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Abstract. Today, a huge amount of tables are presented in web pages,
word documents, and spreadsheets. Many of them are unstructured tab-
ular data. They are intended to be understood by humans but not to be
interpreted by machines. At the same time, we often need to have that
information in a structured form, e.g. relational databases. We propose
a rule-based approach to table analysis and interpretation and demon-
strate how it can be applied to transform tabular data from unstructured
(spreadsheets) to structured (relational databases) form. The paper dis-
cusses representing tabular data as facts in the working memory of a
rule engine, a formal language for defining rules of table analysis and
interpretation, and its implementation.

Keywords: Table analysis and interpretation · Table understanding ·
Information extraction from tables · Unstructured tabular data integra-
tion

1 Introduction

Today, a huge amount of tables are presented in web pages, word documents,
and spreadsheets. Many of them are unstructured tabular data. It refers to any
tabular information, which is not organized as a table of a relational database.
These tables are intended to be interpreted by humans but not designed for
high-level machine processing like SQL queries.

In practice, the transformation of tabular data from unstructured to struc-
tured form is required in many cases. For example, tables presented in unstruc-
tured form are often the only available source of statistical or financial informa-
tion. To use that information in business intelligence we need to transform data
from these tables to structured form like relational databases.

The conversion of unstructured tabular data to structured form can be con-
sidered as table understanding [1,2], which consists in recovering relationships
among entries (data values), labels (attributes), and categories (dimensions) pre-
sented in a table. Our work is devoted to the issues of recovering semantic rela-
tionships of a table. In terms of Hurst [1], we deal with the following steps of table
understanding: functional analysis separating cells into entries and labels, struc-
tural analysis recovering relationships between cells, and interpretation recover-
ing relationships between entries, labels, and categories.
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There are several challenges in the table understanding. A table can be pro-
duced or generated by a huge amount of ways. Table features originate from
typographical standards, corporative practice, ad hoc software, data formats,
and human inventiveness. To reduce the complexity of table understanding the
existing methods use various assumptions (heuristics) about tables. Usually
those assumptions are entirely embedded in their algorithms. This constrains
a range of tables, which can successfully be understood by them.

We propose a rule-based approach for transforming unstructured tabular
data to relational databases [3]. The main idea we exploit is that tables produced
by the same vendor often have similar structures, styles, and content. It allows
defining a set of production rules for describing how these tables can be analyzed
and interpreted. We propose to develop separate sets of table interpretation
rules (knowledge bases) for different sets of similar tables. In that case, the
process of the table analysis and interpretation is performed as rule firing. It
provides processing of a wide range of tables having various complex structures
and features.

Based on the approach we develop a table model for presenting tabular data
as facts in the working memory of a rule engine and a formal language for defining
rules of table analysis and interpretation, called CRL (Cells Rule Language).
These rules map what we know, i.e. spatial (topological), style (typographical),
and textual (natural language) information of a table, into what we do not
know, i.e. its semantic relationships (label-entry, label-label, and label-category
pairs). Our language is implemented as domain specific language for the rule
engine “Drools Expert” [4]. It allows translating CRL rules to DRL (Drools Rule
Language) [4] and firing them in this rule engine. The concepts of CRL language
are examined with our prototype of the system for conversion of unstructured
tabular data from spreadsheets to structured (canonical) form.

The remainder of this paper is organized as follows. In Sect. 2 we discuss
the studies devoted to the issues of table analysis and interpretation. Section 3
describes our data structures for representing tabular data as facts in the working
memory of the rule engine. The CRL language is considered in Sect. 4. In Sect. 5
we demonstrate several typical and complex table structures, and how they can
be analyzed and interpreted by CRL rules.

2 Related Work

Existing methods for table analysis and interpretation can be divided into two
groups: domain-specific [5–7] and domain-independent [9–14].

The domain-specific methods are based on using ontologies or knowledge
bases describing a particular domain. These methods allow binding natural lan-
guage content of a table with concepts of the particular domain. For instance,
the method from the TANGO project [5] is based on a library of frames con-
taining knowledge about lexical content of tables. Each frame describes a data
type using regular expressions, dictionaries, and open resources like the lexi-
cal database WordNet. Embley et al. [6] use ontologies developed specially for
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information extraction. In addition to objects, relationships and constraints the
extraction ontology includes a set of data frames, which are associated with sets
of objects. Those data frames allow binding table content with objects of the
ontology using regular expressions. Wang et al. [7] consider the problem of under-
standing a web table as associating the table with semantic concepts presented
in the “Probase” [8] knowledge base.

The methods listed above [5–7] principally use the analysis of natural lan-
guage content from tables. It is not always sufficient in practice. Information
extraction from tables often requires the analysis of spatial and style informa-
tion for high accuracy.

The domain-independent methods [9–14] are based on the analysis and inter-
pretation of spatial, style and text information from tables instead of using exter-
nal knowledge on a specific domain. For instance, Gatterbauer et al. [9] propose
to use only the analysis of spatial and style information in CSS2 format. Their
method is based on assumptions about style information designed for several
common types of web-tables. Also Pivk et al. [10,11] suggest the methodol-
ogy and TARTAR system for automatic transforming HTML tables into logi-
cal structured form (semantic frames). The TARTAR system uses heuristics on
structure and text content of a table, which are designed for three typical table
types. Kim et al. [12] use the analysis of spatial, style, and natural language
information from web tables based on embedded rules and regular expressions
for five table types. The recent papers [13,14] discuss the method for transform-
ing data from web tables to a relational database. The method provides grouping
attributes into categories, using only the analysis of table structure. It is based
on several embedded in algorithms assumptions on regular structure of pivot
tables.

The mentioned above domain-independent methods [9–14] are based on using
a limited set of assumptions on table structures, styles, and content which orig-
inate from a few common types of tables. These assumptions are embedded in
the proposed algorithms. They limit classes of tables, which can be analyzed and
interpreted by those methods with high accuracy.

3 Tabular Data Facts

To design data structures representing table facts, we are inspired by the Wang’s
table model [15]. We use partially terminology of [15] to describe a table: entries
(data values), labels (attributes), and categories (dimensions). These concepts
and their relationships are shown in Fig. 1.

Cell is a main structure for representing input tabular data facts extracted
from a cell of a table. Each cell characteristic is accessible through the corre-
sponding field. The cell structure includes the following main fields (hereafter,
they are marked by monospaced font):

– Positions: cl — left column, rt — top row, cr — right column, and rb —
bottom row. Note that a cell located on several consecutive rows and columns



178 A. Shigarov

Fig. 1. Table concepts and their relationships

covers a few grid tiles, which always compose a rectangle. Moreover, two cells
cannot overlap each other.

– Style settings style are encapsulated in the style structure. The main of
them are: font contains all typical font characteristics; horzAlignment and
vertAlignment indicate types of horizontal and vertical alignments respec-
tively; rotation defines text rotation; bgColor and fgColor represent back-
ground and foreground colors; leftBorder, topBorder, rightBorder, and
bottomBorder specify types (thin, medium, dashed, etc.) and colors of four
corresponding cell borders.

– Content: a cell can contains text, image, or RTF. However, the current cell
structure supports only textual content through the field text.

– There are several additional characteristics: cellType — data type (numeric,
date, string, etc.), indent — number of space characters in the beginning of
the textual content, width in units of 1/256th of a character width and height
in twips (1/20th of a point), mark — word marking the cell, table — reference
to the corresponding table structure, entries — ordered set of entries and
labels — ordered set of labels generated from the cell. Note that, a cell can
contain one or more entries and/or one or more label in the same time.

Entry structure serves to present data values from a table. Entry consists
of the following fields: value — textual value, cell — reference to the related
cell, labels — set of labels associated with the entry. Moreover, an entry can
be associated with only one label in each category.

Label structure represents labels, which are values describing entries. A label
is defined by the fields: value — textual value, cell — reference to the related
cell if it exists. Also, each label is associated with only one category: category —
reference to it. Labels of a category can be organized as one or more trees.
Therefore, a label can have a parent and a set of children. They can be accessible
through the fields: parent and children.
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Category structure intends to represent categories (dimensions). One or more
labels are combined into a category. This structure includes the following fields:
name — textual value, labels — set of related labels.

4 CRL Rules

A CRL rule defines how we analyze and interpret a table. The left hand side of the
rule defines conditions using known facts about a table. Its right hand side con-
tains consequences (actions) to recover its unknown semantic relationships. The
specification of the CRL language is defined as a set of DSL definitions, which map
CRL sentences to DRL constructs. It is available at the following address: http://
cells.icc.ru/pub/crl. The key CRL constructs are presented in the paper.

4.1 Conditions

The condition elements allow querying cells, entries, labels, and categories
asserted as facts into the working memory:

cell $cell : constraints
entry $entry : constraints
label $label : constraints
category $category : constraints

A condition element consists of three parts. In its order of occurrence, the first
is a keyword which denotes one of the following fact types: cell, entry, label,
or category. The second is a variable name that starts with a dollar sign (‘$’).
The third optional part defines constraints restricting the requested facts. They
follow the colon character (‘:’). A constraint is an expression that returns “true”
or “false”. These constraints conform to the DRL syntax. Therefore, in essence,
they are Java expressions with some enhancements. Also, they can be separated
by the comma character (‘,’) that is logical conjunction for them. A condition
element without constraints allows querying all facts of specified type.

4.2 Consequences

Cell Marking is an optional action which allows binding a cell $cell with a
mark @mark, that is a word with the first character ‘@’:

set mark @mark -> $cell

Using marks allows developing more understandable rules when it is possible
to divide cells into several meaningful groups and apply different subsets of rules
for them. In these cases, a constraint on a mark can substitute several constraints
on other cell characteristics.

The typical practice is to set a mark to all cells, which play the same function
or are located in the same table region. For example, if a table has the following
parts: “head”, “stub”, and “body”, we can mark each cell with one of the marks:
@head, @stub, or @body, depending on their location in the table. Subsequently,
we can use these marks in other rules, instead of using constraints on cell location
in table regions.

http://cells.icc.ru/pub/crl
http://cells.icc.ru/pub/crl
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Label and Entry Creating consequences generate entries and labels in a cell
$cell respectively, using the string expressions entry value and label value
usually extracted from its textual content:

new entry entry_value -> $cell
new label label_value -> $cell

Each created entry or label is asserted into the working memory as a new
fact. Moreover, the following short form can be used to set entry and label values
respectively, using a cell text without string processing:

new label $cell
new entry $cell

Label Categorizing is to associate a label $label with a category $category:

set category $category -> $label

Furthermore, a string expression category name presenting the name of a
category can be used as the argument:

set category category_name -> $label

In the latter case, we try to find the category with this name in the current
table instance. If it exists, then the label is associated with it. Otherwise, we try
to create locally in the table the new category with this name and then associate
the label with it.

Label-Label Associating allows connecting two labels $label1 and $label2:

set parent label $label1 -> $label2

In the consequence above, the argument label1 is considered as the parent
and the addressee $label2 respectively is its child. This action mainly intends to
support hierarchical categories. Two or more labels can be connected, organizing
a tree. An attempt of creating a cycle in label-label relationships causes that the
table processing cannot perform the further rule firing. Additionally, we suppose
that all labels connected in the tree must be associated with the same category.
The contrary case brings the table processing to a halt.

Label Grouping places two labels $label1 and $label2 in one group:

group $label1 -> $label2

A group is a set of labels, that can be considered as an anonymous category.
In some tables, we can define that several labels are related to the same category,
without knowing what the category is. For example, we may know that labels,
which are located in the same row, are related to the same category. Placing two
or more labels in the group means that they are related to the same category.
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In time of the rule firing, one or more labels from a group can be associated
with a category. When it happens, we assume that all the rest labels from the
group also must be associated with the category. After the rule firing, we try to
associate these labels with the category. The case, when two labels are grouped
together but associated with different categories, is not allowed and leads to the
crash of the table processing. After the rule firing, if in a group all labels are
not categorized, then the category with automatically generated name is created
and these labels are associated with it.

Entry-LabelAssociating is used to relate an entry $entrywith a label $label:

add label $label -> $entry

As is mentioned above, any entry can be associated with only one label from
each category. The interruption of this is considered as the failure that does
not allow the further table processing. Moreover, it means that the label must
belong to a category. If the added label is uncategorized then it is not associated
with the entry at that moment. At first, it becomes a candidate which may be
associated automatically with the entry only after it is categorized.

There are two additional forms for the consequence. The first serves to asso-
ciate an entry $entry with a label having the value specified by the first argu-
ment label value from a category with the name defined by the second argu-
ment category name (both of them are string expressions):

add label label_value from category_name -> $entry

First, to process this consequence, we examine if the current table instance
has the category with this name. If it does not exist, we try to create this
category. After that, we look for the label with the specified value in the founded
or created category. When there is no label, we create it, using this value. At
last, the entry is associated with the founded or created label. Note that, this
form allows to generate labels independently of cells.

The second form is similar to the first, but the second argument $category
is a variable that refers to a category:

add label label_value from $category -> $entry

In this case, we try to find or to create the label specified with the value label
value in the category $category, and then to relate the entry $entry to it.

Auxiliary Consequences. There are several auxiliary consequences, including
the following: cell splitting and merging; editing textual content of a cell; editing
a value of an entry or label; and updating facts such as cells, entries, and labels
in the working memory.

5 Applying CRL

We demonstrate several typical and complex table structures, and how they can
be analyzed and interpreted by CRL rules. More examples of CRL rules can be
found at the address http://cells.icc.ru/pub/crl/samples.

http://cells.icc.ru/pub/crl/samples


182 A. Shigarov

5.1 Marking, Creating, Grouping, and Categorizing

In tables like the ones shown in Fig. 2, a, cells can be separated into three region:
column headings, row headings, and data values. Actually, two labels, where one
is produced from a column heading and other is generated from a row heading,
belong to different categories. We can use the empty cell in the top-left corner
to allocate cells among these regions. For example, the rule below can be used
to mark column headings (any cell $cell located on the right of $corner, but
in the same rows) and to create corresponding labels:

when
cell $corner : cl == 1, rt == 1, blank
cell $cell : cl > $corner.cr, rb <= $corner.rb

then
set mark @ColumnHeading -> $cell
new label $cell

Fig. 2. Pivot tables: the table contains the data values indicated as numbers
(‘1’,. . . ,‘7’), column (‘a’,. . . ,‘g’) and row (‘h’,. . . ,‘l’) headings (a) presented by Latin
characters for convenience; the cell in the top-left corner contains two headings ‘A’
and ‘B’, describing the headings in the boxhead (‘a1’,‘a2’) and stub (‘b1’,‘b2’,‘b3’)
respectively (b); and the cut-in headings ‘e’ and ‘f’ appear between data cells (c)

Furthermore, we suppose that two labels, which are generated from either
two column headings located in one row or two row headings situated in one
column, are connected with the same category. So, the labels in Fig. 2, a belong
to the five categories as follows: {‘a’, ‘b’}, {‘c’, ‘d’, ‘e’}, {‘f’, ‘g’}, {‘h’, ‘i’},
and {‘j’, ‘k’, ‘l’}. Using this assumption, labels can be grouped and associated
with corresponding anonymous categories. For example, the following rule allows
grouping the labels related to column headings:

when
label $l1 : cell.mark =="@ColumnHeading", $c : cell
label $l2 : cell.(mark == "@ColumnHeading", rt == $c.rt)

then
group $l1 -> $l2
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For tables like Fig. 2, b, we assume that the top-left corner contains headings
(like ‘A’ and ‘B’), which define two category names: the first (‘A’) for labels
created from boxhead cells, and the second (‘B’) for labels originated from the
stub cells. We can use them for categorizing labels. For example, the rule, where
we set a category to column headings, can be written as follows:

when
cell $corner : cl == 1, rt == 1, $t : text
label $label : cell.rb <= $corner.rb

then
set category token($t, 0) -> $label

Here, the function token returns the first (‘0’) token of a text ‘$t’ of the top-left
corner cell $corner.

In tables like Fig. 2, c, supposing that a cut-in heading cell spans all columns,
we can write the following rule for marking these cells:

when
cell $cell : cl == 1, cr == table.numOfCols

then
set mark @CutInHeading -> $cell

In this rule, the nested field table.numOfCols is a number of columns of the
table.

5.2 Processing Multi-valued Cells and Footnotes

In a bilingual table as Fig. 3, a, a cell can contain two labels or two entries in both
languages. For example, the rule for generating labels from cells located in the
leftmost column or the topmost row, where the first phrase is written in Greek
language and the second is Chinese phrase, may have the form:

when
cell $cell : cl == 1 || rt == 1, !blank, $t : text

then
new label extract($t, "\\p{IsGreek}+") -> $cell
new label extract($t, "\\p{IsHan}+") -> $cell

Here, the function extract returns all occurrences of a text $t which are
matched to the regular expression "\p{IsGreek}+" Greek and "\p{IsHan}+"
for Chinese language respectively.

In this example, we suppose that the first entry in a cell can be related
exclusively to the first label in other cell, as well as the second entry only to the
second label. The rule implementing this assumption is shown below:

when
cell $c1 : containsLabel()
cell $c2 : containsEntry(), cl == $c1.cl || rt == $c1.rt
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then
add label $c1.label[0] -> $c2.entry[0]
add label $c1.label[1] -> $c2.entry[1]

For tables similar to the one shown in Fig. 3, b, where any cell under the
topmost row contains a text as “key=value”, the following rule creates a label
from the “key” part and an entry from the “value” part:

when
cell $cell : rt > 1, $t : text

then
new label left($t,’=’) -> $cell
new entry right($t,’=’) -> $cell

In the first consequence above, the function left returns a substring of a
text $t before the ‘=’ character. In the second, the function right returns a
substring after this character.

Recovering relationships between a label (“key”) and an entry (“value”) can
be realized as follows:

when
cell $cell : rt > 1

then
add label $cell.label -> $cell.entry

Footnotes can be interpreted differently, depending on the requirements of
target representation. In our example (Fig. 3c), the footnotes (‘u’ and ‘v’), which
are related to the entries (‘2’ and ‘5’) through the references (‘*’, ‘**’) respec-
tively, are considered as labels. The following rule shows how to create a label
from a footnote and relate it to a corresponding entry.

when
cell $footer : rb == table.numOfRows, $footnotes : text
entry $entry : cell.text matches ".+\\*+",

$reference : extract(cell.text, "\\*+")
then

add label between($footnotes, $reference, ’\n’)
from "Footnote" -> $entry

In the first condition above, we query a text $footnotes of the cell $footer
located on the bottommost row. The second condition: we try to find all cells hav-
ing a text ending by one or more asterisk (‘*’) character. The text $reference
corresponds the footnote reference extracted from the text by the regular expres-
sion "\*+". In the consequence, the function between returns a substring of the
text $footnotes between the reference $reference and the newline character.
We create a label in the category named “Footnote”, using the substring as its
value, and associate the entry $entry with it.
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Fig. 3. Tables with multi-valued cells: the bilingual table, where each non-empty cell
has either two labels or two entries (a); a text like “key=value” in a cell can be inter-
preted as a label (“key” part) and a related entry (“value” part) (b); footnotes ‘u’ and
‘v’ in the footer

6 Conclusions

Our rule-based approach to table analysis and interpretation is implemented in
the CRL language. CRL rules can be translated to the DRL format and executed
by the “Drools Expert” rule engine.

As in existing methods, we also use assumptions about structures, styles and
content of tables. But, in contrast to them, we divide assumptions into two parts:
general and special. General assumptions are embedded in our data structures
described in Sect. 3. Special assumptions are written with the CRL language.
They are combined into sets (knowledge bases), which are designed for different
classes of tables. That approach allows reaching high or even absolute accuracy
for particular classes of tables.

Furthermore, the CRL rules provide possibilities of dealing with not typical
table features, including the following: headings and data cells can be located
anywhere (e.g. footers, cut-in heads), non-numerical data values; multi-valued
cells (several entries and/or labels can be placed in a cell); hierarchy of labels
built by indents in text; footnotes.

The CRL language can be used in developing software for unstructured tab-
ular data integration, populating databases from spreadsheets, and extracting
information from tables.
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