
From UML Statecharts to LOTOS Expressions Using
Graph Transformation

Salim Djaaboub1,3(✉), Elhillali Kerkouche2,3, and Allaoua Chaoui3

1 Department of Mathematics and Computer Sciences, Centre Universitaire de Mila, Mila,
Algeria

2 Département of Computer Sciences, Université de Jijel, Jijel, Algeria
3 MISC Laboratory, Université de Constantine 2, Constantine, Algeria

{dja_salim,elhillalik}@yahoo.fr, a_chaoui2001@yahoo.com

Abstract. The use of UML Statecharts for modeling dynamic behaviors of systems
is very widespread. UML Statechart diagrams support developers by means of
graphical notation, but the lack of formal semantics for this diagram makes the
detection of errors and behavioral inconsistencies difficult. On the other hand, the
specification language LOTOS has been proved to be an essential technique for
specifying and verifying distributed and communicating systems. However, the
strong and obscure textual algebraic notation of LOTOS makes its utilization in
software development an onerous and complex task. In the order to combine UML
Statecharts with LOTOS for the formal specification and verification of system
behaviors, we propose in this paper an approach and a tool environment to automat‐
ically generate behavioral LOTOS expressions from UML Statechart diagrams. The
approach uses the meta-modeling tool AToM3.

Keywords: UML · Statechart diagram · LOTOS · Formal methods · Graph
transformation · Atom3

1 Introduction

It is now recognized that UML (Unified Modeling Language) [14] is considered nowa‐
days as a standard software modelling language. UML consists of many diagrams. Some
diagrams are used to model the structure of a system while others, such Statechart
diagram, are used to model the behavior of a system. The use of UML Statecharts for
modeling the dynamic behaviors of systems is very widespread. Such diagrams provide
an effective graphical notation for the specification and design of system behaviors.
However, the lacks of a precise formal semantics of Statechart diagrams hinders the
formal analysis and verification of system design.

In the other hand, the specification language LOTOS (Language Of Temporal
Ordering Specification) [3] has been proved to be an essential technique for specifying
distributed and communicating systems. It is based on a rigorous mathematical model
and provides many verification tools that allow the early detection of errors in a speci‐
fication before its implementation. However, the obscure and textual algebraic notation

© Springer International Publishing Switzerland 2015
G. Dregvaite and R. Damasevicius (Eds.): ICIST 2015, CCIS 538, pp. 548–559, 2015.
DOI: 10.1007/978-3-319-24770-0_47



of LOTOS makes its utilization in software development an onerous task, which limits
its widespread adoption in industry and confines most of the research activity to
academia [2, 15].

So, combining UML Statecharts with LOTOS is a promising approach for modelling
and verification of dynamic system behaviors. We can benefit from the conceptual visu‐
ality by UML Statechart to model systems behavior and from the formal notation of
LOTOS for early detection of errors in specifications before their implementation.

In this paper, we propose an approach to automatically generate LOTOS processes
from UML Statechart diagrams. This approach is based on the combined use of Meta-
Modelling and Graph Transformation grammars which are supported by the Metamod‐
eling tool AToM3. Our approach will allow developers to model system behaviors using
a set of UML Statechart diagrams and automatically convert them into their equivalent
LOTOS processes. Then, these processes can be composed to form the global specifi‐
cation of the system using a set of predefined LOTOS operators.

The rest of this paper is organized as follows. Section 2 outlines the major related
work. Section 3 gives a brief description of the UML Statechart, LOTOS, graph gram‐
mars and AToM3. Section 4 discusses the transformation rules used in our approach.
Section 5 is the main section which presents the proposed approach. An ATM machine
example and its transformation into LOTOS are presented in Sect. 6. Section 7 concludes
the paper and gives some perspectives.

2 Related Work

Several works have focused on the UML models transformation towards formal methods
such as Petri nets [16–18], Collared Petri nets [10], Maude [7], Object-Z [1], B method
[11] and LOTOS. In this paper we have chosen the specification language LOTOS as
one of the predominant and standard formal methods. It can be used in different appli‐
cation domains and provides a great modularity to structure and to analyze complex
specifications. LOTOS specifications are precise, unambiguous and can be rigorously
analyzed, verified and validated using several tools and methods based on theorem-
proving, equivalence test or model-checking. The verification tools existing around
LOTOS, such as CADP [20], provide much functionality such as model-checking,
equivalence test (bisimulation, trace equivalence, observational equivalence … etc.),
counter example visualization and code generation.

No much research has been done about the transformation of UML Statechart
LOTOS. In [5], the authors present a model transformation of UML Statechart to
LOTOS applied in the automotive industries. LOTOS is used in [13] to give a semantic
model for compositional UML Statecharts. In [8], a transformation approach from a
subset of UML Statechart to LOTOS behavior expressions is presented. In [15], the
authors present how one can use LOTOS operators to gradually transform a particle
form of UML State Machines into verifiable LOTOS specifications, in spite of not
proposing precise transformation rules. However, the complexity of these approaches
is high due to their manual, rigid and complex transformation rules. In the other hand,
these approaches require the familiarity with LOTOS and the transformation process.

From UML Statecharts to LOTOS Expressions 549



From the practical point of view, we believe that developers cannot use these approaches
to convert Statechart diagrams to LOTOS.

In this paper, we propose a graph transformation based approach to automatically
generate LOTOS expressions from UML Statechart diagram. The approach which is
based on graph transformation is implemented as a tool environment using the meta-
modeling tool AToM3. This approach will allow developers to model the system behav‐
iors using UML Statechart diagrams and then automatically convert them into LOTOS
for the verification purposes.

3 Background

3.1 UML Statechart

The Unified Modelling Language (UML) is a language for specifying, constructing,
visualizing, and documenting the artifacts of a software development process [4]. It
consists of a large number of diagrams. Some diagrams are used to model the structure
of a system while others, such as Statechart diagram, are used to model the behavior of
system.

A Statechart diagram [14] is a graph that models the lifetime of an object in response
to events. Statechart diagrams describe state machines by emphasizing the potential
states and transitions between them. A state can be considered as a situation during which
some invariant condition holds. States can be either simple, composite or concurrent
that can have several orthogonal regions. A transition is a relationship between two states
indicating that an object in the transition source state may leave it and after that enters
to the state target by the transition. Graphically, states and transition are represented as
state boxes and transition arrows.

3.2 Lotos

LOTOS (Language Of Temporal Ordering Specification) is a standard formal descrip‐
tion technique developed within ISO for specifying, among others, distributed concur‐
rent information processing systems [2, 3]. This language adopts most of its concepts
from Hoare’s CSP [9] and Milner’s CCS [12]. LOTOS is based on process algebraic
methods for the description of process behaviors and interactions. For the description
of data structures, it is based on the abstract data type language ACT ONE [6]. In this
paper, we focus on the control aspect of the system, which is also called Basic LOTOS,
and we leave the abstract data type description for future research.

In Basic LOTOS, a distributed concurrent system is seen as a process, possibly
consisting of several subprocesses. A sub-process is a process in itself, so that in general
a LOTOS specification describes a system via a hierarchy of process definitions [3].
A process is an entity able to perform internal, unobservable actions, and to interact with
other processes, which form its environment. The typical structure of a basic LOTOS
process definition is as presented in Fig. 1.

The essential component of a process definition is its behavior expression, which
describes its behavior and its interaction with the environment through a number of small

550 S. Djaaboub et al.



atomic actions denoted as gates. Behavior expressions are built from actions and other
behavior expressions by using a predefined set of operators.

3.3 Graph Grammar and AToM3

AToM3 [21] is a visual tool for multi-formalism modeling and meta-modeling. By means
of meta-modeling, we can describe or model the different kinds of formalisms needed
in the specification and design of systems. The AToM3 meta-layer allows a high-level
description of models using UML Class Diagram formalism or Entity Relation-ship
(ER) formalism extended with the ability to express constraints. Based on these descrip‐
tions, AToM3 can automatically generate tools to manipulate models in the formalisms
of interest [22].

AToM3 also supports graph rewriting, which is based on Graph Grammars to visually
guide the procedure of model transformation. Model transformation refers to the process
of translating, converting or modifying a model of a given formalism into another model
that might or might not be in the same formalism. Graph Grammars [22] are a general‐
ization of Chomsky grammars for graphs. It is a formalism in which the transformation
of graph structures can be modeled and studied. The main idea of graph transformation
is the rule-based modification of graphs as shown in Fig. 2.

Fig. 2. Rule-based modification of graphs

4 Overview of the Transformation Rules

In LOTOS, behaviors of systems are usually specified as a set of processes, each of them
specifies the behavior of an entity of the system. The global specification of the system
is formed by composition of these processes using a set of predefined operators [2, 3].
For this reason, we assume in this work that the behavior of the system is specified as a
set of Statechart diagrams, each of them models the behavior of an entity or an object
of the system. These diagrams are translated into a set of processes in LOTOS. Then,
these processes are composed to form the global specification using the fallowing

Fig. 1. Structure of basic LOTOS process

From UML Statecharts to LOTOS Expressions 551



process composition operators: parallel operators (Interleaving, Partial synchronization,
full synchronization), enable and disable operators.

Converting Statechart diagrams directly into LOTOS is a very complex process. This
is due to the complexity of the transformation rules, which makes its automation a very
complex task. For this reason, we have chosen to flatten the hierarchical and concurrent
structure of composite states in the Statechart diagram before its conversion into LOTOS
process. Thus, Statechart diagrams are first converted to Flat State Machine (FSM)
models which contain just simple states and arcs. Then, these FSM are converted into
LOTOS processes.

Several algorithms and tools have been proposed to flatten Statechart diagrams [19].
In this work, we will use the graph transformation rules proposed in [10]. These rules
are presented in Sect. 5. In the following, we will present only the mapping rules to
convert an FSM diagram into a LOTOS process.

1. Events to actions. Events and actions in the FSM diagram are specified as actions in
the equivalent LOTOS process.

2. FSM states to LOTOS processes. For each state in the FSM diagram, a LOTOS
process is created as that presented in Fig. 3. The name of this process is the name
of the state and its gate list ([gatelist]) is the list of events and actions in the transitions
outgoing from the state.

Fig. 3. The LOTOS process created for a state

3. State Transitions to the behavior expression of the equivalent process. For each
transition, a sequential behaviors expression is created using the action prefix “;”
that expresses the sequential combination of actions before a behavior expression.
This operator is used to compose the transition event, the transition actions and the
instance of the process is created from the state target by the transition as follows.
In the case where there are several transitions from a single state, the choice “[]”
operator is used to compose the behavior expressions corresponding to these tran‐
sitions.

4. Final state to stop process. Final state is translated to “stop” process. “stop”is a
predefined basic behavior used to express the process that finishes its execution or
to represent deadlock situation.

5. The FSM diagram to a LOTOS process. The format of the LOTOS process generated
for an FSM is presented in Fig. 4. The name of this process (proc_name) is the name
of the class of objects modelled by the Statechart diagram. Its gate list ([gate list])
is the list of events and actions in the FSM diagrams. The behavior expression of
this process is the instantiation of the process generated from the state target by the
initial transition. Processes created from states are inserted as sub-processes of this
process.

552 S. Djaaboub et al.



Fig. 4. The structure of LOTOS specification created for an FSM.

5 The Proposed Approach

In this section, we describe our automated approach that transforms UML Statechart
diagrams into their equivalent LOTOS processes. The approach performs the transfor‐
mation as follows: first, flattening Statechart diagrams into Flat State Machines (FSM).
Then, converting FSM models results into LOTOS processes.

For automating our approach using the meta-modeling tool AToM3, we have
performed two following steps as follows (see Fig. 5): The first step consists of Meta-
Modeling of UML Statechart and FSM formalism. The second step is the definition of
graph transformation grammars used to perform the transformation. So, we have defined
two Graph Grammars: the first Graph Grammar (1st GG): converts the Statechart diagrams
to FSM models. The second Graph Grammar (2nd GG): generates LOTOS processes from
the obtained FSM models.

Fig. 5. The proposed approach

5.1 Meta-Modeling of UML Statechart and FSM Model

Since the visual tool AToM3 has a meta-modeling layer that allows us to graphically
model the different formalisms (Fig. 6), we have created two meta-models, Statechart
diagrams meta-model and FSM meta-model. Then, we have used AToM3 to generate a
visual modeling tool for each of them according to their proposed Meta-Models.

From UML Statecharts to LOTOS Expressions 553



Fig. 6. UML Statechart meta-model

In this paper, we deal with a subset of UML Statechart which consists of states
(simple and composite), transitions, events, actions that generate events, and initial and
final states. The created meta-model for UML Statechart diagram is composed of five
classes linked by seven associations as shown in Fig. 6.

A FSM is a State Machine without composite states. States in FSM are represented by
rounded boxes, while transitions between them are represented with arcs. The meta- model
of the FSM model consists of one class to represent FSM states and one association for
representing FSM transitions.

5.2 Graph Transformation Grammars

In this sub-section, we describe the two graph grammars used to reach an automatic and
correct transformation of UML Statecharts to LOTOS process.

1St GG: Converting Statechart Diagrams into FSM Models. To transform a State‐
chart into its equivalent FSM model, we have used the graph transformation grammar
proposed in [10]. This graph grammar is named Statechart2FSM and containing twenty
three rules which will be applied in ascending order. Only some representative rules are
of this graph grammar shown here (see Fig. 7).

The idea of the transformation in Statechart2FSM grammar can be summarized by the
following main steps: The first step is to select a Statechart and convert its initial state to
FSM state using rule 22. The second step is to traverse the Statechart from its initial state
(which is processed in the first step). Each exit transition of a processed Statechart state is
converted into the corresponding FSM transition and the destination Statechart state is also
converted if it has not previously processed (see rule 6). For each composite state in the
statechart, the graph grammar uses a flag attribute indicating that this composite state is
traversed but not processed (see rule 7). In third step, all composite states in the Statechart

554 S. Djaaboub et al.



(if any) will be converted. The process of the conversion is the same for Statechart diagrams
(see rule1). The last step is to relate the equivalent FSM segment of composite state to FSM
model of the Statechart (see rule 14).

2nd GG: Generating LOTOS Processes from FSM Models. In this grammar, we have
concerned by the automatic generation of the LOTOS code. We have named this second
graph grammar FSM2LOTOS which is composed of 14 rules. Applying this grammar,
after the first grammar, leads to the generation of a file “.LOT” containing the corre‐
sponding LOTOS processes.

Fig. 7. Some rules of the first graph grammar (1St GG)

From UML Statecharts to LOTOS Expressions 555



Figure 8 shows some rules of the second graph grammar. These rules are used to
convert a state with a single transition into a LOTOS process as that presented in Fig. 3.
These rules are executed in the following order: first, Rule 12 selects a state no yet
converted into a LOTOS process. Then, Rules 8 convert the transition outgoing from
the state into the behavior expression of the process equivalent. At last, the Rule 11
finishes the conversion and actualises the flag attributes.

6 Example

We consider an example of an ATM machine, dispensing cash to a user. The system is
composed of two objects ATMmachine and User. The Statechart diagrams model the
behaviors of these objects are shown in Fig. 9.

Fig. 8. Some rules of the second graph grammar (2nd GG)

556 S. Djaaboub et al.



Fig. 10. ATMmachine and user processes generated using our tool

Fig. 9. Statecharts ATMmachine and user with their equivalent FSM models.

From UML Statecharts to LOTOS Expressions 557



To transform these Statecharts into LOTOS processes, we have executed the State‐
chart2FSM graph grammar to flatten Statechart diagrams to FSM models as shown in
Fig. 9. Then, we have executed the FSM2LOTOS graph grammar which generates the
LOTOS processes shown in Fig. 10. These processes are named ATMmachine and User,
respectively for FSM ATMmachine and FSM User.

For space limitation reasons, only the process ATMmachine is described here. The
process name is the name of the Statechart ATMmachine. States in the FSM ATMma‐
chine are formalized as sub-processes of the equivalent process. The gate list of
ATMmachine process is the list of events and actions in the FSM ATMmachine. The
behavior expression is the instantiation of the machine_Idle process, which is the process
generated for the state targeted by the initial transition.

7 Conclusion

We have proposed an approach to transform UML Statechart diagrams to LOTOS
performed by AToM3. This approach is based on the combining of metamodeling and
graph grammars. This transformation aimed to combine visual UML Statechart
diagrams and the formal language LOTOS for modeling and verification of system
behaviors. It produces a formal and verifiable specification that facilitates the early
detection of errors like deadlock, livelock, etc.…. The transformation is based on the
graph grammars that are natural, visual and high level formalism to describe the trans‐
formations. Furthermore unlike to the existing approaches, the transformation in our
approach is automatically performed. The use of FSM model in our approach makes the
translation rules less complex which allows their automation as a tool environment using
AToM3. This tool allows the modelling of system behaviors using visual UML State‐
charts and then automatically generating their equivalent LOTOS processes.

In the future works, we plan to enhance our approach by using the complete version
of LOTOS to represent data and other Statechart elements such transition guards.
Secondly, we plan also to exploit the CADP [20] verification tool to provide some
verification of system properties.

References

1. Araujo, J., Moreira, A.: Specifying the behavior of UML collaborations using object-Z.
Departamento de Infomatica, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa, Portugal (2000)

2. Babich, F., Deotto, L.: Formal methods for specification and analysis of communication
protocols. IEEE Commun. Surv. 4, 2–20 (2002)

3. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comput.
Netw. ISDN Syst. 14, 25–59 (1987)

4. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide. Addition-
Wesley, Object Technology Series (1998)

558 S. Djaaboub et al.



5. Chimisliu, V., Schwarzl, C., Peischl, B.: From UML statecharts to LOTOS: a semantics
preserving model transformation. In: Ninth International Conference on Quality Software
(2009)

6. Ehrig, H., Fey, W., Hansen, H.: ACT ONE : An Algebraic Specification Language with two
levels of Semantics, Research Report Nr. 83-03, Department of Computer Science, TU Berlin
(1983)

7. Gagnon, P., Mokhati, F., Badri M.: Applying model checking to concurrent UML models. J.
Object Technol. 7(1), 59–84 (2008). http://www.jot.fm/issues/issue_2008_01/article1/

8. Hnatkowska, B., Huzar, Z.: Transformation of dynamic aspects of uml models into lotos
behaviour expressions. Int. J. Appl. Math. Comput. Sci. 11(2), 537–556 (2001)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International Series in
Computer Science. Prentice Hall, New Jersey (1985)

10. Kerkouche, E., Chaoui, A., Bourennane, E., Labbani, O.: A UML and colored petri nets
integrated modeling and analysis approach using graph transformation. J. Object Technol.
9(4), 25–43 (2010)

11. Ledang, H., Souquières, J.: Formalizing UML behavioral diagrams with B. In: Tenth
OOPSLA Workshop on Behavioral Semantics: Back to Basics, Tampa Bay, Florida, USA
(2001)

12. Milner, R.: Formal a calculus of communication systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

13. Mrowka, R., Szmuc, T.: UML statecharts compositional semantics in LOTOS. In: ISPDC
2008, pp. 459–463 (2008)

14. OMG, Object Modeling Group: Unified Modeling Language Specification, version 2.0 (July
2005)

15. Babaee, R., Babamir, S.M.: From UML state machines to verifiable lotos specifications. In:
Pichappan, P., Ahmadi, H., Ariwa, Ezendu (eds.) INCT 2011. CCIS, vol. 241, pp. 121–129.
Springer, Heidelberg (2011)

16. Saldhana, J.A., Shatz, M., Hu, Z.: Formalisation of object behavior and interaction from UML
models. Int. J. Softw. Eng. Knowl. Eng. 11(6), 643–673 (2001)

17. Xinhong, H., Lining, C., Weigang, M., Jinli G., Guo, X.: Automatic transformation from
UML statechart to petri nets for safety analysis and verification. In: ICQR2MSE 2011,
Conference Publications, pp. 948–951 (2011). ISBN 978-1-4577-1229-6

18. Wang, M., Lu, L.: A transformation method from UML statechart to petri nets. In: IEEE
International Conference on Computer Science and Automation Engineering (CSAE) 2012,
vol. 2, pp. 89–92, 25–27 May 2012

19. Devroey, X., Perrouin, G., Cordy, M., Legay, A., Schobbens, P.Y., Heymans, P.: State
machine flattening: mapping study and assessment. CoRR abs/1403.5398 (2014)

20. CADP: Construction and analysis of distributed processes. http://cadp.inria.fr/
21. AToM3 Home page. http://atom3.cs.mcgill.ca/
22. Lara, J.D., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars for multi-

paradigm modelling in AToM3. In: Software and Systems Modelling, vol. 3, pp. 194–209.
Springer, Heidelberg (2004) (Special Section on Graph Transformations and Visual Modeling
Techniques)

From UML Statecharts to LOTOS Expressions 559

http://www.jot.fm/issues/issue_2008_01/article1/
http://cadp.inria.fr/
http://atom3.cs.mcgill.ca/

	From UML Statecharts to LOTOS Expressions Using Graph Transformation
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 UML Statechart
	3.2 Lotos
	3.3 Graph Grammar and AToM3

	4 Overview of the Transformation Rules
	5 The Proposed Approach
	5.1 Meta-Modeling of UML Statechart and FSM Model
	5.2 Graph Transformation Grammars

	6 Example
	7 Conclusion
	References


