1 +/+  islets, glucose induced an oscillatory increase 
in insulin release, while in Ncx1 +/−  islets, the sugar induced a marked fi rst phase fol-
lowed by a progressive increase in insulin release with less clear oscillations. The 
amount of insulin released during the initial phase (16–20 min ) and the whole period 
of stimulation (16–60 min) was about 2.6 and 2.4 times higher, respectively, in Ncx1 +/−  
than in Ncx1 +/+  islets ( P  < 0.02). The major increase in insulin release was attended, by 
an increase in glucose-induced  45 Ca uptake (Fig.  6.2e ), in islet insulin content 
(Fig.  6.2f ) and in proinsulin immunostaining. The increase in  45 Ca uptake induced by 
16.7 mM glucose and insulin content was twice as high in Ncx1 +/−  than in Ncx1 +/+  
islets. Taken as a whole, the data so far presented show that Ncx1 heterozygous inac-
tivation strongly increases β-cell function including glucose- induced insulin produc-
tion and release. 

 We then measured β-cell mass, size, and proliferation. The latter parameters 
were measured at 4 and 12 weeks, namely, in the young and adult age (Fig.  6.3a–c ). 
As expected, β-cell mass was increased at 12 compared to 4 weeks in both types of 
islets though the increase was of much larger magnitude in Ncx1 +/−  than Ncx1 ++  
islets (8.8 vs. 1.6-fold increase, respectively,  P  < 0.001, Fig.  6.3a ). This increase was 
not due to β-cell or islet hypertrophy since no change in β-cell and islet size was 
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  Fig. 6.2     Effect   of Ncx1 heterozygous inactivation on Na/Ca exchange activity and on islet func-
tion. ( a )  45 Ca uptake in the presence and the absence of extracellular Na + . Means ± SEM of four 
experiments, comprising 4–5 replicates each. *  P  < 0.05, ***  P  < 0.001 vs. Na +  139 mM; #  P  < 0.001 
vs. Ncx1 +/+ . ( b ) Effect of extracellular Na +  removal on [Ca 2+ ] i  in Ncx1 +/+  and Ncx1 +/−  islets. The 
period of exposure to Na + -free medium is indicated by a  bar  above the  curves . The  curves  shown 
are the mean of seven traces in each case. ( c ,  d ) Effect of 11.1 mM glucose on insulin release from 
groups of 20 islet ( c ) representative experiment, ( d ) mean of 4 and 6 (Ncx1 +/− ) experiments. The 
amount of insulin released in response to glucose is about 2.5 times higher in Ncx1 +/−  than in 
Ncx1 +/+  islets ( P  < 0.05). ( e ) Effect of glucose on  45 Ca uptake in Ncx1 +/+  and Ncx1 +/−  islets ( n  = 4–6 
experiments, *  P  < 0.05, ***  P  < 0.001 vs. 2.8 mM; #  P  < 0.01 vs. Ncx1 +/+  islets at 16.7 mM glu-
cose). ( f ) Insulin content of batches of ten islets;  n  = 10 experiments **  P  < 0.01 vs. Ncx1 +/+  islets. 
Copyright © 2011, American Diabetes Association, from Diabetes Vol 60 : 2076-2085, 2011. 
Reproduced with permission       
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observed between Ncx1 +/+  and Ncx1 +/−  mice (Fig.  6.3b ). It was rather due to an 
increase in β-cell proliferation rate. Again, as expected, β-cell proliferation was 
decreased at 12 compared to 4 weeks (Fig.  6.3c ), though the decrease was of lower 
magnitude in Ncx1 +/−  than Ncx1 +/+  islets (−40 % vs. −85 %,  P  < 0.01). As a result, a 
5.25 times higher proliferation rate was observed at 12 weeks in Ncx1 +/−  compared 
to Ncx1 +/+  mice (Fig.  6.3c ).

   β-cell apoptosis was also measured, but no difference could be found between 
Ncx1 +/−  and Ncx1 +/+  islets, whether under basal or stimulated conditions (e.g., in the 
presence of SERCA inhibitors or cytokines) and using different methods (TUNEL 
method or Ho342 and PI staining). The sole condition under which a difference 
could be found was when the islets were exposed to hypoxia (6 h). Thus, in Ncx1 +/+  
islets, 71 % of the islets showed a decrease in viability below 60 % compared with 
45 % in Ncx1 +/−  islets when exposed to hypoxia (Fig.  6.3d ). 
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  Fig. 6.3    Effect of Ncx1 heterozygous inactivation of Na/Ca exchange on β-cell mass, size, prolif-
eration,    and resistance to hypoxia. Changes in β-cell mass ( a ), size ( b ), and proliferation rate ( c ) 
between weeks 4 and 12 in Ncx1 +/+  ( open bars ) and Ncx1 +/−  mice ( closed bars ). Mean ± SEM 
values from 5 and 6 pancreases, respectively. ( a ) *** P  < 0.001 vs. 4 weeks values; # P  < 0.001 vs. 
Ncx1 +/+  β-cells at 12 weeks. ( c ) ** P  < 0.01, *** P  < 0.001 vs. respective value at 4 weeks; # P  < 0.01 
vs. Ncx1 +/+  islets at 12 weeks. ( d ) Cell viability measured in intact islets using Ho342 and PI stain-
ing after 6 h exposure to hypoxia. Mean ± SEM values from four individual experiments. *  P  < 0.05 
vs. Ncx1 +/+  islets. Copyright © 2011, American Diabetes Association, from Diabetes Vol 60: 
2076–2085, 2011. Reproduced with permission       
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 Islets transplantation represents a valuable approach in the treatment of 
 diabetes. However, its applicability is limited by the need to transplant a high 
number of islets (from two or more donors). In clinical islet transplantation, it has 
been estimated that up to 70 % of the transplanted β-cell mass is destroyed in the 
early posttransplant period due to nonimmune-mediated physiological stress, 
namely, prolonged hypoxia during the revascularization process [ 37 ]. Therefore, 
we transplanted Ncx1 +/−  islets under the kidney capsule of alloxan-diabetic mice 
to examine their performances compared to Ncx1 +/+  islets. The rate of success of 
a 200 Ncx1 +/+  islets transplantation was 2/5. In comparison, the rate of success 
of a 100 Ncx1 +/−  islet transplantation was 4/5, while the rate of success of a 
50 Ncx1 +/−  islets transplantation was 2/3. This suggests that the Ncx1 +/−  islets are 
at least 4–7 times more effi cient to cure diabetes than Ncx1 +/+  islets. 

 Otherwise, the phenotype of Ncx1 +/−  mice appeared normal, and their glucose 
metabolism (in vivo) was similar to that of Ncx1 +/+  mice except for an increased and 
earlier initial peak of insulin release during the glucose tolerance test, a fi nding in 
agreement with the major increase in glucose-induced fi rst-phase insulin release 
(Fig.  6.2c, d ) in Ncx1 +/−  islets. 

 Downregulation of the β-cell Na/Ca exchanger is thus a unique model providing 
a novel concept for the prevention and treatment of T1D and T2D and to improve 
the applicability of islet transplantation.   

5     Effect of Pmaca2 Heterozygous Inactivation 
on Pancreatic β-Cell Function 

  Preliminary   data indicate that heterozygous inactivation of PMCA2 leads to 
 apparented, though not completely similar results.  

6     Effect of the NCX Inhibitor KB-R7943 on NCX1 Splice 
Variants and Insulin Release 

 In a recent study, Hamming et al. [ 38 ], using the patch-clamp technique, examined 
the effect of the NCX inhibitor KB-R7943 on recombinant NCX1 isoforms activity 
in forward mode. They observed that at variance with NCX1.1, the isoform 
expressed in the heart, NCX1.3 and NCX1.7, the isoforms expressed in the  β-cell, 
exhibit   signifi cant inactivation during forward mode operation and are 15- to 18-fold 
more sensitive to KB-R7943 inhibition, compared with NCX1.1 (IC50s = 2.9 and 
2.4 vs. 43 μM, respectively). Because NCX1 splice variants differ only in the exon 
composition of the alternative splice region (ABCDEF for NCX1.1, BD, and BDF 
for NCX1.3 and NCX1.7, respectively), the authors replaced exon A by exon B in 
NCX1.1 generating NCX1.11. This conferred to NCX1.11 the same sensitivity to 
KB-R7943 than NCX1.3 and NCX1.7. On the contrary replacing exon B with A in 
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NCX1.3 (NCX1.4) dramatically decreased the activity of the drug. KB-R7943 also 
increased glucose-induced rise in [Ca 2+ ] i  and insulin release from pancreatic islets. 
The latter data are in agreement with our own [ 35 ]. Taken together, our works suggest 
that inhibitors of the Na/Ca exchanger may represent new therapeutic agents in 
diabetes that could prevent the development of T1DM and T2DM (DM) in at-risk 
patients, preserve residual β-cell function and mass in recent-onset DM, activate 
endogenous β-cell regeneration by stimulation of β-cell proliferation in DM, and 
improve the applicability of islet transplantation.  

7     Conclusions 

 Gain of PMCA2 or NCX1 function leads to ER stress, decrease in β-cell proliferation, 
and β-cell death by apoptosis. Loss of NCX1 function leads on the contrary to an 
increase in β-cell function, mass, and proliferation, namely, to various changes in 
β-cell function that are opposite to the major abnormalities seen in diabetes. 
Preliminary data indicate that heterozygous inactivation of PMCA2 leads to related 
though not completely similar results. Hence, we identifi ed novel targets to preserve 
and protect functional β-cell mass in the treatment of both T1DM and T2DM. Because 
NCX1 splice variants expressed in the β-cell are about 20 times more sensitive to 
NCX1 inhibitors like KB-R7943 than isoforms expressed in other tissues, future work 
in the fi eld may lead to the development of new therapeutic agents that could prevent 
the development of diabetes in at-risk patients, preserve residual β-cell function and 
mass in recent-onset DM, and activate endogenous β-cell regeneration by stimulation 
of β-cell proliferation in DM. PMCA2 inhibitors may have related though not com-
pletely similar actions, and their actions on β-cell function are worth to be examined.     
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    Chapter 7   
 Long-Range Allosteric Regulation of Pumps 
and Transporters: What Can We Learn 
from Mammalian NCX Antiporters?                     

       Daniel     Khananshvili     

    Abstract     The Ca 2+ -dependent allosteric regulation of ion-channels, pumps, and 
transporters is still a subject of multidisciplinary research due to its fundamental 
signifi cance. The mammalian Na + /Ca 2+  exchangers (NCX1–3) and their splice- 
variants are expressed in a tissue-specifi c manner to extrude Ca 2+  in diverse cell 
types. Since NCX proteins are involved in regulating numerous physiological and 
pathophysiological events, their selective pharmacological targeting is a long- 
wanted objective, although this intervention remains challenging due to our poor 
understanding of the underlying mechanisms. Eukaryotic NCXs are strongly regu-
lated by cytosolic [Ca 2+ ] oscillations, where Ca 2+  interacts with the regulatory 
domains, CBD1 and CBD2. Recent evidence suggests that the CBD1–CBD2 inter-
face controls Ca 2+ driven tethering of CBDs, which is associated with Ca 2+  occlusion 
(and slow dissociation) at the primary Ca 2+  sensor (Ca3–Ca4 sites), thereby driving 
the dynamic coupling of CBDs. This mechanism seems to be common for all iso-
form/splice variants. The primary allosteric Ca 2+  sensor on CBD1 is highly con-
served among all NCX variants, whereas the “tissue-specifi c” splicing segment 
located on CBD2 modifi es not only the affi nity and kinetic properties of Ca3–Ca4 
sites but also the essence of the primary signal, resulting either the activation, inhi-
bition, or no response to regulatory Ca 2+  in a given variant. By using hydrogen- 
deuterium exchange mass-spectrometry (HDX-MS), small-angle X-ray scattering 
(SAXS), equilibrium  45 Ca 2+  binding, and stopped-fl ow techniques, we found that 
Ca 2+  binding to CBD1 rigidifi es the backbone fl exibility of CBD2 (but not for 
CBD1), whereas CBD2 stabilizes the apo-CBD1 structure. The extent and strength 
of Ca 2+ -dependent rigidifi cation of CBD2 is splice-variant dependent, where the 
backbone rigidifi cation spans from Ca3–Ca4 sites of CBD1 up to the tip of CBD2 
(>50 Å), or alternatively, it stops at the CBD2 helix in the splice variant exhibiting 
inhibitory response to Ca 2+ . These fi ndings provide a structure-dynamic basis by 

        D.   Khananshvili ,  Ph.D.      (*) 
  Department of Physiology and Pharmacology, Sackler School of Medicine ,  Tel-Aviv 
University ,   Ramat-Aviv ,  Tel-Aviv   69978 ,  Israel   
 e-mail: dhanan@post.tau.ac.il  

mailto:dhanan@post.tau.ac.il


94

which alternative splicing diversifi es responses to Ca 2+  and controls the propagation 
of allosteric signals over long distances.  

  Keywords     NCX   •   Allosteric regulation   •   Regulatory domains   •   Calcium   •   Signal 
propagation  

1         Introduction 

1.1     Ca 2+  Homeostasis, PM Ca 2+  ATPase, and NCX 

 A fundamental feature of the living cell is to maintain resting levels of cytosolic free 
[Ca 2+ ] as low as 0.1 μM, whereas in specifi c cell types (e.g., excitable tissues) the 
oscillations of cytosolic Ca 2+  have to take place in the right place and within the 
right timeslot [ 1 ,  2 ]. This very complex process requires the dynamic regulation and 
coordination of ion channels, pumps, and transporters. The PM (plasma membrane) 
Ca 2+ -ATPase and Na + /Ca 2+  exchanger (NCX) are two exclusive systems that extrude 
Ca 2+  from the cell, although their partial contributions to  Ca 2+  homeostasis   differ 
among distinct cell types, depending on functional specialization and regulatory 
specifi city possessed by a given cell type [ 1 ,  3 ,  4 ]. 

 As established by Carafoli in the 1980s,  PM Ca 2+ -ATPase   is a “high-affi nity/low- 
capacity” system that maintains a primary Ca 2+  gradient across the cell membrane, 
whereas the Na + /Ca 2+  exchanger   is a “low-affi nity/high-capacity” system that rapidly 
responds to dynamic (transient) swings in cytosolic [Ca 2+ ] i  under ever-varying regu-
latory conditions (e.g., in cardiomyocytes) [ 1 ,  5 ,  6 ]. In mammalian NCX, the “low 
affi nity” represents  K  m  values of ~5 μM, whereas the “high capacity” refers to rapid 
turnover rates of 2500–5000 s −1  for the ion transport cycle [ 7 – 9 ]. Notably, the turn-
over rates of mammalian NCX1–NCX3 are 10 3 –10 4  times faster than those of pro-
karyotic NCX_Mj [ 3 ,  4 ,  10 ], although the ion binding/transport residues within the 
membrane-embedded part of the proteins are highly conserved among the NCX 
orthologs [ 11 – 14 ]. Notably, the major difference between the NCX1–3 and NCX_Mj 
proteins is that the mammalian NCXs contain the Ca 2+ -binding regulatory domains 
CBD1 and CBD2 [ 15 – 19 ], whereas NCX_Mj lacks these regulatory domains [ 20 ].  

1.2     Brief Background and Signifi cance 

 The NCX proteins utilize the electrochemical gradient of Na +  while catalyzing the 
 exchange   of 3Na +  ions with 1Ca 2+ , thereby extruding the Ca 2+  from the cytosol or 
organelle (e.g., nuclei or mitochondria) matrix [ 1 – 3 ,  21 – 23 ]. The existence of the 
Na + /Ca 2+  exchanger was discovered in late 1960s in the heart [ 24 ] and squid giant 
axon preparations [ 25 ], by demonstrating a countercurrent (antiporter) type exchange 
of Na +  with Ca 2+  in an electrogenic fashion. Since then, the central role of the Na + /
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Ca 2+  exchanger (NCX) in excitable and non-excitable tissues has been established 
and its key role in regulating cell calcium in health and disease has been widely 
accepted [ 2 ,  3 ,  11 ,  22 ]. Three mammalian genes ( SLC8A1 ,  SLC8A2 , and  SLC8A3 ) 
and their splice variants are expressed in a tissue-specifi c manner [ 11 – 14 ,  26 ] to 
modulate fundamental physiological events, such as excitation-contraction coupling, 
long-term potentiation of the brain and learning, blood pressure, immune response, 
neurotransmitter and insulin secretion, mitochondrial bioenergetics, among others 
[ 2 ,  3 ,  22 ,  23 ]. Altered expression/regulation of NCXs contribute to distorted Ca 2+ -
homeostasis in heart failure, arrhythmia, cerebral ischemia, hypertension, diabetes, 
renal Ca 2+  reabsorption, muscle dystrophy, and other maladies [ 2 ,  3 ,  11 ,  22 ]. 

 Shortly after the discovery of the cell membrane NCX, the activity of the mito-
chondrial Na + /Ca 2+  exchanger was discovered by Carafoli and collaborators more 
than 40 years ago, while revealing a unique feature of mitochondrial NCX (in sharp 
contrast with all other NCX orthologs) transporting either the Li +  or Na +  ion (but not 
K + ) in exchange with Ca 2+  [ 27 ].  This   unique feature in ion-transport selectivity 
appears to be a crucial criterion for disclosure of the molecular identity of mito-
chondrial NCX, currently termed NCLX, because of its capacity to transport Li +  
[ 28 ]. Our understanding of the basic mechanisms underlying the ion selectivity and 
regulation of NCLX remains of primary interest due to the importance of NCLX in 
shaping cellular and mitochondrial Ca 2+  homeostasis to regulate the cytosolic Ca 2+  
SR/ER Ca 2+  content, the rates of ATP synthesis, hormonal secretion, synaptic trans-
mission and release of apoptotic factors in response to death signals [ 28 – 30 ].  

1.3     Dynamic Regulation of Ca 2+ -Extruding Proteins 
and Isoform/Splice Variants 

 For dynamic adjustment of Ca 2+ -extrusion rates, both the PM Ca 2+ -ATPase and Na + /
Ca 2+  exchanger must be “secondarily” regulated by dynamic oscillations of cytosolic 
Ca 2+  with the  respective   regulatory sites of the pump or exchanger, thereby repre-
senting the feedback mechanism underlying regulation [ 1 – 5 ,  31 ]. The pioneering 
works of Carafoli and collaborators provided fi rst-hand information on the existence 
of the isoform/splice in variants of PM Ca 2+ -ATPase proteins as well as primary 
information on the autoinhibitory segment [ 5 ,  6 ,  31 ,  32 ], the structural prototype of 
which was later found in NCX and termed XIP (e X changer  I nhibitory  P eptide) [ 33 ]. 
The XIP turned out to be very instrumental for studying the regulatory  mechanisms 
  underlying NCX in intact cell systems when added from the cytosolic side. 

 Both, the PM Ca 2+ -ATPase [ 5 ,  6 ,  31 ,  32 ] and NCX [ 11 – 14 ,  34 – 36 ] proteins 
express numerous isoform/splice variants in a tissue-specifi c manner, although the 
underlying mechanisms remain poorly understood. The dynamic regulation  of   NCX 
is especially diverse and complex, since it must remove large amounts of Ca 2+  
within a limited time, where the Ca 2+ -extrusion rates via NCX must change within 
milliseconds to match the dynamic changes in cytosolic Ca 2+  [ 3 ,  4 ,  37 ,  38 ]. For 
example, Ca 2+  interaction with regulatory CBD domains (located 70–80 Å from the 
transport sites) of cardiac NCX enhances the turnover rates up to 25-fold, where the 
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Ca 2+  extrusion rates change in response to dynamic changes in membrane potential 
and cytosolic Na +  and Ca 2+  concentrations during the action potential [ 39 ]. 

 Recently, high-resolution X-ray structures of regulatory CBD domains of 
eukaryotic NCX [ 16 ,  17 ,  40 ] and of full-size prokaryotic NCX [ 20 ] have become 
available (Fig.  7.1 ) and the dynamic properties of isolated proteins have  been   ana-
lyzed using advanced biophysical approaches [ 41 – 45 ]. Despite this progress, there 
are several major open questions: Why are diverse cell types needed to express so 
many isoform/splice variants and why does each cell type express a specifi c set of 
variants? What are the exact mechanisms underlying the function and regulation of 
diverse isoform/splice variants? How do distinct variants partially contribute to 
general and specifi c functions in a given cell type? How profi table (if at all) would 
be the development of mechanism-based blockers/agonists for selective pharma-
cological targeting of predefi ned isoform/splice variants and how could this chal-
lenging intervention be approached? [ 2 ,  3 ,  41 ]. During the last few years huge 
progress has been made in better understanding the molecular mechanisms under-
lying NCX regulation in tissue-specifi c isoform/splice variants [ 41 – 48 ]. The goal 
of the present article is to highlight the recent achievements in understanding the 
molecular mechanisms underlying mammalian NCX proteins, which may be of 
general signifi cance.

2         Structure-Functional Basis of Ion-Transport 
and Regulation 

2.1     General Features of NCX Proteins 

 The NCX (SLC8) gene family is one of fi ve families belonging to the CaCA (Ca 2+ /
Cation Antiporter) superfamily [ 2 ,  3 ,  14 ]. Briefl y, members of the CaCA  superfam-
ily   share similar topology, comprising two clusters;  each   cluster contains fi ve or six 
transmembrane helices (TM) and two clusters are joined by a cytoplasmic loop of 
varying length [ 11 – 14 ,  49 – 51 ]. Interestingly, prokaryotic NCX_Mj and mitochon-
drial NCLX lack the regulatory CBD domains, whereas all eukaryotic NCX1–3 
proteins contain CBD domains located on the cytosolic loop-f between TM5 and 
TM6 [ 15 – 20 ]. The CaCA proteins possess a conserved sequence motif in each clus-
ter (α 1  and α 2  segments), which are involved in the ion transport events [ 14 ,  49 – 51 ]. 
Despite the overall structural similarity within the CaCA superfamily, the NCX, 
NCXK, CAX, and NCLX gene families possess high selectivity for Na + , Ca 2+ , K + , 
H + , and Li +  transport [ 2 ,  3 ,  11 ,  14 ]. 

 Three mammalian gene products (NCX1–3) and their splice variants are 
expressed in a tissue-specifi c manner: NCX2 and NCX3 are expressed in the brain 
and skeletal muscle, and NCX1 is universally distributed, practically in every mam-
malian cell [ 26 ,  34 – 36 ]. At the post-transcriptional level, at least 17 NCX1 and 5 
NCX3 proteins are produced  through   alternative splicing of the primary nuclear 
 SLC8A1  and  SLC8A3  transcripts; however, no splice variants have been identifi ed 

D. Khananshvili



97

for  SLC8A2  [ 11 – 14 ,  34 – 36 ]. These splice variants arise from a combination of six 
small exons (A, B, C, D, E, and F) located on a restricted region of the large 
 intracellular loop-f (Fig.  7.2 ); all splice variants include a mutually exclusive exon, 
either A or B in order to maintain an open reading frame [ 11 ,  13 ,  14 ]. Notably, 
excitable tissues contain exon A, whereas kidney, stomach, and skeletal muscle tis-
sues comprise NCX with exon B. The cardiac (NCX1.1), kidney (NCX1.3), brain 
(NCX1.4), and β-cell (NCX1.7) splice variants exhibit distinct properties for Ca 2+ -
dependent allosteric regulation of NCX activity, which may have  physiological 
  relevance [ 52 – 55 ]. Moreover, there are striking differences in allosteric responses 
to regulatory Ca 2+  among eukaryotic NCX orthologs. For example, elevating the 

  Fig. 7.1    The principal structure of mammalian NCX proteins. The crystal structure (3V5U) of 
archaebacterial  Methanococcus jannaschii  (NCX_Mj), containing ten transmembrane helices 
(TM1–10), can be used as a template for mammalian NCX proteins also some structural differences 
may exist, causing 10 3 –10 4 -fold differences in the turnovers rates. The cytosolic regulatory f-loop 
(~500 amino acids) contains the two-domain tandem of Ca 2+ -binding CBD1 and CBD2 domains 
(3US9), which are connected with the TM5 and TM6, respectively, though the long linkers. The 
auto-inhibitory segment, XIP (20 amino acids), is connected to the C-terminal of TM5. The CBD1 
domain contains four Ca 2+  binding site (Ca1–Ca4), where the high affi nity Ca3–Ca4 sites represent 
a primary allosteric sensor which is highly conserved among NCX isoform/splice variants. The 
CBD2 domain contains two Ca 2+  binding sites (CaI–CaII), where the CaI site is responsible for 
alleviation of Na + -dependent inactivation. Under physiological relevant conditions the low affi nity 
Ca 2+  binding sites on CBD1 (Ca1–Ca2) and on CBD2 (CaII) can bind either the Mg 2+  ion and/or 
protons, which can secondarily (indirectly) modulate the affi nity and kinetics of the primary Ca 2+  
sensors.  Green  and  red spheres  represent the Ca 2+  ions and water molecules, respectively       

 

7 Molecular Basis of NCX Regulation



98

cytosolic Ca 2+  activates the brain (AD), cardiac (ACDEF), and kidney (BD) variants, 
although the Ca 2+ -induced alleviation of Na + -dependent inactivation is observed 
only in the cardiac and brain variants [ 52 ,  53 ]. In contrast, the allosteric interaction 
of Ca 2+  with a  Drosophila  NCX (CALX1.1) results in inhibition of the exchanger 
activities, whereas Ca 2+  has no effect on the CALX1.2 ortholog [ 54 ,  55 ]. These 
regulatory differences are especially interesting in light of structural similarities in 
CBD domains among the NCXs.

  Fig. 7.2    Alternating splicing in NCX variants. The mammalian NCX1–3  proteins   contain a splice 
segment, which is exclusively located on CBD2. ( a ) Tissue-specifi c splice variants arise from a 
combination of six small exons A, B, C, D, E, and F, whereas a mutually exclusive exon (either A 
or B) shows up in every splice variant. ( b ) and ( c ) The NMR structures of CBD1 (PDB 2FWS, 
 orange ), CBD2-AD (PDB 2FWU,  red ), and CBD2-BD (PDB code 2KLT,  green ) structures were 
superimposed on the template of the CBD12-E454K crystal structure (PBD 3US9) to show the 
position of the splice segment. Residues encoded by exons A and B are shown in  blue  and residues 
encoded by exon D are  cyan        

 

D. Khananshvili



99

2.2        Crystal Structure of NCX_Mj and Ion-Transport 
Machinery in NCXs 

 The crystal structure of archaebacterial  Methanococcus jannaschii  (NCX_Mj) was 
discovered in 2012 [ 20 ], thereby offering new opportunities for elucidating the 
 molecular   mechanisms underlying the ion selectivity, transport catalysis, and alter-
nating access in NCX and similar proteins. The outward-facing (extracellular) con-
formation of NCX_Mj (Fig.  7.2 ) depicts ten transmembrane helices (TM1–10) that 
appear to be the similar in mammalian NCX proteins [ 20 ,  56 ]. The ion-binding 
pocket of NCX_Mj contains four ion-binding sites S Ca , S ext , S mid , S int , and S Ca , 
arranged in a diamond-shaped confi guration, where 12 residues contribute to Na +  
and Ca 2+  ligation (4 in TM2 and TM7, and 2 in TM3 and TM8). In sharp contrast 
with eukaryotic NCX, the cytosolic loop between TM5 and TM6 is extremely short 
(12 residues) in NCX_Mj, meaning that this loop cannot be a prototype for a large 
cytosolic f-loop (~500 residues)  of   eukaryotic NCX bearing the regulatory CBD 
domains. Eight helices of NCX_Mj (TM2–5 and TM7–10) generate a tightly packed 
hub (which is perpendicularly inserted in the membrane), whereas two long/slant-
ing helices (TM1 and TM6) are loosely packed in front of a rigid eight-helix core 
[ 20 ,  49 – 51 ]. The sliding of the gating bundle (TM1/TM6) toward the rigid core of 
eight helices may represent a major conformational change associated with alternat-
ing access, which could to be a general feature not only for NCX proteins but also 
for other gene families belonging to the Ca/CA superfamily [ 20 ,  49 – 51 ]. 
Interestingly, the turnover rate of NCX_Mj is ~0.5 s −1  [ 10 ,  57 ], which is 10 3 –10 4  
slower than the turnover rates of mammalian NCX and NCKX proteins [ 7 – 9 ]. These 
differences in transport kinetics are especially interesting in light of the structural 
similarities shared by the NCX_Mj and NCX1–3 proteins. Namely, 11 ion-coordi-
nating residues (among 12) are highly conserved in organisms ranging from bacte-
ria to humans, whereas in eukaryotic NCXs, D240 is consistently replaced by 
glutamine [ 11 – 14 ,  20 ]. Interestingly,  the   turnover rates of the ion- exchange reac-
tions increase fi ve to ten-times in the D240N mutant of NCX_Mj, thus suggesting 
that the aspartate to asparagine replacement in eukaryotic species may represent an 
evolutionary improvement of catalytic power in mammalian NCX orthologs [ 57 ]. 

 Previous kinetic studies provided strong evidence that the 3Na +  ion and 1Ca 2+  
ion are  transported   in separate steps throughout the transport cycle [ 58 ]. In agree-
ment with this, the crystal structure of NCX_Mj revealed that the simultaneous 
occupation of all four sites by 3Na +  and 1Ca 2+  is thermodynamically forbidden [ 20 ]. 
According to the original interpretation of the crystallographic data, S ext , S mid , and 
S int  are occupied by 3Na +  ions, and S Ca  is occupied by 1Ca 2+  [ 20 ]. Recent MD simu-
lations and ion fl ux analyses revealed that 3Na +  ions occupy S ext , S int , and S Ca , 
whereas the Ca 2+  ion occupies S Ca  [ 57 ]. According to this interpretation, S mid  does 
not bind either the Na +  or Ca 2+  ions, where one water molecule is bound to proton-
ated D240. To date, no systematic studies have been undertaken to  resolve   the cata-
lytic status of putative ion-coordinating residues belonging to S mid  or any other site. 
Despite this progress, it remains unclear how partial occupation of four sites by Ca 2+  
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or three Na +  ions drives the sliding of TM1/TM6 to initiate alternating access and 
how the ion transport cycle becomes accelerated by Ca 2+  interaction with regulatory 
CBD residues in eukaryotic NCX orthologs.  

2.3     Structural Organization of Regulatory CBD Domains 

   All eukaryotic NCX orthologs (including CALX) contain a huge cytosolic f-loop 
between  TM5   and TM6, bearing the Ca 2+ -binding regulatory domains, CBD1 and 
CBD2 [ 11 – 19 ].  The   CBD1 and CBD2 domains are connected in a head-to-tail fash-
ion through a very short linker (fi ve residues) to form a two-domain (CBD12) tan-
dem [ 15 ,  40 ]. It was proposed that charged auto-inhibitory XIP sequence (20 amino 
acids), exhibiting an α-helix structure [ 33 ], located at the N-terminus of the f-loop, 
is involved in both Na +  and PIP 2 -dependent regulation [ 58 – 60 ]. 

 High-resolution X-ray and NMR studies of isolated CBD1 and CBD2 domains 
revealed an immunoglobulin-like β-sandwich structure with seven antiparallel 
β-strands containing four Ca 2+  binding sites (Ca1–Ca4) on CBD1 and two Ca 2+  sites 
(CaI–CaII) on CBD2 [ 41 – 43 ,  61 ]. The CBD domains share a common core struc-
ture typical of C 2 -type domain folding, which occurs in many regulatory proteins 
(synaptotagmins, cPLA 2 , PKC, titin, fi bronectin, neuronal cell adhesion factors, 
among others), although the underlying mechanisms are poorly understood. In gen-
eral, such C 2  domains are known to interact with diverse effectors (e.g., Ca 2+ , PIP 2 , 
lipids, and other proteins), although so far, the two CBD domains in NCX only 
appear to interact with Ca 2+ . 

 In the cardiac, brain, and kidney variants the Ca3 and Ca4 sites of CBD1 have 
high affi nity for Ca 2+  binding ( K  d  = 0.05–0.2 μM), whereas the remaining two sites 
of CBD1, Ca1, and Ca2 possess low affi nity for Ca 2+  ( K  d  > 20 μM) [ 41 – 43 ,  61 ]. In 
the cardiac and brain variants, the CaI site of CBD2 binds Ca 2+  with a  K  d  of ~10 μM, 
whereas the CaII site of CBD2 exhibits lower affi nity for Ca 2+  binding [ 41 – 43 ,  61 ]. 
Mutant analysis of full-size NCX revealed that in the cellular system only three of 
the six Ca 2+  sites (Ca3 and Ca4 on CBD1 and CaI on CBD2) contribute to [Ca 2+ ]-
dependent allosteric regulation of NCX [ 62 – 65 ]. Namely, the Ca3–Ca4 sites are 
responsible for primary allosteric regulation with a  K  0.5  value of 0.2–0.4 μM, 
whereas the CaI site is involved in [Ca 2+ ]-dependent alleviation of Na + -dependent 
inactivation with a  K  0.5  value of ~10 μM [ 41 – 43 ,  61 ]. Most probably, the low affi nity 
sites (Ca1, Ca2, and CaII) are the Mg 2+  rather than the Ca 2+  sites, which are consti-
tutively occupied by Mg 2+  under physiologically relevant ionic conditions [ 66 ]. 
Interestingly, the occupation of Ca1–Ca2 sites by Mg 2+  decreases the affi nity of the 
primary sensor (Ca3–Ca4 sites), whereas the occupation of the CaII site by Mg 2+  
increases the affi nity of the CaI site [ 23 ,  46 ,  47 ]. The physiological signifi cance 
underlying this is to keep the primary and secondary Ca 2+  sensors within a physio-
logically relevant range, thereby covering the effective concentration range of 0.2–
10 μM Ca 2+ . Thus, CBD1 contains a high-affi nity allosteric Ca 2+  sensor (Ca3–Ca4 
sites), the affi nity and kinetics of which are modulated by a spliced segment on 
CBD2 [ 62 – 65 ].     
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3     CBD Domains as Highly Sensitive Sensors of Ca 2+  and H + , 
but not of Na +  

3.1     Ionic Modes of NCX Regulation by Cytosolic Ca 2+ , H + , 
and Na +  

 In mammalian tissues the cytosolic Ca 2+  activates NCX, whereas the cytosolic Na +  
and H +  inhibit NCX activities [ 23 ,  67 – 70 ]. Recent electrophysiological  studies   
revealed that in cardiac NCX1.1 both CBDs can contribute to [Ca 2+ ]-dependent 
regulation of NCX, where the Ca3–Ca4 sites of CBD1 largely govern allosteric 
activation, with  K  0.5  ~ 0.3 μM, whereas the CaI site of CBD2 alleviates Na + -
dependent inactivation, with  K  0.5  ~ 5 μM [ 62 – 65 ]. Notably, 100 mM Na +  has no 
effect on Ca 2+  binding affi nity or stoichiometry regarding CBD domains, thereby 
suggesting that Na +  and Ca 2+  ions do not compete for occupation of function sites 
on CBDs [ 39 ,  43 ,  61 ]. This is consistent with the claim that Na + -dependent inactiva-
tion is due to Na +  binding to transport sites, whereas the Ca 2+  binding to the CaI site 
of CBD2 somehow relieves the inhibitory effect [ 62 – 65 ]. However, it has been 
known for a long time that eukaryotic NCX is extremely sensitive to mild cytosolic 
acidifi cation (a pH decrease from 7.2 to 6.9 results in nearly 90 % inactivation of 
NCX), thereby suggesting the physiological relevance of NCX “proton block” 
under acidosis and ischemia conditions [ 23 ,  39 ,  71 ,  72 ]. In general, H +  may interact 
with transport and/or regulatory domains, although there is no evidence that within 
the physiological range of pH the protons affect the ionization of ion-binding trans-
port sites. Recent progress on these issues is summarized below.  

3.2     Unusually High Degree of Cooperativity for Allosteric 
Regulation of Cardiac NCX 

 Owing to large and rapid changes in cytosolic [Ca 2+ ] during the action potential, the 
[Ca 2+ ]-dependent allosteric activation of NCX is especially important in excitable 
tissues [ 22 ,  37 ,  38 ,  73 ]. Namely, in cardiomyocytes, only ~5 % of the maximal NCX 
current is detected at resting [Ca 2+ ] i  levels, whereas the rise of [Ca 2+ ] i  from 0.1 μM 
to 1–2 μM  recruits   nearly 100 % of NCX-mediated current [ 39 ,  73 ,  74 ]. The “sur-
prising” fi nding is the very large Hill-coeffi cient ( n  H  = 8) for Ca 2+ -dependent activa-
tion of NCX1.1 in intact cardiomyocytes [ 39 ,  73 ]. It is impossible to explain the 
observed high values of cooperativity, even so, one assumes the involvement of all 
six Ca 2+  binding sites of CBD12 (which apparently is not the case). Therefore, some 
additional mechanisms should be considered for such a high Ca 2+ -dependent allo-
steric activation. For example, the recently discovered Ca 2+ -dependent dimerization 
of NCX molecules could be a relevant mechanism in intact cells [ 47 ], although 
more dedicated experimentation is required to demonstrate the physiological rele-
vance of this putative mechanism. Nevertheless, the extreme cooperativity of NCX 
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does have important physiological implications, thereby indicating a high sensitivity 
of the Ca 2+  extrusion to changes in [Ca 2+ ] i . This would be  highly  consistent with the 
remarkable role of NCX in regulating [Ca 2+ ] i .  

3.3     Regulatory CBD Domains as Cytosolic pH/Ca 2+  Sensors 

   Since among the six Ca 2+  binding sites of CBDs, only three sites (Ca3, Ca4, and 
CaI) actually contribute to [Ca 2+ ]-dependent regulation of NCX1, it is reasonable to 
determine the functional role of the remaining three low affi nity sites ( K  d  > 20 μM) 
[ 39 ,  61 – 65 ]. Notably,    the low-affi nity Ca 2+  sites are located in very near (3–4 Å) the 
“functionally active” high-affi nity Ca 2+  sites [ 16 ,  40 ,  48 ]; therefore, it is possible 
that these “invalid” low-affi nity Ca 2+  sites act as the pH and not the Ca 2+  sensor. 
Recent multidisciplinary studies by using the intact cardiomyocytes as well as the 
isolated preparations of CBD1, CBD2, and CBD12 proteins clearly demonstrate 
that Ca 2+  and protons can compete with each other for functional sites on CBDs [ 39 , 
 43 ,  61 ]. Interestingly, high cooperativity for Ca 2+ -dependent activation of NCX cur-
rents was observed at both pH 7.2 and 6.9; however, the concentration dependence 
of the Ca 2+ -activation curve was dramatically shifted to the higher concentration of 
Ca 2+ . Notably, the close adjacency of Ca 2+  sites in CBDs is consistent with the sharp 
dependence of Ca 2+  binding on pH, thereby suggesting the cooperative nature of 
binding domain folding. More specifi cally, the binding of the fi rst Ca 2+  ion may 
partially (or fully) deprotonate the coordinating residue(s), thereby enabling the 
next Ca 2+  ion to bind to the remaining site(s). A similar mechanism was proposed 
for the C2 domain of phospholipase A2, in which two Ca 2+  sites are separated by 4.1 
Å [ 75 ]. The physiological signifi cance of these fi ndings is that an acidic pH may 
shut down NCX to prevent an NCX-mediated high risk of generating the arrhyth-
mias under ischemia/acidosis conditions.     

4     Synergistic Interactions between CBDs and Dynamic 
Coupling 

4.1     The CBD2 Domain Shapes the Ca 2+ -Sensing Properties 
of the Allosteric Sensor on CBD1 

  Recent studies with the brain, cardiac, and kidney splice variants of an isolated 
two- domain tandem (CBD12) have demonstrated that two CBDs communicate 
with each other,  thereby   increasing 10–50 times the affi nity for Ca 2+  at high-affi n-
ity Ca3–Ca4 sites, while concomitantly decelerating Ca 2+  off-rates [ 40 – 43 ]. The 
slow dissociation of “occluded” Ca 2+  (observed in isolated CBD12, but not in iso-
lated CBD1 or CBD2) is the most characteristic hallmark for the functional cou-
pling of the two CBD domains [ 40 ,  43 – 45 ,  61 ], thereby representing the physical 
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basis for slow inactivation (I 1  and/or I 2  states) of full-size NCX proteins, observed 
in electrophysiological experiments [ 52 – 55 ,  61 – 73 ]. Interestingly, the synergistic 
interactions between the two CBD domains are stronger in the kidney and cardiac 
splice variants than in the brain splice variant, thereby suggesting that the relevant 
mechanisms may contribute to regulatory specifi city of NCX variants [ 42 – 44 ]. 
These fi ndings are in a good agreement with the results of FRET experiments using 
the isolated preparations of CBD12 and full-size NCX [ 46 ,  47 ] as well as with the 
results of whole-cell patch-clamp experiments [ 62 – 65 ,  70 – 73 ]. The striking fi nding 
is that the interdomain CBD1–CBD2 linker plays a critical role in controlling the 
synergistic interactions between CBDs, thereby affecting the dynamic properties of 
a primary Ca 2+  sensor involved in allosteric regulation [ 42 – 45 ]. Crucial mechanistic 
questions that have emerged from these studies are: how does Ca 2+  binding couple 
with regulatory conformational transitions to decode the allosteric signal and, in 
turn, how does this coupling contribute to the transmission of regulatory informa-
tion to ion transport domains. Since previous studies have shown that both CBD 
domains contribute to allosteric regulation of NCX through interdomain coupling 
(see above), the emerging goal is to elucidate how the Ca 2+  binding to CBD1 is 
decoded and propagated to ion transport domains. These questions are especially 
interesting in light of the fact that the structure of a primary sensor on CBD1 is 
extremely well preserved among all isoform/splice variants [ 15 ,  19 ,  40 ,  76 ].   

4.2     A Two-Domain Interface-Structure Encodes Ca 2+ -Driven 
Tethering of CBDs 

  Although the identifi cation of synergistic interactions between the two CBD  domains 
  provided convincing evidence for CBD2-dependent modifi cation of the affi nity and 
kinetic properties of Ca 2+  sensing at the primary Ca 2+  sensor (Ca3–C4 sites) on 
CBD1 [ 42 ,  43 ,  61 ], only the recently derived crystal structures of the two- domain 
CBD12 tandem [ 40 ] (Fig.  7.2 ), in conjunction with advanced biophysical approaches 
(NMR, SAXS, HDX-MS, and stopped-fl ow mixing), have revealed the underlying 
mechanisms of Ca 2+ -dependent interactions between the CBDs [ 77 ]. The CBD12 
crystal structures of NCX1.4 (CBD12-AD, brain splice variant) [ 40 ] and CALX1.1 
and CALX1.2 [ 77 ] have shown a strikingly similar interface between the two CBD 
domains, where the Ca 2+  binding to the primary sensor (Ca3–Ca4 sites) on CBD1 
results in interdomain tethering of CBDs through the residues located on CBD1 
(Asp499 and Asp500) and CBD2 (Arg532 and Asp565). Interestingly, the buried 
R532 of CBD2 is a central residue in the network, tethering D565 in CBD2 and 
D499 and D500 in CBD1 (Fig.  7.3b, c ). Most importantly, this interdomain bifur-
cated salt-bridge supports Ca 2+  coordination with D499 and D500, since it is a part 
of the Ca3–Ca4 sites [ 40 ,  76 ]. Thus, Ca 2+  binding to Ca3–Ca4 couples CBDs to the 
interface, consequently restricting interdomain fl exibility. Consistent with this 
observation, mutant analyses of isolated CBDs suggest that the two-domain inter-
face governs Ca 2+ -driven conformational alignment of CBDs, resulting in slow 
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dissociation of “occluded” Ca 2+  from CBD12 (Fig.  7.3 ), thereby mediating the Ca 2+ -
induced conformational transitions associated with allosteric signal transmission 
[ 40 – 45 ,  61 ,  77 ]. More specifi cally, occupation of Ca3–Ca4 sites by Ca 2+  induces 
disorder-to-order transition owing to charge neutralization and coordination, thereby 
constraining CBD conformational freedom, thus rigidifying the NCX1 f-loop and 
triggering allosteric signal transmission [ 43 – 45 ,  77 ]. This newly found Ca 2+ -driven 
“interdomain switch” is highly conserved among all NCX isoform/splice variants 
comprising the regulatory CBD domains on the loop-f [ 76 ,  77 ]. 

4.3        The Critical Role of the Interdomain Linker in Ca 2+ -
Driven CBD Coupling 

  The CBD12 crystal structures of NCX1.4, CALX1.1, and CALX1.2 reveal a  rela-
tively   small contact area (~360 Å 2 ) between the CBDs [ 76 ,  77 ], thereby confi rming 
the previous claim suggesting that such a brief domain-domain contact cannot 
occur in solution without the interdomain linker [ 39 ,  43 ,  44 ,  61 ]. Moreover, several 
lines of evidence reveal that the linker selectively retains, modifi es, and integrates 
the intrinsic dynamic features of the Ca3, Ca4, and CaI sites, thereby allowing 
NCX regulation within the physiologically relevant dynamic range [ 40 – 48 ]. For 
example, in the brain splice variant, the linker-dependent constraints decelerate up 
to 50 times the Ca 2+  off-rates of occluded Ca 2+  and increase up to 10 times the affi n-
ity at the primary allosteric sensor of Ca 2+  on CBD1, while the linker largely retains 
the intrinsic properties of the CaI site on CBD2 in the CBD12 tandem [ 42 ,  43 ]. The 
“alanine-walk” substitutions in the CBD1–CBD2 linker (501-HAGIFT-506) have 
shown that among all linker residues, only G503 is obligatory for Ca 2+ -induced 
reorientations of CBDs and slow dissociation of occluded Ca 2+  [ 43 ,  44 ]. Moreover, 
swapping between positions A502 and G503 in the CBD1–CBD2 linker results in 
the complete loss of slow dissociation of occluded Ca 2+ , meaning that dynamic 
coupling of CBDs requires an exact pose of glycine at position 503, which is abso-
lutely required for Ca 2+ -driven tethering of CBDs, thereby limiting the linker’s 
fl exibility and restricting the interdomain movements of CBDs [ 43 – 45 ]. According 
to the crystal structure of CBD12 [ 40 ,  76 ], the dihedral  φ / ψ  angles at position 503 
are only allowed for glycine and any other residue in that specifi c position will 

Fig. 7.3 (continued) clearly acts as the principal linchpin holding the two CBDs together. ( c ) The 
two CBD domains are tethered in a Ca 2+ -dependent manner, involving amino acids from both 
CBD1 and CBD2. The buried R532, located in CBD2, is a central residue in the interface, tethering 
D565 in CBD2 and D499 and D500 in CBD1. Thus, Ca 2+  binding to the Ca3–Ca4 sites couples 
directly to the interdomain interface to restrict the interdomain fl exibility of the CBDs. Consistent 
with biophysical studies the Ca3–Ca4 sites are obligatory for robust interdomain interactions upon 
Ca 2+  binding, since D499 and D500 are disordered in the apo-form. ( d ) The interface residues are 
colored according to their conservation score, thereby demonstrating that most residues at the two-
domain interphase are highly conserved among the mammalian NCX1–3 and CALX variants       
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  Fig. 7.3    The interface structure of the two-domain CBD12 tandem. ( a ) Crystal structure of the 
NCX1.4-CBD12-E454K mutant (3US9), which largely retains the wild-type phenotype in ion- 
transport activities and regulation as well as the Ca 2+  binding affi nities and Ca 2+  off-rates in iso-
lated CBD2 and CBD12 protein preparations. CBD1 and CBD2 are colored  orange  and  red , 
respectively. The  rectangles  frame a zoom perspective as depicted in panels  b  ( blue ),  c  ( magenta ), 
and  d  ( green ).  Green  and  blue spheres  depict Ca 2+  ions and water molecules, respectively. ( b ) The 
interface involves mainly interactions of the CBD1 Ca 2+  binding loops with the interdomain linker, 
the CBD2 fl exible FG loop and the strictly conserved CBD2 BC loop. Although more than 20 resi-
dues are buried in the interface, only a few prominent interactions between residues from both 
domains are observed. The interface may be subdivided into three regions, two hydrophilic and 
one hydrophobic. The fi rst hydrophilic region includes a pivotal interdomain electrostatic network 
centered at R532 in CBD2. This arginine takes a conformation that forms bifurcated hydrogen-
bonded and non-hydrogen bonded salt-bridges with D499, D500 in CBD1 and D565 in CBD2. 
D499 and D500 also participate in the coordination of the Ca3–Ca4 sites, thereby playing a direct role 
at the primary Ca 2+  sensor while concomitantly stabilizing the tandem domain interface. This network 
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require rotation around the Cα of this residue, resulting in steric clashes in the 
protein structure. Strikingly enough, electrophysiological experiments revealed 
that mutations of either G503 in intact (full-size) NCX1 (owing to activation by 
regulatory Ca 2+ ) or analogues G555 in CALX1.1 (owing to inhibition by regula-
tory Ca 2+ ) largely lose the [Ca 2+ ]-dependent regulation in a cellular system [ 78 , 
 79 ], thereby underscoring the conclusions reached by structure-dynamic studies 
[ 40 ,  77 ]. All these fi ndings are consistent with a general theory suggesting that in 
multidomain regulatory proteins the linker’s structure encodes successive confor-
mational transitions in managing allosteric signal transfer and thus, the proteins 
behave as “vehicles” [ 80 ,  81 ].   

4.4     Structure-Functional Comparison of the CBD12 Interface 
with Other Proteins 

  The conservation and structural composition of the two-domain interface point to a 
 general   mechanism that governs the NCX family [ 40 ]. Importantly, the architecture 
of this interface differs from the tandem C2 domains of synaptotagmin and PKC 
[ 82 ,  83 ], implying a different mode of action [ 82 – 84 ]. Rather, motif searches [ 83 , 
 84 ] of the PDB reveal a striking similarity with the cadherin extracellular domain, 
which bears multiple β-sandwich domains bridged by small interfaces, and which 
contains three Ca 2+  sites [ 85 ]. Cadherin studies demonstrated that Ca 2+  rigidifi es the 
protein [ 86 ], enabling cell–cell interactions. Furthermore, in vivo studies suggest 
that extracellular Ca 2+  fl uctuations may physiologically regulate cadherin activity 
[ 86 ,  87 ], suggesting the relevance of Ca 2+ -dependent rigidifi cation as a principal 
mechanism. In addition, the tandem architecture is reminiscent of the arrestin fam-
ily, where tandem β sandwiches are opposed by a polar core of buried charged resi-
dues [ 87 ]. Disruption of this polar core activates arrestin for high-affi nity binding to 
its GPCR target [ 87 ]. A similar mechanism may occur in CBD12, where the deeply 
buried F450 prevents Ca 2+ -dependent rigidifi cation of specifi c segments on CBD1 
[ 70 ,  76 ,  77 ]. These parallel actions share a common denominator of interfaces with 
charge interactions within the polar environment, wherein charged ligands induce 
structural transitions, imparting a certain regulatory message. Analogously with 
CBD12 [ 40 ,  47 ], the Ca 2+  binding to a two-domain construct of cadherin restricts 
the linker motions substantially [ 85 ]. Nevertheless, the Ca 2+  binding modes of cad-
herins and CBD12 are dissimilar. Namely, the Ca 2+  binding to the two-domain cad-
herin construct involves direct interactions with residues in the linker region, 
whereas the binding of Ca 2+  to sites Ca3 and Ca4 in CBD1 involves ligation with 
residues 498–500 that directly precede linker residues 501–503 [ 40 – 43 ]. 
Analogously to CBD12, in Rabphilin-3A the C2A–C2B linker results in ~10-fold 
increase in Ca 2+  affi nity through interdomain interactions [ 83 ]. However, in contrast 
to CBD12, the linker of Rabphilin-3A itself contributes to the ligation sphere.    
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5     Conformational Possessions Associated with Allosteric 
Signaling 

5.1     A Common Mechanism Underlies Signal Decoding 
upon Ca 2+  Binding to Ca3–Ca4 Sensor 

  Recently, the crystal structures of Ca 2+  bound CBD12 tandems from the two CALX 
 splice   variants, CALX1.1 and CALX1.2, were resolved [ 40 ,  76 ], where these two 
splice variants exhibit different responses to regulatory Ca 2+ . Namely, the Ca 2+  bind-
ing to CBDs of CALX1.1 inactivates the exchanger activities, whereas the regula-
tory Ca 2+  has no effect on the exchanger’s activity in the CALX-1.2 variant [ 53 – 55 , 
 78 ,  79 ]. According to the original interpretation of this work, the regulatory differ-
ences between the two CALX splice variants arise from different hinge angles 
between the CBD domains, showing 118° and 110.5° for CALX1.1 and CALX1.2, 
respectively [ 76 ]. However, this interpretation was challenged by a more recently 
derived crystal structure of a Ca 2+ -bound CBD12 tandem from the brain splice vari-
ant (NCX1.4) [ 40 ], since the hinge angle of NCX1.4 (113°) and CALX1.1 (118°) 
are quite similar in these variants, taking into account the overall structural similari-
ties (r.m.s.d of 1.86 Å for 214 Cα atoms) [ 40 ]. These fi ndings are especially interest-
ing in the context of the regulatory differences in these variants, since NCX1.4 is 
activated by regulatory Ca 2+ , whereas CALX1.1 is inhibited by allosteric interac-
tions with Ca 2+  [ 53 – 55 ]. Thus, the structural similarities between CBD12 from 
NCX and CALX imply that the different responses to regulatory Ca 2+  cannot be 
attributed solely to the orientation of CBDs in the CBD12 tandem. Moreover, the 
X-ray crystallography, NMR, FRET, and SAXS techniques failed to identify any 
changes in the interdomain orientation of CBDs upon Ca 2+  binding to the CBD12 
tandem in any isoform/splice variant tested to date [ 40 – 48 ]. Since the primary allo-
steric sensor on CBD1 (Ca3–Ca4 sites) and the two-domain interface in the CBD12 
tandem are nearly identical among eukaryotic NCXs, including CALX, the Ca 2+ -
driven local conformational changes might represent a general mechanism for ini-
tial decoding of regulatory signals in NCX variants (Fig.  7.3d ). After the initial 
decoding of regulatory information upon Ca 2+  binding to Ca3–Ca4 sites, the alloste-
ric signal is further modifi ed (transformed) and propagated by the CBD2 domain, 
which in turn, is controlled by a splice-variant segment (see below).   

5.2     Population Shift Underlies the Ca 2+  Induced Dynamic 
Changes in the CBD Domains 

  It was previously suggested that an electrostatic switch at CBD1 underlies Ca 2+ -
 dependent   activation of NCX; also it remains unclear how this may induce confor-
mational changes that are relevant to regulatory activities [ 19 ]. A recent analysis 
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revealed that Ca 2+  interaction with the primary allosteric sensor is not merely an 
electrostatic switch rather than a Ca 2+ -switch situated at the interface of CBDs, 
although no global conformational changes in the CBDs’ alignment are observed 
concerning either the interdomain angle or the distance between the CBD domains 
[ 40 ,  45 ,  77 ]. 

 In general terms, “induced fi t” and “conformational selection” (population shift) 
hypotheses were proposed as the principal mechanisms underlying ligand-induced 
dynamic coupling in proteins. In addition, both mechanisms may exist in a given 
protein at different stages of the activity cycle [ 80 ,  81 ]. Accumulating data obtained 
by NMR [ 48 ], FRET [ 46 ,  47 ], and SAXS [ 45 ] analyses suggest a model whereby 
Ca 2+  binding to the primary allosteric sensor (Ca3–Ca4 sites) induces a population 
shift rather than global conformational changes in CBDs [ 45 ]. The presence of a 
putative population shift mechanism presumes that numerous conformational tran-
sitions occur over relatively small energetic barriers [ 45 ,  80 ,  81 ]. According to the 
population shift mechanisms all conformational states already preexist in apo pro-
tein, where the ligand binding to protein shifts the fractional distribution of preexist-
ing conformational states [ 80 ,  81 ]. Recent fi ndings reveal that Ca 2+  binding to the 
Ca3–Ca4 sites results in a “population shift”, where more constraint conformational 
states become highly populated at dynamic equilibrium in the absence of global 
conformational transitions in the CBDs’ alignment [ 45 ]. The mechanism  underlying 
the population shift may have physiological signifi cance for NCX proteins, since an 
induced fi t can take place under one of two scenarios: a high concentration of ligand 
or a high affi nity of protein to ligand. However, neither of these regulatory condi-
tions seems to take place in the cell. Moreover, induced fi t is much faster than popu-
lation shift, which needs to overcome a barrier (a higher barrier leading to a slower 
population shift), so the observed slow rate constants for dissociation of occluded 
Ca 2+  ( k  obs  ~ 0.5 s −1 ) from CBD12 [ 40 – 44 ] and slow I 2  inactivation ( t  0.5  ~ 2 s) of intact 
NCX, observed in electrophysiological experiments [ 52 – 55 ,  62 – 68 ], are compatible 
with a population shift mechanism [ 45 ].   

5.3     Allosteric Signal Propagation in NCX Isoform/Splice 
Variants 

  Previous studies have suggested a common mechanism for decoding the initial 
signal upon Ca 2+  interaction with Ca3–Ca4 sites on CBD1, although neither of 
them addressed  the   pathway by which the allosteric signal is conveyed, nor 
explained how the regulatory responses are diversifi ed in different ortholog/splice 
variants, even though the isoform/splice variants share very common structural 
motifs. Only recent studies using  HDX-MS techniques   provided a breakthrough in 
understanding the mechanistic insights regarding both aspects of allosteric NCX 
regulation [ 77 ]. The advantage of the HDX-MS technique is that relatively small 
variations in the backbone conformational dynamics can be identifi ed even in the 
absence of global conformational changes. Surprisingly enough, slight nuances in 
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splicing- derived structural differences at the domains’ interface result in major 
variations in the dynamic properties of the backbone, which may underlie either 
positive (NCX- 1.4), negative (CALX-1.1), or no response (CALX-1.2) to regula-
tory Ca 2+  [ 52 – 55 ]. Interestingly, F450 (which is deeply buried in the interface, 
interacting with the interdomain linker and with the helical segment of CBD2’s 
FG-loop), prevents the signal transfer toward CBD1, while stabilizing the apo-
CBD1 and directing the signal propagation upon Ca 2+  binding through the linker 
toward CBD2 over a distance of 50 Å [ 77 ] (Fig.  7.4 ). Most importantly, the Ca 2+ -
induced decrease in backbone fl exibility at CBD2 segments correlates with regula-
tory specifi city (negative, positive, or no response to Ca 2+ ) in a given splice variant. 
Namely, for CALX1.1, in which a minimal response to Ca 2+  occurs, the exchanger 
remains inhibited; for NCX1.4, in which a maximal response to Ca 2+  occurs, the 
exchanger is activated; an intermediate phenotype is observed for CALX-1.2, 
which also exhibits intermediate changes in backbone fl exibility in response to Ca 2+  
[ 77 ]. Therefore, the fastening of the CBD2 FG loop helix (which is a part of the 
alternative splicing segment) to the CBD1 Ca 2+  binding region (which involves 
hydrophobic interactions centered at F450) can rigidify the F and G strands of 
CBD2 up to the domain tip [ 77 ]. This may represent the principal mechanism of 
allosteric signal propagation upon Ca 2+  binding to the primary sensor (Ca3–Ca4 
sites). Based on these observations, it has been proposed that specifi c structure-
dynamic determinants balance between the translational and rotational movements 
within CBD12 to shape the dynamic domains’ coupling, thereby yielding either 
positive, negative, or no response to regulatory Ca 2+  [ 77 ]. These fi ndings provide a 
structure-dynamic basis by which alternative splicing diversifi es responses to regu-
latory Ca 2+  in NCX isoform/splice variants and controls the propagation of alloste-
ric signals over long distances. The next challenge is to elucidate how the allosteric 
signal propagates from the CBD2 domain to transport sites of NCX. 

6         Conclusions 

 Recent structural and biophysical studies revealed a common module for decoding 
the Ca 2+  induced allosteric signal in NCX proteins at the interface of the two CBD 
domains and identifi ed the structure-dynamic determinants that govern the pheno-
type variances in response to regulatory Ca 2+  in a given isoform/splice variant 
exhibiting either positive, negative, or no response to regulatory cytosolic Ca 2+ . The 
major conclusions of recent achievements can be summarized as follows:

    1.    The high-affi nity Ca3–Ca4 sites of CBD1 serve as the primary allosteric sensors 
for Ca 2+  and their structures are highly conserved among all NCX variants, 
whereas the CaI site on CBD2 secondarely modifi es the regulatory properties of 
the primary allosteric sensor on CBD1 and is responsible for Ca 2+ -dependent 
alleviation of Na + -dependent inactivation.   

   2.    An alternating segment, exclusively located on CBD2, is in proximity to the 
primary allosteric sensor on CBD1 and in conjunction with other structural 
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components, at the interface of CBDs; it shapes the Ca 2+  binding affi nity and 
dissociation rates of “occluded” Ca 2+  in the cardiac, brain, and kidney splice 
variants of NCX1.   

   3.    The short interdomain linker plays a critical role in Ca 2+ -driven coupling of CBD 
domains by two different means: On the one hand, the linker directs Ca 2+ -driven 
tethering of CBDs to form an interdomain Ca 2+  saltbridge, whereas, on the other 

  Fig. 7.4    Characteristic differences in Ca 2+ -dependent rigidifi cation of the CBD2 backbone in 
diverse isoform/splice variants. The difference between the HDX-MS profi les of the apo and Ca 2+ -
bound forms are depicted for diverse variants showing the positive (NCX1.4-CBD12) ( a ), negative 
(CALX1.1-CBD12) ( b ) and no response (CALX1.2-CBD12) ( c ) to regulatory Ca 2+  The HDX-MS 
data points are overlaid onto the crystal structure (PDB 3US9) of CBD12-1.4-E454K. Ca 2+  is indi-
cated as  red spheres . The color legend shows the differential HDX after Ca 2+  binding       
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hand, the relay of CBDs (upon Ca 2+  binding and formation of interdomain Ca 2+  
saltbridge) stabilizes stochastic oscillations of the linker to restrict CBD 
movements.   

   4.    The two-domain interface controls Ca 2+ -induced tethering of CBDs and slow dis-
sociation of occluded Ca 2+ , where the occupation of the primary allosteric sensor 
(Ca3–Ca4 sites) by Ca 2+  rigidifi es the interdomain linker and thus, the dynamic 
movements of CBDs. This represents a common mechanism for decoding the 
initial information upon Ca 2+  binding for all NCX isoform/splice variants.   

   5.    In Ca 2+ -bound conformations, the interdomain angle of CBD12 is very similar for 
NCX1.4 and CALX1.1, meaning that the interdomain angle (and/or distance) 
between the two domains cannot account for the regulatory diversity in NCX1.4 
and CALX1.1, thus showing the positive and negative responses to regulatory Ca 2+ .   

   6.    Ca 2+  binding to the Ca3–Ca4 sites results in a “population shift”, where more 
constraint conformational states become highly populated at dynamic equilibrium 
in the absence of global conformational transitions in the CBDs’ alignment.   

   7.    Upon Ca 2+  binding to Ca3–Ca4 sites of CBD1 the conformational states with 
rigidifi ed backbone fl exibility of CBD2 (but not of CBD1) become populated, 
where the extent and strength of Ca 2+ -dependent rigidifi cation of CBD2 is diver-
sifi ed by the splice-variant segment on CBD2. The newly fond conformational 
states correlate with disparate regulatory responses to Ca 2+  observed in diverse 
variants of eukaryotic NCXs exhibiting either positive, negative or no response 
to regulatory Ca 2+ .    
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    Abstract     The plasma membrane Ca 2+ /Mg 2+  ecto-ATPase is an acidic glycoprotein, 
which hydrolyzes different nucleoside triphosphates and is activated by millimolar 
concentrations of various divalent cations. Unlike transport ATPases, it does not 
require Mg-ATP as a substrate and is different from the mitochondrial, myofi brillar, 
and sarcoplasmic reticulum ATPases. This enzyme is present in all tissues of the 
body including liver, brain, heart, kidney, blood, platelets, endothelium, and smooth 
muscles. The Ca 2+ /Mg 2+  ecto-ATPase is considered to play diverse physiological 
roles such as termination of purinergic transmission, regulation of extracellular ATP 
concentration, gating mechanism for Ca 2+  and Mg 2+  fl uxes, ATP-driven proton 
pump, cell-to-cell communication as well as cellular differentiation and transforma-
tion in a tissue specifi c manner. The activity of Ca 2+ /Mg 2+  ecto-ATPase is altered by 
a wide variety of physiological, pharmacological, and pathological interventions 
which change membrane fl uidity and its composition with respect to cholesterol and 
phospholipid contents. The molecular weight of this enzyme varies from tissue to 
tissue in the range of 180–240 kDa with subunits of 90, 80, 67, 20, and 10 kDa. The 
cDNA sequence for the plasma membrane Ca 2+ /Mg 2+  ecto-ATPase from different 
tissues show homology with different adhesion molecules including CD36, CD39, 
and CD70. The evidence in the existing literature suggests that the Ca 2+ /Mg 2+  ecto- 
ATPase is a multifunctional adhesion molecule which exists in different isoforms in 
various tissues.  
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1         Introduction 

 ATP was discovered in 1929 and has been demonstrated to serve as energy source 
for  maintaining   cellular function [ 1 – 6 ]. When the nutrient molecules such as glucose 
and fatty acids are metabolized by oxidation, the free energy is conserved by 
the synthesis of ATP from ADP and Pi. On the other hand, the energy dependent 
activities of the cell are sustained by the energy released from the ATP hydrolysis 
[ 1 – 6 ]. The enzymes which catalyze the breakdown of ATP to form ADP and Pi have 
been identifi ed as ATPases in many subcellular organs and plasma membrane [ 1 –
 13 ]. Some of these ATPases include enzymes such as Ca 2+ /Mg 2+  ecto-ATPase, plasma 
membrane Ca 2+ -pump ATPase, sarcoplasmic reticulum Ca 2+ -pump ATPase, dynein 
ATPase, alkaline phosphatase, ATP diphosphohydrolase, Na + /K +  ATPase, proton-pump 
ATPase, actomyosin ATPase, and H + /K +  ATPase. Although there is a wealth of infor-
mation available on ATPases of different species ranging from prokaryotes to 
eukaryotes, this review is focused mainly on the structural and functional properties 
of Ca 2+ /Mg 2+  ecto-ATPase in the plasma membrane. Additionally, some of the features 
which may distinguish this enzyme from other ATPases are highlighted. 

 The enzyme referred to as Ca 2+ /Mg 2+  ecto-ATPase, Ca 2+ /Mg 2+  ATPase, Ca 2+ -
activated ATPase, Mg 2+ -activated ATPase, plasma membrane E-type ATPase, or 
basal ATPase was fi rst identifi ed in 1957 in the liver. However, this enzyme is now 
shown to be present in the plasma membrane of different organs and its activation 
has been demonstrated to require millimolar concentrations of either Ca 2+  or Mg 2+  
for the maximal hydrolysis of ATP and several other nucleotide triphosphates [ 1 , 
 14 ]. Nearly six decades of research on Ca 2+ /Mg 2+  ecto-ATPase from different organ 
systems originating from different species has provided information on its biochem-
istry and molecular biology without ascribing any defi nitive physiological func-
tional role to this enzyme [ 1 ,  14 ,  15 ]. The intent of this article is to summarize the 
experimental evidence for membrane Ca 2+ /Mg 2+  ecto-ATPase to understand its role 
in animal cell function.  

2     Classifi cation and Distinguishing Features of Ca 2+ /Mg 2+  
Ecto-ATPase 

 Based on the following criterion, Ca 2+ /Mg 2+  ecto-ATPase has been classifi ed as an 
E- type   ATPase (E.C.3.6.1.15) [ 16 ]: (1) Ca 2+ /Mg 2+  ecto-ATPase has a catalytic site 
located on the extracellular surface; (2) Ca 2+ /Mg 2+  ecto-ATPase is insensitive to 
inhibitors of P-type ion transporting ATPases (Na + /K +  ATPase as well as Ca 2+ -pump 
ATPase of the sarcolemma and sarcoplasmic reticulum) such as ouabain and vanadate, 
F-type ATPases (F 1 F 0  mitochondrial proton pump) such as NaN 3  and oligomycin, and 
V-type ATPases (vacuolar proton pumps) such as  N -ethylmaleimide and fl uoride; 
(3) Ca 2+ /Mg 2+  ecto-ATPase is inactivated by detergents; (4) Ca 2+ /Mg 2+  ecto-ATPase 
does not form phosphoprotein intermediates during substrate hydrolysis; (5) Ca 2+ /
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Mg 2+  ecto-ATPase is dependant upon millimolar (mM) concentrations of Ca 2+  or 
Mg 2+  as a cofactor; (6) Ca 2+ /Mg 2+  ecto-ATPase hydrolyzes nucleoside triphosphates 
but not nucleoside diphosphates or nucleoside monophosphates; (7) Ca 2+ /Mg 2+  ecto-
ATPase has an alkaline pH optimum (pH 7.5–8.5); (8) Ca 2+ /Mg 2+  ecto-ATPase exhib-
its a high turnover (formation/breakdown) rate with a calculated turnover number of 
500,000 min −1  [ 17 ]; and (9) Ca 2+ /Mg 2+  ecto-ATPase is present in low abundance in 
most tissues. 

 Ca 2+ /Mg 2+  ecto-ATPase has been shown to be distinctly different from other 
enzymes which are known to hydrolyze ATP [ 1 ,  18 ]. It is pointed out that Na + -K +  
ATPase, a marker for  the   plasma membrane, maintains the intracellular concentra-
tion of Na +  and K + , and requires Mg 2+  for its activity. Ouabain, a specifi c inhibitor 
of Na + -K +  ATPase has no effect on Ca 2+ /Mg 2+  ecto-ATPase activity of the plasma 
membranes from different species. The Ca 2+ -pump ATPase, which is referred as 
high affi nity Ca 2+  ATPase or Ca 2+ -stimulated ATPase, is present in both the plasma 
membrane and sarcoplasmic reticulum, requires micromolar concentrations of Ca 2+  
and utilizes MgATP as a substrate. The plasma membrane Ca 2+ -stimulated ATPase 
plays a role in Ca 2+ -effl ux whereas the sarcoplasmic reticulum Ca 2+ -stimulated 
ATPase sequesters Ca 2+  and plays a role in lowering the intracellular concentration of 
Ca 2+ . On the other hand, the proton ATPase (F 1 F 0 -ATPase), resides on the inner mem-
brane of the mitochondria; the mitochondrial ATPase is inhibited by specifi c inhibi-
tors like oligomycin and NaN 3 , which have no effect on Ca 2+ /Mg 2+  ecto-ATPase. 

 The alkaline phosphatase is a nonspecifi c phosphatase which hydrolyzes ATP to 
ADP and Pi. The Ca 2+ /Mg 2+  ecto-ATPase is different from alkaline phosphatase 
because: (1) plasma membrane- bound   alkaline phosphatase exhibits optimal activ-
ity at pH 10.3 whereas the Ca 2+ /Mg 2+  ecto-ATPase is optimally active at pH 7.4–7.5; 
(2) unlike Ca 2+ /Mg 2+  ecto-ATPase, alkaline phosphatase does not require Ca 2+  or 
Mg 2+  as a cofactor for its catalytic activity. Vanadate and cysteine inhibit alkaline 
phosphatase but these agents have no effect on Ca 2+ /Mg 2+  ecto-ATPase activity [ 1 ]. 
It should be mentioned that ATP diphosphohydrolase catalyzes the hydrolysis of 
triphosphonucleosides and diphosphonucleosides to yield nucleoside monophos-
phate and inorganic phosphate [ 19 ]. It hydrolyses both nucleoside triphosphate and 
nucleoside diphosphate at equal rates while Ca 2+ /Mg 2+  ecto-ATPase hydrolyzes 
nucleoside diphosphate at much lower rate in comparison to that of the nucleoside 
triphosphate.  

3     Functional and Regulatory Properties of Ca 2+ /Mg 2+  
Ecto-ATPase 

 A variety  of   functions have been proposed for Ca 2+ /Mg 2+  ecto-ATPase [ 1 ,  14 ,  15 ] 
including: (1) termination of purinergic signaling in smooth muscle cells [ 20 ]; (2) 
neurotransmission [ 21 ], (3) non-synaptic information transfer [ 22 ,  23 ]; (4) cellular 
secretion [ 24 ,  25 ]; (5) vesicular traffi cking [ 26 ]; (6) Ca 2+ -infl ux and Mg 2+ -effl ux 
from cardiac myocytes [ 2 ]; (7) regulation of ectokinase substrate concentration [ 27 ]; 
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(8) cell adhesion [ 28 – 37 ]; (9) bicarbonate transport [ 38 ]; (10) tumourigenesis [ 39 ]; 
(11) mesentric artery functions [ 40 ]; and (12) mechanochemical functions involving 
cell motility in HeLa cells and Ehrlich ascites tumor cells [ 41 ,  42 ]. 

 Differential regulation of ecto-ATPase activity due to leukocytes was observed 
during  differentiation   and maturation [ 43 ]. Epidermal growth factor-dependent 
enhancement in ecto-ATPase activity in human hepatoma xenograft requires hydro-
cortisone and cholera toxin while the xenograft tissue growth was inhibited [ 44 ]. 
Hennighausen and Lange [ 45 ] proposed that the ecto-ATPase activity in rodent thy-
mocytes is related to the maturation of the cells. Based on the inhibitory data 
obtained from the mammalian brain tissue synaptosomes (rat, mouse, gerbil, and 
human), it was suggested that Ca 2+ -dependent ecto-ATPase and Mg 2+ -dependent 
ecto-ATPase may represent two different enzymes and they may be regulated inde-
pendently [ 46 ]. Still et al. [ 47 ] have shown that concanavalin A (conA) causes 
inactivation of ecto-ATPase present in the intact frog skeletal muscles. Mouse 
macrophage cell line J774 was reported to possess an ATP receptor promoting Ca 2+  
infl ux which is limited by the presence of ecto-ATPases for the hydrolysis of ATP 
[ 48 ]. It  was   found that there was no correlation between ecto-ATPase inhibition and 
changes in contractile force development in guinea pig urinary bladder and vas def-
erens in response to different divalent cations [ 49 ]. In human brain, the posterior 
part of epileptic hippocampus has been shown to exhibit a marked increase in the 
ecto-ATPase activity, which has been suggested to be involved in the epileptic sei-
zure development and sustenance of epilepsy [ 50 ]. 

 It has been shown that the ecto-ATPase was lost from the external side of the 
myelin sheath where the  focal   separation of myelin lamellae occurs after the stretch 
injury in the nerve fi bers; this event became apparent 1 and 4 h after the injury and 
has been characterized as a loss of regular axonal structure [ 51 ]. It has been 
reported that ecto-ATPase inactivation occurs after the ATP hydrolysis in brain 
synaptosomes; however, ATP hydrolytic products, ADP, AMP, adenosine, and 
inorganic phosphates did not affect the ecto-ATPase inactivation [ 52 ]. Furthermore, 
con A confers partial protection to ATP hydrolysis-induced inactivation of ecto-
ATPase which was suggested to be partly due to the phosphorylation of membrane-
bound proteins [ 52 ]. The adenosine nucleosides (ATP, ADP, AMP, and adenosine) 
have been shown to stimulate the proliferation of the endothelial LLC-MK2 cells 
whereas the inhibition of ecto-ATPase, 5′-nucleotidase or alkaline phosphatase 
reduced the proliferation of the LLC-MK2 cells, suggesting that different purines 
and pyrimidines may  contribute   to the proliferation of the LLC-MK2 cells [ 53 ]. A 
novel purinoceptor (P 1 ), where both adenosine and ATP act as agonists, was found 
to be present on the surface of follicular oocytes of  Xenopus laevis  [ 54 ]. Since the 
ecto-ATPase confers low rate of ATP hydrolysis, it was argued that the ecto-ATPase 
may not seem to generate suffi cient ligand (Ado/AMP) to function as a P 1  purino-
ceptor [ 54 ]. 

 The Ca 2+ /Mg 2+  ecto-ATPase is expressed upon cell activation and is inhibited by 
non-hydrolyzable  ATP   analogues [ 55 ]. The inhibition of this enzyme was observed 
to occur by regulating the infl ux of Ca 2+ , which was necessary to maintain lympho-
cyte cellular activation. The increase in the expression of mesangial cell ecto- ATPase 
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after the treatment with polyamines such as spermine and spermidine was suggested 
to increase the production of adenosine, which plays a role in mesangial infl amma-
tory processes [ 56 ]. Since ecto-ATPase gene expression is increased in human  hepa-
toma   and its activity is inhibited by detergents and high temperature, which decrease 
the membrane protein interaction, it has been suggested that this enzyme is regu-
lated by both enzymatic and transcriptional alterations [ 57 ]. Partial sequence of a 
genomic DNA clone indicated that the CD39L1 gene corresponds to an alternative 
spliced form of the human ecto-ATPase [ 58 ]. Similarities with respect to metabolic 
control as well as regulatory and catalytic properties between both ecto-ATPase and 
CD39L1 have been described in the literature [ 59 – 61 ]. 

 The cardiac Ca 2+ /Mg 2+  ecto-ATPase was found to show a signifi cant amino 
sequence homology with human platelet CD36 and the activities of both are regu-
lated by phosphorylation due to the activation of protein kinase A [ 62 ]. It should 
be noted that ischemia induced by medial artery occlusion and a novel ecto-ATPase 
inhibitor, PV4, was found to increase the concentration of extracellular ATP in the 
rat striatum [ 63 ]. The ecto-ATPase activity in the porcine renal proximal tubula 
cell line was also inhibited by ischemia [ 64 ]. Heat shock of  Trypanosoma cruzi  Y 
strain epimastigotes was also observed to stimulate the Mg 2+ -dependent ecto-
ATPase activity [ 65 ]. However, when the plasma membrane from epimastigotes 
did not show any increase in the ecto-ATPase activity upon heat shock treatment, 
suggesting that some cytoplasmic components may be involved in infl uencing the 
enzyme activation by heat  shock   stress [ 65 ]. The strong localization of Ca 2+  ecto-
ATPase on the luminal surface of the blood–brain barrier has been suggested to 
account for the physiological homeostasis of Ca 2+  across the blood–brain interface 
[ 66 ]. Thus it appears that the Ca 2+ /Mg 2+  ecto-ATPase is regulated by a wide variety 
of mechanisms.  

4     Structural Properties of the Ca 2+ /Mg 2+  Ecto-ATPase 

 Western (immuno) blots with polyclonal antibodies for Ca 2+ /Mg 2+  ecto-ATPase 
indicated that the liver Ca 2+ /Mg 2+     ecto-ATPase was more enriched in the canalicular 
domain [ 67 ]. Three different anti-Ca 2+ /Mg 2+  ecto-ATPase antibodies have been 
reported: (a) The antibody #669 raised against SDS-PAGE purifi ed Ca 2+ /Mg 2+  ecto- 
ATPase, only recognized the denatured Ca 2+ /Mg 2+  ecto-ATPase; (b) Antibody #708 
was generated for chromatographically purifi ed enzyme (i.e., non-denatured pro-
tein), and recognized both the native and denatured Ca 2+ /Mg 2+  ecto-ATPase. This 
antibody has been extensively employed in immunoprecipitation analysis [ 67 ] and; 
(c) Antipeptide #36 was generated against a sequence obtained from tryptic digestion 
of purifi ed liver Ca 2+ /Mg 2+  ecto-ATPase. It recognized the reduced form of Ca 2+ /Mg 2+  
ecto-ATPase but not the non-reduced form [ 68 ,  69 ]. A rat liver hepatocyte protein 
with 100 kDa has been characterized as Ca 2+ /Mg 2+  ecto-ATPase. It is present in two 
isoforms with different C terminals viz. 10 AA and 70 AA, while the ATP binding 
domain localized on the extracellular domain. Furthermore, the sequence homology 
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analysis of the liver ecto-ATPase showed that it has three immunoglobulin-like 
domains that are homologous to those present in the human biliary glycoprotein-l 
(BGP 1). There are 16 potential asparagine-linked N-glycosylation sites in this pro-
tein [ 70 ]. 

 The primary structure of the rat liver plasma membrane ecto-ATPase has the 
nucleotide and amino acid sequence homology with BGP 1. However it should  be   
noted that this cDNA sequence has no Walker motives (I GX 1 X 2 X 3 X 4 -GK or II R/K-
X 1 X 2 X 3 -L; X = hydrophobic residues) which represents the ATP binding domain in 
the ion motive ATPases. The lack of Walker ATP binding domain sequence was 
attributed to the insensitivity of ecto- ATPase to vanadate, which has been identifi ed 
as a characteristic feature of the ion motive ATPases to form aspartyl phosphopro-
tein intermediates [ 38 ]. However, the rat liver Ca 2+ /Mg 2+  ecto-ATPase cDNA has 
been shown to detect the transcripts of a biliary glycoprotein and carcinoembryonic 
antigen, but not the mercurial insensitive ecto-ATPase in small cell lung cancer cell 
lines [ 39 ]. Furthermore, the expression product of the liver ecto-ATPase cDNA has 
been shown to be functioning as a cell adhesion molecule without E-type ATPase 
(ecto-ATPase) activity [ 71 ]. Hydropathy plot analysis of rat liver ecto-ATPase 
cDNA sequence showed that it has two hydrophobic stretches. One is located at the 
NH 2 -terminal and forms part of a membrane signal sequence and the other is located 
near the COOH-terminal. 

 The overall structural arrangement (amino acid) predicts that most of the liver 
ecto-ATPase protein mass is in the extracellular space and that the COOH terminal 
of the protein is intracellular. This structural information is consistent with the fact 
that the liver Ca 2+ /Mg 2+  ATPase protein is an ecto-ATPase [ 68 ]. The two stretches of 
the amino acid sequence (consisting of amino acids 92–100 and 335–348) are simi-
lar to the consensus sequences for nucleotide-binding domains of other ATP-binding 
proteins. The expression construct containing the coding  region   of the rat liver Ca 2+ /
Mg 2+  ecto-ATPase, cloned in front of the cytomegalovirus promoter and SV 40 ori-
gin of replication (pEXP), was expressed in the mouse L cell line and the HeLa cell 
line. The lysate obtained from the cells transfected with the plasmid pEXP had a 
higher Ca 2+ -activated ATPase activity compared to that of the control [ 68 ]. There 
are two rat liver cell-CAM 105 isoforms (long and short) which have been cloned 
and characterized. The short isoform is predominant on the external surface of the 
rat liver plasma membrane. The longer isoform has more potential phosphorylation 
sites than the shorter isoform. Differential phosphorylation could be one of the 
mechanisms for differential isoform function. Both long and short isoforms are 
localized in the canalicular domain of hepatocytes. The difference in the sequence 
of the two isoform suggests that these are probably derived from different genes 
rather than being formed by alternative splicing [ 72 ]. Mg 2+  ATPase (85 kDa glyco-
protein), purifi ed from the traverse tubules of chicken skeletal muscle, has been 
shown to have the amino acid sequence homologous to T cadherin, which shares 
many biochemical properties of the traverse tubule Mg 2+  ATPase of chicken skeletal 
muscle [ 29 ]. 

 The ecto-nucleotidase activity profi le (ecto-ATPase; ecto-ADPase) of human 
umbilical vein endothelial cells was similar to that of the enzyme from leukocytes. 
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Fillipini et al. [ 73 ] postulated that the presence of ecto-ATPase on the cytolytic thymus 
derived lymphocytes  confers   protection from the deleterious effect mediated by 
extracellular ATP. An antiserum directed against bovine aortic endothelial smooth 
muscle cell ATP diphosphohydrolase showed marked inhibition on both ecto-
ATPase and ecto-ADPase of bovine aortic endothelial smooth muscle cells. It was 
suggested that both enzyme activities are probably conferred by one enzyme 
referred to as ATP diphosphohydrolase. Sequential hydrolysis of ATP and ADP in 
the adult rat cerebral cortex synaptosomes was attributed to the presence of an ATP 
diphosphohydrolase [ 74 ]. An ecto-ATPase requiring millimolar concentration of 
Ca 2+  or Mg 2+  has been localized on the taste bud of the cells and it is suggested to be 
involved either in neurotransmission or in the energy supply mechanism in the taste 
bud function [ 75 ]. 

 Kurihara et al. [ 76 ] demonstrated that the ecto-ATPases hydrolyzing nucleoside 
triphosphates in A-431(epidermal carcinoma) cells were different from P2 puriner-
gic receptors. Based on in vitro studies on ecto-ATPase (Ca 2+  or Mg 2+ -dependent 
ecto-ATPase) in Langerhans cells, it was suggested that this ATPase confers protec-
tion against membrane lytic  effect   mediated by extracellular ATP [ 77 ]. Beukers 
et al. [ 78 ] demonstrated that human platelets possess ecto-ATPase with high affi nity 
for ATP, as well as for ADP which causes the platelet aggregation. It was thus indi-
cated that the role of ecto-ATPase activity in platelet aggregation may be minimal 
because breakdown of ATP to ADP occurs slowly. 8-Azido-ATP has been shown to 
be a substrate for ecto-ATPase in cultures of chromaffi n cells with a Km of ~256 mM 
and Vmax of 14.3 nmol/min × 10 6  cells [ 79 ]. An ATPase isolated from bovine syn-
aptosome membranes with a molecular weight 50 kDa was considered as an ecto- 
ATPase due to the fact that the active site was exposed to external environment [ 80 ]. 
It has been demonstrated that Ca 2+ /Mg 2+  ecto-ATPase activity is associated with 
neural cell adhesion molecule (NCAM) purifi ed from rat brain microsomes; how-
ever, it has been shown that the Mg 2+  ATPase activity and neural cell adhesion mol-
ecule could be separated in the partially purifi ed rat and chicken brain microsomes 
[ 81 ]. The Ca 2+  or Mg 2+ -activated ATPase from the bovine brain synaptosomal 
plasma membranes has a molecular weight 50 kDa and requires millimolar concen-
tration of Ca 2+  or Mg 2+  for maximal hydrolysis with an optimum pH between 7.5 
and 8.5. Sippel et al. [ 82 ] showed that bile acid effl ux and Ca 2+ /Mg 2+  ecto-ATPase 
activities were two distinct properties of a single rat liver hepatocyte canalicular 
membrane protein; however, introduction  of   mutations in the consensus sequence at 
amino acids Gly 97 and Arg 98 in the Ca 2+ /Mg 2+  ecto-ATPase abrogated ATPase 
activity but did not affect its bile acid transport activity [ 83 ]. Kast et al. [ 84 ] reported 
that electrogenic taurocholate transport resides entirely in the endoplasmic reticu-
lum, whereas ATP-dependent bile acid transport is an intrinsic function of the cana-
licular membrane as well as a yet unidentifi ed intracellular membrane-bound 
compartment. Therefore the two transport activities were most probably mediated 
by two different bile acid transporting polypeptides. 

 By using an antipeptide antibody, it was identifi ed that chicken gizzard Ca 2+ /
Mg 2+  ecto-ATPase and T-cadherin are different proteins [ 85 ]. It should be men-
tioned that these proteins  were   localized on the luminal surfaces and intercellular 
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canaliculi of the acinar cells of both parotid and submandibular glands [ 86 ]. It was 
suggested that these may play a major role in ATP-breakdown, stabilization of 
microvillar membranes, cell adhesion, and secretory mechanisms in the rat parotid 
and submandibular glands [ 86 ]. Rat hepatocytes were shown to possess both mercurial 
sensitive and mercurial insensitive ecto-ATPase. During the hepatoma tumor forma-
tion, the mercurial sensitive ecto-ATPase was increased whereas the latter was 
decreased. It was also found that the mercurial-sensitive ecto-ATPase was expressed 
at high level in three lines of human small-cell lung carcinoma cells compared to the 
normal cells [ 87 ]. 

 When the rat glomerular mesangial cells were cultured without serum, a reduc-
tion in the ecto-ATPase activity was evident [ 88 ]. A unique, ecto-ATPase partly 
sensitive to  dicyclohexylcarbodiimide   was demonstrated to be present on the sur-
face of the human placental brush border membranes [ 89 ]. Suramin, Ni 2+  and S-ATP, 
showed inhibitory effect on the human blood cells ecto-ATPase activity [ 89 ]. By 
utilizing specifi c monoclonal antibodies, an ecto-ATPase protein was immunopre-
cipitated. This protein was shown to have amino acid sequence homology with inte-
grins, a group of proteins involved in contact between the cell adhesion molecules 
[ 90 ]. An ecto-ATPase localized on the rat small intestinal brush border membrane 
was proposed to  play   a major role in the nutrient break down [ 91 ]. It has been shown 
that the purinergic receptor antagonists, pyridoxalphosphate-6-azophenyl-2′,4′-
disulfonic acid, suramin, and reactive blue, inhibited the ecto-ATPase activity in the 
bovine pulmonary artery endothelium, glial cells, and macrophages [ 92 ]. A human 
plasma factor 100 KF, which reduced expression of ecto-ATPase, has been shown 
to increase the permeability of human endothelium for macromolecules in a dose- 
dependent fashion [ 93 ]. It was shown that this plasma constituent may be important 
in the pathogenesis of glomerular disease [ 93 ]. 

 Partially purifi ed rat liver plasma membrane and lysosomal Ca 2+ /Mg 2+  ATPases 
have been shown to have similarity with an ecto-ATPase in the following character-
istics: broad pH-activity profi les,    Km values for ATP being 21–27 μM (at pH 4.5) 
and 18–14 μM (at pH 7.0) (in the presence of Ca 2+ ), hydrolysis of both ATP and 
ADP, inhibition by vanadate and 4,4′-diisothiocyanatostilbene 2,2′-disulfonic acid, 
as well as cross-reactivity against an antibody to the N-terminal peptide of ecto- 
ATPase [ 94 ]. By inhibiting the ecto-ATPase activity by an inhibitor, ARL67156 
(6- N , N -diethyl- D -β,γ,-dibromo methylene ATP), it has been shown that there was an 
increase in nerve stimulation and neurogenic contractions in the isolated guinea pig 
vas deferens [ 95 ]. Based on observations such as differences in the pH, divalent 
cation requirement, and the absence of inhibitory effect of ADP on degradation of 
ATP during ATP hydrolysis on the surface of oocytes of  Xenopus laevis , it was sug-
gested that the degradation of ATP and ADP are mediated by two separate Ca 2+  or 
Mg 2+  dependent ecto-ATPase and Ca 2+ /Mg 2+ -dependent ecto-ADPase [ 12 ]. 

  Following demyelination, there was a continuous expression of the ecto-ATPase 
activity in the internodal axolemma of exposed axons, and specifi cally the ecto- 
ATPase activity was prominent at the sites of axonal contacts and glial-cell pro-
cesses. However, upon remyelination, the area of  the   axonal surface exhibiting the 
ecto-ATPase activity decreased in direct proportion to the thickening of the new 
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myelin sheath. Thus the differential expression of the ecto-ATPase activity was 
considered to play a role in the axo-glial recognition and founding of axo-glial 
contacts [ 96 ]. The cross-linking agents, 3,3′-dithiobis (sulfosuccinimidylpropio-
nate) and dithiobis (succinimidylpropionate), resulted an oligomeric state (130 kDa 
immunoreactive band) and an increase in the ecto-ATPase activity, whereas the 
destabilizing agents showed inhibition of ecto-ATPase activity in chicken gizzard 
smooth muscle [ 97 ]. A novel membrane associated ecto-ATPase was identifi ed in 
rat Sertoli cells. This enzyme was considered to be an ecto-ATPase due to the fact 
that it was activated by either Mg 2+  or Ca 2+ , and it hydrolyzed other nucleoside 
triphosphates, but not ADP [ 98 ]. A soluble E-type ecto-ATPase was also purifi ed 
from the single- celled eukaryote,  Tetrahymena thennophila  [ 99 ]. This enzyme 
shared immune-cross- reactivity with the membrane-bound chicken gizzard smooth 
muscle ecto-ATPase (66 kDa). This ecto-ATPase enzymev was proposed to act as 
an inactivator of the purinergic signals (chemorepulsion responses to extracellular 
ATP and GTP) and also in the clearance of the extracellular nucleotides. Apyrase, 
an enzyme with ecto-ATPase activity, abolished the ATP-mediated cytotoxicity in 
the human tumor cells [ 100 ]. 

 The cDNA sequence of chicken gizzard smooth muscle ecto- ATPase was found 
to have considerable homology with mouse and human CD39 and it was suggested 
to be involved in the homotypic cell adhesion process [ 32 ]. It should be noted that 
CD39 is a lymphoid cell (B cell) differentiation marker present in the Epstein Barr 
virus transformed immunocompetent cells and this molecule has been shown to 
have apyrase activity; the CD39 molecule was demonstrated to be an ecto-Ca 2+  or 
Mg 2+ -dependent apyrase [ 101 ]. It has been suggested that E-type ATPase activity 
may be tightly bound to proteins having adhesion characteristics. This conclusion 
was based on studies conducted on both ecto-ATPases and cell adhesion mole-
cules. It was observed that the sequence for the ecto-ATPase purifi ed from rat liver 
is homologous to the BGP 1 I [ 28 ]. Furthermore, it was noted that the liver ecto-
ATPase cDNA sequence does not contain the Walker motives and it is implied that 
aspartyl phosphate intermediate formation is not required for ATP hydrolysis by 
this ecto-ATPase [ 102 ]. Expression of the rat liver ecto-ATPase eDNA, however, 
demonstrated that this clone coded for a protein in  E. coli  had the properties of a 
cell adhesion protein [ 30 ]. Similar to the rat liver enzyme, cloning of the chicken 
gizzard smooth muscle ecto-ATPase produced a cDNA with a sequence that has a 
considerable sequence homology with mouse and human CD39 [ 32 ]. Interestingly, 
CD39 is a cell adhesion protein that has been found to have an ecto- Ca 2 + /Mg 2+  
apyrase activity capable of hydrolyzing both ATP and ADP [ 32 ,  101 ,  103 ]. While 
there is no direct or indirect evidence to prove or disprove that  ecto- ATPase/E-type 
ATPase activity is associated with adhesion molecules, it is intriguing to note that 
β 2  subunit of the Na + /K +  ATPase has been shown to possess homology with cell 
adhesion molecule of glia [ 104 ]. Similarly, ecto 5′ nucleotidase (hydrolyzes AMP 
to adenosine) has also been demonstrated to harbor and/or function as an adhesion 
molecule, CD73 [ 105 ]. Thus, there is considerable evidence to indicate that E-type 
ATPases are directly or indirectly associated with the cell adhesion proteins in dif-
ferent organs of the body.   
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5     Sarcolemmal Ca 2+ /Mg 2+  Ecto-ATPase in the Heart 

 Extensive efforts were made in our laboratory to examine the presence, localization 
and role of Ca 2+ /Mg 2+  ecto-ATPase in the cardiac sarcolemmal membrane [ 1 ,  2 , 
 106 – 109 ]. The properties of Ca 2+ -dependent and Mg 2+ -dependent ATPase activities 
in the sarcolemmal membrane for myocardium revealed that this enzyme possesses 
characteristics which are similar to those seen in different tissues such as brain, 
liver, kidney and skeletal muscle [ 1 ,  2 ,  110 – 112 ]. The Ca 2+ /Mg 2+  ecto-ATPase was 
stimulated by a wide variety of divalent cations, hydrolyzed various nucleoside tri-
phosphates and was different from Ca 2+ -stimulated ATPase (Ca 2+ -pump ATPase) 
and Na + -K +  ATPases. Although sarcolemmal Ca 2+ /Mg 2+  ecto-ATPase showed some 
similarities with mitochondrial, sarcoplasmic reticulum and  myofi brillar   ATPases, 
most of the biochemical characteristics of this enzyme were different from those for 
other subcellular organelles [ 113 – 115 ]. Phospholipid N-methylation was observed 
to be involved in the regulation of sarcolemmal Ca 2+ /Mg 2+  ecto-ATPase [ 116 ]. The 
activities of this enzyme in the presence of Ca 2+  or Mg 2+  were altered differentially 
by treatments with phospholipases A and C as well as with various detergents such 
as deoxycholate and lubrol [ 117 ,  118 ]. These observations are consistent with the 
view that the activities of Ca 2+ /Mg 2+  ecto-ATPase are modifi ed upon changes in the 
microenvironment of the membrane with respect to phospholipid composition and 
fl uidity, and that Ca 2+ -dependent ATPase and Mg 2+ -dependent ATPase may be two 
different enzymes. 

 It needs to be emphasized that the sarcolemmal phosphorylation mediated by 
cyclic AMP and protein kinase A was found to increase the Ca 2+ /Mg 2+  ecto-ATPase 
activity [ 119 ]. Furthermore, electrical stimulation of the cardiac sarcolemmal mem-
brane increases  the   activity of this enzyme [ 120 ,  121 ]. In addition, the activation of 
sarcolemmal Ca 2+ -dependent ATPase by different concentrations of Ca 2+  was linearly 
related to the development of contractile activity in isolated perfused hearts [ 122 ]. 
Different cardiodepressing agents and anti-arrhythmic agents as well as some divalent 
cations were found to decrease the sarcolemmal Ca 2+ /Mg 2+  ecto-ATPase activity 
[ 123 – 125 ]. The activity of this enzyme was also altered in different pathophysiologi-
cal conditions depending upon the stage of cardiac contractile function [ 126 – 130 ]. 
These studies are taken to suggest that sarcolemmal Ca 2+ /Mg 2+  ecto- ATPase play an 
important role in maintaining cardiac function during health and disease. Furthermore, 
there is ample evidence to suggest that the Ca 2+ /Mg 2+   ecto- ATPase may be involved in 
the fl uxes of Ca 2+  and Mg 2+  across the sarcolemmal membrane [ 1 ,  2 ]. 

 Treatment of the heavy sarcolemmal membrane containing a fuzzy coat of base-
ment membrane with trypsin not only increased the Ca 2+ -dependent ATPase activity 
without any changes in Mg 2+ -dependent ATPase activity but also released Ca 2+ -
dependent ATPase in the supernatant [ 131 ].  Purifi cation   of this Ca 2+ -dependent 
ATPase showed that the molecular weight of this enzyme was 67 kDa with two 
subunits of 55 and 12 kDa molecular weights [ 132 ]. This Ca 2+ -dependent ATPase 
was markedly inhibited by Na +  and was suggested to be involved in Ca 2+ -entry into 
cardiomyocyte and serve as a site for Na + -Ca 2+  antagonism in the sarcolemmal 
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membrane [ 132 ]. The Ca 2+ /Mg 2+  ecto-ATPase, remaining in the trypsin treated 
sarcolemmal preparation [ 133 ], was also solubilized and purifi ed, showing a molec-
ular weight of 240 kDa [ 134 ,  135 ]. This enzyme was found to have fi ve subunits 
with molecular weight of 90, 80, 67, 20, and 10 kDa, and was not inhibited by Na +  
[ 134 ]. Since the heavy sarcolemmal membrane was subjected to trypsin treatment 
before isolating Ca 2+ -dependent ATPase and Ca 2+ /Mg 2+  ecto-ATPase from the hearts 
[ 132 ,  135 ], it is likely that the polypeptide composition of these enzymes may be a 
consequence of proteolysis and that both Ca 2+ -dependent ATPase and Ca 2+ /Mg 2+  
ecto- ATPase isolated in our laboratory [ 132 ,  135 ] are the components of the same 
ecto-ATP hydrolyzing system in the myocardial cell membrane. 

 In order to gain further information regarding the molecular structure and func-
tion of cardiac Ca 2+ /Mg 2+  ecto-ATPase, a light plasma membrane fraction was 
obtained from the  myocardial   tissue by the sucrose gradient method [ 136 – 138 ]. No 
Ca 2+ -dependent ATPase activity was detected in the supernatant when the light sar-
colemmal membrane, unlike the heavy sarcolemmal fraction, was subjected to tryp-
sin treatment. However, the ATP hydrolysis by the light membrane was stimulated by 
various divalent cations and the Ca 2+ /Mg 2+  ecto-ATPase activities were inhibited by 
some divalent cations similar to that seen with the heavy sarcolemmal membrane 
[ 136 ]. The Ca 2+ /Mg 2+  ecto-ATPase was specifi cally stimulated by Con A indicating 
the role of membrane fl uidity in the activation of sarcolemmal ATP hydrolysis due to 
Ca 2+  or Mg 2+  by ecto-ATPase [ 137 ]. On the other hand, gramicidin S was observed to 
depress the sarcolemmal Ca 2+ /Mg 2+  ecto-ATPase activity, and this effect was shown 
to be associated with the cardio- depressant   action of this agent [ 138 ]. 

 The purifi ed Ca 2+ /Mg 2+  ecto-ATPase from the cardiac plasma membrane showed 
a molecular weight of 18 kDa with two subunits of 90 kDa molecular weight each 
[ 139 ]. The purifi ed enzyme was found to be associated with phospholipids, choles-
terol and polysaccharides indicating the glycoprotein nature of Ca 2+ /Mg 2+  ecto- 
ATPase. Further studies indicated that the purifi ed Ca 2+ /Mg 2+  ecto-ATPase was found 
to bind a considerable amount of Ca 2+  and showed low and high affi nities for ATP 
binding; phospholipids associated with purifi ed enzyme were found to be required 
for maximal activity [ 140 ]. Mass spectroscopic analysis of the enzyme showed the 
presence of multi-components indicating the micro-heterogeneity in the protein 
structure [ 141 ]. Amino acid sequence of tryptic fragment of purifi ed Ca 2+ /Mg 2+  ecto-
ATPase indicated the enzyme to be an adhesion molecule as monoclonal antibody 
directed against human CD36 cross-reacted with this enzyme [ 31 ]. Polyclonal anti-
serum raised against the purifi ed cardiac Ca 2+ /Mg 2+  ecto-ATPase also cross-reacted 
with human CD36 [ 31 ]. Molecular cloning of cardiac sarcolemmal Ca 2+ /Mg 2+  ecto-
ATPase involving the isolation of cDNA clone provided a single gene that was 
homologous to the adhesion molecule, CD36 [ 142 ]. Immunofl uorescence of cardiac 
tissue sections stained with Ca 2+ /Mg 2+  ecto-ATPase antibodies revealed the localiza-
tion of this enzyme at the plasma membrane of cardiomyocytes [ 143 ]. Staining of 
Ca 2+ /Mg 2+  ecto-ATPase was not cardiac specifi c since these antibodies also detected 
the presence of membrane proteins in sections from skeletal muscle, brain, liver and 
kidney. These studies support the view that the Ca 2+ /Mg 2+  ecto-ATPase is a trans-
membrane glycoprotein having homology with CD36 adhesion molecule.  
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6     Conclusions 

 From the foregoing discussion regarding the properties of Ca 2+ /Mg 2+  ecto- ATPase, 
it is evident that this is a transmembrane enzyme whose catalytic site is exposed to 
extracellular space and is considered to maintain the extracellular concentration of 
ATP. This enzyme is a glycoprotein in nature and its activity is determined by altera-
tions in membrane fl uidity and cholesterol as well as phospholipid composition. It 
is present in the plasma membranes of all tissues in the body and has been suggested 
to play a role in the maintenance of a wide variety of cellular functions. The Ca 2+ /
Mg 2+  ecto-ATPase has been purifi ed from different tissues and its molecular weight 
varies in a wide range with several subunits. The sequence of cDNA for Ca 2+ /Mg 2+  
ecto- ATPase shows homology with different isoforms of adhesion molecules such 
as CD36, CD39, and CD70; this is dependent upon its presence in different cell 
types from various tissues. Several studies have suggested that Ca 2+ /Mg 2+  ecto-
ATPase is a multiple functional enzyme and its role in maintaining cellular function 
is tissue and organ specifi c.   
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    Abstract     The SERCA pump, a membrane protein of about 110 kDa, transports two 
Ca 2+  ions per ATP hydrolyzed, from the cytoplasm to the lumen of the sarcoplasmic 
reticulum. In muscle cells its ability to remove Ca 2+  from the cytosol induces 
 relaxation. The transport mechanism employed by SERCA1a from rabbit skeletal 
muscle has been dissected at the molecular level by several crystal structures that 
represent nearly all the different conformational states of the catalytic cycle of Ca 2+  
transport. The structure of the complexes of SERCA with sarcolipin or phosphol-
amban, two small membrane proteins responsible of the control of the pump  activity 
in the skeletal muscle and in the heart, has also been determined, allowing the under-
standing of the molecular aspects of the control. All these structural data, along with 
extensive molecular dynamics calculations and functional characterization in vitro, 
have allowed a detailed understanding at the atomic level of the  process of transport 
of calcium from the cytoplasm to the reticulum. SERCA1 represents perhaps, among 
the P-type ATPases, the best described at the atomic level.  

  Keywords     Calcium pumps   •   Ca 2+  ATPases   •   SERCA   •   Calcium transport
   •   Endoplasmic reticulum  

1         Introduction 

 The Ca 2+  ATPase of the sarco(endo)plasmic reticulum (SERCA) is a single polypep-
tide chain  protein   of approximately 110 kDa and about 1000 residues [ 1 ]. SERCA is 
an integral membrane protein located in the membrane of the reticulum that, thanks 
to ATP hydrolysis, pumps back into the sarcoplasmic reticulum the calcium ions that 
have been previously released in the muscle cells during contraction, allowing in 
such a way the muscle to relax [ 2 ] (for a general review, see [ 3 ]). Three different 
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types of SERCA exist in mammals, encoded in three different genes, and each of 
them gives rise, by alternative splicing, to different isoforms: three for SERCA1 and 
SERCA2 and six for SERCA3 (they are called SERCA1a, SERCA1b, and so on, till 
SERCA3f) [ 4 ]. This alternative splicing gives rise to  proteins that differ in length at 
the C-terminus, being SERCA1a the shortest and SERCA3a the longest with 994 and 
1052 residues, respectively. They are present in different amounts in various tissues, 
and the functional differences among isoforms have not been fully clarifi ed yet. 
SERCA1a is the only form present in fast-twitch skeletal muscle, while isoforms 2a 
and 2b are predominant in the heart. 

 Sequences of SERCA are very well conserved in mammals, but SERCA-like 
Ca 2+  ATPases have been found in many lower species, including bacteria. The best 
structurally characterized  among   SERCA pumps is SERCA1a from rabbit skeletal 
muscle. 44 coordinate fi les of this protein have been deposited at the Protein Data 
Bank (PDB) since the fi rst crystal structure was determined in 2000 [ 5 ], mostly in 
different conformational states [ 6 – 21 ]. Only one structure from other species was 
determined, bovine SERCA [ 22 ], discussed in paragraph 5. General reviews on 
the structural basis of the Ca 2+  pumping by SERCA can be found in [ 23 – 25 ]. In 
this chapter a general description of SERCA three-dimensional structure and its 
 mechanism of calcium transport are summarized.  

2     Overall Crystal Structure of SERCA from Rabbit Muscle 

 The  structure   of SERCA1a from rabbit muscle can be described as consisting of 
three cytoplasmic domains, labeled A, N, and P for actuator, nucleotide-binding, 
and phosphorylation domain, respectively, by the M domain consisting of ten 
 transmembrane helices (from M1 to M10) and by a small lumenal portion, made of 
few loops that connect some of the transmembrane helices. Domains A and P are 
connected to the M domain, while domain N is not, being close in space to domain 
P (Fig.  9.1a ).

   Domain  P  includes two separate parts of the amino acid sequence: residues from 
330 to 359 and from 604 to 737 (beginning and end of each domain are approximate, 
assigned by visual inspection of the 3D model).  The   beginning and the end of 
domain P are connected to helices M4 and M5 of domain M, while the sequence 
included between the two segments of domain P, from amino acid 360–603, 
 constitutes domain N, which is continuous along the polypeptide chain. Domain P 
is arranged as a classical Rossmann fold, a seven-stranded parallel β-strand 
 surrounded by eight α-helices (Fig.  9.1b ). The Rossmann fold in proteins is often 
associated with the binding of nucleotides, and, in fact, domain P participates in the 
binding of ATP and contains Asp351, the residue that is phosphorylated. 

  Domain  N  comprises   a seven-stranded antiparallel β-sheet with two helix 
 bundles on each side (Fig.  9.1b ). It contains most of the residues implicated in the 
binding of ATP, in particular Phe487, Ly515, and Lys492. 
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 Domain  A , the  smallest   among the SERCA domains, like domain P is not 
 continuous in the amino acid sequence, including residues from the N-terminus to 
40/43 and from 115/118 to 241. The C-terminus of domain A is connected to helix 
M1 of domain M, and the remaining portion is in between helices M2 and M3. Its 
fold can be described as a jellyroll structure, plus two α-helices located in the 
N-terminal portion of the domain (Fig.  9.1b ). 

  Domain  M  is the   largest of domain of SERCA, including ten transmembrane 
helices and few luminal loops, for a total of more than 400 residues. The helices, 
numbered from M1 to M10, not only span the membrane, but some of them also 
expand in the cytoplasm. All these helices move considerably during the reaction 
cycle, as described below, and in doing so they contribute to the transport of calcium 
ions from the cytoplasm to the reticulum. 

 The enzyme has two binding sites for calcium, one for ATP and magnesium and 
others for effectors and inhibitors. The two calcium-binding sites, located closed-by 
in domain M, have a cooperative behavior with two binding constants for the rabbit 
enzyme, measured in vitro, of 1.2 × 10 5  and 5.0 × 10 7  for site I and II, respectively 

  Fig. 9.1    ( a ) Cartoon view of  E1   state of SERCA pump. The actuator domain (A) is  cyan  (residues 
1–43 and 115–241), the phosphorylation (P) domain  green  (residues 330–359 and 604–737), 
the nucleotide-binding (N) domain  yellow  (residues 360–603), and the transmembrane (M) 
domain  orange  (residues 44–114, 242–329, and 738–994). Coordinates from fi tE1AMPPCP.pdb. 
( b ) Cartoon view of the four separated domains (not in scale). The AMPPCP analogue of ATP is 
shown as stick model bound in between domains N and P. Coordinates from fi tE1AMPPCP.pdb       
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[ 26 ]. In the Ca 2+  high-affi nity conformation of the pump (see below), both Ca 2+  sites 
have seven coordinating oxygen atoms: in site I the ion interacts with one oxygen of 
Thr99, Glu771 and 908, Asn768, Asp800, and of two water molecules; in site II 
Ca 2+  is surrounded by the two oxygen atoms of Glu309, one oxygen of Asn796 and 
Asp800 (the latter bridges the two calcium ions, interacting with both), and the 
carbonyl  oxygen   of Val304, Glu305, and Ile307. The distances between Ca 2+  and 
oxygen atoms range from 2.2 to 2.7 Å (Fig.  9.2 ).

   The ATP-binding site (Fig.  9.3 ) is in between domains N and P: the nucleotide- 
binding domain contains  most   of the residues that interacts with the adenosine 
 moiety, in particular Arg589, 515, 560 and 678, Glu442, Asn627, Thr625, and 
Phe487. The latter is the only hydrophobic residue in contact with the nucleotide, 
and it is responsible of a π-π stacking interaction with the purine ring of ATP. 
Only the γ-phosphate of the nucleotide and Mg 2+  ion interact with domain P through 
the residue that is phosphorylated, Asp351, and Thr353.

3        The Reaction Cycle: Conformations of Different States 

 The reaction cycle (Fig.  9.4a ) can be describe in terms of two major conformational 
states, called E1 and E2, the former being the state with the highest affi nity for cal-
cium, while E2 has the lowest.  Large   conformational movements that explain the 

  Fig. 9.2    Detail of the two calcium- binding   sites (coordinates E1Mfi t). Ca 2+  ions are shown as  yel-
low spheres , solvent molecules as  red spheres . Only side or main chain atoms of SERCA residues 
coordinating calcium are shown. Distances of oxygen atoms range from 2.22 to 2.68 Å       
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different affi nities for calcium ions take place in the transition between the two 
states. These two states can be in turn subdivided in substates, characterized by 
minor conformational differences.

   The   E2  conformation, without   calcium or ATP bound, is considered the ground 
state of the pump. In it, the calcium-binding cavity is fi lled with water molecules 
and H +  ions that protonate carboxyl groups, in order to compensate for the absence 
of the four positive charges of the two Ca 2+ . The structure of the pump in the E2 
conformation is quite compact, with domains A, N, and P in contact (Fig.  9.4b ). 
This situation cannot last for long at pH 7, and protons present in the Ca 2+ -binding 
cavity are dissipated through the membrane. This event induces the binding of a 
Mg 2+  ion in the calcium-binding cavity and places the enzyme in the  E1 - Mg   2 +  state. 
The carboxyl groups present in the calcium-binding cavity are deprotonated, and 
the cavity assumes a high affi nity for Ca 2+ . Only when the  concentration   of Ca 2+  in 
the cytoplasm is low, the site with the highest affi nity for calcium is occupied by 
Mg 2+ . In the E1 conformation, the structure of SERCA is much less compact with 
respect to E2 state, and the calcium-binding cavity is accessible from the  cytoplasmic 
space. As soon as the calcium concentration in the cytoplasm rises, Ca 2+  binds to the 
calcium-binding cavity, displacing Mg 2+  and placing SERCA in the  E1·2Ca   2 +  state. 
The two Ca 2+  ions enter sequentially, Ca 2+  II after Ca 2+  I. The next step is the binding 
of ATP-Mg 2+ , which binds to the site in between domains N and P. The interactions 

  Fig. 9.3    The  ATP   analogue AMPPCP bound to the E1 state of SERCA (structure fi tE1AMPPCP). 
Only residue side chains in contract with the nucleotide are shown, and potential hydrogen bond 
interactions are indicated by  dashed lines . Most of the residues interacting with the nucleotide 
belong to domain N, while only the γ-phosphate is close to residues of domain P, Thr353, and 
Asp351. The latter, the residue that becomes phosphorylated, is  boxed        
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of ATP with the protein place it in a highly strained conformation and at the same 
time close the gate of the calcium-binding site, so that the two calcium ions are 
occluded inside the SERCA transmembrane domain. 

 The key event at this point is phosphorylation: the transfer of the γ phosphate to 
Asp351 triggers the transition from the  E1·2Ca   2 +  to the  E1P  state and, through a 
series of small interactions described in great detail in [ 27 ], the transition to the  E2P  
state. The latter involves a general  rearrangement   of the domains,    the largest being a 
rotation of about 90° of domain A. These movements make the overall structure of 
the pump much more compact, but at the same time they cause a drastic  rearrangement 
of the transmembrane helices, in particular M1 to M6, altering the geometry of the 

  Fig. 9.4    ( a )  Scheme   of the SERCA cycle. The scheme was adapted from Ref. [ 59 ]. ( b ) 
Representative structures of the SERCA cycle. The four domains N, A, P, and M are colored  yel-
low ,  cyan ,  dark green , and  orange , respectively. ATP or ADP is shown as  red spheres , Ca 2+  ions as 
 blue spheres . AlF 3  −  or BeF 3  − , mimicking the phosphate, as  magenta spheres        
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calcium-binding cavity and triggering the opening of luminal gate: the two calcium 
ions are released into the lumen. The opening of the gate allows H +  and water to 
enter the empty calcium-binding cavity and fi ll it. 

 The fi nal step of the cycle is represented by the hydrolysis of the phosphate 
from Asp351. A further rearrangement of domain A places a water molecule in a 
position where Glu183 can assist its attack to the aspartyl phosphate and catalyze 
its  hydrolysis, pushing the enzyme back into the  E2  ground state, where SERCA is 
ready to start a new cycle.  

4     SERCA Regulation; Binding of Phospholamban 
and Sarcolipin 

 Phospholamban (PLB), a  mediator   of the β-adrenergic signal in the heart [ 28 ], is a 
small protein, 52 amino acids long, consisting of a long hydrophobic helix and a 
small  cytoplasmic   domain. It is prevalently present in cardiac muscle, and it is 
believed to regulate the activity of SERCA in the heart [ 29 ]. Its counterpart in  striated 
skeletal muscle is represented by sarcolipin (SLN), another  small   regulatory 
  membrane   protein of 31 amino acids present in both fast-twitch skeletal and atrial 
cardiac muscles [ 30 ,  31 ]. Sarcolipin and phospholamban share 50 % identity in the 
transmembrane helix, and they both control the activity of the pump, since their bind-
ing to SERCA blocks or depress the transport of calcium. The β-adrenergic control 
regulates phosphorylation of PLB at Ser13 and/or Thr17. SLN is  phosphorylated at 
Thr in position 5. In both cases phosphorylation induces dissociation of the protein 
from the pump, releasing the inhibition. 

 Several modeling studies of the binding to SERCA of these two regulator 
 molecules have been produced [ 32 – 37 ], including molecular dynamics [ 38 ,  39 ] 
and time-resolved FRET [ 36 ], but only very recently the crystal structure of both 
complexes, SERCA/SLN [ 20 ,  21 ] and SERCA/PLB [ 32 ], have been determined. 
In all cases the ATPase used to produce crystals was SERCA1a from rabbit skeletal 
muscle, which probably is the natural target of sarcolipin, but not of phospholam-
ban, whose main target is the SERCA2 isoform, present mostly in the heart. 
Nevertheless, crystal structures clearly show that both sarcolipin  and   phospholam-
ban share the same binding site, in a grove defi ned by transmembrane helices M2, 
M6, and M9 (Fig.  9.5 ). In both sarcolipin complexes, the crystallized sample was 
extracted from the rabbit skeletal muscle, while the SERCA/PLB complex was 
prepared in vitro by mixing SERCA extracted from rabbit sarcoplasmic reticulum 
with recombinant PLB.

   Sarcolipin consists  of   a single continuous transmembrane helix, slightly curved, 
with few residues at both ends. It is associated with SERCA in a previously 
 undescribed E1 state, and the binding of SLN stabilizes this E1 state, deprived of 
bound calcium, and prevents the transition of SERCA to the E2 state. The cleft 
formed by M2, M6, and M9 helices where SLN is embedded becomes quite narrow 
in proximity of Thr5 of SLN, so that phosphorylation of Thr5 induces repulsion of 
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the bound SLN, with consequent dissociation of the complex and reactivation of the 
enzyme normal activity. 

 In the crystal structure of SERCA/PLB complex, only one transmembrane helix 
of PLB, residues from 21 to 49, and a  small   portion of a second one are visible in 
the electron density in the crystal, while the cytoplasmic domain is disordered and 
not visible. In the complex the pump is present in an E2-Ca 2+ -free conformation. 
The binding of PLB in between helices M4, M5, M6, and M8 of SERCA disrupts 
the two high-affi nity calcium-binding sites, stabilizing the E2 state of SERCA and 
blocking the transition from the E2 to the E1 conformation of the pump.  

5     SERCA from Other Species 

 The only known crystal structure of SERCA from species other than rabbit is that 
of the bovine enzyme, determined at 2.9 Å resolution in the E1 state [ 22 ]. The 
 structure, as expected from the similarity of the amino acid sequences between 
 rabbit and bovine enzymes (the two differ only for 22 amino acid positions and 
1 deletion), is very similar to that of the rabbit enzyme in the corresponding state, 
with a r.m.s.d. for the superposition of equivalent Cα atoms of 0.82 Å.  Structural 
  differences are confi ned to few loop regions, mostly in the luminal area where loops 
that connect transmembrane helices are often found fl exible (Fig.  9.6 ). Calcium-
binding and nucleotide-binding sites are structurally very well conserved, and this 

  Fig. 9.5     The   complex SERCA/sarcolipin ( left )  and   SERCA/phospholamban ( right ). Coordinates 
from 4H1W and 4KYT, respectively       

 

G. Zanotti



145

refl ects in a similar K 0.5  for Ca 2+  activation of the pump: the pCa has been measured 
in the range 6–6.6 for rabbit, bovine, and human enzymes [ 40 – 42 ]. Despite that, the 
bovine enzyme shows a catalytic activity, measured in isolated membranes, reduced 
of about 30 % with respect to the rabbit enzyme [ 22 ]. The most relevant structural 
differences are present in the long loop that connects α-helices M7 and M8. Since 
the transition from the E1 to the E2 conformational state perturbs the region of the 
intermembrane helices and involves the area that protrudes into the lumen, these 
structural differences could infl uence the transition E1 → E2, justifying the reduced 
catalytic activity.

   Another characterized SERCA-type pump is the enzyme from the gram-nega-
tive pathogen  Listeria monocytogenes , which exhibits a high sequence similarity 
with mammalian SERCA1a. Despite the absence of a crystal structure, the enzyme 
has been purifi ed and characterized in solution and  a   molecular model built by 
homology with the rabbit enzyme [ 43 ]. Despite the signifi cant similarity in the 
amino acid sequence and in the three-dimensional architecture, signifi cant 

  Fig. 9.6     Superposition   of 
Cα chain trace of bovine 
SERCA ( yellow , PDB ID 
3TLM) to rabbit SERCA 
( red , PDB ID 1T5S [ 9 ]). 
Both structures correspond 
to the E1 state       
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 differences can be detected in the bacterial enzyme, in particular the presence of 1 
Ca 2+ -binding site only, corresponding to site II of SERCAa1, and the transport of 
1 Ca 2+  and possibly 1H +  per ATP hydrolyzed.  

6     SERCA Inhibitors 

 SERCA, being an ATPase, can be fully inhibited in vitro by classical ATP analogues 
or by inhibitors that bind to the ATP-binding site. Since ATP binding is common to 
an extremely large number of enzymes, including all protein kinases, these classes 
of inhibitors are generally not specifi c  and   not useful as SERCA inhibitors in vivo. 
A different group of SERCA inhibitors is represented by ligands that bind preferen-
tially to one of the SERCA state and freeze the enzyme in that conformation, 
 blocking the cycle. 

 The most  characterized   and specifi c among these inhibitors is thapsigargin [ 44 ] 
(the structural formula of  thapsigargin   is reported in Fig.  9.7a ), a molecule that 
binds preferentially to the E2 conformation of the pump at a transmembrane 
site located at the protein-lipid interphase in between helices M3, M5, and M7 
(Fig.  9.7b ) [ 6 ,  11 ]. Several studies on the effects of thapsigargin on SERCA have 
been  performed [ 45 – 48 ], and various thapsigargin analogues have been proposed as 
SERCA pump inhibitors and tested [ 18 ].

7        Dynamical Studies 

  The picture of a protein molecule given by a crystal structure is a sort of “static” 
one, despite dynamical aspects can be derived by an accurate analysis of thermal 
parameters. In the case of SERCA, a protein that undergoes drastic conformational 
change during its pumping cycle, the  knowledge   of the structures of nearly all the 
possible states of the catalytic cycle gives a very clear picture of the dynamics of the 
cycle, in a sort of movie where we can observe only a limited number of photograms 
of some steps of the process. Molecular dynamics simulations can allow fi lling in 
the gap in between these steps. 

 Several molecular dynamics calculations have been performed, in order to mimic 
the movements of SERCA molecule during its catalytic cycle. Coarse-grained 
 simulations were able to reproduce the transitions from E2 to E1, in wild type and 
mutants, showing compensation of relative changes of enthalpy and entropy along 
the transition [ 49 ]. Another approach has used a full-atom dynamics, including lipid 
bilayer, water molecules, and ions to dissect the molecular events that trigger the 
transition from a conformation to another. A 500 ns molecular dynamics starting 
from the E1 conformation, with and without calcium, suggests that the presence of 
Ca 2+  and not of ATP is necessary for the activation of the transition from the open to 
the activated close conformation of the pump [ 50 ]. Another dynamics of E1 form in 
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the presence and absence of Mg 2+  bound, but in absence of Ca 2+ , suggests that the 
E1 state with Mg 2+  or K +  bound facilitates the E2 to E1·Ca 2+  transition [ 51 ]. Finally, 
principal components analysis has allowed to partition the SERCA structure into 
multiple catalytically distinct states and to dissect the role of single residues in the 
process of binding and release of calcium [ 52 ]. 

 Experimental dynamics data sometimes suggest a slightly different view of the 
 transition. A fast-scanning atomic force microscopy study has analyzed the behavior of 
single SERCA molecules contained in SR vesicles immobilized on a mica  surface [ 53 ]. 

  Fig. 9.7    ( a )  Thapsigargin   chemical formula. ( b ) Detail of the transmembrane helices region with 
thapsigargin bound. The model corresponds to the E2 state of the pump. Coordinates from PDB ID 
1XP5 [ 11 ]       
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Results are quite puzzling and contrasting in different experimental conditions: at 10 
nM ATP and 100 μM Ca 2+  concentration, shape changes of SERCA can be interpreted 
as corresponding to the conformations observed during the ATP- mediated cycle, while 
at more physiological conditions (1.0 mM ATP and 100 μM Ca 2+ ), the more compact 
conformation was not observed, at least with the time resolution of 50 μs. 

 Dynamics of phospholamban has also been investigated by NMR, either alone 
[ 54 – 57 ] or in complex with SERCA [ 58 ].   

8     Conclusions 

 Thanks to a large mass of structural data, possibly unparalleled among membrane 
proteins, the mechanism of transport of calcium ions by the Ca 2+  ATPase of the 
sarco-/endoplasmic reticulum has been dissected at atomic level in great details. 
Using a technique, protein crystallography, that gives essentially static images, we 
have now a complete picture of a complex dynamical phenomenon. This is particu-
larly relevant in this case, where the subject is not a water-soluble, small protein, but 
a large and complex membrane protein. Nevertheless, several questions on SERCA 
are still open. All the studies were performed on SERCA1a, and since the other (iso)
forms differ for a very limited numbers of residues, it is reasonable to assume that 
the general mechanism proposed is valid for all of them. Nevertheless, since three 
forms of SERCA, each of them with several isoforms, are present in the different 
tissues, they must have their own specifi city and functionality. Another aspect not at 
well studied is the effect of the membrane environment, and on environment in 
general, on the pump functionality. Possibly the different phospholipid, and other 
molecules, composition of the membrane affects the effi ciency and the behavior of 
the enzyme. Finally, control mechanisms of the pump in different organs are prob-
ably also different. All these aspects require studies in vivo that can be performed 
only on animal models. More in general, the reductionist approach of molecular and 
structural biology is fundamental to the understanding of the general aspects of 
molecular mechanisms, but these studies must be coupled to others, at cellular and 
tissue level, where molecules works in a complex environment, in contact with a 
large number of other molecules that may infl uence activities and performances.     
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    Chapter 10   
 Functional and Structural Insights into 
Sarcolipin, a Regulator of the Sarco- 
Endoplasmic Reticulum Ca 2+ -ATPases                     

       Thomas     Barbot    ,     Cédric     Montigny    ,     Paulette     Decottignies    ,     Marc     le     Maire    , 
    Christine     Jaxel    ,     Nadège     Jamin    , and     Veronica     Beswick    

    Abstract     Sarcolipin (SLN), a transmembrane peptide from sarcoplasmic reticulum, 
is one of the major proteins involved in the muscle contraction/relaxation process. 
A number of enzymological studies have underlined its regulatory role in connection 
with the SERCA1a activity. Indeed, SLN folds as a unique transmembrane helix 
and binds to SERCA1a in a groove close to transmembrane helices M2, M6, and M9, 
as proposed initially by cross-linking experiments and recently detailed in the 3D 
structures of the SLN–Ca 2+ -ATPase complex. In addition, association of SLN with 
SERCAs may depend on its phosphorylation. SLN possesses a peculiar C-terminus 
(RSYQY) critical for the regulation of the ATPases. This luminal tail appears to be 
essential for addressing SLN to the ER membrane. Moreover, we recently demon-
strated that some SLN isoforms are acylated on cysteine 9, a feature which remained 
unnoticed so far even in the recent crystal structures of the SLN–SERCA1a complex. 
The removal of the fatty acid chain was shown to increase the activity of the mem-
brane-embedded Ca 2+ -ATPase by about 20 %. The exact functional and structural 
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role of this post-translational modifi cation is presently unknown. Recent data are in 
favor of a key regulator role of SLN in muscle-based thermogenesis in mammals. 
The possible link of SLN to heat production could occur through an uncoupling of 
the SERCA1a-mediated ATP hydrolysis from calcium transport. Considering those 
particular features and the fact that SLN is not expressed at the same level in differ-
ent tissues, the role of SLN and its exact mechanism of regulation remain sources 
of interrogation.  

  Keywords     Sarcolipin   •   Calcium ATPase   •   NMR   •   X-Ray crystallography   
•   Molecular dynamics   •   Phosphorylation   •   Protein acylation   •   Oligomerization   
•   Regulatory peptides   •   Membrane protein  

  Abbreviations 

   SRER    Sarco-endoplasmic reticulumEndoplasmic reticulum   
  ER    Endoplasmic reticulum   
  SERCA1a or 2a    Sarco-Endoplasmic Reticulum Ca 2+ -ATPase isoform 1a or 2a   
  SLN    Sarcolipin   
  hSLN    Human isoform of SLN   
  rSLN    Rabbit isoform of SLN   
  mSLN    Mouse isoform of SLN   
  PLN    Phospholamban   
  DDM     n -Dodecyl-β- D -maltopyranoside   
  C 12 E 8     Octaethylene glycol monododecyl ether   
  DOC    Deoxycholate   
  SDS    Sodium dodecyl sulfate   
  DPC     n -Dodecylphosphocholine or Fos-choline-12   
  SEC    Size exclusion chromatography   
  MS    Mass spectrometry   
  MALDI-TOF    Matrix-assisted laser desorption ionization—time of fl ight   
  NMR    Nuclear magnetic resonance   
  ssNMR    Solid state nuclear magnetic resonance   
  MD    Molecular dynamics   
  POPC    1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine   
  DOPC    1,2-Dioleoyl-sn-glycero-3-phosphocholine   
  DOPE    1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine   
  EYPC    Egg yolk phosphatidylcholine   
  EYPA    Egg yolk phosphatic acid   
  RyR    Ryanodine Receptor   
  FCCP    Carbonyl cyanide-p-trifl uoromethoxyphenylhydrazone   
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1           Introduction 

  Sarcolipin   is a transmembrane peptide (SLN, 31 amino acids) [ 1 ] which was 
fi rst isolated from rabbit fast-twitch skeletal muscle during the extraction of 
sarco- endoplasmic reticulum (SR) membranes [ 2 ]. Purifi cation and solubility 
analysis of SLN revealed strong interactions with lipids and the presence of 
fatty acids. Therefore, considering its amino acid sequence similarity with phos-
pholamban (PLN), a Ca 2+ -ATPase regulatory peptide, it was suggested that SLN 
interacts both with lipids and the sarco-endoplasmic reticulum Ca 2+ -ATPase 
(SERCA1a) [ 3 ,  4 ]. 

 The main role of SERCAs is to control cytosolic calcium by maintaining SR/ER 
calcium stores in cells. Calcium is the primary regulator of  the   contractile machin-
ery and a second messenger in the signal transduction pathways that control, e.g. 
muscle growth, metabolism, and pathological remodeling. Upon muscle stimula-
tion, Ca 2+  release by the ryanodine receptor (RyR) localized at the SR membrane 
transiently increases Ca 2+  level in the cytosol, triggering actomyosin cross-bridge 
formation within the sarcomere to generate contractile force. Re-uptake of Ca 2+  into 
the SR by SERCAs is necessary for muscle relaxation and restores the Ca 2+  level for 
subsequent contraction–relaxation cycles. Several SERCA isoforms have been 
described with different expression profi les depending on the species, tissues, and 
even the developmental stage. SERCA1a and SERCA2a isoforms are predominant, 
and are mainly expressed in the fast-twitch muscle and in the slow-twitch muscle, 
respectively [ 5 ] (Table  10.1  and references herein).

   The main steps of the calcium transport cycle are well understood (Fig.  10.1 ). 
However, its regulation and especially, the exact role of sarcolipin are still a 
matter of debate as reviewed below. As a matter of fact, SLN is one of known 
regulators of SERCA activity  in   vertebrates as well as phospholamban (PLN, 52 
amino acids; [ 6 ]) and most probably myoregulin (MLN, 46 amino acids; [ 7 ]) 
(Fig.  10.2 ). Contrary to SLN and MLN, PLN has been extensively characterized 
during the last two decades. In invertebrate, an ortholog of these proteins has 
also been discovered recently and is named sarcolamban (SCL, 28 amino acids; 
[ 7 ,  8 ]).

    In order to contribute to a better understanding of the specifi c regulator role of 
SLN upon SERCA activities, we propose, in this review,  some   critical readings of 
the published data as well as some additional data. First, SLN gene characteriza-
tion, its localization in species and tissues and its differential expression during 
muscle development are presented. Secondly, SLN implications in diseases and 
thermogenesis are discussed. Then, structural and functional data, including the 
role of particular amino acid sequence features (phosphorylation, luminal tail, acyl-
ation) are reviewed to give a general and new outlook on the topic. Finally, the 
hypothesis of SLN oligomer formation and SLN interaction with PLN are 
considered.  
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2     Sarcolipin Gene Characterization 

 In human, SLN gene is mapped to chromosome 11q22-q23 [ 4 ]. SLN gene (5.6 kb) 
has two small exons, with the entire coding sequence lying in exon 2 and a large 
intron (3.9 kb) separating the two segments. Several box  elements   upstream of the 
transcription initiation site may correspond to DNA binding sites for transcriptional 
activators such as (a) the binding site for the myocyte enhancer factor MEF2 in 
combination with MEF3-like element involved in muscle-specifi c induction of the 
aldolase A gene, and (b) the E box-paired sites for MyoD bound in the muscle cre-
atine kinase enhancer [ 9 ] and in the acetylcholine receptor α-subunit enhancer [ 10 ]. 
Thus, these DNA binding elements might be responsible for the muscle-specifi c 
expression of the SLN gene. The 3′ end of the gene contains multiple polyadenyl-
ation signals and two transcripts may be produced, one being preferential. 

  Fig. 10.1    Ca 2+ -ATPase  catalytic   cycle. Sarcoplasmic reticulum calcium ATPases catalyze calcium 
transport from the cytosol to the lumen, coupled with ATP hydrolysis. The main steps of the cata-
lytic cycle are shown here. At physiological pH, two cytoplasmic calcium ions bind to the “E1” 
high-affi nity states. Binding of one Mg.ATP triggers calcium occlusion and it results in autophos-
phorylation of the ATPase (“Ca 2 .E1~P” occluded state). Then, large conformational changes 
occur, leading to the calcium deocclusion, the release of the calcium into the lumen, and proton-
ation of the transport sites. The Ca 2+ -free “E2-P” state is fi nally hydrolyzed to the “E2” ground 
state       

  Fig. 10.2    Transmembrane  peptides   that putatively interact with SERCAs. Alignment of human 
sarcolipin (hSLN), human phospholamban (hPLN), human myoregulin (hMLN), and their inver-
tebrate ortholog  Drosophila melanogaster  sarcolamban (dSCL). Sequences were aligned with the 
SEAVIEW program [ 100 ].  Boxed  residues are expected to match with the hydrophobic part of the 
lipid bilayer. Identical residues are indicated by a  star  and similar residues are  dotted        
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Comparison of human, rabbit, and mouse SLN cDNAs revealed 84 % nucleotide 
sequence identity between human and rabbit, 44 % nucleotide sequence identity 
between human and mouse, and 41 % sequence identity between mouse and rabbit 
SLN cDNAs. The  higher   level of nucleotide sequence identity between human and 
rabbit SLN cDNAs is refl ected in their identical length and in their use of the same 
polyadenylation signal sequence for the major transcript. This polyadenylation site 
is lacking in the mouse SLN gene, which contains another consensus polyadenyl-
ation signal sequence downstream. Thus, the mouse cDNA is longer. In terms of 
translation, nucleotides including the translation initiation signal sequence [ 11 ] are 
not well conserved among the three species [ 4 ]. 

 The two other membrane peptides, PLN and MLN, have a similar gene organiza-
tion. As a matter of fact, the human PLN gene, as the SLN gene, contains two exons 
and one large intron (6 kb), the entire coding sequence being located in exon 2. The 
3′ end of the PLN gene also contains multiple polyadenylation signals. Recent 
genome-wide studies  have   suggested that hundreds of functional peptides may be 
also encoded in vertebrate long noncoding RNAs (lncRNAs) notably in humans and 
mice. While analyzing the evolutionary conservation of lncRNA, Anderson et al. 
recently identifi ed an annotated skeletal muscle-specifi c lncRNA and a short 138 
nucleotides ORF with the potential to encode a highly conserved 46 amino acid 
peptide, myoregulin (MLN) [ 7 ]. The human and mouse MLN genes consist of three 
exons that span 16.5 kb and 15 kb, respectively,  with   the ORF located in exon 3. 
MLN, the skeletal muscle-specifi c isoforms of SERCA and the Ryanodine receptor 
(RyR) are co-regulated by MyoD, suggesting that they comprise a core genetic mod-
ule important for Ca 2+  handling in skeletal muscle. Analysis of the 5′ fl anking region 
of the MLN gene revealed highly conserved binding sites for the myogenic tran-
scription factors MyoD (E-box) and MEF2. Thus, the MLN gene is a direct target of 
the transcription factors that activate skeletal myogenesis as the SLN gene [ 7 ,  9 ].  

3     Expression of Sarcolipin in Species and Tissues 

3.1     Expression of mRNA Encoding Sarcolipin 

  In order to describe SLN expression at the mRNA level, Odermatt et al. have per-
formed Northern blots analyses  by   using a human probe against the 3′ untranslated 
region of the cDNA [ 4 ]. Using this method, no expression of SLN was found in 
various human tissues such as brain, placenta, lung, liver, kidney, uterus, colon, 
small intestine, bladder, and stomach. Only trace amounts were detected in prostate 
and pancreas. Yet, the SLN transcript was highly expressed in skeletal muscle at 
least 50-fold more abundant than in heart muscle. By using a similar rabbit probe, a 
ninefold higher level of the SLN transcript was found in rabbit fast-twitch skeletal 
muscle ( psoas ) than in slow-twitch skeletal muscle ( soleus ). 

 SLN expression at the mRNA level and in various species was more recently 
determined by RT-PCR experiments. Vangheluwe et al. have shown a difference of 
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SLN mRNA level in small mammals (mouse and rat) as compared to large mammals 
(rabbit and pig) [ 12 ]. Indeed, SLN mRNA was found in  atria  for rodents, while it 
was detected in  atria ,  soleus  and  extensor digitorum longus  (EDL) for rabbit, and at 
very high level in  soleus  and EDL for pig. By comparison, PLN mRNA was detected 
at very high level in ventricles for rodents and rabbit (at lower level for pig), in  atria  
for all the species and also in  soleus  for rabbit. In terms of SERCA1a and SERCA2a 
mRNA, SERCA2a is the only isoform found in heart (ventricle and  atria ) for all 
studied species, SERCA2a is more expressed than SERCA1a in  soleus  for all the 
species, and SERCA1a is largely the major form in EDL for all the species except 
for pig (where SERCA2a is more abundant than SERCA1a) (see Table  10.1 ). 

 The SLN expression was also studied at the protein level. To perform such stud-
ies, the authors have generated an antibody targeted to a peptide corresponding to 
the N-terminal sequence (12 residues) of mouse SLN [ 12 ]. This antibody reacts to 
mouse SLN as expected but the authors noticed that this antibody could also cross- 
react with PLN and, has a very low affi nity for rabbit and pig SLN, probably due to 
sequence diversity at the N-terminus of SLN between small and larger mammals. 
Consequently, the use of this antibody was restricted to rodents (see Fig.  10.3a  for 
sequences). Western blot analyses of SLN abundance confi rmed the expression of 
SLN in  atria  for rodents. Using a highly specifi c antibody, targeting the C-terminal 
sequence (6 residues) of SLN which is conserved among most of the species (see 
below), Babu et al. have shown that SLN is more abundant in rodent  atria  (mouse, 
rat) than in  atria  of larger mammals (rabbit, dog) [ 13 ]. In rodents’  atria  and ven-
tricles, the high levels of expression of SLN and SERCA2a are correlated, whereas 
in rabbit and dog, SLN is predominantly expressed in muscle tissues although 
SERCA2a expression is moderate (see Table  10.1 ). Recently, SLN was found in 
human  vastus lateralis  skeletal muscle only in the presence of SERCA1a and, in 
fast-twitch muscle fi bers while PLN is expressed in fast-twitch and slow-twitch 
fi bers, with a preference for slow-twitch fi bers, where SERCA2a is predominant 
[ 14 ] (see Table  10.1 ). 

3.2        Differential Expression of Sarcolipin during Muscle 
Development 

 Babu et al. have studied whether SLN expression may be developmentally regulated 
[ 13 ]. The authors analyzed the temporal pattern of SLN expression in rat  atria , 
ventricle, quadriceps, and tongue during embryonic and neonatal development. 
SLN was detected in the  atria  and its expression level increases throughout develop-
ment, whereas in the ventricle, its expression level was below detection. At the same 
development stage, PLN was detected only in heart tissues and the expression level 
was higher in the ventricles. During  embryonic   development, the fast-twitch muscle 
undergoes several transitions from slow- to fast-twitch fi bers. Thus, in rat fast-twitch 
skeletal muscles as the quadriceps muscles, SLN and SERCA2a are expressed at 
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high levels throughout embryonic development. After birth, SLN and SERCA2a 
protein levels decline and disappear after 21 days. In contrast, SERCA1a expression 
increases and SERCA1a becomes the predominant SERCA isoform in the adult. In 
parallel, during mouse embryogenesis, MLN might be expressed in the precursors 
of skeletal muscle as estimated from the mRNA levels (using northern-blot analysis 
with a probe specifi c to the full-length MLN transcript). During fœtal and adult 
stages, MLN mRNA is found in all skeletal muscles, similarly to the expression pat-
tern of SERCA1a, and is not detected in cardiac or smooth muscles [ 7 ].   

  Fig. 10.3    Sarcolipin. ( a ) The alignment of selected sequences was obtained with the SEAVIEW 
program [ 100 ]. Serine 4 and Threonine 5 were identifi ed as putative phosphorylation sites for Ca 2+ -
calmodulin-dependent kinases or STK16 kinases ( black stars,  [ 32 ,  33 ]). In rabbit and pig, cysteine 
9 is constitutively acylated ( white star , [ 31 ]). The region of SLN predicted to match with the 
hydrophobic part of the lipid bilayer is  underlined . ( b ) A sequence logo [ 101 ,  102 ] was obtained 
from the alignment of 110 sarcolipin sequences (for detailed procedure, see [ 31 ]). Color code for 
panels  a  and  b  is the following: acidic residues in  red , basic residues in  blue , cysteine in  yellow , Q 
and N in  pink , other polar residues and glycine in  green , and  black  for hydrophobic residues. The 
 height of the letters  corresponds to the relative frequency of each amino acid at a given position. 
( c )  left , defi nition of the tilt and azimuthal angles;  middle , hSLN helical structure and its orienta-
tion within the bilayer, with the N-terminus pointing in the cytosol and the C-terminus pointing in 
the lumen;  right , hSLN helix viewed from the luminal side of the membrane [ 39 ]. Only the resi-
dues of the helix side oriented toward the lumen are depicted. For the sake of clarity, only α and β 
carbons are represented by  small black spheres  on  right panel        
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4     Sarcolipin in Health and Diseases 

 As human SLN  is   highly expressed in  atria  and mediates β-adrenergic responses, its 
involvement in various heart diseases has been investigated. Both at mRNA and 
protein levels, SLN expression has been shown to be altered in the atrial myocar-
dium disease [ 15 ] so SLN is proposed to be a key regulator of cardiac SERCAs. 
SLN mRNA levels are decreased in  atria  of patients with chronic atrial fi brillation 
(AF). SLN protein expression level is also signifi cantly decreased both in patients 
with atrial fi brillation (AF) and in those with heart failure (HF). Although PLN 
protein level is not altered, PLN phosphorylation is  signifi cantly   decreased in the 
atrial tissues of patients with AF and HF compared to control patients. The Ca 2+  
sensitivity as well as the  V  max  of SR Ca 2+  uptake is signifi cantly increased in human 
 atria  from AF patients [ 16 ]. In children with congenital heart defects (tetralogy of 
Fallot), at the mRNA level, SLN and PLN expressions were decreased relatively to 
SERCA2a and RyR2 expressions [ 17 ]. 

 In large mammals and human, SLN is also highly expressed in fast-twitch mus-
cle fi bers associated with SERCA1a. Thus, diseases related to muscle dysfunctions 
have been studied. The Brody disease is an inherited disorder of skeletal muscle 
 function   characterized by exercise-induced impairment of muscle relaxation. 
Studies of the sarcoplasmic reticulum from Brody patients have shown a decrease 
of the Ca 2+  uptake and the Ca 2+ -dependent ATP hydrolysis. As a matter of fact, 
SERCA1a activity was reduced by 50 % even if the SERCA1a content was reported 
to be normal in all patients. Mutations in the  ATP2A1  gene encoding SERCA1a 
have been associated with the Brody disease in some families (called Brody disease 
with  ATP2A1  mutations), but not in other families (called Brody syndrome without 
 ATP2A1  mutations) [ 18 ]. As SLN interacts with SERCA1a, it was proposed that 
SLN gene could be altered in Brody disease, because a mutation of SLN could 
increase inhibition of SERCA1a function. However, no alteration in coding, splice 
junctions or promoter sequences was found in the SLN gene [ 4 ]. 

 The SERCAs and more recently SLN have been proposed to play a key role in 
non-shivering thermogenesis (reviewed in [ 19 ,  20 ]). Animals lacking brown adi-
pose tissues produce heat from ATP hydrolysis  to   maintain their body temperature 
[ 19 ,  21 ]. Moreover, regulation of thermogenesis is critical for cold acclimation [ 19 ]. 
There are functional similarities in the use of the skeletal muscle for thermogenesis 
across several animals, like fi shes, birds, and mammals [ 19 ]. De Meis et al. sug-
gested that part of the energy released from the hydrolysis of ATP at the SR, i.e. by 
the Ca 2+ -ATPase, could be dissipated as heat, while the other part of the energy 
would be used to drive the transport of calcium ions through the membrane [ 22 ]. As 
suggested by de Meis et al. this process could involve the release of calcium from 
the Ca 2 .E 2 -P state in the cytosol instead of in the lumen, yielding a futile hydrolysis 
of ATP since all the energy would be dissipated as heat. This phenomenon was 
named slippage or uncoupling [ 23 – 25 ]. Interestingly, the rate of slippage is affected 
by the presence of sarcolipin. SLN when co-reconstituted with SERCA1a, increases 
the rate of uncoupling, resulting in an increase of the heat production whereas the 
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accumulation of calcium decreases [ 20 ]. Using isothermal calorimetry, it was shown 
that the amount of heat production is maximal at a SLN:SERCA1a 15:1 mol:mol 
ratio [ 26 ]. As reported in Table  10.1 , the SLN content of SR depends on the muscle 
type. Therefore, SLN expression level could vary with the involvement of a given 
muscle in thermogenesis. This hypothesis gave rise to several studies in order to 
demonstrate the specifi c in vivo role of SLN in thermogenesis [ 27 ]. Recently, SLN 
was shown to have a protective role against hypothermia and obesity induced by 
high fat diet using a knock-out mouse model [ 28 ,  29 ]. As a matter of fact, it is sug-
gested that this protective role results from an increase in the uncoupling of the 
SERCA1a, but also that the ryanodine receptor 1 Ca 2+  channel may play a role in 
thermogenesis [ 28 ,  30 ].  

5     Structure of Sarcolipin 

5.1     Primary Structure 

 Sarcolipin possesses 31 residues and is composed of three regions (Fig.  10.3a ). For 
most of the species, the N-terminus (1–7) is rich in polar and charged residues as 
illustrated by Fig.  10.3b . For some species ([ 31 ], see also Fig.  10.3b ),  several 
  charged residues are replaced by neutral or hydrophobic residues, for example 
 1 MERST for rabbit is replaced by  1 MGINT for human. The N-terminus, oriented 
toward the cytosol [ 3 ], contains potential phosphorylation sites (Ser4 and Thr5) [ 32 , 
 33 ]. On the contrary to the N-terminus, the C-terminus amino acid sequence, 
 27 RSYQY, is highly conserved. The central region, from Leu8 to Val26, is mainly 
composed of hydrophobic residues and possesses, in some species, a cysteine at 
position 9 that was recently shown to be acylated ([ 31 ], see below).  

5.2     3D Structure of Isolated Human Sarcolipin 

 Human sarcolipin structure, at atomic resolution, has been extensively studied by 
solution and solid-state NMR spectroscopies. Solution NMR spectroscopy is per-
formed on membrane proteins solubilized in detergent micelles. This technique is 
limited to small membrane proteins due to the large size of protein-detergent com-
plexes and to  the   internal dynamics of membrane protein within the complex. NMR 
data yield spatial information, such as range of distances between atoms, which is 
then applied as experimental constraint during molecular modeling. A set of 3D 
structures compatible with the NMR data is fi nally obtained. Solid-state NMR 
(ssNMR) allows the study of membrane proteins in lipid  environments   such as lipid 
vesicles or oriented bilayer systems. ssNMR provides information on the secondary 
structure adopted by the protein and on the orientation of the helices inside the 
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bilayer (tilt angle of the helix relative to the direction of the magnetic fi eld and the 
rotation angle around the helix axis, i.e. azimuthal angle, Fig.  10.3c ). It can also 
give high-resolution information on the side-chain conformations [ 34 ,  35 ]. 

 The solution and ssNMR experiments performed on hSLN solubilized in SDS 
[ 36 ] or DPC [ 37 ,  38 ] micelles  as   well as embedded in DOPC/DOPE bilayers [ 39 ] 
have revealed that hSLN folds as a unique transmembrane helix. The protein adopts 
a helical structure from residue Glu7 to Arg27 when solubilized in DPC micelles 
but extends  up   to residue Ile3 when embedded in a lipid bilayer. This later result is 
in agreement with results from molecular dynamics (MD) simulations performed on 
hSLN inserted in a pure DOPC bilayer [ 40 ]. It is noteworthy that the sole structure 
of human SLN found in the PDB (PDB ID: 1jdm) comes from the oldest data 
obtained by solution NMR experiments performed on hSLN solubilized in the pres-
ence of SDS and are consistent with a shorter α-helix structure defi ned from residue 
Phe9 to residue Arg27 [ 36 ]. The somewhat shorter helical structure observed in the 
presence of SDS demonstrates the infl uence of the nature of the detergent head-
group, used to solubilize the protein, on the structure of the N-terminus of hSLN. The 
transmembrane domain of hSLN solubilized in the presence of DPC encompasses a 
fl exible helix up to residue Ile14 and a more rigid ideal alpha-helix from residue 
Val15 to residue Arg27 [ 37 ,  38 ]. MD simulation of hSLN in DOPC bilayer confi rms 
the presence of these two different helical fl exible regions, responsible for a curved 
structure [ 40 ]. However, Veglia and co-workers have recently proposed that hSLN 
adopts a helical conformation closer to an ideal helix for the whole sequence from 
Ile3 to Arg27 when applying solid-state NMR  experimental   restrained in their simu-
lations [ 41 ]. Besides, ssNMR showed that hSLN helix is tilted with respect to the 
membrane normal. In DOPC/DOPE lipid mixture, the tilt angle is 23 ± 2° [ 39 ,  42 ] 
in good agreement with the value derived from MD simulations of hSLN in DOPC 
bilayers which is 28 ± 6° [ 40 ] and also with the value obtained by solid-state NMR 
of hSLN in pure DOPC bilayer [ 43 ]. Moreover, experiments and MD simulations 
have revealed that the residues Leu8, Val15, Leu16, Val19, and Val26 located on the 
same side of the tilted helix point toward the lumen [ 39 ,  40 ] (Fig.  10.3c ). This tilt 
and this azimuthal position of the helix are driven by the N- and C-terminal residues 
which undergo specifi c interactions with the lipid membrane at the water/lipid inter-
faces. As a matter of fact, MD simulation showed that the N-terminal residues Met1 
and Ile3 are located outside the cytosolic interface, the polar residue Thr5, a putative 
phosphorylation site of SLN [ 32 ,  33 ], interacts with the lipid headgroups as well as 
Arg6 which forms a salt bridge with the lipid headgroups. On the luminal interface, 
both C-terminal residues Tyr 29 and Tyr31 interact with lipids via cation–π interac-
tions between the aromatic rings and the lipid choline groups. Arg27 also forms a 
salt bridge with the lipid headgroups. Moreover, as expected, hydrophobic amino 
acids are located within the hydrophobic core of the membrane bilayer. The two 
hydrophilic residues, Thr13 and Thr18, distributed in the center of the lipid bilayer, 
have their polar hydroxyl groups hydrogen bonded with the backbone carbonyl 
groups of Phe9 and Ile14, respectively [ 40 ].   
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6     SLN Affects Moderately the Affi nity for Ca 2+  and the  V  max  
of SERCA 

  The possible role of sarcolipin on SERCA isoforms turnover was investigated in 
various experimental models. One widespread model since the discovery of sarco-
lipin involves the heterologous expression of SLN and SERCA isoforms in HEK- 
293 cells [ 3 ]. Cells are simultaneously  transfected   with several genes coding 
regulatory peptides like SLN or PLN and a SERCA isoform (SERCA1a or 2a). 
These cell lines, derived from Human Embryonic Kidney cells (HEK cells) [ 44 ] do 
not appear to express endogenously SLN, PLN, SERCA1a and SERCA2a, and are 
thus good models to assess the role of SLN on SERCA isoforms. Nevertheless, the 
presence of partners playing a regulatory role is unknown (e.g. RyR, kinases). The 
coding sequences were inserted in a pMT2 expression vector, under the control of a 
SV40 strong constitutive promoter, one obvious drawback is the uncontrolled 
expression level of the different proteins. This lack of control of the protein expres-
sion levels of each partner could explain some discrepancies within the published 
results. MacLennan et al. fi rst showed that co-expression of rabbit SLN with rabbit 
SERCA1a in HEK-293 cells results in a moderate decrease in the affi nity for cal-
cium (Ca 1/2  rises from 0.3 to 0.5 μM in absence or in presence of sarcolipin, respec-
tively) combined with a huge increase in the  V  max  of about 40 % at micromolar, i.e. 
saturating, concentrations of calcium [ 3 ]. Surprisingly, the same group showed 
some years later that co-expression in HEK-293 cells of SERCA1a or SERCA2a in 
presence of SLN resulted in a slight decrease of about 5–10 % of the  V  max  which is 
far from the initial results [ 45 – 47 ]. However, the authors confi rmed that the pres-
ence of SLN induces a moderate but reliable decrease in Ca 1/2  for the two isoforms 
(0.20 and 0.33 μM for SERCA1a, and 0.13 and 0.37 μM for SERCA2a, in the 
absence and in the presence of SLN, respectively) [ 45 – 47 ]. As mentioned, the stoi-
chiometry is not tightly controlled during co-expression and this could explain the 
discrepancies of the results obtained for such heterologous expression systems. 

 Interestingly, Hughes et al. studied the stoichiometry of the interaction between 
sarcolipin and SERCA isoforms using rabbit SERCA1a prepared from native sarco- 
endoplasmic reticulum membranes and a synthetic rabbit SLN co-reconstituted in 
DOPC bilayers [ 43 ,  48 ]. The authors demonstrated that a 10:1 (SLN:SERCA1a) 
molar ratio is necessary to observe a moderate decrease in calcium affi nity and in 
 V  max  (Ca 1/2  rises from 0.2 to 0.5 μM and  V  max  decreases from 1.5 to 1.2 μmol hydro-
lyzed ATP.mg −1  min −1 , in absence or in presence of SLN respectively). A 3:1 molar 
ratio has no effect on SERCA1a turnover. This observation was confi rmed in similar 
studies using a value of the SLN:SERCA1a molar ratio after co-reconstitution in 
EYPC/EYPA bilayers of about 1:1 to 4.5:1 [ 49 ,  50 ]. At low molar ratio, no effect on 
 V  max  was found whereas  V  max  decreased by 20 % at the highest molar ratio. A moder-
ate decrease in calcium affi nity (Ca 1/2  rises from 0.4, in absence of SLN, to 0.8 μM, 
in presence of SLN) was found. Moreover, the presence of endogenous SLN (or 
PLN) in the samples must be considered as it could affect the stoichiometry. As a 
matter of fact, native sarco-endoplasmic reticulum membranes prepared from rabbit 
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fast-twitch skeletal muscle already contains endogenous sarcolipin that could reach 
about 1:1 SLN:SERCA1a mol:mol [ 3 ]. We recently demonstrated that most of the 
sarcolipin remains associated with SERCA1a even after treating the membranes 
with deoxycholate ( DOC-extracted SR ) and also even after membrane solubiliza-
tion by mild detergent [ 31 ]. Size exclusion chromatography purifi cation of the 
DDM-solubilized SR shows that the SLN is mainly co-eluted with SERCA1a at 
about a 1:1 mol:mol ratio. Some SLN is also detected in the mixed micelles peak 
suggesting that in the SR membrane, the SLN to SERCA1a ratio is higher than 1:1 
mol:mol [ 31 ]. Therefore, it is suggested that the results presented above based on 
co-reconstitution experiments were obtained in presence of misestimated amount of 
SLN [ 49 ,  50 ,  43 ,  48 ,  31 ]. For example, the lack of effect observed at low molar ratio 
(proposed to be 1:1 SLN:SERCA1a) is not surprising as it is probably related to a 
molar ratio higher than 2:1 considering the endogenous SLN content. This point 
appears to be critical for the interpretation of mutagenesis experiments as both wild- 
type and mutated SLN are present [ 50 ]. In addition, as reported in Table  10.2 , some 
experiments were performed with SERCA and SLN isoforms from different species 
and sometimes within the same experiment. But, as mentioned previously, the 
amino acid sequences of SLN differ among species especially the N-terminus 
(Fig.  10.3a, b ) [ 14 ,  3 ,  12 ]. For example, human SLN reconstituted in presence of 
rabbit SERCA1a has a lower inhibitory effect than rabbit SLN [ 38 ,  49 ,  50 ]. In the 
case of rabbit SLN overexpressed in presence of rat SERCA1a or SERCA2a in rat 

   Table 10.2    Ca 1/   2   and  V  max  estimates in several selected references   

 SLN  a   SERCA  a  

 Systems used  b  and 
SLN:SERCA molar 
ratio  c  

 Ca 1/2  (μM)  d  

  V  max  e  (% of 
SERCA alone)  References 

 No 
SLN 

 + 
SLN 

 rSLN  rSERCA1a  HEK-293 cells  0.3  0.5  143  [ 3 ] 
 rSLN  rSERCA1a  HEK-293 cells  0.2  0.33  95  [ 45 ,  47 ] 
 rSLN  rSERCA2a  HEK-293 cells  0.13  0.37  90  [ 45 ,  47 ] 
 rSLN  rSERCA1a  DOPC bilayers (10:1)  0.2  0.5  80  [ 43 ,  48 ] 
 hSLN  DOC-extracted 

rSERCA1a 
 EYPC-EYPA bilayers 
(4.5:1) 

 0.4  0.6  80  [ 49 ] 

 rSLN  DOC-extracted 
rSERCA1a 

 EYPC-EYPA bilayers 
(4.5:1) 

 0.4  0.8  70  [ 50 ] 

 hSLN  rSERCA1a  DPC micelles  0.25  0.5  100  [ 38 ] 
 rSLN  rat SERCA1a  Slow-twitch 

myocytes 
 0.4  0.4  70  [ 51 ] 

   a “r” referred to rabbit isoforms, “h” to human isoform 
  b HEK-293 cells and myocytes were used for co-expression and possible microsomes preparation. 
DOPC or EYPC-EYPA bilayers were obtained from co-reconstitution of SR from native sources 
with recombinant or synthetic SLN 
  c Molar ratio does not take into account the possible presence of endogenous SLN 
  d Ca 1/2  corresponds to the amount of calcium necessary to attain half-maximal activity (calcium 
uptake or turn-over depending on the system used) 

  e Unfortunately, values of  V  max  in μmol.mg −1 .min −1  were not available  
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myocytes (which are deprived in endogenous SLN) no effect on affi nity was 
detected but a signifi cant decrease of about 30 % in calcium uptake and a reduced 
contractility were observed [ 51 ].

   To put it in a nutshell, stoichiometry appears to be one of the critical points to 
assess diligently the effect of SLN on the SERCA1a catalysis. Neither heterologous 
expression nor co-reconstitution experiments described here gave an accurate esti-
mate of the SLN:SERCA ratio while yet they all agreed that this ratio is important. 
Nonetheless, it is widely accepted that sarcolipin is an inhibitor of SERCAs but the 
detailed mechanism of this inhibition remains unknown at the molecular level.   

7     Structural Insights into the SLN–SERCA1a Complex 
from NMR and X-Ray Diffraction Experiments 

7.1     NMR Studies of the Interaction between hSLN 
and SERCA1a 

  Studies of the hSLN–SERCA1a interactions were performed using solution NMR 
spectroscopy of hSLN upon addition of SERCA1a in the presence of DPC.  Analysis 
  of both chemical shifts and peak intensities of SLN signals indicate the existence of 
three different SLN states: the free, the bound, and the intermediate states at the 
NMR time scale. The effects of the binding were inferred by analyzing the changes 
occurring in the intermediate form as the bound state of SLN cannot be detected due 
to the large size of the SLN/SERCA1a/DPC complex. 

 Changes in  1 H chemical shifts were used as reporters for structural changes 
occurring in hSLN upon interaction with SERCA1a. As a matter of fact, these 
changes are correlated with variations in hydrogen bond interactions or secondary 
structures upon interaction [ 52 ]. The different fl exible regions of isolated hSLN 
previously identifi ed have distinct properties in the presence of SERCA1a. 
Concerning the N-terminus, residues Met1 through Arg6, except Asn4, do not 
exhibit signifi cant chemical shift changes indicating that this region remains highly 
dynamic in the presence of SERCA1a. In contrast, signals from the helical region 
spanning residues Glu7 through Val26, which contains two dynamical domains, 
show large chemical shift changes. Signals from Glu7 to Thr18 (except Thr13) dis-
play downfi eld shifts, whereas signals from the C-terminal portion of the transmem-
brane helix exhibit an increasing upfi eld shift for all the residues up to Val26. Buffy 
et al. have suggested that these chemical shift changes could indicate the formation 
of tighter hydrogen bonds in the region from Glu7 to Val14 and a slight unwinding 
of the helix from residues Val15 through Arg27, a mechanism analogous to that 
proposed for the transmembrane domain of PLN [ 38 ]. Concerning the unstructured 
C-terminal tail, all signals, except those of Arg27, are shifted upfi eld which could 
reveal a structural change of this amino acid sequence suggesting an interaction of 
the tail with either the luminal part of the ATPase or the lipids.   
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7.2     X-Ray Diffraction of the rSLN–SERCA1a Complex 

  Two recent crystallographic structures of rabbit SLN in complex with rabbit 
SERCA1a (PDB ID: 3W5A at a resolution of 3.0 Å [ 53 ] and PDB ID: 4H1W at a 
resolution of 3.1 Å [ 54 ]) revealed  a   previously undescribed conformation of 
SERCA1a in the presence of SLN. This SERCA1a–rSLN complex was obtained in 
the presence of high concentration of magnesium (40–75 mM) that appears to be 
essential to stabilize a Ca 2+ -deprived form of the enzyme. Considering the relative 
position of the ATPase sub-domains and the conditions of crystallization, authors 
from the two groups suggested that this complex corresponds to a genuine E1 
intermediate, i.e. between the protonated E2 form and the Ca 2 .E1P occluded state 
(Fig.  10.1 ). This complex could allow cytoplasmic ion exchange between protons 
and calcium ions: as a matter of fact, both structures display a large open groove, 
followed by a deep, funnel-shaped and negatively charged path that leads to the 
transmembrane Ca 2+  binding sites, suggesting that this form is prefi guring the Ca 2+  
fi xation. 

 However, the physiological signifi cance of this E1-Mg state is also worth discus-
sion. In both studies mentioned above [ 53 ,  54 ], the structures were solved with the 
Ca 2+ -free enzyme solubilized in C 12 E 8 , a condition known to cause irreversible 
enzyme inactivation [ 55 – 58 ]. Besides, the functional role of the E1-Mg state is 
unclear. On the one hand, Toyoshima et al. concluded that this state is an obligate 
intermediate in the catalytic cycle of SERCA1a and that Mg 2+  binding accelerates 
Ca 2+  binding by reducing the energy required for formation of a calcium-bound E1 
form. On the other hand, Winther et al. concluded differently, that Mg 2+  binding to 
the “low-affi nity Mg 2+  sites” actually delays SERCA1a activation by Ca 2+ . Moreover, 
Akin et al. [ 59 ] concluded that the E1-Mg state obtained at 40–75 mM MgSO 4  by 
Toyoshima et al. and Winther et al. does not exist at a physiological Mg 2+  concentra-
tion (i.e. about 3 mM). 

 Analyses of both structures [ 53 ,  54 ] reveal that in the complex, rSLN forms a 
slightly bended membrane-spanning helix, and is associated with SERCA1a within 
a groove between M2, M6, and M9 transmembrane helices (Fig.  10.4a ). Most of 
the residues located at the interface between rSLN and SERCA1a are hydrophobic 
amino acids. Those residues form a large hydrophobic cluster (Fig.  10.4b ) as rep-
resented by the important network of distances less than 4.7 Å between rSLN and 
SERCA1a hydrophobic side-chains (orange and blue dotted lines). Moreover, 
rSLN and SERCA1a also show proximities between polar residues. For example, 
rSLN Asn11 side-chain and SERCA1a Gly801 backbone form a hydrogen bond 
(Fig.  10.4c ), as well as rSLN Glu7 side-chain and SERCA1a Asn111 side-chain 
(Fig.  10.4d ). N-terminal and C-terminal residues of SLN are poorly defi ned. The 
local disorder of the electron density maps suggests that no stable interaction 
involves rSLN C-terminus and SERCA1a in the conditions used for crystalliza-
tion [ 54 ]. These structures are also in agreement with several site-directed muta-
genesis experiments: as a matter of fact, MacLennan et al. observed a moderate but 
signifi cant loss of inhibition after substitution by alanine of SLN Asn11, Val14 and 
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Val19 [ 3 ]. These authors also showed that substitution by alanine of SERCA1a 
Leu321 (M4) and Leu802 (M6) trigger SLN dissociation [ 46 ]. Additional cross-
linking experiments confi rmed that the binding sites of SLN and PLN overlap as 
expected, due to similarities between the SLN transmembrane domain (from Leu8 
to Val26) and the membrane-spanning C-terminal segment of PLN [ 53 ] (see Fig.  10.2  
for sequence similarities).

   Because the contacts between rSLN and SERCA1a observed in the E1-Mg 
structures were similar to PLN–SERCA1a interactions inferred previously from 
cross- linking experiments [ 60 – 64 ], Toyoshima et al. and Winther et al. postulated 

  Fig. 10.4    rSLN in  interaction   with SERCA1a transmembrane domain. (PDB: 4H1W, [ 54 ]). ( a ) 
rSLN is in interaction with SERCA1a within a groove between M2, M6, and M9 transmembrane 
helices (viewed from the cytosol). Sarcolipin is depicted as a  green ribbon . SERCA1a transmem-
brane helices M2, M6, and M9 are depicted as  red ribbons  and the other transmembrane helices 
are in  grey . ( b ) Scheme of the hydrophobic interaction network taking place at rSLN/SERCA1a 
interface (viewed from the cytosol). Only the hydrophobic amino acids involved in the interaction 
network are displayed. SLN residues previously pinpointed in Fig.  10.3c  are underlined. A dis-
tance of 4.7 Å or less between side-chains is represented by  blue  or  orange dotted lines  for a sake 
of clarity. ( c ) rSLN Asn11 side-chain and SERCA1a Gly801 backbone form a hydrogen bond [ 54 ]. 
( d ) rSLN Glu7 side-chain and SERCA1a Asn111 side-chain form a hydrogen bond [ 53 ]. Residues 
backbone and side-chains are represented as  sticks . Carbon atoms are in cyan, oxygen in  red , nitro-
gen in  blue , and hydrogen in  white . Hydrogen bond is represented as a  dotted black line        
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that the E1-Mg state is similar to the state that binds PLN [ 53 ,  54 ]. However, notable 
structural differences of their respective transmembrane domains indicate that PLN 
stabilizes a distinct conformation of SERCA1a. The Ca 2+  binding sites in the E1-Mg 
structures are partially formed and have a distinctly E1-like appearance. On the 
other hand, in the metal-free E2 state that binds PLN, the SERCA transmembrane 
structure is closest to E2 state more than E1 state, leading to the collapse of the Ca 2+  
binding sites [ 59 ], suggesting that PLN and rSLN are interacting with different 
ATPase conformers. 

 Toyoshima et al. and Winther et al. made hypothesis concerning the binding or 
not of rSLN to different SERCA1a conformers during the catalytic cycle [ 53 ,  54 ]. 
Toyoshima et al. proposed that the E1.Mg 2+  state is the preferred state for binding of 
rSLN as suggested previously for PLN [ 65 ,  46 ,  60 ,  64 ]. These authors suggested that 
rSLN cannot interact with the Ca 2 .E1 and E2 states because, in these states, the posi-
tion of the helices M2, M4, M6, and M9 leads to a very narrow and a very wide 
groove, respectively, that will prevent rSLN to bind fi rmly. Instead, Winther et al. 
suggested that the E2 state of SERCA1a is compatible with a SERCA1a–rSLN com-
plex as the E2 structure offers a wider binding groove to rSLN [ 54 ]. In contrast, in 
the occluded Ca 2 .E1P conformation, the position of the M1, M2, M3, and M4 heli-
ces leads to a narrowing of rSLN-binding site thus implicating rSLN dislodgement 
or a positional rearrangement. Recent cross-linking experiments suggest that rSLN 
remains in contact with the pump throughout the enzymatic cycle and, are thus in 
favor of a positional rearrangement of rSLN in interaction with SERCA1a [ 53 ]. 
Bidwell et al. demonstrate that a PLN–SERCA1a interaction remains even in pres-
ence of millimolar concentration of calcium or in presence of thapsigargin which 
may trigger the ATPase in a Ca 2 .E1 or E2-like conformation, respectively [ 66 ].    

8     Focus on Some Particular Features of Sarcolipin 

8.1     Phosphorylation 

  Sequence analysis and site-directed mutagenesis experiments of Ser4 and Thr5 sug-
gested that human, rat, and mouse SLN could be phosphorylated on Thr5 whereas 
rabbit, cow, and pig could be  phosphorylated   on Ser4 or Thr5 [ 33 ]. In this work, the 
effect of SLN overexpression and its ability to get phosphorylated were investigated 
in two different models. Using overexpression of the rabbit SERCA1a isoform in 
HEK-293 cells, in presence of wild-type (WT), S4A or T5A rabbit SLN, the authors 
demonstrated that both Ser4 and Thr5 are involved in the ATPase inhibition, Thr5 
having probably a more preponderant role than Ser4. It is also shown that phos-
phorylation could be achieved by the Serine/Threonine-protein Kinase 16 (STK16, 
[ 67 – 70 ]). The overexpression of mouse SLN in mouse cardiac myocytes obtained 
from PLN null transgenic mice results in an inhibition of the cardiac function. 
Treatment with isoproterenol, a β-adrenoreceptor agonist and an activator of the 
cardiac muscle, resulted in complete restoration of the calcium dynamics in SLN 
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overexpressing tissues whereas no effect was found in absence of SLN. Therefore, 
a mechanism for which isoproterenol would act through cAMP signaling to regulate 
SLN interaction with SERCA isoforms is proposed. Bhupathy et al. demonstrated 
that a T5A point mutation exerts an inhibitory effect on rat myocyte contractility 
and calcium transients similar to that of WT SLN, whereas a phosphorylation 
mimetic mutation, T5E, abolishes the inhibition [ 32 ]. The WT and mutated SLN 
co-localized with SERCA2a in the rat ventricular myocytes sarcoplasmic reticulum. 
Interestingly, the overexpression of SLN has no effect on SERCA2a and PLN 
expression levels suggesting that the functional changes observed were really due to 
SLN. Similar results were obtained previously with PLN null transgenic mice [ 33 ], 
suggesting that SLN may act against SERCA2a independently of PLN (see below). 
Bhupathy et al. also proposed that SLN phosphorylation depends on the calcium/
calmoduline-dependent protein Kinase II (CaMKII) rather on the STK16. The role 
of STK16 remains unclear whereas the role of CaMKII in heart is better known, 
especially CaMKII phosphorylates PLN at Thr17 during β-adrenergic-mediated 
stimulation and could be important for heart function [ 71 – 74 ]. However, no study 
investigates the possible role of Ser4. 

 Both Ser4 and Thr5 of SLN are close to SERCA1a Trp932 in the two recent struc-
tures of the SLN–SERCA1a complex [ 53 ,  54 ] and, molecular modeling of the phos-
phorylation of these two residues (Fig.  10.5 ) shows that in both cases, phosphorylation 
may induce steric clashes with Trp932 leading most probably to SLN and/or 
SERCA1a conformational changes. As a consequence, these conformational changes 
could induce dissociation of the complex as suggested by Toyoshima et al. [ 53 ] . 

   Among 67 unique SLN sequences, most of them include a Ser and a Thr residue 
at positions 4 and 5, respectively, except for the rhinoceros which contains two suc-
cessive threonines [ 31 ]. All the primates (9 species), including human, contain only 
Thr5, Ser4 being replaced by an asparagine (S4N). Note that Trp932 of SERCA 
isoforms 1a and 2a are fully conserved among mammals suggesting that some local 
rearrangement of the ATPase and/or the SLN N-terminus could take place when 
either Ser4 or Thr5 are substituted. Interestingly, most of the sequences from fi shes 
(7 species among 8) contain only a serine at position 4, the threonine being replaced 
by an alanine (T5A) or a valine (T5V). Assuming that the regulatory mechanism of 
SERCA isoforms (and of muscle contraction) is conserved among species, i.e. dis-
sociation of SLN from SERCA1a induced by phosphorylation, Ser4 will be a 
 candidate for phosphorylation in fi shes. Indeed, kinases like CaMKII are poorly 
specifi c [ 75 ] and thus, both Ser4 and Thr5 can be phosphorylation targets.   

8.2     The RSYQY Luminal Tail 

 The C-terminus amino acid sequence of SLN, Arg 27 -Ser-Tyr-Gln-Tyr (RSYQY 
tail), appears critical for its  proper   localization at the endoplasmic reticulum mem-
brane, as it acts as an ER retention signal. Progressive amino acid deletion revealed 
that removal of the Arg27-Tyr31 sequence results in a misrouting of SLN. 
Interestingly, when the deleted form of SLN is co-expressed with SERCA2a, 
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misrouting is abolished and this shortened form is stably expressed and properly 
co-localized with SERCA2a at the ER. It suggests that in presence of suffi cient 
amount of a SERCA isoform, SLN can be addressed to the ER independently of its 
tail. However, it has been reported that in absence of SERCA, SLN may accumulate 
in the ER via interactions of its luminal tail with another partner [ 76 ]. 

 A key role of this C-terminal tail for catalysis was pointed out early by 
MacLennan et al. [ 3 ] who showed that a C-terminally FLAG tagged version of SLN 
does not affect SERCA1a activities as WT or N-terminally tagged (NF) SLN iso-
forms. As a matter of fact, human, rat or rabbit SLN (hSLN, rat SLN, and NF-SLN 
respectively) induce a moderate decrease of Ca 1/2  (shifted from 0.35 μM in absence 
of SLN to 0.5 μM when SLN is co-expressed with SERCA1a in HEK-293 cells) 
and a signifi cant increase of  the   Ca 2+  uptake activity up to about 140 %. On the 

  Fig. 10.5     Phosphorylation 
of rSLN   Ser4 and Thr5. 
View from the cytosol of 
rSLN surrounded by the 
transmembrane helices 
M2, M6, and M9 of 
SERCA1a (PDB: 4H1W, 
[ 54 ]).  Top : native rSLN; 
 middle : model with rSLN 
Ser4 phosphorylated ( pS4 ); 
 bottom : model with rSLN 
Thr5 phosphorylated 
( pT5 ). Sarcolipin is 
depicted as a  green ribbon . 
SERCA1a transmembrane 
helices M2, M6, and M9 
are depicted as  red 
ribbons . rSLN Ser4 and 
Thr5 side-chains are 
depicted as  sticks . 
SERCA1a Phe809 and 
Trp932 side-chains are 
depicted as Van der Waal’s 
spheres. Phosphorylated 
side-chains were modeled 
using UCSF Chimera 
software [ 103 ] and are 
depicted as Van der Waal’s 
spheres. Carbon atoms are 
in cyan, oxygen in  red , 
nitrogen in  blue , 
phosphorus in bronze, and 
hydrogen in  white        
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other hand, co- expression of a C-terminally FLAG tagged rabbit SLN (SLN-FC) 
and SERCA1a resulted in a signifi cant decrease of both Ca 1/2  (shifted from 0.35 μM 
to 1.1 μM) and  V  max  (only 62 % of the SERCA1a alone). To investigate the role of 
the tail in the regulation of SERCA1a, alanine mutants of the tail were co-reconsti-
tuted with native SERCA1a within proteoliposomes (SERCA1a:SLN:lipids 
1:4.5:120 m:m:m, i.e. molar ratio close to those of native SR, [ 49 ,  50 ]). This study 
showed that, compared to the WT SLN, all the alanine mutants induced a lower 
inhibition of the SERCA1a, i.e. a moderate decrease of the affi nity for calcium and 
a slight decrease of the  V  max , except the Y31A mutant which induced an increase of 
the  V  max  despite a poor effect on the Ca 1/2  [ 50 ]. Note that these results are not in 
agreement with those previously published by MacLennan et al. [ 3 ]. Later, this 
group demonstrated that modifi cations of the tail sequence could trigger a misrout-
ing of SLN as described above [ 76 ] suggesting that in HEK-293 cells, improper 
traffi cking of mutated SLN was not taken into account in previous experiments. As 
a consequence, the co-reconstitution model seems to be a better model to investi-
gate the effect of a complete amino acid deletion of the tail. Co-reconstitution of a 
ΔR27SLN  with   SERCA1a led to a smaller inhibition of the SERCA1a than for 
entire SLN (Ca 1/2  and  V  max  are closer to the SERCA1a alone values) [ 50 ]. However, 
in that model, the SERCA1a is from native rabbit SR membrane which already 
contains endogenous rabbit SLN. As mentioned above, SLN remains associated 
with the SERCA1a even after deoxycholate extraction or solubilization with mild 
detergent and subsequent purifi cation [ 31 ]. Therefore, results from Gorski et al. 
were probably obtained in the presence of both endogenous WT SLN and recombi-
nant—WT or mutated—SLN. However, considering the fact that a signifi cant 
molar excess of SLN was used, those results suggest that SLN luminal tail is essen-
tial for the inhibition of the SERCA1a by SLN. The high degree of amino acid 
conservation of the Arg 27 -Tyr-Gln residues also suggests a critical functional role of 
this sequence of SLN, a role that has survived evolutionary divergence [ 76 ,  31 ] 
(Fig.  10.3b ). While SLN inhibition properties may reside in its luminal tail, most of 
the inhibition properties of PLN depend on its transmembrane region. As a matter 
of fact, the amino acid C-terminus sequences of SLN and PLN are rather different: 
Arg 27 -Ser-Tyr-Gln-Tyr (RSYQY tail) for SLN and Met 50 -Leu-Leu (MLL tail) for 
PLN in mammals. Furthermore, myoregulin is deprived of such a tail (Fig.  10.2 ), 
suggesting a mechanism of inhibition proper to each regulatory peptide. Recently, 
a very different amino acid sequence of the luminal tail was reported [ 77 ] for a 
 zebrafi sh isoform of PLN (zfPLN)   that comprises additional residues, Leu 50 -Leu-
Ile-Ser-Phe-His-Gly- Met ( 50 LLISPHGM).  This   luminal tail has different functional 
properties than those of SLN and other PLN isoforms and can only regulate 
SERCA1a in the context of the full primary sequence of zfPLN. Deletion of this tail 
resulted in a loss of inhibition by zfPLN and, a zfPLN–SLN tail  chimera restored the 
inhibition. A chimera composed of the human PLN and the luminal tail of zfPLN 
shares the same functional properties as human PLN suggesting that this tail is 
effi cient only in a zebrafi sh context [ 77 ]. C-terminal residues are poorly defi ned in 
the two published crystal structures of the SLN–SERCA1a complexes due to missing 
electron density which probably refl ects a high fl exibility of this region [ 53 ,  54 ]. 
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Thus, the hypothesis concerning the interaction between the luminal tail of SLN 
and the SERCA1a derived from experimental data [ 46 ,  50 ] could not be confi rmed 
from these structures. However, solid state NMR studies showed that the peptide 
encompassing the fi ve C-terminal residues (R 27 SYQY) interacts with SERCA1a. 
Moreover, this peptide inhibits the ATPase activity, yet it has no effect on the Ca 1/2 . 
Using various peptides differing by their length and amino acid composition, the 
authors proposed that the positively charged residue Arg27 may be important in 
stabilizing the interaction of the luminal tail with the SERCA1a, possibly through 
salt bridge formation, and that Tyr29 and Tyr31 could participate in π–π or π–cation 
interactions with residues from the luminal face of SERCA1a [ 43 ]. These interac-
tions could not be confi rmed by the crystal structures of the SLN–SERCA1a com-
plexes due to the poorly defi ned structure of the C-terminal residues of SLN and of 
the luminal loop between M1 and M2.  

8.3     S-Palmitoylation and S-Oleoylation of Cysteine 9 

  Recently, our group showed that native rabbit SLN is modifi ed by a fatty acid anchor 
on its unique cysteine residue (Cys9) with a palmitic acid or, surprisingly, an oleic 
acid in a ratio of 60 % and 40 %, respectively [ 31 ]. Treatment with hydroxylamine 
removes the fatty acids from a majority of the SLN pool and apparently without any 
modifi cation on the SERCA1a. Mass spectrometry analysis of SEC- purifi ed   sam-
ples after several hours of incubation confi rmed that SLN is satisfactorily deacyl-
ated and that it remains associated with the SERCA1a even after solubilization by 
mild detergent like  n -dodecyl-β- D -maltopyranoside (DDM) or octaethylene glycol 
monododecyl ether (C 12 E 8 ) and successive purifi cation of the complex by size 
exclusion chromatography [ 31 ]. This treatment does not modify the affi nity of 
SERCA1a for Ca 2+  but it results in an increase of the Ca 2+ -dependent ATPase activ-
ity of native SR membranes indicating that the S-acylation is required for full inhib-
itory effect of rabbit SLN on rabbit SERCA1a (Fig.  10.6 ). Deacylation does not 
affect the stability of the Ca 2+ ATPase over time, neither in a native membranous 
context nor after solubilization by mild detergent ( unpublished results ).

   Sarcolipin is most probably acylated in the crystals [ 53 ,  54 ] as we found SLN 
acylated when it was purifi ed in conditions very similar to the crystallization proce-
dure [ 31 ]. Although no electron density exists to describe the position of the acyl 
chain (probably a consequence of a local disorder in the crystals), we propose a 
model of SLN palmitoylated on Cys9 in complex with SERCA1a and embedded in 
a POPC bilayer (Fig.  10.7 ). The acyl chain was grafted on the SLN Cys9 within the 
crystal structure of the complex [ 54 ]. As shown in Fig.  10.7 , the acyl chain is 
inserted in the upper leafl et of the membrane and faces the lipids as Cys9 is located 
on the opposite side of the helix interaction side. It suggests that the acyl chain is 
probably not directly in contact with the Ca 2+ -ATPase.

   Alignment of 67 SLN amino acid sequences from different species shows that 19 
of them contain a cysteine and the remaining sequences a phenylalanine at position 9. 
As an example, we demonstrated that pig SLN, obtained from  extensor digitorum 
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  Fig. 10.6     Hydroxylamine   treatment of SR membranes results in an increase of calcium ATPase 
activity but has a moderate effect on the apparent affi nity for calcium. ( a ) Effect of hydroxylamine 
on ATPase activity. Rabbit SR membranes were initially suspended at 4 mg mL −1  in the assay buf-
fer and stored on ice. When employed, an equal volume of a freshly prepared 2 M hydroxylamine 
solution (NH 2 OH, pH adjusted at 7.5 with saturated Tris) was added prior to incubation at 20 °C 
for 1 h. As a control, an equal volume of buffer was added before incubation at 20 °C for 1 h. 
ATPase activity was estimated by an enzyme coupled assay as described previously [ 57 ] at pH 
7.5 in presence of 50 μM free calcium (see [ 31 ] for further details). ( b ) Ca 2+  dependency of the 
ATPase activity. ATPase activity was again measured by a coupled enzyme assay as described 
previously. The medium was fi rst supplemented with 50 μM Ca 2+  and subsequently with fi nal Ca 2+  
concentrations of 100 or 200 μM, and then, various concentrations of EGTA were added sequen-
tially, to explore the effect of lower free Ca 2+  concentrations ([Ca 2+ ] free  was estimated according to 
[ 104 ]). The medium also contained 0.1 mg/mL SR vesicles which have been formerly treated with 
1 M hydroxylamine for 3 h at 20 °C ( black symbols and dashed line ) or not (3 h at 20 °C in absence 
of hydroxylamine;  empty symbols  and  continuous line ). Final concentration of hydroxylamine in 
the cuvette was 5 mM and has no effect on the enzyme coupled assay. These experiments have 
been done twice, each data point being the mean, and these data were fi tted to Hill equations.  Error 
bars  were not indicated as they were smaller than the size of the symbols. The estimated Ca 1/2  for 
untreated and NH 2 OH-treated SR are 2.3 ± 0.3 μM (pCa = 5.64) and 3.2 ± 0.5 μM (pCa = 5.49), 
respectively. Note that our values are higher than those indicated by MacLennan et al. who did the 
measurements at pH 7 [ 46 ], in conditions where the E2 to E1 equilibrium is pulled toward E2 
resulting in slightly lower Ca 1/2  values       
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longus  (EDL), is also fully palmitoylated/oleoylated and has the same properties as 
the rabbit SLN after deacylation. Based on a cladogram, we fi nally postulated that 
the phenylalanine mutation to cysteine in some species is the result of an evolution-
ary convergence. We proposed that, besides phosphorylation,  S-acylation/deacyla-
tion may also regulate SLN activity [ 31 ]. Interestingly, acylation is also a feature 
that distinguishes sarcolipin from phospholamban: none of the three cysteines of 
PLN located within the membrane domain is acylated [ 78 ].    

9     Does Sarcolipin Associate with Itself 
and with Phospholamban? 

9.1     Does Sarcolipin Form Homo-Oligomers? 

  Considering   the high degree of similarities between SLN and PLN transmembrane 
domain, the homo-oligomerization of SLN has been investigated because PLN 
forms stable pentamers [ 79 ,  80 ]. Indeed, the high-resolution structure of these 

  Fig. 10.7     Molecular   modeling of Cys9-palmitoylated sarcolipin in interaction with SERCA1a 
embedded in a POPC bilayer. Molecular modeling of the palmitoylated SLN was made using 
UCSF Chimera software [ 103 ] and the SERCA1a/rSLN complex structure (PDB: 4H1W, [ 54 ]) as 
template. The complex was embedded in a POPC bilayer using the Infl ateGRO method [ 105 ] and 
data from the OPM database [ 106 ]. SERCA1a was tilted by 23° with respect to the membrane 
normal. Several energy minimization steps were performed using GROMACS [ 107 ] with protein 
atoms harmonically restrained using a force constant of 10,000 kcal mol −1  nm −2 . Snapshot repre-
sentations are made using VMD software [ 108 ]. rSLN and SERCA1a are depicted as a  green  and 
a  red ribbon , respectively. The palmitoyl anchor is represented in licorice and the POPC lipids are 
in sticks without the hydrogen atoms for the sake of clarity. Phosphorus atoms of POPC are repre-
sented as Van der Waal’s spheres. Carbon atoms are in cyan, oxygen in  red , nitrogen in  blue , 
phosphorus in bronze, sulfur in  yellow , and hydrogen in  white        
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PLN pentamers was solved by NMR in the presence of DPC and reconstituted in 
a DOPC/DOPE bilayer [ 81 ,  82 ]. It has been proposed that this pentameric state 
should correspond to an inactive form of the PLN in equilibrium with a mono-
meric active form, the latter being able to interact with SERCA1a for inhibition. 
However, this hypothesis is challenged by the recent high-resolution crystal struc-
ture of a SERCA1a–PLN complex which shows that a dimeric and even a pentam-
eric form of PLN could also interact with SERCA1a [ 59 ]. As a matter of fact, the 
residues involved in the pentamerization motif are localized at the opposite side of 
the helix than those implicated in the interaction with SERCA1a. It has been dem-
onstrated that PLN homo-oligomerize via a Leucine zipper motif (Leu-x2-Ile-x3-
Leu-x2-Ile-x3-Leu, [ 80 – 82 ]). No such motif can be found in SLN amino acid 
sequences suggesting that SLN, if able to interact with itself, homo-oligomerize 
via a different motif. 

 The oligomeric state of SLN was investigated by several groups [ 83 – 86 ,  43 ]. The 
study of the oligomerization of hSLN was performed in the presence of nonionic 
detergents and by centrifugation analysis and cross- linking   experiments [ 86 ]. In 
these experiments, the authors show that both SLN and PLN form oligomers but 
that these oligomers greatly differ. Sarcolipin does not form SDS-resistant oligo-
mers at concentration close to those used for PLN as shown by SDS-PAGE analysis. 
On contrary to PLN oligomers which are formed at low concentration reaching a 
pentameric equilibrium state, SLN oligomers appear only at much higher concen-
trations and seem to never reach a stable oligomeric state as the size of the oligomer 
increases linearly as a function of SLN concentration. In addition, SLN oligomers 
were observed by cross-linking in POPC liposomes but only in the presence of a 
very large excess of cross-linker. Analysis of SLN oligomer formation after recon-
stitution in DOPC bilayers by solid-state NMR reveals that SLN remains mono-
meric at millimolar concentration [ 43 ]. 

 It has also been suggested that oligomerization of SLN could result in a pore 
formation as proposed for PLN [ 83 – 85 ]. To  demonstrate   the formation of pores, 
SLN was incorporated into a supported lipid bilayer anchored to a mercury  electrode 
through a hydrophilic tetraethyleneoxy chain. As a matter of fact, lipid bilayers 
tethered to a metal surface via a hydrophilic “spacer,” often  called   tethered bilayer 
lipid membranes (tBLMs), may provide a friendly environment to channel- forming 
 peptides   and proteins, thus maintaining their functionally active state and allowing 
an investigation of their putative function. Adding inorganic anions as chloride, 
sulfate, phosphate, or oxalate in the presence of SLN leads to an increase of the 
tBLM conductivity whereas the same experiment using inorganic cations does not 
show a modifi cation of the membrane conductivity. This could suggest that sarco-
lipin aggregates into an anion-conducting-like pore. But, such a permeabilization 
cannot occur at physiological pH [ 84 ]. The authors suggested that sarcolipin pore 
activity should participate in the dissipation of the local increase of the luminal 
transmembrane potential caused by proton counter transport and the translocation in 
the lumen of the phosphate ions resulting from ATP hydrolysis [ 83 ]. Even if the 
SLN channel permeabilizing effect observed for phosphate ions is modest com-
pared to the ATPase activity, such a translocation of phosphate should improve the 
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accumulation of calcium in the lumen and limit retro-inhibition of the SERCA1a, 
resulting in an increase of the turnover at millimolar concentration of calcium as 
suggested initially by MacLennan et al. [ 3 ]. Nevertheless, it has to be considered 
that SLN oligomerization is observed here in supported DOPC monolayers, an 
in vitro model which is very different from a natural bilayer. Because SLN is a 
transmembrane peptide, its insertion in a lipid monolayer instead of a bilayer could 
artifi cially favor its oligomerization. Smith et al. have demonstrated that co- 
reconstitution of SLN with native SR membrane does not permeabilize the mem-
brane neither to calcium nor to proton [ 20 ]. Moreover, SERCA1a acts as a Ca 2+ /
H + -ATPase (Fig.  10.1 ), and since the bilayer is impermeable to protons, addition of 
FCCP, a protonophore, to the  vesicles   resulted in an increase of the accumulation of 
calcium [ 87 ]. Smith et al. showed that even in the presence of a SLN:SERCA1a 5:1 
mol:mol ratio, the greatest accumulation of calcium observed in the presence of 
FCCP, remains the same as in the control experiment done in the absence of SLN, 
demonstrating that SLN does not form oligomers leaky to protons [ 20 ]. The diver-
gent results found in the literature suggest that the putative oligomerization of SLN 
has to be carefully investigated in a natural environment in order to validate the 
relevancy of such mechanism in the context of the regulation of SERCA isoforms 
and of the SR calcium homeostasis.  

9.2     Do SLN and PLN Interact? 

 Similarly to the ongoing discussion of homo-oligomerization of SLN, the potential 
interaction of SLN with PLN is also currently under debate. Since SLN and PLN are 
co-expressed in the  atria  and in several smooth or fast-twitch muscle [ 4 ,  12 ], pos-
sible ternary interactions of those two peptides and  the   rabbit SERCA1a or rabbit 
SERCA2a isoforms were investigated [ 45 ]. Co-overexpression of SLN, PLN, and 
SERCA isoforms in HEK-293 cells led to a super-inhibition of the calcium uptake 
in microsomes: calcium affi nity decreased by one order of magnitude (at pH 7, 
Ca 1/2  SERCA1a alone  = 0.35 μM, Ca 1/2  SERCA1a+PLN  = 0.79 μM, Ca 1/2  SERCA1a+SLN  = 0.58 μM, 
Ca 1/2  SERCA1a+PLN+SLN  = 3.0 μM) and the  V  max , which was not affected by the expression 
of only one regulatory peptide, decreased by 20 % for SERCA1a and 50 % for 
SERCA2a. Using molecular modeling, the authors fi rstly suggested that a SERCA1a/
PLN/SLN ternary complex could be formed (E2-like structure used as SERCA1a 
model, [ 58 ]) with both SLN and PLN in close contact with SERCA1a [ 46 ]). 
However, the same authors recently rejected this hypothesis arguing that the binding 
groove of SLN within the SERCA1a–SLN complex is too narrow to accommodate 
an additional transmembrane helix like that of PLN [ 53 ]. The high-resolution struc-
ture of SERCA1a–SLN complex was obtained using native sarcoplasmic reticulum 
membrane as protein sources. The structure of the groove is conserved in the high- 
resolution structure of SERCA1a  obtained   using a recombinant SLN-free source 
and the same conditions of crystallization [ 88 – 90 ,  53 ]. Thus, this suggests that the 
groove size is governed by the state of the ATPase and not induced by the presence 
of SLN (or PLN). 
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 It has been proposed that SLN could destabilize PLN pentamers and that this 
destabilization could result in an increase in PLN monomers and in a super- 
inhibition of SERCAs. As a matter of fact, site-directed mutagenesis study of phos-
pholamban showed that  the   equilibrium between the pentameric form (“inactive” 
form) and the monomeric form (“active” inhibitory form) infl uences the ATPase 
activity [ 91 ]. Mutations of key residues of the leucine zipper motif induced depoly-
merization of PLN and an increase in its inhibitory effect on SERCA2a. To date, 
this super-inhibitory activity is not clearly demonstrated in vivo. In addition, in the 
co-overexpression experiments, the stoichiometry of SLN, PLN or SERCA iso-
forms which is not indicated could be a source of misinterpretation. It is not demon-
strated that the level of expression of the regulatory peptides is suffi cient to exert a 
maximum inhibitory effect on the overexpressed ATPase. As pointed out above, the 
effect of SLN on the Ca 1/2  or the  V  max  depends on the system used to characterize the 
inhibition. Moreover, the expression levels of SLN and PLN in vivo are still a matter 
of debate [ 92 ] so caution should be taken not to misinterpret the in vitro data in a 
physiological context.   

10     Conclusions 

 The role of sarcolipin in SERCAs regulation is complex and still subject to debate. 
Sarcolipin is regulated itself at several levels from the gene to the protein. The pres-
ence in myocytes of particular transcription factors (myocyte enhancer factor) is 
probably responsible of its muscle-specifi c expression. Furthermore, the presence 
of different polyadenylation signals among species could also result in differences 
at the fi nal translation level. Several data  are   now available on the expression level 
of SLN from different tissues and from different species. It has been clearly demon-
strated that SLN is expressed in several tissues, even in the presence of other regula-
tory peptides like phospholamban. Sarcolipin expression is not restricted to 
fast-twitch muscle as initially proposed. The level of expression in one particular 
tissue from one species to another could also greatly vary, for example, the amount 
of SLN in the mouse skeletal muscle is about one thousand time lower than in rabbit 
skeletal muscle [ 92 ]. All these data indicate that expression of SLN is fi ne-tuned at 
many levels, even before its interaction with Ca 2+ -ATPases or putative other part-
ners. In addition, interaction of SLN with Ca 2+ -ATPases is regulated by post- 
translational modifi cations. Phosphorylation of its N-terminus, via the β- adrenergic 
  calcium regulation pathway, could trigger its dissociation from the Ca 2+ -ATPases. 
Recently, it has been demonstrated that sarcolipin is also S-palmitoylated and 
S-oleoylated. The exact role of these latter modifi cations is still unknown but it has 
been reported that acylation could affect membrane protein localization, stabiliza-
tion within the membrane, and interaction with other proteins [ 93 ]. To date, SLN is 
the only SERCAs regulatory peptide which is acylated. Interestingly, it is now clear 
that SLN and PLN do not share the same regulatory mechanism. The recent high- 
resolution structures of the SERCA1a–SLN complex [ 53 ,  54 ] illustrate and give 
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new insights into how SLN inhibition arises from the stabilization of a Ca 2+ -free E1 
intermediate state. However, these structures and the comparison with the recent 
structure of SERCA1a–PLN complex [ 59 ] raise the following question: what are 
the structural and dynamic features of both partners (peptides and SERCAs) that are 
important for the regulation of SERCAs knowing that SLN and PLN are sometimes 
expressed in the same cells, at the same time, and in  similar   amounts [ 12 ]? Moreover, 
although rabbit SERCA1a and human SERCA2a share a high degree of identity 
(about 85 %), it is worth to mention the presence of a small patch of different amino 
acids in the N-domain. Many residues from this patch belong to the interaction site 
of the PLN N-terminus with the SERCAs N-domain, so it could explain part of the 
functional differences between PLN and SLN as SLN has not such an N-terminal 
extension [ 94 – 96 ]. Furthermore, the life time of the SLN–SERCAs complex during 
catalysis remains unclear. The hypothesis that SLN could interact only with a par-
ticular catalytic state and the hypothesis that SLN could remain bound to the 
SERCAs during the whole cycle are both considered in the literature. For example, 
based on a docking analysis, Winther et al. suggest that sarcolipin does not bind to 
the Ca 2 .E1P state as the groove is too narrow [ 54 ]. However, we observed that the 
complex remains formed even in presence of saturating concentration of calcium 
and of AMPCP which may trigger the ATPase in a Ca 2 .E1P-like conformation 
( unpublished results ). 

 Numerous studies have recently documented the role of SLN in muscle-based 
thermogenesis. It has been shown that expression of SLN increases the uncoupling 
of the ATPase and, consequently the rate of heat production [ 24 ,  25 ]. Furthermore, 
knock-out mice ( SLN  − / − ) or SLN overexpressing mice ( SLN   OE  ) were recently exten-
sively used  to   determine the possible role of SLN in several metabolic pathways 
[ 28 ,  29 ,  97 ]. Knock-out mice have a lower body temperature so it suggests that SLN 
expression is probably critical for cold-induced muscle-based thermogenesis, prob-
ably via its interaction with SERCA1a [ 28 ,  29 ]. Additionally,  SLN   OE   mice displayed 
a higher oxygen consumption and fatty acid oxidation than wild-type mice 
 suggesting a diet-induced thermogenesis [ 98 ]. An increase of SLN expression 
seems to improve skeletal muscle performance by reducing fatigue during a pro-
longed activity [ 97 ]. However, the use of SLN −/−  or  SLN   OE   mice was recently debated 
due to the low level of SLN expression in wild-type mice skeletal muscles. It is 
unlikely that deleting SLN would have an assessable effect on thermogenesis by the 
calcium pumps [ 92 ]. As rodents possess brown adipose tissue physiologically 
 essentially   dedicated to heat production, they probably do not need another effi cient 
muscle- based heat production pathway. Nevertheless, SLN might have a role in 
muscle- based thermogenesis in larger mammals, most of them being deprived from 
such brown adipose tissues [ 99 ]. 

 Given the importance of SERCAs pump activity in regulating Ca 2+  handling and 
the pathogenesis of skeletal muscle diseases, such as myopathy and muscular dys-
trophies, the recent discovery of several putative regulatory peptides opens interest-
ing possibilities for the treatment of these diseases [ 7 ]. It suggests that expression of 
the different regulatory peptides could act with compensatory effects as MLN might 
be expressed in SLN- and PLN-deprived mice tissues [ 7 ]. However, at the present 
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time, myoregulin peptides were not detected in vivo [ 7 ,  8 ]: their expression level 
compared to SLN and PLN in different species and tissues has to be investigated. 
Interestingly, the sequence coding MLN was found in a mistakenly annotated non-
coding mRNA specifi c from skeletal muscle. Consequently, several unidentifi ed 
regulatory peptides could also be encoded in the many mRNA sequences currently 
annotated as noncoding sequences, and their discovery would open the way to a 
better knowledge of muscle physiology.     
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    Chapter 11   
 Regulation of Cardiac Sarco(endo)plasmic 
Reticulum Calcium-ATPases (SERCA2a) 
in Response to Exercise                     

       Naomi     C.     Hamm    ,     Andrew     N.     Stammers    ,     Shanel     E.     Susser    , 
    Michael     W.     Hlynsky    ,     Dustin     E.     Kimber    ,     D,     Scott     Kehler    , 
and     Todd     A.     Duhamel    

    Abstract     Sarco(endo)plasmic reticulum calcium ATPase (SERCA2a) plays an 
integral role in Ca 2+  cycling in the heart. After a myocardial contraction has 
occurred, SERCA2a is primarily responsible for transporting Ca 2+  out of the cytosol 
into the sarcoplasmic reticulum. Consequently, SERCA2a is key in determining 
relaxation time and inotropy of subsequent contractions. There are ten different 
SERCA isoforms in the body, where SERCA2a is the isoform expressed in the 
heart. Both SERCA2a expression and activity are reduced in models of disease. As 
such, a large body of research has examined SERCA2a and how it might be used as 
a means to restore heart function in models of disease. In this chapter, we examine 
various regulatory mechanisms of SERCA2a and how these mechanisms affect 
SERCA2a and cardiac function. Transcriptional, protein (e.g., phospholamban and 
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sarcolipin), hormonal (e.g., thyroid hormone and adiponectin), and posttransla-
tional modifi cation (e.g., nitration, glutathionylation, SUMOylation, acetylation, 
glycosylation, and O-glcNAcylation) processes as they regulate SERCA2a are dis-
cussed. Additionally, exercise and its effect on the regulatory mechanisms of 
SERCA2a is examined.  

  Keywords     Sarco(endo)plasmic reticulum calcium ATPase   •   Heart failure   • 
  Phospholamban   •   Sarcolipin   •   Thyroid hormone   •   Adiponectin   •   Posttranslational 
modifi cations   •   Exercise  

1         Introduction 

1.1     Role of Calcium in Muscular Contractions 

   Calcium (Ca 2+ ) is a key component of the excitation–contraction coupling (ECC) 
process in both cardiac and skeletal muscle. When Ca 2+  is released from the sarco-
plasmic reticulum (SR), free intracellular Ca 2+  in the cytosol  increases   approxi-
mately tenfold. This facilitates Ca 2+  binding to troponin C, which allows the 
tropomyosin fi lament to rotate and expose  the   myosin-actin binding site [ 1 ]. Myosin 
and actin are then able to interact and initiate cross bridge cycling, where adenosine 
triphosphate (ATP) hydrolysis moves the myosin along the actin fi laments through 
a series of conformational changes [ 2 ]. Cross bridge cycling instigates the power 
stroke, resulting in muscular contraction. In cardiac muscle, the release of Ca 2+  is 
initiated through Ca 2+  induced Ca 2+  release, a process where entry of Ca 2+  through 
the L-type Ca 2+  channel causes a further release of Ca 2+  from the SR [ 1 ,  3 ]. 

 Following contraction, Ca 2+  must be removed from the cytoplasm to initiate 
myocardial relaxation. This occurs through four main transporters: the sarcolemmal 
Ca 2+  ATPase, the mitochondrial Ca 2+  uniport, the Na + /Ca 2+  exchanger, and the 
 Sarco(endo)plasmic reticulum Ca 2+  ATPase (SERCA)   [ 4 ]. In the mammalian heart, 
SERCA2a is primarily responsible for removing Ca 2+  from the cytoplasm and sub-
sequently transporting it back into the SR [ 4 ]. The amount of SERCA2a Ca 2+  
removal varies between species. For example, SERCA2a accounts for 92 %, 75 %, 
and 70 % of Ca 2+  removal in rat, rabbit, and human hearts, respectively [ 4 ,  5 ]. 

 SERCA2a is a ~110-kDa transmembrane protein that is part of the P-type 
ATPase category. As such, it functions to actively transport Ca 2+  across the SR 
membrane and into the lumen through ATP hydrolysis [ 6 ]. SERCA2a is com-
prised of three distinct regions: the cytoplasmic head, the transmembrane heli-
ces, and the luminal loops [ 7 ]. Together, the transmembrane helices and luminal 
loops create the  transmembrane domain [ 8 ], while the cytoplasmic head can be 
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further subdivided into three different domains: the actuator domain, phosphory-
lation domain, and nucleotide domain. Each of these domains plays an integral 
role in the function of SERCA2a. The transmembrane domain contains two 
binding sites for Ca 2+ , and depending on protein conformation, these binding 
sites can exist in a high- or low- affi nity state [ 9 ]. The actuator domain, which is 
the smallest domain, facilitates the major conformational changes that occur as 
Ca 2+  is transported into the lumen [ 9 ]. Lastly, the interface between the phos-
phorylation and nucleotide domains form the catalytic site where ATP hydrolysis 
occurs [ 10 ].   

 SERCA2a’s major role in Ca 2+  transport has made it of primary interest when 
examining cardiomyopathy. This  chapter   aims to discuss the regulation of SERCA2a 
in the heart, its role in heart failure and the mechanisms affecting SERCA2a expres-
sion and function. It also examines SERCA2a as a therapeutic target for the preven-
tion or treatment of heart failure. Finally, we describe how exercise may affect 
cardiac function by regulating SERCA2a function. An overall summary of the 
mechanisms and pathways affecting SERCA2a can be found in Figs.  11.1  and  11.2 .
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  Fig. 11.1    Summary  of   SERCA2a transcriptional regulation. Factors affected by exercise are also 
noted. Abbreviations: miRNA, Micro RNA; MEF2, Myocyte enhancing factor-2; NFAT, Nuclear 
factor of activated T-cells; SP1, Specifi city protein 1; T 3 /T 4 , Thyroid hormone; PI3K/Akt, 
Phosphatidylinositide 3-kinase/protein kinase 3 pathway; TFAM, Mitochondrial transcription fac-
tor A; TFB2M, Mitochondrial transcription factor B2       
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2          Transcriptional Regulation 

 Multiple isoforms of SERCA have been identifi ed, all of which are encoded by one 
of three SERCA genes: ATP2A1, ATP2A2, and ATP2A3. The human  ATP2A2  gene 
is responsible for encoding the SERCA2a-c isoforms [ 11 ], which are expressed in 
varying quantities throughout the body.  ATP2A2  is located on  chromosomal   region 
12q23-q24.1 and is organized into 22 exons [ 12 ,  13 ]. Alternative splicing at exon 20 
produces either SERCA2a or SERCA2b [ 12 ], where SERCA2a is expressed pre-
dominantly in cardiac and smooth muscle and SERCA2b is expressed in both 
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  Fig. 11.2     Summary   of SERCA2a protein regulation. Factors and pathways affected by exercise 
are also noted. Abbreviations: T 3 /T 4 , Thyroid hormone; PLN, Phospholamban; SLN, Sarcolipin; 
PKA, Protein Kinase A; CAMKII, Ca 2+ /Calmodulin-dependent protein kinase II; STK16, Serine/
threonine kinase 16; SUMO, SUMOylation; Gluth, Glutathionylation; Acetyl, Acetylation; O-glc, 
O-GlcNAcylation; Glycos, Glycosylation       
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muscle and non-muscle cells [ 14 ]. In skeletal muscle, this process is partially 
mediated by a transcriptional factor known as myogenin [ 15 ]; however, little 
research has explored alternative splicing in cardiac muscle. SERCA2c arises from 
a splice variant inserted between exon 20 and exon 21 and is expressed in confi ned 
regions of the cardiomyocyte [ 9 ,  12 ]. The exact role of SERCA2c is yet to be fully 
elucidated. 

 Numerous factors regulate the transcription of  ATP2A2 . Two of these factors, 
mitochondrial transcription factors A (TFAM) and B2 (TFB2M), regulate  ATP2A2  
transcription in the heart by binding to the -122 to -114 and the -122 to -117 regions, 
respectively [ 16 ]. Myocardial SERCA2a transcription is signifi cantly correlated to 
TFAM and TFB2M expression, suggesting TFAM and TFB2M play an essential 
role in the regulation  of   SERCA2a gene transcription. In fact, overexpression of 
TFAM and TFB2M in rat myocardial infarction models increased SERCA2a tran-
scriptional activity twofold and prevented stress-induced reductions of SERCA2a 
mRNA levels [ 16 ]. Furthermore, mutation of  ATP2A2  TFAM and TFB2M binding 
regions signifi cantly reduced SERCA2 gene transcription [ 16 ]. In contrast, diabetic 
hearts and models of heart failure experience a reduction in TFAM levels [ 17 ,  18 ]. 

 Specifi city Protein 1 (SP1) is another transcription factor important to the gene 
regulation of SERCA2. Evidence suggests SP1  promoter   sites are essential for full 
SERCA2a gene transcription [ 19 ,  20 ]. However, SP1 also mediated the decrease of 
SERCA2a mRNA seen in pressure overloaded hearts [ 21 ]. Therefore, SP1 is par-
tially involved in both the basal and pressure-overloaded induced changes in 
SERCA2a transcriptional activity. 

  Myocyte enhancing factor-2 (MEF2)   also mediates genetic transcription of 
SERCA2a. MEF2 is a common target for hypertrophic pathways. Although its exact 
regulation of SERCA2a is yet to be fully elucidated [ 22 ], it appears to upregulate 
SERCA2a transcription in models of hypertrophy [ 23 ,  24 ]. MEF2C works in con-
junction with nuclear factor of activated T-cells (NFAT). In  ischemic   and dilated 
hearts removed from transplant patients, MEF2C and NFAT protein levels were 
signifi cantly correlated [ 25 ], where ischemic heart saw a signifi cant increase  in   both 
proteins [ 25 ]. Additionally, in a study by Vlasblom et al. [ 23 ], co-transfection of 
MEF2C and NFAT stimulated SERCA2a promoter sites, but only when both factors 
were present. This was accompanied by a 2.5-fold increase in SERCA2a mRNA 
[ 23 ]. In contrast to these fi ndings, diabetic patients with heart failure had signifi -
cantly decreased MEF2C and SERCA2a protein levels when compared to heart 
failure patients without diabetes [ 26 ]. While more research is needed in this area, 
MEF2C is another factor to consider when examining the transcriptional regulation 
of SERCA2a. 

 MicroRNAs (miRNAs; miR) are a class of small, noncoding mRNA molecules 
that regulate RNA or protein expression [ 27 ,  28 ]. Since various miRNA recognition 
sites are located within the 3′ untranslated region of SERCA2, it has been suggested 
miRNA may affect cardiac function through regulation of SERCA2a protein expres-
sion. However, the  interaction   between SERCA2a and miRNAs is complex, with 
43–144 miRNAs affecting SERCA2a expression during heart failure [ 27 – 29 ]. 
Furthermore, binding sites located on 3′ UTR can bind with multiple miRNAs, and 
miRNAs themselves can bind with up to 10 different sites [ 29 ]. 
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 Boštjan i  et al. [ 29 ] identifi ed ten different miRNAs upregulated in infarcted 
hearts. Of these 10 miRNAs, miR-25 and -185 have  been   identifi ed as down regula-
tors of SERCA2a specifi cally [ 28 – 30 ]. MiR-25 is upregulated 270 % in failing 
hearts [ 28 ], whereas reducing miR-25  expression   restored end systolic pressure vol-
ume and ejection fraction in pressure-overloaded hearts [ 28 ]. Furthermore, miR-25 
suppression increased total SERCA2a and SUMOylated SERCA2a levels [ 28 ]. 

 In comparison, miR-22 and miR-1 are associated with enhanced SERCA2a 
expression [ 27 ,  31 ]. MiR-22 knockout mice  experienced   prolonged Ca 2+  cytosolic 
decay and a 25 % lower SR Ca 2+  load than controls [ 31 ]. While SERCA2a protein 
expression was not signifi cantly altered in healthy knockout mice, 1 week of trans-
verse aortic constriction decreased SERCA2a protein content 2.4-fold [ 31 ]. 
Accompanying this decrease was 50 % greater fi brosis levels, impaired fractional 
shortening, and increased LV end systolic dimensions [ 31 ]. MicroRNAs and their 
regulation of SERCA2a are yet to be fully understood; however, this remains a 
promising area of research. 

 Recent studies have begun investigating SERCA2a methylation and the role it 
may play in SERCA2a expression and function. Methylation is an epigenetic modi-
fi cation that involves the addition of a methyl group to DNA nucleotide [ 32 ]. Murine 
hearts with transverse aortic constriction (TAC) experienced a signifi cant decrease 
of SERCA2a [ 33 ].  This   was accompanied by decreased methylation at  ATP2A2  
promoter sites and increased methylation at  ATP2A2  repression sites [ 33 ]. Moreover, 
methylation factors were altered after TAC, with displaced demethylases and 
recruited methyltransferases at the  ATP2A2  promoter regions [ 33 ]. Prenatal envi-
ronment can affect methylation and SERCA2a expression. For example, female 
mice exposed to estrogen diethylstilbestrol (DES) in utero had increased levels of 
DNA methylation at the calsequestrin-2 promoter after swim training [ 34 ]. 
Subsequently, SERCA2a and calsequestrin-2 protein expression increased, and car-
diac hypertrophy was prevented in mice treated with DES [ 34 ].  

3     Regulation of SERCA2a in Models of Disease 

 SERCA2a is a key factor in regulating cardiac contractility and relaxation. As such, 
there is a substantial amount of research examining SERCA2a in both animal and 
human heart models. Defective SERCA2a functioning via reduced mRNA, protein 
expression or activity levels leads to abnormal Ca 2+  handling, reduced SR Ca 2+  
uptake  and   ineffi cient energy use [ 11 ,  35 – 37 ]. These traits are commonly character-
ized in patients with heart failure and eventually lead to impaired systolic and dia-
stolic function of the heart [ 11 ,  37 ,  38 ]. In fact, a review of the literature reported 
signifi cant decreases in SERCA2a mRNA and protein levels in various animal mod-
els of heart failure [ 39 ]. Moreover, failing human myocardium experienced up to a 
60 % decrease in SERCA2a mRNA [ 39 ]. Decreases in SERCA2a expression in 
heart failure is accompanied by diminished activity levels. Arai et al. [ 35 ] reported 
a 50 % reduction in Ca 2+  reuptake in right ventricular tissue removed from failing 

N.C. Hamm et al.



193

human hearts. However, this effect may be partially mediated by increases in circu-
lating levels of myocardial C-type natriuretic peptide, a molecule known to increase 
in heart failure [ 40 ]. 

 Diabetic hearts also experience a decrease in SERCA2a expression an activity. 
In diabetic sedentary mice, SERCA2a protein content and maximal SERCA2a 
activity was decreased by 21 % and 32 %, respectively [ 41 ]. This was  accompanied 
  by impaired diastolic function [ 41 ]. Vasanji et al. [ 42 ] reported a decrease in 
SERCA2a protein content and activity in diabetic hearts, but also noted a signifi cant 
increase in phospholamban (see Sect.  4  for more details on phospholamban) to 
SERCA2a protein ratio levels. The underlying mechanisms linking diabetes to 
SERCA2a activity are not yet fully understood; however it may be partially medi-
ated by reduced enzymatic activity of silent information regulation (SIRT) 1 [ 43 ]. 

 Given its integral role in cardiac function, SERCA2a presents a promising target 
for cardiac treatment. In mice with established diabetic cardiomyopathy, condi-
tional expression of SERCA2a restored cardiac function [ 44 ]. Furthermore, activa-
tion of SIRT1 in diabetic heart models increased SERCA2a protein and mRNA 
levels to  near   control values [ 43 ]. In turn, functional parameters of the heart were 
signifi cantly improved [ 43 ]. Transgenic mice overexpressing SERCA1a in the heart 
demonstrated a 170 %, 50 %, and 66 % increase in maximum Ca 2+  uptake velocity, 
peak rate of myocyte shortening, and relengthening, respectively [ 45 ]. However, 
Kalyanasundaram et al. [ 46 ] cautioned against using SERCA1a therapy as a heart 
failure treatment, reporting increased apoptosis, dilated cardiomyopathy, and early 
mortality in calsequestrin defi cient mice over expressing SERCA1a in the heart. 

 SERCA2a therapy in human models of heart failure has also been well received. 
Overexpression of SERCA2a by adenoviral gene transfer in human ventricle car-
diomyocytes increased SERCA2a protein number and activity, induced a faster con-
traction velocity, and  enhanced   relaxation [ 47 ]. Likewise, the CUPID trial found 
that patients with advanced heart failure experienced up to an 88 % risk reduction in 
adverse event occurrence, such as LV assistive device implant, heart transplant and 
death, 12 months after receiving an intracoronary infusion of SERCA2a [ 48 ]. A 
3-year follow-up found those who receive high-dose infusions still had an 82 % risk 
reduction for recurrent cardiovascular events [ 49 ]. Thus, SERCA2a gene therapy 
for the treatment of the diseased human heart appears to be benefi cial.  

4      Protein Regulation of SERCA2a 

  Phospholamban (PLN)   is a 52 amino acid protein that has been well established as 
an inhibitor of SERCA2a activity [ 50 ]. PLN binds to SERCA2a and decreases its 
affi nity for Ca 2+  [ 51 ]. This binding occurs when cytosolic Ca 2+  levels are low and 
PLN is in a dephosphorylated state. In contrast,  phosphorylation   of PLN prevents 
PLN from binding to SERCA2a, allowing SERCA2a to remain active [ 51 ]. This 
occurs through two different mechanisms: Ca 2+ /Calmodulin kinase (CAMKII) 
phosphorylation and protein kinase A (PKA) phosphorylation [ 50 ,  52 ]. CAMKII is 
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a serine/threonine protein kinase that is activated by an increase in cytosolic Ca 2+  
and phosphorylates PLN at the Threonine 17  residue [ 50 ]. Similarly, PKA phosphor-
ylates PLN at the Serine 16  residue [ 5 ,  52 ]; however, PKA phosphorylation is gov-
erned through β-adrenergic stimulation. When β-Agonists bind to receptors, a signal 
transduction pathway is activated that increases production of cyclic AMP (cAMP) 
via adenylate cyclase [ 5 ,  52 ]. This ultimately activates PKA, which phosphorylates 
PLN [ 5 ,  52 ]. Phosphorylation of PLN through either of these mechanisms can 
increase SERCA2a activity up to threefold, increasing relaxation velocity and con-
tributing to the positive inotropic and lusitropic effects of β-adrenergic stimulation 
[ 5 ,  53 ]. 

 Due to its major role in SERCA2a regulation,  PLN   expression is closely related 
to SERCA2a activity. In fact, when compared to wild-type littermates, PLN knock-
out mice experienced signifi cantly greater contraction and relaxation rates, accom-
panied  by   an increase in SERCA2a affi nity for Ca 2+  [ 54 ]. PLN expression varies in 
quantity throughout the body’s tissues. For example, in the murine heart, PLN is 
expressed threefold higher in right ventricle tissues compared to right atrial tissues 
[ 53 ]. Consequently, the relative ratio of PLN:SERCA2a is 4.2-fold lower in the 
atrium and is associated with signifi cantly shortened relaxation and contraction 
times [ 53 ]. Similar fi ndings have been found in the human heart. PLN protein 
expression is 44 % lower in the right atrium, and time to peak tension, time to relax 
and total contraction time are signifi cantly decreased when compared to right ven-
tricle tissues [ 55 ]. These data suggest that PLN expression, along with phosphoryla-
tion, plays a large role in cardiac function though regulation of SERCA2a activity 
in the heart. 

 In diseased states, both  PLN   content   and phosphorylation in the heart are altered. 
As mentioned previously, PLN:SERCA2a ratio is increased in diabetic hearts [ 42 ]. 
Furthermore, PLN phosphorylation by both CAMKII and PKA is signifi cantly 
decreased [ 42 ]. In ischemic and ischemia-reperfused hearts, CAMKII PLN phos-
phorylation is reduced, whereas PKA PLN phosphorylation is diminished in 
ischemia- reperfused hearts only [ 56 ]. Reduced PLN phosphorylation in heart fail-
ure may be partially due to lower levels of taurine, a beta-amino acid found in high 
concentrations in the heart [ 57 ]. 

  Sarcolipin (SLN)   is a homologue to PLN with high amino acid conservation in 
the transmembrane domain [ 58 ,  59 ]. Because  of   this, SLN and PLN likely interact 
with SERCA2a in a similar manner, although the precise regulatory mechanisms 
of SLN are not yet fully elucidated. SLN is a 31 amino acid protein and is thought 
to induce its inhibitory effect by binding directly to SERCA2a and reducing its 
affi nity for Ca 2+  [ 51 ,  60 ]. However, a study suggests SLN acts by reducing the  V  max  
of SECA2a Ca 2+  uptake, and unlike PLN, it can interact with SERCA2a in the 
presence of high Ca 2+  concentrations [ 61 ]. SLN also functions by interacting with 
PLN to create a super-inhibition of SERCA2a [ 58 ,  62 ]. SLN forms a complex with PLN 
that destabilizes PLN pentamers [ 50 ]. This promotes the formation of PLN mono-
mers, the inhibitory form of PLN [ 50 ]. Thus, by enhancing the effects of PLN, 
SLN acts to further reduce SERCA2a activity. 
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 Babu et al. [ 60 ] demonstrated SLN’s effect  by   over expressing SLN in rat myo-
cytes through adenoviral gene transfer. These myocytes experienced a 31 % reduc-
tion in cell shortening compared to  control   myocytes [ 60 ]. SLN’s effect can be 
relieved through phosphorylation. SLN is phosphorylated by serine/threonine 
kinase 16 (STK 16) at Threonine 5 , which promotes dissociation of SLN from 
SERCA2a and subsequently increases SERCA2a activity [ 63 ]. This contributes to 
the relaxant effect of β-adrenergic stimulation [ 63 ]. SLN mRNA is mainly expressed 
in the atrial tissues of the heart [ 60 ]. In fact, Babu et al. [ 60 ] found SLN mRNA 
below detectable levels rat heart ventricle tissues. Similar results have  been   found in 
humans, with SLN mRNA being expressed only atrial tissues of the heart [ 64 ]. 
Given the different expression of SLN and PLN in cardiac muscle, it is thought that 
SLN is responsible for mediating SERCA2a activity where PLN is absent. SLN 
expression is deregulated in conditions of disease, where SLN mRNA and protein 
levels can be increased up to 12- and 6-fold, respectively in ventricle tissues [ 65 ]. 
Beyond SLN’s role in Ca 2+  regulation, it is also involved in thermoregulation by 
promoting SERCA2a uncoupling in skeletal muscle [ 65 ]. This interaction is unique 
to SLN [ 61 ].  

5     Hormonal Regulation of SERCA2a 

 Thyroid hormone can be found in two different forms in the body: levothyroxine 
(T 4 ) and triiodothyronine (T 3 ), where T 3  is the active  form   and T 4  is a prohormone 
that is converted into T 3  or reverse T 3  [ 66 ]. While intracellular T 3  is about 20 times 
more potent than T 4  [ 66 ], administration of both forms has been well documented 
to affect the expression and activity of SERCA2a [ 67 – 71 ]. This effect occurs 
through positive regulation of SERCA2a gene transcription [ 72 ]. Various animal 
models have demonstrated thyroid hormone’s impact on SERCA2a. For example, 
hypothyroid conditions imposed on rat and rabbit cardiomyocytes decreased 
SERCA2a mRNA content to 36–72 % of control levels, whereas hyperthyroid con-
ditions increased SERCA2a mRNA up to 167 % of control levels [ 68 ,  70 ,  71 ,  73 ]. 
Furthermore, administration of T 3  to hypothyroid rat hearts signifi cantly increased 
SERCA2a mRNA levels 2 h after injection, and normalized it 5 h after injection 
[ 71 ]. Similar results have been found with SERCA2a protein levels, with hypothy-
roid conditions decreasing protein content 11 %–26 % [ 69 ,  73 ], and hyperthyroid 
conditions increasing content 34 %–88 % [ 67 ,  69 ]. 

 In addition to its direct  regulation   of SERCA2a, thyroid hormone further affects 
SERCA2a activity by regulation of PLN. Thyroid hormone affects PLN in an oppo-
site manner to SERCA2a, where a decrease of T 3  or T 4  upregulates PLN, and an 
increase downregulates PLN. Reed et al. [ 73 ] demonstrates this in mice hearts, 
where hypothyroidism increased PLN mRNA and protein levels 28 % and 20 %, 
respectively and hyperthyroidism decreased PLN mRNA and protein levels 13 % 
and 30 %, respectively. Similar fi ndings have been reported with rat and rabbit 
hearts. Hyperthyroid conditions induced up to a 50 % decrease in PLN mRNA and 
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a 25 % decrease in protein levels [ 68 – 70 ]. On the other hand, hypothyroid condi-
tions increased PLN protein content 35 % in rat cardiomyocytes [ 69 ]. 

 Coinciding to the changes in SERCA2a and PLN expression,    thyroid hormone 
also induces a change in cardiac function. Chang et al. [ 67 ] found administering T 4  
to rats with aortic banding eliminated abnormal myocardial functioning and 
increased contractility, relaxation speed, and cytosolic Ca 2+  removal when compared 
to controls. Additionally, both rabbit and rat hyperthyroid hearts have greater Ca 2+  
maximal uptake than euthyroid hearts [ 68 ,  69 ]. A review by Novitzky and Cooper 
[ 66 ] presents thyroid hormone as a possible treatment for patients with “stunned 
myocardium,” a condition where myocardial function is depressed due to global or 
regional ischemic events. These data demonstrate that through regulation of 
SERCA2a and PLN, thyroid hormone presents a possible means of reversing cardiac 
dysfunction and inhibiting cellular damage caused by ineffective Ca 2+  cycling. 

 Another hormone responsible for the regulation of SERCA2a is  adiponectin  . 
Adiponectin is an adipocyte-derived peptide  hormone   that is inversely related to 
traditional cardiovascular risk factors, such as blood pressure, heart rate, and cho-
lesterol and triglyceride levels [ 74 ,  75 ]. It also possesses antioxidant and anti infl am-
matory qualities [ 75 ,  76 ]. These cardioprotective properties are thought to occur 
through the modulation of SERCA2a activity [ 74 ]. Adiponectin appears to affect 
SERCA2a through PLN phosphorylation and the PI3K/Akt signaling pathway [ 74 ]. 
In a study by Safwat et al. [ 74 ], administration of globular adiponectin signifi cantly 
restored SERCA2a activity in rats with induced ischemia/reperfusion injury. 
Additionally, the p-PLN/PLN ratio was signifi cantly increased, suggesting PLN 
phosphorylation may be the mechanism adiponectin uses to increase SERCA2a 
activity [ 74 ]. Accompanying the increase in SERCA2a activity and PLN phosphor-
ylation was a 139 % increase ( p  < 0.05) in p-Akt/Akt ratio [ 74 ]. Adiponectin induced 
benefi ts to cardiac function were abolished with administration of LY294002, an 
inhibitor of PI3K, confi rming that PI3K/Akt pathway activation is essential for 
globular adiponectin to exert its effect on SERCA2a [ 74 ]. 

 Other studies examining  adiponectin   and   SERCA2a activity have shown similar 
results to Safwat et al. [ 74 ]. Adiponectin gene therapy signifi cantly increased 
SERCA expression in skeletal muscle of diabetic rats [ 77 ]. This restoration was 
furthered by a 9 week swimming exercise protocol [ 77 ]. Additionally, treatment of 
H9C2 cardiomyoblasts in an adiponectin-enriched medium signifi cantly increased 
SERCA2a expression and decreased in infl ammatory markers compared to cardio-
myoblasts in an adiponectin depleted culture [ 78 ]. In contrast, induction of ER 
stress through tunicamycin treatment reduced SERCA2a expression, adiponectin, 
and adiponectin receptor 1 by as much as 50 % [ 78 ].  

6     Posttranslational Modifi cation Regulation of SERCA2a 

 Various posttranslational modifi cations have been found to affect the activity of 
SERCA2a. Some of these modifi cations are currently being researched, and as 
such, the process and effects of these modifi cations are yet to be fully elucidated. 
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This section will examine current knowledge of nitration, glutathionylation, 
SUMOylation, acetylation, glycosylation and O-glcNAcylation and their role in 
SERCA2a function. 

 Nitration is a  chemical   process where a nitro group is added to a protein. Nitration 
inhibits SERCA2a activity through the polyol pathway, a pathway that contributes 
to oxidative stress in hyperglycemic conditions [ 79 ,  80 ]. In fact, levels of nitrotyro-
sine on SERCA2a were signifi cantly increased in high-glucose perfused rat hearts 
compared to hearts perfused with normal glucose levels [ 80 ]. Studies on the human 
heart found nitrotyrosine levels to be nearly doubled in idiopathic dilated cardio-
myopathic hearts compared to age matched controls [ 79 ]. This was accompanied by 
a signifi cant positive correlation between time to half relaxation and nitrotyrosine to 
SERCA2a ratio [ 79 ]. This suggests SERCA2a nitration can substantially affect car-
diac function [ 79 ]. However, nitration’s exact role in normal regulation of SERCA2a 
is yet to be defi ned. 

 Glutathionylation is the process where a disulfi de bond is formed between the 
cysteine of a  protein   and glutathione (GSH) [ 81 ]. In SERCA2a, glutathionylation 
occurs predominately on cysteine 674  [ 82 – 84 ] and subsequently increases SERCA2a 
activity and Ca 2+  uptake [ 82 ,  84 ,  85 ]. It is well documented that nitric oxide (NO) 
causes muscle relaxation through cGMP and protein kinase G. However, NO 
appears to induce relaxation by increasing SERCA2a glutathionylation as well [ 86 ]. 
Exposure to low amounts of oxidative species including NO, Perioxynitrate 
(ONOO − ) and nitroxyl can increase SERCA2a activity 45–60 % in cardiac muscle 
cells [ 83 – 86 ]. However, it should be noted that NO cannot act alone, and must be 
combined with the superoxide radical to form ONOO −  before it can react with cyto-
solic GSH and glutathionylate cys 674  [ 82 ]. 

 While low amounts (10–100 μM) of oxidative species increases SERCA2 activ-
ity, transgenic mice exposed to high amounts (>100 μM) experienced a decrease 
SERCA2 activity [ 82 ]. Glutathiolyation can normally be reversed either  chemically 
  or enzymatically, but in cases such as atherosclerosis where there is a chronic 
increase in oxidative species, cys  674  is irreversibly oxidized to sulfonylation [ 82 , 
 84 – 86 ]. Consequently, further glutathiolation and activation of SERCA2a is pre-
vented [ 82 ,  84 ]. This causes a subsequent decrease in SERCA2a activity, which can 
lead to heart failure.  Substances   known to reverse glutathiolation, such as dithioth-
reitol, can help prevent SERCA2 inactivation, but are unable to reverse oxidation 
once it has occurred [ 85 ,  86 ]. 

 SUMOylation and its effect on SERCA2a is a promising area of research when 
examining  SERCA2a   protein stability and function. SUMOylation occurs through 
the binding of small ubiquitin-like modifi er 1 (SUMO1) to the lysine  480  and lysine 585  
residues of SERCA2a [ 87 ,  88 ]. This modifi cation is thought to have  cardioprotective 
properties [ 87 ,  88 ]. In heart failure, there is a 30 %–40 % decrease in SUMO1, 
which is accompanied by a decrease in total SERCA2a SUMOylation [ 87 ]. 
Moreover, downregulation of SUMO1 using small hairpin RNA reduced SERCA2a 
protein levels by 40 % [ 87 ]. This is likely due to lower levels of SERCA2a 
SUMOylation reducing SERCA2a half life from 5.9 to 4.9 days [ 87 ]. SUMOylation 
proved to be a potential therapeutic means when injection of SUMO1 to pressure 
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overloaded hearts signifi cantly improved cardiac performance and restored 
SERCA2a function and mRNA expression to almost normal levels [ 87 ,  88 ]. The 
mechanisms SUMOylation uses to rescue SERCA2a function are yet to be fully 
elucidated. However, it is thought that SUMOylation competes with other posttrans-
lational modifi cations, such as ubiquitination or acetylation, to increase SERCA2a’s 
stability and prevent degradation [ 87 ]. SERCA2a SUMOylation also appears to 
increase SERCA2a ATPase activity by increasing its sensitivity to ATP [ 87 ]. 

  Acetylation/deacetylation involves   the attachment, or removal, of an acetyl 
group from a molecule. Its precise role in SERCA2a regulation has yet to be exam-
ined, although it may regulate SERCA2a in a manner opposite to SUMOylation 
[ 89 ]. Three potential acetylation sites were identifi ed within the nucleotide-binding 
domain of SERCA2a: lysine 464 , lysine 510 , and lysine 533  [ 90 ]. Therefore, acetylation/
deacetylation could play a role in cardiac muscle Ca 2+  cycling [ 90 ]. Kho et al. [ 87 ] 
reported increased SERCA2a acetylation in failing hearts, which could be reversed 
with sirtuin-1 deacetylase, but no data was given to validate this statement. Although 
current evidence is limited, acetylation/deacetylation is a potential regulator of 
SERCA2a activity. 

 Glycosylation occurs when a saccharide is attached to a protein. This can be 
done enzymatically or nonenzymatically, where the nonenzymatic reaction is better 
known as glycation. An increase in glycosylation has been associated with a 25–45 
% decrease in SERCA2a mRNA and protein levels [ 91 ,  92 ] and a 40 % increase in 
PLN levels [ 92 ].  This   combination results in an overall decrease in SERCA2a activ-
ity, reducing Ca 2+  transport into the SR. Since elevated levels of glucose appears to 
increase SERCA2a glycosylation, this area remains of particular interest when 
examining the relationship between diabetes and heart disease [ 91 ,  92 ]. 

 O-glcNAcylation is a specifi c form of glycosylation where a single O-linked 
 N -acetylglucosamine is either added  or   removed from a serine or threonine residue 
[ 91 ,  93 ,  94 ]. O-glcNAcylation reduces SERCA2a activity through direct regulation 
SERCA2a and modifi cation of PLN [ 91 ,  93 ,  95 ]. High-glucose treated rat cardio-
myocytes had substantially increased levels of nuclear O-glcNAclyation, accompa-
nied by a 28–37 % and 25 % reduction in SERCA2a mRNA and protein expression, 
respectively [ 91 ]. Additionally, cardiomyocytes injected with an O-glcNAc- 
transferase had a 47 % decrease in SERCA2a expression when compared to con-
trols [ 91 ]. In contrast, reducing cellular O-glcNAcylation through an adenovirus 
expressing O-glcNAcase increased SERCA2a protein expression 40 %, reduced 
PLN protein 50 %, and increased PLN phosphorylation twofold [ 94 ]. SERCA2a 
O-glcNAcylation may be partially mediated by SP1, as SP1 is known to be heavily 
O-glcNAcylated and is directly involved in the transcription of SERCA2a [ 20 ,  96 ].  

7     Regulation of SERCA2a in Models of Exercise 

 It has been  well   documented that exercise increases cardiac function through 
enhanced SERCA2a Ca 2+  uptake, especially in models of cardiovascular disease 
[ 97 ]. This can occur as a result of direct regulation of SERCA2a transcription and 
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activity, or through modifi cations of the regulatory processes discussed earlier in 
this chapter. Here, we examine the various processes by which exercise regulates 
SERCA2a. 

 Aerobic exercise in hypertensive rats signifi cantly increased cell contractility 
and Ca 2+  transport [ 97 ]. These  changes   were partially due to increased PLN phos-
phorylation and SERCA2a mRNA expression [ 97 ]. Similar results were demon-
strated in mice with induced heart failure. Aerobic interval training improved atrial 
myocyte shortening by 89 % and restored SERCA2a function to near control levels 
[ 98 ]. Additionally, genetic mouse models of sympathetic hyperactivity-induced 
heart failure experienced greater peak Ca 2+  transient levels and reduced diastolic 
Ca 2+  decay time after 8 weeks of aerobic training [ 99 ]. These results were enhanced 
with administration of carvidilol, a beta-blocker used to treat heart failure [ 99 ]. 
Similar benefi ts have been demonstrated in diabetic models as well. For example, 
voluntary wheel running in diabetic mice attenuated the decrease in diastolic func-
tion and SERCA2a content and activity [ 41 ]. Even when disease is absent, cardiac 
function increases in response to exercise. Kemi et al. [ 100 ] reported a 60 % and 50 
% increase in fractional myocyte shortening and Ca 2+  transient amplitude, respec-
tively, in aerobic interval trained mice. With these adaptations was a 25 % increase 
in SERCA2a protein content [ 100 ]. Wisløff et al. [ 101 ] report comparable fi ndings 
in exercise trained mice, where SERCA2a protein content increased 82 % and Ca 2+  
cycling and sensitivity was signifi cantly increased compared to sedentary mice. The 
effects of exercise training on SERCA2a require a stimulus to be maintained. For 
example, Carneiro-Júnior et al. [ 97 ] noted cardiac adaptations to exercise were 
reversed to control levels after 4 weeks of detraining. Despite these data, some stud-
ies have reported that exercise training in aging models was not able to change age 
related degradations to SERCA2a and cardiac function [ 102 ]. 

 Exercise may partially mediate its effect of SERCA2a through regulation of 
TFAM and TFB2M [ 16 ]. Aerobic fi tness is positively correlated with mitochondrial 
biogenesis [ 103 ], and thus, requires an increase in  mitochondrial   transcription fac-
tors such as TFAM and TFB2M. TFAM protein expression was signifi cantly higher 
in elite athletes compared to moderately active individuals [ 103 ], and in male par-
ticipants, TFB2M mRNA levels nearly doubled after 10 days of exercise training 
with restricted blood fl ow [ 103 ]. Moreover, exercise training in hyperglycemic mice 
restored TFAM protein to control levels [ 104 ]. Therefore, it is likely exercise affects 
SERCA2a transcription through regulation of TFAM and TFB2M. 

 Exercise also affects SERCA2a activity by regulating PLN phosphorylation 
[ 105 ]. In aged, ovariectomized rats, exercise training reversed reduced PLN 
phosphorylation at Threonine 17  and normalized SERCA2a activity [ 105 ]. 
Furthermore, aerobic exercise in hypertensive rats signifi cantly increased PLN 
phosphorylation at both  Serine 16    and Threonine 17  [ 106 ]. This contributed to an 
improved inotropic and lusitropic response to β-adrenergic stimulation [ 106 ]. 
Exercise’s effect on PLN phosphorylation may be partially mediated through 
CaMKII phosphorylation [ 100 ]. Aerobic interval training increases CaMKII 
Threonine 287  phosphorylation, indicating activation [ 100 ]; this would contribute 
to the increase in PLN Thr17  phosphorylation observed [ 100 ]. Accompanying the 
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increase in PLN phosphorylation, exercise reduces PLN:SERCA2a expression 
ratios, further enhancing SERCA2a activity [ 100 ]. 

 Exercise has varying effects on circulating thyroid hormone, where intense exer-
cise reduces free T 3  (fT 3 ) and T 3  and increases T 4 , free T 4  (fT 4 ), and thyroid stimulat-
ing hormone [ 107 – 109 ]. These changes are acute  and   most likely due to suppression 
of T 4  to T 3  conversion [ 108 ]; given proper recovery, thyroid hormone levels are 
restored within 72 h [ 108 ]. In contrast, chronic exercise is associated with a signifi -
cant increase in thyroid hormone levels. Four weeks of treadmill training increased 
T 3  and T 4  in hypothyroid rats to near control levels [ 110 ]. This would suggest a 
subsequent upregulation of SERCA2a. In fact, 4 weeks of wheel running in adult 
male rats signifi cantly increased thyroid hormone receptor β1 mRNA nearly two-
fold, which would augment transcription of downstream thyroid hormone target 
genes, such as SERCA2a [ 111 ]. As such, it is likely exercise partially mediates 
SERCA2a expression through thyroid hormone regulation. 

 More research is needed to fully understand how adiponectin responds to exer-
cise; however, studies suggest physical activity increases adiponectin levels. Cross- 
sectional studies report positive correlations between physical activity levels and 
adiponectin [ 112 ,  113 ], and intervention studies produce similar results. For exam-
ple, obese  individuals   randomized to a controlled physical activity-behavior-diet- 
based lifestyle intervention for 3 months experienced a 34 % increase in adiponectin 
concentration [ 114 ]. Nevertheless, not all studies agree with these results. In a sys-
tematic review by Simpson & Singh [ 115 ], less than half the studies on chronic 
exercise and adiponectin reported signifi cant results. While this does not mean exer-
cise does not regulate adiponectin, more rigorous and long-term studies are needed. 

 Researchers examining exercise and posttranslational modifi cations have mainly 
focused on O-glcNAcylation. Six weeks of exercise training in mice decreased 
O-glcNAcylation 40–75 %, which was paired with a 30 % increase in SERCA 
mRNA [ 93 ,  96 ]. Moreover, mice trained at a high running capacity had a signifi -
cantly lower O-glcNAcylated SERCA2a to total SERCA2a ratio than mice trained 
at a low running capacity [ 116 ]. Swim- trained   mice experienced a reduction in 
O-glcNAcylated SP1, suggesting SP1 may be involved in exercise regulation of 
SERCA2a [ 96 ]. It is possible physical activity reduces O-glcNAcylation through 
regulation of glucose levels, as O-glcNAcylation increases in the presence of glu-
cose [ 91 ]. Research on exercise’s effect of other posttranslational modifi cations if 
needed to further understand how exercise regulates SERCA2a.  

8     Conclusion 

 Regulation of SERCA2a is governed by numerous factors, such as gene transcrip-
tion, posttranslational modifi cations, and endogenous proteins. Given its critical 
role in heart function and failure, an abundance of research has focused on 
SERCA2a’a function, regulation, and how it can be used as a therapeutic target. 
Some of these areas, such as SUMOylation, acetylation, and microRNAs, have yet 
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to be fully elucidated. Exercise has also presented itself as a possible means of 
effective therapy, although more research is needed on the exact mechanisms here 
as well. Overall, SERCA2a remains a promising target to maintain and restore heart 
function and enhance longevity and quality of life.     
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 Calcium Handling in Pulmonary Vasculature 
Under Oxidative Stress: Focus on SERCA                     
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    Abstract     Maintenance of cytoplasmic calcium ([Ca 2+ ] i ) at physiological level is 
a constant challenge for every cell including endothelial and smooth muscle cells 
of pulmonary vasculature. The cells are equipped with complex regulatory mech-
anisms to deal with a relatively large Ca 2+  gradient that exists not only between 
intracellular and extracellular spaces but also between cytoplasm and sarco(endo)
plasmic reticulum [S(ER)]. Cells usually achieve their goal either by using plasma 
membrane Ca 2+ -ATPase (PMCA) as an export mechanism or by using S(ER) 
Ca 2+ -ATPase (SERCA) as a sequestering mechanism in the S(ER) stores. The 
S(ER) Na + /Ca 2+  exchanger (NCX) also plays an important role along with SERCA 
in regulating [Ca 2+ ] i . Exposure to air pollutants, cigarette smoke, suspended par-
ticulate materials, pesticides and subsequent generation of free radicals especially 
by infl ammatory and vascular cells have been identifi ed as a threat to the normal 
functioning of pulmonary vasculature. The complete sets of events that lead to 
activation of infl ammatory and vascular cells remain unclear. However, a consid-
erable number of reports suggest that a correlation exists between reactive oxy-
gen species (ROS) and Ca 2+ -ATPase regulation. This chapter provides a glimpse 
on oxidant mediated regulation of Ca 2+ -ATPases in pulmonary vasculature with 
special attention to SERCA.  
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1         Introduction 

 Physiological cytoplasmic  calcium   concentration ([Ca 2+ ] i ) is ~50−150 nM, while 
the extracellular Ca 2+  concentration is relatively high ~1.0−2.5 mM. A large gradi-
ent of Ca 2+  concentration exists between two spaces and also between cytoplasm 
and intracellular Ca 2+  stores. Maintenance of low [Ca 2+ ] i  is a challenge for cells for 
proper physiological function. Cellular Ca 2+  homeostasis is largely controlled by the 
plasma membrane Ca 2+ -ATPase (PMCA) [ 1 ,  2 ], which exports cytoplasmic Ca 2+  ion 
and imports extracellular protons at the expense of ATP. SERCA pumps also con-
tribute signifi cantly by controlling the [Ca 2+ ] i  infl ux into the S(ER) [ 3 ,  4 ]. When 
[Ca 2+ ] i  is elevated, the plasma membrane Na + /Ca 2+  exchanger (NCX) works in for-
ward mode exporting one Ca 2+  against the import of three Na +  [ 5 ,  6 ]. Reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) are mediators of cell 
signaling in airway, pulmonary epithelial and arterial cells by a variety of toxic 
agents including cigarette smoke, asbestos, silica, airborne particulate matter, auto-
mobile exhaust, and ozone (O 3 ). 

 A considerable number of reports suggest a role of ROS in regulating Ca 2+ -
ATPase activity [ 7 – 15 ]. The concentration of  ROS in   the vasculature is normally 
balanced mainly by activities of superoxide dismutase (SOD) and catalase, thus 
converting potentially damaging free radicals into harmless molecules. When the 
balance is disrupted due to some pathophysiological conditions such as ischemia 
reperfusion (IR) injury and infl ammation or atherosclerotic-lesion formation, an 
increase in ROS occurs in the vasculature. An increase in ROS such as superoxide 
(O 2  −• ) and hydroxyl radical (OH • ) production may lead to changes in cell signaling. 
During IR injury, impaired calcium regulation is one of the major consequences 
observed in blood vessels. Because ROS are increased during ischemia and have 
been linked to multiple effects on calcium signaling in both the endothelium and 
smooth muscle, it is likely that the signals affected by ROS are important mediators 
of vascular injury. The evidence supporting a role of ROS in arterial dysfunction is 
complicated by differences in the type of radical species examined and variations in 
pathophysiological conditions [ 16 ]. Pesticides [ 17 ], air pollution [ 18 ,  19 ] and 
inhaled ultra fi ne particles [ 20 ] also contribute signifi cantly in developing oxidative 
stress in pulmonary vasculature.  

2     Lung Diseases and Oxidants 

 Infl ux of activated infl ammatory cells to the lung is a common feature that lung is 
challenged with air pollution related health hazards. Generation of free radicals by 
activated infl ammatory cells is also involved in the oxidative stress associated with 
air pollution. Signals, for example, activated lipids may stimulate transcription fac-
tors such  as   nuclear factor-κB (NF-κB) and increased expression of a range of pro-
infl ammatory chemokines and cytokines. Using molecular oxygen, the NADPH 
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oxidase produces O 2  −•  and that becomes modifi ed by SOD resulting in the formation 
of hydrogen peroxide (H 2 O 2 ). Due to the cell permeable characteristics of H 2 O 2 , it 
can easily cross cell membranes and activates different intracellular signaling path-
ways, or lead to the generation of other potent ROS, for example, OH • . Alternatively, 
myeloperoxidase, which is also released by the neutrophil, uses H 2 O 2  as a substrate, 
and produces hypochlorous acid (HOCl), another potent oxidant. The infl ux and 
subsequent activation of infl ammatory cells creates a second wave of oxidative 
stress that severely compromise endogenous antioxidant defenses in the lung [ 18 ].  

3     Lung Diseases, PAH, and SERCA 

  Pulmonary arterial hypertension (PAH)   is usually associated with high blood pres-
sure in the pulmonary artery (PA) [ 21 ]. This often  is   associated with a variety of 
lung diseases and/or hypoxemia [ 22 ]. PA wall thickening [ 23 ], right ventricular 
hypertrophy and failure [ 24 ,  25 ], PA embolism [ 22 ], and some lung diseases such as 
interstitial lung disease (ILD) [ 26 ] and chronic obstructive pulmonary disease 
(COPD) [ 22 ] have been identifi ed in patients with PAH. Idiopathic pulmonary 
fi brosis (IPF) has also been implicated in developing PAH in humans [ 27 ]. Though 
it is very common in patients suffering from lung diseases are often diagnosed with 
PAH, no direct evidence is currently available showing relationship between lung 
diseases and SERCA in the development of PAH.  

4     Inhaled Oxidants and Cigarette Smoke 

 Inhalation of cigarette  smoke   and airborne pollutants, either oxidant gases such as 
O 3 , NO, sulfur dioxide (SO 2 ), or H 2 O 2  results in direct lung damage as well as in the 
activation of infl ammatory responses in lungs. Cigarette smoke is a  complex   mix-
ture of over thousands of chemical compounds, including high concentrations of 
reactive free radicals [ 28 ]. Cigarette smoke causes a signifi cant fall in the endoge-
nous anti-proteinases (e.g., α1-PI) activity of bronchoalveolar lavage fl uid [ 29 ].  

5     Sources of ROS in the Pulmonary Vasculature 

 Vascular insults, such as IR or infl ammation, result in the release of H 2 O 2  from 
polymorphonuclear leukocytes (PMNL) or monocytes. In addition, both endothelial 
cells and smooth muscle cells produce a variety of oxidant species that  may   have 
both direct and indirect effects on cell signaling [ 30 ]. Substantial amount of research 
have revealed that ROS are produced in pulmonary artery by fi broblasts [ 31 ], 
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endothelial cells [ 32 ,  33 ] and smooth muscle cells [ 34 ]. Following sections briefl y 
states the physiological sources of different ROS in pulmonary artery endothelial 
and smooth muscle cells. 

5.1     Nitric Oxide (NO) 

 NO plays an  important   role in maintaining low blood pressure in the pulmonary 
circulation. NO is produced in pulmonary artery smooth muscle (PASM) by enzy-
matic oxidation of endogenous substrate  L -arginine by  nitric   oxide synthase (NOS) 
when exposed to infl ammatory cytokines, tumor necrosis factor- α (TNF-α), and 
interferon-γ (IFN- γ) [ 35 ]. Being a gas, NO rapidly diffuses through membranes and 
activates guanylyl cyclase, which increases cellular cGMP. The resulting activation 
of cGMP-dependent protein kinase leads to smooth muscle relaxation and thereby 
decreases pulmonary vascular tone [ 36 ]. A simplifi ed cartoon showing NO, oxida-
tive stress and infl ammation in PAH is depicted in Fig.  12.1 .

5.2        Superoxide (O 2  −• ) 

 In  some   pathophysiological conditions, such as in IR injury, excessive production of 
O 2  −•  in vascular cells plays an important role in intracellular signaling pathways by 
affecting NO synthesis. The most important source of O 2  −•  in the  pulmonary   vascu-
lature is the NADPH oxidase [ 34 ]. Agonists such as angiotensin II and TNF-α 
increase membrane associated NADPH oxidase derived O 2  −•  production in vascular 
smooth muscle cells (VSMCs) [ 34 ,  37 ]. In this context, we have demonstrated stim-
ulatory role of protein kinase C (PKC) in the generation of NADPH oxidase derived 
O 2  −•  during treatment of bovine pulmonary artery smooth muscle cells (PASMCs) 
with the thromboxane A 2  mimetic U46619 [ 38 ].  

5.3     Peroxynitrite (ONOO − ) 

 ONOO − , a highly reactive species that affects multiple cellular responses and sig-
naling pathways, is formed by a  reaction   between O 2  −•  and NO. Under normal cir-
cumstances, the balance between the rates of O 2  −•  and NO formation is modulated 
by the concentration of both the  intracellular   and extracellular forms of SOD, which 
converts O 2  −•  to H 2 O 2  [ 39 ]. ONOO −  has been demonstrated as an extremely reactive 
species and is of signifi cant importance within the vasculature. Recent research has 
proved that ONOO −  as an important contributor towards various pathophysiological 
conditions in the lung, for example, PAH [ 40 – 42 ].   
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6     SERCA and Pulmonary Arterial Calcium Homeostasis 

   SERCA is an important player in developing pathology of pulmonary vasculature 
[ 43 ]. The wide array  of   research performed on SERCA subtypes and their specifi c 
roles in cardiac, vascular and skeletal muscle have identifi ed 14 genes with different 

  Fig. 12.1    Nitric oxide, oxidative stress, and infl ammation in pulmonary hypertension. Despite 
advancements in PAH  research   in the last 20 years, the initiating factors in most patients remain 
unclear. Whatever the initiating insult, endothelial cell activation occurs, leading to an increase in 
the expression of cell adhesion molecules and production of chemokines and cytokines. Infi ltration 
of infl ammatory mediators (lymphocytes, monocytes, and macrophages) occurs as well as produc-
tion of growth factors. Disturbance of the endothelial cells also results in an alteration of nitric 
oxide signaling leading to a decrease in eNOS expression and NO production. Shear stress on 
vascular wall and infl ammatory infi ltrates can lead to the activation of oxidative stress mechanisms 
such as superoxide generating NADPH oxidase, mitochondrial reactive oxygen species (ROS) 
production, decreases in hydrogen sulfi de (H 2 S) levels and increases in serotonin (5-HT) levels. 
These mechanisms act cumulatively causing a decrease in vasodilators (NO, prostacyclins) and an 
increase in vasoconstrictors (ET-1, thromboxanes). This imbalance of vasoactive substance lead to 
endothelial cell dysfunction and smooth muscle cell proliferation and hyperplasia that eventually 
causes vascular remodeling and narrowing of the pulmonary arteries. Occlusion of the pulmonary 
arteries increase pulmonary vascular resistance (PVR) and pulmonary artery blood pressure 
(PABP) leading to pulmonary arterial hypertension. Taken from Ref. [ 135 ] with permission       
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functional  characteristics   and cell-specifi c expression patterns [ 43 ]. Most of the 
VSMCs in mature vessels exhibit a quiescent/contractile phenotype and controls the 
vascular tone. In different types of VSMCs, enormous variations do exist with 
regard to the mechanisms responsible for generating Ca 2+  signal. In each VSMC 
phenotype, the Ca 2+  signaling mechanism is specifi cally adapted to its particular 
function [ 44 ]. 

 SERCA is a 110 kDa protein which accumulates calcium into the S(ER) of all 
cells. SERCA2a and SERCA2b were known to express in rat pulmonary arterial 
smooth muscle (PASM), whereas SERCA1 or SERCA3 expression remain unde-
tected [ 45 ]. Both the isoforms: SERCA2a and SERCA2b were differentially distrib-
uted within isolated rat PASM cells and both isoforms seem to participate in the 
basal calcium uptake [ 46 ]. Two isoforms are specifi cally distributed in two different 
regions of SR. SERCA2a has been shown to localize in a region comprising ryano-
dine receptor 3 (RyR3) proximal to the nucleus within PASMCs, whereas SERCA2b 
is present in a different region of SR compartment proximal to the plasma mem-
brane where ryanodine receptor 1 (RyR1) is localized [ 45 ]. A schematic representa-
tion of the spatial and functional compartmentalization of the SERCA isoforms in 
pulmonary arterial smooth muscle cell is shown in Fig.  12.2 .

   Distinct difference in SERCA gene expression pattern exists between endothe-
lium of veins and arteries. Endothelium from rat coronary artery, coronary vein and 
aorta were reported to express both SERCA2 and SERCA3 mRNA, whereas smooth 
muscle cells only express SERCA2 mRNA [ 47 ]. 

 Pulmonary circulation is a low pressure and fast fl ow system with a very thin 
wall thickness.  PAH   is a disease of the small pulmonary arteries associated with 
vascular narrowing due to vascular wall thickening leading to progressive increase 
of pulmonary vascular resistance. The terminal observation of such disease process 
is the failure of right ventricle due to intolerance in increased right ventricular after-
load [ 48 ]. PAH is mainly characterized by dysregulated proliferation of PASMCs 
leading to abnormal vascular remodeling. New ideas and hypotheses are evolving in 
an effort to correlate regulation of SERCA, pulmonary vascular remodeling and the 
development of PAH. Experimental evidences have established SERCA2a regula-
tion and pulmonary vascular remodeling as an important mechanism for PAH 
pathophysiology [ 49 ]. Pulmonary vascular remodeling occurs as a result of pulmo-
nary vascular endothelial dysfunction, PASMC proliferation/migration, hypertro-
phy, infl ammation and thrombosis in situ causes formation of plexiform lesions, 
which are the hallmarks of the disease [ 50 ,  51 ]. These remodeled vessels, together 
with an imbalance in vasodilators and vasoconstrictors, contribute to increased pul-
monary vascular resistance resulting in right ventricular hypertrophy. 

 So far pharmacological intervention to treat the disease is pretty much limited, 
with documentation of meager numbers of survival outcome. When SERCA2a is 
downregulated, [Ca 2+ ] i  levels are increased resulting in hypertension. In rat vascular 
injury models, VSMCs isolated from media of the thoracic aorta showed downregu-
lation of SERCA2a expression and an increase in [Ca 2+ ] i  with subsequent VSMC 
proliferation and an increase in neointima formation [ 52 ]. 
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 Gene transfer of SERCA2a to upregulate its protein expression to better handle 
elevated [Ca 2+ ] i  has been demonstrated in animal models [ 52 ,  53 ]. SERCA2a gene 
transfer has also been shown to ameliorate endothelial dysfunction by increasing 
eNOS expression and activity [ 52 ,  53 ]. SERCA2a gene transfer using adeno- 
associated virus serotype 1 has been studied and validated extensively in the ven-
tricular myocardium and was shown to improve left ventricular systolic function 
and ventricular remodeling in rat and swine preclinical models of heart failure [ 54 ]. 
It has, therefore, been hypothesized that SERCA2a is downregulated in pulmonary 
arterioles in PAH and that gene transfer of SERCA2a prevent or ameliorate pulmo-
nary vascular remodeling and right ventricular dysfunction in PAH [ 49 ]. The thera-
peutic potential of SERCA2a gene transfer to target pulmonary vascular dysfunction 
in human PAH has not yet been ascertained.    

  Fig. 12.2    Schematic representation of the spatial and functional  compartmentalization   of the 
SERCA isoforms in a pulmonary arterial smooth muscle cells. NCX, sodium/calcium exchanger; 
PKA, cAMP-dependent protein kinase; ARC, ADP-ribosyl cyclase; cADPR, cyclic adenosine 
diphosphate-ribose; MLCK, myosin light chain kinase. Taken from Ref. [ 45 ] with permission       
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7     PASMCs, ROS and SERCA 

 Most of the effects of ROS on calcium signaling in the pulmonary artery are due to 
the endothelial effects. There are evidence that ROS generated in the endothelium 
can directly affect calcium homeostasis in the adjoining smooth muscle cells [ 7 ,  55 , 
 56 ]. Most evidence supports a primary role of ROS in the inactivation of SERCA in 
smooth muscle [ 14 ,  57 ] and in other cell types [ 58 – 62 ]. The effects of oxidants on 
SERCA are tissue specifi c. In cardiac myocytes SERCA has been reported to have 
a reactive thiolate anion  on   cysteine-674, which when adducts with glutathione 
increases Ca 2+  uptake [ 12 ]. The same reactive thiol  is   quantitatively and irreversibly 
oxidized in vitro by relatively high dose of ONOO − . Despite the requirement for this 
high concentration, chronically elevated oxidants oxidize SERCA in diseased tis-
sues [ 13 ,  15 ]. Using plasma membrane and ER enriched fractions of coronary 
artery, Grover and Samson [ 10 ] demonstrated inactivation of both the PMCA and 
SERCA by X/XO system [ 10 ]. Preincubation with SOD, but not catalase, amelio-
rate the inactivation, suggesting involvement of O 2  −•  in this scenario [ 10 ]. 

 The mechanism of  SERCA   inhibition by O 2  −•  occurs possibly through the irre-
versible oxidation of sulfhydryl groups or by direct attack on the ATP binding site. 
Inhibition of SERCA by oxidation of sulfhydryl groups is supported by the ability 
of reducing agents and cysteine to prevent inhibition, the decline in sulfhydryl con-
tent of oxidized SR, and the ability of sulfhydryl-binding agents to inhibit Ca 2+ -
ATPase activity [ 63 ,  64 ]. Research from our laboratory in pulmonary arterial smooth 
muscle microsomes revealed that stimulation of Ca 2+ -ATPase activity occurs 
through involvement of an aprotinin-sensitive proteinase [ 56 ,  65 ]. Our research also 
provided evidence for oxidant stimulated Ca 2+ -ATPase activity and decreased Na +  
dependent Ca 2+  uptake (NCX) with a net calcium overload under oxidant triggered 
conditions in pulmonary arterial cells [ 7 ,  65 ,  66 ]. These observations were appar-
ently in contrast to previous reports that oxidants depress calcium pump activity in 
systems such as S(ER) [ 67 ] and heart sarcolemma [ 68 ]. The difference between 
other studies and our observation regarding the effect of oxidants on Ca 2+ -ATPase 
activity and ATP-dependent Ca 2+  uptake may be explained considering the differ-
ences of the functional responsiveness and biochemical characteristics of pulmo-
nary vessels compared to that of systemic vessels and other nonvascular systems. 
Because of the differences in the biochemical characteristics and metabolic needs, 
pulmonary vessel responds differently to stimuli in comparison to systemic vessels. 
There are examples of tissue specifi c responsiveness of hypoxia-induced  smooth   
muscle tone. Hypoxia constricts pulmonary vessels, while dilates systemic vessels 
[ 69 ,  70 ]. Major pathways for calcium handling mechanisms in pulmonary arterial 
smooth muscle cells are depicted in Fig.  12.3 .

   Cellular signaling mechanisms linked to calcium mobilization plays signifi cant 
roles in several signal transduction pathways that control cell proliferation, differen-
tiation, and apoptosis. Recent research suggests that acute hypoxia causes smooth 
muscle contraction in pulmonary arteries through a direct effect on [Ca 2+ ] i  [ 71 ]. 
Subsequent relaxation depends upon activation of ion transport mechanisms, which 
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may be modifi ed by circulating hormones such as the naturally occurring endoge-
nous ouabain [ 72 ]. Sustained hypoxia may cause long-term adaptation of pulmo-
nary endothelium. One change is a reduction in NO production, possibly through 
reduced activity of NOS [ 73 ]. In normal physiological condition, synthesis of NO 
appears important in  many   species including human in regulating low pulmonary 
vascular resistance [ 74 ]. Downregulation of endothelial NO biosynthesis as a result 
of long-term hypoxia may accelerate development of secondary PAH [ 75 ]. Thus, 
altered NOS (endothelial or inducible) expression either due to transcriptional or 
translational regulation seems important for better understanding of cellular cross 
talk in normal and infl ammatory cells.  

8     Store-Operated Calcium Entry, SERCA Inhibition, 
and PAH 

  Store-operated calcium entry (SOCE)   is an important cellular calcium infl ux mech-
anism that results as a consequence of depletion of the ER calcium store, which 
causes opening of plasma membrane calcium channels. This was fi rst described in 
1986  by   Putney [ 76 ] in parotid acinar cells. As the ER/SR cellular Ca 2+  store (either 
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  Fig. 12.3     Schematic   illustration of calcium handling pathways in pulmonary arterial smooth mus-
cle cells. PMCA: plasma membrane Ca 2+ -ATPase; NCX: Na + /Ca 2+  exchange; STIM: stromal inter-
action molecule; VGCC: voltage-gated calcium channel; TRPC: transient receptor potential cation 
channels; ORAI1: gene encoding calcium-release activated calcium channel protein-1; PLC: phos-
pholipase C; ROCC: receptor-operated Ca 2+  channel; SOCC: store-operated Ca 2+  channel; RyR: 
ryanodine receptor; PIP2: phosphatidylinositol 4,5-bisphosphate; IP 3 R: inositol triphosphate 
receptor. Taken from Ref. [ 136 ] with permission       
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IP 3  or ryanodine sensitive) is depleted, the relatively large increase in [Ca 2+ ] i  is con-
trolled by pumping out the Ca 2+  into the extracellular space by PMCA. To ensure 
sustained signaling and maintenance of cellular Ca 2+  homeostasis, the Ca 2+  that 
have been extruded must be returned to the cytosol and ultimately reaccumulated by 
SERCA and this occurs with the involvement of SOCE channels. 

  Pulmonary vasoconstriction is a   result of progressive smooth muscle contrac-
tion. An increase in [Ca 2+ ] i  in PASMCs is a major trigger for pulmonary vasocon-
striction [ 77 ]. Several  studies   have provided evidence that SERCA inhibitors not 
only increase Ca 2+  infl ux, but also affect vascular tone of different blood vessels 
[ 78 ]. The Ca 2+  overload induced vascular smooth muscle contraction is tissue spe-
cifi c. For example, in rat aorta the Ca 2+  induced contraction is nifedipine (L-type 
calcium channel blocker) sensitive [ 79 – 84 ], whereas rat pulmonary artery shows 
nifedipine insensitivity [ 85 ]. PASM contraction as a result of SERCA inhibition can 
cause calcium entry via both voltage operated calcium channel (VOCC) and store 
operated Ca 2+  channel (SOCC) [ 78 ].  

9     Calcium Regulation in PAH 

   Right ventricular hypertrophy and failure has been extensively studied in experi-
mental swine model of PAH [ 86 ,  87 ]. The key fi nding was a reduction in right 
ventricular (RV) SERCA2a expression with increased ER stress. ROS  concentra-
tion   has been reported to increase dramatically during cardiac IR injury [ 88 – 91 ]. An 
increase in ROS levels may lead to aberrant coronary vascular tone, thus producing 
cardiac  dysfunction   and arrhythmias [ 89 ,  92 ]. During cardiac IR, one of the major 
injuries to coronary artery SMCs is a dysregulation of calcium-handling [ 89 ]. The 
activities of the SERCA, NCX, and Na,K-ATPase (NKA) normally help maintain a 
transmembrane ion balance, but their inhibition may impair Ca 2+  regulation [ 93 , 
 94 ]. Earlier research has provided evidence that acute exposure to ROS causes 
relaxation of blood vessels of various species [ 95 ], whereas prolonged exposure to 
high levels of ROS produces a loss of utilization of [Ca 2+ ] i  pool in coronary arterial 
smooth muscle [ 9 – 11 ]. 

  Proliferation of pulmonary arterial smooth muscle cells (PASMCs)   associated 
with sustained vasoconstriction and vascular remodeling are the major pathogenic 
events in PAH. Increased production of vasoactive and mitogenic agonists and 
decreased apoptosis of PASMCs are the cause of increased PASMC proliferation. 
Increased cytosolic Ca 2+  overload has been found to be an important stimulus for 
PASMC migration and proliferation. Pulmonary vascular remodeling followed by 
an increase in pulmonary vascular resistance (PVR) is the fi nal outcome [ 96 – 98 ]. 
An increase in resting [Ca 2+ ] i , enhanced SOCE and enhanced receptor operated cal-
cium entry (ROCE) were reported in PASMCs isolated from patients with idio-
pathic pulmonary arterial hypertension (IPAH) [ 96 – 98 ]. The complete set of events 
for IPAH development is currently unclear [ 99 ]. Apart from voltage-dependent Ca 2+  
channels and Ca 2+ -sensitive ion channels other unidentifi ed Ca 2+  channels have also 
been implicated in developing IPAH [ 100 – 102 ]. 
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  Primary cultured pulmonary artery smooth muscle cells (PASMC)   either isolated 
from rat [ 103 ], rabbit [ 104 ] or bovine [ 56 ] have gained popularity and has been 
established as important models for studying oxidant induced cellular calcium 
mobilization in altered Ca 2+ -ATPase activity in PAH and associated Ca 2+  overload. 
O 2  −•  has been reported to cause ATP-induced calcium transients in freshly isolated 
PASMCs from rabbit [ 73 ] or was responsible for an increase in ATP-dependent Ca 2+  
uptake in bovine PASMCs [ 65 ]. In isolated rat PASMCs, NCX was also reported to 
play signifi cant role in decreasing the augmented [Ca 2+ ] i  for maintaining physiolog-
ical level [ 103 ]. Interestingly, under oxidant stress, inhibition of NCX has been 
shown to over ride an increase in ATP dependent Ca 2+  uptake in microsomes iso-
lated from bovine PASMCs [ 7 ].    

10     Oxidant-Induced Regulation of SERCA in Relation 
to PAH Pathophysiology 

 Due to  the   importance of the PAH and limited knowledge of the regulation of Ca 2+  
dynamics under oxidant triggered conditions in PASMC, our laboratory has invested 
signifi cant effort to determine the role that O 2  −•  plays on Ca 2+ -ATPase activity and 
ATP dependent Ca 2+ -uptake in microsomes of bovine PASM and the involvement of 
proteases such as an aprotinin sensitive serine protease and matrix metalloprotease-
 2 (MMP-2) in this scenario. Proteinases have been established as an important 
player in experimentally induced and physiologically occurring changes in cells and 
tissues [ 105 ,  106 ]. In the lung, MMP-2 has been shown to produce active vasopres-
sors such as angiotensin (from angiotensinogen) and endothelin (from proendothe-
lin) [ 107 ,  108 ]. This raises the possibility that oxidant-mediated pulmonary 
hypertension could be mediated by MMP-2. Evidence from other studies supported 
our fi ndings that ONOO −  induced stimulation of MMP-2 activity play an important 
role in stimulating Ca 2+  ATPase activity in bovine PASMC plasma membrane [ 109 ]. 
We have also provided evidence showing similar role of MMP-2 to that of an apro-
tinin sensitive protease in bovine PASMCs [ 7 ,  66 ,  110 ]. 

 PKC was implicated to positively affect O 2  −•   production. In an effort to identify 
the specifi c PKC isoform(s) in regulating O 2  −•  generation and cellular Ca 2+  regula-
tion, we studied microsomes isolated from bovine pulmonary arterial smooth  mus-
cle   exposed to the O 2  −•  generating system (X +XO) and by employing biochemical 
approach, PKCδ was identifi ed as the important PKC isoform, which regulates O 2  −•  
production [ 111 ]. O 2  −•  has been demonstrated to inhibit Na +  dependent Ca 2+  uptake 
by ONOO −  which is a major contributing mechanism for Ca 2+  overload in pulmo-
nary smooth muscle under oxidant triggered condition [ 111 ]. 

 In IR injury, increased production of O 2  −•  and NO have been reported [ 112 ,  113 ]. 
Toxic effects of ONOO −  are  mediated   by modifi cation and activation of cellular 
targets such as aprotinin, α1-PI and TIMPs that contains –SH group [ 7 ,  114 – 117 ]. 
Additionally, oxidants may dysregulate SERCA itself or its regulators, for example, 
phospholamban or some other regulatory signaling components [ 118 ].  
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11     Cooperativity of Different Calcium Homeostasis 
Mechanisms in Pulmonary Vasculature 

  Cooperative   mechanisms generally exist in all cell types for maintaining cellular 
Ca 2+  homeostasis and the key players participating in this fi ne tuning are PMCA, 
SERCA, and NCX coupled to NKA [ 119 ]. The nature and relative contributions of 
these components for cytosolic Ca 2+  clearance have long been an important topic for 
study in smooth muscle, especially in relation to regulation of contractility. Recent 
advances in gene-targeting and transgenesis have made it possible to add or delete 
individual components, and importantly specifi c isoforms from the cell to gain 
insight into the  calcium   clearance mechanisms in pulmonary vascular smooth mus-
cle [ 119 ,  120 ]. Transient receptor potential channels (TRPCs) [ 121 – 123 ] and NCX 
[ 123 – 125 ] have been identifi ed as important players for various forms of hyperten-
sion. TRPC1 and TRPC6 were known to play critical roles in hypoxic PAH [ 126 , 
 127 ]. TRPC6 [ 96 ] and NCX1 [ 125 ] both play signifi cant roles in human primary 
PAH and both are found to be upregulated in this scenario. Both NCX1 and NCX3 
mRNA and protein expression were detected in cultured human PASMCs [ 128 ]. 

 In human PASMCs, Ca 2+  entry via reverse mode NCX is a critical pathway for 
cytoplasmic Ca 2+  rise, which induces  pulmonary   vasoconstriction and pulmonary 
vascular hypertrophy [ 128 ]. Devine et al. [ 129 ] for the fi rst time reported ~5 % of 
the cell volume is occupied by SR in aorta and PASM in rabbit compared to only ~2 
%  in   smooth muscle present in mesenteric vein, artery and portal vein. This alone 
establishes a possible requirement  of   considerably higher SERCA activity in main-
taining physiological Ca 2+  concentration in PASM. We have studied the cooperative 
nature of PMCA, SERCA (ATP dependent Ca 2+  uptake), and NCX (Na +  dependent 
Ca 2+  uptake) activity in microsomes isolated from bovine PASM under oxidant 
treated conditions [ 7 ,  65 ,  66 ]. We found that oxidant treatments cause signifi cant 
increase in both PMCA and SERCA activity with a decrease in NCX activity. 
MMP-2 activity was found to increase markedly in all these studies [ 7 ]. 

 In this  regard   basal PMCA, SERCA, and NCX activities in  cultured   endothelial 
cells (EC) and smooth muscle cells (SMC) isolated from pig coronary artery are 
worth mentioning. PMCA and SERCA activities were low in EC than SMC. SMC 
 possesses   a higher NCX activity than EC [ 130 ]. No such comparison has, however, 
been reported for EC and SMC in pulmonary artery but it appears that NCX plays a 
signifi cant role in maintaining basal Ca 2+  homeostasis in microsomes of pulmonary 
artery smooth muscle [ 7 ,  65 ,  66 ]. 

 Our knowledge has advanced considerably with the development of specifi c 
SERCA inhibitors, such as cyclopyazonic acid (CPA) [ 131 ] and thapsigargin (TG) 
[ 132 ]. NCX is often inhibited by replacing extracellular Na +  or using the reverse 
mode inhibitor, KB-R7943, or forward mode inhibitor, SEA0400 [ 124 ] depending 
upon directionality of the Ca 2+  transport. NKA can be specifi cally inhibited by oua-
bain, affecting the coupled NKA, NCX, SERCA calcium regulatory mechanisms in 
pulmonary arterial cells under normal and stimulated conditions. Use of conditional 
gene-targeted or transgenic mice models with altered Ca 2+  clearance components is 
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of particular use in terms of dissecting out the specifi c function of the multitude of 
isoforms. Interpretation is limited in the sense that compensatory changes in other 
components can occur, but often the compensation itself may be the most interest-
ing aspect.  

12     Conclusions and Future Direction 

 A reasonable number of evidence suggest that oxidative stress plays an important 
role in the injurious and infl ammatory  responses   in pulmonary diseases such as 
asthma, COPD, and PAH. Air pollutants, cigarette smoke, suspended ultrafi ne par-
ticulate materials and heavy metals, etc. in addition to endogenously generated 
vasoactive active agents such as thromboxanes, endothelin and cytokines are con-
sidered as the major factors that contribute to an increase in oxidative stress in the 
pulmonary vasculature. There are certain disease conditions such as PAH and  cor 
pulmonale , where pulmonary arterial endothelial and smooth muscle cells play piv-
otal roles and that dysregulation in the activities of SERCA, NKA, NCX, and 
PMCA contribute to the development of the disease pathology. Under certain stress 
conditions, dysregulation of cooperative mechanism among SERCA, NKA, and 
NCX has been observed in pulmonary artery endothelial and smooth muscle cells. 
Due to availability of specifi c pharmacological inhibitors such as CPA and TG and 
the SERCA2 knockout transgenic mice [ 133 ], a number of information are now 
available demonstrating SERCA as a determining factor for such a fi ne control of 
intracellular Ca 2+  into the ER stores [ 133 ]. 

 Although  oxidative stress   has been reported to negatively affect Ca 2+ -ATPase in 
systemic vessels, research from our laboratory have established oxidative stress as 
a positive regulator of Ca 2+ -ATPase activity in pulmonary artery endothelial and 
smooth muscle cells and that has later been identifi ed as SERCA2b [ 110 ]. The link 
between selective inhibition of MMP-2 and subsequent increase in Ca 2+ -ATPase 
activity and inhibition of Na +  dependent Ca 2+  uptake (NCX) also helped, at least 
partly, understanding critical Ca 2+  mediated cross talk between SERCA2b, NCX, 
aprotinin sensitive serine protease, and MMP-2, which has strong implications in 
elevating [Ca 2+ ] i . Recent advancements in treating HF with adeno associated viral 
vector serotype (AAV1) containing SERCA2a gene showed promise in a phase I 
clinical trial [ 134 ] and this suggests that further improvements in vector and deliv-
ery method might improve the effi cacy of treatment. Similar gene therapy strategy 
could be promising in treating pulmonary vasculature to restore physiological 
SERCA activity under oxidant burden in the lung. 

 Further research warrants understanding of the cellular and molecular adaptation 
to hypoxia in human that will equip us with better therapeutic intervention in treat-
ing patients suffering from COPD and secondary PAH. Irrespective of the source of 
oxidant species, the underlying signaling mechanisms causing especially SERCA 
dysregulation has signifi cant implications in pulmonary vascular diseases such as 
PAH, right ventricular hypertrophy and  cor pulmonale , which remains as an impor-
tant area that demands further research.     
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    Chapter 13   
 Plant Type 2B Ca 2+ -ATPases: 
The Diversity of Isoforms of the Model Plant 
 Arabidopsis thaliana                      

       Maria     Cristina     Bonza    ,     Laura     Luoni    ,     Claudio     Olivari    , 
and     Maria     Ida     De     Michelis    

    Abstract     In plant cells, Ca 2+  extrusion from the cytoplasm is accomplished either 
through Ca 2+ -H +  antiporters powered by a proton-motive force or through Ca 2+  
pumps powered by ATP hydrolysis. Plants possess two types of Ca 2+ -pumping 
ATPase, named ECAs (for  E R-type  C a 2+ - A TPase) and ACAs (for  a uto-inhibited 
 C a 2+ - A TPase), which group respectively with animal sarco-endoplasmic reticulum 
Ca 2+ -ATPase in the 2A subgroup of P-type ATPases or with plasma membrane Ca 2+ -
ATPase in the 2B subgroup. Each type comprises different isoforms, localized on 
different membranes. Here, we summarize available knowledge of the biochemical 
characteristics and the physiological role of ACAs, focusing on what we have learnt 
from analysis of the model plant  Arabidopsis thaliana .  

  Keywords     Ca 2+ -ATPase   •    Arabidopsis thaliana    •   Calmodulin   •   Phosphorylation   
•   Phospholipids   •   Calcium homeostasis   •   Development   •   Stress  

1         Introduction 

 As other eukaryotes, plants use cytosolic Ca 2+  as a second messenger in the trans-
duction of a variety of endogenous and environmental signals. Fine tuning of cyto-
solic Ca 2+  is realized by regulation of Ca 2+  channels and active Ca 2+  transport systems 
localized at the plasma membrane (PM) or at the membranes of intracellular stores 
as the endoplasmic reticulum (ER) or the vacuole (tonoplast, TP). Stimulus-induced 
opening of Ca 2+  channels followed by Ca 2+  extrusion—to the apoplast or 
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intracellular stores—generates transient increases of cytosolic calcium concentration 
(Ca 2+  waves), whose amplitude, frequency, and localization encode signal specifi city 
[ 1 – 8 ]. Active Ca 2+  transport systems include both Ca 2+ /H +  antiporters driven by the 
electrochemical H +  gradient generated by H +  pumps and Ca 2+ -ATPases. While Ca 2+ /
H +  antiporters are low-affi nity, high-capacity transporters mainly—if not exclu-
sively—localized at the TP, Ca 2+ -ATPases are high-affi nity, low-capacity pumps 
resident in the PM, ER, TP, and Golgi membranes [ 2 ,  4 ,  9 – 14 ]. 

 Several genes encoding plant Ca 2+ -ATPases have been cloned since the early 90s 
and phylogenetic analysis has shown that they group either with animal SERCA 
( s arco- e ndoplasmic  r eticulum  C a 2+ - A TPase) in the 2A subgroup of P-type ATPases 
or with PMCA ( p lasma  m embrane  C a 2+ - A TPase) in the 2B subgroup [ 9 – 16 ]. Since 
in plant cells each Ca 2+  pump type is not restricted to one particular organelle or 
membrane, they have been named ECA ( E R-type  C a 2+ - A TPase) and ACA ( auto- 
inhibited   C a 2+ - A TPase) respectively [ 9 – 14 ]. We will focus on ACAs, providing a 
picture of what we have learnt from biochemical, genetic, and physiological analy-
sis of the model plant  Arabidopsis thaliana .  

2     Common Features 

2.1     Structure 

 Like other members of the type 2 subgroup of P-type ATPases, plant ACAs 
(Fig.  13.1 ) are single polypeptides of 1000–1100  aa   having 10 transmembrane 
domains (TM), a cytoplasmic head consisting of a large loop between TM 4 and TM 
5—which contains the nucleotide binding and the phosphorylation domain—and a 
small loop between TM 2 and TM 3, which is part of the actuator domain [ 12 ,  15 –
 19 ]. ACAs contain all the characteristic motifs of the type 2 subgroup of P-type 
ATPases including the highly conserved sequence DKTGT containing the phos-
phorylated Asp, the PEGL motif considered to play a central role in energy trans-
duction and the KGAXE sequence involved in nucleotide binding [ 12 ,  15 – 17 ,  20 ]. 
The distinctive feature of ACAs is the extended cytosolic N-terminus preceding the 
fi rst TM whose regulatory properties are discussed below [ 9 – 14 ].

2.2        Transport Mechanism and Biochemical Properties 

 The ATP/Ca 2+  stoichiometry of ACAs has not been determined, but it is reasonable 
to assume that they operate with a 1:1 stoichiometry as PMCA [ 15 ,  16 ]. In fact—as 
for PMCA—only residues defi ning SERCA Ca 2+ -binding site 2 are conserved in 
ACAs and their kinetics as a function of Ca 2+  concentration is simple, with no  sign   
of cooperativity [ 21 – 23 ]. Similar to PMCA, ACAs catalyze a Ca 2+ /H +  exchange of 
unknown stoichiometry [ 24 – 26 ], a mechanistic feature shared by type 2A Ca 2+ -
ATPases as SERCA [ 15 ,  27 ].  Recent   analysis based on the crystal structure of 
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SERCA strongly indicates that charges of residues involved in Ca 2+  binding must be 
partially or entirely compensated for by other cations once Ca 2+  is released, making 
counter-transport mandatory of these pumps [ 27 – 29 ]. 

 ACAs share most biochemical traits of P-type ATPase, but most isoforms (see 
below for exceptions) are unique for being able to use ITP or GTP as an alternative 
nucleoside-triphosphate substrate to ATP: this characteristic allows  determination 
  of their hydrolytic activities in membrane fractions containing high levels of other 
P-type ATPases such as, e.g., plant PM H + -ATPase [ 30 ]. ACAs are particularly sen-
sitive to inhibition by fl uorescein derivatives, such as erythrosin B or eosin yellow, 
which are known to bind to the nucleotide binding domain [ 9 ,  12 ,  24 ,  30 – 35 ]. The 
relation between these two features of the catalytic site is not clear; however ACA12, 
an  A. thaliana  isoform, which is unable to use ITP as a substrate is also less sensitive 
to eosin yellow [ 36 ].  

2.3     Regulation 

 ACAs share with other type 2B Ca 2+ -ATPases an extended terminal domain which 
confers unique regulatory properties. However, while in PMCAs this domain is 
localized in the extended C-terminus of the protein [ 15 ,  19 ], ACAs have a very short 
C-terminus after the tenth TM and an extended cytosolic N-terminus preceding the 
fi rst TM [ 9 – 14 ,  18 ]. 

  Fig. 13.1     Schematic   representation of ACAs. A: actuator domain; N: nucleotide binding domain; 
P: phosphorylation domain, where D is the Asp phosphorylated in the catalytic cycle; CaM-BD: 
CaM binding domain. Modifi ed from Lopreiato et al. [ 19 ]       
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 Despite the different localization, the N-terminus of ACAs has structural and 
functional features similar to the C-terminus of PMCAs. In fact (Figs.  13.1  and 
 13.2 ) ACAs N-terminus contains an auto-inhibitory domain partially overlapped by 
a high-affi nity calmodulin (CaM) binding domain (CaMBD). A second, lower affi n-
ity, CaMBD downstream the fi rst one has been recently identifi ed in the  A. thaliana  
isoform ACA8 [ 37 ] as well as in different isoforms of PMCA: sequence alignment 
(Fig.  13.2 ) suggests that this second site may be present in most, but  perhaps   not all, 
ACA isoforms (see below). As for PMCA, in the absence of CaM the regulatory 
terminal domain of ACAs interacts with the catalytic head of the pump, inhibiting 
its activity: CaM binding to the high affi nity site substantially activates the pump, 
but complete activation occurs only upon CaM binding to both sites [ 37 ,  38 ].

   While the terminal regulatory domain of at least some ACA isoform has been 
described in detail, less is known on how its auto-inhibitory action is exerted. An 
interaction domain for the C-terminus of the human isoform PMCA4b and for the 
N-terminus of  A. thaliana  isoform ACA8 has been identifi ed in the small cytoplas-
mic loop connecting TM domains 2 and 3 [ 15 ,  39 – 42 ]. This region is highly con-
served between members of the type 2B Ca 2+ -ATPases group  and   rich of acidic 
residues (Fig.  13.3 ). Mutation to Ala of any of six tested conserved acidic residues 
in this region of ACA8 originates a partially deregulated enzyme with higher basal 
activity in the absence of added CaM [ 42 ]. Since alanine scanning mutagenesis of 
the N-terminus of ACAs reveals the involvement of basic residues in the auto- 
inhibitory domain [ 21 ,  43 ], the negative charge conferred by acidic residues to the 

aca1 ---------------------------MESY---------LNENFGDVKPKNSSDEALQRWRKLCWIVKNPKRRFRFTANLSKRSEAEAIRRSNQEKFRVAVLVSQAALQFINSLKLSSE 84
aca2 ---------------------------MESY---------LNENF-DVKAKHSSEEVLEKWRNLCGVVKNPKRRFRFTANLSKRYEAAAMRRTNQEKLRIAVLVSKAAFQFISGVSPS-D 82
aca7 ---------------------------MESY---------LNSNF-DVKAKHSSEEVLEKWRNLCSVVKNPKRRFRFTANLSKRYEAAAMRRTNQEKLRIAVLVSKAAFQFISGVSPS-D 82

aca4 ----------------------------MSN---------LLRDF-EVEAKNPSLEARQRWRSSVSIVKNRTRRFRNIRDLDKLADYENKKHQIQEKIRVAFFVQKAALHFIDAAARP-E 81
aca11 ----------------------------MSN---------LLKDF-EVASKNPSLEARQRWRSSVGLVKNRARRFRMISNLDKLAENEKKRCQIQEKIRVVFYVQKAAFQFIDAGARP-E 81

aca12 -----------------MR-------DLKEY---------DYSALLLNLTTSSLNKAQRRWR-FAYAAIYSMR---AMLSLVK----EIVPA------RIDPKTSDASLSLSYTALESGE 73
aca13 -----------------MRRNVSDHAEKKDK---------VGVEVLLELPKT-LSKSNKKWQ-LALIKLYCSR---TLLNCAK----HAIR-----------KPGLFPRSLSYTAID--- 71

aca8 ----MTSLLKSSPGRRRGGDVESGKSEHADS---------DSDTFYIPS-KNASIERLQQWR-KAALVLNASRRFRYTLDLKK----EQETREMRQKIRSHAHALLAANRFMDMGRESGV 101
aca9 MSTSSSNGLLLTSMSGRHDDMEAGSAKTEEHSDHEELQHDPDDPFDIDNTKNASVESLRRWR-QAALVLNASRRFRYTLDLNK----EEHYDNRRRMIRAHAQVIRAALLFKLAGEQQIA 115
aca10 ----MSGQFNNSP-RGEDKDVEAGTSSFTEY---------EDSPFDIASTKNAPVERLRRWR-QAALVLNASRRFRYTLDLKR----EEDKKQMLRKMRAHAQAIRAAHLFKAAASRVTG 101

.  .     .    :  .:*:         *      .  :                        .  :         

  Fig. 13.2    Alignment of  A. thaliana  ACAs N-terminus.    CaM binding domains are  boxed , residues 
involved in auto-inhibition are  white  on  black background , phosphorylated Ser are  bold italics  in 
the N-terminus of ACA2 and ACA8 isoforms       

aca1   KDLDAEKKKIVVQVTRDKLRQKISIYDLLPGDVVHLGIGDQIPADGLFISGFSVLINESSLTGESEPVSVS-VEHPFLLSGTKVQDGSCKMLVTTVGMRTQWGKLMAT 333
aca2   RDLDKEKKKITVQVTRNGFRQKLSIYDLLPGDIVHLAIGDQVPADGLFLSGFSVVIDESSLTGESEPVMVN-AQNPFLMSGTKVQDGSCKMMITTVGMRTQWGKLMAT 331
aca7   RDLDKEKKKITVQVTRNGFRQKMSIYDLLPGDVVHLAIGDQVPADGLFLSGFSVVIDESSLTGESEPVMVT-AQNPFLLSGTKVQDGSCKMLVTTVGMRTQWGKLMAT 332

aca4   RDLDREKKKIIVQVTRDGSRQEISIHDLVVGDVVHLSIGDQVPADGIFISGYNLEIDESSLSGESEPSHVN-KEKPFLLSGTKVQNGSAKMLVTTVGMRTEWGKLMET 318
aca11  RDLDREKKKIIIQVTRDGSRQEVSIHDLVVGDVVHLSIGDQVPADGIFISGYNLEIDESSLSGESEPSHVN-KEKPFLLSGTKVQNGSAKMLVTTVGMRTEWGKLMDT 318

aca12  DKLSKISNNIKVEVLRDSRRQHISIFDVVVGDVVFLKIGDQIPADGLFLEGHSLQVDESSMTGESDHLEVDHKDNPFLFSGTKIVDGFAQMLVVSVGMSTTWGQTMSS 326
aca13  DKLSKVSSNIKIDVVRNGRRQEISIFDIVVGDIVCLNIGDQVPADGVFVEGHLLHVDESSMTGESDHVEVSLTGNTFLFSGTKIADGFGKMAVTSVGMNTAWGQMMSH 321

aca8   QNLNDEKRNIHLEVLRGGRRVEISIYDIVVGDVIPLNIGNQVPADGVLISGHSLALDESSMTGESKIVNKDANKDPFLMSGCKVADGNGSMLVTGVGVNTEWGLLMAS 354
aca9   QNLNDEKRNIQLEVMRGGRTVKISIYDVVVGDVIPLRIGDQVPADGVLISGHSLAIDESSMTGESKIVHKD-QKSPFLMSGCKVADGVGNMLVTGVGINTEWGLLMAS 347
aca10  QNLNEEKRNIRLEVTRDGRRVEISIYDIVVGDVIPLNIGDQVPADGVLVAGHSLAVDESSMTGESKIVQKNSTKHPFLMSGCKVADGNGTMLVTGVGVNTEWGLLMAS 354

.*.  . :* ::* *.   .:**.*:: **:: * **:*:****::: *. : ::***::*** . .**:** *: :*   * :. **: * ** *

PMCA4b GLQCRIEQEQKFSIIRNGQLIQLPVAEIVVGDIAQVKYGDLLPADGILIQGNDLKIDESSLTGESDHVKKSLDKDPMLLSGTHVMEGSGRMVVTAVGVNSQTGIILTL 297

  Fig. 13.3    Alignment of  the   region of  A. thaliana  ACAs small cytoplasmic loop comprising a site 
of intramolecular interaction of the N-terminal auto-inhibitory domain ( boxed ). The corresponding 
sequence of PMCA4b is shown for comparison. Acidic residues of ACA8 isoform involved in 
auto-inhibition are  bold underlined        
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surface area of the small cytoplasmic loop may favor and/or stabilize its auto- 
inhibitory interaction with the N-terminal auto-inhibitory domain [ 42 ].

   In  A. thaliana  isoforms ACA2 and ACA8, as in human isoform PMCA4b, muta-
tion of an aspartic residue localized at the cytoplasmic end of the second TM, con-
served in most ACA isoforms, generates a deregulated pump that is  almost   
insensitive to further activation by CaM [ 21 ,  42 ,  44 ]. However, a detailed character-
ization of the PMCA4b mutant suggests that this mutation does not displace the 
auto-inhibitory domain, but rather directly changes accessibility of Ca 2+  to the TM 
domain [ 44 ,  45 ]. 

 CaM binding is not the only mechanism of regulation of the auto-inhibitory 
action of ACA N-terminus. Phosphorylation of different Ser residues in the 
N-terminus of the protein modulates the kinetics and/or the affi nity of interaction 
with CaM as well as  the   amplitude of the response of the pump to CaM [ 46 ,  47 ]: 
since the N-terminus of the protein is highly variable between isoforms (Fig.  13.2 ), 
phosphorylation likely represents an isoform-specifi c mechanism of regulation of 
pump activity. ACAs are also regulated by acidic phospholipids such as phospha-
tidylserine or phosphatidylinositol-4P [ 22 ,  23 ]. Acidic phospholipids activate  A. 
thaliana  ACA8 via two distinct mechanisms, involving their binding to different 
sites: acidic phospholipids binding to a site in the protein N-terminus, overlapping 
the auto-inhibitory and the high-affi nity CaMBD, stimulates ACA8 activity simi-
lar to CaM or to cleavage of the N-terminus, while binding to a second, as yet 
unidentifi ed, site further stimulates ACA8 activity by lowering its K 0.5  for free 
Ca 2+  [ 23 ]. This complex regulatory mechanism, only partially overlapping that of 
CaM, is similar to that reported for PMCA [ 15 ] and is likely shared by other ACA 
isoforms [ 22 ,  48 ]. 

 Overall, despite the different localization of the regulatory terminal domain in 
ACAs and PMCAs, plant and animal type 2B Ca 2+ -ATPases share a very similar 
mechanism of auto-inhibition. Indeed, the auto-inhibitory function of the terminal 
domain is preserved not only when it is switched from the C- to N-terminus in 
PMCA or vice versa in ACA, but also when the C-terminus of PMCA is fused to a 
N-deleted ACA mutant [ 49 ,  50 ].   

3     Diversity of  A. thaliana  Isoforms 

   The genome of  A. thaliana  encodes 10 isoforms of ACA, all expressed at least in 
some cell type.  Phylogenetic   analysis indicates that they pertain to four clusters that 
appear to  be   conserved in fl owering plants [ 18 ]. The four clusters (Table  13.1 ) are 
characterized, beside by sequence similarity and molecular mass, by the number 
and position of introns; moreover, current evidence suggests that members of each 
cluster localize at the same membrane [ 11 ,  12 ,  18 ]. Cluster 1 comprises three genes, 
each with 6 introns, encoding isoforms ACA1, ACA2, ACA7 with 77–92 % simi-
larity. ACA1, the fi rst cloned ACA, was originally proposed to be localized at the 
plastid inner envelope [ 51 ,  52 ], but no Ca 2+ -ATPase activity has been detected in 
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this membrane [ 53 ] and ACA1 has been found associated with the ER in a pro-
teomic survey of  A. thaliana  organelles [ 54 ]; ACA2, the only isoform of this cluster 
characterized at the biochemical level, is localized at the ER [ 55 ]; ACA7 was found 
largely associated with the PM upon expression in tobacco leaves under a viral 
promoter [ 56 ], but nothing is known about its localization in  A. thaliana . Cluster 2 
includes two genes, with 6 introns, which encode two isoforms, ACA4 and ACA11, 
87 % similar: both have been found localized at the TP [ 57 ,  58 ]. Cluster 3 is unique: 
it comprises two intron-less genes encoding two isoforms (ACA12 and ACA13) 
which are only 65 % similar to each other and highly divergent from members of 
the other clusters specially in the regulatory N-terminus (see below) [ 11 ,  18 ,  36 , 
 59 ]. Both ACA12 and ACA13 have been found localized at the PM [ 36 ,  59 ,  60 ]. 
Cluster 4 comprises 3 genes with 31–33 introns encoding isoforms ACA8, ACA9, 
and ACA10: these isoforms, which are ca 70 % similar to each other, are all local-
ized at the PM and are characterized by a molecular mass slightly higher than that 
of the other isoforms, mainly due to a longer N-terminal domain (see Fig.  13.2 ) [ 12 , 
 18 ,  61 – 63 ].

   While members of the same cluster are 65 to 92 % similar, similarity between 
members of different clusters ranges between 42 and 62 %. Biochemical character-
ization has been performed so far only for ACA8, ACA2 and ACA12 [ 21 ,  23 ,  25 , 
 33 ,  36 ,  37 ,  41 – 43 ,  46 ,  47 ,  50 ,  55 ,  61 ,  64 ], but the available results indicate that 
sequence variability generates subtle functional differences which can be physio-
logically relevant. 

 Alignment of ACA isoforms shows that the most variable region is the 
N-terminus, where differences are evident also in the CaMBDs (Fig.  13.2 ). Members 
of clusters 1 and 2 share highly similar high-affi nity CaMBD with the two hydro-
phobic residues W and F separated by 13 aa, while in those of cluster 4 they are 

   Table 13.1    Comparison of  A. thaliana  ACA isoforms   

 Cluster  1  2  3  4 

 ACA1  ACA2  ACA7  ACA4  ACA11  ACA12  ACA13  ACA8  ACA9  ACA10 

 ACA1  100  78  77  62  61  43  42  48  47  48 
 ACA2  100  92  62  63  43  42  48  47  49 
 ACA7  100  63  63  44  41  48  48  49 
 ACA4  100  87  42  42  46  47  47 
 ACA11  100  41  42  48  47  48 
 ACA12  100  65  51  50  51 
 ACA13  100  51  51  51 
 ACA8  100  69  72 
 ACA9  100  69 
 ACA10  100 
 Mol mass 
(kDa) 

 111.3  110.4  110.8  112.8  111.9  113.7  112.5  116.2  118.8  116.9 

 Introns  6  6  6  6  6  0  0  33  31  32 
 Localization  ER  ER  PM?  TP  TP  PM  PM  PM  PM  PM 

  Similarities were computed by multiple alignment with ClustlawW  
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separated by 12 aa. This implies a different mode of CaM binding: comparison of 
the structure of the CaM–CaMBD complex of ACA8 [ 37 ] and of BCA1, a cluster 2 
isoform of  Brassica oleracea  [ 65 ], shows that while in ACA8 the anchor residues 
are W and F (1:14 binding mode), in BCA1 the C-lobe of CaM is anchored by W, 
but the N-lobe is anchored by the I residue localized 3 aa downstream F (1:18 bind-
ing mode). The high-affi nity CaMBD of members pertaining to cluster 3 are mark-
edly divergent [ 11 ,  12 ,  18 ,  36 ]; nevertheless, ACA12 binds CaM-agarose matrix 
and has been successfully purifi ed by affi nity chromatography [ 36 ]. As to the low- 
affi nity CaMBD, it is poorly conserved among clusters and possibly absent in iso-
forms of cluster 3 (Fig.  13.2 ). Thus, diverse ACA isoforms may differ in their 
affi nity and/or kinetics of interaction with CaM. Moreover, plants are unique among 
eukaryotes for having different isoforms of CaM, very similar to CaMs from other 
organisms, as well as CaM-like proteins with CaM activity (“divergent CaMs”), 
with distinct abilities to activate target proteins [ 66 ,  67 ]. ACAs analyzed so far are 
activated by divergent CaMs, but their affi nity for these proteins is lower than that 
for canonic CaMs [ 64 ,  68 ,  69 ]: further work is needed to ascertain to what extent the 
ability to discriminate between different CaM isoforms varies among  A. thaliana  
ACA isoforms. 

 Members of cluster 3 have the lowest similarities to other isoforms. 
Characterization of ACA12 shows that it has several peculiar biochemical features. 
First, in contrast with all characterized ACA isoforms of  A. thaliana  and other 
plants, it is substantially unable to use ITP as an alternative to ATP; second, the 
effective concentrations of the fl uorescein derivative eosin yellow are about 2 order 
of magnitude higher that those required to inhibit other ACAs [ 36 ]. But the most 
striking difference is that ACA12 is not activated by CaM; coherently, ACA12 com-
plements the Ca 2+ -sensitive phenotype of yeast strain K616 which, being devoid of 
endogenous Ca 2+ -ATPases, is unable to grow in Ca 2+ -depleted media unless it 
expresses a deregulated Ca 2+ -ATPase [ 21 ,  33 ,  36 ,  43 ]. This unusual feature might be 
ascribed to the fact that two conserved acidic residues crucial for auto-inhibition of 
other type 2B, localized at the edge of the second and of the third TM, are an Asn 
(N211) and an Arg (R334) in ACA12 sequence. Indeed, in the Ca 2+ -depleted 
medium K616 cells expressing ACA12 N211D mutant grow very poorly and those 
expressing ACA12 R334E mutant or the double mutant N211D-R334E are unable 
to grow [ 36 ]. Surprisingly, ACA13, which has the same substitutions found in 
ACA12 at those critical positions has been reported to be unable to complement 
K616 phenotype, unless deleted of the fi rst 65 aa [ 59 ]: however, effective expression 
of ACA13 WT was not checked and K616 does not produce ACA12 under the stan-
dard growth conditions used by Iwano and coworkers [ 36 ,  59 ]. 

 The expression pattern of  A. thaliana  ACA isoforms is variegated [  http://bar.
utoronto.ca/efp_arabidopsis/cgi-bin/efpWeb.cgi    ,  70 ]. Some isoforms (ACA1, 
ACA2, ACA4, ACA11, ACA8, and ACA10) are widely expressed throughout 
development [ 57 ,  63 ,  71 – 73 ] while the expression of others is limited to specifi c 
cell types in a single organ: expression of ACA7 is confi ned to developing pollen 
grains and ACA9 is expressed primarily in pollen [ 56 ,  62 ]. Members of cluster 3 
have the most restricted expression pattern: both are barely detectable throughout 
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development except in senescent leaves and sepals (ACA12) [  http://bar.utoronto.ca/
efp_arabidopsis/cgi-bin/efpWeb.cgi    ,  70 ] or in the fl ower stigma and the root tip 
(ACA13) [ 59 ]. Beside by developmental signals, the expression of ACA isoforms is 
regulated by environmental signals such as biotic and abiotic stresses (see below).    

4     Physiological Roles 

 Three main experimental approaches have been used in the attempt to defi ne the 
role of   A. thaliana  ACA isoforms in   physiology of the plant: (1) analysis of gene 
expression at different developmental stages and in response to environmental sig-
nals; (2) a pharmacological approach exploiting the high sensitivity to fl uorescein 
derivatives of (most) ACAs; (3) phenotypic characterization of knockout (KO) 
mutants of single or multiple ACA isoforms. Each of these approaches has its pit-
falls: (1) up- or down-regulation of gene expression per se does not allow one to 
draw any solid conclusion, especially when, as in most studies, it is not shown to be 
associated with a change in protein level and/or enzyme activity; (2) sensitivity to 
inhibitors, even when suffi ciently specifi c, does not allow to discriminate between 
different isoforms; (3) due to the largely overlapping expression patterns of differ-
ent isoforms, the role of a specifi c isoform can be masked by redundancy in KO 
mutants of single ACA isoforms; moreover, when a phenotype is observed it may be 
an indirect, rather than straightforward, consequence of the lack of the protein, 
which might infl uence other physiological processes. Nevertheless, the integrated 
and critical use of the above-mentioned approaches has allowed researchers to 
ascertain the involvement of an ACA cluster, or even of a single isoform in some 
developmental process or in the response of the plant to external stimuli. 

4.1     Development 

 Single isoform KO mutants do not show phenotypic alterations up to the rosette 
stage when grown under standard condition [ 56 ,  58 – 60 ,  62 ,  63 ,  71 ]. The only excep-
tion is an  aca10  KO mutant in a genotype containing a naturally occurring dominant 
allele of an unlinked gene, which has stunted rosette development [ 63 ]. As  men-
tioned   above, the lack of a single isoform can be compensated by other isoforms 
localized at the same membrane and with similar expression pattern; moreover, the 
absence of one isoform can stimulate the expression of other(s). Mutants lacking 
multiple isoforms of the same ACA cluster show early phenotypic alterations: the 
double  aca8-aca10  KO mutant—which lacks the two widely expressed PM iso-
forms—shows signifi cantly reduced root growth when cultivated in vitro [ 60 ] and 
the  aca4-aca11  KO mutant—which lacks the two TP isoforms—displays a high 
frequency of hypersensitive response-like lesions suggesting an altered control of a 
salicylic acid-dependent programmed cell death pathway [ 58 ]. 
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 Phenotypic  alterations   become evident in some single mutant at fl owering time. 
In the  A. thaliana  Columbia ecotype the single  aca10  KO mutant and, more so, the 
double  aca8-aca10  KO have reduced infl orescence height and display increased 
axillary stem formation: intriguingly, the  aca10  KO mutant has normal fl owers in 
the Wassilewskija or in the Nossen ecotype unless a dominant allele of an unlinked 
gene is present [ 60 ,  63 ]. The single  aca8  KO mutant does not have phenotypic 
alterations in any of the ecotypes, but ACA8 overexpression rescues the fl owering 
phenotype of the  aca10  KO mutant: the unique role of ACA10 in fl owering proba-
bly refl ects subtle differences in expression patterns, protein levels, or regulatory 
properties between isoforms ACA10 and ACA8, which can be overcome or miti-
gated by overexpression [ 60 ,  63 ]. The most striking phenotype alterations in single 
mutants are reduced pollen development and/or pollination due to the lack of iso-
forms ACA7, ACA9, or ACA13, which are mainly or exclusively expressed in fl ow-
ers. Mutants lacking ACA9, a PM isoform primarily expressed in pollen, display 
reduced growth of pollen tubes, with high frequency of aborted fertilization leading 
to a threefold reduction in seed set [ 62 ]. Two different insertional  aca7  mutant lines 
show large amounts of dead pollen grains in mature fl owers, due to altered progres-
sion from uninucleated microspores to bicellular pollen grains: these results suggest 
that Ca 2+  transport outside the cytoplasm of developing pollen grains is essential to 
support normal pollen development [ 56 ]. Finally ACA13, a PM isoform which is 
primarily expressed in stigmatic papilla cells and induced by pollination, is required 
for pollen germination and pollen tube growth [ 59 ].  

4.2     Response to Endogenous/Hormonal and Environmental 
Signals 

 The fact that in plant cells cytosolic Ca 2+  waves are involved in the transmission of 
a variety of endogenous and environmental signals strongly suggests an important 
role for ACAs in the transmission of these stimuli: since Ca 2+  dynamics which 
encode signal specifi city depend also on the rate of Ca 2+  extrusion, the expression 
level and regulatory properties of each ACA isoform can infl uence signal transduc-
tion and thus the plant response. However, so far, only in few instances the involve-
ment of specifi c ACA isoforms in the transduction of a signal has been unequivocally 
demonstrated and the role specifi cally played has not been clarifi ed in any instance. 
In most cases, the involvement of ACA isoforms in the response to a signal has been 
inferred mainly from the effect of the signal on their mRNA level. 

 Cold stress stimulates the expression of ACA8, but represses that of ACA10, 
suggesting once more  differential   roles for the two more widely expressed PM iso-
forms [ 71 ]; boron starvation has been shown to up-regulate ACA1, ACA10, and 
ACA13 expression, thus possibly enhancing the ability to extrude Ca 2+  from the 
cytoplasm both to  the   apoplast and to internal stores as the ER or possibly plastids 
[ 74 ]. A role of the TP isoform ACA4 in the response to salt stress is suggested by 
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the increased level of ACA4 mRNA in  A. thaliana  seedlings exposed to salt stress; 
in addition, overexpression of ACA4 in yeast improves salt tolerance [ 57 ]. Also 
 overexpression   of the ER isoform ACA2 improves yeast salt tolerance, but there is 
no evidence that this isoform plays a role in the response to salt of  A. thaliana  [ 75 ]. 
A role for PM-localized ACAs in ABA signaling has been proposed based on the 
ABA-induced stimulation  of   expression of ACA8 and ACA9 in  A. thaliana  seed-
lings, which at least in the case of ACA8, has been shown to determine an increase 
in protein amount in the PM. However, the relatively slow induction of ACA8 and 
ACA9 mRNAs (within 2–4 h) and accumulation of ACA8 protein at the PM (within 
8 h) suggest that these events may be involved, rather than in short-term effects of 
ABA on cytosolic-free Ca 2+  concentration, in a mechanism for desensitization of the 
cell to ABA signal when, under stress conditions, ABA is a constant presence [ 72 ]. 

 Analysis of the  aca8 ,  aca10 , and  aca8-aca10  KO mutants has brought evidence 
for a role of these PM isoforms in plant antibacterial immunity: all the mutants 
allow higher bacterial growth and develop stronger symptoms than the WT upon 
 exposure   to a virulent bacterium. Upon exposure to the bacterial elicitor fl agellin 
the  aca8-aca10  KO mutant, but not the single mutants, displays a lower cytosolic 
Ca 2+  transient and a lower oxidative burst than the WT and exhibits altered tran-
scriptional reprogramming [ 60 ]. However, inhibition of ACA-mediated Ca 2+  effl ux 
with the fl uorescein derivative eosin yellow in  A. thaliana  cultured cells which 
mainly express ACA8 [ 64 ] increases the oxidative burst [ 76 ]. ACA12 and ACA 13, 
whose expression is strongly stimulated by bacteria [  http://bar.utoronto.ca/efp_ara-
bidopsis/cgi-bin/efpWeb.cgi    ,  11 ,  70 ], may also be involved in the response to patho-
gen attack. Thus, while the involvement of PM localized ACA isoforms in  A. 
thaliana  response to biotic stress is well documented, the role they play in this 
process remains to be elucidated.   

5     Conclusions 

 Despite the different localization of the auto-inhibitory domain and of the CaMBDs 
in the protein sequence, most ACA isoforms share with PMCAs multiple regulatory 
properties: regulation by CaM, acidic phospholipids, and phosphorylation of the 
terminal regulatory domain [ 12 ,  15 ,  19 ]. Moreover, the fi ndings that the terminal 
regulatory domains interact with the same part of the catalytic head and are inter-
changeable between ACA8 and PMCA4b indicate that plant and animal type 2B 
Ca 2+ -ATPases share the same mechanism of auto-inhibition [ 50 ]. A lot of questions 
await for an answer, including the role of the recently identifi ed low-affi nity CaMBD 
[ 37 ,  38 ] and the role of the acidic residues localized at the hinges between TM 2 and 
TM 3 and the small cytoplasmic loop of the pumps [ 21 ,  42 ]. Progress in understand-
ing the mechanism of auto-inhibition of type 2B Ca 2+ -ATPases heavily relies on 
solving the structure of these pumps, which promises to be a diffi cult task. 

 Gene expression analysis, pharmacological approaches using selective inhibitors 
such as fl uorescent derivatives and phenotyping of single and double KO mutants 
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converge in indicating that ACAs play important roles in  A. thaliana  development, 
fertilization, and response to both biotic and abiotic stress [ 12 ,  13 ,  34 ,  56 – 60 ,  62 , 
 63 ,  72 ,  74 – 76 ]. However, given the high number of isoforms, the role of a single 
isoform is often hindered by redundancy. Moreover, at present, too little is known 
about the biochemical characteristics of different ACA isoforms. Characterization 
of  A. thaliana  isoform ACA12 has highlighted peculiar characteristics of substrate 
specifi city, inhibitor sensitivity, and regulatory properties [ 36 ]. Differences in 
the kinetics of interaction and affi nities for CaM of ACA isoforms may arise 
from the variability of the CaMBDs and regulation by phospho-dephosphorylation 
of the N-terminus is likely to be isoform-specifi c since many of the Ser residues 
which are phosphorylated in ACA8 or ACA2 are not conserved in other isoforms. 
Phosphorylation has been shown to affect auto-inhibition, CaM affi nity and the 
kinetics of CaM binding and release, thus providing a mechanism of fi ne tuning of 
ACAs activation and deactivation. However, so far, scant knowledge on the protein 
kinases involved in ACAs phosphorylation is available: both ACA2 and ACA8 
have been shown to be substrates for members of the calcium-dependent protein 
kinase (CDPK) family, but nothing is known on which CDPK isoform(s) phos-
phorylate them in vivo [ 46 ,  47 ]. 

 Once the involvement of an ACA isoform in a physiological process is ascer-
tained, the exact role it plays needs to be determined. This requires dissection of the 
signal transduction pathway involved in order to defi ne which is the step affected by 
ACA up- or down-regulation. The use of new imaging and molecular tools for 
in vivo monitoring of Ca 2+  dynamics in the cytoplasm and in organels will defi nitely 
help to unravel the role of ACAs in plant response to endogenous and environmental 
stimuli [ 77 ,  78 ]. Moreover, since ACAs catalyze a Ca 2+ /H +  exchange, changes in 
their activity may well affect net proton fl uxes across the PM and/or endomem-
branes and thus the value of ΔμH +  and related transport processes, as well as cyto-
solic pH homeostasis. Indeed, Ca 2+ -dependent changes in H +  fl uxes, leading to 
cytoplasmic acidifi cation, have been observed in response to different developmen-
tal and environmental signals which evoke transient increases of cytoplasmic Ca 2+  
concentration [ 79 – 81 ]. While in most cases the underlying mechanism has not been 
addressed, the use of fl uorescein derivatives has highlighted the involvement of 
ACAs activity in ABA-induced changes of H +  fl uxes in  Egeria densa  leaves [ 79 ].     
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    Chapter 14   
 Regulation of Ca 2+  Transport ATPases 
by Amino- and Carboxy-Terminal Extensions: 
Mechanisms and (Patho)Physiological 
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    Abstract     Ca 2+  transport ATPases play a vital role in maintaining low cytosolic Ca 2+  
concentrations. Three types of Ca 2+  ATPases exist: the Sarco/Endoplasmic 
Reticulum Ca 2+  ATPases (SERCA), Secretory Pathway Ca 2+  ATPases (SPCA), and 
Plasma Membrane Ca 2+  ATPases (PMCA). The expression of numerous Ca 2+  
ATPase isoforms and splice variants generate a complex toolkit of Ca 2+  transporters 
that provide cell type and compartmental specifi c functions. Still, the basic Ca 2+  
transporting mechanism is highly conserved in all Ca 2+  ATPase variants, which is 
related to a highly conserved core structure holding a transmembrane domain for 
Ca 2+  binding and transport, and three cytosolic domains, which coordinate ATP 
hydrolysis. In contrast, the N- and C-terminal stretches of the various isoforms and 
splice variants display much more variation. They provide additional isoform or 
splice variant specifi c functions to the Ca 2+  pumps, which are reviewed here. The 
N- and C-termini may regulate the enzymatic properties of the Ca 2+  pumps via intra-
molecular interactions, contain targeting signals, recruit other proteins, bind lipids/
ions or may be subjected to posttranslational modifi cations. Insights into the proper-
ties and molecular mechanisms of the N- and C-terminal extensions may offer novel 
therapeutic opportunities to regulate and control specifi c Ca 2+  transporter isoforms 
in a diseased context.  
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1         Introduction 

 Ca 2+  is an important second messenger in many cellular processes, such as cell 
growth, apoptosis, muscle contraction, and fertilization. The cytosolic free Ca 2+  
concentration  in   resting conditions is maintained between 10 and 100 nM, a concen-
tration that is much lower than in the extracellular matrix (1–2 mM) or in most of 
the intracellular organelles (0.1–0.5 mM). The cytosolic Ca 2+  concentration is 
tightly controlled by Ca 2+  buffering and transporting proteins, since Ca 2+  ions can-
not be formed or degraded, but can only be transported from one compartment to 
another. 

 Two modes of Ca 2+  transport can be recognized in cells: passive fl ux through 
Ca 2+  channels and  active   transport by carriers against the electrochemical gradient 
[ 1 ]. Extracellular Ca 2+  passively enters the cell via TRP channels, voltage-gated 
Ca 2+  channels and Ca 2+ -release activated channels, whereas the inositol triphosphate 
and ryanodine receptors passively release Ca 2+  into the cytosol from intracellular 
stores ( e.g. , the endoplasmic and sarcoplasmic reticulum, ER and SR). In the mean-
time, active transporters remove Ca 2+  from the cytosol into organelles or outside of 
the cell. The secondary active transporter Na + /Ca 2+ -exchanger uses the energy 
stored in the Na +  gradient to transport 1 Ca 2+  out of the cell whilst counter- 
transporting 3 Na +  ions, extruding Ca 2+  mainly when the cytosolic Ca 2+  concentra-
tion is elevated [ 2 ]. For maintaining a sub-micromolar cytosolic Ca 2+  concentration, 
mammalian cells further critically depend on three differently localized primary 
active Ca 2+ -ATPase transporters that power Ca 2+  transport by ATP hydrolysis: the 
Sarco/Endoplasmic Reticulum Ca 2+  ATPase (SERCA), the Secretory Pathway Ca 2+  
ATPase (SPCA), and the Plasma Membrane Ca 2+  ATPase (PMCA) [ 1 ]. They belong 
to the family of P-type ATPases that undergo auto-phosphorylation on a conserved 
aspartic acid, a feature that controls the Ca 2+  binding, occlusion, and transport [ 3 ,  4 ]. 

 SERCA1a is currently the only Ca 2+ -ATPase for which the structure has been 
resolved [ 5 ],  but   thanks to the overall high degree in sequence similarity and domain 
organization, predicted homology models of several other Ca 2+ -ATPases were gen-
erated. The topology follows the classical P-type ATPase topology, with 10 com-
mon transmembrane (M) helices that form a M-domain, which holds the Ca 2+ -binding 
sites and ion entrance/exit pathways. In addition, the cytosolic loops form three 
distinct functional domains: a nucleotide-binding domain (N), a phosphorylation 
domain (P), and an actuator domain (A), which make up the core of the Ca 2+  pumps 
and which execute the Ca 2+  transport cycle (Fig.  14.1 ) [ 5 ].

   When cytosolic Ca 2+  rises suffi ciently, the P-domain becomes auto- phosphorylated 
by an ATP molecule that is recruited by the N-domain. Later in the cycle, the pump 
is dephosphorylated by the A-domain that functions as a built-in protein phospha-
tase [ 3 ,  6 ]. Four principle conformational states can be recognized in the Ca 2+  trans-
port cycle: E1, E1P, E2P, and E2. The E1 conformations display high affi nity 
 towards   cytosolic Ca 2+ , whereas in the E2 conformations the pump shows a much 
lower luminal Ca 2+  affi nity. Via an allosteric mechanism, the phosphorylation and 
dephosphorylation reactions are tightly coupled to the opening and closure of the 
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cytosolic/extra-cytosolic Ca 2+  entrance/exit pathways in the M-domain. The access 
to the Ca 2+ -binding sites switches from the cytosol to the extra-cytosolic compart-
ment and a concomitant drop in the Ca 2+  affi nity at the extra-cytosolic side promotes 
Ca 2+  release. This results in the unidirectional transport of Ca 2+  against the electro-
chemical gradient. 

 Besides the highly conserved domain architecture and pumping mechanism, the 
Ca 2+ -ATPases markedly vary in the N- and C-terminal stretches. The amino- and 
carboxy-ends of the different Ca 2+ -ATPase isoforms contain important regulatory 
features that have evolved to allow a cell-context specifi c regulation of Ca 2+  trans-
port. In general,  the   variable N- and C-termini of P-type ATPases exert one or sev-
eral of the following possible functions: regulation of the enzymatic properties or 
transport cycle of the pump, interaction with substrates or lipids, recruitment of 
modulatory proteins, regulation of the subcellular targeting, or regulation by post-
translational modifi cations (Fig.  14.1 ). 

 The Ca 2+  transporters belong to the family of P-type ATPases that is divided into 
 fi ve   subfamilies according to their sequence and function (heavy metal pumps, P1; 
ions, P2; protons, P3; lipids, P4; unknown substrate, P5) [ 3 ]. Members of all P-type 
ATPase subfamilies are closely regulated by their N- and/or C-termini, thereby 
modulating essential cellular functions. For instance, the copper ATPases belong to 

  Fig. 14.1     Regulatory   mechanisms of P-type transport ATPases by N- and C-terminal extensions. 
An example of a P-type ATPase structure ( green ) with hypothetical N- and C-termini ( red ). 
Actuator (A), Nucleotide binding (N), phosphorylation (P), and membrane (M) domains as well as 
the N- and C-termini are indicated. The extended N- and C-termini are possibly functioning as on/
off or regulatory switches of the pumping activity by reversibly interacting with the main body of 
the pump. The N- and C-termini may also recruit regulatory proteins, lipids, substrates or may be 
subjected to posttranslational modifi cations or be prone to protease cleavage. Finally, the N- and 
C-termini may further contain targeting information       
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the P1B heavy metal pumps and their N-terminus holds a membrane associated 
platform that may recruit copper chaperones for subsequent substrate delivery to 
the copper binding sites in the N-terminus or to the copper transport sites in the 
M-domain [ 7 ]. The N- [ 8 ] and C-termini [ 9 ] of the Wilson copper transporter fur-
ther determine the subcellular localization in a copper-dependent manner. The 
C-terminus of the Na + /K + -ATPase, an important member of the P2-type ATPases, 
docks into the C-terminal M-domain and regulates the access to a non- 
canonical Na + -entrance pathway impacting on the Na +  affi nity on both sides of the 
membrane [  10 ,  11 ]. In the P3-type H + -ATPases, the C-terminus includes an auto-
inhibitory domain that upon removal by proteolytic digestion [ 12 ] or truncation at 
the genetic level [ 13 ] leads to the release of the auto-inhibitory restraints and a 
strong activation of proton pumping. The C-terminus works in conjunction with 
the N-terminus to block the H +  pump via an intramolecular interaction [ 14 ]. 
Phosphorylation of the C-terminus further recruits the regulatory 14-3-3 protein, 
which relieves this intramolecular interaction to stimulate proton transport [ 15 ]. 
Also lipid fl ippases belonging to the P4-type ATPases are controlled by the N- and 
C-terminal ends. The auto-inhibition of the yeast Drs2p lipid fl ippase by the 
C-terminal tail [ 16 ] can be relieved by interaction with the Golgi-localized phos-
phatidylinositol 4-phosphate lipid [ 17 ]. Moreover, the C-terminal interaction with 
ArfGEF synergistically stimulates lipid fl ippase activity, which activates the vesi-
cle budding machinery of the Golgi at the sites of  vesicle   formation [ 17 ]. Finally, 
the poorly characterized P5-type ATPases display unique N-terminal stretches that 
contain unusual membrane spanning segments resembling the N-terminal stretches 
of the P1-type ATPases [ 18 ]. These segments are predicted to be important for the 
regulation of auto- phosphorylation activity, substrate delivery, or recruitment of 
modulatory proteins [ 19 ]. 

 In this book chapter we provide an overview of how the highly variable N- and 
C-termini regulate Ca 2+  transport mediated by the Ca 2+ -ATPases belonging to the 
P2-type ATPase subfamily.  

2     Regulation of the SERCA Pumps by Amino 
and Carboxy Termini 

2.1     SERCA Isoforms and Splice Variants 

 In humans, three different genes ( ATP2A1 - 3 ) generate multiple SERCA isoforms 
and splice variants (SERCA1a-b, SERCA2a-d, and SERCA3a-f) as a result of 
developmental or tissue-specifi c gene expression and alternative splicing (Fig.  14.2 ) 
[ 4 ,  20 ]. Interestingly, all the splice variants of the SERCA isoforms only differ at 
 their   C-terminus [ 21 ]. The tightly regulated developmental and cell type-specifi c 
expression pattern of the different SERCA isoforms suggests that each isoform is 
adapted to a specifi c spatiotemporal function.
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2.1.1       SERCA1 Splice Variants 

 The C- terminus   of the fast-twitch skeletal muscle isoform SERCA1a ends with only 
one specifi c glycine residue, whereas the SERCA1b splice variant holds a slightly 
longer C-terminus (ending with –DPEDERRK) and is only expressed in neonatal 
fi bers [ 22 ], myoblasts, developing myotubes and regenerating muscle [ 23 ]. This 
suggests that SERCA1b might have an important role in the relaxation of myotubes 
and/or the growth and development of new fi bers, which are typical for neonatal  and   
regenerating muscles. However, the specifi c physiological role of SERCA1b and its 
charged C-tail remain elusive [ 23 ]. In contrast, the SERCA1a isoform is by far the 
best characterized SERCA isoform. This 110-kDa protein was the fi rst member of 
the P-type ATPase family to be cloned [ 24 ] and it has been extensively studied by 
site-directed mutagenesis and crystallography, leading to detailed insights in its 
structure–function relationship. SERCA1a is responsible for removing Ca 2+  from 
the myofi laments in fast- and slow-twitch skeletal muscle and is referred to as the 
muscle relaxing factor. Interestingly, a shorter, truncated SERCA1 variant (S1T) 
was detected in different fetal and adult tissues, including spleen, thymus, pancreas, 
kidney, and liver, but not in adult and fetal skeletal and cardiac muscle [ 25 ]. S1T 
corresponds to a 46 kDa N-terminal fragment of SERCA1a lacking parts of the N- 
and P-domain and also M5–M10 of the M-domain. S1T only contains one of the 

  Fig. 14.2    The N- and C- termini   of the different human SERCA isoforms and splice variants 
contain important regulatory sites. The N-terminus is defi ned as all the residues before M1 and the 
C-terminus is defi ned as the sequence stretch after M10.  Green arrows  in hSERCA2 indicate resi-
dues that are mutated and associated with Darier Disease.  Blue arrows  indicate posttranslational 
modifi cations that are mentioned in the text. P, phosphorylation. Ub, ubiquitination, Ac, acetyla-
tion, G, glycosylation. The hSERCA2d is not included, since this variant has not yet been demon-
strated at the protein level       
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seven Ca 2+ -binding residues and is thus unable to transport Ca 2+  [ 25 ]. Although its 
precise physiological role is unclear, S1T promotes ER Ca 2+  leakage resulting in ER 
Ca 2+  depletion. Since S1T is localized in the ER–mitochondria microdomains the 
Ca 2+  that leaks from the ER is transferred to the mitochondria triggering the activa-
tion of the mitochondrial apoptotic pathway, which may determine cell fate [ 26 ].  

2.1.2     SERCA2 Splice Variants 

 The SERCA2 pumps are by far the most widespread of all SERCA isoforms and 
phylogenetically the oldest [ 27 ,  28 ]. SERCA2 predominantly exists as two splice 
variants that contain a common 993 amino acid stretch and a variable C-terminus. 
 SERCA2a   contains a 2a-tail that ends with four residues, and SERCA2b displays 
a 49 amino-acid long extension that is responsible for the unique enzymatic prop-
erties of this pump (2b-tail) (Fig.  14.2 ) [ 29 ]. Although SERCA1 splicing is devel-
opmentally regulated, splicing of SERCA2 is regulated in a tissue-specifi c manner. 
SERCA2a is the main isoform found in the SR of cardiac, slow-twitch skeletal and 
smooth muscle cells [ 30 ,  31 ], but it is also found in some neurons, in particular in 
the GABAergic neurons like the Purkinje cells [ 32 ]. SERCA2b is expressed in the 
ER of most cell types and can therefore be considered as the housekeeping iso-
form. In various smooth muscle cell types, SERCA2b is the main SERCA2 iso-
form with SERCA2a representing only 20–25 % of all SERCA2 [ 30 ]. Two 
additional human- specifi c SERCA2 splice variants were identifi ed, SERCA2c 
[ 33 ] and SERCA2d [ 34 ]. At the mRNA level, SERCA2c was detected in differen-
tiating monocytes [ 35 ] and cardiac cells, whereas the existence of the  SERCA2c 
protein   was confi rmed in the heart [ 33 ]. So far, SERCA2d expression was only 
demonstrated at the mRNA level in human skeletal muscle, which was decreased 
in myotonic dystrophy type 1 [ 34 ].  

2.1.3     SERCA3 Splice Variants 

 In humans at least six different splice variants of SERCA3 are recognized 
(SERCA3a-f) [ 27 ]. SERCA3 has a more restricted tissue expression pattern than the 
housekeeping Ca 2+  pump, SERCA2b. With the notable exception of human umbili-
cal  vein   endothelial cells, SERCA3 seems to be co-expressed with the house- 
keeping SERCA2b pump, but might be targeted to a different subcellular 
compartment [ 36 ]. SERCA3 splice variants are expressed in hematopoietic cell lin-
eages, endothelial cells [ 37 ], monocytes, colon and pancreatic β-cells [ 38 ]. A more 
recent report mentioned the expression of three SERCA3 isoforms (SERCA3a, -3d 
and -3f) in human cardiomyocytes [ 21 ]. Interestingly, SERCA3 pumps differ from 
the other SERCA isoforms by a remarkably low affi nity for cytosolic and luminal 
Ca 2+  [ 39 ]. Moreover, in contrast to SERCA1 and SERCA2 splice variants, SERCA3 
is insensitive to the cardiac SERCA2a regulator phospholamban (PLB) and displays 
a higher resistance to oxidative damage [ 40 ,  41 ].   
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2.2     Regulation of SERCA Splice Variants by N- 
and C-Terminal Extensions 

 In the following sections, we discuss how the alternative N- and C-termini of 
SERCA1-3 splice variants regulate the enzymatic properties and subcellular target-
ing. We highlight the role of N-/C-termini in recruiting regulatory proteins or post-
translational modifi cations (PTMs). In addition, some disease-associated mutations 
can be found in the N- and C-termini. Finally, we address the (patho)physiological 
implications of the SERCA splice variants for cardiac contractility. 

2.2.1     Biochemical Properties 

   SERCA2b 

 Two properties discriminate SERCA2b from SERCA1a or SERCA2a: a twofold 
higher affi nity for Ca 2+  and a lower maximal turnover rate, which are both attributed 
to the presence of the 2b-tail that comprises an additional membrane segment (M11) 
and a luminal extension (LE) (Figs.  14.2  and  14.3 ) [ 42 – 44 ].  SERCA2b   is therefore 
the only Ca 2+  transporter with 11 membrane segments. Remarkably, fusion of the 
2b-tail to SERCA1a or supplying synthetic peptides corresponding to (parts of) the 
2b-tail to SERCA2a or SERCA1a, impose SERCA2b-like properties to these Ca 2+  
pumps [ 44 ,  45 ]. This indicates that the 2b-tail can be regarded as a transferable, 
functional peptide that modulates the Ca 2+  affi nity of the pump by direct interaction. 
The Ca 2+  affi nity regulation by the 2b-tail peptide thus closely resembles how the 
single-pass transmembrane proteins PLB or sarcolipin (SLN), a PLB homolog, 
regulate the Ca 2+  affi nity of the Ca 2+  pump by direct interaction (Fig.  14.3 ). However, 
the functional effect of the 2b-tail on the apparent Ca 2+  affi nity is independent and 
opposite from PLB or SLN, which can be explained by distinct and independent 
binding sites for the 2b-tail as compared to PLB or SLN (Fig.  14.3 ) [ 46 ].

   M11 and LE are two functional regions in the 2b-tail that operate independently 
by interacting with sites upstream in the SERCA2b protein (Fig.  14.3b ) [ 44 ,  45 ,  47 ]. 
Based on the  known   SERCA1a crystal structures, the solved NMR structure of M11 
and mutagenesis, a structural model for SERCA2b was proposed (Fig.  14.3b ) [ 44 ]. 
According to that model, M11 interacts with M7 and M10 of SERCA2b, a relatively 
immobile part of the pump, resembling the binding site of the β subunit on the Na + /
K + -ATPase. The M11 interaction reduces the maximal turnover rate and increases 
the apparent Ca 2+  affi nity of SERCA2b by slowing the E2P to E2 and E2 to E1 
transitions [ 45 ,  47 ,  48 ]. 

 The mechanism of LE is quite different from that of M11, which relates to a 
separate binding site at the luminal side of the pump. A groove between luminal 
loops L5-6 and L7-8 is opened at the luminal side of M11, for the descent of 
LE. This displacement allows for a  peptide   consisting of the last four crucial amino 
acids of the 2b-tail carboxyl terminus (1039-MFWS) to reach a luminal binding 
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pocket that is formed by the fi ve luminal loops of the pump [ 44 ]. This intramolecular 
interaction stabilizes the pump in the Ca 2+ -bound E1 conformation with high- 
affi nity binding sites facing the cytosol [ 44 ]. LE mainly reduces the E1P to E1 
backwards reaction, thereby slowing the Ca 2+  dissociation from the SERCA2b 
pump and increasing the intrinsic Ca 2+  affi nity. LE also slows down the E1P to E2P 
conversion [ 47 ].  

   SERCA2c 

 The SERCA2c protein exhibits unique enzymatic properties as compared to 
SERCA2a and SERCA2b, which is due to the unique six amino acids extension in 
the carboxyl terminus. The maximal turnover rate of SERCA2c is comparable to 
SERCA2b, but  SERCA2c   displays a lower apparent affi nity for cytosolic Ca 2+  
than SERCA2a and SERCA2b. SERCA2c may therefore function particularly 

  Fig. 14.3     Comparison   of the SLN binding site in SERCA1a ( a ) and the 2b-tail binding site in 
SERCA2b ( b ). ( a ) the SLN binding site in SERCA1a is depicted in  yellow  (E1-SLN state; 4H1W 
crystal structure [ 198 ]). ( b ) The 2b-tail ( dark blue ) consists of an 11 th  transmembrane helix (M11) 
and a luminal extension (LE) (homology model of SERCA2b, based on 1SU4 crystal structure in 
the E1 conformation [ 44 ]). The last four residues of the 2b-tail (1039-MFWS) are functionally 
important and are presented in stick representation. The 2b-tail binding site in the region M7, M10 
is distinct from the SLN binding site in M2, M4, M6, M9 in SERCA1a (numbering is indicated on 
helices). M, membrane region; A, actuator domain; N, nucleotide binding site and P, phosphoryla-
tion domain       
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in conditions of a high cytosolic Ca 2+  concentration [ 33 ]. In HEK293 cells, 
overexpression of the SERCA2c protein leads to comparable changes in both the 
cytosolic Ca 2+  and ER Ca 2+  levels [ 33 ].  

   SERCA3a-f 

 Although the human SERCA3a–f splice variants differ at their C-terminus, they 
display a similar apparent affi nity for cytosolic Ca 2+  that is three- to fi vefold lower 
than SERCA1a [ 39 ,  49 ,  50 ]. The lower Ca 2+  affi nity relates to a reduced E2–E1 
transition rate and an increased rate of Ca 2+  dissociation from the Ca 2+ -bound  E1   
state [ 39 ]. Since SERCA3 is frequently co-expressed in the ER together with the 
high Ca 2+  affi nity variant SERCA2b, SERCA3 may specifi cally function in ER 
regions exposed to local elevated Ca 2+  concentrations [ 21 ,  49 ]. 

 Despite their similar Ca 2+  affi nities, the different SERCA3 pumps show distinct 
effects on both the cytosolic and ER Ca 2+  levels [ 49 ]. HEK-293 cells stably express-
ing SERCA3c and -3f showed the highest cytosolic Ca 2+  levels whereas SERCA3a 
and -3d transfected  cells   displayed the lowest cytosolic Ca 2+  levels [ 21 ,  49 ,  50 ]. The 
ER Ca 2+  levels of cells overexpressing hSERCA3b, -3d, and -3f were signifi cantly 
higher than when the other splice variants were overexpressed [ 21 ]. These distinct 
effects coincide with different Ca 2+  pumping activities of the SERCA3 variants [ 49 ], 
although another study showed that SERCA3a-c may have similar maximal turn-
over rates that are higher than SERCA1a [ 39 ]. 

 Remarkably different from the SERCA1 and SERCA2 isoforms, the SERCA3 
ATPase activity is not stimulated by the addition of ionophore to membrane vesi-
cles. This might  indicate   that the SERCA3 transport activity is insensitive to lumi-
nal Ca 2+  or that SERCA3 itself promotes a Ca 2+  leak from the ER [ 39 ].   

2.2.2     Subcellular Targeting 

 Different compartmentalization of distinct SERCA isoforms and splice variants 
might be important to allow local Ca 2+  signaling in Ca 2+  microdomains of the cell 
[ 21 ,  51 ]. 

   SERCA2a-c 

 In  human   left ventricular tissue and isolated cardiomyocytes, hSERCA2a is targeted 
to regions close to the transversal T-tubules and to the longitudinal SR, whereas 
hSERCA2b is preferentially targeted transversally nearby the T-tubules [ 21 ]. 
Similar patterns were observed in mice overexpressing hSERCA2b in the heart 
[ 52 ]. In contrast, the endogenous mSERCA2b and mSERCA2a seem to be targeted 
to the same sites in mouse cardiomyocytes [ 53 ,  54 ], which is further underscored by 
the observation that mSERCA2b can replace mSERCA2a in the longitudinal SR of 
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mice in which the SERCA2a  splice   variant is substituted by SERCA2b [ 53 ]. The 
hSERCA2c splice variant shows a more distinct pattern and is restricted to a sub- 
plasma membrane region and in intercalated discs [ 21 ]. This restricted localization 
together with the specifi c enzymatic properties may indicate that SERCA2c oper-
ates in another Ca 2+  microdomain than SERCA2a and SERCA2b [ 21 ].  

   SERCA3a-f 

 hSERCA3a, -3d, and -3f are expressed in human cardiomyocytes [ 21 ], whereas 
mSERCA3a, -3b, and -3c are found in mouse cardiovascular tissue [ 54 ]. Interestingly, 
these SERCA3 variants occupy distinct subcellular sites different from SERCA2a 
and SERCA2b. In  human   cardiomyocytes, hSERCA3a presents a uniform distribu-
tion and is targeted to the regions of the transversal SR close to the T-tubules and the 
intercalated discs. hSERCA3d is more restricted to the ER membrane in the peri-
nuclear region, whereas hSERCA3f is mainly observed in the ER membrane near 
the plasma membrane [ 21 ]. In mouse cardiomyocytes mSERCA3b was preferen-
tially expressed in the transversal SR near the T-tubules and the junctional reticulum 
[ 54 ]. However, no specifi c localization was observed for the mSERCA3a and -3c 
variants [ 54 ].   

2.2.3     Interacting Proteins 

 The Ca 2+ -binding ER resident chaperones calreticulin (CRT, 46-kDa) and its 90-kDa 
homolog calnexin (CLNX) may interact with the 2b-tail of SERCA2b. Both pro-
teins contain a globular N-domain involved in oligosaccharide binding, an extended 
P-domain mediating ERp57 binding and an acidic Ca 2+ -binding C-domain [ 51 ]. 
CRT can complex over half of all ER luminal Ca 2+  [ 55 ], whereas luminal Ca 2+  buff-
ering by CLNX  is   much less pronounced because it contains less Ca 2+ -binding sites. 
In  Xenopus  oocytes overexpressing mammalian SERCA2b, CRT, or CLNX may 
functionally interact with N-linked carbohydrates on N1035 belonging to the LE of 
the 2b-tail [ 56 ]. The interaction of CRT or CLNX with SERCA2b, but not with 
SERCA2a, exerts an inhibitory effect on the Ca 2+ -wave propagation in  Xenopus  
oocytes in line with a direct functional interaction [ 56 ,  57 ]. These luminal proteins 
may play a role as luminal Ca 2+  sensors to adapt the activity of SERCA2b depend-
ing of the Ca 2+  loading state of the ER [ 56 ,  57 ]. It remains unstudied whether the 
regulation of SERCA2b by CRT or CLNX may also occur in mammalian cells.  

2.2.4    Posttranslational Modifi cations in the N/C-Termini 
of SERCA Isoforms 

 According to the PhosphoSitePlus database several posttranslational modifi cations 
(PTMs) were identifi ed in the N- and C-termini of the SERCA isoforms. This data-
base comprises literature data and unpublished high-throughput mass spectrometry 
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data. In human SERCA1a S19 phosphorylation was detected at the N-terminus. 
Ubiquitination of K7, K30, and K35 in mouse SERCA1a and acetylation of K30 
and K35 in rat SERCA1a  were   indicated. In SERCA2, phosphorylation on S38 was 
detected in human, mouse, and rat samples and is further described below. The 
hSERCA2 N-terminus might further be ubiquitinated on K30 and K31 and acety-
lated on K31 and K33. S17, T19, and S25 in the N-terminus and T1009 in the 
C-terminus of mouse SERCA3b-e were identifi ed as phosphorylation acceptor 
sites, whereas human SERCA3b-e may be phosphorylated on S1005. Most of these 
PTMs remain to be studied to unravel their functional role, and only for a few PTMs 
information can be found.  S38 phosphorylation  Several reports documented the 
phosphorylation of the cardiac SERCA2a pump on residue S38, which is part of a 
Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) consensus site (RXXS/T) 
that is not present in SERCA1a [ 58 ,  59 ]. CaMKII-dependent phosphorylation on 
S38 increases the maximal turnover rate of SERCA2a without altering its apparent 
Ca 2+  affi nity [ 58 – 60 ]. Although SERCA2a phosphorylation was observed in iso-
lated perfused intact beating heart [ 61 ], no S38-phosphorylated SERCA2a was 
detected by immunoblotting with a phospho-S38 specifi c antibody for SERCA2a in 
kinase-treated SR vesicles or suitably stimulated cardiac myocytes [ 62 ]. Some stud-
ies question the functional effects of the S38 phosphorylation because of the lack of 
in vivo information [ 62 ,  63 ]. At least according to the PhosphoSitePlus database, 
S38 phosphorylation was identifi ed by mass spectrometry techniques in several spe-
cies. CaMKII may mediate the cardiac frequency-dependent acceleration of relax-
ation [ 64 ] by phosphorylation of SR proteins such as PLB [ 65 ] and potentially also 
SERCA2a [ 58 – 60 ]. 

   N1035 Glycosylation 

 As mentioned earlier, N1035 is a putative glycosylation site in the 2b-tail of SERCA2b 
that may  be   involved in the interaction with CRT or CLNX. However, despite serious 
efforts, glycosylation of N1035 was never experimentally observed [ 44 ,  56 ,  57 ]. The 
lack of glycosylation does however not  a priori  exclude CLNX or CRT binding to 
SERCA2b because these ER chaperones can occasionally also bind  to   non-glycosyl-
ated targets [ 57 ,  66 ]. The fact that an N1035A SERCA2b mutant displays normal 
Ca 2+ -dependent ATPase-activity when overexpressed in COS cells, seems to indicate 
that glycosylation is not required to obtain the enzymatic properties of SERCA2b. 
According to a SERCA2b homology model, the 2b-tail may be buried in the luminal 
loops of the pump [ 44 ] making the glycosylation of this site unlikely [ 56 ].   

2.2.5    Disease Mutations in the N-/C-Termini 

 Mutations in  ATP2A1  are associated with Brody disease (OMIM 601003), which is 
characterized by painless muscle cramping and exercise-induced impairment of 
muscle relaxation.    Although Brody myopathy can be caused by mutations in 
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 ATP2A1 , there is evidence of genetic heterogeneity. So far no Brody Disease 
mutations are recognized in the N- or C-termini of SERCA1a. 

 Heterozygous mutations in  ATP2A2  are implicated in Darier–White disease 
(OMIM 124200), an autosomal dominant skin disorder characterized by distinctive 
nail abnormalities and warty papules and plaques mainly on the chest, neck, back, 
ears, forehead, and groin.  The   skin disease is characterized by a disruption of cell–
cell contacts (acantholysis) in the suprabasal layers of keratinocytes in the epider-
mis. Currently more than 180 mutations in the  ATP2A2  gene are identifi ed that lead 
to Darier disease [ 67 ], that in many cases result in loss of pumping activity. Only a 
fraction of the mutated residues are located in the N- and C-termini of SERCA2b 
(M1V [ 68 ,  69 ], M1T [ 68 ], ΔE11 [ 70 ], G23E [ 48 ,  68 ,  69 ,  71 ], N39T [ 70 ,  72 ], ΔL41 
[ 70 ], and ΔP42 [ 70 ]). M1023I is the only one known Darier disease mutation that is 
found in the 2b-tail [ 68 ]. Recently, Darier disease mutants have been identifi ed that 
lead to a gain-of-function resulting in a leaky Ca 2+  pump that dissipates the ER Ca 2+  
gradient, which would explain the dominant phenotype of the disease [ 73 ].  

2.2.6    Physiological Relevance of the SERCA2 Regulation 

  The alternative C-terminal extensions of the SERCA pumps have important 
physiological implications, which are best understood for the SERCA2 splice 
variants. In mouse cardiomyocytes, the majority of the SERCA2 protein consists 
of SERCA2a (95 %) and  a   modest expression of SERCA2b (5 %) is observed 
[ 53 ]. The expression levels of SERCA2c in total human heart are only minor in 
comparison with SERCA2a and SERCA2b, but they might operate in different 
subcompartments [ 21 ]. 

 In cardiomyocytes, the SERCA2a activity controls the relaxation, the Ca 2+  con-
centration of the SR and as a result the amount of Ca 2+  that can be released for 
contraction [ 74 ,  75 ]. Since SERCA2a has a profound impact on cardiomyocyte con-
tractility, its activity is tightly controlled, mainly by regulating the apparent Ca 2+  
affi nity of the pump [ 76 – 79 ]. Early in cardiac development, alternative splicing of 
the SERCA2 messengers leads to the replacement of the housekeeping high Ca 2+  
affi nity SERCA2b pump by SERCA2a, which displays a lower Ca 2+  affi nity [ 80 ]. In 
normal physiological conditions, the apparent Ca 2+  affi nity of SERCA2a is even 
further reduced by the expression of PLB decreasing Ca 2+  transport activity and 
inhibiting cardiac relaxation and contraction at rest [ 81 ]. PLB phosphorylation dur-
ing β-adrenergic stimulation releases the inhibitory effect of PLB on SERCA2a, 
which temporarily increases the apparent Ca 2+  affi nity and stimulates cardiac con-
tractility [ 81 ,  82 ]. These fi ndings are well documented and are based on multiple 
animal models of altered SERCA2a and PLB expression in the heart (reviewed in 
Ref. [ 81 ]). However, these mouse models did not shed light on the physiological 
relevance of the SERCA2a/b diversity. 

 In  SERCA2   b/b   mice, SERCA2a is replaced by SERCA2b by preventing the alter-
native splicing of the SERCA2 messengers. The adult  SERCA2   b/b   mice developed 
concentric left-ventricular hypertrophy, showing that SERCA2a is crucial for 
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normal cardiac growth and function [ 76 ]. Remarkably, the high Ca 2+  affi nity of 
SERCA2b in these  SERCA2   b/b   mice is at least partially compensated by a twofold 
upregulation and a reduced phosphorylation status of PLB, which serves as a car-
dioprotective effect [ 79 ]. The high apparent Ca 2+  affi nity of SERCA2b actually 
ensures proper contractile parameters of the heart in resting conditions [ 79 ], but it 
becomes limiting at high Ca 2+  loads due to the compensatory lower expression 
levels and lower maximal turnover rate of the pump [ 83 ]. Together, the studies in 
the  SERCA2   b/b   mice highlight the physiological importance of the SERCA2a/b iso-
form diversity [ 4 ,  78 ,  84 ]. 

 In human heart failure, SERCA2a expression is signifi cantly reduced, whereas 
PLB levels are unchanged (reviewed in Ref. [ 75 ] and [ 81 ]). This results in a 
chronic inhibition of SERCA2a marked by a lower apparent Ca 2+  affi nity, which 
contributes to the impaired contractility of the failing heart. Restoration of the 
cardiac expression levels of SERCA2a via viral gene transfer is considered as a 
promising therapeutic approach that currently is explored in clinical trials [ 85 ,  86 ], 
but alternative interventions aim to increase the apparent Ca 2+  affi nity of SERCA2a 
[ 87 ]. This can be achieved by interfering with PLB expression or activity [ 88 ,  89 ], 
or by targeting the empty 2b-tail binding site on the SERCA2a pump with 2b-tail 
mimetics or analogs [ 77 ].     

3     Regulation of the SPCA Pumps by Amino 
and Carboxy Termini 

3.1     SPCA Isoforms and Splice Variants 

 The founding member of the Golgi/secretory pathway Ca 2+  ATPases is PMR1 
(plasma membrane-related), which was fi rst described in  Saccharomyces cerevisiae  
[ 90 ]. Later, the mammalian SPCA isoforms were cloned and characterized [ 91 ,  92 ]. 
In higher order animals, including amphibians, reptiles,    and mammals, two iso-
forms are recognized, ATP2C1 (SPCA1) and ATP2C2 (SPCA2). SPCA1 is ubiqui-
tously expressed and is considered the housekeeping Golgi Ca 2+  pump, whereas the 
expression of SPCA2 is mainly restricted to brain and secretory cells, such as the 
various segments of the gastrointestinal tract, trachea, thyroid, salivary gland, mam-
mary gland, and prostate [ 93 ,  94 ]. This suggests that SPCA2 may exert a more 
specialized physiological function than SPCA1a. 

 Compared to SERCA, SPCA1a has a slightly longer N- and C-terminus 
(Fig.  14.4 ). The C-terminus of hSPCA2 contains 17 amino acids and is slightly 
shorter than the hSPCA1a C-terminus with 21 amino acids. Alternative splicing 
further gives rise to multiple  SPCA1   variants that differ only in their C-termini 
(SPCA1a-d) [ 4 ,  95 ,  96 ]. SPCA1c seems to be a truncated form, which is detected 
at the mRNA, but not protein level. Based on the predicted secondary structure, 
SPCA1c lacks not only the complete C-terminus but also the last membrane helix 
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M10 indicating that the truncated SPCA1c variant might be unstable, questioning 
its physiological relevance [ 96 ]. The other splice variants SPCA1a, SPCA1b, and 
SPCA1d share a common C-terminus of 11 residues, followed by an alternative 
sequence stretch. hSPCA1a, the predominant isoform of SPCA1, contains a stretch 
of ten amino acids, which includes fi ve serine residues, interrupted by one threo-
nine. This motif is substituted for a stretch of 30 amino acids in the SPCA1b variant. 
SPCA1d is the longest splice variant with a unique C-terminus of 51 amino acids 
that contains both the SPCA1a and the SPCA1b-specifi c C-terminal motifs [ 95 ,  96 ].

   Interestingly, like the truncated S1T variant of SERCA1a, also a shorter splice 
variant of SPCA2 has been reported, which in this case corresponds only to the 
C-terminal part of SPCA2, resulting in an ER-localized 20 kDa protein that can be 
found in the mouse  pancreas   and in acinar cell lines [ 97 ]. This splice variant is 
clearly not a functional Ca 2+  pump since it lacks all of the catalytic domains of 
SPCA2. Although it includes M6, the Ca 2+  transport binding sites are incompletely 
formed and the phosphorylation-, actuator-, and nucleotide-binding domains of the 
pump are lacking. The regulation of its expression by MIST1, a transcription factor 
that is required for acinar cell maturation and function, may suggest that the 

  Fig. 14.4    The N- and C- termini   of SPCA isoforms and splice variants contain important regula-
tory sites. hSPCA1c is truncated in M10 and is not displayed. The N-terminus is defi ned as all the 
residues before M1 and the C-terminus is defi ned as the sequence stretch after M10. The EF-hand- 
like loop regions are indicated for  S. cerevisiae  yPMR1 and human hSPCA1. In yPMR1, the 
residues indicated in red are present in the EF-hand-like motif and are important for Ca 2+ /Mn 2+  
preference, transport activity and subcellular targeting. hSPCA2 interacts to the Orai1 channel via 
its N- and C-termini. The N-terminal hSPCA2 residues important for Orai1 interaction are indi-
cated with  orange arrows . hSPCA2 contains a PDZ binding domain at the C-terminus, which 
might be important for targeting. The  blue arrows  indicate residues that might be acceptor sites for 
posttranslational modifi cations according to PhosphoSitePlus. P, phosphorylation. Ub, 
ubiquitination       
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C-terminal SPCA2 protein fragment might play a so far unrecognized physiological 
role in the pancreas [ 97 ]. For instance, the truncated protein might interact with the 
Orai1 Ca 2+  channel, which is discussed in Sect.  3.2.3 . 

 In general, hSPCA1 displays a 29 % sequence identity and 43 % sequence simi-
larity with the rabbit SERCA1a, the best characterized Ca 2+  pump for which the 
Ca 2+  transport mechanism is well understood [ 4 ]. Although this  suggests   that the 
Ca 2+  pumping mechanism is highly conserved in SPCA, SPCA also displays dis-
tinct enzymatic properties. (1) Unlike SERCA, which transports two Ca 2+  ions per 
hydrolyzed ATP, SPCA pumps only one Ca 2+  ion per cycle. The Ca 2+ -binding site of 
SPCA overlaps with the Ca 2+  binding site II in the SERCA pumps, involving resi-
dues in M4 and M6 [ 4 ]. (2) Unlike the other Ca 2+  ATPases, SPCA has in addition to 
Ca 2+  the unique ability to transport Mn 2+ . Transport of Mn 2+  and Ca 2+  is mutually 
exclusive, indicating that both ions are transported via the same substrate binding 
site II in the M domain [ 98 – 100 ]. SPCA pumps ensure uptake of Mn 2+  in the lumen 
of the Golgi compartment, where several Mn 2+ -depending enzymes reside, such as 
the glycosyltransferases and sulfotransferases [ 4 ]. (3) An important characteristic of 
SPCA is the considerably higher affi nity for cytosolic Ca 2+  ions than SERCA [ 96 ]. 
The high apparent Ca 2+  affi nity suggests that the Ca 2+  uptake into the Golgi/secre-
tory pathway is permanently activated and is independent of a transient elevation of 
the cytosolic Ca 2+  concentration. The maximal turnover rates of the SPCA isoforms 
and splice variants are two- to sixfold lower compared to SERCA1a [ 96 ]. (4) SPCA 
is more compact than SERCA with shorter cytosolic and luminal loops [ 4 ]. At least 
some of the longer loops in SERCA contain unique regulatory and interaction sites 
[ 101 ]. For instance, HAX-1 interacts with the unique part of a cytosolic loop in the 
N-domain [ 102 ], whereas ERp57 interacts with the larger luminal L7-8 loop in 
SERCA [ 103 ]. 

 Despite these fundamental differences between SERCAs and SPCAs, their over-
all sequence similarity clearly demonstrates that they are more closely related than 
compared to the more distantly related PMCA Ca 2+  pumps. For this reason, SERCAs 
and SPCAs belong to the same P2A group in the P2 subfamily, whereas PMCAs are 
members of the P2B group [ 4 ].  

3.2     Regulation of SPCA Splice Variants by N- and C-Terminal 
Extensions 

3.2.1    Biochemical Properties 

 Although the physiological roles of the splice variants of SPCA1 have never been 
studied in great detail, ATPase activities of these splice variants have been com-
pared in a HEK-293 overexpression system [ 96 ]. Only low overexpression levels in 
HEK-293 cells were observed for SPCA1c and consequently no activity was 
detected [ 96 ]. For the other three SPCA1 splice variants, the  K   m   values are similar 
(9–10 nM),  but   lower than for SPCA2 (25 nM) and SERCA1a (284 nM) [ 104 ]. 
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The higher affi nity of SPCA1 and SPCA2 compared to SERCA1a is related to a 
kinetic effect rather than to a true increase of affi nity at the Ca 2+  binding site II, 
which is composed by identical residues in SERCA and SPCA. The maximal turn-
over rate is also comparable for SPCA1a, SPCA1b and SPCA1d (20–27 s −1 ), slightly 
higher for SPCA2 (40 s −1 ), but is 4.6–6.4-fold lower than for SERCA1a (130 s −1 ). 
Apparently, the alternative C-termini of SPCA1 have little impact on the enzymatic 
properties of this pump.  

3.2.2     Substrate Binding and Specifi city 

  The N-terminus of the  S. cerevisiae  PMR1 holds an unpaired EF-hand-like motif 
that has been demonstrated to bind Ca 2+  (Fig.  14.5a ) [ 99 ]. An EF- hand   motif is a 
helix−loop−helix motif in which a central Ca 2+  ion is chelated by oxygen atoms 
arranged in three dimensions. EF-hand motifs may act as sensors of intracellular 
Ca 2+  levels ( e.g. , in calmodulin) or serve as Ca 2+  buffers ( e.g. , in parvalbumin [ 105 ]). 
Of interest, the Ca 2+  binding in the PMR1 motif can be abolished by molar excess 
of Mn 2+ , but not Mg 2+ , suggesting possible competition between Ca 2+  and Mn 2+  
binding [ 99 ]. Disruption of the EF-hand-like motif in PMR1 by either alanine sub-
stitution or deletion severely impairs PMR1 Ca 2+  transport activity. The D51A and 
D53A single point substitutions in the EF-hand-like motif lead to a lower maximal 
turnover rate and reduced affi nity for Ca 2+ , whereas the D51A/D53A double mutant 
is retained in the ER, highlighting the importance of this motif for PMR1 activity 
and subcellular targeting [ 99 ]. Remarkably, the two point mutations have distinct 
effects on the affi nities for Ca 2+  and Mn 2+  ions. Overexpression of the D51A mutant 
fails to rescue the Mn 2+  hypersensitivity in the Δpmr1 strain, in line with impaired 
Mn 2+  transport. However, the D53A single and D51A/D53A double mutants are 
able to rescue the Mn 2+  hypersensitivity of the Δpmr1 strain, indicating that only 
Ca 2+ , but not Mn 2+  transport is impaired [ 99 ]. Thus, the PMR1 N-terminus, which is 
distal from the membrane regions that shape the Ca 2+ /Mn 2+  pathway, also regulates 
substrate preference. The N-terminal Ca 2+  and/or Mn 2+  binding might regulate intra-
molecular interactions between the N-terminus and downstream elements of PMR1, 
since the N-terminal region of PMR1 infl uences proteolytic stability of the 
C-terminal part of the protein [ 99 ].

   It is currently unknown whether the N-terminus of the human isoforms is regu-
lated in a similar manner, but it is interesting to point out that the N-terminal 
EF-hand-like motif is at least partially conserved in the N-terminus of hSPCA1a 
(Fig.  14.5a ), whereas it is less conserved in SPCA2. Although the SPCA1 N-terminus 
lacks one of the aspartate residues in the loop of the EF-hand-like region, prediction 
of the N-terminal structure with iTasser, a folding prediction program, indicates that 
the N-terminus of hSPCA1 may retain the EF-hand-like helix–loop–helix motif 
(Fig.  14.5b ). 
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 Although the precise function of the N-terminal segment of PMR1 remains 
unclear, the binding of the substrate to the N-terminus is a common regulatory 
mechanism observed in other P-type ATPases such as PMCA (see Sect.  4 ) and the 
Cu +  transporters ATP7A and ATP7B [ 106 ].   

3.2.3     Subcellular Targeting 

 It remains unknown if the splice variants of SPCA1 are distributed differently, 
but so far, several differences between the subcellular localization of human 
SPCA1 and SPCA2 proteins have been observed, which might relate to a dileucine 
motif and a putative type III PDZ binding motif that is only present in the hSPCA2 
C-terminus. The  precise   localization of SPCA1 and SPCA2 in the Golgi apparatus 
and secretory pathway further seems to vary between cell types. In non-polarized 
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   Fig. 14.5      Role   of the N- and C-termini of the Secretory Pathway Ca 2+ -ATPases in Ca 2+  binding 
and Orai1 interaction. ( a ) Alignment of the EF-hand-like region of SPCA1, SPCA2 and PMR1. 
Residues that match the EF-hand consensus motif are indicated in black. Consensus: E = gluta-
mate, * = any amino acid, n = apolar amino acid, 1–5 = negatively charged Ca 2+  coordinating resi-
dues, G = glycine, I = isoleucine or similar. ( b ) A full-length homology model of SPCA1 ( dark 
blue , truncated at the start of M1) was overlaid with the crystal structure of the SERCA1a 
N-terminus ( green ) and the predicted structures of the N-terminus of SPCA1 ( cyan ), PMR1 
( yellow ). N-terminus predictions were performed with iTasser [ 199 ]. The SPCA1 homology model 
was generated with SWISS-MODEL using the SERCA1a E2P crystal structure (3B9B) as a 
template [ 200 ]. ( c ) Proposed model of the interaction between SPCA2 and Orai1. Four critical 
residues in the N-terminus of SPCA2 interact with the cytosolic parts of Orai1, allowing for an 
interaction between Orai1 and the C-terminus of SPCA2, which activates the channel. The exact 
sites of interaction in the SPCA2 C-terminus and Orai1 are not known. The model is adapted from 
Ref. [ 111 ]       
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cells, SPCA1 showed a distribution consistent with Golgi/TGN localization 
[ 107 ,  108 ]. In HeLa cells and Human Kidney 2 cells, SPCA1 levels seem to increase 
along the secretory pathway, with weak co-localization with ER- and intermediate 
compartment markers, and stronger co-localization with markers of the TGN and 
secretory vesicles/endosomes [ 109 ]. In liver, SPCA1 is found in an endosomal com-
partment close to the basolateral membrane, which might sequester Mn 2+  as a  mech-
anism   of Mn 2+  detoxifi cation [ 108 ]. SPCA1 and SPCA2 exhibit a markedly different 
localization in epithelial cells of lactating mammary tissue, with SPCA1 being 
mostly present in the perinuclear Golgi region, whereas SPCA2 is more located in 
extra-Golgi vesicles. In the cell body and dendrites of rat hippocampal neurons, the 
endogenous SPCA2 is present in vesicles derived from the TGN, which is different 
from a more perinuclear distribution of hSPCA1 [ 94 ].  

3.2.4    Interacting Proteins 

   Orai1 

  Orai1   is a plasma membrane Ca 2+  channel that is responsible for store-operated Ca 2+  
entry (SOCE). The classical  Orai1   activation mechanism occurs through an interac-
tion with STIM1/2 from a sub-plasma membrane ER compartment. The integral 
membrane ER proteins STIM1/2 are Ca 2+  sensing proteins that upon Ca 2+  depletion 
of the ER store relocalize in clusters that physically interact with Orai1 in the plasma 
membrane [ 110 ]. An alternative, store-independent activation pathway for Orai1 
depends on the interaction of Orai1 with SPCA2, which relates to the unique capac-
ity of the SPCA2 N- and C-termini to interact and activate the Ca 2+  channel. SPCA2 
may interact to Orai1 within the plasma membrane [ 111 ] or alternatively, from a 
sub-plasma membrane compartment (Golgi or secretory vesicles) [ 112 ]. Specifi c 
residues in the N-terminus of SPCA2 fi rst coordinate the interaction with Orai1, 
ensuring that the C-terminus of SPCA2 is available and maneuvered suffi ciently 
close to Orai1 to activate Orai1 (Fig.  14.5c ) [ 111 ]. 

 A SPCA2 fragment corresponding to the C-terminal M9-10 region is able to 
activate Orai1 indicating that the C-terminus contains the Orai1 activation proper-
ties [ 111 ]. Of interest, a C-terminal M9-10 fragment of SPCA1 also activates 
Orai1, although  the   full-length SPCA1 fails to activate Orai1. This remarkable 
difference between SPCA1 and  SPCA2   is explained by differences in the 
N-terminus of SPCA1 and SPCA2. The N-terminus is therefore able to control 
the access of the C-terminus to the Orai1 channel for activation [ 111 ]. Critical 
amino acid substitutions in the N-terminus of SPCA1, notably at the position of 
the predicted EF-hand like motif in SPCA1, prevent the SPCA1-Orai1 interaction 
(Fig.  14.5a ). This suggests that the N- and C-termini are communicating in SPCA1 
and SPCA2 via a so far unidentifi ed mechanism. As mentioned in Sect.  3.2.2 , also 
the N-terminus of the yeast PMR1 infl uences the stability of the C-terminal part 
of the pump.   
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3.2.5     Posttranslational Modifi cations in the N/C-Termini 
of SPCA Isoforms 

 PTMs may regulate the function of the SPCA N- and C-terminal stretches.  Although 
  no PTMs have been experimentally confi rmed in the N- or C-terminus of SPCA1 
and 2, evidence for ubiquitination of residues K8 and K25 in SPCA1 is available in 
the PhosphoSitePlus database. In addition, the C-terminus of SPCA1a and SPCA1d 
contains a serine/threonine-rich motif that is absent in the C-terminus of SPCA1b, 
but that is indicated by PhosphoSitePlus as a possible phosphorylation site. No 
information on the functional importance of these PTMs is currently available.  

3.2.6    Disease Mutations 

 The  ATP2A2  and  ATP2C1  genes are involved in related skin disorders. Mutations in 
SERCA2 result in Darier disease, whereas mutations in SPCA1 cause Hailey–
Hailey disease, a related non-immune mediated acantholytic skin disease with simi-
lar symptoms [ 113 ]. A remarkable parallel between the two genes was also  observed   
in heterozygous  Atp2a2 +/− [ 114 ] and  Atp2c1+/ − mice [ 115 ], which both display an 
increased incidence of squamous tumors. Over 100 different mutations in  ATP2C1  
have been identifi ed in Hailey–Hailey disease patients, but so far no mutations in the 
N- or C-terminus other than frameshifts or nonsense mutations, are known to cause 
Hailey–Hailey disease.  

3.2.7      Implications of the SPCA Regulation for Lactation 
and Breast Cancer 

  The activity and expression of multiple Ca 2+  transporters in the mammary gland is 
tightly coordinated during pregnancy, lactation at parturition, and the process of 
involution. These changes are required to support the release of large amounts of 
Ca 2+  in the milk (8–60 mM, depending on the species) [ 116 ]. SPCA1, SPCA2, and 
Orai1 levels are highly upregulated in mammary gland during lactation [ 117 ,  118 ], 
resulting in a 150-fold increase in SPCA2 and a 15-fold increase in SPCA1 protein 
levels [ 117 ]. SPCA2 activates  Orai1   via its N- and C-terminal extensions at the 
basolateral side of the mammary gland luminal epithelial cells, which leads to an 
increased Ca 2+  infl ux. Ca 2+  is subsequently transferred into the milk at the apical 
side via two main Ca 2+  transport routes: via the ER/secretory pathway (SERCA/
SPCA) and across the apical plasma membrane via PMCA [ 117 ,  119 ,  120 ]. PMCA2 
knockout mice exhibit 60 % lower Ca 2+  levels in the milk suggesting the remaining 
40 % may be released via the ER/secretory pathway [ 119 ]. 

 In the pancreas, the expression of a short 20 kDa splice variant of SPCA2 as well 
as the full length SPCA2 are controlled by the transcription factor MIST1 [ 97 ]. 
Besides the expression in pancreatic acinar cells, MIST1 is also transiently expressed 
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during lactation in the epithelial alveolar cells suggesting that MIST1 might also 
control SPCA2 upregulation in mammary gland [ 97 ]. It is therefore tempting to 
speculate that the C-terminal SPCA2 fragment might interfere or regulate the 
SPCA2-Orai1 interaction as was already experimentally observed with a M9-10 
fragment of SPCA2 [ 111 ]. Alternatively, the C-terminal fragment might regulate the 
targeting of Orai1,  e.g. , in mammary epithelial cells [ 117 ]. Indeed, in mouse mam-
mary epithelial cells mislocalization of Orai1 in SPCA2 knockdown cells could be 
partially rescued by overexpression of the last 77 amino acids of SPCA2 [ 117 ]. 

 The store-independent mechanism of Ca 2+  infl ux through the SPCA2-Orai1 inter-
action may also contribute to the altered Ca 2+  homeostasis in some types of breast 
cancer. SPCA2 is upregulated and involved in luminal subtypes of breast cancer 
[ 111 ] and Orai1 expression is dramatically increased in several mammary tumor cell 
lines like MCF-7 and MDA-MB-231 [ 118 ]. Of interest, the Orai1 channel in MCF-7 
breast cancer cells remains constitutively activated by SPCA2 leading to pathologi-
cal Ca 2+  infl ux, activation of MAP kinase pathways, high rates of proliferation, and 
tumorigenesis [ 111 ]. Knockdown of SPCA2 in MCF-7 cells attenuated cell prolif-
eration, colony formation in soft agar, and MCF-7-induced tumor formation in mice 
[ 111 ]. In contrast, SPCA2 was not expressed in the highly metastatic cell line 
MDA-MB-231. In MDA-MB-231 cells, STIM1/Orai1-mediated store- dependent 
Ca 2+  entry might be more important [ 121 ]. Interestingly, SPCA1 knockdown in 
MDA-MB-231 cells reduces cell proliferation and impairs the posttranslational 
modifi cation of IGF1R, a protein important in tumor progression suggesting that 
also SPCA1 might exert tumor promoting effects [ 122 ]. Different from SPCA2, 
SPCA1 is upregulated in the basal-like breast cancer  subtype,  i.e. , a breast cancer 
subtype with the worst prognosis, suggesting a specifi c role of SPCA1 [ 122 ]. 

 Thus, SPCA1/2 isoforms play a prominent role in the Ca 2+  dyshomeostasis of 
breast cancer cells [ 111 ,  112 ,  122 ,  123 ]. Moreover, SPCA1/2 pumps might be 
potential therapeutic targets for breast cancer therapy. In particular, interfering with 
the N-/C-terminal dependent activation of Orai1 might be a valuable therapeutic 
approach, since a 40-amino acid fragment corresponding to the SPCA2 N-terminus 
interferes with the SPCA2-Orai1 interaction, which may prevent the pathological 
activation of Ca 2+ -infl ux [ 111 ]. Such therapeutic strategies should however take into 
account the different roles of the SPCA1 and SPCA2 isoforms in different breast 
cancer subtypes [ 112 ].     

4      Plasma Membrane Ca 2+  ATPase 

4.1     PMCA Isoforms and Splice Variants 

  PMCA is a low capacity, but high affi nity extruder for Ca 2+  that contributes to main-
tain a steep Ca 2+  gradient across the plasma membrane [ 124 ]. PMCA was  fi rst   iden-
tifi ed in mammalian erythrocyte membranes [ 125 ] and later purifi ed by calmodulin 
affi nity chromatography [ 126 ]. PMCA is found in all eukaryotes, including fungi, 
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plants, and animals, but PMCA-like pumps are also present in Eubacteria and 
Archaea. PMCA lacks a critical acidic residue in M5 explaining why PMCA, like 
the SPCA isoforms, only contains one Ca 2+ -binding site in the M-domain that cor-
responds to site II of the SERCA1a pump [ 4 ]. The Ca 2+  affi nity of PMCA falls in the 
10–30 μM range in resting conditions, but changes to 0.2–0.5 μM range in optimal 
stimulated conditions [ 124 ]. Although the Ca 2+  affi nity of the PMCA pump is lower 
than that of the SPCA and most SERCA pumps, PMCA operates in both resting and 
stimulated conditions in many cell types to fi ne-tune the cytosolic and/or microdo-
main Ca 2+  concentrations [ 124 ]. PMCA pumps further differ from SERCA and 
SPCA isoforms by the presence of a much longer cytosolic C-terminus, which con-
tains several important regulatory elements, such as a calmodulin binding domain 
(CaMBD) and an acidic phospholipid binding site [ 124 ,  127 ,  128 ]. The C-terminal 
segment of PMCA is an auto-inhibitory domain that interacts with the catalytic core 
of the pump [ 129 ]. 

 Four mammalian genes ( ATP2B1-4 ) encoding four PMCA isoforms have been 
identifi ed, which mainly differ in tissue distribution [ 130 ,  131 ] and calmodulin 
affi nity [ 132 ,  133 ]. Among them, PMCA1 is expressed ubiquitously and is expressed 
the earliest in development. PMCA2 and PMCA3 show a more tissue specifi c 
expression pattern. PMCA2 is highly expressed in the nervous system, liver, kidney, 
lactating mammary glands, and uterus [ 134 ,  135 ], whereas the expression of 
PMCA3 is more restricted with expression in brain, muscle, and lung. PMCA4 is 
expressed ubiquitously and abundantly in human [ 135 ], but also performs 
 tissue- specifi c roles [ 136 ]. In addition, PMCA1 and PMCA4 display low calmodu-
lin binding affi nity, whereas PMCA2 and PMCA3 are more sensitive to calmodulin. 
Noteworthy, the calmodulin effect is remarkably different in PMCA2 as compared 
to the other isoforms since calmodulin only moderately stimulates PMCA2 [ 124 ]. 
This allows a sustained extrusion of Ca 2+  via PMCA2 even in the absence of activa-
tors, which is for instance critical in the outer hair cells of the inner ear, since loss 
of PMCA2 results in deafness [ 137 ]. 

 Furthermore, the four isoforms are subjected to alternative splicing at two 
hotspots (site A lies within the fi rst cytosolic loop [ 141 ] and site C is positioned 
within the C-terminal tail [ 130 ]), leading to a complex array of around 30 PMCA 
protein variants (reviewed in Refs. [ 128 ,  135 ,  138 – 140 ]). Historically, alternative 
splicing at sites B and D was also considered to generate additional splice variants, 
but were later recognized as splicing artifacts [ 128 ,  135 ]. The PMCA variability 
introduced by the A and C regions does not affect the catalytical core of the pump, 
but is responsible for the differential subcellular targeting to special plasma mem-
brane domains ( e.g.  lipid rafts, caveolae or apical versus basolateral membranes in 
epithelial cells), the regulation of pumping activity and the interaction with proteins 
or lipids, offering tissue and cell type dependent ways to respond to cytosolic Ca 2+  
signals and to modulate Ca 2+ -dependent signal transduction pathways [ 124 ]. 
Although this may rationalize the existence of multiple PMCA variants, the specifi c 
role of many splice variants remains unclear. 

 The alternative splicing site A is located between a putative G protein binding 
sequence and a phospholipid binding site [ 135 ]. Except for PMCA1, which at site 
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A is only spliced in the  x  form, the other PMCA isoforms undergo alternative splic-
ing at site A generating multiple variants. The different combination of three exons 
generates the PMCA2  w ,  x ,  y , and  z  variants, whereas for PMCA3 and PMCA4, 
only variants  x  and  z  are recognized [ 135 ]. The splicing at site A might modulate the 
lipid activation [ 135 ], G protein regulation [ 143 ] and subcellular targeting [ 144 ]. 

 In this review, we are unable to completely cover the vast literature on PMCA 
isoforms and splice variants (for excellent reviews the reader is referred to Refs. 
[ 124 ,  135 ,  138 ,  145 ]), but in analogy to the SERCA and SPCA pumps described 
above, we here focus on some main properties, mechanisms, and roles of the N- and 
C-terminal dependent regulation of PMCA. For PMCA1-4, alternative splicing at 
site C generates multiple human PMCA variants that vary at their C-terminus 
(termed  a-f ). These segments affect the auto-inhibition properties, are promoting 
interactions with regulatory molecules such as the Ca 2+ -binding protein calmodulin, 
acidic phospholipids, protein kinases, PDZ-domain containing proteins, Ca 2+  ions 
and endogenous proteases [ 124 ,  135 ]. Many of these interactions alter the confor-
mation of the C-terminus promoting its release from the catalytic core of the pump 
[ 128 ,  146 ].   

4.2     Regulation of PMCA Splice Variants by N- and C-Terminal 
Extensions 

4.2.1    Biochemical Properties 

 The presence of multiple Ca 2+ - and Mg 2+ -dependent ATPases and multiple PMCA 
isoforms in most cells and the lack of highly specifi c inhibitors of PMCA make it 
complicated to perform functional PMCA studies in intact cells [ 135 ]. Therefore, 
specifi c information on the functional role of the variable C-termini remains incom-
plete. Most kinetic studies were performed on PMCA4b, while other studies  com-
pared   the main splice variants  a  and  b  of PMCA2 and PMCA4 [ 142 ,  147 ]. In COS 
microsomes overexpressing PMCA isoforms without the further addition of 
calmodulin, slightly higher values of both Ca 2+  uptake activity and Ca 2+  affi nity 
were observed for rat PMCA2b than rat PMCA2a and hPMCA4b, suggesting a 
higher basal activity (without calmodulin) of PMCA2 compared to PMCA4. 
Interestingly, a truncated hPMCA4b without a C-terminus resembles rPMCA2b in 
the Ca 2+  uptake activity further highlighting that the C-terminus is able to fi ne-tune 
the basal enzymatic activity [ 147 ].  

4.2.2     Subcellular Targeting 

 Diverse PMCA isoforms not only regulate global intracellular Ca 2+  homeostasis but 
also participate in local Ca 2+  signaling. For both purposes the targeting of particular 
isoforms of PMCA to specifi c subcellular localizations is crucial, especially in 
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polarized cells such  as   epithelial cells and neurons. Studies in various epithelial 
cells indicated that the  w  insert promotes apical localization of PMCA, whereas the 
 x  and  z  inserts promote the targeting to the basolateral membrane [ 134 ,  144 ,  148 , 
 149 ]. The apical localization of PMCA2w/b also depends on the lipid environment 
[ 150 ], and is promoted by the C-terminal PDZ domain interaction with the apical 
scaffolding protein NHERF2 [ 151 ]. 

 Other studies found that PMCA pumps are enriched in specialized plasma mem-
brane invaginations called caveolae [ 152 ,  153 ], where the local membrane  is   con-
centrated with cholesterol, glycosphingolipids and signaling proteins. Fujimoto 
et al. observed caveolae localization of PMCA in many human and mouse cell types 
[ 152 ]. A later study using synaptosomal plasma membranes vesicles from pig cer-
ebellum further showed that PMCA4, but not PMCA1, -2, or -3 is associated with 
lipid rafts [ 154 ]. In intestinal smooth muscle, PMCA4 b  is associated with caveolin-
 1, whereas PMCA4 a  is associated with rafts [ 155 ], suggesting that the association 
of PMCA pumps with caveolae or rafts depends on the properties of the C-terminus. 
The targeting of various PMCA isoforms is further regulated by PDZ-binding pro-
teins, which is discussed in Sect.  4.2.3 .  

4.2.3     Interacting Proteins 

   Calmodulin 

 By far the best understood regulatory mechanism of PMCA is the interaction with 
 calmodulin, which   in a Ca 2+  loaded state binds with high affi nity, reducing the  K  m  of 
the pump to sub-micromolar values [ 124 ]. The CaMBD is located at the C-terminal 
cytosolic region in mammalian PMCA, but positioned in the N-terminal region of 
plant PMCA proteins. In the mammalian PMCA, the Ca 2+  loaded calmodulin binds 
at a site around 40 amino acids downstream of the last transmembrane helix [ 156 ]. 
In the absence of calmodulin, the long C-terminal tail is positioned close to the main 
body of the pump and interacts with two parts of the cytosolic loops: one in the 
A-domain and one in the N-domain between the phosphorylation and ATP binding 
site [ 129 ,  157 ]. According to an intramolecular FRET study the two termini of 
hPMCA4x/b are in close proximity in the auto-inhibited state, which limits the sub-
strate access and inhibits pump activity [ 158 ]. When the Ca 2+ -loaded calmodulin 
binds to the C-terminus of the pump, it induces a conformational change that swings 
the C-terminus away from the cytosolic loops activating the pump [ 128 ,  158 ]. Once 
the pump becomes activated by calmodulin, both substrate affi nity and pumping 
rate are increased [ 159 ]. 

 Recently, the crystal structure of the regulatory domain of the   Arabidopsis  thaliana  
PMCA isoform Aca8R in complex with calmodulin unexpectedly revealed two tan-
dem inverted calmodulin binding sites ( i.e. , CaMBS1 and CaMBS2) that are sepa-
rated by  eight   residues [ 160 ]. A structural model for Aca8 in the auto-inhibited state 
was proposed indicating that the CaMBDs may interact with a highly conserved cleft, 
situated between the A domain and the N and P domains, that is fully exposed in the 
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E2 conformation and buried in the E1 conformation [ 160 ]. CaMBS2 can on itself 
promote auto-inhibition of PMCA, but when both CaMBDs work together, an addi-
tive effect is observed leading to complete auto-inhibition [ 160 ]. CaMBD1 would 
respond to nanomolar Ca 2+  concentrations in basal conditions, whereas CaMBD2 
would be sensitive to higher micromolar Ca 2+  concentrations in stimulated conditions 
[ 160 ]. Overall, this may result in a two-step activation/inhibition mechanism explain-
ing why PMCA responds to a wide range of cytosolic Ca 2+  signals. The presence of 
two CaMBDs is also found in several, but not all, mammalian PMCA variants, includ-
ing human hPMCA1d and hPMCA4d [ 138 ,  160 ]. 

 Since alternative splicing of site C is located in the middle of the CaMBD, alter-
native splicing generates a series of splice variants with different calmodulin- 
dependent properties that alter the calmodulin binding affi nity, the pH sensitivity of 
binding and on/off rates of calmodulin activation (see review [ 135 ]). Compared to 
the  b  variant, the  a  variant   contains a frameshift in the middle of the CaMBD. Although 
the full C-terminus of variant  a  is much shorter, the CaMBD in  a  is longer than in  b  
and is composed of two parts that are connected by a loop [ 161 ,  162 ], The PMCA1 
and PMCA4  d  variants contain the second CaMBD2 after the common CaMBD1 
[ 160 ]. PMCA3f is the shortest splice variant, which is terminated 15 amino acids 
after splice site C, resulting in a different second half of the CaMBD and the lack of 
downstream regulatory regions [ 163 ]. 

 The variations in the CaMBD result in different calmodulin affi nities. In general, 
the  b  variants display a higher affi nity towards calmodulin than the  a  variants [ 147 , 
 164 ,  165 ], which is related to nine residues downstream of splice site C [ 164 ]. At 
site C an IQ-like motif is recognized, which is a sequence  stretch   for Ca 2+ -
independent calmodulin binding [ 127 ]. The motif in the  b  variants corresponds 
closer to the consensus IQ motif than that in the  a  variants. The lower calmodulin 
affi nity of the short PMCA3f variant might also relate to a low resemblance to the 
PMCA3f IQ-like motif to the consensus IQ motif [ 135 ]. Finally, PMCA2a and 
PMCA2b present a higher calmodulin affi nity than PMCA4b, leading to constitu-
tive activation of PMCA2 in the brain where the calmodulin concentration reaches 
50 μM [ 2 ,  135 ]. 

 Although most PMCAs bind calmodulin with high affi nity, the activation kinet-
ics may differ signifi cantly. PMCA4b shows an extraordinary slow calmodulin on/
off rate, whereas PMCA4a is considerably faster [ 165 ]. The slow calmodulin on 
rate may  allow   the cytosolic Ca 2+  to rise to a higher level before PMCA is activated 
and the slow off rate may result in a longer PMCA activation and a more complete 
Ca 2+  extrusion. This may shape the formation of Ca 2+  spikes [ 166 ] or provide a 
memory function [ 133 ].  

   PDZ Domain Containing Proteins 

 As mentioned in Sect.  4.2.2 , various PMCA isoforms are targeted to specialized 
membrane domains such as lipid rafts [ 154 ] and caveolae [ 152 ,  153 ], which recruit 
multiple signaling proteins [ 167 ]. Many  PMCA   interacting proteins contain a PDZ 
domain, an 80–90 amino acid long structural domain that recognizes the C-terminus 
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of target proteins for complex formation or targeting to a specifi c region. Especially 
the  b  splice variants contain C-terminal extensions that end with a sequence stretch 
ETSL/V enabling PDZ domain binding [ 168 ]. 

 Various members of the membrane-associated guanylate kinase (MAGUK) fam-
ily [ 168 ], Ca 2+ /CaM-dependent serine kinase (CASK) [ 169 ], neuronal nitric oxide 
synthase (nNOS) [ 140 ], the Na + /H +  exchanger   regulatory factor-2 (NHERF2) [ 170 ], 
cytoskeletal protein [ 171 ], and others [ 172 ,  173 ] interact via their PDZ domains to 
the C-terminus of PMCA, which can also be isoform specifi c. It is proposed that by 
binding, these interacting proteins may target and hold selected PMCA isoforms to 
spatially defi ned membrane regions [ 168 ], or recruit PMCA into multiprotein sig-
naling complexes [ 170 ] for precise spatial and temporal Ca 2+  signaling.  

   Calpain 

 Initiated by μM concentration of Ca 2+ , calpain cleaves erythrocyte PMCA at the 
CaMBD, generating  a   permanently activated pump that loses the sensitivity to 
calmodulin [ 174 ]. Compared to PMCA2 and -4, PMCA1 is most sensitive to cal-
pain cleavage [ 175 ]. PMCA is also the target for several other intracellular proteases 
such as caspases [ 176 ,  177 ], where the functional effect of PMCA depends on the 
site of cleavage.  

   14-3-3 Proteins    

The N-terminus of PMCA recruits  14-3-3 proteins  , which reduces the PMCA activ-
ity. 14-3-3 proteins are a family of regulators found in all eukaryotes that interact 
with a  wide   range of protein partners and that regulate many cellular processes, such 
as gene transcription, cell cycle regulation, and apoptosis [ 178 ]. The ε isoform of 
the 14-3-3 proteins interacts with the N-terminus of PMCA1, -3 [ 179 ] and -4 [ 180 ], 
whereas PMCA3 also interacts with the ζ isoform of 14-3-3 protein [ 179 ]. Only 
PMCA2 does not interact with 14-3-3 proteins, which might relate to PMCA2 spe-
cifi c residues in the N-terminus that may disrupt the amphipathic α helical structure 
required for the interaction with 14-3-3 proteins [ 179 ].   

4.2.4    Stimulation of PMCA by Phospholipids 

 Two phospholipid binding sites were identifi ed in PMCA, one in the M2 and M3 
loop and one in the C-terminal CaMBD. Binding of acidic phospholipids to the 
C-terminal CaMBD [ 181 ,  182 ] such as phosphatidylserine, phosphatidic acid,  phos-
phatidylinositol   bisphosphate, and cardiolipin decrease the  K   m   of PMCA at least as 
low as calmodulin [ 183 ]. The activation by acidic phospholipids remains however 
poorly understood, although it is estimated that the local acidic phospholipid con-
centrations may be suffi ciently high to stimulate PMCA up to ~50 % of its maximal 
activity [ 181 ].  
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4.2.5     Posttranslational Modifi cations in the N/C-Termini 
of SERCA Isoforms 

 PMCA can be phosphorylated by both Ser/Thr and Tyr kinases, which is thought to 
infl uence the regulation of the pumps either by activating PMCA or by regulating 
calmodulin binding. Here, we briefl y discuss the best studied phosphorylations 
mediated by protein kinase A (PKA) and protein kinase C (PKC). 

   PKA 

 PKA phosphorylation seems to be specifi c for a certain subset of PMCA isoforms 
 and   splice variants, but variability in the PKA-mediated functional outcome exists, 
greatly depending on the PMCA isoform type [ 184 ]. During ß-adrenergic stimula-
tion PKA can activate cardiac PMCA, which promotes Ca 2+  extrusion [ 185 ].  

   PKC 

 The various PMCA isoforms and splice variants are differentially regulated by 
PKC. PKC readily phosphorylates the C-terminus of PMCA2a, -3a, -4a, and -4b, 
whereas PMCA2b and - 3b   are poor substrates for PKC [ 135 ,  186 ]. The functional 
effect of PKC-dependent phosphorylation also differs: the PMCA4a activity is not 
affected by PKC phosphorylation, whereas PMCA4b becomes partially activated 
[ 135 ]. In addition, the Ca 2+ -calmodulin affi nity and activating properties are not 
infl uenced by PKC in PMCA4a and -4b, whereas they are severely compromised in 
PMCA2a and -3a [ 135 ].   

4.2.6    (Patho)Physiological Implications of the PMCA Isoform Diversity 

 The importance of PMCA isoforms is underscored by their various physiological 
functions and implications in human disease. Below the major (patho)physiological 
signifi cance of the different PMCA isoforms is shortly discussed (for excellent 
reviews on PMCA in health and disease, the reader is referred to [ 124 ,  139 ,  187 ]). 

   PMCA2 

  In   lactating mammary gland, PMCA4b is downregulated, whereas PMCA1 expres-
sion is moderately increased and PMCA2w/b is dramatically upregulated [ 188 ]. As 
mentioned in Sect.  3.2.7 , PMCA2w/b is located at the apical membrane of the 
secretory cell [ 119 ] working together with the SPCA1/2-dependent secretory path-
way [ 117 ] to load Ca 2+  into milk. PMCA2 upregulation is also observed in breast 
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cancer and contributes to an increased resistance to apoptosis, [ 189 ], while its 
downregulation increases apoptosis [ 189 ]. 

 High levels of PMCA2 are also found in the apical stereocilia in the hair cells of 
the Corti organ  in   the inner ear. Since stereocilia do not contain ER or mitochondria 
they solely rely on PMCA2 for Ca 2+  clearance, underscoring the importance of 
PMCA2 for hearing and balancing. PMCA2 null mice are deaf and show balancing 
problems, while heterozygous mice show signifi cant hearing loss [ 190 ]. Moreover, 
deafwaddler mice [ 191 ] and Wriggle Sagami mice [ 192 ] carry PMCA2 mutations 
[ 191 ]. The balance defect is related to the absence of the Ca 2+  carbonate crystals of 
the otoconia embedded in the otolithic membrane of the sensory epithelium, which 
are sensing gravity and linear acceleration [ 124 ].  

   PMCA3 

 The PMCA3 G1107D substitution in a highly conserved region in the CaMBD is 
associated  with   X-linked pinocerebellar ataxia, impairing the Ca 2+  clearance from 
the cell [ 193 ]. Another PMCA3 mutation, T543M, was identifi ed in human pancre-
atic cancer cells affecting a residue located in one of the two docking site for the 
auto-inhibitory CaMBD [ 194 ].  

   PMCA4 

 In  contrast   to PMCA1, the genetic ablation of PMCA4 is not embryonically lethal, 
but produces specifi c phenotypes such as male sterility as a result of reduced sperm 
motility [ 195 ]. PMCA4b also modulates nNOS signaling in the heart by direct inter-
action via its PDZ-binding domain. In PMCA4 KO mice, the in vivo contractility and 
Ca 2+  amplitude response increases, but relaxation is not altered. The nNOS interac-
tion regulates cardiac contractility through modulation by cyclic nucleotides [ 196 ]. 
 The  overexpression of the PMCA4 pump in the myocardium of the rat leads to 
abnormal myocardial growth and hypertrophy [ 197 ].     

5     Conclusions 

 Although P-type Ca 2+  transporters share common domain architectures and similar 
transport mechanisms, they are differentially regulated by fl exible N- and C-terminal 
extensions providing a multifaceted toolkit of Ca 2+  transporters. The complex array 
of Ca 2+  transporter isoforms and splice variants in various cellular compartments 
controls the spatiotemporal Ca 2+  signals in a cell and serves as scaffolds to recruit 
other proteins. Without any doubt, the existence of so many isoforms and variants 
provide specifi c functions in specialized tissues, cell types, and subcellular domains. 
However, their (patho)physiological functions are only gradually emerging and 
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information on many splice variants remains limited. But it is becoming increas-
ingly clear that insights into the properties and molecular mechanisms of the N- and 
C-terminal extensions may provide novel therapeutic opportunities to regulate and 
control specifi c Ca 2+  transporter isoforms in a disease context.     
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    Abstract     The vacuolar (H+)-ATPases (V-ATPase) are a family of highly conserved 
multisubunit ATP-driven nanomotors, responsible for the acidifi cation of a variety 
of intracellular compartments in eukaryotic cells. Vacuolar (H+)-ATPases are 
important in both normal physiology and in pathophysiology. These complicated 
and huge enzymes consist of at least 14 subunits divided into two domains 
(membrane- bound V o  and cytosolic V 1 ). The peripheral stalk subunits of eukaryotic 
or mammalian vacuolar ATPases (V-ATPases) play key roles in regulating the 
assembly and disassembly of the enzyme. Interestingly, many of the peripheral stalk 
subunits also possess several homologues, which are known to be tissue-specifi c 
and are responsible for the formation of proton pumps with specialized functions 
within different tissues. Such tissue-specifi c isoforms/homologues and splice vari-
ants cannot complement each other, meaning that tissue/cell-specifi c regulation of 
V-ATPases is diffi cult to understand. In order to understand the structure/function 
and isoform-specifi c regulation mechanism of the human V-ATPase, several of the 
peripheral stalk subunits and their isoforms were expressed and characterized. In 
this review, we will discuss the binding interaction phenomena specifi cally at the 
stalk region, which mediates the reversible assembly and disassembly of V-ATPase 
in eukaryotic/mammalian cell systems.  
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1         Introduction 

 In order to  function   correctly, the human cell system requires regulation of the 
concentrations of ions such as calcium, magnesium, sodium, potassium, and hydro-
gen. Ion  transporting   adenosine triphosphatase (ATPase) is an ion-regulating mem-
brane protein that pumps ions across the membrane using chemical energy derived 
from adenosine triphosphate (ATP) hydrolysis. Cation-transporting ATPases are 
very important for the maintenance of ion concentrations inside and outside of cells, 
and are classifi ed into three types (P-type, F-type, and V-type ATPases) according to 
differences in their structure, function, and biochemical properties. Figure  15.1  
shows the localization and function of cation-transporting ATPases in a eukaryotic 
cell. P-type ATPases form a large protein family in practically all cell types from 
archaea to humans. They generate essential ion gradients that are the basis for 
diverse functions such as signaling, energy storage, and secondary transport pro-
cesses. Members of this family generate and maintain crucial electrochemical gra-
dients across cell  membranes   by translocating cations, heavy metals, and lipids, a 
process that requires ATP hydrolysis. On the other hand, proton-pumping F-ATPase 
(ATP synthase) synthesizes ATP; with the entire reaction (oxidative- or photo- 
phosphorylation) carried out in the membranes of mitochondria, bacteria, or chlo-
roplasts. This complex, the F 1 F o -ATPase (F-ATPase), uses proton motive force 
(the transmembrane movement of protons driven by the electrochemical mem-
brane potential) as an energy source for the endothermic phosphorylation of ade-
nosine diphosphate (ADP). This reaction is catalyzed by F-ATPase operating as a 
nano- scale machine with a rotary action [ 1 – 4 ]. F-ATPase belongs to a small 

  Fig. 15.1    Ion- translocating   ATPases in a eukaryotic cell (localization and function).  Green ,  blue , 
and  red color  symbols represent P-, F-, and V-ATPase, respectively.  Straight arrows  indicate the 
directions of ion translocation       
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family of membrane complexes that includes vacuolar H + -translocating V 1 V o -ATPase 
(V-ATPase) and A 1 A o -ATPase (A-ATPase), all of which originated from a common 
evolutionary ancestor [ 5 ,  6 ]. The V-ATPase operates as an ATP-powered ion pump 
in the acidic organelles and plasma membranes of eukaryotic cells, whereas the 
A-ATPases (A-type refers to archaea) are ATP synthases in the cell membrane of 
archaea and in some bacteria [ 7 – 9 ]. A-ATPases are similar to the F-ATPases func-
tionally,    although the structure and subunit composition of A-ATPases are more 
similar to those of V-ATPases. V-ATPases are also found in bacteria, such as 
 Thermus thermophilus  [ 10 ] and  Enterococcus hirae  [ 11 ].  T. thermophilus  V-ATPase 
functions as an ATP synthase. Therefore it has sometimes been called an A-ATPase. 
On the other hand,  E. hirae  V-ATPase acts as a primary ion pump, which transports 
Na +  or Li +  physiologically instead of H +  [ 12 ,  13 ]. The enzyme is composed of nine 
subunits having amino acid sequences that are homologous to those of the corre-
sponding subunits of eukaryotic V-ATPases. The molecular mechanisms of  E. hirae  
V-ATPase have been proposed on the basis of crystal structures of the parts, and 
single-molecule observation of the rotation [ 13 – 18 ].

2        Functional and Structural Features of Eukaryotic 
V-ATPases 

 Eukaryotic V-ATPases are multiprotein complexes that consist of 14 different poly-
peptide chains. Electron microscopy and image analysis have provided a general 
outline for the structural organization of V-ATPase [ 19 – 21 ]. The  complex   has a 
bipartite structure consisting of a membrane-integrated V o  domain (subunits a, c, c′, 
c″, d, and e) and a cytoplasmic extrinsic V 1  domain (subunits A–H) (Fig.  15.2 ). 
These two domains are linked by a connecting region that is important for coupling 
proton translocation in V o  with ATP hydrolysis in V 1  and is involved in regulating 
the activity of the enzyme by reversible disassembly. The connecting region con-
sists of a central shaft (subunits D, F, and d) and multiple peripheral stator elements 
(subunits C, E, G, H, and a). Some of the eight different subunits in the V 1  domain 
are present in multiple copies; the domain contains three copies of the A, B, E, and 
G subunits, and one copy of the C, D, F, and H subunits. In V 1 , the head group con-
tains a trimer of nucleotide-binding A–B dimers that are responsible for ATP hydro-
lysis. The remaining V 1  subunits are distributed between one of two types of stalks 
(peripheral and central) that connect the V 1  and V o  domains. These stalks have dis-
tinct functions in the rotary mechanism by which V-ATPases couple ATP hydrolysis 
to proton transport. The central stalk serves as an axis that couples the energy 
released from ATP hydrolysis to the rotation of a  ring   of proteolipid subunits in V o . 
The peripheral stalks serve to prevent the rotation of the A 3 B 3  head during ATP 
hydrolysis and therefore serve a stator function. The integral V o  domain contains six 
different subunits. In yeast, these subunits are a, d, e, c, c′, and c″ [ 22 ,  23 ], whereas 
higher eukaryotes lack subunit c′ but contain the accessory subunit Ac45 [ 24 ]. The 
V o  subunits appear to be present in a stoichiometry of four or fi ve copies of subunit 
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c and single copies of the remaining subunits [ 22 ,  25 ]. The proteolipid subunits 
(c, c′ and c″) are highly hydrophobic proteins that are arranged to form a ring [ 26 ].

   Crosslinking and electron microscopy studies have provided evidence that C, E, 
G, H, and the N-terminal domain of the a subunit (a NT ) all form part of the peripheral 
stalk [ 27 ]. It is known that in F-type ATP synthase there is only one peripheral stalk, 
whereas bacterial V-ATPases or A-ATPases contain two pairs of EG in their periph-
eral stalk, and eukaryotic V-ATPases have three pairs of EG [ 28 ].  Saccharomyces 
cerevisiae  V-ATPase has been extensively studied and is used as a model for study-
ing eukaryotic V-ATPases. The emerging consensus is that  subunits   E and G form a 
stable subcomplex [ 29 – 33 ], that is in contact with subunits C and H [ 31 – 35 ]. In 
contrast to the stator-forming subunit b in the related F-ATPases, V-ATPase subunits 
E and G do not have a membrane anchor to support their stator role. Therefore, they 
require a direct or indirect connection to the static membrane-anchored subunit a. 
Subunits C and H have been shown to tightly interact, and this  interaction   provides 
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  Fig. 15.2    Schematic  model   of mammalian V-ATPase with subunit composition and organization. 
Subunits A, B, C, D, E, F, G, and H form the cytosolic domain (V 1 ), and subunits a, c, d, and e form 
the transmembrane domain (V o ). The A–B subunit interfaces are the ATP catalytic sites where the 
ATP hydrolysis is mediated and the protons are transported between subunit a and the proteolipid 
c-ring. The central stalk is composed of D, F, d subunits, which mediates the rotation; whereas, the 
peripheral stator elements (C, E, G, H, and a) serve to prevent such rotation of the A 3 B 3  head 
during ATP hydrolysis       
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a base for the three EG peripheral stalks. The structures of yeast V-ATPase C, H, 
and EGC (head) subunits have been solved [ 36 – 38 ]. Subunits C and H have no 
counterparts in bacterial A/V-ATPases. Subunit C has a “dogbone” structure [ 36 ] 
that is approximately 110 Å long and fi ts into the stator of the V-ATPase, where it 
contacts with the N-terminal region of subunit E. In addition, subunits C and H play 
a key role in the regulation process that occurs, for instance, during nutrient short-
age [ 39 ,  40 ]. Subunit C is the fi rst to dissociate from the complex, whereas subunit 
H is responsible for silencing the ATP hydrolysis activity in the free V 1  [ 27 ], a pro-
cess necessary for avoiding wasteful energy consumption. 

2.1     Human V-ATPase 

 Human V-ATPase is the most complicated of all the ATPases characterized in any 
organisms. The study of human V-ATPase is diffi cult for reasons such as unavail-
ability of cell systems, the absence of several subunits that are present in yeast and 
bacteria, and the existence of several tissue-specifi c isoforms of certain subunits. 
In  higher   eukaryotes (mammals), several H + -ATPase subunits have been shown to 
have multiple isoforms encoded by different genes with differing tissue expression 
patterns (Table  15.1 ). Two isoforms exist for each of the B, C, E, d, and e, subunits, 
three for the G subunit, and four for the a subunit, allowing many possible permuta-
tions of subunit structure in individual proton pumps. It is likely that pumps at dif-
ferent locations have their own unique subunit identities and the existence of 
different subunit isoforms may play an important role in the localization and activity 
of proton pumps in specifi c cell types and subcellular compartments. We assume 
that the basic subunit structure is the same among all V-ATPases, and that their 
diverse cellular localizations and functions  are   determined by subunit isoform com-
position. Various regulatory mechanisms allow V-ATPases to localize to distinct 
cellular environments or organ systems. Until now, most research on V-ATPases 
was carried out in bacteria or yeast. However, several isoforms present in mammals 
are not found in yeast. Furthermore, sequence similarity between yeast and human 
subunits is relatively low (identity 31−41 percentage, and similarity 51−60 percent-
age, depending on subunits and isoforms); hence, the assumption that their struc-
tural organization and biochemical properties are alike may not be valid [ 41 ]. From 
the two-protein sequence alignment of human or mouse isoforms, it was found that 
sequence identity and similarity between isoforms were not high (about 47–80 
percentage, depending on subunits and isoforms), which explains the importance of 
multiple isoforms of each subunit [ 42 ]. The areas in which large mismatches 
occurred were similar for human and mouse V-ATPase, which is indicative of a 
close evolutionary relationship between these two proteins and also explains the 
tissue or organ specifi city of mammalian V-ATPases.

   From the above,  some   important questions arise: (1) Why do human or mam-
malian V-ATPases possess several isoforms, especially in their peripheral stalk? (2) 
Why and how do these isoforms localize at the cellular and subcellular level with 
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tissue specifi city? and (3) What causes such tissue-specifi c isoforms to carry out 
specifi c functions? To answer these questions a detailed study of different human 
V-ATPase subunit isoforms and their functions in specifi c tissues, cells, and organ-
elles is required. In order to carry out such studies, different isoforms of human 
V-ATPase peripheral stalk subunits were expressed using an  Escherichia coli  cell- 
free protein synthesis system. The subunits expressed were E1, E2, G1, G2, G3, C1, 
C2, H, and the N-terminal soluble part of the a1 and a2 isoforms, encoded by genes 
 ATP6V1E1, ATP6V1E2, ATP6V1G1, ATP6V1G2, ATP6V1G3, ATP6V1C1, 
ATP6V1C2, ATP6V1H, ATP6V0A1,  and  ATP6V0A2 , respectively.   

3     Physiological Roles of V-ATPase 

 ATP-dependent proton pumps known as V-ATPases in eukaryotic cell plays impor-
tant roles in regulating the pH of intracellular compartments, the extracellular space, 
and the cytoplasm. V-ATPases within intracellular compartments are important for 
such normal cellular processes as receptor mediated endocytosis and intracellular 
membrane traffi c, protein processing  and   degradation, and coupled transport of 
small molecules and ions [ 43 ]. They also facilitate the entry of a number of enve-
lope viruses and bacterial toxins, including infl uenza virus and anthrax toxin [ 44 , 
 45 ]. In tumor cells, V-ATPases targeting the plasma membrane  are   involved in 
tumor metastasis by creating an acidic extracellular environment that aids inva-
sion [ 46 ]. V-ATPases present in the plasma membranes of cells are also important in 
normal physiology; they facilitate bone resorption by osteoclasts, acid secretion in 
the kidney, pH homeostasis, angiogenesis, and sperm maturation and storage [ 47 ].  

4     Pathophysiology Associated with V-ATPase Dysfunction 

 In humans, V-ATPases are linked to several genetic or non-genetic diseases. The 
functional importance of V-ATPase in humans was revealed in patients harboring 
mutations of some of its subunits. In humans, mutation in any isoform- specifi c 
  V-ATPase gene has been shown to result in disease within the tissue or organ in 
which that particular isoform is found. For example, mutations in genes encoding a4 
and a3 cause kidney disease and osteopetrosis, respectively. Other studies suggest 
that V-ATPase is regulated in a much more complex manner than is currently 
assumed. Mutations of the  ATP6V1B1  and  ATP6V0a4  genes, coding for subunits B1 
and a4, respectively, induce recessive distal renal tubular acidosis (dRTA) disease 
[ 48 ]. Interestingly, in many but not all cases, mutations in the B1 or a4 isoform can 
also lead to sensorineural deafness [ 49 ]. This is due to the role of V-ATPases in 
controlling the ion composition of the hemolymph that surrounds hair cells of the 
inner ear. Another important human genetic defect directly linked to mutations in 
the a3 isoform of the a subunit of V-ATPase is osteopetrosis. This disease is 
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characterized by the thickening of the bones, and skull and skeletal defects due to 
the inability of osteoclasts to degrade bone. Immunolocalization studies have 
demonstrated that the a3 isoform is localized to the limited membrane of the extra-
cellular bone-resorbing  compartment   in mature osteoclasts. Thus, mutations in the 
a3 isoform result in the inability of osteoclasts to secrete acid and hence to degrade 
bone [ 47 ]. Intracellular V-ATPases function in the entry of various viruses and tox-
ins. V-ATPase-dependent acidifi cation of endosomal compartments is also crucial 
for the entry of the cytotoxic portions of various envelope viruses and bacterial 
toxins [ 27 ]. Recently, plasma membrane V-ATPases have been implicated in tumor 
metastasis. These plasma membrane V-ATPases regulate proton transport and have 
been proposed to both contribute to alkalinization of the tumor  cell   cytoplasm and 
to acidifi cation of the extracellular environment. Extracellular acidifi cation may 
promote tumor cell invasion by providing a low pH environment that is conducive 
to the activity of secreted cathepsins. 

 The complexity of the V-ATPase holoenzyme, which is composed of several 
subunits, some having more than one isoform, may refl ect the need for differential 
regulation of the various functions that the enzyme performs in a variety of cell 
types  and   subcellular locations [ 48 ]. Therefore, the existence of so many isoforms 
of a specifi c subunit may be the main reason for the diffi culties in understanding the 
complex roles of V-ATPase in human disease. Because V-ATPases are involved in a 
number of human diseases, and because many V-ATPase subunits are expressed in 
a tissue, cell, and organelle-specifi c manner, V-ATPases are attractive drug targets.  

5     Functional Role of the Peripheral Stalk 
and the Importance of Its Integrity for Torque Resistance 

  Peripheral stalk subunits   play a signifi cant role in resisting the torque of V-ATPase, 
and the peripheral stalk is an area of V-ATPase where binding integrity among sub-
units is thought to differ from species to species. Conversely, it is complicated to 
understand the overall process consisting of signal transduction, subunit–subunit 
interaction, isoform specifi c organellar localization of each subunit, and fi nally 
functional implication. Until now, the regulation of the V-ATPase by V o –V 1  disso-
ciation has been studied primarily in non-mammalian systems such as yeast cells 
[ 39 ,  50 ] and insect cells [ 40 ,  51 ,  52 ]. However, there are limited reports about 
V-ATPase assembly/disassembly in mammalian systems, such as in kidney cells 
[ 53 ] and dendritic cells [ 54 ], and fewer details of the mechanism involved have 
been elucidated in these cases. It has been established from several studies that the 
C, E, G, and H subunits, and a NT  all form part of the peripheral stalk [ 7 ,  55 ,  56 ]. 
Bacterial cells lack subunits C and H suggesting that, bacterial A/V-ATPases are not 
regulated by this type of  reversible   dissociation. Study of V-ATPase in  E. hirae  [ 57 ] 
and  T. thermophilus  [ 58 ] indicates that subunits E, G, and a NT  can form a strong 
complex with a 1:1:1 stoichiometry. However, this phenomenon was not observed 
in eukaryotic systems. On the other hand, the reconstruction of yeast CE 3 G 3 H using 
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cryo-electron microscopy revealed interaction of subunits C and H, acting as a base 
for three pairs of EG heterodimers [ 59 ]. However, no biochemical evidence of this 
ternary binding interaction between CE 3 G 3 H subunits has been reported. 

 However, reconstruction and biochemical interaction studies using human 
CE3G3H found that the equivalent complex was unstable, due to the lower  affi nity 
  between the C and H subunits [ 41 ]. It is probable that the interaction of the three EG 
heterodimer and the presence of nucleotides might be necessary to stabilize the C-H 
complex in vivo, resulting in a stable CE3G3H complex. In a recent study, Gruber 
and co-workers showed that the binding of the nucleotides ADP and ATP to the 
C-terminus of subunit C might induce structural changes in the foot region, thereby 
altering its interaction with other V 1  and V o  subunits [ 60 ]. Three peripheral stalks, 
 consisting   of three pairs of EG heterodimers along with C, H, and a NT  function to 
resist the torque of rotation  by   supporting an A 3 B 3  hexamer during catalysis 
(Fig.  15.3 ). Binary interaction of the peripheral stalk subunits (C, EG, H, and a NT ) 
revealed that only the C-EG and H-EG complexes form with high affi nity [ 41 ]. 
Interestingly, in both yeast and human V-ATPase, two EG pairs interact with the C 
subunit via its head (C head ) and foot (C foot ) domains with different affi nities, and the 
third EG pair interacts with the H subunit [ 35 ,  41 ,  61 ,  62 ]. The interaction of the a NT  
subunit was found to be less active in all cases, suggesting that the presence of the 
whole a subunit may be required in order to understand the overall structure of this 
complex in eukaryotes. However, interaction studies of both yeast and human 
peripheral stalk subunits strongly suggest that subunits C and EG are core compo-
nents and two major players in the assembly process of V-ATPase (Fig.  15.3 ). 
Without EG and C, complex formation of other subunits was unusual: C-a-H could 
not interact with each other, and EG-a-H interacted as an EG-H complex only, with-
out a [ 41 ]. Thus, assembly of the peripheral stalk subunits seems to be initiated by 
the EG and C subunits. The C subunit is known to play a critical role in connecting 
V 1  and V o . The C head  links to one peripheral stator EG heterodimer with high affi nity, 
whilst the C foot  links to another peripheral stator EG heterodimer with low affi nity, 
forming a ternary junction point along with a NT  [ 35 ,  41 ,  56 ,  61 ,  63 ,  64 ] (Fig.  15.3 ). 
Subunit C is the only subunit that reversibly leaves the enzyme during glucose 
deprivation, causing dissociation of the V 1 –V o  complex [ 65 ]. Therefore, the differ-
ences in the interaction affi nities of the C subunit with E, G, H, and a NT  are likely to 
be essential for this reversible dissociation.

5.1       Subunit–Subunit Binding Interaction Phenomena 
at the Stator Region 

  V-ATPase is a large enzyme consisting of several subunits, and reconstitution of the 
entire enzyme complex in an in vitro  system   is quite diffi cult. Since the peripheral 
stator is the major player in the regulation of eukaryotic/mammalian V-ATPase, we 
focused our attempts on understanding V-ATPase regulation on the subunits of the 
peripheral stator. When expressed alone, the E and G subunits were very unstable, 
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but the co-expressed human EG subunit complex was found to be very stable, which 
is consistent with other fi ndings from  S. cerevisiae ,  E. hirae, T. thermophilus,  and 
 Thermoplasma acidophilum.  This suggests an evolutionarily conserved function for 
this complex as a stator in all V/A-ATPases [ 28 ,  33 ,  42 ,  57 ,  66 – 69 ]. The two major 
regulatory subunits C and H are situated at the V 1 –V o  junction, forming a base to 
hold three pairs of EG heterodimers with different affi nities. However, the C and H 
subunits interact with very low binding affi nity [ 41 ], which could be crucial for the 
facile dissociation of the enzyme. From several studies of yeast and human 
V-ATPase, it is known that the C subunit has two binding sites for two pairs of EG 
subunits. The C foot  region possesses lower affi nity for one EG heterodimer; it is pos-
sible that this interaction is mediated specifi cally via the E subunit. The C head  region 
interacts with another EG pair with very high affi nity, and yeast crystal structures of 
C head -EG indicate that C head  has a binding site for both the E and G subunits. However, 
using the surface plasmon resonance technique, we obtained two different binding 
affi nities for the C–EG interaction, which may correspond to the C head  and C foot  
regions of the C subunit, respectively [ 41 , Rahman et al. unpublished results]. We 
also observed a strong interaction between the EG and H subunits. Cryo-electron 
microscopic studies in yeast have revealed a CE 3 G 3 H assembly structure [ 59 ]. 
Therefore, we used various biochemical techniques to examine the possibility of a 
ternary complex formed by the EG, C, and H subunits in a 3:1:1 EG:C:H molar 
ratio. However, we found that this ternary complex was not as stable as the two 
independent stable binary complexes formed by C-EG and H-EG. Thus, we con-
cluded that the putative EG–C–H ternary complex was not formed because of the 
low binding affi nities between C-H and EG-C foot . This fi nding indicates that the 
CE 3 G 3 H complex did not appear to undergo any conformational changes related to 
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  Fig. 15.3     Assembly and disassembly status   of mammalian V-ATPase. Left, assembled V-ATPase 
complex showing the hydrolysis of ATP from the rotation of the enzyme and the  arrow  indicates 
the direction of proton movement. Mid, point of assembly/disassembly of the V-ATPase at the 
stalk region during regulation process, which is mediated at the C foot -EG-a NT  region ( white color 
box ). Right, disassembled peripheral stalk subunits of the V-ATPase, dissociated from V o  mem-
brane domain       
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regulation of its binding activity, but that the interaction was controlled by the sum 
of their individual affi nities. 

 A key feature of the reversible disassembly of eukaryotic V-ATPases is located 
on the V 1 –V o  interface, involving C foot , the distal lobe of a NT , and one EG heterodi-
mer [ 35 ,  56 ,  64 ,  70 ] (Fig.  15.3 ). This inspired us to investigate the EG–a NT –C ter-
nary interaction, revealing that this strong interaction was still mediated by EG-C in 
spite of the low affi nity between C-a and EG-a [ 41 ]. Thus, the a subunit possibly 
interacts via avidity. The next area of investigation is quaternary interaction, which 
includes the combined interactions of all the peripheral stalk subunits. The quater-
nary interactions of the EG, C, H, and a NT  subunits were found to be slightly more 
stable than the binary and ternary interactions in different combinations [ 41 ]. The 
cumulative binding of these subunits did not result in any affi nity changes, but high 
avidity was observed, and this may be suffi ciently strong to withstand the torque of 
rotational catalysis in eukaryotic cells. Thus, it is conceivable that multiple variable 
affi nity interactions among stator subunits would be suffi cient to allow the overall 
stator function and facilitate V-ATPase activity. We further speculate that the sum of 
these individual interactions in the peripheral stalk region is strong enough to with-
stand the torque of rotational catalysis and maintain the structural integrity of the 
complex. However, in cell system, there still remain other possibilities to retain 
strong interaction to resist the torque than the avidity, such as contributions of 
nucleotides or other protein binding factors.    

6     Characterization of Human V-ATPase Peripheral 
Stalk Isoform 

  There is no doubt that the subunits of the peripheral stalk are the major players in 
the assembly and regulation of the enzyme.  These   subunits exist as several iso-
forms and are localized to different endomembrane organelles, including lyso-
somes, endosomes, the Golgi apparatus, chromaffi n granules, and coated vesicles. 
They are also found in the plasma membrane of some specialized cells (Table  15.1 ). 
The existence of multiple homologs or isoforms of V-ATPase in mammalian cells 
adds another level of complexity to the motor. Since several V-ATPase subunits 
have multiple homologous or paralogous isoforms, some with several splice vari-
ants, there are theoretically hundreds of different permutations and combinations 
of subunit isoforms, which allow the assembly and expression of many variant 
V-ATPase isoenzymes in the human body. The mechanisms underlying the diverse 
functions and localizations of V-ATPases are believed to be mediated by the struc-
tures of these various isoforms [ 71 ]. Until now, isoforms have been identifi ed for 
the a, d, e, B, C, E, and G subunits, and the specifi c isoenzymes found in given 
cell types have been determined by the differential, tissue-specifi c expression 
pattern of the subunit isoforms. However, the regulatory mechanism underlying 
the assembly of the unique combinations of isoforms, and the information neces-
sary to target the enzyme to different cellular destinations, are still not clearly 
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understood in mammalian cells. Expression pattern analyses together with genetic 
approaches have demonstrated that specifi c V-ATPase complexes participate in 
highly differentiated cellular and tissue functions, including renal acidifi cation, 
bone resorption, spermatogenesis, and neurotransmitter accumulation [ 72 ]. For 
such sophisticated cellular functions, specifi c V-ATPases along with specifi c sub-
units/isoforms are required, which cannot complement each other. For example, 
kidney, testis, inner- ear, osteoclast, brain, and lung require the isoform combina-
tions E2G3-a4-C2-H, E1G1-a2-C2-H, E2G1-a3-C2-H, E2G1-a3-C1-H, E2G2-
a1-C1-H, and E2G3-a1- C1-H, respectively for their specifi c functionality 
(Table  15.1 ) Unfortunately, in cases of isoform-specifi c mutations, isoforms can-
not complement each other for such specialized functionalities, resulting in dis-
ease or dysfunction in the tissue in which that isoform is normally located. 
Therefore, it is imperative that crystal structures are obtained for different sub-
units/isoforms and their infl uence on quaternary subunit–subunit interaction is 
understood, as this will aid discovery of tissue- specifi c V-ATPase mechanisms 
and regulatory processes in mammals. Keeping this notion in our mind, we 
attempted to characterize human V-ATPase subunits/isoforms utilizing several 
biochemical techniques in an in vitro system. However, these investigations 
would be much more promising if we could express all the subunits/isoforms of 
the central stalk, catalytic domain, peripheral stalk, and rotor, thus allowing us to 
attempt the reconstitution of an entire active proton pump. However, this is not 
possible at present, and therefore we focused on one particular major part of the 
pump, the peripheral stator. This has a major role in assembly/disassembly of the 
enzyme, and can contain many of several isoforms of each subunit (Table  15.1 ). 
The peripheral stalk consists of subunits C, E, G, H, and a NT . Two isoforms for the 
E and C subunits have been identifi ed, and three for the G subunit [ 73 – 76 ]. 
Isoform E1 was specifi cally expressed in the germ cells of the testis, whereas E2 
was found ubiquitously in all tissues examined [ 77 ]. Among the three G isoforms, 
G1 was found ubiquitously, whereas G2 was found in the brain and G3 in the 
kidney and inner ear [ 76 ]. Since the E or G subunits cannot be expressed or puri-
fi ed alone, two E and three G isoforms, comprising six different protein com-
plexes (E1G1, E1G2, E1G3, E2G1, E2G2, and E2G3) have been purifi ed using a 
cell-free co-expression system [ 42 ,  78 ]. In this review, EG-isoforms are consid-
ered as a single subunit for all binary, ternary, and quaternary interactions. There 
are four isoforms of the a subunit, which are thought to direct isoenzymes to 
specifi c target organelles via their encoded polypeptide signals. Isoforms a1, a2, 
and a3 are found ubiquitously in different endomembrane organelles, but a4 is 
specifi c to the plasma membrane of kidney-intercalated cells [ 79 – 82 ]. We could 
express only the N-terminal part of the a1 and a2 isoforms, and failed to express 
a3 and a4 at all, even after trying several constructs of each. The human C subunit 
has two isoforms: C1 is expressed ubiquitously, whereas C2 exhibits tissue speci-
fi city, with further diversity (C2-a and C2-b) resulting from alternative mRNA 
splicing. C2-a is predominantly expressed in the lung, whereas C2-b is expressed 
in the kidney and testis [ 75 ,  83 ]. We were able to express only the C1 and C2-b 
subunit; expression of the C2-a isoform was not possible. We examined the 
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in vitro binding interactions of several human V-ATPase subunits and their 
isoforms with the aim of evaluating structural and functional differences among 
the isoforms.  

6.1     Characterization of the Subunit–Subunit/Isoform–Isoform 
Binding Interactions at the Stalk Region 

  As we  discussed   above, we hypothesized that specifi c assembly (complex forma-
tion) itself is a prerequisite for the V-ATPase isoform-specifi c localization mecha-
nism, and thus we studied the complex-forming tendencies of such isoforms. E and 
G alone were unstable and could not be expressed, requiring co-expression and co- 
purifi cation for their proper folding. Therefore, we expressed and purifi ed six com-
binations of EG-isoforms: E1G1, E1G2, E1G3, E2G1, E2G2, and E2G3. Isoforms 
E2G2 and E2G3 tended to aggregate during the concentration and fi ltration steps of 
purifi cation, which impeded our investigations of these isoforms. On the other hand, 
C-isoforms (sequence identity 62 % and similarity 83 %) exhibited differences in 
their stoichiometry during expression and purifi cation: C1 was expressed as a 
monomer and C2-b as a dimer–monomer equilibrium [ 42 ]. Therefore, we tried 
qualitative and quantitative examinations expecting to reveal large differences in the 
binding interactions of these subunits/isoforms. To explore differences among the 
isoforms, we examined subunit–subunit interactions between the EG and C iso-
forms. We found that all EG isoforms tested interacted with the C isoforms with 
high affi nity and in a similar manner [ 41 ], Rahman et al. unpublished results]. 
Isoform C2 interacted with the EG isoforms as a monomer, whereas C2 alone 
existed as a dimer–monomer equilibrium [Rahman et al. unpublished results]. There 
is no crystal structure of the C2 isoform, and therefore the reasons for such interest-
ing structural differences remain unknown. Out of several EG heterodimer com-
plexes, only E1G1 possessed high affi nity for the H subunit [ 41 ]. Other EG isoforms 
had lower affi nity for the H subunit [Rahman et al. unpublished result]. Using bio-
chemical techniques, we observed moderate to low binding interactions between 
other peripheral stalk subunits, such as the H/C-isoforms, EG-isoforms/a-isoforms, 
C-isoforms/a-isoforms, and H/a-isoforms [Rahman et al. unpublished result]. 

 However, we did not observe any major differences among isoforms, or any 
strong infl uence of the affi nity among isoforms on the stability of complexes. The 
critical role that V-ATPases play in normal physiological processes seems to be com-
plicated in eukaryotic cells, and likely accounts for both their structural complexity 
and the array of regulatory mechanisms, which can be controlled by their isoform-
specifi c activity. These isoform-specifi c-mechanisms allow V-ATPases to be local-
ized to distinct cellular environments or organ systems, and to be  independently 
regulated. We suggest that the differences of affi nity among isoforms could be infl u-
enced by several other factors such as organ-specifi c signals, pH levels, biochemical 
arrangements, or cell regulation processes. Hence, it is possible that factors other 
than structural differences play an important role in the assembly of ubiquitous iso-
forms and tissue-specifi c isoforms into functional V-ATPase complexes.    
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7     Conclusions 

 At this point, we would like to emphasize that at the time of the submission of this 
review, the high-resolution structure of the mammalian peripheral stalk subunits/
isoforms has not been determined. Such structural information, along with the elu-
cidation of the quaternary protein–protein interactions between different subunits 
and their isoforms, will facilitate the understanding of the proton translocation 
mechanism and will clarify the regulation mechanism of tissue-specifi c V-ATPases. 
Over the last few decades, a wealth of knowledge has been accumulated about this 
complicated enzyme concerning its molecular mechanisms and the structure of its 
subunits in bacteria and yeast. However, we are far away from a full understanding 
of the several tissue-specifi c isoforms of mammalian V-ATPase. There is increasing 
interest in V-ATPases because of their involvement in number of human diseases 
and disease processes, including osteoporosis, renal disease, toxin and viral cell 
invasion, cancer metastasis, diabetes, and Alzheimer’s disease. However, scientists 
are struggling to achieve new investigational drugs targeting V-ATPase. Few such 
drugs are already on the horizon, but unfortunately, the new technologies are still in 
infancy; however, these drugs may make major contributions in the future. Such 
drug discovery will proceed much faster when the complete V-ATPase atomic struc-
ture is elucidated and the many subunit–subunit/isoform–isoform interactions that 
are important to its function are characterized.     
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    Abstract     The eukaryotic vacuolar-type ATPase (V-ATPase) is a multi-subunit 
membrane protein complex, which is evolutionarily conserved from yeast to human. 
It is also functionally conserved and operates as a rotary proton pumping nano- 
motor. In the fi rst part of this chapter we discuss the structure and function of the 
yeast V-ATPase (V 1 V O ) holoenzyme, We focus on the structural features of its sub-
units forming both catalytic V 1  and proton conducting V O  sectors. Particularly, the 
recently solved structure of DF-subunit complex is discussed in relation to the 
energy coupling and regulation of yeast V-ATPase. It is noteworthy that the struc-
ture could contribute to understanding the function and regulation of V-ATPases of 
eukaryotes including human, leading to the rational design of specifi c inhibitors for 
medical applications. In addition to the well characterized role as proton pump, 
V-ATPases have acquired alternative cellular functions during evolution. In the sec-
ond part we analyze novel roles of V-ATPase in function, signaling, and vesicular 
traffi cking of cellular receptors. Our recent studies have uncovered that V-ATPase 
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itself functions as an evolutionarily conserved pH-sensing and signaling receptor, 
which forms super-complex with aldolase/cytohesin-2/Arf1,6 small GTPases in 
early endosomes. On the other hand, V-ATPase forms a super-complex with 
mTORC1/Ragulator/Rag/Rheb small GTPases in late endosome/lysosomes and is 
involved in amino-acids sensing and monitoring nutritional state of cells. Finally, 
we discuss the role of V-ATPase in the development and progression of various 
diseases including cancer, diabetes, and osteopetrosis among others. We also pres-
ent emerging approaches and future perspectives for specifi c drug targeting to 
V-ATPase and its super-complexes.  

  Keywords     Eukaryotic V-ATPase   •   Holoenzyme   •   Acidifi cation   •   pH-sensing 
 -   Receptor signaling   •   Super-complex   •   Vesicular traffi cking   •   Human diseases 
 -   Drug targeting  

  Abbreviations 

   a2N    N- terminal cytosolic tail of a2-subunit V-ATPase   
  Arf1    ADP-ribosylation factor 1   
  Arf6    ADP-ribosylation factor 6   
   BafA1      bafi lomycin A1    
  c/c″-ring    Ring composed by the c- and c″-subunits   
   ConA      concanamycin A    
  CRP    Calorie restriction pathway   
  cryo-EM    Cryo-Electron microscopy   
  CTH2    Cytohesin-2   
  dErbB    Dimeric EGFR/ErbB-receptor   
  EGF    Epidermal growth factor   
  EmGFP    Emerald green fl uorescent protein   
  FKPB12    FK506/rapamycin binding protein   
  FRET    Fluorescence resonance energy transfer   
  Fz    Frizzled   
  GH    Growth hormone   
  HRG-1    Heme-responsive gene 1 protein   
  IGF-1R    Insulin-like growth factor-1 receptor   
  IR    Insulin receptor   
  LRP6    Low-density receptor-related protein   
   M. sexta      Manduca sexta    
  mErbB    Monomeric EGFR/ErbB-receptor   
  mTORC1    Mammalian target of rapamycin complex 1   
  mTORC2    Mammalian target of rapamycin complex 2   
  NMR    Nuclear magnetic resonance   
  NOE    Nuclear Overhauser effect   
    PAT1       Proton coupled amino acid transporter 1   
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  PI3K    Phosphatidylinositol 3-kinase pathway   
  PKA    Protein kinase A   
  PPI    Protein–protein interaction interface inhibitors   
  RagA/C    Rag A/C GTPases   
  Ragulator    Ragulator complex   
  Ras    Rat sarcoma small GTPase   
  RAVE    Regulator of ATPase of vacuoles and endosomes   
  Rbcn-3    Rabconnectin-3A/B   
  Rheb GTPase    Ras homolog enriched in brain   
   S. cerevisiae      Saccharomyces cerevisiae    
  SAXS    Small-angle X-ray scattering   
   Sc DF1 and  Sc DF2    Two conformations of subunit DF complex   
  TFEB     Transcription factor EB   
  TSC complex    Tuberous sclerosis complex   
  V-ATPase    V-type ATPase   
  ΔpH    Proton gradient   
  ΔΨ    Membrane potential   

1           Introduction 

 Eukaryotic vacuolar-type ATPases (V-ATPases) are  ATP-dependent proton pumps  , 
which are localized in plasma membrane and the organelle membranes, and involved 
in various cellular processes [ 1 – 12 ]. This enzyme consists of a  cytosolic V 1    and a 
 membrane embedded V O    sectors. The subunit stoichiometry of the V 1  and V O  sec-
tors are proposed to be A 3 :B 3 :C 1 :D 1 :E 3 :F 1 :G 3 :H 1  and a 1 :d 1 :c x :c′ y :c″ z , respectively 
[ 1 – 5 ]. Although yeast enzyme has only two  isoforms   (Vph1p and Stv1p) for a sub-
unit, human and mice have multiple subunit isoforms including: (1) two for the B, 
E, H and d-subunits; (2) three for the C and G-subunits; and (3) four for a-subunit 
(a1, a2, a3, and a4). The expression and targeting of V-ATPase with these isoforms 
are specifi c for cells and organelles [ 1 – 5 ]. 

 The hydrolysis of ATP  into   ADP and phosphate (Pi) in the A 3 B 3  catalytic 
 hexamer   of V 1  sector drives the proton translocation by a ring of c, c′, and c″ sub-
units of V O  sector. The coupling of both events is mediated through the rotation of a 
complex of DFdcc′c″. The reversible assembly/disassembly of the V 1  and V O  is a 
crucial mechanism for the regulation of V-ATPase [ 13 – 16 ]. Originally, this mecha-
nism was discovered in  Manduca sexta  ( M. sexta ) and  Saccharomyces cerevisiae  
( S. cerevisiae ) in response to ceased feeding [ 17 ,  18 ] and glucose depletion [ 13 ,  19 ], 
respectively. However, similar mechanism should be essential for mammalian 
V-ATPase [ 20 – 24 ]. 

 V-ATPases play a central role in the maintenance of  pH-homeostasis   at the 
cellular and organism level in mammals [ 1 – 5 ]. This enzyme is also involved in the 
endosomal pH-sensing [ 1 ,  2 ,  25 – 30 ] and has most recently been uncovered as a 
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signaling receptor that modulates the activity of  cytohesin-2 (CTH2)   and  Arf small 
GTPases   [ 31 ]. In addition, V-ATPase is involved in sensing of amino acids and 
monitoring nutritional status of cells via its interaction with mTORC1/Ragulator/
Rag and Rheb small GTPases [ 32 – 35 ]. An alternative direct role of eukaryotic 
ATPases in membrane fusion has been previously proposed [ 36 – 39 ] and the V O  has 
been implicated in this process during exocytosis and insulin secretion in mamma-
lian pancreatic β-cells [ 2 ,  8 ]. Moreover, V-ATPase with a3 and d2  isoforms   is 
assembled in the osteoclast plasma membrane, and a direct role of the d2 isoform in 
the fusion of osteoclast progenitors has been described [ 2 ,  40 – 43 ]. Here, we discuss 
the current understanding of the structure of eukaryotic V-ATPase, focusing on the 
recently determined crystal structure of   S. cerevisiae       DF-subunit complex [ 44 ]. The 
fi nding of their interaction interface could reveal functional insights into coupling 
and regulation of all eukaryotic V-ATPases. In addition, we describe the emerging 
novel roles of V-ATPases in acidifi cation of compartments, modulation of the func-
tion of critical cellular receptors as well as pH and nutrient sensing and signaling via 
its super-complexes. 

 In recent years, the V-ATPase has been implicated in the pathophysiology of a 
variety of  human diseases   including primary distal renal tubular acidosis accompa-
nied by sensorial deafness [ 45 ], autosomal recessive osteopetrosis [ 41 ,  46 ], and 
autosomal recessive cutis laxa [ 47 – 49 ]. In addition, a role of the V-ATPase in cancer 
has recently emerged, since its increased expression at the plasma membrane cor-
relates with the invasive characteristics of various malignant cells [ 50 – 53 ]. Based 
on these fi ndings, perspectives and strategies in drug targeting to V-ATPase in 
human disease is discussed.  

2     Structure of the Multi-subunit Eukaryotic V-ATPase 

2.1     The  Two Sector Composition   of V-ATPase 

 Eukaryotic V-ATPases are multi-protein complexes composed by 14 different 
subunits A 3 B 3 CDE 3 FG 3 Hac X c′ Y c″ Z de. V-ATPase holoenzyme have a bipartite struc-
ture formed by a cytoplasmic V 1  (A 3 B 3 CDE 3 FG 3 H) and a membrane-embedded V O  
(ac x c′ y c′′ z de) sectors (Figs.  16.1  and  16.2 ). The stoichiometry of three V O  subunits 
(c X c′ Y c″ Z ) is unknown, although they are multiple. Both sectors are linked by con-
necting regions that are important for coupling between ATP hydrolysis in V 1  and 
proton translocation in V O . These connecting regions consist of a central (D,F,d) and 
three peripheral (E,G) stalks, which are also important for reversible disassembly/
assembly of V-ATPase (Fig.  16.1a ). Within two V 1 V O  sectors, however, there are 
functionally identifi able “stator” (A 3 B 3 EGCHae) and “rotor” (DFdc X c′ Y c″ Z ) sub-
complexes responsible for implementation of rotary mechanism of V-ATPase nano-
motor [ 1 – 5 ,  12 ].
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2.2          Catalysis and Energy Coupling in V 1  Sector   

 V-ATPases exist in a dynamic equilibrium between fully assembled holoenzyme 
and reversibly disassembled V 1  and V O  [ 13 – 19 ]. Depending on the energy state of 
the cell, this equilibrium can be rapidly shifted [ 16 ,  54 ]. Recently,   S. cerevisiae    and 
M. sexta  V-ATPase holoenzymes have been isolated and its three-dimensional (3D) 
structure was shown using high resolution cryo-electron microscopy (cryo-EM) 
analysis [ 55 – 57 ]. The structure reveals that three A and B subunits form a hexagon 
with the nonhomologous regions at the top of subunit A [ 7 ,  55 ,  56 ,  58 ,  59 ]. The two 
nucleotide-binding subunits A and B alternate around a central cavity, which nar-
rows toward its center and opens at both ends. Subunit D inside the cavity forms 
different interaction with domains of the three subunits A and B [ 12 ,  55 ,  56 ,  58 ]. 
The crystallographic structure of two conformations of subunit DF complex ( Sc DF1 
and  Sc DF2) forming the central stalk of  S. cerevisiae  V-ATPase has been solved 
recently [ 44 ]. Subunit D in the complex consists of a long pair of α-helices, con-
nected by a short helix ( 79 IGYQVQE 85 ) and a β-hairpin region, which is fl anked by 
two fl exible loops (Fig.  16.1b ). The long pair of helices is composed of the N- and 
the C-terminal helix, respectively, and show structural alterations in the  Sc DF1 and 
 Sc DF2 structures. The subunit F consists of an N-terminal domain of four β-strands 
(β1-β4) connected by four α-helices (α1-α4). α1 and β2 are linked via the loop 
 26 GQITPETQEK 35 , which is unique in eukaryotic V-ATPases (Fig.  16.1a ). Adjacent 

  Fig. 16.1    Arrangement of the existing individual atomic subunit structures in the cryo-EM-map 
of the  S. cerevisiae  V-ATPase. ( a ) Subunits C (1U7L;  salmon ), H (1HO8,  brown ), and the D 
(4RND,  red ) and F assembly (4RND;  blue ) from  S. cerevisiae  were fi tted into the cryo-EM map. 
The two conformations of EG subunits, the straight (4DL0;  green  and  cyan ) and more bent (4EFA; 
 lemo n and  pale cyan ) are fi tted to the three peripheral stalks. The crystallographic structure of two 
conformations of subunit D in ensemble with the stalk subunit F of  S. cerevisiae  ( Sc DF1 and 
 Sc DF2) V-ATPase are shown. ( Insert ) Region of the EM-map showing the interaction of modeled 
subunit H (S381) ( yellow ) through the sulfhydryl cross-linker 4-( N -maleimido)benzophenone 
(MBP) (stick;  green ) to the  S. cerevisiae  subunit F1-94 (E31) [ 44 ]. Cartoon representation of the 
structures of the individual  S. cerevisiae  subunits C (1U7L;  salmon ), F1-94 (4IX9,  blue ), H (1HO8, 
 brown ) and EG in two conformations, straight (4DL0;  green  and  cyan ) and bent (4EFA;  lemo n and 
 pale cyan ). ( b ) Intermolecular interactions of the subunit DF-assembly. Superimposition of the 
 Sc DF1 ( pink  and  blue ) with  Sc DF2 molecule ( orange  and  grey )       
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to the N-terminal domain is a fl exible loop (P95-D106), followed by a C-terminal 
α5-helix. A perpendicular and extended conformation of the α5-helix was observed 
in the two crystal structures and in solution X-ray scattering experiments, respec-
tively (Fig.  16.1a , left) [ 44 ]. The concerted interaction of the DF complex, including 
the P95-D106-loop with helix α5 of subunit F and bended C-terminal helix of sub-
unit D, may activate ATP hydrolysis in the catalytic A 3 B 3  hexamer [ 44 ,  60 ]. 

 The  26 GQITPETQEK 35 -loop of the subunit F is facing to the C-terminal serine 
(S 381 ) of subunit H, revealed to be involved in cross-linking subunit F of the V 1  
(Fig.  16.1a , right) [ 60 ,  61 ]. The unique stalk of subunit H is characterized by a 
large, primarily α-helical N-terminal domain, which is forming a shallow groove 
connected by a four-residue loop to the C-terminal domain [ 62 ]. This arrange-
ment led to the proposal, that in the process of V 1  and V O  dissociation the flex-
ible C-terminal domain of subunit H moves slightly closer to the exposed 
 26 GQITPETQEK 35 -loop of subunit F, where it causes conformational changes, 
leading to an inhibitory effect of ATPase activity in the V 1  [ 44 ,  60 ].  15 N-[ 1 H] 

  Fig. 16.2    Structure and composition of a novel V-ATPase/cytohesin-2/Arf1,6/aldolase signaling 
super-complex. The diagram shows the structure of the novel V-ATPase/cytohesin-2/aldolase/
Arf1,6 super-complex localized on early endosomal (EE) membrane (see Fig.  16.3 ,  Complex 1 ). 
It illustrates the binding site of cytohesin-2 (CTH2, in  yellow ) with an N-terminal tail of a2-subunit 
(a2N, in  green ) of V-ATPases [ 25 ,  29 ]. On the  left  is shown the CTH2 molecule interacting with 
a2N thorough Sec7-domain and with aldolase through PH-domain.  Roman numbers  indicate inter-
faces and affi nities of interaction: ( I ) CTH2 with  a 2N(1–402) and ( II ) Sec7 domain with 
 a 2N(1–17) and  III ,  IV ) CTH2 with aldolase [ 28 ,  167 ]. On the  right  is shown the aldolase molecule 
interacting with a2N of V-ATPase       
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heteronuclear NOE studies on the subunit F revealed a rigid core formed by 
β-strands, β1–β4, and α2–α4. In comparison, the N- and C-terminal helices α1 and 
α5 with their adjacent loops  26 GQITPETQEK 35  and  94 IPSKDHPYD 102 , respec-
tively, are more fl exible in solution [ 60 ]. The N-terminal helix α1 of subunit F and 
the bottom segment of subunit D are in proximity to subunit  d , forming the tip of 
the central stalk and being in direct neighborhood of the proton translocating ring 
of c-, c′-, c″-subunits of V O  [ 60 ]. This area might be modifi ed during the process of 
reversible assembly/disassembly of the V 1  and V O , as shown previously. The higher 
fl exibility of α1 in subunit F would allow to transmit the conformational change of 
subunit  d  during dissociation from the DF-heterodimer and also the movement of 
subunit H closer to F, through the neighboring  26 GQITPETQEK 35 -loop [ 44 ,  60 ]. 

 In addition to the central stalk, the catalytic A 3 B 3  hexamer is connected to V O  by 
three peripheral stalks with a different degree of twisting in the C-terminal and/or 
middle part (Fig.  16.1a , left) [ 1 ]. The subunit E and G, forming the peripheral stalk, 
are arranged in a ~150 Å long complex. The peripheral stalk is connected to the 
A 3 B 3  through the globular C-terminus of subunit E, formed by α-helices and 
β-sheets, arranged as β1:α1:β2:β3:β4:α2 [ 63 ,  64 ]. This C-terminus is connected by 
a fl exible loop region with N-termini of both subunit E and G, which are folded in 
a noncanonical, right-handed coiled coil. The coiled coil is disrupted by a bulge of 
partially unfolded secondary structure in subunit G, which provides the necessary 
fl exibility of the peripheral stalk during detachment and assembly of the V 1  from the 
V O  (Fig.  16.1a , left) [ 63 ]. 

 The reversible disassembly of the V 1  and V O  is initiated by the dissociation of 
subunit C [ 65 ]. As shown for its hydrated [ 66 ] and crystallized form [ 67 ] subunit C 
is a boot-shaped protein with an upper head domain formed from α-helices and 
β-strands (residues 167–262) and a globular foot domain (residues 1–55 and 320–
392). Both domains are connected by an elongated helical neck domain (Fig.  16.1a , 
left) [ 67 ]. Location and orientation of subunit C in the enzyme enables its binding 
to actin [ 67 ], ADP/ATP nucleotides [ 68 ], and WNT-kinase [ 69 ]. These interactions 
are taking place through the foot domain allocated in proximity to the N-termini of 
an EG-heterodimer, as well as in neighborhood to the N-terminal region of subunit 
 a  (Fig.  16.1a , left). It was suggested that binding of ATP/ADP [ 68 ] or WNT-kinase 
dependent phosphorylation [ 69 ] of subunit C could alter the stability of an subunit 
EGC assembly by affecting its binding properties with either EG-heterodimer or 
with actin.   

2.3      Structure of the V O  Enabling Proton Conduction 

 The  proton conducting V O  sector   of V-ATPase may be formed by fi ve or six subunits 
and two accessory proteins. Indeed,  S. cerevisiae  V O  consists of six different sub-
units (a, c, c′, c′′, d, and e). However, the c′ subunit gene was not found in mam-
malian genome, and thus, the mouse and human V O  are formed only by fi ve subunits: 
a (a1, a2, a3, or a4), c, c′′, d (d1 or d2), and e (e1 or e2). In turn, the mammalian V O  

16 V-ATPase and its Super Complexes



308

also contains the two additional accessory subunits Ac45 and M8-9 [ 1 ,  5 ,  70 ]. 
Structurally, the V O  is composed of a ring of  c - and  c ″-subunits (c/c″ ring) and the 
adjacent single copies of the  a ,  e , Ac45, and M8-9 subunits. As suggested by the 3D 
map of the V O  from bovine clathrin-coated vesicles V-ATPase, the accessory sub-
unit Ac45 interacts with the c/c″ ring from the luminal side [ 71 ]. 

 On the other hand, the N-terminal cytosolic tail of subunit  a  (aN) is oriented 
parallel to the cytoplasmic surface of the membrane in the close proximity to the 
N-terminus of subunit H (Fig.  16.2 ) [ 1 ,  55 ]. Recent small-angle X-ray scattering 
studies of the N-terminal tail  a  104-363 , suggested the connection between the 
cytoplasmic N-terminal (aN) and the transmembrane C-terminal (aC) domains of 
subunit  a  (Fig.  16.2 ) [ 72 ]. This arrangement makes the aN of V-ATPase accessible 
for cytohesin-2 (CTH2) and Arf1, Arf6 small GTPases (Fig.  16.2 ), which is essen-
tial for signaling and traffi cking of various receptors, including EGFR/ErbB recep-
tors (Fig.  16.3 ) [ 1 ,  31 ,  72 ]. Although the structure and orientation of the aN is 
available, the transmembrane topology of its aC remains controversial (Fig.  16.2 ) 
[ 1 ,  26 ]. In yeast a six [ 73 ,  74 ], eight [ 75 ,  76 ], and nine [ 77 ,  78 ] transmembrane helix 
models have been proposed. According to the model with eight helices, both N- and 
the C-termini of the a subunit (Vph1p) are located in the cytosol, which is supported 
by the results showing interaction of phosphofructokinase-1 with the C-terminal tail 
of the human a4- and a1-isoforms [ 79 ]. The moving membrane part of the yeast 
V-ATPase “rotor” is a ring composed by the c-, c′-, and c″-subunits. The c- and 
c′-subunits are 16 kDa proteins, proposed to contain four transmembrane helices 
with two loops exposed to the cytosol, while the c′′-subunit is a 23 kDa polypeptide 
with fi ve putative transmembrane helices, two loops and a C-terminal tail exposed 
to the cytosol [ 80 ,  81 ]. Recently, cryo-EM observation of rotational states in  S. 
cerevisiae  V-ATPase has revealed the involvement of ten c-, c′-, and c″-subunits in 
the ring formation [ 56 ]. Each of these subunits is contributing two transmembrane 
helices to the inner ring and two helices to the outer ring. In addition, this study sup-
ported the eight transmembrane helices model of a-subunit [ 75 ,  76 ]. Remarkably, it 
was found that two of the helices are highly tilted and span the membrane where the 
a-subunit is in contact with the ring of ten c-, c′-, and c″-subunits, providing the new 
insights on the proton conducting mechanist of V O  sector [ 56 ]. The subunit compo-
sition and number of transmembrane helices in the c/c″-rings of mammalian 
V-ATPases are open questions. Recently, the fi rst evidence for the position of sub-
unit e within V O  has been provided [ 82 ].

   The cryo-EM map of yeast V-ATPase revealed that a proton conducting channel 
is formed by the interface between transmembrane helixes of a-subunit and the ring 
of c-, c′-, c″-subunits. This channel is very narrow and occurs near the middle of the 
membrane region [ 12 ,  83 ]. It is important to note that the potent V-ATPase inhibi-
tors  bafi lomycin A1  ( BafA1 ) and  concanamycin A  ( ConA ) bind to the interface 
between a-subunit and the ring of c-, c′-, c″-subunits inhibiting both rotary and 
proton-pumping mechanisms of yeast V-ATPase [ 84 – 86 ]. Although these com-
pounds are very useful to analyze the role of V-ATPases in inside-acidic organelles 
of cultured mammalian cells [ 87 ,  88 ], they are unable to distinguish between 
V-ATPases with different isoforms, which are targeted to specifi c compartments. 
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Therefore, there is an urgent need for the development of a new generation of 
inhibitors capable of selective inhibition of the subset of V-ATPases located at the 
specifi c compartments, such as Golgi, endosomes and lysosomes among others. 
Thus, an accumulating knowledge of high resolution structures of individual 
V-ATPase subunits as well as their interaction interfaces will be important for future 
developments of new generation of: (1) isoform and (2) organelle and/or (3) cell 
specifi c V-ATPase inhibitors (Figs.  16.1  and  16.2 ).    

  Fig. 16.3    Signaling and traffi cking of EGFR/ErbB-receptors in endosomal/lysosomal pathway. 
Scheme shows signaling of epidermal growth factor (EGF) and traffi cking of EGFR/ErbB- 
receptors in clathrin-dependent endocytosis and endosomal/lysosomal protein degradative path-
way. The compartments are shown in yellow/red as follows:  CCV  clathrin-coated vesicles,  EE  
early endosomes,  MVB  multi-vesicular bodies,  LE  late endosomes,  RE  recycling endosomes,  LS  
lysosomes,  AP  autophagosomes,  ER  endoplasmic reticulum. Vesicular traffi cking steps for the 
degradation branch are indicated with  black arrows  and for recycling branch with  blue arrows . 
( EE and super-complex-1 ) Structure and composition of V-ATPase/CTH2/aldolase/Arf1,6 super- 
complex located in early endosomes. V-ATPase in this super-complex functions as pH-sensing and 
cytohesin-2/Arf1,6 signaling receptor which may regulate the traffi cking and signaling EGFR/
ErbB-receptors. ( LE/LS and super-complex-2 ) Structure and composition of a novel V-ATPase/
Ragulator/RagA/C/mTORC1/Rheb super-complex located in late endosomes and lysosomes. This 
complex is involved in sensing levels of amino acids and modulation of mTORC1-dependent 
downstream cellular programs and cell growth. Moreover, reversible association/dissociation of 
V 1 V O  sectors of lysosomal V-ATPase is regulated by signaling of EGFR/ErbB-receptors through 
Akt/Erk pathway ( dashed red arrows )       
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3     The Role of V-ATPases and Their Super-complexes 
in Acidifi cation, Signaling, and Sensing 

 V-ATPase generates an electrochemical proton gradient, forming acidic intracellu-
lar compartments [ 1 – 5 ]. This enzyme is also targeted to the plasma membrane and 
is involved in  extracellular acidifi cation   of specialized cells in kidney [ 89 – 91 ], epi-
didymis [ 90 ,  92 ,  93 ], and bone [ 40 ,  74 ,  94 – 97 ]. It also acidifi es extracellular envi-
ronment in metastatic cancer cells [ 50 – 53 ]. The regulation of V-ATPase is achieved 
by the following three major processes: (1) modulation of acidifi cation by the 
chemiosmotic mechanism; (2) targeting to specifi c organelles; and (3) regulation of 
the enzyme activity through reversible assembly/disassembly V 1  and V O . 

3.1     Chemiosmotic  Process   

 The electrochemical proton gradient generated by V-ATPase consists of a proton 
gradient (ΔpH) and membrane potential (ΔΨ). Using a  FRET approach  , the values 
ΔpH = 2.2 units and ΔΨ = 27 mV were experimentally determined in intracellular 
organelles [ 98 ]. Acidifi cation is predominant function of V-ATPase, which depends 
on its coupled function with Cl − /H + - and Na + /H + -exchangers as an important chemi-
osmotic mechanism regulating acidifi cation of intracellular organelles [ 99 – 102 ].  

3.2      Process of  Subunit-Specifi c Targeting   of V-ATPase 

 The  S. cerevisiae  V-ATPase is targeted by the two  a -subunit isoforms Vph1p and 
Stv1p to the vacuole and Golgi/endosomes, respectively [ 103 ,  104 ]. Studies with 
chimeric proteins revealed that the targeting information is located in the cytosolic 
N-terminal domain of the a-subunit [ 104 ]. Similarly, in mammalian cells, localiza-
tion of V-ATPase in endocytic and exocytic compartments and targeting to the 
plasma membrane depend on  a -subunit isoforms (Figs.  16.2  and  16.3 ) [ 1 – 4 ,  94 ]. Of 
four subunit  a  isoforms ( a 1,  a 2,  a 3 and  a 4) [ 1 – 4 ], V-ATPase with a1 isoform is 
specifi cally targeted to presynaptic membranes and exocytic synaptic vesicles in 
mammalian neurons [ 105 ,  106 ]. Studies with neurosecretory PC12 cells revealed 
that both  a 1 and  a 2 regulate the acidifi cation and neurotransmitter uptake and 
release by exocytic vesicles [ 107 ]. In contrast, V-ATPase with  a 1 is targeted to the 
endocytic pathway in brain microglial cells, and plays role in the fusion between 
phagosomes and lysosomes during phagocytosis, a process of microglial-mediated 
neuronal degeneration [ 108 ]. 

 The  a 2 isoform targets V-ATPases to early endosomes of the endocytic pathway 
of kidney proximal tubule epithelial cells [ 25 ,  26 ,  30 ,  109 ,  110 ]. In these cells, the 
overexpressed recombinant  a 2-isoform ( a 2-EGFP) is also targeted V-ATPase to 
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endosomal compartments [ 31 ]. However, in cultured osteoclast cells and B16 cells, 
both endogenous  a 2 and a1 are targeted to secretory vesicles of Golgi complex in 
the exocytic pathway [ 94 ,  107 ]. Similarly, over-expression of recombinant  a 2 iso-
form ( a 2-EmGFP) in neuroendocrine PC12 cells targets V-ATPase to the Golgi 
apparatus [ 94 ,  107 ]. 

 The V-ATPase with  a 3 is a lysosome specifi c enzyme of osteoclast progenitor. 
During differentiation, the V-ATPase with  a 3 is targeted and localized to the plasma 
membrane of osteoclasts. The osteoclast V-ATPase is involved in bone reabsorption 
and its defect caused infantile malignant osteopetrosis in humans [ 40 ,  74 ,  94 – 97 ]. 
V-ATPase with  a 3 is also targeted to the plasma membrane of breast cancer cells 
and plays an important role in metastatic processes [ 50 – 53 ]. Phagosomes in macro-
phage also acquire the same enzyme from lysosomes [ 111 ], whereas it is specifi -
cally targeted to insulin secretory granules of pancreatic β-cells [ 2 ,  94 ]. 

 The V-ATPase with  a 4 is highly abundant in epididymis and kidney, where they are 
specifi cally targeted to the apical plasma membrane of epididymal clear cells and kid-
ney collecting duct intercalated cells [ 89 – 93 ], indicting that this V-ATPase is involved 
in sperm-maturation [ 92 ,  93 ] and maintenance of acid-balance [ 90 ,  91 ], respectively. 
These results indicate that the  a -subunit isoforms differentially target V-ATPase to the 
plasma membrane or intracellular compartments of the endocytic/exocytic pathways. 
In turn, the specifi c targeting and assembly of the enzyme may modulate acidifi cation 
of extracellular milieu and intracellular organelles [ 1 – 4 ,  93 ,  112 ].   

3.3      Reversible Assembly/ Disassembly   of V-ATPase 

 The regulation of V-ATPases by assembly/disassembly of the V 1 V O  sectors was fi rst 
described in response to ceased feeding in  M. sexta  [ 17 ,  18 ] and in response to glu-
cose depletion in  S. cerevisiae  [ 13 ,  14 ,  19 ]. In  S. cerevisiae , assembly/disassembly 
of the V 1 V O  may be regulated by both  a -isoform (Vph1 or Stv1) and E subunit. 
Evidence for the role of the E subunit in assembly was fi rst obtained from yeast/
mouse hybrid V-ATPase [ 113 ,  114 ]. A null mutant of yeast subunit E expressing the 
mouse (E1 or E2) is functional, indicating that this hybrid V-ATPase with E1 or E2 
is functional as proton pump. However, assembly of the hybrid with E1 became less 
dependent on glucose [ 114 ]. Furthermore, a domain between residues K33 and K83 
of  S. cerevisiae  subunit E could be replaced by the corresponding region of mouse 
E1 [ 114 ,  115 ]. Alanine scanning mutations revealed that the residue E44 of yeast 
subunit E is a key amino acid in regulation of subunit assembly and thus enzyme 
activity [ 115 ]. 

 In  S. cerevisiae , the reversible assembly and disassembly of V 1 V O  sectors is con-
trolled by two distinct mechanisms. While the assembly requires the cytosolic 
RAVE/Rab-Connectins complex (Rav-1, Rav-2, and Skp1), the disassembly pro-
cess involves the cytosolic microtubular network [ 1 ,  2 ,  4 ,  5 ,  15 ,  116 ]. Recent study 
revealed, that RAVE/Rab-Connectins in yeast is an  a -isoform specifi c complex, 
which is necessary for assembly of V-ATPase with Vph1p but not with Stv1p [ 117 ]. 
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Moreover, the reversible assembly/disassembly of the yeast V 1  and V O  is also 
controlled by the direct interaction of V-ATPase with cytosolic aldolase, a central 
enzyme of the glycolysis (Fig.  16.2 ). The assembly/disassembly and interaction 
with aldolase is modulated by the Ras/cAMP/PKA pathway [ 118 ], suggesting that 
V-ATPases may act as a cytosolic glucose-sensor (Fig.  16.2 ) [ 119 – 121 ]. However, 
in mammalian kidney proximal tubule cells, glucose regulation on V-ATPase is 
modulated by the phosphatidylinositol 3-kinase (PI3K) pathway [ 21 ]. In dendritic 
cells, the assembly of V 1 V O  is also regulated through the PI3K/mTOR-dependent 
pathway and is critical for lysosomal acidifi cation, protein degradation, and antigen 
presentation (Fig.  16.3 ) [ 20 ,  24 ]. Thus, it is generally accepted that various regula-
tory pathways are involved in controlling assembly/disassembly of V-ATPase in 
eukaryotic cells and, therefore, in modulation of its function as well as acidifi cation 
of intracellular organelles and extracellular milieu [ 22 ].   

3.4     Novel Role of V-ATPases in Regulation of  Signaling   
and Traffi cking of Cellular  Receptors   

 A novel role of V-ATPases in regulation of signaling, traffi cking, and degradation of 
various cellular receptors has emerged recently. Endocytosis is an essential cellular 
process that is used by eukaryotic cells for the internalization of various receptors 
localized in the plasma membrane. As shown previously, the clathrin-dependent 
endocytosis pathway mediates internalization of Fz/LRP6, PRR, Notch, transferrin, 
megalin/cubilin, and EGFR/ErbB receptors among others (Fig.  16.3 ) [ 1 ,  31 ,  122 ]. 
Mounting evidence indicates that the V-ATPase is not only establishing the acidic 
pH in endocytic organelles but is also functioning as a cytohesin-2/Arf1,6 small 
GTPases signaling receptor (Fig.  16.2 ). Moreover, the V-ATPase is involved in 
direct interactions with critical cellular receptors, and thus, could modulate their 
signaling, traffi c, and degradation along the endocytic pathway (Fig.  16.3 ). These 
emerging roles of V-ATPase will be discussed below.  

3.5       V-ATPase and Epidermal Growth Factor Receptors 
(EGFR/ErbB’s) 

 The  epidermal growth factor receptor (EGFR     ) was among the fi rst discovered 
growth receptors that regulate crucial cell biological processes including cell prolif-
eration [ 123 ,  124 ]. The EGFR/ErbB-receptors (EGFR/ErbB’s) family comprises 
four members (EGFR/ErbB1, ErbB-2, ErbB-3, and ErbB-4) and are involved in the 
development of a variety of cancers [ 124 – 127 ]. Activation of EGFR/ErbB-receptors 
by extracellular EGF ligand promotes their hetero-dimerization with subsequent 
activation of TK-domains and tyrosine trans-phosphorylation of the cytoplasmic tail. 
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However, the cytoplasmic proteins that could modulate EGF-induced activation 
and signaling of EGFR/ErbB-receptors were largely unknown. 

 Cytohesin-2 (CTH2) has been identifi ed recently as a cytoplasmic activator of 
EGFR/ErbB-receptors (Fig.  16.3 ) [ 128 ,  129 ]. CTH2 enhances trans-dimerization 
and activation of EGFR/ErbB’s by direct binding with TK-domains of dimerized 
receptors and by facilitating conformational changes and trans-phosphorylation of 
these domains. Figure  16.3  illustrates the signaling of the epidermal growth factor 
(EGF) through EGFR/ErbB’s localized in the plasma membrane and early endo-
somes. The crucial role of CTH2 in hetero-dimerization of these receptors is also 
indicated. The fi gure also shows the V-ATPase dependent traffi cking and signaling 
of EGFR/ErbB-receptors through the clathrin-dependent endocytosis endosomal/
lysosomal protein degradation pathway. In particular, a novel important role of the 
assembly/disassembly of V 1 V O  and V-ATPase-dependent late endosomal/lysosomal 
acidifi cation in EGFR/ErbB-receptors function has been recently revealed [ 23 ]. It 
was demonstrated that EGF/EGFR-dependent signaling promotes the rapid recruit-
ing of cytosolic V 1  sectors of the V-ATPase and increases its assembly with V O  on 
late endosomal/lysosomal compartments. This assembly in turn increases V-ATPase 
driven lysosomal acidifi cation, protein degradation, and release of amino acids 
needed for Rheb(GTP) and mTORC1 activation (Fig.  16.3 ). V-ATPase is playing an 
indirect role in EGF-dependent activation of mTORC1 signaling pathway by modu-
lating the assembly/disassembly of V 1  and V O  [ 32 ]. This is the fi rst evidence show-
ing the functional assembly of V-ATPase in response to the signaling of EGFR/
ErbB-receptors. In this way, V-ATPase regulates mTORC1 signaling and traffi cking 
EGFR/ErbB-receptors within the endosomal/lysosomal protein degradation path-
way (Fig.  16.3 ) [ 23 ,  32 ]. Thus, V-ATPase-dependent acidifi cation and cytohesin-2/
Arf1,6 small GTPases signaling (Fig.  16.2 ) may play a key role in the modulation 
of EGFR/ErbB-receptors function, and is pivotal for the sustained signaling, recy-
cling, or degradation (Fig.  16.3 ).    

3.6     V-ATPase,  Insulin-Like Growth Factor-1 Receptor 
(IGF-1R)  , and  Heme-Responsive Gene 1 (HRG-1) Protein   

 Both the  growth hormone (GH)   and insulin-like growth factor 1 (IGF-1) exert pow-
erful control over lipid, protein and glucose metabolism. The function of GH/IGF-I 
signaling pathway is associated with longevity, and thus, aging related morbidities 
including diabetes and cancer [ 130 ,  131 ]. This pathway also plays roles in mainte-
nance and repair of muscles [ 132 ]. Signaling by insulin-like growth factor receptor 
(IGF-1R) controls expression of heme-responsive gene 1 (HRG-1) that encodes a 
16 kDa transmembrane protein. A recent study revealed specifi c targeting of this 
protein to early endosomes and its direct interaction with V-ATPase  c -subunit [ 133 ]. 
Increased expression of HGR-1 enhances V-ATPase activity in the plasma mem-
brane, lowers the extracellular pH and activates pH-dependent matrix metallopro-
teinases. HRG-1 also increases endosomal V-ATPase activity, which promotes 
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traffi cking of the IGF-1R, β1-integrin and glucose transporter-1 (GLUT-1) with 
concomitant increase of glucose uptake, cancer cell growth, migration and invasion. 
Thus, HRG-1 may represent a novel target for selectively disrupting V-ATPase 
activity and the metastatic potential of cancer cells [ 133 ,  134 ].  

3.7       V-ATPase and Frizzled (Fz) and  Low-Density Receptor-
Related Protein (LRP6     ) Receptors 

 The Wnt/β-catenin, Wnt/PCP(planar cell polarity) and Wnt/Ca 2+  signaling path-
way s  are essential mechanisms that control embryonic tissue development, homeo-
stasis, cell proliferation, polarity, and apoptosis [ 135 ,  136 ]. They are strongly linked 
to the development of a variety of human diseases including metastatic cancers 
[ 135 ,  136 ]. The direct role of V-ATPase in regulation of Wnt/β-catenin and Wnt/
PCP signaling pathways has been uncovered recently [ 137 ,  138 ]. It was shown that 
signal transmission after association of Wnt ligands with Fz/LRP6 co-receptors 
requires direct interaction of LRP6 with an accessory M8-9 subunit of V-ATPase, 
also called V-ATPase lysosomal accessory protein-2 (ATP6AP2). This interaction 
takes place in early endosomes and the ATP6AP2 subunit acts as an adaptor that 
brings together V-ATPase and the Wnt/Fz/LRP6 receptor complex. Thus, both 
direct and electrochemical regulation by V-ATPases are involved in signaling of 
Wnt/Fz/LRP6 in endosomes involved in the protein degradation pathway.    

3.8     V-ATPase and  (Pro)renin Receptor (PRR     ) 

 The  (pro)renin receptor (PRR)  , a single transmembrane cell surface receptor, plays 
a central role in activating the local renin-angiotensin system. Binding of prorenin 
to PRR induces its conformational change, allowing conversion of angiotensino-
gen to angiotensin-I, which is subsequently converted to angiotensin-II by an 
angiotensin-converting enzyme [ 139 ,  140 ]. However, an angiotensin-independent 
function of PRR has also been recently reported, which was identifi ed as an acces-
sory ATP6AP2 subunit of V-ATPase [ 137 ,  138 ,  140 ,  141 ]. Tissue-specifi c condi-
tional knockout experiments confi rmed a role of PRR/ATP6AP2 in assembly of 
V-ATPase in murine cardiomyocytes [ 142 ]. Importantly, the level of prorenin is 
elevated during diabetes and over-activation of PRR is associated with develop-
ment of hypertension and diabetic kidney disease [ 122 ,  143 ]. The role of PRR in 
kidney function and its association with diabetes and hypertension has been 
recently reviewed [ 122 ,  140 ,  141 ,  143 ]. Thus, future studies in this area could lead 
to the novel therapeutic approaches for the treatment of hypertension, diabetes, and 
their complications [ 122 ].  
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3.9      V-ATPase and  Notch Receptor   

 The cell-to-cell signaling by the Notch receptor pathway is critical during develop-
ment and tissue regeneration for controlling the balance between cell proliferation 
and apoptosis. Pathological loss of regulation of Notch receptor signaling is also a 
hallmark of different cancers [ 144 ,  145 ]. Activation of the Notch receptor by ligands 
gives rise to its cleavage by  γ -secretase-mediated intra-membrane proteolysis fol-
lowed by activation of specifi c target genes. Surprisingly, recent studies revealed 
that V-ATPase driven acidifi cation may control two opposite processes in the Notch 
signaling in  Drosophila : (1) lysosomal degradation and loss of regulation of Notch 
receptors; and (2)  γ -secretase-mediated Notch receptor activation in early endo-
somes [ 146 ]. Moreover, Notch receptor signaling is also controlled by Rabconnectin-
3A/B (Rbcn-3) through regulating V-ATPase both in  Drosophila  and mammalian 
cells [ 147 ,  148 ]. It is noteworthy that mammalian Rbcn-3 protein is a homolog of 
yeast Rav-1, which forms a part of the RAVE (Rav-1, Rav-2, and Skp1) complex. 
Interaction of Rav-1 with V-ATPase is essential for reversible assembly/disassem-
bly of the yeast V 1  and V O  [ 15 ,  116 ,  149 ]. Similar to Wnt-signaling, these studies 
also revealed two mechanisms of Notch-signaling modulation by V-ATPase in 
mammalian cells: (1) through subsequent Rbcn-3/V-ATPase interaction and (2) 
V-ATPase-driven acidifi cation leading to activation of γ-secretase [ 138 ,  146 – 148 ].   

3.10      V-ATPase as  pH-Sensor and Cytohesin-2/Arf Small 
GTPases   Signaling Receptor 

 The Arf-family small GTPases belong to the Ras-superfamily that are involved in 
regulation of a great variety of cellular pathways [ 150 ]. These GTPases function as 
“molecular switches” and the transition between “on” and “off” is mediated by a 
GDP/GTP cycle. In particular, activation of Arf small GTPases is accomplished by 
the cytohesin-family of  guanine nucleotide exchange factors (GEFs)  . Cytohesin-
family GEFs include cytohesin-1, cytohesin-2 (CTH2) (also known as ARNO), cyto-
hesin-3 (also known as GRP1), and cytohesin-4. The generally accepted functions of 
cytohesin/Arf small GTPases are regulation of organelle biogenesis, modulation of 
vesicular traffi cking, and actin cytoskeleton remodeling [ 151 – 153 ]. However, cyto-
hesins have also emerged recently as central modulators of signaling and traffi cking 
of plasma membrane receptors including: (1) EGFR/ErbB [ 128 ,  129 ], (2) insulin-
receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) [ 154 – 158 ], (3) 
VEGF-2R [ 159 ], and (4) integrins [ 160 ,  161 ]. In particular, cytohesin-1 and -2 have 
been identifi ed as activators of EGFR/ErbB’s that are involved in regulation of cell 
proliferation and oncogenesis [ 128 ,  129 ]. Cytohesins are also crucial downstream 
effectors for the IR and IGF-1R signaling cascade involved in regulation of calorie 
restriction pathway, longevity, and aging process [ 154 – 158 ,  162 – 164 ]. 
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 Previously, our laboratory focused on studies of the functional interplay between 
V-ATPase and cytohesin-2/Arf1,6 small GTPases in endosomal/lysosomal protein 
degradation pathway [ 30 ,  109 ,  165 ,  166 ]. The cytohesin-2 and Arf1, Arf6 are specifi -
cally targeted to early endosomes of this pathway and co-localized with V-ATPase in 
kidney proximal tubule cells (Figs.  16.2  and  16.3 ) [ 30 ,  109 ]. Moreover, subsequent 
work from our laboratory revealed that V-ATPase itself functions as a novel long-
sought pH-sensor or pH-sensing receptor. In particular, V-ATPase containing a2 iso-
form is specifi cally targeted to early endosomes and directly interacts with cytohesin-2 
(CTH2) in acidifi cation-dependent manner, suggesting that the a2 is a putative pH-
sensing receptor (Fig.  16.2 ) [ 25 ,  26 ]. According to this concept, V-ATPase is not only 
responsible for proton pumping and the generation of a pH gradient but also involved 
in sensing the levels of acidifi cation and transmitting this information through mem-
brane. Moreover, other isoforms (a1, a3, and a4) were also found to interact with 
CTH2 [ 167 ]. Taken together, these results suggest that pH-sensing by V-ATPases and 
interaction with cytohesin-2/Arf1,6 small GTPase is a general phenomenon, which 
may take place in other acidic organelles of both the exocytotic and the endocytic 
pathways. We have uncovered the molecular details of unexpected function of 
V-ATPases, as an evolutionarily conserved pH-sensing and cytohesin-2/Arf1,6 small 
GTPases signaling receptor (Fig.  16.2 ) [ 1 ,  2 ,  25 – 27 ,  31 ,  167 ].    

4     Functions of V-ATPase in Normal and Disease States 

 In this section, we discuss roles of V-ATPases in regulating vesicular traffi cking and 
the development of various disease states. First, our focus is the role of V-ATPases 
in cancer development and metastasis process. Second, we analyze its role in modu-
lation of exocytic/secretory pathway during pathogenesis of diabetes and bone dis-
eases. Third, we discuss the roles of V-ATPases in regulating two novel 
super-complexes localized in endocytic or endosomal/lysosomal protein degrada-
tion pathway (Fig.  16.3 ). We also discuss their roles in cancer as well as aging and 
age-related diseases. 

4.1     V-ATPase in Cancer Development and Metastasis 

 Human and mouse a1 and a2 are expressed ubiquitously under physiological condi-
tions, whereas a3 and a4 are specifi cally expressed and targeted to the plasma mem-
branes of bone osteoclast and kidney intercalated cells, respectively [ 73 ,  92 ,  93 , 
 168 ,  169 ]. Previous studies suggested that the a subunit targets V-ATPase to differ-
ent compartments and plasma membranes as well as senses the  pH-gradien  t formed 
during acidifi cation (Fig.  16.2 ) [ 1 ,  2 ]. V-ATPases with specifi c a-isoforms have 
been detected at the plasma membrane of the breast, ovarian, and prostate cancer 
cells. The role of V-ATPase dependent extracellular acidifi cation was studied exten-
sively in development and invasive phenotype of these metastatic tumors. 
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4.1.1       Breast Cancer   

 Early studies have demonstrated that V-ATPases are expressed in the plasma 
membrane of invasive cancer cells [ 170 ]. V-ATPase was found to be more promi-
nently expressed in the highly metastatic MDA-MB231 breast cancer cells, which 
are more invasive and migratory than the less metastatic MCF-7 breast cancer cells. 
Moreover, inhibition of V-ATPase by  BafA1  signifi cantly reduces the in vitro inva-
sion of MDA-MB231 but not MCF7 cells [ 50 ]. These results indicate that targeting 
of V-ATPase to the plasma membrane is correlated with metastatic phenotype of the 
breast cancer cells. However, the mechanism of V-ATPase function and the subunits 
involved in its targeting to the plasma membrane remain obscure. Further studies 
have focused on the role of the a-subunit isoforms in cancer. Although all four iso-
forms are found in MDA-MB231 but not MCF7 cell lines, the expression levels of 
a3 and a4 are signifi cantly higher in metastatic MDA-MB231 than in non-metastatic 
MCF-7 cells. In addition, siRNA knockdown experiments further demonstrated the 
role of a3 and a4 isoforms in targeting V-ATPase to the plasma membrane and inva-
sive phenotype of MDA-MB231 cells [ 51 ]. Similar role of a3 was found in inva-
siveness of MCF10CA1 but not MCF10a breast cancer cells [ 52 ]. Finally, the recent 
studies demonstrated that invasiveness of breast cancer cells could be modulated by 
cell-impermeable molecules targeting extracellular parts of V-ATPase: (1) a biotin-
conjugated  BafA1  or (2) the monoclonal antibody directed against the V5 epitope 
constructed on the extracellular loop of V O  c-subunit [ 53 ]. 

 Other roles of V-ATPase in breast cancer development and metastasis have been 
revealed recently. First, V-ATPase is required for traffi cking of Rab27B small 
GTPase dependent pro-invasive secretory vesicles which promote an invasive 
growth and metastasis in estrogen receptor (ER) alpha-positive breast cancer 
patients. Therefore, a role of V-ATPase in invasive growth and metastasis of 
ER-alpha-positive breast cancer has been suggested [ 171 ]. This study demonstrated 
that inhibiting V-ATPase by  BafA1  or silencing of a1 or d subunits might be an 
effective strategy for blocking Rab27B-dependent pro-invasive secretory vesicles 
which are involved in secretion of pro-invasive growth regulators. Second, 
V-ATPase driven acidosis of tumors may also control the pro-apoptotic protein 
Bnip3 death pathway [ 172 ]. Accordingly, it was reported that pharmacologic inhibi-
tion of V-ATPase with  BafA1  could effectively activate Bnip3 pathway, promote 
death of breast cancer cells and signifi cantly reduced tumor growth in MCF7 and 
MDA-MB-231 mouse xenografts in vivo. Importantly, the combined treatment of 
mice bearing the breast MDA-MB-231 xenografts with  BafA1  and ERK1/2 inhibi-
tor  sorafenib  has potentiated action of two inhibitors for tumor regression. These 
results present a novel mechanism to kill cancer cells and reverse resistance of 
breast hypoxic tumors. Third, breast cancer invasive cells are resistant to anoikis, a 
specifi c type of apoptosis promoted by loss of cell–matrix contact. A recent study 
demonstrated, that triggering of anoikis by V-ATPase inhibitor  archazolid  is prom-
ising therapeutic approach to reduce metastasis of breast cancer cells in mouse 
model in vivo [ 173 ]. Forth, very recent study has identifi ed a novel tumor-metastasis 
related gene 1 (TMSG1) as a regulator of activity of V-ATPase and secreted metal-
loproteinase-2 in breast cancer cells [ 174 ]. 
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 All together, these studies suggest that V-ATPase could modulate invasiveness 
and breast tumor metastasis due to acidifi cation of extracellular milieu and subse-
quent activation of metalloproteases. On the other hand, V-ATPase also controls 
apoptotic cell death and regulates vesicular traffi cking and secretion of pro-invasive 
growth factors. Importantly, in breast cancer cells both invasiveness and metastasis 
could be controlled by targeting extracellular part of plasma membrane V-ATPase 
[ 175 – 177 ].   

4.1.2       Ovarian Cancer   

 The role of V-ATPase in invasiveness and metastasis has also been recently 
addressed in ovarian carcinoma. Particularly, the expression, targeting, and function 
of a-subunit isoforms were studied in ovarian cancer tissues as well as in ovarian 
cancer A2780, SKOV-3, TOV-112D cell lines [ 178 ]. The a2-isoform is predomi-
nantly expressed in these cells and targeted V-ATPase to the plasma membrane. 
Under physiological conditions, a2-isoform is predominantly located in early endo-
somal compartment or Golgi and, thus, it relocates to the plasma membrane during 
tumorigenesis and metastasis. This study also reveals co-association of a2-isoform 
with cortactin, a protein involved in invasion of tumor cells. Targeting of a2 with 
monoclonal antibody reduces the activity of matrix MMP-2 and MMP-9 metallo-
proteinases and invasiveness of these ovarian cancer cells. These fi ndings suggest 
that a2-isoform could be promising target for developing novel therapeutic anti-V-
ATPase antibodies against ovarian carcinoma [ 178 ]. Finally, an important role of 
the a2-isoform derived secretory peptide in infl ammation, angiogenesis, and tumor-
igenesis was also proposed [ 179 – 182 ].   

4.1.3       Prostate Cancer and Tumor Angiogenesis   

 Angiogenesis is recognized as one of the hallmarks of cancer which enable tumor 
growth and metastatic dissemination [ 127 ]. Moreover, tumors are currently recog-
nized as abnormal organs consisted of a complex mixture of the cells interacting 
and signaling with each other and required stable supply of nutrients and oxygen for 
their needs [ 183 ]. The cancer-induced neovascularization is triggered by pro-angio-
genic signaling and cell-to-cell cross talk. In particular, plasma membrane V-ATPase 
was implicated in regulation of intracellular pH and migration of microvascular 
endothelial cells [ 184 ,  185 ]. Moreover, V-ATPase is taking part in cross talk and 
regulation of communication between microvascular endothelial and metastatic 
cells promoting acidifi cation of extracellular space and favors protease activity 
[ 186 ]. A different mechanism of cross talk in metastatic prostate cancer cells 
involves regulation of V-ATPase by  pigment epithelium-derived factor (PEDF)  , a 
potent endogenous inhibitor of angiogenesis. Thus, PEDF was identifi ed as novel 
regulator of V-ATPase and suggested the mechanism of its inhibition of prostate 
tumor growth. 
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 In summary, during last decade V-ATPase emerged as a crucial enzyme for 
tumorigenesis and metastatic phenotype of breast, ovarian, and prostate cancers. 
However, during last years the pathophysiological role of V-ATPase in the develop-
ment of other tumors including: melanoma [ 187 ], hepatocellular carcinoma [ 188 ], 
oral squamous carcinoma [ 189 ], esophageal squamous carcinoma [ 190 ], non-small-
cell lung cancer [ 191 ], gastric cancer [ 192 ], colon cancer [ 193 ], and pancreatic can-
cer [ 194 ] were also studied.    

4.2     V-ATPase  in Insulin Secretion and Diabetes Mellitus   

 V-ATPases play also essential roles in specifi c organelles of differentiated cells, 
especially those involved in exocytosis. The secretory granules have acidic luminal 
pH (5.0–5.5), important for condensation and maturation of their content. It has 
been suggested that the inside acidic pH or proton gradient across organelle mem-
branes is involved in fusion of the vesicles to target membranes. Interesting ques-
tion is which a-subunit isoform is expressed in secretory vesicles of mammalian 
cells. We have focused on the role of a-isoforms in insulin secretion, since previous 
studies suggested that V-ATPases may be pertinent for the insulin secretion [ 8 ,  195 ]. 
Of four isoforms, the a3 was detected in almost all cells in pancreatic Langerhans 
islet, and localized to the membranes of insulin containing granules in β-cells. 
Consistent with this fi nding, oc/oc mutant mice, homozygous 1.6 kb deletion of the 
a3-locus, exhibited reduced insulin secretion into blood upon glucose administra-
tion. However, the mutant β-cell contained essentially the same amount of mature 
insulin as the wild-type cell. Thus, the secretion of insulin was impaired in mutant 
β-cells. These results suggest that the a3-isoform has a direct function in exocytosis, 
possibly for fusion of the secretory vesicles to plasma membranes. The human 
ATP6i gene encoding the a3-isoform was mapped to a chromosome 11q13, and is 
located about 200 kb apart from LRP5 locus, which shows strong linkage to the 
disease. It is highly likely that alteration of ATP6i could also contribute to Type 1 
diabetes [ 196 ]. We have identifi ed that V-ATPase with a3 is highly expressed in 
endocrine tissues such as adrenal, parathyroid, thyroid and pituitary gland. Thus, a3 
may be commonly involved in exocytosis of endocrine tissue and play an important 
role in the pathogenesis of endocrine and metabolic diseases including diabetes 
mellitus [ 8 ].  

4.3      V-ATPase  in Bone Homeostasis and Diseases   

 Bone homeostasis is maintained through the equilibrium between bone genesis and 
resorption by osteoblast and osteoclast, respectively. Defects of these cells are 
related to bone diseases such as osteopetrosis and osteoporosis. Osteoclast gener-
ates proton fl ux into bone resorption lacuna to mobilize bone calcium. This 
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acidifi cation is carried out by V-ATPases, which are localized in the osteoclast 
plasma membrane. We have shown that a3 and d2 subunits are components of the 
osteoclast enzyme [ 40 ,  75 ]. Mammalian subunit d has two isoforms: ubiquitous d1 
isoform and osteoclast/kidney/epididymis specifi c d2 isoform [ 40 ]. In contrast to 
the plasma membrane localization in osteoclast, the a3 isoform was found in late 
endosome/lysosome in NIH3T3 or RAW264.7 cells. 

 Murine macrophage line RAW264.7 can differentiate to multinuclear osteoclast-
like cells. Upon stimulation with RANKL (Receptor Accepter Nuclear κB Ligand) 
from osteoblast, RAW264.7 cell differentiate into multinuclear osteoclast. During 
the differentiation, V-ATPase containing a3 isoform was transported to the cell 
periphery together with lysosome marker proteins, and fi nally assembled to the 
plasma membrane. The d2 isoform was also induced and assembled to the plasma 
membrane V-ATPase. Thus, secretory lysosomes should be involved in the forma-
tion of osteoclast plasma membranes. The splenic macrophage (from a3 knockout 
mice) lacking the a3-isoform could differentiate to multinuclear cells, which express 
osteoclast marker enzymes and V-ATPase with d2 and a1 or a2 isoforms [ 40 ,  197 ]. 
However, the multinuclear cell could not adsorb calcium phosphate, indicating that 
V-ATPase with d2/a2- or d2/a1-subunit isoforms could not perform the function of 
that with d2/a3-subunit isoforms containing V-ATPase. 

 In summary, we have studied the targeting and function of a3-isoform both in 
endocrine tissues and in bone osteoclasts. Remarkably, while in pancreatic β-cells 
a3 is targeting the V-ATPase to the membranes of insulin containing secretory gran-
ules of exocytic pathway, in bone osteoclast the V-ATPase with a3-isoform is 
expressed in plasma membrane and late endosomes/lysosomes of endocytic path-
way. However, our results strongly suggest that V-ATPase a3 is localized into spe-
cialized secretory lysosomes in osteoclasts. These specialized lysosomes are not 
functioning as common endocytic lysosomes, but instead are transported to cell 
periphery and fused with plasma membrane, using the mechanism similar to exocy-
tosis. In accordance with the pivotal role of V-ATPase in bone homeostasis, multiple 
mutations of the a3-isoform give rise to diseases of bone resorption and are associ-
ated with osteopetrosis in both mice models and humans [ 41 ,  46 ,  95 ,  198 ,  199 ].   

4.4       V-ATPase and  mTORC1     /Ragulator/Rag/Rheb Small 
GTPases Super-complex in Cancer, Diabetes, and Age-
Related Diseases 

 The mammalian target of rapamycin (mTOR) is a large cytosolic serine-threonine 
kinase that controls cellular growth and metabolism. Under physiological condi-
tions both mTORC1 and mTORC2 are involved in neonatal autophagy and sur-
vival as well as development of obesity and aging processes in adulthood. 
Abnormal function of mTORC1 and mTORC2 are implicated in the pathogenesis 
of many diseases including cancer, diabetes, age-related diseases, aging, and 
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longevity [ 34 ,  35 ,  163 ,  200 – 204 ]. The mTOR belongs to the superfamily of 
phosphatidylinositol-3 kinase related-kinases (PI3KK) that forms the core of two 
functionally distinct complexes: mTORC1 and mTORC2. As mTORC1 primarily 
responds to the levels of amino acids, oxygen, energy and cellular stress stimuli, 
mTORC2 plays a central role in the growth factor and insulin signaling cascades 
(Fig.  16.3 ) [ 33 – 35 ]. mTORC2 also regulates cytoskeleton function, metabolism, 
and cell survival [ 35 ,  205 ]. V-ATPase has been identifi ed recently as an important 
component of the mTORC1 regulatory super-complex and signaling pathway 
[ 32 ]. This super-complex, formed by V-ATPase, Ragulator, Rag, mTORC1, and 
Rheb, is associated with late endosomes and lysosomes of the protein degradation 
endocytic pathway (Fig.  16.3 ) [ 32 ,  206 ,  207 ]. Localization of mTORC1 on the 
late endosoaml/lysosomes membrane is also critical for its activation as a multi-
functional serine–threonine kinase and is regulated by two types of small GTPases: 
(1) Rheb GTPase (Ras homolog enriched in brain); and (2) Rag GTPases. It is 
well recognized, that Rheb is a potent activator of mTORC1, which transmit signals 
of growth factors, oxygen, energy supply, and stress via the  tuberous sclerosis com-
plex (TSC)  , acting as a  GTPase activating protein (GAP)   for Rheb small GTPase. 

 Although amino acids are known to modulate cell growth and homeostasis, the 
molecular aspects of their regulation of mTORC1 function remained elusive. 
However, Sabatini and coworkers have shown recently that V-ATPase is a major 
player in the amino acids dependent recruitment, activation and signaling of mTORC1 
[ 32 ]. V-ATPase is involved in sensing the levels of intra-lysosomal amino acids 
through the direct interaction with the Ragulator complex, that acts as a GTPase 
GTP/GDP-exchange factor for Rag small GTPases [ 33 ,  208 ]. They have proposed 
that the primary function of amino acid-dependent V-ATPase/Ragulator/Rag-
signaling complex is to promote recruiting mTORC1 to lysosomal membrane, and 
thus trigger the TSC/Rheb-driven “ignition key” for the activation of the kinase activ-
ity of lysosomal mTORC1 complex. In their scenario, V-ATPase plays a direct role 
in intra-lysosomal sensing of amino acids and trans-membrane signaling to mTORC1. 

 Recent studies demonstrated, that mTORC1 is also activated by EGF via EGFR-
receptor signaling pathway (Fig.  16.3 ). Then, the activation of mTORC1 involves 
in the Akt/Erk activation, TSC complex inhibition, and Rheb(GTP) formation. In 
contrast to amino acid-induction studies [ 32 ], EGF signaling pathway does not 
accompany mTORC1 recruitment from the cytosol and its translocation to the lyso-
somal membrane [ 23 ,  32 ]. Instead, the EGF signaling promoted the rapid recruit-
ment of V 1  sectors and increased assembly of ATPase in late endosomal/lysosomal 
compartments. Thus, the novel role of V-ATPase in regulation of mTORC1 signal-
ing and traffi cking EGFR/ErbB-receptors within the endosomal/lysosomal protein 
degradation pathway is a crucial mechanism controlled by the assembly/disassem-
bly of the V 1  and V O  (Fig.  16.3 ) [ 23 ,  32 ]. 

 In summary, lysosomes and related organelles play a regulatory role in cellular 
protein degradation and energy production using V-ATPase/mTORC1 “sensing 
machinery” to monitor both lysosomal and cytosolic amino acid content as indi-
cator of nutritional status of the cell. This physiological information is further 
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communicated to the nucleus to activate the gene expression programs allowing 
lysosomes to regulate their own function [ 209 ]. This quality control process is 
declining over life span, contributing to cancer and aging associated diseases, and 
thus, V-ATPase/mTORC1/Ragulator/Rag/Rheb small GTPases super-complex is 
considered as an important drug target.    

4.5      V-ATPase and Cytohesin-2/aldolase/Arf1,6 Small GTPases 
Super-complex in Cancer, Diabetes, and Age-Related 
Diseases 

 Our recent studies uncovered, that in addition to its primary role as a proton-pump, 
V-ATPase also functions as a pH-sensing and cytohesin-2/Arf1,6 small GTPases 
signaling receptor (Fig.  16.2 ) [ 1 ,  2 ,  25 ,  27 ,  31 ]. However, the molecular mechanism 
of interaction between these proteins as well as functional signifi cance of the signal-
ing remain unclear. Thus, we also focused on the mechanism of interaction between 
N-terminal cytosolic tail of a2-subunit ( a 2N) of V-ATPase and  cytohesin-2 (CTH2)   
[ 28 ]. The interaction sites between these two proteins were mapped using the com-
bination of recombinant proteins/synthetic peptides pull-down and surface plasmon 
resonance (SPR) experiments. Two structural elements involved in specifi c and 
high affi nity association of the a2 isoform with CTH2 were identifi ed: (1) an 
N-terminal binding motif formed by the fi rst 17 amino acids of the  a 2N ( a 2N1–17 
peptide) and (2) the catalytic Sec7 domain of CTH2 [ 28 ,  31 ]. The SPR experiments 
further confi rmed that these structural elements are major binding sites between 
 a 2N of V-ATPase and CTH2. Furthermore, this analysis revealed a strong binding 
affi nity between this  a 2N1-17 peptide and the Sec7-domain of CTH2, with a dis-
sociation constant of  K   D   = 3.44 × 10 −7  M, similar to the binding affi nity  K   D   = 3.13 × 10 −7  
M between full-length  a 2N and CTH2 proteins (Fig.  16.2 , interfaces I and II). 
Analysis of enzyme activity confi rmed that  a 2N1-17 peptide is crucial for V-ATPase/
CTH2 signaling and regulate the cytohesin-2 enzymatic Arf-GEF activity. Indeed, 
these studies revealed that  a 2N1-17 peptide is a potent inhibitor of the GDP/GTP-
exchange activity of CTH2, that is acting through its direct interaction with the cata-
lytic Sec7 domain. The α-helical structure of  a 2N1-17 and its residues F5, M10, 
Q14 binding with the Sec7 domain were also identifi ed by NMR spectroscopy anal-
ysis (Fig.  16.4a, b ). In silico docking studies have shown that  a 2N1-17 epitope of 
V-ATPase competes with the switch-2 region of Arf1,6 for binding to the Sec7 
domain of CTH2 (Fig.  16.4c, d ). Together, these experiments revealed the structural 
basis and molecular details of mechanism of signaling between V-ATPase and 
CTH2/Arf1,6 small GTPases (Fig.  16.4 ).

   Although our previous work uncovered a functional cross talk between V-ATPase, 
cytohesin-2, and Arf1,6 small GTPases, other downstream effectors and related cell 
biological events have not been unraveled. However, since V-ATPase interacts with 
both cytohesin-2 and aldolase, we suggested that these proteins could in turn inter-
act with each other, forming V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex. 
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The super-complex coordinates endocytic vesicle traffi cking and downstream 
signaling of receptors (Fig.  16.3 ). The direct interaction of aldolase with cytohe-
sin-2 through its PH-domain was shown by the pull-down and SPR experiments 
(Fig.  16.2 ). This approach revealed a two-step interaction between these two pro-
teins with  K  D1  = 1.1 × 10 −4  M and  K  D2  = 2.7 × 10 −6  M, clearly indicating a potential 
regulatory mechanism of this interaction (Fig.  16.2 , interfaces III and IV). Moreover, 
using a cell fractionation approach, we demonstrated the association of aldolase 
with early endosomes and formation of V-ATPase/cytohesin-2/Arf1,6/aldolase 
super-complex (Figs.  16.2  and  16.3 ). The aldolase knockdown experiments further 
uncovered the functional signifi cance of interactions within V-ATPase/cytohesin-2/
Arf1,6/aldolase super-complex. It was shown that the direct interaction between 
aldolase and cytohesin-2 are important in: (1) gelsolin gene expression, (2) actin 
cytoskeletal rearrangement, and (3) redistribution of endosomal vesicles within 
endocytic protein-degradation pathway [ 167 ]. 

 In summary, a novel V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex 
identifi ed on early endosomes may be involved in regulation of the signaling recep-
tors and function of the protein degradation pathway (Figs.  16.2  and  16.3 ). Moreover, 
these data indicate that pH-dependent binding and signaling between V-ATPase and 
cytohesin-2 may modulate the interaction of the a-subunit isoforms with aldolase 
and/or the GE-heterodimer forming peripheral stalks and consequently modulate 
the reversible association/dissociation of the V 1  and V O  of V-ATPase (Fig.  16.2 ) [ 1 , 
 2 ]. Thus, evolutionarily acquired pH-sensing and cytohesin-2/Arf1,6-signaling 
function of V-ATPase, and its interaction with aldolase, may be an integral part 
of the self-regulatory mechanism of the enzyme as a proton-pumping rotary 
nano-motor. 

 On the other hand, downstream effectors of V-ATPase/cytohesin-2/Arf1,6/aldol-
ase super-complex have also recently emerged. Cytohesin-1/2 family Arf-GEFs are 
shown to play role in regulation of signaling and traffi cking of EGFR/ErbB and IR/
IGF-1R receptors [ 128 ,  129 ,  154 ,  156 ,  157 ]. In particular, these studies demonstrated 

  Fig. 16.4    The molecular features of the protein–protein interaction interface and signaling 
between V-ATPase and cytohesin-2/Arf1,6 small GTPases. ( a ) NMR structure  a 2N(1–17) peptide 
derived from V-ATPase and mapping of its interaction protein–protein binding interface (formed 
by amino acids F5, M10, Q14, shown in  red square ) involved in binding with catalytic Sec7 
domain of cytohesin-2. ( b ) In silico docking experiments of the a2N(1–17) peptide at the interface 
between catalytic site of the Sec7-domain of cytohesin-2 and Arf1,6 small GTPases. ( c ) The bind-
ing of the  a 2N(1–17) peptide involves the αG, αH, and αI helixes of Sec7 and switch 2 of the 
Arf1,6 small GTPases       
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the direct interaction of cytohesin-2 with insulin receptor and regulation of the PI3K 
signaling pathway. Thus, both in mice and fl y cytohesin-2 is essential for signaling 
of IR/IGF-1R, cell growth, regulation of metabolism, and function of  calorie restric-
tion pathway (CRP)   during aging process [ 154 ,  156 ,  157 ,  162 ,  164 ,  202 ]. In cancer 
cells, cytohesin-2 serves as a cytoplasmic activator of EGFR/ErbB, that modulates 
phosphorylation-dependent dimerization, oncogenic signaling of these receptors, 
and development of cancer (Fig.  16.3 ) [ 128 ,  129 ]. In conclusion, cell biological 
insights of V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex (Figs.  16.2  and 
 16.3 ) shed light on the regulation of endocytic protein degradation pathway, 
traffi cking and signaling EGFR/ErbB and IR/EGF-1R receptors under both physi-
ological (longevity and aging process) and pathological (cancer and diabetes) 
conditions.    

5     Conclusions 

5.1       Drug Design and Target  ing to Diverse V-ATPases 
and Their Super-complexes 

 As discussed above, extensive research in the last few years made an astounding 
breakthrough in understanding the structure and function of V-ATPase [ 1 – 5 ,  7 ,  9 –
 12 ]. The advances include following discoveries: (1) low resolution structure of 
V-ATPase using cryo-EM; (2) the crystal-structure of individual subunits and their 
protein–protein interfaces; (3) endosomal V-ATPase/cytohesin-2/Arf1,6/aldolase 
super-complex; (4) lysosomal V-ATPase/Ragulator/Rag/mTORC1/Rheb super-
complex, (5) novel roles of V-ATPase in traffi cking and signaling of receptors, and 
(6) critical role of V-ATPases in the development and pathogenesis of human dis-
eases. Thus, V-ATPase could be considered as a potential target providing powerful 
approaches for the development of therapeutic agents. The seven different 
approaches could be considered as discussed below. 

  First , targeting to V-ATPases in diverse compartments with a large spectrum of 
subunit isoforms could be productive for pharmaceutical research. The expressions 
of these isoforms are specifi c for tissues, cells, and compartments. Recent experi-
ments demonstrated that V-ATPases with unique combinations of subunit isoforms 
are localized in specifi c cell membranes which could dictate  t heir functions [ 1 – 5 , 
 8 ]. Thus, isoform-specifi c subunits of V-ATPase have been suggested as attractive 
targets for the treatment of human diseases. Targeting a-subunit and other isoforms 
by small molecule inhibitors is proposed in treating lytic bone disorders [ 210 – 212 ]. 
V-ATPase a-subunit isoforms are also potential targets for the treatment of meta-
static cancers. Thus, the small molecule V-ATPase inhibitors and siRNA have been 
studied extensively with their potential application in cancer treatment and preven-
tion of metastasis [ 213 – 217 ]. 

  Secondly , targeting the extracellular domains of a- and c-subunits with specifi c 
antibodies has been recently successfully applied for selective inhibition of plasma 

V. Marshansky et al.



325

membrane V-ATPase and reduction of metastatic phenotype of the cancer cells [ 53 , 
 178 ]. In addition, the fi rst V-ATPase inhibitory peptide was also identifi ed and its 
selectivity was demonstrated [ 82 ]. Thus, this approach should be considered for 
developing of novel anticancer pharmaceuticals including antibodies and peptides 
which have high specifi city and low toxicity. 

 Third, unique mechanism of regulating V-ATPase is reversible assembly/disas-
sembly, which could be a promising target in drug design. This approach would be 
even more fruitful if combined with targeting cell or tissue specifi c V-ATPase iso-
forms [ 13 – 15 ,  19 ]. 

  Forth , V-ATPases in regulation of signaling, traffi cking, and degradation of cel-
lular receptors could be a potential target. As discussed above, endocytosis, signal-
ing, and degradation of Fz/LRP6, PRR, and Notch receptors are regulated by the 
direct interaction with V-ATPase [ 1 ,  122 ]. Therefore, targeting to the interactions 
between V-ATPase and these receptors could provide a promising approach in treat-
ment of diseases related to cellular traffi cking such as cancer, diabetes, and neuro-
degenerative diseases. 

  Fifth , regulatory proteins interacting with V-ATPase could be a potential target. 
The V-ATPase dependent super-complexes in early endosomes (V-ATPase/cytohe-
sin-2/Arf1,6/aldolase) and late endosomes/lysosomes (V-ATPase/Ragulator/Rag/
mTORC1/Rheb) pathway have been discovered recently in our [ 1 ,  2 ,  25 ,  26 ,  28 ,  30 , 
 31 ,  109 ,  167 ] and Sabatini [ 32 – 34 ,  208 ] laboratories, respectively. The specifi c cas-
cade of different protein–protein interactions within these complexes could modu-
late pH and amino-acids sensing, targeting, assembly, and activity of V-ATPase, 
linked to the regulation of intravesicular acidifi cation and traffi cking. For example, 
mTOR-signaling pathway is critical for the pathogenesis of the cancer and age-
related diseases [ 34 ,  35 ,  163 ,  200 – 204 ]. It is noteworthy that extensive studies in 
animal models and clinical trials have uncovered the benefi cial action of  rapamycin , 
a potent mTOR inhibitor approved by FDA for treatment of variety age-associated 
diseases including cancers, neurodegenerative disorders, aging, and longevity. 
However, due to its side effects caused by the action of  rapamycin  on both mTORC1 
and mTORC2, there is growing necessity for pharmacological research producing 
more specifi c and effi cient drugs targeting of these pathways. Therefore, small mol-
ecules specifi cally targeting of protein–protein interactions in V-ATPase/Ragulator/
Rag/mTORC1/Rheb super-complex will provide an attractive therapeutic agents to 
control aberrant signaling of mTORC1 and mTORC2 complexes in cancer, diabe-
tes, age-related diseases, aging, and longevity [ 34 ,  35 ,  163 ,  200 – 204 ]. 

  Sixth , novel endosomal V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex 
and especially its protein–protein interaction interfaces could be a potential thera-
peutic targets (Figs.  16.2 ,  16.3 , and  16.4 ) [ 1 ,  2 ,  25 ,  26 ,  28 ,  31 ,  167 ]. We propose that 
this approach will develop novel protein–protein interaction (PPI) inhibitors includ-
ing therapeutic peptides or small molecule drugs [ 218 – 220 ]. These compounds may 
be also used to regulate assembly/disassembly of V-ATPase and signaling of cyto-
hesin-2/Arf1,6 small GTPases. Modulation of the function of EGFR/ErbB or IR/
IGF-1R receptors by the similar approach may be useful for treating variety of 
cancers, age-related diseases, slowing aging process and extending human longev-
ity [ 154 – 158 ,  162 – 164 ]. 
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  Seventh , in our recent study the V-ATPase interactome was mapped for the fi rst 
time. This systematic approach, has revealed a novel interacting proteins involved 
in traffi cking, folding, assembly, and phosphorylation of V-ATPase [ 221 ]. These 
cell biological processes regulate V-ATPase-dependent acidifi cation, and thus, these 
pathways and proteins could serve as potential drug targets for the therapeutic regu-
lation V-ATPase function in health and disease states.       
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    Chapter 17   
 Vacuolar ATPase in Physiology and Pathology: 
Roles in Neurobiology, Infectious Disease, 
and Cancer                     

       Colleen     A.     Fordyce    ,     Martha     M.     Grimes    ,     Yamhilette     Licon-Munoz    , 
    Chun- Yuan       Chan    , and     Karlett     J.     Parra    

    Abstract     Vacuolar ATPase (V-ATPase) is an ATP-dependent proton pump present 
in all eukaryotic cells. V-ATPase is a critical regulator of intracellular pH across the 
endomembrane system and is essential for fundamental cellular functions including 
endocytosis and exocytosis, protein modifi cation and maturation and loading of 
secretory vesicles. Here we describe the structure, regulation, and function of 
V-ATPase in pH regulation and the roles of V-ATPase in neurobiology, infectious 
disease, and cancer. V-ATPase is composed of two domains: a membrane-peripheral 
domain, V 1 , and a membrane-integral domain, V o . When extracellular glucose con-
centrations drop the V 1 V o  complex disassembles to inhibit V-ATPase activity and 
prevent energy depletion; this ability allows yeast cells to quickly respond to altera-
tions in energy state. Next, we present a body of growing new evidence that high-
lights the importance of V-ATPase in human health and disease. We discuss 
mechanisms by which V-ATPase participates in neurotransmission, neurodegenera-
tion, and stroke-associated neuronal cell death. Then, we focus on the involvement 
of pH and V-ATPase in the pathogenesis of viruses, bacteria, and fungi and the 
processes necessary to ensure pathogen replication. In the last section, we capitalize 
upon a repertoire of studies in recent years that indicate that V-ATPase is a critical 
player in adaptation to cellular stress and that V-ATPase activity directly and indi-
rectly contributes to many of the hallmarks of cancer.  
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1         Introduction 

1.1     V-ATPase  Structure and Function   

 The V-type ATPase proton pump is a molecular motor structurally related to the 
F-type ATP synthase and the archaea A-type ATPase/synthase [ 1 ]. These three 
energy-converting biosystems operate by a similar mechanism of rotational cataly-
sis, but only V-ATPase hydrolyzes ATP, which distinguishes V-ATPase from the F- 
and A-type enzymes that are ATP synthases. The V-ATPase multisubunit protein 
complex contains eight peripheral subunits (A, B, C, D, E, F, G, H) and six 
membrane- bound subunits (a, c, c′, c″, d, e); several of which are present in multiple 
copies (Table  17.1 ) [ 2 – 6 ]. The peripheral subunits form the V 1  domain. V 1  subunits 
A, B, and D form a catalytic globular protuberance from the membrane involved in 
the binding and hydrolysis of ATP (catalytic core). The other V 1  subunits play struc-
tural and regulatory roles. The membrane subunits form the V o  domain. V o  has a ring 
structure (c-ring) of proteolipid nature that captures cytosolic protons and transfers 
them across the membrane. ATP-driven V 1 V o  proton transport sustains organelle, 
cellular, and extracellular pH homeostasis in lower eukaryotes and human cells. 
This chapter starts by describing the fundamental mechanism governing V-ATPase 
proton transport and regulation and the V-ATPase involvement in membrane traf-
fi cking processes.

1.2         V-ATPase Mechanisms of  Action   

 Functional coupling of ATP hydrolysis and proton transport involves an intricate 
mechanism in which V 1  and V o  communicate in order to drive rotation of subunits 
D, F, d, and the c-ring (Fig.  17.1 ) [ 1 ,  7 – 9 ]. ATP hydrolysis occurs in the three A 
subunits of the V 1  catalytic core projecting from the cytosolic side of the membrane. 
The rotor consists of an elongated shaft that extends through the center of this glob-
ular structure (subunits D, F, and d). It connects with the hydrophobic c-ring in the 
membrane. A hemi-channel in the V o  subunit a accepts incoming protons at the 
cytosolic half-leaf of the membrane. From the V o  subunit a, protons are transferred 
to the c-ring. Each c-ring subunit (c, c′, c″) has a glutamic residue that is protonated 
during catalysis. Hydrolysis of three molecules of ATP drives 360° rotation of the 
rotor, during which all c-ring subunits are protonated. After one complete rotation 
each proton exits the membrane by passing through a second hemi-channel in V o  
subunit a, at the luminal half-leaf of the membrane. Thus, the number of subunits 
forming the c-ring dictates the number of protons transferred per ATP-hydrolyzed 
against a concentration gradient. However, as we discuss subsequently, the ratio of 
protons transported in relation to ATP molecules hydrolyzed can be modifi ed to 
regulate V-ATPase activity.
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   This elegant mechanism of catalysis generates and sustains the differential acidic 
luminal pH in the organelles of the endomembrane system (e.g., Golgi, endosome, 
lysosomes) [ 5 ,  6 ]. In addition to sustaining the organelle acidic pH, V-ATPase ener-
gizes membranes by generating an electrochemical proton gradient that drives sec-
ondary transport systems [ 6 ,  10 ] including the vacuolar Ca 2+ /H +  exchanger Vcx1p, 
and heavy metal transporters. A number of exchangers including Nhx1p, a Na + (K + )/
H +  exchanger, transport protons against the pH gradient created by the V-ATPase. 
As a result, V-ATPase proton transport contributes to pH homeostasis and supports 
many biological processes. Vesicle traffi cking, protein glycosylation in the Golgi 
 apparatus, zymogen activation in vacuoles and lysosomes, and loading of secretory 
vesicles require V-ATPase-dependent transport of protons. 

  Fig. 17.1    V-ATPase structure and regulation. Vacuolar ATPase (V-ATPase) is composed of 14 pro-
teins which are assembled into two functional domains: V 1  and V o . V 1  is peripheral to the membrane 
and contains sites for ATP hydrolysis, thus this domain is often considered the catalytic domain. V 1  
contains a hexameric core composed of alternating A and B subunits. The V o  domain is embedded 
within the membrane and contributes to proton transport through the central proteolipid ring of V o  
which is composed of c, c′ and c″ in fungi (subunits c and c″ in higher eukaryotes). The proteolipid 
c-ring is adjacent to subunit a that also participates in proton transport. The V 1 V o  domains are con-
nected by a central stalk containing the D, F and d subunits of V-ATPase. V-ATPase also contains 
several subunits that contribute to forming the three peripheral stalks. These proteins include V 1  
subunits C, E, G, H and the N-terminal of V o  subunit a. The C-terminal of V o  subunit a contains two 
hemi-channels (not shown) which are required for proton transport. When intracellular glucose con-
centrations are high, V 1  and V o  subunits assemble on the membrane and ATP- driven proton translo-
cation is possible ( left ). However, when glucose concentration drops, the V 1  domain and subunit C 
disassemble from V o  and proton transport in V o  and ATP hydrolysis in V 1  are lost ( right ). The disas-
sembly and rapid reassembly of V-ATPase is a critical mechanism for V-ATPase regulation       
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 The three elongated peripheral stalks, which include subunits E and G of V 1  
serve as stators to allow rotation of the rotor-forming subunits relative to the immo-
bile catalytic sites (Fig.  17.1 ). These peripheral stalk structures also distinguish 
V-ATPase from F-ATP and A-ATP synthases, which have one and two stators 
respectively. The V-ATPase stators are probably relatively more fl exible than those 
found in F-ATP and A-ATP syntheses, because V-ATPase activity is regulated by 
reversible disassembly of V 1  and V o  [ 11 ] .  This regulatory mechanism does not natu-
rally occur in any other rotary machines. 

 V-ATPase activity is primarily regulated by adjusting the assembly state of the 
pump in response to environmental changes. Glucose levels, intracellular and extra-
cellular pH changes, and osmotic stress modulate the levels of V 1 V o  complexes 
assembled at the membrane [ 2 ,  11 ]. These external signals are communicated to 
V-ATPase by different pathways. A number of regulatory proteins including the 
Regulator of ATPase of Vacuoles and Endosomes complex (RAVE), Protein Kinase 
A (PKA), and glycolytic enzymes can regulate V-ATPase assembly in yeast. 
Although the cellular mechanisms and signals mediating V 1 V o  reversible disassem-
bly are not fully defi ned, it is clear that they vary in different cell types. The mecha-
nisms governing V-ATPase regulation are discussed in more detail in the following 
sections.    

2      Regulation of   V-ATPase Activity 

 Given its critical role in fundamental cellular processes, it is not surprising that a 
number of mechanisms have evolved to precisely and effi ciently regulate V-ATPase 
activity. Perhaps the best studied of these mechanisms is the reversible disassembly 
of the V 1  and V o  domains [ 2 ,  11 ]. However V-ATPase activity is also regulated by (i) 
reversible disulfi de bond formation at the catalytic sites [ 12 ,  13 ], (ii) the coupling 
effi ciency of proton transported per ATP hydrolyzed (i.e., the number of protons 
moved across the membrane per ATP molecule) [ 14 ,  15 ], (iii) changes in V-ATPase 
membrane localization [ 16 ,  17 ], and (iv) posttranslational modifi cations [ 2 ,  5 ,  6 , 
 18 – 20 ]. There are many excellent reviews and research papers that address these 
topics; here we provide only a partial overview of V-ATPase regulation. 

2.1      Control of V-ATPase  Coupling Effi ciency   

 Coupling effi ciency describes the relationship between the number of protons 
transported across a membrane and ATP hydrolysis. Variations in the coupling effi -
ciency of V-ATPase pumps have been proposed to regulate the acidifi cation of 
intracellular compartments [ 6 ,  21 – 24 ]. In bovine clathrin-coated vesicles, coupling 
rates are reduced when ATP concentration is greater than 0.3 mM [ 23 ]. In plant 
cells, high levels of intracellular citrate and malate are associated with increased 
coupling effi ciency [ 15 ]. 
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 Coupling effi ciency is also dictated by V-ATPase subunit isoforms, which are 
membrane specifi c. In fungi there are two isoforms of the a subunit: Vph1p, at the 
vacuolar membrane and Stv1p, at the Golgi membrane [ 25 ,  26 ]. V-ATPase pumps 
containing Stv1p have a reduced coupling effi ciency when compared to those con-
taining Vph1p [ 27 ]. Site-directed mutation of conserved amino acids in V 1  subunit 
A and V o  subunit d have demonstrated that these subunits of V-ATPase are also criti-
cal for effi cient coupling of ATP hydrolysis and proton transport [ 28 ,  29 ]. 
Overexpression of V 1  subunit H induces a unique uncoupling phenotype, prevent-
ing proton transport without decreasing ATP hydrolysis [ 30 ]. The discovery that 
certain mutations increase coupling effi ciency, suggests that V-ATPase pumps may 
not be fully coupled in vivo [ 24 ]. Nevertheless, alterations in the coupling effi -
ciency allow V-ATPase activity to be “fi ne tuned” to best meet not only the needs of 
a particular cell, but also a particular organelle.   

2.2     Modulation of  Reversible Disulfi de Bond Formation   
at the Catalytic Sites 

 V-ATPase-dependent proton transport and ATP hydrolysis are inhibited by disulfi de 
bond formation between Cys 254 and Cys 532 in the catalytic site of V 1 A of the 
bovine V-ATPase [ 12 ,  13 ]. This observation in purifi ed V-ATPase is consistent with 
studies in cortical collecting ducts [ 31 ] and Neurospora [ 32 ] where exposure to 
oxidizing agents inhibits V-ATPase activity. Yeast cells lacking  CYS4  cannot syn-
thesize cysteine, have reduced glutathione levels and impaired V-ATPase activity, 
consistent with the concept that disulfi de bond formation in V 1 A is inhibitory [ 33 ]. 
Similarly, in insect cells, a disulfi de bond forms between Cys-134 and Cys-186 of 
V 1  subunit E [ 34 ]. Thus, the redox state of the cytoplasm may regulate V-ATPase 
activity through the formation of reversible disulfi de bonds.  

2.3       Reversible Disassembly   of V-ATPase 

 One of the most well studied mechanisms of V-ATPase regulation is the reversible 
disassembly of the V 1  and V o  domains. During disassembly of V-ATPase, the periph-
eral domain, V 1 , detaches from the integral membrane domain, V o , resulting in inhi-
bition of both proton translocation and ATP hydrolysis [ 11 ,  35 – 38 ]. V 1 V o  disassembly 
is a very quick process that can be detected in less than 5 min [ 11 ,  35 ,  39 ,  40 ] and is 
a particularly important regulatory mechanism since it allows cells to align 
V-ATPase assembly to cellular needs. For example, low glucose concentration trig-
gers the rapid disassembly of V-ATPase, but the amount of assembled V 1 V o  com-
plexes is proportional to the amount of glucose [ 39 ,  41 ,  42 ]. 

 In yeast, reassembly of V 1 V o  in response to glucose requires the Regulator of 
ATPase of Vacuoles and Endosomes complex (RAVE complex). RAVE is a 
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three-component (Skp1p, Rav1p, and Rav2p) cytoplasmic V-ATPase assembly 
factor [ 43 – 45 ]. Loss of RAVE function is associated with impaired acidifi cation of 
vacuoles at both steady state and after glucose readdition to glucose-deprived cells 
[ 46 ]. A mammalian homolog of Rav1p, rabconnectin 3, has been found to contrib-
ute to organelle acidifi cation [ 47 ], suggesting that the requirement for RAVE to 
promote V 1 V o  assembly is conserved in higher eukaryotes. 

 A number of glycolytic enzymes physically interact with V-ATPase, including 
aldolase and phosphofructokinase (PFK-1) [ 48 – 53 ]. In yeast, aldolase binding to 
V-ATPase is glucose dependent and disruption of this interaction leads to V 1 V o  disso-
ciation. V o  subunit a interacts with PFK-1 in both human kidney and yeast cells. 
Interestingly, mutations in the human V o  subunit a isoform a4, that inhibit V-ATPase 
interaction with PFK-1, are associated with distal renal tubular acidosis [ 49 ,  54 ]. In 
yeast, PFK-1 is required for V-ATPase activity and regulation [ 53 ]. Yeast cells lacking 
PFK-1 subunit genes display aberrant cytosolic and vacuolar pH homeostasis and can-
not suffi ciently reassemble V 1  and V o  after readdition of glucose to cells briefl y deprived 
of glucose. It has been proposed that glycolytic enzymes form a super-complex with 
V-ATPase that promotes V-ATPase activity by acting as a glucose sensor or as a ready 
supplier of ATP [ 2 ,  48 ,  51 ,  54 ]. 

  Protein kinase A (PKA)   is, among other things, a key regulator of glucose metab-
olism. Not surprisingly, PKA and its upstream activators have been reported to pro-
mote V-ATPase assembly [ 41 ,  55 – 58 ]. In yeast, PKA constitutive activation prevents 
V 1 V o  disassembly, even during glucose deprivation [ 41 ]. However, it has also been 
suggested that V-ATPase reactivation after V 1 V o  reassembly promotes PKA signaling 
[ 40 ,  58 ]. These data suggest that the PKA pathway can regulate V-ATPase assembly 
and activity, and that V-ATPase itself can regulate PKA signaling. Finally, studies in 
yeast and higher eukaryotes suggest that V-ATPase activity may also be regulated by 
pH; V o  subunit a may sense pH changes [ 40 ,  59 ]. When extracellular pH is high, 
V-ATPase activity and assembly are also heightened, even during glucose depriva-
tion [ 60 ,  61 ]. These fi ndings suggest that during episodes of pH- related stress, 
V-ATPase activity is maintained, even when glucose concentrations are low.    

3      V-ATPase Is Essential for  Membrane Traffi cking   

 Membrane traffi cking mediates the distribution of macromolecules throughout the 
cell and their release to the extracellular space (endocytosis) or internalization from 
the microenvironment (exocytosis). As its name implies, membrane traffi cking 
relies upon membrane-bound vesicles to mediate transport. Unfortunately, as we 
discuss in this chapter, pathogens also invade cells using the host membrane traf-
fi cking machinery [ 62 – 67 ] and defects in traffi cking contribute to human patholo-
gies such as cancer and neurodegeneration [ 5 ,  67 – 71 ]. Thus, the mechanisms of 
membrane traffi cking play a central role in both physiological and pathological 
function in eukaryotic cells. 
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 Membrane traffi cking relies upon tight control of the differential pH of the 
cytosol and the compartments of the endomembrane system. Along the endocytic 
pathway, the luminal pH drops from approximately pH 6.5 within early endosomes 
to lower than pH 5.0 in lysosomes [ 72 ]. Secretory pathway compartments are also 
gradually acidifi ed, displaying a near-cytosolic pH about 7.2 in the endoplasmic 
reticulum (ER) to value of pH 6.4–6.7 within the Golgi and a fi nal pH of 5.2–5.4 in 
secretory granules. The V-ATPase pump is broadly localized in various organelle 
membranes including early endosomes, late endosomes, lysosomes, secretory vesi-
cles, clathrin-coated vesicles, endocytotic vesicles, and vacuoles of fungi and plants 
[ 5 ,  73 ,  74 ]. Although a number of proteins contribute to the maintenance of organ-
elle pH, V-ATPase is particularly important and its loss alters intracellular pH across 
the endomembrane system [ 3 ,  5 ]. 

 Different isoforms of V-ATPase subunits assemble to yield V 1 V o  complexes with 
unique catalytic and regulatory properties. As previously stated, fungi contain two 
types of V-ATPase pumps Vph1p or Stv1p [ 25 ,  26 ]. Complexes containing Vph1p 
and Stv1p differ in their kinetic properties and regulatory mechanisms. Except for 
V o  subunit a, each V-ATPase subunit is encoded by a single gene in fungi. However 
multiple isoforms for most V-ATPase subunits exist in mammalian cells [ 5 ,  75 ]. 
These isoforms combine to yield different populations of V-ATPase pumps that are 
membrane (e.g., lysosomal, endosomal, Golgi, or plasma membranes) and tissue 
specifi c [ 5 ,  75 ,  76 ]. Thus, V-ATPase has developed specialized organelle-specifi c 
roles and regulatory mechanisms that link it to diverse cellular and systemic 
processes. 

 In order to dissect the importance of organelle acidifi cation, we must fi rst discuss 
the role played by V-ATPase in membrane traffi cking. Loss of V-ATPase function 
induced by knockout of the V o  subunit c, causes defective membrane traffi cking and 
acidifi cation during development [ 77 ]. Similarly, deletion of the V o  subunit a in 
 Caenorhabditis elegans  results in embryonic lethality [ 78 ]. Numerous studies have 
reported that inhibition of V-ATPase function is associated with defects in endocy-
tosis or exocytosis of multiple proteins in a variety of cell types [ 71 ,  79 – 84 ]. 
Collectively these studies demonstrate that V-ATPase-dependent proton transport 
and V-ATPase-mediated organelle acidifi cation play important roles in membrane 
traffi cking, cell growth, and survival. 

 V-ATPase generates the acidic late endosomal pH required for dissociating 
ligands internalized through receptor-mediated endocytosis [ 5 ,  76 ,  85 ,  86 ]. The dis-
ruption of the acidic pH in endosomes by using V-ATPase specifi c inhibitors (con-
canamycin A or bafi lomycin A), impairs ligand dissociation and receptor recycling 
during endocytosis. The fact that ionophores and weak bases have the same effect 
illustrates the importance of V-ATPase-mediated luminal acidifi cation [ 79 ,  85 – 87 ]. 
By creating an acidic endosome, V-ATPase also activates the Wnt signaling path-
way [ 87 ], which is important during development and contributes to diseases such 
as cancer [ 88 ]. Rabconnectin-3 interacts with the V o  subunit a (isoform a1). 
Defi ciency of rabconnectin-3 or its binding partner, V-ATPase V o  subunit a (isoform 
a1), downregulates the Wnt signaling pathway by altering intracellular traffi cking 
in zebrafi sh neural cells [ 89 ]. Inhibition of V-ATPase causes retention of several 
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pro- infl ammatory cytokines (e.g., TNFα and IL-8) in the endoplasmic reticulum 
and impaired secretion of these proteins in human monocytes [ 83 ]. Thus, V-ATPase 
acidifi cation of traffi cking vesicles is fundamental for numerous and diverse pro-
cesses, from embryonic development to signal transduction events and activation of 
infl ammatory responses. 

 V-ATPase modulates endocytosis not only by controlling the intracellular pH but 
also by recruiting the small GTPase, Arf6, and its activator, ARNO, to early endo-
some compartments [ 79 ,  90 ]. Both ARNO and Arf6 are associated with endocyto-
sis, participating in a number of important endocytic processes including actin 
cytoskeleton remodeling, lipid modifi cation, and endosomal vesicle coat formation 
[ 91 – 93 ]. A seminal study in 2006 demonstrated that the V o a isoform a2 and V o c 
subunits of V-ATPase directly interact with cytosolic ARNO and Arf6, respectively. 
V-ATPase–Arf6–ARNO interaction facilitates the formation of early endosomes 
and is necessary for endocytosis. The recruitment of ARNO and Afr6 is dependent 
upon V-ATPase activity [ 79 ]. This study and others subsequent to it [ 94 – 98 ] dem-
onstrate that V-ATPase is critical for endocytosis and, as described previously, is an 
important sensor of vesicle pH. 

 Exocytosis consists of three important steps: budding of vesicles from the ER or 
the trans-Golgi network (TGN), traffi cking of vesicles to different compartments 
(lysosome, late endosomes), and the fusion of vesicles with acceptor compartments 
or the plasma membrane [ 99 ]. As we discuss in relation to neurotransmitter release, 
the V o  domain of V-ATPase has been suggested to directly participate in membrane 
fusion [ 100 – 103 ]. V-ATPase also plays a central role in exocytosis by generating 
the acidic environment necessary for protein modifi cation and the activation of pro- 
proteins into their mature active form [ 104 – 106 ]. For example, acidic secretory 
vesicles containing the V o  subunit a (isoform a3) process pro-insulin to yield insulin 
in pancreatic cells [ 107 ]. Inhibition of V-ATPase induces extracellular accumulation 
of several immature lysosomal proteases [ 84 ,  108 ] and is likely dependent upon 
defects in receptor-dependent traffi cking [ 84 ]. Thus, V-ATPase function is an 
important regulator of exocytosis. 

 In addition, V-ATPase activity is necessary for protein processing and sorting to 
various compartments. V-ATPase-mediated acidifi cation of late endosomes is cru-
cial for the maturation of lysosomal enzymes trafficked from the Golgi appara-
tus [ 5 ]. For example, those enzymes containing the glycosylated modifi cation, 
mannose-6- phosphate (Man-6-P), recognized by the Man-6-p receptor in the TGN 
are delivered into the late endosome [ 109 ]. V-ATPase creates the low pH within the 
late endosome necessary to release the lysosomal enzymes from Man-6-p receptors, 
recycle the receptors back to the Golgi, and traffi c the enzymes to the lysosomal 
compartment. Inhibiting V-ATPase activity with bafi lomycin A alkalinizes the late 
endosomes and results in accumulation of Man-6-p receptors and their ligands in 
these vesicles [ 110 ] completely abrogating transport into lysosomes. These studies 
indicate that acidifi cation of late endosomes, which is generated by V-ATPase pro-
ton transport, is required for membrane traffi cking from the late endosome to lyso-
somes and the TGN.   
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4     V-ATPase in Neurobiology and Neuropathology 

  Neuron-to-neuron communication   is essential for brain function and frequently 
relies upon electrochemical signaling through the release of neurotransmitters 
[ 111 ]. Exocytosis of neurotransmitters is a highly regulated process that allows syn-
aptic vesicles or secretory granules to fuse with the plasma membrane and deposit 
their cargo in the synaptic cleft where neurotransmitters bind to their respective 
receptors on the surface of adjacent cells (Fig.  17.2 ). A growing body of evidence 
demonstrates that V-ATPase participates not only in neurotransmission, but also in 
neurodegeneration. Here we discuss this data.

4.1        Roles of V-ATPase  in Neurotransmission   

 Following synthesis, neurotransmitters accumulate in vesicles (i.e., synaptic vesi-
cles or synaptic granules) in the presynaptic neuron (Fig.  17.2 ). One to two V-ATPase 
molecules are present in each synaptic vesicle [ 112 ,  113 ]. The V-ATPase-dependent 
transport of protons to the lumen of synaptic vesicles generates and maintains an 
electrochemical gradient across the membrane [ 114 ] which is required for the 
uptake and subsequently storage of important neurotransmitters such as acetylcho-
line [ 115 ], glutamate [ 115 ], and monoamines (e.g., serotonin, dopamine) [ 114 ]. 

 Preliminary studies demonstrated that exposure to bafi lomycin A or loss of 
Rabconnectin 3 (Rbc3, homolog of Rav1p in yeast which promotes V 1  and V o  
assembly [ 43 ]) decreases neurotransmitter release via exocytosis [ 116 ]. V-ATPase 
physically and functionally interacts with the soluble NSF attachment protein recep-
tor (SNARE) family of proteins complexes, which mediates synaptic vesicle dock-
ing and fusion to the plasma membrane to regulate exocytosis of neurotransmitters. 
V-SNAREs, found on the synaptic vesicle, bind to t-SNAREs in the plasma mem-
brane of the presynaptic neuron [ 117 ]. In  Drosophila , the V o  subunit a (isoform a1) 
ortholog V100, interacts with t-SNARE [ 118 ]. Similarly, V o  subunit c has been 
reported to physically interact with a v-SNARE protein, VAMP2/synaptobrevin 
[ 116 ,  119 ]. Mutational studies of V o  subunit c indicate that the interaction with syn-
aptobrevin is not required for V-ATPase-dependent proton transport, but is neces-
sary for neurotransmitter release [ 119 ]. An elegant study using chromophore- assisted 
light inactivation of V o  subunit a isoform a1 further showed that V-ATPase is 
required for exocytosis of neurotransmitters [ 103 ]. Interestingly, the loss of 
V-ATPase-dependent proton gradients results in decreased exocytosis of neu-
rotransmitters and the disassembly of V 1 V o  [ 104 ], possibly freeing V o  for interaction 
with v-SNAREs. It is thought that the c-subunit of V o  assembles 5 to 6 v-SNARE 
molecules to act as a scaffold for fusion (pairing v-SNARES and t-SNARES; 
Fig.  17.2 ) of synaptic vesicles to the plasma membrane of the  presynaptic neuron. 
Alternatively, two V o  domains (one in the synaptic vesicle and one in the plasma 
membrane) may combine to generate an aqueous fusion pore to promote neurotrans-
mitter release (Fig.  17.2 , [ 120 – 123 ]). Collectively these data suggest two distinct 
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roles for V-ATPase in neurotransmitter release. First, V-ATPase acidifi es vesicles, a 
process that is required for neurotransmitter uptake into vesicles. Secondly, although 
the exact mechanism remains unknown, interactions between V o  and SNARES can 
promote docking of vesicles to the plasma membrane and subsequently control neu-
rotransmitter release into the synaptic cleft. 

  Fig. 17.2    V-ATPase function in neurobiology, infection and cancer. Neurobiology ( top left ): In 
presynaptic cells V-ATPase-dependent proton gradients are required for loading of neurotransmit-
ters into synaptic vesicles. Fusion of synaptic vesicles with the plasma membrane may occur 
through two mechanisms. v-SNAREs may bind to t-SNAREs to mediate synaptic vesicle fusion 
and release of neurotransmitters or, alternatively, two V o  domains of V-ATPase may fuse to create 
a pore that allows neurotransmitters to move into the synaptic cleft. V-ATPase activity is also 
required for several aspects of viral, bacterial or fungal infection of host cells.  Infection  ( top right ): 
Here we outline the role of V-ATPase in infl uenza viral infection. Infl uenza viral particles enter the 
host cell through endocytosis. Once inside an endocytic vesicle, V-ATPase-dependent acidifi cation 
triggers unpacking of the viral genome and fusion of viral proteins with the vesicle membrane to 
create a pore allowing the viral genome to exit the vesicle. Viral proteins rely upon the host cell’s 
V-ATPase activity to transport them through the exocytic pathway to the plasma membrane. Once 
on the surface of the cell, viral proteins assemble with the replicated viral genome and bud from 
the cell.  Cancer  ( bottom ): V-ATPase function is necessary for endocytosis of receptor–ligand com-
plexes and receptor recycling. It is also essential for proper transport of newly synthesized proteins 
through the exocytic pathway. In this way V-ATPase activity contributes to several important sig-
nal transduction pathways (e.g., HER2, Wnt, Rac, VEGF). V-ATPase activity is required for acti-
vation of pro-proteins including matrix metalloproteinases and cathepsins which degrade 
extracellular matrix and promote cell motility. The V 1  domain of V-ATPase may also directly 
promote cell motility by promoting assembly and enhancing polymerization of f-actin. V-ATPase 
activity is likely also required by endothelial cells to increase recruitment and proliferation and is 
associated with activation of tumor-associated macrophages       
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 An additional role for V-ATPase in neurotransmission has been described at the 
synaptic cleft. After the arrival of an action potential in the presynaptic neuron, 
voltage-gated calcium channels open, allowing Ca 2+  entrance into the cell. The 
resulting increase of intracellular Ca 2+  triggers SNARE-dependent synaptic vesicle 
docking to the plasma membrane (Fig.  17.2 , [ 111 ,  124 ]). Changes in the pH of the 
synaptic cleft can alter the activity of voltage-gated calcium channels, suggesting 
that the entrance of Ca 2+  could be affected and modify neurotransmitter release 
[ 125 ]. In the horizontal cells of the vertebrate retina, this type of modulation is 
blocked in the presence of bafi lomycin A, suggesting that acidifi cation of the synap-
tic cleft is V-ATPase dependent [ 126 ,  127 ]. Additional studies are necessary to 
address the possibility that V-ATPase-dependent proton transport can modulate 
voltage-gated calcium channels in the brain. 

 Glucose-dependent reversible disassembly of V-ATPase may also contribute to 
neurotransmission independently of exocytosis. As described previously, 
V-ATPase disassembly and reassembly is intimately tied to glycolytic enzymes. 
At least two glycolytic enzymes, GAPDH and 3-phosphoglycerate kinase, are 
necessary for glutamate accumulation in presynaptic vesicles [ 128 ]. In theory, 
these enzymes could produce glycolytic ATP to drive the V-ATPase-dependent 
proton transport necessary for neurotransmitter uptake into synaptic vesicles. 
Consistent with this supposition, synaptic transmission is impaired during hypo-
glycemia [ 129 ]. Thus, it is possible that low intracellular glucose concentrations 
promote V-ATPase disassembly and reduced V-ATPase activity [ 11 ], decreasing 
neurotransmitter loading into synaptic vesicles.   

4.2      Roles of V-ATPase  in Neurodegeneration   

 Several chronic neurodegenerative disorders including: Alzheimer’s, Parkinson’s, 
and Huntington’s diseases have a common etiology that involves the aggregation of 
misfolded proteins (e.g., presenilin, tau, α-synuclein) [ 130 ,  131 ]. Interestingly, 
mutations in presenilin 1 and 2 proteins, which cause familial early-onset alzheim-
er’s disease, reduce V-ATPase localization to the lysosome, increase lysosomal pH 
[ 132 ], induce severe lysosomal pathology [ 133 ], and hinder autophagy [ 132 ]. 
Therefore, loss of V-ATPase function may indirectly contribute to these neurode-
generative diseases by inhibiting autophagy [ 131 ,  134 ,  135 ], a cellular process that 
degrades misfolded proteins [ 131 ,  134 – 136 ]. V-ATPases are required for autophagy 
since they facilitate the generation and maintenance of the acidic lysosomal pH 
needed for autophagosome formation [ 134 ,  137 ]. Abnormal autophagosomes accu-
mulate in the brain tissues of patients affected with Alzheimer’s [ 138 ] and 
Parkinson’s diseases [ 139 ]. Likewise, the huntingtin protein collects in endosomes/
lysosomes of patients with Huntington’s disease [ 140 ]. In  Drosophila  neurons, loss 
of the V o a1 ortholog, V100, causes autophagosomal accumulation [ 141 ] making 
neurons more susceptible to neurotoxicity of Alzheimer-related amyloid β and tau 
proteins [ 142 ]. 
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 Conversely, V-ATPase activity is required for neuronal cell death in models of 
stroke. In neurons of  Caenorhabditis elegans , V-ATPase activity is required to gener-
ate the cytoplasmic acidifi cation that leads to necrotic cell death [ 70 ]. V-ATPase 
inhibition also decreases matrix metalloproteinases (MMPs) presence in the extra-
cellular fl uid of cultured hippocampal neurons [ 143 ] which are needed to degrade 
neurovascular matrix and cause neuronal death [ 144 ]. Taken together these data sug-
gest that V-ATPase inhibitors may be neuroprotective in some contexts [ 69 ,  70 ,  143 ]. 

 In summary, V-ATPase is present in synaptic vesicles and in the plasma membrane 
of the presynaptic neurons and its activity is essential for neurotransmitter uptake into 
synaptic vesicles. V-ATPase subunits also associate with SNARE proteins to aid syn-
aptic vesicle docking and fusion, modulating neurotransmitter release. Formation and 
maintenance of lysosomes by V-ATPase activity is essential for autophagosome for-
mation and proper autophagy is required for clearance of misfolded proteins associ-
ated with age-related neurodegenerative diseases. Interestingly, V-ATPase 
acidifi cation is required for neuronal cell death associated with stroke. Clearly, 
V-ATPase is extremely important in neuronal physiology and pathology; more stud-
ies are required to dissect the precise mechanisms involved in the roles described in 
this section. Those studies likely will elucidate novel functions of V-ATPase in 
neurobiology.    

5     V-ATPase in Infectious Disease 

 Although many pathogenic organisms can infect their host without entering its cells, 
all viruses and many bacteria and fungi require an intracellular niche for growth and 
proliferation. Pathogens enter cells through a variety of mechanisms, many of which 
require V-ATPase activity. Once inside the host cell, V-ATPase activity can either 
suppress or support infectious processes and pathogen replication. Here we focus on 
the involvement of pH and V-ATPase in the entry of viruses, bacteria and fungi into 
the host cell and the processes necessary to ensure pathogen replication. 

5.1      Roles of V-ATPase  in Viral Infections   

 The roles of V-ATPase function in viral infection have been particularly well stud-
ied in infl uenza viruses, and thus we use this enveloped virus as an example. 
Infl uenza viral infection is initiated when the virus attaches itself to the surface of a 
host cell using  hemagglutinin (HA)   and is endocytosed [ 145 ]. The acidic pH of the 
endosome causes a conformational change in HA, which promotes the fusion of 
viral and endosomal membranes and release of the viral genome into the host cell 
(Fig.  17.2 , [ 5 ,  146 – 148 ]). Importantly, the membrane fusion mediated by HA occurs 
in the narrow pH range of the late endosome: pH 4.5–5.5 [ 145 ,  147 – 150 ], which is 
generated and maintained by V-ATPase. V-ATPase activity is increased in host cells 
during infl uenza viral infection [ 148 ], suggesting that the virus is able to manipulate 
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host cell V-ATPase activity to support conditions that favor infection. The impor-
tance of V-ATPase in viral infection is further emphasized by the observations that 
increasing glucose concentration enhances viral infection in a bafi lomycin 
A-dependent manner [ 148 ,  150 ] while loss of the V 1  subunit E (isoform E2) 
decreases viral titer [ 150 ]. Although the exact mechanisms vary, it is now clear that 
V-ATPase activity is required for endocytosis and subsequent infection of numerous 
viruses [ 5 ,  64 ,  147 ,  150 – 161 ].   

5.2      Roles of V-ATPase  in Bacterial Infections   

 Pathogenic bacteria often enter the host cell, either a macrophage or epithelial cell, 
through phagocytosis or endocytosis, respectively [ 155 ,  162 – 164 ]. As discussed 
previously, V-ATPase is critical for both processes [ 5 ,  147 ,  150 – 160 ,  162 ], and its 
inhibition, decreases bacterial infections [ 161 ,  163 ,  164 ]. Once inside the host cell, 
pathogenic bacteria must either escape from the phagosome/endocytic vesicle 
before fusion with a lysosome, or inhibit acidifi cation of these vesicles. Both of 
these processes are intimately associated with V-ATPase. 

 While V-ATPase activity is necessary for acidifi cation of the host phagosomal 
 compartments [ 162 ], it also contributes to bacterial escape from host phagosome/endo-
cytic vesicles.  Francisella tularenis  promotes fusion of lysosomes to the phagosome. 
The resulting V-ATPase-dependent acidifi cation of the phagosome is required for bac-
terial escape into the cytosol [ 165 ].  Listeria monocytogenes  and several other patho-
genic bacteria secrete cytolysins, pH-dependent pore-forming proteins, allowing the 
bacterium to escape the phagosome and successfully complete infection [ 166 – 169 ]. 

 Interestingly, the host’s own immune response may modify V-ATPase activity. 
During mycobacterial infection, cytokine expression is altered resulting in (i) increased 
V-ATPase assembly and acidifi cation of lysosomes, (ii) enhanced fusion between 
phagosomes and lysosomes, and (iii) increased mycobacterial escape into the host cell 
cytoplasm [ 170 ]. Although the exact mechanism mediating enhanced V-ATPase activ-
ity has not been fully elucidated in this model, the JAK-STAT pathway appears to be 
important [ 171 ]. Thus, pathogenic bacteria may capitalize upon a host cell’s V-ATPase 
activity to promote escape from the phagosome/endocytic vesicle. 

 Other pathogenic bacteria have evolved mechanisms to inhibit acidifi cation of the 
phagosome/endocytic vesicle and thus promote their own survival and replication 
[ 162 ,  172 ,  173 ]; many of these mechanisms result in V-ATPase inhibition [ 65 ,  66 , 
 163 ,  165 ,  173 – 176 ].  Yersinia pseudotuberculosis  and  Streptococcus pyogenes  inhib-
its V-ATPase-dependent acidifi cation of the phagosome [ 65 ,  174 ,  176 ]. At least two 
pathogenic bacteria species,  Legionella pneumophila  and  Mycobacterium tuberculo-
sis , target the catalytic V 1  subunit A of V-ATPases to inhibit its activity [ 173 ,  176 ]. 
Notably, studies of V-ATPase inhibition in bacterial infections also suggest that the 
V 1  subunit H of V-ATPase helps coordinate phagosomal and lysosomal membrane 
fusion, thus enlarging the role of V-ATPase in endocytic processes [ 176 ]. To sum-
marize, several bacterial pathogens have evolved specifi c and unique ways to elude 
destruction in acidic phagosomes/endocytic vesicles by inhibiting V-ATPase.   
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5.3      Roles of V-ATPase  in Fungal Infections   

 Most fungal pathogens are commensal, yet in immunocompromised patients these 
organisms can cause severe systemic infections that are diffi cult to treat and can be 
fatal [ 177 ,  178 ]. Although there are many opportunistic fungi infecting immuno-
compromised patients (e.g.,  Aspergillus fumigatus ,  Aspergillus nidulans , 
 Cryptococcus neoformans ,  Histoplasma capsulatum , and  Pneumocystis carinii ), 
the most prevalent is  Candida albicans  [ 179 – 181 ]. A remarkable feature of fungal 
pathogens is their ability to survive in a broad pH range [ 182 ,  183 ]. This capacity is 
dependent upon fungal V-ATPases. When fungal V-ATPase is inhibited, pH homeo-
stasis cannot be maintained and fungal virulence is reduced [ 184 – 188 ]. 

 Like other pathogens, some fungi modify the pH of the compartments in which 
they are enclosed to favor their survival [ 5 ].  Histoplasma capsulatum  inhibits host 
V-ATPase accumulation in the phagosomal/endocytic vesicle membrane, which 
increases the pathogen’s survival and replication [ 189 ,  190 ]. Interestingly, genetic 
inhibition of V 1  subunit A resulted in decreased virulence of  H. capsulatum  since 
the pathogen was unable to acquire necessary nutrients for replication [ 190 ].   

5.4     V-ATPase as a Novel  Antifungal Target   

 Given the diffi culty of treating fungal infections, and their prevalence in health care 
settings, V-ATPase has become an attractive antifungal therapeutic target [ 181 ,  184 , 
 185 ,  188 ,  191 ,  192 ]. Although there are similarities between mammalian and fungal 
V-ATPase, there are fungi-specifi c isoforms for the V o  subunit a: Vph1p and Stv1p. 
Additionally, fungi express the Vo subunit c′ and RAVE subunit Rav2p, which are 
absent in humans. Pharmaceutical targeting of Vph1p, Stv1p, or Rav2p could 
reduce fungal infections while maintaining host cell V-ATPase activity. Another 
possible antifungal therapeutic target could be the fungal specifi c protein, Pma1p, a 
plasma membrane ATPase that has reciprocal interactions with V-ATPases to con-
trol cytosolic pH in fungi [ 188 ,  193 ,  194 ].   

6     V-ATPase Expression, Function, and Consequence 
in  Cancer   

 Several “hallmarks of cancer” have been defi ned by Hanahan and Weinberg. These 
attributes include the ability to (i) sustain growth signals, (ii) evade growth- 
suppressive and apoptotic signals, (iii) induce angiogenesis, (iv) invade and prolif-
erate in local and distant sites, (v) deregulate cellular metabolism, (vi) avoid immune 
destruction, and (vii) proliferate indefi nitely [ 195 ]. Although tumors are adaptive 
and self-organizing systems, it has been postulated that these defi ning phenotypes 
may be derived from a small set of effector molecules [ 195 ]. Elucidating the 
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fundamental drivers of the hallmarks of cancer will revolutionize cancer detection, 
diagnosis and treatment. 

 V-ATPase activity directly and indirectly contributes to many of the hallmarks of 
cancer described above, including: resistance to growth suppressive and apoptotic 
signals [ 196 – 201 ], altered cellular metabolism [ 37 ,  40 ,  48 ,  49 ,  202 ], regulation of 
signal transduction pathways [ 83 ,  87 ,  201 ,  203 – 209 ], the proliferation and migra-
tion of endothelial cells [ 208 ,  209 ], and the activation of tumor-promoting macro-
phages [ 210 ]. V-ATPase is upregulated in solid tumors and in tumor cell lines, with 
the highest  levels   of expression associated with more aggressive phenotypes (i.e., 
higher grade, increased metastasis and invasion, and chemoresistance) [ 211 – 213 ]. 
As described previously, V-ATPase activity is regulated by a variety of factors 
including intracellular and extracellular pH [ 40 ,  215 ], PKA and AMPK [ 18 ,  56 ,  57 ], 
and glycolytic metabolism [ 37 ,  49 ,  50 ,  54 ], each of which is altered in tumor cells 
[ 195 ]. 

6.1      V-ATPase as a Regulator of Cellular Stress  Responses   

 There is evidence indicating that V-ATPase is a critical player in adaptation to cel-
lular stress including alterations in nutrient availability, acute or chronic hypoxia, 
 reactive oxygen species (ROS)   and DNA damage. In cardiomyocytes inhibition of 
V-ATPase increases DNA damage and results in a p53 and p21-dependent cell cycle 
arrest [ 216 ]. Reciprocally, DNA damage increases transcription of  ATP6L , which 
encodes subunit c of the proton translocation V o  domain of V-ATPase [ 217 ]. 
V-ATPase inhibition is associated with increased ROS and oxidative [ 218 ] and 
endoplasmic reticulum stress [ 219 ]. Importantly, loss of V-ATPase function is asso-
ciated with increased expression of Hypoxia Inducible Factor 1α (HIF1α), a key 
regulator of cellular stress response [ 220 ,  221 ] in both normoxic and hypoxic condi-
tions. HIF1α regulates glycolytic metabolism, increasing glucose transport into 
cells and expression of several glycolytic enzymes as well as lactate dehydrogenase, 
the protein that generates lactate. These studies are reminiscent of work demonstrat-
ing that V-ATPase is regulated by nutrient deprivation and osmotic and oxidative 
stress in yeast and plants [ 222 – 223 ]. Collectively, they suggest that the elevated 
levels of V-ATPase observed in tumors and tumor cell lines may underlie an adap-
tive cell stress response that supports resistance to cell death or arrest and continued 
proliferation during poor conditions. 

 In vitro, tumor cells consume larger quantities of glucose than normal cells. This 
observation is the basis of PET scans, where the uptake of labeled glucose can be 
used to identify tumors and metastatic lesions in vivo. Once inside the tumor cell, 
glucose is converted to pyruvate and subsequently to lactate via glycolysis and 
lactate dehydrogenase A to generate ATP and NAD + , respectively. The utilization 
of glucose to generate ATP in the absence of oxidative phosphorylation is termed 
the Warburg Effect [ 5 ,  195 ,  226 ]. It is postulated that the increased V-ATPase 
observed in tumor epithelial cells may be required for the rapid removal of H +  gen-
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erated by elevated rates of glycolysis to maintain a neutral cytoplasmic pH 
[ 5 ,  227 ,  228 ]. However, recent experiments employing co-culture of tumor epithe-
lial cells and fi broblasts have reexamined the Warburg effect. In these heterotypic 
cultures the metabolic profi les of tumor epithelial cells are quite different than that 
observed in more traditional culture conditions. When co-cultured with tumor epi-
thelial cells, fi broblasts appear to employ the Warburg Effect, and export lactate 
and ketones to adjacent tumor epithelial cells, which use these metabolic interme-
diates and oxidative phosphorylation (e.g., low lactate production) to fuel rapid 
cellular proliferation and expansion [ 228 – 230 ]. In this revised model, the require-
ment for V-ATPase may not be limited to the need to pump H +  generated by gly-
colysis out of cells and further supports the idea that V-ATPase is a component of 
the cellular stress response.   

6.2      V-ATPase  Promotes Cell Motility and Invasion   

 V-ATPase expression and function is also intimately associated with increased cell 
motility, invasion, and tumor metastasis. Early observations in breast tumor cell 
lines found that invasive cell lines contained acidic phagosome [ 231 ]. Subsequent 
studies demonstrated that V-ATPase localization to the plasma membrane and acidi-
fi cation of the extracellular space was associated with invasion in vitro and metasta-
sis in vivo and that pharmacologic inhibition of V-ATPase impaired these phenotypes 
[ 71 ,  213 ,  232 – 234 ]. The role of V-ATPase in tumor cell invasion was further con-
fi rmed in several studies using genetic approaches to target V-ATPase subunits. 
siRNA against V o  subunit a isoforms a3 and a4, demonstrated that V-ATPase activ-
ity at both the plasma membrane and intracellular compartments is required for 
in vitro invasion assays [ 17 ,  233 ]. Using a xenograph model of hepatocellular carci-
noma, Lu and colleagues demonstrated that knock down of  ATP6L , at the proton 
translocation domain of V-ATPase, impaired tumor growth and metastasis [ 235 ]. 
An analogous study of metastatic melanoma demonstrated that loss of V o  subunit a 
isoform a3 also decreased metastasis [ 236 ]. 

 There are several possible mechanisms by which V-ATPase contributes to cell 
motility and invasion. In pancreatic tumors, V-ATPase is found at the leading edge 
of the tumor where it is closely associated with  matrix metalloproteinases (MMPs)   
[ 104 ]. Several studies have shown that V-ATPase-dependent acidifi cation of the 
extracellular environment facilitates activation of MMPs which can degrade and 
remodel the extracellular matrix [ 104 ,  236 ,  237 ]. V-ATPase activity may also 
directly contribute to motility and invasion by modulating cell morphology and 
cytoskeletal arrangement. For example, V 1  subunit C binding to fi lamentous actin 
(f-actin) increases its rate of polymerization and enhances stability, both of which 
are critical steps in cell motility [ 238 ]. Similarly, loss of V-ATPase function 
decreases activity of the Rho-GTPase, Rac1, and impairs signaling from EGFR [ 239 ]. 
Rac1 is a key regulator of cytoskeletal reorganization required for motility while 
 epidermal growth factor receptor (EGFR)   participates in directed migration [ 239 ]. 
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Collectively these studies demonstrate that V-ATPase activity at both the plasma 
membrane and in intracellular compartments enhances cell motility and invasion by 
activating extracellular MMPs and signal transduction pathways associated with 
cytoskeletal rearrangement and cell motility.   

6.3      V-ATPase  Inhibitors   as Novel Chemotherapeutics 

 Extracellular acidifi cation and alterations in pH gradients between the intracellular 
and extracellular compartments can contribute to drug resistance. Lowering the 
extracellular pH decreases uptake and neutralization of weakly basic drugs and their 
sequestration in lysosomes [ 240 – 243 ]. Importantly, tumor cell lines that are most 
resistant to conventional therapies appear to have the highest levels of V-ATPase 
expression [ 243 ,  244 ] and  ATP6L  expression is increased following exposure to 
chemotherapeutics [ 217 ]. Genetic repression of  ATP6L , increases caspase- dependent 
cell death in several tumor cell lines exposed to conventional chemotherapeutics 
[ 245 ]. Similarly, decreased V-ATPase activity increases the chemo-sensitivity of 
breast tumor cells in vitro and in mouse xenographs [ 246 ]. 

 V-ATPase is expressed in nearly all cells, so complete loss of all V-ATPase activ-
ity would likely be associated with signifi cant toxicity. Thus, efforts are underway 
to identify isoforms of specifi c V-ATPase subunits that are preferentially expressed 
in tumors. Current studies using  proton pump inhibitors (PPIs),   which target H + /
K + -ATPases, have shown promise as adjuvant or sensitizing agents [ 247 ]. Treatment 
with PPIs decreases chemotherapeutic extrusion to patient plasma [ 248 ]. In vitro, 
PPIs increase extracellular, endosomal, and lysosomal pH in tumor cell lines, 
decrease cell proliferation and survival, and enhance chemosensitivity, recapitulat-
ing phenotypes associated with the loss of V-ATPase activity [ 247 – 252 ]. 
Pantoprazole, a PPI, increases uptake and tumor penetration of the DNA-damaging 
chemotherapeutic, doxorubicin, and decreases tumor growth in animal models of 
cancer [ 248 ]. Perhaps, most compellingly Kastelein and colleagues have recently 
demonstrated that PPIs decrease the risk of neoplastic progression in patients with 
Barret’s esophagus [ 253 ,  254 ]. Thus, specifi c or nonspecifi c inhibition of V-ATPase 
activity may enhance the effi cacy of existing chemotherapeutics and may suppress 
cancer progression. 

 While V-ATPase loss or inhibition can cooperate with conventional chemothera-
peutics to enhance cell death, it can also directly contribute to the induction of cell 
death. V-ATPase-specifi c inhibitors neutralized lysosomal pH, induced cell cycle 
arrest, and triggered apoptosis in the breast tumor cell line, MCF-7 [ 199 ]. PPI expo-
sure also induces cell death in human gastric cancer cells [ 206 ]. De Milito and col-
leagues demonstrated that PPIs altered lysosomal pH and induced cell death in 
primary cultures of leukemic cells in vitro and in vivo, in mice. In both models, cell 
death was associated with increased levels of ROS and mitochondrial depolariza-
tion [ 199 ,  201 ]. The role of ROS in V-ATPase-dependent cell death was further 
elucidated using transcriptional arrays. It was found that loss of V-ATPase function 
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is associated with increased expression of numerous cellular stress response genes 
including NRF2 (nuclear factor-erythroid 2-related factor 2), a mediator of the oxi-
dative stress response. The induction of NRF2 is additional evidence that loss of 
V-ATPase increases ROS [ 218 ]. Subsequent work in multiple tumor cell lines con-
fi rmed and expanded upon these results, demonstrating that loss of V-ATPase func-
tion induced cell death via mitochondrial depolarization. Interestingly, prior to 
mitochondrial depolarization and cell death, HIF1α and autophagy were upregu-
lated [ 198 ]. It seems that although cells try to adapt to the loss of V-ATPase func-
tion, ultimately its loss is insurmountable.   

6.4       Signal Transduction   in Tumor Cells and V-ATPase 

 The observation that V-ATPase inhibition is associated with the transcriptional 
upregulation of several genes including HIF1α, IGF, VEGF and COX-2 suggests 
that V-ATPase may participate in important signal transduction pathways [ 218 ]. 
Given its roles in fundamental cellular processes like protein sorting and matura-
tion, endocytosis, and exocytosis, this is hardly surprising. Recently it has been 
shown that V-ATPase depletion impairs clathrin-mediated endocytosis, resulting in 
accumulation of clathrin-coated vesicles at the plasma membrane [ 80 ]. V-ATPase 
activity is required for receptor tyrosine kinase erbB-2 (HER2) localization to the 
plasma membrane in breast tumor cell lines [ 82 ] where HER2 dimerizes with other 
epidermal growth factor receptors to regulate proliferative and anti-apoptotic path-
ways. In prostate tumor cells, inhibition of V-ATPase decreases secretion of PSA 
(Prostate Specifi c Antigen) and its transcript, suggesting a defect in androgen recep-
tor function since the androgen receptor is a potent transcriptional regulator of PSA 
[ 71 ]. Likewise, loss of V-ATPase function mediated by siRNA or pharmacologic 
inhibitors impairs endocytic activation of the Rho GTPase, Rac1, and decreases cell 
motility [ 239 ]. V-ATPase is also linked to Wnt signaling [ 255 ]. Wnt plays a critical 
role during embryogenesis where it helps regulate body axis patterning, cell fate 
determination, and cell motility. Wnt is also a potent oncogene. Loss of V-ATPase 
activity downregulates Wnt signaling in human cell lines and in vivo in  Xenopus  
embryos [ 87 ,  256 ]. 

 Recently, it has been shown that V-ATPase function is required for mammalian 
target of rapamycin (mTOR) activation [ 257 ,  258 ]. mTOR is part of a protein com-
plex that senses nutrient and energy levels as well as signals from growth factor 
receptors to control numerous biosynthetic and catabolic processes; it is a key regu-
lator of cellular energetics and metabolism [ 257 ,  259 ]. Xu and colleagues recently 
demonstrated that  epidermal growth factor (EGF)   binding to its receptor (EGFR) 
recruits the V 1  domain of V-ATPase to endosomes and lysosomes where it associ-
ates with the V o  domain to acidify these compartments [ 211 ].  EGFR   is a key regula-
tor of mTOR. Blockade of V-ATPase function with chemical inhibitors or siRNA 
can also directly inhibit mTOR signaling by preventing its localization to lysosomal 
membranes [ 258 ]. Interestingly, V-ATPase may itself be controlled by mTOR. 
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mTOR coordinately regulates phosphorylation and nuclear localization of the 
 Transcription Factor EB (TFEB)  . TFEB increases the transcription of several 
V-ATPase subunits in vitro and in vivo in mice [ 260 ]. Hence, V-ATPase and mTOR 
participate in a positive feedback loop. This relationship may be of particular impor-
tance in cancer, where aberrant  mTOR   signaling can reduce apoptosis and enhance 
cell proliferation. A repertoire of studies in recent years has demonstrated that 
V-ATPase function underlies a number of fundamental cellular processes, many of 
which have been implicated in carcinogenesis. It is not surprising that V-ATPase 
can be so intimately linked to many of the hallmarks of cancer.    

7     Conclusions 

 V-ATPase is an ATP-dependent proton pump. By moving protons against a concen-
tration gradient, V-ATPase plays a critical role in pH homeostasis across the endo-
membrane system and creates the electrochemical proton gradient required for 
numerous secondary transport systems. V-ATPase is composed of 14 subunits that 
are assembled into two domains: V 1  and V o . Isoforms of different V-ATPase sub-
units direct V-ATPase to different cellular membranes (e.g., Golgi complex, endo-
somes, lysosomes). Given its role in key cellular processes, it is not surprising that 
cells have evolved several mechanisms to regulate V-ATPase activity. The best 
studied of these is the reversible disassembly of the V 1 V o  domains. 

 V-ATPase is necessary for both endocytosis and exocytosis because V-ATPase 
regulates and senses pH and interacts with several proteins in these pathways. Thus, 
V-ATPase indirectly contributes to numerous signal transduction pathways in both 
physiologic and pathologic settings. Here we have provided a brief overview of 
V-ATPase  function in neurodegeneration, infectious disease and cancer. There are 
many excellent publications that address these topics, unfortunately, due to limita-
tions in space, we have only been able to cite of few. It is both fascinating and 
humbling to acknowledge that this proton pump is capable of having such profound 
effects. We have no doubt that future studies will continue to elucidate as yet undis-
covered functions of V-ATPase.     
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    Chapter 18   
 Vacuolar H + -ATPase Signaling in Cancer                     

       Raul     Martínez-Zaguilán     and     Souad     R.     Sennoune    

    Abstract     The vacuolar H + -ATPase (V-ATPase) is an electrogenic H +  pump responsible 
for the regulation of pH in endomembranous compartments; and for the extrusion 
of H +  across the plasma membrane in certain cell types, including metastatic cells. 
The study of the regulation of V-ATPase has been daunting. Regulation of V-ATPase 
by assembling and disassembling of V 1  and V 0  domain by glucose has emerged as 
one important mechanism. Tumor cells preferentially employ glycolysis to generate 
energy, even under well oxygenated conditions. This imposes in tumor cells the 
need to consume large amounts of glucose to generate energy via glycolysis. 
Elevated glycolysis produces lactic acid and cytosolic acidosis. To eliminate acid, 
metastatic cells use V-ATPase at the cell surface. Regulation of V-ATPase by glu-
cose provides an exciting link between metabolism and tumor biology that warrants 
future studies. In addition to its widely accepted role of V-ATPase in regulating pH, 
a series of new noncanonical functions have emerged in the past few years, includ-
ing cell signaling, metabolic sensing, and fusiogenic events. We provide a brief 
overview of past and new developments towards understanding the signifi cance of 
this remarkable nanomotor for cell function, and its involvement in cancer biology.  

  Keywords     V-ATPase   •   pH regulation   •   Glycolysis   •   Acidifi cation   •   (P)RR/ATP6ap2   
•   Wnt pathway   •   Hypoxia-induced factor (HIF)  

1         Introduction 

   In the fi rst half of the twentieth century, Otto Warburg made the fundamental obser-
vation that cancer cells relied on  glycolysis      to obtain energy, suggesting altered 
cellular metabolism in cancer [ 1 – 4 ]. Cancer cells predominantly generate energy, 
i.e., ATP, via glycolysis even in the presence of oxygen. As a result of increased 
glycolysis cancer cells produce excessive lactic acid that contributes to an acidic 
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extracellular pH in tumor environments. This should be contrasted with normal 
cells that generate their energy by oxidative phosphorylation using the electron 
transport chain in the mitochondria. In normal cells, glycolysis in the cytosol is fol-
lowed by oxidation of pyruvate in the mitochondria under aerobic conditions via the 
tricarboxylic acid cycle (TCA). It is paradoxical that cancer cells would use gly-
colysis to obtain their energy, since glycolysis only generates 4 molecules of ATP 
for each glucose molecule, whereas oxidation of pyruvate in the mitochondria via 
the TCA cycle generates 36 molecules of ATP. To compensate for the preferential 
use of glycolysis rather than oxidative phosphorylation, cancer cells utilize a huge 
amount of glucose to maintain cell proliferation and to avoid oxidative stress in the 
mitochondria. 

 Due to preferential utilization of glucose via glycolysis, the tumor extracellular 
pH is more acidic than normal tissue. It is a conundrum that the intracellular pH in 
tumor cells is more alkaline than in normal tissue, since the production of glucose 6 
phosphate, the fi rst step in glycolysis via hexokinase, generates intracellular acid 
because of its p K a of 0.94 and 6.11 [ 5 ]. Excessive acid is deleterious to cell function 
and leads to apoptosis in normal cells. We hypothesize that to survive this cytosolic 
acidifi cation, tumor cells must employ unique pH regulatory mechanisms to extrude 
acid into the extracellular space. There are several pH regulatory mechanisms that 
all eukaryotic cells have evolved to regulate cytosolic pH (pH cyt ), including Na + /H +  
exchangers (NHE), HCO 3  − -based H + -transporters, monocarboxylate transporters 
(MCTs), carbonic anhydrase (CAIX). Although these pH regulatory systems are 
suffi cient to extrude acid in most normal cells, these mechanisms typically do not 
work at pH cyt  larger than 7.1; and most tumor cells maintain a pH cyt  higher than 7.1 
favorable for cell grow. Thus, tumor cells require additional pH cyt  regulatory mecha-
nisms such as the vacuolar H + -ATPase (V-ATPase), a primary H + -transporting 
mechanism that typically resides in endomembranous compartments. Importantly, 
in cancer cells, the V-ATPase is also located at the plasma membrane, where it plays 
an important role in extruding acid generated by excessive glycolysis (Fig.  18.1 ). 
The regulation of V-ATPase is a new and exciting fi eld of research. V-ATPase activ-
ity is known to be sensitive to glucose availability. Its regulation by glucose is a well 
known, but poorly understood mechanism. In yeast, glucose withdrawal initiates the 
reversible dissociation of the V-ATPase shutting down its activity; addition of glu-
cose triggers its reassembly, thus activating V-ATPase [ 6 – 8 ]. Since glycolysis is 
elevated in cancer, understanding the mechanisms by which glucose regulates 
V-ATPase is highly signifi cant. Understanding this pathway will help to establish 
the signifi cance of V-ATPase in cellular signaling pathways.  

2         V-ATPase Structure 

 V-ATPase, a multi- subunit   nanomotor pump, contains two coupled rotary motors 
consisting of two reversibly associated multi-subunit domains V 1  and V 0  domains. 
V-ATPase is an ATP-driven enzyme that transforms the energy of ATP hydrolysis to 
generate an electrochemical gradient, consisting of the membrane potential and the 
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proton gradient across the membrane via the primary active transport of H + . The 
electrochemical potential of H +  is used to drive a variety of secondary active trans-
port systems via H + -dependent symporters, antiporters and channel-mediated trans-
port systems [ 9 – 12 ]. 

 The catalytic domain V 1  is composed of eight subunits (A–H). Three copies each 
of the A and B subunits are organized to form a hexamer. ATP hydrolysis occurs at 
the interface between the A and B subunits. One copy each of the C and H subunits 
and three copies each of the G and E subunits form peripheral stalks that act as sta-
tors. The D and F subunits form a central stalk that serves as a rotor, to couple the 
energy generated by ATP hydrolysis to the actual rotation of the proteolipid ring in 
the V 0  domain that transport protons. 

 The proton translocation domain V 0  is composed of six hydrophobic subunits 
(a, c, c′, c″, d, and e). In mammals, the trans-membrane V 0  domain contains fi ve c 
and one c″, and single copy each of the other subunits. During rotation, protons are 
 captured and translocated at the interface of the a- and c-subunits by consecutive 
binding to acidic residues. 

 In addition to V 1  and V 0  domains, two accessory proteins are associated with 
V-ATPase: ATP6ap1 and ATP6ap2. The ATP6ap1, also known as Ac45 co-purify 
with the V 0  domain from bovine adrenal chromaffi n granules [ 13 ,  14 ]. Ac45 is asso-
ciated with the V 0  domain subunits a3, c, and c″ and plays an important role in 
osteoclastic bone resorption [ 15 ]. Ac45 appears to be involved in regulating the 

  Fig. 18.1    Cancer cells are more glycolytic than normal cells. Cancer cells preferentially use 
glycolysis rather than oxidative phosphorylation to generate energy, even in the presence of 
oxygen. It is paradoxical that cancer cells use glycolysis since it generates only four moles of ATP 
per mole of glucose, whereas glucose metabolism via oxidative phosphorylation in the mitochon-
dria generates 36 moles of ATP. To extrude excessive acid produced by glycolysis, tumor cells use 
V-ATPase located at the cell surface that allows them to maintain an alkaline intracellular pH 
optimal for growth and survival, while maintaining an acidic extracellular pH, optimal for the 
activity of proteases needed for invasion and metastasis       
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expression of the plasma membrane V-ATPase and increasing the effi ciency of 
calcium- dependent secretion in neuro-endocrine cells [ 16 ]. These data suggest that 
Ac45 may contribute to the membrane fusion event during exocytosis. The ATP6ap2 
gene codes for a protein with 350-amino acids and a mass of 37 kDa that can be 
divided into four different domains: an N-terminal signal peptide, an extracellular 
domain binding (pro)renin, a single trans-membrane domain, and a short cytoplas-
mic domain [ 17 ]. ATP6ap2 (also called (P)RR/ATP6ap2, ac8-9 or M8-9) has not 
been found as part of the V0 domain as Ac45. A furin cleavage site on the extracel-
lular part of (P)RR/ATP6ap2 allows the release of a 28 kDa fragment during pas-
sage through the Golgi apparatus [ 18 ]. The cleavage leaves behind a short protein 
consisting of the trans-membrane and the intracellular domains, which corresponds 
to the M8-9 fragment of (P)RR/ATP6ap2 found to be associated with V-ATPase 
[ 18 ]. The signifi cance of these accessory proteins is emphasized by the fact that 
Ac45 knockout in mice is lethal to embryos [ 19 ]; and ATP6ap2 knockout mice 
could not be generated [ 20 ,  21 ].   

3     V-ATPase Functions 

 The fi rst evidence for the physiological signifi cance of the V-ATPases was shown 
by Eli Metchnikoff in 1905 [ 22 ]. He demonstrated vacuolar acidifi cation in diges-
tive vacuoles of unicellular organisms. Later, the V-ATPase was shown in various 
 endomembranes   of eukaryotic cells [ 23 – 29 ]. V-ATPase is now recognized as a key 
enzyme acidifying intracellular organelles and some extracellular milieus, localized 
in membranes of organelles of exocytic and endocytic pathways and at the cell sur-
face. Maintenance of a luminal acidic environment in the  exocytic and endocytic 
pathways   is required in the processing and sorting of vesicle contents for a variety 
of signaling molecules, and ligand-receptor complexes [ 30 ,  31 ]. The signifi cance of 
V-ATPases for  cell growth and survival   was fi rst shown in yeast. Disruption of 
single- copy genes encoding the V 1  subunit B or the V 0  subunit c resulted in the 
inability of yeast cells to survive at pH values higher than 6.5 and they only grew 
well at pH values of 5.5. These observations indicate that V-ATPase is essential for 
survival at pH > 6.5 [ 32 ]. Although fi rst found in endo-membranes, the V-ATPase 
has also been found in the plasma membranes of various cell types, where it func-
tions both in  physiological and pathological processes   [ 33 – 39 ]. This distinct subcel-
lular localization of V-ATPase at the plasma membrane suggests its involvement in 
regulating unique cellular  functions  . 

3.1      V-ATPase  in Vesicular Traffi cking   

 V-ATPase is ubiquitous on intracellular membranes (vacuoles, lysosomes, endo-
somes, secretory, Golgi, and synaptic vesicles) where it plays a major role in lumi-
nal acidifi cation to provide optimal pH for multiple functions (protein degradation, 
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protein sorting, receptor recycling) [ 40 ]. In addition to control acidifi cation of 
intracellular organelles, the V-ATPase also confers a voltage gradient. The proton 
potential across the membrane generated by V-ATPases provides a driving force to 
transport small molecules and ions into the lumen. The acidic luminal pH of intra-
cellular organelles is a prerequisite for proper vesicular traffi cking. V-ATPase 
recruits ARF6 (ADP ribosylation factor, a small GTPase) and  ARNO (ADP ribosyl-
ation factor nucleotide site opener)   to endosomal membranes via interaction of 
c-subunit with ARF6 and the a2-isoform with ARNO [ 41 ,  42 ]. The a2-isoform 
interacts with ARNO in a pH-dependent manner, suggesting its function as a pH 
sensor for controlling the recruitment of the GTPase activated by ARNO, ARF6, 
which in turn interacts with the V 0  domain [ 43 ]. Both ARF6 and ARNO have been 
implicated in regulation of endocytotic pathways, organelle biogenesis, and actin 
cytoskeleton remodeling [ 44 ]. The perturbation of these interactions with V-ATPase 
subunits leads to inhibition of endocytosis. 

 A role for V-ATPase in exocytosis is supported by the observation that the V 0  
domain interacts with  SNAREs (synaptobrevin and synaptophysin  ) and involves 
Ca 2+ /calmodulin [ 45 – 47 ]. It has been also shown that the a- and c-subunits of 
V-ATPase bind syntaxin [ 48 ] and VAMP2 [ 49 ]. These data are consistent with a role 
for the a1-isoform at a late step in exocytosis [ 50 ,  51 ]. Several studies support the 
idea that the V 0  domain is involved in membrane fusion. It was suggested that two 
V 0  sectors in  trans  at the membrane interface between the two vacuoles destined to 
fuse, form a gap junction-like channel [ 52 ]. Studies from invertebrates showed that 
V 0  c-subunit participates in gap junction organization [ 53 ]. Peters and colleagues 
uncovered a crucial role of V 0  c-subunit in yeast vacuole fusion while searching for 
molecular partners of  calmodulin  , which acts as a Ca 2+ -sensor [ 54 ]. The V 0  a- subunit 
has been shown to play a crucial role in exosome-mediated apical secretion of 
Hedgehog-related proteins in  C. elegans  [ 55 ]. It has also been shown that the V 0  
a3-isoform regulates insulin secretion in pancreatic beta-cells [ 56 ]. Recently, Poëa- 
Guyon and colleagues have observed in neurosecretory PC12 cells that V 1  and V 0  
domains associate on secretory granules in response to neutral pH and dissociate 
under acidifi ed condition to aid in exocytosis [ 57 ]. V 0  serves as a sensor of intra-
granular pH that controls exocytosis and synaptic transmission via the reversible 
dissociation of V 1  at acidic pH. Altogether, these data supports an important role for 
V-ATPases in exocytosis in several cell models.   

3.2      V-ATPase in the Plasma  Membrane   

 In addition to its localization in intracellular compartments, V-ATPase is also pres-
ent at the plasma membrane of some specialized cells, where it extrudes proton to 
the extracellular milieu to perform cell specifi c functions, such as, bone resorption 
[ 58 ], maturation and sperm storage in epididymal lumen [ 59 ], bicarbonate reabsorp-
tion in renal proximal tubes [ 60 ], renal acidifi cation in distal nephron [ 61 ], as well 
as cytoplasmic pH regulation in microvascular endothelial cells and metastatic 
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cancer cells [ 37 ,  38 ,  62 ,  63 ]. We have characterized a number of human tumor cells, 
in terms of V-ATPase activity, and have determined that a subset of them translo-
cated V-ATPases to the cell surface [ 37 ,  38 ,  64 – 66 ]. This was determined using 
bafi lomycin and monitoring cytosolic pH recovery following acid loads in the 
absence of Na +  and HCO 3  − , to inhibit two major cytosolic pH regulatory systems, 
i.e., NHE and HCO 3  − -based H + -transporting mechanisms. In the absence of Na +  and 
HCO 3  − , only cells exhibiting an alternate cytosolic pH regulatory mechanism should 
recover from an acid load. Treatment of these cells with SCH28080, to block H + /
K + -ATPase did not affect cytosolic pH regulation. Importantly, treatment of cells 
with bafi lomycin, a V-ATPase inhibitor, decreases acid extrusion and inhibits pH 
regulation. We found that highly metastatic human melanoma cells exhibit higher 
pmV-ATPase than lowly metastatic human melanoma cells [ 38 ,  65 ,  66 ]. We have 
made similar observation in human breast cancer cells with high and low metastatic 
potential [ 63 ] as well as in pancreatic carcinoma and prostate cancer cells.   

3.3      V-ATPase  Regulation   

 Since the V-ATPase is located in several endo-membranes and at the cell surface, it 
might be expected that V-ATPase activity would be tightly regulated at different 
levels. However, the exact mechanisms that regulate V-ATPase activity remain to be 
elucidated. Little is known about the exact mechanism that modulates the differen-
tial coupling effi ciency between ATP hydrolysis and proton translocation resulting 
in differential acidifi cation along the exocytotic and endocytotic pathways. In yeast, 
it has been shown that the coupling effi ciency is controlled by the C-terminal hydro-
phobic domain of a-subunit [ 67 ]. However, the best characterized mechanism of 
regulating V-ATPase activity described to date is the reversible dissociation of the 
V 1  and V 0  domains (Fig.  18.2 ).

   The reversible dissociation of V 1  and V 0  domains for the regulation of V-ATPase 
was fi rst observed in  Saccharomyces cerevisiae  and  Manduca sexta  following glu-
cose deprivation and starvation, respectively [ 6 ,  68 ]. It is known that the V 0  free of 
V 1  is incompetent for proton translocation [ 69 ]. Similarly, cytoplasmic pools of V 1  
appear to be unable to hydrolyze ATP. Therefore, the dissociation of V 1  and V 0  
domain is an effi cient mechanism of controlling the V-ATPase activity. In these 
organisms, however, dissociation appears as a survival mechanism to conserve the 
ATP stock upon conditions of energy limitation by glucose deprivation or starvation 
[ 7 ,  33 ]. When glucose becomes available again preexisting V 1  and V 0  domain reas-
sociate. As expected, this process does not require de novo synthesis of proteins. 
Disassembly–reassembly process appears to be a way of regulating V-ATPase activ-
ity, and therefore regulating acidifi cation. Changes in V 1  and V 0  association raise 
the questions of the mechanisms that regulate this process. Several signaling path-
ways that regulate reversible dissociation of the V-ATPase have been proposed. 

 Glucose causes assembly of the V-ATPase by activating the Ras/cAMP/ protein 
kinase A (PKA) pathway in yeast [ 70 ]. Elevated glucose concentration inhibits the 
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activity of the Ras GAPs Ira1p and Ira2p, which leads to an increase in the amount 
of GTP-bound Ras; and hence increased Ras activity. Activated Ras, in turn, acti-
vates adenylate cyclase and increases cAMP. Elevated cAMP levels causes dissocia-
tion of the regulatory subunits of PKA, that in turn is free to phosphorylate several 
protein targets, including the V-ATPase. 

 Transient phosphorylation of the V 1  C subunit during reassembly has been 
observed in  Manduca sexta , and this may well be a critical target in the signaling 
pathways [ 71 ]. These studies suggest that C subunit binds to and serves as a sub-
strate for PKA. These data also suggest that phosphorylation may be a regulatory 
switch for the formation of the active V 0 /V 1  holoenzyme [ 71 ]. 

 Sautin and colleagues have demonstrated an involvement of PI3K-dependent 
signaling in the control of V-ATPase traffi cking, assembly, and function by glucose 
in renal epithelial cells [ 72 ]. In this study, glucose removal diminished V-ATPase 
dependent acidifi cation, decreased ATP hydrolytic activity of V-ATPase, induced its 
disassembly and led to translocation of both V 1  and V 0  domains from plasma mem-
brane and sub-membrane vesicles to intracellular vesicles (V 1  and V 0 ) and the cyto-
plasm (V 1 ). Glucose deprivation or replacement dramatically changed the pattern of 
V-ATPase localization. The effects of glucose on V-ATPase traffi cking and  assembly 
can be abolished by pretreatment with the PI3K inhibitor LY294002; and can be 
reproduced in glucose-deprived cells by adenoviral expression of the constitutively 
active catalytic subunit p110 of PI3K. These data provide evidence that, in renal 
epithelial cells, glucose plays an important role in the control of V-ATPase- 
dependent acidifi cation of intracellular compartments and V-ATPase assembly and 
traffi cking. The glucose effects on V-ATPase traffi cking can be mediated by changes 
in the formation of microfi laments promoted by PI3K. 

 Dechant and colleagues assessed V-ATPase assembly in living cells, exposed to 
rapid shifts in glucose concentrations, by monitoring the subcellular localization of 

  Fig. 18.2    The assembly–disassembly of V-ATPase into V 0  and V 1  domains is regulated by glu-
cose. The composition of V-ATPase is described in text. The V 1  domain contains the catalytic 
sector responsible for ATP hydrolysis. The V 0  domain is embedded in the plasma membrane and 
is responsible for the translocation of H +  via a rotary mechanism that is coupled to ATP hydrolysis. 
In the presence of glucose the V 0 /V 1  domains associate, activating V-ATPase. In the absence of 
glucose the V 0  and V 1  dissociate, inhibiting V-ATPase       
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GFP-tagged subunits of V-ATPase using microfl uidic chips [ 73 ]. During conditions 
of high glycolytic fl ux, where there is increase in lactic acid production, the V 1  
domain rapidly relocalizes to the vacuolar surface. Upon a shift to low glucose, the 
V 1  domain disassociates, limiting ATP consumption. Their results suggest that glu-
cose metabolism and intracellular pH regulates the assembly of the V-ATPase. It has 
also been shown that in response to acidic pH caused by increased in glycolytic fl ux, 
V-ATPase functions as activator of PKA. Thus, the V-ATPase assembly responds to 
changes in intracellular pH and acts as a sensor. In addition, it has been shown that 
dissociation requires an intact microtubule network [ 74 ]; and reassembly of V 1  onto 
V 0  appears to be mediated by the RAVE complex (regulator of H + -ATPase of vacu-
olar and endosomal membranes) and aldolase [ 75 – 77 ]. Tabke and colleagues have 
shown evidence that the V 1  C subunit directly interacts with microtubules; and that 
this is the sole component that dissociates during glucose withdrawal [ 78 ]. RAVE 
appears to stabilize the dissociated V 1  complex in an assembly competent form, and 
mediates assembly in both the normal biosynthetic pathway and the glucose- 
regulated process. In contrast, the glycolytic enzyme aldolase appears to be impor-
tant in glucose induced V 0 V 1  assembly. Mutations in aldolase prevent assembly of 
the V-ATPase [ 75 ]. Recently, Li and colleagues have shown that the membrane 
lipid, phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is important for 
V-ATPase activity [ 79 ]. Vph1p (V 0  a-subunit) interacts with PtdIns(3,5)P2, and it is 
recruited from the cytosol to the membrane when PtdIns(3,5)P2 levels increase in 
endocytic compartments. Decreased V-ATPase activity and H +  pumping in the 
absence of PtdIns(3,5)P2 are associated with reduced assembly of V 1  subunits in the 
endocytic pathway. Diakov and Kane have shown that extracellular pH also tightly 
regulates V-ATPase activity and assembly [ 80 ]. A novel regulatory mechanism of 
V-ATPase function has been identifi ed by De Luca and colleagues [ 81 ]. In this 
study, the authors have shown that the  Rab-interacting lysosomal protein (RILP)   
interacts with V-ATPase V 1  G 1 -subunit. RILP was shown to recruit V 1  G 1 -subunit to 
the late endosome, an interaction that is apparently necessary for endocytic acidifi -
cation. RILP overabundance in the cytosol was associated with proteasomal degra-
dation of V 1  G 1 -subunit [ 81 ].    

4     V-ATPase  Inhibitors   

 The discovery of specifi c inhibitors of V-ATPase enables the study and signifi cance 
of this enzyme for cellular functions. The fi rst family of inhibitors identifi ed in the 
1980s was the plecomacrolides: bafi lomycins and concanamycin. Since, new inhib-
itors have been identifi ed including: the benzolactone enamides salicylihalamide, 
lobatamide, apicularen, oximidine, cruentaren, indolyls, and macrolactone 
archazolid (for review see ref. [ 82 ]). To date, V-ATPase inhibitors that selectively 
block V-ATPase located in the plasma membrane without affecting V-ATPase in 
endomembranous compartments have not been identifi ed. It will be useful to 
develop such inhibitor for therapeutic purposes, since the plasma membrane 
V-ATPase has been shown to be involved in cancer metastasis and other diseases.  
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5      V-ATPase  Targeting   

 One of the fundamental questions that need to be addressed is how the V-ATPase is 
translocated from the endo-membranes to the plasma membrane. Exocytosis could 
be one of the mechanisms for translocation of V-ATPase to the cell surface via 
vesicle traffi cking and vesicle fusion with the plasma membrane. The other mecha-
nism for V-ATPase translocation could be direct targeting since the a-subunit which 
is present in several isoforms (a1, a2, a3, and a4), contains information to target 
V-ATPases to different membranous locations [ 39 ,  67 ]. These a-isoforms are 
expressed in a tissue-specifi c manner. The a1-, a2-, and a3-isoforms have been 
shown to be ubiquitously expressed in mammalian cells, albeit their levels of 
expression are tissue-specifi c [ 39 ,  83 ]. The a4-isoform is expressed in renal interca-
lated cells and epididymal clear cells, where it is localized in the apical membrane 
[ 84 ,  85 ]; while the a3-isoform is expressed in osteoclasts, where it is translocated to 
the plasma membrane from the lysosome upon activation of osteoclasts [ 39 ,  84 ]. In 
the brain, the a1-isoform is present in both synaptic vesicles and the presynaptic 
plasma membrane of presynaptic nerve terminals; whereas the a2-isoform localizes 
only to the apical endosomes of the renal proximal tubule cells. It is also clear that 
a given cell type can express more than one a-isoform in the plasma membrane, as 
it has been demonstrated for rat vas deferens and epididymal cells [ 83 ,  84 ]. In our 
studies, we have shown that although all four isoforms are detectable in both highly 
(MB231) and lowly (MCF7) metastatic breast cancer cells, the levels of a3 and a4 
are much higher in MB231 than in MCF7 cells [ 86 ]. Cytosolic pH was decreased 
only on knockdown of a3. The knockdown of either a3- or a4-isoforms signifi cantly 
inhibited invasion of MB231 cells. We have found that the a1-isoform is downregu-
lated and a4- is upregulated in highly metastatic cells compared to the lowly meta-
static cells. Altogether, these data emphasize the signifi cance of a3- and a4-isoforms 
for the acquisition of a more metastatic phenotype. Other studies have shown, that 
knockdown of the a3-isoform in the highly metastatic B16-F10 mouse melanoma 
cells reduces their ability to metastasize to the bone and lung in vivo [ 87 ]. More 
recently, a comparison of the noninvasive MCF10a breast epithelial cells with the 
highly invasive MCF10CA1a breast tumor cells revealed that invasion by 
MCF10CA1a cells is signifi cantly inhibited by knockdown of either the a3- or more 
dramatically the a3- plus a4-isoforms. Importantly, overexpression of a3-isoform 
signifi cantly increases both invasion and plasma membrane localization of V-ATPase 
in the noninvasive MCF10a cells [ 88 ]. To more directly assess the role of plasma 
membrane V-ATPases in tumor cell invasion, in our recent study, we inhibited spe-
cifi cally the plasma membrane V-ATPase activity. To do this, we have stably trans-
fected the breast cancer line MDA-MB231 with a V5-tagged construct of the 
V-ATPase V 0  c-subunit that allows the extracellular expression of the V5 epitope. 
We show that monoclonal antibody against the V5 epitope causes cytosolic acidifi -
cation and decrease of extracellular proton extrusion across the plasma membrane 
via V-ATPase. Importantly, anti-V5 antibody decreases breast cancer cell invasion 
in vitro. We have also observed that a membrane-impermeable form of the V-ATPase 
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inhibitor bafi lomycin inhibits breast cancer cell invasion [ 89 ]. These studies clearly 
indicate the signifi cance of developing therapeutic approaches to inhibit V-ATPase 
at the cell surface to inhibit cell invasion and cancer metastasis.   

6     V-ATPase Signaling in Cancer 

 One of the hallmarks in cancer cells is a shift in glucose metabolism from oxidative 
phosphorylation to aerobic glycolysis (Warburg effect). However, the interactions 
between  glucose homeostasis   and V-ATPase activity in tumors are unclear. Glucose 
metabolism is required for maintaining V-ATPase assembly [ 69 ]. The reversible 
dissociation mechanism by glucose availability may be a mechanism of regulating 
V-ATPase activity in tumor cells. We hypothesize that glucose withdrawal in cancer 
cells initiates the reversible dissociation of the V-ATPase, shutting down its activity. 
To address this hypothesis, we incubated prostate cancer cells in medium without 
glucose. We observed that after 6 h in the absence of glucose there was a signifi cant 
decrease of the V-ATPase activity, leading to  cytosolic acidifying and cell death   
(unpublished observations). 

 V-ATPases are activated by glucose as well. Martinez-Munoz and Kane have 
shown in yeast that the change in pH is sensitive to glycolytic fl ux [ 34 ]. Paradoxically, 
they showed that cells in the presence of high glucose concentration have a more 
alkaline intracellular pH, whereas cells starved for glucose experience a more acidic 
intracellular pH. These data suggest that in response to elevated glucose that would 
cause increased in  lactic acid production  , there is upregulation of a pH regulatory 
mechanism, i.e., V-ATPase, to cope with excess acid that could kill the cells. 
Interestingly, the same phenomenon is observed in tumor cells. The high level of 
glycolysis leads the tumor cells to maintain a more alkaline intracellular pH 
(pH > 7.1). In glucose starvation, the prostate cancer cells experience also a more 
acidic intracellular pH of ca. 6.8 (our unpublished observations). The high level of 
glycolysis leads also to an acidifi cation of the tumor microenvironment that is 
caused by extrusion of H +  via the V-ATPase at the cell surface in tumors. It has been 
well documented that the tumor microenvironment pH is more acidic (pH 6.6–6.8) 
than that in normal tissues, due to the high rate of glycolysis and large amount of 
lactic acid produced in tumor areas [ 90 – 93 ]. Importantly, the tumor cells are known 
to maintain a more  alkaline intracellular pH   (7.1–7.8) than normal tissue (6.9–7.1) 
and to be effi cient at maintaining pH gradients [ 38 ]. Since mammalian cells can 
only survive at neutral intracellular pH, these data suggest that tumor cells have 
evolved mechanisms that allowed them to proliferate in a hostile acidic extracellular 
environment by strictly regulating their intracellular pH that allows for optimal 
functioning of glycolytic pathways. We hypothesize that such a mechanism is the 
V-ATPase. 

 It has been shown that in kidney, the V-ATPase E-subunit interacts directly with 
the glycolytic enzyme aldolase [ 75 ]; and the a-subunit interacts with phosphofruc-
tokinase- 1 [ 94 ,  95 ], thereby providing a functional and spatial coupling of V-ATPase 
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with the  glycolytic pathway  . The interaction with aldolase is glucose-dependent in 
yeast and necessary for stable V 1 V 0  assembly. Phosphofructokinase-1 co-localizes 
with the V 0  a4-isoform in the intercalated cells of the cortical collecting duct [ 94 ]. 
It is unclear whether glucose or any of its metabolites is responsible for the regula-
tion of V-ATPase. However, due to the complexity of mammalian systems, it is 
expected that the regulation of V-ATPase by glucose is not limited to only its inter-
action with the glycolytic enzymes. Although the regulation of V-ATPase by glu-
cose is a well known phenomenon, the underlying extracellular and intracellular 
signaling mechanisms that regulate V-ATPase are unclear. Cells are likely employ-
ing multiple signaling pathways to detect and respond to changes in glucose level 
[ 96 ]. Indeed, a recent study has shown that haeme-responsive gene (HRG-1) that is 
induced by insulin-like growth factor-1, is essential for V-ATPase activity, and that 
glucose-induced V-ATPase reassembly in endocytic compartments is reduced when 
 HRG-1      is suppressed [ 97 ]. 

   In this study, the authors investigated the signifi cance of HRG-1 for cancer cell 
invasiveness and glucose metabolism. They showed that in highly invasive breast 
cancer cell MB231, HRG-1 and the V-ATPase are co-expressed at the plasma mem-
brane, whereas in less invasive cell MCF-7, HRG-1 is located in intracellular com-
partments. They showed also that stable suppression of HRG-1 in MB-231 cells 
decreases extracellular pH, cell growth and invasion. Ectopic expression of 
HRG-1 in noninvasive MCF-7 cells enhances V-ATPase activity, and increases the 
extracellular pH. Their fi ndings indicate that HRG-1 expression at the plasma mem-
brane enhances V-ATPase activity, drives glycolytic fl ux and facilitates cancer cell 
growth and invasion [ 97 ].   

6.1     V-ATPase Cross Talk with  Wnt Signaling Pathway   

 Prominent in the signaling pathways leading to cell growth and differentiation is the 
Wnt pathway [ 98 ]. Currently, three different pathways appear to be activated upon 
activation of Wnt receptor: the  canonical Wnt/β-catenin cascade  , the noncanonical 
planar cell polarity ( PCP     ) pathway, and the  Wnt/Ca 2+  pathway   [ 99 – 101 ]. The best 
understood Wnt signal transduction cascade is the Wnt/β-catenin pathway. 

 The key to the transmission of canonical Wnt signals is the intracellular protein 
β-catenin, which is a transcriptional co-activator that also binds to cadherin proteins 
to form part of adherens junctions. The membrane-associated, cadherin-bound pool 
of β-catenin is highly stable. The cytosolic β-catenin is usually found in a protein 
complex with GSK3 (glycogen synthase kinase 3), Axin and APC (adenomatous 
polyposis coli). This leads to the phosphorylation of β-catenin by GSK3, which 
targets it for rapid ubiquitin-mediated degradation, thereby maintaining low levels 
of cytosolic β-catenin [ 102 ]. Activation of the canonical Wnt pathway involves the 
stabilization of β-catenin through the binding of Wnt ligands to cell surface recep-
tors: Frizzled (Fz) family receptors and lipoprotein receptor-related protein 5 and 6 
(LRP-5/6) [ 103 ]. The Fz proteins are members of the seven transmembrane domain 

18 V-ATPase Signaling



382

cell surface receptors that belong phylogenetically to the large family of G protein- 
coupled receptors. LRP-5/6 are co-receptors that are members of the family of low- 
density  lipoprotein receptor-related protein (LRP)   single transmembrane receptors. 
The binding of Wnts to cell-surface Fz receptors and LRP5/6 co-receptors results in 
a functional change in this complex such that GSK3 no longer phosphorylates 
β-catenin. The resultant accumulation of β-catenin in the cytoplasm leads to nuclear 
accumulation and binding to T cell/lymphoid enhancer-binding transcription fac-
tors to induce the expression of specifi c target genes [ 98 – 100 ]. The Wnt-signaling 
pathway is traditionally associated with regulation of development and differentia-
tion, with defects in this pathway strongly associated with tumorigenesis [ 98 – 100 ]. 
It is known that tumors have greatly increased levels of glucose uptake, insulin/
insulin growth factor and their respective receptors. It is becoming clear that the 
 Wnt/β-catenin pathway   is involved in the mechanisms regulating energy metabo-
lism [ 104 ] and glucose metabolism [ 105 ]. These studies suggest that Wnt signaling 
is involved in the regulation of glucose homeostasis. 

 In the Wnt pathway, the endosomal acidic environment provided by V-ATPase, 
is essential for the phosphorylation of  LRP6      involved in signal transduction leading 
to activation of β-catenin [ 106 ]. Since the V-ATPases are also located at the plasma 
membrane in certain cell types, including highly metastatic cells, several interesting 
questions emerge regarding the relationship between V-ATPase and Wnt signaling 
pathways; and the factors upstream/ downstream that regulate proton  transport   and 
vice versa. As we know, in cancer cells, there is a shift in energy production. It has 
been suggested that the activation of glycolysis favors tumor growth as well as 
tumor invasion and metastasis via acidifi cation of the tumor microenvironment. As 
a consequence of the switch to glycolysis, cancer cells rapidly take up glucose and 
convert most of it to lactate and protons, leading to a more acidic cytosolic pH. 

6.1.1      V-ATPase via (P)RR/ ATP6ap2   

 (P)RR/ATP6ap2 was fi rst discovered not as a (pro)renin binding protein but as a 
protein associated with the V-ATPase. Ludwig and colleagues, in 1998, described a 
truncated form of (P)RR/ATP6ap2 composed of the C-terminal part and the trans-
membrane domain, which co-purifi ed with the V-ATPase in adrenal chromaffi n 
cells and was later named ATP6ap2, for vacuolar H + -ATPase associated protein 2 
[ 107 ]. In 2002, Nguyen and colleagues, discovered the full-length (P)RR/ATP6ap2 
[ 108 ]. The identity of the two proteins was not immediately obvious leading to two 
different names for the same protein. The subcellular localization of (P)RR/
ATP6ap2 is unusual for a receptor. Sequence analysis predicted motifs in the cyto-
solic domain of (P)RR/ATP6ap2 targeting the protein to distinct intracellular vesi-
cle compartments [ 21 ]. Indeed, the majority of (P)RR/ATP6ap2 is located on 
intracellular vesicles, although a signifi cant amount of the protein is also found on 
the plasma membrane, possibly due to vesicle recycling. Interestingly, this distribu-
tion concurs with the localization of the V-ATPase in metastatic tumors that exhibit 
this enzyme both in acidic vesicles and at the cell surface [ 37 ,  38 ,  63 ]. The cellular 
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distribution of (P)RR/ATP6ap2 in tumors is unclear. Until recently, the only func-
tion assigned to renin and its precursor prorenin was the cleavage of angiotensino-
gen as a fi rst step in the  Renin-Angiotensin System (RAS)   [ 17 ,  21 ,  109 ,  110 ]. The 
(P)RR/ATP6ap2 function in regulating the RAS pathway is well established, how-
ever its role in regulating V-ATPase is unclear. The signaling pathways involved in 
the regulation of (P)RR/ATP6ap2 and V-ATPase interactions are unclear. PRR/
ATP6ap2 was been shown to serve as a scaffolding protein linking V-ATPase to the 
Wnt canonical and PCP signaling pathways [ 103 ,  106 ,  111 ]. 

 Cruciat and colleagues characterized V-ATPase and (P)RR/ATP6ap2 as essential 
components of Wnt signaling in HEK293T cells and Xenopus embryos, which is 
crucial for several processes in embryonic development [ 106 ]. The authors show 
that phosphorylation of the Wnt co-receptor LRP6, and thereby activation of intra-
cellular Wnt signaling, is dependent on its sequestration in vesicles, which are acidi-
fi ed by the V-ATPases. Because PRR/ATP6ap2 and other V-ATPase subunits also 
interacted physically with Fz and LRP6, this suggests a model that characterizes 
PRR/ATP6ap2 as an adaptor that links Fz and LRP6 to the V-ATPase complex [ 103 , 
 111 ]. This adaptor function is predominantly carried out by the extracellular domain 
of PRR, which is also regarded as the prorenin and renin binding domain, and there-
fore seems to serve multiple purposes. Intriguingly, renin showed no effect on Wnt 
signaling [ 103 ,  111 ]. It was reported that full length ATP6ap2 represses Wnt signal-
ing, perhaps by blocking proton pumping activity. Cleavage of ATP6ap2 by furin 
released this inhibition [ 112 ]. 

 Taelman and colleagues showed that Wnt signaling triggers GSK3 sequestration 
in multivesicular bodies, a late endocytic compartment that harbors intralumenal 
vesicles highly enriched with V-ATPase [ 113 ]. The GSK3 sequestration in multive-
sicular bodies is one reason Wnt signaling requires endocytosis of Wnt receptor 
complexes. This could be regulated by acidifi cation of multivesicular bodies via 
V-ATPase [ 102 ]. Endocytosis and V-ATPase may play other roles in Wnt signaling 
beyond the formation of multivesicular bodies. Experiments with a fusion protein of 
LRP6 and a pH reporter suggested that the V-ATPase mediates acidifi cation of ves-
icles specialized for signalosome formation [ 114 ,  115 ]. This makes V-ATPase a 
unique component of the signalosome complex that could regulate activity and 
function of the complex via localized regulation of the pH microenvironment. The 
V-ATPase is critical to provide the driving force for vesicle traffi cking, neurotrans-
mitter uptake, and exocytosis. The lack of (P)RR/ATP6ap2 may impair neurotrans-
mission. Contrepas and colleagues showed that the D4-(P)RR mutant have altered 
traffi cking of this receptor to the neurite tips in vitro [ 110 ]. 

 The biogenesis of V-ATPase complex requires the coordinated association of V 1  
with V 0  domains. Studies in yeast have shown that several genes Vma12p, Vma21p, 
and Vma22p are required for V-ATPase assembly. This suggests that mammalian 
cells may have similar assembly mechanism. It is unclear however, what is the 
assembly chaperone of mammalian V-ATPase. A functional link between ATP6ap2 
and assembly of V 0 /V 1  to form V-ATPase has been suggested [ 116 ,  117 ]. Kinouchi 
and colleagues suggested that ATP6ap2 is essential for V-ATPase assembly in 
murine cardiomyocytes [ 116 ]. In their study, they generated a mouse with a cardiac- 
specifi c defi ciency in ATP6ap2. These studies demonstrated for the fi rst time that 
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ATP6ap2 might be an essential assembly chaperone of mammalian V-ATPase; and 
that genetic ablation of ATP6ap2 created a loss-of-function model for V-ATPase 
representing a function that is unique to mammalian cells. Interestingly, there is no 
yeast homolog to mammalian ATP6ap2. However, ATP6ap2 showed sequence and 
structural similarity to the yeast chaperone, Vma21p, needed for the V-ATPase 
assembly [ 107 ]. Assembly of V 0  and V 1  domains in yeast relies on glucose and 
needs chaperones. Because cancer cells also rely on glucose, they may need a chap-
erone to assemble V-ATPase. Whether (P)RR/ATP6ap2 operates as a chaperone or 
glucose sensor, and accordingly assembles/disassembles and targets the V-ATPase 
to specifi c compartments, is unclear and warrants further investigation. Kirsch and 
colleagues have recently demonstrated that high glucose induces (P)RR signal 
transduction in neuronal and epithelial cells [ 118 ]. We have shown that ATP6ap2 
mRNA levels are upregulated in highly metastatic prostate cancer cells compared to 
the lowly metastatic prostate cancer cells [ 119 ]. Therefore, we hypothesize that (P)
RR/ATP6ap2 is the pH sensor/glucose sensor, and accordingly assembles V-ATPase 
and targets it to specifi c compartments to regulate the pH gradient and/or initiates 
signaling pathways. Whether this is a direct effect of the (P)RR/ATP6ap2, or an 
indirect effect due to interactions with a-subunit, a putative pH sensor in V-ATPase 
[ 43 ], requires further investigation. Sreekumar and colleagues have recently showed 
that a functional V-ATPase is essential for Wnt/β-catenin signaling in human and 
murine models of pancreatic intraepithelial neoplasms. The activation of Wnt/β- -
catenin is V-ATPase dependent and necessary for pancreatic tumorigenesis [ 120 ].    

6.2       V-ATPase Cross Talk with Hypoxia-Induced Factor ( HIF     ) 
Pathway 

 In eukaryotic cells, the major routes of energy production in cells are glycolysis and 
oxidative phosphorylation. However, the biochemical hallmark of cancer cells is a 
shift in glucose metabolism to aerobic glycolysis that, in bioenergetic grounds, is 
less effective than oxidative phosphorylation. This conundrum raises the question of 
how cancer cells grow and survive. To further complicate this issue, the neovascu-
larization is often inadequate leading to an insuffi cient supply of oxygen to the 
tumor, i.e., hypoxia. Hypoxia causes the induction of various genes that contribute 
to tumor cell invasion and metastasis [ 121 – 124 ]. Several studies suggest that activa-
tion of the hypoxia inducible factor (HIF) is a common consequence of cancer. 

 HIF has been shown as the sensor of oxygen and respond to various cellular 
stimuli by upregulating genes involved in glucose metabolism, angiogenesis, cell 
proliferation and survival [ 125 ,  126 ]. HIF-1 is a transcription factor composed of 
the subunits HIF-1α and HIF-1β. At normal oxygen tension, HIF-1α is hydroxyl-
ated by prolyl hydroxylases (PHD) in the oxygen dependent degradation domain. 
Hydroxylated HIF-1α is recognized by the Von Hippel-Lindau (VHL) protein, ubiq-
uitinated and destined for degradation by proteasomes [ 121 ]. At low oxygen pres-
sure stabilized HIF-1α subunits heterodimerize with β subunits to activate target 
genes after nuclear translocation. 

R. Martínez-Zaguilán and S.R. Sennoune



385

 In addition to directly upregulating glycolytic enzyme expression, HIF-1 
directly contributes to downregulating the tricarboxylic acid (TCA) cycle and 
OXPHOS (oxidative phosphorylation). OXPHOS is governed by the availability 
of its two major substrates: pyruvate and oxygen. Pyruvate is the end product of 
glycolysis, after which it enters the mitochondria and is converted to acetyl-CoA 
by the pyruvate dehydrogenase (PDH) complex, allowing it to enter the TCA cycle. 
PDH activity is inhibited through phosphorylation by pyruvate dehydrogenase 
kinase (PDK). Pyruvate conversion to acetyl-CoA in the mitochondria is thought 
to be an irreversible step, making this a critical control point in cellular metabo-
lism. Studies found that PDK is a HIF-1 target gene [ 123 ]. By inhibiting PDH via 
PDK, cells with activated HIF-1 will accumulate pyruvate, which is then converted 
into lactate by another HIF-1 target: lactate dehydrogenase (LDH). Lactate is then 
released into the extracellular space by the Mono Carboxylic Transporter (MCT), 
ultimately regenerating NAD +  for another cycle of glycolysis. The MCT4 isoform 
was recently demonstrated to be a HIF-1 target [ 127 ], suggesting that activation of 
HIF-1 drives expression of every enzyme in the pathway from glucose import to 
lactate production and release. HIF also induces overexpression of carbonic anhy-
drase 9 that catalyzes the extracellular conversion of CO 2  and H 2 O to HCO 3  −  and 
H + . The HCO 3  −  exchangers import extracellular HCO 3  −  into the cytosol to decrease 
intracellular acidifi cation. To prevent intracellular acidifi cation during glycolysis, 
HIFs also drive the expression of the Na + /H +  exchanger [ 121 ]. However, as indi-
cate earlier, in metastatic tumors we hypothesize that the main H + -transporting 
mechanism is the V-ATPase at the cell surface. Given the signifi cance of V-ATPase 
for pH regulation, we hypothesize that HIF-1 interacts with V-ATPase and possibly 
regulates transcription of V-ATPase subunits, since regulated energy metabolism 
and pH are central for cell survival. 

 Sonveaux and colleagues showed that human cancer cells cultured under low 
oxygen conditions convert glucose to lactate and extrude it via MCT4, whereas 
aerobic cancer cells take up lactate via MCT1 and utilize it for oxidative phosphory-
lation. When MCT1 is inhibited, aerobic cancer cells take up glucose rather than 
lactate, and anaerobic cancer cells die due to glucose deprivation [ 127 ]. Since 
V-ATPase assembly relies on glucose, these data suggested that under conditions of 
low glucose, V-ATPase may be disassembled leading to cell death. Indeed, V-ATPase 
overexpression is an antiapoptotic signal and inhibition of V-ATPase triggers 
apoptosis. 

 Many tumors exhibit high HIF activity even under normoxic conditions. 
Importantly, HIF stabilization has been observed under conditions of cytosolic acid-
ifi cation. Mekhail and colleagues showed that normoxic acidosis neutralizes the 
function of VHL (Von Hippel-Lindau) by triggering its nucleolar sequestration that 
enables HIF to evade destruction in the presence of oxygen, thus activating its target 
genes [ 128 ]. Their fi ndings suggest that cytosolic acidifi cation elicits a transient and 
reversible loss of VHL function by promoting its nucleolar sequestration. Therefore, 
it is likely that increased acid production will further induce HIF activity and gly-
colysis. In this case, V-ATPase is suitable positioned at the plasma membrane of 
tumor cells to maintain extracellular acidosis, thus creating a positive feedback loop 
to enhance the tumor phenotype. 
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 Interestingly, a study of the growth inhibition of tumor cells by bafi lomycin 
revealed an induction of HIF-1α expression, subsequent p21 induction, and cell- 
cycle arrest [ 129 ]. In this study, the effect of V-ATPase inhibition by bafi lomycin on 
tumor survival does not appear to be at the level of intracellular pH regulation. This 
interaction was confi rmed in a follow-up study where it was demonstrated that the 
effect of bafi lomycin on cell survival was not a result of intracellular pH acidifi ca-
tion [ 130 ]. Instead it was found that bafi lomycin enhances the binding of the 
V-ATPase V 0  c-subunit to the N-terminus of HIF-1α, altering protein structure to 
prevent pVHL binding and thus results in HIF-1α stabilization. Thus, it appears that 
in addition to its role in regulating pH, V-ATPase may have alternative important 
role in signaling mechanisms. The signifi cance of V-ATPase in signal transduction 
pathways is clearly an emerging fi eld of study in cell physiology and 
pathophysiology.     

7     Conclusions 

 To conclude, after about four decades of studying the signifi cance of V-ATPase for 
the regulation of cellular functions in physiological and pathological states, have led 
us to recognize that V-ATPase functions not only to regulate pH homeostasis, but 
also has emerged roles in signal pathways. The future studies related to V-ATPase 
will clearly bright since it will provide us with a wonderful opportunity to under-
stand how this remarkable nanomotor controls not only proton pumping, but also 
cell metabolism, bioenergetics and signal transduction.     
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    Abstract     The control of intracellular and extracellular pH is extremely important 
for many biological functions and the condition of hypoxia is a frequent phenome-
non during the development of oral squamous cell carcinoma (OSCC). The cellular 
acidosis appears to be controlled, mainly, by the vacuolar-type H+ ATPase 
(V-ATPase), which is clearly involved in cellular transformation during carcinogen-
esis and metastasis. The C subunit (ATP6V1C) of V1 intra-membrane domain of 
the V-ATPase is primarily responsible for its enzymatic function, through the con-
trol of a reversible dissociation of V0 and V1 domains. It is observed a high overex-
pression of the gene ATP6V1C1 in OSCC, this tumor cells exhibited high metabolic 
activity and the active mechanisms capable of pumping protons from the cell inte-
rior are necessary. The acidifi cation of the extracellular environment resulting from 
poor vascularization and cell metabolism promotes the activity of proteolytic 
enzymes that contribute to tumor invasiveness and metastasis. In the future, 
V-ATPase inhibitor molecules could be used in cancer treatment through the men-
suration of the overexpression of specifi c V-ATPase subunits in tumors to be treated 
and, then, using specifi c inhibitors for the subunits being expressed. This will allow 
clinicians to provide more specifi c treatment, while also minimizing adverse effects.  
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1         Introduction 

 The control of intracellular and extracellular pH is extremely important for many 
biological functions such as cell proliferation, invasion, metastasis, drug resistance, 
and apoptosis. Since the hypoxia has a relationship with the extracellular decrease 
of pH, and the condition of hypoxia is a frequent phenomenon during the develop-
ment of oral  cancer   [ 1 ], it is expected that the process of carcinogenesis is accom-
panied by metabolic disorders such as acidifi cation of the extracellular medium and, 
therefore, the alkalinization of the intracellular medium [ 2 ,  3 ]. 

  Tumor acid extracellular microenvironment   is associated with increased inva-
siveness and progression of the lesion [ 3 ]. To survive in this hostile microenviron-
ment, tumor cells must have a regulatory system in cytosolic pH which helps them 
in defense against H+ ions [ 4 ]. Some genes are related to the mechanism which 
regulates cytosolic pH and extracellular pH, like ATP6V0E, ATP6V1C1, 
ATP6V1G1, ATP6V0C, ATP6V1B1, ATP6V1A1, ATP6V1B2, ATP6V1E1, 
ATP6V1F, ATP6V0A1, ATP6V0B, and ATP6S1 [ 5 ]. 

 The intracellular acidosis seems to be an early event in apoptosis [ 6 ]. In contrast, 
the intracellular pH is increased concomitantly with an increasing in DNA synthesis 
[ 7 ], leading to the raising of potential of neoplastic cells [ 8 ] and hence increasing of 
pathological disorders [ 1 ]. Reshkin et al. [ 8 ] showed that the  alkalization   is an early 
event for the establishment and maintenance of oncogenic transformation event. 

 The cellular acidosis appears to be controlled, mainly, by the vacuolar-type H+ 
ATPase (V-ATPase), which is clearly involved in cellular transformation during car-
cinogenesis and metastasis [ 1 ]. The pH regulation is mediated in squamous cell 
carcinoma (SCC) by vacuolar ATPase proton pump and, as well, it is involved in 
carcinogenesis [ 5 ]. 

 The V-ATPase is a multi-subunit enzyme which reveals a great diversity of func-
tions in eukaryotic organisms, such as acidifi cation of a variety of intracellular com-
partments and the dispatch of protons to the extracellular medium through plasma 
membranes, conducting intracellular and extracellular ATP-dependent  transport  . 
Also, it is involved in receptor-mediated endocytosis [ 9 ], intracellular traffi cking 
and acidifi cation of late endosomes [ 10 – 13 ], the transport of lysosomal enzymes 
from the Golgi apparatus to lysosomes [ 13 ] and in the creation of the microenviron-
ment necessary for proper protein transport, exchange and secretion [ 14 ]. This pro-
tein is also involved in the regulation of the acidity of the tumor microenvironment. 
Furthermore, there is evidence that it plays a fundamental role in resistance to che-
motherapy [ 15 ]. 

 V-ATPase is composed of a  cytosolic V1 domain   and a  transmembrane V0 
domain  , and these domains are formed by subunits. Two alternative transcript vari-
ants encoding different  isoforms   have been found for the gene which controls the 
expression of the C subunit: ATP6V1C1 and ATP6V1C2a,b. While ATP6V1C1 is 
expressed continuously in all tissues, ATP6V1C2a,b is found only in the lungs, 
kidneys and epididymis, where it has an actin-binding function [ 5 ]. 
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 The  C subunit   is a 40-kDa protein located in the V1 domain of V-ATPase [ 16 ]. 
This subunit, which is essential for the proton secretion function of V-ATPases [ 17 ], 
is intimately involved in the reversible dissociation of the V1 and V0 domains [ 18 , 
 19 ] and it is considered to be the unique responsible for regulating the dissociative 
mechanism of the enzyme [ 1 ,  20 ]. The crystal structure of the C subunit consists of 
two globular domains connected by a fl exible connection [ 16 ]. 

 Inoue and Forgac observed the importance of ATP6V1C1 for the reversible dis-
sociation as a mechanism for monitoring the V-ATPase activity [ 21 ]. The authors 
described the connection of the subunit C with the  G and E subunit   of the V1 domain 
and the A subunit of the V0 domain, establishing the importance of this subunit as 
the main responsible for the enzyme control [ 21 ,  22 ]. Also, subunit C is involved in 
the reversible dissociation of the V0 and V1 domains [ 18 ,  23 ]. Moreover, the  C 
subunit   is crucial to the proton secretion function of the V-ATPases, since the ATP 
hydrolysis is blocked without it [ 17 ]. 

 Puopolo et al. assert that subunit C speeds up the process but it is not essential for 
the formation of the complex V1V0 [ 24 ]. Beltran et al. [ 20 ] and Drory et al. [ 16 ], 
supported this theory, affi rming that the C subunit is the only responsible for the 
in vivo dissociation of the V-ATPase [ 16 ,  20 ]. These results are discussed in other 
studies and, according to Voss et al., the C subunit is responsible for producing the 
dissociation of the V-ATPase in the cytosolic V1 complex and in the membranous 
V0 complex, through interaction with A-kinase protein. The C subunit serves as a 
substrate for the A-kinase protein and its phosphorylation may be the main mecha-
nism to form the active V1V0 holoenzyme [ 19 ]. 

 The C subunit seems to act as an anchor protein, allowing the connection between 
the V-ATPase and the actinic cytoskeleton. In addition, another mechanism of 
reversible dissociation regulated by the C subunit is the separation of V1V0 holoen-
zyme in V1 and V0 subcomplex, which is carried out through binding this holoen-
zyme to the F-actin next to the basement membrane of epithelial cells [ 25 ]. 

 Without the C subunit, the assembly of the two domains occurred, but the V1V0 
complex became highly unstable and the activity of the V-ATPase was extremely 
low, suggesting the exclusivity of the C subunit in the regulation of the complex 
V1V0 assembly [ 26 ]. In experimental models with different mutations in the gene 
of the C subunit, it was observed 48 % higher decrease in catalytic activity, without 
affecting the enzyme assembly [ 27 ].  

2     Oral Squamous Cell Carcinoma 

 According to the World Health Organization ( WHO  ), the oral and oropharyngeal 
carcinoma are the most frequent among malignant neoplasms of the head and neck 
[ 28 ], with about 600,000 new cases diagnosed per year worldwide [ 29 ]. The squa-
mous cell carcinoma is the most common malignancy of the oral cavity [ 30 ], it is 
the sixth most common malignant tumor and its incidence is currently increasing 
worldwide [ 31 ]. 
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 The tongue and fl oor of  mouth   are the most common location, except in Southeast 
Asia, where the oral mucosa is a more common region to this carcinoma. Besides, 
it is strongly associated with environmental factors and the lifestyle play an impor-
tant role in its development, among which we highlight the tobacco and alcohol [ 32 ]. 

 The  diagnosis  , by clinical examination and histopathological studies, are com-
monly performed in advanced stages of the disease, resulting in a poor prognosis, a 
high cost treatment and a high mortality rate. Therefore, it is of utmost importance 
the early diagnosis [ 33 ]. 

 Regardless of advances in  reconstructive surgery   the mortality remains high, 
with development of systemic metastases [ 34 ] or second malignancies [ 35 ]. The 
regional (neck) lymph node metastases have been recognized as an important prog-
nostic factor, infl uencing the disease-specifi c survival rate [ 36 ], because of the treat-
ment of the neck nodes, either therapeutic or prophylactic, which is an important 
aspect of the disease management [ 37 ,  38 ]. 

 The  treatment   choice depends on the location of the primary tumor and of the 
stage of the disease. American Joint Committee on Cancer describes as early-stage 
oral SCC those usually treated with single-modality therapy, surgery or radiother-
apy. The management of locally advanced disease generally requires various com-
binations of radiotherapy, surgery, and chemotherapy. The survival rates for all 
patients with oral SCC are, approximately, 40–60 % at 5 years [ 39 ].  

3     Role of V-ATP-ases in Oral Cancer 

 The increased production and secretion of protons [H+], the acidifi cation of the 
extracellular environment and the alkalization of the cytoplasm are metabolic disor-
ders associated to the  cell transformation and carcinogenesis processes  , as well as 
to the increase of aggressiveness of the malignant tumors [ 40 ,  41 ]. 

 The acid component of the  intratumoral metabolic microenvironment   increases 
the metastatic potential by promoting the angiogenesis [ 42 ,  43 ], the anchorage- 
independent growth, the genetic instability [ 44 ], the invasion, the infi ltration, and 
the penetration of cancer cells into the normal tissue [ 3 ]. Equally, the  angiogenesis   
is increased and the microvascular endothelial cells with the highest migratory 
capacity express V-ATPases in the plasma membrane [ 45 ]. 

 The high increase of the invasiveness of tumor cells is the result of three comple-
mentary mechanisms: breaking of the  cell-matrix interactions   that arise because of 
the acid secretion increment, the  protease activity   (such as Cathepsin B) and the 
increased cell  motility   [ 3 ,  4 ,  46 ]. The degradation of the extracellular matrix during 
the metastatic invasion is performed by lysosomal enzymes that tumor cells secrete. 
These enzymes have a low optimum pH and the V-ATPases are the responsible for 
the microenvironment acidifi cation [ 2 ,  10 ]. 

 Cells must acquire motility and an invasive phenotype to become metastatically 
competent [ 3 ,  42 ]. A reduction of extracellular pH in the tumor microenvironment 
turns the cells into a more invasive cell and increases tumor cell motility through the 
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formation of pseudopodia. The extracellular acidifi cation also induces an increase 
in the number and length of pseudopodia of metastatic cells [ 47 ], which are pro-
jected into the direction of movement of the tumor cells [ 48 ] (Fig.  19.1 )

   In addition, the hypoxic conditions are frequent phenomena during the OSCC 
development and they cause  cellular acidosis  . It seems to be a trigger for apoptosis 
and allows the endonuclease activation, which induces DNA fragmentation. Thus, 

  Fig. 19.1    Proposed mechanism by which overexpression of pmV-ATPase at the leading edge of 
the cell modulates cell migration/invasion. The proposed model should be viewed as a framework 
to explain how pmVATPases determine the acquisition of an invasive phenotype needed for angio-
genesis and metastasis. Changes in pHcyt are critical for establishing cell polarity needed for cell 
movement. A critical step in directed motility and migration is the asymmetric actin polymeriza-
tion at the leading edge. Reprinted from Ref. [ 42 ], with kind permission from Springer Science and 
Business Media       
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the pH regulators should be over-regulated in the tumor cells in order to avoid intra-
cellular acidifi cation under the abovementioned conditions [ 5 ]. 

 It has been hypothesized that hypoxia and acidity may contribute to the transition 
from benign to malignant growth, inducing the selection of tumor cells capable to 
survive in an acidic, oxygen-deprived environment [ 49 ]. Indeed, alteration of the pH 
gradient between the extracellular environment and the cell cytoplasm has been 
suggested as a possible mechanism of resistance to cytotoxic drugs [ 50 ]. 

 The  pretreatment   with  proton pump inhibitors [PPIs]   has been found to sensitize 
tumor cell lines to the effect of different chemotherapy drugs [ 50 – 52 ], triggering 
apoptotic mechanisms that lead to the inhibition of tumor growth [ 1 ]. The low pH 
levels are suitable for the complete activation of PPIs [ 53 ], suggesting that tumor 
alkalinization may be an extremely interesting target for future anticancer treat-
ments [ 50 ,  51 ,  54 ]. 

 V-ATPases are the key of the mechanisms that regulate this acidic tumor micro-
environment and, therefore, they can be inhibited. While there are many  pH regula-
tor inhibitors  , V-ATPase inhibitors have been proven to be the most effi cient, since 
V-ATPases are the main regulators of pH [ 1 ,  4 ,  55 ]. Specifi c V-ATPase inhibitors 
such as  concanamycin   and  bafi lomycins   are other candidates for investigation, not 
only to treat cancer but also to reduce multidrug resistance in tumors [ 1 ] 

 The V-ATPase is overexpressed in the plasma membrane of breast [ 2 ,  4 ,  56 ] and 
lung cancer cells [ 46 ,  56 ]; this occurs predominantly in the highly metastatic cells 
and, with less intensity, in the lowly metastatic cells [ 2 ,  4 ]. 

 Otero-Rey et al. observed a high overexpression of the gene in  ATP6V1C1   oral 
SCC biopsy samples. The authors found that ATP6V1C1 was overexpressed in 100 
% of OSCC samples analyzed using real-time quantitative polymerase chain 
reaction and they argue that ATP6V1C1 plays a key role in the modifi cation of the 
V-ATPase process and that the overexpression of ATP6V1C1 can explain the increase 
in extracellular pH observed in these tumors, even at early stages of the process [ 5 ]. 
They also state that the C1 subunit of V-ATPase allows that the union between the 
V0 component (membranous) and the V1 component [cytosolic catalytic] become 
stable [ 5 ]. Sayans-Perez et al. [ 57 ] ATP6V1C1 confi rmed that the gene was signifi -
cantly overexpressed, in oral SCC patients compared to healthy controls, using 
exfoliative cytology samples. 

 In normal epithelial cells, the staining of ATP6V1C1 was observed in the basal 
and parabasal layers, where there is more metabolic cell activity [ 58 ]. Besides, there 
were no signs of the C1 subunit on the keratinized surface of the epithelium. In the 
basal layer there is high production of protons, which must be eliminated by the cell 
to prevent destruction due the decrease of the pH [ 13 ]. 

 The tumor cells in OSCC exhibited high metabolic activity and the active mecha-
nisms capable of pumping protons from the cell interior are necessary to allow 
normal cell function. Moreover, the acidifi cation of intercellular  spaces  , caused 
by disorderly growth of inadequately vascularized tumors and, by the defi cient 
protons drainage through the environment requires active mechanisms in the cell 
membrane, such as the presence of V-ATPase, to pump protons against the gra-
dient. Thus, acidifi cation of the extracellular environment resulting from poor 
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vascularization and cell metabolism promotes the activity of proteolytic enzymes 
that contribute both to the destruction of intercellular protein architecture, such as 
collagen, and to tumor invasiveness and metastasis [ 2 ,  10 ].  

4      V-ATP-ases as  Protein Targeting   

 Tumor acidic microenvironment plays a key role in cancer development in terms of 
progression and metastasis [ 59 ]. The C subunit of V0 domain has been appointed as 
a possible target in the suppression of metastasis and tumor growth via V-ATPase 
inhibition, since it has a regulation function [ 4 ,  42 ,  60 ,  61 ]. However, Otero Rey 
et al. fi nd that ATP6V0C is not overexpressed in OSCC in a statistically signifi cant 
way. Therefore blocking this gene does not seem to be very useful in this type of 
tumors. Notwithstanding ATP6V1C1 was strongly overexpressed in oral squamous 
cell carcinoma [ 5 ]. 

 Many possible targets were studied in the literature; however, it seems that none 
of these inhibitors has been proven useful in the OSCC. Thus, it is of high impor-
tance to carry out further research in order to determine the actual implication of 
V-ATPases in cancer development, as well to study the implementation of other 
inhibitors in the subunits responsible for enzyme assembly [ 4 ]. 

 The inhibition of V-ATPase with PPIs allows the anticancer drugs enter and act 
within the tumor cells, triggering apoptotic mechanisms that lead to the inhibition 
of tumor growth [ 62 ].   

5       V-ATPase Inhibitors and Implication   in Cancer Treatment 

 As previously mentioned, the ability of tumor cells to secrete protons [H+] [ 2 ] to 
acidify the extracellular medium [ 3 ,  63 ], and it keeps the cytosolic pH alkaline [ 42 ], 
which is related with the increase of tumor aggressiveness [ 40 ,  41 ]. It is associated 
with degradation and remodeling through activation of proteolytic enzymes, which 
contribute to invasion and cancer metastasis [ 2 ,  64 ]. Thus, the V-ATPases in the 
plasma membrane are involved in the acquisition of a more metastatic phenotype. 
In this manner, the use of V-ATPase inhibitors allows distant metastasis to be mini-
mized [ 62 ]. 

 Further, scientifi c evidence suggests that the cells which express high levels of C 
subunit have an increased resistance to chemotherapeutic agents, so they may be a 
possible target in anticancer therapy [ 65 ]. There is overexpression of the ATP6C 
gene or C subunit in the cisplatin-resistant tumors [ 84 ]. 

 Feng et al. indicated that ATP6V1C1 may be a viable target for breast cancer 
therapy and the silencing of ATP6V1C1 could be an innovative therapeutic approach 
for treatment and prevention of breast cancer growth and metastasis [ 56 ]. Lu et al. 
[ 67 ] observed that overexpression of V-ATPase was related to the pathological type 
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and grade of non-small-cell lung cancer. It was also likely the associated with chemo-
therapy drug resistance [ 67 ]. Huang et al. [ 68 ] observed that V-ATPase were overex-
pressed in esophageal squamous cancer cells, associated with pathological grade, 
TNM stage and tumor metastasis in esophageal squamous cancer cells. Their expres-
sion may be strongly associated with drug resistance and tumor metastasis [ 68 ]. 

 Initial attempts to block V-ATPases were made with  bafi lomycin   and  concana-
mycin   [ 69 ]. In addition, Moriyama et al. [ 70 ] described V-ATPase inhibition as a 
target for therapy, by blocking assembly and reducing H+ secretory activity with 
fusidic acid and suramin. 

 There are some classes of V-ATPase inhibitors: the fi rst family is  plecomacrolide 
antibiotics   (concanamycin and bafi lomycin), the second family is  benzolactone 
namides   (salicylihamide, apicularens, lobatamides, oximidines, and cruentaren); 
the third family is  archazolid  ; the fourth family is  indolyls  ; and, fi nally, the late- 
generation of V-ATPase inhibitors [ 62 ]. 

 Lu et al. found that distant metastasis could be delayed and suppressed in human 
hepatocellular carcinoma in vitro by the inhibition of V-ATPase subunit C [ATP6L] 
[ 61 ], through bafi lomycin and concanamycin [ 71 ]. 

 The use of V-ATPase inhibitors, such as bafi lomycin A1 or concanamycin A, 
also prevented conditions that favor metastatic dissemination in tyrosinase-positive 
amelanotic melanoma cells [ 72 ]. 

 Cancer cells are more likely to express V-ATPase than normal cells, causing 
abnormalities in the acidic microenvironment and affecting cancer cell growth and 
infi ltration signifi cantly [ 4 ,  3 ,  63 ]. Moreover, neoplastic cells are more sensitive to 
bafi lomycin A1 than normal cells, a fact that may be used in anticancer therapy [ 73 ]. 

  Bafi lomycin   A1 inhibits cell proliferation and tumor growth. The precise mecha-
nism remains unknown, notwithstanding, this effect has been attributed to the inhi-
bition of intracellular acidosis by blocking V-ATPases [ 71 ]. Treatment with 
V-ATPase inhibitors lowers H+ extrusion, both in vitro and in vivo [ 74 ,  75 ]. It 
appears that bafi lomycin may be a potential therapeutic agent for large solid tumors. 
Bafi lomycin inhibits the growth of large tumors subject to elevated levels of hypoxia 
more than that of small ones [ 76 ]. 

 V-ATPase inhibition has also been shown to trigger apoptosis through caspase- 
dependent and caspase-independent mechanisms [ 77 ], and bafi lomycin and con-
canamycin induce apoptosis in other types of cells, including neutrophils [ 6 ] and 
osteoclasts [ 78 ]. In human, hepatoblastomas and bafi lomycin A1 induced higher 
apoptotic cell ratios and diminished cell reproduction. Furthermore, cell growth 
inhibition in normal liver cells was insignifi cant, insofar as the inhibition of 
V-ATPase-specifi c genes have minimal effects on normal cells [ 79 ]. 

 Bafi lomycin A1 suppresses protein degradation pathway, which allows an 
increase in cell survival under stress and in cancer [ 80 ,  81 ] by preventing lysosome 
acidifi cation [ 80 – 82 ]. 

 Human pancreatic cancer cells treated with bafi lomycin A1 in combination with 
Na+/H+ exchange pump inhibitors had delayed cell growth by reduces the intracel-
lular pH and by increases the thermal sensitivity of cancer cells [ 83 ]. 
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 In tumor cells, V-ATPases can enhance resistance to antineoplastic drugs. Tumor 
cells with greater expression of V-ATPase subunits are related with drug-resistant 
tumor [ 84 – 86 ]. Thereby, V-ATPase inhibitors may enhance drug buildup in some 
tumors [ 52 ]. 

 The chemotherapy for head and neck cancers reduces the number of patients 
requiring mandibulectomy and/or radiation therapy. However, chemotherapy had 
not improved, signifi cantly, the survival of patients with oral SCC [ 87 ]. 

 Kiyoshima et al. observed evidence that a VATPase inhibitor,  concanamycin   A1, 
can induce apoptosis in oral SCC cells. The authors also suggested that even in 
apparent concanamycin A1-resistant oral SCC cells, a combination of concanamy-
cin A1 with a histone deacetylase inhibitor, suberoylanilide hydroxamic acid may 
allow an effi cient cancer therapy [ 88 ]. 

 There is multitude of V-ATPase inhibitor molecules, but its actual usefulness in 
clinical practice is still debated. The mechanism of action of some of these sub-
stances is not completely understood; hence, their use in humans should be restricted. 
However, in the future, these molecules could be used in cancer treatment through 
the mensuration of the overexpression of specifi c V-ATPase subunits in tumors to be 
treated and, then, using specifi c inhibitors for the subunits being expressed [ 89 ], as 
well as using several substances in a synergistic approach [ 90 ]. This will allow clini-
cians to provide more specifi c treatment, while also minimizing adverse effects [ 62 ].   

6     Conclusions 

 The pH of the cell is important for several biological functions and it is clearly 
involved in cell transformation, carcinogenesis, and metastasis. The inhibition of 
V-ATPase, by anticancer drugs, can cause apoptotic mechanisms that lead to the 
inhibition of tumor growth. Therefore, the V-ATPases, which is, as stated above, 
related to the control of tissue acidosis, can be used as a target for treatment, espe-
cially the C subunit of the V1 domain in the enzymatic function of the V-ATPase, in 
case of OSCC. It is important highlight the need of further research of specifi c 
inhibitors for the above-mentioned subunit, in order to control the disastrous conse-
quences of the cancer.     
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    Chapter 20   
 The Vacuolar Proton ATPase (V-ATPase): 
Regulation and Therapeutic Targeting                     

       Norbert     Kartner     and     Morris     F.     Manolson    

    Abstract     V-ATPases are highly conserved proton pumps that are found in all 
eukaryotic cells. They play vital housekeeping roles in cell physiological processes 
by performing their classical functions in acidifying luminal compartments of a 
variety of endomembrane organelles. Recently, it has become evident that 
V-ATPases also have nonclassical roles that require their direct interaction, apart 
from their proton translocating function. Moreover, V-ATPases can have special-
ized tissue- specifi c functions in organisms, where V-ATPase mutations or inappro-
priate expression can result in pathological conditions. Because of their multi-subunit 
structure and numerous subunit variants, V-ATPase expression and function may be 
uniquely fi ne-tuned for specifi c, biologically signifi cant roles. From an interven-
tionist point of view, these same traits potentially make V-ATPases uniquely selec-
tively targetable, both within an organism and among different species. Recent 
examples, that have at least provided proof of principle for this notion, span fi elds 
ranging from medicine to agriculture. The study of V-ATPases in the last three 
decades has produced thousands of publications and many dozens of review arti-
cles. The present work seeks to provide a concise overview of the more recent 
works on structure and function of V-ATPases, their occurrence and importance, 
how they are regulated, and how they might be targeted. We focus on recent primary 
literature, but historical papers of interest and important reviews are also cited. In 
the areas of targeted pharmaceutical and pesticidal intervention we present 
published strategies for drug discovery and also provide relevant proofs of concept 
for targeting V-ATPases to the benefi t human health and prosperity.  

  Keywords     Biological membranes   •   Drug discovery   •   Drug screening   •   pH regulation   
•   Proton transport   •   Regulation of expression   •   Small-molecule inhibitors   
•   Species-targeted pesticides   •   Therapeutic targeting   •   Vacuolar-type proton pump  
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1         Introduction 

1.1       Classical V-ATPase Function 

 V-ATPases are  highly   conserved, multi-subunit molecular motors that hydrolyze 
ATP to pump protons across biological membranes against a pH gradient [ 1 ]. 
V-ATPases are found in all eukaryotes and manifestations of their activity that 
involve pH regulation or proton gradient formation are thought of as their “classi-
cal” functions as proton pumps. These functions can be subcategorized as “house-
keeping” or “specialized.” Without intracellular housekeeping functions of the 
V-ATPases, eukaryotic cells and organisms cannot survive in a native environment 
[ 2 ,  3 ]. Housekeeping functions include energizing membrane compartments to 
drive proton gradient (ΔH + )-coupled transporters, and maintaining the acidic lumi-
nal pH required for the functions of the Golgi, lysosomes, and endomembrane 
organelles involved in vesicular traffi cking, endocytosis, and secretion [ 3 – 5 ]. 
V-ATPases also contribute to intracellular pH homeostasis [ 6 – 8 ]. 

 Specialized functions are not required for cell survival, but are crucial to the 
development and ongoing health of organisms. Apart from their ubiquitous house-
keeping functions, intracellular V-ATPases perform tissue-specifi c functions, such 
as driving ΔH + -coupled neurotransmitter loading of synaptic vesicles [ 9 ]. When 
they are localized to the plasma membrane, V-ATPases are involved in numerous 
tissue-specifi c functions involving acidifi cation of extracellular compartments. 
Examples include osteoclast resorption lacunae involved in bone resorption [ 10 , 
 11 ], luminal spaces of epididymal tubules involved in sperm maturation [ 10 ,  11 ], 
kidney tubules, where V-ATPases plays a role in systemic acid-base balance through 
proton secretion into the urine [ 12 – 15 ], and the coronary arterial endothelium, 
where V-ATPases maintain an acidic extracellular environment that enables lipid 
raft formation required for regulatory redox signaling crucial to endothelial function 
in the coronary circulation [ 16 ].   

1.2      Nonclassical V-ATPase Function 

 V-ATPases are now recognized as having “nonclassical”  functions   that involve 
more than proton pumping activity. For example, V-ATPases are involved in regula-
tion of vesicular traffi cking and membrane fusion, which necessitates generation of 
vesicular pH gradients, but also requires the direct participation of some V-ATPase 
subunits [ 17 – 22 ]. V-ATPases have been shown to recruit cytohesin-2 in a luminal 
pH-sensitive manner, implying that they can act as pH sensors [ 22 ,  23 ]. V-ATPase- 
bound cytohesin-2 recruits ARF6 to the early endosomes and plasma membrane 
[ 24 ], where the complex may regulate endocytic vesicular traffi cking, cytoskeletal 
organization, and cell adhesion [ 22 ]. Endosome recycling is dependent on the latter 
process, and it is thought that the V-ATPase undergoes conformational changes in 
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response to luminal pH to facilitate cytohesin-2 docking [ 25 ,  26 ]. V-ATPase 
apparently can also sense the pH of secretory vesicles that it acidifi es, allowing 
discrimination of fully loaded and partially loaded vesicles [ 27 ]; however, whether 
the pH gradient, or direct involvement of V-ATPase components, is the primary 
factor governing subsequent membrane fusion, remains controversial [ 17 ,  28 ]. In 
receptor- mediated signaling, V-ATPase is required for acidifi cation of early endo-
somes for ligand dissociation and receptor recycling, or lysosomal acidifi cation for 
protein degradation. For Wnt signaling, however, a direct interaction of LRP6 co-
receptor with V-ATPase is also required for signal transmission, and for Notch 
signaling V-ATPase assembly factors play an important role [ 29 ,  30 ]. 

 V-ATPase appears also to be involved in regulation of autophagy and cell growth, 
by engaging in amino acid- and “ragulator complex”-dependent, recruitment of 
the mammalian target of rapamycin cytoplasmic 1 complex, mTORC1 [ 31 ]. The 
 mTORC1   complex essentially ensures that an adequate supply of resources is avail-
able before the cell commits to proliferation. It senses cellular energy and redox 
status, and amino acid supply in late endosomal/lysosomal compartments, and inhib-
its growth and promotes autophagy if any one of these prerequisites is inadequate, 
operating essentially as an anabolic/catabolic switch that is also infl uenced by insu-
lin and growth hormones [ 32 – 35 ]. Abnormal function has been implicated in pathol-
ogies including neurodegenerative diseases, diabetes, and cancer. V-ATPase plays an 
important role in sensing free amino acid status, and conveys this information by 
recruiting mTORC1 to the lysosomal membrane through its interaction with the 
multicomponent ragulator complex [ 36 ,  37 ]. Recent evidence suggests that amino 
acid sensing likely also requires the involvement of lysosomal amino acid transport-
ers [ 38 ,  39 ]. Interestingly,  mTORC1   coordinately regulates the activity of TFEB, a 
transcription factor that is a master regulator of lysosome biogenesis, thereby regu-
lating expression of a host of mTORC1-responsive genes, including V-ATPase sub-
unit genes [ 32 ]. All of this may be independent of the classical function of V-ATPase 
as a proton pump [ 36 ], although this notion remains controversial [ 40 ].   

1.3     Overview of  V-ATPase Structure   

 The default discussion in this review concerns human V-ATPases or, more gener-
ally, mammalian V-ATPases, and often examples will be taken from the fi eld of 
bone research, especially osteoclasts, as this is the authors’ area of expertise. Much 
of our understanding of V-ATPases, however, comes from work done in yeast 
(esp.  Saccharomyces cerevisiae ), insect (esp.  Manduca sexta ), and other nonmam-
malian systems; this will be noted where observations may not be generalized to 
mammalian V-ATPases. 

 The functional V-ATPase complex, the holoenzyme, comprises two subcomplexes: 
a peripherally bound cytoplasmic sector, V 1  (subunits A–H, empirically organized as 
(AB) 3 DF(EG) 3 CH), and an integral membrane sector, V 0  (subunits  a ,  c ,  c″ ,  d , and  e  
(and accessory proteins  Ac45  and  M8-9  in vertebrates; yeast have an additional 
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 subunit,  c′ ), empirically organized as  aed(c   5   c″)(Ac45 ,  M8-9) ;  aed(c   4   c′c″)  in yeast) [ 3 , 
 41 ,  42 ]. The mammalian V-ATPase is depicted diagrammatically in Fig.  20.1  with 27 
subunits, derived from at least 15 different genes. Many of the mammalian V-ATPase 
subunits have multiple isoforms encoded by paralogous genes [ 3 ,  43 ], and their post-
transcriptional variants [ 44 ,  45 ]. These are listed in Table  20.1 . Thus, many different 
combinations of subunit isoforms can potentially be found within a given holoen-
zyme, allowing the assembly and expression of many different isoenzymes, or “iso-
complexes,” of V-ATPase, which may have subtle infl uences on cellular 
organelle-specifi c, or tissue-specifi c, function or localization [ 3 ,  45 – 49 ].

  Fig. 20.1    Structure and function of V-ATPase. ( a ) Diagrammatic representation of the organiza-
tion of a generic mammalian V-ATPase complex. The cytoplasmic V 1  sector consists of a catalytic 
headpiece (three each of alternating A and B subunit pairs forming a toroidal “barrel”) that hydro-
lyzes ATP to drive a central rotor shaft (D and F subunits). The headpiece is held immobile against 
the torque that it generates by a stator complex (three pairs of E and G heterodimers attached to the 
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1.4           Health Impact of  V-ATPases: Disease-Causing 
Mutations of Subunits 

 Why V-ATPases are of interest as therapeutic targets becomes clear when one real-
izes the astonishing range of important functions that they perform, many of which 
came to light when disease causing mutations were mapped to V-ATPase subunit 
genes. The fi rst such report was for B1, by Karet et al. [ 50 ]. B1 is highly expressed 
in the kidney, where it is involved in systemic pH homeostasis, and the inner ear, 
where it maintains the pH of the fl uid environment of sensory hair cells. Thus, the 
consequences of mutations are typically  distal renal tubular acidosis (dRTA)   with 
sensorineural deafness. Recently, loss of B1 function in a mouse model has also 
been shown to result in impaired olfactory function [ 51 ]. The majority of disease- 
causing mutations of V-ATPases, however, involve the  a  subunit. Knockout of  a1 , 
which plays a role in neural transmission, appears to be embryonic lethal [ 18 ], but 
loss of function of  a2  results in cutis laxa, characterized by aberrant Golgi function 
leading to glycosylation defects and abnormal elastin processing that affects the 
skin and other organs [ 52 ,  53 ]. Loss of function of  a3  in osteoclasts results in auto-
somal malignant osteopetrosis, characterized by dense, brittle bone due to dimin-
ished bone resorption [ 54 ]. Loss of  a4  function results in dRTA with occasional 
hearing loss [ 55 ,  56 ]. Loss of  d2  function in mice results in ineffective osteoclast 

Fig. 20.1 (continued) catalytic headpiece, supported by a “collar” consisting of the C and H sub-
units and the N-terminal domain,  NTa , of the  a  subunit) that is anchored to the membrane via 
continuity with the cytoplasmic domain,  CTa , of the  a  subunit of the V 0  sector. The bifurcation of 
 NTa , as shown here, is speculative [ 189 ]. The V 0  sector is largely inserted into the membrane 
bilayer, consisting of the rotor (a heterohexameric ring of 5  c  subunits and a  c″  subunit; one of the 
 c  subunits is replaced with a  c′  subunit in yeast) and a  d  subunit, which couples the  c -ring rotor to 
the ATP-driven DF central rotor shaft of the V 1  sector. The  a  subunit provides both a stator func-
tion, by interacting with the V 1  sector and anchoring it to the membrane, and a proton channel 
function. There are some additional subunits associated with the  a  subunit, whose locations and 
functions are as yet poorly understood, viz. the  e  subunit, and the accessory proteins  Ac45  ( AP1 ) 
and  M8-9  ( AP2 ) that are found in some specialized tissues. ( b ) One mechanism for control of 
V-ATPase activity is reversible disassembly, which at the least involves dissociation of the C sub-
unit from the V 1 V 0  complex and possibly also conformational changes in the  NTa  domain that 
destabilize the complex (depiction here is speculative) [ 136 ]. ( c ) Many published works have 
shown that regulatory reversible disassembly results in further dissociation of V 1  from V 0  [ 130 ]; 
however, this may be an in vitro experimental artifact, though overall conclusions regarding 
V-ATPase regulation likely remain reliable [ 136 ]. ( d ) The theory of V-ATPase transmembrane 
proton translocation suggests that protons diffuse into a cytoplasmic hemichannel formed by the 
 CTa  domain of the  a  subunit to protonate a glutamate residue (blue dot with proton, “H”) on a 
subunit of the  c -ring rotor. This is carried by ATP-driven rotation nearly 360° (clockwise as viewed 
from the cytoplasm, as indicated), until a luminal hemichannel is encountered where the proton 
can dissociate into the lumen [ 3 ]. A charged residue barrier within  CTa  (green sphere, “+”) is 
thought to prevent carryover of the proton back into the cytoplasmic hemichannel. This latter event 
can, however, occur under some circumstances and is referred to a “slip” [ 172 ]. The orange subunit 
represents the single  c″  subunit of the mammalian  c -ring. Modifi ed from Ref. [ 189 ] with permis-
sion of ©The American Society for Biochemistry and Molecular Biology       

20 V-ATPase Regulation and Targeting



412

    Ta
bl

e 
20

.1
  

  M
am

m
al

ia
n 

V
-A

T
Pa

se
 s

ub
un

it 
is

of
or

m
s 

an
d 

sp
lic

e 
va

ri
an

ts
 a   

  

 Su
bu

ni
t i

so
fo

rm
s 

 H
um

an
 g

en
es

 
 Sp

lic
e 

va
r. 

 N
o.

 
  M

  r  (
kD

a)
 

 Fu
nc

tio
n;

 e
xp

re
ss

io
n 

  V
   1    s

ec
to

r  
 A

 
  A

T
P

6V
1A

  
 1 

 3 
 70

 
 C

at
al

yt
ic

 (
st

at
or

);
 u

bi
qu

ito
us

 
 B

1 
  A

T
P

6V
1B

1  
 1 

 3 
 58

 
 C

at
al

yt
ic

/r
eg

ul
at

or
y 

(s
ta

to
r)

; B
1 

re
st

ri
ct

ed
, B

2 
ub

iq
ui

to
us

 
 B

2 
  A

T
P

6V
1B

2  
 1 

 56
 

 C
1 

  A
T

P
6V

1C
1  

 1 
 1 

 42
 

 R
eg

ul
at

or
y 

(s
ta

to
r)

; C
1 

ub
iq

ui
to

us
, C

2a
/C

2b
 r

es
tr

ic
te

d 
 C

2 
  A

T
P

6V
1C

2  
 2 

 48
 

 D
 

  A
T

P
6V

1D
  

 2 
 1 

 34
 

 Pr
im

ar
y 

ro
to

r;
 u

bi
qu

ito
us

 
 E

1 
  A

T
P

6V
1E

1  
 3 

 3 
 31

 
 St

at
or

 a
rm

 w
ith

 G
 s

ub
un

it;
 E

1 
re

st
ri

ct
ed

, E
2 

ub
iq

ui
to

us
 b   

 E
2 

  A
T

P
6V

1E
2  

 1 
 F 

  A
T

P
6V

1F
  

 1 
 1 

 14
 

 R
ot

or
 c

om
po

ne
nt

; u
bi

qu
ito

us
 

 G
1 

  A
T

P
6V

1G
1  

 2 
 3 

 13
 

 St
at

or
 a

rm
 w

ith
 E

 s
ub

un
it;

 G
1 

ub
iq

ui
to

us
, G

2 
re

st
ri

ct
ed

, G
3 

re
st

ri
ct

ed
 

 G
2 

  A
T

P
6V

1G
2  

 2 
 G

3 
  A

T
P

6V
1G

3  
 3 

 H
 

  A
T

P
6V

1H
  

 3 
 1 

 56
 

 R
eg

ul
at

or
y 

(s
ta

to
r)

; u
bi

qu
ito

us
 

  V
   0    s

ec
to

r  
  a1

  
  A

T
P

6V
0A

1  
 4 

 1 
 10

0–
11

6 c   
 Pr

ot
on

 c
ha

nn
el

-f
or

m
in

g 
(s

ta
to

r)
;  a

1  
ub

iq
ui

to
us

,  a
2  

ub
iq

ui
to

us
, 

 a3
  u

bi
qu

ito
us

 (
bu

t h
ig

hl
y 

ex
pr

es
se

d 
in

 o
st

eo
cl

as
ts

),
  a

4  
re

st
ri

ct
ed

 
  a2

  
  A

T
P

6V
0A

2  
 2 

  a3
  

  A
T

P
6V

0A
3  d   

 2 
  a4

  
  A

T
P

6V
0A

4  
 3 

  c”
  

  A
T

P
6V

0B
  

 2 
 1 

 21
 

 Pr
ot

on
 c

ar
ri

er
 (

ro
to

r)
; u

bi
qu

ito
us

 
  c  

  A
T

P
6V

0C
  

 1 
 5 

 16
 

 Pr
ot

on
 c

ar
ri

er
 (

ro
to

r)
; u

bi
qu

ito
us

 

N. Kartner and M.F. Manolson



413

  d1
  

  A
T

P
6V

0D
1  

 1 
 1 

 38
 

 C
ou

pl
er

 (
ro

to
r)

;  d
1  

ub
iq

ui
to

us
,  d

2  
re

st
ri

ct
ed

 
  d2

  
  A

T
P

6V
0D

2  
 1 

  e1
  

  A
T

P
6V

0E
1  

 1 
 1 

 9 
 U

nk
no

w
n 

(s
ta

to
r)

;  e
1  

ub
iq

ui
to

us
,  e

2  
re

st
ri

ct
ed

 
  e2

  
  A

T
P

6V
0E

2  
 3 

  A
c4

5  e   
  A

T
P

6A
P

1  
 4 

 1 
 40

 f   
 A

cc
es

so
ry

 g   (
st

at
or

);
 r

es
tr

ic
te

d 
  M

8-
9  h   

  A
T

P
6A

P
2  

 1 i   
 1 

 9 j   
 A

cc
es

so
ry

 (
st

at
or

);
 r

es
tr

ic
te

d 

  M
ol

ec
ul

ar
 s

iz
e 

(M
 r ) 

is
 g

iv
en

 f
or

 th
e 

co
m

m
on

 h
um

an
 s

pl
ic

e 
va

ri
an

t 
  a  S

ee
 a

ls
o 

Fi
g.

  2
0.

1a
 . T

he
 n

um
be

r 
of

 k
no

w
n 

sp
lic

e 
va

ri
an

ts
 (

Sp
lic

e 
V

ar
.)

 is
 s

ho
w

n 
he

re
. D

et
ai

ls
 o

f 
sp

lic
e 

va
ri

an
ts

 a
re

 c
ite

d 
in

 r
ef

. [
 44

 ].
 T

he
 n

um
be

r 
of

 s
ub

un
its

 
pe

r 
ho

lo
en

zy
m

e 
m

ol
ec

ul
e 

is
 s

ho
w

n 
(N

o.
);

 i
t 

is
 p

re
se

nt
ly

 n
ot

 k
no

w
n 

w
he

th
er

 m
ix

ed
 i

so
fo

rm
s 

of
 s

ub
un

its
 B

, 
E

 o
r 

G
 c

an
 c

oe
xi

st
 i

n 
th

e 
sa

m
e 

ho
lo

en
zy

m
e.

 
Fu

nc
tio

n 
re

fe
rs

 t
o 

ro
le

 w
ith

in
 t

he
 V

-A
T

Pa
se

 h
ol

oe
nz

ym
e 

(s
ta

to
r 

or
 r

ot
or

 l
oc

al
iz

at
io

n 
in

 p
ar

en
th

es
es

);
 e

xp
re

ss
io

n 
re

fe
rs

 t
o 

tis
su

e 
lo

ca
liz

at
io

n,
 o

nl
y 

in
so

fa
r 

as
 

w
he

th
er

 d
is

tr
ib

ut
io

n 
is

 u
bi

qu
ito

us
 o

r 
tis

su
e 

re
st

ri
ct

ed
. A

 r
ev

ie
w

 o
f 

de
ta

ils
 o

f 
tis

su
e 

di
st

ri
bu

tio
n 

ca
n 

be
 f

ou
nd

 in
 r

ef
. [

 45
 ] 

  b  A
s 

a 
co

rr
ec

tio
n 

to
 r

ef
. [

 44
 ],

 E
1 

is
 e

xp
re

ss
ed

 in
 s

pe
rm

at
oz

oa
 (

i.e
., 

re
st

ri
ct

ed
),

 E
2 

is
 u

bi
qu

ito
us

 [
 21

0 ]
, a

s 
in

di
ca

te
d 

he
re

 
  c  T

he
  a

  s
ub

un
it 

is
 g

ly
co

sy
la

te
d 

[ 6
3 ,

  1
89

 ] 
w

ith
 M

 r  o
f 

ap
pr

ox
im

at
el

y 
10

0–
11

6 
kD

a.
 P

re
di

ct
ed

 s
iz

es
 a

re
 (

 a1
–a

4 )
 9

6,
 9

8,
 9

3,
 a

nd
 9

6 
kD

a,
 r

es
pe

ct
iv

el
y 

  d  C
om

m
on

ly
 a

nd
 h

is
to

ri
ca

lly
 d

es
ig

na
te

d 
th

e 
T

 c
el

l i
m

m
un

e 
re

gu
la

to
r 

1 
( T

C
IR

G
1 ;

 a
ls

o 
 A

T
P

6I
 ) 

  e  S
yn

on
ym

ou
s 

w
ith

 a
cc

es
so

ry
 p

ro
te

in
 1

,  A
P

1  
  f   A

c4
5  

ha
s 

a 
pr

ed
ic

te
d 

si
ze

 o
f 

48
 k

D
a,

 b
ut

 i
s 

N
-g

ly
co

sy
la

te
d,

 w
ith

 a
n 

ap
pa

re
nt

 s
iz

e 
of

 6
2 

kD
a.

 T
hi

s 
is

 p
ro

ce
ss

ed
 a

t 
a 

fu
ri

n 
cl

ea
va

ge
 s

ite
, 

yi
el

di
ng

 t
he

 fi
 n

al
 

V
-A

T
Pa

se
-a

ss
oc

ia
te

d 
gl

yc
op

ro
te

in
 o

f 
ap

pr
ox

. 4
0 

kD
a 

(2
7 

kD
a 

un
gl

yc
os

yl
at

ed
) 

  g  T
he

 a
cc

es
so

ry
 p

ro
te

in
s 

no
te

d 
he

re
 a

re
 in

te
gr

al
 m

em
br

an
e 

pr
ot

ei
ns

 a
ss

oc
ia

te
d 

w
ith

 th
e 

V
 0  s

ec
to

r;
 th

ei
r 

pr
es

en
ce

 in
 th

e 
co

m
pl

ex
 is

 r
eq

ui
re

d 
on

ly
 in

 s
om

e 
tis

su
es

 
  h  S

yn
on

ym
ou

s 
w

ith
 (

pr
o)

re
ni

n 
re

ce
pt

or
 a

nd
 a

cc
es

so
ry

 p
ro

te
in

 2
,  A

P
2  

  i  T
he

re
 a

re
 s

ix
 a

dd
iti

on
al

 c
od

in
g 

tr
an

sc
ri

pt
s 

of
  A

T
P

6A
P

2  
th

at
 d

o 
no

t i
nc

lu
de

 a
 tr

an
sm

em
br

an
e 

do
m

ai
n 

  j   M
8-

9  
is

 p
ro

ce
ss

ed
 f

ro
m

 a
 3

8 
kD

a 
pr

ec
ur

so
r 

at
 a

 f
ur

in
 c

le
av

ag
e 

si
te

  

20 V-ATPase Regulation and Targeting



414

precursor fusion, resulting in mild osteopetrosis [ 57 ], but no equivalent mutations 
in human  d2  have been characterized. In rare cases of  X-linked Parkinsonism with 
spasticity (XPDS)   Korvatska et al. [ 58 ] reported the causative role of a variant tran-
script of the  M8-9  accessory protein. It displayed a high incidence of exon 4 skip-
ping, yielding a protein with a 32 amino acid deletion and a consequent reduction in 
crucial V-ATPase function in autophagy in brain cells. A mutation with similar 
splicing consequences has also been reported that results in impaired ERK1/2 acti-
vation and resultant X-linked mental retardation with epilepsy [ 59 ].    

2     Broader Disease-Related Implications 

 V-ATPases are even more generally implicated as potential targets in a wide variety 
of disease processes. Targeting the ruffl ed border V-ATPase in osteoclasts, for 
example, has been investigated as a means of controlling bone loss diseases, like 
 osteoporosis   [ 60 – 62 ]. Furthermore, the potential for intervention in rare cases of 
osteopetrosis, by targeting a protein-folding mutant  a3  subunit, has also been identi-
fi ed [ 63 ].   Gharanei et al. [ 64 ] have shown that the  Wolfram syndrome 1 protein 
(WFS1     ), characteristic of that neurodegenerative disorder, binds the A subunit and 
destabilizes it, with consequences for granular acidifi cation. This likely is a contrib-
uting factor for Wolfram syndrome, but whether targeting this association might 
alleviate symptoms is presently unknown. Inappropriate expression of plasma 
membrane V-ATPases containing  a3  or  a4  subunits in  tumor   cells may lead to tumor 
progression, metastasis and chemotherapy resistance [ 15 ,  34 ,  65 – 69 ], but their cell 
surface expression makes them potential therapeutic targets, as is discussed else-
where within this volume.   

 There are also numerous correlations that require further investigation: 
V-ATPases containing  a3  isoform subunits are present in insulin-secretory granules 
of pancreatic β cells and appear to play a regulatory role in  insulin secretion   [ 21 ]. It 
has also been found that downregulation of H subunit expression correlates strongly 
with type 2 diabetes, though in what capacity remains to be determined [ 70 ,  71 ]. 
Loss of V-ATPase function in the autophagy-lysosome pathway has been implicated 
in aberrant metabolism of proteins that accumulate in  neurodegenerative diseases  , 
like Alzheimer’s dementia and Parkinson’s disease [ 72 ]. Loss of function of the 
VMA21 chaperone  protein   that is required for V-ATPase assembly, though it is not 
a part of the mature complex, also disrupts lysosomal acidifi cation, leading to 
 X-linked myopathy with excessive autophagy (XMEA)   [ 73 ]. V-ATPase may also 
play a role in  cardiovascular disease  , possibly as an indirect consequence of exces-
sive V-ATPase activity in osteoclasts, leading to calcifi cation of arteries [ 74 ]. It is 
thought also that impaired endothelial cell plasma membrane V-ATPase function in 
 diabetes   may play a role in defective angiogenesis [ 75 ,  76 ]. 

 V-ATPases of pathogenic organisms can also be of clinical importance.  Parasitic 
nematodes  , for example, place a signifi cant burden on both human health and agri-
culture. It has been argued that V-ATPase, which performs many crucial functions 
within the   Caenorhabditis elegans  model   parasitic organism, might serve as a  useful 
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target for controlling them [ 77 ]. Similarly, the fungal V-ATPase appears to be 
 essential for virulence and it has been suggested that it may be an appropriate target 
for controlling   Candida albicans    and other fungal pathogens [ 78 ].  Dengue fever   is 
transmitted by mosquitoes and 100 million people are infected annually, with half 
the world population at risk. A mosquito V-ATPase has been identifi ed as a required 
host factor in   Aedes aegypti   ; its targeted inhibition could effectively control dengue 
virus transmission [ 79 ]. 

 V-ATPases also play a role  in viral infection  . The H subunit binds the adaptor- 
related protein complex 2 (AP-2) μ2 chain (AP2M2) of coated endocytic vesicles 
and also the HIV Nef protein. Thus, the H subunit acts as a connector between  HIV   
and the traffi cking mechanism that carries endosomes to lysosomes, thereby con-
tributing to HIV infectivity [ 80 ]. More generally, because of its involvement in viral 
processing, it has been suggested that targeting V-ATPase might provide an alterna-
tive means of preventing the spread of pandemic avian infl uenza, and a treatment 
modality that avoids selection for resistant strains [ 81 ]. 

2.1     Other Impacts 

 Agriculture has always been plagued by insect pests [ 82 ] and we consider in a follow-
ing section ways that insect V-ATPases might be targeted to provide  novel insecti-
cides   with high specifi city for target species and the potential to signifi cantly improve 
global agricultural yields. It is worth noting also that, globally, a considerable fraction 
of potentially arable land is inaccessible to high-yield agriculture due to excessive 
soil salt concentrations [ 83 ], and plant salt tolerance depends in part on V-ATPase 
expression [ 84 ]. Further understanding of this process, and engineering ways of 
exploiting the V-ATPase-dependent ion and osmotic stress response could improve 
agricultural yields, a growing concern as human population continues to expand.   

3     Factors Affecting V-ATPase Activity 

  Expression   is normally thought of as being under the control of promoters and tran-
scription factors, which account for differential tissue distribution and assembly of 
V-ATPase isocomplexes with “customized” subunit isoform composition. However, 
 differential sorting   and  traffi cking  , which determine subcellular localization, are 
also crucial to expression, as the V-ATPases have a uniquely diverse range of func-
tions in various organelles. Additionally, modulation of function is an important 
acute form of regulation of in situ V-ATPase activity, in immediate response to vari-
ous stimuli. Understanding V-ATPase regulation is a prerequisite for fi nding thera-
peutic solutions to diseases that involve a particular V-ATPase  isocomplex  , which 
will invariably be found in a background of vital housekeeping isocomplexes. 
The following is a brief survey of V-ATPase regulation, and there are many recent 
reviews of broader scope [ 3 ,  26 ,  45 ,  46 ,  85 ,  86 ]. 
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3.1      Regulation of  Transcription   

 Differential expression of V-ATPase isocomplexes is driven by the regulation of 
transcription of subunit isoform genes. Some V-ATPase isoforms, however, are 
ubiquitously expressed. For example, though the B2 subunit is one of the subunit 
isoforms characteristic of the osteoclast ruffl ed-border V-ATPase, it is widely 
expressed and its promoter contains a TATA-less, GC-rich regulatory region con-
taining “CpG islands,” with multiple Sp1 and AP-2-like binding sites [ 87 ,  88 ]. 
Similar promoter regions are seen for the C1,  c″ , and  c  subunits, where also Oct1 
motifs are present [ 89 ,  90 ]. CpG islands are common in promoter regions of ubiq-
uitously expressed genes, and genes expressed in early embryogenesis, though 
otherwise they are infrequent [ 91 – 93 ]. Thus, expression of ubiquitous V-ATPase 
subunits is regulated largely through such promoter regions [ 45 ,  94 ], and cyto-
sine methylation in CpG islands may allow further epigenetic fi ne-tuning of 
expression [ 95 ]. 

 There are examples also of regulation of tissue-restricted, specialized V-ATPase 
expression. In renal intercalated cells, the plasma membrane V-ATPase requires 
the B1 subunit isoform, whereas in osteoclasts it is the B2 isoform of the V 1  B 
subunit; these are paired with  a4 , or  a3 , respectively, of the V 0   a  subunit. B1 
expression is largely restricted to a family of  forkhead-related epithelial (FORE) 
cells   that occur in the kidney, epididymis and inner ear, where not only B1, but 
also E2 and  a4  subunits are under control of the forkhead box (FOX) transcription 
activator FOXI1, which acts as a master regulator of specialized plasma mem-
brane V-ATPase expression in FORE cells [ 95 – 97 ]. It has been noted that some 
existing drugs may modulate expression of other FOX proteins [ 98 ]; whether 
FORE cell V-ATPase expression might be amenable to similar therapeutic manip-
ulation is as yet unclear. 

 In osteoclasts,  a3  expression is under control of an NF-κB-induced transcription 
factor complex containing NFATC1, the master regulator of osteoclast differentia-
tion [ 99 ,  100 ]. The  a3  subunit gene bears a RANKL-responsive NFATC1 promoter 
1.6 kb upstream of the start codon. Basal transcription is downregulated by 
poly(ADP-ribose) polymerase-1 (PARP-1) binding to the promoter. RANKL stimu-
lation results in PARP-1 degradation, causing upregulation of  a3  transcription 
[ 101 ]. A second PARP-1 site is a few hundred bases downstream, adjacent to an 
AP-1 site [ 102 ]. 

 The  d2  isoform, which is part of the osteoclast ruffl ed border V-ATPase is also 
upregulated in osteoclasts, through the  NFATC1 promoter   [ 103 ] and co-activation 
by  myocyte enhancer factor 2 (MEF2)   and  microphthalmia-associated transcription 
factor (MITF)   [ 104 ]. RANKL-induced osteoclast differentiation, through NFATC1, 
turns on not just specifi c V-ATPase subunit isoform genes, but also a host of ancil-
lary genes required for bone resorption, to express proteins like CLC7, the chloride 
counterion shunt without which V-ATPase could not effectively pump protons, and 
proteases like MMP9 and cathepsin K, required for degradation of the organic com-
ponent of bone [ 100 ].   
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3.2       Messenger RNA Stability   

 Lee et al. [ 87 ] observed that in human macrophage/monocyte differentiation, where 
V-ATPase expression is upregulated, only B2 transcription is elevated. It was sug-
gested that other subunits must be upregulated by post-transcriptional mechanisms. 
Furthermore, in kidney, transcript ratios do not equal their corresponding protein 
ratios for V-ATPase subunits [ 105 ], yet in osteoclasts the ratios are equal [ 106 ], sug-
gesting that regulation in kidney must also involve mRNA stability, translation 
rates, or protein turnover rates. In a similar vein, Wang et al. [ 89 ] showed that pro-
moter activity was similar for  c  subunit mRNA transcription in murine macrophage 
and fi broblast cell lines, despite a six- to eightfold difference in expression. In the 
high-expression macrophages, stability of mRNA was shown to be higher for B2, 
E1, F,  a1 , and  c  transcripts. Jeyaraj et al. [ 107 ] later showed that stability was deter-
mined by an AU-rich element (ARE), a common regulator of mammalian mRNA 
stability, near the 3′-UTR polyadenylation site [ 108 ]. AREs tend to be destabilizing, 
by involvement of microRNA binding; in contrast, HuR binding promotes transcript 
stability and translation effi ciency [ 109 ,  110 ]. HuR has been shown, along with a 
second regulatory protein, hnRNP, to bind E1, G1,  c , and  c″  mRNA [ 107 ,  111 ,  112 ]. 
Though regulation of mRNA stability may play an important role in V-ATPase iso-
complex expression and subunit selection, a more complete understanding will 
require further investigation.   

3.3      MicroRNA Regulation   

 MicroRNAs are conserved, short-hairpin RNAs that can bind mRNA targets and 
repress their expression, either by directly causing their cleavage, destabilizing 
them by shortening their polyA tail, or interfering with translation [ 113 ,  114 ]. It has 
been shown by Stark et al. [ 115 ] that the muscle microRNA, miR-1, binds human 
A, B2, C1,  a1 , and  c  subunit transcripts, and also  D. melanogaster  and  C. elegans  
homologues of E, G, and  d , possibly regulating the coordinated expression of ubiq-
uitous subunits. In a specifi c example of relevance to human health, O’Connor et al. 
[ 116 ] showed that catestatin processing from the prohormone chromogranin A was 
variable, depending on a sequence polymorphism, T+3246C, residing in the 3′-UTR 
of the  a1  transcript. This C variant resulted in lowered plasma catestatin levels, 
leading to lower blood pressure and a reduced risk of hypertensive disease. This was 
later found to be due to regulation by the miR-637 microRNA, which preferentially 
binds the C variant  a1  mRNA, inhibiting its translation [ 117 ]. This causes a reduc-
tion in vacuolar V-ATPase activity, an increase in luminal pH, and a consequent 
decrease in chromogranin A processing to catestatin [ 116 ]. Although there is a great 
deal more to be learned about V-ATPase regulation by microRNAs, it seems evident 
that engineered microRNAs may have a future in therapeutic targeting of specifi c 
V-ATPase isocomplexes.  
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3.4       Splice Variants   

 The majority of V-ATPase subunit splice variant transcripts inferred in Table  20.1  
remain uncharacterized, but their potential importance is highlighted by some 
examples: Poëa-Guyon et al. [ 118 ] characterized rat brain expression of subunit  a2  
and four splice variants of subunit  a1 ,  a1-I  (C variant),  a1-II  (N variant),  a1-III  
(canonical), and  a1-IV  (N+C variant). The mRNA splice variants result in a seven 
amino acid insertion, peptide N, between the translated exons 4 and 5 (in the cyto-
plasmic  NTa  domain shown in Fig.  20.1a ) and/or a six amino acid insertion, peptide 
C, between exons 17 and 18 (in the cytoplasmic loop between transmembrane heli-
ces 6 and 7 in the integral membrane domain,  CTa , shown in Fig.  20.1a ). Subunits 
 a2 ,  a1-I  and  a1-II  were found to be endogenously co-expressed in rat hippocampal 
neurons. The peptide C-containing  a1  variants appeared to be specifi c to neuronal 
expression and were upregulated during neuronal synaptogenic differentiation. The 
three neuronal  a  subunit variants, epitope tagged and recombinantly expressed in 
cultured neuronal cells, were found to sort to different subcellular compartments; 
the ubiquitous  a2  to the soma, likely the Golgi, as is typical for  a2 , the  a1-I  variant 
to nerve terminals, and the  a1-IV  variant to dendritic processes. It appears that the 
peptide C insert determines sorting specifi c to neurotransmitter storage, and this 
may be modifi ed by the addition of peptide N to target the plasma membrane. 
Peptide C also introduces a PEST motif that likely reduces the biological half-life 
of the  a1-I  and  a1-IV  subunit variants, but the signifi cance of this remains unclear. 

 It has been shown that mouse and human  a4  have alternate fi rst exons [ 119 ,  120 ]. 
In mouse, this results in differential embryonic and adult expression, though this has 
not been shown for human  a4 . The C2 subunit has an alternate exon [ 121 ,  122 ] 
resulting in lack of a 46 amino acid insert; C2+ (C2a) is expressed in lung, whereas 
C2− (C2b) is expressed in kidney. Additionally, there is an example of alternate start 
codon usage that results in non-V-ATPase expression of the  a3  subunit. The TIRC7 
membrane protein involved in T cell activation is derived from an  a3  transcript uti-
lizing a start codon within exon 5 of  ATP6V0A3  (historically,  TCIRG1 ,  ATP6I ) 
[ 123 ]. TIRC7 is expressed on the surface of lymphocytes, whereas  a3  is highly 
expressed on the ruffl ed border of osteoclasts; alternate promoter usage must 
account for this differential expression. Thus, splice variants may account for dif-
ferential tissue expression, sorting to various subcellular compartments, and pro-
teins of alternate function.   

3.5       Assembly and Reversible Disassembly   

 In yeast, the V 1  sector of V-ATPase appears to self-assemble in the cytoplasm [ 124 ]. 
For V 0  there are at least three ER chaperones, Vma12p, Vma21p, and Vma22p that 
are essential for assembly [ 124 ,  125 ]; there is also an ER-resident accessory chap-
erone, Pkr1p, that enhances V 0  assembly effi ciency [ 126 ]. Vma21p additionally 
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escorts the V 0  sector to the Golgi, but is then recycled to the ER; none of the afore-
mentioned proteins are retained as part of the functional V-ATPase complexes at 
their fi nal destinations. In higher plants, the ER quality control chaperones, calnexin 
and BiP, have been coimmunoprecipitated with the full V-ATPase holoenzyme, sug-
gesting that they too are involved as chaperones and in quality control of V-ATPase 
assembly and, moreover, that the entire V 1 V 0  holoenzyme is assembled at the ER 
[ 127 ]. In humans the process of V 0  assembly appears to be conserved, but the chap-
erones have diverged considerably, although a putative ortholog of Vma21p has 
been identifi ed [ 73 ]. 

 Considerably more needs to be understood about assembly of mammalian 
V-ATPases before therapeutic intervention can be considered; however, their regu-
lated disassembly may be more tractable. It has long been proposed that under cer-
tain types of stress, particularly cellular glucose deprivation, the V 1  sector of 
V-ATPase dissociates from the V 0  sector (Fig.  20.1c ), resulting in V-ATPase inacti-
vation (reviewed in Refs. [ 4 ,  128 – 130 ]). This process also results in the reversible 
loss of the C subunit from the V 1  sector (Fig.  20.1b, c ). Regulation by reversible 
disassembly has been described most thoroughly in the yeast ( S. cerevisiae ) and in 
the insect ( M. sexta ) systems [ 85 ,  130 – 132 ]. Its evolutionary rationale may be to 
spare ATP for more immediately essential cellular processes, under starvation con-
ditions. V-ATPase is known to associate with aldolase, by direct interaction with 
subunits B, E and  a , which contributes to V-ATPase stability [ 23 ,  133 – 135 ] and is 
part of a glycolytic metabolon that dissociates on glucose starvation [ 136 ]. As part 
of this metabolon, V-ATPase also interacts with phosphofructokinase-1, which may 
also stabilize the complex [ 137 ]. This glycolytic metabolon senses and responds to 
metabolic status, making ATP and protons from glycolysis proximally available to 
the proton pump, but it also shuts down V-ATPase activity to regulate intracellular 
pH, or to respond to restricted cellular energy status. 

 V-ATPase disassembly in this process requires the involvement of microtubules, 
and it has been suggested that ATP/ADP binding and phosphorylation of the C sub-
unit may destabilize V-ATPase structure in a regulatory manner by altering its affi n-
ity for actin, or components of the V-ATPase stator [ 26 ,  138 ,  139 ]. The  NTa  domain 
of the  a  subunit recruits cytohesin-2 in a pH-dependent manner, which in turn 
recruits ARF6. It has been speculated that the activity of this cytohesin guanine 
nucleotide exchange factor (GEF) signaling complex, which may be further modu-
lated by aldolase binding, affects the interaction of  NTa  with stator EG heterodi-
mers, resulting in instability leading to the regulatory disassembly of the C subunit 
and of V 1 –V 0  [ 26 ]. 

 For V-ATPase reassembly, Chan and Parra [ 140 ] have shown in  S. cerevisiae  that 
reassociation of the C subunit is dependent on the Pfk2p subunit of the glycolytic 
enzyme, phosphofructokinase-1. V 1 V 0  reassembly is modulated by glucose- sensitive 
association of V-ATPase with aldolase [ 134 ,  141 ], and with the yeast “regulator of 
H + -ATPase of vacuolar and endosomal membranes” (RAVE; or equivalent rabcon-
nectins in mammalian cells), a complex that interacts with EG heterodimers and the C 
subunit. RAVE-dependent assembly in yeast may be specifi c to the  a  subunit isoform, 
required for V-ATPases containing Vph1p and not for those containing Stv1p [ 142 ]. 
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Similarly, Tuttle et al. [ 143 ] have suggested that different rabconnectins may pair with 
specifi c  a  subunit isoforms to infl uence cell type-specifi c traffi cking and signal pro-
cessing in vertebrates. Signaling pathways dependent on cytosolic pH, as determined 
by glycolytic activity [ 144 ], and involving phosphatidylinositol 3-kinase (PKI3) [ 145 ] 
and protein kinase A (PKA) [ 146 ], have been shown to be involved in recruitment and 
assembly of V-ATPases. Reassembly or stability also seem to be promoted by high 
extracellular pH [ 147 ]. Both disassembly and reassembly are rapidly reversible, and 
the catalytic ATPase and proton translocation activities of the isolated V 1  and V 0  sec-
tors, respectively, are inhibited [ 132 ,  148 ,  149 ]. The H subunit inhibits the ATPase 
activity of the V 1  sector, likely by interaction with the F subunit of the DF “crank-
shaft,” which protrudes from the catalytic headpiece of dissociated V 1  [ 148 ,  150 ,  151 ]. 
Interestingly, in  S. cerevisiae  it has been shown that the V 0   a  subunit lysosomal iso-
form, Vph1p, is more responsive for reversible disassembly than the Golgi-localized 
Stv1p, with both V-ATPase subunit composition and local membrane environment 
contributing to the difference [ 152 ,  153 ]. 

 The fi rst mammalian report of V 1 V 0  disassembly was for dendritic cells respond-
ing to maturation signals [ 154 ]. In immature dendritic cells, lysosomal acidifi cation 
is depressed by V-ATPase dissociation to preserve antigen integrity. On maturation, 
V-ATPase reassembles, the lysosome is acidifi ed, and antigen is processed. Recent 
evidence suggests that this reassembly is controlled by the PI3K/mTOR signaling 
pathway [ 155 ]. Type II alveolar cells stimulated with surfactant secretagogues also 
disassemble  a1 /B2-containing lamellar body V-ATPase [ 156 ]. These examples are 
not the result of glucose deprivation, and their mechanisms are poorly understood. 
The fi rst evidence of mammalian glucose-dependent reassembly was found in cul-
tured kidney cells [ 145 ,  157 ]. Glucose treatment promotes both reassembly of V 1 V 0  
after starvation and translocation of V-ATPase to the apical plasma membrane from 
a cytoplasmic vesicle pool, and both of these processes are dependent on PI3K 
activity. Reversible disassembly also appears to be regulated by extracellular pH 
[ 144 ,  147 ], by salt stress in plants [ 158 ] and, in insect cells, transient phosphoryla-
tion of the C subunit might mediate reassociation of the C subunit with V 1  and 
consequent reassembly of V 1 V 0  [ 159 ]. 

 Tabke et al. [ 136 ] have suggested recently that in vivo disassembly of V 1 V 0  into 
independent sectors does not occur, but rather only the C subunit dissociates from 
the complex, rendering it reversibly inactive. Their in vivo FRET analyses, using 
fl uorescent protein-tagged V-ATPase subunit expression in  S. cerevisiae  show that 
yeast V 1  and V 0  sectors remain in close proximity to the vacuolar membrane upon 
cellular glucose starvation. Instead of V 1  dissociation, dissociation of the C subunit 
alone is observed, and this appears to depend on direct interaction of microtubules 
with the C subunit, though reassembly is microtubule-independent. Tabke et al. 
[ 136 ] further argue that when the C subunit dissociates, the V 1 V 0  holoenzyme is 
destabilized to the extent that further in vitro histo/cytochemical or biochemical 
manipulation results in artifactual V 1 V 0  dissociation, in proportion to the prior loss 
of C subunit. These FRET analyses also reveal a change in distance between the B 
and  a  subunits during glucose starvation, in a manner that suggests conformational 
changes in the V-ATPase that could plausibly account for its apparent concurrent 
instability upon C subunit loss. One might perhaps think of in vitro V 1 –V 0   dissociation 
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as an assay for in vivo C subunit dissociation, with few conclusions in the published 
literature being substantially affected by the distinction. Regardless of the precise 
in vivo mechanism of “reversible disassembly,” it results in regulatory inactivation/
reactivation of V-ATPase as an ATP hydrolytic enzyme and as a proton pump. 
Tapping into this regulatory mechanism by way of therapeutic intervention will, 
however, require a more detailed understanding relevant to human tissues.   

3.6      Regulation by  Localization  : Recruitment 
and Redistribution 

 V-ATPases depend on vesicular traffi cking to arrive at the various destination mem-
brane compartments where they perform their functions. Failure to target correctly, 
whether in a regulatory manner, as a result of pathology, or due to therapeutic inter-
vention, negates the intended V-ATPase function. How normal targeting is regu-
lated remains obscure, but in at least some cases it is likely that the V-ATPase 
subunit composition encodes signals that predetermine its localization. In yeast, for 
example, the two  a  subunit isoforms Vph1p and Stv1p are localized to the vacuole 
and the Golgi apparatus, respectively, by virtue of polypeptide targeting signals 
within their  NTa  domains [ 47 – 49 ,  160 ]. 

 A tissue-specifi c example of targeting is seen in the mammalian intestine, where 
luminal Cl - /HCO3 -  equilibrium requires proton secretion mediated by V-ATPase. 
Here it is the cystic fi brosis transmembrane-conductance regulator, CFTR, that reg-
ulates V-ATPase activity by providing a variable chloride counterion shunt. CFTR 
itself is regulated by the cAMP-dependent protein kinase, PKA, not just in its chlo-
ride channel activity, but also in its recruitment to the enterocyte brush border mem-
brane. This recruitment appears to apply to V-ATPase as well, by direct interaction 
with CFTR, resulting in translocation of the former from the basolateral membrane 
to the apical brush border [ 161 ]. In other examples, it has been shown that cAMP/
PKA and Rab11b regulate traffi cking of V-ATPase into apical membranes of epithe-
lial cells in the kidney, salivary glands and epididymis by recruitment from subapi-
cal endosomal compartments [ 146 ,  162 ,  163 ]. In mouse cortical collecting duct, 
angiotensin II initiates a similar redistribution of V-ATPase to apical plasma 
 membranes from subapical vesicles [ 164 ]. The A subunit appears to play a direct 
role in regulation of V-ATPase redistribution, as it has been noted that it can be 
transiently phosphorylated by PKA at serine 175, resulting in upregulated activity in 
kidney and epididymal epithelia [ 165 – 168 ]. The A subunit can also be phosphory-
lated by the 5′-AMP-activated protein kinase, AMPK, at serine 384 [ 166 ,  168 ], 
although this appears to be inhibitory for plasma membrane V-ATPase activity in 
kidney. In osteoclasts, V-ATPase is translocated to the ruffl ed border upon osteoclast 
activation, from a pool of intracellular lysosomal vesicles. This requires interaction 
with actin microfi laments that bind the N-terminal domain of V-ATPase B subunits 
[ 169 ,  170 ]. Therapeutically targeting the interaction of F-actin and V-ATPase B sub-
units and other specifi c protein-protein interactions within the osteoclast V-ATPase, 
to inhibit osteoclastic bone resorption, is discussed further, below.   
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3.7       Coupling Effi ciency   

 Kawasaki-Nishi et al. [ 153 ] showed that yeast V-ATPases with the  a  subunits Stv1p or 
Vph1p have similar enzyme kinetic properties, yet Stv1p realizes a four- to fi vefold 
lower coupling effi ciency of protons transported per ATP molecule hydrolyzed than 
Vph1p. It has been suggested that this difference in coupling effi ciency accounts for the 
higher pH observed in the Golgi, compared to the vacuole, and that differences in sub-
unit isoform composition of mammalian V-ATPase isocomplexes may regulate differ-
ences in steady state pH within the organelles to which they are targeted. 
Electrophysiological studies of active transporters have revealed a common “lack of 
precision” in predicted solute output per molecule of ATP hydrolyzed [ 171 ]. For 
V-ATPases, one possibility for this lack of precision is referred to as “slip,” which may 
be due to the inability of protons to dissociate into the lumen against a large ∆H + , 
resulting in carryover, past what is usually an effective charge barrier between the lumi-
nal and cytoplasmic proton hemichannels (Fig.  20.1d ), and release back into the cyto-
plasm instead [ 172 ]. Slippage, or more generally, proton “shunting,” depends on the 
current–voltage properties of the proton pump, the transmembrane electrical charge 
and pH gradient. Shunting alone may account for all of the variable coupling effi cien-
cies that have been observed for V-ATPases and may represent transient thermody-
namic behavior of the V-ATPase as an open proton channel [ 173 ]. Whether slippage, or 
shunting, is completely intrinsic to V-ATPase structure, or is infl uenced by other regu-
latory elements, or can be pharmaceutically manipulated, is presently not known.   

3.8       Lipid Microenvironment   

 It has recently been shown that the signaling lipid, phosphatidylinositol 
3,5- bisphosphate, PI(3,5)P 2 , directly interacts with the V-ATPase V 0  sector and pro-
motes assembly and stability of V-ATPase, possibly by altering the conformation of 
the N-terminal domain of the  a  subunit, Vph1p, in yeast [ 174 ]. C26 acyl sphingolip-
ids also affect yeast V-ATPase activity, but surprisingly it is the cytosolic V 1  sector 
that is inactive without them. It has been suggested that these lipids support V 1  
activity indirectly, by affecting the RAVE complex that is required for V 1  assembly 
[ 175 ]. In mammalian cells the simple sphingolipid, glucosylceramide, appears to be 
required to support high levels of V-ATPase activity in melanocyte endomembranes, 
a necessity for protein sorting and melanosome biogenesis [ 176 ]. In plants, tono-
plast V-ATPase activity is enhanced in vitro by tonoplast phospholipids, but 
depressed by tonoplast glycolipids [ 177 ]. Yoshida et al. [ 178 ] have shown further 
that in  Arabidopsis thaliana  vacuoles the organellar membrane consists of microdo-
mains that are characterized by either detergent sensitivity or detergent resistance. 
V-ATPase was found to associate with detergent resistant microdomains, which 
have elevated proportions of saturated fatty acids in their phosphatidyl choline and 
phosphatidyl ethanolamine phospholipids, compared with total vacuolar phospho-
lipids. The authors speculate that since plasma membrane microdomains play a role 
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in signal transduction, vacuolar microdomains may be involved in regulation of 
membrane transport and signal processing at the vacuolar level; however, direct 
evidence of this remains lacking. 

 Although the concept has been largely unexplored in mammalian systems, there 
is some indication that manipulation of the membrane lipid microenvironment in 
which V-ATPases fi nd themselves might have therapeutic value. In yeast, mem-
brane ergosterol (which is not found in animal cells) is required for V-ATPase func-
tion. V-ATPase is crucial to virulence of pathogenic fungi, and the azole class of 
antifungal drugs exploits this by inhibiting ergosterol biosynthesis [ 179 ].   

3.9       Ancillary Enzymes   

 V-ATPases cannot function without a number of supporting enzymes and transport 
proteins, often also having tissue-specifi c expression. Intracellular  carbonic anhy-
drase II (CA II)   is expressed to rapidly equilibrate the reaction of CO 2  and water to 
produce protons and bicarbonate ions. Though widely distributed, CA II is espe-
cially important in highly active acid-secreting cells, like osteoclasts and special-
ized kidney ductal epithelial cells, to provide a readily accessible pool of protons to 
the V-ATPase. It also provides bicarbonate ions to power cellular chloride uptake 
via Cl - /HCO 3  -  exchange. In osteoclasts, the latter role is performed specifi cally by 
the anion exchange protein 2 (AE2) with which CA II directly interacts [ 180 ]. 
Electrogenic proton pumping by V-ATPase would come to a quick halt if the charge 
gradient were not neutralized by a counterion shunt [ 181 – 183 ]; in the osteoclast this 
is provided by the chloride channel 7 (CLC7), an electrogenic H + /2Cl -  exchanger, 
which utilizes the chloride ions provided by AE2. Depending on the tissue and sub-
cellular compartment, other isozymes and H + /ion exchangers can take on the roles 
of those specifi cally highlighted here. 

 Mutations in the above ancillary enzymes illustrate their importance to V-ATPase 
activity. Mutations in  CA2 , the gene coding for CA II, which is highly expressed in 
both osteoclasts and kidney, cause combined osteopetrosis and dRTA, similar to 
what is seen separately for mutations in the V-ATPase subunits  a3  and  a4 , which are 
also highly expressed in the respective tissues [ 56 ,  184 ]. Mutations in  SLC4A2 , 
which codes for AE2 have not been described in humans, but a deletion mutation in 
bovine  SLC4A2  results in osteopetrosis in cattle [ 185 ]. Interestingly, mutations in 
the anion exchange protein 1 (AE1), which is a kidney-specifi c form, cause a domi-
nant variation of dRTA that is otherwise similar to what is seen for mutations in the 
kidney-specifi c V-ATPase B1 and  a4  subunit isoforms. Mutations in  CLCN7 , which 
codes for the chloride channel CLC7, also cause osteopetrosis, much like mutations 
in the V-ATPase  a3  subunit [ 186 ], and a specifi c inhibitor of CLC7 has been shown 
to prevent bone loss in ovariectomized rats [ 187 ]. Apart from mutations, there is 
also the observation, as was noted above, that V-ATPase proton extrusion into the 
gut lumen depends on a specialized, tissue-specifi c association with CFTR [ 161 ]. 
These examples illustrate the potential for indirect manipulation of V-ATPases by 
targeting the ancillary proteins upon which their activity depends.    
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4     Targeting Inhibition of V-ATPase 

 It is tempting to think that manipulating specifi c endogenous regulatory mecha-
nisms for V-ATPase expression and function, including those described above, 
might achieve precise therapeutic targeting. While this may 1 day be the case in 
some applications, a great deal more needs to be understood regarding these regula-
tory mechanisms before such an approach can be realized. Furthermore, many of 
the regulatory molecules described are widely distributed throughout the organism, 
making a “magic bullet” solution unlikely. Historically, numerous small molecule 
inhibitors, mostly natural products, have been used to experimentally inhibit 
V-ATPases, the plecomacrolides bafi lomycin A1 and concanamycin A being the 
most commonly used [ 188 ]. These generally are not selective among V-ATPase 
isocomplexes. Some inhibitors have been described that may be selective for osteo-
clast V-ATPases, but clinical utility has proved elusive. We briefl y review here illus-
trative examples of strategies used towards trying to achieve specifi c V-ATPase 
targeting, with applications ranging from pharmaceutical to agrochemical. 

4.1     Novel V-ATPase Inhibitors: Discovery Strategies 
and Applications 

 The ultimate goal in targeting V-ATPases clearly is to be able to manage a “surgical 
strike” against a specifi c isocomplex without affecting V-ATPases of alternative subunit 
isoform composition. Recently, strategies have been designed to discover inhibitors of 
protein interactions that are required for the functions of specifi c V-ATPase isocom-
plexes, and RNAi methods to knock down expression of specifi c subunit isoforms. 

4.1.1      Small Molecule Inhibitors of V-ATPase  Quaternary Subunit 
Interaction   

 Kartner et al. [ 189 ] characterized interactions between mouse V-ATPase  a  and B 
subunits, using yeast two hybrid screening and pulldown assays of recombinant 
fusion proteins. They further characterized the interactions between all of the mouse 
 a  and B subunit isoform pairs using an ELISA system to generate relative binding 
curves. This assay lent itself to modifi cation to achieve high-throughput screening for 
small molecule inhibitors of the  a3 –B2 interaction, an interaction that has some spec-
ifi city for osteoclast ruffl ed-border V-ATPase [ 190 ,  191 ]. Screening of small syn-
thetic compound and natural product libraries led to the discovery of a small synthetic 
molecule, 3,4-dihydroxy- N ′-(2-hydroxybenzylidene)benzohydrazide, that was able 
to inhibit in vitro osteoclastic bone resorption with an IC 50  of 1.2 μM [ 189 ]. 

 Crasto et al. [ 192 ] used a similar strategy to discover the natural product small 
molecule inhibitor, luteolin, a plant fl avonoid that inhibits the  a3–d2  interaction that 
also occurs in osteoclast ruffl ed-border V-ATPases. Luteolin inhibited in vitro  osteoclast 
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bone resorption with an IC 50  of 2.5 μM. Shin et al. [ 193 ] have independently shown 
in vivo that luteolin inhibits prosthetic wear particle osteolysis in mice. 

 For either of the above compounds, the precise mechanisms of action remain spec-
ulative, and metabolic lability and intellectual property issues have impacted on their 
further development [ 61 ,  62 ]. Nevertheless, these proof-of-concept examples suggest 
that targeting sites of subunit interaction within the V-ATPase complex may be a 
viable means of obtaining inhibitors of specifi c isocomplexes, in these cases those of 
the osteoclast ruffl ed border for the purpose of limiting bone-loss diseases like osteo-
porosis. They also highlight a novel and simple ELISA-based approach to high-
throughput random drug screening that can be generalized to potentially identify 
highly targeted inhibitors of important tertiary, quaternary, or quinary protein struc-
ture interactions that can be modeled in vitro. Furthermore, so long as the interacting 
pair of proteins or appropriate polypeptide segments can be produced or isolated in 
suffi cient quantity, such a screening method can be performed even in the absence of 
structural information or a precise knowledge of the protein interaction sites.   

4.1.2      Small Molecule Inhibitors of V-ATPase  Quinary Protein Interaction   

 In a different screening strategy, Toro et al. [ 194 ] exploited the knowledge that 
V-ATPases bind actin fi laments in osteoclasts via an interaction between F-actin and 
the B2 subunit [ 195 ]. This interaction is crucial for cycling of ruffl ed border V-ATPase 
between bone resorptive activity at the ruffl ed-border plasma membrane and “storage” 
in cytoplasmic vesicles. Using computer modeling of the docking sites for this interac-
tion, Ostrov et al. [ 196 ] were able to perform virtual screening for small molecule 
inhibitors, the most promising hit being enoxacin, a fl uoroquinolone antibiotic. 
Enoxacin appears to inhibit the vesicular traffi cking of the osteoclast ruffl ed-border 
V-ATPase, which is dependent on its interaction with the actin cytoskeleton, thus mak-
ing it a promising candidate for osteoporosis treatment [ 197 ]. A bone-targeted enoxa-
cin–bisphosphonate conjugate has been shown to inhibit in vivo orthodontic tooth 
movement in rats [ 198 ]. What separates this work to identify inhibitors of protein inter-
action from the previous examples is the use of virtual screening, where both the site of 
protein interaction and the library of compounds screened are computer models. Such 
methods clearly are highly cost effective, and this proof-of-concept example highlights 
their potential. With regard specifi cally to therapeutic V-ATPase targeting, a broader 
application of virtual drug screening must await broader databases of high-resolution 
3D subunit structures and their interactions, both intra-V-ATPase isocomplex interac-
tions and their, as yet poorly defi ned, extra-complex quinary interactomes.   

4.1.3      RNAi   and Gene Therapy Approaches 

  In periodontal disease, infl ammation induces local osteoclastogenesis and conse-
quent bone loss [ 199 ,  200 ]. In activated osteoclasts, expression of V-ATPase con-
taining the  a3  subunit is upregulated. Additionally, the  a3  splice-variant, TIRC7, 
plays a role in T cell activation [ 123 ,  201 ]. Jiang et al. [ 202 ] proposed that regulating 
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 a3 /TIRC7 could be a means of stemming both bone loss and infl ammation in peri-
odontal disease, simultaneously. In a mouse  Porphyromonas gingivalis  maxillary 
infection model, they used local injection of adeno-associated virus (AAV) to 
deliver short hairpin RNA (shRNA) constructs designed for RNA interference 
(RNAi) targeting of both   Atp6i  and  Tirc7  transcripts  . Knockdown of  a3 /Tirc7 
expression caused reduced osteoclast formation and maturation, resulting in a 
reduction of maxillary bone loss by over 85 % relative to controls, and a similar 
reduction in gingival infl ammation in the infected mice. 

 In a similar approach, Feng et al. [ 203 ] demonstrated that the C1 subunit isoform 
predominates in the V-ATPase of the osteoclast ruffl ed border. As with the  a3  sub-
unit, C1 is highly upregulated during osteoclastogenesis and is required for 
 formation of the actin-ring sealing zone of activated osteoclasts, and for the subse-
quent lacunar acidifi cation required for bone resorption. Unlike the RNAi knock-
down of  a3  described above [ 202 ], knockdown of C1 expression using 
Lentivirus-mediated siRNA delivery in vitro did not affect osteoclast formation or 
maturation, although actin sealing-rings were also completely disrupted.  

  Gene therapy      is commonly regarded as a gain-of-function modality, and such 
approaches may, in the future, have utility for relatively rare diseases of V-ATPase 
subunit mutations [ 63 ]. As the above proofs of concept suggest,  gene-silencing   
approaches have broader clinical utility using, for example, localized periarticular 
or periodontal injections of viral RNAi vectors for treating  bone-loss disease  . For 
the present, however, safety and cost remain major issues, and systemic gene ther-
apy for bone loss treatment or prevention, such as for osteoporosis, will likely be a 
long time coming. More acutely life-threatening diseases, such as metastatic can-
cers, however, may see the fi rst applications of such V-ATPase targeting approaches.   

4.2     Novel V-ATPase Targeting Strategies in Agriculture 

 It is worth pointing out that the potential for V-ATPase targeting transcends human med-
icine, with wide applicability as well to veterinary medicine and agriculture, all of which 
ultimately impact human well-being. Examples of strategies and applications follow. 

4.2.1       RNAi by dsDNA  Dusting      

 Much early and ongoing work on V-ATPases has been accomplished in insect mod-
els. In insects, V-ATPases play a particularly important role in maintaining the pH 
gradient of the gut, which is vital for nutrient acquisition. Consequently, insect 
V-ATPases have long been recognized as targets for potentially highly specifi c 
RNAi-based insecticides [ 204 ]. The corn planthopper,   Peregrinus maidis   , is a major 
pest that feeds on maize crops, and is a mold and plant virus vector. Yao et al. [ 205 ] 
observed signifi cant knockdown of V-ATPase activity in   P. maidis    that were fed 
dsRNA to achieve RNAi for V-ATPase A and D subunits, with a resultant decrease 
in nymph survival and female fecundity.    
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4.2.2     RNAi by  Crop Transgenics      

 In a small-scale screen, Baum et al. [ 206 ] fed Western corn rootworm larvae 
( Diabrotica virgifera ) 290 different dsRNA constructs and found 14 causing signifi -
cant mortality at low doses. One, a dsRNA targeting the V-ATPase A subunit, was 
transformed into corn, which then showed signifi cant resistance to  D. virgifera  
feeding damage. In these examples, simple ingestion of dsRNA was likely success-
ful because the RNAi target is the V-ATPase of the gut epithelium. This strategy, 
using carefully selected and relatively short dsRNA sequences could be useful in 
producing transgenic crops with insecticidal qualities only against pest species, 
without collateral effects. Off-target effects of traditional insecticides are of grow-
ing public concern, but the utility of RNAi methods will depend on public accep-
tance of the transgenic crops, or enhanced methods of production of dsRNA for 
large-scale crop spraying, and will require the availability of complete genomic 
sequences for both pest target and benefi cial nontarget insect species.  

4.2.3     Peptide Inhibition of the V 0   Rotor   

 The small (37-mer) polypeptide, pea albumin 1b (PA1b), is a potent  M. sexta  
V-ATPase inhibitor that binds  c  subunits, possibly interfering with rotor movement, 
by jamming against the  e  subunit within the proton-translocating V 0  sector, or by 
binding a  c  and an  e  subunit simultaneously [ 207 ,  208 ]. The extracellular termini 
and loops available on the  c  subunit for PA1b binding are the least conserved 
regions of the otherwise highly conserved  c  subunit polypeptide. Consequently, 
though PA1b has potent insecticidal properties toward   M. sexta   , it has little effect 
on yeast or mammalian V-ATPases, or even some other insect species. These obser-
vations support the notion that species selectivity is possible in strategies aimed at 
eliminating pests and parasites by targeting the non-conserved sequences of the V 0  
rotor. Furthermore, it points to the possibility that peptides may offer exquisitely 
engineered selectivity, where small molecules fail.  

4.2.4     A Gain of Function V-ATPase Strategy: Genetic Engineering 
of  Salt Resistance   

 While inhibitory strategies are foremost in current agricultural research targeting 
V-ATPases, gain of function approaches have had some traction for crop improve-
ment. For example, it has been shown that salt stress causes upregulation of 
V-ATPase subunit expression in wheat, resulting in enhanced Na +  sequestration in 
the central vacuole. Furthermore, overexpression of wheat V-ATPase subunit genes 
in  A. thaliana  results in improved salt and osmotic stress tolerance [ 84 ,  209 ]. 
Genetic engineering of salt stress resistance in crop species has signifi cant potential 
for improving worldwide food production.    
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5     Conclusions 

5.1     V-ATPases Represent an Emerging Target of Broad 
Signifi cance 

 We have described here the wide variety of impacts that V-ATPases have on human 
health and welfare. This is unique among potential pharma/agro targets and has 
recently been a considerable source of motivation for drug discovery. It seems likely 
that this interest will drive research into V-ATPase structure and function at an 
accelerating pace into the foreseeable future. Furthermore, new knowledge acquired 
for any of the diverse areas of application that we have described will enhance the 
development of V-ATPase targeting as a whole. The most pressing issue for target-
ing of V-ATPases is the matter of specifi city: how to distinguish specialized 
V-ATPases whose inhibition would be of benefi t from those V-ATPases that are vital 
to survival. Presently, knowledge of the structure of any V-ATPase holoenzyme at 
atomic resolution is lacking, as is a detailed knowledge of its interactome. Advances 
in these areas have been slow due to the complexity of the V-ATPase holoenzyme, 
but it is not unreasonable to think that a complete V-ATPase structure and a list of 
many more fully characterized functional interactions might be at hand within a 
decade. Whether V-ATPase targeting breakthroughs come in the form of novel 
small molecule inhibitors, engineered peptides, RNAi methods, or gene therapy, the 
potential for health, welfare and economic impact is great.      

  Acknowledgements   The authors wish to acknowledge research funding from the Canadian 
Institutes of Health Research (CIHR). The authors declare no confl ict of interest.  

   References 

    1.    Futai M, Nakanishi-Matsui M, Okamoto H et al (2012) Rotational catalysis in proton pump-
ing ATPases: from  E. coli  F-ATPase to mammalian V-ATPase. Biochim Biophys Acta 
1817:1711–1721  

    2.    Kane PM (2007) The long physiological reach of the yeast vacuolar H + -ATPase. J Bioenerg 
Biomembr 39:415–421  

          3.    Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. 
Biochemistry 49:4715–4723  

    4.    Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiol-
ogy. Nat Rev Mol Cell Biol 8:917–929  

    5.    Beyenbach KW, Wieczorek H (2006) The V-type H +  ATPase: molecular structure and func-
tion, physiological roles and regulation. J Exp Biol 209:577–589  

    6.    Nordström T, Rotstein OD, Romanek R et al (1995) Regulation of cytoplasmic pH in osteo-
clasts: contribution of proton pumps and a proton-selective conductance. J Biol Chem 
270:2203–2212  

   7.    Schewe B, Schmälzlin E, Walz B (2008) Intracellular pH homeostasis and serotonin-induced 
pH changes in  Calliphora  salivary glands: the contribution of V-ATPase and carbonic anhy-
drase. J Exp Biol 211:805–815  

N. Kartner and M.F. Manolson



429

    8.    Grinstein S, Nanda A, Lukacs G et al (1992) V-ATPases in phagocytic cells. J Exp Biol 
172:179–192  

    9.    Saw NMN, Kang S-YA, Parsaud L et al (2011) Vacuolar H + -ATPase subunits Voa1 and Voa2 
cooperatively regulate secretory vesicle acidifi cation, transmitter uptake, and storage. Mol 
Biol Cell 22:3394–3409  

     10.    Manolson MF, Yu H, Chen W et al (2003) The a3 isoform of the 100-kDa V-ATPase subunit 
is highly but differentially expressed in large (≥10 nuclei) and small (≤5 nuclei) osteoclasts. 
J Biol Chem 278:49271–49278  

     11.    Henriksen K, Sørensen MG, Jensen VK et al (2008) Ion transporters involved in acidifi cation 
of the resorption lacuna in osteoclasts. Calcif Tissue Int 83:230–242  

    12.    Brown D, Smith PJS, Breton S (1997) Role of V-ATPase-rich cells in acidifi cation of the 
male reproductive tract. J Exp Biol 200:257–262  

   13.    Breton S, Brown D (2013) Regulation of luminal acidifi cation by the V-ATPase. Physiology 
28:318–329  

   14.    Brown D, Paunescu TG, Breton S et al (2009) Regulation of the V-ATPase in kidney epithelial 
cells: dual role in acid–base homeostasis and vesicle traffi cking. J Exp Biol 212:1762–1772  

     15.    Hinton A, Sennoune SR, Bond S et al (2009) Function of a subunit isoforms of the V-ATPase 
in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol 
Chem 284:16400–16408  

    16.    Xu M, Xia M, Li X-X et al (2012) Requirement of translocated lysosomal V1 H + -ATPase for 
activation of membrane acid sphingomyelinase and raft clustering in coronary epithelial 
cells. Mol Biol Cell 23:1546–1557  

     17.    Strasser B, Iwaszkiewicz J, Michielin O et al (2011) The V-ATPase proteolipid cylinder pro-
motes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO 
J 30:4126–4141  

    18.    Hiesinger PR, Fayyazuddin A, Mehta SQ et al (2005) The v-ATPase V 0  subunit a1 is required 
for a late step in synaptic vesicle exocytosis in  Drosophila . Cell 121:607–620  

   19.    Schumacher K (2006) Endomembrane proton pumps: connecting membrane and vesicle 
transport. Curr Opin Plant Biol 9:595–600  

   20.    Sabota JA, Bäck N, Eipper BA et al (2009) Inhibitors of the V 0  subunit of the vacuolar H + -
ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 
122:3542–3553  

    21.    Sun-Wada G-H, Toyomura T, Murata Y et al (2006) The  a 3 isoform of V-ATPase regulates 
insulin secretion from pancreatic β-cells. J Cell Sci 119:4531–4540  

      22.    Hurtado-Lorenzo A, Skinner M, El Annan J et al (2006) V-ATPase interacts with ARNO and 
Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 
8:124–136  

     23.    Merkulova M, Bakulina A, Thaker YR et al (2010) Specifi c motifs of the V-ATPase a2- 
subunit isoform interact with catalytic and regulatory domains of ARNO. Biochim Biophys 
Acta 1797:1398–1409  

    24.    Hofmann I, Thompson A, Sanderson CM et al (2007) The Arl4 family of small G proteins 
can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol 
17:711–716  

    25.    Hosokawa H, Dip PV, Merkulova M et al (2013) The N termini of a-subunit isoforms are 
involved in signaling between vacuolar H + -ATPase (V-ATPase) and cytohesin-2. J Biol Chem 
288:5896–5913  

       26.    Marshansky V, Rubinstein JL, Grüber G (2014) Eukaryotic V-ATPase: novel structural fi nd-
ings and functional insights. Biochim Biophys Acta 1837:857–879  

    27.    Poëa-Guyon S, Ammar MR, Erard M et al (2013) The V-ATPase membrane domain is a sen-
sor of granular pH that controls the exocytic machinery. J Cell Biol 203:283–298  

    28.    Coonrod EM, Graham LA, Carpp LN et al (2013) Homotypic vacuole fusion in yeast requires 
organelle acidifi cation and not the V-ATPase membrane domain. Dev Cell 27:462–468  

    29.    Yan Y, Denef N, Schüpbach T (2009) The vacuolar proton pump (V-ATPase) is required for 
Notch signaling and endosomal traffi cking in Drosophila. Dev Cell 17:387–402  

20 V-ATPase Regulation and Targeting



430

    30.    Cruciat C-M, Ohkawara B, Acebron SP et al (2010) Requirement of prorenin receptor and 
vacuolar H + -ATPase-mediated acidifi cation for Wnt signaling. Science 327:459–463  

    31.    Jewell JL, Russel RC, Guan K-L (2013) Amino acid signalling upstream of mTOR. Nat Rev 
Mol Cell Biol 14:133–139  

     32.    Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC et al (2011) Regulation of TFEB and 
V-ATPases by mTORC1. EMBO J 30:3242–3258  

   33.    Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression 
at a glance. J Cell Sci 126:1713–1719  

    34.    Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to 
disease. Trends Mol Med 18:524–533  

    35.    Sancak Y, Sabatini DM (2009) Rag proteins regulate amino acid-induced mTORC1 signal-
ing. Biochem Soc Trans 37:289–290  

     36.    Zoncu R, Bar-Peled L, Efeyan A et al (2011) mTORC1 senses lysosomal amino acids through 
an inside-out mechanism that requires the vacuolar H + -ATPase. Science 334:678–683  

    37.    Bar-Peled L, Schweitzer LD, Zoncu R et al (2012) Ragulator is a GEF for the Rag GTPases 
that signal amino acid levels to mTORC1. Cell 150:1196–1208  

    38.    Abraham RT (2015) Making sense of amino acid sensing. Science 347:128–129  
    39.    Wang S, Tsun Z-Y, Wolfson RL et al (2015) Lysosomal amino acid transporter SLC38A9 

signals arginine suffi ciency to mTORC1. Science 347:188–194  
    40.    Xu Y, Parmar A, Roux E et al (2012) Epidermal growth factor-induced vacuolar (H + )-ATPase 

assembly: a role in signaling via mTORC1 activation. J Biol Chem 287:26409–26422  
    41.    Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Q 

Rev Biophys 44:311–356  
    42.    Zhang Z, Zheng Y, Mazon H et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 

283:35983–35995  
    43.    Smith AN, Lovering RC, Futai M et al (2003) Revised nomenclature for mammalian 

vacuolar- type H + -ATPase subunit genes. Mol Cell 12:801–803  
      44.    Miranda KC, Karet FE, Brown D (2010) An extended nomenclature for mammalian 

V-ATPase subunit genes and splice variants. PLoS One 5, e9531  
        45.    Lee BS (2012) Regulation of V-ATPase expression in mammalian cells. Curr Protein Peptide 

Sci 13:107–116  
    46.    Holliday LS (2014) Vacuolar H + -ATPase: an essential multitasking enzyme in physiology 

and pathophysiology. New J Sci 2014:1–21. doi:  10.1155/2014/675430      
    47.    Finnigan GC, Hanson-Smith V, Houser BD et al (2011) The reconstructed ancestral subunit 

a functions as both V-ATPase isoforms Vph1p and Stv1p in  Saccharomyces cerevisiae . Mol 
Biol Cell 22:3176–3191  

   48.    Manolson MF, Wu B, Proteau D et al (1994)  STV1  gene encodes functional homologue of 
95-kDa yeast vacuolar H + -ATPase subunit Vph1p. J Biol Chem 269:14064–14074  

     49.    Kawasaki-Nishi S, Bowers K, Nishi T et al (2001) The amino-terminal domain of the vacu-
olar proton-translocating ATPase a subunit controls targeting and  in vivo  dissociation, and the 
carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol 
Chem 276:47411–47420  

    50.    Karet FE, Finberg KE, Nelson RD et al (1999) Mutations in the gene encoding B1 subunit of 
H + -ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90  

    51.    Păunescu TG, Rodriguez S, Benz E et al (2012) Loss of the V-ATPase B1 subunit isoform 
expressed in non-neuronal cells of the mouse olfactory epithelium impairs olfactory function. 
PLoS One 7, e45395  

    52.    Guillard M, Dimopoulou A, Fischer B et al (2009) Vacuolar H + -ATPase meets glycosylation 
in patients with cutis laxa. Biochim Biophys Acta 1792:903–914  

    53.    Fischer B, Dimopoulou A, Egerer J et al (2012) Furher characterization of  ATP6V0A2 -related 
autosomal recessive cutis laxa. Hum Genet 131:1761–1773  

    54.    Sobacchi C, Schulz A, Coxon FP et al (2013) Osteopetrosis: genetics, treatment and new 
insights into osteoclast function. Nat Rev Endocrinol 9:522–536  

N. Kartner and M.F. Manolson

http://dx.doi.org/10.1155/2014/675430


431

    55.    Stover EH, Borthwick KJ, Bavalia C et al (2002) Novel  ATP6V1B1  and  ATP6V0A4  mutations 
in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med 
Genet 39:796–803  

     56.    Batlle D, Haque SK (2012) Genetic causes and mechanisms of distal renal tubular acidosis. 
Nephrol Dial Transplant 27:3691–3704  

    57.    Lee S-H, Rho J, Jeong D et al (2006) v-ATPase V 0  subunit d2-defi cient mice exhibit impaired 
osteoclast fusion and increased bone formation. Nat Med 12:1403–1409  

    58.    Korvatska O, Strand NS, Berndt JD et al (2013) Altered splicing of ATP6AP2 causes X-linked 
parkinsonism with spasticity (XPDS). Hum Mol Genet 22:3259–3268  

    59.    Ramser J, Abidi FE, Burckle CA et al (2005) A unique exonic splice enhancer mutation in a 
family with X-linked mental retardation and epilepsy points to a novel role of the renin recep-
tor. Hum Mol Genet 14:1019–1027  

    60.    Holliday LS (2012) Vacuolar H + -ATPase: Targeting a “housekeeping” enzyme for drug 
development. Curr Protein Peptide Sci 13:105–106  

    61.    Kartner N, Manolson MF (2014) Novel techniques in the development of osteoporosis drug 
therapy: the osteoclast ruffl ed-border vacuolar H + -ATPase as an emerging target. Expert Opin 
Drug Discov 9:505–522  

     62.    Kartner N, Manolson MF (2012) V-ATPase subunit interactions: the long road to therapeutic 
targeting. Curr Protein Peptide Sci 13:164–179  

      63.    Bhargava A, Voronov I, Wang Y et al (2012) Osteopetrosis mutation R444L causes ER reten-
tion and misprocessing of vacuolar H + -ATPase  a3  subunit. J Biol Chem 287:26829–26839  

    64.    Gharanei S, Zatyka M, Astuti D et al (2013) Vacuolar-type H + -ATPase V1A subunit is a 
molecular partner of Wolfram syndrome 1 (WFS1) protein, which regulates its expression 
and stability. Hum Mol Genet 22:203–217  

    65.    Capecci J, Forgac M (2013) Function of vacuolar ATPase (V-ATPase) a subunit isoforms in 
invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem 
288:3271–32741  

   66.    Nishisho T, Hata K, Nakanishi M et al (2011) The a3 isoform vacuolar type H + -ATPase pro-
motes distant metastasis in the mousse B16 melanoma cells. Mol Cancer Res 9:845–855  

   67.    Sennoune SR, Luo D, Martinez-Zaguilán R (2004) Plasmalemmal vacuolar-type H + -ATPase 
in cancer biology. Cell Biochem Biophys 40:185–206  

   68.    Sennoune SR, Bakunts K, Martínez GM et al (2004) Vacuolar H + -ATPase in human breast 
cancer cells with distinct metastatic potential: distribution and functional activity. Am 
J Physiol Cell Physiol 286:C1443–C1452  

    69.    Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F et al (2010) Multidrug resistance in 
oral squamous cell carcinoma: the role of vacuolar ATPases. Cancer Lett 295:135–143  

    70.    Olsson AH, Yang BT, Hall E et al (2011) Decreased expression of genes involved in oxidative 
phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur 
J Endocrinol 165:589–595  

    71.    Molina MF, Qu H-Q, Rentfro AR et al (2011) Decreased expression of ATP6V1H in type 2 
diabetes: a pilot report on the diabetes risk study of Mexican Americans. Biochem Biophys 
Res Commun 412:728–731  

    72.    Mangieri LR, Mader BJ, Thomas CE et al (2014) ATP6V0C knockdown in neuroblastoma 
cell alters autophagy-lysosome pathway function and metabolism of proteins that accumulate 
in neurodegenerative disease. PLoS One 9, e93257  

     73.    Ramachandran N, Munteanu I, Wang P et al (2013) VMA21 defi ciency prevents vacuolar 
ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol (Berl) 
125:439–457  

    74.    Price PA, June HH, Buckley JR et al (2002) SB 242784, a selective inhibitor of the osteoclas-
tic V-H + -ATPase, inhibits arterial calcifi cation in the rat. Circ Res 91:547–552  

    75.    Rojas JD, Sennoune SR, Martinez GM et al (2004) Plasmalemmal vacuolar H + -ATPase is 
decreased in microvascular endothelial cells from a diabetic model. J Cell Physiol 201:
190–200  

20 V-ATPase Regulation and Targeting



432

    76.    Rojas JD, Sennoune SR, Maita D et al (2006) Vacuolar-type H + -ATPases at the plasma mem-
brane regulate pH and cell migration in microvascular endothelial cells. Am J Physiol Heart 
Circ Physiol 291:H1147–H1157  

    77.    Knight AJ, Behm CA (2012) Minireview: the role of the vacuolar ATPase in nematodes. Exp 
Parasitol 132:47–55  

    78.    Jia C, Yu Q, Zhang B et al (2014) Role of  TFP1  in vacuolar acidifi cation, oxidative stress and 
fi lamentous development in  Candida albicans . Fungal Genet Biol 71:58–67  

    79.    Kang S, Shields AR, Jupatanakul N et al (2014) Supressing dengue-2 infection by chemical 
inhibition of  Aedes aegypti  host factors. PLoS Negl Trop Dis 8, e3084  

    80.    Geyer M, Yu H, Mandic R et al (2002) Subunit H of the V-ATPase binds to the medium chain 
of adaptor protein complex 2 and connects Nef to the endocytic machinery. J Biol Chem 
277:28521–28529  

    81.    Müller KH, Kainov DE, El Bakkouri K et al (2011) The proton translocation domain of cel-
lular vacuolar ATPase provides a target for the treatment of infl uenza A virus infections. Br 
J Pharmacol 164:344–357  

    82.    Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing 
trends. Indian J Ecol 37:1–7  

    83.    Rahdari P, Hoseini SM (2011) Salinity stress: a review. Tech J Eng Appl Sci 1:63–66  
     84.    He X, Huang X, Shen Y et al (2014) Wheat V-H + -ATPase subunit genes signifi cantly affect 

salt tolerance in  Arapidopsis thaliana . PLoS One 9, e86982  
     85.    Parra KJ (2014) Saccharomyces cerevisiae vacuolar H + -ATPase regulation by disassembly 

and reassembly: One structure and multiple signals. Eukaryot Cell 13:706–714  
    86.    Maxson ME, Grinstein S (2014) The vacuolar-type H + -ATPase at a glance – more than a 

proton pump. J Cell Sci 127:4987–4993  
     87.    Lee BS, Underhill DM, Crane MK et al (1995) Transcriptional regulation of the vacuolar 

H + -ATPase B2 subunit gene in differentiating THP-1 cells. J Biol Chem 270:7320–7329  
    88.    Lee BS, Krits I, Crane-Zelkovic MK et al (1997) A novel transcription factor regulates 

expression of the vacuolar H + -ATPase B2 subunit through AP-2 sites during monocytic dif-
ferentiation. J Biol Chem 272:174–181  

     89.    Wang S-P, Krits I, Bai S et al (2002) Regulation of enhanced vacuolar H + -ATPase expression 
in macrophages. J Biol Chem 277:8827–8834  

    90.    Izumi H, Ise T, Murakami T et al (2003) Structural and functional characterization of two 
human V-ATPase subunit gene promoters. Biochim Biophys Acta 1628:97–104  

    91.    Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 
196:261–282  

   92.    Robinson PN, Böhme U, Lopez R et al (2004) Gene-ontology analysis reveals association of 
tissue-specifi c 5′CpG-island genes with development and embryogenesis. Hum Mol Genet 
13:1969–1978  

    93.    Illingworth RS, Bird AP (2009) CpG islands – ‘a rough guide’. FEBS Lett 583:1713–1720  
    94.    Chatterjee R, Vinson C (2012) CpG methylation recruits sequence specifi c transcription fac-

tors essential for tissue specifi c gene expression. Biochim Biophys Acta 1819:763–770  
     95.    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome inte-

grates intrinsic and environmental signals. Nat Genet 33:245–254  
   96.    Vidarsson H, Westergren R, Heglind M et al (2009) The forkhead transcription factor Foxi1 

is a master regulator of vacuolar H + -ATPase proton pump subunits in the inner ear, kidney and 
epididymis. PLoS One 4, e4471  

    97.   Blomqvist SR, Vidarsson H, Fitzgerald S et al (2004) Distal renal tubular acidosis in mice 
that lack the forkhead transcription factor Foxi1. J Clin Invest 113  

    98.    Jackson BC, Carpenter C, Nebert DW et al (2010) Update of human and mouse forkead box 
(FOX) gene families. Hum Genomics 4:345–352  

    99.    Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates 
osteoclast differentiation and activation. Cell 93:165–176  

     100.    Song I, Kim JH, Kim K et al (2009) Regulatory mechanism of NFATc1 in RANKL-induced 
osteoclast activation. FEBS Lett 583:2435–2440  

N. Kartner and M.F. Manolson



433

    101.    Beranger GE, Momier D, Rochet N et al (2006) RANKL treatment releases the negative 
regulation of the poly(ADP-ribose) polymerase-1 on Tcirg1 gene expression during osteo-
clastogenesis. J Bone Miner Res 21:1757–1769  

    102.    Beranger GE, Momier D, Guigonis J-M et al (2007) Differential binding of poly(ADP- 
ribose) polymerase-1 and JunD/Fra2 accounts for RANKL-induced  Tcirg1  gene expression 
during osteoclastogenesis. J Bone Miner Res 22:975–983  

    103.    Takayanagi H (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 
116:227–237  

    104.    Feng H, Cheng T, Steer JH et al (2009) Myocyte enhancer factor 2 and microphthalmia- 
associated transcription factor cooperate with NFATc1 to transactivate the V-ATPase d2 pro-
moter during RANKL-induced osteoclastogenesis. J Biol Chem 284:14667–14676  

    105.    Jouret F, Auzanneau C, Debaix H et al (2005) Ubiquitous and kidney-specifi c subunits of 
vacuolar H + -ATPase are differentially expressed during nephrogenesis. J Am Soc Nephrol 
16:3235–3246  

    106.    Lee BS, Holliday LS, Krits I et al (1999) Vacuolar H + -ATPase activity and expression in 
mouse bone marrow cultures. J Bone Miner Res 14:2127–2136  

     107.    Jeyaraj S, Dakhlallah D, Hill SR et al (2005) HuR stabilizes vacuolar H + -translocating 
ATPase mRNA during cellular energy depletion. J Biol Chem 280:37957–37964  

    108.    Khabar KSA, Bakheet T, Williams BRG (2005) AU-rich transient response transcripts in the 
human genome: expressed sequence tag clustering and gene discovery approach. Genomics 
85:165–175  

    109.    Peng SS-Y, Chen C-YA XN et al (1998) RNA stabilization by the AU-rich element binding 
protein, HuR, an ELAV protein. EMBO J 17:3461–3470  

    110.    Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, 
increases the  in vivo  stability of ARE-containing mRNAs. EMBO J 17:3448–3460  

    111.    Jeyaraj S, Dakhlallah D, Hill SR et al (2006) Expression and distribution of HuR during ATP 
depletion and recovery in proximal tubule cells. Am J Physiol Renal Physiol 291:
F1255–F1263  

    112.    López de Silanes I, Zhan M, Lal A et al (2004) Identifi cation of a target RNA motif for RNA- 
binding protein HuR. Proc Natl Acad Sci U S A 101:2987–2992  

    113.    Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 
319:1785–1786  

    114.    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233  
    115.    Stark A, Brennecke J, Bushati N et al (2005) Animal microRNAs confer robustness to gene 

expression and have a signifi cant impact on 3'UTR evolution. Cell 123:1133–1146  
     116.    O'Connor DT, Zhu G, Rao F et al (2008) Heritability and genome-wide linkage in US and 

Australian twins identify novel genomic regions controlling chromogranin A: implications 
for secretion and blood pressure. Circulation 118:247–257  

    117.    Wei Z, Biswas N, Courel M et al (2011) A common genetic variant in the 3′-UTR of vacuolar 
H + -ATPase  ATP6V0A1  creates a micro-RNA motif to alter chromogranin A processing and 
hypertension risk. Circ Cardiovasc Genet 4:381–389  

    118.    Poëa-Guyon S, Amar M, Fossier P et al (2006) Alternative splicing controls neuronal expres-
sion of V-ATPase subunit a1 and sorting to nerve terminals. J Biol Chem 281:17164–17172  

    119.    Kawasaki-Nishi S, Yamaguchi A, Forgac M et al (2007) Tissue specifi c expression of the 
splice variants of the mouse vacuolar proton-translocating ATPase a4 subunit. Biochem 
Biophys Res Commun 364:1032–1036  

    120.    Smith AN, Skaug J, Choate KA et al (2000) Mutations in  ATP6N1B , encoding a new kidney 
vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with pre-
served hearing. Nat Genet 26:71–75  

    121.    Smith AN, Borthwick KJ, Karet FE (2002) Molecular cloning and characterization of novel 
tissue-specifi c isoforms of the human vacuolar H + -ATPase C, G and d subunits, and their 
evaluation in autosomal recessive distal renal tubular acidosis. Gene 297:169–177  

    122.    Sun-Wada G-H, Murata Y, Namba M et al (2003) Mouse proton pump ATPase  C  subunit 
isoforms ( C 2-a and  C 2-b) specifi cally expressed in kidney and lung. J Biol Chem 278:
44843–44851  

20 V-ATPase Regulation and Targeting



434

     123.    Heinemann T, Bulwin G-C, Randall J et al (1999) Genomic organization of the gene coding 
for TIRC7, a novel membrane protein essential for T cell activation. Genomics 57:398–406  

     124.    Kane PM (1999) Biosynthesis and regulation of the yeast vacuolar H + -ATPase. J Bioenerg 
Biomembr 31:49–56  

    125.    Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. 
J Bioenerg Biomembr 35:301–312  

    126.    Davis-Kaplan SR, Compton MA, Flannery AR et al (2006)  PKR1  encodes an assembly factor 
for the yeast V-type ATPase. J Biol Chem 281:32025–32035  

    127.    Li X, Su RTC, H-t H et al (1998) The molecular chaperone calnexin associates with the vacu-
olar H + -ATPase from oat seedlings. Plant Cell 10:119–130  

    128.    Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H + -ATPase. 
J Bioenerg Biomembr 35:313–322  

   129.    Merzendorfer H, Gräf R, Huss M et al (1997) Regulation of proton-translocating V-ATPases. 
J Exp Biol 200:225–235  

      130.    Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase 
activity. Curr Protein Peptide Sci 13:117–123  

   131.    Sumner J-P, Dow JAT, Earley FGP et al (1995) Regulation of plasma membrane V-ATPase 
activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653  

     132.    Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H + -ATPase  in vivo . J Biol 
Chem 270:17025–17032  

    133.    Merkulova M, Hurtado-Lorenzo A, Hosokawa H et al (2011) Aldolase directly interacts with 
ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol Cell 
Physiol 2011:C1442–C1455  

    134.    Lu M, Ammar D, Ives H et al (2007) Physical interaction between aldolase and vacuolar H + -
ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282:
24495–24503  

    135.    Marshansky V, Futai M (2008) The V-type H + -ATPase in vesicular traffi cking: targeting, 
regulation and function. Curr Opin Cell Biol 20:415–426  

        136.    Tabke K, Albertmelcher A, Vitavska O et al (2014) Reversible disassembly of the yeast 
V-ATPase revisited under  in vivo  conditions. Biochem J 462:185–197  

    137.    Su Y, Blake-Palmer KG, Sorrell S et al (2008) Human H + ATPase a4 subunit mutations caus-
ing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am 
J Physiol Renal Physiol 295:F950–F958  

    138.    Hong-Hermesdorf A, Brüx A, Grüber A et al (2006) A WNK kinase binds and phosphory-
lates V-ATPase subunit C. FEBS Lett 580:932–939  

    139.    Armbrüster A, Hohn C, Hermesdorf A et al (2005) Evidence for major structural changes in 
subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Lett 579:1961–1967  

    140.    Chan C-Y, Parra KJ (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH 
homeostasis and glucose-dependent vacuolar ATPase reassembly. J Biol Chem 
289:19448–19457  

    141.    Lu M, Sautin YY, Holliday S et al (2004) The glycolytic enzyme aldolase mediates assembly, 
expression, and activity of vacuolar H + -ATPase. J Biol Chem 279:8732–8739  

    142.    Smardon AM, Diab HI, Tarsio M et al (2014) The RAVE complex is an isoform-specifi c 
V-ATPase assembly factor in yeast. Mol Biol Cell 25:356–367  

    143.    Tuttle AM, Hoffman TL, Schilling TF (2014) Rabconnectin-3a regulates vesicle endocytosis 
and canonical Wnt signaling in zebrafi sh neural crest migration. PLoS Biol 12, e1001852  

     144.    Dechant R, Binda M, Lee SS et al (2010) Cytosolic pH is a second messenger for glucose and 
regulates the PKA pathway through V-ATPase. EMBO J 29:2515–2526  

     145.    Sautin YY, Lu M, Gaugler A et al (2005) Phosphatidylinositol 3-kinase-mediated effects of 
glucose on vacuolar H + -ATPase assembly, translocation, and acidifi cation of intracellular 
compartments in renal epithelial cells. Mol Cell Biol 25:575–589  

     146.    Oehlke O, Schlosshardt C, Feuerstein M et al (2012) Acidosis-induced V-ATPase traffi cking 
in salivary ducts is initiated by cAMP/PKA/CREB pathway via regulation of Rab11b expres-
sion. Int J Biochem Cell Biol 44:1254–1265  

N. Kartner and M.F. Manolson



435

     147.    Diakov TT, Kane PM (2010) Regulation of vacuolar proton-translocating ATPase activity 
and assembly by extracellular pH. J Biol Chem 285:23771–23778  

     148.    Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase 
inhibits the ATPase activity of cytosolic V 1  complexes. J Biol Chem 275:21761–21767  

    149.   Gräf R, Harvey WR, Wieczorek H (1996) Purifi cation and properties of a cytosolic V 1 - 
ATPase. J Biol Chem 271:20908–20913  

    150.    Diab H, Ohira M, Liu M et al (2009) Subunit interactions and requirements for inhibition of 
the yeast V 1 -ATPase. J Biol Chem 284:13316–13325  

    151.    Jefferies KC, Forgac M (2008) Subunit H of the vacuolar (H + ) ATPase inhibits ATP hydroly-
sis by the free V 1  domain by interaction with thte rotary subunit F. J Biol Chem 283:
4512–4519  

    152.    Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissocia-
tion and its dependency on activity. J Biol Chem 282:24743–24751  

     153.    Kawasaki-Nishi S, Nishi T, Forgac M (2001) Yeast V-ATPase complexes containing different 
isoforms of the 100-kDa a-subunit differ in coupling effi ciency and  in vivo  dissociation. 
J Biol Chem 276:17941–17948  

    154.    Trombetta ES, Ebersold M, Garrett W et al (2003) Activation of lysosomal function during 
dendritic cell maturation. Science 299:1400–1403  

    155.    Liberman R, Bond S, Shainheit MG et al (2014) Regulated assembly of vacuolar ATPase is 
increased during cluster disruption-induced maturation of dendritic cells through a phospha-
tidyl 3-kinase/mTOR-dependent pathway. J Biol Chem 289:1355–1363  

    156.    Chintagari NR, Mishra A, Su L et al (2010) Vacuolar ATPase regulates surfactant secretion 
in rat alveolar typeII cells by modulating lamellar body calcium. PLoS One 5, e9228  

    157.    Nakamura S (2004) Glucose activates H + -ATPase in kidney epithelial cells. Am J Physiol 
Cell Physiol 287:C97–C105  

    158.    Silva P, Gerós H (2009) Regulation by salt of vacuolar H + -ATPase and H + -pyrophosphatase 
activities and Na + /H +  exchange. Plant Signal Behav 4:718–726  

    159.    Voss M, Vitavska O, Walz B et al (2007) Stimulus-induced phosphorylation of vacuolar H + -
ATPase by protein kinase A. J Biol Chem 282:33735–33742  

    160.    Finnigan GC, Cronan GE, Park HJ et al (2012) Sorting of the yeast vacuolar-type, proton- 
translocating ATPase enzyme complex (V-ATPase). J Biol Chem 287:19487–19500  

     161.    Collaco AM, Geibel P, Lee BS et al (2013) Functional vacuolar ATPase (V-ATPase) proton 
pumps traffi c to the enterocyte brush border membrane and require CFTR. Am J Physiol Cell 
Physiol 305:C981–C996  

    162.    Păunescu TG, Ljubojevic M, Russo LM et al (2010) cAMP stimulates apical V-ATPase accu-
mulation, microvillar elongation and proton extrusion in kidney collecting duct A-intercalated 
cells. Am J Physiol Renal Physiol 298:F643–F654  

    163.    Pastor-Soler NM, Hallows KR, Smolak C et al (2008) Alkaline pH- and cAMP-induced 
V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. 
Am J Physiol Cell Physiol 294:C488–C494  

    164.    Pech V, Pham TD, Verlander JW et al (2008) Angiotensin II activates H + -ATPase in type A 
intercalated cells. J Am Soc Nephrol 19:84–91  

    165.    Alzamora R, Thali RF, Gong F et al (2010) PKA regulates vacuolar H + -ATPase localization 
and activity via direct phosphorylation of the A subunit in kidney cells. J Biol Chem 
285:24676–24685  

    166.    Rieg T, Rieg JD (2013) Connecting type A intercalated cell metabolic state to V-ATPase 
function: phosphorylation does matter! Am J Physiol Renal Physiol 305:F1105–F1106  

   167.    Hallows KR, Alzamora R, Li H et al (2009) AMP-activated protein kinase inhibits alkaline 
pH- and PKA-induced apical vacuolar H + -ATPase accumulation in epididymal clear cells. 
Am J Physiol Cell Physiol 296:C672–C681  

     168.    Alzamora R, Al-Bataineh M, Liu W et al (2013) AMP-activated protein kinase regulates the 
vacuolar H + -ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney. 
Am J Physiol Renal Physiol 305:F943–F956  

20 V-ATPase Regulation and Targeting



436

    169.    Lee BS, Gluck SL, Holliday LS (1999) Interaction between vacuolar H+-ATPase and micro-
fi laments during osteoclast activation. J Biol Chem 274:29164–29171  

    170.    Chen S-H, Bubb MR, Yarmola EG et al (2004) Vacuolar H + -ATPase binding to microfi la-
ments: regulation in response to phosphatidylinositol 3-kinase activity and detailed character-
ization of the actin-binding site in subunit B. J Biol Chem 279:7988–7998  

    171.    Nelson N, Sacher A, Nelson H (2002) The signifi cance of molecular slips in transport sys-
tems. Nat Rev Mol Cell Biol 3:876–881  

     172.    Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. 
Biophys J 78:2798–2813  

    173.    Kettner C, Bertl A, Obermeyer G et al (2003) Electrophysiological analysis of the yeast 
V-type proton pump: variable coupling ratio and proton shunt. Biophys J 85:3730–3738  

    174.    Li SC, Diakov TT, Xu T et al (2014) The signaling lipid PI(3,5)P 2  stabilizes V 1 –V o  sector 
interactions and activates the V-ATPase. Mol Biol Cell 25:1251–1262  

    175.    Chung J-H, Lester RL, Dickson RC (2003) Sphingolipid requirement for generation of a 
functional V 1  component of vacuolar ATPase. J Biol Chem 278:28872–28881  

    176.    van der Poel S, Wolthoorn J, van den Heuvel D et al (2011) Hyperacidifi cation of  trans -Golgi 
network and endo/lysosomes in melanocytes by glucosylceramide-dependent V-ATPase 
activity. Traffi c 12:1634–1647  

    177.    Yamaguchi M, Kasamo K (2001) Modulation in the activity of purifi ed tonoplast H + -ATPase 
by tonoplast glycolipids prepared from cultured rice ( Oryza sativa  L. var. Boro) cells. Plant 
Cell Physiol 42:516–523  

    178.    Yoshida K, Ohnishi M, Fukao Y et al (2013) Studies on vacuolar membrane microdomains 
isolated from  Arabidopsis  suspension-cultured cells: local distribution of vacuolar membrane 
proteins. Plant Cell Physiol 54:1571–1584  

    179.    Zhang Y-Q, Gamarra S, Garcia-Effron G et al (2010) Requirement for ergosterol in V-ATPase 
function underlies antifungal activity of azole drugs. PLoS Pathog 6, e1000939  

    180.    Sterling D, Reithmeier RAF, Casey JR (2001) A transport metabolon: functional interaction of 
carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894  

    181.    Mindell JA (2012) Lysosomal acidifi cation mechanisms. Annu Rev Physiol 74:69–86  
   182.    Kasper D, Planells-Cases R, Fuhrmann JC et al (2005) Loss of the chloride channel ClC-7 

leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091  
    183.    Graves AR, Curran PK, Smith CL et al (2008) The Cl - /H +  antiporter ClC-7 is the primary 

chloride permeation pathway in lysosomes. Nature 453:788–792  
    184.    Venta PJ, Welty RJ, Johnson TM et al (1991) Carbonic anhydrase II defi ciency syndrome in 

a Belgian family is caused by a point mutation at an invariant histidine residue (107 His → Tyr): 
complete structure of the normal human CA II gene. Am J Hum Gene 49:1082–1090  

    185.    Meyers SN, McDaneld TG, Swist SL et al (2010) A deletion in bovine  SLC4A2  is associated 
with osteopetrosis in Red Angus cattle. BMC Genomics 11:337  

    186.    Kornak U, Kasper D, Bösl MR et al (2001) Loss of the ClC-7 chloride channel leads to osteo-
petrosis in mice and man. Cell 104:205–215  

    187.    Schaller S, Henriksen K, Sveigaard C et al (2004) The chloride channel inhibitor N53736 
prevents bone resorption in ovariectomized rats without changing bone formation. J Bone 
Miner Res 19:1144–1153  

    188.    Thudium CS, Jensen VK, Karsdal MA et al (2012) Disruption of the V-ATPase functionality 
as a way to uncouple bone formation and resorption – a novel target for treatment of osteopo-
rosis. Curr Protein Peptide Sci 13:141–151  

        189.    Kartner N, Yao Y, Li K et al (2010) Inhibition of osteoclast bone resorption by disrupting 
vacuolar H + -ATPase  a3 –B2 subunit interaction. J Biol Chem 285:37476–37490  

    190.    Toyomura T, Oka T, Yamaguchi C et al (2000) Three subunit  a  isoforms of mouse vacuolar 
H + -ATPase: preferential expression of the  a 3 isoform during osteoclast differentiation. J Biol 
Chem 275:8760–8765  

    191.    Bartkiewicz M, Hernando N, Reddy SV et al (1995) Characterization of the osteoclast vacu-
olar H(+)-ATPase B-subunit. Gene 160:157–164  

N. Kartner and M.F. Manolson



437

    192.    Crasto GJ, Kartner N, Yao Y et al (2013) Luteolin inhibition of V-ATPase  a3–d2  interaction 
decreases osteoclast resorptive activity. J Cell Biochem 114:929–941  

    193.    Shin D-K, Kim M-H, Lee S-H et al (2012) Inhibitory effects of luteolin on titanium particle- 
induced osteolysis in a mouse model. Acta Biomater 8:3524–3531  

    194.    Toro EJ, Ostrov DA, Wronski TJ et al (2012) Rational identifi cation of enoxacin as a novel 
V-ATPase-directed osteoclast inhibitor. Curr Protein Peptide Sci 13:180–191  

    195.    Holliday LS, Lu M, Lee BS et al (2000) The amino-terminal domain of the B subunit of vacu-
olar H + -ATPase contains a fi lamentous actin binding site. J Biol Chem 275:32331–32337  

    196.    Ostrov DA, Magis AT, Wronski TJ et al (2009) Identifi cation of Enoxacin as an inhibitor of 
osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem 
52:5144–5151  

    197.    Toro EJ, Zuo J, Ostrov DA et al (2012) Enoxacin directly inhibits osteoclastogenesis without 
inducing apoptosis. J Biol Chem 287:17894–17904  

    198.    Toro EJ, Zuo J, Guiterrez A et al (2013) Bis-enoxacin inhibits bone resorption and orthodon-
tic tooth movement. J Dent Res 92:925–931  

    199.    Lin X, Han X, Kawai T et al (2011) Antibody to receptor activator of NF-κB ligand amelio-
rates T cell-mediated periodontal bone resorption. Infect Immun 79:911–917  

    200.    Kawai T, Matsuyama T, Hosokawa Y et al (2006) B and T lymphocytes are the primary 
source of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol 
169:987–998  

    201.    Utku N, Heinemann T, Tullius SG et al (1998) Prevention of acute allograft rejection by 
antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 9:509–518  

     202.    Jiang H, Chen W, Zhu G et al (2013) RNAi-mediated silencing of Atp6i and Atp6i haploin-
suffi ciency prevents both bone loss and infl ammation in a mouse model of periodontal dis-
ease. PLoS One 8, e58599  

    203.    Feng S, Deng L, Chen W et al (2009) Atp6v1c1 is an essential component of the osteoclast 
proton pump and in F-actin ring formation in osteoclasts. Biochem J 417:195–203  

    204.    Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species- 
specifi c insecticides. Insect Biochem Mol Biol 39:824–832  

    205.    Yao J, Rotenberg D, Afsharifar A et al (2013) Development of RNAi methods for  Peregrinus 
maidis , the corn planthopper. PLoS One 8, e70243  

    206.    Baum JA, Bogaert T, Clinton W et al (2007) Control of colepteran insect pests through RNA 
interference. Nat Biotechnol 25:1322–1326  

    207.   Chouabe C, Eyraud V, Da Silva P et al (2011) New mode of action for a knottin protein bio-
insecticide: pea albumin 1 subunit b (PA1b) is the fi rst peptidic inhibitor of V-ATPase. J Biol 
Chem 286  

    208.    Muench SP, Rawson S, Eyraud V et al (2014) PA1b inhibitor binding to subunits  c  and  e  of 
the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem 289:16399–16408  

    209.    Zhang X-H, Li B, Hu Y-G et al (2014) The wheat E subunit of V-type H + -ATPase is involved 
in the plant response to osmotic stress. Int J Mol Sci 15:16196–16210  

    210.    Sun-Wada G-H, Imai-Senga Y, Yamamoto A et al (2002) A proton pump ATPase with testis- 
specifi c  E 1-subunit isoform required for acrosome acidifi cation. J Biol Chem 
277:18098–18105    

20 V-ATPase Regulation and Targeting



   Part IV
    F1Fo-and Other ATPases        



441© Springer International Publishing Switzerland 2016 
S. Chakraborti, N.S. Dhalla (eds.), Regulation of Ca2+-ATPases,V-ATPases 
and F-ATPases, Advances in Biochemistry in Health and Disease 14, 
DOI 10.1007/978-3-319-24780-9_21

    Chapter 21   
 Thiol-Related Regulation of the Mitochondrial 
F 1 F O -ATPase Activity                     

       Alessandra     Pagliarani     ,     Salvatore     Nesci    ,     Fabiana     Trombetti    , 
and     Vittoria     Ventrella   

    Abstract     The ATP synthase or F 1 F O -ATPase is the key enzyme in cell bioenergetics, 
due to its main role to build ATP, but it can also work “in reverse” to hydrolyze 
ATP. The enzyme complex, increasingly involved as key molecular switch between 
life and death, is fi nely tuned by multiple and only partially known mechanisms, 
widely operative in health and disease. Among them, the enzyme regulation through 
the chemical modifi cation of protein thiols, namely cysteine side chains, is thought 
to play a prominent role. Thiols are known to have high biological impact, to be 
easily oxidized, susceptive to multiple post-translational oxidative modifi cations 
and to occur both in the catalytic sector F 1  and in the membrane-embedded rotor F O  
which form the F 1 F O  complex. Even if thiol properties mirror the chemical attitudes 
of sulfur, not all cysteine thiols are equally prone to chemical modifi cations, being 
strongly infl uenced by their molecular environment. Cysteine thiol modifi cations, 
which, according to the ambient, may be reversible, interchangeable and even irre-
versible, not only modulate the enzyme catalytic and proton channeling activities, 
but also its response to co-occurring effectors. Additionally, they mirror the ambient 
redox state and the availability of reactive species involved in cell signaling. In 
short, within the F 1 F O  complex, thiols act as chemical interface between the envi-
ronment and the enzyme function. In this chapter the knowledge on the thiol-related 
F 1 F O -ATPase modulation is reviewed, with special focus on mammalian mitochon-
dria, aiming at contributing to shed light on a key molecular mechanism under phys-
iological and pathological conditions.  
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1         Introduction 

 The ATP synthase or F 1 F O -ATPase (EC 3.6.3.14) is the key enzyme in cell bioener-
getics, due to its main role to convert the transmembrane electrochemical gradient 
in ATP synthesis, the energy currency of all living organisms. In heterotrophic bac-
terial membranes as well as in mitochondria, the ATP synthase converts the electro-
chemical transmembrane gradient built by respiratory complexes into ATP, to 
satisfy cell energy demand. Bacterial and mitochondrial ATP synthases share the 
same mushroom-like structure with a bulky cap protruding outside the membrane 
embedding a cylindric stalk, even if they slightly differ in subunit composition/
nomenclature [ 1 ]. While in eukaryotes the F 1 F O -ATPase is inserted in the inner 
mitochondrial membrane by the F O  moiety and protrudes with its hydrophilic por-
tion F 1  in the mitochondrial matrix, the bacterial homologue displays a similar sub-
unit arrangement with F O  embedded in the plasma membrane and F 1  protruding in 
the cytoplasm. The two sectors F 1  and F O  are connected by a peripheral stalk and a 
central stalk (γ subunit). In all cases the membrane-bound F 1 F O  complex stands at 
the interface between two aqueous environments with different electrochemical fea-
tures and performs its catalytic function in the same way. As unique bifunctional 
enzyme mechanism in biology, under physiological conditions the F 1 F O  complex 
exploits the downhill proton fl ux from the positive to the negative side of the mem-
brane to drive ATP synthesis from ADP and inorganic phosphate (Pi). Conversely, 
by acting in the “reverse”  mode  , the F 1 F O  complex exploits the free energy from 
ATP hydrolysis to pump protons and re-energize the membrane. The “reverse” 
mode, which leads to ATP waste, is usually associated with oxygen lack as during 
myocardial ischemia [ 2 ]. The two opposite functions of  ATP synthesis and hydroly-
sis   imply opposite rotary directions of the two matched sectors F 1  and F O  which, 
through a complex electromechanical mechanism, rotate clockwise (as viewed from 
the intermembrane space side) during ATP synthesis and counterclockwise in ATP 
hydrolysis [ 3 ] (Fig.  21.1 ). The same enzyme complex, in its dimeric form, has been 
recently involved in cell death, by promoting the  mitochondrial permeability transi-
tion (MPT)   and leading to apoptosis [ 4 – 6 ]. The   c -ring  , which constitutes the core of 
F O , would even coincide with the MTP pore [ 6 ,  7 ]. Increasing evidence highlights 
the F 1 F O -ATPase as key molecular and enzymatic switch between cell life and death. 
The enzyme complex is very tightly regulated and posttranslational modifi cations 
play a relevant role in the enzyme modulation in eukaryotes [ 8 ]. In mammals slight 
differences in the amino acid composition and protein structure can lead to mito-
chondrial dysfunctions and huge damage to the cell [ 9 ]. In recent years, the mito-
chondrial F 1 F O -ATPase has been involved in neurodegenerative disorders, 
cardiovascular diseases, and other pathologies [ 10 ], stressing its attractiveness in 
pharmacology as drug target [ 11 ] as well as in clinical research.

   Among posttranslational modifi cations, thiol-oxidations are especially suitable 
to modulate protein function [ 12 ]. In turn the  thiol redox state mirrors   the oxidant 
status of the cell [ 13 ]. Mitochondria per se contain about 15 % of the modifi ed thiols 
of cellular proteins [ 8 ]. As many cellular proteins and the neighbor respiratory chain 
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complexes [ 12 ,  14 ], the mitochondrial F 1 F O -ATPase activity and functioning mode 
are modulated by thiol redox state [ 8 ,  15 – 17 ]. Sulfur-containing amino acids such 
as cysteine (Cys) and methionine (Met) are especially susceptive to oxidation. Of 
great interest, as widely exploited post-translational modifi cation, is the oxidation 
of their side chains when they are bound in proteins [ 18 ] and especially when these 
residues contain thiols, long known to react faster than the other amino acid side 
chains with oxidizing species [ 13 ] and to be crucial in biology [ 19 ,  20 ]. Thus, in 
practice Cys oxidation means oxidation of its thiol (sulfhydrylic) group (–SH), 
which features its side chain. In most cases, the maintenance of Cys thiol in the 
reduced form (–SH) is essential for protein structure, since non native disulfi de 
bonds to form Cystine (Cys–Cys) can lead to protein unfolding and inactivation. 
Accordingly, Cys thiol oxidation as well as mutations involving Cys substitutions 
has been also exploited to investigate the structural arrangement of mitochondrial 
ATPase subunits [ 21 ]. 

 However, Cys thiol oxidation, initially only considered as detrimental symptom 
of oxidative damage, soon revealed multiple intriguing facets. Above all there are 
different modes of reversible and irreversible thiol oxidation associated with differ-
ent posttranslational modifi cations [ 8 ], in turn often interrelated and involved in a 
variety of cellular processes. A main Cys role is to sense the redox environment. 
Accordingly, Cys thiols have been recently defi ned as nanoswitches to sense micro-
environmental effects and modulate enzyme activities in variegated cellular physi-
ological and pathological events [ 8 ,  12 ,  22 ]. At present, Cys thiols are considered as 
the major interface between environmental oxidants and cellular signaling  pathways 
[ 12 ]. In this chapter the knowledge on the thiol-related modulation of the activity of 

  Fig. 21.1    The two opposite functions of the mitochondrial F 1 F O  ATP synthase, namely ATP syn-
thesis ( left ) and ATP hydrolysis ( right ). The two functions are associated with opposite H +  fl uxes 
across the inner mitochondrial membrane, namely downhill and uphill respectively, and opposite 
directions of rotation of the  c -ring rotor, in turn transmitted through the central stalk (γ) to the cata-
lytic sector F 1        
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key enzyme complex in bioenergetics is reviewed, with special focus on mammalian 
mitochondria, aiming at contributing to shed light on a molecular mechanism of 
increasing and widespread impact. We see here that Cys modifi cations are widely 
operative in health and disease as well as in the enzyme response to environmental 
contaminants and drugs.  

2     Chemistry and Oxidative Modifi cations of Cysteine Thiols 

2.1       Biological Chemistry   of Cys Thiol 

 Cys is unique among the 20 coded proteinogenic amino acids in having a thiol- 
containing side chain. This side-chain thiol defi nes Cys chemical reactivity, which 
can be synthesized in terms of nucleophilicity, redox activity, and metal binding 
properties, three features which can also coincide in proteins [ 23 ]. Due to its proper-
ties, Cys is often among the key catalytic components of enzyme proteins. Thiol is 
a sulfur analogue of alcohol, but the smaller difference in electronegativity between 
the sulfur atom and the hydrogen atom makes the S-H bond less polarized than the 
O-H bond, leading to a poor propensity to form hydrogen bonds. In contrast, thiols 
are much more acidic than alcohols, due to the weakness of the S-H bond and the 
possible distribution within sulfur 3d orbitals of the negative charge of thiolate 
anion (R-S − ) obtained from proton dissociation (Fig.  21.2 ). In the thiol group, the 
electron-rich sulfur atom, thanks to its  d  orbitals, can shift to multiple oxidation 
states (−2 to +4), in turn associated with a variety of post-translational oxidative 
modifi cations [ 8 ] and also, last but not least, with its metal-binding properties [ 23 ]. 
The thiol/thiolate form (Fig.  21.2 ) can undergo different reactions featured by a 
variety of mechanisms such as nucleophilic attack, electron transfer, hydride trans-
fer, hydrogen radical transfer and oxygen atom transfer [ 23 ]. Assumed that in 

  Fig. 21.2    Changes in 
cysteine sulfur: thiol, 
thiolate, and thiyl radical 
as Lewis dot structures       
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general Cys thiols behave as mild acids, the protein microenvironment can dramatically 
infl uence their p K a value. As a matter of fact for only partially known reasons not 
all Cys residues are equally reactive and reactivity most frequently coincides with 
acidity [ 8 ]. While most Cys have p K a values between 8 and 9 and are fully proton-
ated under physiological conditions, thus poorly susceptive to oxidation, oxidation-
sensitive thiols often have much lower p K a values and are deprotonated to form the 
much more reactive and nucleophilic thiolate. To sum up, the lower is the thiol’s 
p K a, the higher is its reactivity. When attacked by two-electron oxidants, such as 
hydrogen peroxide (H 2 O 2 ), thiolate anions rapidly form sulfenic acids (R-S-OH) 
and water, according to the reaction:

   R SH HO OH R S OH H O- + - ® - - + 2    

Most sulfenic acids are short-lived intermediates and react with other protein thiols 
to form disulfi de (R-S-S-R′) bonds or with non-protein thiols such as reduced glu-
tathione (GSH) or free Cys to form mixed disulfi de bonds [ 22 ]. Thiol–disulfi de 
interconversions are long known to play a crucial role in biological systems [ 20 ]. 
In turn sulfenic acids may also react with nearby amino groups yielding cyclic sulf-
enamides (sulfenylamides) (Fig.  21.3 ). All these oxidative thiol modifi cations are 
fully reversible. Finally, in the presence of strong oxidants such as hydrogen 
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  Fig. 21.3    Oxidative modifi cations on Cys side chains and mutual interrelations, modifi ed and 
redrawn according to previously depicted models [ 8 ,  13 ,  24 ]. Disulfi de formation (A) can lead to 
intermolecular (cystine) or intramolecular bonds. Oxidations in the presence of small molecules 
can lead to perthiolation (B),  S -nitrosylation (nitrosation) (C),  S -glutathionylation (D) and produc-
tion of sulfenic acid (E), which in turn can produce cyclic sulfenylamide (F) or be further irrevers-
ibly oxidized to sulfi nic (H) and sulfonic acids (K), both in the upper right rectangle. Different Cys 
modifi cations on the same protein can yield mixed forms [ 13 ], here not shown. Radical intermedi-
ates are not shown. ROS, reactive oxygen species; RNS, reactive nitrogen species. Other acronyms 
are explained in the text       
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peroxide (H 2 O 2 ), sulfenic acid and sulfenamides can be further oxidized to yield 
sulfi nic (–SO 2 H) or sulfonic acids (–SO 3 H) [ 22 ], both with a higher oxidation state 
of sulfur [ 8 ] (Fig.  21.3 ). 

2.2         Cysteine  Post-translational Modifi cations   

 Post-translational Cys modifi cations, related to the multiple oxidation states of sul-
fur [ 23 ], can be reversible or irreversible. The main pathways are shown in Fig.  21.3 . 
The most common modifi cations are  S - nitrosylation   (also called  S -nitrosation) 
(SNO), sulfhydration (R-SSH),  S -glutathionylation (RS-SG), disulfi de bonds 
(R-S- S-R′), sulfenylation (R-SOH), and fi nally sulfi nic (R-SO-OH) and sulfonic 
(RSO 2 OH) acid formation which correspond to the highest oxidation state of sulfur 
[ 24 ]. Even if these extreme oxidations can be reversed enzymatically, they are 
widely considered as irreversible [ 8 ]. Some of the reversible post-translational Cys 
modifi cations are mutually interchangeable and mediated by small molecules avail-
able in the cellular environment such as hydrogen sulfi de (H 2 S), nitric oxide (NO) 
[ 25 ], and the tripeptide glutathione, both in the reduced form (GSH) and in the 
oxidized glutathione-disulfi de form (GSSG). Accordingly, sulfhydration or perthio-
lation results into the formation of a persulfi de bond in which two sulfur atoms are 
bound together (R-SSH). S-glutathionylation, which comes from the reaction of 
GSSG or S-nitrosoglutathione (GSNO) with thiol group via single or dual electron 
pathways, usually leads to protein functional changes (either inactivation or activa-
tion) [ 13 ,  26 ]. It is essential to bear in mind that all these modifi cations are intercon-
nected. For example, H 2 O 2  can convert a thiol to a sulfenic acid, which can be a 
posttranslational modifi cation itself, or react with GSH to form a  S -glutathionylated 
protein or with an adjacent thiol to form a disulfi de. Thus, the extent of glutathio-
nylation on a particular mitochondrial thiol can mirror changes in the GSH/GSSG 
ratio or even occur independently [ 26 ].   S -glutathionylation  , which may protect thi-
ols against oxidative stress and also act as a storage form of GSH, has been involved 
in cellular signaling [ 13 ] and also implicated in several mammalian diseases [ 8 ]. Up 
to now its role in non mammalian organisms is less considered and documented 
[ 13 ].  S -nitrosylation (SNO), which can be mediated by nitric oxide (NO) itself, 
nitrite, S-nitrosothiols such as GSNO or higher N-oxides (NO x ) and also be cata-
lyzed by transition metals [ 13 ], is a major signaling pathway by which NO exerts its 
widespread effects [ 25 ]. Even if the mechanism of formation of  S -nitrosothiols 
in vivo is still obscure [ 26 ], in vitro studies pointed out that  S -nitrosothiols may be 
formed through the direct reaction of thiols with dinitrogen trioxide (N 2 O 3 ) and less 
commonly with NO or by trans-nitrosylation with an NO-donor. NO can directly 
produce SNO if the thiol residue is in the form of thiyl (cysteinyl) radical (–S∙) 
(Fig.  21.2 ) [ 25 ]. Accordingly, the low redox negative potential of Cys, between 
−270 and −125 mV in most proteins, allows the rapid electron transfer to produce 
the thiyl radical [ 23 ] by detachment of the H atom from the sulfhydryl group. Under 
physiological pHs, thiyl radicals are unstable and reactive [ 8 ]. However they are 
quite rare and large amount of SNO are likely to stem from the reaction of thiols/
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thiolates with N 2 O 3  or directly with nitrosonium ion (NO + ) which can be transferred 
between different SNO through a reaction defi ned trans-nitrosation or trans- 
nitrosylation [ 25 ]. The latter results in the NO group transfer from one molecular 
species to another and can be catalyzed by protein-bound transition metals such as 
Cu 2+  or Fe 2+  in close proximity to a target thiol. GSNO, derived from GSH, is the 
main non-protein S-nitrosothiol [ 27 ]. SNO, which due to its reversibility, is the 
prototype mechanism of redox signaling, depends on many factors such as environ-
mental hydrophobicity, net charges, hindrance of the Cys-containing microenviron-
ment and oxygen availability [ 25 ]. Accordingly, SNOs are relatively unstable 
modifi cations and can undergo exchange reactions.  S -denitrosylation reactions can 
reduce back to thiol group. There is a complex interplay between oxidative and 
nitrosative (or nitroxidative) pathways. They represent interconnected facets of the 
same redox state of the cell involving both  reactive oxygen species (ROS)   and  reac-
tive nitrogen species (RNS)  . Traditionally, ROS have been strictly associated with 
oxidative stress, aging and various diseases. However, increasing evidence points 
out that controlled ROS generation has a key role in intracellular signaling. In par-
ticular ROS can react with Cys residues and with NO, limiting its bioavailability 
and competing with NO for binding to the same Cys [ 28 ]. 

  Disulfi de bonds  , often involved in protein folding and stabilization, may be inter-
molecular (between two different proteins) or intramolecular (within the same pro-
tein). Disulfi de formation usually comes from radical reactions, through the highly 
reactive thiyl radical intermediate, between two adjacent thiols or between sulfenic 
acid and thiolates [ 8 ,  13 ]. For instance, two thiyl radicals tend to combine forming 
disulfi de bonds [ 13 ]. The presence of a disulfi de bond imposes conformational 
rigidity on the protein. The disulfi de bond can have either a left- or a right-handed 
spiral conformation with a dihedral angle of +90 or −90°, respectively [ 29 ]. 

 As stated above, sulfenic acids, long considered as deleterious but recently re- 
evaluated for their essential role in signaling, are also highly unstable and reactive 
and in turn can lead to other reversible post-translational modifi cations such as 
 S -glutathionylation and disulfi de bond formation, which could protect sulfur against 
further oxidation, or irreversibly lead to sulfi nic and sulfonic acids [ 8 ]. 

 Increasing evidence suggests that the reversible modifi cation of Cys thiols plays 
a key role in redox regulation and signaling, while irreversible modifi cations lead 
to cell damage and death [ 30 ]. However the whole pattern is quite complicated and 
the danger of oversimplifi cation is behind the corner. Accordingly, since most 
post- translational  S -modifi cations are interchangeable, not only irreversible 
 S -modifi cations but also reversible reactions under certain conditions can lead to 
protein unfolding, misfolding, or aggregation and produce damage [ 27 ].   

2.3     Factors Affecting Cys Reactivity 

 It is clear that not all Cys behave the same way. In other words, Cys susceptibility 
to redox changes is highly affected by the molecular environment. Neighboring 
amino acid residues can vary Cys thiol’s  p K a   from 3.5 to 10.0. Of course, the lower 
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is the p K a, the easier is proton dissociation to yield the thiolate anion (–S − ). The 
latter bears a negative charge and is stabilized by positively charged residues or 
protonated (neutral) acid residues and  vice   versa  destabilized by negative side 
chains [ 8 ]. Therefore, a cationic environment makes Cys thiols especially suscep-
tive to  S -glutathionylation. Additionally other factors such as  helix-dipole effects  , 
and  hydrogen bonding of Cys residues   which charged side chains of Ser or His are 
thought to lower the Cys p K a. Cys susceptible to SNO are most frequently located 
between an acidic and a basic amino acid and require a consensus motif [ 28 ]. Also 
adjacent aromatic residues can favor SNO [ 13 ]. Therefore changes in the adjacent 
amino acids, due to mutations or posttranslational modifi cations, can substantially 
and selectively modify the p K a of individual Cys thiols and alter their reactivity. 
Other than thiol p K a, steric factors, local hydrophobicity and other still unknown 
factors may contribute to determine the accessibility and reactivity of a specifi c 
thiol [ 8 ,  26 ]. Additionally, since the pH of the mitochondrial matrix is higher than 
that of the cytosol (7.8–8.0 against 7.2), free thiols may be up to sixfold more reac-
tive in mitochondria than in the cytosol [ 26 ]. If not all Cys are equally prone to 
oxidative post-translational modifi cations, even the stability of thiol modifi cations 
is in turn modulated by different variables. The stability of  SNO   is favored by low 
oxygen concentrations, while thiolate formation increases at increasing oxygen 
concentrations. SNO is tightly regulated both at the level of formation and decom-
position of S–NO bonds. In turn denitrosylating enzymes are coupled to cellular 
antioxidant redox systems [ 28 ]. Moreover SNO can promote or inhibit the forma-
tion of disulfi de bonds within or between proteins, depending on thiol proximity 
and orientation. The infl uence of one kind of oxidative post-translational modifi ca-
tion of Cys on another one is dictated by changes in protein conformation that alter 
the electrostatic environment, hydrophobicity, contiguity and orientation of aro-
matic side chains and the proximity of target thiols to transition metals which act as 
catalyst or redox centers [ 27 ]. 

  Structural alterations   produced by thiol mediated modifi cations such as gluta-
thionylation, disulfi de formation or SNO can potentially have a great or moderate 
impact on protein function, mainly depending on the Cys localization and role. 
However, up to now in only a few cases have detailed structural analyses clearly 
depicted the molecular mechanism involved [ 26 ].   

3     Thiols in the Mitochondrial F 1 F O -ATPase 

 Bacterial F O F 1  ATP synthase contain less Cys than the mitochondrial enzyme and 
these Cys are apparently not essential for the enzyme functions. Accordingly, when 
in  Escherichia coli  isolated membranes all the 21 native Cys were replaced by ala-
nines its functionality was fully maintained [ 31 ]. Post-translational modifi cations 
are poorly documented in bacteria and probably confi ned to some proteins and spe-
cies [ 13 ]. 
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 Conversely, the mitochondrial F O F 1  ATP synthase is a hot spot for oxidative 
post- translational modifi cations involving thiols. As far as we are aware, only few 
Cys residues have been identifi ed as susceptive to oxidative post-translational mod-
ifi cations and usually the same thiols can undergo multiple modifi cations [ 8 ]. The 
 hydrophilic catalytic sector F 1    is a hexamer which consists of three α subunits alter-
nated with three β subunits [ 1 ]. In mammalian F 1  ATP synthase only  α and γ sub-
units   contain Cys: two in α and one in γ subunit (the central stalk). In detail the Cys 
at the interface between α and β subunits is close to the glycine-rich loop and is a 
suitable candidate for SNO. These Cys modifi cations may affect subunit interaction 
and/or promote conformational changes that affect the F 1 F O -ATPase activity [ 8 ]. 

  Oxidative stress   features many cardiovascular diseases [ 30 ]. During heart failure 
the α subunit of F 1  forms disulfi de bonds between Cys294 on neighboring α sub-
units as well as between Cys294 and Cys103 on γ-subunit. The same  Cys294   can 
also be  S -glutathionylated and  S -nitrosylated. The formation of disulfi de bonds and 
RS-SG at these regulatory sites inhibits the ATPase activity, thus suggesting that 
these bonds trigger conformational changes in the enzyme structure which prevent 
its catalytic activity. Pharmacological manipulations of  oxidative and nitrosative 
pathways   are known to be benefi cial in patients with heart failure [ 28 ]. Moreover, 
an  adequate resynchronization therapy   has been reported to reverse the disulfi de 
bond formation and replace it by SNO, resulting in the recovery of the ATPase 
activity. According to the authors [ 8 ], the cardiac resynchronization therapy is likely 
to stimulate the mitochondrial antioxidant defense systems or enhance the reducing 
status in the molecular environment. Reversible Cys oxidations may protect against 
permanent oxidative damage to the ATPase which would lower ATP production [ 8 ]. 
On the other hand, during heart failure the ATPase inhibition would have positive 
implications by limiting ATP consumption, contributing to ATP homeostasis and 
reducing the mitochondrial membrane potential (Δψ) and consequently the driving 
force for Ca 2+  uptake [ 32 ]. 

 According to an intriguing model,  Cys294   in the α subunit of the F 1 F O -ATPase, 
localized on the enzyme surface and surrounded by several basic amino acids resi-
dues, works as a redox switch. Under physiological conditions it is probably depro-
tonated and susceptive to oxidants. Most likely, at fi rst Cys294 is oxidized to 
sulfenic acid, thus causing conformational changes which in turn expose other side 
chains such as  Cys103   of γ subunit. When  S -glutathionylated or involved in disul-
fi de bonds between two Cys in adjacent α subunits as well as between Cys294 and 
Cys103 of the γ subunit, these cross-links block the enzyme activity and inhibit ATP 
production. It seems reasonable to think that under such conditions the enzyme can-
not rotate to perform its catalytic activity. The therapy would stimulate the cellular 
antioxidant effi ciency. As a result, disulfi de bonds break, thus favoring SNO, which 
is apparently compatible with the catalytic activity of the enzyme [ 8 ]. Thus, this 
single modifi able Cys in the F 1 F O  complex can act as a redox modulator of cellular 
ATP concentration [ 33 ]. 

 However, since an increase in SNO of α 1  subunits of F 1  causes a dose-dependent 
decrease of the enzyme activity in GSNO-treated cardiomyocytes [ 25 ] and SNO 
inhibits the ATPase activity during ischemia/reperfusion [ 28 ], it seems reasonable 
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to conclude that SNO effects on the catalytic activity of the F 1 F O  complex may 
depend on the targeted Cys and many other variables, most of which are still to 
be defi ned. It is not clear if SNO under some conditions can also lead to 
S-glutathionylation [ 30 ]. 

 If F 1  thiols are suffi ciently known and documented, thiols in the F O  sector are 
only partially known. There is a set of thiol or dithiol groups of Fo long known to 
be involved in the coupling mechanism between F O  and F 1  [ 34 ]. F 1  was claimed to 
protect F O  against oxidation. Subunit b of F O , which is essential for binding F 1  to F O , 
contains only one Cys residue [ 35 ]. As illustrated in Fig.  21.4 , the  c  subunits of the 
mitochondrial F 1 F O  complex contain conserved Cys residues which are absent in the 
homologous bacterial enzyme [ 17 ]. Each   c  subunit   has a hairpin-like structure with 
the N-terminal α-helix which protrudes towards the center of the  c -ring and the 
C-terminus transmembrane α-helix which constitutes the external annulus of the 
cylinder [ 1 ]. After the loss of the transit peptide, which transports the nuclearly 
encoded  c  subunit to mitochondria, the unique Cys in the mature  c -subunit is close 
to the proton binding site, which contains a carboxyl group from Glu or Asp and is 
approximately at the midpoint of C-terminal region of the hairpin (Fig.  21.4 ). 
Interestingly, a single-amino acid mutation in  Saccharomyces cerevisiae  strains 
(Cys65Ser) in the C-terminal α-helix of  c  subunit, induces oligomycin-resistance [ 36 ].

4        Thiol Oxidation in the Mitochondrial F 1 F O  Complex 
Induced by Xenobiotics 

 Due to the nucleophilic properties of thiol sulfur, some electrophilic groups from 
exogenous compounds can easily bind to thiols and modulate the activity of the 
F 1 F O  complex. Additionally, the unique metal binding ability of Cys sulfur allows 
the thiolate to act as monodentate or bidentate ligand to bind metal ions, thus pro-
ducing different oxidized forms, resulting in very diverse structures with the same 
metal [ 24 ]. 

4.1        Thiol Reagents   

 A wide defi nition of thiol reagent is that of a reagent which modifi es the native 
redox state of thiols. A huge variety of organic compounds is known to inhibit the 
catalytic activity of the F 1 F O  complex by modifying Cys residues. Most of these 
thiol reagents are currently employed for research purposes, other compounds are 
almost exclusively used in therapy. Some of them act selectively on different F 1 F O  
complexes and in some cases produce different effects on catalysis and proton con-
ductance, thus indicating they target different Cys thiols. Other reagents have quite 
broad and aspecifi c targets. The structures of the most common thiol reagents are 
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illustrated in Fig.  21.5 . Specifi cally,  N -ethylmaleimide (NEM), a cyclic imide of 
maleic acid, irreversibly inhibits the ATPase activity of F 1  from fungi, some bacteria 
and yeasts, while it has no effect on  E. coli  and bovine heart mitochondria [ 10 ]. 
NEM forms a strong thioether bond by selectively reacting with isolated Cys thiols 
[ 15 ], preferentially in the thiolate form, in the pH range 6.5–7.5. Therefore NEM 
sensitive thiols are believed to lie in a polar aqueous environment. Other than bind-
ing to F 1 , NEM also binds to various Cys in F O , such as peripheral Cys in the  a  
subunit, and inhibits proton fl ux [ 37 ].

  Fig. 21.4    Multiple sequence alignment for  c  subunit of the F 1 F O -ATP synthase in eukaryotic and 
bacterial species. Entry names of protein sequences: AT5G1_HUMAN  Homo sapiens  (Human): 
AT5G1_BOVIN  Bos taurus  (Bovine); AT5G1_PIG  Sus scrofa  (Pig); F7DHX6_HORSE  Equus 
caballus  (Horse); E2RTH9_CANFA  Canis familiaris  (Dog); AT5G1_SHEEP  Ovis aries  (Sheep); 
AT5G1_RAT  Rattus norvegicus  (Rat); AT5G1_MOUSE  Mus musculus  (Mouse); B5DGN1_
SALSA  Salmo salar  (Atlantic salmon); Q6PBQ8_DANRE  Danio rerio  (Zebrafi sh); Q207R7_
ICTPU  Ictalurus punctatus  (Channel catfi sh); H0RNC4_DROME  Drosophila melanogaster  (Fruit 
fl y); A7USF7_ANOGA  Anopheles gambiae  (African malaria mosquito); AT5G_CAEEL 
 Caenorhabditis elegans ; A7S000_NEMVE  Nematostella vectensis  (Starlet sea anemone); 
H9LIF8_CRAAR  Crassostrea ariakensis  (Suminoe oyster); ATP9_YEAST  Saccharomyces cere-
visiae  (Baker’s yeast); ATPL_ECOLI  Escherichia coli  (strain K12); ATPL_ILYTA  Ilyobacter 
tartaricus ; ATPL_MYCTU  Mycobacterium tuberculosis  (strain ATCC 25618/H37Rv). All cyste-
ines are in red. In the C-terminal region the  red rectangular shape  embraces the highly conserved 
Cys close to the acidic residue ( black rectangle ) which binds protons       
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   The antiulcer drugs bismuth subcitrate and omeprazole bind to thiol groups of F 1  
from  Helicobacter pylori  and form stable complexes, but the reaction can be 
reversed by GSH. At low pH, omeprazole forms a cyclic sulfonamide, a more 
powerful inhibitor of F 1  [ 10 ]. 

  5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB)   only inhibits the ATPase activity of 
F 1  in the absence of adenylic nucleotides [ 10 ]. Due to its selective covalent binding 
to thiols, DTNB in Ellman’s reagent was the early reagent widely used for estimat-
ing the number of thiol groups. To this aim an increasing variety of thiol-binding 
compounds have been built [ 29 ]. 

 The high affi nity of mercury for sulfur, causing an effi cient binding to Cys resi-
dues in proteins, which perturbs their functions, is a main cause of mercury toxicity. 
Accordingly, historically thiols were also called mercaptans from the Latin “mercu-
rium captans,” namely “able to bind mercury.”  Polar organic mercurials   such as 
  p -chloromercuribenzoate (PCMB)  ,   p -chloromercuribenzene sulfonate (PCMS)   and 
mersalyl acid target F O  [ 10 ]. Both PCMB and PCMS inhibit the ATP synthesis and 
ATPase activities of bovine heart ATP synthase by targeting different thiols from 
NEM and such inhibition can be partially reversed by dithiothreitol (DTT) which 
protects thiol groups. Mersalyl acid, long known as a diuretic, is much more effec-
tive than PCMB and PCMS in blocking proton conductivity by F O  from bovine 
heart mitochondria. The sulfhydryl-reactive agents 2,2′-dithiobispyridine and  N -(7- 
dimethylamino- 4-methyl-coumarinyl)-maleimide also inhibit proton conductivity 
by F O  from bovine heart mitochondria [ 10 ]. 

  Fig. 21.5    Structures of commonly employed thiol reagents       
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 Trivalent arsenic species, including inorganic and organic arsenic compounds, 
are known to have high affi nity for the thiol groups. As(III)-containing compounds 
exist as trigonal pyramidal structures which are maintained upon binding of arsenic 
ions to cellular proteins in vivo where the sulfur atoms of thiolate groups act as 
coordinating ligands. The resulting arsenic-thiol linkages are mainly responsible for 
arsenic toxicity [ 38 ]. Arsenic-containing compounds can react with monothiols and 
dithiols. The inorganic salt sodium meta-arsenite, primarily used as pesticide, and 
its organic derivatives preferentially bind to vicinal thiols [ 15 ,  39 ] through the triva-
lent arsenic to form stable complexes.   

4.2       Metals and Organometals   

 Other than mercury, other heavy metals can easily bind thiols and some of them are 
known to affect the mitochondrial F 1 F O  complex. The capability of Cys to chelate 
heavy metals such as Ag +  and Cd 2+  has been exploited to investigate the function 
and localization of specifi c Cys or mutated Cys in the whole F 1 F O  machinery. 
Accordingly, if the metal binding to Cys simply blocks proton translocation, then 
function can be restored by thiol reagents upon removal of the blocking metal. The 
thiolates of the reduced forms of these thiol reagents compete with protein Cys resi-
dues for the Ag +  or Cd 2+  ions causing the inhibition. Conversely, when the metal 
binding disrupts the interactions between F O  and F 1  causing the uncoupling of pro-
ton fl ux to the catalytic activity, the effect is irreversible [ 40 ]. 

 In general organometals are membrane-active toxicants because they match the 
lipophilicity of the organic moiety which allows their penetration in the hydropho-
bic membranous sectors of the enzyme to a metal core which enables chelation, 
most commonly by thiols [ 41 ]. The action mechanisms of some organomercury 
compounds (mercurials), widely exploited to explore Cys thiols, are considered in 
Sect.  4.1 . 

 Both in mammals and in invertebrates [ 41 – 43 ], the mitochondrial F 1 F O -complex 
is highly susceptive to the environmental pollutant tributyltin (TBT), long known as 
mitochondrial poison as other trisubstituted organotin species [ 41 ]. The interaction 
with TBT causes a dramatic inhibition of the enzyme activity [ 44 ]. The effects on 
the enzyme are related to the capability of the enzyme complex to bind TBT. Recent 
studies from our lab pointed out that there are at least two different enzyme sites 
able to bind the pollutant: a high affi nity site, presumptively hydrophobic and main 
responsible for the inhibition of the catalytic activity, and a thiol-containing low- 
affi nity site [ 15 ]. The latter exploits the metal binding properties of Cys sulfur to 
bind TBT. When TBT binds covalently to biomolecules, it may onset various geo-
metrical arrangements. It generally maintains its tetrahedral arrangement if the 
Sn(IV) binds to single atoms such as sulfur of isolated thiol groups. Alternatively, if 
TBT binds to two or three nucleophilic ligands, it forms a trigonal bipyramidal 
pentacoordinate complex or an octahedral hexacoordinate complex [ 41 ]. In the 
presence of vicinal thiols (dithiols) the central tin may form a S-Sn-S bridge after 
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debutylation and the dealkylated toxicant may rearrange in a distorted tetrahedral 
structure bound to the protein [ 45 ]. When TBT at micromolar concentrations inter-
acts with the mitochondrial F 1 F O -complex, it binds to the low-affi nity site within F O , 
likely localized on  c  subunits at the a/ c  interface. TBT acts as electrophile and oxi-
dizes the cysteine thiols, namely it changes R-SH to R-S-Sn by the onset of a cova-
lent tin-sulfur bond [ 46 ]. Within the  c  subunit amino acid sequence, the unique Cys 
hypothesized as candidate to provide suitable thiol group for TBT binding is highly 
conserved in eukaryotic ATP synthases (Fig.  21.4 ) and absent in the prokaryotic 
proteolipid. It seems reasonable to think that the binding of TBT to Cys through 
tin-sulfur bond (Fig.  21.6 ) would alter the interhelical packing of  c  subunit, thus 
destabilizing a common binding site of macrolide drugs [ 16 ]. Accordingly, TBT 
binding strikingly decreases the enzyme sensitivity to its selective inhibitor oligo-
mycin, as shown by an impressive increase in the oligomycin-insensitive ATPase 
activity at higher than 1 μM TBT concentrations. In detail, the tin-sulfur bond would 
promote conformational changes within F O  which modify the oligomycin-blocked 
F O  conformation, which prevents proton fl ux within F O , allowing proton transloca-
tion recovery [ 16 ]. As proton conduction is essential for both ATP synthesis and 
ATP hydrolysis, this mechanism allows the recovery of the catalytic activity of the 
enzyme even in the presence of powerful F O  inhibitors which block proton pathway. 

  Fig. 21.6    Model of the TBT binding to the low affi nity site on  c  subunit. The hairpin-shaped  c  
subunit is in violet; the tin atom ( green ) is bound to sulfur ( yellow ), most likely of Cys65. Carbon 
atoms are in  gray , oxygen atoms are in  red        
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The removal of oligomycin inhibition of the F 1 F O  complex is a peculiar feature of 
TBT [ 47 ], tightly related to its structural features and its capability to bind thiols, 
and it is not shared by other butyltins [ 48 ]. 

4.3         Macrolide Antibiotics   

 The F 1 F O  sensitivity to oligomycin and other macrolide inhibitors is modulated by 
the redox state of some Cys thiols of F O . Accordingly, some macrolide antibiotics 
and other antimicrobial drugs specifi cally bind to the  c -ring, thus blocking ion trans-
location through F O  which is essential for both ATP synthesis and ATP hydrolysis. 
Once bound to F O , probably through different binding sites on a common binding 
region, the macrolide antibiotics oligomycin, venturicidin and bafi lomycin inhibit 
the catalytic activity of the F 1 F O  complex. Conversely, if crucial cysteine thiols in 
the  c -subunits, highly conserved among vertebrates and absent in bacteria, are oxi-
dized, the common drug binding site of the enzyme is somehow destabilized, thus 
weakening the enzyme–drug interactions and making the F 1 F O  complex refractory 
to the drug. This effect is unrelated to the occurrence of ROS [ 16 ,  17 ]. As far as we 
are aware, it is not known if other thiol-binding xenobiotics, other than TBT, can 
exert the same enzyme desensitization to macrolide inhibitors. However, once 
established that the F 1 F O -ATPase can be exploited as drug target to counteract can-
cer and other diseases [ 49 ], the possibility of switching on and off specifi c thiols 
within the enzyme complex by pharmacological manipulations, could signifi cantly 
implement the available therapeutic tools to fi ght pathogens [ 17 ].   

5     Conclusions 

 The oxidation of Cys thiols on the mitochondrial F 1 F O -ATP synthase is a powerful 
tool to modulate the enzyme catalytic activity, proton channeling function and 
response to xenobiotics. In a few words, the redox state of Cys thiols really consti-
tutes a sort of chemical interface between the cell environment and the mitochon-
drial enzyme function. The involvement of Cys thiols of the mitochondrial F 1 F O  
complex in health and diseases stimulates efforts to clarify some still unsolved 
questions. Accordingly, the Cys role in the enzyme machinery is not fully clarifi ed 
yet and that of post-translational modifi cations of the F 1 F O  complex under physio-
logical and pathological conditions is merely at the embryo stage. In the next future, 
the defi nition of the relationship between post-translational modifi cation of thiols 
and effects on the structure and functionality of the key enzyme in bioenergetics is 
an intriguing challenge for researchers to improve life quality.     
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    Chapter 22   
 F 1 F 0 -ATPase Functions Under Markedly 
Acidic Conditions in Bacteria                     

       Yirong     Sun    

    Abstract     ATP synthase (F 1 F 0 -ATPase), consisting of a water-soluble F1 portion 
and a transmembrane FO portion, is present in bacterial cytoplasmic membranes and 
the inner membranes of mitochondria and chloroplasts. This enzyme plays a central 
role in biological energy transduction. F 1 F 0 -ATPase is bifunctional, being involved 
in ATP synthesis and hydrolysis. When bacteria are subjected to specifi c environ-
mental challenges, F 1 F 0 -ATPase changes its operation to overcome the challenges. 
F 1 F 0 -ATPase synthesizes ATP using energy released from proton movement in oxi-
dative phosphorylation under aerobic conditions at a near-neutral pH. This enzyme 
exports protons coupled with ATP hydrolysis as a reverse reaction in some specifi c 
environments. Recent research has indicated that F 1 F 0 -ATPase plays an important 
role in bacterial survival in markedly acidic environments. In this chapter, the roles 
of F 1 F 0 -ATPase in bacteria subjected to marked acidic stress are discussed.  

  Keywords     F 1 F 0 -ATPase   •   ATP synthesis   •   pHi regulation   •   Survival at acidic pH  

1         Introduction 

 F 1 F 0 -ATPase is present in bacterial cytoplasmic membranes and the inner  membranes 
of mitochondria and chloroplasts. It is a well-established proton  transporter in cell 
 membranes [ 1 ]. This enzyme is ubiquitous, as the basic structure and mechanism 
are conserved throughout the biological kingdom. It comprises two sub- complexes 
referred to as F 1  and F O  [ 2 ,  3 ]. The hydrophilic membrane- associated F1 portion 
houses the  catalytic sites and consists of α, β, γ, δ, and ε subunits at a ratio of 3:3:l:l:l 
[ 4 ]. The  hydrophobic membrane-integrated part (F O ) has three  subunits, a, b, and c, 
at a ratio of 1:2:6–15 [ 5 ]. Another report suggested that the copy number of the c 
subunit is 10–15 [ 6 ]. 
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 F 1 F 0 -ATPase is bifunctional, catalyzing ATP synthesis and hydrolysis. This 
enzyme uses the energy released from proton movement across cell membranes for 
the generation of ATP from ADP and Pi under aerobic conditions at a near-neutral 
pH [ 7 ]. When bacteria are subjected to specifi c environmental stress, such as acidic 
conditions and hypoxia, F 1 F 0 -ATPase transports protons across membranes coupled 
with ATP hydrolysis as a reverse reaction [ 7 ]. In this chapter, the recent fi ndings 
concerning the roles of F 1 F 0 -ATPase under markedly acidic conditions are 
 summarized, and the possible mechanisms are discussed.  

2      Bacterial Resistance   to Markedly Acidic Environments 

 Since the normal human stomach averages a pH of 2 for approximately 2 h after it 
becomes empty, both commensal and enteric bacteria have to develop a mechanism 
to protect themselves against acidic stress. Although many neutrophils are unable to 
grow in extremely acidic environments, they can survive for a certain period under 
such harsh conditions, and hence they can pass through the stomach without the 
loss of  viability. Examples of such microorganisms are  Salmonella typhimurium , 
 Vibrio cholerae , pathogenic  Escherichia coli  ( E. coli ),  Yersinia enterocolitica , and 
 Helicobacter  [ 8 ]. 

 The main mechanism for survival under acidic conditions is now thought to be 
the maintenance of a cytoplasmic pH (pHi) at around 5 [ 9 ], and several systems for 
such maintenance have been proposed. 

 A large number of systems for achieving resistance against acidic stress have 
been reported in  E. coli  and  Salmonellae  [ 9 ]. It has been suggested that  acid 
 resistance system 1 (AR1  ), one of the major systems proposed to date, is induced in 
cells grown to a stationary growth phase in moderately acidic medium, and requires 
the sigma factor RpoS [ 10 ] and the cyclic AMP receptor protein CRP [ 11 ], but its 
mechanism remains unclear. Amino acid-dependent systems proposed in  E. coli  and 
 Salmonellae , AR2, AR3, and AR4, are dependent on amino acid decarboxylation. 
The most potent amino acid-dependent system is the  glutamate-dependent system 
(AR2)   that requires two glutamate decarboxylases, GadA and GadB, and a putative 
glutamate/γ-aminobutyric acid antiporter [ 12 ]. The arginine-dependent system 
(AR3) is induced at a low pH under anaerobic conditions, and requires arginine 
decarboxylase and an arginine/agmatine antiporter [ 13 ]. The  lysine-dependent 
 system (AR4)   requires lysine decarboxylase and a lysine/cadaverine antiporter [ 14 ]. 
Recent data showed that adenosine deamination increases the survival of  E.coli  [ 15 ]. 
It has been suggested that amino acid decarboxylation and adenosine  deamination 
alkalinize the intracellular space and alkalization increases resistance against acidic 
stress (AR), but the increase in pHi is not the sole factor explaining the increase in 
the AR of  E. coli . 

 The deletion of  purA  or  purB , which encode enzymes producing AMP from 
 inosine phosphate by the addition of adenine, markedly decreased the ATP content 
and survival rate under acidic conditions in  E.coli  [ 16 ]. An  E. coli  mutant defi cient 
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in  hemA  encoding glutamyl-tRNA reductase, which synthesizes glutamate 
1- semialdehyde, a metabolic precursor for heme synthesis, also showed a decrease 
in the intracellular ATP content and survival rate at pH 2.5 [ 17 ], probably due to the 
defi ciency in oxidative phosphorylation. 

   Helicobacter pylori    has been reported to use the pH-gated urea channel UreI to 
promote the movement of external urea to periplasmic spaces, where urease 
 produces carbon dioxide from urea, and a membrane-anchored periplasmic  carbonic 
anhydrase regulates the periplasmic pH at around 6 using carbon dioxide in acidic 
media [ 8 ]. 

 In addition to the many systems reported to date in different bacteria, F 1 F 0 - 
ATPase has been suggested to be important for all of these bacteria to survive under 
markedly acidic conditions.  

3     Survival under Markedly Acidic Conditions of Bacterial 
Mutants Defi cient in F 1 F 0 -ATPase 

 F 1 F 0 -ATPase plays a central role in energy metabolism, and it can be argued that 
this enzyme is important for  bacterial survival   under markedly acidic conditions, 
because survival requires energy. F 1 F 0 -ATPase was reported to be essential for the 
growth of  Helicobacter pylori  and  Lactobacillus  under acidic conditions [ 18 ,  19 ]. 
A recent study showed that the deletion of F 1 F 0 -ATPase decreases the survival by 
hundreds of fold, and the intracellular pH of these mutants was decreased faster 
than that of the wild-type [ 17 ]. It was reported that the ATP level markedly 
decreased under highly acidic conditions in F 1 F 0 -ATPase mutants [ 17 ]. The results 
indicate that F 1 F 0 -ATPase participates in pHi regulation and the maintenance of 
the ATP content at a high level under acidic conditions, both of which enhance the 
AR of  E. coli .  

4      Effect of  pH   on ATP Synthesis Mediated by F 1 F 0 -ATPase 

 The sum of ΔpH and ΔΨ is the PMF, usually −140 to −180 mV in growing  E. coli , 
which is generated by the respiratory chain and drives ATP synthesis via F 1 F 0 - ATPase 
[ 20 ]. ΔΨ is always negative inside growing neutrophils, and ΔΨ decreases as ΔpH 
(internal pH—external pH) increases to maintain a stable PMF value. ΔpH decreases 
below zero in an alkaline medium, and the PMF is solely due to an internally negative 
ΔΨ. In contrast to an alkaline pH, ΔΨ decreases with an increase in ΔpH in an acidic 
medium. 

  E. coli  growing at pH 7 under modestly aerobic conditions maintains ΔΨ at 
approximately −90 mV. ΔΨ was reported to be approximately −50 mV in cells in 
the stationary growth phase [ 9 ]. When such cells were transferred to pH 2.5 
medium, ΔΨ decreased to near 0. Acidophils, such as  Bacillus acidocaldarius  and 
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 Thiobacillus acidophilus , which grow at an external pH of 3 or less, have an inverted 
ΔΨ (internally positive), with an internal pH close to neutral, namely a large ΔpH 
is present [ 21 ]. If the internal pH is kept at neutral in a medium of pH 3, ΔpH is 
calculated to be approximately −250 mV. To prevent an excessive PMF, a reverse 
ΔΨ may be generated. An excessive PMF could create rapid proton movement, like 
a short spark from a battery. It is suggested that an internally negative ΔΨ is a force 
that attracts protons, which are charged positively, into the cell [ 22 ], and an  internally 
positive ΔΨ can repel protons. 

 Asp 61 of the c subunit and Arg 210 of the a subunit are involved in proton 
 translocation through FO [ 22 – 25 ], and the area constructed by these amino acid 
residues may be a hydrophilic access pathway from both sides of the membrane 
[ 26 ]. Proton binding and release at a conserved carboxylate side chain in the center 
of the membrane has been proposed to drive the rotation of the c oligomer [ 27 ]. 
Structural analysis showed that the morphology of subunit c was different between 
pH 8 and 5 [ 24 ]. The morphological difference of subunit c at different pH values is 
still enigmatic (Fig.  22.1a ).

  Fig. 22.1    ( a ) The 
structural change of the c 
subunit at pH 5 and pH 8. 
( b ) The structure of the ε 
subunit. Drawn from data 
in Protein Data Bank 
http://www.rcsb.org/pdb/
home/home.do)       
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   These data suggest that the ATP-synthesizing activity is affected by the pH, but 
detailed observations are still limited. 

 The ATP hydrolysis activity of F 1 F 0 -ATPase in  E.coli  was approximately 0.5–
0.6 μmol Pi/min/mg membrane protein at pH 9.0 [ 17 ,  28 ], and the activity reduced 
gradually as the pH of the assay medium decreased from pH 9.0 in vitro 
(Fig.  22.2a ). A decrease in ATP hydrolysis activity at an acidic pH was also 
reported in  Streptococcus faecalis , which is now referred to as  Enterococcus 
hirae  (Fig.  22.2b , [ 29 ]). Similar pH-dependent activities were reported in other 
bacteria [ 25 ]. If the ATP hydrolysis activity of F 1 F 0 -ATPase is low in vivo, the 
proton extrusion activity coupled with ATP hydrolysis mediated by this enzyme 
could be very low in an acidic medium. It is, however, possible that the high 
 proton extrusion activity is preserved by an unknown regulatory mechanism(s) 
under acidic conditions in vivo. 

5        F 1 F 0 -ATPase as a pH Regulator 

 Since F 1 F 0 -ATPase is able to hydrolyze ATP to transfer protons outside cells, 
this enzyme can be considered as a potent regulator of cytosolic pH homeostasis 
to prevent internal acidifi cation. In enterococci, which lack oxidative 
 phosphorylation due to the absence of the respiratory chain, F 1 F 0 -ATPase has 
been reported to regulate pHi, and this regulation is essential for the growth of 
these bacteria under acidic conditions [ 30 ]. Recently research showed that pHi 
in mutants defi cient in F 1 F 0 - ATPase was lower than that of the wild-type in  E. 
coli  when the cells were challenged by markedly acidic stress [ 17 ], indicating 
that the pHi-regulating activity declines in F 1 F 0 -ATPase mutants. 

  Fig. 22.2    The ATP hydrolysis activity of F 1 F 0 -ATPase at different pH values in  E. coli  ( a ) and 
 E. hirae  ( b ). Drawn from data in Refs. [ 28 ] and [ 29 ]       
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 Bacteria have other types of enzyme which hydrolyze ATP and pump protons to 
maintain a higher pHi. In some bacteria, F 1 F 0 -ATPase generates a membrane 
 potential via pumping sodium ions across the membranes into the external 
 surroundings. The use of sodium ions instead of protons as coupling ions may be an 
essential adaptation strategy of F 1 F 0 -ATPase to highly alkaline environments, where 
protons are less available. An interesting example is highlighted in the anaerobic 
thermos- alkaliphilus  Clostridium paradoxum , in which ATP is generated via the 
fermentation of glucose to acetate and CO 2  [ 31 ]. Acetate production maintains a 
near-neutral cytoplasmic pH under alkaline environments. 

 How is the function of F 1 F 0 -ATPase changed in neutrophilic aerobic bacteria, 
such as  E. coli ? When the PMF falls below a threshold level, F 1 F 0 -ATPase may 
function as a proton exporter, and this change may be caused by the reorientation 
of the ε subunit toward FO and away from the β subunit of F1 [ 20 ]. This rear-
rangement may enable the F1 part to hydrolyze ATP and export protons (Fig.  22.3 , 
[ 20 ]). The ε subunit has an N-terminal part, which forms a fl attened 10-stranded 
β sandwich structure, and a C-terminal domain, which forms two α-helices run-
ning antiparallel to one another (Fig.  22.2b , [ 32 ]). Studies with the chloroplast 
F 1 F 0 -ATP synthase have shown that the C-terminal domain of the ε subunit is a 
regulator of ATP hydrolysis, and this activity can be attributed mainly to the last 
45 C-terminal amino acids [ 33 ]. Another report also suggested that the regulatory 
function of the ε subunit is mediated by the C-terminal α helical domain [ 34 ,  35 ].

6        Gene Expression of the  atp   Operon   at an Acidic pH 

 The  atp  operon contains 8 genes encoding subunits of F 1 F 0 -ATPase and one gene 
whose function is still unknown in many bacteria [ 6 ] It was reported that the 
 expression of the  atp  operon showed upregulation at an alkaline pH and 

  Fig. 22.3    Two hypothetical modes of F 1 F 0 -ATPase. Drawn from the proposal in Ref. [ 20 ]       
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 downregulation at pH 5 [ 36 ]. The results showed that the expressions of  atpA, B, C, 
D, E, F, G,  and  I  were induced at a high pH, but decreased at a low pH, and only the 
expression of  atpH  was induced at a low pH [ 36 ]. Western blotting analysis showed 
that the levels of most F 1 F 0 -ATPase subunits were almost the same at both pH 7.5 and 
5.5 [ 17 ]. As described above, F 1 F 0 -ATPase was shown to be important for bacterial 
survival under markedly acidic conditions, but expression of the  atp  operon was 
correlated negatively at an acidic pH. The content of the c subunit varies in bacteria. 
The copy number of the c subunit was reported to be 10 in membranes of growing 
cells at a near-neutral pH, and it increased to 12 under acidic stress [ 24 ,  37 ,  38 ], but 
the effect of this change is still unclear. 

 In enterococci, the mRNA level of the  atp  operon was not affected by the pH, but 
the amount of the enzyme in the membranes was increased at an acidic pH,  probably 
due to enhancement of the enzyme assembly to construct an active enzyme complex 
[ 39 ]. This increase in the membrane level of F 1 F 0 -ATPase is advantageous for its 
function to regulate pHi under acidic conditions [ 29 ,  40 ].  

7     Possible  Mechanisms   of F 1 F 0 -ATPase Functioning 
under Markedly Acidic Conditions in  E. coli  

 There are two hypotheses to account for why F 1 F 0 -ATPase is important for bacterial 
survival under such acidic conditions. One is that ATP synthesis mediated by F 1 F 0 - 
ATPase is indispensable for bacterial survival under these conditions. It was shown 
that the ATP level decreased markedly in very acidic environments in mutants 
 defi cient in F 1 F 0 -ATPase [ 17 ]. 

 It has been reported that ATP is essential for bacterial survival at an acidic pH, 
even though bacteria do not grow. During the adaptation processes, many systems 
for survival at an acidic pH were induced, and such induced systems consume 
ATP. Mutants defi cient in  recB  showed poor survival at an acidic pH [ 16 ]. 
Furthermore, a triple  recB ,  recC , and  sbcB  mutation led to a lower survival rate at 
pH 2.5 [ 16 ]. The DNA repair system containing RecB requires ATP as an energy 
source [ 41 ]. The other systems which require ATP as the energy source may also 
take a role under markedly acidic stress [ 42 ,  43 ]. 

 The ATP content increased when cells were adapted in a moderately acidic 
medium at pH 5 to 6, and the level decreased rapidly after cells were challenged at 
pH 2 to 3 [ 16 ]. The magnitude of PMF was, however, low at a low pH [ 22 ]. The 
increase in the ATP level may also be caused by a decline in metabolic processes 
consuming ATP, such as the biosynthesis of macromolecules. In fact, the growth 
rate was low at pH 5.5. 

 Another hypothesis, which may be more likely, is that F 1 F 0 -ATPase functions as 
a pHi regulator under acidic environments. The main pump for proton extrusion is 
the respiratory chain in  E. coli , and respiration decreased at an acidic pH [ 44 ,  45 ]. 
To compensate for the decrease, F 1 F 0 -ATPase may hydrolyze ATP to pump protons 
from the intracellular spaces under acidic conditions, and the cytoplasmic pH is 
maintained at a higher value, which promotes bacterial survival. 
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 The published data revealed that F 1 F 0 -ATPase has an important role in the 
 protection of cells via AR1 [ 17 ]. However, AR1 was entirely independent from F 1 F 0 - 
ATPase [ 22 ]. Furthermore, F 1 F 0 -ATPase shows no participation in AR2 or AR3 [ 9 ].  

8     Conclusions 

 It is now generally accepted that F 1 F 0 -ATPase has various roles in bacteria to 
 promote survival in the presence of environmental stresses. The published data 
showed that a large number of systems function for bacterial growth and survival 
under acidic conditions, and F 1 F 0 -ATPase is an enzyme required under such harsh 
conditions, although the mechanism still remains unclear. One possible explanation 
would be that F 1 F 0 -ATPase provides ATP, which is an essential energy source for 
survival at an acidic pH. Alternatively, F 1 F 0 -ATPase extrudes protons to maintain a 
higher cytoplasmic pH for survival under highly acidic conditions. Further 
 investigations will be indispensable for our improved understanding of bacterial 
survival under markedly acidic conditions, and the mechanisms of F 1 F 0 -ATPase for 
switching between the two roles under different conditions should be clarifi ed.     
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    Chapter 23   
 “Tuning” the ATPase Activity of Hsp90                     

       Chrisostomos     Prodromou      and     Rhodri     M.  L.     Morgan   

    Abstract     The Hsp90 chaperone is responsible for the activation and maturation of 
an eclectic set of proteins. These are often key regulatory proteins that include pro-
tein kinases, steroid hormone receptors and transcription factors. Consequently, 
Hsp90 has become one of the most important anti-cancer targets of our time, as well 
as a target for other diseases, such a neurodegenerative, parasitic and viral diseases. 
The ATPase activity of Hsp90 is central to its mechanistic action and the binding 
and hydrolysis of ATP drives a conformational cycle that brings about activation 
and maturation of client proteins. The structurally diverse clientele of Hsp90 neces-
sitates that Hsp90 co-operates with a variety of co-chaperones that modulate and 
tune its activity and thus its conformational cycle. Delivering client proteins is one 
role that specifi c co-chaperones play, while others stabilize client complex or pro-
vide directionality and alterations to the ATP-coupled conformational cycle of 
Hsp90. The formation of a catalytically active unit, able to hydrolyze ATP, involves 
all regions of Hsp90. This complexity has facilitated the evolution of a variety of 
co-chaperones that regulate Hsp90 by modulating different molecular switches 
within the chaperone. It has also allowed the evolution of Hsp90 orthologues that 
are kinetically different. Furthermore, it appears that the conformational switches of 
Hsp90 are not always coupled. Here, we describe the known Hsp90-co-chaperone 
complexes, the role that specifi c co-chaperones play in these complexes and, briefl y, 
post-translational modifi cations that affect the ATPase activity of Hsp90.  
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1         Introduction 

 Hsp90 is a molecular chaperone that is involved in the activation and maturation 
of a structurally diverse eclectic group of proteins (see   http://www.picard.ch/
Downloads/Hsp90interactors.pdf    ). These are often key regulatory proteins that 
include protein kinases [ 1 ] as well as phosphatidylinositol-3-kinase-like kinases 
such as mTOR and SMG1 [ 2 ,  3 ], steroid hormone receptors [ 4 ] and transcription 
factors [ 5 ]. Consequently, Hsp90 has become a major anti-cancer target [ 6 – 8 ], as 
well as being involved in a variety of other disease processes, such as Alzheimer’s 
and other neurodegenerative diseases [ 9 – 11 ], parasitic disease such as malaria [ 12 ] 
and viral disease [ 13 ]. However, because of the structural diversity of client proteins 
that Hsp90 has to deal with, it has evolved into a number of homologues that are 
each suited to their precise role. In the cytoplasm there are two homologues, Hsp90α 
and Hsp90β, while in the endoplasmic reticulum and mitochondria there is Grp94/
Gp96 and Trap1, respectively [ 14 – 17 ]. Hsp90 has many regulatory switches that 
allow a variety of co-chaperones to modulate precisely its ATPase activity [ 16 ] and 
consequently its conformational cycle, upon which activation and maturation of the 
client protein depends. In fact, the system is so versatile that viruses have also 
recruited Hsp90 for their own purposes [ 18 ]. 

 A single unvaried conformational cycle in Hsp90 would severely limit the array of 
client proteins that it could activate. Consequently, and in addition to the variety of 
Hsp90 homologues, a whole host of co-chaperones have evolved that specifi cally regu-
late the conformational cycle of Hsp90 by controlling a limited number of Hsp90 molec-
ular switches. These include co-chaperones that inhibit the ATPase activity of Hsp90, 
often silencing the chaperone machine in order to allow client proteins to be loaded onto 
the chaperone. They include proteins such as Sti1p/Hop and Cdc37 [ 16 ]. Other, such as 
p23 and RAR1, may help stabilize client protein complexes resulting in long-lived client 
protein-Hsp90 complex. Slowing the cycle might increase the time allowed for small 
molecule binding to the client protein [ 19 ,  20 ]. Others still help to drive the conforma-
tional cycle forward by activating the ATPase activity of Hsp90. The best, and perhaps 
the only example of this is Aha1 and the closely related protein, Hch1 [ 21 ]. 

 Understanding the mechanism of Hsp90 activation and maturation of client pro-
teins needs an in depth understanding of the molecular details of the various co- 
chaperone- Hsp90 complexes. In this review we will initially discuss the complex 
structural changes that occur in Hsp90 that bring about its activation. We will then 
describe the role that co-chaperones play in regulating its ATPase activity by modu-
lating the conformational switches within Hsp90.  

2     Hsp90, ATP and the Formation of a Catalytically Active 
Conformation 

 The binding of ATP to Hsp90 helps to stabilize a series of conformational changes 
that lead to a catalytically active unit that is able to hydrolyze ATP [ 16 ]. ATP itself 
binds deep within a pocket found in the N-terminal domains of Hsp90 [ 22 ] (Fig.  23.1a ). 
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  Fig. 23.1    Pymol cartoons showing the formation of the catalytically active unit of Hsp90. ( a ) The 
 left  and  right panels  show the open and closed conformation of the ATP lid ( red ). The structure in 
 blue  represents the N-terminal domain sequence involved in the β-strand exchange and dimeriza-
tion of the N-terminal domains. ( b ) Details showing the interaction of the base of the ATP lid and 
the γ -phosphate of ATP. ( c ) Cartoon showing the dimerization interfaces between the N-terminal 
domains of Hsp90. The red fragments represent the ATP lids. The  blue coloured  elements repre-
sent the N-terminal sequences of the N-terminal domains that change conformation during the 
β-strand exchange. ( d ) Cartoon showing the interaction of the γ-phosphate of ATP with the cata-
lytic Arg 380 of the catalytic loop ( yellow loop, green residue ). The catalytic loop is stabilized by 
interactions with the N-terminal domain (especially Ile 117), within the same monomer ( cyan ), 
and with the neighbouring N-terminal domain (salmon with orange residue), especially Thr 22       
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Once ATP is bound the ATP “lid” of the N-terminal domain is able to close over the 
entrance to the ATP-binding pocket, thus helping to trap the ATP. The movement of 
the ATP lid is permitted because of two fl exible positions,  Gly 94 and Gly 121   
( Saccharomyces cerevisiae  numbering), at the base of the ATP lid. The  ATP lid   is 
stabilized by a series of hydrogen bonds that interact with the γ-phosphate of ATP 
(Fig.  23.1b ). The restructuring of the ATP lid in turn destabilizes helix 1 of the 
N-terminal domain as it is normally packed against the open conformation of the 
ATP lid (Fig.  23.1c ). This α-helix is now mobile and moves together with β-strand 
1 of the N-terminal domain. In all, residues 1–27 of each Hsp90 monomer remodels 
as part of a β-strand exchange between the N-terminal domains of Hsp90 that leads 
to N-dimerization [ 19 ]. In particular repositioning of α-helix 1 provides a  dimeriza-
tion interface   (Fig.  23.1c ).

   Although the bound ATP is now trapped in the N-terminal domain and the pro-
tein has undergone dimerization, the hydrolysis of ATP is still dependent on modu-
lation of the catalytic loop of the middle domain. This involves association of the 
N-terminal domains of Hsp90 with its middle domains. This enables the catalytic 
loop of each middle domain to reach into the active site of each Hsp90 N-terminal 
domain within the same monomer. Thus, the  Arg 380 residue   of the catalytic loop 
can now directly interact with the γ-phosphate of ATP (Fig.  23.1d ). Stabilization of 
the active conformation of the catalytic loop is achieved by making a hydrophobic 
contact between Ile 117 of the N-terminal domain and Leu 374 of the catalytic loop 
(Fig.  23.1d ). Further stabilization is also achieved through an interaction between 
Thr 22 of the repositioned α-helix 1 and Leu378 of the catalytic loop from the 
neighbouring Hsp90 monomer (Fig.  23.1d ).  

3       Hsp90  Kinetic Models      

 The rate-limiting step for the turnover of ATP by Hsp90 has been controversial. 
Kinetic experiments [ 23 ,  24 ] now agree that it is the complex set of conformational 
changes [ 25 ] that limit ATP turnover rather than ATP hydrolysis “per se” [ 26 ]. The 
kinetic model for yeast [ 24 ] suggest that following binding of ATP the conforma-
tional changes leading to the catalytically active state involve a transition towards 
two intermediate conformations (Fig.  23.2 ). The fi rst of these, I1, is thought to 
derive from ATP lid closure and the release of the N-terminal segment of the 
N-terminal domain, and appears to have the lowest rate constant. The second state, 
I2, is then formed through the dimerization of the N-domains. Finally, the catalyti-
cally active state occurs following transition to a state that involves the association 
of the N- and middle-domains and presumably interaction of ATP with Arg 380 of 
the catalytic loop. The ATP is now trapped within the N-terminal domains and is 
committed to hydrolysis. It is thought that in this model Aha1 may bypass the for-
mation of the I1 state, thus accelerating the rate-limiting step of the reaction. In 
contrast, for  Escherichia coli  HtpG, ATP binding leads to a two-phase transition 
where a rapid change to an intermediate state is followed by a slower transition to 
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the T (closed) state [ 23 ] (Fig.  23.2 ). Interestingly, to date an equivalent Aha1 
homologue for HtpG has not been identifi ed, which might account for this differ-
ence, assuming all states have been identifi ed.

   The above model suggests that Aha1 can accelerate the rate-limiting step of the 
cycle by modulating the early conformational changes that lead to the formation of 
a catalytically active unit of Hsp90. However, the story cannot be so simplistic. For 
example, the activation of Hsp90 ATPase activity by full-length Aha1 is signifi -
cantly more potent than that of its N-terminal domain alone (or Hch1). However, 
both full-length Aha1 and the N-terminal domain of Aha1 modulate the position of 
the catalytic domain of the middle domain. This modulation to an open active state 

  Fig. 23.2    The kinetic cycles of the Hsp90s. In the yeast cycle ( red  and  green arrows ), transition 
via two intermediate conformations (I1 and I2) leads to the catalytically closed ATP-state, and 
Aha1 accelerates the cycle by bypassing the I1 sate. Alternatively, for the  E. coli  cycle ( red  and 
 blue arrows ), the closed active state (T) is reached by a two-phase transition via an intermediate 
state (I). Conformational change represents the slowest step in both cycles and is indicated in the 
fi gure (slow). The state of Hsp90, open, closed and active, including the nucleotide state are indi-
cated throughout the cycle       
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of the catalytic loop appears to be a late step in the cycle, because its interactions 
with the bound ATP and N-terminal domain occur later in the cycle following the 
association of the middle and N-domains of Hsp90. Clearly, activation by Aha1 
might involve other mechanisms that we do not yet understand. 

 However, in contrast to these models those for Grp94 and Trap1 appear to be 
very different. For Trap1 the rate-limiting step for ATP turnover has still not been 
settled. Furthermore, both TRAP1 and Grp94 do not show trapping of ATP and 
commitment to hydrolysis [ 27 ,  28 ]. While at fi rst sight these differences may seem 
surprising, when taking into account the different client proteins with which these 
homologues have to work with, and the different cellular environments they encoun-
ter, it is perhaps understandable why a common conformational cycle is regulated in 
different ways.    

4     Client Protein Hsp90 Chaperone Cycles 

 Without co-chaperones the Hsp90 cycle is stochastic and does not support an effi -
cient activation of client proteins [ 29 ]. Thus co-chaperones, as well as a variety of 
post-translational modifi cations, give directionality to the cycle and increase the 
effi ciency of client protein activation. Perhaps the best described Hsp90—client- 
protein  chaperone cycle      is that for steroid hormone receptors. Early studies 
identifi ed many of the interacting co-chaperones [ 30 – 32 ] (Fig.  23.3 ) and early-, 
intermediate- and late-stage complexes of the cycle, which characterize the specifi c 
co-chaperone within the complex. Early stage complexes see the association of 
Hsp70-steroid hormone receptor complex with Hsp90, which is achieved through 
HOP binding to both Hsp70 and Hsp90. Thus HOP acts as a scaffold utilizing dis-
tinct tetratricopeptide repeat (TPR) domains to hold together two chaperone com-
plexes in close vicinity. However, HOP is more than a simple scaffold protein, at 
least for the homologous yeast Sti1p, as it simultaneously inhibits the ATPase cycle 
of Hsp90 [ 33 ]. Furthermore, both HOP and Sti1p have been shown to activate 
the ATPase activity of Hsp70 and Ssa1, respectively [ 34 ,  35 ]. The inactive Hsp90 
forms a stable complex that can accept the client while active Hsp70 would allow it 
to release the client to Hsp90. The complex then needs to progress and this appears 
to occur by the binding of an immunophillin, such as FKBP51 or 52, which dis-
places HOP and Hsp70. Mixed Hsp90 complexes with the yeast Cpr6 and Sti1p, 
have been reported [ 36 ]. The release of Hsp70 and HOP from the complex estab-
lishes the intermediate stage. This stage is now competent to bind ATP and undergo 
N-terminal dimerization, which then signals the binding of p23 [ 37 ]. This late stage 
complex converts the steroid hormone receptor to a high hormone binding state thus 
allowing effi cient activation of the steroid hormone receptor.

   The other major  chaperone cycle      that has been described is that of kinases, which 
probably represent the largest class of client protein [ 1 ] (Fig.  23.4 ). Delivery of 
protein kinase to Hsp90, as for steroid hormone receptors, occurs via an adaptor 
protein, the co-chaperone Cdc37 p50 . Like Sti1p, Cdc37 p50  silences the ATPase 
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activity of Hsp90 [ 38 ], but in this case also that of the kinase [ 39 ]. Association of 
the kinase with Cdc37 p50  is favoured by the phosphorylation of Ser 13 of Cdc37 p50  
in humans and Ser 14 and 17 in yeast [ 40 – 42 ]. Once the Hsp90-kinase complex is 
established by interaction of Cdc37 p50  With Hsp90, PP5 enters the complex and 
dephosphorylates Cdc37 p50  [ 43 ]. This in turn primes the complex for phosphoryla-
tion by the kinase YES [ 44 ]. YES phosphorylates Tyr 298 or Tyr 4 on Cdc37 p50 , 
which appears to weaken the interaction between the kinase and Cdc37 p50 . Finally, 
phosphorylation at Tyr 197 on Hsp90 by YES kinase causes the dissociation of 
Cdc37 p50  from the complex. Consequently and with subsequent phosphorylation 
on Tyr 313 of Hsp90, a conformational change is induced that promotes the 
recruitment of Aha1 [ 44 ] and stimulation of the ATPase activity of Hsp90 [ 21 ]. 

  Fig. 23.3    Activation cycle for steroid hormone receptors by Hsp90. Hsp90 and HOP form a 
complex and HOP inactivates Hsp90, while simultaneously acting as a scaffold that recruits Hsp70 
and bound steroid hormone receptor (SHR). This establishes the early Hsp90-SHR complex. The 
SHR is then transferred to Hsp90. Subsequently, HOP and Hsp70 are displaced following binding 
of an immunophillin, such as FKBP51 or 52. This establishes the intermediate chaperone complex 
that is able to bind ATP and then p23. Binding of p23 is ATP dependent and results in slowing of 
the chaperone cycle. The complex now represents the late stage, which allows effi cient activation 
of the SHR by binding hormone. Eventually ATP is hydrolyzed and the complex dismantles       
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Finally, Hsp90 phosphorylation at Tyr 627 leads to a dissociation of the complex. 
However, although YES kinase is depicted here, other tyrosine kinases may also be 
able to carry out these phosphorylations, as the knockdown of YES kinase does not 
lead to a cessation of the kinase cycle [ 44 ]. The recycling of Hsp90 and Cdc37 p50  by 
dephosphorylation results via as yet unknown phosphatase(s).

   Comparing the  chaperone cycles      of steroid hormone receptor and kinases dem-
onstrates how specifi c client proteins have their own requirements for activation, 

  Fig. 23.4    Activation cycle of protein kinase by Hsp90. Cdc37 p50  is phosphorylated by casein 
kinase II (CKII) at Ser 13. This effi ciently binds Hsp90-dependent kinases and recruits them to 
Hsp90 where they can interact with the chaperone. PP5 then dephosphorylates Cdc37 p50  and 
primes the complex for phosphorylation by the YES kinase. YES kinase then phosphorylates 
Cdc37 at Tyr4 and 298, weakening the interaction with Cdc37 p50 . Finally, phosphorylation of Tyr 
197 of Hsp90 results in the dissociation of Cdc37 p50 . A subsequent phosphorylation by YES kinase 
at Tyr313 of Hsp90 signals recruitment of Aha1, which stimulates the ATPase chaperone cycle that 
may drive the maturation of the kinase. Finally, phosphorylation at Tyr 627 of Hsp90 results in 
dissociation of the Hsp90-kinase complex       
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and highlights the versatility of the Hsp90 chaperone cycle. While these two cycles 
remain the best described to date it is not unreasonable to expect to see differences 
in the chaperone cycle, the co-chaperone requirement and the post-translational 
modifi cations imposed by other structurally unrelated client proteins.  

5     Modulation of the Catalytic Unit of Hsp90 by Client 
Delivering co-Chaperones 

 There are a number of Hsp90 co-chaperones that have been implicated in delivering 
client proteins to Hsp90. These include Hop/Sti1p, Cdc37 p50 , Sgt1 as part of a Sgt1- 
Rar1 complex and Tah1 as part of the R2TP complex (RVBL1, RVBL2, Tah1 and 
RPAP3).  Hop/Sti1p is      responsible for delivering steroid hormone receptors to the 
Hsp90 complex that have been bound by Hsp70 and was the fi rst co-chaperone 
shown to be able to inhibit the ATPase activity of Hsp90 [ 33 ]. Recruitment of the 
steroid hormone receptor is achieved by acting as a scaffold between Hsp90 and 
Hsp70 by binding both proteins simultaneously, through highly conserved peptide 
motifs, IEEVD (Hsp70) and MEEVD (Hsp90) [ 45 ]. The domains that bind such 
conserved peptides are known as tetratricopeptide ( TPR     )  domains  . Hop/Sti1p con-
sists of three TPR modules, TPR1, TPR2A and TPR2B (Fig.  23.5 ). The former is 
responsible for binding the IEEVD motif of Hsp70, while the TPR2A domain is 
predominantly required for binding the MEEVD peptide of Hsp90. Although Hop/
Sti1p was the fi rst co-chaperone shown to be able to regulate the ATPase activity of 
Hsp90 [ 33 ], structural details showing how this is achieved have been elusive. 
However, various studies suggest that Hop has multiple interaction sites with the 
C-terminal, middle- and N-terminal-domains of Hsp90 [ 46 ]. Noteworthy, is the 

  Fig. 23.5    A model of the structure of Hop. In solution HOP/Sti1 appear to be dimeric. However, 
monomers of Hop/Sti1 may interact with Hsp90 independently when in complex with the chaper-
one. The conserved IEEVD of Hsp70 and the MEEVD peptide motif of Hsp90 are shown as 
spheres bound to the TPR1 and TPR2a domains, respectively. Co-ordinates obtained as a kind gift 
from J. Guenter Grossmann       
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observation that Sti1p is able to prevent Hsp90 N-terminal dimerization by interacting 
with the fi rst 24 amino acid residues of the N-terminal domain [ 47 ].

    Cdc37 p50       is a co-chaperone that specifi cally delivers protein kinases to Hsp90 
[ 1 ]. Like Hop/Sti1p, Cdc37 has also been shown to inhibit the ATPase activity of 
Hsp90 [ 38 ]. Structural details show that human Cdc37 binds between the N-terminal 
domains of Hsp90, thus preventing their association and therefore the formation of 
the catalytically active closed state of Hsp90 [ 48 ]. In fact, Cdc37 binds to the ATP 
lids themselves directly while also interacting with the catalytic Glu 33 of Hsp90, 
thus preventing it from carrying out ATP hydrolysis (Fig.  23.6 ).

   Sgt1, and perhaps in complex with Rar1, is a co-chaperone that acts as a hub and 
is responsible for delivering client proteins to Hsp90 [ 20 ,  49 ]. In particular,  Sgt1 and 
Rar1      are involved in the activation of innate immunity receptors in plants [ 50 ] and 
the animal related Nod-like receptors. Sgt1 is a multi-domain protein consisting of 
an N-terminal TPR domain that interacts with SKP1 [ 51 ], a middle CS-domain that 
interacts with the N-terminal domains of Hsp90 [ 20 ] and a C-terminal SGS domain 
that is essential for innate immunity receptor stability and therefore likely interacts 
with such receptor proteins [ 52 ]. The CS domain of Sgt1 is structurally similar to 
that of Sba1p/p23, another co-chaperone of Hsp90. However, the binding sites for 
such CS-domains vary. Consequently, unlike Sba1p/p23, Sgt1 alone does not inhibit 
the ATPase activity of Hsp90 [ 53 ]. Although Sgt1 does not affect the ATPase activ-
ity of Hsp90, it does recruit a co-chaperone known as Rar1 in plants, or Chp1 or 
melusin in mammals, which, at least for Rar1, can weakly stimulate the ATPase 
activity of Hsp90 [ 20 ] and convert it to an ADP bound state. Hydrolysis of the 
bound ATP was shown to be carried out by the  CHORD II domain      of Rar1 and this 
is thought to lead to the formation of a stable Sgt1-Hsp90-Rar1 complex. This pre-
sumably results in a long-lived association with the client protein, but without 

  Fig. 23.6    Inhibition of the ATPase activity of Hsp90 by the co-chaperone Cdc37 p50 . The ATP lid 
of the N-terminal domain of Hsp90 is shown in  red . Cdc37 p50  ( cyan ) binds the N-terminal domain 
of Hsp90 ( green ) by interacting with its ATP lid. This prevents the lid from moving to the closed 
state and also prevents direct N-terminal dimerization. Furthermore, the interaction between Arg 
167 of Cdc37 p50  and the catalytic Glu 33 of Hsp90 prevents the chaperone from hydrolyzing 
ATP. AMPPNP (the non-hydrolyzable analogue of ATP) is shown in  magent a. Hydrogen bonds are 
shown as  dotted blue lines        
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promoting a closed state (N-terminal dimerization) in Hsp90 (Fig.  23.7 ). This may 
be important where long-lived Hsp90 complexes are required to act as sensors for 
small molecules from invasive organisms. Such complexes would be activated 
immediately following infection, representing a “standby” option, without the need 
to elicit transcription of these proteins in the fi rst instance [ 16 ]. Thus, for client 
proteins entering this complex a stable inactive platform is offered that includes 
bound ADP brought about by Sgt1-Rar1 binding [ 20 ].

   Finally, Tah1 of the R2TP complex is known to act as a scaffold that connects the 
Hsp90 complex to the R2TP (RuvBL1, RuvBL2, Tah1 and Pih1) complex. In turn, 
the R2TP complex recruits the TTT complex (TEL2 TTI1 and TTI2),which inter-
acts with phosphatidylinositol-3-kinase-like kinases (PIKKs), such as mTOR and 
SMG1 [ 2 ,  3 ]. Activation of the ATPase activity of Hsp90 by Tah1 has been shown 
to be weak [ 54 ,  55 ]. However, a  Tah1-Pih1 complex      appears to inhibit the ATPase 
activity of Hsp90 [ 54 ,  55 ]. Although there is good structural detail describing the 
interaction of the Hsp90-Tah1-Pih1 complex [ 2 ,  55 ], the mechanism by which this 
weak inhibition of Hsp90 activity is achieved remains elusive.  

6     Modulation of the Catalytic Unit of Hsp90 by  p23/Sba1p      

 p23/Sba1p is a small acidic protein that consists of a CS domain and an extended 
unstructured C-terminus [ 19 ,  56 ]. p23 is part of the Hsp90-steroid hormone receptor 
complexes and enters these complexes at the late stage of complex formation [ 57 , 
 58 ]. The binding to Hsp90 is favoured by an ATP-bound N-terminally dimerized 
Hsp90 conformation [ 37 ,  59 ]. The binding of p23 to Hsp90 results in the inhibition 
of Hsp90-ATPase activity [ 21 ,  59 ]. However, unlike Sti1p and Cdc37p50, inhibition 

  Fig. 23.7    Stabilization of the Hsp90-Rar1 complex. Pymol cartoon showing the interaction of the 
Rar1 CHORD II domain ( cyan ) with the N-terminal domain of Hsp90 ( green  with  red  ATP lid). 
ADP is shown in  pale blue  and is hydrogen bonded to His 188 from the CHORD II domain of 
Rar1. Hydrogen bonds are shown as  dotted blue lines        
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by the yeast protein, Sba1p, does not completely abolish the ATPase activity of 
Hsp90 [ 21 ]. This remained a point of contention until the structure of Sba1p in 
complex with the full-length Hsp90 was determined [ 19 ] (Fig.  23.8 ). The structure 
showed that Sba1p bound the N-terminal domains of Hsp90 thus locking the closed 

  Fig. 23.8    Regulation of the ATPase activity of Hsp90 by Sba1. ( a ) The “inhibited” state of Sba1 
bound Hsp90. Sba1, shown in  yellow  and  magenta , is bound between the N-terminal domains of 
Hsp90 ( cyan  and  green ). The bound Sba1 domains prevent movement of the ATP lids ( red ) of 
Hsp90 and help to stabilize the closed state. Consequently, the chaperone cycle is inhibited. ( b ) 
Sba1 modulation of the catalytic loop of Hsp90. The C-terminal unstructured region of Sba1 
( cyan ) interacts with the middle domain of Hsp90 ( green ) causing the catalytic loop of the middle 
domain to move to its open active-state. This allows Arg 380 of Hsp90 to interact with the 
Υ-phosphate of ATP ( yellow )       
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N-terminally dimerized state. In fact, Sba1p binds directly to the ATP lids prevent-
ing their movement and thus stabilizing a closed complex (Fig.  23.8a ). While this 
explains how Sba1p inhibits, or more precisely slows, the chaperone cycle and 
therefore the ATPase activity of Hsp90, it does not in itself explain why the turnover 
of ATP is only partially inhibited. On closer inspection, it was found that the unstruc-
tured C-terminal fragment of Sba1p interacts with the catalytic loop in the Hsp90 
middle domain (Fig.  23.8b ). Consequently, Hsp90 is fully competent to hydrolyze 
ATP, which explains why Sba1p cannot completely inhibit the ATPase activity of 
HSp90. It appears that Sba1p/p23 acts to slow the cycle, perhaps aiding a slow fold-
ing step or providing additional time for hormone to bind the steroid hormone 
receptor protein.

7         NudC Proteins      

 The  archetypal NudC (nuclear distribution) gene   from  Aspergillus nidulans  is 
involved in the maintenance of nuclear migration [ 60 – 65 ]. Three paralogues of 
NudC exist in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2) 
[ 66 – 69 ]. The fourth is a distantly related family member, CML66, and contains a 
NudC-like domain [ 70 ,  71 ]. The  NudC  gene has been implicated in a number of func-
tions from cell division to the regulation of cytoplasmic dynein, and human NudC in 
the migration and proliferation of tumour cells as well as infl ammatory responses 
and thrombopoisis [ 72 ]. NudC, which contains a CS domain [ 73 ] in common with 
p23/Sba1p, has also been reported to inhibit the ATPase activity of Hsp90 [ 74 ]. 
However, unlike p23/Sba1p the molecular details have not yet been established.  

8     Modulation of the Catalytic Unit of Hsp90 by Aha1 

  Aha1      is the only potent activator of the Hsp90 ATPase activity that has been 
described to date [ 21 ,  75 ]. The molecular detail by which the N-terminal domain of 
Aha1 modulates the catalytic loop of Hsp90 has been determined [ 75 ]. The struc-
ture shows that the loop is released from its closed to an open state that allows Arg 
380 to interact with the bound ATP [ 75 ] and thus promote ATP hydrolysis (Fig.  23.9 ). 
However, full-length Aha1 is signifi cantly more potent than the N-terminal domain 
of Aha1 alone [ 75 ]. It is thought that the C-terminal domain of Aha1 binds between 
the dimerized N-terminal domains of Hsp90 [ 76 ], in a similar fashion to the Sba1p 
interaction. Thus, it is possible that the C-terminal domain of Aha1 might promote 
N-terminal dimerization or the association of the N- and Middle-domains of Hsp90. 
Further biochemical and structural work is required to categorically show the exact 
mechanism.
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9        Modulation of the Catalytic Unit of Hsp90 
by  Immunophillins and Client Proteins      

 The only immunophillin known to infl uence the ATPase activity of Hsp90 is Cpr6 
[ 21 ]. However, the stimulation seen was weak and has not been confi rmed. FKBP52 
was shown to potentiate the activation of GR receptor when hormone levels are 

  Fig. 23.9    Regulation of the ATPase activity of Hsp90 by Aha1. ( a ) The interaction between the 
N-terminal domain of Aha1 ( cyan ) and the middle domain of Hsp90 ( green ). ( b ), Catalytic-loop 
activation of Hsp90 by the N-terminal domain of Aha1. The interaction of Aha1 ( cyan ) with the 
middle domain of Hsp90 ( green ) causes the catalytic loop to move to the open active-state. This 
allows the catalytic Arg 380 of Hsp90 to interact with the Υ-phosphate of ATP. Hydrogen bonds 
are shown as  dotted blue lines        
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limiting, while the closely related FKBP51 protein blocks potentiation. The activation 
was found to require both Hsp90 binding and the propyl isomerase activity of 
FKBP52 [ 77 ]. Thus it appears that for FKBP, the effi ciency at which GR is activated 
is increased. Whether this is a common theme for specifi c client protein- 
immunophillin combinations is currently unknown and the lack of an immunophillin- 
Hsp90 structural complex means that the mechanism by which immunophillins act 
remains unknown. However, it appears that immunophillins may play a role in 
the progression of Hsp90 complex. For steroid hormone receptors at least, immu-
nophillins enter the Hsp90 complex at an intermediate stage, after Hop binding and 
prior to p23 stabilization of the complex. Their binding helps to displace HOP and 
consequently allow ATP and p23 binding. Thus, it appears that they are required to 
help the complex progress from the early stage to the late stage, where hormone is 
known to bind the steroid hormone receptor. In this respect they may be acting in a 
similar fashion to Aha1 in progressing the cycle and thus altering the conformation 
of the client protein in some way [ 16 ,  21 ]. However, due to the lack of structural and 
biochemical detail, the exact mechanism remains elusive. 

 The only client protein known to affect the ATPase activity of Hsp90 is 
Glucocorticoid receptor. This receptor was found to stimulate the ATPase activity of 
Hsp90 [ 78 ]. However, the glucocorticoid DNA binding domain used in this study 
was found to be dimeric rather than monomeric, which is the normal state of the 
receptor when bound to Hsp90. Whether ATPase activation of Hsp90 by client pro-
teins is a common feature of the system is currently unknown.  

10      Post-translation Modifi cations   Affecting the ATPase 
Activity 

 Post-translational modifi cation of Hsp90 has been extensively covered in a recent 
review [ 79 ]. Mutation of Tyr 24 in yeast (Tyr 38 in humans) to the phosphorylation 
mimetic glutamate resulted in the inhibition of Hsp90 ATPase activity [ 80 ]. In fact 
Y24E and Y24D as a sole source of Hsp90 in yeast could not support viability prob-
ably due to their very low ATPase activity. Furthermore, using Y24F and Y38F 
mutants it was shown that phosphorylation at these sites was required for productive 
chaperoning of kinases and for suppression of heat shock factor activity [ 80 ]. Thr 22 
(yeast) and Thr 36 (human) are also subject to phosphorylation [ 81 ,  82 ]. Thr 22 is 
critical for stabilization of the catalytic loop in the open active-state, and conse-
quently mutation to a possible phospho-mimetic state (T22E) results in decreased 
Hsp90 ATPase activity. The T22E mutant was seen to decrease the activation of 
v-Src and Ste11, enhance the activation of glucocorticoid receptor [ 82 ] and increase 
the stability of the cystic transmembrane regulator. This appeared to be mirrored in 
the human system where loss of interaction with v-Src, Raf1, ErbB2, Cdk4 and GR 
was seen, whereas there was an increase in CFTR protein levels. 

 The phosphorylation of Hsp90 may not just affect its ATPase activity, but may 
also infl uence its association with co-chaperones and client proteins. In a Swe1Δ 
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background with Y24F and wild-type Hsp90, the association of Aha1 was abolished 
[ 80 ]. In contrast, Sba1p interaction was reduced while Cdc37 p50  and Sti1p/Hop 
association was unaffected, and these results were similarly refl ected for the human 
Y38F mutant. For T22A and T22E mutants the association of Aha1 was completely 
abolished, while interaction with Cdc37 p50  was reduced. In contrast, the association 
with Sti1p and Sba1p were unaffected. Again the human T38A and T38E mutants 
refl ected these results. Thus, Aha1 interaction was completely diminished, Cdc37 p50  
was mainly reduced with the T38E mutant, Hop association was unaffected while 
p23 interaction was slightly reduced. 

 Apart from phosphorylation other post-translational modifi cations of Hsp90 
have also been reported [ 83 – 88 ]. While acetylation of yeast Hsp90 Lys 294 has 
been shown, its effects on the ATPase activity remain unknown [ 85 ]. However, 
K294Q and K294A show altered interactions with co-chaperones suggesting that 
the chaperone cycle of Hsp90, and therefore its ATP turnover would be affected. 
S-nitrosylation of Cys 598 in human Hsp90α has been shown to inhibit its ATPase 
activity. Similarly the equivalent yeast mutation, A577I or A557N, also inhibited 
the ATPase activity of Hsp90.  

11     Conclusions 

 Hsp90 is a molecular chaperone that is responsible for the activation of an eclectic 
set of client proteins that are often key signalling protein [ 1 ,  89 – 92 ]. Its role in can-
cer progression and disease are now well documented [ 6 – 13 ]. The chaperone cycle 
is central to the activation of client protein and is driven by the binding and hydro-
lysis of ATP. Because of the very diverse structural proteins that Hsp90 deals with 
it has evolved a number of orthologues that are tuned to their own specifi c needs. 
The orthologues of Hsp90 show differing kinetic properties, and for some, are regu-
lated by their own set of co-chaperones that allow the effi cient activation of their 
specifi c client proteins. These appear to fall into four broad classes. The fi rst are 
involved in loading the client protein onto the Hsp90 platform. Perhaps the simplest 
is Cdc37 p50 , which binds both the client protein and Hsp90 directly. Sgt1 also 
appears to be able to deliver client protein to Hsp90 complex by binding the client 
and Hsp90 directly. In contrast, Hop/Sti1p delivers clients by acting as a scaffold 
between Hsp90 and Hsp70-client protein complex. Others rely on a more complex 
set of proteins such as the R2TP complex. 

 The second class of co-chaperone appears to be those that aid progression of the 
chaperone cycle from the loading stage. These include proteins such as immu-
nophillins and Aha1. Yet another class is represented by p23/Sba1p, which helps to 
stabilize protein complex. Perhaps Rar1 could also be viewed as a co-chaperone that 
stabilizes client-Hsp90 complex as it itself does not bind client but helps to stabilize 
the association of Sgt1 bound with client protein. The fi nal class of co-chaperone 
represents proteins that bring about changes to the chaperone cycle by post- 
translational modifi cation of the Hsp90 complex. These are likely to include proteins 
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such as PP5 and CHIP [ 93 ,  94 ], which modify the cycle and fate of individual client 
proteins as required by the cell. 

 However, a further layer of complexity is present in that specifi c co-chaperones 
are often associated with the activation of a particular client protein class. For 
example Cdc37 p50  is intimately associated with protein kinase delivery to the Hsp90 
chaperone machine. In contrast, Hop appears to be involved in steroid hormone 
receptor activation, while Sgt1 recruits innate immunity receptors. Perhaps the 
complexity of the R2TP system is a refl ection of its recruitment to deliver a number 
of structurally diverse proteins for activation and maturation. These include RNA 
polymerase 2 [ 95 ,  96 ], small nucleolar ribonucleoproteins (snoRNPs) [ 97 – 100 ] and 
phosphatidylinositol-3-kinase-like kinases [ 2 ,  3 ]. p23 has also been seen to associ-
ate with a variety of structurally diverse client protein–Hsp90 complexes, such as 
steroid hormone receptors and telomerase [ 89 ,  101 – 106 ]. 

 The vast array of client proteins that Hsp90 deals with means that Hsp90 has 
evolved a number of conformational switches within its structure. This most likely 
enables the chaperone cycle to be modulated so that it suits the particular client 
protein’s requirement. These switches include an ATP lid, an N-terminal section of 
structure involved in β-strand exchange and dimerization of the N-terminus, and a 
catalytic loop found in the middle domain of Hsp90. The advantage of having these 
switches is that a variety of co-chaperones can regulate Hsp90 at various points 
through structural changes that occur over the whole of the chaperone cycle. This 
increases the fl exibility and diversity of the Hsp90 chaperone cycle so that Hsp90 is 
able to deal with its structurally diverse clientele.     

   References 

       1.    Pearl LH (2005) Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 
15:55–61  

       2.    Horejsi Z, Takai H, Adelman CA et al (2010) CK2 phospho-dependent binding of R2TP 
complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850  

      3.    Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90- 
dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030  

    4.    Pratt WB, Morishima Y, Murphy M, Harrell M (2006) Chaperoning of glucocorticoid recep-
tors. Handb Exp Pharmacol 172:111–138  

    5.    Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction 
from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 
217:420–434  

     6.    Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hall-
marks. Curr Pharm Des 19:347–365  

   7.    Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: 
combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y 
Acad Sci 1113:202–216  

    8.    Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in 
clinical cancer therapy (Review). Int J Oncol 45:18–30  

    9.    Ou JR, Tan MS, Xie AM et al (2014) Heat shock protein 90 in Alzheimer’s disease. BioMed 
Res Int 2014:796869. doi:  10.1155/2014/796869      

23 The ATPase Activity of Hsp90

http://dx.doi.org/10.1155/2014/796869


486

   10.    Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2014) Targeting Hsp90/Hsp70-based 
protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev 
Pharmacol Toxicol. doi:  10.1146/annurev-pharmtox-010814-124332      

    11.    Ebrahimi-Fakhari D, Saidi LJ, Wahlster L (2013) Molecular chaperones and protein folding 
as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol 
Commun 1:79. doi:  10.1186/2051-5960-1-79      

    12.    Ramdhave AS, Patel D, Ramya I et al (2013) Targeting heat shock protein 90 for malaria. 
Mini Rev Med Chem 13:1903–1920  

     13.    Geller R, Taguwa S, Frydman J (2012) Broad action of Hsp90 as a host chaperone required 
for viral replication. Biochim Biophys Acta 1823:698–706. doi:  10.1016/j.bbamcr.2011.11.007      

    14.    Altieri DC, Stein GS, Lian JB, Languino LR (2012) TRAP-1, the mitochondrial Hsp90. 
Biochim Biophys Acta 1823:767–773  

   15.    Marzec M, Eletto D, Argon Y (2012) GRP94: An HSP90-like protein specialized for protein 
folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 
1823:774–787  

        16.    Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 
1823:614–623  

    17.    Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240  
    18.    Nagy PD, Wang RY, Pogany J et al (2011) Emerging picture of host chaperone and cyclophilin 

roles in RNA virus replication. Virology 411:374–382  
       19.    Ali MM, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/

Sba1 closed chaperone complex. Nature 440:1013–1017  
        20.    Zhang M, Kadota Y, Prodromou C et al (2010) Structural basis for assembly of Hsp90-Sgt1- 

CHORD protein complexes: implications for chaperoning of NLR innate immunity recep-
tors. Mol Cell 39:269–281  

          21.    Panaretou B, Siligardi G, Meyer P et al (2002) Activation of the ATPase activity of hsp90 by 
the stress-regulated cochaperone aha1. Mol Cell 10:1307–1318  

    22.    Prodromou C, Roe SM, O’Brien R et al (1997) Identifi cation and structural characterisation 
of the ATP/ADP binding site in the Hsp90 molecular chaperone. Cell 90:65–75  

     23.    Graf C, Stankiewicz M, Kramer G, Mayer MP (2009) Spatially and kinetically resolved 
changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO 
J 28:602–613  

     24.    Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational 
cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293  

    25.    Prodromou C, Panaretou B, Chohan S et al (2000) The ATPase cycle of Hsp90 drives a 
molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO 
J 19:4383–4392  

    26.    Weikl T, Muschler P, Richter K et al (2000) C-terminal Regions of Hsp90 are Important for 
Trapping the Nucleotide during the ATPase Cycle. J Mol Biol 303:583–592  

    27.    Frey S, Leskovar A, Reinstein J, Buchner J (2007) The ATPase cycle of the endoplasmic 
chaperone Grp94. J Biol Chem 282:35612–35620  

    28.    Leskovar A, Wegele H, Werbeck ND et al (2008) The ATPase cycle of the mitochondrial 
Hsp90 analog Trap1. J Biol Chem 283:11677–11688  

    29.    Ratzke C, Berkemeier F, Hugel T (2012) Heat shock protein 90’s mechanochemical cycle is 
dominated by thermal fl uctuations. Proc Natl Acad Sci U S A 109:161–166  

    30.    Smith DF (1993) Dynamics of heat-shock protein 90-progesterone receptor binding and the 
disactivation loop model for steroid receptor complexes. Mol Endocrinol 7:1418–1429  

   31.    Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 
7:4–11  

    32.    Smith DF, Whitesell L, Nair SC et al (1995) Progesterone receptor structure and function 
altered by geldanamycin, an Hsp90 binding agent. Mol Cell Biol 15:6804–6812  

      33.    Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by 
tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762  

C. Prodromou and R.M.L. Morgan

http://dx.doi.org/10.1016/j.bbamcr.2011.11.007
http://dx.doi.org/10.1186/2051-5960-1-79
http://dx.doi.org/10.1146/annurev-pharmtox-010814-124332


487

    34.    Gross M, Hessefort S (1996) Purifi cation and characterisation of a 66-kDa protein from 
rabbit reticulocyte lysate which promotes the recycling of hsp70. J Biol Chem 271:
16833–16841  

    35.    Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates hsp70/hsp90 interac-
tions in protein folding. J Biol Chem 273:3679–3686  

    36.    Li J, Richter K, Buchner J (2011) Mixed Hsp90-cochaperone complexes are important for the 
progression of the reaction cycle. Nat Struct Mol Biol 18:61–66  

     37.    Siligardi G, Hu B, Panaretou B et al (2004) Co-chaperone regulation of conformational 
switching in the Hsp90 ATPase cycle. J Biol Chem 279(50):51989–51998  

     38.    Siligardi G, Panaretou B, Meyer P et al (2002) Regulation of Hsp90 ATPase activity by the 
co-chaperone Cdc37p/p50cdc37. J Biol Chem 277(23):20151–20159  

    39.    Polier S, Samant RS, Clarke PA et al (2013) ATP-competitive inhibitors block protein kinase 
recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 9:307–312. doi:  10.1038/
nchembio.1212      

    40.    Bandhakavi S, McCann RO, Hanna DE, Glover CV (2003) A positive feedback loop between 
protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol 
Chem 278:2829–2836  

   41.    Shao J, Prince T, Hartson SD, Matts RL (2003) Phosphorylation of serine 13 is required for 
the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem 278:38117–38120  

    42.    Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a 
kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24:4065–4074  

    43.    Vaughan CK, Gohlke U, Sobott F et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. 
Mol Cell 23:697–707  

      44.    Xu W, Mollapour M, Prodromou C et al (2012) Dynamic tyrosine phosphorylation modulates 
cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Mol Cell 47:434–443  

    45.    Scheufl er C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide com-
plexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 
101:199–210  

    46.    Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular 
chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. Mol Cell 
42:771–781  

    47.    Richter K, Muschler P, Hainzl O et al (2003) Sti1 is a noncompetitive inhibitor of the Hsp90 
ATPase. Binding prevents the N-terminal dimerization reaction during the ATPase cycle. 
J Biol Chem 278:10328–10333  

    48.    Roe SM, Ali MM, Meyer P et al (2004) The Mechanism of Hsp90 regulation by the protein 
kinase-specifi c cochaperone p50(cdc37). Cell 116:87–98  

    49.    Zhang M, Boter M, Li K et al (2008) Structural and functional coupling of Hsp90- and Sgt1- 
centred multi-protein complexes. EMBO J 27(20):2789–2798  

    50.    Kadota Y, Amigues B, Ducassou L et al (2008) Structural and functional analysis of SGT1- 
HSP90 core complex required for innate immunity in plants. EMBO Rep 9:1209–1215  

    51.    Rodrigo-Brenni MC, Thomas S, Bouck DC, Kaplan KB (2004) Sgt1p and Skp1p modulate 
the assembly and turnover of CBF3 complexes required for proper kinetochore function. Mol 
Biol Cell 15:3366–3378. doi:  10.1091/mbc.E03-12-0887      

    52.    Boter M, Amigues B, Peart J et al (2007) Structural and functional analysis of SGT1 reveals 
that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved 
in plant immunity. Plant Cell 19:3791–3804. doi:  10.1105/tpc.107.050427      

    53.    Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to 
link Hsp90 to Skp1p. J Biol Chem 281:33739–33748  

     54.    Eckert K, Saliou JM, Monlezun L et al (2010) The Pih1-Tah1 cochaperone complex inhibits 
Hsp90 molecular chaperone ATPase activity. J Biol Chem 285:31304–31312. doi:  10.1074/
jbc.M110.138263      

      55.    Pal M, Morgan M, Phelps SE et al (2014) Structural basis for phosphorylation-dependent 
recruitment of Tel2 to Hsp90 by Pih1. Structure 22:805–818  

23 The ATPase Activity of Hsp90

http://dx.doi.org/10.1074/jbc.M110.138263
http://dx.doi.org/10.1074/jbc.M110.138263
http://dx.doi.org/10.1105/tpc.107.050427
http://dx.doi.org/10.1091/mbc.E03-12-0887
http://dx.doi.org/10.1038/nchembio.1212
http://dx.doi.org/10.1038/nchembio.1212


488

    56.    Weaver AJ, Sullivan WP, Felts SJ et al (2000) Crystal structure and activity of human p23, a 
heat shock protein 90 co- chaperone. J Biol Chem 275:23045–23052  

    57.    Freeman BC, Felts SJ, Toft DO, Yamamoto KR (2000) The p23 molecular chaperones act at 
a late step in intracellular receptor action to differentially affect ligand effi cacies. Genes Dev 
14:422–434  

    58.    Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is 
enhanced by the co-chaperone p23. EMBO J 19:5930–5940  

     59.    McLaughlin SH, Sobott F, Yao ZP et al (2006) The co-chaperone p23 arrests the Hsp90 
ATPase cycle to trap client proteins. J Mol Biol 356:746–758  

    60.    Morris NR (1975) Mitotic mutants of Aspergillus nidulans. Genet Res 26:237–254  
   61.    Morris NR, Xiang X, Beckwith SM (1995) Nuclear migration advances in fungi. Trends Cell 

Biol 5:278–282  
   62.    Xiang X, Beckwith SM, Morris NR (1994) Cytoplasmic dynein is involved in nuclear migra-

tion in Aspergillus nidulans. Proc Natl Acad Sci U S A 91:2100–2104  
   63.    Xiang X, Osmani AH, Osmani SA et al (1995) NudF, a nuclear migration gene in Aspergillus 

nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 
6:297–310  

   64.    Willins DA, Xiang X, Morris NR (1995) An alpha tubulin mutation suppresses nuclear 
migration mutations in Aspergillus nidulans. Genetics 141:1287–1298  

    65.    Beckwith SM, Roghi CH, Morris NR (1995) The genetics of nuclear migration in fungi. 
Genet Eng 17:165–180  

    66.    Miller BA, Zhang MY, Gocke CD et al (1999) A homolog of the fungal nuclear migration 
gene nudC is involved in normal and malignant human hematopoiesis. Exp Hematol 
27:742–750  

   67.    Matsumoto N, Ledbetter DH (1999) Molecular cloning and characterization of the human 
NUDC gene. Hum Genet 104:498–504  

   68.    Zhou T, Zimmerman W, Liu X, Erikson RL (2006) A mammalian NudC-like protein essential 
for dynein stability and cell viability. Proc Natl Acad Sci U S A 103:9039–9044  

    69.    Yang Y, Yan X, Cai Y et al (2010) NudC-like protein 2 regulates the LIS1/dynein pathway by 
stabilizing LIS1 with Hsp90. Proc Natl Acad Sci U S A 107:3499–3504  

    70.    Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/alpha-crystallin 
proteins defi ne a conserved sequence domain present in other eukaryotic protein families. 
FEBS Lett 529:162–167  

    71.    Wang Q, Li M, Wang Y et al (2008) RNA interference targeting CML66, a novel tumor anti-
gen, inhibits proliferation, invasion and metastasis of HeLa cells. Cancer Lett 269:127–138  

    72.    Riera J, Lazo PS (2009) The mammalian NudC-like genes: a family with functions other than 
regulating nuclear distribution. Cell Mol Life Sci 66:2383–2390  

    73.    Zheng M, Cierpicki T, Burdette AJ et al (2011) Structural features and chaperone activity of 
the NudC protein family. J Mol Biol 409:722–741  

    74.    Zhu XJ, Liu X, Jin Q et al (2010) The L279P mutation of nuclear distribution gene C (NudC) 
infl uences its chaperone activity and lissencephaly protein 1 (LIS1) stability. J Biol Chem 
285:29903–29910  

       75.    Meyer P, Prodromou C, Liao C et al (2004) Structural basis for recruitment of the ATPase 
activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23:511–519  

    76.    Retzlaff M, Hagn F, Mitschke L et al (2010) Asymmetric activation of the hsp90 dimer by its 
cochaperone aha1. Mol Cell 37:344–354  

    77.    Riggs DL, Roberts PJ, Chirillo SC et al (2003) The Hsp90-binding peptidylprolyl isomerase 
FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22:1158–1167  

    78.    McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of 
human Hsp90 by a client protein. J Mol Biol 315:787–798  

    79.    Mollapour M, Neckers L (2012) Post-translational modifi cations of Hsp90 and their contri-
butions to chaperone regulation. Biochim Biophys Acta 1823:648–655  

      80.    Mollapour M, Tsutsumi S, Donnelly AC et al (2010) Swe1Wee1-dependent tyrosine phos-
phorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell 37:333–343  

C. Prodromou and R.M.L. Morgan



489

    81.    Mollapour M, Tsutsumi S, Kim YS et al (2011) Casein kinase 2 phosphorylation of Hsp90 
threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2:407–417  

     82.    Mollapour M, Tsutsumi S, Truman AW et al (2011) Threonine 22 phosphorylation attenuates 
Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 
41:672–681  

    83.    Yu X, Guo ZS, Marcu MG et al (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expres-
sion in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94:504–513  

   84.    Yang Y, Rao R, Shen J et al (2008) Role of acetylation and extracellular location of heat 
shock protein 90alpha in tumor cell invasion. Cancer Res 68:4833–4842  

    85.    Scroggins BT, Robzyk K, Wang D et al (2007) An acetylation site in the middle domain of 
Hsp90 regulates chaperone function. Mol Cell 25(1):151–159. doi:  10.1016/j.
molcel.2006.12.008      

   86.    Kovacs JJ, Murphy PJ, Gaillard S et al (2005) HDAC6 regulates Hsp90 acetylation and 
chaperone- dependent activation of glucocorticoid receptor. Mol Cell 18:601–607  

   87.    Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C et al (2005) S-nitrosylation of Hsp90 
promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activi-
ties. Proc Natl Acad Sci U S A 102:8525–8530  

    88.    Retzlaff M, Stahl M, Eberl HC et al (2009) Hsp90 is regulated by a switch point in the 
C-terminal domain. EMBO Rep 10:1147–1153  

     89.    Holt SE, Aisner DL, Baur J et al (1999) Functional requirement of p23 and Hsp90 in telom-
erase complexes. Genes Dev 13:817–826  

   90.    Garcia-Cardena G, Fan R, Shah V et al (1998) Dynamic activation of endothelial nitric oxide 
synthase by Hsp90. Nature 392:821–824  

   91.    Pratt WB, Toft DO (2003) Regulation of signaling protein function and traffi cking by the 
hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133  

    92.    Park SJ, Suetsugu S, Takenawa T (2005) Interaction of HSP90 to N-WASP leads to activation 
and protection from proteasome-dependent degradation. EMBO J 24:1557–1570  

    93.    Zhang M, Windheim M, Roe SM et al (2005) Chaperoned ubiquitylation--crystal structures 
of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 
20:525–538  

    94.    Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of 
protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO 
J 17:1192–1199  

    95.    Boulon S, Pradet-Balade B, Verheggen C et al (2010) HSP90 and its R2TP/Prefoldin-like 
cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 
39:912–924  

    96.    Forget D, Lacombe AA, Cloutier P et al (2010) The protein interaction network of the human 
transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtu-
bule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics 
9:2827–2839  

    97.    Gonzales FA, Zanchin NI, Luz JS, Oliveira CC (2005) Characterization of Saccharomyces 
cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA process-
ing. J Mol Biol 346:437–455  

   98.    Kurokawa M, Zhao C, Reya T, Kornbluth S (2008) Inhibition of apoptosome formation by 
suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias. Mol Cell 
Biol 28:5494–5506  

   99.    Samarsky DA, Fournier MJ, Singer RH, Bertrand E (1998) The snoRNA box C/D motif 
directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO 
J 17:3747–3757  

    100.    Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim 
Biophys Acta 1823:101–107  

    101.    Hu J, Toft D, Anselmo D, Wang X (2002) In vitro reconstitution of functional hepadnavirus 
reverse transcriptase with cellular chaperone proteins. J Virol 76(1):269–279  

23 The ATPase Activity of Hsp90

http://dx.doi.org/10.1016/j.molcel.2006.12.008
http://dx.doi.org/10.1016/j.molcel.2006.12.008


490

   102.    Nair SC, Toran EJ, Rimerman RA et al (1996) A pathway of multi-chaperone interactions 
common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock 
transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 
1:237–250  

   103.    Felts SJ, Toft DO (2003) p23, a simple protein with complex activities. Cell Stress Chaperones 
8:108–113  

   104.    Grad I, McKee TA, Ludwig SM et al (2006) The Hsp90 cochaperone p23 is essential for 
perinatal survival. Mol Cell Biol 26:8976–8983  

   105.    Lovgren AK, Kovarova M, Koller BH (2007) cPGES/p23 is required for glucocorticoid 
receptor function and embryonic growth but not prostaglandin E2 synthesis. Mol Cell Biol 
27:4416–4430  

    106.    Tanioka T, Nakatani Y, Semmyo N et al (2000) Molecular identifi cation of cytosolic prosta-
glandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prosta-
glandin E2 biosynthesis. J Biol Chem 275:32775–32782    

C. Prodromou and R.M.L. Morgan



491© Springer International Publishing Switzerland 2016 
S. Chakraborti, N.S. Dhalla (eds.), Regulation of Ca2+-ATPases,V-ATPases 
and F-ATPases, Advances in Biochemistry in Health and Disease 14, 
DOI 10.1007/978-3-319-24780-9_24

    Chapter 24   
 Role of ATPases in Disease Processes                     

       Swatilekha     Ghosh     and     Parimal     C.     Sen    

    Abstract     In the course of evolution, a number of agents have emerged as  carriers of 
signals that are essential for the correct functioning of cell life. Ca 2+  is the most versa-
tile of all of them; other messengers are normally committed to the regulation of a 
single cell function, or at most a few of them. Ca 2+  instead  regulates a plethora of cel-
lular processes, beginning with the origin of new cell life, its growth, proliferation and 
differentiation and ending with its termination in the process of programmed cell death. 
Thus, precise regulation of calcium within the cellular compartments is of utmost 
importance to maintain proper  cellular function. Calcium balance is fi nely regulated 
within the cell by the  coordinated action of the calcium pumps and the channels. As 
calcium ions play such critical role in regulation of varied cellular functions, 
 malfunction of the calcium pumps is associated with different disease progression. In 
the present review, we have discussed the properties and functioning of the calcium 
pumps and also highlighted its association with different malfunction and diseases. 
This knowledge might be effective in using the calcium pumps as therapeutic targets 
for drug development in the near future.  

  Keywords     Calcium signalling   •   Ca 2+ -transporting proteins   •   Plasma membrane   
•   Ca 2+  ATPase   •   Sarco(endo)plasmic reticulum ATPase   •   Ca 2+  pump  

1         Introduction 

 ATPases play a crucial role in regulating chemical gradients across cell membranes, 
thereby maintaining cellular homeostasis and are vital for all kingdoms of life. 
There are different types of ATPase which differ in function, structure and the types 
of ions they transport. F-ATPases (F1FO-ATPases) are found mainly in the 
 mitochondria, chloroplasts and bacterial plasma membranes and are the prime 
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producers of ATP, using the proton gradient generated by oxidative phosphorylation 
(mitochondria) or photosynthesis (chloroplasts). V-ATPases (vacuolar ATPases) 
are primarily found in eukaryotic vacuoles, catalysing ATP hydrolysis to transport 
solutes and lower pH in organelles like proton pump of lysosome. P-ATPases are 
found in bacteria, in fungi and in eukaryotic plasma membranes and organelles and 
function to transport a variety of different ions across membranes. The P-ATPases 
are distinct from the others in forming an intermediate phosphorylated intermediate 
during their ion transport cycle [ 1 ]. The Na+ K+ ATPase is located in the plasma 
membrane and maintains plasma membrane potential in eukaryotic cells. The pump 
drives three sodium ions out of the cell and two potassium ions into the cell against 
stiff concentration gradient. The activity of this enzyme is required for diverse 
functions like maintenance of cellular osmotic balance, generation of neuronal 
membrane potentials and intestinal handling of solutes [ 2 ]. The pump comprises of 
two subunits, a 100 kDa α-subunit and a heavily glycosylated 55 kDa β-subunit. 
The H+ K+ ATPase acidifi es the stomach, and the heavy metal ATPases are required 
for trace metal homeostasis. The Ca 2+  ATPases are crucial for muscle function and 
transport of calcium into secretory vesicles. Thus, a clear understanding of the 
functioning of these ATPases might be important to determine their role in  regulation 
of various life processes. Dysfunction of these ATPases has been found to be asso-
ciated with different disease development in humans and other animals. Malfunction 
of the Na+ K+ ATPase has been found to be associated with various neurodegenera-
tive disorders [ 3 ,  4 ] and henceforth provide an important target for medicinal 
research. On the other hand, Ca 2+  ATPase dysfunction has been found to be 
 associated with Brody’s disease, heart failure and even cancer [ 5 ]. Thus, it can be 
stated that ATPases play a vital role regulation of disease development and progres-
sion. In the present review, we have discussed the role of ATPases, especially the 
Ca 2+  ATPase, regarding their structure, function, mutations and role in disease 
 progression and subsequently consider that this information might be useful to tar-
get these ATPases for extensive biological research for application in biotechnology 
and medicine.  

2      Calcium  Signalling   

 In the furnaces of the stars, the elements have been evolved from hydrogen. When 
oxygen and neon captured successive α-particles, the element calcium was born. 
Roughly ten billion years later, cell membranes began to parse the world by 
charge, temporarily and locally defying relentless entropy. To adapt with the 
changing  environments, cells must signal, and signalling requires messengers 
whose  concentration varies with time. Filling this role, calcium ions (Ca 2+ ) have 
come to rule cell signalling. Among the other signalling molecules, Ca 2+  is the 
most  versatile: other messengers are normally committed to the regulation of a 
single cell function, or at most a few of them. Ca 2+  instead regulates a very large 
list of essential  functions, beginning with the origin of new cell life at fertilisation 
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and ending with its  termination in the process of programmed cell death. Between 
these two events, Ca 2+  transmits signals to functions as fundamental as gene tran-
scription, muscle  contraction (and motility in general), secretion (including that of 
neurotransmitters) and generation of fuels in various metabolic pathways [ 6 ]. The 
involvement of Ca 2+  in so many fundamental cell processes naturally demands its 
effi cient and precise control. Ca 2+  signalling requires the strict cooperation among 
the different cellular compartments and organelles, being in fact a highly sophisti-
cated way of  communication to maintain homeostasis and functionality of the 
whole cell. Failure of the mechanisms devoted to maintain Ca 2+  homeostasis 
(Fig.  24.1 ) produces  generalised Ca 2+  alterations, in turn producing rough cell 
damage, without involving specifi c signalling, i.e. when strong, Ca 2+  alterations 
cause cell death by necrosis [ 7 – 11 ]. The concentration of Ca 2+  in the cytosol is 
normally maintained at 100–200 nM. To maintain this cytosolic Ca 2+  level, evolu-
tion has created numerous  proteins that are able to bind Ca 2+  and/or to transport it 
out of the cytosol, reducing its free concentration in the surrounding environment 
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  Fig. 24.1    Representation of cellular calcium homeostasis in a single cell. Extracellular Ca 2+  enters 
the cell through plasma membrane Ca 2+  channels and leaves the cell using Ca 2+  pumps and Na+/
Ca 2+  exchangers. Endoplasmic reticulum (ER) is a major site for sequestered Ca 2+  ions. Ca 2+  is 
accumulated in intracellular stores by means of Ca 2+  pumps and released by inositol 1,4,5‐ trispho-
sphate (IP3) via IP3 receptors (IP3R) and by cyclic adenosine diphosphate ribose (cADPr) via 
ryanodine receptors (RyR) (Adapted from Carafoli et al. (2004) Biol Res 34: 497–505). Reproduced 
with permission from Biol Res       
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to the limits that are necessary for its signalling function. This has been made 
possible by the peculiar coordination chemistry of Ca 2+ , which allows it to be 
bound by cavities of irregular shapes, such as those that are normally offered by 
the tertiary structure of proteins. The proteins that bind or interact with Ca 2+  can 
be divided into two broad classes—those that only bind or interact with Ca 2+  to 
regulate its concentration (Ca 2+ -buffering and Ca 2+ -transporting proteins) and 
those that bind Ca 2+  to decode its signal (Ca 2+   sensors) thereby by critically regu-
lating the cellular homeostasis. 

3         Ca 2+ -Buffering and Ca 2+ -Transporting  Proteins   

 Proteins that regulate the intracellular Ca 2+  concentration can reside in the cytosol, 
in organelles, or they can be intrinsic to membranes. Soluble Ca 2+ -buffering proteins 
in the cytosol and organelles are acidic proteins that can store large amounts of Ca 2+ . 
As a rule, they have a low Ca 2+  affi nity. An important Ca 2+ -buffering protein in the 
sarco(endo)plasmic reticulum is calsequestrin, and an interesting Ca 2+ -buffering 
protein in the cytosol is parvalbumin, which belongs to the family of EF-hand Ca 2+ -
sensor proteins [ 6 ]. 

 Membrane-intrinsic proteins can create and shape Ca 2+  signals by functioning as 
channels, ATPases (pumps) or exchangers that transport Ca 2+  across membranes. 
Ca 2+  channels mediate the penetration of Ca 2+  into the cell and its exit from the 
sarco(endo)plasmic reticulum. In the plasma membrane, Ca 2+  channels are gated by 
voltage changes, by ligand interactions or by a poorly understood mechanism that 
is linked to the emptying of intracellular Ca 2+  stores. The voltage-gated channels 
have several subtypes [ 12 ] of which the L-type, which is the target of widely used 
Ca 2+  antagonists, is the best characterised. The most important ligand-operated 
channels are gated by neurotransmitters, and, among them, the glutamate-operated 
channels are the most intensively studied [ 13 ] In the sarco(endo)plasmic reticulum, 
the opening of Ca 2+  channels is regulated by Ca 2+  itself—the process of Ca 2+ -
induced Ca 2+  release [ 14 ]—but this opening also requires ligands like inositol-
(1,4,5)-trisphosphate (Ins(1,4,5)P 3 ) [ 15 ] or, in selected cell types, another 
endogenous ligand, cyclic ADP ribose [ 16 ], which releases Ca 2+  through channels 
that are known as ryanodine receptors. Both the plasma membrane and the inner 
mitochondrial membrane also contain Na+/Ca 2+  exchangers (NCX and MNCX, 
respectively) that export Ca 2+  from the cell and the mitochondrial matrix [ 17 ], 
respectively. The high capacity plasma-membrane NCX is particularly active in 
excitable cells, which demand the periodic ejection of large Ca 2+  loads. The less 
well-characterised  mitochondrial exchanger (MNCX)   is also particularly active in 
excitable cells. Whereas the plasma-membrane NCX exchanges three Na + per one 
Ca 2+  and therefore responds both to the Na+ and Ca 2+  transmembrane gradients and 
to the voltage difference across the plasma membrane, MNCX seems to exchange 
two Na+ per one Ca 2+ .   
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4     Calcium Pumps 

4.1     The  Plasma Membrane Ca 2+ ATPase (PMCA)   

 The Ca 2+  ATPases of the plasma membrane (PMCA pumps) export Ca 2+  from all 
eukaryotic cells (Fig.  24.2 ). The  PMCA pumps      belong to the superfamily of 
P-type pumps, which are so defi ned because they conserve temporarily the 
energy of the ATP due to the hydrolysis of a phosphorylated aspartic acid resi-
due [ 1 ]. The  structure of the PMCA pump, modelled on the template of the 
SERCA pump, repeats as expected the essential properties of the latter. Even if 
subtler differences, e.g. the presence of only one instead of two Ca 2+ -binding 
sites, are not revealed by the modelling, it is reasonable to assume that the 
molecular transitions that occur in the SERCA pump also occur in the PMCA 
pump. However, the PMCA pump differs from the SERCA pump in a number of 
more signifi cant aspects, which will only be understood when its own 
 three-dimensional structure is solved.

   In mammals, four genes encode four basic  PMCA pumps     : isoforms 1 and 4 
are widely distributed in tissues and until shortly ago had been considered 
house keeping isoforms. Recently, however, the housekeeping role has come into 
question,  particularly for PMCA4, as this isoform has been found to have 
 specific Ca 2+   signalling roles not exclusively linked to its Ca 2+  exporting 
 function [ 18 ]. As for PMCA1, it is expressed in the tissues of the embryo from 
the earliest times of development. At variance with PMCA 1 and 4, PMCA 2 
and 3 are expressed in a very limited number of tissues, the most important 
being the nervous system (the mammary gland also expresses signifi cant 
amounts of PMCA2 and skeletal muscles of PMCA3).  
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  Fig. 24.2    Structure of the PMCA pump showing the ten transmembrane domains with the ATP- 
binding site (Monteith GR, Roufogalis BD. (1995) Cell Calcium 18: 459–470). Reproduced with 
permission from Elsevier       
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4.2     The  Sarco(endo)plasmic Reticulum Ca 2+  ATPase (SERCA)   

 The sarcoplasmic reticulum (SR) is an intracellular membranous network found in 
muscle cells. Although it is analogous to the endoplasmic reticulum (ER), it can 
store millimolar amounts of calcium. It serves to initiate muscle contraction by 
releasing calcium through the ryanodine receptors (RyR) into the cytosol and 
 facilitates muscle relaxation by active reuptake of calcium by the sarco(endo)-
plasmic reticulum Ca 2+  ATPase ( SERCA     ) (Fig.  24.3 ). The SERCA pump serves a 
dual function: (1) to cause muscle relaxation by lowering the cytosolic calcium and 
(2) at the same time to restore SR calcium store necessary for muscle contraction. 
Alterations in Ca 2+  transport and intracellular calcium levels have been implicated 
in many types of pathological processes, including cancer and heart disease [ 19 ].

   The  SERCA      pump has ten transmembrane spanning domains, and its 
 three- dimensional structure has been recently solved at atomic resolution in both 
the Ca 2+ -bound and the Ca 2+ -free states [ 20 ,  21 ]. The structure has permitted the 
identifi cation of the location of all important domains, including the ATP-binding 
site and the catalytic aspartyl residue, which are located in a large globular domain 
protruding between the fourth and fi fth transmembrane sectors. All ten 
 transmembrane domains and the cavity that forms the Ca 2+ -binding sites have also 

  Fig. 24.3    Structure of the SERCA pump (Toyoshima et al. (2000) Nature 405: 647–655). 
Reproduced with permission from Nature       
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been located. In human, SERCA-type Ca 2+  pumps are encoded by three genes 
(ATP2A1-3), which generate multiple isoforms of SERCA, i.e. SERCAla, b, 
SERCA2a–c and SERCA3a–f by developmental or tissue-specifi c alternative 
 splicing [ 22 ]. The changes in the expression pattern of the variants during 
 development and tissue differentiation indicate that each isoform is adapted to  specifi c 
functions. Whereas SERCA1 is expressed in skeletal muscle, and the SERCA2a 
 isoform is found in cardiac muscle, SERCA2b expression is ubiquitous. In several 
cell types such as T lymphocytes, myeloid cells, megakaryocytes and platelets, as well 
as in colon and gastric epithelial cells, SERCA2b is co-expressed with SERCA3 [ 23 –
 30 ]. Whereas the basic biochemical function (i.e. calcium  transport into the ER) is 
shared among SERCA2 and SERCA3 isoenzymes, the calcium affi nity of SERCA3 
is signifi cantly inferior to that of SERCA2b [ 31 – 35 ]. The co-expression of SERCA2b 
and SERCA3 within the same cell is thus involved in the fi ne  regulation of the cal-
cium uptake characteristics of the ER in a cell  type-dependent manner.  

4.3     The  Calcium Transport Cycle         by the Ca 2+  ATPases 

 A simplifi ed reaction scheme forms the basic line which is valid for all the Ca 2+  
ATPases. Originally, the scheme envisaged two conformational states of the pumps: 
the E1 state, in which the enzyme has high Ca 2+  affi nity and interacts with Ca 2+  at one 
side of the membrane, and the E2 state, in which the lower Ca 2+  affi nity leads to the 
release of the ion at the opposite side [ 36 ]. More recent structural work on the SERCA 
pump has increased the complexity of the conformational transitions that occur dur-
ing the catalytic cycle. Upon binding of Ca 2+ , a series of structural changes occur that 
involve both the protruding cytoplasmic sector and the transmembrane domains, per-
mitting the phosphorylation of the catalytic D-residue by the γ-phosphate of ATP. The 
dissociation of Ca 2+  from the enzyme follows the  transition of the high Ca 2+  affi nity 
E1~P(Ca 2+ ) enzyme to the lower affi nity E2~P enzyme, the hydrolysis of which then 
regenerates the Ca 2+ -free E2 ATPase, completing the  catalytic cycle (Fig.  24.4 ).

4.4        Calcium Signalling  in Cell Survival and Death         

 Ca 2+  deregulation is a consequence of many different insults that end up altering 
Ca 2+  homeostasis, causing an increased damage to cells; for this reason, it may be 
defi ned as an “ intrinsic stress  ”, meaning that it is auto-induced by the cells as a 
consequence of an extrinsic stress of a different nature. Recent developments have 
emphasised the central role of the calcium ion in the regulation of cell death. Similar 
to the conductor of an orchestra, it can activate distinct parts of the cell death 
 programme, which can then function alone or in conjunction with other 
 subprogrammes to kill the cell [ 37 ]. 
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 However, on the other hand, Ca 2+  is involved in pro-survival or anti-apoptotic 
pathways, such as the activation of protein kinase C, whose many isoforms play 
pivotal roles in coordinating survival cell responses [ 38 ]. This versatility of the 
calcium signalling is emphasised by growing evidence that Ca 2+  controls cellular 
processes as diverse as cell proliferation and the neuronal plasticity that is responsible 
for learning and memory. But at any moment, any of these orderly signalling events 
can be switched to activate a programme that leads to cell death—a big challenge 
for the future is to understand how Ca 2+  suddenly transforms from a signal for life 
to a signal of death. Thus, exploitation of the calcium signalling pathways may be 
very important in discerning various disease processes and also for searching better 
therapeutic options for targeted therapies.   

5     Calcium Pumps and Diseases 

5.1     The  SERCA      )   Pump in Disease Process 

 Two major human genetic disorders, Brody’s and Darier’s disease, have been known 
to be associated with mutations in the SERCA pump genes. Brody’s disease is a rare 
recessive muscular condition characterised by impaired relaxation, painless cramps 
and stiffness following exercise [ 39 ]. Reduced activity of the SERCA pump is 
mainly thought to be associated with this disorder. In fact, decreased SERCA1 
expression has been observed in many cases [ 40 ,  41 ]. However, some compensation 
is provided by ectopic expression of SERCA2 or SERCA3 and/or by Ca 2+  removal 
from the cytosol by the PMCA pump.  Darier’s disease   (or Darier-White’s disease) 
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is a rare autosomal dominant skin disorder characterised by loss of adhesion between 
epidermal cells and abnormal keratinisation [ 42 ]. The disease is characterised by 
 keratotic papules   in seborrheic areas of the skin and in the skin fl exures which can 
then form confl uent plaques. Reports suggest that more than 130 mutations of the 
SERCA2 gene have been observed in human patients with this disease. Apart from 
the above-mentioned genetic disorders, dysfunction of the SERCA pump is 
 associated with other disease progression also. The  SERCA      pump has been observed 
to be functionally decreased in nearly all models of heart failure [ 43 ], and a decline 
in the SR Ca 2+  transport and SR Ca 2+  content have been also detected in animal heart 
failure models. 

 Although heterogeneity in the expression level of the SERCA pump has been 
observed in failing hearts, it is generally accepted that a reduction of the SERCA2a 
protein levels (and/or activity) plays a role in the development of the failure 
 condition. The SERCA)          pump has been also suggested to exhibit a strong relation-
ship with cancer. Accumulating evidence indicates that the altered cellular 
 homeostasis of Ca 2+  may be involved in the abnormal cell proliferation that is a 
hallmark of the malignant transformation. The matter has aspects that are seemingly 
 paradoxical: on one hand, the increase of cytosolic Ca 2+ , e.g. by hyperactivated 
plasma membrane channels, promotes cell proliferation. On the other hand, situa-
tions of Ca 2+  overload trigger apoptotic death pathways. A remodelling of Ca 2+  
homeostasis is thus increasingly considered important in the process of malignant 
transformation [ 22 ], and it is thus only to be expected that alterations of the 
 expression and/or function of Ca 2+  regulators such as the Ca 2+  pumps should have a 
role in the process of tumorigenesis. 

 The SERCA)          pump has been also associated with different types of cancer. 
Colon carcinoma cells have shown a prominent decline in the SERCA3 expression 
level, whereas the SERCA3 expression is normally elevated in healthy colonic 
 epithelium. Thus, decreased SERCA3 expression can be considered as an early 
marker of colon cancer. SERCA3 expression has been also found to be promi-
nently declined in early breast tumours, whereas normal breast acinar tissue 
showed  distinctly elevated SERCA3 expression. Thus, it can be stated that 
SERCA3 expression is inversely co-related with tumour differentiation and aggres-
siveness of breast cancer. Thus, it can be suggested that the SERCA pump may act 
as a potential target for cancer treatment and therapeutics. SERCA pumps have 
also shown to play important role in the lymphocyte activation process. 
Downregulation of SERCA3 expression has been found to be associated with 
T-lymphocyte activation [ 44 ]. The expression of the SERCA3 pump in pancreatic 
β-cells and the association of sequence variants of the pump with type II diabetes 
[ 45 ] as well as the fi nding that SERCA pumping activity was impaired in diabetic 
rats model [ 46 ] have suggested that the SERCA3 pump could be involved in the 
Ca 2+  deregulation linked to the onset of diabetes and that it could contribute to the 
genetic susceptibility to type II diabetes. Thus, drugs designed to target the SERCA 
pump may play a signifi cant role in providing benefi ts against a diverse group of 
diseases and also provides a major platform for intensive research in disease 
progression and drug development.  
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5.2     The  PMCA         Pump and Disease Processes 

 Several genetic pathologies have been known to be related with the PMCA pump 
dysfunction. Among them, the only spontaneous human disease related to a PMCA 
pump defect so far identifi ed is a form of hereditary deafness [ 47 ,  48 ]. The defect 
involves the PMCA2 pump, which is abundantly expressed in the brain, particularly 
in the Purkinje cell of the cerebellum and in the hair cells of the Corti organ of the 
inner ear. The role of the PMCA pump in the hearing process becomes more evident 
from the fact that PMCA2 knocked out mice showed impairment in the hearing 
process. In addition to the inner ear, PMCA2 is also prominently expressed in other 
brain regions, and its dysfunction is also correlated with neurodegenerative disor-
ders. Transcriptional downregulation of PMCA2 in brains of mouse models has 
been found to be associated with Huntington disease [ 49 ]. The dysfunction may 
contribute to the alteration of the homeostasis of Ca 2+  which is widely considered to 
have a role in the aetiology of the disease. PMCA2 null mice have also shown 
signifi cant reduction in the spinal cord motor neuron [ 50 ] and abnormalities in 
Purkinje neurons [ 51 ]. PMCA2 is also prominently expressed in the epithelial cells 
of the mammary gland and has an important role in the regulation of the concentra-
tion of Ca 2+  in the milk. Recent report suggests that a missense mutation in the 
PMCA3 gene is associated with human pancreatic cancer [ 52 ]. The PMCA4 gene 
has rather housekeeping functions, but dysfunction of the PMCA4 gene has been 
found to be associated with male infertility. Sperms of PMCA4 null mice were still 
able to fertilise eggs [ 53 ] but were incapable of achieving hyperactivated motility 
and thus could not reach them to perform the fertilisation. PMCA4 also plays 
important roles in maintenance of cardiac physiology. Ablation of the PMCA4 gene 
has been found to be associated with cardiac hypertrophy. The PMCA pump also 
has a specifi c role in regulation of calcium homeostasis in β cells of the pancreas 
[ 54 ,  55 ] and thus also plays a unique role in diabetes. Thus, mostly all defects 
 associated with the PMCA pump involve alteration of cellular calcium homeostasis, 
and targeting the PMCA pump provides a unique approach to targeted therapy 
against many disease types.   

6     Conclusion 

 The calcium pumps play major roles in regulation of cellular homeostasis of 
 calcium. As calcium acts as a ubiquitous cellular signal molecule, it regulates a 
varied type of cellular process, and thus alterations in this calcium homeostasis are 
often associated with disorders. As highlighted above, the SERCA pump has been 
found to be associated with disease like cancer, whereas malfunctioning of the 
PMCA pump leads to cardiovascular disorders, diabetes, infertility, cancer, etc. 
(Fig.  24.5 ). Thus, detailed study about the involvement of the calcium pumps in 
disease processes and also identifi cation of small molecules to target these pumps 
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might be useful to provide improved therapeutic options for many key diseases. 
In the present study, we have provided an overview of the importance of calcium 
signalling in life processes and also highlighted its importance in disease develop-
ment. Enhancement of research in this fi eld might prove successful for development 
of therapeutic agents in the future.
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    Chapter 25   
 Renal H + -ATPase Function, Regulation, 
and Role in Distal Renal Tubular Acidosis                     

       Ira     Kurtz     ,     Irina     Rogova    ,     Vladimir     Turygin    ,     Jingbo     Huang    , 
    Natalia     Abuladze    , and     Alexander     Pushkin   

    Abstract     The kidney plays an important role in systemic acid–base balance by 
maintaining the blood HCO 3  −  concentration within narrow limits. Various H + /base 
transport processes and metabolic pathways have evolved that orchestrate in a coor-
dinated fashion, the absorption of the fi ltered bicarbonate load and the generation of 
new HCO 3  − . The impairment of either of these processes in the nephron can result 
in a decrease in the blood HCO 3  −  concentration with concomitant metabolic acido-
sis. In the renal proximal tubule and the collecting duct, secretion of protons by the 
vacuolar H + -ATPase is one of the key transport steps involved in both the reclama-
tion of fi ltered HCO 3  −  and the generation of new HCO 3  − . The activity of the vacuolar 
H + -ATPase is dynamically regulated by various local and systemic factors. Naturally 
occurring mutations in specifi c subunits of the vacuolar H + -ATPase cause the 
disease distal renal tubular acidosis.  

  Keywords     Distal renal tubular acidosis   •   H + -ATPase   •   Bicarbonate   •   Acid–base
   •   Transport  

1         Introduction 

 In spite of the fact that dietary metabolism typically generates a net H +  load which 
would in the absence of compensatory mechanisms titrate extracellular and intracellular 
buffers over time, systemic acid–base parameters are maintained constant [ 1 ]. With 
regard to the most prevalent buffer, the HCO 3  −  buffer system, dietary H +  combines with 
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HCO 3  −  extracellularly and intracellularly where H +  + HCO 3  −  → CO 2  + H 2 O. The kidneys 
are responsible for the generation and delivery to the renal veins, the required quantity 
of HCO 3  −  to prevent the systemic HCO 3  −  concentration from changing [ 2 ,  3 ]. In addition 
to generating new HCO 3  − , the kidney must absorb essentially all the HCO 3  −  from the 
glomerular fi ltrate to prevent its loss in the urine [ 4 ]. In the proximal tubule, it is esti-
mated that the brush border H + -ATPase contributes to ~35 % of H +  secretion and tran-
sepithelial bicarbonate absorption [ 5 ,  6 ]. In the collecting duct, H +  secretion acidifi es the 
urine that results in the titration of luminal NH 3 , HPO 4  −  creatinine, and other organic 
anions, and the generation of new intracellular bicarbonate [ 6 ].  

2      Structural Properties and Regulation   of the Vacuolar 
H + -ATPase 

 The vacuolar H + -ATPase consists of two separate domains: the  V 1  cytoplasmic 
domain (ATP6V1)   and the  V o  transmembrane domain   (Fig.  25.1 ) [ 7 – 10 ]. The V 1  
domain is assembled from eight different subunits, and the four subunits comprise 
the V o  domain. ATP is hydrolyzed at the B/A subunit interface in the V 1  domain. The 
V o  domain mediates H +  translocation between the a and c rings. Various functions in 
addition to transcellular and organelle H +  transport have been ascribed in to the 
vacuolar H + -ATPase including notch signaling [ 11 ], regulation of GTPase activity 
[ 12 ], and modulation of Wnt [ 13 ].

   In general, several factors are involved in regulating H + -ATPase activity including: 
recycling of cytoplasmic H + -ATPase-containing vesicles, modulation of the interac-
tion between the V 1  and V o  domains [ 14 – 18 ], and potential changes in their coupling 
effi ciency. In the kidney, recycling of vesicles is thought to be an important mecha-
nism for altering the cell surface expression of the H + -ATPase [ 19 ,  20 ]. Subunits B1, 
B2, and C are known bind to the actin cytoskeleton [ 21 – 23 ].  RhoA inhibition   by 
depolymerizing actin results in an increase in plasma membrane H + -ATPase expres-
sion [ 24 ]. Exocytosis involves direct interaction of the H + -ATPase with the SNARE 
complex [ 25 ]. Intracellular vesicles coated with H + -ATPase are involved in recruiting 
coat proteins to endosomes [ 26 ] or directly regulate the recycling process [ 27 ]. 
Whether modulation of the interaction between the V 1  and V o  domains plays an 
important role in the kidney is unknown.  

3     Role of the H + -ATPase Pump in  Proximal Tubule 
HCO 3  − Transport   

 Approximately 75 % of the fi ltered HCO 3  −  load is reabsorbed in the proximal tubule. 
This tubule segment is further divided into convoluted and straight segments that 
have different capacities to absorb HCO 3  −  [ 28 – 30 ]. The absorption of HCO 3  −  across 
the apical membrane is indirect and is mediated by secreted H +  ions that react with 
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luminal HCO 3  −  to form CO 2  + H 2 O; the latter are absorbed passively across the apical 
membrane recombining to form H +  and HCO 3  −  intracellularly (Fig.  25.2 ). HCO 3  −  is 
transported across the basolateral membrane by an electrogenic Na + –HCO 3  −  cotrans-
porter, NBCe1-A [ 31 ]. Both membrane-associated and intracellular carbonic anhy-
drase isoforms play an important role in accelerating proximal tubule transepithelial 
HCO 3  −  absorption [ 6 ].

   Apical membrane H +  secretion is mediated predominantly by the Na + /H +  
exchanger NHE3 and, to a lesser extent, the vacuolar H + -ATPase [ 31 ]. 
Immunohistochemistry studies have demonstrated that the largest expression of the 
H + -ATPase is at base of the brush border microvilli [ 32 ]. In neonates, the NHE8 
Na + /H +  exchanger accounts for the majority of apical NHE activity. Using the H + -
ATPase inhibitor DCCD, Bank et al. were able to block ~21 % of proximal tubule 
HCO 3  −  absorption; however, it was unclear that all activity was inhibited [ 5 ]. There 
are no studies of proximal tubular bicarbonate absorption in mice lacking apical 
H + -ATPase activity. Conversely, assessing the contribution of NHE3 to bicarbonate 
absorption is made diffi cult by the fact that disruption of the NHE3  Slc9a3  gene 

  Fig. 25.1    The subunit structure of the vacuolar H + -ATPase. The V o  transmembrane domain is 
composed of the a, c, d, and e subunits. The V 1  domain is composed of the A, B, C, D, E, F, G, and 
H subunits (Ref.  7  with permission)       
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may result in compensatory changes in H + -ATPase activity and other NHE isoforms 
[ 33 ,  34 ]. In addition to bicarbonate absorption, a further role has been attributed to 
intracellular H + -ATPase in the endosomal pathway. Accordingly, in mice lacking 
the H + -ATPase a4 subunit, there are additional proximal tubule transport abnormali-
ties that have been reported: accumulation of material in lysosomes, proteinuria, 
phosphaturia, and abnormal endocytic traffi cking [ 35 ].  

4     Regulation of Proximal Tubule H + -ATPase Activity 

4.1      Cl −  and PKA   

 In the proximal tubule, Cl −  modulates H + -ATPase activity [ 36 ,  37 ], and CFTR and 
ClC-5 may play a role [ 38 ]. Fusion of H + -ATPase-containing vesicles with the 
plasma membrane is also Cl −  -dependent [ 39 ]. The exact Cl − -dependent mechanism 
is unclear since Cl −  channel activity detected in more distal nephron segments [ 40 –
 42 ], has not been demonstrated in the native proximal tubule. Interestingly, the 

  Fig. 25.2    Cell model of acid–base transport processes in the proximal tubule. Approximately 1/3 
of apical proton secretion is mediated by the apical H + -ATPase       
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ClC-5 Cl −  channel colocalizes with the apical H + -ATPase in type A ICs; however, it 
may be involved in endocytosis rather than luminal H +  secretion [ 42 ]. In proximal 
tubule cells, apical H + -ATPase expression is increased by PKA, whereas AMP-
activated protein kinase (AMPK) blocks this effect [ 43 ]. GPR4 may also be involved 
in the signaling pathway as a mechanism for increasing cAMP [ 44 ,  45 ].   

5     Role of the H + -ATPase Pump in Collecting Duct Urinary 
Acidifi cation 

 The collecting duct is the region of the nephron ultimately responsible for achieving 
the minimum urine pH that plays a key role in the process of effective new HCO 3  −  
generation via the protonation of luminal NH 3 , HPO 4  2− , creatinine, and other organic 
anions. The collecting duct segment is subdivided into the  cortical collecting duct 
(CCD)  , the  outer medullary collecting duct (OMCD),   and  inner medullary collect-
ing ducts (IMCD)  ; each segment having unique apical and basolateral H + /base 
transport properties. In the  CCD  , ~60 % of the cells are principal cells (PCs) that are 
responsible for Na +  absorption, K +  secretion, and water absorption in response to 
AVP [ 46 ]. Approximately 40 % of the cells are intercalated cells (ICs). These cells 
are subdivided into type A and type B ICs (also named alpha and beta ICs, respec-
tively) (Fig.  25.3 ) [ 47 – 49 ]. Type A ICs have an apical vacuolar H + -ATPase and a 
basolateral AE1, a Cl − /HCO 3  −  exchanger. Type B ICs express the Cl − /HCO 3  −  
exchanger pendrin apically and basolateral or diffuse H + -ATPase expression [ 32 , 
 50 – 55 ]. These IC cell properties are best distinguished and characterized in the rat. 
Cells not fi tting these classic IC cell models have also been described and are called 
γ or G cells [ 56 ,  57 ] and non-A non-B ICs [ 58 ,  59 ]. In the  OMCD  , there is a lumen- 
positive transepithelial voltage due to electrogenic apical H +  secretion by type A ICs 
with basolateral HCO 3  −  effl ux mediated by the AE1 coupled to Cl −  recycling [ 60 ]. 
Cl −  enters the lumen paracellularly driven by the positive luminal transtubular 
potential. In the IMCD, species differences exist. Specifi cally, the rat  IMCD   secretes 
H +  via an undefi ned Na + -independent mechanism [ 61 ,  62 ]; however, unlike type A 
ICs, IMCD cells lack staining for the H + -ATPase. There is no evidence for luminal 
H +  secretion in the rabbit IMCD [ 63 ].

6        Regulation of Collecting Duct H + -ATPase Activity 

6.1     Acid–Base Status, Ions, Hormones, and Prostaglandins 

 During respiratory acidosis, an increase in pCO 2  stimulates vesicles containing H + -
ATPase that fuse with the plasma membrane; the process is inhibited by colchicine 
[ 64 ]. It is currently thought that in collecting duct ICs, soluble adenylyl cyclase (sAC) 
senses the changes in intracellular pH [ 65 ]. Accordingly,  intracellular HCO 3  −  modu-
lates cAMP activity   resulting in PKA phosphorylation that may involve the A subunit 
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and changes in membrane H + -ATPase expression [ 65 – 69 ]. Signaling through PKC 
doesn’t appear to be involved [ 44 ,  65 – 67 ,  70 ]. 

 An increase in apical membrane PC Na +  transport in the CCD without concomi-
tant charge compensation by  transported anions   (particularly in the presence of 
aldosterone) results in an increased transepithelial voltage [ 71 ,  72 ]. In this setting, 
the apical membrane of type A ICs depolarizes due to circular intraepithelial current 
loops creating an increased driving for enhanced H +  secretion. Accordingly, as has 
been shown in the OMCD os  [ 73 ], blocking ENaC in the apical membrane of CCD 
PCs would be predicted to hyperpolarize the apical membrane of ICs leading to 
decreased electrogenic H +  secretion and HCO 3  −  absorption [ 74 ] and a voltage- 
dependent hyperkalemic dRTA. K +  is also thought to modulate collecting duct H + /
base transport although its direct role is diffi cult to demonstrate because, clinically, 
disorders of K +  balance are often accompanied by changes in aldosterone levels and 
acid–base abnormalities that can independently modulate tubule transport. K +  
depletion is associated with increased apical H + -ATPase expression, basolateral 
AE1, basolateral  Slc26a7  [ 75 ,  76 ], and increased collecting duct H + -K + -ATPase 
activity [ 77 ]. In the OMCD, H + -ATPase activity is signifi cantly enhanced by Ca 2+  
(5.0 mM) and the CaSR agonist neomycin [ 78 ]. It has been hypothesized that 
increased luminal Ca 2+  concentration in the DCT and collecting duct could stimu-
late H + -ATPase activity lowering urinary pH and preventing stone formation [ 78 ]. 

 The  (pro)renin receptor  , (P)RR, colocalizes in the collecting duct [ 79 ] and is an 
accessory protein of the H + -ATPase [ 80 ]. When prorenin binds to (P)RR, renin- 
angiotensin activity is induced. H + -ATPase activity and (P)RR are required for acti-
vation of ERK1/2 via prorenin [ 79 ]. H + -ATPase activation by angiotensin II and 
aldosterone is also dependent on ERK1/2 [ 81 ]. (P)RR appears to be required for 
both prorenin-dependent and prorenin-independent activation of the H + -ATPase 
[ 82 ]; however, its role in vivo remains unclear. The effect of angiotensin II on col-
lecting duct H + /base transport is complex and species-dependent. In the rabbit CCD, 
angiotensin II increases HCO 3  −  secretion [ 83 ] and type B IC H + -ATPase activity in 

  Fig. 25.3    Cell models of acid–base transport processes in the type A intercalated cell ( a ) and type 
B intercalated cell ( b ). Type A intercalated cells secrete H + , whereas type B intercalated cells secrete 
bicarbonate. These cells differ with regard to the specifi c membrane targeting of the H + -ATPase       
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the mouse CNT and CCD [ 84 ]. In rat, HCO 3  −  absorption is increased [ 85 ]. In the 
mouse, angiotensin II stimulates the plasma membrane expression of type A IC H + -
ATPase [ 86 ,  87 ], and type B IC HCO 3  −  secretion is secondarily increased [ 54 ]. 
Angiotensin II stimulates the plasma membrane insertion of cytoplasmic H + -
ATPase-containing vesicles [ 81 ,  84 ,  87 ]. Following angiotensin II binding to the 
AT1 receptors, PKC signaling is involved [ 81 ]. In the OMCD, HCO 3  −  absorption is 
decreased by angiotensin II [ 88 ]. 

  Mineralocorticoids   stimulate luminal H +  secretion in the collecting duct. In the 
CCD, mineralocorticoids indirectly depolarize the apical membrane of type A ICs 
inducing an increase in H +  secretion via stimulation of PC ENaC Na +  transport [ 89 ]. 
In both the CCD and OMCD is , mineralocorticoids also have a direct effect on type 
IC H + -ATPase transport [ 71 ,  90 ]. Mineralocorticoids also stimulate H +  secretion in 
the rat IMCD [ 91 ]. Acutely aldosterone stimulates collecting duct H +  secretion non-
genomically through MAPK kinase, Gαq, PKC, Ca 2+ , and ERK1/2 [ 92 ,  93 ]. More 
prolonged aldosterone exposure increases H + -ATPase membrane expression [ 92 ]. 
In the absence of aldosterone signaling, patients have hyperkalemic dRTA [ 94 ]. In 
vasopressin receptor V1a −/−  mice that develop type 4 RTA, fl udrocortisone appears 
to ameliorate the acidosis by increasing H + -K + -ATPase and RhCG expression asso-
ciated with enhanced urinary ammonium excretion and decrease H + -ATPase expres-
sion [ 95 ]. In  vivo ET-1 administration   increases acidifi cation in the DCT by 
stimulating H +  secretion and by decreasing HCO 3  −  secretion (following HCO 3  −  
loading) [ 96 ], and inhibition of the ET B  receptor blocks aldosterone-induced stimu-
lation of H +  secretion [ 97 ]. H + -ATPase inactivation in type B ICs induces PGE2 
release via Ca 2+ -coupled purinergic receptor activation [ 98 ]. In the OMCD is , PGE 2  
inhibits HCO 3  −  absorption [ 99 ].   

7      Isolated Familial Distal RTA (dRTA)  : Mutations 
in H + -ATPase Subunits 

 Isolated familial  dRTA   is caused by mutations in CAII [ 100 – 103 ], AE1 [ 104 – 110 ], 
and specifi c H + -ATPase subunits. In general, patients with dRTA have a urine pH 
that is elevated in comparison to controls on a similar diet. In addition, they can have 
decreased urinary ammonium excretion, hypercalciuria with or without calcium 
phosphate stones, and nephrocalcinosis [ 100 ]. Patients are often hypokalemic with 
an elevated fractional excretion of potassium [ 100 ]. 

 Karet et al. fi rst described patients with mutations in the   ATP6V1B1  gene   encoding 
the H + -ATPase B1 subunit who had autosomal recessive dRTA and sensorineural 
hearing loss [ 111 ]. The patients have nephrocalcinosis with hypokalemia and may 
have rickets and hypercalciuria. Their hearing loss is typically sensorineural; how-
ever, a conductive component can be present with enlarged vestibular aqueducts 
[ 112 ]. Mutations in the  ATP6V0A1  gene encoding the a4 subunit were also reported 
by Karet et al. The patients had dRTA, normal hearing, hypokalemia, and nephro-
calcinosis and may have hypercalciuria [ 113 ]. Subsequent studies showed that 
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patients with  ATP6V0A1  gene mutations may have hearing loss [ 114 – 116 ]. 
Depending on the specifi c mutation, impaired collecting duct H + -ATPase activity 
may be due to impaired pump function, abnormal pump assembly, abnormal targeting 
to the plasma membrane, and loss of interaction with the enzyme phosphofructokinase- 
1(PFK-1) [ 117 – 119 ]. B1 −/−  mice do not have dRTA, and it has been hypothesized that 
in patients with homozygous B1 subunit, unlike in mice, adaptive formation of B2 
subunit containing H + -ATPase transporters fails to occur [ 120 ,  121 ].  Mutations   in the 
a4 subunit also cause autosomal recessive hypokalemic dRTA [ 122 ]. It has been 
suggested based on studies in a4 −/−  mice that  ATP6V0A4 gene mutations   in patients 
cause both proximal and distal acidifi cation defects [ 35 ,  123 ]. Loss of the a4 subunit 
has the additional effect of downregulating other H + -ATPase subunits, thereby poten-
tially perturbing the overall assembly of the H + -ATPase [ 35 ]. In a separate context, 
Fox1 −/−  mice lacking the transcription factor Fox1 have loss of the a4 subunit in addi-
tion to other key H + /base transporters including pendrin and AE1 [ 124 ,  125 ].  

8     Conclusions 

 In the renal proximal tubule and the collecting duct, the vacuolar H + -ATPase in 
concert with other transport proteins plays a role in overall renal modulation of 
systemic acid–base chemistry such that despite the fact that the average human diet 
typically generates a net acid load, the pH of blood is maintained at approximately 
7.4. In this regard, the vacuolar H + -ATPase helps contribute to two key functions in 
the kidney: (1) reabsorption of fi ltered HCO 3  − , thereby preventing its urinary excre-
tion, and (2) generating new HCO 3  −  to compensate for the loss of HCO 3  −  resulting 
from metabolic H +  production and HCO 3  −  consumption in the urea cycle. H + -ATPase 
activity is regulated in specifi c nephron segments by factors that alter its intrinsic 
function and/or membrane expression. The disease distal renal tubular acidosis 
(dRTA) resulting from mutations in specifi c H + -ATPase subunits demonstrates its 
essential role in the renal regulation of system acid–base balance.     
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    Chapter 26   
 Plasma Membrane ATPase: Potential Target 
for Antifungal Drug Therapy                     

       Nikhat     Manzoor    

    Abstract     Fungal plasma membrane H + -ATPase (PM-ATPase) is crucial to cell 
physiology as it maintains an electrochemical proton gradient across cell membranes 
required for the uptake of nutrients. It regulates intracellular pH and dimorphic 
transition that is directly linked with growth and pathogenicity of the fungus. 
Opportunistic fungal pathogens, mainly  Candida  spp., lead to complications in HIV-
infected and other immunocompromised patients. Due to the eukaryotic nature of 
fungal cells, it is diffi cult to identify unique antifungal targets not shared with human 
hosts. Also the currently available drugs have low effi cacy and high toxicity and fre-
quently lead to drug resistance. They have undesirable side effects and are ineffective 
against reemerging fungi. Treatment options for invasive infections are limited and 
almost always involve the use of nephrotoxic amphotericin B and azoles, which lead 
to resistance on prolonged use probably due to their fungistatic nature. There is thus a 
critical need to develop more effective therapies to deal with such infections, and 
natural products offer a safer alternative. PM-ATPase is unique and crucial to fungal 
cells and hence is a promising antifungal target. It will help in the development of new 
mechanism-based drugs. Intracellular pH and glucose- induced H +  effl ux, consequences 
of PM-ATPase activity, are inhibited by natural compounds to the same extent in both 
susceptible and resistant  Candida  strains. Several plant essential oil constituents 
inhibit PM-ATPase activity signifi cantly and hence may be considered as good candi-
dates for designing specifi c surface active antifungal drugs that target the PM-ATPase 
and will ultimately help in curbing drug resistance in pathogenic fungi.  
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1         Introduction 

 Fungal infections have increased tremendously in the past few decades, especially 
in immunocompromised patients [ 1 ,  2 ] contributing to morbidity and mortality, the 
main reason being an increase in antimicrobial resistance and limited number of 
antifungal drugs. Also, most of these conventional drugs have undesirable side 
effects.  Candida  species are major human fungal pathogens that cause both superfi -
cial and systemic infections [ 1 ].  Candida albicans , the fourth most common cause 
of hospital-acquired infections, is believed to be an obligate associate of warm- 
blooded animals. Normally present as a harmless asymptomatic commensal, it can 
manifest as a pathogen due to its capacity to induce germ tube formation. Besides 
morphological transition, there are several other virulence factors like adhesion, 
biofi lm formation, and invasion of host responses [ 3 ]. 

 The fungal cell membrane possesses an H + -ATPase (PM-ATPase) that plays a critical 
role in fungal cell growth and physiology. It is essential for maintaining a proton elec-
trochemical gradient necessary for the secondary transport of nutrients. This mem-
brane protein is also associated with regulation of intracellular pH (pHi 7.0) and dimor-
phism and pathogenicity of the fungus. Several studies have shown that the inhibition 
of enzyme activity correlates with cessation of cell growth [ 4 – 10 ] and hence endorse 
PM-ATPase to be a desirable molecular target for antifungal drug therapy [ 11 ,  12 ]. 

 Several important antifungal drugs in clinical use today are fungistatic. These 
drugs prevent additional growth of cells but have little effect on existing cell popula-
tions. Thus, the immune system is required to clear an infection which is not possible 
in the case of severely immunocompromised individuals, and large cell populations 
often remain as potential sources of new infection. It is desirable that antifungal 
agents be fungicidal and be able to kill existing cells. The PM-ATPase is an essential 
enzyme that is needed for both new growth and stable cell maintenance in the absence 
of growth. Due to its slow turnover in the membrane, it is likely that specifi c inhibi-
tors of this membrane protein will be fungicidal [ 13 ]. 

 Medicinal plants and bioactive natural products offer an unlimited source of unique 
molecules that serve as an unparalleled source of therapeutic agents to treat infectious 
diseases. Interestingly, around 80 % of all available clinically used antibiotics are 
directly or indirectly derived from natural products [ 14 ]. Several of these molecules 
have shown binding affi nity to other related ATPases [ 15 – 17 ]. There are only a few 
antifungal drugs available largely due to the eukaryotic nature of fungal cells and hence 
the diffi culty in identifying unique antifungal targets not shared with human hosts. 
PM-ATPase is unique and crucial to fungal cells and hence is a promising antifungal 
target. It will help in the development of new mechanism-based drugs, and natural com-
pounds that are able to target this crucial protein will serve a good purpose for the same.  

2      PM-ATPase:  Structure and Function   

 The fungal PM-ATPase is a 100 kD single polypeptide constituting ~25 % of the 
total plasma membrane protein. Like all P-type ATPases, it has both N- and 
C-terminal domains in the cytoplasm and traverses the lipid bilayer 8–10 times. 
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This proton pump shares only ~30 % of its sequence identity with P-type ATPase 
family members from animal cells, while they show a high degree of sequence 
similarity among diverse fungal PMA gene [ 18 ]. The enzyme appears highly 
asymmetric with nearly 70 % of the mass exposed to the cytoplasm and only ~5 % 
exposed to the extra-cytoplasmic compartment. The considerable structural conser-
vation within the P-type ATPases occurs most strongly in a set of six sequences 
found in the cytoplasmic catalytic domains [ 19 ] located within the putative trans-
duction and kinase domains which contain the ATP-binding site and site of 
phosphorylation. The secondary structure and its interaction with the lipid bilayer 
are strongly conserved. A notable structural difference between the various P-type 
ATPases with differing cation specifi city is the sets of relatively short extracellular 
turns (~4–20 amino acid residues) [ 19 ] that are expected to provide extracellular 
recognition elements that could help target drugs to cell surface. Therefore, an 
understanding of the functional properties of the transmembrane loops and the 
accessibility of their extracellular turns may be invaluable for developing specifi c 
targets among the P-type ATPases. 

 The fungal PM-ATPase is a high-capacity proton pump that plays a critical role 
in fungal cell physiology by helping to regulate intracellular pH [ 20 ,  21 ] and main-
tain transmembrane electrochemical proton gradients necessary for nutrient uptake 
[ 22 ,  23 ]. The gene encoding this enzyme, PMA1, has been cloned from diverse 
fungi and has been shown to be highly conserved [ 18 ]. PM-ATPase plays important 
roles in the maintenance of cell homeostasis by regulating intracellular pH. This 
mechanism creates a membrane potential and an electrochemical gradient that 
allows the uptake of ions and nutrients required for cellular physiology [ 24 – 27 ]. 
The PM-ATPase is one of the few antifungal targets that have been demonstrated to 
be essential by gene disruption [ 28 ]. In addition to its role in cell growth, it has been 
implicated in fungal pathogenicity through its effects on dimorphism, nutrient 
uptake, and medium acidifi cation. 

 The regulation of PM-ATPase is a complex process that operates at several levels. 
Apart from transcriptional regulation [ 29 ], enzyme activity is autoregulated through 
the generation of membrane potential [ 30 ] and intracellular Ca 2+  metabolism. The 
enzyme contains a carboxyl-terminal regulatory domain that includes a phosphory-
lation site for a calmodulin-dependent multiprotein kinase. This domain governs the 
response of the enzyme-to-glucose metabolism/starvation. Mutations in the 
carboxyl-terminal phosphorylation site can retard or even stop fungal cell growth. 
The carboxyl-terminal domain is a negative regulator that is believed to interact 
with the ATP-binding region of the enzyme [ 31 ].   

3       Kinetic Studies   on Fungal PM-ATPase 

 The mechanism of PM-ATPase has been studied in  C. albicans  using fast reac-
tion kinetics in a stopped fl ow spectrophotometer [ 32 ]. A distinct pre-steady-
state phase of ATP hydrolysis was recorded on rapid mixing of ATP with ATPase. 
Around two protons per ATPase molecule were released, of which around ~1.3 
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were absorbed back. While the rapid mixing of inorganic phosphate and ATPase 
produced no transient pH changes, the mixing of ADP led to the release of one 
proton per ATPase molecule. The magnitudes of both proton release and absorp-
tion were found to be independent of ATP concentration. The rate of proton 
release showed ATP dependence, while the rate of proton absorption was inde-
pendent of ATP concentration. The low rate of proton liberation with ADP in 
comparison to ATP indicates low affi nity of the ATPase for ADP. No change in 
the difference spectrum was observed with ADP. The stoichiometry of ATP 
binding to PM-ATPase was found to be unity from UV-difference spectrum 
studies. The rates of proton release and appearance of a difference spectrum fol-
lowing the addition of ATP were found to be similar beyond an ATP: ATPase 
ratio of 1:1. The mechanism of ATP hydrolysis is summarized in a four-step 
kinetic scheme [ 32 ]. 

 Similar kinetic studies were done in the presence of some nutrients (glucose, 
glutamic acid, proline, lysine, arginine) and two glucose analogs (2-deoxy  D - 
GLUCOSE  and xylose). In the presence of glucose, proton absorption to release 
ratio was exceptionally high (0.92) in comparison to other nutrients which was 
in the range 0.25–0.36 [ 33 ]. Although no UV difference spectrum was observed 
with ADP, mixing of ATP with ATPase led to a large conformational change. 
Exposure to different nutrients restricted the magnitude of the conformational 
change; the analogs of glucose were found to be ineffective. This suppression 
was maximal in the case of glucose (80 %), while with other nutrients, magni-
tude of suppression was in the range 40–50 %. The rate of H +  absorption showed 
positive correlation with suppression of conformational change only in the case 
of glucose and no other nutrient/analog. Mode of interaction of glucose with 
PM-ATPase thus appeared to be strikingly distinct in comparison to other nutri-
ents/analogs tested [ 33 ]. 

 Mechanism of  glucose stimulation   of H +  effl ux by PM-ATPase remains a 
mystery despite extensive research [ 5 ,  32 – 36 ]. Studies on mechanism of ATP 
hydrolysis and H +  effl ux including its nutrient regulation by PM-ATPase are cru-
cial for the design of mechanism-based drugs for this vital target. In a study 
conducted by the same group, the rate of proton effl ux and its stimulation by 
nutrients/analogs was quantitated in cells and spheroplasts of  C. albicans  [ 5 ,  36 ]. 
Glucose showed a striking stimulation of 7.5-fold in the rate of H +  effl ux, while 
the rest of the nutrients/analogs were noneffective. Glucose stimulation was not 
observed much in the case of spheroplasts probably due to slow transport of 
nutrients and loss of interaction between PM-ATPase and other membrane pro-
teins [ 5 ,  34 ]. Since intracellular ATP remains almost unused in both cells and 
spheroplasts, there is a possibility that glucose exposure leads to increase in 
intracellular ATP concentration due to its metabolism, but most of it is consumed 
by the highly active pump. Therefore, ATP does not appear to be the cause for 
glucose stimulation of PM-ATPase. A decreased intracellular ATP concentration 
on exposure to glucose is due to the high utilization of ATP by the stimulated 
ATPase [ 36 ].   
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4     Fungal PM-ATPase as a Potential Target for  Antifungal 
Therapy      

   The development of an effective target remains a critical part of the drug discovery 
process, and fungal PM-ATPase is a highly desirable target for the development of 
novel antifungal therapeutics. It has well-defi ned properties that facilitate drug 
discovery. The enzyme is very crucial to fungal cell physiology, being required for 
the formation of a large electrochemical proton gradient and maintenance of intra-
cellular pH. Complete inhibition of the proton pump will defi nitely be lethal; thus, 
an effective antagonist of the proton pump will be fungicidal, which is an important 
attribute for a drug being developed to treat opportunistic infections in severely 
immunocompromised patients. Well-characterized biochemical studies and genet-
ics of this enzyme will facilitate detailed analysis of the interaction of model com-
pounds with the enzyme [ 12 ]. Detailed genetic analysis suggests that modifi cation 
of amino acids in the fi rst two transmembrane segments can either enhance or 
diminish the drug sensitivity of the PM-ATPase, depending on the nature and loca-
tion of the amino acid substitution. This region in mammalian P-type enzymes has 
been implicated in the interaction of cardiac glycosides and reversible gastric pump 
inhibitors [ 12 ]. Hence, it is suggested that this region in the PM-ATPase may be 
valuable as a potential interaction domain for antifungal agents. Also, a number of 
primary and secondary screens are available to identify compounds that target the 
PM-ATPase and affect one or more of its functional properties. These screens assess 
function of the enzyme and have already yielded promising PM-ATPase-directed 
antagonists [ 12 ]. Like other P-type ATPases, the N- and C-termini and the extracel-
lular surface of the pump show the highest divergence; this contributes to its unique 
catalytic and regulatory features. PM-ATPase antagonists that are selective for the 
fungal proton pump over related animal cell ion pumps should display broad- 
spectrum activity on diverse fungal enzymes because of the high degree of primary 
sequence similarity found among these enzymes. 

 It has been observed that inhibition of PM-ATPase leads to intracellular acidifi -
cation and cell death. Inhibition of cell growth and H +  effl ux by certain natural and 
synthetic compounds suggests that their antifungal properties are related to their 
inhibitory effects on PM-ATPase. It has been reported that PM-ATPase activity 
increases in both bud and germ tube forming populations after 135 min of fungal 
growth. This is the time at which morphological transition is initiated [ 37 ]. 
PM-ATPase regulates dimorphism in  C. albicans . Its activity is regulated by a large 
number of environmental factors at both transcriptional and posttranslational levels. 
Diverse numbers of PM-ATPase genes have been cloned both in fungi and plants 
[ 31 ,  38 ]. There has been rapid progress on the molecular basis of reaction mecha-
nism and regulation of the proton pump. 

 Studies with Omeprazole, a sulfhydryl-reactive compound, indicated that 
PM-ATPase can be inhibited from its extracellular membrane surface [ 4 ,  12 ] and 
that its inhibition is closely correlated with inhibition of fungal cell growth that is 
fungicidal [ 11 ]. Genetic studies also demonstrated that perturbations of extracellular 
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protein structure of the PM-ATPase can reduce the catalytic activity of the enzyme 
[ 39 ]. These results were also consistent with the known behavior of antagonists to 
the Na, K-ATPase and H, K-ATPase which have binding sites on the extracellular 
surface of the membrane. 

 The importance of PM-ATPase as an antifungal target has been demonstrated by 
several studies.  Cryptococcus neoformans  PM-ATPase is an established and viable 
target for antifungal drug discovery [ 13 ]. Ebselen, a nonspecifi c PM-ATPase antagonist, 
is also fungicidal and inhibits ATP hydrolysis and medium acidifi cation by whole 
cells [ 40 ,  41 ]. NC1175, a novel thiol-blocking conjugated styryl ketone, exhibits 
activity against a wide spectrum of pathogenic fungi. NC1175 inhibited glucose-
induced acidifi cation of external medium by  Candida ,  Saccharomyces , and 
 Aspergillus  species in a concentration-dependent manner. Vanadate-inhibited ATP 
hydrolysis by membrane fractions of  C. albicans  was completely inhibited by 
50 μM NC1175, suggesting that one of the targets for NC1175 in these fungi may 
be PM-ATPase [ 42 ]. Studies have demonstrated that bafi lomycin inhibits ATPase 
activity with high specifi city and potency [ 43 ]. Although PMA1 is also present in 
the human transcriptome, several domains are exclusive to fungi, and gene deletion 
has been demonstrated to be lethal for some of those microorganisms. As ATPases 
are promising targets for the development of antimycotics, the differences between 
fungal and mammalian proteins need to be further investigated [ 44 ].    

5     Natural Compounds as Potential Inhibitors of PM-ATPase 

 Natural  products   play an important role in drug discovery and development [ 45 ,  46 ]. 
More than 75 % of the drugs used in therapy for infectious diseases are of natural 
origin [ 47 ]. The fungal PM-ATPase is an ideal antifungal target as it is an essential 
enzyme not found in animals, and an important functional part of the protein is 
exposed to the cell exterior. Natural plant products have shown potential in having 
inhibitory effects on this antifungal target. Several of these natural products available 
may be effective pump inhibitors and should be sought for in plant extracts by 
screening for their effect on PM-ATPase activity. This enzyme when co-crystallized 
with identifi ed inhibitors will provide information on inhibitor binding segments in 
the pump and offer a crucial foundation for the development of novel effi cient and 
specifi c antifungals. 

  Plant-derived substances   have recently become of great interest owing to their 
versatile applications [ 45 ,  48 ]. The initial stages of drug development include iden-
tifi cation of active principles, meticulously designed biological assays, and dosage 
formulations, followed by clinical studies to establish safety, effi cacy, and pharma-
cokinetic profi le of the new drug [ 49 ]. Several studies have shown the antifungal 
potential of natural plant products and showed that the inhibition of the proton 
pump activity is correlated with termination of fungal cell growth. A direct relation 
between intracellular pH (pHi) and functioning of PM-ATPase has been established 
by several studies [ 6 ,  10 ,  50 ,  51 ]. 
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 The  pathogenicity of    Candida albicans  is due to its capacity to induce germ tube 
formation [ 52 ]. These hyphae penetrate host tissues to extract nutrients required for 
cell growth. A wide range of biochemical factors have been implicated in a variety 
of dimorphic fungi as being central to the control of yeast dimorphism [ 53 ]. It is 
however possible to invoke mechanisms which incorporate changes in intracellular 
pH with the modulation of biochemical activities as a regulatory switch. A rapid but 
transient increase in pHi has been observed around the time of evagination of germ 
tubes, and the magnitude of increase in pHi of the population destined to form buds 
was more sensitive to orthovanadate, an inhibitor of the PM-ATPase [ 50 ]. Change 
in pHi, which has a direct relationship with PM-ATPase, is widely regarded as of 
crucial importance [ 6 ,  50 ]. 

  High-energy phosphates      play an important role in regulating fungal PM-ATPase 
activity.  Phosphocreatine (PCr)   is a phosphorylated creatine (Cr) molecule that 
serves as a rapidly mobilizable backup of high-energy phosphates in skeletal muscles 
and the brain. It has been shown to infl uence ATP-dependent enzymes [ 6 ] and is 
found in association with virtually all types of ATPases in vertebrate cells. PCr/Cr 
ratio in cells is a better refl ection of energy status compared to ATP/ADP ratio [ 50 , 
 52 ]. Studies report that  Candida  infections are held in check mostly by immuno-
logic factors in healthy human hosts. A number of situations however expose the 
yeast to other cellular constituents. Our group investigated the effect of PCr on the 
rate of H +  extrusion, pHi, and dimorphism in  C. albicans  [ 6 ,  7 ]. H +  effl ux by 
PM-ATPase of  C. albicans  and intracellular pH pattern of cells undergoing morpho-
genesis were profoundly affected by PCr at concentrations present in vertebrate 
tissues. In comparison to control cells, PCr-exposed cells showed only 10 % yeast 
to hyphal transition after 120 min at the same concentration range of 20–40 mM, 
while the number of hyphae producing cells was not more than 40 %. Exposure to 
PCr also decreased hyphal length to a large extent [ 6 ], and the magnitude of inhibi-
tion was comparable to vanadate, a potent inhibitor of PM-ATPase. This indicates 
that both of them may have binding sites on the ATPase and bring protein confor-
mational changes in a similar manner. Cr alone has no effect on H +  extrusion. Since 
the structure of vanadate is analogous to the structure of phosphate (Fig.  26.1 ), it 
may be speculated that PCr may bind to the ATP-binding site via its phosphoryl 
group. When  Candida  cells were exposed to both vanadate and PCr together, a 
cumulative effect was produced. Both of them may be having more than one bind-
ing sites [ 7 ]. Similar studies showed that ATP synthesis and PM-ATPase activity 
were signifi cantly affected by sodium nitroprusside (SNP), a nitric oxide (NO) 
donor. A decrease in ATP concentration was observed in SNP-treated cells, the 
decrease being more in the presence of sugars and amino acids. Hence, NO, not 
only inhibits mitochondrial electron transport chain but also alters PM-ATPase 
conformation resulting in a decrease in its activity [ 54 ,  55 ].

    Plant essential oils (EOs)   possess a broad spectrum of antimicrobial properties 
due to the presence of bioactive natural molecules. Although several studies demon-
strate their antifungal potential [ 56 – 59 ], there are very few reports that clearly reveal 
their mode of action. The antifungal activity of EOs is basically credited to their 
ability to cross fungal cell walls and penetrate between fatty acyl chains of the lipid 
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bilayer, altering membrane fl uidity and permeability and damaging membrane 
proteins, leading to degradation of the cytoplasmic membrane and to cell death. 
Loss of cell homeostasis, leakage of cell contents, and lysis are the critical conse-
quences of these induced alterations in membrane structure and function [ 56 ]. Most 
of the studies claim that the antifungal activity of these compounds is due to their 
ability to destroy the integrity of cell membranes, release cellular components, and 
drastically inhibit mycelial growth of fungal pathogens [ 59 ]. 

 Excellent  anti- Candida  activity   has been demonstrated by several studies [ 58 , 
 60 ,  61 ]. PM-ATPase has been explored as a potential antifungal target for several of 
these natural products. Eugenol, methyl eugenol, thymol, and carvacrol are some of 
the natural compounds (Fig.  26.1 ) that showed inhibition of PM-ATPase activity to 
encouraging levels, i.e., up to 70 % inhibition in both sensitive and resistant  Candida  
strains [ 51 ] (Table  26.1 ). Eugenol is a phenylpropanoid present in the essential oil 
of clove, cinnamon, nutmeg, basil, star anise, and dill. Methyl eugenol, methyl ether 
of this compound, is also present in various essential oils. Carvacrol and thymol are 
monoterpene phenols present as major constituents in the essential oils of  Origanum 
vulgare  and thyme, respectively.

    Glucose-induced acidifi cation   of the extracellular medium by yeast cells is a 
convenient measure of PM-ATPase-mediated H +  pumping [ 62 ]. Table  26.1  gives 
the average percentage inhibition of PM-ATPase-mediated H +  effl ux by  Candida  

  Fig. 26.1    The structure of some antifungal compounds discussed in this chapter that inhibit 
PM-ATPase activity       
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species in the presence of some natural compounds at their respective MIC values. 
The rate of proton extrusion by  Candida  cells was calculated in nmoles min/mg 
yeast cells by titrating the cell suspension with 0.01 N NaOH [ 7 ]. Eugenol, methyl 
eugenol, thymol, and carvacrol (Fig.  26.1 ) showed the most signifi cant inhibition 
of more than 50 % in both clinical and resistant  Candida  stains. Moreover, H +  
extrusion in every case was inhibited by 91–100 % in the presence of orthovana-
date (5 mM), a specifi c inhibitor of H + -ATPase, whereas neither fl uconazole nor 
amphotericin B had any signifi cant effect on the acidifi cation of the extracellular 
medium (Table  26.1 ). The  intracellular pH (pHi)   of yeast cells is maintained 
between 6.0 and 7.5, and any change in pHi is regarded as of crucial importance as 
it has a direct relationship with PM-ATPase [ 6 ,  50 ]. A signifi cant decrease in pHi 
was observed in treated  Candida  cells. In comparison to the control cells (untreated), 
the decrease in pHi in cells was in the order given: Control > EUG > MEUG > THY 
> CARV [ 51 ]. 

 On  exposing  Candida  cells   for a short duration, the effect of these bioactive 
compounds was rapid, irreversible, and lethal which suggests the presence of a cellular 
target that is accessible to the compounds externally. Since PM-ATPase is present in 
plasma membranes of pathogenic fungi, there is a possibility that these compounds 
bind to it externally. Signifi cant inhibition of PM-ATPase-mediated proton pumping 
activity at MIC values of bioactive compounds suggests that these compounds can 
be considered as potential ATPase inhibitors. The fact that they have low MIC values 
and negligible toxicity in comparison to conventional drugs makes them even better 
candidates. It has been reported that vanadate inhibits H +  effl ux in  Candida  cells by 
91–100 %, while conventional antifungal drugs like FLC and AmB had no signifi cant 
effect on the PM-ATPase activity [ 51 ]. These antifungal drugs are known to interact 
with the sterol components of the membrane, [ 63 ] and there are no reports of their 
interaction with the proton pumps. Besides these commercially available antifun-
gals have low effi cacy and high toxicity and frequently lead to drug resistance. 
There is thus a critical need to develop more effective therapies to deal with such 
infection, and natural compounds offer a safer alternative.  

     Table 26.1    Percentage inhibition of glucose-induced H +  effl ux by  Candida  spp. at pH 7.0 in the 
presence of some natural compounds at their respective MICs   

 Compounds 

 Percentage inhibition of H +  effl ux w.r.t. control 

 Standard  Clinical  Resistant 

 Phosphocreatine (25 mM)  83  –  – 
 Eugenol (500 μg/ml)  44  46  39 
 Methyl eugenol (350 μg/ml)  49  42  43 
 Thymol (100 μg/ml)  60  54  46 
 Carvacrol (50 μg/ml)  69  61  67 
 Fluconazole (5 μg/ml)  24  19  25 
 Amphotericin B (2 μg/ml)  16  16  17 
 Vanadate (5 mM)  100  91  96 

  Cells were suspended in 0.1 mM CaCl 2  and 0.1 M KCl at 25 °C along with 5 mM glucose 
 – = not evaluated  
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6     Conclusion 

 Fungal infections occur as a result of a complex interaction between the host, pathogen, 
and the environment. Antibiotics have helped in the treatment of infections to a 
great extent, but their indiscriminate use has led to the development of drug- resistant 
pathogens. The emergence of azole resistance in  Candida albicans  and other 
 Candida  species is a huge crisis today. The antimicrobial activity of plant essential 
oils and their components is well established against a wide range of microorganisms. 
Plants and plant products can assist in confronting the issue of infection and provide 
a better understanding of mechanisms for the designing and development of novel 
and more effective antimicrobial agents. The discovery of new antifungal therapeutic 
agents based on natural compounds as scaffolds for molecular targets will help in 
the management and treatment of fungal and other microbial infections. Fungicidal 
natural compounds having low MIC values and negligible cytotoxicity have a 
profound effect on PM-ATPase of  Candida  and other fungal species, suggesting 
that the PM-ATPase can be explored as a potential surface active antifungal target 
for these and other potential drugs.     
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    Chapter 27   
 The Yeast Ca 2+ -ATPases and Ca 2+ /H +  
Exchangers of the Secretory Pathway 
and Their Regulation                     

       Lev     A.     Okorokov    

    Abstract     We propose a new model for yeast Ca 2+  homeostasis that considers the 
roles of different Ca 2+ /H +  exchangers and Ca 2+ -ATPases which function in all secretory 
organelles. Majority of these Ca 2+ -ATPases are blocked by cyclopiazonic acid and 
thapsigargin in a similar fashion as SERCA. The exchangers and Ca 2+ -ATPases are 
activated ~7- and ~2-fold by extracellular glucose and contribute ~80 % and 20 %, 
respectively, to Ca 2+  effl ux from the cytosol. Vacuoles do not represent major stor-
age organelles, contributing 20–35 % in Ca 2+  uptake (an effl ux from the cytosol). 
 VCX1  and  PMC1  and their respective vacuolar transporters positively regulate both 
types of transporters from all secretory organelles, whereas  PMR1  and Pmr1p nega-
tively regulate Ca 2+  pumps from the ER and NE. Calcineurin is a positive regulator 
of Ca 2+ -ATPases and the exchangers from secretory organelles, whose capacity is 
modulated depending on the energy supply. Calcineurin activates Ca 2+ -ATPases and 
the exchangers under normal growth conditions and under high Ca 2+  stress in the 
absence of glucose. Glucose and high Ca 2+  together additively stimulate Ca 2+ -
ATPases, whereas Ca 2+ /H +  exchangers demonstrate higher activity than that 
observed under Ca 2+  stress in the absence of glucose but lower activity than that 
observed with glucose alone. Modulation of the exchanger activities under Ca 2+  
stress correlates with that of V H + -ATPase, suggesting indirect regulation of the 
exchangers by calcineurin via regulation of this H +  pump. The presence of Ca 2+ -
ATPases and exchangers in all secretory organelles is discussed from the point of 
view of local and specifi c Ca 2+  signaling.  
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1         Introduction 

  Ca 2+  signaling      includes the activation of Ca 2+ -release channels, which increase the 
local concentration of free Ca 2+  in the cytosol by an infl ux of these cations from 
intracellular organelles and extracellular medium in response to a stimulus [ 1 ]. Ca 2+  
signaling continues until the transporters responsible for Ca 2+  effl ux can restore the 
initial low free Ca 2+  concentration (commonly 50–100 nM), transporting Ca 2+  back 
to intracellular organelles and the extracellular medium. In yeast, fungi and plants, 
whose membranes are energized by H +  gradients, the Ca 2+  effl ux is brought about by 
Ca 2+ /H +  exchangers (antiporters) and Ca 2+ -ATPases. The amplitude, duration and 
form of the signals (spikes), and therefore their specifi city, are determined by the 
coordinated activities of the infl ux and effl ux transport systems. The local signaling 
is due to the specifi city and localization of both the release channels and the effl ux 
systems to different organelles and most likely even to distinct membrane rafts. This 
paper presents new insights on yeast Ca 2+  homeostasis by briefl y revising the current 
view of the properties, localization and regulation of the Ca 2+ -ATPases and Ca 2+ /H +  
exchangers from the yeast secretory pathway.  

2     Intrinsic Ca 2+  Transporters Along the Yeast 
Secretory Pathway 

 It is currently accepted that the yeast   Saccharomyces cerevisiae    possesses only two 
Ca 2+  pumps, Pmc1p in the vacuolar membrane [ 2 ] and Pmr1p in the Golgi mem-
brane [ 3 – 7 ], whereas only one VH + -ATPase-dependent Ca 2+ /H +  exchanger, Vcx1p/
Hum1p, is localized to vacuolar membranes [ 8 – 13 ]). This exchanger generates the 
difference in membrane potentials formed by Ca 2+  [ 14 ] that can be used for the 
accumulation of  anions   such as citrate and α-ketoglutarate, among others [ 15 ]. Due 
to a lack of experimental evidence, the presence of a Ca 2+ -ATPase in the yeast 
plasma membrane (PM) was doubtful following these insights [ 10 ,  16 ] .  However, 
the separation of the PM following its modifi cation with concanavalin A from intra-
cellular membranes decreased Ca 2+  uptake by total membranes (TMs) by ~20 %, 
suggesting the presence of a Ca 2+  pump in the yeast PM [ 17 ] .  It was also supposed 
that the endoplasmic reticulum (ER) does not possess a genuine Ca 2+ -ATPase [ 16 ] .  
Several lines of evidence suggest that yeast secretory pathway organelles are 
equipped with more than two Ca 2+ -ATPases and additional Ca 2+ /H +  exchangers 
apart from  Vcx1p     . Moreover, each organelle of the secretory pathway likely pos-
sesses a genuine Ca 2+ -ATPase and Ca 2+ /H +  exchanger.  First ,  TMs      were separated in 
a sucrose density gradient for several membrane populations exhibiting both Ca 2+ -
ATPase and Ca 2+ /H +  exchanger activities in addition to marker enzymatic activities 
typical for the ER, Golgi and vacuoles (Fig.  27.1  and [ 17 ,  18 ,  20 – 25 ]). Additionally, 
the activities of both Ca 2+  transporters were found in membrane vesicles exhibiting 
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a higher density than that of the ER and co-migrating PM, which are likely derived 
from the nuclear envelope (NE) (Fig.  27.1 , fractions 1–14 and [ 22 ,  25 ]).  Second , 
Ca 2+ -ATPase activities responsible for Ca 2+  uptake by  vesicles   derived from the NE, 
ER/PM, Golgi and vacuoles exhibit considerable differences in their sensitivity to 
vanadate, with IC 50  values of 15, 610, 130, and 30 μM, respectively [ 22 ,  25 ] .  
Subsequent analysis revealed that the ATP hydrolytic activity and Ca 2+  transport 
driven by respective Ca 2+ -ATPases in these membranes exhibit a similar sensitivity 
to vanadate [ 25 ]. Interestingly, the selective sensitivity to vanadate of Ca 2+  pumps 
from the yeast secretory pathway is partially reminiscent of SERCA from mamma-
lian cells [ 26 ].  Third , a   pmr1  mutant   demonstrates an approximately 50 % decrease 
in the Ca 2+ -ATPase activity from Golgi membranes, indicating that Pmr1p is local-
ized to these membranes and that the Golgi possesses a second putative Ca 2+  pump 
[ 18 ] that is distinct from Pmc1p, since the effi cient separation of the Golgi from 
vacuolar membrane vesicles and ER (Figs.  27.1 ,  27.2  and [ 25 ,  27 ].  Fourth,  in con-
trast to the suggestion that the yeast ER does not possess a Ca 2+ -ATPase and that the 
yeast ER can be provided with Ca 2+  by Pmr1p [ 28 ], the ER demonstrated a high 
contribution to the total Ca 2+ -ATPase activity of  TMs  , particularly in wild-type 
SEY6210 and X2180 strains, which exhibit enhanced growth compared with 

  Fig. 27.1    Separation of the yeast total membranes (TMs) on a sucrose density gradient. TMs were 
isolated from spheroplasts of the  S. cerevisiae  SEY 6210 strain and separated on a sucrose density 
gradient according to [ 18 ]. Ca 2+ -ATPase and Ca 2+ /H +  transport activities were determined after 
10 min of membrane incubation with  45 Ca 2+  as FCCP-insensitive and FCCP-sensitive Ca 2+  uptake, 
respectively, and are presented in % from total activity of each type of transporter. Protein man-
nosyltransferase (PMT) was determined according to [ 19 ] and represented in cpm:2000; GDPase 
shown in % from 50 % of its total activity. Fractions 1–14, 14–28, 28–38 and 38–43 are enriched 
with NE/ER, ER/PMs, Golgi and vacuolar membrane vesicles, respectively. The representative 
experiment of two is shown       
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AA255 and K601. The facts that the ER-enriched membranes were not contami-
nated with Golgi, vacuolar and NE-like membranes (Fig.  27.1  and [ 27 ]), exhibited 
high resistance to vanadate and demonstrated high Ca 2+ -ATPase and Ca 2+ /H +  
exchanger activities suggest that these membranes possess genuine Ca 2+  trans-
porters. Additionally, spheroplast homogenization and subsequent membrane frac-
tionation in the presence or absence of 1 mM Mg 2+  or in the presence of 1 mM 
EDTA revealed a shift of both Ca 2+ -ATPase and Ca 2+ /H +  exchanger activities from 
the rough  ER   to the smooth ER simultaneously with a similar shift in the ER marker 
NADPH cytochrome  c  oxidoreductase [ 25 ]. Moreover, the high resistance of the 
ER Ca 2+ -ATPase to vanadate [ 22 ,  25 ] distinguishes it from the Ca 2+ -ATPases of 
other organelles, including the  Golgi,    vacuoles   and  NE  . The relatively high resis-
tance of the ER Ca 2+ -ATPase activity to vanadate may be attributed to an accumula-
tion of the E 1  ~ P state during the catalytic cycle, with a lower level in the E 2  state. 
Indeed, it has been shown that the E 2  state of the catalytic cycle of P-type ion-
transporting ATPases is critical for the binding of vanadate and, therefore, for inhi-
bition of the enzyme [ 29 ] .  From this point of view Spf1p in   S. cerevisiae       is the 
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  Fig. 27.2    Cyclopiazonic acid inhibits Ca 2+- ATPase activities in membranes from NE, ER/PM, and 
the Golgi of the  pmr1  mutant. TMs were isolated from spheroplasts of the wild-type strain (AA255) 
and  pmr1  mutant (AA274) and fractionated on a sucrose density gradient according to [ 18 ]. In 
experiments with cyclopiazonic acid the Ca 2+ -ATPase activity (cpm/mg protein of TMs) in the 
 pmr1  mutant membranes was determined using 20 μM ATP (low ATP) instead of commonly used 
concentration of 0.5 mM (wild-type strain). The representative experiment of three is shown       
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relevant Ca 2+ -ATPase for the ER because it accumulates in the E 1  ~ P state of the 
catalytic cycle and its turnover is extremely low [ 30 ] .  This suggestion and the pos-
sibility that Cta4p, NCA-1 and Eca1p are localized in the ER of fi ssion yeast, 
 Neurospora crassa  and  Ustilago maydis  fungi, respectively [ 31 – 33 ], require further 
investigation. Deletion of  cta4   +      has been already reported to result in decreased 
Ca 2+ -ATPase activity in the ER of fi ssion yeast [ 31 ], suggesting that Cta4p may 
function as the relevant Ca 2+ -ATPase.  Fifth , a comparison of the Ca 2+ -ATPase activ-
ities in the   pmr1  mutant   (strain AA274) and  wild-type AA255 strain   revealed an 
increase in the Ca 2+ -ATPase activity in the NE-like membranes and in the ER simul-
taneously with its decrease in the Golgi (Fig.  27.2  and [ 18 ]) .  This increase indicates 
that a Ca 2+ -ATPase other than Pmr1p is recruited to the ER and NE membranes of 
the  pmr1  mutant, which may be due to upregulation of the genuine NE and ER Ca 2+  
pumps and/or Ca 2+ -ATPases of organelles located downstream of the Golgi in the 
secretory pathway. These last proteins were hypothetically recruited to the ER and 
NE membranes because they cannot be properly targeted to their own organelles 
due to the defective Ca 2+  status of the Golgi [ 18 ]. For example, this increase may 
result from partial relocalization of the second Ca 2+ -ATPase of the Golgi, which 
remains active following PMR1 deletion and/or Pmc1p [ 18 ]. The possibility of the 
relocalization of Pmc1p has been verifi ed by Marchi et al. [ 16 ], who have claimed 
that  Pmc1p   can relocate to the ER and other dense membranes in the  pmr1  mutant 
or even in the wild-type strain under high concentrations of extracellular Ca 2+ . 
However, their assertion was based on results obtained from membrane fraction-
ation of the spheroplasts homogenate in a sucrose density gradient without prelimi-
nary separation of the soluble and membrane proteins by membrane sedimentation. 
Subsequent quantifi cation of Ca 2+ -ATPase activity and Pmc1p immunoreactivity 
was based on the protein content in each fraction despite the fact that soluble pro-
teins dominated membrane proteins in the light membrane fractions. The predomi-
nance of the soluble proteins from the cytosol of the  pmr1  mutant was even higher 
for the  vacuolar   and  Golgi   fractions because the protein content in their membranes 
was decreased by ~50 and ~33 %, respectively, as a result of the  pmr1  mutation 
[ 18 ] .  Consequently, the Ca 2+ -ATPase activities and immunoreactivity of  Pmc1p   in 
the lightest membrane fractions were strongly underestimated (particularly for vac-
uolar membranes) compared with those in dense membranes. It most likely accounts 
for the uncommon distribution of enzymes along the sucrose gradient, i.e., Pmc1p 
was not detected in vacuolar membranes from the wild-type strain but “co-migrated” 
with membranes that are denser than Golgi membranes in this report, whereas 
 Pmr1p   was detected in light membranes that did not exhibit maximal GDPase (a 
Golgi marker) activity even in the wild-type strain under normal growth conditions 
[ 16 ]. The appearance of stronger Pmc1p immunoreactivity in dense membranes (an 
artifact?) is consistent with the high content of membrane proteins used in the 
immunoblot analysis [ 16 ]. Indeed, we found high immunoreactivity in vacuolar 
membranes and very low immunoreactivity for Pmc1p in the Golgi, ER and NE 
membranes when a low protein content of membranes preliminarily separated by 
centrifugation from soluble proteins was used in such studies [ 27 ]. The loading of a 
higher amount of membrane protein exhibited an increase in the immunoreactivity 
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in membranes denser than vacuolar membranes, whereas the vacuolar membranes 
exhibited a saturation of the signals [ 27 ]. Therefore, the relocalization of Pmc1p to 
the ER and NE membranes in the   pmr1  mutant   is unlikely or does not signifi cantly 
contribute to the higher Ca 2+  transport activity in the NE and ER (Fig.  27.2 ). This 
explanation increases the possibility that the putative Ca 2+ -ATPase(s) of the NE and 
ER can be upregulated in the  pmr1  mutant. The nature of this activity was analyzed 
by determining its sensitivity to cyclopiazonic acid, which is a known  SERCA 
inhibitor   [ 34 ]. This analysis revealed that the Ca 2+ -ATPase activity in the dense 
membrane fractions of the  pmr1  mutant and in its Golgi membranes was inhibited 
at relatively  low ATP concentration   (Fig.  27.2 ), conditions that were found for 
SERCA-type pumps [ 34 ]. The strong inhibition of the yeast Ca 2+ -pump activities in 
the ER and the NE-like membranes of the  pmr1  mutant indicates the presence of 
Ca 2+  pump(s) that are similar to SERCA in membranes from both the mutant and 
wild-type strains. It is also correct for the Golgi Ca 2+  pump in the mutant. Considering 
that Pmc1p is closely related to PM-type Ca 2+ -ATPases [ 2 ,  10 ], these results 
(Fig.  27.2 ) also suggest that the localization of Pmc1p was not altered from vacu-
oles to the ER and the Golgi by the  pmr1  mutation.

    Some attempts, which were made to support the assertion of the absence of a 
genuine Ca 2+ -ATPase in the ER and to explain how the yeast  ER   lumen can be 
supplied with Ca 2+  in this case, require additional discussion. The fi rst argument is 
the fi nding that the “steady-state free Ca 2+  concentration in the yeast endoplasmic 
reticulum reaches only 10 μM” [ 28 ], suggesting a low Ca 2+  gradient for its infl ux 
into the cytosol and weak, if any, Ca 2+  transport activity of the ER membranes. 
However, the concentration of free Ca 2+  in the yeast vacuolar lumen (which is 
supplied by the Ca 2+ -ATPase and Ca 2+ /H +  exchanger) was found to be approxi-
mately 30 μΜ [ 35 ], which is close to that in the ER. The importance of bound Ca 2+  
in the organelle lumen has been demonstrated for the effective infl ux of Ca 2+  when 
the free Ca 2+  concentration in the Ca 2+  storage organelles was maintained at approx-
imately 25 μM [ 36 ]. Most of the Ca 2 +  in the  lumen      of these organelles is in the 
bound form [ 36 ], as is the majority of Ca 2+ , Mg 2+  and Mn 2+  in yeast vacuoles [ 35 , 
 37 – 39 ] and, most likely, in other organelles. Following a stimulus, the infl ux of Ca 2+  
into the cytosol does not decrease the free Ca 2+  concentration in the organelle lumen 
because bound Ca 2+  can be released, dissociating from its binding molecules [ 36 ]. 
Therefore, bound Ca 2+  may buffer free Ca 2+ . Notably, the infl ux of Ca 2+  is accompa-
nied by an effl ux of K + , which can replace bound Ca 2+  in the organelle lumen, and 
this Ca 2+ /K +  exchange can be reversed following the completion of signaling [ 36 ] .  
The second argument that the ER plays an insignifi cant role in yeast Ca 2+  homeosta-
sis and that the yeast ER lacks its own Ca 2+ -ATPase is based on the fi nding that 
5 μM thapsigargin did not decrease free Ca 2+  in the ER lumen of yeast cells [ 28 ] .  
However, the actual capacity of the inhibitor remains unclear because its effi cacy 
was determined in control experiments using a concentration of approximately 
500 μM rather than 5 μΜ [ 28 ] .  The third argument is based on the observed decrease 
in free Ca 2+  in the ER of the  pmr1  mutant (approximately 30 %), which led to the 
conclusion that Pmr1p can supply the ER lumen with Ca 2+  [ 28 ]. This interpretation 
contradicts experimental results that demonstrate an increase in Ca 2+ -ATPase activity 
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in the dense membranes (including ER membranes) of the   pmr1  mutant   ([ 18 ] and 
Fig.  27.2 ). The decrease in free Ca 2+  in the ER lumen of the  pmr1  mutant is most 
likely due to more effi cient Ca 2+  binding resulting from the higher protein content in 
the ER and NE of this mutant [ 18 ] .  

 Therefore, experimental evidence allows us to propose a model of Ca 2+  
homeostasis in   S. cerevisiae       with the participation of more than two Ca 2+ -ATPases, 
i.e., Pmc1p in vacuoles [ 2 ], Pmr1p [ 3 – 7 ] and the second pump in the Golgi [ 18 ], 
a pump in the ER ([ 17 ,  25 ] and this review, likely Spf1p/Cod1p [ 30 ,  40 ,  41 ]), a 
putative Ca 2+ -ATPase in the  PM   [ 17 ] and in NE-like membra nes   ([ 25 ] and 
Fig.  27.1 ). Additionally, Ca 2+ /H +  exchangers from the same organelles are impor-
tant participants of homeostasis, contributing up to 80 % to the total Ca 2+  uptake 
by TMs (see below). This activity is detected in those organelles following mem-
brane fractionation, which prevents contamination of the NE-like membranes, ER 
and Golgi by vacuolar membranes (Fig.  27.1 , [ 27 ]). The presence of Ca 2+ /H +  
exchanger(s) in these organelles also follows from a fi nding that bafi lomycin A 1  
treatment of   vcx1 mutant cells   additionally reduced their ability to properly nor-
malize/diminish the free cytosolic Ca 2+  concentration [ 9 ,  42 ]. Interestingly, the 
low residual Ca 2+ /H +  activity in TMs from the  vcx1  mutant ([ 43 ] and Fig.  27.3 ) is 
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  Fig. 27.3     VCX1  and  PMC1  positively regulate all Ca 2+  transporters of the yeast secretory path-
way. Membrane vesicles from the spheroplast homogenates from wild-type strain K699 (PMC:: 
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ent. Ca 2+  transport activity was determined as described in the legend for Fig.  27.1  and is repre-
sented for the sums of the respective membrane populations in pmol × (mg protein of the spheroplast 
homogenates) −1 . Representative experiment of four is shown       
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consistent with the relatively small negative effect of bafi lomycin A 1  on the recovery 
of the free cytosolic Ca 2+  in the  vcx1  mutant [ 9 ,  42 ] but contradicts biochemical 
studies that the contribution of Ca 2+ /H +  activity from all organelles distinct from 
vacuoles reached 65–80 % in  different wild-type strains, whereas that of the vacuolar 
exchanger does not exceed 35 %.

3              VCX1      ,   PMC1       and Their Products Are Important 
Regulatory Determinants of the Yeast Ca 2+  Homeostasis 

 We therefore hypothesize that Vcx1p positively controls the activities of Ca 2+ /H +  
exchangers in different organelles of the yeast secretory pathway that are distinct 
from vacuoles. Interestingly, Pmc1p demonstrates a similar property. Indeed, the 
Ca 2+ -ATPase activity of the organelles distinct from vacuole including the Golgi 
equipped with Pmr1p and another Ca 2+  pump (see above) was diminished in the 
 pmc1  mutant simultaneously with the disappearance of Pmc1p in vacuolar mem-
branes ([ 43 ] and Fig.  27.3 ); the residual Ca 2+ -ATPase activity in vacuolar membrane 
fractions is likely due to the co-migrating secretory vesicles. Moreover, the vacuolar 
Vcx1p controls the activities of Ca 2+ -ATPases in the entire secretory pathway, 
whereas Pmc1p regulates the activities of all Ca 2+ /H +  exchangers along the pathway 
(Fig.  27.3 ). For example, the  VCX1  deletion causes ~50 % decrease in Ca 2+ -ATPases 
from the ER/PM and Golgi, whereas the  PMC1  inactivation diminishes the Ca 2+ /H +  
exchanger activities in the NE, ER, Golgi and vacuoles by 67, 61, 75 and 84 %, 
respectively ([ 43 ] and Fig.  27.3 ). This strong inhibition of the transport activity of 
another type of Ca 2+  transporter is even more effective than the inhibition of the 
same type of the transporter (Ca 2+ -ATPases). Indeed, the decrease of Ca 2+- ATPase 
activities in those membranes from the  pmc1  mutant was 11, 31, 54 and 68 %, 
respectively. These fi ndings show the positive cross-control between Ca 2+ -ATPases 
and Ca 2+ /H +  exchangers. Moreover, they confi rm the existence of additional Ca 2+  
transporters together with Pmc1p, Pmr1p and Vcx1p along the secretory pathway. 

 These fi ndings indicate the important properties of vacuolar Ca 2+  transporters 
and their respective genes as positive regulators of the same type of Ca 2+  transport-
ers in distinct secretory organelles and also different types of Ca 2+  transporters along 
the yeast secretory pathway. Interestingly, although the Golgi Pmr1p negatively 
regulates Ca 2+ -ATPase activity in NE and ER membranes (Fig.  27.2  and [ 18 ]), 
Pmc1p and Vcx1p are positive regulators of all Ca 2+  transporters along the secretory 
pathway. It is likely that in the case of their low activity or the absence of  PMC1  
and/or  VCX1 , all other Ca 2+  transporters receive a signal to decrease their activities. 
Both vacuolar Ca 2+  transporters and their genes can be considered feedback regula-
tors of Ca 2+  yeast homeostasis. One should remind that the conclusions on the domi-
nant or even exclusive role of Pmc1p and Vcx1p and the insignifi cant role of the ER 
in Ca 2+  homeostasis were primarily based on analysis of the physiological conse-
quences observed in vivo for the respective mutants (e.g., the growth inhibition by 
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high Ca 2+ ). The signifi cant changes in the mutant physiology and a decrease of Ca 2+  
pumps activity in the  pmc1 ,  pmr1  and  cnb1  mutants were interpreted by a simplifi ed 
manner. It was concluded that the physical absence of the respective pumps is solely 
responsible for the signifi cant decrease of Ca 2+ -ATPase activity in those mutants. It 
was even claimed that “…all of the observed Ca 2+  pump activity in yeast is derived 
from two Ca 2+ -ATPases, Pmr1 and Pmc1” [ 16 ]. Unfortunately, the additional regu-
latory interplay of the vacuolar transporters and those from other secretory organ-
elles as well as of their respective genes was not taken into account. At present time 
we know two examples of the interplay between the secretory organelles responsi-
ble for the Ca 2+  homeostasis. First one is the increased Ca 2+ -ATPase activity in NE 
and ER membranes from  pmr1  mutant ([ 16 ,  18 ] and Fig.  27.2 ) which can be attrib-
uted to the increased level of the free Ca 2+  in cytosol as well as upregulation of the 
Ca 2+  pumps in those organelles. The second one we reveal for the  vcx1  and  pmc1  
mutants when the activities of Ca 2+ /H +  exchangers and Ca 2+ -ATPases were unex-
pectedly diminished in all secretory organelles instead of their expectable activation 
in result of the most likely increase in free cytosolic Ca 2+  (this report and [ 43 ]). The 
mechanism of the activity decrease of the Ca 2+  transporters in those mutants needs 
to be explored. Additionally, the conclusions on the dominant role of Pmc1p and 
Vcx1p and the insignifi cant role of the ER in Ca 2+  homeostasis were infl uenced by 
the claim that ~90 % of the cellular Ca 2+  in yeast is located in vacuoles [ 10 ,  11 ,  44 ]. 
This assertion was based on the fi nding that most of the intracellular Ca 2+  was 
released following vacuole lysis from osmotic shock of the cells in which the PMs 
were permeabilized [ 44 ]. However, the lysis of other intracellular organelles/mem-
brane vesicles was not considered (Fig.  27.1 . in [ 5 ] and our unpublished results). 
Considering the biochemical results, including the high contribution of the Ca 2+  
transporters from the ER/PM and NE to the total Ca 2+  uptake compared with that of 
the vacuolar transporters (see below), the well separation of the membrane vesicles 
derived from NE, ER, Golgi and vacuole, as well as the positive regulation of the 
Ca 2+  transporters in the NE, RE/PM and Golgi by those from vacuolar membranes 
(Figs.   21.1    ,  27.3  and [ 25 ,  27 ,  43 ], we propose a clarifi cation of the regulatory role 
of the vacuolar transporters in yeast Ca 2+  homeostasis. Our supposition includes the 
nearly equivalent participation of different secretory organelles equipped with 
proper Ca 2+  transporters in Ca 2+  effl ux ([ 18 ,  22 – 25 ] and see below) and the moder-
ate contribution of the vacuolar transporters from wild-type strains, which has been 
previously overestimated [ 2 ,  8 ,  10 ,  11 ,  16 ,  44 ] .       

4       The Yeast Ca 2+ -ATPases Are Similar to SERCA 

 The available data on the nature of the yeast Ca 2+  pumps are controversial. It was 
shown [ 17 ] that the formation of a phosphorylated intermediate (acyl phosphate) by 
yeast TMs can be effi ciently blocked by cyclopiazonic acid, which is a specifi c 
inhibitor of SERCA (sarco/endoplasmic reticulum calcium ATPases). However, the 
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insensitivity of Pmr1p to cyclopiazonic acid and thapsigargin, which is another spe-
cifi c  SERCA inhibitor     , was subsequently reported [ 7 ]. This report together with the 
fi nding that Pmc1p exhibits ~40 % identity with Ca 2+ -ATPases from the mammalian 
PMs [ 2 ] was used to make a generalized conclusion that “ S. cerevisiae  and other 
budding yeasts do not retain SERCA family Ca 2+  pumps” [ 10 ]. However, the asser-
tion that Pmr1p exhibits very weak sensitivity to cyclopiazonic acid [ 7 ] was based 
on results obtained under experimental conditions (0.5 mM ATP) that do not permit 
the inhibition of even genuine SERCA [ 34 ]. Indeed, we also found that 0.5 and 
1.0 mM ATP prevent cyclopiazonic acid inhibition of both the yeast Ca 2+ -ATPases 
from TMs and the Ca 2+ -ATPases from the rabbit sarcoplasmic reticulum (data not 
shown). Moreover, the strong inhibition of the formation of the acyl phosphate 
intermediate and Ca 2+  uptake by cyclopiazonic acid at low ATP concentrations was 
well reproducible ([ 17 ,  25 ] and Fig.  27.2 ). Additionally, the inability of thapsigargin 
to inhibit Pmr1p activity that was reported in [ 7 ] can be explained by inhibitor inac-
tivation, which was not verifi ed using genuine SERCA as it was made in other stud-
ies [ 25 ,  45 ]. Therefore, we conclude that the yeast Ca 2+ -ATPases are similar to 
SERCA at least from the point of view of their sensitivity to specifi c inhibitors of 
these mammalian pumps. This fi nding clearly indicates an evolutionary link of the 
yeast Ca 2+ -ATPases with mammalian SERCAs, suggesting their common ancestor 
and that certain kinetic differences between these ATPases [ 7 ] have arisen during 
evolution. Therefore, we believe that the yeast Ca 2+  homeostasis model is useful to 
better understand mammalian Ca 2+  homeostasis.    

5       Regulation of the Yeast Ca 2+  Transporters 
by  Extracellular Glucose      

 Extracellular glucose stimulates the activities of Ca 2+ -ATPases and Ca 2+ /H +  exchang-
ers of TMs by ~2- and ~7-fold, respectively [ 25 ] .  This stimulation was found for both 
types of Ca 2+  transporters from all secretory organelles, exhibiting a selective activa-
tion for different organelles, particularly for exchangers. Ca 2+ -ATPases of the NE/
PM, NE/ER/PM, ER/PM, Golgi and vacuoles were stimulated 3.1-, 1.7-, 1.5-, 1.2- 
and 1.7-fold by extracellular glucose, respectively, whereas the Ca 2+ /H +  exchangers 
from these membranes increased their activities by 11.2-, 7.3-, 7.7-, 6.8-10.5-fold, 
respectively [ 25 ]. 

 The impressive effi cacy of Ca 2+ /H +  exchangers to rapidly decrease the free cyto-
solic Ca 2+  concentration, which was sharply increased by high extracellular Ca 2+  or 
high osmolality [ 9 ,  42 ], called into question the two-decade-long opinion on the low 
Ca 2+  affi nity of the exchangers [ 10 ,  11 ,  46 ]. Reinvestigation of the kinetic properties 
of the Ca 2+  transporters of TMs using the free Ca 2+  values instead of the previously 
used nominal (total) Ca 2+  concentrations revealed that the  K  M  values of the nonacti-
vated and extracellular glucose-activated exchangers from TMs are 61 ± 27 nM and 
99 ± 13 nM, while V max  are 0.52 ± 0.17 nmol/min × mg and 4.3 ± 0.5 nmol/min × mg 
protein, respectively [ 25 ,  47 ]. The Ca 2+ -ATPase activity of TMs exhibits  K  M  values 
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of 46 ± 3 nM and 51 ± 11 nM for nonactivated and activated states, whereas V max  are 
0.29 ± 0.03 nmol/min × mg protein and 1.22 ± 0.12 nmol/min mg protein,  respectively 
[ 25 ,  47 ]. Therefore, Ca 2+  affi nity of exchangers is similar to that of Ca 2+ -ATPases, 
but they transport Ca 2+  with higher velocity. 

 Given that Ca 2+  uptake by vesicles of intracellular membranes refl ects the capac-
ity of the respective organelles for Ca 2+  effl ux from the cytosol, a potential contribu-
tion of Ca 2+  transporters in this effl ux was evaluated considering the glucose-activated 
transporters [ 25 ]. Ca 2+ -ATPases of the NE/PM, PM/ER, ER/PM, Golgi and vacu-
oles contributed ~14, 16, 33, 23 and 14 % from total Ca 2+ -ATPase activity. It means 
that the Ca 2+  pumps of the NE/PM, PM/ER and ER/PM membranes contributed 
more (63 %, including 33 % from ER/PM) to the potential effl ux than the Ca 2+ -
ATPases of the Golgi and vacuolar membranes combined (37 %). Moreover, the 
potential effl ux mediated by exchanger(s) on the Golgi and vacuoles (46 %) is less 
in comparison with that mediated by the exchanger(s) on the NE/PM, PM/ER and 
ER/PM membranes (54 %), further demonstrating the importance of organelles 
other than vacuoles and Golgi for yeast Ca 2+  homeostasis [ 25 ]. Notably, the ratio of 
the exchanger to Ca 2+  pump activities is higher in vacuolar, Golgi and ER/PM mem-
branes of  S. cerevisiae  X2180 (6.4, 7.6, 4.7-fold, respectively), and diminishes in 
NE/PM and PM/ER (2.4- and 2.4 fold, respectively) [ 25 ] .  We found such increase 
of the ratio from NE/PM to vacuolar membranes for different  S. cerevisiae  wild-
type strains (not shown). This difference between various Ca 2+  storage organelles 
can most likely be used to generate the distinct shapes of Ca 2+  signals by these dif-
ferentially located compartments.    

6       Regulation of Ca 2+  Transporters in Response to High 
Extracellular Ca 2+  Under Different Energy Supply 
Conditions 

 The available data on the regulation of the yeast Ca 2+  transporters under  high Ca 2+  
stress      are primarily based on the investigation of their gene expression. This analysis 
has shown an increase in the expression of  PMC1  and  PMR1  as a result of this 
stress, whereas  VCX1  expression was diminished compared with normal growth 
conditions (YPD medium). This regulation was attributed to the positive regulation 
of these Ca 2+ -ATPases and to negative regulation of Vcx1p by  calcineurin   [ 8 – 10 ] .  
Our biochemical analyses of the activities of transporters are consistent with these 
fi ndings. It was shown that TMs isolated from yeast growing in the high-Ca 2+  YPD 
medium exhibited activation of Ca 2+ -ATPases and inhibition of Ca 2+ /H +  exchangers 
compared with normal growth conditions [ 48 ] .  Membrane fractionation revealed 
the activation of Ca 2+ -ATPases from vacuoles and the Golgi, which is consistent 
with results on the increase in the expression of  VCX1  and  PMR1  [ 8 – 10 ,  16 ] .  
Additionally, Ca 2+  pumps from membrane fractions enriched with the ER/PM and 
NE were also stimulated, indicating the coordinated and collective response of 
Ca 2+ -ATPases from all secretory organelles to the high Ca 2+  stress. Ca 2+ /H +  
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exchangers also collectively responded to this stress, although through the coordi-
nated decrease in their activities in all secretory organelles [ 48 ] including vacuoles 
(which is consistent with the decrease in  VCX1  expression [ 8 – 10 ]. 

 Notably, that in the described experiments, TMs were isolated from spheroplasts 
obtained from cells growing with 150 mM Ca 2+  and pretreated for 10 min with 
100 mM glucose. Unexpectedly, when spheroplasts were preincubated without glu-
cose, the response of the Ca 2+  transporters to the preliminary Ca 2+  stress was altered. 

  Fig. 27.4    The preliminary Ca 2+  stress stimulates all Ca 2+ -ATPases and Ca 2+ /H +  exchangers of 
secretory pathway when extracellular glucose is depleted. Cells of the wild-type strain AA255 
were grown in YPD or YPD + 150 mM CaCl 2 . Spheroplasts were isolated in the absence of Ca 2+  
and glucose. TMs were fractionated on a sucrose density gradient as described in legend of 
Fig.  27.1 . The sum of the respective Ca 2+  transport activities for each membrane population is 
represented in cpm × 10 −3  × (mg TM protein) −1 . ( a ) Ca 2+ -ATPase and ( b ) Ca 2+ /H +  exchanger activi-
ties. The representative experiment of three is shown       
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Although the Ca 2+ -ATPases continued to be activated, Ca 2+ /H +  exchangers were also 
activated (Fig.  27.4a, b ), in contrast to the previously observed decrease in the 
activity. This activation of the exchangers was also reproduced following the incu-
bation of cells with 100 mM CaCl 2  for 2.5 h (Fig.  27.5 ). Once again, Ca 2+ -ATPases 
and exchangers were activated under identical conditions. Notably, activation of 
both types of Ca 2+  transporters was prevented to a considerable extent by the  calci-
neurin   antagonist cyclosporine A (Fig.  27.5 ), indicating calcineurin-dependent 
modulation of the activities of these Ca 2+  transporters. Interestingly, the activation 
of Ca 2+ / H +  exchangers in the absence of glucose and its prevention by cyclosporine 
A was accompanied by the similar modulation of VH + -ATPase activity (Fig.  27.5 ). 
Given the direct dependence of the exchanger activities from V H + -ATPase, this 
data assume that calcineurin indirectly controls the exchanger activities via the H +  
pump regulation (see also below).

    Unexpectedly, only the removal of glucose, which is used in a 10-min preincubation 
of spheroplasts prior to membrane isolation, from the medium while maintaining all 
other experimental conditions identical increases the exchanger activity after pre-
liminary Ca 2+  stress (Figs.  27.4  and  27.5 ). In summary, Ca 2+  stress in the absence of 
glucose activates Ca 2+ -ATPases and Ca 2+ /H +  exchangers (Fig.  27.6 ). Glucose also 

  Fig. 27.5    Cyclosporine A prevents the stimulation of Ca 2+ -ATPases, Ca 2+ /H +  exchangers, and V 
H + -ATPase during preliminary Ca 2+  stress when glucose is then depleted. Yeast cells of wild-type 
strain AA255 were grown to OD 600  3.0, divided into three parts: two parts were allowed to continue 
their growth in YPD, while cyclosporine A (10 μg/ml) was added to the third one. After 2.5 h, 
CaCl 2  was added to second and third part cultures to a fi nal concentration of 100 mM. After 2.5 h 
growth the spheroplasts were isolated from yeast cells, preliminary washed with water, and used 
for TMs isolation. H +  transport activity (steady state) was determined according to [ 13 – 15 ,  24 ] and 
represented in % of fl uorescent quinching × 50 × (mg protein of TMs) -1 . See also legend of 
Fig.  27.1 . Ca 2+  transport activity is represented in pmol × (mg protein of TMs) −1        
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activates both types of Ca 2+  transporters, if extracellular Ca 2+  is low. However, when 
Ca 2+  stress is applied in the presence of glucose, Ca 2+ -ATPases are  additionally 
activated, but the exchangers operate with lower capacity although with higher 
capacity compared with that observed in the absence of glucose (Fig.  27.6 ). 
Therefore, calcineurin most likely positively regulates both Ca 2+ -ATPases and Ca 2+ /

  Fig. 27.6    Modulation of Ca 2+ -ATPase, Ca 2+ /H +  exchanger ( a ) and V H + -ATPase ( b ) activities of 
TMs by extracellular Ca 2+  and glucose. Spheroplasts were isolated from wild-type strain AA255 cells 
exposed or not to 100 mM CaCl 2  stress and then incubated or not with 100 mM glucose for 10 min 
before the TM isolation. Determination of Ca 2+  and H +  transport activities is described in Figs.  27.1  
and  27.5 , respectively. Ca 2+  transport is represented in pmol × (mg protein of TMs) -1  and H+ transport 
is shown in % of fl uorescent quinching × (mg protein of TMs) -1 . ( a ) Ca 2+ -ATPase and Ca 2+ /H +  
exchanger and ( b ) V H + -ATPase activities       
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H +  exchangers of the yeast secretory pathway under defi cient energy and carbon 
source conditions. When glucose is supplied, Ca 2+ -ATPases are additively stimu-
lated; however, the exchanger activity is moderately limited but is higher than in the 
presence of Ca 2+  alone (Fig.  27.6 ). These observations allow us to suggest that cal-
cineurin is only a moderate negative regulator of the glucose-dependent activation 
of Ca 2+ /H +  exchangers under the Ca 2+  stress conditions. The modulation of the 
exchanger activities under different concentrations of the extracellular Ca 2+  and 
glucose is accompanied by the similar modulation of the VH + -ATPase activity 
(Fig.  27.6 ). Therefore, it is very likely that the regulation of the exchangers by 
 calcineurin   is achieved by the modulation of the V H + -ATPase activities in yeast 
secretory organelles (Figs.  27.5 ,  27.6  and [ 48 ]). Interestingly, the partial inhibition 
of Ca 2+ /H +  exchangers was observed in preconditions of the Ca 2+  stress and its sub-
sequent abolition during cell washing and spheroplast isolation (collectively ~60–
75 min) and the subsequent 10-min incubation with glucose. This inhibition 
correlates with the decrease in  VCX1  expression observed in vivo at continuous 
high extracellular Ca 2+  concentrations in the presence of glucose [ 8 – 10 ]. We sup-
pose that when the extracellular Ca 2+  stress was removed prior to membrane isola-
tion, the cytosol remained under stress from the Ca 2+  accumulated by intracellular 
organelles. To prevent an uncontrolled increase in free cytosolic Ca 2+  as a result of 
the Ca 2+  diffusion from its intracellular stores, Ca 2+ -ATPases were activated and the 
capacity of Ca 2+ /H +  exchangers was moderately diminished compared with that 
found in the presence of glucose alone. We therefore suggest that the regulation of 
both Ca 2+  transporters by calcineurin when Ca 2+  stress is applied can be achieved by 
two steps. The fi rst step is achieved by utilizing endogenous energy sources, and the 
second step operates additionally if an extracellular energy source is available. In 
this case, the capacities of both transporters are higher compared with those of the 
fi rst step (Fig.  27.6 ). 

 Moreover, it was found that calcineurin deletion decreased Ca 2+  uptake by TMs by 
approximately 60 %, inhibiting Ca 2+ -ATPases (~70 %) and Ca 2+ /H +  exchangers 
(~50 %) when the  cnb  mutant cells were grown under normal conditions in the absence 
of high Ca 2+  stress [ 48 ]. This decrease was observed for both the Ca 2+ -ATPase and the 
Ca 2+ /H +  exchanger of vacuolar membranes and for transporters of the NE/PM, PM/ER, 
ER/PM and Golgi membranes (Fig.  27.7 ). These data collaborate well with the results 
presented above (Figs.  27.5 ,  27.6  and  27.7 ). Taken together they suggest the positive 
and fl exible regulation of all Ca 2+  transporters from the secretory pathway by calcineu-
rin under various conditions of yeast growth (Figs.  27.5 ,  27.6  and  27.7  and [ 48 ]).

    Under common laboratory conditions (~1 μM of free Ca 2+  in YPD medium [ 5 ]) 
and even under conditions of high Ca 2+  stress and glucose defi ciency, all Ca 2+  trans-
porters are positively regulated by calcineurin. This positive regulation of Ca 2+ -
ATPases exists even under conditions of Ca 2+  stress and a glucose supply, when 
additive stimulation of the pumps by Ca 2+  and glucose occurs. Under identical 
 conditions, the high capacity and high affi nity Ca 2+ /H +  exchangers are moderately 
restricted by  calcineurin  , demonstrating their apparent negative regulation by calci-
neurin compared with the exchanger activities observed when the Ca 2+  stress is not 
applied but glucose is supplied. However, these activities remain signifi cantly higher 
than those observed under Ca 2+  stress in the absence of glucose, revealing the relative 
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positive regulation of the exchangers by calcineurin. Notably, the level of the Ca 2+ /
H +  exchanger activity in TMs regulated by calcineurin under different conditions 
correlates well with the respective activity of the VH + -ATPase (Fig.  27.6 ), suggest-
ing that calcineurin regulation of the exchanger activity is primarily achieved via 
calcineurin modulation of the VH + -ATPase rather than by its direct interaction with 
the exchangers. This attractive insight offers new possibilities for the investigation of 
the role of calcineurin in the regulation of the VH + -ATPase and numerous processes 
with the participation of this ubiquitous H +  pump that include the regulation of the 
cytosolic H +  concentration and the participation of various cation/H +  exchangers in 
the homeostasis of cations such as K + , Na + , Mg 2+ , and Zn 2+ , among others.    

7     Conclusions 

 The participation of a set of secretory organelles in Ca 2+  homeostasis protects cells 
from uncontrolled alterations in the free Ca 2+  concentration in the cytosol and guar-
antees the local nature of Ca 2+  signaling. If the respective Ca 2+- release channels deter-
mine the signal amplitude and the microdomain size [ 49 ], i.e., the number of released 
Ca 2+  ions in the cytosol near the respective Ca 2+  storage organelle, the different 
velocities of Ca 2+  effl ux mediated by the Ca 2+  transporters in various secretory organ-
elles can generate distinct shapes for the Ca 2+  signals. Therefore, the presence of 
Ca 2+ -ATPases and Ca 2+ /H +  exchanger on the same membrane appears to be physio-
logically signifi cant. A variable ratio between the number of Ca 2+  pumps and Ca 2+ /H +  

  Fig. 27.7    Calcineurin positively regulates all Ca 2+  transporters of the secretory pathway under 
normal growth conditions. Yeast cells of wild-type K601 and the calcineurin mutant K603 ( cnb1 ) 
strains were grown in YPD. Homogenates were isolated from spheroplasts preincubated for 10 min 
with 100 mM glucose and then fractionated on a sucrose density gradient. Ca 2+  transport activity 
was determined as described in the legend for Fig.  27.1  and is represented for the sums of the 
respective membrane populations in pmol × (mg protein of the homogenates of spheroplasts) −1 . See 
legends of Figs.  27.1  and  27.3        
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exchangers between secretory organelles can also contribute to differences in the 
resulting signals. However, we propose that in yeast and fungi, the key role in the 
formation of the signal shape is mainly played by the exchangers, not Ca 2+ -ATPases, 
because the exchangers modulate the duration and shape of the signals [ 9 ,  42 ]. Also, 
the presence of Ca 2+ -ATPases in the same membrane is important because they can 
operate under an energy defi cit. For example, the non-glucose- activated Ca 2+ -ATPase 
of the yeast Golgi exhibits a K M  of 5 μΜ [ 5 ], whereas the nonactivated VH + -ATPase 
exhibits a K M  of 100 μM (based on membrane potential formation; Kulakovskaia TV 
and Okorokov LA, unpublished) or 127 μM (based on ΑΤP hydrolysis) [ 50 ]. 
Additionally, Ca 2+ -ATPases, at least Pmr1p, can use ATP produced from ADP due to 
myokinase activity [ 5 ] and, therefore, can operate much better than VH + -ATPase-
dependent exchangers under an energy defi cit.     
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    Chapter 28   
 Role of P 5A -Type ATPase in Ion Homeostasis 
and Signaling: Shedding Light on Obscure 
Pump                     

       Anna     L.     Okorokova-Façanha     ,     Antônio     Jesus     Dorighetto     Cogo    , 
and     Lívia     Marini     Palma   

    Abstract     Despite the substrate specifi city has not yet been clarifi ed for the putative 
cation pumps belonging to the P 5A -type ATPase subfamily, compelling evidences 
have increasingly been accumulated about its crucial physiological role in Ca 2+  
homeostasis and signal transduction. The aim of this review is to discuss some of 
the most relevant functional data available, which establish a clear relationship 
among different phenomena underlying or depending on tightly modulations of cel-
lular Ca 2+  changes and the functional expression of P 5A -ATPases. Issues related to 
the different substrate propositions and structural analysis will only be mentioned, 
since they have thoroughly been explored in recent reviews. The relevance of criti-
cal biochemical characterizations in the completion of the most frequent molecular 
approaches in the elucidation of the key physiological role of the P 5A -type ATPases 
will be highlighted, whose evolution seems to be tightly integrated to the origin of 
eukaryotes.  
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1         Introduction 

 The fl ow of ions across cellular membranes is mediated by the coordinated function 
of ion transporters and channels. Primary pumps transport ions generating the elec-
trochemical gradients on the expense of ATP hydrolysis, which energize secondary 
transporters, and this integrated system orchestrates the ion and metabolite’s acqui-
sitions, exclusions, and compartmentalizations and the ion homeostasis and signal-
ing. In accordance with such relevance for the cellular development, multiple ion 
ATPases evolved during the earlier events of prokaryote and eukaryote evolution, 
differing in their amino acid sequences, biochemical properties, and subcellular 
localizations. The three main types of ion-motive ATPases include the  multimeric 
F-type   and  V-type ATPases  , which translocate H + , and the P-type ATPases mostly 
composed by single polypeptides [ 1 ,  2 ]. The latter are also much more diverse in 
terms of ion translocation and functions and can be found in plasmalemma and 
endomembranes as well. The formation of a phosphorylated intermediate during the 
catalytic cycle is a key characteristic of P-type ATPases that distinguishes them 
from V-ATPases and  F-ATPases   [ 1 ,  2 ]. They share fi ve highly conserved regions 
within two  hydrophilic cytosolic loops  , which include phosphorylation (also a site 
for irreversible vanadate binding) and  ATP-binding domains   [ 3 – 5 ]. The sequencing 
of the genomes from Bacteria, Archaea, and Eukarya has allowed the identifi cation 
of hundreds of genes encoding for P-type ATPases and phylogenetic analysis of the 
main ion pumps belonging to this superfamily [ 6 ]. P-type ATPases are distributed in 
fi ve  subfamilies   depending on substrate specifi city. Among the substrates trans-
ported by these pumps are protons, calcium, sodium, potassium, and heavy metals 
such as manganese, iron, copper, zinc, and also aminophospholipids. 

 The genes encoded for novel uncharacterized P-type ATPases were initially 
identifi ed during the fi rst complete inventory of the P-type ATPases in a  unicellular 
eukaryotic microorganism  , which was carried out in the budding yeast  Saccharomyces 
cerevisiae  by a group headed by Prof. A. Goffeau [ 7 ]. The members of this novel 
subfamily, with unknown substrate specifi city, have been further revealed in the 
genomes of plant   Arabidopsis thaliana    [ 8 ] and the archiascomycete fungus 
 Schizosaccharomyces pombe  [ 9 ] and other eukaryotic organisms and were classi-
fi ed as P 5 -type ATPases [ 6 ]. Based on sequence analysis of P 5 -type ATPases from 
diverse eukaryotic genomes, they can be divided in two groups, namely, P 5A  and P 5B  
[ 9 ,  10 ]. Contrasting with P 5A -type ATPases which are present in all eukaryotic 
genomes,  P 5B -type ATPases      are absent in some multicellular eukaryotes including 
land plants [ 10 ]. The degree of sequence variation between two subclasses of 
P5-type ATPases may refl ect distinct substrate specifi city, mode of regulation, and 
cellular localization. Indeed, P 5A -type ATPases have been localized to the endoplas-
mic reticulum [ 11 – 14 ], while P 5B -type ATPases to the vacuole/Golgi/lysosomal 
membrane [ 15 ,  16 ]. Sequence and structural differences between P 5A - and P 5B - 
ATPases have been discussed in [ 17 ]. 

 So far, even after 16 years of intense investigations since the fi rst phenotypic 
characterization of deletion mutant of P 5A -type ATPase in   S. cerevisiae      , there is no 
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defi nition and agreement regarding the substrate specifi city of P 5A -type ATPase and 
complete understanding of its molecular functions. Our current knowledge on phys-
iological functions of these unique and enigmatic pumps is based essentially on 
genetic and biochemical characterization of P 5A -type ATPases from yeast and plant 
cells. The  loss of   P 5A -type ATPases has a profound effect on several processes 
including the establishment and maintenance of cell polarity, cytokinesis, ion 
homeostasis, and protein glycosylation, folding, and secretion [ 11 – 13 ,  18 – 20 ]. P5A- 
type ATPase   is also important for reproduction since the absence of its expression 
results in  Arabidopsis  plants with decreased fertility [ 13 ] and fi ssion yeast with 
impaired formation of the forespore membrane [ 14 ]. However, many questions 
remain to be explored, such as: (1) why the expression of this unique kind of pump 
in the endoplasmic reticulum has such a profound effect on cell functioning? (2) Do 
P 5A -type ATPases represent primary ancient pumps serving the endoplasmic reticu-
lum? How does the evolution of function and regulation of P 5A -type ATPase accom-
pany the evolution of the signaling pathways irradiating from the endoplasmic 
reticulum to reach the development of complex signaling networks characteristic of 
the eukaryotic cells? Such complex issues have to be addressed integrating advanced 
molecular analysis with basic functional characterization toward the accomplish-
ment of effective system biology approaches.  

2       P 5A -Type ATPase,  Cell Wall Integrity  , and  Endoplasmic 
Reticulum Stresses   

 The analysis of  S. cerevisiae  mutants sensitive to  Pichia farinosa  killer toxin pro-
vided the fi rst clue in understanding a potential physiological function of P 5A -type 
ATPases. It was found that the deletion of gene encoding P 5A -type Spf1 ATPase 
conferred resistance to  Pichia farinosa , salt-mediated killer toxin (SMKT) [ 21 ]. 
The effect of  SMKT   was also investigated on fi ssion yeast cells lacking P 5A -type 
Cta4, revealing that  cta4Δ  cells were also resistant to the toxin [ 12 ]. It has been 
shown that SMKT interacts with the plasma membrane of wild type but not with 
that of mutant  spf1  cells [ 18 ], raising thus a possibility that a structure and/or target-
ing of some cell wall component, which binds the toxin, is similarly affected in  S. 
cerevisiae spf1  and  S. pombe cta4Δ  mutant cells. 

 In line with this notion, we found that mutants  cta4Δ  and  spf1  are more resistant 
to cell wall enzymatic hydrolysis using lytic enzymes from  Trichoderma , when 
compared to wild-type cells (Fig.  28.1 ). The lytic enzymes are endowed with β-1,3- 
glucanase with some cellulase, protease, and chitinase activities. Interestingly, the 
lack of Pmr1 Golgi Ca 2+ -ATPase, belonging to P 2 -type subfamily, also resulted in 
cells with altered cell wall which was sensitive to lytic enzymes [ 22 ]. These fi ndings 
point toward specifi c roles for these pumps in signaling the cell wall integrity.

   In addition, the disruption of the  cta4  +  gene resulted in clumpy multiseptated cells 
with aberrant morphology suggesting further problems in cell wall remodeling [ 12 ]. 
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Mutant  spf1  cells also showed several phenotypes expected for yeast cells with 
defects in cell wall, such as aggregated cells; hypersensitivity to calcofl uor-white, 
which interferes with cell wall assembly; and hygromycin B, characteristic for yeast 
mutants with defective N-glycosylation [ 23 ]. In fact, mutant cells lacking  SPF1  dis-
play glycosylation defects [ 18 ] and altered processing of protein-linked oligosac-
charides [ 19 ]. The enzymes involved in the glycosylation process require Ca 2+  and 
Mn 2+  for their activity [ 24 – 26 ] and are located to the endoplasmic reticulum and 
Golgi, thus the luminal environment of these organelles is perturbed in yeast cells 
lacking P 5A -type ATPases. The resistance of mutant  cta4Δ  and  spf1  cells to enzy-
matic hydrolysis of cell wall could thus be explained by changes in cell wall struc-
ture/organization due to alteration in activity of proteins and luminal ion homeostasis 
to maintain cell wall integrity. 

 This trait seems to be evolutionary conserved since   Arabidopsis thaliana    plants 
with disruption in P 5A  MIA ATPase exhibited decreased expression of a large num-
ber of genes encoding cell wall-modifying enzymes [ 13 ]. 

 Further investigations of the role of P 5A  type in cell wall revealed that the dimor-
phic fungi  Candida albicans spf1Δ / Δ  mutant cells lacking homologous P 5A -type 
Spf1 ATPase exhibited abnormal cell wall composition with decreased levels of 
both β-(1,3)-glucan and β-(1,6)-glucan, delayed cell wall reconstitution after enzy-
matic removal of cell wall, and decreased fl occulation and adherence, reinforcing 
the notion that cell wall integrity signaling relies on P 5A -type ATPase [ 20 ]. 

 It is now well established that the cell wall integrity is under a control of mitogen- 
activated protein kinase cascade and that the response is coordinately regulated with 
an endoplasmic reticulum stress response [ 27 ]. 

  Fig. 28.1    Sensitivity of  Saccharomyces cerevisiae  mutant lacking P 5A  Spf1 ATPase and 
 Schizosaccharomyces pombe  mutant lacking P 5A  Cta4 ATPase to cell wall degradation with lyti-
case. Wild-type ( fi lled circle ) and mutant strains  spf1  and  cta4Δ  ( fi lled square ) were grown to 
mid-log phase in YPD medium and collected and treated with lyticase in spheroplast buffer con-
taining 1.4 M sorbitol, 50 mM tris-HCl pH 7.4, and 30 mM β-mercaptoethanol. The 10 μl aliquots 
were removed at the indicated times, diluted in 1 ml of water, and used for OD 600  determination 
after 1–2 min. The decay in OD 600  was taken as an indication of the lysis of spheroplasts. The opti-
cal density of cell suspensions at time 0, for each respective strain, was set to 100 %       
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 Endoplasmic reticulum stress is a condition resulted from the impairment of Ca 2+  
homeostasis in endoplasmic reticulum and the accumulation of unfolded proteins, 
which in turn leads to the induction of  unfolded protein response (UPR)   [ 28 ]. The 
cells under severe endoplasmic reticulum stress became susceptible to apoptosis, acti-
vating specifi c apoptotic pathway. Over the past two decades, there have been signifi -
cant advances in our understanding of endoplasmic reticulum stress machinery and 
pathological consequences of dysregulation of unfolded protein response. Dysfunction 
of the UPR is a main pathological characteristic in neurodegenerative, metabolic, and 
infl ammatory diseases, as well as cancer, prompting increased research focus on the 
mechanisms controlling endoplasmic reticulum homeostasis [ 28 ,  29 ]. 

 Yeast and plant P 5A -type ATPases were localized to the endoplasmic reticulum, 
by means of immunochemical analysis of subcellular membrane fractionation and 
immune microscopy [ 11 – 14 ,  18 ,  19 ]. Thus, it is not surprising that the loss of P5A- 
type ATPase function would have a drastic effect on endoplasmic reticulum homeo-
stasis and processes that depend on the endoplasmic reticulum functioning. 

 Indeed, the degradation of endoplasmic reticulum membrane protein HMG-CoA 
reductase is defective in budding yeast mutants defi cient of P 5A -type ATPase Spf1 
[ 30 ]. Furthermore, both budding and fi ssion null yeast mutants lacking P 5A -type 
ATPases Spf1 and Cta4, respectively, are very sensitive to UPR activators tunicamy-
cin and DTT (inhibitors of protein glycosylation) and exhibited induced expression 
of chaperone protein BiP, indicator of BiP, indicating that the absence of P 5A -type 
ATPase results in endoplasmic reticulum stress [ 11 ,  12 ,  18 ]. Among thousands of  S. 
cerevisiae  mutants,  spf1  null mutant exhibited very strong unfolded protein response 
[ 31 ]. Moreover, BiP was found also in Golgi and vacuole membranes in  cta4Δ  
mutant [ 12 ]. The disruption of  cta4  +  gene may affect not only the BiP distribution 
but also that of other proteins of the secretory pathway. 

 The inhibition of endoplasmic reticulum Ca 2+ -ATPases in animal cells also leads 
to an increase of mRNA levels for the marker proteins BiP/GRP78 [ 32 ]. Similarly, 
the phenotypes of yeast  pmr1  mutant lacking Golgi Ca 2+ -ATPase are that of mutants 
defective in UPR pathway [ 19 ,  33 ]. A critical role of P 5A -ATPases in maintaining 
the endoplasmic reticulum environment likely occurs through controlling Ca 2+  and 
Mn 2+  homeostasis.    

3      P 5A -Type ATPase and  Ca 2+  Homeostasis   

 There is a body of evidence showing that a loss of P 5A -type ATPase leads to severe 
disturbance of cellular Ca 2+  homeostasis, supporting a hypothesis that Ca 2+  is a pos-
sible substrate of the pump:

    1.    The growth of null mutants lacking  cta4  +  and  SPF1  genes encoded for P5A- 
ATPases in yeast cells is sensitive to Ca 2+  and to Ca 2+ -preferring chelator ethylene 
glycol tetra acetic acid (EGTA). The growth of  S. pombe cta4Δ  strain was par-
tially inhibited already by the addition of 10 mM CaCl 2  and completely inhibited 
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by the addition of 50 mM CaCl 2  [ 12 ]; the growth of  S. cerevisiae spf1  mutant was 
abolished at 125 mM CaCl 2  [ 11 ], while the growth of  Candida albicans spf1 Δ/Δ 
mutant was reduced 30 % in the presence of 160 mM CaCl 2  [ 34 ]. It should be 
noted that  S. cerevisiae  mutants lacking known P 2 -type Ca 2+ -ATPases exhibit 
defi cient growth on Ca 2+ -containing medium; however, the sensitivity differs 
between mutant yeast cells:  pmr1  requires low Ca 2+  for optimal growth [ 33 ], and 
the growth of  pmc1  mutant is only inhibited at high Ca 2+  concentrations [ 35 ].   

   2.    Fluorescence resonance energy transfer (FRET) experiments in living fi ssion 
yeast cells using the fl uorescent yellow cameleon indicator for Ca 2+  indicated 
that a deletion of  cta4  +  causes an elevation of nuclear Ca 2+  levels [ 12 ].   

   3.    Fission yeast cells lacking Cta4 ATPase exhibited sixfold increase in total  45 Ca 2+  
accumulation as compared to wild-type cells [ 36 ] indicating that loss of this 
P5A-type ATPase leads to enhanced calcium infl ux, which occurs in response to 
the depletion of Ca 2+  from the endoplasmic reticulum, as a result of induction of 
endoplasmic reticulum stress response. 

 The activation of Ca 2+  entry using  high-affi nity calcium system (HACS)   is a 
major response to defects in the secretory, endosomal, and vacuolar protein- 
traffi cking pathways [ 37 ] and resembles a mechanism of  capacitative calcium entry 
(CCE)   into the cytoplasm through plasma membrane channels upon inhibition of 
sarco/endoplasmic reticulum calcium ATPases (SERCA) in animal cells [ 38 ]. 

 The genome-wide approach allowed the identifi cation of two groups of yeast 
mutants regarding HACS activation. Group A mutants display spontaneous 
HACS activation and defects in endomembrane traffi cking system, and group B 
mutants require external stimuli (tunicamycin or α-factor) to activate Ca 2+  infl ux 
[ 37 ].   S. cerevisiae    mutant lacking Golgi Ca 2+ -ATPase Pmr1 belongs to group A 
[ 37 ], as well as  S. pombe  mutant lacking P 5A -type Cta4 ATPase [ 36 ], while  spf1  
and  pmc1  mutants belong to group B [ 37 ], indicating that each ATPase has spe-
cifi c functions in the regulation of Ca 2+  infl ux survival system.   

   4.    The deletion of  S. cerevisiae SPF1  gene resulted in induced expression of 
calcium- responsive genes with  calcium-dependent response element (CDRE)   
such as  PMC1 ,  ENA1 , and  FKS2  encoding vacuolar Ca 2+ -ATPase, Na + -ATPase, 
and β-1,3-glucanase, respectively (demonstrated using ß-galactosidase reporter 
plasmid in [ 11 ]). This induction was mostly dependent on calcineurin, the Ca 2+ /
CaM-dependent protein phosphatase 2B. In line with these observations, the 
deletion of Spf1 in  C. albicans  led to increased (threefold) expression of gene 
encoding calcium channel HACS CCH1, which was mainly dependent on calci-
neurin [ 34 ]. In  S. pombe , vacuolar Ca 2+ -ATPase Pmc1p assumes a leading role in 
calcium homeostasis in cells with  cta4Δ  genetic background, a phenomenon 
likely modulated by calcineurin [ 36 ].   

   5.    Ca 2+  entry in  S. pombe  cells lacking P 5A -type Cta4 ATPase is strongly induced 
upon the inhibition of calcineurin by cyclosporin A, reaching nearly 30-fold 
higher levels than in wild-type strain grown in standard conditions [ 36 ].   

   6.    Direct biochemical measurements of calcineurin phosphatase activity revealed 
its tenfold stimulation upon  cta4  +  gene deletion [ 36 ]. In this regard, it is of 
note that mutant lacking Cta4 ATPase was sensitive to inhibition of calcineurin 
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by cyclosporin A [ 12 ] indicating that activated calcineurin and consequently 
calcineurin signaling are essential for the survival of  cta4Δ  cells, as it has been 
previously demonstrated for other yeast mutants with activated Ca 2+  infl ux via 
HACS.    

  These evidences reinforce the argument that P 5A -ATPase might transport Ca 2+  or, 
at least, regulates Ca 2+  transport in the endoplasmic reticulum by infl uencing P 2  
Ca 2+ -ATPases.   

4      P 5A -Type ATPase and  Mn 2+  Homeostasis   

 There is growing evidence suggesting that calcium homeostasis has a profound 
effect on proton homeostasis and other ions like copper, iron, and zinc. Thus, it is 
not surprising that  S. cerevisiae spf1  mutant was identifi ed among 212 mutant 
strains (out of 4385 mutants generated by the genome deletion project) exhibiting 
changes in yeast ionome as revealed by using inductively coupled plasma atomic 
emission spectroscopy [ 39 ]. This ionome analysis revealed that Spf1 ATPase is 
critical to the homeostatic control of several elements such as calcium, cobalt, cop-
per, iron, magnesium, manganese, nickel, phosphorus, potassium, selenium, 
sodium, sulfur, and zinc [ 39 ]. 

 In this regard, contrasting elemental susceptibilities have been found among dif-
ferent fungal species, for instance, low manganese concentrations were found to be 
toxic to  S. pombe  cells lacking Cta4 ATPase [ 12 ], while deletion of  SPF1  in  S. 
cerevisiae  did not affect manganese sensitivity [ 11 ]. 

 Recent study analyzed metal ion content in total membrane vesicles isolated 
from  spf1  mutant cells using inductively coupled plasma mass spectrometer [ 40 ]. It 
was found that the only ion that showed decreased levels was Mn 2+ . In addition, 
membrane vesicles isolated from cells overexpressing Spf1 ATPase exhibited 
increased Mn 2+  levels. Since Mn 2+  is required for the normal function of several 
enzymes including those involved in lipid biosynthesis and glycosylation [ 24 ,  26 ], 
diversity of phenotypes observed in the absence of  SPF1  can be also accounted for 
by changes in activity of Mn 2+ -dependent enzymes in the ER lumen and cytosol. 
Indeed, the levels of different sphingolipids were reduced in  spf1  cells comparing 
wild type indicating the reduced activity of inositol phosphoceramide (IPC) syn-
thase upon lack of Spf1 pump [ 40 ]. Although these data are not suffi cient to con-
clude that Spf1 ATPase uses Mn 2+  as a transporting ion or as co-factor, they clearly 
demonstrate that loss of Spf1 results in impaired luminal Mn 2+  homeostasis. It is 
possible that the activity of P 5A -type Spf1 ATPase may be essential for the proper 
activity of Mn 2+  transporters (such as Smf1 and Smf2) residing within the yeast 
membrane network. 

 A possibility that P 5A -type ATPase might transport Mn 2+  has overshadowed the 
previous proposition that these pumps might function as P 4 -type ATPases (fl ip-
pases) which transport aminophospholipids [ 41 ].   
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5       Biochemical Characterization of   P 5A -type ATPase 

 Seminal kinetic studies revealed two clearly distinct states in the catalytic cycle of 
the P-ATPases, originally designated as E and E* or E1 and E2 that have become the 
most common notation to distinguish the enzyme dephosphorylated from the phos-
phorylated form, respectively [ 42 ]. Although lately it became clear that the enzy-
matic cycle involves multiple intermediate states [ 43 ], the E1/E2 nomenclature is 
almost universally accepted and remains useful for identifying particular states [ 44 ], 
which have different affi nities for the nucleotide and the transported ions. The 
enzyme phosphorylation by ATP at the invariant aspartate residue in the highly 
conserved phosphorylation sequence DKTGLT, which resides in the beginning of 
major cytoplasmic loop, results in conformational transitions that culminate with 
the release of ion/substrate at another side of the membrane, followed by P i  release. 
The phosphorylation is prevented by orthovanadate, the specifi c inhibitor of P-type 
ATPase, which binds covalently and irreversibly to invariant aspartate residue at the 
phosphorylation site [ 45 ]. The enzymatic cycle assures that ATP hydrolysis occurs 
only when ion is bound and transported by pump. This reaction is infl uenced by pH, 
temperature, and water activity [ 46 ]. Commonly, the presence of ion/substrate to be 
transported by pump in the reaction medium promotes an induction in its activity. 
The activity of P-type ATPases can be determined by monitoring the ATP hydroly-
sis, formation of phosphorylated intermediate, and vanadate-sensitive ATP- 
dependent ion transport in isolated cellular membranes or by purifi ed enzyme. 
These activities have been measured with higher precision by using radioisotopes 
making possible to study in detail the mechanistic features characteristic of this 
pump family. 

 In spite of the previously described evidences indicating that P 5A -ATPases are 
clearly involved in Ca 2+  homeostasis, the sequence and structural analysis failed in 
fi nding characteristic Ca 2+ -binding site motifs previously identifi ed in P 2  Ca 2+  pumps 
[ 47 ], which has maintained the substrate specifi city of these pumps unassigned. 
Nonetheless, one more step toward the biochemical characterization of P 5A -type 
ATPases was performed by the measurements of ATP-dependent and FCCP- 
insensitive  45 Ca 2+  transport activity in native  S. pombe  yeast membranes and the 
comparison between wild-type and mutant  cta4Δ  cells lacking P 5A  Cta4 ATPase 
[ 36 ]. It was found that  45 Ca 2+  transport mediated by Ca 2+ -ATPase was fourfold lower 
in  cta4Δ  total cellular membranes than in wild type and that 50 % of this activity was 
sensitive to orthovanadate, the specifi c inhibitor of P-type ATPases, with IC 50  ~ 200 
μM vanadate. The same range of concentrations of vanadate (500 μM) blocked the 
Spf1 ATPase activity [ 11 ]. Importantly, this biochemical property of vanadate inhi-
bition clearly differentiates P 5A -type ATPases and P 4 -type ATPases since fl ippases 
exhibit a very high sensitivity to vanadate with IC 50  = 1–5 μM [ 48 ,  49 ]. 

 Further fractionation of cellular membranes and subsequent analysis of Ca 2+  
transport showed that ATP-dependent FCCP-insensitive  45 Ca 2+  transport was 
strongly reduced in the endoplasmic reticulum and nucleus membranes isolated 
from  cta4Δ  cells [ 36 ]. These biochemical data clearly indicated that  cta4  +  gene is 
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required for Ca 2+ -ATPase activity and Ca 2+  sequestering in fi ssion yeast endoplas-
mic reticulum membranes. 

 Remarkably, the decrease in  45 Ca 2+  transport was also found in membrane vesi-
cles isolated from  S. cerevisiae spf1  mutant cells (Fig.  28.2 ) indicating the crucial 
role of Spf1 ATPase in maintenance of ATP-dependent Ca 2+  gradients across mem-
branes and replenishment of intracellular Ca 2+  stores in budding yeast cells.

   The fi rst assay on ATPase activity in vitro was performed using purifi ed His- 
tagged Spf1p [ 11 ]. Ca 2+  and several other cations such as Sr 2+ , Ba 2+ , Mn 2+ , Fe 2+ , Fe 3+ , 
Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , and Cd 2+  were tested in the reaction medium; however, they 
all failed to stimulate hydrolytic activity, as one would expected for putative sub-
strate. No stimulation of enzyme hydrolytic activity was found above the basal lev-
els already observed in the presence of Mg 2+ , which is usually added to the reaction 
medium together with ATP. At 5 mM Mg 2+ , His-tagged Spf1p exhibited  K   m   ~ 15 μM 
for ATP hydrolysis and V max  ~ 150 nmol P i .min −1 .mg −1 . This activity was sensitive to 
500 μM vanadate. Free Ca 2+  concentrations higher than 10 μM inhibited ATP hydro-
lysis. The lack of ion which induced Spf1 ATPase led the authors to suggest that the 
factors coupling Spf1p/Cod1p to a specifi c ion might be lost during the purifi cation 
of the enzyme from  S. cerevisiae  membranes [ 11 ]. In addition, it appears that the  S. 
cerevisiae  Spf1p/Cod1p ATPase forms an oligomeric endomembrane complex [ 50 ]. 

 In another study, the hydrolytic activity of vector-expressed and purifi ed GFP- 
Spf1 was quantifi ed [ 51 ]; the ATPase activity of 0.3–1.2 μmol P i .mg −1 .min −1  was 
higher than that reported in [ 11 ]. Two ATP-binding sites were identifi ed: a high- 
affi nity site of  K   m1   ~ 3 μM and a regulatory site of  K   m2   ~ 280 μM for ATP. The regula-
tory effect of Ca 2+ , as a putative substrate, on ATP hydrolysis was also verifi ed; 
however, the addition of 0.5 mM EGTA or 10 μM free Ca 2+  did not change the 
ATPase activity of GFP-Spf1. On the other hand, ATPase activity was positively 
modulated in the presence of Mg 2+ , with half-maximal activity at 45 μM Mg 2+ , and 
decreased by ~40 % in the presence of 150 μM Mn 2+  [ 51 ]. 

 Purifi ed GFP-Spf1 was also able to undergo a phosphorylation in the presence of 
30 μM [γ- 32 P] ATP and 2 mM MgCl 2 , resulting in E 1  ~ P conformation [ 51 ]. The 
formation of phosphorylated intermediate was abolished by preincubating the 

  Fig. 28.2    Loss of P 5A  Spf1 
ATPase resulted in strong 
reduction of ATP- 
dependent protonophore- 
insensitive  45 Ca 2+  transport 
in  S. cerevisiae  
membranes.  45 Ca 2+  uptake 
in total membrane vesicles 
isolated from wild-type 
( circle ) and  spf1  ( square ) 
cells grown in YPD was 
measured in the presence 
of 1 mM ATP and 2 μM 
FCCP       
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enzyme with 1 mM EDTA. Although the addition of 10 μM CaCl 2  had no signifi -
cant effect on the amount of phosphoenzyme formed by the GFP-Spf1 protein, 
reduced levels of phosphoenzyme were observed in the presence of 5 mM CaCl 2 , 
indicating that Ca 2+  might positively regulate its decay. It should be mentioned, 
however, that these high Ca 2+  concentrations are in a range above physiological 
cytoplasmic Ca 2+  concentrations (50 to 200 nM) [ 52 ] and free Ca 2+  (<1 μM) used for 
analysis of Ca 2+ -ATPases [ 53 ]. The authors suggested that the phosphorylation 
medium already contained a transported ion/substrate and/or that GFP-SPf1 protein 
is phosphorylated spontaneously and does not require the binding of ion/substrate 
for this reaction. High abundance of E 1  ~ P state for GFP-Spf1 and its low turnover 
is quite different from what is commonly observed for many other P-type ATPases 
with prevalence of E2 state [ 42 ,  51 ,  54 ]. 

 The formation of phosphorylated intermediate by barley P 5A -ATPase has been 
also investigated [ 47 ]. The prevalence of stable E 1  ~ P conformation was observed 
for RGS-His 6 -tagged HvP5A1, expressed in yeast cells. Likewise   S. cerevisiae    
GFP-Spf1 protein, barley HvP5A1-RGS-His 6  underwent slow spontaneous phos-
phorylation in the presence of 7 μM [γ- 32 P] ATP and 1 mM MgCl 2 . The phosphoen-
zyme was formed even in the presence of 1 mM EGTA, indicating that the formation 
of E1 ~ P occurred independently of substrate binding. The decay of barley phos-
phoenzyme (dephosphorylation) was dependent on Ca 2+ , with  K  0.5  of approximately 
200 μM. Mutations in specifi c amino acid residues located in M4 transmembrane 
domain, which are known to bind the transported substrates (calcium in Ca 2+ -
ATPases), had no effect on the Ca 2+ -dependent phosphoenzyme degradation. These 
results led the authors to conclude that barley HvP5A1 ATPase does not transport 
Ca 2+  but is modulated by Ca 2+  that could infl uence phosphoenzyme stability or 
might mediate cation binding directly at the site of phosphorylation [ 47 ]. 

 Unfortunately, the hydrolytic activity of barley HvP5A1 ATPase was not 
detected, probably because of enzyme slow turnover rate or its inability to undergo 
the full catalytic cycle [ 47 ]. 

 The above-described fi ndings obtained using yeast and plant P 5A -ATPases also 
led to the suggestion that P 5A -type ATPase might require another factor for its activ-
ity that is only present in native membranes and lost during enzyme preparation [ 47 , 
 51 ] or might differ in catalytic cycle from other classical P-type ATPases.   

6      P 5A -Type ATPase and  Oxidative Stress   

 Loss of P 5A -type ATPases results in endoplasmic reticulum stress and UPR induc-
tion [ 11 ,  13 ,  18 ,  36 ,  40 ]. It is well established that the inability of cell to cope with 
endoplasmic reticulum stress results in chronic activation of UPR signaling, which 
could in turn lead to the induction of cell death responses [ 28 ,  29 ]. 

 Recent studies suggest that endoplasmic reticulum homeostasis is closely related to 
the cellular redox potential. However, the mechanisms and signaling pathways that 
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link endoplasmic reticulum stress and oxidative stress remain to be fully characterized. 
The increase in cytosolic Ca 2+ , as a result of activated Ca 2+  infl ux in response to the 
depletion of endoplasmic reticulum luminal Ca 2+ , can stimulate mitochondrial ROS 
production through multiple mechanisms. Interrelationships between Ca 2+  and 
ROS signaling, integrating Ca 2+  and ROS metabolism and the activation of their 
respective effectors, have been reported as occurring in SR/ER-mitochondrial junc-
tions [ 55 ]. The most common molecular targets of ROS are the cysteine thiol groups 
and disulfi de bonds of proteins, including Ca 2+ -ATPases that have the Ca 2+  pumping 
activity differently affected by ROS, according to their position, accessibility, and 
reactivity of their thiol groups [ 56 ]. Defects in the activity of endoplasmic reticulum 
Ca 2+ -ATPases have been implicated in several pathologies, and it has been found that 
a reduction in SERCA expression and Ca 2+  transport activity potently activated ER 
stress [ 57 ]. Indeed, distinct functional changes of Ca 2+ -ATPases could be evoked by 
mild and harsh oxidative conditions, in which graded ROS elevations can serve both 
as signaling events and a harmful stress condition acting through a single protein [ 58 ]. 

 Modulation of ER calcium homeostasis contributes to oxidative stress-induced 
neuronal apoptosis, involving the impairment of membrane ion-motive ATPases and 
glucose transporters, and thereby renders neurons vulnerable to excitotoxicity [ 59 ]. 

 In animals, P 5A -type ATPase encoded by ATP13A1 gene seems to play an impor-
tant role in the nervous system since its expression peaks at the height of neurogen-
esis and is strongest in several brain regions of adult mouse. It has been recently 
demonstrated that the human ATP13A1 is an orthologue of yeast P 5A -type Spf1 
ATPase [ 40 ]. Thus, the studies using yeasts as model organisms should provide a 
platform for future studies assessing a role of P 5A -type ATPases in health and dis-
ease of the nervous system. 

 In this direction, the occurrence of oxidative stress was investigated in fi ssion 
yeast cells lacking endoplasmic reticulum Cta4 ATPase. As shown in Fig.  28.3 , 
 cta4Δ  deleted mutant cells exhibited strong induction of ROS production comparing 
with wild-type cells indicating the importance of P 5A -ATPase in integrating ER and 
oxidative stress signaling pathways. 

7        Conclusions 

 The long-standing open question concerning the ion specifi city of the members of 
P 5A -ATPase subfamily will probably require a precise description of geometry of 
the side chains in the ion-binding sites by advanced structural studies like that cul-
minated in the fi rst high-resolution X-ray structures of the P-type family prototype, 
the SERCA Ca 2+ -ATPase. However, it is not certain when this level of detail would 
be achieved with such large, inherently fl exible membrane proteins [ 44 ]. 

 Nevertheless, from an evolutionary point of view, a rationale is emerging taking 
altogether the biochemical data we have discussed in this chapter, establishing a 
functional correlation between the P 5 -type ATPases and two other families that are 
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also exclusively found in eukaryotes, the P 2 -ATPases (Ca 2+ -ATPases) and the 
P4-ATPases (aminophospholipid fl ippases). Clearly, P 5 -type ATPases have proved 
to share many of the physiological roles related to P 2B - and P 4 -ATPases, and it is 
tempting to speculate that the P 5  subfamily could encompass reminiscents of a com-
mon ancestral of these subfamilies. In this hypothetical scenario, a P 5 -like ancestral 
molecule had evolved in protoeukaryotic cells as a key element providing a higher 
level of Ca 2+  signaling and homeostasis and lipid translocation that made possible 
the endomembrane emergence and ion signal transductions compatible to a com-
partmentalized cell. Future studies integrating functional characterizations and data 
on molecular evolution of the P 5 -, P 2 -, and P 4 -ATPases should be directed to clarify 
whether the last two subfamilies could be a result of molecular specializations of a 
P 5  ancestor evolved at the earlier stages of the eukaryotic speciation. Such landscape 
would become still more exciting if the modern P 5  subfamily could represent 
enzymes in transitional stages of evolution, a feature that may account for the 
broader array of substrates (e.g., Ca 2+ , Mn 2+ , Fe 2+ ).     
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  Fig. 28.3    Increased production of reactive oxygen species (ROS) in the fi ssion yeast  S. pombe  
cells lacking P 5A  Cta4 ATPase. Yeast cells were incubated with fl uorescent indicator of ROS, 
H 2 DCFDA (2.5 μg.ml −1 ), for 2 h and visualized by epifl uorescence microscopy       
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    Chapter 29   
 Role and Signifi cance of Various ATPases 
of Nematode Parasites                     

       Meghna     S.     Dhaka    ,     Shriya     Srivastava    , and     Shailja-Misra     Bhattacharya    

    Abstract     ATPases in nematodes are involved in a variety of functions which 
mainly include movement of metabolites, membrane potential maintenance and 
energy generation for metabolic processes. The enzymes are located mostly in mito-
chondria, cytosol and microsomes in a nematode organism. Nematode ATPases are 
active at varied pH range and under different biochemical conditions as required by 
the parasite and its host. Sequence studies show that nematode ATPases show much 
similarity in their DNA sequences and share conserved domains. Na + -K +  ATPases 
have also been explored for their potential in generating immune response against 
parasitic nematodes in the host. A few ATPase-dependent helicase enzymes also 
show high protective effi cacy against parasitic infections. Overall, ATPases carry a 
great deal of information about nematodes, their behaviour and infections. More 
studies are needed to evaluate their potential and come up with their use in preven-
tion of parasitic infections in the host.  

  Keywords     ATPase   •   Anti-helminthic   •   Nematodes   •   Helicases   •   Na + -K + -ATPase 
 •   AAA-type ATPase   •   Vaccine   •   Parasitic infection   •   Gene silencing  

1         Introduction 

 Nematodes include a large group of organisms, which survive either as free living or 
parasitic species on animals, humans and plants. ATPases in nematodes constitute 
one of the most common clusters of enzymes responsible for a majority of  cellular 
process   like signal transduction, trans-membrane movement of ions, cell metabolism 
and cell membrane potential. ATPases are responsible for outfl ux of many 
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metabolites, toxins and wastes that interfere with normal cellular process of parasitic 
cell [ 1 – 4 ]. Besides this, ATPases also provide energy from  ATP hydrolysis  , used by 
many special ion pumps present on cell membrane to carry out the ionic movement 
across membrane against the electrochemical gradient [ 2 ,  5 – 9 ]. According to their 
function, there are different kinds of ATPases explored in nematodes which broadly 
include Na + -K +  ATPases, H + -K +  ATPase, Mg 2+ -Ca 2+  dependent ATPases, Mn 2+  
ATPases, vacuolar-type ATPases (V-ATPases) and recently discovered AAA (ATPase 
associated with various activities) superfamily ATPases [ 2 ,  10 ].  

2     Structure, Types and Localization of ATPase in Nematodes 

 The prokaryotic and yeast cells contain ATPase bound to cell  membrane   or organ-
elles like mitochondria and plasma membranes [ 5 ,  11 ].  Higher plants  , on the other 
hand, show ATPase activity mostly in mitochondria, thylakoid membrane and 
chloroplast region [ 12 ]. Nematodes in contrast contain ATPases concentrated in 
mitochondria, cytosol and microsomes. The pyrolic appendages inhabiting para-
sites,  Bothriocephalus scorpii  and  Myoxocephalus brandti , show majority of 
ATPase activity in mitochondria, cytoplasm and microsomes. Nematodes have 
major ATPase functioning centres in mitochondria and microsomes.  Strongyloides 
stercoralis  larvae contain a major cluster of Na + -K +  ATPases in cuticles, esophagus- 
surrounding glands and muscular regions as evident by binding of anti-Na + -K +  
ATPase human IgG antibody.  Na + -K +  ATPase   in  Setaria cervi  is involved in ionic 
gradient management and muscle contractions in tegument and caracass region 
[ 13 ]. If specifi cally considered, Na + -K +  ATPases are hetero-dimeric integral mem-
brane proteins, consisting of alpha and beta subunits, that couple ATP hydrolysis to 
Na +  and K +  ion transport and maintenance of the electrochemical gradients across 
the plasma membrane [ 14 ]. 

   An interesting class of ATPase enzymes is vacuolar ATPase complex (V-ATPase) 
which pumps protons across membranes using ATP hydrolysis energy. The proton 
transfer process catalyzed by  V-ATPases      leads to acidifi cation required in various 
intracellular processes such as activation of zymogen, release of ligands from recep-
tors, degradation of macromolecules, accumulation of neurotransmitters in secre-
tary vesicles and sorting of nascent polypeptides [ 10 ]. It is involved in many 
physiological processes and any defect in V-ATPase may cause disease in an organ-
ism. V-ATPase is mostly located in plasma membrane, renal intercalated cells and 
epithelial cells of seminal ducts. They contain two segments; one is responsible for 
ATP hydrolysis and the other one for proton translocation across membrane. These 
V-ATPases consist of fi ve different subunits (a, d, c, c′ and c″) which work together 
to facilitate proton movement [ 10 ].  Caenorhabditis elegans  contains an intestine- 
specifi c a-subunit of the H + -K +  ATPase complex (V-ATPase) VHA-6 that resides in 
the apical membrane of the intestinal epithelial cells and is required for luminal 
acidifi cation. Disruption of the vha-6 gene leads to early developmental arrest in the 
free-living nematode [ 3 ]. 
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 The involvement of V-ATPase in nematodes is not well deciphered. However, a 
few reports suggest its crucial role in nematode nutrition, osmoregulation, cuticle 
synthesis, neuronal and reproduction process. Based on multiple roles played by of 
V-ATPase enzymes, they are emerging as potential drug target against nematode 
parasites. However, the challenge is to develop a high-throughput assay with which 
to test potential inhibitors against these ATPases.   

 Another recently discovered class of ATPase is  AAA   (ATPase associated with 
various activities) which possesses either one or two conserved AAA domains in its 
C terminus and uses the energy derived from ATP hydrolysis mediated by the AAA 
domain. They perform various biological functions in parasitic nematodes includ-
ing major processes as protein unfolding, nucleosome remodeling and microtubule 
disassembly. AAA ATPase enzyme activates by assembly of subunits into ring- 
shaped hexamers through AAA domain interaction. This marvellous category of 
ATPase is mostly located within the membrane and mitochondrial region of a cell 
subunit. In  C. elegans , the AAA domain of gene CeFIGL-1 displays unusually high 
ATPase activity due to its charge interaction mediated by two acidic residues in 
helix α9a [ 4 ]. The proteins of this family form a hexameric ring forming ATP- 
binding pocket, which consists of three functionally important motifs: Walker A, 
Walker B and  second region of homology (SRH).   Highly conserved arginine resi-
dues in the SRH function as arginine fi ngers, which interact with the γ-phosphate of 
bound ATP. Mutational studies have shown that ATP binding to these proteins 
induces conformational changes in Walker motifs, resulting in proper orientation of 
arginine residues required for hydrolysis of ATP [ 15 ]. 

 A fl ippase family  P-type ATPase   TAT-2 in  C. elegans  is being implicated to play 
a crucial role in regulation of specifi c fatty acids and creation of phospholipid bilayer 
asymmetry [ 16 ]. A CATP-5 is the fi rst P (5)-type ATPase associated with the plasma 
membrane of  C. elegans . It is expressed in the apical membrane region of intestinal 
and the excretory cells. CATP-5 is involved in polyamine synthesis and the reduced 
levels of polyamine lead to retarded postembryonic development, reduced brood 
size, shortened lifespan and small body size in the free-living nematode [ 17 ]. 

 The differing  localization of   ATPase in nematodes suggests that ATPases have a 
wide distribution network within different cells. Their existence traces back to early 
evolution stages of life, which makes the enzyme more important for revealing 
information about evolution of parasitic nematodes.  

3       Biochemical Activity of   Nematode ATPase 

 ATPases work in a wide range of conditions in different parasitic cells. In  B. scorpii  
and  Hymenolepis diminuta , ATPases are active at an optimal pH range of 8–9 in the 
mitochondrial fractions [ 6 ].  E. pancreaticum  has pH optima at 8.4 while  Ascaris 
suum  ATPases work best between 8 and 8.2 pH ranges [ 2 ,  18 ]. On the other hand, 
 Schistosoma mansoni ,  F. hepatica ,  C. ijimai ,  Bunostomum trigonocephalum  and 
 Schistocephalus solidus  work best between 7.2 and 7.4 [ 19 ]. 
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 Besides pH, ATPase enzymes also demonstrate quick response to the presence or 
absence of metal ions in their activity. In  B. scorpii  the absence of metal ions in the 
incubation medium halts ATP hydrolysis in cytosol and occurs at minimal rate in 
mitochondria and microsomes. Further addition of K +  and Na +  ions enhances 
ATPase activity in mitochondria and microsomes, while HCO 3  −  anions increase the 
ATP hydrolysis only in microsomal fraction. The combination of bicarbonate ions 
with Mg 2+  and Mn 2+  increases ATPase activity in both the organelles while inhibits 
in combination with Ca 2+ . In both microsomal and mitochondrial fractions of  B. 
scorpii  the ATPase activity is higher with Ca 2+  and Mn 2+  than with Mg 2+ . Parasitic 
nematodes  F. hepatica ,  Trichinella spiralis ,  A. suum ,  S. mansoni ,  C. ijimai ,  E. pan-
creaticum  and  H. diminuta  also contain Mg 2+ - and Ca 2+ -dependent ATPases in most 
of the tissues [ 7 ,  8 ,  20 ,  21 ]. The presence of Ca 2+  ions stimulates the muscle ATPase 
of digestive and sexual tracts of  A. suum  whereas Mg 2+  inhibits the same [ 22 ]. 
Sodium azide, dinitrophenol, thiocyanate and sodium fl uoride strongly inhibit the 
microsomal ATPase activity in  B. scorpii . Mg 2+ -independent Ca 2+ -ATPase is also 
well characterized in a bovine fi larial parasite,  Setaria cervi . These Ca 2+ -ATPase 
carry out transport of ATP-assisted Ca 2+  ion through plasma membrane and regulate 
Ca 2+  homeostasis in the cells [ 24 ]. Ca 2+  ATPases are equally distributed through the 
cuticle- muscular hypodermis layer, genital organs and gastrointestinal tissue of  S. 
cervi . Ca 2+ -ATPases are most active in the presence of CaCl 2  while lower concentra-
tion of EGTA completely inhibits their activity. Once in soluble form, the processiv-
ity of Ca 2+ -ATPases increases by fourfold. On the other hand, activation by 
calmodulin leads to twofold increased activity of Ca 2+ -ATPases in  S. cervi . 
Phenothiazines and anti-helminthics specifi cally inhibit the Ca 2+ -ATPase activity 
when tested in  S. cervi . Trifl uoperazine is observed to be the most potent inhibitor 
of enzyme activity followed by promethazine and chlorpromazine. Signifi cant inhi-
bition of fi larial Ca 2+ -ATPase by some anti-helminthics as DEC, centperazine, 
levamisole and suramine is also reported. Of these, diethylcarbamazine with IC 50  
value of 22 μM and centperazine with IC 50  value—55 μM are found to be more 
potent inhibitors of the enzyme as compared to levamisol and suramine. The enzyme 
shows a Km value of 3.33 mM as obtained by Lineweaver–Burk plot [ 1 ]. The varied 
range of optimal pH for ATPases in different parasitic nematodes suggests the great 
adaptation behaviour of ATPases as per the parasite requirement in different organ-
elles, hosts and conditions.   

4       Genomic Properties of   Nematode ATPases 

 This genomic information is of much signifi cance to understand the biology of 
nematodes. This helps to understand nematode-specifi c control targets such as 
mitochondria, which plays crucial role in parasite survival and infections [ 23 ]. 
The mitochondrial genomes of  C. elegans  (13.8 kbp) and  A. suum  (14.3 kbp) con-
tain genes Fo ATPase complex (ATPase 6 and ATPase 8). Unique features of 
mitochondrial genomes of some nematodes from class Chromodorea,  C. elegans  
and  A. Suum ,  O. volvulus ,  S. stercoralis  and  Steinernema carpocapsae  are reported 
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[ 24 – 26 ]. They lack the gene for ATPase subunit 8, commonly found in other 
metazoan mitochondrial DNAs. 

 The mitochondrial genome of human hookworms  Ancylostoma duodenale  
(13,721 bp) and  Necator americanus  (13,604 bp) compared with  C. elegans ,  A. 
suum  and  O. volvulus  contains ATPase complex subunit six sequences; however, the 
ATP synthetase subunit eight gene sequences are lacking. The ATPase sequence 
homology of the two hookworms was tested using translation initiation and termi-
nation codons of the protein genes and it revealed that ATPase protein of  N. ameri-
canus  is one amino acid shorter than that of both  A. duodenale  and  C. elegans . The 
ATPase enzyme amino acid sequence of hookworms is more similar to  C. elegans  
as compared to  A. suum  and  O. volvulus . 

 Muhammad Amjad Ali et al. in 2013 [ 27 ] carried out studies on the role of 
ATPase gene involved in syncytium development and abiotic stress responses. 
 Syncytium   is a condition induced in the roots of  Arabidopsis thaliana  by the beet 
cyst nematode,  Heterodera schachtii . At1g64110 gene is found to be strongly up- 
regulated in syncytia. This gene encodes AAA+-type ATPase, which forms a large 
superfamily of proteins containing a P-loop NTPase domain. They perform various 
functions such as molecular chaperons involved in unfolding of macromolecules 
[ 28 ], as subunit of proteases, etc. At1g64110/DAA1 gene has been proved to be 
important for the development of syncytia and abiotic stress responses. The com-
plete mitochondrial genome of plant parasitic nematode,  Radopholus similis  
(16.8 kbp), shows some unique features such as small transfer RNAs, truncated 
RNAs and unidirectional transcription in Chromadorean nematodes.  R. similis  has 
been reported to have the most AT-rich mitochondrial genome until date (85.4 % 
AT) with 12 protein-coding genes and absence of any ATPase subunit. 

 Molecular characterization and phylogenetic analysis of animal infecting para-
sites,  Toxocara canis  and  Toxocara vitulorum  (infecting dogs and buffaloes), reveal 
that nucleotide and amino acid sequences of ATPase 6 gene of species is similar to 
 Toxocara cati  and  Toxocara malaysiensis  species. Analyses of the ITS-2 and 28S 
regions revealed that the 28S region was more conserved (95 % nucleotide similar-
ity between  T. canis  and  T. vitulorum ) than the ITS-2 region (85 %). The conserved 
nature of ATPase 6 genes in  Toxocara  species could be used for discrimination of 
species and molecular phylogenetics [ 29 ]. Further genomic studies should be done 
in nematodes so as to identify more ATPases and to reveal their phylogenetic simi-
larity with other worms. This would also allow cloning cDNA sequences encoding 
various ATPases and explore their regulated mechanism of expression. All this 
information is helpful towards fi nding a new control strategy against parasitic nem-
atodes [ 30 ].   

5      Potential of ATPases as  Vaccine Candidates   

 Keeping in mind the crucial role played by ATPases in various metabolic processes, 
their immune system eliciting property against infecting parasite has also been stud-
ied in detail. Once the parasite infects the host, it attacks its defence system and 
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inhabits the host immune organs for many years making parasitic infection life 
threatening [ 31 ]. Much research has been focused on different proteins/antigens as 
drug or vaccine targets but none of them is able to demonstrate complete clearance. 
Hence, ATPases raise a hope for its use as vaccine candidate against nematode para-
sitic infections. 

 In intestinal nematode parasite  S. stercoralis  three genes were identifi ed which 
provide protective effi cacy against the parasite in mice; one of these genes codes for 
Na + -K +  ATPase ( Sseat-6 ) enzyme [ 32 – 35 ]. Na + -K +  ATPases are heterodimeric inte-
gral membrane proteins, consisting of alpha and beta subunits, that couple ATP 
hydrolysis to Na +  and K +  ion transport and maintenance of the electrochemical gra-
dients across the plasma membrane [ 11 ]. DNA immunization with Na + -K +  ATPase 
( Sseat-6 ) resulted in induced protective immunity to larval  S. stercoralis  in mice. 
On the other hand, serum from mice immunized with DNA encoding Na + -K +  
ATPase transferred to naive mice resulted in partial protective immunity. 
Immunization with Na + -K +  ATPase leads to generation of antibody response against 
 S. stercoralis , which in turn causes partial killing of larvae. The mechanism behind 
larval killing by Na + -K +  ATPase antibodies is still not very clear. Localization stud-
ies using human IgG reveal that Na + -K +  ATPases are located in cuticle, esophagus 
surrounding glands and muscles of  S. stercoralis  L3. When mice are vaccinated 
with Na + -K +  ATPase plasmids, the parasite regions harbouring these enzymes gen-
erate antibodies against larval parasites in the host. Further studies suggest that 
anti-Na + -K +  ATPase antibodies alter the ion concentration gradient in the pharyn-
geal and cuticle region, thus leading to death of worm [ 9 ,  35 ]. Also in  C. elegans  
mutation of  eat-6  gene encoding alpha subunit of Na + -K +  ATPase results in slow 
contraction, relaxation and abnormal feeding behaviour of pharyngeal muscle [ 9 , 
 36 ]. Also, the Na + -K +  ATPase location may be the target site for the neutrophils to 
mediate larval killing by human IgG and mouse IgG [ 37 ]. 

 Other parasitic nematodes such as  Ascaris suum  and  Haemonchus contortus  are 
also targeted via mechanism of muscle paralysis using anti-Na + -K +  ATPase antibod-
ies. One of the anti-parasitic drugs ivermectin is reported to halt the Na + -K +  ATPase 
activity by inducing paralysis of the pharyngeal muscles in  A. suum  and  H. contor-
tus  [ 37 ]. Thus, Na + -K +  ATPase is the fi rst defi ned antigen against  S. stercoralis  in 
mice and a promising vaccine candidate [ 35 ]. 

 Other than these, ATPase activity is also associated with helicase enzyme and 
provides them energy by ATP hydrolysis so as to carry various metabolic processes 
in a cell. Helicases are crucial enzymes for all DNA/RNA-related processes includ-
ing metabolism, synthesis, replication and gene silencing. In nematodes ATPase- 
dependent helicases are highly characterized for their involvement in different 
processes such as germ line development in  C. elegans ,  RNA silencing   as Dicer 
protein and embryogenesis in  Brugia malayi  [ 38 – 41 ]. The ATPase-dependent 
DExD/H box RNA helicase family enzymes are multifunctional proteins involved 
in unwinding of inter- and intra-molecular base-paired regions. Successful knock-
down of DEAD box RNA helicase gene (BmL3-Helicase) of human lymphatic 
fi larial parasite  Brugia malayi  using specifi cally designed and chemically synthe-
sized siRNAs of <20 bp resulted in decreased parasite motility, viability (97 %) and 
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release of microfi lariae (81.0 % reduction) from adult females in vitro. The specifi c 
gene knockdown also resulted into death of adult male worms in addition to pheno-
typic deformities in female worm intrauterine stages as shown in Fig.  29.1 . 
Recombinant BmL3-Helicase also generates immune response in  Mastomys coucha  
resulting in a 67.4 % reduction in adult parasite recovery, 86.7 % decrease in the 
microfi larial density and profound sterility of the recovered female worms [ 39 – 41 ]. 
The study presents positive response of fi larial ATPase-associated helicase enzyme 
in generating immune response against the parasite infection in animal host. This 
again emphasizes the importance of ATPases in parasitic infection control 
strategies. 

  Fig. 29.1    Effect on embryos and pretzel stages of adult female parasite after siRNA-induced 
silencing of  Brugia malayi  ATPase-dependent RNA helicase. The embryos of helicase-specifi c 
siRNA-exposed group ( c  and  d ) appeared degenerated and granular when compared with embryos 
of parasites exposed to culture medium ( a ) and scrambled siRNA ( b ). The embryos have distorted 
shape and eggshell visible due to contraction of embryo, which later diminished ( c  and  d )       
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6        Conclusion 

 ATPases in nematode parasites are emerging as a new target because of their 
abundance, involvement in multiple processes and unique structures. Many 
research fi ndings discussed in this chapter show that ATPases are highly func-
tional under various physiological conditions and play a crucial role in supporting 
parasitic nematodes after infecting a host cell. However, more focussed studies of 
different ATPases are required to reveal their mechanism and functions in nema-
tode parasites. Their use as vaccine candidates or development as a drug target 
against infection in human, plant and animal hosts is also not explored much when 
compared with other organisms. It is therefore suggested to escalate research on 
these marvellous enzymes to reveal more information about parasitism.     
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 SERCA2a-c  ,   251   ,   252  
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  Cadherin-23  ,   40   ,   41   
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 intratumoral metabolic 
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 cAMP  ,   57  
 CaN activity  ,   56  
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