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Abstract. Generally, the resolution of a problem by using soft-computing
support requires several attempts for setting up a proper neural network. Such
attempts consist of designing and training a neural network and can be a relevant
effort for the developer. This paper proposes a toolbox that automates several
steps for setting up a neural network, and provides high-level abstractions
allowing a developer to choose classical network topologies and configure them
as desired, as well as design a neural network from a scratch. A valuable aspect
of our solution is given by the modularity of the whole design that builds on
object-orientation and design patterns.
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1 Introduction

The main characteristics of a neural network are the topology and the working
mechanism. The topology characterises the neurons and their interconnections (synaptic
links, feedbacks, delay lines, etc.), whereas the working mechanism consists of the
algorithms used for training and, after that, to obtain coherent outputs. Such a working
mechanism is chosen according to the topology of the trainee network. Different cate‐
gories of topologies and training procedures have been proposed and are useful for
categories of classification or prediction problems.

Generally, the best specific topology for solving a problem is unknown, therefore
often the first training of a neural network is unsuccessful. In such a case, some policies
of growth or pruning have to be applied, which involve the creation or elimination of
one or more neurons. Moreover, each time a neuron is created or removed the network
topology changes and a training phase is needed again (at least partially). Hence, while
topology and training are functionally connected to each other, the set up for each should
be made possible independently of the other. Hence, the developer should be able to
choose abstractions and compose a novel behaviour by setting these up (Booch and
Maksimchuk 2007).

As a solution to the above modularity requirement, this work presents an object-
oriented toolbox that provides the user with a level of abstraction appropriate to design
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neural networks for several classification and prediction problems. The proposed solu‐
tion takes into account the important features of neural networks and supports their
modular instantiation, hence providing reusable abstractions and modules where the
training support can be reused and adapted to different topologies.

2 Neural Networks

A neural network is basically composed by a set of simple interconnected functional
units called neurons. The topology resulting by the said connections allows us to have
a specialised network performing some tasks such as: modelling physical phenomena
(Bonanno et al. 2014c), performing predictions (Borowik et al. 2015), enhancing fore‐
cast correctness (Napoli et al. 2014a), filtering signals (Nowak et al. 2015; Gabryel
et al. 2015) and images (Napoli et al. 2014b; Wozniak and Polap 2014; Wozniak et al.
2015a), etc. (Haykin 2004). A neural network processes data trying to emulate the human
brain model, by partially reproducing the human connectome with the said functional
units that we call neurons. Functionally, a neural network builds some knowledge out
of training data and applies such a knowledge for further use on the same data domain.
Hence, the field of neural networks gives us a different approach to problem solving
with respect to standard algorithmic. This latter is based on a conventional set of instruc‐
tions in well defined deterministic steps that are followed in order to reach the solution,
while in general a neural network approach is not deterministic. In fact, it is not possible
to program a neural network in order to perform a specific task without any need for
training. Moreover, in the majority of cases, even the topology is unknown beforehand.
Then, in order to use neural networks a user must be prepared to a try-and-check proce‐
dure that could require a certain amount of interactions.

Nevertheless, when a problem is successfully managed by a topology, such a
topology could be used for a range of problems in the same domain. Moreover, a specif‐
ically trained neural network with such a topology could be reused to continue the
computation on the same data domain. E.g. in order to predict the power generation of
photovoltaic power plants the topology results similar among different plants, while each
plant will use a specifically trained neural network that has learnt how to model the
environmental conditions and variations on that specific site.

3 The Developed Toolbox

The presented toolbox is designed in order to be modular and robust to changes, and
such properties have been achieved thanks to design patterns, i.e. software solutions
that have been proven successful to solve recurrent problems in the field of object-
oriented programming (OOP), described in terms of needed classes and their relation‐
ships (Gamma et al. 1994). In order to obtain a design for creating, training, using and
managing neural networks, we have to take into account the big number of various
topologies and training strategies available, the different sizes, and the different fields
which the network can be applied to. The most important requirements are: (i) a neural
network can have an arbitrary size and can use different kinds of neurons, (ii) neurons
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are usually organised into layers, and connected to each other in a custom way, (iii)
connections between neurons have their own characterisation, e.g. a connection could
link two neurons or link a delay to a neuron and vice versa, and finally, (iv) neurons
could use different activation functions according to the layer they belong to.

Out of the said requirements, we have designed the following main class hierarchies,
and connected them according to three design patterns.

• Class NeuralNetwork represents a neural network consisting of some layers.
• Class Layer represents a layer, i.e. a given number of neurons, and a matrix of weights

for the synaptic links to each neuron.
• Class Topology is a class that is meant to create neural networks consisting of layers

that are interconnected in some specific way.
• Class TransferFunc is the root of a class hierarchy where each class provides an

activation function (e.g. Tansig, Logsig and Radbas) and implements the proper
methods for training and computation.

The following design patterns are used.

• Factory Method is used to organise the creation and interconnection of neurons inside
layers, hence the initialisation decisions that allow to establish a given topology.

• Decorator is used to customise the interconnections between neurons.
• Bridge is used to let neurons choose one among several activation functions.

The said classes and patterns (see Fig. 1) are detailed in the following sections.

Fig. 1. The UML class diagram of the proposed toolkit

4 Details of Classes

4.1 Class Layer

The very core of the toolbox consists of class Layer and its subclasses. They are respon‐
sible to hold neurons and compute the output of such neurons. The main method is
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compute() and implements the algorithm that performs the computation on the neurons
according to input data (stored into field inputs), and stores output data into field outputs,
accessible by means of method getOutputs(). Typically, a layer calls getOutputs() on
another layer, therefore an instance of Layer holds a reference to another instance of
Layer as field source. Additional methods of Layer are: trainStep() performing a single
iteration of computation during training, initWeights() and setWeights(w) giving values
to weights. Method initWeights() is called when Layer is instantiated, in order to initi‐
alise the synaptic weights and store them into field weights, such weights would be
modified and recomputed during each training epochs by method trainStep() and then
stored by using method setWeights(), taking as input the new weights and updating the
weights matrix. Class Layer plays the role of Component for design pattern Decorator,
hence several responsibilities can be additionally executed, and available as implemen‐
tations in proper ConcreteDecorators Summing and Delay (see Sect. 5.2 for details).
Moreover, class Layer plays the additional role Abstraction for design pattern Bridge,
in order to let the subclasses use different transfer functions (see Sect. 5.3 for details),
and its subclasses have the additional role RefinedAbstraction. Therefore, Layer holds
a reference to an instance of a class implementing a transfer function, i.e. interface
TransferFunc, that will be used to compute the output of neurons. Having a separate
class for computing the transfer function allows us to easily configure layers in order to
use one among several available transfer functions.

4.2 Class TransferFunc

Since a neural network emulates the behaviour of its human counterpart, in the same
manner an artificial neuron emulates the behaviour of a neural cell. The latter is a
constantly stimulated cell that needs to reach some kind of threshold in order to activate
itself. In an artificial neuron such a threshold is mathematically emulated by a so called
activation function or transfer function. The two different names are used according to
the point of view, i.e. whether we focus on the activity of one neuron only, or on the
functionalities of the entire network of neurons. In the latter case, we call it a transfer
function, since it will determine how the input data will change and interact while passing
from a layer to the next. The neuron behaviour is then univocally identified by its acti‐
vation function that gathers data from the linked neuron in the preceding layer and gives
results to feed data into the neurons in the successive layer. A description both general
and comprehensive of all activation functions is overwhelming since, a transfer function
could be any function defined within a finite range and absolutely integrable, therefore
any function in  (Gupta et al. 2004). Nevertheless, not all the functions in 
are equally performant or reliable for a neural network. In general, in a feedforward
neural network, a transfer function can be described as a function  so that the
neuron returns an output in the form:
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where index i identifies the computing neuron and index j the connected neurons from
where the inputs xj are coming. Each input is (in general) weighted before it is used to
compute the output. It follows that when considering one input layer and two hidden
layers, respectively of M and N neurons, then, the output will be in the form of

Then, it is possible to define the output of a neuron in the n-esime layer, recursively:

so that a neural network becomes a function

For such a kind of topology a wide range of different transfer functions have been
proven useful. Some excellent examples are the sigmoidal functions like

where A represents the maximum amplitude of the function, k is a fixed parameter
and μ the value for the mean point of the sigmoid itself. Another kind of interesting
activation function is represented by the radial basis function family. The most
commonly used radial basis function is of gaussian type and is formalised as follows

on the other hand, a well enough approximation is used in the field of neural networks
so that

The latter function requires a different training procedure with respect to the previous
one, it is indeed noticeable that also the set of parameters {μl}, called centroids, must
be adjusted during training.

It follows that different kinds of transfer functions require different training methods,
also according to the number of fixed parameters. Moreover, certain transfer functions
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could be applied to different kinds of topologies which, sometime, not only differ on the
number of neurons and links, but also, or solely, on the kind of computation which are
performed on different layers (Haykin 2009). A typical example is given by the compar‐
ison between a feed forward network using radial basis functions and a radial basis
network, i.e. while they use the same transfer function on the first hidden layer (as the
name suggests), they use the second hidden layer in a completely different way (that is
the reason why the neuron in the two hidden layers of a RBF network are traditionally
called pattern units and summation units) (Musavi 1992).

While this description is far from comprehensive or complete, it should give an
insight on how the different choices regarding the training and operation of a neural
network strictly depends on the topology and the activation function itself. It is then
paramount to structure the code in an appropriate manner in order to both encapsulate
the transfer function and the related responsibilities, while being still able to change the
behaviour of other modules according to the chosen topology and functions.

4.3 Class Topology

The first recognisable feature of a neural network is trivially the topology. In the past
decades, an entire zoology of different topologies has been developed, some topology
categories are standard (see Fig. 2), others are highly customised. Therefore, not all the
neural networks are organised similarly, and, even when some networks present topo‐
logical similarities the functionalities are sometimes very different, moreover different
networks are trained and used in different manners.

The encapsulation of the algorithms specifying topology details for a neural network
is achieved by means of class Topology. Such a class implements methods that instan‐
tiate and interconnect Layers in a specific way, and also neurons with each others, hence
creating a topology. Each given classical neural network topology has its own method,
such as e.g. getFeedForward(), named after the related topology. All the knowledge on
the topology is encapsulated into such methods and all other classes unaware of the
topology issues.

Class Topology implements a variant of design pattern Factory Method, therefore
class Topology plays role ConcreteCreator, and class Layer plays role Product. Typi‐
cally, several instances of Layer are needed at once to form a neural network, hence
references to such instances are inserted into an instance of NeuralNetwork. Moreover,
each instance of Layer is given a reference to another instance acting as the preceding
layer, the ConcreteCreator’s factory methods inject dependencies into Layer classes. In
the following we will give some examples of the factory methods implemented within
class Topology (e.g. getFeedForward(), getRecurrent(), getHopfield(), etc.), which
create topologies by interconnecting layers in different ways.

Feed Forward Neural Networks. The feed forward topology is depicted in Fig. 2(a)
and presents the easiest concept. It is implemented by means of subsequent layers, each
layer communicates the output of each constituting neuron to the neurons of the next
layer (Bonanno et al. 2014b). Therefore, to obtain the said interactions among instances
of layers, a factory method dubbed getFeedForward(int l, int[] nl) is provided to instan‐
tiate a number l of Layers (l is the first input parameter), each having the number of
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neurons given as the i-sime position of array nl, and provide each Layer instance with
a reference of the former Layer instance.

Radial Basis Neural Networks. Figure 2(b) shows a neural network using the radial
basis configuration (Napoli et al. 2014c), in which each layer has its own purpose and
functions in a different manner than another layer (Napoli et al. 2015). Therefore, a
factory method getRadialBasis() provides the needed implementation for instantiating
Layers and interconnecting them, similarly to getFeedForward(). Differently to the
latter, getRadialBasis() sets the RBF transfer function for the instantiated layers, by
providing the created instances of Layer with a reference to an instance of RadBas.

Recurrent Neural Network. Differently from the other categories, such a topology
(Fig. 2(c)) presents feedbacks and delay lines (Williams and Zipser 1989; Bonanno
et al. 2012). While a layer gets the outputs of a preceding layer in the same manner of
a feed forward neural network, such a topology uses a different strategy to store delayed
data and feed such data to the neurons linked to the related delay lines (Napoli et al.
2013b). For the related implementation, a layer is created by means of class Delay
(appropriately storing data for a time step). Then such an instance of Delay is provided
as reference to the other Layers.

Fig. 2. Different neural network topologies: (a) feed forward, (b) radial basis, (c) recurrent, (d)
Hopfield (1982). Note that networks (a), (b) and (c) are organised in layers, and belong to the
same topology category, moreover, while (a), (b) and (c) share some topological commonalities
their training and use is completely different.
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The given examples are not comprehensive neither exhaustive of all the possible
topology of a neural network. Such examples were intended to explain our design
choices. Due to its high level of encapsulation and loose class coupling, our proposed
toolbox can be easily expanded with other topologies and activation functions. Further
application-dependent classes that implement custom topologies, functions and training
methods can be also provided to our toolbox.

5 Details of Design Patterns

5.1 Factory Method

The main intent of design pattern Factory Method is to define an interface, Creator, and
some classes, ConcreteCreator, to instantiate a class implementing a common interface
Product. A ConcreteCreator encapsulates the algorithm selecting one among several
implementations of Product, dubbed ConcreteProduct. As a result, client classes are
unaware of the used ConcreteProduct class, and such classes can be freely changed with
each other (Gamma et al. 1994).

We have used design pattern Factory Method, in our solution, to encapsulate the
selection of the implementation of Layer that has to be instantiated, in such a way that
client classes remain independent of the implementation. Moreover, each implemented
ConcreteCreator will be responsible to provide instances of Layer with the reference to
each other, and therefore injects dependencies into them.

A class playing as Creator and ConcreteCreator is Topology (see Fig. 1), which lets
the client class obtain a NeuralNetwork. Additional topologies are implemented each as
a factory method of Topology. This approach is far more flexible than connecting classes
at design time to a specific implementation, e.g. giving a BasicLayer means to access
type RadBas, which generates a tight coupling between such classes. Moreover, the
number of dependencies for a class could expand, e.g. BasicLayer would have to handle
both Tansig and RadBas. More generally, tight coupling generates undesired conse‐
quences and less reusable code.

5.2 Decorator

The main intent of design pattern Decorator is to have the possibility to add respon‐
sibilities to a class dynamically and with a more flexible mechanism than that
provided by inheritance. The solution suggests the following roles for classes:
Component defining the operations that all objects have, ConcreteComponent imple‐
menting the object to which functionalities are added, Decorator holding a refer‐
ence to Component, ConcreteDecorator implementing an additional responsibility
(Gamma et al. 1994). The abstraction provided by interface Layer let us keep a
general representation of a layer, independent of its number of neurons and connec‐
tions. The needed connections among neurons, possibly with delayed lines, are addi‐
tional responsibilities that can be dynamically added to the basic behaviour of a
layer. Accordingly, we have implemented the basic behaviour of a layer by class
BasicLayer playing the role ConcreteComponent for the Decorator design pattern,
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then the additional responsibilities are implemented as classes Summing and Delay
playing as ConcreteDecorators. Class Summing computes a weighted sum of the
outputs, whereas class Delay stores the outputs for a time step. By means of the
mechanisms provided by design pattern Decorator, the responsibilities of different
classes can be accurately selected to extend the functionalities of instances of
BasicLayer.

5.3 Bridge

The aim of design pattern Bridge is to decouple abstractions and implementations, in
such a way that both can change independently. The solution provides role Abstraction
defining the interface for client classes and holding a reference to Implementor, role
RefinedAbstraction as a subclass of Abstraction, role Implementor defines the operations
that the Abstraction uses, and its implementations are provided as role ConcreteImple‐
mentor (Gamma et al. 1994). While the other implemented patterns are concerned on
the topology of the neural network in terms of layer sizing and connections (with special
care for delays and feedbacks), the activation function for the neurons is selected by
using the Bridge design pattern. The Bridge let us decouple the implementation of the
different activation functions from the related abstractions. This behaviour is far more
flexible with respect to the simple inheritance since this latter ultimately binds the
implementation and the abstraction permanently in the code. The Bridge gives us means
to separately modify, extend, manage and maintain the classes and methods related with
the use of different activation function and, consequently, decoupling the topology of
the network from its usage and the implemented functions. E.g., it is possible to have a
simple multilayer topology with no feedbacks or delays: while this could be used for a
feed forward neural network, the same topology could implement a radial basis neural
network, although the use and training of those two network is completely different, as
well as their purpose and management. It follows from the implementation of the Bridge
pattern that the class Layer has to hold a reference to a ConcreteImplementor, therefore
to an object of type TransferFunc, on the other hand it is possible in such a way to hide
the implementation details to the client once again separating the concerns of the
different classes (Tramontana 2013).

6 Related Works

Other object oriented solutions have been presented in projects and toolboxes for the
implementation of neural networks. One of the most known is Neuroph (Ševarac 2012): a
Java framework for creating, train and use neural networks with different topologies and
training methods. This project, which begun in 2008, proposes an open source solution
which is still evolving and expanding its potential. Such a software solution has increased
its complexity during time, essentially because of the high degree of class coupling. While
we agree on many of the identified abstractions, a better modularity could be achieved by
using design patterns. Neuroph is mainly organised into three layers: one for the GUI and
two for the neural network library and core. The library implements the supported neural
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networks, while the core consists of two packages containing the base classes, which
provide structure and functionalities to the created networks, and the utilities for training
and management. We note that in it several coding practices should have been avoided and
some of them are actually smells, for refactoring techniques (Fowler et al. 1999; Pappa‐
lardo and Tramontana 2013). It should be stated that creating, managing and training a
neural network is a complex task affected by several difficulties. The UML class diagram
of Neuroph shows a cyclical dependency of classes Neuron, Layer, and NeuralNetwork.
Other cyclical dependencies can be found e.g. for classes NeuralNetwork and Learning‐
Rule, and for classes Neuron and Connection. Such a practice should be avoided in a well
engineered software system. Moreover, tight coupling could be avoided by recurring to
some design patterns, e.g. for the dependencies among classes Layer and NeuralNetwork,
as well as for class Connections. Of course, it is not straightforward to refactor such a
mature software. The approach presented in this paper aims at having a highly maintain‐
able system which can be further enhanced, thanks to its modularity (Napoli et al. 2013a).
Consequently, by using design patterns, while encapsulating the different needed abstrac‐
tions we also successfully manage to separate the different concerns. The resulting system
has classes that depend on interfaces and not implementations. This in turn makes it
possible to include new features (e.g. new kind of topologies, transfer functions, training
methods, etc.). Finally, out approach aims to build a system that can be easily ported into
a distributed and parallel infrastructure (Bonanno et al. 2014a; Napoli et al. 2014d), making
good use of Java multithreading and distributed supports.

7 Conclusion

This paper has shown the design of a toolbox that allows instantiating a neural network
and configuring it as desired. The provided components automate some important design
decisions, such as the topology, while also allowing the developer to configure the
network as desired, as well as create a neural network from a scratch. Our solution has
put a high relevance on the modularity issues, hence the proposed components are
loosely coupled and can be easily be refined, by adding more classes to the provided
classes hierarchies. The devised design choices, based on design patterns Factory
Method, Decorator and Bridge, will easily grip on new available classes, without addi‐
tional connecting code. In our future work, the modularity in our design will support us
in distributing objects implementing parts of a neural network on a parallel and distrib‐
uted infrastructure.
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