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    Abstract     Structure and functions of Na + /K + -ATPase and SERCA are described 
with details on their subunits, isoforms, and intracellular localization. Main 
 regulatory mechanisms are summarized. Molecular mechanisms of cell death and 
heart failure are explained with the analysis of the role of Na + /K + -ATPase and 
SERCA in these processes. Facts are considered from a cytological, pathological, 
and clinical perspective with an accent to new therapeutic strategies. The aim of this 
contribution is an overview of functional results in a structural context.  
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1         Introduction 

 Various forms of ATPase have the utmost signifi cance in the understanding of major 
principles of cardiovascular physiology and molecular mechanisms of cardiovascu-
lar diseases. There is ample scope of literature dealing with this problem with new 
results obtained. This fact promises that our knowledge will be amplifi ed for the 
benefi t of our patients. However, plenty of new results always open new dilemmas 
and controversies, suggesting that we should recapitulate what we know for a fact 
and what we have recently learned. Our intention in this chapter is to summarize 
molecular, cytological, pathological, and clinical aspects of Na + /K + -ATPase and 
SERCA functions. We focus on their role in cardiomyocyte cell death and heart 
failure. We start with the principles that we have already known and provide new 
information from a cytological and pathological point of view.  

2     Na + /K + -ATPase: Structure and Function 

 Danish researcher, Jeans C. Skou was the fi rst to suggest a link between transport 
of Na +  and K +  across the plasma membrane and ATPase activity in 1950s. For the 
discovery of the Na + /K + -ATPase, Jeans C. Skou was awarded by the Nobel Prize in 
Chemistry 1997. 

2.1     Structure of Na + /K + -ATPase 

 Na + /K + -ATPase is a membrane-embedded protein complex, a hetero-oligomer 
composed of α and β subunits, in a 1:1 ratio [ 1 ,  2 ]. The large catalytic α-subunit 
(~110 kDa) contains binding sites for Na +  and K +  ions, ATP and for cardiac glyco-
side ouabain [ 1 ,  2 ]. Catalytic subunit has conserved aspartate 369  residue where ter-
minal phosphate of ATP can be attached [ 3 ,  4 ]. The α-subunit has ten transmembrane 
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domains and two large intracellular loops. The ATP binding site is located in the 
larger cytoplasmic loop [ 2 ]. Both amino and carboxyl ends of this molecule are 
located intracellularly [ 4 ]. 

 The smaller and highly glycosylated β-subunit (~35–55 kDa) acts as a chaperone 
required for proper folding and localization of Na + /K + -ATPase subunits to the 
plasma membrane [ 1 ,  2 ,  5 ]. Beta subunit is composed from one transmembrane 
segment, short cytoplasmic tail and large glycosylated extracellular segment [ 6 ,  7 ]. 
In vitro studies suggest that separation of α and β subunits results in a lack of mea-
surable enzyme activity [ 8 ]. 

2.1.1     Isoforms of α Subunit 

 Four isoforms of α-subunit have been described (α1, α2, α3, and α4) [ 1 ,  9 ,  10 ]. 
While the α1-isoform is expressed ubiquitously and is a housekeeping form, α2 is 
expressed largely in the brain, muscle, adult heart, and number of other tissues [ 2 ,  11 ]. 
The α3-isoform is found in ovaries, neurons, fetal and adult hearts, and white blood 
cells [ 1 ,  11 ,  12 ]. The α4-isoform is localized in the testis, and this isoform is specifi -
cally synthesized at the spermatogonia stage. The main role of α4-isoform is in the 
sperm motility [ 13 ]. Various α isoforms are tissue-specifi c, and they share a high 
degree of sequence identity (ca. ~85 % identity) [ 1 ,  12 ,  14 ]. Different α subunit 
isoforms could be localized in different regions of the same cell [ 15 ] and are capable 
of carrying out specifi c functions.  

2.1.2     Isoforms of β Subunit 

 There are three isoforms of the β-subunit (β1, β2, and β3) [ 1 ,  2 ]. Beta1 isoform is, 
like α1, ubiquitously expressed suggesting a housekeeping role for the α1-β1 Na + /K + -
ATPase in most cells [ 16 ]. Beta 2 isoform is expressed mainly in the brain and muscle 
[ 17 ], while the β3 isoform is predominantly expressed in the skeletal muscle, brain, 
lung, testis, and liver [ 16 ,  18 ]. In human heart, α1, α2, and α3 are expressed together 
with β1 and very low levels of β2 in a region-specifi c manner [ 19 ,  20 ]. Alpha and β 
subunit isoforms of Na + /K + -ATPase have been encoded by different genes. They are 
synthesized independently of each other in the endoplasmic reticulum and assembly 
very soon after the synthesis [ 21 – 24 ]. Isoforms combine to form a number of Na + /K + -
ATPase isoenzymes expressed in a tissue- and cell-specifi c manner [ 24 ].  

2.1.3     The Role of FXYD Proteins 

 FXYD proteins (also referred to as γ-subunits) have functions in stabilization or 
attenuation of Na + /K + -ATPase [ 25 ] and form an auxiliary subunit of Na + /K + -ATPase. 
The FXYD proteins are a family of seven small regulatory proteins (FXYD1–7). 
They are transmembrane proteins and have conserved FXYD amino acid motif 
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located in their extracellular domain [ 25 ,  26 ]. N-terminal part of FXYD is extracellular, 
while C-terminus is cytoplasmic [ 25 ]. FXYD proteins are expressed in a tissue spe-
cifi c fashion. FXYD1 (phospholemman) is expressed in the heart and the skeletal 
muscle [ 27 – 29 ].   

2.2     Functions of Na + /K + -ATPase 

 Na + /K + -ATPase is universally expressed in all animal cells. The primary function of 
the Na + /K + -ATPase is generation and maintenance of electrochemical Na +  and K +  
gradients across the cell membrane. The Na + /K + -ATPase is responsible for the low 
intracellular Na +  and high intracellular K +  concentrations required for normal cel-
lular functions. Activity of this enzyme occurs in several steps and is dependent on 
ATP hydrolysis [ 1 ,  2 ]. Following binding of ATP to the enzyme, three Na +  ions from 
the cytoplasm associate with the active site of Na + /K + -ATPase. Phosphorylation of 
the Na + /K + -ATPase (at aspartate residue) results in its conformational change. As a 
consequence of this change, three bound Na +  ions are released out of the cell. 
Thereafter, two extracellular K +  ions bind along with dephosphorylation process 
and are transported into the cell [ 1 ,  2 ,  30 ]. 

 The Na + /K + -ATPase is the specifi c target for the action of ouabain, digitalis and 
endogenous cardiac glycosides. They regulate cardiac contractility by indirect way 
(positive inotropy) [ 31 ,  32 ]. By binding to the extracellular part of Na + /K + -ATPase, 
cardiac glycosides inhibit its activity [ 2 ,  32 ] and increase Na +  concentration. These 
actions precede increased intracellular Ca 2+  concentration [ 31 ,  32 ] which, on the other 
hand, enhances heart contraction [ 31 ,  33 ]. This mechanism is the basis for the usage 
of cardiac glycosides (digoxin) in the therapy of congestive heart failure. Number of 
Na + /K + -ATPase molecules decreases in heart failure, but also in some other disorders 
as for example, obesity [ 34 ,  35 ]. Cardiomyocytes of patients with heart failure are more 
sensitive to effects of cardiac glycosides [ 34 ,  36 – 39 ]. Rathore et al. [ 40 ] reported that 
higher serum digoxin concentrations are associated with increased mortality in patients 
diagnosed with heart failure. That is why, as explained in further discussion, cardiac 
glycosides are known for their narrow therapeutic window.  

2.3     Regulation of Na + /K + -ATPase Function in Physiological 
and Pathophysiological Conditions 

 Na + /K + -ATPase activity can be regulated by hormones and environmental factors 
through: gene expression, traffi cking of the newly synthesized enzyme subunits, and 
phosphorylation. The fi rst mechanism affects de novo Na + /K + -ATPase synthesis or 
degradation through regulation of gene transcription [ 1 ,  41 – 45 ]. Second critically 
important step in regulatory process is the synthesis of subunits of Na + /K + -ATPase and 
their translocation to the plasma membrane from intracellular stores [ 22 ,  46 ,  47 ]. 
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 Regulation of Na + /K + -ATPase activity can be achieved as well through direct 
effects on the kinetic behavior of the enzyme located in the membrane. This is a 
short-term regulation, accomplished within minutes to hours. It is realized via pro-
tein kinase A (PKA), protein kinase C (PKC), protein kinase B (PKB), or cGMP- 
dependent protein kinase (PKG) phosphorylation [ 1 ,  39 ,  48 – 50 ]. Activation of PKA 
and PKC leads to modulation of Na + /K + -ATPase activity in a tissue- and species- 
specifi c manner. PKA of the cardiomyocytes is one of the principle molecules 
involved in sympathetic innervations. After β adrenergic receptors activation, signal 
is transduced through cardiac-specifi c isoform of phosphoinositide 3-kinase (PI-3 
kinase), p100γ [ 49 ]. PKA is associated with its intracellular domain. It breaks down 
cAMP molecule and controls the activity of Na + /K + -ATPase through phospholem-
man phosphorylation. However, regulation of Na + /K + -ATPase through this third 
mechanism is an issue of intensive research with, currently, very controversial 
results, conclusions and opinions [ 38 ,  39 ,  50 ,  51 ]. 

 Phospholemman (FXYD1 protein) is regulated through activity of PKA and PKC. 
Dynamic interaction between protein kinases, phospholemman, and Na + /K + -ATPase 
controls the intracellular concentration of Na + . Unphosphorylated phospholemman 
inhibits Na + /K + -ATPase, while phosphorylated phospholemman relieves this inhibi-
tion. It is an immediate response, activated by sympathetic innervations, the fact fully 
coherent with previously mentioned detail that PKA is involved in short-term regula-
tion. Hyperphosphorylation of phospholemman through PKA activity enhances the 
activity of Na + /K + -ATPase and prevents Na +  overload during normal, physiological 
response to increased heart rate, as for example in stress [ 52 ]. On the other hand, it 
was shown that blockade of β adrenergic receptor has benefi cial effect for patients, 
owing to reduction in PKA activity. One of the supposed regulatory mechanisms is 
almost completely opposite to previously described one. Namely, it is suggested, by 
using animal models and isolated cardiomyocytes that Na + /K + -ATPase can be regu-
lated by glutathionylation. It is a form of a reversible oxidative modifi cation in which 
the glutathione (GSH) forms a disulfi de bond with β1 subunit of Na + /K + -ATPase and 
subsequently inhibits it [ 53 ]. This is caused by PKA activation and “mediated by the 
activation of PKC and nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase in a downstream pathway shared with angiotensin II (Ang II)” [ 53 ]. Blockage 
of β adrenergic receptors, decreases the activity of PKA in this model, reduces glu-
tathionylation and stimulates the activity of Na + /K + -ATPase [ 53 ].  

2.4     Na + /K + -ATPase and Intracellular Signaling 

 Although Na + /K + -ATPase is generally considered a non-receptor membrane molecule, 
it can serve and act in certain pathways as a signal transducer [ 54 ]. Lower doses of 
ouabain (non-inhibitory doses) after binding to Na + /K + -ATPase trigger signaling 
that involves inositol 1,4,5-trisphosphate receptor (IP3R) [ 54 – 56 ]. Activation of 
IP3R results in increase of intracellular Ca 2+  [ 54 ,  55 ] and activates the pleiotropic 
transcriptional factor nuclear factor kappa B (NF-κB) [ 56 ]. NF-κB has dual 
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potential effect on cardiomyocytes. As a part of TNF-α pathway, it mediates 
detrimental effects of TNF-α on cardiomyocytes. On the other hand, data on phar-
macologic inhibition of NF-κB indicate that it could be involved in cardioprotective 
mechanisms during ischemic preconditioning of the myocardium [ 57 ]. Another 
common intracellular pathway activated by ouabain-related inhibition of Na + /K + -
ATPase is PI3K. PI3K phosphorylates membrane phospholipid and generates the Akt 
kinase (protein kinase B). PI3K/Akt signaling pathway has antiapoptotic activity in 
cardiomyocytes. However, the net effect of proapoptotic and antiapoptotic properties 
of ouabain remains to be elucidated. 

 From the pathological and clinical point of view, control of Na + /K + -ATPase is of 
essential importance for the therapy of heart failure, one of the leading causes of 
death in modern world. Inhibition of Na + /K + -ATPase exerts the positive inotropic 
effect, but at the same time is associated with known mechanisms of cardiomyo-
cytes cell death, which is the major concern in the application of cardiac glycosides. 
New studies offer promising and exciting results. It was shown that inhibition of 
Na + /K + -ATPase could be achieved simultaneously with the activation of another 
ATPase important for cardiomyocytes preservation and contractility, SERCA (iso-
form SERCA2a) [ 58 ]; SERCA structure, function, and role of Na + /K + -ATPase and 
SERCA in heart failure are explained in the following sections.   

3     SERCA Proteins: Structure, Isoforms, and Function 

3.1     Structure of SERCA 

 Sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) is a 110 kDa integral membrane 
protein and belongs to P-type family of ion pumps, which also includes plasma mem-
brane Ca 2+ -ATPase (PMCA), Na + /K + -ATPase, H + -ATPase, and K + -ATPase [ 59 ,  60 ]. It 
is the only active transporting pump located on the membranes of the sarcoplasmic 
reticulum (SR) [ 61 ]. In vertebrates there are three main different forms of SERCA 
pumps (SERCA1, 2, and 3), encoded by ATP2A1, ATP2A2, and ATP2A3 genes, 
located on three different chromosomes (chromosome 16, 12, and 17). These genes 
produce more than ten isoforms by alternative splicing [ 60 ,  62 – 64 ]. These isoforms 
are highly conserved in structure, with 75 % or more homology between them [ 60 ]. 
Besides its role in coding the SERCA2 protein, the ATP2A2 gene is associated with 
certain conditions such as Darier’s disease and Acrokeratosis verruciformis [ 65 ].  

3.2     Isoforms of SERCA 

 SERCA1 has two main isoforms, SERCA1a and 1b, expressed in adult fast-twitch 
skeletal muscles (1a) and fetal tissues (1b). The main form of SERCA in cardiac 
muscle cells is the SERCA2 which has four isoforms (a, b, c, and d) [ 62 ]. SERCA2a, 
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also known as “muscle specifi c isoform”, is expressed in cardiac muscle cells, slow- 
twitch skeletal muscles and smooth muscle cells. SERCA2b is a ubiquitous form 
present in muscle, but also in non-muscle cells [ 60 ]. The existence of SERCA2c 
protein was demonstrated in the heart [ 66 ] and its mRNA was also found in hema-
topoietic cells [ 67 ]. In humans, SERCA3 includes fi ve isoforms (SERCA3b, 3c, 3d, 
3e, and 3f) in addition to the species-unspecifi c SERCA3a, making a total of six 
isoforms. These isoforms are mostly expressed in non-muscle cells [ 60 ,  62 ], but 
recent evidence suggest cardiac expression of certain isoforms, such as SERCA3d 
and SERCA 3f, which are only present in humans [ 62 ,  68 ]. In summary, in human 
cardiomyocytes six isoforms have been detected so far: SERCA2a, SERCA2b, and 
SERCA2c, as well as SERCA3a, SERCA3d, and SERCA3f with specifi c intracel-
lular localization [ 61 ].  

3.3     Functions of SERCA 

 Contraction is the main characteristic of muscle cells and it is mediated by calcium 
ions. The main intracellular depot of Ca 2+  is the sarcoplasmic reticulum (SR), a mem-
branous network present in muscle cells, able to sequester and store millimolar 
amounts of calcium [ 60 ]. By releasing Ca 2+  from its cisternae into the cytosol, it initi-
ates the process of muscle cell contraction. Most of the Ca 2+  responsible for muscle 
contraction comes from the SR and it is released during cardiac systole by the process 
of Ca 2+  induced Ca 2+  release, where an increase of cytoplasmic Ca 2+  concentration 
produced by the L-type Ca 2+  current is the main trigger for Ca 2+  from SR [ 69 ]. The 
ryanodine receptor (RyR) located on SR, serves as a Ca 2+  release channel through 
which Ca 2+  enters the cytosol. A key factor that controls the level of SR Ca 2+  levels is 
the activity of SERCA. By reuptaking the Ca 2+  back to SR, it lowers the cytosolic 
calcium levels and replenishes the Ca 2+  stores in SR, thus enabling the relaxation and 
new contraction of muscle cells in a repeated contraction-relaxation cycles [ 60 ]. 
SERCA and the role of Ca 2+  ions in the muscle contraction was fi rstly described 
almost simultaneously by two different laboratories in two different articles: that of 
Ebashi and Lipmann in 1962 and Hasselbach and Makinose in 1961 [ 70 ,  71 ].  

3.4     Regulation of SERCA Function in Physiological 
and Pathophysiological Conditions 

 The activity of SERCA pumps is regulated by certain proteins such as sarcolipin 
and phospholamban. Sarcolipin, which is mainly localized in the atrium, inhibits 
the expression of SERCA1a and SERCA2b, while phospholamban suppresses 
the function of SERCA protein and is highly expressed in ventricular muscle. 
Thus, these two intrinsic membrane proteins expressed in the SR, lower the SERCA 
affi nity for Ca 2+  [ 64 ,  72 ]. Phospholamban is in dynamic interaction to SERCA2a. 
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It is a 52 amino acid protein of the sarcoplasmic reticulum and exists in monomeric and 
pentameric form. The monomeric form is a key regulator of the SERCA activity. 

 The SERCA pumps represent key elements that are necessary for the normal 
contractility of the human myocardium. Contractile dysfunction which is present 
in certain conditions such as cardiac hypertrophy and heart failure can be attrib-
uted to the reductions in SERCA activity [ 73 ]. Reduced expression of SERCA2a 
(predominant cardiac isoform) contributes to the abnormal contractility of the 
myocardium and is present in several cardiac diseases including ischemic heart 
disease and certain forms of cardiomyopathies, which tend to progress to heart 
failure [ 72 ]. Patients with end stage heart failure of different etiologies show 
decreased levels of SERCA2a mRNA and SERCA2a protein, but certain studies 
reported unchanged levels of SERCA, while others only reported alterations in 
phospholamban status. 

 The important role of SERCA pumps has been studied extensively in numerous 
studies on transgenic animals that overexpress SERCA or are defi cient in SERCA 
pump isoforms in cardiomyocytes [ 60 ]. Overexpression of the predominant cardiac 
SERCA isoform (SERCA2a) in experimental transgenic animals resulted in 
increased maximal rates of contraction and relaxation of the heart, without any 
structural or functional abnormalities and with a normal life span.   

4     Cardiomyocytes Ultrastructure and Localization 
of ATP-ases 

 The further discussion on ATPases and their functional, clinical, and pathological sig-
nifi cance should be preceded by brief resume of cardiomyocytes structure. 
Cardiomyocytes are principal, contractile cells of the myocardium and working force 
of the cardiac pump. On a light microscopy level, cardiomyocytes resemble striated 
muscle with alteration of dark (A) and light (I) bands. Cardiomyocytes consist of even 
smaller subunits called myofi brils which consist, further, of series of basic structural, 
organizational and functional units—sarcomeres (Fig.  7.1 ). Each sarcomere contains 
thick myofi laments made of myosin II in the central region, and thin F-actin myofi la-
ments associated with Z lines, at the end of sarcomeres (Fig.  7.1 ). Besides F-actin, thin 
fi laments contain troponin and tropomyosin. Organization of thick and thin fi laments 
within sarcomeres and association of sarcomeres into myofi brils form a morphological 
pattern of cardiac muscle as a cross-striated muscle. A bands are formed of myosin fi la-
ments with portions of actin fi laments in-between, while I bands contain actin myofi la-
ments. Running through the midlines of I bands are Z lines. The position of myofi laments 
is controlled and preserved during each myocardial cycle by a network of cytoskeletal 
and cytoskeleton-associated proteins. These proteins form supportive mesh that 
protects sarcomeres from mechanical stress.

   Accessory proteins, components of this network are titin, nebulin, α actinin, 
myomesin, desmin, αB-kristalin, plectin, dystrophin, tropomodulin, and ankyrin. 
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Desmin is an intermediate fi lament that forms lattice surrounding the Z lines of 
sarcomeres. It is linked to Z lines via plectin and stabilizes myofi brils and anchors 
them to sarcolemma. Ankyrin, αB-kristalin, dystrophin, dystroglycan complex, and 
sarcoglycan complex form the attachment area of actin fi laments to sarcolemma and 
laminin of the external (basal) lamina at the specifi c structural unit called costamere 
[ 74 ]. Association of costameric proteins with Na + /K + -ATPase is important for sur-
vival of cardiomyocytes as explained in following sections. 

 Myofi brils are surrounded with cisternae of smooth endoplasmic reticulum—
sarcoplasmic reticulum. Sarcoplasmic reticulum is a network of longitudinal and 
transversal cisternae. Longitudinal cisternae parallel myofi brils, while transversally 
oriented cisternae (terminal cisternae) are in a form of membranous sacs in close 
proximity and laterally to T tubules. T tubules are invaginations of the plasma mem-
brane—sarcolemma. Association of terminal cisternae and T tubules form diads. 
Diads are located at the level of Z lines. 

 Cardiomyocytes are interconnected with intercalated disks, junctional com-
plexes that consist of fasciae adherentes, desmosomes, and gap junctions. 
Intercalated disks are located at the level of Z lines. Z lines consist of α-actinin 
which anchors actin to Z lines. Z lines also contain desmin, nebulin, titin, and plec-
tin. Sarcoglycan, dystroglycan, and dystrophin are also components of intercalated 
disks. For more details on cardiomyocytes structure, readers are referred to excellent 
literature [ 75 – 81 ]. 

  Fig. 7.1    Structure of cardiomyocytes (Transmission Electron Microscopy (TEM); original mag-
nifi cation 3500×, bar = 10 μm).  Dark bands —A bands, contain myosin and actin (A);  light bands —
I bands with actin myofi laments (I); Z lines ( black arrowheads ); H band and M line— white 
arrowhead  (H band is a space between ends of actin fi laments inserted in between myosin fi la-
ments and it contains creatine kinase; M line contains myomesin that links myosin fi laments);  IC  
intercalated disks (Courtesy of Aleksandar Djordjevic, Department of Chemistry, Faculty of 
Sciences, University of Novi Sad and NanoBiomedicine team)       
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4.1     Localization of Na + /K + -ATPase and SERCA 

 Na + /K + -ATPase is a transmembrane protein, and hence its primary localization 
is sarcolemma (Fig.  7.2 ). However, the distribution of Na + /K + -pump isoforms in 
cardiomyocytes is not equal: α2- and α3-subunits are located mainly in T tubules 
(in close proximity to sarcoplasmic reticulum), while α1-subunits are more uniformly 
distributed throughout the sarcolemma [ 76 ,  77 ]. Alpha1, α2 and β1 subunit of 
Na + /K + -ATPase are present at the level of intercalated disks [ 76 ,  78 ]. In muscle cells, 
SERCA pumps are localized in the SR (SERCA1, SERCA2a). Immunohistochemical 
studies on other cells showed that SERCA2 and SERCA3 are mostly localized 
inside the network of endoplasmic reticulum, but also in the outer membrane of the 
nuclear envelope [ 79 ]. Additional and more detailed studies on human cardiomyo-
cytes showed that SERCA2a and SERCA2b have a uniform pattern of distribution 
in the sarcoplasmic reticulum, although certain differences between them still exist. 
For example, SERCA2a is in the regions located close to the T-tubules and to 
longitudinal sarcoplasmic reticulum, while SERCA2b appears to be mostly local-
ized in the regions close to T-tubules only. SERCA2c isoform is in close proximity 
to the sarcolemma and in intercalated disks, as well as SERCA3a. SERCA3d and 
SERCA3f proteins are located in perinuclear and subplasmalemmal regions of 
human cardiomyocytes [ 62 ].

5         ATP-ases and Mechanisms of Cardiomyocyte Cell Death 

 The insuffi ciency of membrane ionic transport systems is associated with the 
increased rate of cell death. The fi rst reason for the Na + /K + -ATPase and SERCA 
insuffi ciency is the lack of ATP and derangement of the aerobic respiration or 

  Fig. 7.2    Na + /K + -ATPase 
in cardiomyocytes of 
interventricular septum 
(immunohistochemical 
staining for Na + /K + -
ATPase, original 
magnifi cation 400×, 
bar = 100 μm)       
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mitochondrial oxidative phosphorylation. The most frequent cause of cardiomyocytes 
injury due to a lack aerobic metabolism and ATP defi ciency is ischemic heart 
disease with its main entities: angina pectoris, acute myocardial infarction, chronic 
ischemic heart disease and sudden cardiac death. Disruption of the oxidative phos-
phorylation itself provokes series of mutually connected intracellular events leading 
to disturbance of other three processes vital for the preservation of the cell, namely: 
protein synthesis, cell membrane integrity and genetic material preservation. 
The oxidative phosphorylation blockage with the decreased ATP reserves and 
insuffi ciency of Na + /K + -ATPase leads to changes in the concentration gradient of 
Na +  and K +  ions. There is an effl ux of K +  ions, and infl ux of Na +  ions. Since water 
isoosmotically follows potassium, intracellular edema and hydropic swelling are 
progredient. 

 These changes are reversible up to a certain point. Hydropic swelling of the cell 
is a reversible change [ 80 ]. Dilatation of cisternae of sarcoplasmic reticulum and 
mitochondria due to lack of ionic and osmotic disbalance are main morphological 
characteristic of reversible injury and illustrate the fact that the disruption of the 
structural integrity and infl ux of water is not an exclusive characteristic of the 
plasma membrane, but membranes of organelles are affected as well, hence the dila-
tation of sarcoplasmic reticulum and mitochondria. 

 Reduced cellular respiration is associated with the decrease of intracellular ATP, 
but also with the increase of AMP and the activation of anaerobic glycolysis and 
enzymes phosphofructokinase and phosphorylase. Lactic acid, the side product of 
this metabolic pathway, is formed. A presence of lactic acid leads to intracellular 
acidosis. Low pH values interfere with the normal functioning of intracellular 
enzymes essential for the synthesis of structural proteins and phospholipids, which 
ultimately leads to further disruption of cell membranes and membranes of the 
organelles. 

 The control of Ca 2+  ions infl ux is affected by disruption of membranes and energy 
depletion. Namely, the Ca 2+  concentrations inside cardiomyocytes cytoplasm are 
regulated at very persistent level of 30–100 nM during the diastole. This is achieved 
by the activity of sarcolemmal Ca 2+ -ATP-ase and Na + /Ca 2+  exchanger as well as the 
activity of SERCA and Ca 2+  buffering molecules [ 81 ,  82 ]. Decreased amount of ATP 
is followed by insuffi ciency of the Ca 2+ –Mg 2+ -ATP-ase and sarcolemmal Na + /Ca 2+  
exchanger (NCX). 

 Namely, metabolic acidosis initiates Na + /H +  exchange also, with transport of H +  
out of the cell. H +  is exchanged for Na + , transported into the cell [ 80 ]. High concen-
tration of sodium activates NCX, contributing to increase in intracellular Ca 2+ . 
Calcium ions are also released from sarcoplasmic reticulum. We have already 
described this process in the section on SERCA structure and function. Namely, the 
ryanodine receptor (RyR) located on SR, serves as a Ca 2+  release channel through 
which Ca 2+  enters the cytosol. 

 Recently, a new specifi c form of transient intracytoplasmic infl ux of Ca 2+  was 
described, called Ca 2+  sparks. Ca 2+  sparks occur when RyR opens spontaneously 
and release a small amount of Ca 2+  locally [ 82 ,  83 ]. Ca 2+  sparks are present in both 
systole and diastole. During diastole Ca 2+  sparks are independent from Ca 2+  infl ux 
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through sarcolemma associated molecules [ 82 ]. During excitation-contraction 
coupling and systole, openings of L-type Ca 2+  channel induces release of Ca 2+  into 
cytosol which resemble thousands of Ca 2+  sparks triggered by this process [ 82 ]. 

 Insuffi ciency of Na + /K + -ATPase and NCX provoke ample and spontaneous 
diastolic Ca 2+  sparks and cause arrhythmias and sudden cardiac death [ 84 ]. On the 
other hand, control of calcium ions through SERCA mechanism and their transport 
back to lumens of the SR cisternae is insuffi cient due to the lack of ATP. 

 Increase of the free cytosolic calcium ions activate enzymes leaking through the 
damaged organelles membranes. Activated phospholipases (phospholipase A2) and 
proteases further damage the membrane and cytoskeleton. Costameric ankyrin dis-
sociates from its attachment [ 84 ] with severe disturbance of cytoskeleton and 
degeneration of myofi brils. At the same time, α1 and α2 subunits of Na + /K + -ATPase 
are detached from cytoskeleton, namely ankyrin-B. These events are directly 
 provoked by infl ux of Ca 2+  and activation of calpain in the setting of complex 
intracellular changes and metabolic acidosis [ 85 – 87 ] and are proved to augment 
Na + /K + -ATPase insuffi ciency. 

 Infl ux of calcium ions, also, leads to irregular and dissociated contraction of the 
cardiomyocytes with hypercontraction of sarcomeres and contraction band necrosis 
(Fig.  7.3 ). This phenomenon called the calcium paradox is a consequence of uncon-
trolled infl ux of calcium ions into energy-depleted cardiomyocytes. It is associated 
with the ischemic damage of the cell. That is why it could be found at infarction area 
and at the periphery of infarcted areas where it is a part of the ischemia-reperfusion 
sequence [ 85 – 88 ].

   Nevertheless, it is not unique for the ischemic damage, but other forms of 
injury agents provoke it too by mechanisms similar to aforementioned mecha-
nisms. It is also observed in the donors’ hearts [ 89 ]. It is observed in damages 
activated through ROS generation, for example lipid peroxidation associated with 
doxorubicin application [ 90 ]. 

 In summary, defects in oxidative phosphorylation and ATP deprivation induce 
complex intracellular alterations with ionic and osmotic disbalance, hydropic 

  Fig. 7.3    Structure of 
cardiomyocytes 
(Transmission Electron 
Microscopy (TEM); 
original magnifi cation 
5600×, bar = 5 μm). 
Hypercontraction of 
sarcomeres (Courtesy of 
Aleksandar Djordjevic, 
Department of Chemistry, 
Faculty of Sciences, 
University of Novi Sad and 
NanoBiomedicine team)       
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swelling of the cell, and dissociated contraction. Balances of sodium, potassium and 
calcium ions are interconnected and lead to a same result. 

 Such observations are recently confi rmed in a sophisticated model of a knock-in 
mouse in which the phospholemman residues phosphorylated by PKC and PKA have 
been mutated with reduction of Na + /K + -ATPase. This exacerbated Na +  overload and 
resulted in profound contractile dysfunction [ 52 ]. 

 Disruption of lysosome membranes leads to leakage of lysosomal enzymes and 
their activation in the conditions of low intracellular pH and results in tissue digestion 
and necrosis. 

 Mitochondrial damage leads to further reduction or blockage of the oxidative 
phosphorylation, switch from aerobic into anaerobic metabolism and ceased syn-
thesis of phospholipids, which subsequently affl icts integrity of all membranes. 
During ischemia there is an increase of reactive oxygen species (ROS). They cause 
lipid peroxidation of cardiolipin and damage the electronic transport chain, harming 
further oxidative phosphorylation. 

 During the mitochondrial injury, cytochrome c is released from the disrupted 
inner membrane of mitochondria, through mitochondrial permeability transition 
pores, which resembles potential for the activation of the inner apoptotic pathway. 
Endonucleases are also activated by uncontrolled calcium ions infl ux during the cell 
injury. In concordance with this observation is the fact, that all these changes are 
followed with the translocation of annexin A5 to the sarcolemma [ 91 ] and activation 
of caspases 3 and 8 [ 80 ,  92 ] which is consistent with apoptotic cell death. 
Mitochondrial injury has a potential to activate autophagy [ 93 ]. Regardless of a 
specifi c form of cell death, all these changes are followed by nuclear degeneration: 
karyolysis, karyopiknosis, and karyorrhexis, indicating irreversible changes. These 
changes are observed in endothelial cells as well, so the myocardial tissue is 
deprived of oxygen and glycose with progression of defects and absence of protec-
tive mechanisms. Once started, cellular injury is obviously a vicious circle that 
could hardly be stopped. After this summary, the fi rst question is what type of cell 
death is actually provoked with this sequence of processes? 

 According to contemporary opinions on cardiac muscle cell death [ 89 ,  90 ,  94 ], 
two concurrent mechanisms of myocardial cell death persist in different models: 
apoptosis and necrosis. However, considering the presented mechanism of cellular 
injury, it is clear that each cellular damage has the potential for both necrosis and 
apoptosis, and intermediate forms of cell death could also be expected. 

 There are at least two more aspects that deserve to be mentioned. Reduction of the 
content of Na + /K + -ATPase itself is proved to have similar effect as ATP depletion. 
Decrease in synthesis, expression of mRNA, quantity or activity of Na + /K + -ATPase 
or its subunits is observed in cardiovascular diseases including heart failure, various 
forms of cardiomyopathies, hypertension, hypertrophy or obesity. Nevertheless, in 
the analysis of this particular question, we should always keep in mind that the 
decrease may be primary, but also a consequence of serial changes in the synthetic 
potential of the already injured cell, where the injury is provoked by hypoxia, 
ischemia, volume- or pressure-overload, reactive oxygen species (ROS), or complex 
genetic disorders. 
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 Reduction of α1 subunit in an animal model of hypertension induced increased rate 
of myocardial cell death. However, the number of cardiomyocytes was higher. It was 
confi rmed that although the reduction of α1 subunit induced increase in cell death, it 
stimulates expression of proliferative marker Ki67 in cardiomyocytes as well as 
increase in number of c-kit positive progenitor cells [ 95 ]. High glucose level is associ-
ated with reduced Na + /K + -ATPase activity and increased proapoptotic machinery: 
raised caspase-3 activity and Bax, as well as down-regulated Bcl-2 expression [ 96 ]. 
On the opposite, insulin has a protective effect and prevents apoptosis of cardiomyo-
cytes as confi rmed in the setting of digoxin treated heart failure [ 97 ]. 

 Resveratrol, active principle of grape and red wine, has a cardioprotective effect 
in the model of ischemia-reperfusion injury. It increases the activity of both Na + /
K + -ATPase and Ca 2+ -ATPase, increasing at the same time viability of cardiomyo-
cytes. It reduces apoptotic cell death by increase in Bcl2 and decrease of Bax and 
caspase-3, reduces intracellular calcium and balance the activity of reactive oxygen 
species (ROS) [ 98 ]. Stable expression of Na + /K + -ATPase is essential for the survival 
of cardiomyocytes after ischemia-reperfusion injury in ouabain-preconditioning 
model [ 99 ]. 

 Third question is relation of ouabain and ouabain-like cardiac glycosides, includ-
ing digoxin, to cell death phenomenon. Cardiac glycosides have been used for the 
treatment of heart failure because of their capabilities of inhibiting Na + /K +  ATPase. 
This inhibition raises intracellular Na +  and attenuates Ca 2+  extrusion via the Na + /
Ca 2+  exchanger, causing intracellular Ca 2+  elevation and empowering contractile 
strength of the heart [ 100 ]. The question is if the therapeutic doses of ouabain and 
digoxin induce and increase cardiomyocyte cell death by inhibition of Na + /K + -
ATPase in addition to positive inotropic effect? 

 It was shown that ouabain induces increased frequency of cardiomyocyte cell 
death by both apoptosis and necrosis, and reduced cell viability. It simultaneously 
activates antiapoptotic mechanism of PI3K/Akt, which is, however, insuffi cient to 
block effects of proapoptotic ouabain activity [ 101 ]. In addition to positive inotropic 
effect and elevated oxygen consumption, inhibition of Na + /K + -ATPase by glyco-
sides, impair mitochondrial energetics and cause oxidative stress especially in con-
ditions of increased workload. 

 The studies on guinea pig cardiomyocytes showed that elevated intracellular Na +  
induced by glycosides treatment caused mitochondrial Ca 2+  defi ciency by activating 
the mitochondrial Na + /Ca 2+  exchanger, the major mitochondrial Ca 2+  effl ux path-
way. Furthermore, it is associated with signifi cantly decreased NADH level and 
increased reactive oxygen species (ROS) accumulation [ 102 – 105 ]. 

 Li et al. proposed that Na + /K + -ATPase inhibition such as by cardiac glycosides 
causes mitochondrial oxidative stress and increased ROS production through two 
separate pathways. In fi rst way, Na + /K + -ATPase inhibition blunt mitochondrial Ca 2+  
accumulation, that reduces NADH production and therefore ROS removal. And in 
second way, Na + /K + -ATPase inhibition increasing intracellular Ca 2+  and ATP 
hydrolysis, which produces a large amount of ADP that stimulates mitochondrial 
respiration and therefore ROS production [ 100 ]. 

 The interrelation of described processes causes that many different sources of 
cell injury produces similar changes in myocardial tissue. Intracellular edema, 
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swelling, vacuolization and hypercontraction of sarcomeres are common signs of 
injury in ischemic heart disease. They are present in reversible form during extra-
corporeal long-term preservation of donors’ hearts in the procedure of heart trans-
plantation [ 94 ]. Lipid peroxidation of membranes in doxorubicin toxicity model has 
the same effect [ 90 ]. Damage of intracellular membranes by advanced glycation 
end products and ROS, due to NADH oxidase activity, in diabetes has also the same 
effect. As resumed in following section, hypertrophy and heart failure of different 
origin include the same sequence of processes.  

6     Molecular Mechanisms of Heart Failure 

 Heart failure (HF) remains a major cause of morbidity and mortality in the developed 
world. In the population under the age of 65, HF prevalence approaches 1 % [ 106 ]. 
Over the last decade, important progress has been made in understanding of various 
intracellular and molecular mechanisms of HF. Heart failure (congestive heart 
failure—CHF) is a complex, chronic and progressive disorder, although acute forms 
of heart failure persist in association with sudden volume overload, acute myocardial 
infarction, valvular dysfunction or compromised ventricular fi lling and retention of 
blood in peripheral circulation. It is a common endpoint of several pathophysiologi-
cal pathways included in different forms of cardiomyopathies, ischemic heart 
disease, hypertension or valvular heart disease. 

 Heart failure includes forward and backward component, systolic and diastolic 
insuffi ciency. Systolic dysfunction comes from reduced myocardial contractility most 
frequently due to ischemic heart disease, hypertension or dilated  cardiomyopathy. 
Diastolic dysfunction is caused by inability of ventricles to relax and accept suffi cient 
volume of blood during diastole in conditions like hypertrophy of left ventricle, 
myocardial fi brosis or constrictive pericarditis. The end result of systolic and diastolic 
dysfunction is reduced cardiac output, forward component of heart failure, as well as 
retention of blood in venous circulation—backward component. 

 Heart failure due to conditions with pressure or volume overload is preceded by 
hypertrophy. Hypertrophy is a compensatory mechanism aimed to enhance contrac-
tile strength of the myocardium. On a molecular level, hypertrophy is achieved 
trough intensive synthesis of new myofi laments and division of mitochondria, 
as well as accumulation of other organelles. Extensive synthesis of myofi laments’ 
proteins is followed with their intensive association into new sarcomeres, and hence 
the size of cardiomyocytes is raised. Two forms of hypertrophy exist. Concentric 
hypertrophy develops with pressure overload (systemic hypertension, chronic pul-
monary hypertension or valvular disease, i.e., aortic stenosis). In this form of hyper-
trophy, new sarcomeres are arranged parallel, in a fashion that augments transversal 
cardiomyocyte diameter [ 107 ]. 

 Volume overload stimulates another form of hypertrophy with deposition of 
newly synthesized sarcomeres along the longitudinal axis of cardiomyocytes and 
dilatation of ventricles. The gene expression in hypertrophy is changed towards 
activation of c-myc, c-fos, jun, and EGR1 as well as towards the activations of 
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fetal programs. For example, β-myosin heavy chains are synthesized instead adult 
forms of α-myosin heavy chains [ 57 ]. Atrial natriuretic peptide (factor) (ANP) is 
synthesized in ventricular cardiomyocytes in addition to physiological synthesis 
in atrial myoendocrine cells. These changes have compensatory effect up to a 
certain point. For example, Ca 2+ /calmodulin-dependent protein phosphatase 
(calcineurin) is shown to have a role in inducing hypertrophy. It is activated to 
dephosphorylate the transcription factor NF-A3, enabling its translocation to the 
nucleus and enhance hypertrophic remodeling [ 108 ]. However, calcineurin, in this 
setting, activates apoptotic signaling pathways at the same time and is responsible 
for the increased rate of cardiomyocytes’ cell death. 

 More important, the enlargement of cardiomyocytes is not followed by the proper 
extension of capillary network. The capillary-to-cardiomyocyte ratio, which should 
be at least 1:1 in normal myocardium, is reduced, while the distance between capil-
laries and cardiomyocytes is increased. Hypertrophic myocardium is in increased 
need for oxygen consumption and there is a profound discrepancy between the 
oxygen and nutrients available and oxygen and nutrients needed. That is why most 
cardiomyocytes stay without nutritive support and enter some form of reversible 
injury or cell death as described above through the aforementioned mechanisms. 
This is followed by the decrease in the number of functional cardiomyocytes and 
fi brosis, since the regeneration of cardiomyocytes from circulating and cardiac pro-
genitor cells or dividing cardiomyocytes is suppressed and cell death prevailed 
[ 57 ,  90 ,  109 ]. With the development of this irreversible damage of cardiomyocytes 
and fi brosis, cardiac hypertrophy loses its compensatory potential, sliding to heart 
failure with contractile dysfunction and dilatation of chambers. 

 In viable cardiomyocytes, synthesis of all proteins including contractile proteins 
and enzymes is altered, leading to reduced synthesis, synthesis of dysfunctional 
proteins, structurally anomalous proteins or nonspecifi c and less functional isoforms 
of proteins [ 110 ,  111 ]. Besides, duration of heart failure in each patient, nature and 
severity of the injury that caused heart failure, and dynamics of heart failure develop-
ment could affect fi ndings of molecular and cytological research. These facts should 
be kept in mind in the interpretation of results on Na + /K + -ATPase and SERCA 
expression, presented in the following chapters.  

7     NA + /K + -ATP-ase and Heart Failure 

 Before the consideration on a linkage between Na + /K + -ATPase and heart failure, we 
will summarize briefl y functions of Na + /K + -ATPase. Na + /K + -ATPase (Na + /K + -
pump) is an enzyme located in the cell membrane which transports three sodium 
ions outside of the cell and two potassium ions into the cell, generating ion gradients 
necessary for the maintenance of the membrane potential [ 112 ]. Na + /K + -pump has 
been found in almost all animal tissues, including human myocardium. For its 
proper functioning, this enzyme uses the energy of the hydrolysis of ATP molecule. 
Na + /K + -ATPase indirectly modulates the myocardial contractility by controlling the 
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function and driving force for Na + /Ca 2+  exchanger (NCX) [ 113 ]. NCX functions as a 
membrane transporter for extrusion of Ca 2+  outside of the cardiomyocytes, at the 
same time transferring three Na +  into the cell [ 114 ]. Activity of Na + /Ca 2+  exchanger 
greatly depends on intracellular Na +  concentration, and thus Na + /K + -ATPase activity: 
even a slightly elevated Na +  concentration limits the function of NCX which extrudes 
less Ca 2+ , resulting in higher intracellular Ca 2+  concentration. Cardiac glycosides, 
which are used in the treatment of heart failure, act as Na + /K + -ATPase inhibitors by 
the aforementioned mechanism to evince their inotropic effect [ 115 ]. 

 Na + /K + -ATPase is composed of three subunits: α, β and γ-subunit. Na + /K + -
ATPase α-subunit contains the binding sites for ions (Na +  and K + ), ATP and cardiac 
glycosides, and also has catalytic ability for ATP molecule. Smaller, β-subunit is 
important for the transport of synthesized Na + /K + -ATPase to the plasma membrane, 
while it also modulates ATPase activity [ 29 ]. Na + /K + -ATPase γ-subunit (also called 
FXYD) is the latest subunit discovered. FXYD represents a family of proteins asso-
ciated with Na + /K + -ATPase which modulates the function of this enzyme [ 26 ]. 
Cardiomyocytes contain only one form of FXYD protein called phospholemman, 
which regulates the function of Na + /K + -ATPase. Namely, in unphosphorylated state, 
phospholemman inhibits Na + /K + -ATPase by reducing the affi nity for intracellular 
Na + , while phosphorylated phospholemman disinhibits Na + /K + -ATPase, returning it 
to its active state [ 116 ,  117 ]. 

 Cardiomyocytes contain three α (α1–α3) and two β (β1–β2) isoforms of Na + /K + -
ATPase subunits. Measurement showed that Na + /K + -ATPase α1-subunit is predomi-
nantly present in cardiomyocytes, while Na + /K + -ATPase α2- and α3-subunits are 
expressed to a lesser extent [ 118 ]. Early measurements of Na + /K + -ATPase quantity 
showed that the concentration of Na + /K + -pump in normal human ventricular myocar-
dium was approximately 700 pmol/g wet weight [ 119 ]. Heart failure is characterized 
by the elevation of Na +  concentration in human cardiomyocytes but also in animal 
models [ 120 ,  121 ]. There are two possible explanations for this fi nding: reduced Na +  
extrusion (which implies changes in Na + /K + -ATPase) or larger Na +  infl ux (implying 
changes in other Na-pumps, such as Na + /H +  exchanger) [ 122 ]. 

 Different studies have shown that the reduced Na +  extrusion could be the result 
of Na + /K + -ATPase alterations [ 20 ,  34 ]. It was demonstrated that the expression of 
certain Na + /K + -ATPase subunits was diminished in cardiomyocytes obtained from 
human heart failure material. Particularly, α1-subunit expression was found to be 
lower by 38 %, α3-subunit by 30 %, β1-subunit by 30 % and overall Na + /K + -ATPase 
activity was lower by 42 % in heart failure cardiomyocytes, with unchanged levels 
of mRNA [ 20 ,  34 ]. 

 Animal heart failure models showed different results when observing expression 
and activity of Na + /K + -ATPase subunits. Rabbit heart failure model pointed to similar 
results as human heart failure cardiomyocytes, with all α-subunits having lower pro-
tein expression [ 123 ], whereas in rat heart failure model Na + /K + -ATPase α1-isoform 
expression was unchanged, with α2-subunit expression reduced and α3-subunit 
expression increased [ 124 ]. Different structural or functional mechanisms underlie 
the lower Na + /K + -pump activity. Therefore, heart failure in rabbit was characterized 
only by reduced Na + /K + -pump expression with normal Na + /K + -ATPase pumping 
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ability [ 125 ], while certain rat heart failure models showed decreased Na + /K + -ATPase 
pumping ability with normal Na +  affi nity [ 124 ]. 

 Nevertheless, it is still unclear whether Na + /K + -ATPase dysfunction is one of the 
reasons for heart failure, or perhaps compensatory mechanism functioning similarly 
to cardiac glycosides. In their animal model of heart failure, Zahler at al. [ 126 ] indi-
cated that it is more probable that Na + /K + -ATPase expression is reduced during 
early development of myocardial dysfunction and asymptomatic phase of heart fail-
ure, and not being its compensatory mechanism. Since heart failure is a condition 
principally characterized by reduced left ventricle ejection fraction (LVEF), 
Norgaard et al. [ 35 ] showed correlation between decreased LVEF and decreased 
Na + /K + -ATPase concentration in cardiomyocytes. 

 Cardiac glycosides have been in use for the treatment of heart failure for more than 
two centuries. Due to serious toxic effect and narrow therapeutic window, number of 
indications for the use of cardiac glycosides has been minimized. In patients with 
heart failure and atrial fi brillation, cardiac glycosides are recommended for the control 
of ventricular rate in patients intolerable to beta-blocker therapy [ 127 ]. Cardiac glyco-
sides, such as digoxin, exert their positive inotropic effect by inhibiting Na + /K + -
ATPase and increasing Na +  intracellular concentration, which in turn stimulates 
Na + /Ca 2+  exchanger to transport Ca 2+  inside the cell, elevating Ca 2+  availability for 
muscle contraction and thus improving cardiomyocyte contraction force [ 128 ]. 

 During therapeutic digitalization, not all Na + /K + -ATPase receptors are occupied 
by digoxin; it is estimated that the percentage of occupied Na + /K + -ATPase receptors 
is 24–35 % in the human heart [ 119 ,  129 ]. Cardiac glycosides bind to  Na + /K + -
ATPase α-subunit consequently blocking this enzyme. It was generally believed that 
cardiac glycosides had similar affi nity for different Na + /K + -ATPase α-subunits. 
However, studies comparing ouabain’s affi nity for Na + /K + -pump showed that its 
affi nity for α2β1-isoform was two times greater than for α1β1- or α3β1-isoforms 
[ 130 ,  131 ]. Moreover, these studies showed different Na +  affi nity for Na + /K + -ATPase 
isoforms; in one study Na +  affi nity was similar for all enzyme isoforms [ 131 ], while 
the other study showed that the highest affi nity was for α1β1-isoform and the lowest 
for α3β1 Na + /K + -ATPase heterodimer [ 130 ]. 

 Cardiac glycosides may have additional useful roles in the treatment of heart fail-
ure, which do not include Na + /K + -ATPase inhibition, yet their neurohumoral effects. 
Except inhibiting Na + /K + -ATPase in cardiomyocytes, cardiac glycosides also inhibit 
extracardiac Na + /K + -ATPase, thus possibly improving overall hemodynamic and 
restoring bar receptor activity in heart failure patients [ 132 ,  133 ]. Also, in recent 
years it has been proposed that cardiac glycosides may have hormone-like functions, 
by acting on different Na + /K + -ATPase isoforms which in that case may have recep-
tor-like functions [ 134 ]. Such presumption has been supported by the evidence of 
potential antitumorous effect of cardiac glycosides [ 135 ]. Also, it has been shown 
that cardiac glycosides act by inhibiting cell growth and division, stimulate pro-
grammed cell death and release endothelin-1 from endothelial cells [ 134 ]. 

 During the ongoing search for new effective, well tolerable and less toxic inotro-
pic drug, an antibody was developed against the L7/8 extracellular domain 
of the Na + /K + -ATPase α-subunit. This antibody showed not only the inhibition of 

M.M. Labudović Borović et al.



131

Na + /K + -pump, but also several cardioprotective effects against ischemia and 
 reperfusion through PI3K/Akt signaling cascade [ 136 ]. This fi nding may open new 
therapeutic approach in heart failure patients, and also shed a new light on Na + /
K + -ATPase physiologic function.  

8     Downregulation of SERCA in Heart Failure 

 One of the key abnormalities in both human heart failure and experimental models 
of heart failure is abnormal intracellular calcium ion (Ca 2+ ) handling. Before further 
consideration, we will summarize briefl y facts on SERCA function. 

 SERCA plays a pivotal role in both myocardial contraction and relaxation. 
The predominant SERCA isoform in the heart is SERCA2a (97.5 %), although low 
levels of SERCA2b (2.5 %) are also found [ 137 ]. 

 SERCA functions to pump Ca 2+  into the sarcoplasmic reticulum (SR). It returns 
the intracellular Ca 2+  concentration ([Ca 2+ ] i ) to resting levels causing relaxation of 
the cardiomyocyte and replenishment of the SR Ca 2+  store for the next cycle [ 138 ]. 
Alterations in SERCA level affect Ca 2+  homeostasis and cardiac contractility by 
infl uencing Ca 2+  reuptake as well as the expression and activity of other Ca 2+  han-
dling proteins [ 139 ]. 

 The reduced function of SERCA in heart failure is caused by reduced synthesis, 
activity or gene expression. Reduced SERCA-to-phospholamban ratio has the same 
effect. Phospholamban as a major regulator of SERCA2a activity is directly involved 
in development of cardiac disease, including heart failure [ 140 ]. 

 SERCA2 activity is reversibly regulated by phospholamban through cAMP 
dependent phosphorylation [ 137 ,  140 – 143 ]. Dephosphorylated phospholamban is 
an inhibitor of SERCA, while phosphorylation of phospholamban relieves this 
inhibition. 

 Phospholamban activity, itself, is regulated by two phosphoproteins, the inhibi-
tor- 1 of protein phosphatase 1 (PP1) and the small heat shock protein 20. PKA and 
PKC are molecules actively involved in phosphorylation of phospholamban as well. 
In general, the whole Ca 2+  transporting machinery including L-type Ca channels 
and the ryanodine receptor (RyR) is under control of PKA and PKC [ 49 ,  53 ]. 

 Recently, two new molecules have been identifi ed as regulators of SERCA 
activity: SUMO, S100 and the histidine-rich Ca 2+ -binding protein [ 140 ] and 
regucalcin [ 108 ]. It is also established that previously described Ca 2+  sparks or 
precisely controlled diastolic sparks are essential for the normal balance of 
SERCA activity [ 82 ,  83 ]. 

 On experimental heart failure model, it was established that out of six isoforms 
of SERCA expressed in heart, there is decreased expression of transcripts of 
SERCA2a, SERCA3b and 3c, while the expression of SERCA2b and 3a transcripts 
remains unchanged. Although SERCA2a is downregulated in heart failure, it is still 
predominant isoform in cardiomyocytes. 
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 In heart failure in humans, there is a reduction of SERCA2a and an increase of 
SERCA3f. SERCA3f is proved to induce protein synthesis anomalies, endoplasmic 
reticulum stress, and apoptosis in cell cultures [ 60 ,  61 ]. 

 Disturbances in the regulatory function of SERCA/phospholamban have also 
been implicated as important contributors to heart failure pathogenesis. 
Phospholamban is less phosphorylated in heart failure due to increase in global 
phosphatase expression in cardiomyocytes of patients with heart failure, resulting in 
even greater SERCA inhibition. 

 Interesting also is the observation that functional PLB-null genotype in humans 
causes heart failure, whereas the gene-targeted PLB-knockout mice have no appar-
ent cardiac problems [ 144 ]. 

 Molecules that control phospholamban activity are implicated in heart failure as 
well. Heart failure and downregulation of adrenergic receptors are associated with 
reduced cAMP-dependent protein kinase (PKA). This mechanism leads to the inac-
tivation of inhibitor-1 with consequently increased activity of PP1. Hyperactive PP1 
leads to the dephosphorylation of phospholamban and inhibition of SERCA2a thus 
reducing the calcium uptake [ 145 ]. 

 Inhibition of SERCA activity leads to profound disturbance in concentration of 
calcium ions which along with other molecular mechanisms of heart failure 
described previously deepen the morphological and physiological disturbances. In 
concordance with this is the fi nding that preserved SERCA activity and controlled 
calcium ions turnover inhibits calcineurin associated apoptotic pathway [ 61 ]. 

8.1     Potentials for New Therapeutic Approaches 

 Kranias et al. recognized SERCA/phospholamban complex and its role in cardiac 
contractility, and indentifi ed the potential for new therapeutic approach by targeting 
this complex [ 140 ]. 

 Normalization of SERCA2a function has been shown to increase contractility in 
failing human cardiomyocytes and to improve hemodynamics along with survival 
in rodent and large animal models of heart failure [ 146 – 148 ]. 

 The overexpression of SERCA2a has also been found to restore energetic supply 
and to decrease ventricular arrhythmias in a model of ischemia/reperfusion injury 
[ 149 – 151 ]. Therefore, SERCA2a is one of the most promising targets for the treat-
ment of HF. 

 Ferrandi et al. [ 152 ] showed that istaroxime represents the fi rst example of a 
small molecule that exerts a luso-inotropic effect in the failing human heart through 
the stimulation of SERCA2a activity and the enhancement of Ca 2+  uptake into the 
SR by relieving the phospholamban inhibitory effect on SERCA2a in a cAMP/PKA 
independent way. We previously mentioned that istaroxime inhibits Na + /K + -ATPase 
with positive inotropic effect simultaneously with the activation of SERCA2a [ 58 ]. 
In such a way, it brings together positive properties of Na + /K + -ATPase inhibition 
with better control of calcium ions concentration. The consequence of this potential 
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therapeutic strategy is achievement of enhanced contractility (inotropy) with 
facilitated relaxation (lusotropy). 

 Advances in the understanding of the molecular basis of myocardial dysfunction 
together with the evolution of gene transfer technology has placed congestive heart 
failure as a separate task within reach of gene-based therapy [ 61 ,  153 – 155 ]. Lipskaia 
et al. focused on gene therapy using SERCA2a or molecules regulating SERCA2a 
activity to treat heart failure. New data show that SERCA2a gene transfer improves 
contractile function and restores electric stability of the failing cardiomyocytes [ 156 ].   

9     Downregulation of SERCA in Aging Heart 

 Aging is associated with alteration in cardiac structure and function, while the most 
prominent feature is increased left ventricular mass (left ventricular hypertrophy), 
impaired diastolic function and preservation of systolic function [ 157 ]. The charac-
teristic cellular changes in aging myocardium include myocyte hypertrophy, inter-
stitial fi brosis, and impaired myocyte relaxation. Many studies suggest that calcium 
dysregulation contributes to impaired function of cardiomyocytes in the aging 
process [ 158 – 166 ]. The intracellular calcium transient is regulated by a family of 
proteins including sarcoplasmic reticulum (SR) calcium ATPase (SERCA), its 
inhibitory protein phospholamban (PLB), the calcium storage protein, calseques-
trin, and the SR calcium release channel (ryanodine receptor) [ 159 ]. SERCA plays 
a particularly important role in maintaining intracellular calcium through its ability 
to pump cytosolic calcium into SR during myocardial relaxation [ 166 ]. Several 
studies have shown that SERCA activity is decreased in aging heart [ 159 ,  165 ]. In 
some cases, this decrease in activity has been related to a decrease in SERCA protein 
level or a decrease in the ratio of SERCA to PLB [ 159 ]. Other studies have also dem-
onstrated age-associated decreases in the amount of calcium/calmodulin-dependent 
protein kinase (CaMK), endogenous CaMK-mediated phosphorylation of SERCA 
and PLB, and the phosphorylation-dependent stimulation of SR calcium sequestra-
tion [ 159 ]. Besides changes in amounts and isoforms of calcium regulation proteins 
in heart tissue, recent studies suggest that alterations in the function of SERCA can 
be regulated by means of oxidative posttranslational modifi cations [ 167 ,  168 ]. It is 
well known that reactive oxygen species (ROS) and oxidative stress are increased 
in aging myocardium [ 169 – 171 ]. 

 In cardiac myocytes in vitro, it has been shown that oxidants (e.g., nitroxyl or 
peroxynitrite) in low, “physiologic” levels cause reversible S-glutathiolation of 
SERCA at cysteine 674 (C674) leading to its activation. In contrast, higher levels of 
oxidants (e.g., H 2 O 2  or peroxynitrite) that may be associated with pathologic condi-
tions lead to irreversible oxidation of SERCA at one or more sites, including sulfo-
nation at C674. Irreversible oxidation of C674 may inhibit basal enzyme activity 
and further prevent activation via S-glutathiolation. Studies in aging myocardium 
have further demonstrated irreversible oxidation of SERCA cysteines and nitration 
of tyrosines [ 172 ]. It was also observed that myocardial levels of 3-nitrotyrosine and 
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4-HNE indicative of oxidative stress and sulfonation of SERCA at C674 are 
markedly increased in aging hearts and that these increases are prevented in 
transgenic mice with catalase overexpression. Furthermore, catalase overexpression 
prevents decreased SERCA activity, and impaired diastolic function in myocytes 
from aging hearts [ 172 ,  173 ]. These studies suggest that reactive oxygen species 
such as H 2 O 2  contribute to impaired diastolic function in cardiac aging, at least in 
part via oxidative modifi cation of SERCA, and in particular, via sulfonation at C674 
[ 172 – 174 ]. The recent study in male animal aging model indicates that aging 
reduces cell shortening, which is associated with a decrease in the amplitude of the 
systolic Ca 2+  transient. This may be occurring due to a decrease in peak L-type Ca 2+  
current. The same study has shown that SR Ca 2+  load appears to be maintained dur-
ing normal aging but evidence suggests that SR function is disrupted, such that the 
rate of sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA)-mediated Ca 2+  removal 
is reduced and the properties of SR Ca 2+  release in terms of Ca 2+  sparks are altered 
[ 175 ]. Besides, it was shown that there are male–female differences in the way the 
heart ages at the cellular level. The data on aging and gender-base differences have 
important clinical implications. Although aging is a physiological process, many of 
its aspects, including alterations in Ca 2+  homeostasis, make the myocardium prone 
to disease [ 175 ]. 

 Improved comprehension of cellular mechanisms of aging will help us to understand 
susceptibility to different cardiovascular diseases during aging. Ultimately, we will be 
able to identify new targets for intervention in the treatment of these diseases.  

10     ATP-ases and Cardiomyopathy 

 By defi nition, cardiomyopathy is a primary, intrinsic defect of the myocardium. 
Before the advance in genetics, cardiomyopathies were mostly characterized as 
idiopathic. Due to progress in molecular biology techniques, numerous gene abnor-
malities were identifi ed as specifi c causes of cardiomyopathies. 

 Ischemic cardiomyopathy is a term used in clinical practice to describe clinical 
and morphological fi ndings in patients with heart failure caused by ischemic heart 
disease and by strict defi nition it should not be a part of cardiomyopathy entity. 

 Cardiomyopathies are classifi ed as dilated, hypertrophic, and restrictive. 
Characteristic of dilated cardiomyopathy is progressive cardiac dilatation and sys-
tolic dysfunction, while hypertrophic cardiomyopathy is defi ned by myocardial 
hypertrophy and mostly diastolic dysfunction [ 111 ]. 

 Ischemic heart disease and consequent heart failure resemble dilated cardiomy-
opathy, while hypertensive heart disease bears a resemblance to dilated or hypertro-
phic cardiomyopathy depending on a phase in the disease progression. 

 There are changes in ATPases activities in different forms of cardiomyopathy. 
As showed in the study of Norgaard et al., among 24 patients with idiopathic 
dilated cardiomyopathy, 19 had impaired LV function and lower Na + /K + -ATPase 
concentration whereas 5 patients had normal LV function and higher Na + /K + -
ATPase concentrate [ 35 ]. 
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 In previous discussion we interpreted results applicable mostly on ischemic 
cardiomyopathy. Semb et al. studied expression of Na + /K + -ATPase subunits in the 
post- infraction rat model of congestive heart failure (CHF) [ 176 ] and found that 
expression of α2 and α3 isoforms was affected whereas expression of the α1- and 
β1-subunits (mRNA and protein) was not signifi cantly different than in controls. 
Expression of α2 isoform at the level of mRNA and protein were lower in CHF 
hearts and the α3 isoform mRNA was higher. 

 We will review changes of ATPases expression and activity in cardiomyocytes 
in  diabetes mellitus . Diabetic cardiomyopathy is the term used for cytological and 
pathological cardiac alterations developed through the course of diabetes, with 
clinical manifestations. Myocardium is affected due to effects of several mecha-
nisms, including metabolic disturbances: hyperglycemia and advanced glycation 
end products (AGEs) generation, as well as prolonged activation of PKC. Enhanced 
atherosclerosis, especially of coronary arteries, and diabetic microangiopathy pro-
voke further ischemic injury of cardiomyocytes [ 177 ]. 

 Overall analysis of the available literature showed that ionic balance due to activ-
ity of Na + /K + -ATPase and SERCA is disturbed in cardiomyocytes during diabetic 
cardiomyopathy. At the level of sarcoplasmic reticulum, there is a defi ciency of both 
Ca 2+  release as well as Ca 2+  uptake [ 178 ]. SERCA2a, RyR and phospholamban mol-
ecules are equally affected and although there are some discrepancies among differ-
ent studies (Table  7.1 ), conclusions suggest disruption of Ca 2+  transport and increase 
of intracellular Ca 2+  [ 179 – 181 ]. Phosphorylation of phospholamban is also reduced 
mostly due to activity of protein phosphatase 1 [ 182 ]. The changes of SERCA2a and 
its regulatory proteins are associated with Na + /K + -ATPase activity decrease along 
with increased activity of Na + /H +  and Na + /Ca 2+  exchanger as explained in previous 
sections. Complex cell injury ensues with deepening of metabolic disturbances and 
increased intracellular Ca 2+ . One of the consequences is activation of calpain induced 
apoptosis of cardiomyocytes as previously referred.

11        Conclusions 

 Na + /K + -ATPase and SERCA insuffi ciency and their interrelation with multiple 
intracellular functions start the cascade of events that represent almost a universal 
model of injury associated with heart failure of different origin [ 90 ,  183 ]. The analysis 
of Na + /K + -ATPase and SERCA is even more complex because they are direct targets 

   Table 7.1    Summary of studies dealing with SERCA2a, RyR, and phospholamban in diabetic 
cardiomyopathy   

 SERCA2a  RyR  Phospholamban  References 

 Protein content  No changes  Decrease  Decrease  [ 179 – 181 ] 
 mRNA  Decrease  Decrease  No changes  [ 179 ] 

 No changes  Decrease  Increase  [ 180 ] 

  Results of studies suggest decrease in regulatory molecules of SERCA2a  
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for the orthodox therapy of heart failure, as well as for new therapeutical strategies 
[ 136 ,  152 ,  156 ]. That is why it is of essential importance to know their roles in all 
aspects of normal and pathological functioning of cardiomyocytes, to be able to 
understand future fi ndings yet to come.     
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