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  Pref ace   

   Pluck this little fl ower and take it, delay not! ….. If though its 
colour be not deep and its smell be faint use this fl ower in thy 
service and pluck it while it is time.

Rabindranath Tagore (Gitanjali: Song of offerings) 

   Na + -K +  ATPase or Na-pump ATPase, a member of “P”-type ATPase superfamily, 
is characterized by association of multiple isoforms mainly of its α- and β-subunits. 
At present four different α- (α-1, α-2, α-3, and α-4) and three β- (β-1, β-2, and β-3) 
isoforms have been identifi ed in mammalian cells and their differential expressions 
are tissue specifi c. Regulation of Na + -K +  ATPase activity is a complex process, 
which involves short-term and long-term mechanisms. Short-term regulation of 
Na + -K +  ATPase is either mediated by changes in intracellular Na +  concentrations 
that directly affect the Na + -pump activity or by phosphorylation/dephosphorylation 
mediated by some stimulants leading to changes in its expression and transport 
properties. On the other hand, long-term regulation of Na + -K +  ATPase is mediated 
by hormones, such as mineralocorticoids and thyroid hormones, which cause 
changes in the transcription of genes of α- and β-subunits leading to an increased 
expression in the level of Na + -pump. Several studies have revealed a relatively new 
type of regulation that involves the association of small, single-span membrane pro-
teins with this enzyme. These proteins belong to the FXYD family, the members of 
which share a common signature sequence encompassing the transmembrane 
domain adjacent to the isoform(s) of α-β subunits of Na + -K +  ATPase. Many investi-
gators have independently demonstrated that, in addition to the classical ion trans-
porting role, Na + -K +  ATPase can also relay extracellular ouabain (a cardiac glycoside 
that inhibits the enzyme activity) binding associated signaling into the cell through 
the regulation of protein phosphorylation, which includes activation of mitogen- 
activated protein kinase (MAPK) signal cascades, mitochondrial reactive oxygen 
species production, as well as activation of phospholipase C and inositol triphos-
phate receptor in different types of cells. 

 This book is an outcome of enthusiasm of renowned experts in the relevant 
research areas. Each chapter in this book raises many questions that eventually need 
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to be addressed for fi nding appropriate solutions in the area being dealt with. 
This book consists of 24 chapters, where the authors have summarized various 
aspects of the Na + -K +  ATPase regulation. The contents of this book have been orga-
nized into two major sections for the convenience of our readers, namely (1) 
Functional and Signaling Aspects and (2) Modulatory and Regulatory Aspects. It 
provides a comprehensive resource for stimulating Na + -K +  ATPase research and 
improving the modern therapeutic approaches of different life-threatening diseases 
that are associated with the regulation of the enzyme. It is hoped that the readers 
will fi nd each chapter truly interesting and thought impelling. 

 Considering the extraordinary importance of Na + -K +  ATPase in cellular function, 
several internationally established investigators have contributed their articles in the 
monograph entitled  Regulation of Membrane Na   +   -K   +    ATPase  for inspiring young 
scientists and graduate students to enrich their knowledge on the enzyme. We are 
sure that this book will soon be considered an important piece of comprehensive 
scientifi c literature in the area of Na + -K +  ATPase regulation in health and disease. 

 As editors, we are grateful to the authors for the time and effort they spent in 
making the book an advancement of knowledge in the fi eld of regulation of Na + -K +  
ATPase. We would like to thank Prof. Rattan Lal Hangloo, Vice Chancellor, 
University of Kalyani for his encouragement. We are grateful to Dr. Vijayan Elimban 
and Ms. Eva Little (St. Boniface Hospital Research Centre, University of Manitoba, 
Winnipeg, Canada) for all their hard work in helping to get this monograph into 
print. Finally, we like to express our sincere thanks to Dr. Meran Owen (Senior 
Publishing Editor, Springer-London) and Mrs. Leslie Poliner, Project Coordinator, 
Springer-New York, for their understanding and interest during the editorial 
process.  

  Kalyani, West Bengal, India     Sajal     Chakraborti    
 Winnipeg, MB, Canada      Naranjan     S.     Dhalla     

Preface
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 Na + /K + -ATPase: A Perspective                     
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 “Looking for the answer:
You hunt it,
You catch it,
You fool yourself,
The answer,
is always,
a step ahead”.

Jens C Skou
Nobel Prize winner in Chemistry (1997) 

  Abstract     Na + /K + -ATPase (NKA), a transmembrane protein, facilitates active trans-
port of three Na +  out of the cell and two K +  into the cell with the expense of an ATP. It 
plays an important role in regulating the ionic homeostasis and maintaining mem-
brane potential. Additionally, NKA plays a crucial role in driving a variety of second-
ary transport processes such as Na + -dependent glucose and amino acid transport. 

 NKA is composed of α and β subunits, which have several tissue-specifi c iso-
forms. The α subunit of NKA possesses catalytic activity of the enzyme and that 
contains binding sites for cardiac glycosides, ions, and ATP and also phosphorylation 
sites for protein kinase A and protein kinase C. The β-subunit is required for the 
insertion for the catalytic subunit into the membrane and also facilitates cell adhesion 
and associated signal transduction. 

mailto:saj_chakra@rediffmail.com
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 Cardiotonic steroids, for example, ouabain, elicit their effects by inhibiting the 
NKA activity, thereby raising [Na + ] i  leading to an increase in [Ca 2+ ] i  mainly via 
NCX, thereby modulating ion concentrations and contractility. There are several 
synthetic and endogenous protein inhibitors of NKA having similar effects that 
mediate an increase in [Ca 2+ ] i . 

 Activation of PKA and PKC by different stimulants, for example, thrombin, regu-
lates NKA activity in pulmonary smooth muscle cell membrane. Regulation of NKA 
activity by PKA and PKC has been shown to occur upon phosphorylation of FXYD 
proteins, which are regulated in a tissue-specifi c manner. Additionally, some hor-
mones, for instance, catecholamines, increase lung fl uid clearance via β-adrenergic 
mediated mechanisms of active Na +  transport across lung epithelial cells. NKA is 
associated with several cellular functions such as apoptosis and cellular proliferation. 
Dysregualtion of NKA is implicated for several metabolic and neuronal disorders.  

  Keywords     Na + /K + -ATPase   •   FXYD   •   Ouabain   •   Phosphorylation   •   Na + /K + -ATPase 
inhibitors  

1        Introduction 

 In 1997 Nobel Prize in chemistry was shared by the Danish biochemist Janes 
C. Skou for his discovery of Na + /K + -ATPase (NKA), although his involvement with 
this enzyme had started way back in 1950. While studying the effects of local anes-
thetics in nerve cells, Skou found that the anesthetics molecule affected the opening 
of Na +  channels and make the nerve cells inexcitable, thereby producing anesthesia. 
Subsequently, Skou looked at enzymes on the plasma membrane and examined 
whether their properties are affected by the anesthetics. This led him to discover an 
enzyme, ATPase. Skou observed that its activity was optimum when right combina-
tions of Na + , K + , and Mg 2+  were added to the enzyme preparation. Although he 
speculated that this enzyme could play a role in the active movements of Na +  and K +  
across the cell membrane, his studies were devoid of direct experimental proof. So, 
while publishing his fi ndings in 1957, Skou was skeptical about the enzyme’s 
involvement in active ion movements, so he did not mention the term “Na + /K +  
pump” in the title of the paper [ 1 ]. 

 In 1958, Skou met Robert Post at a conference in Vienna. By that time Post had 
already reported that in red blood cells, three Na +  ions were pumped out of the cell 
for every two K +  ions pumped in, and that ouabain, a cardiotonic steroid, inhibited 
the pump. After sharing his fi ndings with Post, Skou was curious to see whether his 
enzyme was inhibited by ouabain. Subsequently, he observed that ouabain did 
inhibit the activity of his enzyme preparation. This fi nally led him to ascertain a link 
between the enzyme and the “Na + /K +  pump” [ 2 ]. 

 NKA, a P-type ATPase, maintains Na +  and K +  gradients across the plasma membrane 
of animal cells [ 3 ]. The Na +  pump is the major determinant of cytoplasmic Na +  ([Na + ] i ) 
and plays a pivotal role in regulating cell volume, cytosolic pH, and cytosolic Ca 2+  

S. Chakraborti et al.
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([Ca 2+ ] i ). It also plays a crucial role in driving a variety of secondary transport processes 
such as Na + -dependent glucose and amino acid transport [ 3 ]. 

 Since NKA modulates contraction, its regulation is important in the myocar-
dium. NKA controls the steady state [Na + ] i , which subsequently determines [Ca 2+ ] i  
mainly via involvement of Na + /H +  and Na + /Ca 2+  exchangers. An increase in [Ca 2+ ] i , 
in turn, is pumped into the sarco(endo)plasmic reticulum S(E)R by the SERCA. Thus, 
regulation of the Na +  pump is important for proper understanding of the cardiac 
muscle contraction and vascular tone [ 4 ].  

2     Structure of Na + /K + -ATPase 

 Na + /K + -ATPase is composed of α- and β-subunits. The isoforms of α-subunit are 
~110 kDa, whereas the isoforms of the β subunit are ~55 kDa. Each subunit has 
distinct mRNA and is synthesized independently [ 5 ]. There are tissue specifi cities 
which complements gene expression for each isoform and formation of different 
combinations of α-β complexes [ 6 ]. Along with α and β, there is another subunit, the 
γ-subunit, a member of FXYD protein family, that plays an important role in regu-
lating the enzyme activity in some systems (Fig.  1.1 ).

2.1       The Alpha Subunit 

 The α-subunit possesses catalytic activity of the enzyme and that contains the binding 
sites for cardiac glycosides, ions, and ATP and also possesses the phosphorylation 
sites for protein kinase A and protein kinase C [ 7 ]. Four α isoforms (α 1 , α 2 , α 3 , and α 4 ) 
have so far been identifi ed in mammalian cells, which are expressed in tissue- and 
cell-specifi c manner. There are ten transmembrane α-helical segments of the α sub-
unit of NKA, where both the N- and C-termini of the chain are located in the cytosol 
[ 8 ,  9 ]. The smaller loop resides between transmembrane domains M2 and M3, where 
the larger loop resides between M4 and M5, which is ATP-binding and phosphoryla-
tion site (Fig.  1.1 ) [ 10 ]. 

 The α 1  has been shown to express in all tissues examined so far [ 11 ], whereas the 
α 2  isoform is expressed in skeletal muscle, adipocytes, brain, and heart [ 12 ]. The α 3  
isoform is present in nerves, brain, and also heart tissues [ 12 ], while the α 4  isoform 
has been found in the testis [ 13 ].  

2.2     The Beta Subunit 

 Among the P-type ATPases, the β-subunit is confi ned to the Na + /K +  and H + /K + -
ATPase. The N-terminal end of the β subunit is located in the cytosol [ 14 ], while a 
major portion of the –COOH end of the subunit is located outside the cell [ 9 ,  15 ] 

1 Na+/K+-ATPase: A Perspective
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(Fig.  1.1 ). In extracellular part of the β-subunit, three N-glycosylation sites are 
located [ 16 ]. The β subunit is required for the insertion of the catalytic subunit into 
the membrane, but does not participate in the catalytic process directly [ 17 ]. In ner-
vous tissue, β-subunit has been shown responsible for cell adhesion [ 18 ]. In some 
systems, β-subunit may interact with lectins of animal origin (galectins) and thereby 
regulates cell adhesion and associated signal transmission [ 19 ]. 

 The Na +  pump consists of α and β subunits in a 1:1 ratio. The interaction between 
the α and β subunit is important for NKA activity and this has been exemplifi ed by 
the observation that reduction of a disulfi de bond between Cys158 and Cys175 of 
the β subunit causes loss of the enzyme activity [ 11 ,  20 ].   

3     Mechanism of Action of Na + /K + -ATPase 

 The NKA cycles between two conformational states, E 1  and E 2 . These states are 
characterized mainly depending on the interactions with Na + , K + , ATP and with 
cardiac glycosides, such as ouabain. 

  Fig. 1.1    Structure of Na + /K + -ATPase, which consists of α and β polypeptides in equimolar ratios. 
The α catalytic subunit has ten transmembrane segments. The extracellular segments of α-subunit 
has a binding site for cardiotonic steroids (CTS) which include TM1–TM2, TM5–TM6, and TM7–
TM8 loops and several amino acids from the transmembrane regions M4, M6, and M10. The 
binding site for ATP is located on the intracellular loop TM4–TM5, which forms the “pocket” for 
this nucleotide. The phosphorylation domain located on the proximal and distal parts of intracel-
lular loop TM4–TM5. The αβ-subunit complex of Na + /K + -ATPase associates with third subunit, 
which contains the conserved motif FXYD identical for all seven proteins from this family. 
FXYD2 protein is known as the γ subunit of Na + /K + -ATPase       

S. Chakraborti et al.
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 Since the discovery of NKA, accumulated evidences suggest that the active trans-
port of Na +  and K +  occur according to the Post-Albers scheme. However, controversies 
arose concerning whether the functional unit of the enzyme is an αβ-protomer or an 
oligomer. Both the αβ protomeric and (αβ) oligomeric models gained support from 
various experiments [ 21 ]. A simple Post-Albers scheme is represented in Fig.  1.2 . The 
scheme, however, does not take into consideration that the sodium pump might exist as 
a diprotomer of cooperating (αβ) 2  subunits and thus contain two binding sites for ATP.

   The concentration–effect curve for ATP hydrolysis is biphasic, which can be 
explained by extrapolation of the single-site model shown in Fig.  1.2 . Each (αβ) 
protomer has a single ATP binding site that alters from high affi nity to low affi nity 
with changes in conformation. This model is strongly supported by experiments 
showing that the stoichiometry of binding for either ATP, phosphate or ouabain is 
one per subunit, and that solubilized enzyme retains its catalytic activity [ 22 ]. 

 A second model (Fig.  1.3 ) postulates that the biphasic nature of the ATP concentra-
tion curve is due to the presence of two catalytic α subunits that work cooperatively. 
Each catalytic subunit proceeds through the same conformational alterations that are 
described in the single-site model in such a way that they are shifted 180° from each 
other. Thus, in this model the high affi nity and low affi nity ATP binding sites occur 

  Fig. 1.2    Post-Albers mechanism for the enzymatic manifestation of Na + /K + -ATPase. Taken from 
Taniguchi K, Kaya S, Mardh S (2001). The oligomeric nature of Na + /K + -ATPase. J Biochem 129: 
335–342 with permission       

E2P : E1

E2P : E2P

E1 : E2P

E1 : E1

E1ATP : E1

E1ATP : E1ATP

ATP

ATP ATP

k3

k2

k4

k2

k1 k1

k–3

k3

k–3

k–2

k–4

k–2

k–1
k–1

ATP

E1 : E1ATP

  Fig. 1.3    Schematic 
representation for the 
diprotomeric model of 
Na + /K + -ATPase action. 
Taken from Clarke RJ, 
Kane DJ (2007) Two gears 
of pumping by the Na +  
pump. Biophysical J 93: 
4187–4196 with 
permission       
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simultaneously, and there is also simultaneous transport of Na +  out of the cell and K +  
into the cell. Several experimental results support this model [ 23 ].

   Another model postulated by Plesner [ 24 ], which suggests that the cooperativity 
of the α subunits described by Repke occurs only in the presence of Na +  and K + . The 
partial reactions of the NKA are catalyzed by the (αβ) protomeric enzyme, as is the 
case with Na + -ATPase or K + -stimulated phosphatase.  

4     Na + /K + -ATPase-Mediated Signal Transduction 

 Cellular ionic homeostasis and related signal transduction go hand-in-hand with 
NKA activity. Cardiotonic steroids (CTS) are known to exert their effects by inhibit-
ing the NKA activity, thereby raising [Na + ] i  leading to an increase in [Ca 2+ ] i  mainly 
via Na + /Ca 2+  exchanger [ 25 ]. However, the therapeutic concentrations of CTS that 
produce positive inotropic effects in patients, for example, with congestive heart 
failure are much below than that was shown to inhibit the NKA activity [ 26 ]. 

4.1     Na + /K + -ATPase-Src Complex and [Ca 2+ ] i  Regulation 

 Src family kinases are membrane-associated non-receptor tyrosine kinases. In response 
to various extracellular ligands, the Src family kinases participate in several tyrosine 
phosphorylation and associated signaling pathways, for example, EGFR is coupled 
with NKA-Src complex [ 27 ,  28 ]. Low doses of ouabain cause Src-EGFR activation 
and that in turn trigger different signal transduction pathways including Ras/Raf/
MEK/ERK1–2 cascade. This subsequently leads to an increase in the production of 
ROS, which upon activation of PKC [ 26 ,  29 ], results in a rise in [Ca 2+ ] i  (Fig.  1.4 ).

   In some cell types, for example, cardiac myocytes, low doses of ouabain interacts 
with some membrane proteins, other than NKA, and transduce signals to intracellular 
signaling complexes. Ouabain has also been shown to evoke Ca 2+  oscillations in renal 
epithelial cells as well as endothelial cells independent of changes in [Na + ] i  [ 30 ]. 
Interestingly, in some types of cells, for example, cardiac myocytes activation of 
some signal transduction pathways by ouabain are not associated with intracellular 
ionic concentrations and contractility [ 26 ,  29 ]. Src family kinases (SFKs) cause dif-
ferential regulation of NKA activity in lens epithelium. SFK family  members such as 
Src and Lyn were reported to enhance NKA activity [ 31 ] and Fyn, another member 
of the SFK family, has been found to inhibit the NKA activity in lens epithelium [ 32 ].  

4.2     Regulation by PKA and PKC 

 Cyclic AMP dependent protein kinase regulates NKA activity, which could be 
mediated by direct phosphorylation of the α-subunit of NKA [ 33 ]. PKA has been 
suggested to stimulate NKA activity by increasing its number in the plasma 
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membrane [ 33 ]. PKA has been shown to induce the recruitment of active NKA 
units to the plasma membrane, for example, in rat proximal convoluted tubule cells 
of kidney [ 33 ]. 

 Ouabain at micromolar concentrations has been reported to selectively inhibit 
NKA α 2  subunit function causing an increase in cellular cAMP level and an increase 
in the activities of protein kinase A (PKA) and Na + /H + -exchanger (NHE-1) with 
associated capacitative Ca 2+  entry in rat optic nerve head astrocytes [ 34 ]. 
Additionally, some hormones, for example, catecholamines increase lung fl uid 
clearance via β-adrenergic-mediated mechanism of active Na +  transport across lung 
epithelial cells [ 35 ]. 

 NKA-α 2  subunit is phosphorylated by PKC to a much lower extent than that of 
the α 1  in rat. The effects of PKC on NKA have been suggested to be species specifi c 
[ 36 ,  37 ]. Dopamine acts via its receptor and promotes exocytosis of NKA molecules 
from the late endosomes into the basolateral membrane (BLM) of alveolar epithe-
lial cells via activation of PKC leading to an increase in NKA activity [ 38 ]. 
Additionally, dopamines induced NKA endocytosis via activation of G-protein- 
coupled receptors [ 39 ] and hypoxia-generated ROS cause PKC-ζ dependent 
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Na + /K + -ATPase-mediated signal transduction and Na + /K + -ATPase regulation. Fundamental & 
Clinical Pharmacology 22: 615–621 with permission)       

1 Na+/K+-ATPase: A Perspective



10

phosphorylation of the α-subunit of NKA [ 40 ]. Phosphorylation of the α-subunit plays 
an important role for internalization of enzyme in the cell membrane [ 41 ]. Protein 
kinase A and protein kinase C dependent modulation of NKA activity have also 
been shown to occur upon phosphorylation of FXYD proteins, which are regulated 
in a tissue specifi c manner [ 42 ].  

4.3     Regulation by cGMP/PKG Pathway 

 In addition to cAMP and PKC, cGMP also regulates NKA activity in tissue and 
isoform specifi c manner. Studies showed that cGMP decreases NKA activity upon 
activation of protein kinase G (PKG) in the kidney [ 43 ,  44 ], where NKA-α 1  isoform 
is predominantly expressed. On the other hand, in Purkinje neurons, where the α 3  
isoform is mainly expressed, cGMP increases the pump activity [ 45 ]. Hormones 
viz, acetyl choline that increase nitric oxide (NO) production and cGMP levels can 
induce a marked decrease in the activity of the NKA-α 1  isoform in kidney. In con-
trast, some stimulants such as carbon monoxide and glutamate markedly increase 
the expression of NKA-α 3  isoform in rat cerebellum leading to augmentation of 
NKA activity through cGMP and PKG, which are and independent of Na +  and NO 
system [ 46 ].  

4.4     Regulation by ROS 

 ROS interacts with NKA leading to its conformational change [ 47 ,  48 ], which is 
signifi cant because in several diseases endogenous ROS level is elevated. An 
increase in ROS level induced by extracellular signals, for example, hypoxia 
increases the endocytosis of NKA that results in a marked decrease in its activity in 
the cell membrane [ 49 ].   

5     The Na +  Lag Hypothesis and the PlasmERosome 

 This hypothesis tells that a discernible inhibition of Na +  pump leads to a transient 
increase in [Na + ] i , which occurs in local compartments [ 50 ]. Immunochemical 
studies in rat arteries revealed that NCX1 and the ouabain sensitive NKA-α 2  and 
-α 3  isoforms of NKA, but not NKA-α 1  isoform, are present in the cell membrane 
close to the sarcoplasmic reticulum (‘PlasmERosome’, a sub-plasmalemmal space) 
[ 12 ,  51 ], which may evoke inhibitory effects of endogenous ouabain on NKA-α 2  
and -α 3  isozymes. An increase in Ca 2+  transients triggered by vasoconstrictors, for 
example, angiotensin II were observed during sodium pump inhibition. This 

S. Chakraborti et al.



11

subsequently evoked opening of store-operated Ca 2+  channels leading to the entry 
of both Na +  and Ca 2+  [ 51 ]. The increase in [Ca 2+ ] i  in this microenvironment as well 
as in the bulk cytoplasm may activate SERCA leading to an increase in Ca 2+  level 
in the SR. A considerable amount of Ca 2+  can be released when myocytes are stim-
ulated by ouabain, which increases Ca 2+  in the PlasmERosome and that has been 
suggested to occur via activation of inositol (1,4,5) trisphosphate receptor (IP 3 R) 
[ 52 ] (Fig.  1.5 ).

   Mice with ouabain insensitive mutant of the NKA-α 2  subunit neither show 
 cardiac inotropy upon ouabain treatment nor it exhibit ouabain induced hypertension 
[ 53 ]. A decrease in the expression of the wild type NKA-α 2  isoform causes an 
increase in blood pressure (BP) [ 54 ]. This indicates the possibility that α 2  and α 3  
isoforms of the Na +  pump interacts with the Na + /Ca 2+  exchanger and that is crucial 
for ouabain-induced inotropy. Functional NCX is required for an acute inotropic 
effect of ouabain inhibition of Ca 2+  entry through NCX1 [ 55 ,  56 ]. Although the 
sodium lag hypothesis has been suggested as a mechanism for vascular hyperten-
sion, other mechanisms also contribute to this scenario since no strict correlation 
exists between hypertensive action of ouabain and subsequent inhibition of the 
sodium pump [ 57 ].  
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6     The Na + /K + -ATPase Signalosome 

 The inotropic effect produced by cardiac glycosides in the myocardium does not 
necessarily occur via inhibition of the Na +  pump activity [ 57 ]. The work of Xie and 
Askari [ 58 ] and Xie and Cai [ 59 ] indicated that nanomolar concentrations of 
endogenous and exogenous ouabain-like cardiac glycosides induce cardiac inot-
ropy, hypertension, and proliferation and also alter the life expectancy of cells [ 60 ]. 
In contrast to the sodium pump lag hypothesis, α-subunit isoforms are associated 
with the NKA in caveolae (signalosome) [ 61 – 63 ]. Caveolae are associated with 
molecules crucial for Ca 2+  handling components such as NHE, NCX1, PMCA, and 
also L-type Ca 2+  channels [ 64 ] (Fig.  1.6 ). Phospholipase C is coupled to the IP 3  
receptor of the S(E)R and the α subunit of NKA [ 52 ,  62 ]. Caveolin, ankyrin, and 
phosphoinositide 3-kinase (PI3-kinase) binding sites are present on the α-subunit 
of NKA and thus form the signalosome complex [ 59 ,  65 ]. In caveolae, NKA inter-
acts with several signal transducers such as Src and epidermal growth factor 
 receptor (EGFR) [ 52 ,  62 ]. The signalosome complex play a role in several signal 
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transduction pathways, for example, regulation of NKA activity, which also 
involve in recycling of the plasma membrane, a process affected by CTS, [Na + ] i , 
and adrenergic hormones [ 66 – 68 ].

   Upon binding of ouabain with α-subunit of NKA, a change in [Ca 2+ ] i  may result 
from stimulation of T- and L-type voltage-dependent Ca 2+  infl ux, activation of pro-
miscuous Na +  channels, and also activation of Ca 2+  release channels of the sarco-
plasmic reticulum [ 69 ]. Ouabain treatment to cardiac myocytes leads to interaction 
of the NKA with Na +  channel and make the later promiscuous in its ion selectivity 
and subsequently causes Ca 2+  infl ux from the extracellular fl uid [ 70 ]. This phenom-
enon was shown to be associated with stimulation of the α 2  and α 3  isoforms of the 
NKA [ 60 ]. Notably, the Na +  lag hypothesis unable to explain the above phenome-
non. Thus, additional pathways seem to exist and that could explain this scenario. 
An alteration of the α-subunit of NKA upon ouabain treatment may associate with 
IP 3 R of the S(E)R [ 63 ] and also forms complex with PLC, whose Src-dependent 
phosphorylation could increase IP 3  generation and subsequently increase release of 
Ca 2+  from intracellular stores [ 71 ]. Additionally, activation of PLC stimulates dia-
cylglycerol formation leading to protein kinase C (PKC) activation [ 72 ], which 
upon phosphorylation may also affect voltage-dependent L-type Ca 2+  channels 
[ 73 ], the Na + /Ca 2+  exchanger and NKA activities [ 71 ] (Fig.  1.7 ).

7        Interaction of Na + /K +  ATPase with FXYD Protein Family 

 In recent time, the FXYD proteins, having the signature FXYD motif in the 
N-terminal, are known as novel regulators of NKA. Mammalian FXYD proteins 
possess a single transmembrane domain with cytoplasmic –COOH and extracel-
lular –NH 2  end and have been shown to interact with NKA and thereby regulate 
the enzyme activity [ 74 ]. FXYD proteins express in cell- and tissue-specifi c man-
ner (Table  1.1 ). At present, the FXYD family has atleast 12 members. The 
γ-subunit of NKA is the only member of the FXYD family that has two alternative 
splice variants (FXYD2a and FXYD2b) [ 74 ,  75 ]. As a family, FXYD proteins are 
found predominantly in tissues like kidney, colon, pancreas, etc. (that are involved 
in solute and fl uid transport) and also in electrical excitable tissues (heart, skeletal 
muscle, etc.) [ 75 ]. Different protein kinases can phosphorylate the FXYD proteins 
due to the presence of potential phosphorylation sites on to their cytoplasmic tail 
[ 76 – 78 ]. Phosphorylation of phospholemman (FXYD1) by protein kinase A 
(PKA) and protein kinase C (PKC) appear to infl uence its targeting, oligomeriza-
tion, and also turnover [ 79 ].

   FXYD2 has been suggested to play an important role in preserving the NKA 
activity in renal segments, for example, the outer medulla, which are highly prone 
to anoxia [ 80 ]. 

 FXYD3 associates not only with NKA, but also with gastric and colonic H + /K + -
ATPase [ 81 ]. Additionally, upon expression in  Xenopus  oocytes, FXYD3 modulates 
the processing of glycoproteins. 
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 FXYD4 (a.k.a. corticosteroid hormone-inducing factor: CHIF) is expressed in 
kidney medullary collecting duct and papilla, in the distal colon, and modulates 
their transport properties [ 82 ]. Although biological activity of FXYD4 is mediated 
through its interactions with NKA, it remains elusive whether this is the only 
function of FXYD4 or whether it regulates other partner proteins [ 83 ]. 
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 FXYD5 (a.k.a. dysadherin) expression is induced in cells transformed by the 
oncogene E2A-PBX1 [ 84 ]. A role of FXYD5 in tumor progression and metastasis 
has been suggested, based on the observation that transfection of FXYD5 into can-
cer cells results in a decrease in E-cadherin-mediated cell-cell adhesion [ 85 ]. 

 FXYD6 (a.k.a. phosphohippolin) is expressed in several tissues [ 86 ,  87 ]; for 
example, its expression in brain suggests a role in neuronal excitability during post-
natal development. 

 In the brain, FXYD7 associates preferentially with the widely expressed α 1 β 1  
isozyme of NKA and modulates its transport activity in a tissue-specifi c manner 
[ 88 ]. Thus, tissue- and isozyme-specifi c interaction of NKA with FXYD proteins 
contributes to regulated Na +  and K +  movements by the NKA.  

8     Na/K-ATPase Inhibitors 

 A wide range of endogenous substances including ouabain-like compounds are 
known to inhibit NKA activity [ 89 ]. An endogenous NKA inhibitor is defi ned as a 
substance, which should be specifi c for and has a high affi nity for NKA and func-
tionally inhibits NKA activity [ 90 ]. There are several reports demonstrating the 
presence of NKA inhibitors in different tissues [ 91 ]. They are also found in plasma 
[ 92 ] and urine [ 93 ]. Marinobufagenin (MBG), a bufadienolide, acts as mammalian 
endogenous cardiotonic steroid and also inhibits NKAα 1  isoform [ 94 ]. The main 
source of MBG is the parotid and skin gland secretion of the toad Bufo marinus. 
Another compound gamabufotalin, a cardiotonic steroid from toad venom, has 
shown to curb COX-2 expression through IKK β/NF-κB signaling pathway in lung 
cancer cells [ 95 ]. Some of the NKA inhibitors known to date are proteins having 
NKA inhibitory activity [ 21 ,  96 ,  97 ]. The inhibitors exhibit different binding speci-
fi cities toward the NKA isoforms. Some of them, for example, a 15.6 kDa inhibitor, 
can bind at the ouabain-binding site or in its close proximity, i.e., at the E 2  state of 
the enzyme [ 96 ], whereas, some other, for instance, a 70 kDa inhibitor, can bind at 

   Table 1.1    Tissue distribution of some FXYD protein family members   

 FXYD protein family 

 FXYD  Tissue distribution 

 PLM (FXYD1)  Heart, liver, skeletal muscle 
 γ (FXYD2)  Kidney, heart, stomach 
 Mat-8 (FXYD3)  Colon, stomach, uterus 
 CHIF (FXYD4)  Kidney collecting duct, distal colon 
 RIC (FXYD5)  Heart, brain, spleen, lung, liver, skeletal muscle, kidney, testis 
 Phosphohippolin (FXYD6)  Brain and kidney 
 FXYD7  Brain (cerebellum, cerebrum hippocampus, and stem) 
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the E 1  state of the enzyme [ 21 ]. Additionally, there are reports of some synthetic 
compounds, which showed different binding modes and affi nities toward NKA 
[ 98 ]. One such representing example is the chromium complex Cr(H 2 O) 4 Ado PP [CH 2 ]
P, which did not change the E 2  conformation, but alter the E 1  state of the enzyme. It 
did not affect the “backdoor” phosphorylation, but inhibited the “forward” phos-
phorylation. From this mode of binding study, it could be possible to ascertain the 
structural aspect of the enzyme, i.e., whether they exhibit monomeric (αβ) or oligo-
meric (αβ)  n   form [ 21 ,  96 ]. 

 The 70 kDa inhibitor [ 21 ] and the 15.6 kDa inhibitor [ 96 ] elicit different affi ni-
ties toward the α 1  and α 2  isoforms of NKA in pulmonary artery smooth muscle cells. 
The α 2 β 1  isoform of the enzyme was found to be more sensitive towards the inhibi-
tor than the α 1 β 1  isoform for both the 15.6 and 70 kDa inhibitors. Importantly, both 
the 15.6 and the 70 kDa inhibitors do not show any apparent inhibitory activity 
toward Ca 2+ -ATPase activity from smooth muscle microsomes or on the ouabain- 
insensitive Mg 2+ -ATPase from SR membrane of pulmonary arterial smooth muscle 
cells [ 21 ,  96 ]. 

 Fuller et al. [ 99 ] demonstrated that a cardiac- and brain-specifi c inhibitor of 
NKA, whose production is linked to oxidant stress, accumulates intracellularly dur-
ing ischemia. In pulmonary artery smooth muscle cells, an increase in the inhibitory 
activity of the 70 kDa and the 15.6 kDa inhibitors of NKA have been demonstrated 
during NADPH oxidase derived O 2  •−  generation under U46619 (thromboxane A 2  
mimetic) treatment without any change in the expression level of the inhibitor pro-
tein [ 74 ]. 

 The physiological signifi cance of the 15.6 and the 70 kDa inhibitors is currently 
not clear. In pulmonary artery smooth muscle cells, an increase in the inhibitory 
activity of the inhibitors manifest during oxidant generation by the vasoactive, TxA 2  
and subsequently inhibit NKA activity leading to pulmonary hypertension 
[ 100 – 102 ].  

9     Hormonal Regulation 

9.1     Corticosteroids 

 Steroid hormones especially corticosteroids have both long- and short-term regula-
tory effects on the NKA activity. Long-term effects are exemplifi ed by alteration of 
mRNA/protein synthesis stimulated by direct interactions of receptor/corticosteroid 
complexes with nuclear DNA. Among the corticosteroids, aldosterone (a mineralo-
corticoid) and dexamethasone (a glucocorticoid) are well studied and have been 
shown to mediate regulation of the NKA activity [ 103 ]. 

 Aldosterone plays an important role in Na +  and K +  transport in epithelial tissues, 
for example, in the kidney, and its physiological role is thought to be in long-term 
adaptations to decrease in Na +  or increases in K +  intake [ 104 ,  105 ]. The main role of 
aldosterone and dexamethasone on the NKA is to sustain a long-term increase in the 
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expression of Na +  pump, which has been observed in toad bladder [ 106 ] and in 
many mammalian tissues like kidney [ 107 ], brain [ 108 ], heart [ 109 ], and also vas-
cular smooth muscle cells [ 110 ] and cardiomyocytes [ 111 ]. 

 The long-term upregulation of NKA by corticosteroids is isoform specifi c. 
Oguchi et al. [ 110 ] fi rst demonstrated that the α 1  isoform, but not the α 2  and α 3  iso-
forms, is upregulated by aldosterone in vascular smooth muscle cells [ 110 ]. 
However, α 3  isoform is the main target for aldosterone-mediated regulation in brain 
[ 108 ,  112 ], whereas α 2  isoform responds to aldosterone treatment in heart [ 109 ]. 

 Aldosterone has also been shown to elicit short-term effects on NKA activity, 
which are mediated by specifi c membrane-associated receptors [ 113 ]. Specifi cally, 
two distinct types of aldosterone-mediated short-term effects have been described. 
The fi rst type is dependent on an increases in [Na + ] i , while the second type is inde-
pendent of [Na + ] i . The underlying mechanism for the fi rst type seems to be involved 
in an increase in Na +  permeability, leading to an increase in [Na + ] i  [ 114 ,  115 ], but 
the exact mechanism(s) is currently unclear. The second type, Na + -independent 
aldosterone-induced isoform-specifi c increase in NKA activity, is observed in the 
rat cortical collecting tubule of kidney [ 116 ,  117 ] and A6 cells [ 118 ]. Interestingly, 
this type of modulation is sensitive to nucleic acid and protein synthesis inhibitors 
and is partly stimulated by the thyroid hormone, T 3  [ 117 ,  119 ]. The increase in 
activity may be secondary to changes in the number of plasma membrane Na +  
pumps and/or to an increase in the intrinsic affi nity of the enzyme for Na +  [ 120 ].  

9.2     Catecholamines 

 Catecholamines have been shown to affect NKA activity. Interestingly, norepinephrine 
and dopamine of this group act differently to elicit their roles in regulating salt reab-
sorption in the kidney [ 121 ,  122 ]. 

 Dopamine, a natriuretic factor synthesized in the kidney proximal tubule, acts in 
both paracrine and autocrine fashion [ 123 ,  124 ]. Dopamine inhibits Na + /K + -ATPase 
in the kidney proximal convoluted tubule [ 125 ], the medullary thick ascending limb 
[ 126 ], and cortical collecting duct [ 127 ]. It also inhibits NKA activity in vascular 
smooth muscle cells [ 128 ] and lung [ 129 ]. Dopamine-dependent Na +  pump modula-
tions are often weakened in aged [ 130 ,  131 ] and hypertensive rats [ 132 ]. Apart from 
a considerable number of evidence that dopamine (DA) is a specifi c inhibitor of the 
NKA, it has been shown that activation of DA1 receptors in striatal neurons results 
in Na +  pump inhibition [ 133 ], whereas in another study DA2 agonists coupled to a 
pertussis toxin-sensitive G protein stimulates NKA activity through a decrease in 
cellular cAMP levels [ 134 ]. 

 In contrast to dopamine, epinephrine and norepinephrine stimulate Na +  pump activ-
ity [ 135 ]. Their effects, like dopamine, on the enzyme activity are also tissue specifi c. 
For example, epinephrine stimulates K +  uptake in skeletal muscle after exercise [ 136 ]; 
however, norepinephrine, acting as a dopamine antagonist, plays a role in Na +  reab-
sorption in the nephron [ 121 ]. Most of the hormones that regulate the NKA activity do 
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so through signaling mechanisms that modulate the activities of a group of protein 
kinases, phospholipases, and phosphatases. The interplay between the main effectors 
in regulating the Na +  pump and their effects on the NKA are shown in Fig.  1.8 .

10         Na + /K + -ATPase in Pathological Conditions 

10.1     Neural Diseases 

 Downregulation of NKA has been demonstrated during ischemic conditions. During 
ischemia, reduced NKA activity was observed in both cortex and basal ganglia 
[ 137 ]. This could be due to the fact that ischemia or hypoxia lowers ATP level [ 138 ], 
increases production of ROS, and enhances inhibitory activity of the endogenous 
inhibitors of NKA [ 139 ]. The functional subunits α 2  and α 3  were reported to be 
mostly affected during ischemia [ 140 ]. An inhibition of Na + /K + -ATPase activity 
seems to delay membrane depolarization of cortical neurons after ischemic brain 
injury [ 141 ]. A decrease in NKA activity appears to be insuffi cient to maintain ionic 
balance during and immediately after episodes of ischemia. A reduction and/or inhi-
bition of NKA contribute to the central neuropathy [ 142 ]. Reduced NKA activity 
has been demonstrated in chronic neurodegenerative diseases, for example, the 
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mRNA expression of the NKA-α 3  subunit has been determined to be ~45 % lower 
in Alzheimer’s brain relative to controls. A marked decrease in the NKA activity is 
considered a common pathogenesis in patients with central nervous system disor-
ders like CNS glioma, multiple sclerosis, and systemic lupus erythematosis [ 143 ]. 
Overall, a noticeable decrease in NKA activity could lead to several neurodegenera-
tive and metabolic diseases.  

10.2     Pulmonary Hypertension and Edema 

 During NKA inhibition, in pulmonary artery smooth muscle cells (PASMCs), as in 
other muscle types, an increase in [Ca 2+ ] i  occurs, which is important for the initia-
tion of pulmonary hypertension (PAH) [ 144 ]. The underlying mechanism(s) for 
PAH is currently unclear. However, available mechanisms suggest that in the con-
tractile response in the cells, a decrease in NKA activity in response to hypoxia or 
hyperoxia generally results in an infl ux of extracellular Ca 2+  [ 145 ]. Extracellular 
Ca 2+  enters to the cytosol of the smooth muscle cells following activation of voltage- 
operated Ca 2+  channels (VOCC) (L- and T-type Ca 2+  channels) along with 
nonvoltage- operated Ca 2+  channels (NVOCC). Additionally, receptor operated cal-
cium channels (ROCC) [ 146 ] and capacitative or store-operated calcium channels 
(SOCC) that are activated upon depletion of Ca 2+  from S(E)R [ 147 ] have been 
implicated in pulmonary hypertension. 

 Pathological manifestation of lung edema may occur due to both an increase in 
permeability of the alveolo-capillary barrier and a substantial decrease in the ability 
of alveolar epithelium to clear fl uid from the lung [ 148 ]. An important stimulus for 
pulmonary edema in humans and in other animals is hypoxia. Hypoxia not only 
impairs active Na +  transport across the alveolar epithelium [ 149 ], but also inhibits 
endothelial Na +  channel (ENaC) and NKA activity [ 150 ]. Acute hypoxia decreases 
NKA activity upon phosphorylation of the Na +  pump, thereby triggering endocyto-
sis of NKA via activation of PKC by increased production of ROS [ 151 ]. Chronic 
hypoxia triggers proteolytic degradation of the NKA with the involvement of the 
ubiquitin/proteosome pathway.  

10.3     Na + /K + -ATPase, Cellular K +  Depletion, and Apoptosis 

 Prolonged decrease in NKA activity may eventually lead to apoptosis [ 152 ]. 
During apoptosis, dysregulation K +  homeostasis occurs [ 153 ]. In apoptotic cells, 
a substantial decrease in cytoplasmic K +  ([K + ] i ) has been observed. The cellular 
K +  concentration can be reduced from ~100 to 30 mM in apoptotic cells [ 154 , 
 155 ]. Conceivably, this reduced [K + ] i  plays an important role for executing a 
number of apoptotic processes, including a decrease in cell volume, caspase-3 
cleavage and cytochrome C release [ 156 ]. Mitochondrial membrane potential has 
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also been affected due to a decrease in [K + ] i , which is a part of apoptotic process 
[ 155 ]. Depleting [K + ] i  by the K +  ionophore, valinomycin or overexpression of K +  
channels can cause apoptosis in central neurons and peripheral cells [ 157 ,  158 ]. 
It has been reported that even a slight defi ciency of NKA activity may markedly 
increase the susceptibility of central neurons to some apoptosis-related patho-
genesis. Such a situation may be contributed by endogenous inhibitors of NKA 
when they are released under some pathological conditions, for example, isch-
emia [ 158 ,  159 ].  

10.4     Na + /K + -ATPase and Cytoskelatal Proteins in Ischemia- 
Reperfusion Injury 

 NKA, a transmembrane heterodimer protein, is composed of α- and β-subunits. The 
cytoplasmic domain of α-subunit interacts with ankyrin [ 160 ], a protein that con-
nects the NKA to the fodrin-based membrane skeleton [ 161 ]. A decrease in protein 
levels of NKA-α 1  and -α 2  subunits of NKA has been demonstrated in cardiomyo-
cytes of ankyrin-B mutated mice [ 162 ]. Additionally, dissociation of fodrin-ankyrin 
complex contributes to the loss of NKA transport to the plasma membrane [ 163 ]. 

 Calpains, a group of nonlysosomal Ca 2+ -dependent cysteine proteases, have been 
demonstrated to proteolytically degrade α-fodrin and ankyrin [ 164 ]. Activation of 
calpain and degradation of both the proteins were found during early reperfusion 
after prolonged ischemia [ 164 ]. In isolated rat hearts subjected to global ischemia, 
inhibition of calpain prevents degradation of fodrin and ankyrin. The underlying 
mechanism(s) of the activation has been suggested to be due to a decrease in sarco-
lemmal fragility and cell death during reperfusion [ 165 ]. 

 Ca 2+  infl ux through reverse-mode NCX has been shown to contribute to cardio-
myocyte hypercontracture and death at the initial stage of reperfusion [ 165 ,  166 ], 
where an increase in [Na + ] i  due to inhibition of Na + /K + -ATPase activity is the key 
determinant of reverse mode of NCX [ 167 ]. Thus, calpain activation, which causes 
an increase in [Ca 2+ ] i  by reverse-mode NCX due to an impairment of NKA activity, 
eventually leads to cardiomyocyte death [ 138 ] (Fig.  1.9 ). Impairment of NKA activ-
ity during early reperfusion after prolonged ischemia has been shown to decrease 
the amount of the enzyme associated with the membrane cytoskeleton complex and 
that can be prevented by calpain inhibitors.

11         Conclusions 

 Caveolae signalosomes have been identifi ed as the site for ouabain-mediated regulation of 
[Ca 2+ ] i , where NKA acts as the transducer. The binding of ouabain activates Src family 
kinases in different types of cells [ 29 ,  168 ]. However, how ouabain activates Src and regu-
lates these interactions are currently unclear. 
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 In rat heart cells, tetrodotoxin (TTx)-sensitive Na +  channels are opened by 
membrane depolarization and favored the passage of Na +  into the cell [ 169 ]. 
Nanomolar concentrations of ouabain switched the ion selectivity of Na +  channels 
to a state of promiscuous permeability called “slip-mode conductance.” In rat heart 
cells, the “slip-mode conductance” of the Na +  channels is stimulated by some 
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  Fig. 1.9    Proposed mechanisms by which calpain activation may contribute to immediate cell 
death during reperfusion. The  broken arrow  indicates a probably less important mechanism. [Ca 2+ ] i  
indicates intracellular Ca 2+  concentration; [Na + ] i , intracellular Na +  concentration; NHE, Na + /H +  
exchanger; NBS, Na + /HCO 3  −  cotransporter; F, other mechanisms contributing to Na +  overload. 
MDL-28170, calpain inhibitor; KBR-7943, inhibitor of NCX (reverse mode); ouabain, Na + /K + -
ATPase inhibitor; BDM, contractile inhibitor [taken from Inserte J, Garcia-Dorado D, Hernando V, 
Soler-Soler J (2005) Calpain-mediated impairment of Na + /K + -ATPase activity during early reper-
fusion contributes to cell death after myocardial ischemia. Cir Res 97, 465–473 with permission]       
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 agonists [ 70 ]. TTx markedly inhibited ouabain induced increase in Na +  and Ca 2+  
levels in caveolae of pulmonary artery smooth muscle cells [ 64 ]. Thus, in caveolae 
of heart and pulmonary vascular smooth muscle cells, involvement of “slip-mode 
conductance” has been suggested as a mechanism for an increase in [Ca 2+ ] i  by 
ouabain. 

 The role that Ca 2+  regulatory components in the caveolae microdomains play on an 
increase in [Ca 2+ ] i  in smooth muscle cells during NKA inhibition by its endogenous 
protein inhibitors, for example, in hypertensive patients, has, however, not been 
clearly determined. Future studies on the correlation among the expression of the Ca 2+  
infl ux regulatory components, α 2 β 1  isozymes of NKA, and inhibitors of NKA in the 
caveolae microdomains in normal and hypertensive animals may provide better 
insights to establish several therapeutics, implicating these proteins to ameliorate vas-
cular diseases, for example, pulmonary hypertension. 

 The α 2  isoform plays an important role in fi ne-tuning of contractility. 
Downregulation of the α 2  isoform, for example, during heart failure, could impair 
tight control of the excitation-contraction coupling. Such downregulation would 
increase [Na + ] i  in the sub-sarcolemmal pool (plasma ERosome). This would impair 
the possible contribution of rapid reversal of the NCX to trigger Ca 2+  release and 
causes dyssynchronous Ca 2+  release as observed in models of heart failure yyy. 
Also, reduced Ca 2+  extrusion through the NCX would increase SR Ca 2+  load. 
However, in heart failure, SR Ca 2+  load decreases [ 69 ,  170 ,  171 ]. This suggests that 
the downregulation of the α 2  isoform is a compensatory mechanism to limit the 
decrease in SR Ca 2+  load. Low doses of ouabain improve contractile properties by 
enhancing the compensatory mechanism. Further studies are needed to determine 
the causes and consequences of α 2  isoform down regulation in heart failure. 

 At least one functional role of FXYD protein is the regulation of NKA and that 
occurs in a tissue- and isoform-specifi c manner. Although the functional effects of 
FXYD proteins on the transport and kinetic properties of NKA are known to some 
extent, yet physiological relevance of these effects and the potential implications of 
a loss of FXYD regulation of NKA in pathophysiological states are not clearly 
known and require further investigation. 

 ROS induced changes in [Ca 2+ ] i  may be correlated to the regulation of 
NKA. Ouabain and ROS were shown to exhibit additive effects on [Ca 2+ ] i , indicat-
ing a common target for both the stimuli. This was supported by the fi ndings that 
ouabain potentiated the effects of ROS on protein synthesis and gene expression. 
Thus, ROS may not only regulate protein kinase cascades directly, but also affect 
NKA, which in turn leads to hypertropic signaling pathways. In this connection, it is 
worth noting that ouabain binding to the NKA stimulates ROS production in a Src- 
and Ras-dependent manner in cardiac myocytes [ 171 ]. Thus, it is likely that oua-
bain-induced ROS could further affect the receptor, thereby amplifying the associated 
signal transduction mechanisms, which needs to be experimentally verifi ed. 

 NKA activity reduces during apoptosis or vice versa; that is, considerable 
reduced activity of NKA leads cells to undergo apoptosis, while its activity increases 
at the time of cell proliferation. For example, TNF-α exerts a time-dependent oppo-
site effect on the pump. The early 1 h response is inhibitory and suggestive of an 
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apoptotic state, while the cell proliferation response was determined at 4 h. 
Importantly, in both the responses JNK has been shown to be activated and is the 
key player [ 172 ]; however, the exact mechanisms by which JNK exerts opposite 
effect on its targets such as NF-κB and caspases, which mediate cell survival and 
apoptosis, respectively, are currently unclear and need further experimental proof. 

 In cardiomyocytes inhibition of NKA during early reperfusion after prolonged 
ischemia was determined, at least partly, to be due to calpain-mediated detachment 
of the NKAα-subunit from the membrane cytoskeletal complex. This contributes to 
Ca 2+  infl ux through reverse-mode of NCX and plays a critical role in reperfusion 
induced cell death. Although this provided a novel mechanism for explaining the 
impairment of NKA activity that occurs in hearts during early reperfusion after 
prolonged ischemia, calpain-independent mechanisms also contribute to NKA dys-
function under ischemia-reperfusion injury to the vasculatures.     
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    Chapter 2   
 Na/K-ATPase and Its Role in Signal 
Transduction                     

       Moumita     Banerjee     and     Zijian     Xie    

    Abstract     The Na/K-ATPase was discovered as an essential ion pump that maintains 
intracellular ionic balance by transporting potassium and sodium ions into and out 
of eukaryotic cells at the expense of ATP. The efforts of numerous investigators 
during the last two decades have revealed several important non-pumping functions 
of Na/K-ATPase. This chapter focuses on the molecular mechanism of Na/K-
ATPase- mediated signal transduction and its potential regulatory role in animal 
physiology and diseases.  

  Keywords     Na/K-ATPase   •   Ouabain signaling   •   Cardiotonic steroids   •   Src kinase   • 
  Signalosome  

1         Introduction 

 The Na/K-ATPase (NKA) was discovered by Skou about 60 years ago as an ion 
pump [ 1 ]. It belongs to a large family of P-type ATPases. Unlike other P-type 
ATPases, NKA contains binding site for both endogenous and exogenous cardio-
tonic steroids (CTS) that include ouabain, digoxin, and marinobufagenin. Because 
digoxin and related CTS have been widely used as drugs for heart failure, both 
physician and basic scientists have had a long history of interest in knowing whether 
these drugs affect gene expression and cell growth [ 2 ,  3 ]. By early 1970s, several 
groups of scientists had demonstrated the regulatory effects of ouabain on cell 
growth and gene expression. At that time, these regulatory effects of ouabain were 
all ascribed to the pump inhibition and the resulted change in intracellular ion con-
centration [ 4 – 6 ]. About 20 years ago, a series of studies conducted fi rst in neonatal 
cardiac myocytes and subsequently in renal epithelial cells showed that ouabain 
could activate a number of cell growth-related pathways, of which many are 
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independent of changes in intracellular ion concentration. These studies have led to 
a great effort by many laboratories and subsequent demonstration that the NKA 
actually has many non-pumping functions [ 7 ,  8 ]. In this chapter, we briefl y look into 
the structural properties of NKA that is responsible for direct protein interaction, 
and then discuss different aspects of NKA-mediated signal transduction and its role 
in animal pathophysiology.  

2     Structure of NKA 

 The NKA is an oligomeric protein comprising of two main subunits—a ~100 kDa 
ten-transmembrane-spanning alpha (α) subunit and a 50–60 kDa highly glycosyl-
ated single-membrane-spanning beta (β) subunit. In certain types of cells, a third 
subunit called gamma (γ) also associates with α and β subunits. The α subunit is the 
catalytic subunit that contains binding sites for the pump substrates as well as 
CTS. The three dimensional structure of the NKA is rather elongated, with short 
extracellular region that serves as the binding site for CTS [ 9 ]. The ten transmem-
brane domains are embedded inside the plasma membrane and are usually num-
bered as M1 to M10. The cytoplasmic region is rather large, and is formed by three 
main intracellular structures—the amino terminal tail of about 90 amino acids, the 
second cytoplasmic peptide of ~136 amino acids that connects M2 and M3, and a 
third rather large peptide of ~434 amino acids that connects M4 and M5. These 
cytoplasmic regions are named based on their functionality, according to the X-ray 
crystal structures of SERCA (sarcoplasmic reticulum Ca 2+  ATPase) and then NKA 
[ 10 – 12 ]. The amino terminal tail and the second cytoplasmic peptide together form 
a domain called actuator domain or A domain. On the other hand, the large cyto-
plasmic loop connecting M4 and M5 can be divided into two domains: the P domain 
or phosphorylation domain containing the aspartate (D371) that accepts the termi-
nal phosphate during ATP catalysis, and N or nucleotide-binding domain that binds 
ATP. During ion pumping cycle, the NKA undergoes a large-scale domain rear-
rangements while transitioning between two unphosphorylated states of E1 and E2, 
and two phosphorylated states of E1P and E2P [ 9 – 12 ]. Interestingly, many mem-
brane and cytoplasmic proteins have been identifi ed to interact with either the A or 
N or both A and N domains as reviewed in references [ 7 ,  13 ,  14 ]. Moreover, these 
studies have also revealed that such protein interactions are not only important for 
control of pump traffi cking and enzymatic activity, but may also play an essential 
role in regulating the function of these pump-interacting proteins. The latter pro-
vides the molecular basis for the non-pumping functions of NKA.  

3     Regulation of Cell Growth by Cardiotonic Steroids 

 As early as 1930s, Christian postulated that digoxin delays the symptoms of cardiac 
insuffi ciency in patients with heart diseases by affecting cardiac enlargement [ 15 ]. 
In the 1970s, several laboratories had obtained evidence of CTS-induced changes 
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in cell growth and gene expression including the inhibition of mitogen-induced dif-
ferentiation of lymphocytes isolated from both normal and leukemic subjects, and 
up-regulation of NKA [ 4 ,  16 ,  17 ]. Initially, these growth-promoting/inhibiting 
effects of CTS were logically attributed to the alteration of intracellular ion concen-
trations. However, it gradually became an issue because investigators realized that 
CTS could affect cell growth and gene expression at very low concentrations (lower 
than 1/10th of the IC50 on NKA activity) that do not likely affect the ion pumping 
capacity of cells. In mid-1990s, we reported that ouabain could stimulate protein 
synthesis and hypertrophic growth in cultured cardiac myocytes by activating a 
number of growth-related signaling pathways, including the activation of several 
proto-oncogenes such as Src and EGFR, induction of transcriptional factors such as 
AP-1 and NF-κB, and increased production of reactive oxygen species (ROS) [ 18 –
 22 ]. Most importantly, we showed some of these pathways could be activated by 
ouabain in the absence of detectable changes in intracellular Na + , and in the absence 
of extracellular Ca 2+ , raising the possibility of NKA/ouabain interaction having ion 
pumping-independent signaling function [ 20 ]. During this period of time, several 
laboratories also demonstrated growth stimulatory effects of ouabain on vascular 
smooth muscle cells and endothelial cells at sub-nM concentrations that were insuf-
fi cient for changing cellular pump capacity [ 23 – 25 ]. These early studies have now 
been well documented by different laboratories around the world in a variety of cell 
types including cardiac myocytes, endothelial cells, renal epithelial cells, vascular 
smooth muscle cells, cancer cells, and sperm and neuronal cells [ 26 – 36 ]. Taken 
together, they have led credentials to the hypothesis that the NKA can regulate cel-
lular phenotype by acting as a signal transducer. Moreover, they have illustrated 
that the growth effects of CTS are cell specifi c. To this end, it is of interest to men-
tion several studies. First, a potential role for CTS in pathogenesis of autosomal 
dominant polycystic kidney disease (ADPKD) has been suggested by Blanco’s 
laboratory. They have demonstrated that physiological concentrations of CTS is 
capable of stimulating proliferative growth of ADPKD, but not normal human kid-
ney epithelial cells, by activating Src/EGF receptor/ERK pathways [ 37 ,  38 ]. 
Second, we and others have shown that CTS are potent stimuli of dermal and other 
types of fi broblasts. They could increase collagen synthesis at concentrations well 
below 1/10th of their IC50 on the NKA activity by activating Src and PKC as well 
as by increasing the production of ROS [ 39 – 41 ]. Third, it is important to point out 
that the fetal bovine serum we all use in our cell culture may contain suffi cient 
amount of CTS to promote cell growth according to the studies from Lichtstein’s 
laboratory [ 42 ]. Finally, it is equally important to recognize that CTS could also 
inhibit cell growth in a wide variety of cancer cell lines such as prostate, lung, colon 
cancer cells and neuroblastoma cells by stimulating several different pathways, 
including apoptosis and autophage-related processes [ 43 – 51 ]. Taken together, it is 
clear that the NKA possesses some other functions distinct from its function as an 
ion pump, through which it can regulate gene expression and cell growth in a cell-
specifi c manner.  

2 Signaling by Na/K-ATPase
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4     Src Kinase and NKA-Mediated Signal Transduction 

4.1     The Identifi cation of NKA/Src Receptor Complex 

 Although there is still some degree of uncertainty in regarding to the chemical iden-
tity and biosynthetic pathways of endogenous CTS, their existence and physiologi-
cal role have now been fi rmly established, especially after the publication of 
transgenic animal work of Lingrel laboratory [ 52 ,  53 ]. It is also most agreed among 
investigators that endogenous CTS are circulating at the concentrations far below 
the IC50 of these compounds (e.g., below 1/10th of IC50). Naturally, it has been 
questioned how CTS work as hormones in vivo. 

 Blaustein and colleagues have postulated based on their initial work on smooth 
muscle cells that localized increase in intracellular Na +  due to CTS-induced pump 
inhibition would increase Ca 2+  infl ux through Na + /Ca 2+  exchanger (NCX) [ 54 ]. This 
is certainly true when high concentration of ouabain is applied to both cardiac and 
smooth muscle cells. It might be also in operation when smooth muscle cells are 
exposed to certain low concentration of CTS [ 55 ]. However, most cells express a 
large number of NKA and cells contain a large pool of reserved NKA. Localized 
increase in intracellular Na +  will certainly increase the turnover rate of CTS-free 
NKA, resulting in a smaller change in intracellular Na + , and thus the overall signal 
amplitude. Moreover, it is less likely that such mechanism is responsible for CTS- 
induced activation of protein kinases. 

 Several of our early studies showed that ouabain could stimulate tyrosine phos-
phorylation of multiple protein kinases in different types of cells including cardiac 
myocytes, smooth muscle cells, and renal epithelial cells [ 19 ,  21 ,  22 ,  56 ,  57 ]. The 
fi ndings in renal epithelial cells were more interesting because these cells, unlike 
muscle cells, express only α1 isoform of NKA and also much less NCX. In accor-
dance, ouabain-induced protein tyrosine phosphorylation was detected even when 
these cells were cultured in Ca 2+ -free medium [ 20 ,  22 ]. These new fi ndings at the 
time led us to look for protein kinases that could be activated by the binding of CTS 
to NKA. This effort resulted in the discovery of the receptor NKA/Src complex 
[ 56 – 58 ]. 

 Several lines of evidence support this contention. First, time course studies 
showed Src to be one of the fi rst activated kinases when cells were stimulated by 
ouabain. Concomitantly, inhibition of Src by Src-specifi c inhibitors attenuated all of 
ouabain-induced signaling pathways including ouabain-induced increases in intra-
cellular Ca 2+ . This was independently confi rmed in SYF mouse fi broblasts where 
three major Src family kinases (Src, Yes, and Fyn) are knocked out. Most impor-
tantly, expression of Src restored ouabain-induced protein tyrosine phosphorylation 
and other signaling events in SYF cells [ 56 ]. Second, Src was detected in the highly 
purifi ed NKA preparations from dog and pig kidneys. In accordance, co- 
immunoprecipitation experiments indicated the formation of NKA/Src complex. 
Ouabain-induced Src activation further recruited more Src to this complex. This is 
consistent with the detected co-localization of these two proteins in the plasma 
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membrane microdomains and further supported by the FRET analyses. It is impor-
tant to note that most of above fi ndings has now been confi rmed by different labo-
ratories working with other types of cell cultures and in vivo [ 28 ,  37 ,  44 ,  51 ,  56 – 61 ]. 
Third, using GST- or his-tagged Src or NKA fragments we were able to show direct 
binding between these two proteins. At least two independent binding sites from the 
α1 subunit of NKA have been identifi ed. Interestingly, these two binding sites are 
separately located in the A and N domains. While NKA N domain binds to Src 
kinase domain, the A domain interacts with Src SH2 domain. Because the binding 
of ouabain or pump substrates to NKA results in a large movement of both A and N 
domains, it is conceivable that such conformational changes could alter the interac-
tion between the NKA and Src. To this end, we were able to show that ouabain was 
capable of disrupting the interaction between the N domain of NKA and Src kinase 
domain, which was further supported by live-cell FRET analyses [ 56 ,  57 ].  

4.2     Src Kinase 

 An insight into the regulation of Src kinase is necessary for understanding its inter-
action with NKA; therefore this paragraph provides a short summary of Src kinase 
structure and regulation. Src family kinases, consisting of nine family members, are 
proto-oncogenic non-receptor tyrosine kinases that play intermediary roles in signal 
transduction in a variety of growth factor-stimulated pathways. The fi rst identifi ed 
member of this family was Src kinase, the viral form (v-Src) of which was the fi rst 
identifi ed oncogene [ 62 ]. Src kinase and other family members have been found to 
be responsible for regulating several fundamental cellular functions such as cell 
division, attachment, migration, and survival [ 63 ,  64 ]. Src family kinases share a 
common structure containing six functionally distinct domains: (a) a membrane 
anchoring N terminal SH4 domain that contains sites for myristoylation or palmi-
toylation, (b) followed by a unique region, (c) SH3 domain that preferentially binds 
polyproline motifs, (d) SH2 domain that binds to a specifi c sequence containing 
phosphorylated tyrosine, (e) kinase domain that is the catalytic domain responsible 
for phosphorylating Src substrates, and (f) a short regulatory C terminal tail. 
Detailed studies into crystal structure of Src kinases have revealed that Src SH2 and 
SH3 domains play an important role in the regulation of Src kinase activity. Two 
regulatory tyrosine residues—Y418 in the kinase domain and Y529 in the C termi-
nal tail—are also very important. In general, when Src SH2 binds the phosphory-
lated Y529, it aids the binding of SH3 domain to a short motif in the linker region 
connecting SH2 and kinase domain. These double-intramolecular interactions keep 
the overall structure in a closely compacted inactive conformation and hinder the 
phosphorylation of Y418 that is required for the full activation of Src. Thus, dephos-
phorylation of Y529 could lead to the activation of Src. However, under most physi-
ological conditions, Src appears to be activated by its SH2 binding to membrane 
receptors. For example, when receptor tyrosine kinases such as EGF receptor are 
tyrosine phosphorylated, they are capable of recruiting and then activating Src 
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through the SH2-mediated binding without affecting Y529 phosphorylation [ 65 , 
 66 ]. Thus, the binding of SH2 to the phosphorylated membrane proteins (receptors) 
could actually serve two important regulations of Src: namely targeting and activa-
tion. As discussed in the next paragraph, NKA represents another important regula-
tory mechanism of Src, but works differently from receptor tyrosine kinases.  

4.3     NKA and Src Regulation 

 In comparison to the widely accepted mechanism of Src regulation, the newly 
described NKA/Src interaction has not been greatly appreciated. Therefore, it is 
important to compare and contrast the NKA vs. other cellular protein-mediated Src 
regulation, especially in the following three aspects. First, NKA regulates Src dif-
ferently from that of receptor tyrosine kinases. For example, EGF receptor is one of 
the most prominent receptor tyrosine kinases that Src engages in. It is capable of 
recruiting Src kinase to the signaling complex, and resulting in Src activation, which 
consequently increases tyrosine phosphorylation of EGF receptor and other signal-
ing proteins [ 67 ]. Like EGF receptor, NKA is also a plasma membrane protein, 
capable of recruiting Src via its interaction with the SH2 and kinase domains. 
However, unlike EGF receptor, these interactions actually keep Src in an inactive 
state. This has now been well documented in test tube, live cells, or in vivo [ 56 ,  57 ]. 
For example, knocking down of NKA expression signifi cantly increases cellular Src 
activity under the basal culture conditions. This increase is fully reversible and can 
be blocked by the expression of either pumping-competent or -null NKA [ 68 ]. 
Thus, NKA serves not only as a Src scaffold for targeting Src to the plasma mem-
brane domains where NKA is highly expressed, but also as a Src inhibitor. 
Furthermore, the formation of NKA/Src complex produces a functional receptor, 
allowing NKA ligands such as CTS to activate the NKA-associated Src. Therefore, 
the NKA/Src interaction could allow a dynamic and NKA-specifi c on- and off- 
mechanisms of Src regulation. Second, the number of expressed NKA is much 
higher than that of any other membrane receptor. Most mammalian cells express 
more than one million NKA molecules in the plasma membrane, and the number 
goes to more than ten million in kidney epithelial cells [ 69 ]. Our FRET studies 
indicate that approximately 25 % of these pump molecules in renal epithelial cells 
have the capability of interacting with Src kinase [ 56 ]. In contrast, one of the most 
highly expressed receptor tyrosine kinases, EGF receptor, is expressed in a range of 
about 10,000–100,000 molecules per normal cell [ 70 ]. Src can also be regulated by 
G protein-coupled receptors and the expression of these receptors is in the range of 
few hundred and few thousand molecules per cell depending on cell type. Thus, 
NKA by virtue of its capacity of stable interaction with Src kinase could represent 
one of the most important regulatory mechanisms of Src kinase in mammalian cells. 
This is in accordance with both in vitro and in vivo data showing that knocking 
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down of NKA increases the basal Src activity [ 68 ,  71 ]. Third, the location of NKA 
is also unique in comparison to other receptors. Most of NKA is expressed in the 
plasma membrane of epithelial cells. Moreover, it has been demonstrated that more 
than 30 % of NKA is concentrated in caveolae together with Src and other signaling 
partners in these cells. This is clearly different from most of receptor tyrosine 
kinases or G protein-coupled receptors [ 58 ,  72 ]. 

 Over the years, several proteins have been identifi ed as important negative regu-
lators of Src kinase. It is also of interest to compare and contrast them with 
NKA. Among the negative regulators, Csk and Chk are most prominent. They phos-
phorylate the Y529 and inactivate Src [ 73 ]. However, they appear to require other 
membrane proteins to exert their effects on membrane domain-specifi c pool of Src. 
Interestingly, while CTS stimulate the phosphorylation of Y418, they have no effect 
on Y529 phosphorylation [ 56 ]. Examples of other negative regulators include 
Wiskott-Aldrich syndrome protein (WASP). Like, NKA, it could directly inhibit Src 
kinase by binding to the catalytic site of Src [ 74 ]. However, WASP is a cytoskeletal 
protein and its effect on Src kinase activity lies far downstream of most receptor 
signaling pathways. In short, NKA provides a unique mechanism of Src regulation, 
different from those of receptor tyrosine kinases, G protein-coupled receptors, and 
other positive and negative regulators.  

4.4     Development of pNaKtide as a Functional Antagonist 
of Receptor NKA/Src Complex 

 Realization that the N domain of NKA interacts with Src kinase domain and inhibits 
Y418 phosphorylation had prompted us to map and develop a peptide from the N 
domain of NKA that could bind/inhibit Src Y418 phosphorylation and also disrupt 
the formation of a functional NKA/Src receptor complex. This effort led to the iden-
tifi cation of NaKtide, a 20-amino acid peptide from the α1 subunit of NKA [ 75 ]. To 
make it cell permeable, we tried several membrane-penetrating peptides. 
Interestingly, addition of a 13-amino acid TAT peptide to NaKtide (named as pNaK-
tide) not only made it permeable to cell membrane, but also localized a majority of 
pNaKtide to the plasma membrane. Several unique properties of this peptide were 
subsequently demonstrated. First, pNaKtide is a potent inhibitor of Src Y418 phos-
phorylation in vitro with IC50 of about 4 nM comparable to the commonly used 
small molecular Src inhibitor PP2. However, unlike PP2, pNaKtide does not affect 
much of basal Src activity in live cells. It becomes effective when cellular Src activ-
ity is increased due to the downregulation of NKA. Second, it seems to be more 
specifi c to Src than to other Src family kinases, and it is not an ATP analog. Third, 
it has no effect on PKC family of kinases and on receptor tyrosine kinases such as 
EGFR and IGFR. Finally, pNaKtide is effective in reducing the formation of NKA/
Src receptor complex and thus acts as a specifi c antagonist of CTS [ 75 ,  76 ].  
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4.5     Identifi cation of NKA Mutants that Pump but Are 
Defective in Signal Transduction 

 Structure/activity studies indicate that the helical structure of pNaKtide is important 
for the peptide to inhibit Src Y418 phosphorylation. This led us to test whether we 
could generate a pumping-competent mutant NKA with no ability to regulate Src 
Y418 phosphorylation. Several mutants were generated in the helical region of 
NaKtide, and the mutant expression vector was transfected into PY-17 cells where 
the endogenous NKA was knocked down. Expression of mutant NKA further 
reduced the expression of endogenous NKA, making the stable cell line almost 
exclusively express the mutant. Functional characterization of these mutant cell 
lines led to the identifi cation of A420P mutant that pumps normally, but is incapable 
of regulating Src Y418 phosphorylation. In accordance, ouabain was no longer able 
to activate Src and Src effectors in the mutant-expressing cells [ 77 ]. Thus, we have 
made a Src regulation-defective NKA mutant that has normal pumping function. 

 It is known that NKA adapts several conformations (e.g., E1 and E2) during 
pump cycle and that CTS stabilizes the enzyme in E2-like conformation [ 78 ,  79 ]. In 
view of the fact that NKA regulates Src via direct protein interaction and that oua-
bain could activate the NKA-associated Src, we have postulated that the interaction 
between NKA and Src might be conformation dependent. Subsequent studies using 
chemical modifi ers to stabilize the NKA in either E1 or E2 conformation are sup-
portive of this notion. For example, fl uoride analogues such as beryllium fl uoride 
stabilize purifi ed NKA in E2-like state and result in the activation of NKA-associated 
Src as ouabain whereas stabilization of NKA at E1-like state by  N -ethylmaleimide 
completely inhibits Src Y418 phosphorylation. To further test this conformation- 
dependent regulation of Src by NKA, we also studied the effect of extracellular K +  
and intracellular Na +  on cellular Src activity. We found that lowering of extracellular 
K +  concentration or increasing intracellular Na +  stimulated the formation of pY418 
Src, and consequently activated Src effectors in renal epithelial cells by accumulat-
ing NKA in E2-like state [ 57 ]. To further affi rm that NKA can regulate Src in a 
conformation-dependent manner and to identify other NKA mutants that are defec-
tive in signal transduction, we have generated several stable cell lines that express 
either E1-like or E2-like NKA mutants. Characterization of these cell lines provides 
further evidence of conformation-dependent regulation of Src by NKA. While E1- 
and E2-like mutants have similar degree of overall defi ciency in their pumping 
functions, they regulate Src differently. Unlike E2-like mutant, expression of E1 
mutant caused much stronger inhibition of basal Src activity, suggesting its capacity 
of forming a functional receptor complex. This is in accordance with the fact that 
ouabain activated signal transduction in E1-, but not E2-mutant, expressing cells 
[ 80 ]. Taken together, these studies provide strong support of the notion that NKA 
has pumping-independent signaling function due to its interaction with Src kinase 
and that NKA may regulate Src in a conformation-dependent manner. 

 In short, NKA appears to represent a unique regulatory mechanism of cellular 
Src-mediated signal transduction. In most epithelial cells, this mechanism allows a 
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spatial, dynamic, and high-capacity regulation of Src by NKA, and its ligands such 
as CTS. However, several important issues are worthy of further discussion. First, 
the Src family consists of at least nine members. They share similar overall structure 
but are expressed in a tissue-specifi c manner. Thus, it is conceivable that NKA 
could interact with other members of Src family in a tissue-specifi c manner as sug-
gested by recent studies [ 81 ,  82 ]. This may also be applied to other isoforms of 
NKA [ 83 – 87 ]. Moreover, because H/K-ATPase may interact with Src [ 56 ,  88 ,  89 ], 
there is possibility of formation of another group of receptor complex. All together, 
the diversity of these interactions could produce a large population of receptor spe-
cies and provide a tissue-and ATPase-specifi c response. Second, although evidence 
of direct protein interaction between NKA and Src is overwhelming, other modes of 
Src regulation by CTS have been proposed [ 90 ,  91 ]. Needless to say, these issues 
have to be further investigated.  

4.6     Formation of Cell-Specifi c Signalosomes for Signal 
Initiation, Amplifi cation, and Termination 

 Studies of last two decades have revealed that CTS could activate a variety of cel-
lular signaling pathways in a cell-specifi c and dose-dependent manner. It involves 
both short- and long-term regulations. To simplify the discussion, we will focus on 
a few important short term regulations that could be stimulated by CTS at concen-
trations that do not affect the overall pumping capacity of cells. As illustrated in 
Fig.  2.1 , the receptor NKA interacts with several proteins to perform cell-specifi c 
signal transductions including the Raf/MEK/ERK, PLC/PKC, PI3K/Akt, Ca 2+  sig-
naling, and the generation of ROS. One of the most important signaling partners 
trans-activated by NKA/Src receptor complex is EGF receptor, which is recruited 
and phosphorylated at several phosphorylation sites other than its major phosphory-
lation site Y1173 when cells are exposed to CTS [ 21 ]. The activated EGF receptor 
then recruits the adaptor protein Shc, which in turn binds the protein complex Grb2 
and SOS. SOS is a guanine nucleotide exchange factor that activates Ras by 
exchanging GDP for GTP. Activated Ras then stimulates Raf/MEK and p42/44 
ERK cascade [ 21 ,  22 ]. Activation of this cascade by CTS appears to occur in most 
of cell types [ 28 ,  37 ,  44 ,  72 ]. In addition to the ERK cascade, the activation of Src/
EGF receptor is also required for CTS-induced activation of PLC and consequently 
the generation DAG, which leads to the activation of PKC [ 92 – 94 ]. The NKA/Src 
complex also plays an important role in CTS-induced Ca 2+  signaling. Several mech-
anisms appear to be in operation depending on cell types. In most of the cells, NKA 
is important for the formation of Ca 2+  signalosomes [ 94 – 101 ]. While Src is involved 
in the phosphorylation of IP3 receptor and the generation of IP3 in epithelial cells 
[ 94 ,  95 ,  99 ], it appears to play a role in assembly of TRPC6, NCX1, and NKA into 
a signaling complex in response to ouabain stimulation [ 55 ,  102 ]. Finally, CTS 
activate PI3K/Akt pathways in several cell types. However, the activation of Src/
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EGF receptor appears to be important, but not necessary for the activation of PI3K/
Akt [ 77 ,  80 ,  103 ,  104 ]. Moreover, it appears that CTS fail to activate this pathway 
in certain types of cancer cells, leading to the downregulation of surface expression 
of NKA and the inhibition of cell growth [ 104 ].

   Several important features of this newly appreciated signaling mechanism are 
worthy of further discussion. First, unlike the suggested NKA/NCX coupling 
mechanism of CTS signaling, the activation of protein and lipid kinase cascades 
and the generation of second messengers ensure the formation of a positive feed-
forward loop that could amplify CTS-provoked signal transduction, and also allow 
signal diversifi cation and transcriptional and translational regulation of gene 
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  Fig. 2.1    Schematic diagram showing different molecular components of the signalosome formed 
by Na/K-ATPase/Src receptor complex in response to cardiotonic steroid binding. Cardiotonic 
steroid binding activates multiple signaling pathways, induces calcium signaling and generation of 
ROS, and ultimately regulates cellular transcription and translational events. The abbreviations 
used are as follows:  EGFR , epidermal growth factor receptor;  PKC , protein kinase C;  CD2 , second 
cytoplasmic domain of Na/K-ATPase;  N domain , nucleotide-binding domain of Na/K-ATPase; 
 Src , Src kinase;  PI3K , phosphatidyl inositol 3 kinase;  Grb2 , growth factor receptor-bound protein 
2;  Sos , son of sevenless protein;  Shc , src homology collagen like protein;  PLCγ , phospholipase Cγ; 
 IP3 , inositol 3,4,5;  IP3R , inositol 3,4,5 receptor;  S.E.R , sarco/endoplasmic reticulum;  MEK , 
MAPK/ERK activating protein;  ERK , extracellular regulated kinase (MAPK);  ROS , reactive oxy-
gen species;  CTS , cardiotonic steroids (like ouabain, digoxin, marinobufagenin, etc.). P ( red ) 
denotes phosphorylated amino acids.  Solid line  denotes proved signaling pathway,  dashed line  
denotes speculated signaling pathway,  thick black line  denotes upregulation       
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expression [ 21 ,  32 ,  39 ]. This is best exemplifi ed by the recruitment of additional 
signaling partners into the receptor complex [ 21 ,  58 ,  94 ] and by the ROS-induced 
signal amplifi cation [ 105 – 107 ]. In accordance, this could explain as to why endog-
enous CTS could have profound effects on animal physiology at concentrations 
well below 1/10th of IC50 [ 108 ]. Second, the fact that CTS could provoke signal 
transduction through kinase cascades, and the generation of second messengers 
points the need of reexamination of CTS physiology and exploring the potential 
new pharmacology of exogenous CTS. Looking back, most of the pharmacological 
studies of CTS were focused on their ability to inhibit NKA. As such, they were 
used as NKA inhibitors to increase myocardial contractility. Even in this applica-
tion, clinical studies have demonstrated that the use of lower, but not higher, doses 
of digoxin is associated with a decrease in mortality in patients with CHF [ 109 ]. 
Moreover, we and others have shown recently that the activation of NKA signaling, 
but not inhibition of cellular pump capacity, by CTS is capable of protecting the 
heart from ischemia/reperfusion injury [ 110 – 112 ]. This is consistent with the fi nd-
ings that CTS may be protective of organ development during malnutrition [ 113 ] 
and that CTS may be important for fetus development [ 114 ,  115 ]. Furthermore, 
CTS at doses lower than 1/10th of IC50 are effective stimuli of collagen synthesis, 
suggesting the potential use of these compounds in skin care and wound healing 
[ 39 ,  41 ]. Thus, the new data suggest that CTS as NKA/Src receptor agonists may be 
explored for new clinical implications at low doses that do not produce cardiac 
toxicity. Third, it has been reported that the endocytosis of NKA/Src receptor com-
plex, like many other membrane receptors, is stimulated by its ligands such as CTS 
[ 116 – 118 ]. This occurs via clathrin-coated pits, early and late endosomes, and 
depends on the activation of Src and PI3K. Although it remains to be further inves-
tigated, it is conceivable that CTS-induced endocytosis of receptor NKA/Src could 
represent a pathway of signal termination. Of course, it might also generate an 
effective way of communication with intracellular compartments during the signal 
transduction process [ 119 ]. 

 Because NKA has to interact with Src and other proteins to relay CTS signal, it 
is postulated that NKA and its partners may pre-assemble into signalosomes in 
caveolae. Caveolae are membrane microdomains that were fi rst identifi ed as fl ask- 
shaped invaginations of plasma membrane enriched in cholesterol and marked by 
caveolins [ 120 ]. Caveolins are 21–24 kDa membrane-associated scaffolding pro-
teins that directly interact with multiple membrane proteins as well as cholesterol. 
Two potential caveolin-1 binding motifs are identifi ed in the α1 subunit of NKA and 
they are highly conserved [ 7 ,  58 ]. Several studies suggest that NKA may directly 
interact with caveolin-1 via its N-terminal caveolin-binding motif, and is highly 
concentrated with Src in caveolae [ 25 ,  58 ,  72 ]. Functionally, this appears to be 
important for CTS-induced signal transduction and for the formation of signalo-
somes [ 7 ,  58 ,  121 ]. Because caveolin-1 expression varies among different cells, this 
could provide some specifi city to receptor NKA/Src-mediated signal transduction. 
Moreover, recent studies reveal an important functional interaction among NKA, 
Src, caveolin-1, and cholesterol in cell culture as well as in vivo [ 71 ,  122 ].   
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5     NKA-Mediated Signal Transduction in Animal
Physiology and Diseases 

 It is now clear that endogenous CTS represent a class of important hormones. 
The appreciation of endogenous CTS in animal physiology and diseases has 
grown in recent years as the mechanisms by which the Na/K-ATPase/Src com-
plex functions as a receptor have been elucidated. There is ample evidence for a 
role of this receptor complex in the regulation of cell growth, fetus development, 
maintenance of organ structure and function, and regulation of blood pressure [ 2 , 
 25 – 27 ,  42 ,  81 ,  113 – 115 ,  123 – 126 ]. Furthermore, a chronic stimulation of the 
receptor appears to operate as mal-adaptive response under many pathological 
conditions contributing to tissue fi brosis, infl ammation, and pathogenesis of 
ADPKD, to name a few [ 37 ,  127 – 131 ]. Thus, endogenous CTS appear to operate 
like other important hormones and neurotransmitters such as angiotensin II and 
norepinephrine in animal physiology and diseases. The following two cases are 
discussed to illustrate this point of view. 

5.1     NKA-Mediated Signal Transduction in the Regulation 
of Renal Salt Handling 

 In kidney, the renal proximal tubule mediates about 60 % of total Na +  exchange in 
the body. NHE3 is largely responsible for Na +  intake on the apical side of the proxi-
mal tubule whereas the NKA mediates Na +  extrusion on the basolateral side. NHE3 
belongs to a family of Na + /H +  exchangers (NHE) that are responsible for Na +  and H +  
exchange across cell membrane. It is widely accepted that coordinated regulation of 
NHE3 and NKA is essential for maintaining Na +  homeostasis and blood volume 
[ 119 ,  132 ]. 

 The fi rst suggestion that receptor NKA/Src complex is important for coordi-
nated regulation of NKA and NHE3 came from in vitro studies conducted in 
LLC-PK1 cells in culture. LLC-PK1 cells are derived from pig proximal tubules 
and the surface expression of NKA and NHE3 are polarized as in proximal tubules, 
when cells are cultured on an insert. As expected, addition of ouabain (at concen-
tration of less than 1/10th of IC50) to the basolateral but not apical side of insert 
was suffi cient to cause a decrease in surface expression of NKA with concomitant 
NKA increase in the early and late endosomes [ 116 ]. This regulation is dependent 
on the activation of Src and PI3K as well as the expression of caveolin-1. 
Surprisingly, there was no detectible change in intracellular Na +  when surface 
expression of NKA was signifi cantly reduced by ouabain exposure. Further stud-
ies revealed that ouabain also increased endocytosis of NHE3 and thus a signifi -
cant decrease in apical expression of NHE3 and naturally Na +  infl ux. Flux studies 
further confi rmed the ability of ouabain to reduce trans-cellular movement of Na +  
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across the monolayer [ 133 ]. Moreover, ouabain also suppressed the transcription 
of NHE3. These studies indicate that the receptor Na/K-ATPase/Src complex may 
be important for salt handling in renal tubular cells. Several ex vivo and in vivo 
studies support this notion. First, infusion of CTS or fed animal with high salt was 
equally effective in activating renal tubular Src and inducing the endocytosis of 
both NKA and NHE3, which resulted in an increase in renal excretion of Na +  [ 134 , 
 135 ]. Second, ex vivo studies confi rmed that CTS activated Src and induced natri-
uresis in isolated proximal tubules [ 136 ]. Moreover, by using transgenic mice, 
Lingrel’s group was able to demonstrate greater natriuretic response to Na +  load-
ing in mice expressing a mutant form of NKA α1 isoform that is much more sensi-
tive to CTS than that in wild-type mice [ 137 ]. Finally, Liu and his colleagues 
showed that high salt intake or CTS could activate NKA signaling and conse-
quently induce the coordinated down-regulation of surface expression of NHE3 
and NKA only in Dahl salt-resistant but not in Dahl salt-sensitive rats [ 134 ]. Taken 
together, the studies of last 10 years have provided strong evidence that endoge-
nous CTS may regulate renal salt handling through the activation of receptor 
NKA/Src complex.  

5.2     NKA Signaling and Tissue Fibrosis 

 It has been well documented that endogenous CTS are elevated in patients suffering 
from chronic renal failure, uremic cardiomyopathy, congestive heart failure, hyperal-
dosteronism, and preeclampsia [ 127 – 131 ]. We suggest that while this increase might 
enhance the functionality of target organs such as the heart and kidney, it would 
become mal-adaptive if the receptor is chronically stimulated. This is best illustrated 
by a series of studies conducted by Shapiro laboratory using partially nephrecto-
mized animal models [ 128 ,  138 ]. As expected, partial nephrectomy increased plasma 
level of marinobufagenin, one of the endogenous CTS, in rat. This increase was 
associated with cardiac hypertrophy and tissue fi brosis, quite analogous to patients 
suffering from end stage renal disease [ 40 ,  128 ,  138 ]. Subsequent investigations 
demonstrated that infusion of CTS was suffi cient to increase tissue fi brosis and that 
neutralization of the increase in endogenous CTS by either passive or active immu-
nization against CTS was effective in reversing tissue fi brosis in partial nephrecto-
mized rats or mice [ 139 ,  140 ]. At molecular level, CTS stimulated collagen synthesis 
by activating the signaling function of NKA, triggered epithelial to mesenchymal 
transition, and increased the transcription as well as translocation of the protein Snail 
in renal tubular cells [ 141 ,  142 ]. In short, chronic stimulation of receptor NKA/Src 
complex appears to be pro-fi brotic. Thus, it would be desirable to develop effective 
receptor antagonists and test whether they are effective in reducing or reversing CTS-
induced tissue fi brosis and organ remodeling. To this end, it is of interest to mention 
that spironolactone may antagonize CTS-induced signal transduction and prevent 
partial nephrectomy-induced cardiac fi brosis in rats [ 143 ].   
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6     Conclusion 

 Studies over the last two decades have revealed that NKA has important signaling 
functions in addition to pumping ions. We have also begun to appreciate the signal-
ing function of NKA in animal physiology and diseases. However, there is a clear 
need to develop new animal models and tool chemicals that will enable the fi eld to 
better probe the intricacies and complexities of NKA-mediated signal transduction 
in live animals. With the better understanding of this newly appreciated signaling 
mechanism, it is most likely that the NKA signaling-specifi c new therapeutics may 
be developed for various human diseases.     
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    Chapter 3   
 Na, K-ATPase Cell Signaling Pathways 
and Cancer                     

       Marco     Túlio     C.     Pessôa    ,     Vanessa     F.     Cortes    , and     Leandro     A.     Barbosa    

    Abstract     Recently, cardiotonic steroids (CTS), used in heart failure treatment, have 
shown interesting antitumor effect acting by several intracellular signaling pathways 
triggered by Na, K-ATPase. Several signaling pathways activated by CTS are involved 
in tumor progression, metastasis, and proliferation, leading an interesting perspective 
to study the relationship of the Na, K-ATPase and cancer. Here we highlight the major 
signaling pathways modulated by Na, K-ATPase and the chemical modifi cation of 
traditional CTS that are under study to develop new anticancer drugs.  

  Keywords     Na   •   K-ATPase   •   Signaling   •   Cancer   •   Cardiotonic steroids  

1         Introduction 

 For many years, Na, K-ATPase has been known by its ionic transport effect of 
maintaining an electrochemical gradient (high Na +  concentration and low K +  con-
centration in extracellular side) which enables essential functions in organisms, such 
as glucose uptake by enterocytes and synaptic activities performed by neurons. 
In 1785, the English botanist and physician William Withering described the proper-
ties and medicinal uses of the fl owering plant  Digitalis purpurea , which is wide-
spread throughout Europe, mainly for the treatment of hydropsy. Within 14 years, it 
was discovered that extracts from this plant had a direct action on the heart. For many 
years after, and even to some extent today, the dried leaves from this plant have been 
used as a heart failure treatment. Finally, cardiotonic steroids (also called cardiac 
glycosides or digitalis-like compounds), the main isolated molecules of  Digitalis  
extract, were demonstrated to be ligands of the Na, K-ATPase. 
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 The digitalis mechanism of action is well established. Briefl y, cardiotonic steroids 
bind to the extracellular domains of the Na, K-ATPase leading to blockage of this 
enzyme in E2 form. The partial inhibition of the Na, K-ATPase causes a delay in 
Na + /K +  ionic restoration before the next cell depolarization. In this way, there is a 
temporary increase in intracellular Na +  leading to a decrease in Na +  uptake by the 
Na + /Ca 2+  exchanger, and consequently, a decrease in extrusion of intracellular Ca 2+ . 
The high levels of intracellular Ca 2+  bind to the troponin C complex and activate the 
myosin II/actin fi bers, resulting in the inotropic effect (increasing of contractility) of 
cardiac glycosides [ 1 ]. However, high levels of cardiotonic steroids, increasing the 
Na, K-ATPase inhibition, promote toxic effects leading to cardiac arrhythmias. 

 Starting in the 1970s, new evidences for gene expression and cell proliferation 
involving the Na, K-ATPase were demonstrated. Researchers have observed, in cul-
tured cells, alterations in the expression of the Na, K-ATPase subunits after chronic 
inhibition of this enzyme either by lowering extracellular K +  or by exposition to 
inhibitors of the Na, K-ATPase, such as ouabain (a cardenolide cardiac glycoside). 
This change in expression of the Na, K-ATPase subunits has been observed in mul-
tiple cell types, including HeLa cells [ 2 ], rat astrocytes [ 3 ], rat cardiocytes [ 4 ], and 
suspension of rat outer medullary tubule segments [ 5 ]. Subsequently, many studies 
showed chronic inhibition of Na, K-ATPase (via low extracellular K +  levels or pres-
ence of the Na, K-ATPase inhibitors) also altered the levels of many gene transcripts 
other than Na, K-ATPase subunits [ 6 – 8 ]. Finally, several works revealed growth- 
related effects of ouabain on some cell lines, effects that were dissociated from 
ouabain-induced changes in osmotic balance [ 9 ,  10 ]. These effects have encouraged 
the scientifi c community to look for additional information to explain how the Na, 
K-ATPase communicates with the intracellular side of different cell types.  

2     Signal Transduction Through Na, K-ATPase 

 The fi rst evidences of signal transduction involving the Na, K-ATPase have arisen 
in rat cardiomyocyte models. Several studies have showed that nontoxic ouabain 
concentrations trigger multiple-chain protein phosphorylation [ 11 ,  12 ]. Moreover, 
the discovery that Src tyrosine kinase family forms a complex with the Na, K-ATPase 
revealed a method by which the Na, K-ATPase could transduce signal, as the Na, 
K-ATPase does not present intrinsic tyrosine kinase activity [ 12 – 14 ]. 

 The Xie group postulated that the Na, K-ATPase could exist in two distinct 
pools: a classical pool, in which the main function would be ion pumping, and a 
signal transduction pool, in which protein-protein interactions would lead to activa-
tion of a set of signaling intermediaries [ 15 ]. Interestingly, this signal transduction 
pool of the Na, K-ATPase was found to colocalize with caveolin-1, the main consti-
tutive protein of caveolae, demonstrating that the Na, K-ATPase can bind to this 
protein through two conserved caveolin-binding motifs present in α1 isoform [ 13 ]. 
In fact, caveolae are the main signal transduction compartment of many cell types, 
corroborating these interesting discoveries. Despite several studies having 
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 demonstrated the cardiac steroids effects through Na, K-ATPase-Src complex inside 
caveolae, a couple of works demonstrated interesting fi ndings. Askari group recently 
did a comparative between properties of caveolar and noncaveolar preparations of 
kidney Na, K-ATPase [ 16 ]. In this paper they demonstrated that the Na, K-ATPase 
found in noncaveolar fraction of kidney can be modulated by ouabain and be able to 
modulate signaling pathway. Also, Souza and coworkers observed that ouabain 
treatment on Caco-2 (a cell line that does not contain caveolae) resulted in modula-
tions on expression and redistribution of junctional proteins as well as Na, K-ATPase 
subunits [ 17 ]. Deeper investigations demonstrated that previous effects were depen-
dent on the MAPK signaling activation. Altogether, these fi ndings suggest that 
caveolae seems to be very important to the Na, K-ATPase signaling pathways; how-
ever these effects are completely dependent on cell type and that the presence of 
caveolae is not essential for Na, K-ATPase signaling. 

2.1     The Src Complex 

 Src family proteins comprise a set of nonreceptor kinases associated with cell mem-
brane that compartmentalizes many signaling pathways through caveolae. The ability 
of Src to bind directly to the Na, K-ATPase to form a stable signaling receptor complex 
in response to cardiotonic steroids has been demonstrated by several laboratories 
through many experiments like immunofl uorescence analysis, FRET analyses, co-
immunoprecipitation assays, and in silico simulations [ 18 ,  19 ]. This binding appears to 
occur at the level of the CD2 and CD3 domains of the α1 Na, K-ATPase, interacting 
with SH2 and kinase domains of Src, respectively, keeping Src protein in an inactive 
state [ 13 ]. It is interesting to note that the binding of ouabain to this complex releases 
the Na, K-ATPase-attached Src protein, allowing the signaling function of Src. In fact, 
the effects of cardiotonic steroids are blocked by addition of Src inhibitors in many cell 
types [ 20 – 22 ]. Thereby, most signaling events triggered by cardiotonic steroids seem 
to be connected with the release of Src from this intricate complex found on caveolar 
fractions of cell membrane. Interactions between the Na, K-ATPase and caveolar frac-
tions are so coordinated that cardiac fi broblasts extracted from mice without caveolin-1 
demonstrate alterations in several Na, K-ATPase signaling functions [ 23 ].  

2.2     EGFR Transactivation 

 The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor capable 
of relaying the growth factor external message to intracellular side of the cell and 
exerts a central role in signal transduction [ 24 ]. Briefl y, the epidermal growth factor 
(EGF) binds to its receptor (EGFR) inducing dimer formation leading to self- 
phosphorylation on tyrosine residues. Then, the phosphotyrosine residues can act as 
docking sites for adaptor proteins and cytosolic kinases. 
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 Recently, several studies have provided evidence that EGFR performs cross- 
communication with other signaling systems to integrate the extracellular signal 
variety in some pathways such as cytokines, hydrogen peroxide, and G protein- 
coupled receptors [ 13 ,  25 – 27 ]. This kind of activation is called  transactivation , to 
distinguish it from the EGFR activation by its natural ligand EGF [ 28 ]. EGFR trans-
activation has been shown to be present upon ouabain signaling, and probably other 
cardiotonic steroids, to relay the signals to cytosolic kinases through the Na, 
K-ATPase-Src complex [ 22 ]. It is noteworthy that ouabain stimulates phosphoryla-
tion of EGFR at different amino acids than the natural EGFR ligand. EGF binding 
to EGFR leads to the phosphorylation of several tyrosine residues such as Y845, 
Y992, Y1068, Y1086, Y1148, Y1173, whereas EGFR phosphorylation in response 
to ouabain does not include Y992 and Y1173 residues in HeLa cell lines [ 29 ].  

2.3     Ras/MAPK Signaling Pathway 

 The main downstream signaling pathway associated with EGFR activation is Ras/
MAPK. This signaling pathway is activated in a particular way to guide essential cell 
functions like proliferation, cell growth, differentiation, apoptosis, migration, and 
neuronal activity [ 30 ]. Briefl y, three adaptor proteins (Shc, Grb2, and Sos), containing 
SH2 and SH3 domains, act as linkers between activated EGFR-exposed phosphotyro-
sines and Ras. Afterward, activated Ras leads to the subsequent activation of Raf/
MEK/MAPK pathway. This pathway regulates essential cell functions in many ways. 
For example, a transient activation followed by light signaling, but sustained, of Ras/
Raf/MEK/MAPK is a common cell proliferation aspect in many systems [ 31 ]. 

 It is interesting to note that some cardiotonic steroids acting through the Na, 
K-ATPase have been demonstrated to trigger the Ras/Raf/MEK/MAPK signaling 
cascade. Specially, ouabain was found to trigger this pathway in SH-SY5Y and 
MDA-MB-435S cell lines, leading to cell death [ 32 ,  33 ]. Many of cardiotonic 
steroids- related signaling pathways were demonstrated to be linked to Src activation. 
Ouabain-induced activation of the MAPK cascade in A7r5 cells was abolished by 
cell treatment with Src inhibitors. In SYF cells, which harbor functionally null muta-
tions in both alleles of Src family kinase members Src, Yes, and Fyn, ouabain was not 
able to activate the MAPK signaling pathway. The restoration of c-Src activity in 
SYF cells, by stable transfection, restored the ability of ouabain to activate the 
MAPK cascade, confi rming Src-Ras-MAPK pathway [ 34 ]. Ex vivo assays with rat 
isolated kidney showed that bufalin (a bufadienolide and cardiotonic steroid) acti-
vates MAPK signaling pathway only with pre-activation of Src [ 20 ]. On the other 
hand, a specifi c study with ouabain and cinobufagin demonstrated that both com-
pounds induce cell cycle arrest to block the growth of human hepatoma cell lines 
by decreasing MAPK phosphorylation [ 35 ]. This divergent point was revisited by 
Yin and coworkers, who demonstrated that cytotoxic and antiproliferative effects 
of bufalin can be a result of either MAPK stimulation or inhibition depending on 
the cell type [ 36 ].  
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2.4     PI3K/Akt Signaling Pathway 

 Another signaling pathway able to guide essential functions in cells is the PI3K/Akt 
cascade. Briefl y, this pathway involves the presence of phosphoinositides acting as 
scaffolds to cytosolic signaling proteins to promote cell growth and survival [ 37 ]. 
PI3K is able to bind to phosphotyrosine residues of tyrosine kinase receptors and 
phosphorylates the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to 
phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 acts as a scaffold for many 
intracellular signaling proteins, such as Akt and PDK1, leading to the cell effects 
aforementioned. 

 Some studies have shown the activation of the PI3K pathway, in response to the 
Na, K-ATPase inhibition, leading to varied effects. The Na, K-ATPase endocytosis 
was demonstrated by a clathrin-dependent mechanism, in LLC-PK1 cells, after the 
treatment with ouabain [ 38 ]. Another work with the same cell line showed that the 
Na, K-ATPase inhibition was able to activate PI3K/Akt pathway and inhibit apop-
tosis [ 39 ]. Ouabain was also found to stimulate cardiac myocytes hypertrophy 
through activation of PI3K/Akt signaling pathway, and it was demonstrated that this 
effect is abolished after cell treatment with PI3K and Src inhibitors [ 40 ]. In fact, all 
these fi ndings are in accordance with other studies that demonstrate that PI3K binds 
to a proline-rich motif in the Na, K-ATPase α subunit and has the capacity to regu-
late its traffi cking [ 41 ]. Other studies demonstrated that Na, K-ATPase β1 subunit 
expression suppresses cell motility by reorganization of the actin cytoskeleton in 
MSV-MDCK cells [ 42 ].  

2.5     [Ca 2+ ] i  Oscillations 

 It is well established that the Na, K-ATPase inhibition by cardiotonic steroids 
increases the [Na + ] i , and subsequently, increases the [Ca 2+ ] i  momentarily. This is 
the known mechanism of action for digitalis to increase contractility in heart [ 43 ]. 
On the other hand, Ca 2+  is a well-known second messenger inside most of the cell 
types and can activate many protein kinases, such as protein kinase C (PKC). Two 
second messenger pathways are activated by phospholipase C (PLC)-dependent 
hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), which releases the 
second messenger molecules inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol 
[ 44 ]. Briefl y, PKC binds and phosphorylates a variety of proteins, as cytoskeletal 
proteins, enzymes, and nuclear proteins that regulate gene expression, affecting 
neuronal and immune function and the regulation of cell division. 

 In 2001, Aperia group demonstrated that ouabain signals to the cells through slow 
calcium oscillations, leading to NF-κB activation, depending on Inositol trisphosphate 
receptors and capacitative calcium entry via plasma membrane channels [ 45 ]. This 
ouabain effect happens in concentrations known to cause only partial Na, K-ATPase 
inhibition, and other inhibitory stimuli for Na, K-ATPase, such as low extracellular 

3 Na, K-ATPase and Cancer



56

K +  and depolarization of cells, do not present calcium oscillations. Later, the same 
group showed that the Na, K-ATPase organizes in a functional microdomain, 
together with the IP 3  receptor (InsP 3 R), to create the calcium oscillations which 
signal after cardiotonic steroids bind to the Na, K-ATPase. Also, the induction of 
slow calcium oscillations is dependent on the Src activation, since this effect is 
practically abolished upon treatment of Src inhibitors [ 46 ,  47 ].   

3     Na, K-ATPase and Cancer 

 After many grounded studies regarding cardiotonic steroids and Na, K-ATPase 
interaction in the cardiomyocytes model, scientists have observed several interesting 
effects for cardiotonic steroids in cancer cells. First evidence of these effects dates 
back to 1967, when Shiratori described the growth inhibitory effect of cardiac glyco-
sides and aglycones on neoplastic cells by in vitro and in vivo approaches [ 48 ]. 

 Since then, several laboratories confi rmed the cytotoxic and antiproliferative 
effects of these compounds. Ouabain inhibits breast cancer cell proliferation by the 
Na, K-ATPase inhibition and subsequent signal transduction in a dose- and time- 
dependent manner [ 33 ]. Digoxin was demonstrated to induce apoptosis in human 
acute T-cell lymphoblastic leukemia and also to inhibit neuroblastoma tumor growth 
in mice [ 49 ,  50 ]. Lopéz-Lázaro and coworkers have demonstrated an antitumor 
effect for digoxin and digitoxin, in nanomolar concentrations, on many human cell 
lines, such as renal adenocarcinoma cells (TK-10), breast cancer cells (MCF-7), 
melanoma cells (UACC-62), and chronic myelogenous leukemia cell lines (K-562) 
[ 51 ]. Importantly, assays performed with human malignant hematological cultures 
(Jurkat T cells and Daudi B cells) showed remarkable sensitivity to digoxin and 
digitoxin, demonstrating an apoptotic phenotype when treated at nontoxic concen-
trations for normal tissues [ 52 ]. 

 Five different cardiac glycosides (ouabain, peruvoside, digoxin, digitoxin, and 
strophanthidin) were able to inhibit the Na, K-ATPase and sensitize several cancer 
cells lines (PCC-1 and PC-3 prostate, HeLa cervical, OVCAR3 ovarian, and T47D 
breast cancer cells) to anoikis (a form of programmed cell death), preventing metasta-
sis. These effects may be due to ouabain being involved with the mitochondrial path-
way of caspase activation [ 53 ]. Bufalin was shown to induce apoptosis in several 
cancer cell lines, such as lung, breast, prostate, leukemia, gastric cancer cells, and 
hepatocellular carcinoma [ 36 ]. Moreover, interaction between cardiac  glycosides and 
the Na, K-ATPase could circumvent several chemoresistance pathways [ 54 ]. 

 Regarding the direct interaction of cardiotonic steroids and the Na, K-ATPase, 
and also downstream signaling events, studies have suggested a dual role to these 
compounds. Micromolar to millimolar concentrations of cardiac glycosides inhibit 
the Na, K-ATPase activity. However, nanomolar concentrations were demonstrated 
to upregulate the Na, K-ATPase activity [ 55 ]. 

 All these previous effects were considered important and scientists have allied 
the cell biochemistry of cardiotonic steroids to organic chemistry, specifi cally the 
hemi-synthesis of new cardiotonic steroids from the naturally isolated prototypes. 
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This particular area, in association with in silico studies, has helped researchers to 
describe the interactions between cardiac glycosides and the Na, K-ATPase and also 
to postulate groups to add to the cardiac glycosides to enhance desired effects. 
Principally, the addition of steroidal and sugar moieties in particular to cardiac 
glycosides has resulted in improvements in the Na, K-ATPase-cardiotonic steroids 
interactions, selecting the desired effects regarding cell cytotoxicity, Na, K-ATPase 
activity modulation, cell signaling pathways, and so on. 

 Juncker and coworkers demonstrated the apoptotic effects for a new hemi- 
synthetic cardenolide, UNBS1450, on leukemic cell lines, with incredibly low 
nanomolar concentrations [ 56 ]. The molecular mechanism for UNBS1450 apop-
totic effect was demonstrated to be the inhibition of NF-κB signaling pathway with 
concomitant cleavage of pro-caspases 8, 9 and 3/7, decreasing the expression of the 
antiapoptotic factor Mcl-1 and recruiting proapoptotic proteins as Bak and Bax 
[ 56 ]. Jensen and coworkers have synthesized bivalent steroids, using sulfur linked 
ethylene glycol moieties of varying length, and have assessed their potencies to 
inhibit the Na, K-ATPase and for their cytotoxic effect on MCF-7 cancer cell lines, 
demonstrating that the steroid bioactivity is dependent on the ethylene glycol chain 
length [ 57 ]. Recently, Elbaz and coworkers demonstrated the apoptotic effect, 
through caspase-9 cleavage, of a synthetic digitoxin analog, D6-MA, on NCI-H460 
cancer cell lines [ 58 ]. The cells arrested in G2/M phase after the treatments, demon-
strating downregulation of cyclin B1/cdc2 complex and survivin, as well p53 down-
regulation, suggesting a p53-independent cell cycle arrest mechanism [ 58 ]. A new 
steroid, the 21-benzylidene digoxin (21-BD), was synthesized using the natural iso-
lated cardenolide digoxin [ 59 ]. A vinylogous aldol reaction was performed to add 
an aromatic ring on digoxin lactone portion. Together with computational models, 
it was demonstrated that the 21-BD has the ability to bind to the Na, K-ATPase α1 
subunit, similarly with other cardiotonic steroids, leading to interesting downstream 
effects. This new molecule was able to induce cytotoxicity on HeLa and RKO 
cancer cell lines, whereas no cytotoxicity was observed on MDCK normal cells. 
An apoptotic mechanism was found to 21-BD previous effects. Interestingly, 
21-BD has no effect on isolated Na, K-ATPase, but this new steroid has been able 
to upregulate Na, K-ATPase α1 and β1 subunits at micromolar range in intact cells. 
Regarding the cell tight junctions, 21-BD was found to increase TER (transepithe-
lial electrical resistance) as well as modulate cell tight junction proteins such as 
claudin-2, claudin-4, and ZO-1, increasing the tight junction sealing. Finally, 
21-BD, instead of digoxin, was able to inhibit Pdr5p activity, a member of ABC 
transporters family from yeast that shares many substrates and inhibitors with the 
mammalian P-glycoprotein [ 60 ].  

4     Conclusions 

 Na, K-ATPase has been investigated extensively in the past and continues to be 
studied today. Many important functions have been attributed to the Na, K-ATPase, 
such as (1) a multifunctional protein with key roles in the formation and 
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maintenance of adhesion complexes, as well as induction of epithelial cell tight 
junctions and polarity; the Na, K-ATPase therefore has roles in cell adhesion, motility, 
and actin dynamics, (2) a signaling protein, and (3) a valuable novel target in anti-
cancer therapy and progression of a growing number of cancers, and Fig.  3.1  shows 
the pathways of Na, K-ATPase. With an endogenous ouabain stimulus, the Na, 
K-ATPase can also trigger a cascade of signaling events, including binding and 
subsequent activation of c-Src, EGFR, MAPK, and PI3K. Activation of this path-
way ultimately results in the assembly of clathrin-coated pits and the subsequent 
endocytosis of Na, K-ATPase. Src kinase is able to form a complex with the Na, 
K-ATPase and might serve as a critical mechanistic link between infl ammation and 
cancer, mediating and propagating a cycle between immune and tissue cells that can 
ultimately lead to the development and progression of cancer. Activated Src phos-
phorylates a diverse spectrum of substrates that results in upregulation of several 
cancer-associated pathways, including EGFR signaling, which acts by synergism 
with Src to promote cancer. As we can see, the Na, K-ATPase can be involved in 
cancer regulation in many different ways.

  Fig. 3.1    Na, K-ATPase signaling pathways. Binding of CTS on the Na, K-ATPase (in caveolar or 
noncaveolar pool) activates several intracellular signaling proteins that will be responsive to modu-
late several cellular effects       
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    Chapter 4   
 Calcium Controls the P2-ATPase Mediated 
Homeostasis: Essential Role of NaAF                     

       Tushar     Ray    

    Abstract     This chapter reveals a new unique story of Ca-signaling in upholding 
cellular homeostasis. The cytosolic activator (regulatory) protein, NaAF (of 
170 kDa mass), for the ubiquitous P2-ATPase (and 80 kDa HAF solely for the 
 gastric H/K-ATPase) is essential for P2-ATPase function. The NaAF and HAF 
  function as the allosteric operator-cum gate-keeper of the dual channel P2-ATPase 
system (where mirror-image orientation of the two α-subunits serves as the mem-
brane-embedded in-and-out gates) for simultaneous transport of two ions. The 
entire cyclic operation is in turn fi ne-tuned by local Ca (μM) as top (allosteric) con-
troller of the P2-ATPase to maintain homeostasis. Thus at lower range Ca (<2) 
stimulates, but at higher range (>2) Ca abruptly inhibits the HAF-stimulated 
H/K-ATPase abolishing it at 4 μM Ca. At this point the (K ± HAF)-independent 
basal (Mg-dependent) activity of the H/K- ATPase acts as a provisional Ca-ATPase 
pump in an altered state to remove excess Ca, thus resuming the initial Ca-activated 
HAF-regulated state of a new cycle. Identical Ca-signaling operations also control 
the universal NaAF-regulated Na/K- ATPase system.  

  Keywords     P2-ATPase (s)   •   Cytosolic activator protein   •   Allosteric regulation   • 
  Ca-signaling   •   Homeostasis  

1         Introduction 

 Michael Berridge [ 1 ] has recently reviewed the details of many universal 
Ca-signaling processes, which he initially mapped over a decade ago [ 2 ]. The present 
work describes the delicate control mechanism of active ion transport by μM Ca 
published in the 1980s based on a new dual-topology model for the P-2 ATPase 
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system, since the existing Post-Albers single topology scheme (for sequential ion 
transport) reining the P2-ATPase fi eld was inadequate to explain this. The new 
dual- topology P2-ATPase model fi rst introduced in 1986 [ 3 ] accommodates all the 
limitations of PA scheme and also demonstrates the universality of active ion trans-
port by cytosolic regulatory protein and μM Ca mentioned above. 

 Our bodily cells have built-in ion gradient; the intracellular concentrations of dif-
ferent metal ions (such as, Na, K, and Ca) are very different from those present in the 
blood transporting them to tissues all through the body; the circulating blood of an 
individual maintains a fi xed concentration (~4 mM) of Na (~140 mM), K (~4 mM), 
and Ca (~5 mM) compared to the cell interior having Na (~10 mM), K (~140 mM), 
and Ca (in varying μM range) respectively. So, it is essential for a living cell to main-
tain the ion gradient (homeostasis) which is at a constant fl ux with the extracellular 
environment for carrying out numerous essential functions. As a result, the cells have 
built-in 24/7 ion-pumps, such as H/K-ATPase, Na/K-ATPase (Na-pump), and 
Ca-ATPase (Ca-pump), called the P2-ATPase system, on the plasma membrane to 
pump out the excess metal ions maintaining homeostasis. The cell Ca is used for many 
important tasks like membrane fusion, turning on and off the key intercellular pro-
cesses as a fi nal regulatory and other cellular signaling [ 4 ,  5 ]. 

 The plasma membrane Ca-ATPase (PMCA) pumping out excess Ca is indeed a 
provisional operation of the basic P-2 ATPase systems [ 5 ] like the gastric H, 
K-ATPase [ 6 ] and the Na, K-ATPase, working in altered state as a Ca-ATPase based 
on local need of the host cell (see below). After the job is done the Ca-pump switch 
back to the former state pumping H or Na as the case may be. The entire operation 
of the provisional Ca-Pump depends on the nature of the cytosolic regulator (dis-
cussed below) running the original pump (H- or Na-Pump). This chapter deals with 
the HAF-dependent Proton-Pump and Na-Pump belonging to the apical (secretary) 
membrane (APM) and basolateral membrane (BLM) of parietal cell, and then 
extending further to the analogous nonparietal Na-Pump as needed for clarifi cation. 
The details on Ca-signaling will follow. 

 Let me introduce at fi rst the new dual-topology model of gastric proton-pump 
giving a unifi ed view of the HAF-regulated pumping of H/K, Ca/H and Na/K, Ca/K 
across the APM and BLM where the signaling role of Ca is revealed under different 
conditions of local pH and Ca.  

2     The Dual-Topology H, K-ATPase System Is a General 
Model for the Simultaneous Bidirectional Transport 
of H/K, Na/K, and Ca/H Across the Apical Plasma 
Membrane 

 The construction of the dual-topology model is based on hard data on the orientation 
of critical ligand sites within a functional H, K-ATPase complex associated with 
tightly sealed gastric microsomal vesicles of uniform orientation that are capable of 
ATP-dependent accumulation of H in exchange for K [ 3 ]. The dual-topology H, 

T. Ray



65

K-ATPase described recently [ 3 ,  4 ] is a paradigm shift from the 50-year-old single 
topology model dominating the P2-ATPase fi eld. We observed earlier that the 
K-stimulated para nitro phenyl phosphatase (K-pNPPase), co-purifi ed with the gastric 
H, K-ATPase, was not a partial reaction of the gastric ATPase [ 3 ,  4 ] as postulated in 
the single topology Post-Albers scheme. As the name “dual topology” implies, new 
model of H, K-ATPase has two 100 kDa α-subunits in mirror-image orientation 
across the membrane, in contrast to existing “single topology” one having only one 
α-subunit facing the cytosol (Fig.  4.1 ). The new model has two low- affi nity K-para 
nitro phenyl phosphatase (K-pNPPase) sites (one on each α-subunit) regulating 
simultaneous transport of H/K across (Fig.  4.1 ). Generality of the dual- topology 
model was revealed by the identical orientation of K-pNPPase across the isolated 
surface epithelial cell outer membrane capable of dose-dependent  86 Rb uptake 
inhibitable by ouabain [ 7 ].

   The HAF is intimately involved in pump operation (Fig.  4.1 ) from the beginning 
of the pumping process, such as binding of ATP to the ATPase catalytic site, up to 

  Fig. 4.1    The dual-topology Na (H), K-ATPase showing bilayer orientation of α and β subunits 
with related ion channels. Two identical subunits, α1 and α2 (not isomers), are shown in mirror 
images across the membrane with embedded ion channels in contact, and are held with two closely 
associated β-subunits facing the lumen. The ATP hydrolytic site (separate from the  cis -pNPPase 
site) on the α1, and  trans -cytosolic non-hydrolysable ATP-binding site and the corresponding 
 trans -pNPPase site on the α2 are shown. Besides ATP-binding the intimate association among α2, 
β1 and β2 on the cell exterior is expected to modulate the ATPase function in various ways includ-
ing the reception of extracellular signals. The high-affi nity K +  site for ATPase stimulation is 
located across the bilayer on α2 and the corresponding high-affi nity H +  or Na +  site is on the cyto-
solic side of the α1 enabling access gating. The low-affi nity K binding sites responsible for releas-
ing the transported ions are present at or near the exit end of the related ion channel on each side 
of the bilayer. Under appropriate conditions of local ionic milieu, the versatile P-2 ATPase pump 
transports Na/K, H/K, and Ca/H in altered states [ 3 ,  4 ]       
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the end of pumping cycle by carrying out the bidirectional transport of H and K 
across, and then beginning a new phase. In fact, during its allosteric pumping execu-
tion the HAF creates the high-affi nity K-effector site of the dual-topology H, 
K-ATPase (facing the lumen) for exchange with cytosolic H. It must be noted that 
without the availability of luminal high-affi nity K site the pump cannot function. 
Such crucial role of HAF was confi rmed by the use of mono-specifi c anti-HAF 
antibody that blocks the HAF-stimulated H, K-ATPase activity in vitro, as well as 
blocked the production of protons in vivo when inserted into digitonin- permeabilized 
rabbit gastric glands (Zenodo, DOI:   10.5281/zenodo.7093    ). 

 The adjoined α subunits with embedded ion channels in mirror-image orientation 
(Fig.  4.1 ) are believed to oscillate laterally within the plane of the membrane during 
the pump operation [ 4 ]. Oscillation of the ion channels is initiated by cytosolic activa-
tor (HAF)-dependent activation of the enzyme (E) forming E*.ATP at the catalytic α 1  
site with simultaneous binding of high-affi nity H (Na) to a nearby site in the cytosol 
(see below). Binding of H (Na) induces domain-domain interaction between the 
membrane-embedded helixes of α 1  and α 2  with the resultant binding of high- affi nity 
K at the  trans -cytosolic α 2  site. This H (cytosolic) and K (luminal) bound transitional 
complex (E*ATP.H.K) spontaneously hydrolyze the ATP helping the H, K-ATPase 
molecule return to its original confi guration (E) following a harmonious shift of the 
adjacent ion channels back to its initial state. The entire process creates a peristaltic 
movement of both ion channels for the bidirectional transport of H and K across. 
Please note that in the case of nongastric tissue, the P2-ATPase pump transports Na 
and K mediated by an analogous regulatory protein, NaAF (of 170 kDa mass), 
universally present in all bodily cells except gastric parietal cells. The detail on 
HAF regulation of the proton-pump is discussed in the following section.  

3     Allosteric Regulation of the Gastric ATPase System 
by Its Cytosolic 80 kDa HAF and Ca (μM) 

 In the active state, the 80 kDa HAF is a dimer of two identical 40 kDa subunits; the 
monomers are totally inactive [ 3 ]. The dramatic nature of HAF activation of the 
gastric H, K-ATPase system is shown in Fig.  4.2 . During the rapid allosteric activa-
tion of the pump (Hill coeffi cient = 4.5), eight to ten molecules of HAF interact 
cooperatively with each H, K-ATPase pump unit for optimal stimulation. The nega-
tively charged HAF (80 kDa mass) consisting of 39 % nonpolar, 33 % polar 
uncharged, 5 % positively charged, and 20 % negatively charged amino acids [ 8 ] is 
suited for domain-domain interaction amongst themselves as well as interfacing the 
neighboring ATPase catalytic domain. Previous reconstitution studies on gastric 
microsomal H, K-ATPase following inactivation by mild perturbation of annular 
lipids [ 9 ,  10 ] suggest the HAF molecules to be loosely anchored to some phospha-
tidyl choline (PC) having distinct fatty acid (FA) compositions (80 % saturated, 
20 % mono- and di-unsaturated lacking in polyunsaturated FA). It appears that the 
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negatively charged HAF molecules are anchored to the cytosol-facing head group of 
PC at the annular zone by entropy-driven process discussed below.

   Inspection of the various thermodynamic parameters of the ATPase activation 
process reveals that the HAF activation of the H, K-ATPase is entropy driven [ 8 ]. 
About eight to ten molecules of HAF as a single unit boost the ability of each H, 
K-ATPase to generate optimal transition state (E*.ATP) complex by cooperative 
interaction in their cytosolic ambience (37 °C) by increasing the entropy of activa-
tion (∆ S ‡) of the system, thereby causing the simultaneous allosteric binding of 
high-affi nity Na (or H) and high-affi nity K in the lumen across. This is how the 
HAF appears to initiate the lateral movement of the transmembrane helixes of 
mirror- image (α1α2) orientation for simultaneous binding and transport of both 
ions during ATP hydrolysis [ 8 ], then shifting back immediately to the original state 
(E) to begin the a new cycle with fresh formation of E*.ATP. 

 However, following the optimal activation of H, K-ATPase at 1:10 (mentioned 
above) the K-stimulated activity is drastically reduced being eliminated at 1:14 
(ATPase to HAF) reaching the basal (Mg) state. This might be the way proton- 
pumps enjoy momentary rest prior to returning to the intracellular tubulovesicular 
(TV) storage pool staying fused to it. 
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  Fig. 4.2    Effects of increasing concentrations of pure HAF (described as AF) on the APM- 
associated pig gastric H, K-ATPase activity. 4 μg of the pig H, K-ATPase and indicated amount of 
the pure HAF were preincubated for 10 min at 37 °C in Pipes buffer (pH 6.8) and assayed [ 6 ]. Data 
are the average of triplicates. The  inset  shows the Hill plot. This fi gure shows highest cooperative 
activation with 11 μg HAF and 4 μg nearly homogenous ATPase. Assuming the MW of gastric H, 
K-ATPase to be 320,000 we estimated that each nmol of H, K-ATPase binds 10 nmol of HAF. Note 
the dramatic downregulation with further increase in HAF level. It is noteworthy in this connection 
that the activity of K-pNPPase is also signifi cantly increased without any alteration of the low- 
affi nity K site [Taken from Ref.  8 ]       
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 The critical role of μM Ca in the regulation of the HAF-stimulated gastric H, 
K-ATPase system associated with the APM and BLM is shown in Fig.  4.3 . 
The dramatic sensitivity of the HAF-regulated gastric H, K-ATPase system to 
physiological Ca level is obvious from Fig.  4.3  [ 11 ].

   The HAF-stimulated H, K-ATPase activity under steady-state condition shows 
additional allosteric stimulation at very low level of Ca (<2 μM); beyond this the 
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  Fig. 4.3    ( a ) Effects of μM Ca on HAF-dependent H, K-ATPase activity associated with low- 
density APM. Without HAF without K ( open square ) and with K ( closed square ); with HAF 
without K ( open circle ) and with K ( closed circle ). ( b ) Effects of μM Ca on HAF-dependent H, 
K-ATPase activity associated with high-density BLM in the absence ( open circle ) and presence 
( closed circle ) of the HAF. Note the similar stimulation followed by inhibition in both  a  and  b  with 
increasing μM Ca. Note that similar to APM above only the HAF-dependent activity associated 
with BLM is abolished. Data taken from Ray et al. [ 11 ]       
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  Fig. 4.4    Critical interplay of Calcium in the HAF regulation of the gastric H, K-ATPase Pump 
(pumping H against a millionfold gradient compared to intracellular pH) at the APM showing 
oscillation of the Pump between H- and Ca-transporting modes depending on the local Ca level. 
The APM pump works well between 1 and 2 μM Ca but abruptly stops between 2 and 4 μM Ca. In 
a similar fashion the H-pump at the basolateral membrane (BLM) works as a Na-Pump and a 
Ca-pump based on local levels of high Na, high Ca, and higher pH (bicarbonate tide) due to prox-
imity to blood supply. This fi gure also shows clustering of the HAF molecules bound to the APM- 
associated polar group of phosphatidyl choline that facilitates allosteric activation (E*.ATP) of the 
proton-pump by forming domain-domain interaction neighboring HAF mentioned earlier. Note 
that the annular PC molecules providing the proper fl uid environment for the H, K-ATPase func-
tion have been identifi ed to consist of saturated (16:0 and 18:0) and unsaturated (18:1 and 18:2) 
fatty acids lacking in 20:4 [ 9 ,  10 ]       
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HAF-stimulated H, K-ATPase is drastically downregulated, coming to a halt at 
4 μM. At this point the H-pump acts as a provisional Ca-pump to pump out excess 
Ca, thus resuming the H-pump activity (Fig.  4.4 ). Hence, higher Ca (2–4 μM) acts 
as a feedback control switch for turning off/on the HAF-operated H-pump as the 
top regulator.

4        Critical Interplay of Calcium in the HAF-Regulated H, 
K-ATPase and Na, K-ATPase Pumps in Gastric 
Parietal Cell 

 For each mole of HCl secreted by the parietal cell, one mole of ATP is consumed. 
Hence, the mitochondria-enriched parietal cells have a constant supply of metabolic 
substrates, which are in turn co-transported with Na across the BLM. As a result, for 
each mole of H transported across the APM, an equivalent amount of Na enters into 
the cell across the BLM border, which is promptly pumped out again to maintain 
ionic homeostasis. So, for each mole of HCl secreted the parietal cells spend two 
moles of ATP and produce two moles of HCO 3  (byproduct) which is promptly trans-
ported out (by Cl/HCO 3  exchanger) in exchange for Cl across the BLM to maintain 
pH homeostasis. These activities together with other major membrane processes 
undergoing gastric acid secretion, such as consistent traffi cking of the H, K-ATPase 
molecule back and forth between the APM and intracellular reserve as tubulovesi-
cles (TV), make the parietal cell membranes most active next to brain cells of the 
human body. The TV acting as the intracellular reservoir of H-pumps saves substan-
tial energy for the cells. As shown in Fig.  4.4 , the cytosolic HAF appropriately 
controls both the proton-pump on APM and the BLM (basolateral) Na-pump of the 
gastric P2-ATPase system acting alternatively as a provisional Ca-pump to maintain 
homeostasis. Please note that similar to parietal cell (Fig.  4.4 , below) the NaAF-
regulated ubiquitous Na, K-ATPase system belonging to all other tissues shows 
similar altered function as a provisional Ca-pump [ 1 – 3 ]. 

 It is clear from the preceding information (Figs.  4.1 ,  4.2 ,  4.3 , and  4.4 ) that the 
allosteric operation of the gastric H, K-ATPase system, pumping H, K, Na and Ca, 
is totally dependent on the cytosolic HAF acting as the operator of the bidirectional 
H/K-ATPase pump. During the pump operation (Figs.  4.1  and  4.4 ), the HAF helps 
to bind concomitantly the cytosolic H and luminal K (both with high affi nity) for the 
simultaneous transport across the APM in opposite direction. Same thing happens 
with the H, K-ATPase at the BLM where in the alkaline environment the H/K- -
ATPase pump acts as the Na/K-pump; and in both situations the HAF acts as a faith-
ful gate-keeper of ions for the parietal cell P2-ATPase system [ 5 ]. Thus, to carry out 
the dynamic functions of the H, K-ATPase the HAF appears to function as an 
operator- cum gate-keeper for managing the heavy ion-traffi c across the plasma 
membrane gates, where the dual-topology (α 2 β 2 -isoform) setting (Fig.  4.1 ) only 
serves as double gates for the passage of ions. In an analogous manner, the NaAF 
acts as the operator-cum gate-keeper of the ubiquitous Na, K-ATPase system.  
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5     Extracellular and Intracellular Ca-Environments 
of the Parietal Cell Under the Resting and Hormone- 
Stimulated Conditions 

 Under resting condition, the luminal or secretary environment of the parietal cell is 
generally smooth with neutral or slightly alkaline pH. In the cytosol, there are numer-
ous mitochondria and tubulovesicular (TV) membranes (highly enriched in gastric 
H, K-ATPase activity) acting as a proton-pump reserve [ 12 ]. Following stimulation 
of acid secretion by the secretagogues, a spectacular transformation takes place 
within few minutes. Numerous TV membranes migrate towards the apical (secre-
tary) plasma membrane (APM) causing fusion of proton-pumps with the resultant 
appearance of numerous secretary cannelicular projections into the lumen. During 
peak secretion the parietal cells secrete acid against a concentration gradient of over 
a millionfold (luminal pH nearing 0.1). 

5.1     The State of [Ca] Under Resting Condition 

 Waves of Ca arising from the BLM locale have been reported in parietal cells [ 13 ,  14 ]. 
Most likely Ca enters the parietal cells through BLM via its InsP3R (receptor 
operated Ca-channel) creating Ca-waves along the intracellular tubulovesicles, 
TV (storage for proton-pumps), reaching the APM site in mild waveforms. In rest-
ing cell Ca remains pretty active in the mid-cell region TV pool in the following 
way. The Proton-Pumps (H, K-ATPase molecules) associated with this inside-out 
TV (vesicles) have the ATP hydrolytic (catalytic) site facing cytosol surrounded by 
the HAF pool. The presence of high Ca-waves (2–4 μM) in that mid-cell region will 
prevent the HAF from interacting with the ATPase site, forcing them to pump Ca 
(Fig.  4.4 ) into the vesicle interior for storing (as Ca-sink), thus keeping the proton- 
pumps truly at rest without wasting further energy. Upon receiving the signal for 
acid secretion, the Ca-loaded TV migrates towards the APM and the BLM for trans-
ferring the pumps to these sites. The mitochondria-loaded parietal cells would also 
store Ca in the mitochondrial matrix to activate a key Krebs cycle enzyme, thus 
meeting the ATP demands during acid secretion.  

5.2     The State of [Ca] Under Stimulated Conditions 

 Following stimulation of the parietal cells Ca would be needed for the organized 
cytoskeletal movement of the TV towards the secretary APM site (of lighter 
buoyant density compared to TV) for the incorporation of new Proton-Pumps. As for 
the BLM site, however, there seems to be a different kind of mechanism at work, 
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since no such organized movement of TV towards BLM has ever been reported. 
In this case the Ca-loaded TV vesicles surrounded by the HAF pool seem to move 
towards the BLM environment by virtue of having identical ( d  = 1.115) buoyant 
densities [ 11 ]. In this environment TV easily mingles with the BLM by the whirl-
pool movement created by the highly active Na/K-pump, thus bringing them close 
together for the transfer of new pump molecules by Ca-mediated fusion. Such 
fusion between the Ca-loaded TV and high Ca BLM locality will be spontaneous 
due to identical lipid make up [ 9 ] of the ion-pumps.   

6     Signaling Roles of Ca Under the Resting and Stimulated 
States of Parietal Cell 

 The specialized plasma membrane microdomains, “Caveolae or lipid rafts,” made 
up of Sph and cholesterol have been implicated in Ca mobilization [ 15 ]. The lipid 
rafts would control the polar region of the parietal cell and regulate various 
Ca-signaling events. The critical constituent of lipid rafts, Sph, is very high in APM 
(66 %) and TV/BLM (59 %) consisting entirely of saturated fatty acid (SFA), such 
as the unique 14:0 (35.7 %), along with 16:0 and 18:0 with traces of unsaturated FA 
[ 11 ,  16 ]. Following stimulation, massive movement of TV towards the secretary 
cannelicular region of APM takes place, causing extensive membrane fusion, where 
the caveolae (by virtue of its cytoskeleton dynamics) would be acting as scaffolds 
for Ca ion channels, thus connecting the intracellular stimuli to extracellular milieu 
of the cell. Also, during the fusion of approaching TV with the APM (following 
hormonal stimuli), the PI [ 11 ] content of APM (23.6 μmol/mg protein) and TV 
(13.1 μmol/mg protein) would be involved in InsP3-mediated targeting of Ca to the 
specifi c fusion sites. 

 Recent studies by Fujimoto Toyoshi [ 17 ] reveal that a transmembrane protein 
structurally similar to the type-I IPR and the plasma membrane PM Ca-pump 
(Ca-ATPase) are concentrated in the caveolae. The HAF-stimulated H, K-ATPase 
activity under steady-state condition shows additional allosteric stimulation at very 
low level of Ca (<2 μM); beyond this the HAF-stimulated H, K-ATPase is drasti-
cally downregulated, coming to a halt at 4 μM. At this point the H-pump acts as a 
provisional Ca-pump to pump out excess Ca, thus resuming the H-pump activity 
(Fig.  4.4 ). Hence, higher Ca (2–4 μM) acts as a feedback control switch for turning 
off/on the HAF-operated H-pump as the top regulator [ 17 ,  18 ]. Type-I IPR in the ER 
is a Ca 2+  channel that opens upon IP binding implicating that the caveolae associ-
ated IPR-like proteins are most likely plasma membrane Ca-channel regulating the 
intracellular Ca. In capillary endothelium the caveolae are closely related to the 
endoplasmic reticulum (ER) and it was suggested that the non-muscle cells storing 
Ca in ER should have similar relation [ 18 ]. 

 In the case of parietal cells, the intracellular TV/BLM pool stores Ca, hence 
should have similar caveolae-connection mentioned above. So, the alteration 
in local Ca concentration should infl uence the nearby caveolae protein to be involved 
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in Ca-transport. In the case of parietal cell, Perez et al. [ 13 ] demonstrated (using the 
fl uorescent signal of Fura-2) a Ca-transient at the secretary APM prior to the onset 
of acid secretion; the acid secretion occurred 3 s after carbachol stimulation. 
Simultaneously, a different group, Caroppo et al. [ 14 ] demonstrated using immuno-
histochemical staining the actual colocalization of H, K-ATPase, Ca-ATPase, and 
CaR in both the APM and TV membranes of parietal cell. It must be noted, how-
ever, that CaR was not detected in the BLM by these authors. Similar coexistence of 
PMCA and CaR was also revealed in the peptic cells, but not in any other cells like 
the mucus secreting and surface epithelial cells of gastric mucosa [ 14 ]. The parietal 
cells extrude Ca from cytosol through the APM into lumen, and take up Ca from the 
nutrient side coming through the BLM, hence is consistent with the absence of CaR 
in BLM just mentioned. Pancreatic acinar cells and salivary glands display similar 
initial increase in Ca at the lumen followed by Ca-wave spreading towards the 
BLM, consistent with immunochemical localization of PMCA on APM [ 19 ]. Thus, 
even though the BLM (analogous to APM) has provisional Ca-ATPase pump func-
tioning as an altered form of the HAF-regulated Na-pump, there is no evidence of 
CaR involvement. 

 Thus, it is clear that the observed “Ca-transients” and CaR are intimately related. 
During the transfer of new proton-pump (from TV) on to APM, the newly incorpo-
rated pump will have Ca leftover (at fusion site) near the catalytic center that is 
pumped out at fi rst by the provisional Ca stimulated Mg-ATPase (discussed earlier) 
for its subsequent operation as the HAF-regulated proton-pump. At this point, the 
CaR (facing the lumen) by way of its Ca-sensing devices [ 20 – 22 ] is likely to act as a 
sensor of cytosolic Ca and program itself as a regulator of the forthcoming 
Ca-transport events from the provisional Ca-pump across the bilayer. As soon as the 
CaR senses the unwanted level of Ca, the proton-pump turns into a provisional 
Ca-pump until the safe Ca level is reached. Similar role of CaR has been suggested 
in the voltage-gated channeling of Ca in the nerve terminal [ 5 ]. The detailed function 
of CaR as a Ca-sensor, a self-programmed timer, as well as a fi ne regulator of the 
Ca-channel function remains to be elucidated.  

7     Emerging Picture of Ca-Signaling in Maintaining the Ionic 
Homeostasis 

 In view of the preceding information, and our data on the up- and down-regulation 
of the activator-regulated allosteric P2-ATPase pumps by μM Ca, the following 
unifi ed picture is emerging:

•    Calcium signaling is the absolute controller of homeostasis of our bodily cells 
equipped with allosteric P2-ATPase pump.  

•   The entire bodily network is operated by two different cytosolic regulatory proteins, 
namely the NaAF (170 kDa) and HAF (80 kDa) for the ubiquitous Na, K-ATPase 
and the distinctive gastric H, K-ATPase (proton-pump) respectively.  
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•   Ca effects vary with local pH; the apical pump (operating at pH, 6.8) is shut off 
at 4 μM Ca while the basolateral (operating at pH > 8.0) needs fi ve- to sixfold 
higher Ca for shutting off.    

 It may be noted that there are a lot of information in the literature dealing with 
the natures of the PMCA isoforms in Ca-signaling [ 23 ]. Based on current report, the 
tissue-specifi c isoforms of the plasma membrane Na-pump act as provisional 
Ca-pump (or PMCA) to pump out excess local Ca for maintaining homeostasis. So, 
the nature of the isoforms of the PMCA and Na-pump in any particular tissue should 
be identical. The current report will thus help in such tissue-specifi c identifi cation 
of the related pumps as well as in identifying the area-specifi c isoforms of the 
P2-ATPase system in brain function [ 24 ].  

8     Conclusions 

 The endogenous HAF is an allosteric regulator of the gastric H, K-ATPase system, 
which also seems to regulate its own intracellular level by regulating gene expression 
[ 25 ]. This chapter reveals that the HAF-regulated H, K-ATPase system is, in turn, 
allosterically regulated by the cytosolic free Ca in a pH-dependent manner. It will 
be important to know if Ca has any feedback infl uence on the genetic self- regulation 
scheme of the HAF that is so vital in allosteric ion transport by the gastric H, 
K-ATPase system.     
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    Chapter 5   
 Na, K-ATPase α4: An Isoform Dedicated 
to Sperm Function                     

       Gladis     Sánchez     and     Gustavo     Blanco    

    Abstract     Several proteins that play essential roles in the cell exist in multiple 
different molecular forms. This variability in structure often results in the produc-
tion of isoforms with properties that are distinct from those of the original protein. 
The discovery and study of isoforms represents one of the most fascinating areas in 
biology, since it has uncovered the elaborate mechanisms that cells have developed 
to fulfi ll specifi c tasks. One protein system characterized by a high molecular het-
erogeneity is the Na-K-ATPase, the ion transport mechanism that maintains the 
transmembrane Na +  and K +  concentrations across the plasma membrane of cells. 
Na, K-ATPase results from the association of different molecular isoforms of an α- 
and a β-subunit. One of the Na, K-ATPase α polypeptides, α4, is solely produced in 
male germ cells of the testis, where it serves an important role in sperm function. 
This review discusses the particular expression, functional properties, regulation, 
mechanism of action, and role of Na-K-ATPase α4 in the context of the physiology 
of the male gamete. The current experimental evidence shows that the appearance 
of α4 during evolution is not a redundant event but rather a sophisticated mechanism 
to adapt Na +  and K +  active transport to the requirements of sperm, which carry the 
amazing mission of swimming relatively long distances to fi nd and fertilize the egg.  

  Keywords     Ouabain   •   Sperm motility   •   Sperm capacitation   •   Male fertility  

1         Introduction 

 Compared to their surroundings, animal cells maintain low Na +  and high K +  concen-
trations by the activity of the membrane-bound Na, K-ATPase or Na pump. This 
protein system is a plasma membrane-embedded enzyme that utilizes the energy 
from the hydrolysis of ATP to catalyze the movement of intracellular Na +  in 
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exchange for K +  in a 3Na + :2K +  fashion [ 1 ,  2 ]. Ion movement through Na, K-ATPase 
is achieved by a series of Na +  and K +  induced conformational changes and alternat-
ing phosphorylated and dephosphorylated states of the transporter [ 3 ]. The asym-
metric transmembrane ion distribution established by Na, K-ATPase participates in 
the maintenance of cell plasma membrane potential at rest and fuels the Na + -coupled 
transport of many solutes and water across the plasma membrane [ 4 – 6 ]. 

 Na, K-ATPase is a heterodimer complex, constituted by α and β subunits [ 7 ,  8 ]. 
The α polypeptide, considered the catalytic subunit of the enzyme, contains the 
binding sites for ATP, Na + , K +  and several regulators of the Na, K-ATPase, including 
the cardiotonic steroid inhibitor ouabain. The α polypeptide is a 110–112 kDa ten 
transmembrane spanning protein, with cytoplasmic N- and C-termini, a large intra-
cellular region, and fi ve small extracellular loops [ 9 ]. The β polypeptide is a 
40–60 kDa single membrane spanning protein, heavily glycosylated with most of its 
mass facing the extracellular medium [ 7 ]. The β polypeptide does not directly par-
ticipate in ion transport and enzymatic activity of the enzyme; however, it plays an 
important role in the folding, stability, and targeting of the α subunit to the plasma 
membrane [ 10 ,  11 ]. A third subunit, which includes a series of tissue-specifi c 
hydrophobic polypeptides, accompanies and regulates the activity of the Na, 
K-ATPase [ 12 – 15 ]. 

 Studies on the effects of ouabain on the catalytic and transport properties of the 
Na, K-ATPase from different tissues provided the fi rst indication that functionally 
distinct forms of the enzyme existed. Later, evidence for the molecular heterogene-
ity of the Na, K-ATPase was obtained from the fi nding of differential migration of 
the Na, K-ATPase α subunit from different tissues in SDS-polyacrylamide gels 
(reviewed in [ 16 – 20 ]). Then, with the advent of molecular biological tools, a family 
of genes encoding for not only different α (α1, α2, α3) but also various β (β1, β2, 
and β3) polypeptides was discovered in mammals [ 16 ,  21 – 24 ]. More recently, an 
additional α polypeptide, α4 was revealed [ 25 ,  26 ]. The identifi cation of Na, 
K-ATPase isoforms also in zebra fi sh and hydra suggested that the divergence of the 
genes occurred early in evolution [ 27 ,  28 ]. The α and β subunits are characterized 
by a high degree of primary structural homology. The β subunits share a lower 
degree of amino acid identity and, in addition, exhibit differences in the number and 
composition of their carbohydrates [ 16 ,  21 ]. The α and β subunits are expressed in 
different combinations and in a cell type specifi c and developmentally regulated 
manner. The α1 and β1 isoforms are widely expressed in most cells, α2 predomi-
nates in adipocytes, muscle, heart, and brain, α3 is expressed in nervous tissues, and 
α4 is confi ned to the testis male germ cells. The β2 polypeptide is found in skeletal 
muscle, pineal gland, and nervous tissues and β3 is expressed in testis, retina, liver, 
and lung [ 17 ,  18 ]. Distinct association of α and β isoforms results in multiple αβ 
dimers or isozymes of the Na, K-ATPase with different functional properties. The α 
isoform is responsible for most of the functional dissimilarities between the Na, 
K-ATPase isozymes, with the β subunit having only modest effect on the enzyme 
affi nity for ligands [ 29 – 33 ]. The recent use of genetic approaches and transgenic 
technology has allowed a better understanding of the role of Na, K-ATPase isoforms 
in the context of the whole animal [ 34 – 39 ].  
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2     The Male Specifi c Na, K-ATPase Isoform 

 Early reports have shown that, similar to somatic cells, spermatozoa maintain 
transmembrane gradients for Na +  and K +  [ 40 ]. Later, a Na + , K + , and Mg 2+ -dependent 
ATPase activity was detected in fl agellar fractions of boar epididymal spermatozoa 
[ 41 ] and then in sperm from other species [ 42 – 45 ]. Additional studies showed 
 3 H-ouabain binding to bull sperm [ 46 ]. Moreover, ouabain affected the transmem-
brane Na +  and K +  gradients, depolarized the plasma membrane, and reduced fl agel-
lar motility of bull sperm [ 47 ]. In some species, ouabain also inhibited the acrosomal 
reaction, a process consisting on the release of hydrolytic enzymes that is necessary 
for fertilization of the egg [ 48 ,  49 ]. Altogether, these results supported the presence 
of Na, K-ATPase in the male gamete. 

 Following these original studies, it was discovered that the Na, K-ATPase of 
sperm consisted of more than one molecular form. This started with experiments 
using restriction mapping, Southern blot hybridization, and sequencing of a leuko-
cyte human genomic library, which allowed the identifi cation of DNA fragments 
corresponding to partial sequences of a previously unknown P-type ATPase α iso-
form [ 26 ]. This form, originally named αD, resembled an α subunit of Na, K-ATPase 
but shared a nucleotide and amino acid identity that was lower (between 66 and 
76 %) than that existing between the other Na, K-ATPase α isoforms. It was unclear 
if this novel partial DNA encoded a functional catalytic form of the Na, K-ATPase, 
or if it corresponded to another closely related cation ATPase. Moreover, the pos-
sibility existed that the DNA sequences uncovered corresponded to a pseudogene. 
Once the full DNA of the new α isoform was isolated and the amino acid primary 
structure was deduced, it was apparent that the αD clone was structurally related 
with the Na, K-ATPase. The isoform was then named Na, K-ATPase α4, following 
the nomenclature used for the other α isoforms [ 25 ]. The full sequence of α4 was 
fi rstly reported for the rat and showed α4 to be a 1028 amino acid polypeptide that 
shared the lowest degree of identity with the other isoforms, with only 78 %, 78 %, 
and 76 % amino acid identity with the rat α1, α2, and α3 isoforms respectively. 
As occurs with the other isoforms, the N-terminal portion of the polypeptide, rich 
in positively charged amino acids, is the region with the highest structural variabil-
ity. In contrast, the homology of α4 across species is higher [ 25 ]. Comparison of the 
primary structure of α4 with that of the other Na, K-ATPase α isoforms is reviewed 
in [ 50 ]. Northern blot analysis in a collection of human and rat tissues identifi ed the 
~3.9 kb RNA for the α4 isoform, abundantly expressed in the testis and absent from 
other major tissues, except for the skeletal muscle, in which α4 RNA was identifi ed 
at very low levels. The appearance of α4 RNA in skeletal muscle may have probably 
been due to some cross-reactivity of the used probes with the α2 mRNA, since sub-
sequent studies were not able to fi nd α4 in this tissue [ 25 ]. Chromosomal mapping 
of the α4 gene,  Atp1a4 , showed it located on mouse chromosome 1, proximal to the 
 Atp1a2  gene that encodes for Na, K-ATPase α2 [ 51 ], which suggested that α4 origi-
nated from the α2 gene [ 23 ,  51 ]. Later, the human  ATP1A4  gene was characterized, 
mapped to chromosome 1q23, and its exon/intron structure determined [ 52 ]. 
Eventually, as will be discussed below, the α4 polypeptide was identifi ed to be 
expressed in the male germ cells of the testis and to be abundant in sperm.  
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3     Identifi cation and Enzymatic Properties of Na, 
K-ATPase α4 

 The new Na, K-ATPase gene discovered in testis still required functional confi rmation 
before it could be ascribed as a catalytically competent subunit of the Na, K-ATPase. 
This information came from studies performed on the recombinant α4 protein from rat 
exogenously expressed in Sf9 insect cells [ 53 ]. Thus, co-expression of rat Na, K-ATPase 
α4 and β1 resulted in a ouabain sensitive, Na + , K + , and Mg 2+ -dependent hydrolysis of 
ATP and a ouabain-sensitive uptake of  86 Rb in the host cells. Also, α4β1 presented a 
ouabain-sensitive phosphorylation from ATP, another typical characteristic of Na, 
K-ATPase. Furthermore, activity of α4 was inhibited by the generic P-type ATPase 
inhibitor vanadate but was unaffected by thapsigargin or Sch-28080, compounds that 
inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H, K-ATPase respectively. 
In addition, α4 showed an optimal pH for activity of 7.4 and was inactivated by divalent 
cations, such as Ca 2+ , Cu 2+ , Fe 2+ , and Zn 2+ , demonstrating that H +  or divalent cations are 
not natural substrates of the enzyme and that α4 displays the properties of a Na, 
K-ATPase [ 53 ]. A Na, K-ATPase activity with similar characteristics of those of α4 
expressed in the insect cells was found in rat testis [ 17 ,  53 ]. 

 The ability to produce α4 separated from other Na, K-ATPase isoforms in Sf9 cells 
allowed the characterization of its enzymatic properties [ 53 ]. This showed that, com-
pared to the Na, K-ATPase α1, α2, and α3 isoforms, α4 had a relatively higher appar-
ent affi nity for Na + , a lower apparent affi nity for K + , and an intermediate affi nity for 
ATP. Interestingly, α4 exhibited a high sensitivity to ouabain, with a calculated  K  0.5  in 
the low nanomolar range [ 17 ,  53 ]. A comparison of the kinetic properties of Na, 
K-ATPase α4β1 and the ubiquitous α1β1 is shown in Fig.  5.1 . The biochemical 
characteristics of rat α4 were also studied after transfection and stable selection with 

30 6 0.6 10–4

10–5

10–6

10–7

10–8

0

0.5

0.4

0.3

0.2

0.1

0

5

4

3

2

1

0

a4
b1

a1
b1

a4
b1

a1
b1

a4
b1

a1
b1

a4
b1

a1
b1

*

*

*
*

25

20

15

10

5

0

O
ua

ba
in

 K
i (

M
)

A
T

P
 K

m
 (

m
M

)

K
+
 K

0.
5 

(m
M

)

N
a+

 K
0.

5 
(m

M
)

  Fig. 5.1    Comparison of the kinetic characteristics of rat Na, K-ATPase α4β1 and α1β1 expressed 
in Sf-9 insect cells using the baculovirus expression system. Apparent affi nities ( K  0.5 ),  K  m , and 
inhibition constant ( K  i ) for ouabain were calculated from dose-response curves of Na, K-ATPase 
activity to the indicated ligands. Values are the mean ± SEM and  asterisks  indicate statistically 
different values compared to α1β1. Data have been re-plotted from values taken from Ref.  16        
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neomycin in murine NIH 3T3 cells [ 54 ]. Using this system, the interaction of α4 with 
Na +  and K +  was determined by exploring the effects of the cations on [ 3 H] ouabain 
binding/displacement, which further proved that α4 exhibited the  characteristics of a 
Na, K-ATPase and not those of another P-type ATPase. [ 3 H] ouabain binding self-
competition assays in membrane preparations from the α4 expressing NIH 3T3 cells 
confi rmed the high affi nity of α4 for the cardiac glycoside, although the calculated  K  D  
for ouabain was higher than those of previous reports, which could depend on differ-
ences in the membrane preparations used. The high ouabain affi nity of α4 was also 
reported for the human isoform stably expressed in HeLa cells, by assessing the 
survival of the cells under different amounts of ouabain in the culture medium [ 55 ]. 
Later, the enzymatic properties of human α4 were directly measured in the native 
environment of human sperm and showed that the reactivity of α4 to Na + , K + , and 
ouabain is overall conserved with respect to those of the rat ortholog [ 56 ].

4        Tissue Cell and Subcellular Specifi c Expression 
of Na, K-ATPase α4 

 The α4 polypeptide is the Na, K-ATPase isoform with the most restricted pattern of 
expression being uniquely present in the testis. However, expression of α4 in the 
testis is not exclusive, since Na, K-ATPase α1 is also present. In contrast, testis does 
not express the Na, K-ATPase α2 and α3 isoforms [ 17 ,  25 ]. In vitro hybridization 
and immunochemical techniques have shown that, in contrast to the ubiquitous α1, 
the α4 isoform is present only in the testis seminiferous tubules, where it is abundant 
in the adluminal side of the tubules [ 57 ,  58 ]. Na, K-ATPase α4 is found in most 
mature male germ cells and in spermatozoa but not in Sertoli, Leydig, or undiffer-
entiated male germ cells. These results suggested that α4 is confi ned to the testis 
male germ cells and showed that these cells express α4 along with the Na, K-ATPase 
α1 subunit. Figure  5.2  shows the pattern of expression of Na, K-ATPase α4 in mouse 

  Fig. 5.2    Immunocytochemical localization of Na, K-ATPase α4 in mouse testis. Labeling was 
performed using a chicken generated antiserum against α4, followed by an anti-chicken antibody 
conjugated to FITC. Propidium iodide was used to stain the cell nuclei. Panel  a  shows the negative 
control in the absence of primary antibody. Panels  b  and  c  show two different magnifi cations of 
testis seminiferous tubules. Panel  d  is a high magnifi cation of the seminiferous epithelium within 
a tubule       
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testis seminiferous tubules. Analysis of the ouabain inhibition profi le of Na, 
K-ATPase activity revealed that, in rat sperm, approximately two thirds of the total 
Na, K-ATPase activity of the cells correspond to α4, the remaining being α1 [ 59 ]. 
The primary expression of α4 in sperm was further supported by the drastic reduc-
tion of the protein in mice that are oligospermic due to ablation of the transcription 
factor Egr4 [ 57 ].

   Immunocytochemical studies have shown that in rat and mouse sperm α4 is 
expressed in the fl agellum, being more abundant in the midpiece of the sperm tail. 
Little or no α4 is found in the sperm head [ 58 ,  59 ]. This particular fl agellar localiza-
tion has also been described for human sperm [ 56 ]. However, while human α4 was 
reported to be mainly localized in the sperm fl agellar midpiece in one study, it was 
shown in the principal piece in another, a fact that may depend on the different anti-
bodies used [ 55 ,  56 ]. In any case, it is clear that Na, K-ATPase α4 in human sperm 
has a fl agellar distribution. Different from α4, the α1 polypeptide appeared to be 
more evenly distributed along the sperm fl agellum, and, as α4, was barely detected 
in the sperm head [ 59 ]. This suggests the existence of isoform-specifi c mechanisms 
for the targeting and particular retention of α1 and α4 at restricted domains of the 
plasma membrane of the male germ cells. Further evidence for the fl agellar distribu-
tion of α4 was obtained in transgenic mice overexpressing the rat α4 isoform tagged 
at its C-terminal portion with GFP [ 60 ]. However, staining for GFP extended beyond 
the midpiece of the fl agellum, which is not surprising, since the addition of GFP to 
α4 may have altered targeting of the whole protein. Alternatively, overexpression of 
α4 may have overwhelmed the protein delivery mechanisms in the cells. In conclu-
sion, the subcellular localization studies indicated a primary fl agellar localization of 
the protein and suggested a role for Na, K-ATPase α4 at the sperm tail.  

5     Changes in Na, K-ATPase α4 Expression During 
Development 

 Several fi ndings suggested that α4 expression was regulated during spermatogenesis. 
Thus, α4 was found to be highest in spermatozoa and lower in the external side of the 
seminiferous tubules, where immature male germ cells are located [ 58 ]. Also α4 is 
scarce in a male germ cell line, GC-1, which does not fully differentiate in vitro [ 57 ]. 
First evidence for a developmental regulation of α4 was obtained by Northern blot 
analysis of rat whole testis RNA, which showed that α4 is not expressed until 4 weeks 
of age and that it reaches maximal levels at week 6. In contrast, RNA for the α1 
isoform in testis was found to remain at constant levels throughout the life of the 
animal [ 58 ]. Immunocytochemical studies identifi ed α4 expression starting at 6 weeks 
of age and becoming maximal at 8 and 12 weeks of age. Therefore, expression of α4 
protein closely followed that of RNA [ 58 ]. Overall, these results indicated that α4 
expression is regulated in parallel with the onset of sexual maturity in the rat. 

 We have found that absolute values of Na, K-ATPase activity on testis homoge-
nates increased approximately twofold between week 1 of age to adulthood [ 59 ]. 
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Ouabain inhibition profi les of Na, K-ATPase activity on testis homogenates showed 
the biphasic ouabain dose-response curves corresponding to expression of α4 and 
α1 isoforms. However, the relative contribution of each α isoform to the total Na, 
K-ATPase activity of the gonad varied with age. ATP hydrolysis sensitive to rela-
tively low ouabain concentrations (3 × 10 −6  M), corresponding to α4, increased from 
10 % at week 1 to approximately 20 % at day 18 after birth, and became almost half 
of the total Na, K-ATPase in the adult gonad. Instead, the highly ouabain-resistant 
activity of the α1 isoform remained approximately constant throughout those time-
points. In agreement with the functional assays, immunoblot analysis showed that 
the α4, but not the α1, polypeptide is augmented during maturation of the male 
gonad [ 59 ]. The timepoints in testis development that we had chosen refl ected 
critical stages in male germ cell development, with 1 week after birth containing 
spermatogonia, 18 days of life, having in addition preleptotene, leptotene, and 
pachytene spermatocytes; and adult animals presenting cells at all stages of sper-
matogenesis, including spermatids and spermatozoa [ 61 ]. To more directly assess 
the developmental regulation of Na, K-ATPase, we studied the expression and func-
tion of α4 and α1 during spermatogenesis in highly enriched fractions of different 
male germ cell types, obtained after testis cell dissociation and unit gravity sedi-
mentation, or counterfl ow elutriation [ 59 ,  62 ]. Ouabain inhibition profi les of Na, 
K-ATPase activity showed that spermatogenesis was accompanied by an approxi-
mately twofold increase in absolute values of total Na, K-ATPase activity and a 
more than sevenfold increase in Na, K-ATPase α4, compared to α1. Activity of α4 
was very low in undifferentiated spermatogonia and pachytene spermatocytes, and 
augmented with the development of the round spermatids into spermatozoa. Ion 
transport function of the Na, K-ATPase of male germ cells, measured as the oua-
bain-sensitive uptake of  86 Rb by the cells, showed a similar pattern. Maximal α4 
activity was found in spermatozoa; however, no signifi cant further differences in α4 
function were detected between sperm obtained from the caput and cauda of the 
epididymis. This suggests that α4 is not subjected to additional changes during tran-
sit of the sperm along the epididymal ducts. RT-PCR and immunoblot analysis of 
each male germ cell type mirrored the functional assays and showed that transcrip-
tional upregulation of the  ATP1a4  gene in pachytene spermatocytes is followed by 
a burst in protein synthesis later during spermatid development and in spermatozoa 
[ 59 ]. These studies in isolated male germ cells allowed a detailed characterization 
of α4 expression in undifferentiated male germ cells, which may have not been 
detected in previous studies of whole testis, due to masking by the high expression 
in differentiated testis spermatozoa. From all these results, it is clear that α4 is sub-
jected to important developmental changes that correlate with sexual maturation of 
the testis and the onset of sperm formation. 

 To further determine the temporal and spatial pattern of expression of the α4 
subunit, we have also used a genetic, knock-in strategy in mice, using expression of 
the green fl uorescent protein (GFP) as a reporter for the expression driven by the 
endogenous  Atp1a4  promoter. This approach confi rmed that the  Atp1a4  promoter 
guides testis-specifi c expression, as shown by the typical GFP green fl uorescence 
and the presence of GFP protein in the gonad, but its absence in a series of other 
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tissues. In addition, GFP expression was developmentally regulated, appearing in 
adult but not in mouse embryos or the sexually immature 7- and 18-day-old mice. 
Immunocytochemistry of whole testis sections identifi ed GFP only in differentiated 
male germ cells but not in spermatogonia, Leydig, or Sertoli cells. Further studies, 
combining immunoblot analysis of fl uorescently sorted testis cells with cell type- 
specifi c markers, detected GFP only in spermatocytes, spermatids, and spermatozoa 
[ 63 ]. Altogether, these studies provided evidence, beyond previous studies of the α4 
RNA or protein that the  Atp1a4  promoter drives expression of Na, K-ATPase α4 
exclusively in male germ cells of the testis, at late stages of spermatogenesis. This 
postmeiotic expression pattern of α4 is shared with that of other genes that are 
essential for sperm function. 

 To better understand the mechanisms regulating α4 expression, we studied the 
transcriptional control of the human Na, K-ATPase  ATP1A4  gene [ 64 ]. We focused 
on a region of approximately 1 kb upstream the fi rst methionine codon of  ATP1A4 , 
which had been predicted as the proximal promoter region of the isoform by in silico 
studies [ 52 ]. In this region, we identifi ed the transcription initiation site of the 
 ATP1A4  promoter to an adenosine located 472 bp upstream of the ATG translation 
start codon of  ATP1A4  and experimentally confi rmed that this 5′ untranslated region 
of the  ATP1A4  gene exhibits promoter activity in luciferase reporter assays. Computer 
analysis of this promoter region revealed the presence of potential binding sites for 
several transcription factors, including two partial consensus sites (GTCA) for the 
cyclic AMP (cAMP) response element modulator (CREM). This transcription factor 
is of particular interest in the testis, since a testis-specifi c splice variant of CREM 
(CREMt) is involved in the expression of a series of genes that are essential for sperm 
function [ 65 ]. Using luciferase assays and exogenous expression of CREMt, we 
demonstrated that this transcription factor along with cAMP is an activator of the 
 ATP1A4  promoter in a dose-dependent manner. Further characterization of CREMτ 
on deleted constructs of the  ATP1A4  promoter and on ATP1A4 promoter regions 
carrying mutations in the CRE sites showed that a CRE like motif, located 263 bp 
upstream the transcription initiation site, was essential for CREMτ effect. The usage 
of the CREMt site was further supported by electrophoretic mobility shift assays 
(EMSA), which directly showed the physical interaction between CREMt and the 
CRE target sequence [ 64 ]. In the native environment of the testis, CREMt expression 
is temporally coincident with the upregulation of a series of postmeiotic genes [ 66 ]. 
Therefore, the transcriptional regulation of  ATP1A4  gene expression by CREMτ 
places Na, K-ATPase α4 within the cluster of genes that are upregulated after meiosis 
to serve a role in the physiology and fertility of spermatozoa.  

6     Biological Relevance of Na, K-ATPase α4 to Sperm 
Function 

 The particular cell type and developmentally regulated expression as well as the 
unique kinetics of α4 suggested that it performs a specifi c function in the male gamete. 
As shown in Fig.  5.1 , in the rat, ouabain affi nity of α4 is approximately 10,000- fold 
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higher than that of α1 [ 16 ]. This property provided the opportunity to selectively 
inhibit α4 and determine its function, separate from that of α1. Initial studies tested 
the effects of relatively low ouabain doses to defi ne the effects of α4 on sperm motil-
ity, using simple visual determinations of sperm movement [ 58 ]. Then, computer 
sperm analysis (CASA) was introduced, which provided a higher resolution to the 
analysis of α4 action on different components of fl agellar beat [ 67 ]. These 
approaches showed that blocking the activity of α4 caused inhibition of sperm total 
motility and multiple parameters of sperm movement, including progressive motil-
ity, straight line, curvilinear and average path velocities, lateral head displacement, 
beat cross frequency, and linearity. The use of higher ouabain concentrations that 
also inhibited α1 did not cause additional reduction in sperm motility [ 58 ,  67 ]. 
These results revealed a specifi c role of α4 in sustaining multiple aspects of sperm 
fl agellar movement. The broad effect of inhibition of α4 activity on the various 
components of sperm motility suggested that this isoform maintains sperm move-
ment by affecting multiple different vital parameters of sperm physiology. 

 The idea developed that α1, which is present in all tissues, functions as the 
isoform that maintains sperm basal Na +  and K +  transport in sperm and that α4 plays 
sperm-specifi c roles. Activity of α4 is primarily involved in maintaining sperm 
intracellular Na +  ([Na + ] i ). In addition, ouabain inhibition of α4 causes depolariza-
tion of the sperm plasma membrane [ 67 ]. Since the Na, K-ATPase is not the only 
determinant of membrane potential, to infl uence plasma membrane excitability of 
the male gamete, α4 action must be linked to sperm K +  channels. An adequate mem-
brane potential is essential for sperm motility and cell membrane depolarization has 
been shown to be associated with infertility in asthenozoospermic patients [ 68 ]. 
Therefore, one of the mechanisms by which α4 isoform infl uences sperm motility is 
through its key role in maintaining the uneven transmembrane distribution of Na +  
and K + , and the electrical potential of the sperm plasma membrane. Besides its 
direct role in Na +  and K +  transport, α4 secondarily controls proton levels in sperma-
tozoa, and ouabain inhibition of α4 caused a decline in pH of the sperm cytoplasm 
[ 58 ,  67 ]. The effects on pH appear to be secondary to the inwardly directed Na +  
gradient that provides the electrochemical energy to drive the secondary movement 
of protons out of the cell, via the Na + /H +  exchanger (NHE). This is supported by 
different lines of evidence. First, several NHE transporters are expressed in sperm, 
including the NHE1 and NHE5 of somatic cells and the sperm-specifi c NHE, sNHE 
[ 69 ]. Second, NHE1 and NHE5 have been found to be co-localized with α4 [ 70 ]. 
Finally, it has been observed that the ionophores nigericin and monensin, which 
allow leakage of H +  out of the cells, are able to reestablish the motility that ouabain 
causes in sperm [ 70 ]. Variations in the proton concentration modulate sperm fl agel-
lar bending pattern. In this manner, α4 activity may be preventing the rise of protons 
that takes place in the sperm cytoplasm as a consequence of active movement and 
metabolism of the cells [ 58 ]. 

 We have also found that α4 activity is functionally coupled to the regulation of 
sperm Ca 2+  and ouabain inhibition of α4 augments the intracellular sperm calcium 
([Ca 2+ ] i ) [ 67 ]. Since our experiments were performed in the absence of extracellular 
Ca 2+ , the increase in [Ca 2+ ] i  is not due to Ca 2+  internalization from the media but 
rather depends on a decrease in Ca 2+  clearance from the cell cytoplasm, possibly via 
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the Na + /Ca 2+  exchanger (NCX). Interestingly, NCX has been shown to be expressed 
at the sperm fl agellum [ 71 ,  72 ]. Maintenance of sperm [Ca 2+ ] i  within a relative 
limited range is critical to the motility of the male gamete [ 71 ]. In this manner, the 
ability of the α4 isoform to control [Ca 2+ ] i  may represent another mechanism by 
which this Na, K-ATPase polypeptide sustains sperm motility. Different from 
rodents, ouabain affected progressive, but not total, of bull sperm motility [ 49 ]. 
Also, ouabain did not affect [Ca 2+ ] i  in bull sperm and induced sperm capacitation 
through activation of kinases and the phosphorylation of proteins in tyrosine resi-
dues [ 73 ]. These differences may be refl ecting dissimilarities in species, in the 
amounts of ouabain, which in the experiments with bull sperm included concentra-
tions higher than those needed to bind to α4, and in the incubation times with oua-
bain, which were longer for bull sperm. Further studies are needed to ascertain these 
dissimilarities in sperm response to ouabain.  

7     Regulation of Na, K-ATPase α4 Function 

 Spermatozoa are cells that move through environments with very diverse composi-
tion and they need to constantly adjust their motile activity. In the epididymis, sperm 
are in a noncapacitated state and have little motility. Once released into the female 
track, sperm increases its motility, acquires the hyperactive pattern of motility, and 
undergoes the capacitated state, gaining the ability to fertilize the egg [ 74 ]. We have 
investigated whether activity of the α4 isoform is regulated and if this event is rele-
vant to the capacitated state of sperm. We have performed this by following α4 
function through its selective inhibition with ouabain in rat sperm before and after 
inducing capacitation in vitro [ 75 ]. Sperm capacitation was accompanied by a 
time- dependent increase in α4 ion transport and enzymatic activity that was pre-
vented by selective blockage with low ouabain concentrations. This indicates that 
the α4 isoform is subjected to regulation and that its activity is stimulated as 
sperm becomes capacitated. Interference of α4 activity with ouabain blocked the 
increase in sperm motility and prevented the plasma membrane hyperpolarization 
and hyperactive pattern of sperm motility that is commonly associated with sperm 
capacitation. In contrast, ouabain inhibition of α4 did not affect the progression of 
the spontaneous sperm acrosomal reaction that follows capacitation. Concomitant 
with the functional changes mentioned, we found a capacitation-dependent rise in 
levels of active α4 isoform at the sperm surface. This was refl ected by an increase in 
sperm labeling with the fl uorescent indicator bodipy-ouabain and by an increase of 
α4 in biotinylated and streptavidin precipitated sperm plasma membrane proteins. 
Thus, the upregulation of α4 during sperm capacitation appears to involve mecha-
nisms that consist in both increases in molecular activity and changes in the level of 
α4 at the sperm plasma membrane. Mature spermatozoa cannot express new pro-
tein, in this manner; the augment of α4 at the plasma membrane must be the result 
of translocation of preformed α4 molecules from intracellular compartments to the 
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sperm surface. Currently, we are performing additional experiments to ascertain the 
location and place of the putative reservoirs of the α4 isoform in the sperm cyto-
plasm, as well as the molecular mechanisms involved in the subcellular transloca-
tion of α4. These experiments show that α4 activity is regulated and that the 
phenomenon is important to sustain the changes in motility that sperm undergoes in 
their journey to fi nd the egg.  

8     Role of Na, K-ATPase α4 in Male Reproduction 

 While the studies based on ouabain inhibition allowed important progress in under-
standing the function of Na, K-ATPase α4, a more direct approach was required to 
elucidate the overall role of this isoform in male fertility. We investigated this in 
genetically modifi ed mice, in which α4 was either deleted or overexpressed [ 60 ,  76 ]. 
Knockout mice were made by removing a region spanning exons 5–8 of the  Atp1a4  
gene, which encodes for the ATP binding and phosphorylation sites of the catalytic 
domain of Na, K-ATPase α4. Homozygous knockout male mice lacked expression 
of α4 mRNA and protein. In addition, compared to sperm from wild- type mice, 
sperm from α4-null mice exhibited a signifi cantly lower level of total Na, K-ATPase 
activity, with a specifi c disappearance of the high ouabain affi nity component cor-
responding to the α4 isoform, and lost their ability to bind bodipy- ouabain. The 
α4-null mice were overall phenotypically normal, showing testis with size and mor-
phology indistinguishable from wild-type mice. Also, α4 knockout mouse presented 
normal sperm numbers. However, homozygous male, but not female, mice were 
completely infertile. Heterozygous male mice were reproductively competent, sug-
gesting that partial expression of α4 is suffi cient to support male fertility. Not only 
were the α4-null mice sterile, but sperm from these mice were incapable of fertil-
izing oocytes in vitro. Deletion of α4 leads to severe reduction in sperm motility and 
drastic reduction of all parameters of sperm fl agellar beat. Furthermore, sperm 
hyperactivation was almost completely abolished in α4 knockout mice. Other alter-
ation of sperm from α4-null mice consisted in a bend in the sperm fl agellum, indica-
tive of abnormal sperm ion regulation and osmotic imbalance; and cell plasma 
membrane depolarization. Defi cient expression of α4 in α4-null mice was not com-
pensated through upregulation of expression and activity of α1. Overall, these 
results demonstrate that while α4 is not needed for sperm production, it is an abso-
lute requirement for male fertility. The inability of α1 to compensate for α4 function 
supports the unique role of α4 in male fertility. 

 Further evidence for the role of α4 in male reproduction came from exogenous 
expression of α4 in transgenic mice [ 60 ]. Sperm from mice expressing the α4 iso-
form from rat, fused at the C-terminus to green fl uorescent protein (GFP), under the 
protamine-1 promoter had higher than normal total sperm motility. In contrast, 
overexpression of α4 did not signifi cantly affect sperm acrosome reaction. Mating 
trials with WT females showed that despite having higher motility, transgenic α4 
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male mice sperm had similar fertility than WT mice, which is expected, since fertil-
ity is limited to the female factor. It is clear that one of the main functions of Na, 
K-ATPase α4 is to support sperm fl agellar beat and that changes in its expression 
infl uence sperm swimming capacity. Figure  5.3  shows how genetic manipulation of 
Na, K-ATPase α4 levels in mice results in changes in sperm motility.

9        Conclusions 

 A great amount of work has been devoted to understanding the role of Na, K-ATPase 
isoforms in cell biology. It is clear today that the molecular heterogeneity of the Na, 
K-ATPase is a physiologically relevant event and it represents a strategy that organ-
isms have developed to satisfy cell-specifi c tasks. The α4 isoform is an example of 
the exquisite adaptation that the Na, K-ATPase has undergone to serve the very 
unique motile characteristic that allows sperm to swim. Thanks to Na, K-ATPase 
α4, sperm can travel the long journey required to fi nd and fertilize the egg. Without 
doubt, evolution has endowed α4 with properties that allow sperm to undertake the 
essential mission of preserving life.     
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  Fig. 5.3    Correlation of 
sperm motility and 
expression levels of Na, 
K-ATPase α4. Sperm total 
motility was determined by 
CASA on sperm from wild 
type (WT), α4-null, and 
transgenic mice 
overexpressing α4 (Tg-α4 
mice). Sperm motility was 
measured under non- 
capacitating conditions for 
the indicated times. Values 
are mean ± SEM and 
 asterisks  show statistically 
signifi cant differences 
compared to WT controls       
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    Chapter 6   
 The Role of the Second Na +  Pump 
in Mammals and Parasites                     

       Adalberto     Vieyra     ,     Paulo     A.     Silva    ,     Humberto     Muzi-Filho    ,     Claudia     F.     Dick    , 
    André     L.     Araujo-dos-Santos    ,     Juliana     Dias    ,     Leucio     D.     Vieira-Filho    , 
and     Ana     D.  O.     Paixão   

    Abstract     The mechanism for active (ATP-dependent) Na +  extrusion from intracel-
lular compartments, not coupled to K +  infl ux and insensitive to ouabain, was discov-
ered 50 years ago by Whittembury using renal cortical tissue, and is commonly 
denominated “the second Na +  pump.” This Na + -ATPase, sensitive to furosemide and 
ethacrynic acid, exists in both polarized and non-polarized cells and transports Na +  
coupled to Cl −  in an electroneutral fashion, so the membrane potential is not changed 
during Na +  transport cycles. Cloning of the enzyme revealed proteins of 1039 amino 
acids in  Trypanosoma cruzi  (TcENA) and 811 amino acids in guinea pig enterocytes 
(ATNA). They share the main functional catalytic domains, which are highly con-
served in the P-type ATPase family, but alignment of the parasite and mammalian 
enzymes reveals scant homology in terms of residues (Ser and Thr) that are potentially 
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phosphorylatable by protein kinases. These differences in primary sequence indicate 
that selective regulatory mechanisms of the Na + -ATPases evolved differently to favor 
adaptation to different environmental challenges (i.e., acquisition of scarce nutrients 
in parasites). The second pump in mammals (kidney and heart) is regulated by signal-
ing cascades that include angiotensins, angiotensin receptors, protein kinase C, and 
cyclic AMP-dependent and extracellular-signal- regulated protein kinases. Reactive 
oxygen species and NO are also important modulators of the Na + -ATPase. The pump 
is dysregulated, possibly by abnormal phosphorylations, in diseases and syndromes 
(frequently associated) such as obesity, chronic undernutrition, hypertension, and car-
diac conduction remodeling with increased risk of sudden death.  

  Keywords     Ouabain-resistant furosemide-sensitive Na + -ATPase   •   Na +  transport   • 
  ATNA   •   TcENA   •   Proximal tubule cells   •   Enterocytes   •    Trypanosoma cruzi    •   Kinase- 
mediated regulation   •   Angiotensins   •   Na + -Coupled cotransport  

1         Introduction 

 For at least six decades during the last century, Na +  movements across plasma mem-
branes appeared to be linked only to K +  movements. Except for those that have more 
recently conquered fresh water, most forms of life evolved in various ways in high 
Na +  environments [ 1 ], which are considered inadequate for or injurious to the proper 
cellular functioning [ 2 ]. In all eukaryotes, including mammals, the extracellular fl uid 
also contains high concentrations of Na + —around 150 mM—probably a relic of the 
aqueous environments in which their ancestors evolved over hundreds of millions of 
years [ 3 ]. Thus, extrusion of Na +  from the intracellular milieu became a challenge 
and a requisite for the survival, growth and evolution of almost all species. 

 At the beginning of the last century it was fi rst postulated that a special mecha-
nism was required in the interface between the extracellular and intracellular com-
partments of eukaryotes, i.e., the plasma membrane, to maintain a cytosolic Na +  [ 4 ] 
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well below the concentration in the external medium. Four decades later the 
requirement for a conserved metabolism to ensure the asymmetrical distribution of 
Na +  ions across the membrane became clear [ 5 ], and the term “pump” was soon 
introduced by Dean [ 6 ] when it was understood that the mechanism for Na +  extru-
sion must operate against an unfavorable electrochemical gradient for the ion. An 
important feature of this idea was a tight coupling between Na +  effl ux and K +  
infl ux, which was explicit in classical studies on the movement of these cations in 
nerve cells [ 7 ] and red blood cells [ 8 ]. The progression of this idea toward molecu-
lar identifi cation of the pump culminated in two complementary steps when: (1) 
Skou found that Na +  and K +  stimulated the catalysis of ATP hydrolysis by an 
enzyme (an ATPase) present in membrane fragments of leg nerves from the shore 
crab [ 9 ]; (2) Post and Jolly demonstrated a stoichiometry of 3Na + :2K +  for simulta-
neous, energy- dependent transport of these ions in opposite directions across the 
red cell membrane [ 10 ]. The demonstration that this Na + -plus-K + -stimulated ATP 
hydrolysis was specifi cally inhibited by ouabain, a cardiac glycoside [ 11 ], led to an 
operational defi nition of active Na +  fl uxes across the plasma membrane as those 
mediated by a ouabain-sensitive ATPase. The lines of evidence associating the 
ouabain-sensitive Na + -plus-K + -stimulated ATP hydrolysis “in vitro” with the ATP-
dependent Na +  outward/K +  inward movements “in vivo” were summarized by 
Glynn 30 years ago [ 12 ].  

2     Na +  Effl ux Not Coupled to K +  Infl ux 

 Almost immediately after the seminal discoveries by Skou and Post and their cowork-
ers, several fi ndings from experiments on kidney tubules [ 13 ] led over the following 
years to an emerging though elusive hypothesis: there is a second Na +  pump indepen-
dent of K + . The conclusion of this pioneering work by Whittembury [ 13 ], based on the 
temperature dependence of Na +  and K +  fl uxes and their correlations with membrane 
potential, was that  the active Na outfl ux would be divisible into one fraction coupled 
to K infl ux and another that leaves the cell with Cl . Thus the second Na +  pump 
appeared in the world of ion-transporting ATPases. However, until its recent cloning 
and purifi cation, most people were skeptical about it, despite the clear demonstra-
tion that a K + -independent Na +  extrusion indeed existed and had specifi c roles in 
several physiological and pathological situations, as briefl y reviewed below. 

 Subsequently, Whittembury and Proverbio [ 14 ] published another classical study 
that fi rmly established and strengthened the basis for the second pump hypothesis. 
Cells loaded with Na +  by leaching at 0.6 °C extruded Na +  with Cl −  after rewarming 
to 25 °C in the absence of K +  through a mechanism sensitive to ethacrynic acid, and 
an additional Na +  effl ux (inhibited by ouabain) was observed when K +  was added. 
These fi ndings provided strong functional evidence that two active mechanisms for 
Na +  extrusion were co-located in the basolateral membranes of proximal tubule 
cells: the Na + -ATPase (which they named pump A) and the (Na + +K + )ATPase 
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(named pump B). These pumps are illustrated in the scheme in Fig.  6.1  [ 14 ,  15 ]. 
Two years later, studies on active Na +  transport using slices of renal external 
medulla, which were quantifi ed by measuring oxygen consumption, together with 
measurements of Na +  and K +  contents in the absence or presence of ouabain and 
ethacrynic acid in different combinations [ 16 ], demonstrated that the two Na +  trans-
port mechanisms are also present in a nephron segment that is crucial for urine 
concentration and, consequently, for regulating the volume and Na +  concentration 
of body fl uids.

   Despite its usefulness as a pharmacological tool that allowed the second Na +  pump 
to be demonstrated, ethacrynic acid also inhibits the (Na + +K + )ATPase by more than 
60 % at a concentration that completely abolishes the ouabain-resistant Na + -ATPase 
[ 17 ]. Fortunately, the diuretic furosemide, which inhibits the 2Cl − :1Na + :1K +  symporter, 
is also a potent inhibitor of the Na + -ATPase but has no effect on the (Na + +K + )ATPase 
[ 17 ]. Since this was demonstrated, “furosemide- sensitive” has become synonymous 
with “ouabain-resistant”, a pharmacological adjective to characterize and label the 
second Na +  pump, which has also been identifi ed outside the mammalian kidney. Two 
examples—certainly there are others not mentioned in this short chapter— 
illustrate how widely this pump is distributed. In 1979, Preiss et al. demonstrated a 
Na + -stimulated and ouabain-insensitive ATPase in muscle cells of the carotid and 
coronary arteries of different species [ 18 ]. On another zoological level, in the world of 
parasites, Caruso-Neves et al. during the late 1990s described a ouabain-resistant, 
furosemide-sensitive Na + -ATPase in  Trypanosoma cruzi  [ 19 ], the etiological agent of 
one of the most widely distributed and serious human parasitic diseases.  

  Fig. 6.1    Schematic model of the two proposed active Na +  transport mechanisms in proximal 
tubule cells. One is sensitive to ethacrynic acid (and also to furosemide [ 17 ]), insensitive to oua-
bain and associated with Cl −  extrusion (pump A). The other is coupled to K +  infl ux (pump B) and 
sensitive to ouabain. Na +  enters the cell from the tubular lumen down its electrochemical gradient. 
Reproduced with permission from Ref. [ 15 ]       
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3     Towards the Molecular Characterization of the Second 
Na +  Pump 

 Though the early evidence for an ouabain-resistant Na + -ATPase came from stud-
ies on renal epithelia, as far as we know the fi rst successful attempt at molecular 
cloning and characterization used the  T. cruzi  enzyme. Iizumi et al. [ 20 ] reported 
the cloning of a gene encoding an ATPase similar to the various Na + -ATPases 
responsible for expelling intracellular Na +  in plants and fungi. These entities are 
called ENA [ 21 ], so they termed the pump they had found “TcENA.” The deduced 
amino acid sequence showed, by hydropathy analysis, ten possible transmem-
brane domains (still an open question, as discussed below) and the highly con-
served sequence  D KTGTL in the catalytic phosphorylation site, which allowed 
the ouabain- insensitive Na + -ATPase to be included in the P-ATPase family, i.e., 
the ion- transporting ATPases that form a phosphorylated intermediate (an acyl-
phosphoprotein) during the catalytic cycle [ 21 ,  22 ]. To complete their pioneering 
picture, Iizumi et al. [ 20 ] purifi ed the enzyme, developed a specifi c antibody, 
provided evidence that expression levels are related to Na +  resistance in culture, 
demonstrated the plasma membrane distribution of the pump and—perhaps of 
special functional importance—found that the level of TcENA transcription var-
ies through the developmental stages of the parasite. Figure  6.2  shows the puri-
fi ed membrane-bound enzyme prepared from epimastigote (circulating) forms 
and its detection on the surfaces of both epimastigotes and amastigotes [ 20 ]. 
Despite this complete picture, it is intriguing that the enzyme is stimulated by K +  
in the presence of ouabain [ 20 ].

   In 2012, Rocafull et al. carried out a detailed and complete study [ 23 ] that 
constitutes a breakthrough concerning the second Na +  pump. They purifi ed the 
enzyme from guinea-pig enterocytes after demonstrating that both Na + -ATPase 
and (Na + +K + )ATPase are present in the basolateral membranes of these cells. 
Converging with the biochemical data obtained over more than four decades in 
several laboratories using crude membrane preparations, they [ 23 ] showed that 
the purifi ed Na + -ATPase had similar Na + -dependence and furosemide sensitivity 
(with comparable IC 50 ) and was completely insensitive to K +  and ouabain. 
Electrophoretic analysis of the fraction containing furosemide-sensitive Na + -
ATPase activity revealed a main band of 90 kDa (named the α subunit or ATNA) 
and a duplet band of 50–55 kDa (β subunit), which seemed to form an α/β com-
plex under non-reducing conditions. Mass spectrometry demonstrated that the 
peptides obtained corresponded to no known protein, and on the basis of the 
sequences of three trypsin-derived peptides they designed primers that allowed a 
partial cDNA of Na + -ATPase to be cloned. They obtained a fragment of 1148-bp, 
which shared 710-bp with a previously produced pig  atna  partial cDNA encod-
ing a Na + -ATPase [ 24 ]. They succeeded in completing the sequence of  atna  using 
RNA ligase-mediated rapid amplifi cation of the cDNA ends, and obtained a 
2789-bp  atna  mRNA encoding an 811 amino acid sequence containing the nine 
motifs characteristic of P-ATPases. Modeling of this sequence allowed Rocafull 
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et al. to propose 2D and 3D structures for the whole ATNA  subunit and for the 
active (catalytic phosphorylation) domain, respectively [ 25 ]. Figure  6.3  depicts 
these two structures.

   We aligned the reported sequences of TcENA and ATNA [ 20 ,  23 ], searching for 
regions of homology and/or similarity that could help elucidate their different physi-
ological roles and specifi c regulatory properties. Identity ranged from 20 % 
(EMBOSS Needle) to 27 % (ClustalW 2.1) and similarity attained 34 % (EMBOSS 
Needle). Despite the differences in primary structure, possibly related to their 
different evolutionary pathways [ 21 ], they share three highly conserved motifs 
(Fig.  6.4 ). These motifs are characteristics of P-ATPases [ 21 ,  26 ] and are related to 

  Fig. 6.2    Investigation of the location of TcENA ( T. cruzi  Na + -ATPase). ( a ) Membrane (M) and 
soluble (S) fractions were prepared from epimastigotes and probed with TcENA antibody. There 
is a 120 kDa band in the membrane fraction. ( b ) Detection of TcENA in trypomastigotes. ( c ) 
Detection of TcENA in intracellular amastigotes. The  arrow  points to a single amastigote, also 
shown on a larger scale in the  inset . ( b  and  c ) The  left panels  represent differential interference 
contrast images; the  right panels  are fl uorescence images (FITC-labeled secondary antibody). 
Reproduced with permission from Ref. [ 20 ]       
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three key steps in the catalytic cycle of these enzymes: nucleotide binding, 
 phosphorylation, and dephosphorylation [ 22 ]. This indicates that, besides catalyzing 
the same overall reaction, they have energy transduction mechanisms that rely at the 
molecular level on the same amino acids. With respect to amino acids in the trans-
membrane domains that are important for Na +  binding, there is high homology in 
transmembrane domains M4 and M5 but not M6 (see black squares in Fig.  6.4 ). It 
remains to be elucidated whether these differences account for differences in Na +  
affi nity and/or transport velocity as adaptive responses to diverse Na +  environments, 
and in responses to K + .

   Although the enzymes share the main functional catalytic domains, two other 
important differences can be seen, though these too present open questions that 
will be answered only after refi ned experimental approaches such as NMR are 
applied to the superexpressed and purifi ed enzymes. One difference is the num-
ber of deduced amino acids: 1039 for TcENA [ 20 ] and 811 for ATNA [ 23 ]; the 
other is the number of predicted transmembrane domains: ten for TcENA [ 20 ] 
and six for ATNA [ 23 ] (enzyme truncated at the C-terminus?). If confi rmed, 
these differences could account for the generation of distinct long-range com-
munications transmitted to conserved catalytic domains, culminating in specifi c 
regulatory responses. Another intriguing difference lies in the primary struc-
tures, with amino acids with scores ≥0.60 for possible participation in regulat-
ing TcENA and ATNA through protein kinase C (PKC)- or cyclic AMP-dependent 
protein kinase (PKA)-mediated mechanisms (see below Sect.  5 ). Table  6.1  
(shaded lines) shows only one potential phosphorylatable amino acid in each 

  Fig. 6.3    Predicted structure of ATNA, the Na + -ATPase cloned and purifi ed from guinea pig entero-
cytes. ( b ) Three-dimensional structure of ATNA, predicted by modeling with CPHmodels-3.0 using 
rat (Na + +K + )ATPase as a template. The fi gure indicates P-type ATPase structural domains and rel-
evant amino acids proposed to be related to Na +  binding (Glu 322  and Asp 754 ) and ouabain insensitiv-
ity (Ile 724 ). ( c ) A closer view of the ATNA active site. Crucial amino acids for catalytic activity are 
indicated in ball-and-stick representation. These include the phosphorylatable Asp 364  (highlighted in 
 yellow ) and essential residues for nucleotide binding, kinase and phosphatase domains. These pan-
els are part of Fig. 5 in Ref. [ 25 ]. Reproduced with permission from Ref. [ 25 ]       
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sequence that aligned with an identical one in the other (Thr 365  in TcENA and 
Thr 368  in ATNA); a second aligned with a highly similar one (Ser 332  in TcENA 
and Thr 335  in ATNA). Interestingly, the fi rst aligned pair is close to a conserved 
transmembrane sequence presumably involved in Na +  binding and transport [ 25 ]; 

  Fig. 6.4    Alignment of the deduced amino acid sequences of TcENA and ATNA.  Blue highlights : 
predicted transmembrane regions;  red highlight : phosphatase motif;  green highlight : catalytic 
phosphorylation site;  yellow highlight : dehalogenase motif of the nucleotide binding domain. 
 Black squares : amino acids predicted to be important for Na +  binding.  Asterisks : identical amino 
acids;  one dot : similar amino acids;  double dot : very similar amino acids       
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     Table 6.1    Predicted phosphorylation sites with scores ≥0.60 and specifi c for PKC or PKA in the 
primary sequences of TcENA and ATNA   

 TcENA  ATNA 

 Amino acid  Score  Kinase  Amino acid  Score  Kinase 

 Thr 4   0.62  PKA 
 Ser 14   0.72  PKC 
 Ser 30   0.62  PKA 
 Ser 32   0.73  PKC 
 Thr 52   0.60  PKA 
 Thr 54   0.86  PKC 
 Thr 81   0.85  PKC 
 Ser 90   0.73  PKC 
 Ser 113   0.73  PKA 

 Ser 141   0.81  PKC 
 Ser 149   0.79  PKC 
 Ser 236   0.81  PKC 

 Ser 298   0.64  PKA 
 Ser 333   0.70  PKC 

 Ser 332   0.62  PKC  Thr 335   0.65  PKC 
 Thr 360   0.63  PKC 

 Thr 365   0.73  PKC  Thr 368   0.63  PKC 
 Thr 370   0.66  PKC 
 Ser 398   0.72  PKC 

 Thr 443   0.75  PKC 
 Ser 434   0.71  PKC 

 Ser 457   0.85  PKC 
 Ser 488   0.66  PKA 
 Thr 489   0.60  PKC 
 Ser 503   0.70  PKC 
 Ser 515   0.64  PKC  Ser 462   0.79  PKA 
 Thr 534   0.63  PKC 
 Ser 553   0.82  PKC 
 Ser 626   0.61  PKA 
 Thr 643   0.77  PKC 
 Ser 747   0.80  PKA 

 Ser 718   0.61  PKA 
 Thr 722   0.78  PKC 
 Thr 747   0.76  PKA 

 Ser 899   0.61  PKA 
 Ser 902   0.89  PKC 
 Thr 945   0.60  PKC 
 Ser 1014   0.68  PKA 
 Ser 1021   0.75  PKC 
 Ser 1032   0.91  PKC 

  Analysis of phosphorylatable sites for TcENA (GenBank: AB107891.1) and ATNA (GenBank: 
EF489487.2) using NetPhosK 1.0 prediction software  
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the second is located within the conserved motif for catalytic phosphorylation 
[ 21 ,  26 ]. There is a third case (Thr 515  in TcENA and Ser 462  in ATNA). Despite 
their similarities, the differences in the overall sequence possibly confer, via 
these residues, specifi city for PKC in the  T. cruzi  enzyme and for PKA in the 
guinea-pig enzyme.

4        Specialized Functions for the Ouabain-Resistant, 
Potassium-Independent Na + -ATPase? 

 Why have several forms of life, from mammals to unicellular parasites, developed a 
ouabain-resistant, potassium-independent Na + -ATPase during evolution, together 
with the (Na + +K + )ATPase? Several results point to answers that could have a com-
mon theme: the evolutionary advantage of a powerful, effi cient mechanism for Na +  
extrusion without interference in intracellular K +  homeostasis. Within the limited 
space of this chapter we present just a few possible illustrative examples. 

 Massive Na +  fl uxes occur across the renal and intestinal epithelia of mammals. As 
stated by Rocafull et al. [ 25 ]:  Under these conditions the electroneutral movement of 
Na   +    and Cl   −    by the second sodium pump would eliminate the obligatory regulation of 
cell potassium concentration to maintain the membrane potential.  The physiological 
relevance of mediating salt extrusion through leaky epithelia together with a second-
ary fl ux of water is clear: it enables the cell volume to be regulated without interfer-
ence with intracellular K + . There is also massive absorption and reabsorption of 
amino acids and glucose, respectively, across the intestinal and proximal tubule epi-
thelia, and H +  is secreted. These processes are coupled to Na +  entry across the lumi-
nal membrane and, as in the case of salt transport per se, it is clearly convenient from 
the point of view of cell regulation to have these processes at least partly independent 
of intracellular K +  regulation and with no need for simultaneous control of mem-
brane potential [ 25 ]. From these considerations it can be concluded that the furose-
mide-sensitive and ouabain-resistant Na + -ATPase contributes to the generation of an 
electrochemical gradient for Na + , which is the driving force for secondary active 
fl uxes across the kidney proximal tubules and intestine. 

 An important role of the second Na +  pump in energizing secondary active trans-
port was also found in parasites. Interestingly, the Na + -ATPase, but not the (Na + +K + )
ATPase, is coupled in trypanosomatids to the infl ux of the key nutrient inorganic 
phosphate (P i ) [ 27 ,  28 ]. Epimastigote forms of both  T. rangeli  and  T. cruzi  have Na + -
dependent and Na + -independent mechanisms for P i  uptake, the former being depen-
dent on the furosemide-sensitive Na + -ATPase (Fig.  6.5 ), which generates the Na +  
gradient utilized by the symporter. Depending on species, the Na + -ATPase has 
selective partners that improve P i  uptake globally, probably developed as the result 
of selective pressure. In  T. cruzi  (Fig.  6.5a ), Na + -independent P i  uptake (possibly 
coupled to H +  infl ux) is fuelled by a (H + +K + )ATPase with concomitant K +  cycling. 
It is possible that Na + -dependent P i  uptake predominates in extracellular forms, 
which face high Na +  environments, while the coupling with (H + +K + )ATPase favors 
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P i  acquisition (by amastigotes) in the intracellular (K + -rich) milieu. This view is 
reinforced by the observation that the Na + -independent mechanism in  T. rangeli  is 
coupled to a bafi lomycin A 1 -sensitive H + -ATPase (Fig.  6.5b ) but not to a (H + +K + )
ATPase. This species does not invade the mammalian host cells so it does not face 
environments rich in K +  throughout its life cycle. At this point a question emerges: 
 T. cruzi  also expresses (Na + +K + )ATPase [ 29 ]; so why does ouabain not inhibit Na + -
dependent P i  uptake by  T. cruzi  epimastigotes? The hypothesis of a Na +  compart-
ment linked to the second Na +  pump in mammals and parasites is discussed at the 
end of this chapter (Sect.  6 ).

   Very recently [ 30 ], it has been demonstrated that specifi c stimuli lead to syn-
chronic augmentation of a Na + -dependent P i  transporter and of the Na + -ATPase 
(ENA1) from  Saccharomyces cerevisiae . P i  starvation and changes in pH induce 
coordinated transcriptional activation of complex and interacting pathways that cul-
minates in upregulation of both transporters. Besides demonstrating that the Na + -
ATPase can energize secondary active fl uxes of solutes in other organisms, these 
observations support the proposal that specifi c functional coupling of cotransporters 
with the second Na +  pump depends on the regulation of tightly coupled mechanisms 
of expression [ 27 ,  28 ].  

5      Regulation of the Na + -ATPase 

 A large body of experimental evidence concerning the regulation of the second Na +  
pump by hormones and autacoids has accumulated during the last two last decades 
using the kidney-derived enzyme, with the aim of elucidating its involvement in 
regulating the Na +  content and volume of body fl uid compartments. For this reason, 
we center our review of this topic on the results of these studies. 
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  Fig. 6.5    Proposed P i  infl ux model in epimastigotes of  T. cruzi  ( left panel ) and  T. rangeli  ( right 
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from Ref. [ 27 ] and [ 28 ]       
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 Over the past 20 years, Lopes, Caruso-Neves, and coworkers have demonstrated 
that the renal ouabain-resistant and furosemide-sensitive Na + -ATPase can be modu-
lated by several hormones. Among these, the peptides of the Renin Angiotensin 
System (RAS) appear most relevant, especially in the kidney. In 1999 [ 31 ] they pre-
sented evidence for the participation of G proteins in a signaling network starting 
with type 1 Ang II receptors (AT 1 R), activating in sequence phospholipase C β 
(PLC-β) and PKC [ 32 – 34 ], and culminating in activation of the Na + -ATPase, the 
fi nal target of this regulatory pathway. The demonstration of at least two PKC iso-
forms in the basolateral membranes of kidney proximal tubules, and of hydroxylamine- 
resistant phosphorylation activated by a phorbol ester [ 32 ], fi rmly established that 
the second Na +  pump is a central player in the ensemble of Ang II-modulated targets 
responsible for Na +  and water homeostasis in mammals. The idea that PKC-mediated 
phosphorylation of Ser and Thr residues is pivotal in regulating the furosemide-sen-
sitive Na + -ATPase also emerged from these studies, though information about the 
primary structure of the pump was lacking at that time. 

 Interesting and apparently paradoxal results were obtained by the same group 
when the PKA pathway was analyzed. Activation of this route by cAMP, cholera 
toxin, forskolin or a stable GTP analog (GTPγS) led to a dose-dependent increase in 
Na + -ATPase activity [ 35 ], together with simultaneous hydroxylamine-resistant phos-
phorylation of bands of 100 and 200 kDa. Both effects were canceled by the specifi c 
PKA catalytic subunit inhibitor, the PKAi peptide. However, the infl uence of PKA on 
the Na + -ATPase is not as simple as it seemed: the PKC pathway was also implicated, 
ensuring a more refi ned regulatory mechanism for pump activation. When PKA is 
activated in basolateral membranes via receptors that bind Ang-(1–7) [ 36 ], in a pro-
cess that includes the participation of a G s  protein, the net result is to counteract the 
Ang II → AT 1 R → PLCβ → PKC-mediated activation [ 37 ]. The idea that PKA activa-
tion culminates in the decrease of the furosemide-sensitive Na + -ATPase turnover  pre-
viously  enhanced under physiological or pathological conditions when the Ang 
II → AT 1 R pathway is activated, and that the PKC/PKA activity ratio is central to this 
modulation, received further support from the following observations. First, in chroni-
cally undernourished rats, the reaction velocity and Na +  affi nity of the renal Na + -
ATPase are hugely increased in parallel with: (1) more Ang II-positive tubulointerstitial 
cells neighboring basolateral membranes; (2) more PKC isoforms per PKA [ 38 ] and a 
more than 100 % increase in the PKC/PKA activity ratio [ 39 ]. Second, in spontane-
ously hypertensive rats (SHR), PKC is upregulated and PKA downregulated, and 
there are opposite changes in the abundances of AT 1 R and AT 2 R [ 40 ], together with 
increased Na + -ATPase activity [ 41 ]. These results suggest that the wide family of Ser 
and Thr residues depicted in Table  6.1  are selectively phosphorylated, depending on 
the activation of different networks that begin with the Ang II receptors—even when 
the same kinase participates—as seems to be the case for PKA. Perhaps the initial 
phosphorylation of a specifi c residue (or a group of them) in a determined physiologi-
cal or pathological state selectively determines the secondary phosphorylation of oth-
ers (the “master regulator” residue hypothesis [ 42 ]). The different distributions of 
these residues in the parasite and mammalian Na + -ATPases with respect to their 
respective abundances in the C- and N-termini (Table  6.1 ) could constitute the struc-
tural basis for differences in cross kinase- mediated signaling between the two taxa. 
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 Although the focus in this chapter regarding the regulatory mechanisms of Na + -
ATPase has been on PKC and PKA, the fi eld continues to grow and further impor-
tant features emerge, especially when their potential role in the physiopathology of 
prevalent diseases is considered. More than a decade ago, Bełtowski et al. presented 
evidence that reactive oxygen species (ROS) and nitric oxide (NO) have stimulatory 
and inhibitory effects on renal Na + -ATPase [ 43 ], NADPH and GMP seeming to 
have pivotal roles. They proposed an interesting mechanism, the relevance of which 
is now clear: ROS scavenge NO, thus limiting its inhibitory effect. In other words, 
nitrosylation (by NO) and nitration (by the ONOO −  formed by the reaction between 
O 2  •−  and NO) [ 44 ] can be important regulators of ion-transporting ATPases. 

 There is emerging evidence that other kinases, fi rst messengers and receptors 
participate in regulating the Na + -ATPase. Recently, Gildea et al. [ 45 ] demonstrated 
that dopamine receptors and AT 2 R, which can form heterodimers in basolateral 
membranes, participate in cooperative inhibition of Na +  reabsorption in proximal 
tubule cells. The stimulation of AT 2 R recruitment upon activation of the dopaminergic 
pathway also decreased the Ang II-dependent activation of the extracellular- 
signal- regulated kinase (pERK1/2), which has a link to AT 1 R receptors. In this study, 
internalization of the ouabain-sensitive (Na + +K + )ATPase is the mechanism responsible 
for inhibiting transepithelial Na +  fl uxes [ 45 ], although an infl uence (direct or permis-
sive) on the ouabain-resistant furosemide-sensitive Na + -ATPase also seems possible, 
especially when the enzyme is constitutively upregulated. In proximal tubule baso-
lateral membranes isolated from chronically undernourished rats, the upregulated 
Na + -ATPase activity “in vitro” returns to normal values when potentially abnormal 
regulatory phosphorylations of Na + -ATPase are suppressed by inhibiting the mitogen-
activated protein kinase (MAPK) → pERK1/2 pathway and by adding a protein phos-
phatase [ 39 ]. Figure  6.6  depicts the proposed interactions among Ang II receptors, 
PKC, PKA, cGMP-dependent protein kinase (PKG), ERK1/2 and protein phospha-
tases (PP) in kidney tubule cells.

   Of course, the topics covered in this section regarding the mechanisms by which 
the second Na +  pump is regulated are far from complete, but they suffi ce to illustrate 
the refi ned and complex regulation of this ATPase.  

6      The Furosemide-Sensitive Na + -ATPase in Diseases 

 Altered regulation of the Na + -ATPase appears to underpin the pathophysiology of 
important diseases prevalent worldwide. Again, because of space limitations, 
we consider only a few examples of interrelated metabolic and reno-cardiovascular 
diseases involving the second Na +  pump. 

 Alterations in the ROS/NO balance that affect the renal Na + -ATPase are associ-
ated with hyperleptinemia. The specifi c upregulation of the renal Na + -ATPase but 
not the (Na + +K + )ATPase by leptin contributes signifi cantly to the Na +  retention, 
expansion of the intravascular compartment and arterial hypertension that are 
encountered in dietary-induced obesity [ 43 ,  46 ]. These early observations by 
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Bełtowski et al. demonstrated that abnormal regulation of renal Na + -ATPase is one 
of the most prominent molecular alterations in the metabolic syndrome. Interestingly, 
Vieira-Filho et al. [ 47 ] showed that an altered ROS/NO balance—in which NADPH 
oxidase again seems to play a central role—relies on constitutive hyperactivity of 
local renal RAS. They demonstrated an increased number of Ang II-positive tubu-
lointerstitium cells and early unbalanced AT 1 R/AT 2 R and PKC/PKA, which are 
likely to be involved in the genesis of hypertension in adults programmed by peri-
natal undernutrition [ 47 ]. 

 If regulatory alterations of the furosemide-sensitive renal Na + -ATPase par-
ticipate in the secondary hypertension associated with metabolic syndrome [ 43 , 
 46 ], other abnormalities that involve the RAS axis (including unbalanced sig-
naling between PKC and PKA) were apparent in a model of essential hyperten-
sion: SHR, as mentioned above [ 40 ,  41 ]. A recent study using SHR [ 48 ] also 
extended the participation of RAS (excluding Ang II) in regulating the second 
Na +  pump, implicating a potent short peptide, Ang-(3–4), synthesized in the 
basolateral membranes of proximal tubule cells by a diverse ensemble of pepti-
dases [ 49 ]. The physiological response of Na + -ATPase to Ang II is lost in SHR; 
however, the constitutively enhanced activity is inhibited by Ang-(3–4) in a 
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dose-dependent manner through a mechanism that involves an AT 2 R → PKA 
pathway after Ang-(3–4)-induced dissociation of AT 1 R/AT 2 R heterodimers 
[ 48 ], another example of differences in cross- linking among the same intracel-
lular signaling components that increase the plasticity of regulation of the sec-
ond Na +  pump. 

 Inhibition of the furosemide-sensitive Na + -ATPase in SHR by Ang-(3–4), but 
not (Na + +K + )ATPase (in normotensive or hypertensive rats) and not Na + -ATPase 
in normotensive rats [ 48 ], constitutes an example of selective regulation operat-
ing via regulatory phosphorylations of different Ser and/or Thr residues depending 
on the functional state of the pump. In this example, such specifi c regulation 
seems potentially signifi cant from a pathophysiological perspective. Inhibition 
of the SHR Na + -ATPase “in vitro” correlates with a sustained decrease in arte-
rial pressure and increased 24 h urinary excretion of Na + —with no change in 
urinary volume—after a single oral dose of Ang-(3–4) [ 48 ]. Again, Ang-(3–4) 
has no effect on these parameters in normal rats. Some of this information can 
be seen in Fig.  6.7 , which also shows that: (1) the plasma Na +  concentration is 
signifi cantly lower in SHR than in normotensive rats; (2) Ang-(3–4) has no 
effect on plasma Na +  in either animal group. From this ensemble of results, it 
can be proposed that Ang-(3–4) mobilizes “spooky” Na +  [ 50 ] accumulated in 
osmotically inactive compartments represented by negatively charged mole-
cules in skin and muscle [ 50 ,  51 ]. This hypothesis is supported by the observa-
tion that more tissue Na +  is bound to proteoglycans without water retention in 
humans with refractory arterial hypertension [ 52 ]. They also support the view 
that kidney proximal tubules have two different Na + -transporting compartments: 
one mediated by the (Na + +K + )ATPase and isosmotically coupled to transepithe-
lial transport of water; the other, hyperosmotic, mediated by the Na + -ATPase. 
This type of transport would be facilitated by a selective, osmotically silent, 
functional and structural interaction between the second Na +  pump and the 
neighboring negatively charged interstitium. A similar interaction was proposed 
for different tissues, without identifi cation of the Na +  transporter, a decade ago 
[ 53 ]. A comparably tight functional and structural interaction could help to 
explain why Na + -dependent P i  transport in  T. cruzi  is coupled to the Na + -ATPase 
and not the (Na + +K + )ATPase [ 28 ].

   The abnormalities of the regulatory Na + -ATPase signaling pathways described 
above seem to be involved in the genesis of other life-threatening diseases. The 
increased furosemide-sensitive Na + -ATPase in basolateral membranes from the 
proximal tubules of chronically undernourished rats parallels that in cardiomyo-
cytes from the same animals [ 39 ]. The administration of Losartan (an AT 1 R blocker) 
suppressed upregulation of the pump in undernourished rats but not the normal 
activity in control rats, and the PKC/PKA ratio was similarly increased in mem-
branes from kidney and heart. Inhibition of the MAPK → pERK1/2 pathway also 
restored Na + -ATPase activity to normal values without effect on the control activity 
(Fig.  6.8 ). In other words, the same altered metabolic status modifi es the second Na +  
pump in polarized and non-polarized cells, contributing in different but combined 
ways to the genesis of cardiovascular syndromes. The expansion of extracellular 
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in hypertension. ( a ) The 
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in SHR and is inhibited by 
Ang-(3–4) in a dose- 
dependent manner, 
whereas Ang-(3–4) does 
not affect the activity of 
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fl uids due to the Na + -ATPase hyperactivity described above participates in the onset 
of hypertension. Altered cardiac Na + -ATPase appears to be linked to simultaneous 
and serious electrical dysfunctions exclusively seen in the left ventricle: a longer QT 
interval in the electrocardiogram, longer action potential recorded in cardiomyo-
cytes and triggered activity detected in ventricular tissue strips [ 39 ], all of which 
indicate increased risk of cardiac arrhythmias and sudden death.

  Fig. 6.8    Up-regulated Na + -ATPase and higher PKC/PKA activity ratio in proximal tubule basolateral 
membranes from rats chronically undernourished by eating a diet (Basic Regional Diet, BRD) that 
mimics different defi cient diets worldwide. ( a  and  b ) Na + -ATPase activity in the absence ( empty 
bars ) or presence ( black bars ) of the MAPK inhibitor, PD098059. The second Na +  pump is consti-
tutively hyperactive in BRD rats; ATPase activity returns to control levels in the presence of 
PD098059. ( c  and  d ) Higher PKC/PKA activity ratio in kidney ( c ) and heart ( d ) of BRD rats. 
Reproduced with permission from Ref. [ 39 ]       
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7        Conclusions 

 The ouabain-resistant furosemide-sensitive Na + -ATPase encountered in different 
organisms from unicellular parasites to mammals participates in the control of various 
Na +  compartments and Na + -dependent processes. The Na + -ATPases from different 
organisms have highly conserved domains related to key steps in catalysis by P-type 
ATPases, whereas specifi city in function and regulation resides largely in the 
distribution within the primary sequence of Ser and Thr residues that are targets for 
kinase-mediated phosphorylations. Abnormal regulatory phosphorylations of the 
Na + -ATPase mediated by complex and interacting signaling networks are detected 
in renovascular and cardiac dysfunctions, pointing to the importance of the second 
Na +  pump in the genesis of life-threatening diseases.     
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1         Introduction 

 Various forms of ATPase have the utmost signifi cance in the understanding of major 
principles of cardiovascular physiology and molecular mechanisms of cardiovascu-
lar diseases. There is ample scope of literature dealing with this problem with new 
results obtained. This fact promises that our knowledge will be amplifi ed for the 
benefi t of our patients. However, plenty of new results always open new dilemmas 
and controversies, suggesting that we should recapitulate what we know for a fact 
and what we have recently learned. Our intention in this chapter is to summarize 
molecular, cytological, pathological, and clinical aspects of Na + /K + -ATPase and 
SERCA functions. We focus on their role in cardiomyocyte cell death and heart 
failure. We start with the principles that we have already known and provide new 
information from a cytological and pathological point of view.  

2     Na + /K + -ATPase: Structure and Function 

 Danish researcher, Jeans C. Skou was the fi rst to suggest a link between transport 
of Na +  and K +  across the plasma membrane and ATPase activity in 1950s. For the 
discovery of the Na + /K + -ATPase, Jeans C. Skou was awarded by the Nobel Prize in 
Chemistry 1997. 

2.1     Structure of Na + /K + -ATPase 

 Na + /K + -ATPase is a membrane-embedded protein complex, a hetero-oligomer 
composed of α and β subunits, in a 1:1 ratio [ 1 ,  2 ]. The large catalytic α-subunit 
(~110 kDa) contains binding sites for Na +  and K +  ions, ATP and for cardiac glyco-
side ouabain [ 1 ,  2 ]. Catalytic subunit has conserved aspartate 369  residue where ter-
minal phosphate of ATP can be attached [ 3 ,  4 ]. The α-subunit has ten transmembrane 
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domains and two large intracellular loops. The ATP binding site is located in the 
larger cytoplasmic loop [ 2 ]. Both amino and carboxyl ends of this molecule are 
located intracellularly [ 4 ]. 

 The smaller and highly glycosylated β-subunit (~35–55 kDa) acts as a chaperone 
required for proper folding and localization of Na + /K + -ATPase subunits to the 
plasma membrane [ 1 ,  2 ,  5 ]. Beta subunit is composed from one transmembrane 
segment, short cytoplasmic tail and large glycosylated extracellular segment [ 6 ,  7 ]. 
In vitro studies suggest that separation of α and β subunits results in a lack of mea-
surable enzyme activity [ 8 ]. 

2.1.1     Isoforms of α Subunit 

 Four isoforms of α-subunit have been described (α1, α2, α3, and α4) [ 1 ,  9 ,  10 ]. 
While the α1-isoform is expressed ubiquitously and is a housekeeping form, α2 is 
expressed largely in the brain, muscle, adult heart, and number of other tissues [ 2 ,  11 ]. 
The α3-isoform is found in ovaries, neurons, fetal and adult hearts, and white blood 
cells [ 1 ,  11 ,  12 ]. The α4-isoform is localized in the testis, and this isoform is specifi -
cally synthesized at the spermatogonia stage. The main role of α4-isoform is in the 
sperm motility [ 13 ]. Various α isoforms are tissue-specifi c, and they share a high 
degree of sequence identity (ca. ~85 % identity) [ 1 ,  12 ,  14 ]. Different α subunit 
isoforms could be localized in different regions of the same cell [ 15 ] and are capable 
of carrying out specifi c functions.  

2.1.2     Isoforms of β Subunit 

 There are three isoforms of the β-subunit (β1, β2, and β3) [ 1 ,  2 ]. Beta1 isoform is, 
like α1, ubiquitously expressed suggesting a housekeeping role for the α1-β1 Na + /K + -
ATPase in most cells [ 16 ]. Beta 2 isoform is expressed mainly in the brain and muscle 
[ 17 ], while the β3 isoform is predominantly expressed in the skeletal muscle, brain, 
lung, testis, and liver [ 16 ,  18 ]. In human heart, α1, α2, and α3 are expressed together 
with β1 and very low levels of β2 in a region-specifi c manner [ 19 ,  20 ]. Alpha and β 
subunit isoforms of Na + /K + -ATPase have been encoded by different genes. They are 
synthesized independently of each other in the endoplasmic reticulum and assembly 
very soon after the synthesis [ 21 – 24 ]. Isoforms combine to form a number of Na + /K + -
ATPase isoenzymes expressed in a tissue- and cell-specifi c manner [ 24 ].  

2.1.3     The Role of FXYD Proteins 

 FXYD proteins (also referred to as γ-subunits) have functions in stabilization or 
attenuation of Na + /K + -ATPase [ 25 ] and form an auxiliary subunit of Na + /K + -ATPase. 
The FXYD proteins are a family of seven small regulatory proteins (FXYD1–7). 
They are transmembrane proteins and have conserved FXYD amino acid motif 
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located in their extracellular domain [ 25 ,  26 ]. N-terminal part of FXYD is extracellular, 
while C-terminus is cytoplasmic [ 25 ]. FXYD proteins are expressed in a tissue spe-
cifi c fashion. FXYD1 (phospholemman) is expressed in the heart and the skeletal 
muscle [ 27 – 29 ].   

2.2     Functions of Na + /K + -ATPase 

 Na + /K + -ATPase is universally expressed in all animal cells. The primary function of 
the Na + /K + -ATPase is generation and maintenance of electrochemical Na +  and K +  
gradients across the cell membrane. The Na + /K + -ATPase is responsible for the low 
intracellular Na +  and high intracellular K +  concentrations required for normal cel-
lular functions. Activity of this enzyme occurs in several steps and is dependent on 
ATP hydrolysis [ 1 ,  2 ]. Following binding of ATP to the enzyme, three Na +  ions from 
the cytoplasm associate with the active site of Na + /K + -ATPase. Phosphorylation of 
the Na + /K + -ATPase (at aspartate residue) results in its conformational change. As a 
consequence of this change, three bound Na +  ions are released out of the cell. 
Thereafter, two extracellular K +  ions bind along with dephosphorylation process 
and are transported into the cell [ 1 ,  2 ,  30 ]. 

 The Na + /K + -ATPase is the specifi c target for the action of ouabain, digitalis and 
endogenous cardiac glycosides. They regulate cardiac contractility by indirect way 
(positive inotropy) [ 31 ,  32 ]. By binding to the extracellular part of Na + /K + -ATPase, 
cardiac glycosides inhibit its activity [ 2 ,  32 ] and increase Na +  concentration. These 
actions precede increased intracellular Ca 2+  concentration [ 31 ,  32 ] which, on the other 
hand, enhances heart contraction [ 31 ,  33 ]. This mechanism is the basis for the usage 
of cardiac glycosides (digoxin) in the therapy of congestive heart failure. Number of 
Na + /K + -ATPase molecules decreases in heart failure, but also in some other disorders 
as for example, obesity [ 34 ,  35 ]. Cardiomyocytes of patients with heart failure are more 
sensitive to effects of cardiac glycosides [ 34 ,  36 – 39 ]. Rathore et al. [ 40 ] reported that 
higher serum digoxin concentrations are associated with increased mortality in patients 
diagnosed with heart failure. That is why, as explained in further discussion, cardiac 
glycosides are known for their narrow therapeutic window.  

2.3     Regulation of Na + /K + -ATPase Function in Physiological 
and Pathophysiological Conditions 

 Na + /K + -ATPase activity can be regulated by hormones and environmental factors 
through: gene expression, traffi cking of the newly synthesized enzyme subunits, and 
phosphorylation. The fi rst mechanism affects de novo Na + /K + -ATPase synthesis or 
degradation through regulation of gene transcription [ 1 ,  41 – 45 ]. Second critically 
important step in regulatory process is the synthesis of subunits of Na + /K + -ATPase and 
their translocation to the plasma membrane from intracellular stores [ 22 ,  46 ,  47 ]. 
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 Regulation of Na + /K + -ATPase activity can be achieved as well through direct 
effects on the kinetic behavior of the enzyme located in the membrane. This is a 
short-term regulation, accomplished within minutes to hours. It is realized via pro-
tein kinase A (PKA), protein kinase C (PKC), protein kinase B (PKB), or cGMP- 
dependent protein kinase (PKG) phosphorylation [ 1 ,  39 ,  48 – 50 ]. Activation of PKA 
and PKC leads to modulation of Na + /K + -ATPase activity in a tissue- and species- 
specifi c manner. PKA of the cardiomyocytes is one of the principle molecules 
involved in sympathetic innervations. After β adrenergic receptors activation, signal 
is transduced through cardiac-specifi c isoform of phosphoinositide 3-kinase (PI-3 
kinase), p100γ [ 49 ]. PKA is associated with its intracellular domain. It breaks down 
cAMP molecule and controls the activity of Na + /K + -ATPase through phospholem-
man phosphorylation. However, regulation of Na + /K + -ATPase through this third 
mechanism is an issue of intensive research with, currently, very controversial 
results, conclusions and opinions [ 38 ,  39 ,  50 ,  51 ]. 

 Phospholemman (FXYD1 protein) is regulated through activity of PKA and PKC. 
Dynamic interaction between protein kinases, phospholemman, and Na + /K + -ATPase 
controls the intracellular concentration of Na + . Unphosphorylated phospholemman 
inhibits Na + /K + -ATPase, while phosphorylated phospholemman relieves this inhibi-
tion. It is an immediate response, activated by sympathetic innervations, the fact fully 
coherent with previously mentioned detail that PKA is involved in short-term regula-
tion. Hyperphosphorylation of phospholemman through PKA activity enhances the 
activity of Na + /K + -ATPase and prevents Na +  overload during normal, physiological 
response to increased heart rate, as for example in stress [ 52 ]. On the other hand, it 
was shown that blockade of β adrenergic receptor has benefi cial effect for patients, 
owing to reduction in PKA activity. One of the supposed regulatory mechanisms is 
almost completely opposite to previously described one. Namely, it is suggested, by 
using animal models and isolated cardiomyocytes that Na + /K + -ATPase can be regu-
lated by glutathionylation. It is a form of a reversible oxidative modifi cation in which 
the glutathione (GSH) forms a disulfi de bond with β1 subunit of Na + /K + -ATPase and 
subsequently inhibits it [ 53 ]. This is caused by PKA activation and “mediated by the 
activation of PKC and nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase in a downstream pathway shared with angiotensin II (Ang II)” [ 53 ]. Blockage 
of β adrenergic receptors, decreases the activity of PKA in this model, reduces glu-
tathionylation and stimulates the activity of Na + /K + -ATPase [ 53 ].  

2.4     Na + /K + -ATPase and Intracellular Signaling 

 Although Na + /K + -ATPase is generally considered a non-receptor membrane molecule, 
it can serve and act in certain pathways as a signal transducer [ 54 ]. Lower doses of 
ouabain (non-inhibitory doses) after binding to Na + /K + -ATPase trigger signaling 
that involves inositol 1,4,5-trisphosphate receptor (IP3R) [ 54 – 56 ]. Activation of 
IP3R results in increase of intracellular Ca 2+  [ 54 ,  55 ] and activates the pleiotropic 
transcriptional factor nuclear factor kappa B (NF-κB) [ 56 ]. NF-κB has dual 
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potential effect on cardiomyocytes. As a part of TNF-α pathway, it mediates 
detrimental effects of TNF-α on cardiomyocytes. On the other hand, data on phar-
macologic inhibition of NF-κB indicate that it could be involved in cardioprotective 
mechanisms during ischemic preconditioning of the myocardium [ 57 ]. Another 
common intracellular pathway activated by ouabain-related inhibition of Na + /K + -
ATPase is PI3K. PI3K phosphorylates membrane phospholipid and generates the Akt 
kinase (protein kinase B). PI3K/Akt signaling pathway has antiapoptotic activity in 
cardiomyocytes. However, the net effect of proapoptotic and antiapoptotic properties 
of ouabain remains to be elucidated. 

 From the pathological and clinical point of view, control of Na + /K + -ATPase is of 
essential importance for the therapy of heart failure, one of the leading causes of 
death in modern world. Inhibition of Na + /K + -ATPase exerts the positive inotropic 
effect, but at the same time is associated with known mechanisms of cardiomyo-
cytes cell death, which is the major concern in the application of cardiac glycosides. 
New studies offer promising and exciting results. It was shown that inhibition of 
Na + /K + -ATPase could be achieved simultaneously with the activation of another 
ATPase important for cardiomyocytes preservation and contractility, SERCA (iso-
form SERCA2a) [ 58 ]; SERCA structure, function, and role of Na + /K + -ATPase and 
SERCA in heart failure are explained in the following sections.   

3     SERCA Proteins: Structure, Isoforms, and Function 

3.1     Structure of SERCA 

 Sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) is a 110 kDa integral membrane 
protein and belongs to P-type family of ion pumps, which also includes plasma mem-
brane Ca 2+ -ATPase (PMCA), Na + /K + -ATPase, H + -ATPase, and K + -ATPase [ 59 ,  60 ]. It 
is the only active transporting pump located on the membranes of the sarcoplasmic 
reticulum (SR) [ 61 ]. In vertebrates there are three main different forms of SERCA 
pumps (SERCA1, 2, and 3), encoded by ATP2A1, ATP2A2, and ATP2A3 genes, 
located on three different chromosomes (chromosome 16, 12, and 17). These genes 
produce more than ten isoforms by alternative splicing [ 60 ,  62 – 64 ]. These isoforms 
are highly conserved in structure, with 75 % or more homology between them [ 60 ]. 
Besides its role in coding the SERCA2 protein, the ATP2A2 gene is associated with 
certain conditions such as Darier’s disease and Acrokeratosis verruciformis [ 65 ].  

3.2     Isoforms of SERCA 

 SERCA1 has two main isoforms, SERCA1a and 1b, expressed in adult fast-twitch 
skeletal muscles (1a) and fetal tissues (1b). The main form of SERCA in cardiac 
muscle cells is the SERCA2 which has four isoforms (a, b, c, and d) [ 62 ]. SERCA2a, 
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also known as “muscle specifi c isoform”, is expressed in cardiac muscle cells, slow- 
twitch skeletal muscles and smooth muscle cells. SERCA2b is a ubiquitous form 
present in muscle, but also in non-muscle cells [ 60 ]. The existence of SERCA2c 
protein was demonstrated in the heart [ 66 ] and its mRNA was also found in hema-
topoietic cells [ 67 ]. In humans, SERCA3 includes fi ve isoforms (SERCA3b, 3c, 3d, 
3e, and 3f) in addition to the species-unspecifi c SERCA3a, making a total of six 
isoforms. These isoforms are mostly expressed in non-muscle cells [ 60 ,  62 ], but 
recent evidence suggest cardiac expression of certain isoforms, such as SERCA3d 
and SERCA 3f, which are only present in humans [ 62 ,  68 ]. In summary, in human 
cardiomyocytes six isoforms have been detected so far: SERCA2a, SERCA2b, and 
SERCA2c, as well as SERCA3a, SERCA3d, and SERCA3f with specifi c intracel-
lular localization [ 61 ].  

3.3     Functions of SERCA 

 Contraction is the main characteristic of muscle cells and it is mediated by calcium 
ions. The main intracellular depot of Ca 2+  is the sarcoplasmic reticulum (SR), a mem-
branous network present in muscle cells, able to sequester and store millimolar 
amounts of calcium [ 60 ]. By releasing Ca 2+  from its cisternae into the cytosol, it initi-
ates the process of muscle cell contraction. Most of the Ca 2+  responsible for muscle 
contraction comes from the SR and it is released during cardiac systole by the process 
of Ca 2+  induced Ca 2+  release, where an increase of cytoplasmic Ca 2+  concentration 
produced by the L-type Ca 2+  current is the main trigger for Ca 2+  from SR [ 69 ]. The 
ryanodine receptor (RyR) located on SR, serves as a Ca 2+  release channel through 
which Ca 2+  enters the cytosol. A key factor that controls the level of SR Ca 2+  levels is 
the activity of SERCA. By reuptaking the Ca 2+  back to SR, it lowers the cytosolic 
calcium levels and replenishes the Ca 2+  stores in SR, thus enabling the relaxation and 
new contraction of muscle cells in a repeated contraction-relaxation cycles [ 60 ]. 
SERCA and the role of Ca 2+  ions in the muscle contraction was fi rstly described 
almost simultaneously by two different laboratories in two different articles: that of 
Ebashi and Lipmann in 1962 and Hasselbach and Makinose in 1961 [ 70 ,  71 ].  

3.4     Regulation of SERCA Function in Physiological 
and Pathophysiological Conditions 

 The activity of SERCA pumps is regulated by certain proteins such as sarcolipin 
and phospholamban. Sarcolipin, which is mainly localized in the atrium, inhibits 
the expression of SERCA1a and SERCA2b, while phospholamban suppresses 
the function of SERCA protein and is highly expressed in ventricular muscle. 
Thus, these two intrinsic membrane proteins expressed in the SR, lower the SERCA 
affi nity for Ca 2+  [ 64 ,  72 ]. Phospholamban is in dynamic interaction to SERCA2a. 
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It is a 52 amino acid protein of the sarcoplasmic reticulum and exists in monomeric and 
pentameric form. The monomeric form is a key regulator of the SERCA activity. 

 The SERCA pumps represent key elements that are necessary for the normal 
contractility of the human myocardium. Contractile dysfunction which is present 
in certain conditions such as cardiac hypertrophy and heart failure can be attrib-
uted to the reductions in SERCA activity [ 73 ]. Reduced expression of SERCA2a 
(predominant cardiac isoform) contributes to the abnormal contractility of the 
myocardium and is present in several cardiac diseases including ischemic heart 
disease and certain forms of cardiomyopathies, which tend to progress to heart 
failure [ 72 ]. Patients with end stage heart failure of different etiologies show 
decreased levels of SERCA2a mRNA and SERCA2a protein, but certain studies 
reported unchanged levels of SERCA, while others only reported alterations in 
phospholamban status. 

 The important role of SERCA pumps has been studied extensively in numerous 
studies on transgenic animals that overexpress SERCA or are defi cient in SERCA 
pump isoforms in cardiomyocytes [ 60 ]. Overexpression of the predominant cardiac 
SERCA isoform (SERCA2a) in experimental transgenic animals resulted in 
increased maximal rates of contraction and relaxation of the heart, without any 
structural or functional abnormalities and with a normal life span.   

4     Cardiomyocytes Ultrastructure and Localization 
of ATP-ases 

 The further discussion on ATPases and their functional, clinical, and pathological sig-
nifi cance should be preceded by brief resume of cardiomyocytes structure. 
Cardiomyocytes are principal, contractile cells of the myocardium and working force 
of the cardiac pump. On a light microscopy level, cardiomyocytes resemble striated 
muscle with alteration of dark (A) and light (I) bands. Cardiomyocytes consist of even 
smaller subunits called myofi brils which consist, further, of series of basic structural, 
organizational and functional units—sarcomeres (Fig.  7.1 ). Each sarcomere contains 
thick myofi laments made of myosin II in the central region, and thin F-actin myofi la-
ments associated with Z lines, at the end of sarcomeres (Fig.  7.1 ). Besides F-actin, thin 
fi laments contain troponin and tropomyosin. Organization of thick and thin fi laments 
within sarcomeres and association of sarcomeres into myofi brils form a morphological 
pattern of cardiac muscle as a cross-striated muscle. A bands are formed of myosin fi la-
ments with portions of actin fi laments in-between, while I bands contain actin myofi la-
ments. Running through the midlines of I bands are Z lines. The position of myofi laments 
is controlled and preserved during each myocardial cycle by a network of cytoskeletal 
and cytoskeleton-associated proteins. These proteins form supportive mesh that 
protects sarcomeres from mechanical stress.

   Accessory proteins, components of this network are titin, nebulin, α actinin, 
myomesin, desmin, αB-kristalin, plectin, dystrophin, tropomodulin, and ankyrin. 
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Desmin is an intermediate fi lament that forms lattice surrounding the Z lines of 
sarcomeres. It is linked to Z lines via plectin and stabilizes myofi brils and anchors 
them to sarcolemma. Ankyrin, αB-kristalin, dystrophin, dystroglycan complex, and 
sarcoglycan complex form the attachment area of actin fi laments to sarcolemma and 
laminin of the external (basal) lamina at the specifi c structural unit called costamere 
[ 74 ]. Association of costameric proteins with Na + /K + -ATPase is important for sur-
vival of cardiomyocytes as explained in following sections. 

 Myofi brils are surrounded with cisternae of smooth endoplasmic reticulum—
sarcoplasmic reticulum. Sarcoplasmic reticulum is a network of longitudinal and 
transversal cisternae. Longitudinal cisternae parallel myofi brils, while transversally 
oriented cisternae (terminal cisternae) are in a form of membranous sacs in close 
proximity and laterally to T tubules. T tubules are invaginations of the plasma mem-
brane—sarcolemma. Association of terminal cisternae and T tubules form diads. 
Diads are located at the level of Z lines. 

 Cardiomyocytes are interconnected with intercalated disks, junctional com-
plexes that consist of fasciae adherentes, desmosomes, and gap junctions. 
Intercalated disks are located at the level of Z lines. Z lines consist of α-actinin 
which anchors actin to Z lines. Z lines also contain desmin, nebulin, titin, and plec-
tin. Sarcoglycan, dystroglycan, and dystrophin are also components of intercalated 
disks. For more details on cardiomyocytes structure, readers are referred to excellent 
literature [ 75 – 81 ]. 

  Fig. 7.1    Structure of cardiomyocytes (Transmission Electron Microscopy (TEM); original mag-
nifi cation 3500×, bar = 10 μm).  Dark bands —A bands, contain myosin and actin (A);  light bands —
I bands with actin myofi laments (I); Z lines ( black arrowheads ); H band and M line— white 
arrowhead  (H band is a space between ends of actin fi laments inserted in between myosin fi la-
ments and it contains creatine kinase; M line contains myomesin that links myosin fi laments);  IC  
intercalated disks (Courtesy of Aleksandar Djordjevic, Department of Chemistry, Faculty of 
Sciences, University of Novi Sad and NanoBiomedicine team)       
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4.1     Localization of Na + /K + -ATPase and SERCA 

 Na + /K + -ATPase is a transmembrane protein, and hence its primary localization 
is sarcolemma (Fig.  7.2 ). However, the distribution of Na + /K + -pump isoforms in 
cardiomyocytes is not equal: α2- and α3-subunits are located mainly in T tubules 
(in close proximity to sarcoplasmic reticulum), while α1-subunits are more uniformly 
distributed throughout the sarcolemma [ 76 ,  77 ]. Alpha1, α2 and β1 subunit of 
Na + /K + -ATPase are present at the level of intercalated disks [ 76 ,  78 ]. In muscle cells, 
SERCA pumps are localized in the SR (SERCA1, SERCA2a). Immunohistochemical 
studies on other cells showed that SERCA2 and SERCA3 are mostly localized 
inside the network of endoplasmic reticulum, but also in the outer membrane of the 
nuclear envelope [ 79 ]. Additional and more detailed studies on human cardiomyo-
cytes showed that SERCA2a and SERCA2b have a uniform pattern of distribution 
in the sarcoplasmic reticulum, although certain differences between them still exist. 
For example, SERCA2a is in the regions located close to the T-tubules and to 
longitudinal sarcoplasmic reticulum, while SERCA2b appears to be mostly local-
ized in the regions close to T-tubules only. SERCA2c isoform is in close proximity 
to the sarcolemma and in intercalated disks, as well as SERCA3a. SERCA3d and 
SERCA3f proteins are located in perinuclear and subplasmalemmal regions of 
human cardiomyocytes [ 62 ].

5         ATP-ases and Mechanisms of Cardiomyocyte Cell Death 

 The insuffi ciency of membrane ionic transport systems is associated with the 
increased rate of cell death. The fi rst reason for the Na + /K + -ATPase and SERCA 
insuffi ciency is the lack of ATP and derangement of the aerobic respiration or 

  Fig. 7.2    Na + /K + -ATPase 
in cardiomyocytes of 
interventricular septum 
(immunohistochemical 
staining for Na + /K + -
ATPase, original 
magnifi cation 400×, 
bar = 100 μm)       
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mitochondrial oxidative phosphorylation. The most frequent cause of cardiomyocytes 
injury due to a lack aerobic metabolism and ATP defi ciency is ischemic heart 
disease with its main entities: angina pectoris, acute myocardial infarction, chronic 
ischemic heart disease and sudden cardiac death. Disruption of the oxidative phos-
phorylation itself provokes series of mutually connected intracellular events leading 
to disturbance of other three processes vital for the preservation of the cell, namely: 
protein synthesis, cell membrane integrity and genetic material preservation. 
The oxidative phosphorylation blockage with the decreased ATP reserves and 
insuffi ciency of Na + /K + -ATPase leads to changes in the concentration gradient of 
Na +  and K +  ions. There is an effl ux of K +  ions, and infl ux of Na +  ions. Since water 
isoosmotically follows potassium, intracellular edema and hydropic swelling are 
progredient. 

 These changes are reversible up to a certain point. Hydropic swelling of the cell 
is a reversible change [ 80 ]. Dilatation of cisternae of sarcoplasmic reticulum and 
mitochondria due to lack of ionic and osmotic disbalance are main morphological 
characteristic of reversible injury and illustrate the fact that the disruption of the 
structural integrity and infl ux of water is not an exclusive characteristic of the 
plasma membrane, but membranes of organelles are affected as well, hence the dila-
tation of sarcoplasmic reticulum and mitochondria. 

 Reduced cellular respiration is associated with the decrease of intracellular ATP, 
but also with the increase of AMP and the activation of anaerobic glycolysis and 
enzymes phosphofructokinase and phosphorylase. Lactic acid, the side product of 
this metabolic pathway, is formed. A presence of lactic acid leads to intracellular 
acidosis. Low pH values interfere with the normal functioning of intracellular 
enzymes essential for the synthesis of structural proteins and phospholipids, which 
ultimately leads to further disruption of cell membranes and membranes of the 
organelles. 

 The control of Ca 2+  ions infl ux is affected by disruption of membranes and energy 
depletion. Namely, the Ca 2+  concentrations inside cardiomyocytes cytoplasm are 
regulated at very persistent level of 30–100 nM during the diastole. This is achieved 
by the activity of sarcolemmal Ca 2+ -ATP-ase and Na + /Ca 2+  exchanger as well as the 
activity of SERCA and Ca 2+  buffering molecules [ 81 ,  82 ]. Decreased amount of ATP 
is followed by insuffi ciency of the Ca 2+ –Mg 2+ -ATP-ase and sarcolemmal Na + /Ca 2+  
exchanger (NCX). 

 Namely, metabolic acidosis initiates Na + /H +  exchange also, with transport of H +  
out of the cell. H +  is exchanged for Na + , transported into the cell [ 80 ]. High concen-
tration of sodium activates NCX, contributing to increase in intracellular Ca 2+ . 
Calcium ions are also released from sarcoplasmic reticulum. We have already 
described this process in the section on SERCA structure and function. Namely, the 
ryanodine receptor (RyR) located on SR, serves as a Ca 2+  release channel through 
which Ca 2+  enters the cytosol. 

 Recently, a new specifi c form of transient intracytoplasmic infl ux of Ca 2+  was 
described, called Ca 2+  sparks. Ca 2+  sparks occur when RyR opens spontaneously 
and release a small amount of Ca 2+  locally [ 82 ,  83 ]. Ca 2+  sparks are present in both 
systole and diastole. During diastole Ca 2+  sparks are independent from Ca 2+  infl ux 
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through sarcolemma associated molecules [ 82 ]. During excitation-contraction 
coupling and systole, openings of L-type Ca 2+  channel induces release of Ca 2+  into 
cytosol which resemble thousands of Ca 2+  sparks triggered by this process [ 82 ]. 

 Insuffi ciency of Na + /K + -ATPase and NCX provoke ample and spontaneous 
diastolic Ca 2+  sparks and cause arrhythmias and sudden cardiac death [ 84 ]. On the 
other hand, control of calcium ions through SERCA mechanism and their transport 
back to lumens of the SR cisternae is insuffi cient due to the lack of ATP. 

 Increase of the free cytosolic calcium ions activate enzymes leaking through the 
damaged organelles membranes. Activated phospholipases (phospholipase A2) and 
proteases further damage the membrane and cytoskeleton. Costameric ankyrin dis-
sociates from its attachment [ 84 ] with severe disturbance of cytoskeleton and 
degeneration of myofi brils. At the same time, α1 and α2 subunits of Na + /K + -ATPase 
are detached from cytoskeleton, namely ankyrin-B. These events are directly 
 provoked by infl ux of Ca 2+  and activation of calpain in the setting of complex 
intracellular changes and metabolic acidosis [ 85 – 87 ] and are proved to augment 
Na + /K + -ATPase insuffi ciency. 

 Infl ux of calcium ions, also, leads to irregular and dissociated contraction of the 
cardiomyocytes with hypercontraction of sarcomeres and contraction band necrosis 
(Fig.  7.3 ). This phenomenon called the calcium paradox is a consequence of uncon-
trolled infl ux of calcium ions into energy-depleted cardiomyocytes. It is associated 
with the ischemic damage of the cell. That is why it could be found at infarction area 
and at the periphery of infarcted areas where it is a part of the ischemia-reperfusion 
sequence [ 85 – 88 ].

   Nevertheless, it is not unique for the ischemic damage, but other forms of 
injury agents provoke it too by mechanisms similar to aforementioned mecha-
nisms. It is also observed in the donors’ hearts [ 89 ]. It is observed in damages 
activated through ROS generation, for example lipid peroxidation associated with 
doxorubicin application [ 90 ]. 

 In summary, defects in oxidative phosphorylation and ATP deprivation induce 
complex intracellular alterations with ionic and osmotic disbalance, hydropic 

  Fig. 7.3    Structure of 
cardiomyocytes 
(Transmission Electron 
Microscopy (TEM); 
original magnifi cation 
5600×, bar = 5 μm). 
Hypercontraction of 
sarcomeres (Courtesy of 
Aleksandar Djordjevic, 
Department of Chemistry, 
Faculty of Sciences, 
University of Novi Sad and 
NanoBiomedicine team)       
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swelling of the cell, and dissociated contraction. Balances of sodium, potassium and 
calcium ions are interconnected and lead to a same result. 

 Such observations are recently confi rmed in a sophisticated model of a knock-in 
mouse in which the phospholemman residues phosphorylated by PKC and PKA have 
been mutated with reduction of Na + /K + -ATPase. This exacerbated Na +  overload and 
resulted in profound contractile dysfunction [ 52 ]. 

 Disruption of lysosome membranes leads to leakage of lysosomal enzymes and 
their activation in the conditions of low intracellular pH and results in tissue digestion 
and necrosis. 

 Mitochondrial damage leads to further reduction or blockage of the oxidative 
phosphorylation, switch from aerobic into anaerobic metabolism and ceased syn-
thesis of phospholipids, which subsequently affl icts integrity of all membranes. 
During ischemia there is an increase of reactive oxygen species (ROS). They cause 
lipid peroxidation of cardiolipin and damage the electronic transport chain, harming 
further oxidative phosphorylation. 

 During the mitochondrial injury, cytochrome c is released from the disrupted 
inner membrane of mitochondria, through mitochondrial permeability transition 
pores, which resembles potential for the activation of the inner apoptotic pathway. 
Endonucleases are also activated by uncontrolled calcium ions infl ux during the cell 
injury. In concordance with this observation is the fact, that all these changes are 
followed with the translocation of annexin A5 to the sarcolemma [ 91 ] and activation 
of caspases 3 and 8 [ 80 ,  92 ] which is consistent with apoptotic cell death. 
Mitochondrial injury has a potential to activate autophagy [ 93 ]. Regardless of a 
specifi c form of cell death, all these changes are followed by nuclear degeneration: 
karyolysis, karyopiknosis, and karyorrhexis, indicating irreversible changes. These 
changes are observed in endothelial cells as well, so the myocardial tissue is 
deprived of oxygen and glycose with progression of defects and absence of protec-
tive mechanisms. Once started, cellular injury is obviously a vicious circle that 
could hardly be stopped. After this summary, the fi rst question is what type of cell 
death is actually provoked with this sequence of processes? 

 According to contemporary opinions on cardiac muscle cell death [ 89 ,  90 ,  94 ], 
two concurrent mechanisms of myocardial cell death persist in different models: 
apoptosis and necrosis. However, considering the presented mechanism of cellular 
injury, it is clear that each cellular damage has the potential for both necrosis and 
apoptosis, and intermediate forms of cell death could also be expected. 

 There are at least two more aspects that deserve to be mentioned. Reduction of the 
content of Na + /K + -ATPase itself is proved to have similar effect as ATP depletion. 
Decrease in synthesis, expression of mRNA, quantity or activity of Na + /K + -ATPase 
or its subunits is observed in cardiovascular diseases including heart failure, various 
forms of cardiomyopathies, hypertension, hypertrophy or obesity. Nevertheless, in 
the analysis of this particular question, we should always keep in mind that the 
decrease may be primary, but also a consequence of serial changes in the synthetic 
potential of the already injured cell, where the injury is provoked by hypoxia, 
ischemia, volume- or pressure-overload, reactive oxygen species (ROS), or complex 
genetic disorders. 
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 Reduction of α1 subunit in an animal model of hypertension induced increased rate 
of myocardial cell death. However, the number of cardiomyocytes was higher. It was 
confi rmed that although the reduction of α1 subunit induced increase in cell death, it 
stimulates expression of proliferative marker Ki67 in cardiomyocytes as well as 
increase in number of c-kit positive progenitor cells [ 95 ]. High glucose level is associ-
ated with reduced Na + /K + -ATPase activity and increased proapoptotic machinery: 
raised caspase-3 activity and Bax, as well as down-regulated Bcl-2 expression [ 96 ]. 
On the opposite, insulin has a protective effect and prevents apoptosis of cardiomyo-
cytes as confi rmed in the setting of digoxin treated heart failure [ 97 ]. 

 Resveratrol, active principle of grape and red wine, has a cardioprotective effect 
in the model of ischemia-reperfusion injury. It increases the activity of both Na + /
K + -ATPase and Ca 2+ -ATPase, increasing at the same time viability of cardiomyo-
cytes. It reduces apoptotic cell death by increase in Bcl2 and decrease of Bax and 
caspase-3, reduces intracellular calcium and balance the activity of reactive oxygen 
species (ROS) [ 98 ]. Stable expression of Na + /K + -ATPase is essential for the survival 
of cardiomyocytes after ischemia-reperfusion injury in ouabain-preconditioning 
model [ 99 ]. 

 Third question is relation of ouabain and ouabain-like cardiac glycosides, includ-
ing digoxin, to cell death phenomenon. Cardiac glycosides have been used for the 
treatment of heart failure because of their capabilities of inhibiting Na + /K +  ATPase. 
This inhibition raises intracellular Na +  and attenuates Ca 2+  extrusion via the Na + /
Ca 2+  exchanger, causing intracellular Ca 2+  elevation and empowering contractile 
strength of the heart [ 100 ]. The question is if the therapeutic doses of ouabain and 
digoxin induce and increase cardiomyocyte cell death by inhibition of Na + /K + -
ATPase in addition to positive inotropic effect? 

 It was shown that ouabain induces increased frequency of cardiomyocyte cell 
death by both apoptosis and necrosis, and reduced cell viability. It simultaneously 
activates antiapoptotic mechanism of PI3K/Akt, which is, however, insuffi cient to 
block effects of proapoptotic ouabain activity [ 101 ]. In addition to positive inotropic 
effect and elevated oxygen consumption, inhibition of Na + /K + -ATPase by glyco-
sides, impair mitochondrial energetics and cause oxidative stress especially in con-
ditions of increased workload. 

 The studies on guinea pig cardiomyocytes showed that elevated intracellular Na +  
induced by glycosides treatment caused mitochondrial Ca 2+  defi ciency by activating 
the mitochondrial Na + /Ca 2+  exchanger, the major mitochondrial Ca 2+  effl ux path-
way. Furthermore, it is associated with signifi cantly decreased NADH level and 
increased reactive oxygen species (ROS) accumulation [ 102 – 105 ]. 

 Li et al. proposed that Na + /K + -ATPase inhibition such as by cardiac glycosides 
causes mitochondrial oxidative stress and increased ROS production through two 
separate pathways. In fi rst way, Na + /K + -ATPase inhibition blunt mitochondrial Ca 2+  
accumulation, that reduces NADH production and therefore ROS removal. And in 
second way, Na + /K + -ATPase inhibition increasing intracellular Ca 2+  and ATP 
hydrolysis, which produces a large amount of ADP that stimulates mitochondrial 
respiration and therefore ROS production [ 100 ]. 

 The interrelation of described processes causes that many different sources of 
cell injury produces similar changes in myocardial tissue. Intracellular edema, 
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swelling, vacuolization and hypercontraction of sarcomeres are common signs of 
injury in ischemic heart disease. They are present in reversible form during extra-
corporeal long-term preservation of donors’ hearts in the procedure of heart trans-
plantation [ 94 ]. Lipid peroxidation of membranes in doxorubicin toxicity model has 
the same effect [ 90 ]. Damage of intracellular membranes by advanced glycation 
end products and ROS, due to NADH oxidase activity, in diabetes has also the same 
effect. As resumed in following section, hypertrophy and heart failure of different 
origin include the same sequence of processes.  

6     Molecular Mechanisms of Heart Failure 

 Heart failure (HF) remains a major cause of morbidity and mortality in the developed 
world. In the population under the age of 65, HF prevalence approaches 1 % [ 106 ]. 
Over the last decade, important progress has been made in understanding of various 
intracellular and molecular mechanisms of HF. Heart failure (congestive heart 
failure—CHF) is a complex, chronic and progressive disorder, although acute forms 
of heart failure persist in association with sudden volume overload, acute myocardial 
infarction, valvular dysfunction or compromised ventricular fi lling and retention of 
blood in peripheral circulation. It is a common endpoint of several pathophysiologi-
cal pathways included in different forms of cardiomyopathies, ischemic heart 
disease, hypertension or valvular heart disease. 

 Heart failure includes forward and backward component, systolic and diastolic 
insuffi ciency. Systolic dysfunction comes from reduced myocardial contractility most 
frequently due to ischemic heart disease, hypertension or dilated  cardiomyopathy. 
Diastolic dysfunction is caused by inability of ventricles to relax and accept suffi cient 
volume of blood during diastole in conditions like hypertrophy of left ventricle, 
myocardial fi brosis or constrictive pericarditis. The end result of systolic and diastolic 
dysfunction is reduced cardiac output, forward component of heart failure, as well as 
retention of blood in venous circulation—backward component. 

 Heart failure due to conditions with pressure or volume overload is preceded by 
hypertrophy. Hypertrophy is a compensatory mechanism aimed to enhance contrac-
tile strength of the myocardium. On a molecular level, hypertrophy is achieved 
trough intensive synthesis of new myofi laments and division of mitochondria, 
as well as accumulation of other organelles. Extensive synthesis of myofi laments’ 
proteins is followed with their intensive association into new sarcomeres, and hence 
the size of cardiomyocytes is raised. Two forms of hypertrophy exist. Concentric 
hypertrophy develops with pressure overload (systemic hypertension, chronic pul-
monary hypertension or valvular disease, i.e., aortic stenosis). In this form of hyper-
trophy, new sarcomeres are arranged parallel, in a fashion that augments transversal 
cardiomyocyte diameter [ 107 ]. 

 Volume overload stimulates another form of hypertrophy with deposition of 
newly synthesized sarcomeres along the longitudinal axis of cardiomyocytes and 
dilatation of ventricles. The gene expression in hypertrophy is changed towards 
activation of c-myc, c-fos, jun, and EGR1 as well as towards the activations of 
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fetal programs. For example, β-myosin heavy chains are synthesized instead adult 
forms of α-myosin heavy chains [ 57 ]. Atrial natriuretic peptide (factor) (ANP) is 
synthesized in ventricular cardiomyocytes in addition to physiological synthesis 
in atrial myoendocrine cells. These changes have compensatory effect up to a 
certain point. For example, Ca 2+ /calmodulin-dependent protein phosphatase 
(calcineurin) is shown to have a role in inducing hypertrophy. It is activated to 
dephosphorylate the transcription factor NF-A3, enabling its translocation to the 
nucleus and enhance hypertrophic remodeling [ 108 ]. However, calcineurin, in this 
setting, activates apoptotic signaling pathways at the same time and is responsible 
for the increased rate of cardiomyocytes’ cell death. 

 More important, the enlargement of cardiomyocytes is not followed by the proper 
extension of capillary network. The capillary-to-cardiomyocyte ratio, which should 
be at least 1:1 in normal myocardium, is reduced, while the distance between capil-
laries and cardiomyocytes is increased. Hypertrophic myocardium is in increased 
need for oxygen consumption and there is a profound discrepancy between the 
oxygen and nutrients available and oxygen and nutrients needed. That is why most 
cardiomyocytes stay without nutritive support and enter some form of reversible 
injury or cell death as described above through the aforementioned mechanisms. 
This is followed by the decrease in the number of functional cardiomyocytes and 
fi brosis, since the regeneration of cardiomyocytes from circulating and cardiac pro-
genitor cells or dividing cardiomyocytes is suppressed and cell death prevailed 
[ 57 ,  90 ,  109 ]. With the development of this irreversible damage of cardiomyocytes 
and fi brosis, cardiac hypertrophy loses its compensatory potential, sliding to heart 
failure with contractile dysfunction and dilatation of chambers. 

 In viable cardiomyocytes, synthesis of all proteins including contractile proteins 
and enzymes is altered, leading to reduced synthesis, synthesis of dysfunctional 
proteins, structurally anomalous proteins or nonspecifi c and less functional isoforms 
of proteins [ 110 ,  111 ]. Besides, duration of heart failure in each patient, nature and 
severity of the injury that caused heart failure, and dynamics of heart failure develop-
ment could affect fi ndings of molecular and cytological research. These facts should 
be kept in mind in the interpretation of results on Na + /K + -ATPase and SERCA 
expression, presented in the following chapters.  

7     NA + /K + -ATP-ase and Heart Failure 

 Before the consideration on a linkage between Na + /K + -ATPase and heart failure, we 
will summarize briefl y functions of Na + /K + -ATPase. Na + /K + -ATPase (Na + /K + -
pump) is an enzyme located in the cell membrane which transports three sodium 
ions outside of the cell and two potassium ions into the cell, generating ion gradients 
necessary for the maintenance of the membrane potential [ 112 ]. Na + /K + -pump has 
been found in almost all animal tissues, including human myocardium. For its 
proper functioning, this enzyme uses the energy of the hydrolysis of ATP molecule. 
Na + /K + -ATPase indirectly modulates the myocardial contractility by controlling the 
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function and driving force for Na + /Ca 2+  exchanger (NCX) [ 113 ]. NCX functions as a 
membrane transporter for extrusion of Ca 2+  outside of the cardiomyocytes, at the 
same time transferring three Na +  into the cell [ 114 ]. Activity of Na + /Ca 2+  exchanger 
greatly depends on intracellular Na +  concentration, and thus Na + /K + -ATPase activity: 
even a slightly elevated Na +  concentration limits the function of NCX which extrudes 
less Ca 2+ , resulting in higher intracellular Ca 2+  concentration. Cardiac glycosides, 
which are used in the treatment of heart failure, act as Na + /K + -ATPase inhibitors by 
the aforementioned mechanism to evince their inotropic effect [ 115 ]. 

 Na + /K + -ATPase is composed of three subunits: α, β and γ-subunit. Na + /K + -
ATPase α-subunit contains the binding sites for ions (Na +  and K + ), ATP and cardiac 
glycosides, and also has catalytic ability for ATP molecule. Smaller, β-subunit is 
important for the transport of synthesized Na + /K + -ATPase to the plasma membrane, 
while it also modulates ATPase activity [ 29 ]. Na + /K + -ATPase γ-subunit (also called 
FXYD) is the latest subunit discovered. FXYD represents a family of proteins asso-
ciated with Na + /K + -ATPase which modulates the function of this enzyme [ 26 ]. 
Cardiomyocytes contain only one form of FXYD protein called phospholemman, 
which regulates the function of Na + /K + -ATPase. Namely, in unphosphorylated state, 
phospholemman inhibits Na + /K + -ATPase by reducing the affi nity for intracellular 
Na + , while phosphorylated phospholemman disinhibits Na + /K + -ATPase, returning it 
to its active state [ 116 ,  117 ]. 

 Cardiomyocytes contain three α (α1–α3) and two β (β1–β2) isoforms of Na + /K + -
ATPase subunits. Measurement showed that Na + /K + -ATPase α1-subunit is predomi-
nantly present in cardiomyocytes, while Na + /K + -ATPase α2- and α3-subunits are 
expressed to a lesser extent [ 118 ]. Early measurements of Na + /K + -ATPase quantity 
showed that the concentration of Na + /K + -pump in normal human ventricular myocar-
dium was approximately 700 pmol/g wet weight [ 119 ]. Heart failure is characterized 
by the elevation of Na +  concentration in human cardiomyocytes but also in animal 
models [ 120 ,  121 ]. There are two possible explanations for this fi nding: reduced Na +  
extrusion (which implies changes in Na + /K + -ATPase) or larger Na +  infl ux (implying 
changes in other Na-pumps, such as Na + /H +  exchanger) [ 122 ]. 

 Different studies have shown that the reduced Na +  extrusion could be the result 
of Na + /K + -ATPase alterations [ 20 ,  34 ]. It was demonstrated that the expression of 
certain Na + /K + -ATPase subunits was diminished in cardiomyocytes obtained from 
human heart failure material. Particularly, α1-subunit expression was found to be 
lower by 38 %, α3-subunit by 30 %, β1-subunit by 30 % and overall Na + /K + -ATPase 
activity was lower by 42 % in heart failure cardiomyocytes, with unchanged levels 
of mRNA [ 20 ,  34 ]. 

 Animal heart failure models showed different results when observing expression 
and activity of Na + /K + -ATPase subunits. Rabbit heart failure model pointed to similar 
results as human heart failure cardiomyocytes, with all α-subunits having lower pro-
tein expression [ 123 ], whereas in rat heart failure model Na + /K + -ATPase α1-isoform 
expression was unchanged, with α2-subunit expression reduced and α3-subunit 
expression increased [ 124 ]. Different structural or functional mechanisms underlie 
the lower Na + /K + -pump activity. Therefore, heart failure in rabbit was characterized 
only by reduced Na + /K + -pump expression with normal Na + /K + -ATPase pumping 
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ability [ 125 ], while certain rat heart failure models showed decreased Na + /K + -ATPase 
pumping ability with normal Na +  affi nity [ 124 ]. 

 Nevertheless, it is still unclear whether Na + /K + -ATPase dysfunction is one of the 
reasons for heart failure, or perhaps compensatory mechanism functioning similarly 
to cardiac glycosides. In their animal model of heart failure, Zahler at al. [ 126 ] indi-
cated that it is more probable that Na + /K + -ATPase expression is reduced during 
early development of myocardial dysfunction and asymptomatic phase of heart fail-
ure, and not being its compensatory mechanism. Since heart failure is a condition 
principally characterized by reduced left ventricle ejection fraction (LVEF), 
Norgaard et al. [ 35 ] showed correlation between decreased LVEF and decreased 
Na + /K + -ATPase concentration in cardiomyocytes. 

 Cardiac glycosides have been in use for the treatment of heart failure for more than 
two centuries. Due to serious toxic effect and narrow therapeutic window, number of 
indications for the use of cardiac glycosides has been minimized. In patients with 
heart failure and atrial fi brillation, cardiac glycosides are recommended for the control 
of ventricular rate in patients intolerable to beta-blocker therapy [ 127 ]. Cardiac glyco-
sides, such as digoxin, exert their positive inotropic effect by inhibiting Na + /K + -
ATPase and increasing Na +  intracellular concentration, which in turn stimulates 
Na + /Ca 2+  exchanger to transport Ca 2+  inside the cell, elevating Ca 2+  availability for 
muscle contraction and thus improving cardiomyocyte contraction force [ 128 ]. 

 During therapeutic digitalization, not all Na + /K + -ATPase receptors are occupied 
by digoxin; it is estimated that the percentage of occupied Na + /K + -ATPase receptors 
is 24–35 % in the human heart [ 119 ,  129 ]. Cardiac glycosides bind to  Na + /K + -
ATPase α-subunit consequently blocking this enzyme. It was generally believed that 
cardiac glycosides had similar affi nity for different Na + /K + -ATPase α-subunits. 
However, studies comparing ouabain’s affi nity for Na + /K + -pump showed that its 
affi nity for α2β1-isoform was two times greater than for α1β1- or α3β1-isoforms 
[ 130 ,  131 ]. Moreover, these studies showed different Na +  affi nity for Na + /K + -ATPase 
isoforms; in one study Na +  affi nity was similar for all enzyme isoforms [ 131 ], while 
the other study showed that the highest affi nity was for α1β1-isoform and the lowest 
for α3β1 Na + /K + -ATPase heterodimer [ 130 ]. 

 Cardiac glycosides may have additional useful roles in the treatment of heart fail-
ure, which do not include Na + /K + -ATPase inhibition, yet their neurohumoral effects. 
Except inhibiting Na + /K + -ATPase in cardiomyocytes, cardiac glycosides also inhibit 
extracardiac Na + /K + -ATPase, thus possibly improving overall hemodynamic and 
restoring bar receptor activity in heart failure patients [ 132 ,  133 ]. Also, in recent 
years it has been proposed that cardiac glycosides may have hormone-like functions, 
by acting on different Na + /K + -ATPase isoforms which in that case may have recep-
tor-like functions [ 134 ]. Such presumption has been supported by the evidence of 
potential antitumorous effect of cardiac glycosides [ 135 ]. Also, it has been shown 
that cardiac glycosides act by inhibiting cell growth and division, stimulate pro-
grammed cell death and release endothelin-1 from endothelial cells [ 134 ]. 

 During the ongoing search for new effective, well tolerable and less toxic inotro-
pic drug, an antibody was developed against the L7/8 extracellular domain 
of the Na + /K + -ATPase α-subunit. This antibody showed not only the inhibition of 
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Na + /K + -pump, but also several cardioprotective effects against ischemia and 
 reperfusion through PI3K/Akt signaling cascade [ 136 ]. This fi nding may open new 
therapeutic approach in heart failure patients, and also shed a new light on Na + /
K + -ATPase physiologic function.  

8     Downregulation of SERCA in Heart Failure 

 One of the key abnormalities in both human heart failure and experimental models 
of heart failure is abnormal intracellular calcium ion (Ca 2+ ) handling. Before further 
consideration, we will summarize briefl y facts on SERCA function. 

 SERCA plays a pivotal role in both myocardial contraction and relaxation. 
The predominant SERCA isoform in the heart is SERCA2a (97.5 %), although low 
levels of SERCA2b (2.5 %) are also found [ 137 ]. 

 SERCA functions to pump Ca 2+  into the sarcoplasmic reticulum (SR). It returns 
the intracellular Ca 2+  concentration ([Ca 2+ ] i ) to resting levels causing relaxation of 
the cardiomyocyte and replenishment of the SR Ca 2+  store for the next cycle [ 138 ]. 
Alterations in SERCA level affect Ca 2+  homeostasis and cardiac contractility by 
infl uencing Ca 2+  reuptake as well as the expression and activity of other Ca 2+  han-
dling proteins [ 139 ]. 

 The reduced function of SERCA in heart failure is caused by reduced synthesis, 
activity or gene expression. Reduced SERCA-to-phospholamban ratio has the same 
effect. Phospholamban as a major regulator of SERCA2a activity is directly involved 
in development of cardiac disease, including heart failure [ 140 ]. 

 SERCA2 activity is reversibly regulated by phospholamban through cAMP 
dependent phosphorylation [ 137 ,  140 – 143 ]. Dephosphorylated phospholamban is 
an inhibitor of SERCA, while phosphorylation of phospholamban relieves this 
inhibition. 

 Phospholamban activity, itself, is regulated by two phosphoproteins, the inhibi-
tor- 1 of protein phosphatase 1 (PP1) and the small heat shock protein 20. PKA and 
PKC are molecules actively involved in phosphorylation of phospholamban as well. 
In general, the whole Ca 2+  transporting machinery including L-type Ca channels 
and the ryanodine receptor (RyR) is under control of PKA and PKC [ 49 ,  53 ]. 

 Recently, two new molecules have been identifi ed as regulators of SERCA 
activity: SUMO, S100 and the histidine-rich Ca 2+ -binding protein [ 140 ] and 
regucalcin [ 108 ]. It is also established that previously described Ca 2+  sparks or 
precisely controlled diastolic sparks are essential for the normal balance of 
SERCA activity [ 82 ,  83 ]. 

 On experimental heart failure model, it was established that out of six isoforms 
of SERCA expressed in heart, there is decreased expression of transcripts of 
SERCA2a, SERCA3b and 3c, while the expression of SERCA2b and 3a transcripts 
remains unchanged. Although SERCA2a is downregulated in heart failure, it is still 
predominant isoform in cardiomyocytes. 
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 In heart failure in humans, there is a reduction of SERCA2a and an increase of 
SERCA3f. SERCA3f is proved to induce protein synthesis anomalies, endoplasmic 
reticulum stress, and apoptosis in cell cultures [ 60 ,  61 ]. 

 Disturbances in the regulatory function of SERCA/phospholamban have also 
been implicated as important contributors to heart failure pathogenesis. 
Phospholamban is less phosphorylated in heart failure due to increase in global 
phosphatase expression in cardiomyocytes of patients with heart failure, resulting in 
even greater SERCA inhibition. 

 Interesting also is the observation that functional PLB-null genotype in humans 
causes heart failure, whereas the gene-targeted PLB-knockout mice have no appar-
ent cardiac problems [ 144 ]. 

 Molecules that control phospholamban activity are implicated in heart failure as 
well. Heart failure and downregulation of adrenergic receptors are associated with 
reduced cAMP-dependent protein kinase (PKA). This mechanism leads to the inac-
tivation of inhibitor-1 with consequently increased activity of PP1. Hyperactive PP1 
leads to the dephosphorylation of phospholamban and inhibition of SERCA2a thus 
reducing the calcium uptake [ 145 ]. 

 Inhibition of SERCA activity leads to profound disturbance in concentration of 
calcium ions which along with other molecular mechanisms of heart failure 
described previously deepen the morphological and physiological disturbances. In 
concordance with this is the fi nding that preserved SERCA activity and controlled 
calcium ions turnover inhibits calcineurin associated apoptotic pathway [ 61 ]. 

8.1     Potentials for New Therapeutic Approaches 

 Kranias et al. recognized SERCA/phospholamban complex and its role in cardiac 
contractility, and indentifi ed the potential for new therapeutic approach by targeting 
this complex [ 140 ]. 

 Normalization of SERCA2a function has been shown to increase contractility in 
failing human cardiomyocytes and to improve hemodynamics along with survival 
in rodent and large animal models of heart failure [ 146 – 148 ]. 

 The overexpression of SERCA2a has also been found to restore energetic supply 
and to decrease ventricular arrhythmias in a model of ischemia/reperfusion injury 
[ 149 – 151 ]. Therefore, SERCA2a is one of the most promising targets for the treat-
ment of HF. 

 Ferrandi et al. [ 152 ] showed that istaroxime represents the fi rst example of a 
small molecule that exerts a luso-inotropic effect in the failing human heart through 
the stimulation of SERCA2a activity and the enhancement of Ca 2+  uptake into the 
SR by relieving the phospholamban inhibitory effect on SERCA2a in a cAMP/PKA 
independent way. We previously mentioned that istaroxime inhibits Na + /K + -ATPase 
with positive inotropic effect simultaneously with the activation of SERCA2a [ 58 ]. 
In such a way, it brings together positive properties of Na + /K + -ATPase inhibition 
with better control of calcium ions concentration. The consequence of this potential 
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therapeutic strategy is achievement of enhanced contractility (inotropy) with 
facilitated relaxation (lusotropy). 

 Advances in the understanding of the molecular basis of myocardial dysfunction 
together with the evolution of gene transfer technology has placed congestive heart 
failure as a separate task within reach of gene-based therapy [ 61 ,  153 – 155 ]. Lipskaia 
et al. focused on gene therapy using SERCA2a or molecules regulating SERCA2a 
activity to treat heart failure. New data show that SERCA2a gene transfer improves 
contractile function and restores electric stability of the failing cardiomyocytes [ 156 ].   

9     Downregulation of SERCA in Aging Heart 

 Aging is associated with alteration in cardiac structure and function, while the most 
prominent feature is increased left ventricular mass (left ventricular hypertrophy), 
impaired diastolic function and preservation of systolic function [ 157 ]. The charac-
teristic cellular changes in aging myocardium include myocyte hypertrophy, inter-
stitial fi brosis, and impaired myocyte relaxation. Many studies suggest that calcium 
dysregulation contributes to impaired function of cardiomyocytes in the aging 
process [ 158 – 166 ]. The intracellular calcium transient is regulated by a family of 
proteins including sarcoplasmic reticulum (SR) calcium ATPase (SERCA), its 
inhibitory protein phospholamban (PLB), the calcium storage protein, calseques-
trin, and the SR calcium release channel (ryanodine receptor) [ 159 ]. SERCA plays 
a particularly important role in maintaining intracellular calcium through its ability 
to pump cytosolic calcium into SR during myocardial relaxation [ 166 ]. Several 
studies have shown that SERCA activity is decreased in aging heart [ 159 ,  165 ]. In 
some cases, this decrease in activity has been related to a decrease in SERCA protein 
level or a decrease in the ratio of SERCA to PLB [ 159 ]. Other studies have also dem-
onstrated age-associated decreases in the amount of calcium/calmodulin-dependent 
protein kinase (CaMK), endogenous CaMK-mediated phosphorylation of SERCA 
and PLB, and the phosphorylation-dependent stimulation of SR calcium sequestra-
tion [ 159 ]. Besides changes in amounts and isoforms of calcium regulation proteins 
in heart tissue, recent studies suggest that alterations in the function of SERCA can 
be regulated by means of oxidative posttranslational modifi cations [ 167 ,  168 ]. It is 
well known that reactive oxygen species (ROS) and oxidative stress are increased 
in aging myocardium [ 169 – 171 ]. 

 In cardiac myocytes in vitro, it has been shown that oxidants (e.g., nitroxyl or 
peroxynitrite) in low, “physiologic” levels cause reversible S-glutathiolation of 
SERCA at cysteine 674 (C674) leading to its activation. In contrast, higher levels of 
oxidants (e.g., H 2 O 2  or peroxynitrite) that may be associated with pathologic condi-
tions lead to irreversible oxidation of SERCA at one or more sites, including sulfo-
nation at C674. Irreversible oxidation of C674 may inhibit basal enzyme activity 
and further prevent activation via S-glutathiolation. Studies in aging myocardium 
have further demonstrated irreversible oxidation of SERCA cysteines and nitration 
of tyrosines [ 172 ]. It was also observed that myocardial levels of 3-nitrotyrosine and 
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4-HNE indicative of oxidative stress and sulfonation of SERCA at C674 are 
markedly increased in aging hearts and that these increases are prevented in 
transgenic mice with catalase overexpression. Furthermore, catalase overexpression 
prevents decreased SERCA activity, and impaired diastolic function in myocytes 
from aging hearts [ 172 ,  173 ]. These studies suggest that reactive oxygen species 
such as H 2 O 2  contribute to impaired diastolic function in cardiac aging, at least in 
part via oxidative modifi cation of SERCA, and in particular, via sulfonation at C674 
[ 172 – 174 ]. The recent study in male animal aging model indicates that aging 
reduces cell shortening, which is associated with a decrease in the amplitude of the 
systolic Ca 2+  transient. This may be occurring due to a decrease in peak L-type Ca 2+  
current. The same study has shown that SR Ca 2+  load appears to be maintained dur-
ing normal aging but evidence suggests that SR function is disrupted, such that the 
rate of sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA)-mediated Ca 2+  removal 
is reduced and the properties of SR Ca 2+  release in terms of Ca 2+  sparks are altered 
[ 175 ]. Besides, it was shown that there are male–female differences in the way the 
heart ages at the cellular level. The data on aging and gender-base differences have 
important clinical implications. Although aging is a physiological process, many of 
its aspects, including alterations in Ca 2+  homeostasis, make the myocardium prone 
to disease [ 175 ]. 

 Improved comprehension of cellular mechanisms of aging will help us to understand 
susceptibility to different cardiovascular diseases during aging. Ultimately, we will be 
able to identify new targets for intervention in the treatment of these diseases.  

10     ATP-ases and Cardiomyopathy 

 By defi nition, cardiomyopathy is a primary, intrinsic defect of the myocardium. 
Before the advance in genetics, cardiomyopathies were mostly characterized as 
idiopathic. Due to progress in molecular biology techniques, numerous gene abnor-
malities were identifi ed as specifi c causes of cardiomyopathies. 

 Ischemic cardiomyopathy is a term used in clinical practice to describe clinical 
and morphological fi ndings in patients with heart failure caused by ischemic heart 
disease and by strict defi nition it should not be a part of cardiomyopathy entity. 

 Cardiomyopathies are classifi ed as dilated, hypertrophic, and restrictive. 
Characteristic of dilated cardiomyopathy is progressive cardiac dilatation and sys-
tolic dysfunction, while hypertrophic cardiomyopathy is defi ned by myocardial 
hypertrophy and mostly diastolic dysfunction [ 111 ]. 

 Ischemic heart disease and consequent heart failure resemble dilated cardiomy-
opathy, while hypertensive heart disease bears a resemblance to dilated or hypertro-
phic cardiomyopathy depending on a phase in the disease progression. 

 There are changes in ATPases activities in different forms of cardiomyopathy. 
As showed in the study of Norgaard et al., among 24 patients with idiopathic 
dilated cardiomyopathy, 19 had impaired LV function and lower Na + /K + -ATPase 
concentration whereas 5 patients had normal LV function and higher Na + /K + -
ATPase concentrate [ 35 ]. 
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 In previous discussion we interpreted results applicable mostly on ischemic 
cardiomyopathy. Semb et al. studied expression of Na + /K + -ATPase subunits in the 
post- infraction rat model of congestive heart failure (CHF) [ 176 ] and found that 
expression of α2 and α3 isoforms was affected whereas expression of the α1- and 
β1-subunits (mRNA and protein) was not signifi cantly different than in controls. 
Expression of α2 isoform at the level of mRNA and protein were lower in CHF 
hearts and the α3 isoform mRNA was higher. 

 We will review changes of ATPases expression and activity in cardiomyocytes 
in  diabetes mellitus . Diabetic cardiomyopathy is the term used for cytological and 
pathological cardiac alterations developed through the course of diabetes, with 
clinical manifestations. Myocardium is affected due to effects of several mecha-
nisms, including metabolic disturbances: hyperglycemia and advanced glycation 
end products (AGEs) generation, as well as prolonged activation of PKC. Enhanced 
atherosclerosis, especially of coronary arteries, and diabetic microangiopathy pro-
voke further ischemic injury of cardiomyocytes [ 177 ]. 

 Overall analysis of the available literature showed that ionic balance due to activ-
ity of Na + /K + -ATPase and SERCA is disturbed in cardiomyocytes during diabetic 
cardiomyopathy. At the level of sarcoplasmic reticulum, there is a defi ciency of both 
Ca 2+  release as well as Ca 2+  uptake [ 178 ]. SERCA2a, RyR and phospholamban mol-
ecules are equally affected and although there are some discrepancies among differ-
ent studies (Table  7.1 ), conclusions suggest disruption of Ca 2+  transport and increase 
of intracellular Ca 2+  [ 179 – 181 ]. Phosphorylation of phospholamban is also reduced 
mostly due to activity of protein phosphatase 1 [ 182 ]. The changes of SERCA2a and 
its regulatory proteins are associated with Na + /K + -ATPase activity decrease along 
with increased activity of Na + /H +  and Na + /Ca 2+  exchanger as explained in previous 
sections. Complex cell injury ensues with deepening of metabolic disturbances and 
increased intracellular Ca 2+ . One of the consequences is activation of calpain induced 
apoptosis of cardiomyocytes as previously referred.

11        Conclusions 

 Na + /K + -ATPase and SERCA insuffi ciency and their interrelation with multiple 
intracellular functions start the cascade of events that represent almost a universal 
model of injury associated with heart failure of different origin [ 90 ,  183 ]. The analysis 
of Na + /K + -ATPase and SERCA is even more complex because they are direct targets 

   Table 7.1    Summary of studies dealing with SERCA2a, RyR, and phospholamban in diabetic 
cardiomyopathy   

 SERCA2a  RyR  Phospholamban  References 

 Protein content  No changes  Decrease  Decrease  [ 179 – 181 ] 
 mRNA  Decrease  Decrease  No changes  [ 179 ] 

 No changes  Decrease  Increase  [ 180 ] 

  Results of studies suggest decrease in regulatory molecules of SERCA2a  
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for the orthodox therapy of heart failure, as well as for new therapeutical strategies 
[ 136 ,  152 ,  156 ]. That is why it is of essential importance to know their roles in all 
aspects of normal and pathological functioning of cardiomyocytes, to be able to 
understand future fi ndings yet to come.     
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    Chapter 8   
 Understanding the Dysfunction 
of Na + /K + -ATPase in Rapid-Onset 
Dystonia Parkinsonism and Amyotrophic 
Lateral Sclerosis                     

       Biswarup     Ghosh    ,     Angelo     Lepore    , and     George     M.     Smith    

    Abstract     The Na + /K + -ATPase is a membrane bound P-type ATPase that exchanges 
Na +  and K +  ions across the plasma membrane in expense of ATP hydrolysis. It 
maintains for electrical excitability, neurotransmitter transport, volume regulation, 
and other vital cellular functions. The four isoforms of the Na + /K+-ATPase α-subunit 
have a cell-specifi c and developmentally regulated expression pattern. There are 
different isoforms of the Na + /K+-ATPase expressed in neurons and glial cells. 
Alterations of Na + /K + -ATPase activity due to global loss or isoform specifi c muta-
tional effect are evident in different neurological disorders. Mutations in the 
ATP1A3 gene which encodes Na + /K + -ATPase α3 subunits, cause Rapid-Onset of 
Dystonia Parkinsonism (RDP), a rare movement disorder characterized by sudden 
onset of dystonic spasms and slowness of movement. It is evident that Na + /K + -
ATPase α2 subunits are upregulated in spinal cord of sporadic and familial amyo-
trophic lateral sclerosis (ALS) patients. The α2-Na + /K + -ATPases are also enriched 
in astrocytes expressing mutant superoxide dismutase 1 (SOD1), which causes 
familial ALS. Here we focused to understand the physiological and molecular fun-
damentals associated with dysfunction of Na + /K + -ATPase in RDP and ALS.  
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1         Introduction 

 In 1997, the Nobel Prize in Chemistry was shared by Danish researcher Jens C Skou 
for his discovery of the Na + /K + -ATPase. Skou was the fi rst to suggest, in 1957, a link 
between transport of Na +  and K +  across the plasma membrane and a Na +  and K +  acti-
vated ATPase activity [ 1 ]. The basic function of Na + /K + -ATPase, or Na +  pump, is to 
maintain the high Na +  and K +  gradients across the plasma membrane of animal cells. 
The enzyme pumps 3Na +  and 2K +  ions against their concentration gradient, at the 
expense of an ATP molecule [ 2 ]. The Na + /K + -ATPase maintains the Na + and K +  gradi-
ent that is of fundamental importance for maintenance of neuronal excitability and 
conduction of the action potential and for secondary transport systems involved in syn-
aptic uptake of neurotransmitters and regulation of cell volume, pH, and calcium (Ca 2+ ) 
concentrations. Mitochondrial dysfunction due to hypoxia, ischemia, infl ammation, 
and other conditions reduces ATP availability and impairs Na + /K + -ATPase activity trig-
gering neuronal depolarization, cytotoxic edema, and neuronal, axonal, and glial injury. 
The Na + /K + -ATPase forms macromolecular complexes with other membrane proteins 
and also triggers intracellular transduction signals involved in synaptic plasticity. There 
are different isoforms of the Na + /K + -ATPase expressed in neurons and glial cells [ 3 ,  4 ]. 
The elucidation of the crystal structure for the Na + /K + -ATPase catalytic subunit and the 
functional consequences of specifi c mutations led to identifi cation of specifi c amino 
acid sequences critical for normal function of the enzyme. Mutations affecting the 
Na + /K + -ATPase α2 subunit which is expressed in astrocytes, is linked to familial hemi-
plegic migraine type 2 (FHM2); mutations affecting Na + /K + -ATPase α3 subunit, which 
is expressed in neurons, are linked to Rapid-Onset Dystonia and Parkinsonism (RDP) 
[ 5 ]. Impaired activity of Na + /K + -ATPase α2 subunit is also associated with amyotrophic 
lateral sclerosis (ALS) patients [ 6 ,  7 ].  

2     Subunits of Na + /K + -ATPase 

 The Na +  pump molecule is a heterooligomer composed of α and β subunits and both 
of the subunits are required for enzymatic activity. Four isoforms of the α-subunit 
(α1, α2, α3, and α4) [ 8 – 12 ] and three isoforms of the β subunit (β1, β2, and β3) 
[ 13 – 15 ] are encoded by different genes in vertebrates. The α subunits are composed 
of ~1018 residue (~110 kDa). The β subunits are smaller compared to α, consisting 
of ~300 residues (~55 kDa). Alpha is the catalytic subunit that contains the binding 
sites for cardiac glycosides, ions, and ATP and the transient phosphorylation site (an 
aspartate residue, D369) [ 16 ] In mammalian, each of the 4 alpha subunits are inde-
pendently expressed under the control by its own promoter, which drives expression 
in a cell and tissue specifi c manner. The α1 subunit seems to be ubiquitously 
expressed and found in all tissues investigated so far [ 17 ]. Alternative splicing of 
the α1 subunit results in the polypeptide, α-1 T in canine vascular smooth muscle 
cells [ 18 ]. Whether this truncated form functions in vivo remains to be determined. 
The α2 isoform is expressed in skeletal muscle, adipocytes and brain, and in small 
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amounts in heart [ 19 ]. The α3 isoform is found mainly in nerves and brain but also in 
heart tissue [ 19 ]. The α4 isoform is found only in testis. Across species the degree of 
homology for the α1 and α2 isoforms is ~92 % and is over 95 % for α3 [ 9 ]. There is 
also a high degree of homology (87 %) among the α1, α2, and α3 isoforms [ 12 ]. 

 The sensitivity of Na + /K + -ATPase for Na +  and K +  cations is known to change 
depending on the isoform of the β subunit included in the α–β complex [ 20 ] because 
the β subunit affects the activation of Na + /K + -ATPase based on the extracellular K +  
concentration [ 21 ]. The β subunit, which does not participate in the process of catalysis 
directly is nevertheless tightly bound to the α-subunit and required for the delivery of 
both subunits to the plasma membrane and insertion of the catalytic subunit [ 22 ]. 
Regulation of gene expression for each isoform and formation of various combinations 
of α–β complexes are tissue specifi c [ 23 ]. Synthesis of both corresponding mRNAs and 
the isoforms encoded by these mRNAs is under the control of various hormones 
[ 24 ,  25 ]. The summary of gene expression for each isoform is given in Table  8.1 .

   The Na + /K + -ATPase is often associated with a tissue-specifi c regulatory subunit 
that belongs to a protein family containing the FXYD (phenylalanine-X-tyrosine- 
aspartate) amino acid sequence [ 26 ,  27 ]. The FXYD component modulates the 
affi nity of the enzyme for Na +  and K +  and is an important target for phosphorylation 
[ 28 ]. For example, FXYD1 interacts with α1 isoforms in the skeletal muscle and 
heart and with α2 (glial) and α3(neuronal) isoforms in the cerebellum; FXYD7, 
which is exclusively expressed in the brain, interacts with α1 isoforms in neurons 
and glial cells.  

3     Physiological Relevance of Na +  Pump Isozymes in Glial 
and Neuronal Cells 

 The unique expression, function, and regulation of the Na +  pump isozymes strongly 
suggest their physiologic importance. There are 3 isoforms (α1, α2, and α3) and 
three β isoforms (β1, β2, and β3) in the central nervous system [ 12 ,  25 ] which have 

   Table 8.1    Human Na + /K + -ATPase isoforms (Data from the genomic database of National Centre 
for Biotechnological Information)   

 Isoform  Gene  Human chromosome  Locus  Specifi c expression 

 α 1   ATP1A1  1 p13-11  476  Constitutive, ubiquitous, dominant in 
epithelia of kidney, intestine, and glands 

 α 2   ATP1A2  1 q21-23  Muscle, heart, brain 
 α 3   ATP1A3  19q12-13.1  CNS, brain 
 α 4   ATP1A4  Testis, spermatozoa 
 β 1   ATP1B1  1 q22-25  481  Ubiquitous, like α1 subunit 
 β 2   ATP1B2  17p  482  Muscle, adhesion molecule of glial cells 

(AMOG) in brain 
 β 3   ATP1B3  3 q22-23  483  Mostly in neural tissue 
 γ  ATP1G  11q23  Kidney 
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different kinetic properties and regulation [ 12 ]. Generally, neurons predominantly 
express the α3 isoform and astrocytes predominantly express the α2 isoform, 
whereas both neurons and glia can express the α1 isoform. Some large neurons 
within the dorsal horn of the spinal cord express both α2 and α3 isoforms, whereas 
in the ventral horn some motor neurons express α1 and α3 isoforms, while the rest 
just express the α3 isoform [ 29 – 31 ]. The most striking is the presence of apparent 
complementary difference in predominant isoforms between dorsal and ventral 
horn within spinal cord. 

 In neurons the rapid changes in Na +  and K +  concentrations accompanying nerve 
activity may require the fast adjustments provided by isozymes different from α1β1. 
This may be the role of the neuronal α3-containing isozymes. Because of the low 
apparent affi nity of α3 for Na + , this isoform operates at slow rates in cells at rest. 
When the ion gradients are dissipated after depolarization, intracellular Na +  levels 
increase and α3 becomes activated. In this manner, isozymes composed of α3 func-
tion as spare pumps to help the ubiquitous α1β pumps restore the resting membrane 
potential of the cells. Also, the high affi nity of α3 for ATP allows it to function at 
the low nucleotide concentrations occurring near the cell membrane during intense 
neuronal activity. 

 The properties of α2 suggest that it is important for the function of glial and 
neuronal cells. The high affi nity for ATP and Na +  provides α2 with a steady working 
capability. This allows the isoform to effectively clear higher K +  concentrations 
within the extracellular space after depolarization, even at decreased cytosolic con-
centrations of Na +  and ATP. The α2 is important in preventing K + -induced depolar-
ization to maintain neuronal excitability. The role of α2 has been shown in mice in 
which the expression of the isoform was knocked out. These mice exhibited akine-
sia and died soon after birth because of irregular breathing caused by an abnormal 
rhythmic fi ring of the neurons of the respiratory center [ 32 ]. Another important role 
of α2 derives from its ability to regulate intracellular Ca 2+  levels. This has been 
shown by gene targeting studies in excitable tissues of mice. 

 The hypercontractility induced by α2 in the heterozygous knockout animals [ 33 ] 
has been attributed to larger cellular Ca 2+  transients, caused primarily by increasing 
in cytoplasmic Na +  levels, which consequently augments Ca 2+  levels via the Na + /Ca 2+  
exchanger. In the α2 defi cient mice, this mechanism is supported by the abnormally 
increased intracellular Ca 2+  levels in astrocytes from these animals [ 34 ,  35 ]. 
Interestingly, Juhaszova and Blaustein [ 19 ] found that in glial cells α2 colocalizes 
with the Na + /Ca 2+  exchanger and the underlying endoplasmic reticulum, suggesting 
that these components act as a functional unit to regulate cytoplasmic Na +  and Ca 2+ . 
In this manner, regulation of cations can be limited to microdomains preventing 
global cell ionic changes. Beyond the requirement of the β subunits for Na + /K + -
ATPase maturation and modulation of activity, an unforeseen function has been 
reported for the β2 isoform. This isoform is present in glia and acts as a recogni-
tion molecule that mediates neuron-glia interactions important for cell adhesion, 
neuronal migration, and neurite outgrowth. These properties for the β2 isoform 
are supported by observations uncoordinated motor function, tremors and paralysis 
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in animals in which the β2 gene was deleted [ 36 ], and by the ability of β2 isoforms 
to promote cell adhesion and reduce the invasive characteristics of glioma cells [ 37 ]. 
Although there are many exceptions to the rule, neurons predominantly have the 
α3β1 isozyme and astrocytes predominantly express the α2β2 isozyme, whereas 
both neurons and glia can express the α1 subunit.  

4     Alterations of Na + /K + -ATPase in Pathological Conditions 

 A central role for the Na + /K + -ATPase in pathogenesis has been widely implicated, 
particularly in cardiovascular, neurological, renal, and metabolic diseases [ 38 – 40 ]. 
In general, a downregulation of Na + /K + -ATPase is found under these conditions. The 
Na + /K + -ATPase activity was 34 % lower in ischemic cortex and 40 % lower in isch-
emic basal ganglia after 30 min ischemia; after 60 min ischemia, both Na + /K + -ATPase 
activity and K +  concentration were decreased in the ischemic hemisphere [ 41 ,  42 ]. 
This is consistent with the observations that ischemia or hypoxia increase the pro-
duction of ROS [ 43 – 46 ] and release endogenous inhibitors of Na + /K + -ATPase [ 47 ]. 
The functional subunits α2 and α3 were the ones that were mostly affected by a focal 
cerebral ischemia [ 42 ]. An inhibition of Na + /K + -ATPase secondary to cellular energy 
depletion might contribute to delayed membrane depolarization of cortical neurons 
after traumatic brain injury [ 48 ]. The Na + /K + -ATPase activity was reduced or insuf-
fi cient to maintain ionic balances during and immediately after episodes of ischemia, 
hypoglycemia, epilepsy and after administration of glutamate agonists. It was 
proposed that a reduction and/or inhibition of Na + /K + -ATPase contributed to the 
central neuropathy found in those disorders [ 49 ]. Dysfunction or defi ciency of 
Na + /K + -ATPase has been identifi ed in chronic neurodegenerative diseases as well; 
for example, the α3 subunit mRNA was ~30–45 % lower in Alzheimer’s brain 
relative to controls [ 50 ]. The possibility that a defi ciency in the Na + /K + -ATPase activ-
ity might be a common pathogenesis of central nervous system disorders was tested 
in patients of CNS glioma, multiple sclerosis, systemic lupus erythromatosis and 
several other pathological conditions. In short, it appears factual that reduced 
Na + /K + -ATPase activity is a common event in a number of neural degenerative and 
metabolic diseases. 

 Two movement disorders are caused by different missense mutations in the 
ATP1A3 gene encoding the α3 subunit of Na + /K + -ATPase: Alternating Hemiplegia 
of Childhood (AHC), characterized by episodes of transient hemiplegia/hemipare-
sis, dystonia and choreoathetosis [ 51 – 53 ], and Rapid-Onset Dystonia Parkinsonism 
(RDP), characterized by abrupt onset of dystonia with parkinsonism after a stressful 
event, typically in late adolescence or early adulthood [ 5 ,  54 ,  55 ]. The pathophysiol-
ogy of RDP differs from dystonia and Parkinson’s disease since L-DOPA treatment 
[ 55 ] and deep brain stimulation of the basal ganglia [ 56 ] have little or no therapeutic 
effect. Poor responses to these therapies suggest that dysfunction in motor circuits 
outside the basal ganglia contribute to RDP symptoms. 
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 Upregulation of Na + /K + -ATPase α2 subunit is evident in central nervous system 
of ALS patient and rodent animal model of ALS [ 7 ]. Global loss of Na + /K + -ATPase 
in CNS is also a hallmark of ALS pathology [ 6 ].  

5     Rapid-Onset Dystonia Parkinsonism (RDP) 
and Na + /K + -ATPase 

 RDP is a hereditary form of dystonia and is characterized by the abrupt onset of 
slowness of movement (parkinsonism) and dystonic symptoms. Parkinsonism 
includes tremors, unusually slow movement (bradykinesia), rigidity, an inability to 
hold the body upright and balanced (postural instability), and a shuffl ing walk that 
can cause recurrent falls. Dystonia is a condition characterized by involuntary, sus-
tained muscle contractions. RDP causes movement abnormalities that make diffi -
culty to walk, talk, and carry out other activities of daily life. It affects the arms and 
legs, causing muscle cramping and spasms. Facial muscles are often affected which 
results in problems with speech and swallowing. The sudden onset of symptoms 
over hours to a few weeks, often associates with physical or emotional stress, sug-
gests a trigger initiating a nervous system insult resulting in permanent neurologic 
disability. Functional studies and structural analysis of the protein suggest that these 
mutations impair Na + /K + -ATPase activity or stability. It implicates the Na +/ K + -
ATPase, a crucial protein responsible for the electrochemical gradient across the 
cell membrane, in dystonia and parkinsonism. 

 The pathophysiologic mechanisms underlying RDP are poorly understood. Nine 
different RDP mutations have thus far been identifi ed in the α3 gene [ 55 ,  57 – 59 ]. With 
a single exception, all mutations are located in the cation binding transmembrane 
domains or in closely associated regions, resulting in reduced affi nity for intracellular 
Na + . For example the mutation replacing Asp923 by an asparagine (D923N) results in 
a ~ 200-fold reduction of Na +  affi nity for activation of phosphorylation from ATP, 
refl ecting a defective interaction of the E1 form with intracellular Na +  [ 60 ]. During the 
normal functional cycle, Na + /K + -ATPase undergo large conformational changes 
between E1 and E2 forms (Na + - and K + -forms, respectively). 

 To achieve a better understanding of the pathophysiology of the disease RDP, 
regional and cellular distribution of Na + /K + -ATPase α3 subunit may contribute 
insight. Na + /K + -ATPase α3 subunit is widely expressed in neuronal populations but 
mainly in GABAergic neurons in areas and nuclei related to movement control. In 
rodent brain, GABAergic neurons in all nuclei of the basal ganglia (striatum, globus 
pallidus, subthalamic nucleus, and substantia nigra) express high levels of the α3 
subunit [ 61 ]. The basal ganglia are one of the key circuits in the brain involved in fi ne 
motor control. Several thalamic nuclei structures harboring connections to and from 
the cortex expressed high levels of the Na + /K + -ATPase α3 isoform. Other structures 
with high expression of Na + /K + -ATPase α3 included cerebellum, red nucleus, 
and several areas of the pons (reticulotegmental nucleus of pons). High expression of 
the Na + /K + -ATPase α3 isoform is also found in projections and cell bodies of the 
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hippocampus; most of these Na + /K + -ATPase α3-positive cell bodies colocalize to 
GABAergic neurons. It is interesting that Na + /K + -ATPase α3 expression was not 
signifi cantly high in the dopaminergic cells of substantia nigra. 

 Physiologically, Na +  affi nity is impaired in RDP. In general, the Na + /K + -ATPases 
are ion pumps of fundamental importance in maintaining the electrochemical gradi-
ent essential for neuronal survival and function. Functional analysis demonstrated 
a drastic reduction in Na +  affi nity due to mutations in Na + /K + -ATPase α3 subunit. 
A reduced Na +  affinity has been described for certain RDP mutants [ 62 – 64 ]. 
In general the ubiquitously expressed α1-subunit mediates the active transport of 
Na + -K +  in the resting membrane. During neural excitation, the α2-subunit contrib-
utes to the initial fast uptake of extracellular K + , whereas α3 is involved in slower 
post- stimulus recovery [ 65 ]. In RDP, Na +  affi nity seems to be mainly impaired with-
out signifi cant reduction in K +  affi nity [ 62 ]. Consequently, changes in intracellular 
Na +  can result in secondary changes in Ca 2+  via the Na + /Ca 2+  exchange system for 
signaling cascades. It might be possible that disturbance of the Na +  gradient along 
with the driving force for uptake of key neurotransmitters could impair dopamine 
uptake. However, positron emission tomography imaging in RDP compared with 
idiopathic Parkinson’s disease shows that RDP patients do not have impairment of 
the dopamine re-uptake system [ 66 ]. Alternatively, Na + /Ca 2+  misbalance may affect 
other neurotransmitters and cause abnormal fi ring of specifi c neurons. Irregular and 
spontaneous bursts of neuronal discharges occur in the medial globus pallidus in 
patients with dystonia [ 67 ,  68 ], altering the basal ganglia output signal to the motor 
cortex [ 69 ]. An increased cortical motor excitability and/or disruption of basal gan-
glia inhibitory control due primarily to a misbalance in Na +  concentration may 
result in the dystonic, bradykinetic movement disorder observed in RDP without 
signifi cant involvement of the dopaminergic system.  

6     Amyotrophic Lateral Sclerosis and Na + /K + -ATPase 

 Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease 
characterized by degeneration and death of motor neurons of the brain and the spi-
nal cord. It is clinically characterized by progressive paralysis and eventual death 
from respiratory failure within 2–5 years of onset. No effective treatment is cur-
rently available beyond supportive care and riluzole, a putative glutamate release 
blocker linked to modestly prolonged survival. The pathology of ALS is character-
ized by the loss of pyramidal Betz cells in the motor cortex as well as loss and 
degeneration of the large anterior horn cells of the spinal cord and lower cranial 
motor nuclei of the brainstem [ 70 ]. The disease starts with limb weakness, often 
preceded by cramps, and with bulbar weakness causing dysarthria and dysphagia. 

 Although the majority of ALS cases are sporadic(sALS),with no family history, 
10 % are familial and are caused by mutations in the superoxide dismutase1 
(SOD1),TAR DNA Binding Protein (TARDBP) and Fused In Sarcoma (FUS) genes. 
Recent studies have identifi ed expanded repeats in noncoding region of chromosome 
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9 open reading frame 72(C9orf72) as the most frequent genetic cause of ALS [ 71 ]. 
Mutations in SOD1 account for 20 % of familial ALS and 5 % of apparently 
sporadic disease. Mutations in TARDBP account for 5–10 % of familial ALS and 
mutations in FUS for about 5 %. 

 The mechanisms underlying neurodegeneration in ALS are multifactorial and 
operate through inter-related molecular and genetic pathways. Specifi cally, neuro-
degeneration in ALS might result from a complex interaction of glutamate excito-
toxicity, generation of free radicals, cytoplasmic protein aggregates, SOD1 
enzymes, combined with mitochondrial dysfunction, and disruption of axonal 
transport processes through accumulation of neurofi lament intracellular aggre-
gates. Mutations in TARDBP and FUS result in formation of intracellular aggre-
gates, which are harmful to neurons. Activation of microglia results in secretion of 
proinfl ammatory cytokines, resulting in further toxicity. Ultimately, motor neuron 
degeneration occurs through activation of calcium-dependent enzymatic pathways. 
Currently it is evident that Na +  pump dysfunction is also an important cause in 
ALS pathogenesis [ 6 ,  7 ]. 

 The Na + /K + -ATPase consumes 50 % of the energy supply in the CNS [ 72 ]. Its 
catalytic subunit is sensitive to damage by free radicals and other oxidative stressors 
[ 73 – 75 ]. This leads the oxidized Na + /K + -ATPase subunit to be degraded by calpain, 
proteasomal, and lysosomal pathways [ 76 ,  77 ]. It thus may be one of the links 
between alterations in free radical homeostasis and ALS pathology. In other circum-
stances, the inhibition of Na + /K + -ATPase increases the sensitivity of neurons to glu-
tamate excitotoxicity because of complementary effects on neurons (enhancing 
glutamate effects and Ca 2+  accumulation) and astrocytes (reducing the driving force 
for Na + -dependent glutamate clearance) [ 78 – 83 ,  91 ]. Furthermore, the free radical 
nitric oxide (NO) normally regulates the Na + /K + -ATPase via the activation of solu-
ble guanylate cyclase and cGMP [ 84 ], a pathway that is shared by glutamate and 
oxygen free radicals in the CNS. This pathway forms a convergence point for the 
action of several intercellular and intracellular molecular messengers that have been 
implicated in neuronal viability under stress [ 85 ,  86 ]. Together, these studies sug-
gest that either loss or excessive inhibition of Na + /K + -ATPase could contribute to 
motor neuron death via direct oxidative damage or via the enhancement of NO and 
other free radical effects. 

 SOD1 normally converts superoxide, a by-product of mitochondrial metabolism, 
to water and hydrogen peroxide. Simple loss of SOD1 activity has been ruled out as 
a cause of the disease. Global Loss of Na + /K + -ATPase activity or isoform content 
was found in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis [ 6 ]. 
Ouabain-sensitive Na + /K + -ATPase activity was decreased in transgenic mutant 
SOD1 mice. Losses in Na + /K + -ATPase activity could be attributable to enzyme 
inactivation, protein degradation, changes in gene expression, failure to transport 
newly synthesized protein to the axon, loss of neurons, or a combination of these. 
The loss of NO regulation in transgenic mutant SOD1 mice might have been predicted, 
considering the severity of the illness. 

 Recent research found that a protein complex of α2-Na + /K + -ATPase and 
α-adducin was enriched in astrocytes expressing mutant superoxide dismutase 1 
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(SOD1), which causes familial amyotrophic lateral sclerosis (ALS) [ 7 ]. The levels 
of α2-Na + /K + -ATPase is elevated in spinal cord of familial ALS patients harboring 
distinct SOD1 mutations as well as sporadic ALS. Knockdown of α2-Na + /K + -
ATPase in mutant SOD1 astrocytes protects motor neurons from degeneration, 
including mutant SOD1 mice in vivo. Higher α2-Na + /K + -ATPase activity contribute 
to ALS pathology as heterozygous disruption of the α2-Na + /K + -ATPase gene sup-
presses degeneration in vivo and increases the lifespan of mutant SOD1 mice. The 
pharmacological agent digoxin, which inhibits Na + /K + -ATPase activity, protects 
motor neurons from mutant SOD1 astrocyte–induced degeneration. Upregulation of 
Na + /K + -ATPase stimulates mitochondrial respiration and expression of infl amma-
tory genes in SOD1 mutant astrocytes which may in turn induce motor neuron 
degeneration. An increase in the levels and activity of Na + /K + -ATPase would alter 
the demand for cellular metabolism and ATP. Mitochondria generate the majority of 
the cellular ATP. Mitochondrial respiration may increase reactive oxygen species 
(ROS) in mutant SOD1 astrocytes, which in turn activate infl ammatory factors lead-
ing to non–cell autonomous degeneration of motor neurons. Increased ROS level is 
evident in familial amyotrophic lateral sclerosis with mutations in SOD1 [ 87 ]. 
Notably, both ROS and infl ammation have been linked to the pathogenesis of ALS 
[ 88 ,  89 ]. 

 The levels of Na + /K + -ATPase isoforms have been reported to be downregulated 
in mutant SOD1 spinal cord [ 6 ]. However, α2-Na + /K + -ATPase was upregulated in 
the spinal cord of symptomatic mutant SOD1 mice and this upregulation occurred 
specifi cally in glia in these mice [ 7 ]. Interestingly, the levels of α2-Na + /K + -ATPase 
were elevated in spinal cord of familial ALS patients harboring distinct SOD1 
mutations as well as sporadic ALS. The fi nding that chronic activation of α2-Na + /
K + -ATPase in astrocytes is critical for neurodegeneration suggests that α2-Na + /K + -
ATPase might represent an attractive target for the identifi cation of new therapies 
for neurodegenerative diseases. It was found that the therapeutic drug digoxin, 
which is widely used to treat heart failure [ 90 ], protects motor neurons against 
degeneration [ 7 ]. Cardiac glycosides appear to be neuroprotective in models of 
ischemic stroke, prevent polyglutamine-induced cell death, and inhibit SOD1 and 
TDP- 43 aggregation in cells [ 91 – 94 ]. The outcomes of Na + /K + -ATPase inhibitors 
in the treatment of heart disease should prove useful in the development of inhibi-
tors selective for the α2 isoform of Na + /K + -ATPase in glial-dependent 
neurodegeneration.  

7     Conclusions 

 Different neurological disorders are associated with loss of Na + /K + -ATPase activ-
ity or isoform specifi c mutational changes. Mutations in Na + /K + -ATPase α3 sub-
unit are associated with Dystonia Parkinsonism. On the other hand, Na + /K + -ATPase 
α2 subunit is upregulated in spinal cord of sporadic and familial amyotrophic lateral 
sclerosis.
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    Chapter 9   
 Activity of Membrane ATPases in Human 
Erythrocytes Under the Infl uence of Highly 
Hydroxylated Fullerenol                     

       Anita     Krokosz      and     Jacek     Grebowski   

    Abstract     Incubation of erythrocyte membranes with highly hydroxylated fullere-
nol C60(OH) x , x > 30 led to decreases in Na,K-ATPase, Ca-ATPase and Mg-ATPase 
activities. 

 The inhibition of the activities of erythrocyte ATPases caused by fullerenol could 
be the result of its direct and/or indirect (via membrane fl uidity changes or infl uenc-
ing other erythrocyte proteins) interaction with the enzymes. Fullerenol affected 
also cytoskeletal transmembrane proteins, particularly the band 3 protein. Despite 
the inhibition of Na,K-ATPase by fullerenol, an increase in potassium ion leakage 
was not observed. Blocking the leakage can result from physical “blockages” of 
potassium channels by fullerenol molecules. 

 In the intact human erythrocytes fullerenol can associate mostly with the surface 
of the plasma membrane; however, it could also migrate deeper inside the membrane 
increasing its fl uidity. Fullerenol has more than 30 -OH groups on the surface, and 
therefore can interact with the functional groups of amino acids of membrane proteins 
and the heads of membrane phospholipids via hydrogen bonds. Both, fullerenol and 
plasma membrane have negative overall charge, however, fullerenol can adsorb to 
the protein domains of the plasma membrane by van der Waals or dipolar 
interactions.  
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1         Introduction 

 Human erythrocyte Na,K-ATPase (EC 3.6.1.37) is responsible for the active transport 
of K +  inside and Na +  outside the erythrocytes. Human erythrocyte comprises several 
hundreds, between 230 and 470, of the protein molecules [ 1 ]. Na,K-ATPase is a 
heterodimer consisting of two α subunits (1020 amino acids, 112 kDa) and two β 
subunits (302 amino acids, 55kD). The α subunits are the catalytic subunits of the 
enzyme. They penetrate from 7 to 8 times the lipid bilayer and have binding sites 
modifying transporter activity. The β subunits only once pass through the membrane 
lipid bilayer and are highly glycosylated. The β subunits are crucial for the appropriate 
location of the enzyme in the membrane and for its proper functioning, as they regulate 
the activity of the α subunits [ 2 ]. Probably the β subunits are responsible for 
maintaining the proper conformation of the α subunits in the membrane and their 
stabilization. The ATPase protein is phosphorylated by ATP in the presence of Mg 2+  
and Na + , and then dephosphorylated in the presence of K + . The Na,K- ATPase 
extrudes three Na +  ions in exchange for two K +  ions, hydrolyzing one molecule of 
ATP [ 3 ,  4 ]. 

 Membrane proteins, which are responsible for enabling asymmetric concentra-
tions of ions across the membrane play a very important role in cell functioning. Na +  
and K +  gradients generated by Na,K-ATPase are used by gradient-driven systems to 
move ions across the erythrocyte plasma membrane. These systems may respond to 
changes in cell volume, pH or membrane integrity. The chloride content Cl −  of the 
human erythrocytes depend on the cation content as the Na, K, Cl cotransport is 
regulated by sodium and potassium gradients. Impaired Na,K-ATPase function can 
be linked to very severe effects [ 5 ]. This impairment in Na,K-ATPase activity in 
erythrocytes plays probably a role in the development of diabetic complications 
[ 6 ,  7 ] and hypertension [ 8 – 10 ].  

2     Fullerenols 

 The unique physicochemical properties of nanocompounds attract a great deal of 
attention in recent years [ 11 – 13 ]. A very promising group among these is the 
fullerenols (Fig.  9.1 ). Fullerenols are water-soluble polyhydroxylated fullerenes 
C60 derivatives. The carbon cage of fullerenol is built of rings, each consisting of 
5–6 carbon atoms, bound by coupled π bonds. Fullerenols have become a major 
point of interest in biomedical nanotechnology, thanks to their low toxicity com-
pared to nano-C60 suspensions. Fullerenols could play multiple functions reviewed 
in Refs. [ 11 ,  12 ,  14 ].

   In vivo studies showed that fullerenol can scavenge the free radicals that are 
massively induced during ischemia/reperfusion injury of the small intestine in dogs 
[ 15 ]. Fullerenol C 60 (OH) 24  derivatives protect mice against oxidative stress in isch-
emia reperfused lung models [ 16 ]. Fullerenols prevent toxicity to healthy organs 
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during chemo and radiation therapy. They exert hepatoprotective effects in 
doxorubicin- induced hepatotoxicity in rats with mammary carcinomas [ 17 ], prevent 
acute doxorubicin induced pulmotoxicity [ 18 ] and cardiotoxicity [ 19 ] in rats with 
malignant neoplasm, and protect mice from lesions to multiple organs induced by 
ionizing radiations [ 11 ]. Their protective effects were shown to depend on the direct 
scavenging of ROS produced by cancer therapy [ 11 ]; the same study however 
reports an additional cell-protective effect, showing that fullerenols induce a signifi -
cant overexpression of antiapoptotic Bcl-2 and Bcl-xL proteins as well as the trans-
activation of the cytoprotective GSTA4, MnSOD, NOS, CAT, and HO-1 genes [ 11 ] 
(with permission from [ 12 ])]. 

 Fullerenols could act as effective free radical scavengers. High concentrations of 
fullerenol (0.71–0.88 mmol/L) are more effective at scavenging hydroxyl radicals 
(above 50 %) than DPPH (1,1-diphenyl-2-picrylhydrazyl radical) (up to 50 %). 
There are three possible reactions responsible for the decay of OH radicals (Fig.  9.2 ). 
Fullerenol may function as an antioxidant by the donation of the hydrogen atom, 
abstracted from the hydroxyl group, which was confi rmed by EPR (Electron 
Paramagnetic Resonance) detection of a fullerenol radical C 60 (OH) 23 O • . The second 
reaction which may occur between a hydroxyl radical and fullerenol is the addition 
of  • OH radicals to the olefi nic double bonds between carbon atoms constituting the 
fullerene core. The last possibility is one electron oxidation of fullerenol to radical 
cation. These three mechanisms are not mutually exclusive [ 20 ,  21 ]. Moreover, it 
was suggested that the most probable mechanism of the reaction of OH with fullerenol 
was the addition of  • OH radicals to fullerenol carbon cage via the formation of a 
π-complex. This complex could dissociate to reform the reactants or rearrange to 
the σ-complex [ 21 ]. Fullerenols are good radioprotectants; they possess double 

  Fig. 9.1    The structure of 
fullerenol       
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bonds (C = C), high electron affi nity, ease of radical binding, and reactivity towards 
nucleophilic substituents [ 22 ]. The radioprotective properties of fullerenol have 
been confi rmed by in vitro and in vivo studies [ 23 – 25 ].

   It has been shown in vivo that fullerenol prevented the oxidation of glutathione 
(GSH), decreased lipid peroxidation (the level of MDA, malondialdehyde), and 
protected superoxide dismutase (SOD), which were attributed to the ability of 
C 60 (OH) 24  to scavenge lipid radicals and reactive oxygen species (ROS). 
Moreover, fullerenol protected mitochondrial proteins against oxidation, main-
tained the mitochondrial membrane potential, and inhibited apoptosis induced by 
ionizing radiation. These data indicate that fullerenol possesses radioprotective 
properties; however, the protective nature of fullerenol might be concentration 
dependent [ 11 ,  25 ]. Due to the presence of hydroxyl groups on the surface of 
fullerenol molecules, it is possible for them to take part in many interactions, e.g. 
creating hydrogen bonds with biomolecules. Hydrogen bonds are relatively weak 
interactions compared to covalent bonds; nevertheless, they play an important 
role due to their frequent occurrence in biological systems and their roles in bio-
chemistry and cell maintenance [ 26 ,  27 ]. The many hydroxyl groups on the sur-
face of fullerenol molecules make it possible for them to form hydrogen bonds 
between different biomolecules. In effect, fullerenol can adsorb on the heads of 
membrane phospholipids and interact with membrane proteins, thus infl uencing 
their functions. Membrane proteins play crucial roles in maintaining plasma 
membrane function. They are responsible for selective transport, the shape and 
architecture of the cell, and signal transduction [ 28 ]. Moreover, the high aqueous 
solubility and neutral pH of highly hydroxylated fullerenes and their accessibil-
ity to further modifi cation make them promising agents for drug delivery to par-
ticular locations in the cell, as well as potential anti-cancer agents to kill tumor 
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cells [ 29 – 31 ]. The hydroxyl groups increase hydrophilicity, which can be useful 
for delivering sparingly water-soluble or hydrophobic cytotoxic agents (with 
permission from [ 32 ]).  

3     The Infl uence of Fullerenol on Erythrocyte 
Ion-Dependent ATPases 

 Membrane proteins with ATPase activity, which are responsible for enabling asym-
metric concentrations of cations across the membrane at the expense of ATP hydro-
lysis, play a very important role in cell functioning. Among the transport ATPases 
worth mentioning are Na,K-ATPase, which transports Na +  outside and K +  ions 
inside the cell [ 3 ] and Ca-ATPase, which is responsible for the transport of Ca 2+  to 
the extracellular space [ 33 ]. Both enzymes require Mg 2+  ions for the active transport 
of cations [ 4 ]. Impaired Na,K-ATPase function can be linked to very severe effects. 
It has been shown that a decrease in the activity of Na,K-ATPase may result in either 
apoptotic or “mixed” cell death. Depleting intracellular K +  triggers an increase in 
intracellular Ca 2+ , an event perceived as a trigger for excitotoxicity leading to 
necrotic cell death [ 5 ]. Bearing this in mind, it is reasonable to investigate the inter-
actions of fullerenols not only with the lipid bilayer of the plasma membrane, but 
also with the proteins anchored to it. It is known, for example, that the activity of 
ATPases can be infl uenced either by a direct interaction with other molecules or by 
changes in the fl uidity of the lipid bilayer [ 34 ] (with permission from [ 32 ]). 

 Incubation of erythrocyte membranes with fullerenol at concentrations of 50, 
100, and 150 μg/mL at 37 °C for 1 h led to a decrease in the Na + /K + -ATPase activity 
proportional to the fullerenol concentration (Fig.  9.3 ). Fullerenol inhibited the Na + /
K + -ATPase activity by 51 % at 50 μg/mL of fullerenol and by 77 % at 150 μg/mL of 
fullerenol. The decreases in the ATPase activity were still observed when fullerenol 
was removed from the membrane suspensions by washing three times with PBS. In 
this case, the inhibition of the Na + /K + -ATPase activity was smaller, by about 
10–14 %, in comparison with the samples containing fullerenol during the ATPase 
activity assessment. Analogous experiments were made for Mg 2+ -ATPase and Ca 2+ -
ATPase. ATPases were inhibited with increasing fullerenol concentration either in 
the presence of fullerenol or after its removal by washing with PBS. The decrease 
in the activity of Ca 2+ -ATPase after removing fullerenol was lower by about 7–8 % 
compared with samples in which fullerenol was present during the Ca 2+ -ATPase 
activity assessment. Mg 2+ ‐ATPase activity was inhibited by fullerenol to the same 
extent for samples either with fullerenol present or absent during the assessment 
(with permission from [ 32 ]).

   We checked that fullerenol molecules can associate with the erythrocyte plasma 
membrane. After incubation of suspensions of erythrocyte membranes with differ-
ent concentrations of membrane proteins (0.5, 1.0 and 1.5 mg/mL) with fullerenol 
(50–150 μg/mL) for 1 h at 37 °C, the amount of fullerenol bound to the membrane 
increased proportionally to the fullerenol concentration in the sample. The amount 

9 ATPases Under the Infl uence of Fullerenol



164

  Fig. 9.3    The inhibition of 
erythrocyte membrane 
ATPases by fullerenol. 
Initial activities for 
Na,K-ATPase, Ca-ATPase, 
and basal Mg dependent 
ATPase activity, expressed 
as nmol Pi/(mg 
protein × h), were: 
143.3 ± 6.6, 226.0 ± 5.6, 
and 115.5 ± 7.8, 
respectively. Results are 
expressed as the 
percentage of the initial 
ATPase activity with 
standard deviation shown 
as error bars.  Asterisks  are 
used to mark values 
statistically different in 
comparison with control 
(*p < 0.001);  hashes —
difference between 
samples containing 
fullerenol and after its 
removal by washing with 
PBS (# p < 0.05) 
“Reproduced with 
permission” [ 32 ]       
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of fullerenol incorporated into the erythrocyte membrane varied from 2.50  μg/
mgMPr for 50 μg/mL of C 60 (OH) ~30  to 6.76 μg/mgMPr (MPr—membrane protein) 
for 150 μg/mL of fullerenol in samples in which the protein concentration was 
1 mg/mL. Fullerenol also increased the fl uidity of the membrane at concentrations 
between 50 and 150 μg/mL. The largest decrease in the value of the anisotropy coef-
fi cient of fl uorescent label was observed for the hydrophilic surface of phospholipid 
heads providing information about the organization of the membrane at its surface. 
For fl uorescent labels used to monitor the fl uidity in the hydrophobic-hydrophilic 
region of the membrane and the hydrophobic region between the two leafl ets of the 
membrane bilayer, signifi cant changes were observed only at fullerenol concentration 
of 150 μg/mL. It can be assumed that fullerenol binds mostly to the surface of the 
membrane, but at relatively high concentrations can migrate deeper inside the 
membrane [ 32 ]. 

 The leakage of potassium ions from the cells is related to disruption of active 
membrane transport and a result of the decrease in ATP levels, which can occur 
during prolonged incubation of erythrocytes [ 35 ]. As shown in our previous work, 
fullerenol inhibits the activity of ion-dependent ATPases as a result of both direct 
interaction with the enzyme and the infl uence of fullerenol on membrane fl uidity 
[ 32 ]. Inhibition of Na + ,K + -ATPase in erythrocytes causes distortion of the ion 
balance and leads to osmotic hemolysis [ 36 ,  37 ]. 

 Despite the inhibition of Na + ,K + -ATPase by fullerenol, an increase in hemolysis 
and potassium ion leakage was not observed. Blocking the leakage can result from 
physical “blockages” of potassium channels by fullerenol molecules. A similar effect 
was observed for blocking potassium ion channels by fullerene and nanotubes, where 
the blockage effect was dependent on the size and shape of the nanocompounds [ 38 ]. 
The ion channels can be fl anked by the nanocompounds as the result of electrostatic 
interaction or plain adsorption, which infl uences ion exchange and, therefore, cellular 
metabolism (with permission from [ 39 ]). 

 Functional changes in Na + /K + -ATPase under the infl uence of fullerenol could be 
associated with two effects. The fi rst is the interaction of fullerenol molecules with 
subunits of the enzyme. 

 Molecules of fullerenol penetrating the membrane could presumably interact 
with β subunits and through changes in their structure infl uence the action of the 
whole enzyme. These postulates are supported by the results of Calvaresi and 
Zerbetto in 2010 [ 40 ], who proved using computational methods the possibility 
of blocking the catalytic subunits of ATPases via interaction with fullerenols. As 
models they used rat Na + /K + -ATPase (1MO8 in PDB), which through ATP hydro-
lysis maintains an appropriate gradient of Na +  and K +  ions on both sides of the 
membrane, and bovine mitochondrial F1-ATPase (1EFR), participating in oxida-
tive phosphorylation providing ATP synthesis. In both models the interaction of 
C60 with the enzymes can be described as the inhibition of the catalytic mecha-
nism. Within Na + /K + -ATPase, C 60  binds to the very mobile α1 subunit region 
delimited by Gln396-Ala416 [ 41 ,  42 ]. On the other hand, in F1-ATPase, C 60  
interacts with both the α and β subunits [ 42 ], hindering the rotational movement 
necessary for the functioning of the protein. 
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 Another explanation for the attenuation of Na + /K + -ATPase activity could be the 
infl uence of fullerenol molecules on the lipids of the plasma membrane (Fig.  9.4 ) 
and, in consequence, changes in its fl uidity. Such changes have an impact on the 
ATPase activity [ 34 ]. For example, cholesterol is a compound playing a major role 
in the regulation of the structure and dynamics of the lipid bilayer. It can moderate 
the activities of various membrane transporters such as Ca 2+  channels, Na + /K + -
ATPase, Ca 2+ -ATPase, and Mg 2+ -ATPase in different cells, including erythrocytes 
and endothelial cells [ 43 ].

   Therefore, it is possible to conclude that the observed decrease in ATPase activity 
is a consequence of changes in the microviscosity of the erythrocyte membrane, 
caused by the incorporation of C 60 (OH) ~30  into its interior (with permission 
from [ 32 ]). In whole erythrocytes, fullerenol can indirectly interact with other cyto-
plasmic, peripheral and transmembrane proteins.  

4     The Infl uence of Fullerenol on the Other Erythrocyte 
Membrane Proteins 

 In order to investigate the infl uence of fullerenol on the membrane proteins, erythro-
cyte ghosts incubated with fullerenol for 3 and 48 h at 37 °C were separated by SDS-
PAGE electrophoresis in reductive and non-reductive conditions. As presented in 
Fig.  9.5 , fractions identifi ed after staining with Coomassie Brilliant Blue contained 
spectrins α and β, ankyrin, band 3 (AE1), 4.1 (EPB41), 4.2 (EPB42), and 4.9 (EPB49) 
proteins, actin, low-molecular-weight proteins, and hemoglobin. There were no sta-
tistically signifi cant differences between control samples and samples containing 

  Fig. 9.4    Fullerenol 
interactions with Na,K- 
ATPase subunits spanning 
a lipid bilayer. 
( a ) Attachment of 
fullerenol to the outer layer 
of the lipid bilayer; 
( b ) fullerenol interactions 
with β subunits of Na + /
K + -ATPase; 
( c ) simultaneous fullerenol 
interactions with an 
enzyme and a lipid bilayer; 
( d ) incorporation of 
fullerenol into the 
hydrophobic, inner region 
of the lipid bilayer of the 
plasma membrane 
“Reproduced with 
permission” [ 32 ]       
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membranes incubated with fullerenol up to 100 mg/L for 3 h. Interestingly, for the 
samples containing 150 mg/L of fullerenol incubated in the same conditions, there 
was a signifi cant decrease in the band identifi ed as actin with a simultaneous increase 
in the band 3 protein fraction. The decline of the actin band when the highest concen-
tration of fullerenol was used can suggest that the nanocompound causes association 
of this protein. The enrichment in the band 3 protein fraction, which has a molecular 
weight comparable to two molecules of actin connected by a molecule of fullerenol, 
suggests a possibility of interactions between fullerenol and erythrocyte cytoskeletal 
proteins. A prolonged, 48-h incubation resulted in the disappearance of the band 3 
fraction and enrichment in the broad band of low molecular mass proteins (smearing) 
in control erythrocyte ghosts. This is a result of substantial fragmentation of band 3 
protein, which could originate either from proteolytic or ROS- induced cleavage [ 44 ]. 
The presence of fullerenol in all used concentrations prevented the degradation of 
band 3 protein. The presented data indicate that fullerenol preferentially binds to 
band 3 protein and prevents its degradation. A large number of hydroxyl groups on 
the surface of the fullerenol carbon cage provide  possibilities for interaction and 
attachment of other molecules, e.g., drugs [ 30 ]. At the same time, functional -OH 
groups can adsorb to cytoskeletal erythrocyte proteins (with permission from [ 39 ]).

   The results obtained with the use of isolated erythrocyte ghosts are consistent 
with the infl uence of fullerenol on peripheral and transmembrane proteins, such as 
ATPases [ 32 ] and band 3 protein. The infl uence of fullerenol on transmembrane 
proteins is clearly refl ected by the changes in activity of Na + /K + -ATPase, Ca 2+ -
ATPase, and Mg 2+ -ATPase, which can originate from both direct interaction with 
the proteins and indirect infl uence on the fl uidity of the membrane [ 32 ]. Band 3 
protein plays a central role in cytoskeleton formation, therefore, conformational 
changes induced by various factors in this molecule result in echinocyte formation 
[ 45 ] (with permission from [ 39 ]). 

  Fig. 9.5    SDS-PAGE of proteins of erythrocyte membranes incubated with fullerenol for 3 and 
48 h at 37 °C under non-reductive or reductive conditions (DTT at 0.25 mM).  Arrows  indicate a 
complete disappearance of the band 3 protein “Reproduced with permission” [ 39 ]       
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 It has to be noted that a 48-h incubation of erythrocytes led to aggregation of the 
membrane proteins. The use of reducing agents prevents these events, indicating that 
aggregation is promoted by the creation of –S-S- bridges [ 46 ]. Fullerenol, when used 
in concentrations up to 100 mg/L did not infl uence aggregate formation. An increase 
in concentration to 150 mg/L, however, promoted protein aggregation. Aggregates 
formed in the presence of fullerenol in these conditions could not be reduced by 
DDT, which confi rms fullerenol–protein association. The infl uence of fullerenol on 
the proteins is not limited to association or networking. This nanocompound can 
induce deformation of the protein in the binding residues. Low concentrations of 
C 60 (OH) 20  (15–30 mg/L) inhibit microtubule polymerization by binding to tubulin in 
the ratio 9:1 [ 47 ]. Fullerenol C 60 (OH) 36 , by association with band 3 protein, not only 
prevented its degradation but also infl uenced the binding sites of spectrin, band 4.1 
and 4.2 proteins or actin, leading to changes in the cytoskeleton affecting erythrocyte 
morphology [ 48 – 50 ] (with permission from [ 39 ]). The morphological changes of 
erythrocytes induced by fullerenol were investigated with fl ow cytometry and phase 
contrast microscopy (Fig.  9.6  and  9.7 ). Changes in the shape of the cells observed by 
fl ow cytometry are in accordance with microscopic observations of erythrocytes 
exposed to fullerenol. Fullerenol seemed to slightly enhance the formation of den-
drites, typical for echinocyte forms at a concentration of 150 mg/L.

    Formation of echinocytes is caused by a number of factors, which, among other 
things, affect the conformation of band 3 protein, the main foundation of the cyto-
skeleton [ 45 ]. Moreover, it is a transmembrane anion exchanger protein responsible 
for chloride and bicarbonate transport, which is correlated with potassium and 
sodium active transport by Na+/K+-ATPase. Fullerenol, by inhibiting the function 
of Mg 2+ -dependent membrane ATPases [ 32 ], may be able to disturb the distribution 
of lipids in the inner and outer membrane layers, thus, triggering the collapse of the 
discoidal shape of erythrocytes [ 51 ]. Further, the altered morphology of the cells 
can be explained by the formation of hydrogen bonds between the nanoparticles and 
the lipid head groups. The presence of each nanoparticle engaged a number of lipids 
to reduce their areas per lipid molecule. It is not impossible that a synergistic effect 
of fullerenol on membrane ATPases, band 3 protein and lipids is responsible for part 
of the echinocytic transformation. 

 Our data show that fullerenol can slightly alter the morphology and, therefore, 
the inner-organization of the cells through association with cytoskeletal proteins. 
These results confi rm that fullerenol is able to interact with transmembrane cytoskel-
etal proteins, in particular band 3 protein and ATPases (with permission from [ 39 ]).  

5     Conclusions 

 Incubation of erythrocyte membranes with fullerenol led to decreases in Na + ,K + -
ATPase, Ca 2+ -ATPase, and Mg 2+ -ATPase activities. The inhibition of the activities 
of erythrocyte ATPases caused by fullerenol could be the result of its direct and/or 
indirect (via membrane fl uidity changes or infl uencing other erythrocyte proteins) 
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interaction with the enzymes. Fullerenol affected cytoskeletal transmembrane proteins, 
particularly the band 3 protein. Despite the inhibition of Na + ,K + -ATPase by fullere-
nol, an increase in potassium ion leakage was not observed. Blocking the leakage 
can result from physical “blockages” of potassium channels by fullerenol molecules. 
In the intact erythrocytes fullerenol can associate mostly with the surface of the 
plasma membrane; however, it could also migrate deeper inside the membrane 
increasing its fl uidity. Fullerenol has more than 30 -OH groups on the surface, and 
therefore can interact with the functional groups of amino acids of membrane 
proteins and the heads of membrane phospholipids via hydrogen bonds. 

  Fig. 9.6    Flow cytometry analysis of fullerenol-induced changes in erythrocyte morphology. 
( a ) Scattering diagrams of human control erythrocytes and erythrocytes incubated for 3 and 48 h 
with fullerenol in concentrations ranging from 50 to 150 mg/L. The FSC-A/SSC-A diagram is a 
dual parameter contour plot proportional to the total cell diversity. ( b ) The FSC-A histograms 
represent the light scattered near the forward direction (proportional to the volume of the particles). 
The SSC-A histograms represent scattering at the right angle (dependent on cell shape and internal 
properties) “Reproduced with permission” [ 39 ]       
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Both fullerenol and plasma membrane have negative overall charge; however, 
fullerenol can adsorb to the protein domains of the plasma membrane by van der 
Waals or dipolar interactions [ 39 ,  52 ].
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    Chapter 10   
 Xenobiotics-Mediated Modulation of ATPases 
and Biomedical Implications                     

        Bechan     Sharma     ,     Shweta     Singh    ,     Sunil     Kumar     Jaiswal    , 
and     Nikhat     Jamal     Siddiqi   

    Abstract     A xenobiotic is a chemical compound found in an organism but normally 
not produced or expected to be present in it. Xenobiotics are the substances foreign 
to any biological system. Mostly, these are artifi cial or synthetic substances such as 
drugs including antibiotics, which did not exist in nature. Natural compounds can 
also become xenobiotics if they are taken up by another organism. Pollutants such 
as dioxins, polychlorinated biphenyls, pesticides, and dyes also belong to this cate-
gory. A compound that is normal to one organism may be a xenobiotic to another; 
for example the sewage for a fi sh. When an animal produces a toxin as a defense 
mechanism against predators, these toxins can be thought of as xenobiotics to the 
predator. However, predators can also evolve defenses against these xenobiotics. 
The term xenobiotic is also used to refer to organs transplanted from one species to 
another. Most of the xenobiotics evoke response in an individual by acting at their 
specifi c targets. Some of them actively interact with different ATPases and are capa-
ble to effi ciently modulate their structures and functions. This chapter illustrates an 
updated account of interactions of different xenobiotics with varied ATPases, xeno-
biotics induced modulations in the structures and functions of different ATPases and 
their implications in design and development of newer potential anticancer agents. 
In addition, the possible ameliorative strategies to encounter adverse effects gener-
ated by such xenobiotics are also discussed.  
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1         Introduction 

 A xenobiotic is a chemical substance foreign to an organism. The term xenobiotic 
is derived from the Greek words ξένος (xenos) = foreigner, stranger and βίος (bios, 
vios) = life, plus the Greek suffi x for adjectives -τικός, -ή, -ό (tic). Most of the envi-
ronmental xenobiotics possess abiological activity acting as pollutants in the envi-
ronment. Several xenobiotics are the substances lipophilic in nature. Specifi cally, 
drugs such as antibiotics are xenobiotics in humans because the human body does 
not produce them naturally, or consume them in normal diets, nor they are part of a 
normal food. Natural compounds can also become xenobiotics if they are taken up 
by another organism, such as the uptake of natural human hormones by fi sh or the 
chemical defenses produced by some organisms as protection against predators. 
Thus, a compound that is natural to one organism may be a xenobiotic to another 
[ 1 ]. Xenobiotics can also be defi ned as substances that are present in higher-than- 
normal concentrations, or ones that are entirely artifi cial. The term xenobiotics may 
also refer to pollutants such as dioxins and polychlorinated biphenyls. Xenobiotics 
are the substances foreign to any biological system. They are artifi cial or man-made 
substances, which did not exist in nature. Organs transplanted across the species are 
also included in the list of xenobiotics as the transplantation of pig hearts and other 
organs to humans could be made. Kidneys are currently the most commonly trans-
planted organ. When an animal produces a toxin as a defense mechanism against 
predators, these toxins can also be thought of as xenobiotics from the point of view 
of the predator [ 2 ]. 

 Xenobiotics are eliminated from the body through xenobiotic metabolism, in 
which the xenobiotics are deactivated and secreted away from the body. The liver is 
typically the primary focus of xenobiotic metabolism, and excretion can occur 
through urine, feces, breath, and sweat. Hepatic enzymes metabolize major amount 
of xenobiotics present in the body. The xenobiotic metabolism occurs in basically 
two different phases: I and II. In Phase I the xenobiotics undergo a series of redox 
reactions, hydrolytic, epoxidation, and transfer reactions where as the phase II reac-
tions are basically associated with the conjugation reactions. The ultimate aim of a 
battery of these reactions is to convert highly hydrophobic and more toxic xenobiot-
ics into more hydrophilic chemical species and less toxic substances. Sometimes 
these chemical pathways and their reactions can be fatal, as is the case with poison-
ing deaths and harmful drug interactions. This process is called bioactivation, the 
reverse phenomena of phase I and phase II biotransformation reactions, in which 
the less toxic parent compounds are converted into more toxic products. The meta-
bolic pathways that human body employs to process xenobiotics have long been a 
subject of interest on the part of medical science. It is largely through studying 
these pathways that new drugs are proposed and developed, especially in the case 
of chemotherapeutics used in cancer treatment. They are also important in studying 
the potential effects of pollutants on an environment, to see whether the chemical 
will be broken down, or remain in the environment and cause harm. Thus, an 
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 understanding of xenobiotic metabolism is critical for the pharmaceutical industry 
because they are responsible for the breakdown of drugs [ 2 ]. 

 The effect of different xenobiotics is mediated via their interactions with specifi c 
targets in living systems; for example many organocarbamates and organophos-
phates act on neurotransmission system and block it primarily by drastically inacti-
vating acetylcholinesterase (AChE). Some of these chemicals/materials actively 
interact with and modulate the activities of different adenosine triphosphatases 
(ATPases). However, the level of interactions between a xenobiotic material and 
ATPases varies. For many of such compounds the mechanism of interaction is not 
yet known. This chapter presents a recent account of xenobiotics-mediated modula-
tion in ATPases and the biochemical/molecular consequences induced by such 
chemicals in biological systems. The possible amelioration in order to protect the 
living systems from xenobiotics induced toxicities is also included.  

2     Adenosine 5′-Triphosphatases (ATPases): Classifi cation, 
Structures, and Functions 

 These enzymes are basically hydrolases but catalyze both the synthesis and hydro-
lysis of ATP. Normally, the ATPases (EC 3.6.1.3, adenylpyrophosphatase, ATP 
monophosphatase, triphosphatase, SV40 T-antigen, adenosine 5′-triphosphatase, 
ATP hydrolase, complex V (mitochondrial electron transport), (Ca 2+ +Mg 2+ )-
ATPase, HCO 3  − -ATPase, adenosine triphosphatase) are recognized as a class of 
enzymes that catalyze the decomposition of ATP into ADP and a free phosphate ion 
by using one molecule of H 2 O [ 3 – 8 ] . This dephosphorylation reaction or breaking 
of a gamma-phosphodiester bond releases energy, which the enzyme (in most 
cases) harnesses to drive other chemical reactions that would not otherwise occur. 
This process is widely used in all known forms of life. Some of these enzymes are 
transmembrane proteins (i.e., bound to the plasma membrane) and they help medi-
ate the movement of solutes across the membrane, typically against their concentra-
tion gradient. These are called transmembrane ATPases. Some of the known 
ATPases are (1) P-type ATPase (E1E2-ATPases; found in bacteria, fungi and 
eukaryotic plasma membranes and organelles and function to transport a variety of 
different ions across the membranes), (2) F-type ATPase (F1FO-ATPases) found in 
mitochondria, chloroplasts, and bacterial plasma membrane, primary producers of 
ATP using the proton gradient generated by oxidative phosphorylation (mitochon-
dria) or photosynthesis (chloroplasts), (3) Vacuolar-type ATPase (V-ATPase or 
V1VO-ATPases; primarily found in eukaryotic vacuoles, responsible for catalysis 
of ATP hydrolysis to transport solutes and lower pH in organelles like proton pump 
of lysosomes), (4) A-type ATPase (A1AO-ATPases; found in Archaea and function 
like F-ATPases), (5) E-type ATPase (cell surface enzymes that hydrolyse a range of 
NTPs, including extracellular ATP), (6) ATP Synthase, (7) sodium–potassium 
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adenosine triphosphatase (Na + /K + -ATPase), (8) Proton ATPase, (9) Calcium 
ATPase (Ca 2+ -ATPase), (10) hydrogen potassium ATPase (H + /K + -ATPase), and (11) 
Magnesium ATPase (Mg 2+ -ATPase) [ 9 ]. 

 In fact, these ATPases have been categorized based on their structure (such as 
F-, V-, and A-ATPases with rotary motors), function (such as synthesis or degrada-
tion of ATP) and the nature of ions that they transport. P-ATPases (E1-E2 ATPases) 
are found in bacteria, fungi and in eukaryotic plasma membranes and organelles, 
and function to transport different ions across their plasma membranes. Its name 
is due to the short time attachment of inorganic phosphate at the aspartate residue 
at the time of activation. The function of P-ATPase includes the transport of vari-
ous compounds, like ions and phospholipids across a plasma membrane at the 
expense of energy derived from hydrolysis of ATP. There are many different 
classes of P-ATPases, which transport a specifi c type of ion. P-ATPases may be 
composed of one or two polypeptides, and can exist primarily into two chief con-
formations, E1 and E2. 

 The F-ATPases (F1FO-ATPases) located in mitochondria, chloroplasts, and bac-
terial plasma membranes are the prime producers of ATP, using the proton gradient 
generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloro-
plasts). The V-ATPases (V1VO-ATPases) are primarily found in eukaryotic vacu-
oles, catalyzing ATP hydrolysis to transport solutes and lower pH in organelles like 
proton pump of lysosome. The A-ATPases (A1AO-ATPases) are found in Archaea 
and function like F-ATPases whereas E-ATPases are cell-surface enzymes that 
hydrolyse a range of NTPs, including extracellular ATP. 

 The ATP synthase of mitochondria and chloroplasts is an anabolic enzyme that 
harnesses the energy of a transmembrane proton gradient as an energy source for 
adding an inorganic phosphate (Pi) group to a molecule of adenosine diphosphate 
(ADP) to form a molecule of adenosine triphosphate (ATP) (ADP + Pi → ATP). This 
enzyme works when a proton moves down the concentration gradient, giving the 
enzyme a spinning motion. This unique spinning motion bonds ADP and Pi together 
to create ATP. ATP synthase can also function in reverse, that is, use of energy 
released by ATP hydrolysis (ATP → ADP + Pi) to pump protons against their elec-
trochemical gradient. 

 The transmembrane ATPases such as Na + /K + -ATPase are known to import 
many metabolites necessary for cell metabolism and export toxins, wastes, and 
solutes that can hinder cellular processes. An important example is the sodium–
potassium exchanger or Na + /K + -ATPase that is responsible to maintain the cell 
membrane potential. The coupling between ATP hydrolysis and transport is a 
stringent chemical reaction, in which a fi xed number of solute molecules are 
transported for each ATP molecule hydrolyzed; for example, 3 Na +  ions out of the 
cell and 2 K +  ions inward per ATP hydrolyzed, for the Na + /K + -ATPase. 
Transmembrane ATPases harness the chemical potential energy of ATP, because 
they perform mechanical work: they transport solutes in a direction opposite to 
their thermodynamically preferred direction of movement—that is, from the side 
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of the membrane where they are in low concentration to the side where they are in 
high concentration. This process is considered active transport. For example, the 
blocking of the vesicular H + -ATPAses would increase the pH inside vesicles and 
decrease the pH of the cytoplasm. 

 The H + /K + -ATPases are involved in the acidifi cation of the contents of the 
 stomach. Besides exchangers, other categories of transmembrane ATPase include 
co- transporters and pumps (however, some exchangers also act as pumps). Some 
of these such as Na + /K + -ATPase, cause a net fl ow of charge, but others do not. 
These are called “electrogenic” and “nonelectrogenic” transporters, respectively. 
Some xenobiotics such as cardiac glycosides and their derivatives (digitoxin, 
digoxin, etc.) may exert their toxicity by selectively interfering and blocking the 
sodium–potassium pump, a ubiquitous and crucial ion transporter. The manifesta-
tions of digitoxin-induced toxicity include malfunctions of cardiac, gastrointestinal, 
and neuronal systems.  

3     ATPases: Interactions with Xenobiotics 
and Biomedical Implications 

 Many xenobiotics including pesticides are known to interact with ATPases and 
thereby adversely infl uence the activities of these enzymes; though the mechanisms 
of actions of some of them are not well understood. In an in vivo study, Jaiswal e al 
have demonstrated that carbofuran, a carbamate pesticide which is known for inhib-
iting activity of AChE, could signifi cantly inhibit activity of Na + -K + -ATPase in rat 
erythrocyte membrane [ 10 ]. These workers have explained that Na + -K + -ATPase, a 
membrane-bound sulfhydryl containing integral membrane protein, maintains rest-
ing cell membrane potential by pumping sodium and potassium ions against the 
electrochemical gradient across the cell membrane [ 11 ]. The maximum activity of 
Na + -K + -ATPase present at nerve endings maintains an ionic gradient across the 
membrane by utilizing 40–50 % of ATP produced in the brain for neuronal excit-
ability [ 12 ,  13 ]. Any alteration in Na + -K + -ATPase activity may cause neuropsychiat-
ric disorders [ 14 ,  15 ]. The diminished activity of Na + -K + -ATPase due to carbofuran 
appears to be associated with the peroxidation of unsaturated lipids of neuronal 
membrane as the thiol (−SH) group of Na + -K + -ATPase is known to be highly suscep-
tible to oxidative stress [ 16 ]. It has been demonstrated that carbofuran mediated 
modulation of enzyme activity could be effi ciently ameliorated by pretreatment of 
rats with vitamin E [ 10 ]. It appears that the mitigation of carbofuran-induced oxida-
tive stress by vitamin E treatment would be crucial in the recovery of Na + -K + -ATPase 
[ 17 ]. Thus, Na + -K + -ATPase appears to serve as a potential biomarker against any 
xenobiotics mediated toxicity in biological systems. This hypothesis has been vali-
dated by another group of workers who have explained that the xenobiotics-induced 
lipid peroxidation alters the functions of membrane-bound motives of transporters of 
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glutamate and glucose, and ion-motive ATPases (Na + -K + -ATPase and Ca 2+− ATPase), 
thereby disrupting cellular homeostasis [ 18 ]. The impact of organophosphates and 
organochlorines on blood brain barrier, ion channels/transporters, and membrane 
lipid contents has been reported to alter the brain function, which could be amelio-
rated by the application of vitamins and melatonin [ 19 ,  20 ]. 

 Cascorbi and Forêt [ 21 ] have investigated the interaction of individual and 
combined xenobiotics on functional properties of the glucose-transport system 
and the Na+/K(+)-ATPase located on the plasma membrane of human skin fi bro-
blasts. They evaluated the effects of both the hydrophobic and hydrophilic xenobi-
otics in single and combinatorial forms and observed considerable inhibition in the 
activity of Na+/K(+)-ATPase. The results of their studies have indicated that the 
inhibition of integral functional proteins is based on the accumulation of xenobiot-
ics in the plasma  membrane, probably due to the enhanced membrane fl uidity. 
However, the physicochemical properties of the xenobiotics are equally important 
in bioaccumulation. 

 The cell surface molecule ABCC10 is a broad-acting transporter of xenobiotics, 
including cancer drugs such as taxanes, epothilone B, and modulators of the estrogen 
pathway. Malofeeva et al. [ 22 ] have shown that  Abcc10  −/−  mice exhibit increased tis-
sue sensitivity and lethality resulting from paclitaxel exposure compared to wild- type 
counterparts, arguing that ABCC10 functions as a major determinant of taxane sen-
sitivity in mice. These researchers have proposed the mechanistic basis of ABCC10 
action by characterizing the biochemical and vectorial transport properties of this 
protein. These workers have demonstrated that a number of cytotoxic substrates, 
including docetaxel, paclitaxel and Ara-C, increased the ABCC10 basal ATPase 
activity. They further observed that the clinically valuable multi-kinase inhibitor 
sorafenib, and a natural alkaloid, cepharanthine, interacted with this protein and 
inhibited ABCC10 docetaxel transport activity [ 22 ]. The exact mechanism of action, 
however, is not yet known. The cell surface molecule ABCC10 is a broad- acting 
transporter of xenobiotics, including cancer drugs such as taxanes, epothilone B, and 
modulators of the estrogen pathway.  Abcc10  −/−  mice exhibit increased tissue sensi-
tivity and lethality resulting from paclitaxel exposure compared to wild- type counter-
parts, arguing that ABCC10 functions as a major determinant of taxane sensitivity in 
mice. Cytotoxic substrates like docetaxel, paclitaxel and Ara-C increase ABCC10 
basal activity.   Multi-kinase inhibitor sorafenib and a natural alkaloid, cepharanthine 
inhibit ABCC10 docetaxel transport activity.  

4     Phosphoglycoprotein (P-gp): Interactions with Xenobiotics 
and Implications in Development of Anticancer Agents 

 Leslie et al. [ 23 ] have indicated that the 190-kDa phosphoglycoprotein (P-gp) mul-
tidrug resistance protein 1 (MRP1) (ABCC1) confers resistance to a broad spec-
trum of anticancer drugs and also actively transports certain xenobiotics with 
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reduced glutathione (GSH) (co-transport) as well as conjugated organic anions 
such as  leukotriene C(4) (LTC(4)). They have screened a series of biofl avonoids for 
their ability to infl uence different aspects of MRP1 function and found that most 
fl avonoids inhibited MRP1-mediated LTC(4) transport in membrane vesicles. They 
also investigated that the inhibition by several fl avonoids was enhanced by GSH. 
According to these workers, the fl avonoids such as naringenin and apigenin 
markedly stimulated GSH transport by MRP1, which suggested that they might 
be cotransported with this tripeptide. Quercetin inhibited the ATPase activity of 
purifi ed reconstituted MRP1 but stimulated vanadate-induced trapping of 8-azido-
alpha-[(32)P]ADP by MRP1 ATPase. In contrast, other fl avonoids such as kaemp-
ferol and naringenin stimulated both MRP1 ATPase activity and trapping of ADP. 
By conducting several concerned experiments using intact MRP1-overexpressing 
cells, these authors have concluded that dietary fl avonoids may modulate the 
organic anion and GSH transport, ATPase, and/or drug resistance-conferring prop-
erties of MRP1. They further suggested that at least some of these compounds, i.e., 
fl avonoids may interact with different sites on the MRP1 molecule and modulate its 
function (Leslie et al., 2001). The presence and functions of P-gp have also been 
established in aquatic organisms that mediates multixenobiotic resistance (MXR) 
defense in them [ 24 ]. 

 The structure and function of P-glycoprotein (P-gp, ABCB1) drug pump has 
been exhaustively worked out. It is known to protect us from toxic compounds and 
it confers multidrug resistance. Each of the homologous halves of P-gp is composed 
of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide- 
binding domain (NBD). The predicted drug- and ATP-binding sites reside at the 
interface between the TMDs and NBDs, respectively. The P-glycoprotein multidrug 
transporter is a 170-kDa effl ux pump which exports a diverse group of natural prod-
ucts, chemotherapeutic drugs, and hydrophobic peptides across the plasma mem-
brane, driven by ATP hydrolysis. The transporter has been proposed to interact with 
its drug substrates within the membrane environment; however, its nature and num-
ber of the drug binding site(s) were not well known. Sharom et al. [ 25 ] have reported 
that the two nucleotide binding domains of P-glycoprotein were responsible for 
ATP binding and hydrolysis, which was coupled to drug movement across the 
membrane. In 2012, another group of workers have displayed that the ATPase activ-
ity of the P-glycoprotein drug pump is highly activated when the N-terminal and 
central regions of the nucleotide-binding domains are linked closely together [ 26 ]. 
These authors have explained it in the light of the crystal structures and EM projec-
tion images of P-glycoprotein, which suggest that the two halves of P-gp are sepa-
rated by a central cavity that closes upon binding of nucleotide. Binding of drug 
substrates may induce further structural rearrangements because they stimulate 
ATPase activity. They used disulfi de cross-linking with short (8 Å) or long (22 Å) 
cross-linkers to identify domain-domain interactions that activate ATPase activity 
over ten fold. The results of a series of experiments conducted by them suggested 
that trapping P-gp in a conformation in which the NBDs are closely associated 
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likely mimics the structural rearrangements caused by binding of drug substrates 
that stimulate ATPase activity [ 26 ]. 

 Bessadok et al. [ 27 ] have shown that two multispecifi c ABC proteins such as 
ABCC8/9 (a sulfonylurea receptor) and ABCB1 (a multidrug resistance transporter 
P-glycoprotein) share common structural features. These authors have explained 
that ATP-sensitive K(+) (K(ATP)) channels are the target of a number of pharmaco-
logical agents, blockers like hypoglycemic sulfonylureas and openers like the hypo-
tensive cromakalim and diazoxide. These agents act on the channel regulatory 
subunit, the sulfonylurea receptor (SUR), which is an ABC protein with homologies 
to P-glycoprotein (P-gp). P-gp is a multidrug transporter expressed in tumor cells 
and in some healthy tissues. Both of these two ABC proteins exhibit multispecifi c 
recognition properties. These workers have shown that SUR ligands could be sub-
strates of P-gp while monitoring ATPase activity of P-gp-enriched vesicles. They 
observed that the blockers glibenclamide, tolbutamide, and meglitinide increased 
ATPase activity, with a rank order of potencies that correlated with their capacity to 
block K(ATP) channels. P-gp ATPase activity was also increased by the openers 
SR47063 (a cromakalim analog), P1075 (a pinacidil analog), and diazoxide, thereby 
showing that these molecules bind to P-gp (although with lower affi nities than for 
SUR) and are possibly transported by P-gp. They further conducted the competition 
experiments among these molecules as well as with typical P-gp substrates and 
found existence of a structural similarity between drug binding domains in the two 
proteins [ 27 ]. 

 Recently, Hall et al. [ 28 ] have expressed that the cancer multidrug resistance 
(MDR) mediated by ATP-binding cassette (ABC) transporters presents a signifi cant 
unresolved clinical challenge. They have proposed a strategy to resolve MDR by 
developing compounds that selectively kill cells overexpressing the effl ux trans-
porter P-glycoprotein (MDR1, P-gp, ABCB1). In this direction, they synthesized 
several novel molecules such as a lead compound NSC73306 (1, 1-isatin-4-(4′-
methoxyphenyl)-3-thiosemicarbazone and its various analogues and tested against 
cancer cell lines. They found signifi cant increase in MDR1-selectivity against most 
of the P-gp-expressing cell lines. In continuation of a quest to design and develop 
some new anticancer molecules against P-gp as a target, Palmeira et al. [ 29 ] have 
presented thioxanthones (1-Aminated thioxanthone) and their derivatives as dual 
inhibitors of P-gp and tumor cell growth. They have claimed that these molecules 
exhibited potential to act as both antitumor agents and P-glycoprotein (P-gp) inhibi-
tors. However, Wei et al. [ 30 ] have investigated another drug, H1, a novel derivative 
of tetrandrine (Tet) which may reverse P-glycoprotein (Pgp)-mediated multidrug 
resistance (MDR) in KBv200, MCF-7/adr and their parental sensitive cell lines KB, 
MCF-7 by inhibiting the transport function and expression of Pgp. H1 inhibited Pgp 
expression and ATPase activity of Pgp in KBv200 cells in a dose-dependent man-
ner, but had no effect on MDR1 expression.  

B. Sharma et al.



181

5     Conclusions 

 Xenobiotics include all foreign substances such as synthetic chemicals, drugs, and 
antibiotics or any other artifi cial or man-made substances, which did not exist in 
nature. Most of these xenobiotics induce numerous toxic effects via acting at differ-
ent targets. Many of these actively interact with different ATPases and effi ciently 
modulate their structures and functions. ATPases in cellular and subcellular systems 
are involved in regulation of both the synthesis (F-ATPases present in mitochondria, 
chloroplasts, and bacterial plasma membranes) as well as degradation (V-ATPases 
present in eukaryotic vacuoles and lysosomes) of ATP molecules. The transmem-
brane ATPases (such as Na + /K + -ATPase) are known to import several metabolites 
necessary for cell metabolism and export toxins, wastes, and solutes that can hinder 
cellular processes. Out of several ATPases known so far, 190-kDa phosphoglyco-
protein (P-gp), a multidrug resistance protein 1 (MRP1) (ABCC1) conferring resis-
tance to a broad spectrum of anticancer drugs has been extensively studied. Keeping 
in view the key role played by ATPases in regulation of cellular homeostasis, these 
enzymes are now being extensively exploited as most viable targets to design and 
develop potential anticancer agents by analyzing their structure–function relation-
ship and interactions with various drugs/xenobiotics using bioinformatics tools.   
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    Chapter 11   
 Emerging Role of Dysadherin in Metastasis                     

        Kuntal     Dey     ,     Haim     Garty    , and     Sajal     Chakraborti   

    Abstract     Dysadherin, a small regulator of Na + /K + -ATPase and a cell membrane 
glycoprotein, is associated with cancer metastasis. However, its role in metastasis is 
largely unknown. In this review we highlight the role of this recently identifi ed pro-
tein in cancer progression. Dysadherin has been suggested to affect cancer progres-
sion by downregulating E-cadherin or by upregulating the chemokine production. 
Overexpression of dysadherin alters trans epithelial resistance (TER) indicating it’s 
effect on paracellular permeability. Additional fi ndings suggest that dysadherin also 
affects extracellular matrix. The expression of dysadherin can infl uence both the 
tumor cell as well as the cell matrix. Recent fi ndings strongly suggest that dysad-
herin expression as an independent prognostic indicator of metastasis. Thus, dysad-
herin can be used as a molecular target for identifi cation as well as prevention of 
cancer.  

  Keywords     Dysadherin   •   Cancer   •   Na + /K + -ATPase   •   E-cadherin   •   CCL2   •   RIC   • 
  FXYD5  

1         Introduction 

 In the year 2001, the work of Ino et al. [ 1 ] showed that a monoclonal antibody 
NCC-3G10, produced upon immunization of BALB/c mice with human hepatoma 
Li-7 cells, recognize a cell membrane glycoprotein that is expressed in a wide vari-
ety of cancers cells. However, the expression was limited to normal cells such as 
stratifi ed squamous epithelium, lymphocytes, and epithelial cells. It was also found 
that transfection of the cDNA of this protein inactivates E-cadherin function in post-
transcriptional manner. Most importantly, this protein has an important role in 
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tumor progression and metastasis. They called this protein “Dysadherin” in order to 
symbolize its anti-adhesion property. Interestingly, global homology search showed 
that human dysadherin closely resembles mouse RIC (Related to Ion Channel) [ 1 ]. 
The signal peptide, the extracellular domain, the transmembrane domain, and the 
cytoplasmic region of dysadherin showed ~90 %, 21 %, 100 %, and 69 % similarity, 
respectively, with that of mouse RIC (Fig.  11.1a, b ). RIC is a type of FXYD protein 
(FXYD5), a small protein that interacts and regulates the function of Na + /K + -ATPase 
[ 2 ]. It is now accepted that dysadherin and RIC (FXYD5) are identical.

2        Structural Features of Dysadherin 

 In general FXYD proteins are type I membrane proteins with an intracellular C 
terminus, an extracellular N terminus containing the signal peptide and a single 
transmembrane domain (Fig. 11.1a ). However, with the exception of dysadherin, the 
extracellular domain of other FXYD proteins is shorter than 40 amino acids, which 
includes a signal peptide that can be cleaved. The cDNA of dysadherin encodes 178 

  Fig. 11.1    ( a ) Amino acid sequence of human dysadherin showing the signal peptide, extracellular, 
transmembrane, and cytoplasmic domain. The  underlined  sequences are the two hydrophobic 
regions of the protein. ( b ) Comparison of the amino acid sequences of human dysadherin with 
mouse RIC. The same colors (except the  red  one) indicate the same region of dysadherin from the 
two species. The  red color  indicates the mismatch between the sequences       
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amino acids. For dysadherin, the extracellular domain is long containing ~140 
amino acids. On the other hand, dysadherin has the shortest intracellular C-terminal 
segment with only 15 amino acids. The primary sequence of dysadherin predicts a 
number of O-glycosylation sites, but no N-glycosylation [ 3 ]. The work of Tsuiji 
et al. [ 4 ] suggests that the protein is heavily glycosylated. Work from different labo-
ratories on different cell lines showed confl icting molecular mass of dysadherin 
[ 1 ,  2 ]. Lubarski et al. [ 2 ] observed the discrepancy of molecular weight between 
human dysadherin and mouse dysadherin and suggest that this difference may be 
due to species variation or may be a result of metastatic vs normal cells where dys-
adherin is differentially glycosylated. Interestingly it was also suggested that α- and 
β-subunit of Na + /K + -ATPase are not required for full processing of dysadherin and 
its traffi cking to the plasma membrane. However, O-glycosylation of dysadherin is 
necessary for its stable expression [ 4 ]. 

 Dysadherin was shown to be expressed in different types of cancers such as 
stomach, pancreatic, and breast tumors, whereas the expression was limited for rela-
tively small number of normal cell types including lymphocytes and endothelial 
cells [ 1 ,  2 ]. Lubarski et al. [ 2 ] have demonstrated that dysadherin is expressed in 
epithelial tissues such as kidney, intestine, and lung. In kidney, the expression level 
appears to be highest in the cortex with reduced labeling in the medulla and papilla, 
whereas in intestines, dysadherin was found mainly in the duodenum. A more 
detailed characterization of the distribution of dysadherin in the nephron was docu-
mented by confocal fl uorescence microscopy where dysadherin is localized in the 
basolateral membrane of the collecting tubule and in the intercalated cells of the 
collecting duct [ 2 ]. In NIH 3T3 fi broblasts, expression of a variety of oncogenes 
including E2a-Pbx1, v-Ras, Neu and v-Src shows concomitant upregulation of dys-
adherin. Transfection of human primary epithelial cells with c-Src or with E2F3 
leads to the upregulation of dysadherin [ 5 – 7 ]. All these studies indicate that dysad-
herin is upregulated in cancer metastasis. However, a recent study of Gabrielli et al. 
[ 8 ] revealed identity of dysadherin in the male gonad and in spermatozoa. Its colo-
calization with E-cadherin and α4 isoform of Na + /K + -ATPase suggests a role for 
dysadherin as a modulator of sperm function.  

3     Molecular Mechanism of Dysadherin Action 

 Dysadherin is highly expressed in several metastatic cancer cell lines compared 
with their respective normal cells [ 1 ,  9 – 11 ]. Overexpression of dysadherin in sev-
eral cell lines resulted in a reduced cell–cell contact and enhancement of metastasis 
[ 9 ,  11 ]. In MCF7 and its derivative cell lines, overexpression of dysadherin has been 
observed in high-grade metastasis cells and not in the low grade one. Overall, these 
evidences strongly suggest that dysadherin plays an important role in metastasis. 
Till date two mechanisms have been proposed for dysadherin-mediated metastasis: 
E-cadherin dependent and E-cadherin independent. Figure  11.2  schematically rep-
resents how dysadherin could affects metastatic event.
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3.1       Role of E-Cadherin in Dysadherin-Mediated Metastasis 

 During cancer invasion and metastasis, inactivation of E-cadherin has been sug-
gested as an indispensable step. Dysadherin overexpression has been shown to inac-
tivate E-cadherin posttranscriptionally and makes the cell metastatic [ 1 ]. Dysadherin 
also triggers accumulation of actin, suggesting some interplay between dysadherin 
and E-cadherin through actin. In vitro study also showed that in pancreatic cancer 
cells, modulation of dysadherin expression affected the cell morphology, actin orga-
nization as well as focal contact formation. Changes in cell motility have also been 
observed. Downregulation of dysadherin helps formation of paxillin containing 
focal adhesions and makes the cell more fl attened and more adherent [ 9 ]. Thus, 
dysadherin may facilitate cell motility by recruiting actin fi laments at the leading 
edge of the cell membrane. A recent report from Maeheta et al. [ 12 ] also showed 
that in differentiated-type carcinoma with submucosal invasion (DGCS), the expres-
sion of E-cadherin is inversely correlated with dysadherin expression. Although the 
underlying mechanism(s) regarding E-cadherin downregulation via dysadherin in 
DGCS are still unknown, yet dysadherin-positive and E-cadherin negative expres-
sion may be correlated with the more invasive DGCS. Moreover, combined 

  Fig. 11.2    Schematic representation of the probable pathways of the role of dysadherin in metas-
tasis. Dysadherin can induce metastasis via E-Cadherin dependent as well as in independent 
pathways       
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dysadherin and E-cadherin expression in glandular components may be valuable 
information for predicting aggressive tumor behavior and may help in the decision 
between endoscopic therapies and surgical resection. 

 Sato et al. [ 13 ] found an inverse relationship between dysadherin expression and 
E-cadherin occurrence in case of papillary carcinoma, follicular carcinoma, and 
undifferentiated carcinoma. A recent report of Colamaio et al. [ 14 ] correlated the 
miRNA level with dysadherin expression. They found that miRNA let-7a (let-7a 
belongs to the let-7 family of miRNAs) has an inverse correlation with dysadherin 
expression in thyroid follicular adenomas and carcinoma. Their results suggest a 
role of let-7a downregulation in the development of thyroid neoplasias of the fol-
licular histotype, likely regulating dysadherin protein expression levels.  

3.2     E-Cadherin Independency: Interaction of Dysadherin 
with Other Proteins 

 Dysadherin knockdown in breast cancer cell lines that expressed E-cadherin caused 
increased association of E-cadherin with the actin cytoskeleton. However, it was 
observed that in cells that had no functional E-cadherin (MDA-MB231), knock-
down of dysadherin still suppress cell invasiveness, suggesting the existence of a 
novel mechanism of action. Global gene expression analysis in human breast can-
cer cells (MDA-MB-231) identifi ed chemokine ligand 2 (CCL2) as the transcript 
most affected by dysadherin knockdown [ 15 ]. It was reported that CCL2 is 
expressed by a wide variety of cancer types, and numerous studies have showed 
that CCL2 generally facilitates tumor progression [ 16 ,  17 ], and have the role in 
angiogenesis [ 18 ]. CCL2 promoter contains sites for regulation by CAAT/enhancer-
binding protein, NF-κB, c-ETS, and beta-catenin/TCF4. It was shown that dysad-
herin could play an important role in ER-negative breast cancer by promoting 
invasion and metastasis through a mechanism that involves enhanced signaling 
through the NF-kB pathway, leading to increased production of CCL2. CCL2 that 
is secreted by the tumor cell in response to dysadherin expression can promote 
tumor cell (pancreatic cancer) invasion in an autocrine manner and can also exert 
paracrine effects on endothelial cell recruitment that could enhance angiogenesis. 
It appeared that CCL2 mediate the effects of dysadherin also on the cytoskeletal 
rearrangement and hence stimulate cell motility, and contribute directly to the met-
astatic potential of human pancreatic cancer cells [ 5 ]. It is interesting to note that 
knockdown of dysadherin in ER-negative cell line (MDA-MB231) alter the expres-
sion of several hundred genes which means that there may be several other mecha-
nisms exist for the action of dysadherin. Another interesting fi nding was a cDNA 
sequence, which is almost identical to that of dysadherin, was isolated from the 
library of human CD34 +  hematopoietic stem cells [ 19 ]. So there is good possibility 
of the regulation of stem cell dynamics by dysadherin. 

 It is well established that dysadherin is a tissue-specifi c regulators of the Na + /
K + -ATPase. The work of Lubarski et al. [ 2 ] showed that dysadherin interacts with 
both the α and β subunits of the Na + /K + -ATPase and increases its V max . FXYD5/
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FXYD4 chimeras expressed in  Xenopus laevis  oocytes revealed that the transmem-
brane domain of dysadherin helps to increase the activity of the pump [ 20 ]. They 
further explored that the metastatic effect of dysadherin in mouse kidney collecting 
duct cell line, M1, may be due to an increase in paracellular permeability [ 20 ]. 
Expression of dysadherin in these cells revealed a large decrease in amiloride-
insensitive transepithelial resistance as well as increased permeability to 4-kDa 
dextran. Impairment of cell–cell contact was also demonstrated by the alteration of 
tight and adherence junction markers zonula occludens-1 and β-catenin, respec-
tively [ 21 ]. It was found that in M1, dysadherin inhibits transformation of adhered 
single cells from the initial radial shape to fl attened, elongated shape in the fi rst 
stage of monolayer formation accompanied by less ordered actin cables and fewer 
focal points. Structure–function analysis showed that the transmembrane domain of 
dysadherin, which also interacts with Na + /K + -ATPase and not its unique extracel-
lular segment, mediates the inhibition of change in cell shape [ 21 ]. Expression of 
dysadherin in M1 cells resulted in a decrease in N-glycosylation of β1 Na + /K + -
ATPase, while silencing it in H1299 cells had an opposite effect. This glycosylation 
pattern is important as because under normal condition glycosylation of β1 plays an 
important role in cell–cell contact formation [ 22 ]. These fi ndings lend support to the 
possibility that dysadherin affects cell polarization through its transmembrane 
domain interaction with the Na + /K + -ATPase. However, interaction of dysadherin 
with other proteins cannot be excluded. 

 Another mechanism for dysadherin-mediated effect is given by Perk et al. [ 23 ]. 
They provide the fi rst experimental report showing that dysadherin confers cancer 
stem cell (CSC) like properties to Hepatocellular carcinoma (HCC) cell lines. The 
following fi ndings provided support for CSC in HCC cell lines. First, in vitro study 
showed that dysadherin enhanced the CSC properties of anti-apoptotic capacity, 
self-renewal, stem cell markers, and side population (SP) phenotype. Second, 
in vivo limiting dilution assay showed that dysadherin-positive cells were enriched 
for CSC. Third, in vitro knockdown of dysadherin also reduced stem cell- like prop-
erties. The SP phenotype has been known to facilitate the enrichment of CSCs and 
SP fractions and confers the capacity for both self-renewal and proliferation and 
largely responsible for in vivo malignancy. Park et al. [ 23 ] provided evidence in 
support of the SP population by showing that dysadherin transfected cells have a 
high expression level of ABC transporter. Although the exact mechanism is cur-
rently unknown, yet it has been suggested that the contribution of dysadherin to 
cancer stemness may be one of many mechanisms involved in dysadherin-mediated 
cancer progression [ 23 ]. Thus, dysadherin may represent a target molecule for the 
treatment of advanced cancer.   

4     Pathology Associated with Dysadherin 

 Overexpression of dysadherin leads to several types of cancer as listed in Table  11.1 . 
It is interesting to note that in several types of cancers like head and neck carcinoma 
or in lung cancer, dysadherin can primarily be used as a prognostic indicator.
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5        Conclusions 

 Since the fi eld of research on dysadherin started just a decade ago, we still have a 
lot to learn about the role of dysadherin on cancer progression. First of all we need 
to know the other proteins that interact with dysadherin. The most likely candidate 
is Na + /K + -ATPase, since all FXYD family members function as tissue-specifi c mod-
ulators of this ion pump [ 2 ]. Dysadherin has been shown to interact with the α sub-
unit of the Na + /K + -ATPase by its transmembrane domain [ 2 ]. High expression of 
dysadherin in the normal kidney cortex suggests that like other FXYD proteins, dys-
adherin could play a role in regulating ion fl ux in normal homeostasis [ 29 ]. It is 
now well established that besides its ion pumping activity, Na + /K + -ATPase also 
plays as role as a signal transducer [ 30 ,  31 ]. Moreover, the report from Barwe 
et al. [ 32 ] suggests that Na + /K + -ATPase may have a role in cancer metastasis and 
this effect is independent of the ion pumping activity of the pump. So all these path-
ways suggest a good possibility that dysadherin might contribute to cancer metasta-
sis through mechanisms involving changes in ion fl ux through Na + /K + -ATPase. 

 Another good possibility is the relationship between dysadherin and E-cadherin 
expression. However, the detailed molecular mechanism by which dysadherin regu-
late E-cadherin expression is still not clearly known. It is also unknown about how 
dysadherin affect the CCL2 expression and hence modify the metastatic phenomena. 
If we look at the structure of dysadherin, the short cytoplasmic tail makes it relatively 
unusual to interact directly with other proteins (Fig.  11.2 ). However, the long extra-
cellular domain of dysadherin, compared with other FXYD proteins, may facilitate 
interactions with other membrane proteins or with extracellular matrix components, 
and may affect several signaling pathways [ 9 ]. In MD-MB231 cells, the NF-κB path-
way was affected with the expression of dysadherin. It is noteworthy that tumor 
invasion and metastasis are known to be infl uenced by numerous NF-κB-regulated 
gene products, including matrix metalloproteinases, interleukin- 8 and various che-
mokines [ 9 ]. Lee et al. [ 33 ] have shown that dysadherin might play an important role 
in breast cancer by promoting invasion and metastasis through a mechanism that 

   Table 11.1    Expression of dysadherin in different cancers   

 Cancer type 
 Mechanism: E-cadherin 
dependency 

 Can dysadherin be used as 
an independent indicator?  Ref 

 Pancreatic ductal 
adenocarcinoma 

 No  Yes  [ 19 ] 

 Lung cancer  No  Yes  [ 24 ] 
 Breast cancer  Still not assessed  ?  [ 1 ] 
 Gastric cancer  No  No  [ 25 ] 
 Tongue cancer  Yes  Yes  [ 26 ] 
 Thyroid cancer  Yes  ?  [ 13 ] 
 Colorectal cancer  No  ?  [ 27 ] 
 Head and neck 
squamous carcinoma 

 Yes  Yes  [ 28 ] 
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involves enhanced AKT activation. Barwe et al. [ 32 ] reported that Na + /K + -ATPase is 
associated with the regulatory subunit of PI3-kinase that modulates the phosphoryla-
tion of AKT. The inhibition of Na + /K + -ATPase in highly motile MDCK cells sup-
presses cell motility. These fi ndings support the possibility that dysadherin might 
contribute to AKT activation through mechanisms that involves the changes in Na + /
K + -ATPase. The underlying molecular events require adequate attention. 

 Lubarski et al. [ 2 ] have demonstrated differences in the molecular weight as well 
as altered glycosylation patterns of dysadherin in the metastatic and normal tissue. 
This indicates that posttranslational modifi cations such as glycosylation and phos-
phorylation in modulating dysadherin localization and function are important and 
should be taken in to consideration. Tsuiji et al. [ 4 ] showed that dysadherin is a heav-
ily O-glycosylated mucin like molecule and its cellular expression is regulated 
depending on its glycosylation status. Aberrant O-glycosylation inhibits stable expres-
sion of dysadherin and leads to upregulation of E-cadherin by an unknown mecha-
nism, resulting in an increased cell–cell adhesion. This suggests the possibility that 
regulation of dysadherin expression may provide novel avenues in the fi eld of oncol-
ogy, while the carbohydrate-directed approach is expected to aid its development.    
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    Chapter 12   
 The Astrocytic Na + , K + -ATPase: Stimulation 
by Increased Extracellular K + , β-Adrenergic 
Activation, Ouabain-Mediated Signaling, 
and Interaction with the Transporter NKCC1                     

       Leif     Hertz    ,     Dan     Song    , and     Liang     Peng    

    Abstract     The astrocytic Na + ,K + -ATPase is important because increasing evidence 
indicates that increased extracellular K +  in brain following neuronal excitation initially 
is accumulated into astrocytes. This is due to higher Na + ,K + -ATPase activity in 
astrocytes than in neurons and because the extracellular K + -sensitive site of the astro-
cytic Na + ,K + -ATPase, in contrast to that of the neuronal enzyme, has low enough 
affi nity for K +  to be further activated by increased K +  concentrations. However, K +  
must eventually be re-accumulated into neurons in order to prevent neuronal K +  
depletion. Accumulated astrocytic K +  is released through Kir4.1 channels, but a 
presently unsolved problem is how renewed astrocytic uptake is prevented. 
Experiments in well-differentiated cultured astrocytes providing a solution of this 
problem are discussed. At the same time subunit composition of the astrocytic 
Na + ,K + -ATPase and its infl uence on the enzyme’s kinetic parameters is reviewed 
together with stimulation of the enzyme by noradrenaline and its functional impor-
tance. So are details of Na + ,K + -ATPase signaling in response to submicromolar con-
centrations of ouabain and/or low mM K +  concentrations without which the catalytic 
activity of the astrocytic enzyme is abolished. Two pathophysiological conditions are 
discussed, cerebral ischemia/reperfusion and hepatic encephalopathy. In the former 
ouabain signaling dependence on extracellular Ca 2+  is crucial and provides therapeu-
tic possibilities. In the latter the ability of NH 4  +  to mimic K +  in both catalytic and 
signaling effects of the Na + ,K + -ATPase is essential. In both conditions it is important 
that operation of the Na + , K + , Cl −  and water cotransporter NKCC1 is dependent upon 
ion gradients created by the Na + ,K + -ATPase.  
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1          Catalytic Activity of the Astrocytic Na + , K + -ATPase 

1.1     The Astrocytic Na + ,K + -ATPase, but not the Neuronal 
Enzyme, Is Stimulated by Above-Normal Extracellular K +  
Concentrations 

 Activation of the Na + ,K + -ATPase requires simultaneous binding of Na +  to an intra-
cellular site and of K +  to an extracellular site of the enzyme [ 1 ,  2 ]. In excitable cells, 
such as neurons, the activity of the Na + ,K + -ATPase is generally regulated by the 
intracellular concentration of Na +  ([Na + ] i ). The simultaneous increase in extracel-
lular K +  ([K + ] o ) during the excitation has normally no effect on neuronal Na + ,K + -
ATPase activity, because the affi nity of this site in neurons is so high that it is 
saturated at normal [K + ] o . This was convincingly shown by Grisar et al. [ 3 ], who 
determined kinetic properties of the Na + ,K + -ATPase in mechanically isolated glial 
cells, neuronal perikarya, and synaptosomes from rabbit brain cortex as well as 
human cells and observed no increases in Na + ,K + -ATPase activity in the neuronal 
preparations (Fig.  12.1 ). However, it has been shown by gel electrophoresis that the 
brain contains two distinct molecular forms of the Na + ,K + -ATPase, which can be 

  Fig. 12.1    Effect of 
different extracellular K +  
concentrations ([K + ] o ) on 
Na + ,K + -ATPase activity in 
astrocytes and neuronal 
perikarya isolated from a 
single human brain. From 
where further 
methodological details are 
described. Reproduced 
with permission, where 
further methodological 
details are described       
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separated in their active form by gentle tissue fractionation procedures [ 4 ]. One is 
the only Na + ,K + -ATPase of astrocytes, while the other is the only Na + ,K + -ATPase of 
the axonal membrane. Figure  12.1  shows that in contrast to the neuronal enzyme 
isolated glial cells show a distinct increase in Na + ,K + -ATPase activity in response to 
an increase in [K + ] o , confi rming previous results by Henn et al. [ 5 ]. This indicates 
that the K +  affi nity of the K + -sensitive site is lower in astrocytes than in neurons. 
Subsequent kinetic analysis in homogenates of cultured mouse cerebral astrocytes 
and neurons [ 6 ] showed conventional Michaelis–Menten kinetics with a  K  m  value 
for K +  of 1.9 mM in astrocytes and a  K  m  value of 0.43 mM in neurons.  V  max  in astro-
cytes was approximately twice of that in neurons. A similar affi nity for Na + ,K + -
ATPase-mediated K +  uptake was shown in rat cultures by Larsen et al. [ 7 ], consistent 
with the observation that the rate of active K +  uptake is similar in rat and mouse 
cultures [ 8 ].

   The reason for the difference in K +  affi nity between astrocytes and neurons is the 
different subunit composition. In freshly isolated cell fractions of mouse astrocytes 
and neurons, mRNA of the α 1  subunit has twice as high an expression in astrocytes 
as in neurons, whereas the α 2  subunit is almost restricted to astrocytes and the α 3  
subunit to neurons (Fig.  12.2a ) Nevertheless, the traces of α 3  in astrocytes and of α 2  
in neurons are probably representative of the in vivo situation, since cross- 
contamination between fractions should also have led to neuronal β 2  expression. The 
β 1  subunit is more highly expressed in neurons than in astrocytes, but only astrocytes 
express both β 1  and β 2 . The expression of the auxiliary protein FXYD7 is equal in the 
two cell types (Fig.  12.2b ). Neuron-selective expression of mRNA for α 3  has also 
been shown by Cahoy et al. [ 9 ], and in cultures somewhat different from ours, 
Cameron et al. [ 10 ] reported that cortical astrocytes display α 2  and β 2  subunits and 
cerebellar granule neurons α 3  and β 1  subunits. The greater α 1  expression in astrocytes 
than in neurons shown in Fig.  12.1  is also consistent with immunochemical data by 
MacGrail et al. [ 11 ] and with conclusions based on low-affi nity ouabain binding, 
refl ecting content of α 1  protein, in our own cultured neurons and astrocytes [ 12 ].

   Subunit composition is important for the kinetic properties of the Na + .K + -ATPase. 
In a study by Crambert et al. [ 13 ] nine different human Na + ,K + -ATPase isozymes, 
composed of α and β isoforms, were expressed in Xenopus oocytes and analyzed for 
their transport and pharmacological properties. All human isozymes were func-
tional but differed in their turnover rates depending on the α isoform. Variations in 
K +  affi nity and activation were a result of a cooperative interaction between α and β 
isoforms with α 2 -β 2  complexes having the lowest apparent K +  affi nity. α Isoforms 
also infl uence the apparent internal Na +  affi nity in the order α 1  > α 2  > α 3  [ 13 ,  14 ]. 
FXYD7 decreases the apparent K +  affi nity of α 1 -β 1  and α 2 -β 1 , but not of α 3 -β 1  iso-
zymes [ 15 ]. These observations are consistent with the low affi nity for K + -induced 
stimulation of Na + ,K + -ATPase activity in astrocytes and the ensuing ability of the 
astrocytic enzyme to be stimulated by above-normal [K + ] o . As seen in Fig.  12.3 , the 
low affi nity of the α 2 -β 2  complex was confi rmed by Larsen et al. [ 7 ], who added the 
new information that depolarization increased the affi nity of this complex. The α 2 -
β 2  complex is preferentially immunoprecipitated in mouse brain, whereas no α 1 -β 2  
or α 2 -β 1  complexes were demonstrated [ 16 ]. However, under some conditions, e.g., 
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  Fig. 12.2    Subunit 
composition of Na + ,K + -
ATPase from freshly 
isolated astrocytes and 
neurons obtained from 
mice where either the 
astrocyte-specifi c marker 
GFP or a neuronal marker, 
YFPH, had been linked to 
fl uorescent compound, 
allowing isolation of an 
astrocytic respective a 
neuronal cell fraction by 
fl uorescence-activated cell 
sorting (FACS). In each 
cell fraction mRNA 
expression was quantitated 
by reverse transcription 
polymerase chain reaction 
(RT-PCR). ( A1 ): Products 
of PCR for α and β 
subunits and of the 
house-keeping gene 
TATA-binding protein 
(TBP) from three 
astrocytic and three 
neuronal samples; ( A2 ): 
ratios between scanned 
expression of each subunit 
and TBP allowing 
quantitative determination 
of the expression of each 
subunit. Since different 
primers are used for each 
subunit the fi gure allows 
no quantitative comparison 
between expression of 
different subunits, but it 
provides reliable 
quantitation of astrocytic 
vs neuronal expression. 
( B1 ) and ( B2 ): Similar 
results for FXYD7, the 
brain-specifi c 
FXYD. From Li et al. [ 17 ], 
reproduced with 
permission       
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chronic treatment with the anti-bipolar drug carbamazepine the α 2  subunit is induced 
in neurons without concomitant induction of the β 2  subunit [ 17 ]. A submicromolar 
affi nity for ouabain of the rat α 2  and α 3  subunits transfected into NIH 3 T3 cells is 
much lower than that of the α 1  receptor of ~50 μM [ 18 ]. Inhibition of K +  uptake by 
different concentrations of ouabain is consistent with the values obtained by the 
binding studies ([ 19 ]; L. Hertz and W. Wal;z, unpublished experiments). The latter 
experiments also suggested that about three quarters of the K +  uptake was mediated 
by the α 1  isoform.

   Since the Na + ,K + -ATPase and the gastric H + ,K + -ATPase are the only P-type 
ATPases forming α-β complexes, it is likely that the obligatory β subunit plays a 
major role for K +  transport [ 20 ,  21 ]. The β subunits facilitate correct membrane 
integration and packing of the catalytic α subunit, which is necessary for their resis-
tance to degradation, acquisition of functional properties, routing to the cell surface, 
and determination of intrinsic transport properties [ 20 ]. In neurological diseases 
like familiar hemiplegic migraine type 2 (FHM2), the α 2  subunit shows mutations 
which are expressed in astrocytes; some of these mutations are found close to the 
interaction loci between α and β subunits and another mutation causes a reduced 
apparent K +  affi nity [ 21 ].  

1.2     Both the Astrocytic and the Neuronal Na + ,K + -ATPase 
Are Stimulated by Noradrenaline, but Different 
Subtype- Specifi c Receptors Are Involved 

 Both the astrocytic and the neuronal Na + ,K + -ATPase are also stimulated by 
noradrenaline. In brain homogenates noradrenaline stimulation of Na + , K + -ATPase [ 22 ,  23 ] 
is inhibited by both α- and β-adrenergic antagonists [ 24 ]. Different noradrenergic 
receptor subtypes are involved in astrocytes and neurons with the β-adrenergic drug 

  Fig. 12.3    Various subunit 
isoform compositions of 
the rat Na + /K + -ATPase 
were expressed in X. laevis 
oocytes. Na + ,K + -ATPase 
activity as a percentage of 
 V  max  was determined as a 
function of [K + ] o  and the 
curves fi tted according to 
Michaelis–Menten 
kinetics. The graph shows 
the obtained activity at 
each [K + ] o . From Larsen 
et al. [ 7 ], reproduced with 
permission       
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isoproterenol stimulating astrocytic but not neuronal Na + , K + -ATPase [ 6 ]. The norad-
renergic stimulation occurs only at close to normal [K + ] o , so any additive effect by 
simultaneous exposure to elevated [K + ] o  and noradrenaline is minimal (Fig.  12.4a ) in 
either cell type. Rather, at aberrant [K + ] o  noradrenaline has an inhibitory effect, espe-
cially in neurons. Similarly K + -stimulated K +  uptake into astrocytes is only marginally 
increased by 1 μM isoproterenol (Fig.  12.4b ). The identical effects on Na + , K + -ATPase 
activity and K +  uptake are important as the former is measured in a homogenate and the 
latter in intact cells. β 1 -Adrenergic stimulation of the K +  analogue rubidium has also 
been shown in pig hearts [ 25 ].
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  Fig. 12.4    Effects of noradrenaline or the β-adrenergic agonist isoproterenol and of [K + ] o  on 
Na + ,K + -ATPase activity or K +  uptake in cultured astrocytes. ( a ) Stimulation or inhibition (negative 
stimulation) of Na + ,K + -ATPase activity in homogenates of cultured astrocytes ( open columns ) or 
mouse cerebral cortical interneurons ( fi lled columns ) by 10 μM noradrenaline at different [K + ] o . 
The activity in the same homogenates in the absence of noradrenaline is indicated as 0 %. ( b ) 
Increase in intracellular K +  concentration in similar but intact cultures of astrocytes measured in 
arbitrary units by fl uorescence of a K + -sensitive drug under control conditions, after addition of 
1 μM of the β-adrenergic drug isoproterenol, 5 mM KCl, or simultaneous addition of isoproterenol 
plus 5 mM KCl. ( a ) From Hajek et al. [ 6 ], reproduced with permission; ( b ) From Hertz et al. [ 58 ], 
reproduced with permission       
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   It is unknown why high K +  and noradrenaline do not have a synergistic effect on 
astrocytic and neuronal Na + ,K + -ATPases. However, in the proximal convoluted 
tubule of the kidney noradrenaline acting on α-adrenergic receptors is known to 
stimulate Na + ,K + -ATPase activity via an increase in [Ca 2+ ] i  and activation of the 
Ca 2+ -dependent protein phosphatase 2B, calcineurin [ 26 ]. The α 1  isoform of Na + ,K + -
ATPase is the only catalytic Na + ,K + -ATPase isoform expressed at this location and 
its dephosphorylation is increased at high [Na + ] i , whereas protein kinase C (PKC) 
causes phosphorylation [ 27 ], which decreases Na + ,K + -ATPase activity [ 28 ]. Ibarra 
et al. [ 27 ] concluded that the phosphorylation of a large pool of the Na + ,K + -ATPase 
at a low [Na + ] i  allows dephosphorylation (and thus activation) by α-adrenergic 
receptor activation. The pathway for α-adrenergic stimulation of pyramidal neurons 
from rat cerebral cortex includes PKC stimulation [ 29 ] and increase in [Ca 2+ ] i  [ 30 ], 
and reduction in [K + ] o  increases [Na + ] i  in cerebral cortical neurons [ 31 ]. Similar 
effects as in the proximal convoluted tubule might therefore explain the noradrener-
gic stimulation of neuronal Na + ,K + -ATPase activity at control levels of [K + ] o  and the 
lack of effect or inhibition at least at decreased [K + ] o . Since β 1 -adrenergic stimula-
tion of cultured astrocytes [ 32 ] leads to a  G  s / G  i  shift and subsequent PKC activation 
and increase in [Ca 2+ ] i  (Fig.  12.5 ) and [Na + ] i  is increased at low [K + ] o  [ 31 ], the inter-
action between [K + ] o  and noradrenaline on the astrocytic Na + ,K + -ATPase can be 
explained in a similar manner at low K + . Astrocytic [Na + ] i  is not increased at high 
[K + ] o  [ 31 ] and the astrocytic Na + ,K + -ATPase is not inhibited by noradrenaline at 
12 mM [K + ] o  (Fig.  12.4a ). It is reassuring that K + /noradrenaline interactions in cul-
tured astrocytes may be explained by effects determined in freshly obtained cells 
from the rat proximal tubule.

2         Signaling Activity of the Astrocytic Na + ,K + -ATPase 

 The Na + -K + -ATPase is also a signaling molecule reacting to endogenous ouabain- 
like compounds, which are present in brain [ 33 ,  34 ] including astrocytes [ 35 ], as 
well as to minor increases in [K + ] o . Activation of the tyrosine kinase Src in intact 
cells by ouabain acting on the Na + ,K + -ATPase was fi rst shown by Haas et al. [ 36 ], 
who found rapid activation of Src when nontoxic concentrations of ouabain were 
added to cultured neonatal cardiac myocytes. Activation of Src stimulated a path-
way leading to phosphorylation of the epidermal growth factor receptor (EGFR) via 
Ras and eventually to phosphorylation of extracellular regulated kinases 1 and 2 
(ERK 1/2 ). This pathway was confi rmed by Zhang et al. [ 37 ], who also discovered an 
additional phospholipase C (PLC) and inositol trisphosphate (IP 3 ) receptor path-
way, which lead to an increase in [Ca 2+ ] i . These pathways also operate in cultured 
astrocytes [ 38 ], as shown by inhibition of ERK 1/2  phosphorylation induced by addi-
tion of 30 nM ouabain or 5 mM KCl by inhibitors of Src or EGF receptor phos-
phorylation (Fig.  12.6 ). An increase in [Ca 2+ ] i  by ultralow concentrations of ouabain 
had previously been shown in such cells by Forshammer et al. [ 39 ]. Xestospongin, 
an inhibitor of the IP 3  receptor, inhibited a K + -induced K +  uptake (see Sect.  3 ). Thus, 
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  Fig. 12.5    Schematic illustration of stimulation of ERK phosphorylation by β-adrenergic receptors in 
astrocytes. Isoproterenol (ISO), binds to these receptors. At high concentrations (≥1 μM), the activa-
tion of the receptors induces a β 1 -adrenergic ( red arrows ), PKA-dependent “G s /G i  switch,” which 
induces an enhancement of intracellular Ca 2+  concentration by Ca 2+  release from intracellular stores. 
The latter activates Zn-dependent metalloproteinases (MMPs) and leads to shedding of growth 
factor(s), such as heparin-binding epidermal growth factor (HB-EGF). The released HB-EGF stimu-
lates autophosphorylation of the EGF receptor in the same and adjacent cells. The downstream target 
of the EGF receptor extracellular regulated kinases 1 and 2 ERK 1/2  (shown in  blue ) is phosphorylated 
via Ras/Raf/MEK pathway, contingent upon recruitment of β-arrestin 1. ERK phosphorylation by 
isoproterenol at a high concentration can be inhibited by H-89, an inhibitor of PKA, by PTX, an 
inhibitor of G i  protein, by BAPTA/AM, an intracellular Ca 2+  chelator, by GM6001, an inhibitor of 
Zn-dependent metalloproteinase, by AG1478, an inhibitor of the EGF receptor, by siRNA against 
β-arrestin 1, and by U0126, an MEK inhibitor (all shown in  yellow ). In contrast, at a low isoprotere-
nol concentration (≤100 nM) β 2 -adrenergic ( green arrows ) activation of the receptors activates Src 
via the function of β-arrestin 2. Src stimulates ERK phosphorylation and phosphorylates the EGF 
receptor without involvement of the receptor- tyrosine kinase. ERK 1/2  phosphorylation is secondary 
to MEK activation, which probably is induced by direct activation of Raf by Src, whereas Src-
mediated phosphorylation of the EGF receptor may not participate in the phosphorylation of ERK 1/2 , 
which does not require recruitment of β-arrestin 1. The ERK phosphorylation by isoproterenol at low 
concentration can be inhibited by siRNA against β-arrestin 2, by PP1, a Src inhibitor, and by U0126, 
an MEK inhibitor. From Du et al. [ 32 ], reproduced with permission       
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  Fig. 12.6    Signaling pathways in cultured astrocytes for ouabain and [K + ] o  increases ≤5 mM and 
≥5 mM. The catalytic effects of the Na + ,K + -ATPase and NKCC1 on ion fl uxes are shown in the  left 
side  of the fi gure with Na + ,K + -ATPase-mediated fl uxes (+5 mM K + ) in  blue lettering at the bottom  
and NKCC1 fl uxes (+10 mM K + ) in  red lettering at the top . All signaling pathways are shown in 
 black lettering , with  blue arrows  for the signaling pathway of ouabain/Na + ,K + -ATPase, activated 
by 30 nM ouabain or addition of 5 mM KCl ( bottom ) and  red arrows  for the signaling pathway 
leading to activation of NKCC1 ( top ). Transmembrane ion fl uxes connected with signaling are 
shown by heavy  red arrows . Increases in free cytosolic Ca 2+  concentration ([Ca 2+ ] i ) are shown by 
 black arrows . Key points were verifi ed by abolishment of ERK phosphorylation or prevention of 
the normal increase in intracellular K +  content after addition of 5 mM KCl by the specifi c inhibi-
tors or siRNA, shown in  brown  (the glycogenolysis inhibitor DAB) or  yellow ovals . Note that the 
IP 3  receptor participates in signaling after addition of 5 mM K + , but not after 10 mM K + , making 
its inhibitor xestospongin C an important tool for distinction between activation of the two path-
ways. In contrast phosphorylation of the EGF receptor (EGFR) and of extracellular regulated 
kinases 1 and 2 (ERK 1/2 ), Src activation, increase in [Ca 2+ ] i , and glycogenolysis occur in both 
pathways. Inhibition by amiloride of cellular increase in K +  after addition of 5 mM KCl suggests 
inhibition of the Na +  channel Na  x  . Inhibition of Ca 2+  entry via the Ca 2+ /Na +  exchanger NCX, 
needed in the ouabain signaling pathway, was not tested in our experiments (but see, Fig.  12.9 ). 
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Fig. 12.6 (continued) However in Ca 2+ -free medium the K +  uptake normally induced by addition 
of 5 mM KCl was abolished. The pathway activated by addition of ≥10 mM KCl and leading to 
activation of NKCC1 shown in  red  in the upper part of the fi gure had previously been determined 
for inhibition of ERK phosphorylation (using specifi c inhibitors) and found to include depolariza-
tion-mediated L-channel opening and metalloproteinase-induced release of an agonist of EGFR 
causing its phosphorylation (pEGFR). Additional inhibitor experiments shown in the fi gure indi-
cated its dependence on glycogenolysis (inhibition by DAB) and the metalloproteinase ADAM 17, 
which is not involved in the pathway activated by addition of 5 mM KCl. Signaling connections 
between ERK phosphorylation and activation of NKCC1 or between ERK phosphorylation or 
increase in [Ca 2+ ] i  and opening of Na  x   have not been investigated. Modifi ed from Xu et al. [ 38 ], 
reproduced with permission       

in contrast to the inhibition of the Na + ,K + -ATPase by usually applied ouabain con-
centrations, very low concentrations, which replicate the effect of endogenous oua-
bains, enhance K + -mediated stimulation of the astrocytic Na + ,K + -ATPase. Operation 
of a similar pathway in intact brain is shown by the demonstration that knock-out of 
the IP 3  receptor, which is an intermediate in the pathway leading to the increase in 
[Ca 2+ ] i , increases [K + ] o , and abolishes the normal increase in [Ca 2+ ] i  in brain slices 
after high-frequency stimulation, and decreases the undershoot [ 40 ].

   Even the slightest increase in [K + ] o  also increases glycogenolysis in brain 
(Fig.  12.7 ), and the effect increases in parallel with further augmentation of [K + ] o  
[ 41 ]. The ouabain pathway opened by ouabain or 5 mM KCl also operates during 
K + -induced stimulation of glycogenolysis by small increases in [K + ] o . Figure  12.8  
shows that interference with the ouabain pathway (by the IP 3  receptor antagonist 
xestospongin or a ouabain antagonist) inhibits stimulation of glycogenolysis by 
5 mM KCl. In contrast nifedipine, an inhibitor of L-channel opening, does not 
impede glycogenolysis after addition of 5 mM K + , although it inhibits the effect of 
addition of 10 mM KCl. The latter fi nding will be discussed later in connection with 
increased activity of the cotransporter of Na + , K +  and 2 Cl −  and water, NKCC1 [ 42 , 
 43 ]. Here it suffi ces to mention that NKCC1 is a secondary active transporter, 
dependent on the ion gradients between extracellular and intracellular ion concen-
trations created by the Na + ,K + -ATPase [ 44 ,  45 ] and that NKCC1 participates in 
astrocytic K +  uptake when [K + ] o  is increased by 10 mM or more [ 38 ]. It is also 
involved in the undershoot in [K + ] o  following intense neuronal stimulation, shown 
by a reduction of the undershoot by the NKCC1 inhibitor furosemide [ 46 ]. Under 
pathological conditions, it is of major importance for development of brain edema 
after ischemia/reperfusion [ 47 ] and for a NKCC1-mediated regulatory volume 
increase after cell shrinkage [ 48 ]. These effects will be discussed in detail in Sect.  3 .

    The Na + /Ca 2+  exchanger NCX plays a major role in signaling by endogenous 
ouabains [ 49 ]. NCX is expressed in the plasma membrane, and most generally it 
extrudes one Ca 2+  in exchange for 3 Na + . However the transporter can also mediate 
Ca 2+  entry, and the transport direction depends on Na +  and Ca 2+  gradients across the 
membrane and the membrane potential, which is infl uenced by [K + ] o . Juxtaposition 
of plasma membrane and sarco(endo)plasmic reticulum membranes may permit 
NCX to regulate IP 3  and ryanodine receptor-mediated Ca 2+  signaling [ 50 ]. This is the 
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  Fig. 12.7    Effect of 
increases in [K + ] o  on 
mouse brain slices 
incubated in a 
physiological saline 
containing a total of 4 mM 
K + . Note absence of 
glycogenolysis at this [K + ] o  
but increasing stimulation 
with increases in [K + ] o . 
From Hof et al. [ 41 ], 
reproduced with 
permission, where further 
methodological details are 
described       

  Fig. 12.8    Reduction of glycogenolysis, shown as decrease in glycogen content, caused by slightly 
elevated (+5 mM) [K + ] o . The stimulation is inhibited by xestospongin and canrenone, an inhibitor 
of ouabain signaling, but not by nifedipine which inhibits L-channels for Ca 2+  and stimulation of 
glycogenolysis by addition of ≥10 mM K +  [ 52 ]. These results are consistent with the pathways 
shown in Fig.  12.6 . From Xu et al. [ 52 ], reproduced with permission       

case in arterial smooth muscle cells as shown in Fig.  12.9a , demonstrating that 
100 nM ouabain causes an increase in [Ca 2+ ] i , which is reduced by an NCX inhibitor 
and even more by removal of extracellular Ca 2+ . Along similar lines, Wang et al. [ 40 ] 
found that a PAR-1 agonist that increases [Ca 2+ ] i  in astrocytes, but apparently not in 
neurons [ 51 ], causes an elevation of intracellular K +  in cultured astrocytes, which is 
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abolished by NCX inhibitors (Fig.  12.9b ). The potency of ouabain as a K +  uptake 
inhibitor in our cultured astrocytes is greatly reduced in the absence of extracellular 
Ca 2+  and concentrations as high as 0.1 and 0.3 μM ouabain may have a stimulatory 
effect (Fig.  12.9c ). In these cultures uptake of K + , induced by a 5 mM increase in 
[K + ] o  (and thus dependent on nanomolar ouabain signaling), is abolished during 
incubation in Ca 2+  free medium [ 47 ], whereas that evoked by the β 1 - adrenergic agonist 
dobutamine is maintained (Fig.  12.9d ). Isoproterenol also stimulates astrocytic 
glycogenolysis, with no inhibitory effect by a β 2 -adrenergic inhibitor, but pronounced 
although perhaps not complete inhibition by a β 1 -adrenergic inhibitor [ 52 ].
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  Fig. 12.9    Extracellular Ca 2+  and its entry via NCX are required for ouabain-mediated increase in 
intracellular Ca 2+  concentration ([Ca 2+ ] i ) and for K +  uptake stimulated by addition of 5 mM KCl, but 
not for that stimulated by a β 1 -adrenergic agonist. ( a ) In mouse mesenteric arteries [Ca 2+ ] i  is increased 
by ouabain, but the increase is abolished by the NCX inhibitor SEA0400, and [Ca 2+ ] i  further decreased 
in the absence of extracellular Ca 2+ . ( b ) In rat astrocytes the PAR1 - selective agonist Thr-Phe-Leu-
Leu-Arg-NH2 (TFLLR) which increases [Ca 2+ ] i  in astrocytes, but not in neurons, causes an increase 
in active uptake of the K +  analogue  86 Rb, which is inhibited by two different inhibitors of NCX. ( c ) In 
the absence of extracellular Ca 2+  the potency of ouabain on K+ uptake is drastically reduced, and 
( d ) increase in intracellular K +  by addition of 5 mM KCl, measured by fl uorescence of a K + -sensitive 
drug, is abolished during incubation in Ca 2+ -free incubation medium, whereas that by 10 μM of the 
β 1 -adrenergic agonist dobutamine is independent of Ca 2+  depletion. ( a ) Modifi ed from Blaustein et al. 
[ 50 ], reproduced with permission; ( b ) from Wang et al. [ 40 ], reproduced with permission; ( c ) from 
Song et al. [ 47 ], reproduced with permission; ( d ) from Song et al. [ 48 ], reproduced with permission       
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   Studies of increase in intracellular K +  concentration in response to an increase in 
[K + ] o  have given some additional information about the ouabain signaling pathway 
as will be discussed in Sect.  3 . They include the dependence of the K +  uptake upon 
glycogenolysis and Na +  channel activity, as illustrated in Fig.  12.6 .  

3        Na + , K + -ATPase and Physiological Brain K +  Homeostasis 

3.1      Potassium Clearance 

 It is now well established that most clearance of increased [K + ] o  following neuronal 
excitation is active [ 46 ,  53 ]. However, at highly elevated [K + ] o  inwardly directed 
channel-mediated K +  may also play a role [ 54 ], and Larsen et al. [ 7 ] also found a 
minor channel-mediated uptake after focal iontophoretic administration of K + . 
A major reason why the astrocytic Na + ,K + -ATPase is of interest is that it mediates 
the initial cellular re-uptake of K +  [ 7 ,  54 – 57 ]. Neuronal activity increases the extra-
cellular K +  concentration [K + ] o  both due to stimulation of neuronal glutamatergic 
receptors and resulting K +  effl ux [see  58 ] and due to action-potential-mediated 
cellular entry of Na +  followed by exit of K +  [ 55 ]. However, increases in [K + ] o  can 
also occur after intense stimulation of cortical neurons expressing GABAergic 
receptors [ 59 ]. In hippocampus this K +  release is dependent on bicarbonate-driven 
accumulation of Cl −  and subsequent stimulation of outward fl ux via the K + , Cl −  
cotransporter KCC2 [ 60 ]. During normal neuronal activity the increases in [K + ] o  
amount to ≤5 and often much less [ 61 ,  62 ]. Under these conditions cellular re-
uptake is mediated exclusively by the Na + ,K + -ATPase [ 38 ]. Released glutamate is 
predominantly [ 63 ,  64 ] and released GABA partly ([ 65 ], see however also [ 66 ]) 
taken up by astrocytes together with Na + . 

 Since the astrocytic Na + ,K + -ATPase in contrast to the neuronal Na + ,K + -ATPase 
has suffi ciently low affi nity for K +  to be stimulated by an increase in [K + ] o  above its 
normal concentration (Sect.  1 ), it plays a major role in the initial clearance of [K + ] o . 
However, it is obviously also stimulated by normal [K + ] o , but stimulation of the 
astrocytic Na + ,K + -ATPase in the absence of elevated [K + ] o  may be prevented by its 
dependence on glycogenolysis. This dependence is indicated by the ability of the 
glycogenolysis inhibitor 1,4-dideoxy-1,4-imino- d -arabinitol (DAB) to prevent K + -
mediated uptake of K +  (Fig.  12.10 ). It should also be kept in mind that even a slight 
increase in [K + ] o  induces glycogenolysis in brain slices (Fig.  12.7 ). Such a complex 
regulation of the astrocytic Na + ,K + -ATPase would allow neuronally released K +  to 
(1) initially be taken up mainly into astrocytes [ 7 ,  54 – 57 ]; (2) afterwards be re- 
released via Kir4.1 K +  channels [ 67 ], probably over a larger area due to connexin- 
and pannexin-mediated inter-astrocytic K +  fl uxes [ 68 ], preventing that [K + ] o  is again 
increased; and (3) eventually be re-accumulated into neurons. The neuronal re- 
accumulation is a necessity in order to prevent depletion of neuronal K + , since K +  
transport across the blood–brain barrier is very slow [ 69 ,  70 ]. This sequence does 
not explain how astrocytes re-accumulate lost K +  in the absence of local increases 
in [K + ] o , but this may be a situation that only occurs under deep anesthesia.
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   The reason why astrocytic Na + ,K + -ATPase depends on glycogenolysis is that 
glycogenolysis is required for its signaling function, which in turn is needed for K + -
mediated stimulation of K +  uptake. The signaling pathway shown in Fig.  12.6  was 
further examined by showing that DAB had no inhibitory effect on K +  uptake into 
cultured astrocytes when extracellular Na +  was increased. This is shown in 
Fig.  12.11a  and must be due to stimulation of Na +  uptake, since K +  uptake could be 
inhibited by amiloride (Fig.  12.11b ), an inhibitor of Na +  channels, but at the concen-
tration used probably not of NCX [ 71 ]. Consistency with the ouabain pathway 
shown in Fig.  12.6  is indicated by a similar ability of xestospongin, an inhibitor of 
the IP 3  receptor to inhibit K +  uptake (Fig.  12.11c ). Increase in [Na + ] i  is needed 
because the Na + ,K + -ATPase’s intracellular site must be activated by Na +  concomi-
tantly with the K + -mediated stimulation of the extracellular site. Since astrocytes are 
nonexcitable cells, the increased extracellular [K + ] o  after neuronal excitation is not 
accompanied by an increased intracellular [Na + ] i  in astrocytes. This complex regu-
lation has up till now only been described in astrocyte cultures. However, during 
spreading depression large amounts of K +  is accumulated by astrocytes in intact 
brain tissue, and inhibition of glycogenolysis enhances the speed with which the 
depression spreads over brain cortex, indicating impaired cellular uptake of K +  [ 72 ]. 
An attempt to demonstrate that the rate of clearance of glutamate-induced increase 
in [K + ] o  in brain slices is increased when glycogenolysis is inhibited [ 58 ] gave a 
negative result, in all probability because glutamate also causes a pronounced 
increase in [Na + ] i . Similar studies should be repeated with electrical stimulation of 
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  Fig. 12.10    Effect of the 
glycogenolysis inhibitor 
DAB (10 mM) on 
intracellular K +  
concentration, measured as 
in Fig.  12.4b , in intact 
cultures of astrocytes. 
( a ) Effect of addition of 
5 mM KCl alone. 
( b ) Abolishment of K +  
effect by DAB. From Xu 
et al. [ 38 ], reproduced with 
permission       
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brain tissue or of optic nerve, where K +  release is secondary to action potential 
propagation. Another option might be to test DAB after iontophoretic application of 
K +  to brain slices.

   During spreading depression or seizures and in other situations with more highly 
elevated [K + ] o  such as after brain ischemia [ 61 ,  73 ], where [K + ] o  increases ≥10 mM 
occur, K +  is in addition re-accumulated into astrocytes by NKCC1. These K +  
increases activate also the Na + ,K + -ATPase, but not to any greater extent that K +  
increases ≤5 mM, which saturate the K + -sensitive site of the Na + , K + -ATPase [ 38 ]. 
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  Fig. 12.11    ( a ) The effect 
of DAB on K + -mediated 
increase in intracellular K +  
content is prevented by an 
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amiloride ( b ) an inhibitor 
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In the adult brain cortex NKCC1 is located both in glia cells, including astrocytes, 
where its activation by high [K + ] o  can cause life-threatening edema (reviewed by 
Hertz et al. [ 19 ]), and at GABAergic terminals located on the axon initial segment 
of cortical neurons where Cl −  uptake via this transporter after intense stimulation is 
depolarizing and excitatory [ 74 ]. Cellular localization of NKCC1 is best determined 
by other than immunohistochemical techniques, since the immunological techniques 
can be deceptive [ 45 ,  75 ].  

3.2     Post-stimulatory Undershoot in [K+] o  

 It is now well established that Na + ,K + -ATPase-mediated K +  uptake plays the major 
role in cellular re-accumulation of increased [K + ] o . However, the importance of 
NKCC1-mediated K +  uptake stimulated by the β-adrenergic agonist isoproterenol 
for the establishment of the post-stimulatory undershoot in [K + ] o  has only recently 
been suggested. In vivo evidence for such a mechanism includes that the undershoot 
is reduced by furosemide which inhibits NKCC1 [ 46 ] and its magnitude is increased 
by K +  channel inhibition [ 53 ]. Since [K + ] o  is not increased at this time, NKCC1 must 
be activated by a different stimulus. This is likely to be extracellular hypertonicity, 
known to occur after intense neuronal activity [ 76 ,  77 ] and possibly triggered by a 
2:3 ratio between previous Na + ,K + -ATPase-mediated cellular uptake of K +  and 
release of Na +  [ 78 ,  79 ], and causing cellular shrinkage. In cultured astrocytes 
bumetanide-inhibited NKCC1 activity is crucial for the subsequent regulatory vol-
ume increase (Fig.  12.12 ), and its rate is greatly enhanced by β 1 -adrenergic stimula-
tion [ 47 ], which increases the ion gradients driving NKCC1 [ 48 ]. The cellular 
accumulation of Na + , K + , Cl −  and water must lead to a corresponding decrease in 

  Fig. 12.12    After an initial decrease of the volume in isotonic medium ( V  o ) due to medium hyper-
tonicity evoked by addition of 100 mM sucrose, a regulatory volume increase occurs. It is greatly 
accelerated by isoproterenol but this effect is inhibited by the NKCC1 inhibitor bumetanide.  V  1 : 
volume at any given time. From Song et al. [ 48 ], reproduced with permission       
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extracellular ions, except for Na + , which is re-extruded by the Na + ,K + -ATPase. 
Furosemide also inhibits another cotransporter KCC2, which is located in neurons, but 
KCC2 generally mediates outward transport [ 74 ], which would have the opposite 
effect on [K + ] o , suggesting that this transporter is not involved. Extracellular hyper-
osmolarity also depresses population spikes and extracellular synaptic potentials 
[ 80 ], with neuronal gene expression changes blocked by the astrocyte-specifi c toxin 
fl uoroacetate [ 81 ]. The transmitter-induced regulatory volume increase and con-
comitant reversal of extracellular hypertonicity may normalize neuronal activity 
and might play a role in inhibition of neuronal slow afterhyperpolarization, sAHP 
[ 58 ,  82 ]. As could be expected, the regulatory volume increase in cultured astro-
cytes is inhibited when glycogenolysis is prevented [ 47 ,  82 ]. Again, K +  accumu-
lated into astrocytes may subsequently be released via Kir4.1 channels, as suggested 
by the increase in the magnitude of the undershoot when these channels are inhib-
ited [ 53 ].

4         Na + , K + -ATPase and Glutamate Uptake 

 Like many other amino acids glutamate is accumulated into astrocytes in association 
with Na +  which provides the driving force and subsequently activates the intracellular 
Na + -sensitive site of the Na + ,K + -ATPase. Glutamate is accumulated into astrocytes by 
the transporters GLT-1 and GLAST [ 63 ,  64 ] and GLT exists in a macromolecular 
complex that includes the Na + -K + -ATPase, most of the enzymes involved in glycolysis, 
and mitochondria [ 83 ]. 

 It was previously mentioned that the affi nity for Na +  is lower for α 2  than for α 1 . It 
is even higher for α 3  but that is of little relevance for glutamate uptake since most 
glutamate uptake occurs into astrocytes [ 63 ,  64 ]. Illarionova et al. [ 84 ] used very 
young astrocyte cultures expressing GLAST to study the importance of α 1  and α 2  on 
glutamate uptake. Selective inhibition of α 2  resulted in a modest increase of [Na + ] i  
together with large decrease in uptake of aspartate, a glutamate analogue that is less 
metabolizable than glutamate itself. Moreover exposure to 200 μM glutamate 
caused a larger increase in [Na + ] i  in α 1  than in α 2  overexpressing cells, and restora-
tion of control levels of [Na + ] i  took longer time in α 1  than in α 2  overexpressing cells.  

5     Na + ,K + -ATPase and Pathophysiological Brain K +  
Homeostasis 

5.1     Brain Ischemia 

 During brain ischemia extracellular Ca 2+  becomes greatly reduced (due to cellular 
uptake) whereas there is a large increase in [K + ] o  [ 73 ]. This leads to NKCC1- 
mediated brain edema, which only becomes signifi cant after re-oxygenation 
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     Table 12.1    Brain water content in MCAO model with and without reperfusion   

 No reperfusion  8 h reperfusion 

 Left hemisphere  Right hemisphere  Left hemisphere  Right hemisphere 

 Control  77.58 ± 0.20 
( n  = 5) 

 78.05 ± 0.29 
( n  = 5) 

 77.34 ± 0.18 
( n  = 3) 

 77.32 ± 0.14 
( n  = 3) 

 Ischemia 3 h  77.25 ± 0.16 
( n  = 5) 

 78.14 ± 0.25 
( n  = 5) 

 77.97 ± 0.17 
( n  = 8) 

 81.28 ± 0.34* 
( n  = 8) 

  Water content was calculated as [(wet weight-dry weight)/wet weight] × 100 % in rats where a 
MCAO had been performed on the right side. In control rats no signifi cant change occurred with 
or without reperfusion. In animals with MCAO in the right hemisphere, a small apparent increase 
in water content in this hemisphere after 3 h of ischemia was not statistically signifi cant, whereas 
a larger increase after reperfusion marked with * was signifi cant ( P  < 0.05). It was also signifi cantly 
different ( P  < 0.05) from the small apparent increase without reperfusion. From Song et al. [ 47 ], 
reproduced with permission  

(Table  12.1 ), refl ecting its dependence on energy metabolism [ 47 ,  71 ]. There is 
abundant evidence that this edema occurs in astrocytes, but there must also be an 
effect on the blood–brain barrier bringing additional water into the brain (reviewed 
by Hertz et al. [ 85 ]). The specifi c NKCC1 inhibitor bumetanide [ 45 ] prevents the 
edema after ischemia/reperfusion (indicated by prevention of increase of water 
content in the tissue) and so do the same inhibitors (Table  12.2 ), which inhibit β 1 - 
adrenergic signaling in astrocytes (Fig.  12.5 ). Moreover, the edema is not signifi cantly 
counteracted by the Ca 2+ -channel antagonist nimodipine [ 86 ], which prevents the Ca 2+  
uptake necessary for the development of NKCC1-mediated edema (Fig.  12.6 ). In the 
early experiments by the latter authors the edema developed already during the ischemic 
phase, possibly suggesting less complete arterial blockage than in the experiments 
shown in Tables  12.1  and  12.2 . Both degrees of blockage may well be relevant for 
clinical stroke. The lack of effect by nimodipine points towards involvement of the 
other stimulus for NKCC1 activation, hypertonicity and cell shrinkage, and both of 
these were demonstrated by Matsuoka and Hossmann [ 86 ]. The inverse correlation 
between the magnitude of the increase in water space and the reduction of extracel-
lular space demonstrated by these authors (Fig.  12.13 ) is consistent with swelling, and 
thus regulatory volume increase during the ischemic phase.

     The prevention of water increase shown in Table  12.2  by β 1 -adrenergic antagonists 
may seem peculiar because these inhibitors would normally not prevent the stimulation 
of the Na + ,K + -ATPase driving NKCC1, which are mediated by the increased [K + ] o . 
However, Fig.  12.9d  showed that in the absence of extracellular Ca 2+ , increase in 
intracellular K +  mediated by an elevation of [K + ] o  is abolished in Ca 2+ -free media, 
whereas that mediated by the β 1 -adrenergic agonist dobutamine is unaltered, and in 
brain ischemia extracellular Ca 2+  is greatly reduced due to cellular uptake [ 73 ]. 

 Complete similarity between the inhibitors blocking the pathway for β 1 - adrenergic 
stimulation in cultured astrocytes (Fig.  12.5 ), those preventing regulatory volume 
increase in these cells [ 48 ], and inhibitors of brain edema in rats after ischemia and 
reperfusion (Table  12.2 ) supports the validity of the cultured astrocytes as models of 
astrocytes in situ. It is also of clinical signifi cance. Goyagi et al. [ 87 ] have shown that 
administration of a β 1 -adrenergic agonist 30 min after the onset of a 2-h-long isch-
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     Table 12.2    Brain water 
content in MCAO model after 
3 h ischemia and 8 h 
reperfusion in the right 
hemisphere under control 
conditions (intra-cerebral 
saline only) and after 
injection of inhibitors of 
either the β 1 - or the β 2 - 
adrenergic pathway in 
astrocytes  

 Left hemisphere  Right hemisphere 

 Saline  77.97 ± 0.17 ( n  = 8)  81.28 ± 0.34 ( n  = 8)* 
 H89  77.00 ± 0.42 ( n  = 3)  77.19 ± 0.09 ( n  = 3) 
 PTX  77.19 ± 0.11 ( n  = 4)  77.51 ± 0.26 ( n  = 4) 
 GM6001  77.08 ± 0.11 ( n  = 4)  77.15 ± 0.13 ( n  = 4) 
 AG1478  77.14 ± 0.11 ( n  = 3)  77.27 ± 0.04 ( n  = 3) 
 U0126  77.39 ± 0.10 ( n  = 4)  78.22 ± 0.67 ( n  = 4) 
 PP1  77.52 ± 0.26 ( n  = 5)  80.04 ± 0.33 ( n  = 5)* 

  In rats with MCAO in the right hemisphere drugs were 
added 15 min before the occlusion. Water content was 
calculated as [(wet weight-dry weight)/wet weight] × 
100 %. In control animals (same value as in Table  12.1 ) 
an increase in the ipsilateral hemisphere was signifi cant 
( P  < 0.05), as marked with *. This was also the case 
after treatment with PP1, an inhibitor of Src, an inter-
mediate in β 2 -adrenergic signaling, but not after admin-
istration of any of the other inhibitors, which interrupt 
β 1 -, but not β 2 -adrenergic signaling as shown and dis-
cussed in Fig.  12.5 . Most, but not all, inhibitors used to 
delineate the signaling pathways shown in that fi gure 
were tested in this Table. From Song et al. [ 47 ], repro-
duced with permission  

emic period drastically reduces infarct size and improves neurological defi cit score 
in rats after 7 days. Administration of subtype-specifi c β 1 -adrenergic antagonists 
before experimental brain ischemia also provided neuroprotection against transient 
focal cerebral ischemia [ 88 ]. However, although the presence of β 1 -adrenergic antag-
onists beginning 30 min before the onset of ischemia and continued for 24 h provided 
long-term improvement of histological outcome, they had no effect on neurological 
outcome and spatial memory retention 14 days later [ 89 ]. Iwata et al. [ 90 ] also found 
that administration of antagonists specifi cally of the β 1 -adrenoceptor beginning 
60 min after an 8-min bilateral carotid artery occlusion combined with hypotension 
reduced neuronal injury after forebrain ischemia, although motor activity was not 
improved. However, motor defi cit index scores were signifi cantly lower and neuro-
nal survival better in rats treated with β 1 - adrenoceptor antagonists beginning 30 min 
before 10 min of spinal cord ischemia and continued for 24 h [ 91 ]. Perhaps it is 
important that the β 1 -adrenergic treatment, which also must have unwanted side 
effects on cognition and motor performance, is discontinued as soon as possible and 
not combined with other procedures that may enhance the side effects.  

5.2     Hepatic Encephalopathy 

 It has been known for a long time that ammonia (NH 4  + ) can substitute for K + , but not 
for Na +  in the stimulation of both the Na + ,K + -ATPase and active transport of Na +  and 
K +  [ 92 ]. In cultured astrocytes exposure to 5 mM NH 4 Cl activates NKCC after 24 h 
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in a bumetanide-inhibited fashion [ 93 ]. A metabolic answer to NKCC1 activation, 
stimulation of oxygen consumption, is activated by even lower concentrations of 
ammonia than of K +  [ 94 ,  95 ]. A third similarity between K +  and NH 4  +  is that also 
NH 4  +  stimulates signaling by endogenous ouabains. In cultured astrocytes this is 
accompanied by an increased content of ouabain-like compounds [ 35 ]. Ouabain 
signaling activates production of reactive oxygen species (ROS) and nitrosactive 
agents which slowly sensitize NKCC1, explaining why cell swelling and brain 
edema normally take hours to develop after exposure to NH 4  +  ([ 96 ] and references 
therein). In cultured astrocytes, ammonia-induced cell swelling and ROS produc-
tion (Fig.  12.14 ) can both be prevented by the main metabolite of spironolactone, 
canrenone, an aldosterone antagonist acting as a ouabain inhibitor [ 96 ,  97 ].

   Since it is the α 2  isoform of the Na + ,K + -ATPase which is stimulated by ultralow 
concentrations of ouabain, it is also this isoform that shows upregulated gene 
expression during exposure to elevated ammonia concentrations both in cultured 
astrocytes and in the brain in vivo [ 98 ]. 
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  Fig. 12.13    An inverse correlation between the size of the extracellular space and tissue hypertonicity 
(hyperosmolality—mosm/kg dry wt), i.e., a correlation between the largest reduction in extracellular 
space and highest degree of hypertonicity, is consistent with the concept of a correlation between 
reduction in extracellular space and NKCC1-mediated ion uptake as part of a regulatory volume 
increase. This is especially the case since the water transport by NKCC1 does no fully compensate 
osmotically for its ion uptake [ 43 ]. The authors of the original paper are not responsible for this 
interpretation, but did regard such correlations as refl ections of the interrelationship between 
ischemia and the development of brain edema. From Matsuoka and Hossmann [ 86 ], reproduced with 
permission       
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 In a recent paper Hadjihambi et al. [ 99 ] have suggested that the demonstration 
that an inhibitory effect of the NKCC1 inhibitor, bumetanide, potently suppresses 
ammonia-induced neurological dysfunction [ 100 ] points to a potential new target 
for treatment of hepatic encephalopathy. The authors express concern that the 
expression of NKCC1 also on astrocytes and on endothelial cells may produce 
off- target actions. In this context it should be noted that Kelly et al. [ 101 ] showed 
that bumetanide prevented several ammonia-induced abnormalities in cultured 
astrocytes and that both Jayakumar et al. [ 93 ] and Song et al. [ 97 ] found that 
bumetanide inhibited ammonia-induced swelling in such cells. Moreover, Jayakumar 
et al. [ 102 ] based on experiments in brain cortical slices treated with ammonia 
concluded “that targeting NKCC may represent a useful therapeutic strategy in 
humans with acute liver failure.” Thus bumetanide treatment is not a new idea, and 
the effects on astrocytes and endothelial cells are therapeutic, probably for similar 
reasons as after ischemia and reperfusion. 

 Rangroo Thrane et al. [ 100 ] studied acute effects of very high plasma ammonia 
concentrations in intact, non-anesthetized mice and found evidence that the 
 therapeutic effect of bumetanide was exerted on GABAergic neurons, where NKCC1 
stimulation by NH 4  +  and an increased [K + ] o  over-activate NKCC1. In turn this com-
promises inhibitory neurotransmission. This is similar to the effect described in 
Sect.  3.1  as a response by cortical neurons to a stimulation-induced increase in [K + ] o , 
where Cl −  uptake via NKCC1 is depolarizing and excitatory [ 74 ]. The plasma ammo-
nia concentrations obtained by Rangroo Thrane et al. [ 100 ] are at least one order of 
magnitude larger than those seen in hepatic encephalopathy [ 99 ]. This is especially 
important considering they were made in vivo in non-anesthetized animals, and 
hepatic disease leads to similar plasma concentration in rodents as in man [ 103 ]. 

  Fig. 12.14    Ammonia-induced ROS production and cell swelling can be inhibited by canrenone, 
an inhibitor of ouabain. ( a ) Cells were incubated with 0 or 3 mM NH 4 Cl in the absence (control: 
no NH 4 Cl, no canrenone) or presence of 100 μM canrenone for 2 h. ROS was determined as fl uo-
rescence intensity of oxidized carboxy-H 2 DCFDA in individual cells in each of three cultures, 
averaged, and shown as mans ± SEM. ( b ) After incubation of the cells with 3 mM NH 4 Cl for 12 h, 
cell volume was determined as fl uorescence intensity of calcein, again in individual cells from 
three coverslips and averaged and expressed as in ( a ). From Dai et al. [ 96 ], reproduced with 
permission       
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Accordingly this study may be more directly relevant for the acute and deadly toxicity 
by very high concentrations of ammonia [ 104 ] a fact overlooked by Hadjihambi et 
al. [ 99 ]. Consistent with this concept virtually all animals died within 1 h and death 
was only postponed for ~10 min by bumetanide treatment [ 100 ]. This does not 
exclude that neuronal NKCC1 stimulation may contribute to the pathophysiology in 
hepatic encephalopathy provided the neuronal NKCC1 is also sensitized by oxida-
tive and nitrosactive stress.   

6     Conclusions 

 The present paper has attempted a comprehensive description of the mechanisms 
and roles of the astrocytic Na + ,K + -ATPase. A considerable part of this is based upon 
experiments using mouse astrocytes in primary cultures and must ultimately be con-
fi rmed in intact brain tissue. However, several indications that they apply to astro-
cytes in situ are mentioned (similarity between K +  effects on cells isolated from 
brain and on our cultured cells; effects of glycogenolysis in spreading depression; 
confi rmation of β1-adrenergic pathway determined in cultured astrocytes using spe-
cifi c inhibitors by the ability of the same transmitters to prevent edema after isch-
emia and re-oxygenation). Moreover, initial uptake of excess K +  in astrocytes is now 
well established and  must  be followed by return to neurons.
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    Chapter 13   
 Uncoupling of P-Type ATPases                     

       Yasser     A.     Mahmmoud    

    Abstract     Cation-transporting P-type ATPases such as Na + ,K + -ATPase, gastric 
H + ,K + -ATPase, and sarcoplasmic reticulum Ca 2+ -ATPase use energy from 
ATP hydrolysis to establish electrochemical gradients for ions across cellular 
 membranes. These pumps also perform specialized functions. In particular, sarco-
plasmic reticulum Ca 2+ -ATPase is involved in nonshivering thermogenesis. We 
have identifi ed the fi rst chemical compound, capsaicin, which uncouples ATP 
hydrolysis from Ca 2+  transport through Ca 2+ -ATPase. Under physiological condi-
tions, uncoupling of sarcoplasmic reticulum Ca 2+ -ATPase is likely mediated by 
interaction with sarcolipin, a small protein highly expressed in skeletal muscle. In 
addition, we have characterized a drug that selectively abolishes K + -dependent 
activity of the Na + ,K + -ATPase, uncoupling Na + - from Na + ,K +  exchange. Here we 
provide basic information on the function and mechanism of P-type pumps. In 
 addition, we review recent developments on the drug-mediated uncoupling of 
 sarcoplasmic reticulum Ca 2+ -ATPase and Na + ,K + -ATPase.  

  Keywords     P-type pumps   •   Sarcoplasmic reticulum Ca 2+ -ATPase   •   Uncoupling
   •   Membrane transport   •   Capsaicin   •   Capsazepine  

1         Introduction 

 P-type ATPases (pumps) are integral membrane proteins that convert the free 
energy of ATP hydrolysis to ion gradients across cellular membranes [ 1 ,  2 ]. During 
 turnover, P-type pumps discriminate between similar and abundant ions. To do so, 
they alternate between two major conformations, exposing high-affi nity ion bind-
ing sites to either side of the membrane, to host the ion to be actively transported. 
P-type pumps are transiently phosphorylated from ATP during catalysis, so named 
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“P-type.” The major P-type ATPases found in man include plasma membrane 
Na + ,K + -ATPase, sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA), and gastric 
H + ,K + -ATPase. 

 Na + ,K + -ATPase is present in all animal cells. It exchanges intracellular Na +  for 
extracellular K + , at a stoichiometry of 3Na + /2K +  per hydrolyzed ATP [ 3 ]. The 
enzyme consists of a catalytic α-subunit that undergoes ions- and ATP-dependent 
conformational transitions coupling ATP hydrolysis to the uphill transport of ions, 
and a glycosylated β-subunit that is important for function, folding, and plasma 
membrane delivery of the enzyme complex [ 4 ]. Small auxiliary proteins of the 
FXYD family interact with and regulate Na + ,K + -ATPase activity in several tissues 
[ 5 ]. Under steady-state conditions, the Na + ,K + -ATPase is challenged by several Na +  
infl ux events, associated with cellular processes such as nerve conduction, nutrient 
uptake, osmoregulation, and secretion. Remarkably, the Na + ,K + -ATPase participates 
in a large number of physiological processes [ 6 ,  7 ], and emerging information 
 indicates that the Na + ,K + -ATPase also functions as a membrane receptor that 
 converts extracellular signals to intracellular physiological responses [ 8 ,  9 ]. The 
receptor function of the pump seems to be uniquely controlled by interaction with 
cardiotonic steroids [ 10 ,  11 ], which are highly specifi c inhibitors of the NKA that 
increase cardiac inotropy (a member of this family is the plant-derived ouabain, the 
fi rst known glycoside). Four different Na + , K + -ATPase α-subunit genes (α1–α4) and 
three β-subunit genes (β1–β3) have been described to date. α1 is expressed in almost 
all tissues, α2 is expressed in heart and skeletal muscle, α3 is found in the brain [ 12 ], 
whereas α4 is specifi cally expressed in testis [ 13 ]. Mutations in α3 have been found 
in several neurological disorders (see [ 14 ] for recent review). 

 Sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) pumps cytoplasmic Ca 2+  into the 
sarcoplasmic reticulum (SR) lumen in exchange of luminal protons. Stimulation of 
the pumping activity of SERCA reverses the transient increases in cytoplasmic Ca 2+  
concentrations ([Ca 2+ ] cyt ). In particular, SERCA plays a pivotal role in the rapid 
relaxation of heart and skeletal muscle cells. Cardiac SERCA is associated with 
the regulatory protein phospholamban (PLN), which regulates its pumping activity 
in response to adrenergic stimulation of the heart. In skeletal muscle, SERCA is 
 associated with sarcolipin (SLN), a small protein believed to be involved in SERCA- 
mediated thermogenesis. Three SERCA genes are found in human; SERCA1 
interacts with PLN and SLN in heart and skeletal fast-twitch muscle, respectively. 
SERCA2 is found in slow-twitch cardiac muscle, whereas SERCA3 is found in 
nonmuscular as well as cardiac tissue [ 15 ]. It is tempting to note that SERCA has no 
associated β-subunit, indicating a possible relationship between β-subunit in P-type 
pumps and active pumping of K +  across the plasma membrane. SERCA mutations 
have been described in several diseases [ 16 – 18 ]. SERCA inhibitors are being tested 
as drugs for prostate cancer and cardiovascular disease [ 19 – 21 ]. 

 H + ,K + -ATPase is present in the parietal cells of the gastric mucosa. Stimulation 
of efferent vagus nerves to the stomach initiates a complex forward cascade that 
results in increased levels of Ca 2+  and cAMP in the parietal cell, leading to 
 stimulation of acid secretion by the H + ,K + -ATPase and consequent acidifi cation 
of the gastric lumen. The mammalian kidney contains a similar protein, the 
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 nongastric H + ,K + -ATPase, which is considered as a fourth member of the same 
group [ 22 ]. The H + ,K + -ATPase is apparently not associated with regulatory 
 proteins [ 23 ]. H + ,K + -ATPase activity seems to be mainly regulated by membrane 
traffi cking [ 24 ]; following stimulation of acid secretion in postprandial periods, 
inactive H + ,K + -ATPase in intracellular vesicles is stimulated by translocation to 
the plasma membrane. 

 The Post-Albers scheme was proposed to describe the reaction mechanism of 
P-type pumps (Fig.  13.1 ). A number of cytoplasmic ions (X) bind to inward facing 
sites (i.e., located in the cytoplasm) in the E 1  form, providing the trigger for 
 phosphoryl transfer in the presence of MgATP, forming an E 1 P(nX) intermediate 
with occluded ions. A conformational transition to the E 2 P form releases the 
 cytoplasmic ions to the extracellular or the luminal side of the membrane. 
Extracellular (or luminal) ions (Y) bind to the E 2 P form, inducing dephosphoryla-
tion and formation of the E 2 (Y) intermediate with occluded ions. A transition to the 
E 1  form (aided by cytoplasmic ATP) releases Y to the cytoplasm (Fig.  13.1 ). Hence, 
ion binding confi gures the cytoplasmic domains to facilitate phosphorylation 
or dephosphorylation of the catalytic subunit and ATP facilitates release of the 
 extracellular (luminal) ion to the cytoplasm.

   P-type pumps share substantial structural similarities. This is expected as these 
proteins perform similar functions. However, structural dissimilarities between 
these pumps have been a matter of extensive investigations. Understanding the 
molecular bases of the dissimilarities would shed light on how these pumps dis-
criminate between the different ions, a fundamental question in membrane transport 

  Fig. 13.1    A simplifi ed Post-Albers mechanism for P-type pumps. Sequential steps of ion binding, 
occlusion, transport, and release are indicted in  boxes . X represents a cytoplasmic ion; Na +  
(Na + ,K + -ATPase), Ca 2+  (Ca 2+ -ATPase), or H +  (H + ,K + -ATPase). Y indicates an extracellular (or 
luminal) ion; K +  (Na + ,K + -ATPase and H + ,K + -ATPase) or H +  (Ca 2+ -ATPase). ADP is omitted for 
clarity       
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physiology. It is tempting to note that the different ion pumps establish widely 
 different gradients across cellular membrane. Thus, Na + ,K + -ATPase establishes an 
Na +  gradient ([Na + ] ext /[Na + ] cyt ) of ~15 folds across the plasma membrane. The Ca 2+ -
ATPase establishes a Ca 2+  gradient ([Ca 2+ ] SR /[Ca 2+ ] cyt ) of ~4 orders of magnitude 
across the sarcoplasmic reticulum membrane. H + ,K + -ATPase establishes a H +  
 gradient ([H + ] lumen /[H + ] cyt ) of ~6 orders of magnitude across the parietal cell 
 membrane. Information on how the structurally similar P-type pumps establish ion 
 gradients with widely different magnitudes is beginning to emerge. In the case of 
the Na + ,K + -ATPase, high extracellular Na +  concentrations may impair active trans-
port by forcing Na +  to enter the extracellular sites in the E 2 P form and reverse the 
enzymatic cycle. In marine organisms, extracellular Na +  is as high as 400 mM. To 
ensure active transport under such conditions, four amino acids located at the exter-
nal sites in squid pumps were found to be more positive compared to mammalian 
pumps [ 25 ]; hence, once Na +  ions move in the forward direction, the reverse 
 reaction is prohibited in squid pumps due to the excess positive charge at the site 
where reentrance may occur. In H + ,K + -ATPase that establishes the largest gradient, 
forward pumping is secured by a different and unique mechanism. The N-terminus 
of the β-subunit has been shown to prevent the proton mediated reversal of the 
 catalytic cycle by directly interacting with the phosphorylation domain [ 26 ,  27 ]. It 
is also notable that establishment of a large gradient by the H + ,K + -ATPase would not 
be thermodynamically possible unless a pump stoichiometry change from 2H + /2K +  
to 1H + /1K +  [ 28 ]. A recent electron crystallography structure of an E 2 ~AlF(1Rb + ) 
intermediate grown under acidic conditions revealed a single occupied ion at site II 
[ 29 ], likely providing the structural basis for the hypothesized stoichiometry shift.  

2     Uncoupling of P-Type Pumps 

 In all P-type pumps, hydrolysis of one ATP molecule has been thought to 
 catalyze the transport of a fi xed number of ions across the membrane. The rate of 
ion pumping (and consequently the rate of ATP hydrolysis) may increase by speed-
ing up the conformational transitions, but the stoichiometry of transport during each 
cycle is expected to be constant. At least for the Na + ,K + -ATPase, a change in pump 
stoichiometry in the presence of physiological substrate conditions is not expected 
under normal conditions but is likely to occur if the ion binding site(s) are modifi ed. 
A modifi ed binding site may fail to lodge the substrate ion despite its presence in the 
bulk medium. Such protein modifi cation was made evident by the identifi cation of 
spontaneous pump mutations having reduced interaction with Na +  but normal 
 interaction with K +  [ 30 ]. Hence, uncoupling of Na + ,K + -ATPase refers to the devia-
tion from normal function described for unmodifi ed enzyme (3Na + /2K + /1ATP). 
Pump function can be estimated by determining pump stoichiometry using radio-
active isotopes (or other biophysical techniques), or preferably, by measuring the 
substrate- dependent stimulation of the enzyme’s hydrolytic activity using different 
experimental approaches. Deviations from the normal 3Na + /2K +  stoichiometry have 

Y.A. Mahmmoud



227

so far been observed under nonphysiological substrate conditions [ 31 ]. A 
decrease in the coupling ratio of the pump was reported to occur in the presence 
of  cytoplasmic Na +  concentrations as low as 200 μM (~25 folds less than normal 
 cytoplasmic Na + ), where the pump is thought to operate with a partial number of ion 
binding sites [ 32 ]. In addition, incubation of red cells in media lacking Na +  or K +  is 
associated with ouabain-sensitive Na +  effl ux, referred to as uncoupled Na +  effl ux. 
It was reported to occur at a 3Na + /1ATP stoichiometry [ 33 ] and is strongly depen-
dent on extracellular Na +  [ 34 ]. Whether or not protons are counter-transported 
 during uncoupled Na +  effl ux is unclear. Investigations on K + /K +  exchange in red 
cells revealed that the Na + ,K + -ATPase undergoes rapid phosphorylation/dephos-
phorylation cycles that substantially exceed the rate of ion exchange [ 35 ], implying 
that cation binding and substrate hydrolysis are linked together but are not tightly 
coupled. The Na + ,K + -ATPase has also been shown to contribute to thermogenesis 
in animals [ 36 ]. Other studies speak against a role for liver Na + ,K + -ATPase in 
 thermogenesis [ 37 ]. To our knowledge, thermogenesis produced by purifi ed Na + ,K + -
ATPase has not been unequivocally demonstrated by calorimetric studies. We 
 consider it likely that uncoupling of the Na + ,K + -ATPase is not directly linked to 
thermogenesis, but to events associated with the receptor (non-pumping) function 
of the Na + ,K + -ATPase [ 9 ,  38 – 40 ]. Hence, the dynamic distribution of pumping and 
non-pumping pumps may give rise to fl uctuations in ATP utilization and hence in 
the rate of heat production.  

3     Heat Generation by Sarcoplasmic Reticulum Ca 2+ -ATPase 

 In the case of SERCA, uncoupling refers to ATP hydrolysis not associated with Ca 2+  
transport to the SR lumen, giving rise to a [Ca 2+  transport/ATP hydrolysis] ratio of 
less than one. In contrast to Na + ,K + -ATPase, uncoupling of SERCA has been shown 
to be physiologically important. Ca 2+  cycling across the SR membrane mobilizes 
considerable amounts of heat. Initially, Ca 2+  cycling was thought to occur solely by 
two opposite mechanisms; passive Ca 2+  effl ux from SR through ryanodine receptor 
(RyR) and active Ca 2+  infl ux to the SR through SERCA. Several studies have 
 demonstrated a decrease in the coupling ratio of SERCA in the presence of Ca 2+  
gradient across the SR membrane [ 41 ,  42 ]. Indeed, heat emission from living 
 organisms fully explains why different people have differential abilities to store fat. 
Energy released by oxidation of food is used to keep the basic metabolic rate, 
 energize skeletal muscle activity, stored in tissues in the form of glycogen and fat, 
or released as heat. The heat produced is dissipated by subcutaneous vasodilatation 
which increases blood fl ow to the periphery, resulting in convective heat loss. 

 The importance of the sarcoplasmic reticulum proteins in regulating tissue 
 thermal balance can be emphasized by looking into the heater organ of fi sh and the 
pathological condition known as malignant hyperthermia. The “heater organ” is a 
derivative of muscle that is relatively devoid of contractile elements. These special-
ized cells make up most of the superior rectus muscle in the orbit and generate heat 
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for the brain and eyes during cold-water dives, providing heat to maintain the 
 function of the eye and adjacent brain at temperatures as high as 14 °C over the 
water temperature. Like typical muscle cells, heater cells possess abundant acetyl-
choline receptors and have an extensive network of sarcoplasmic reticulum and 
T-tubules. Mitochondria are also extremely abundant in heater cells, comprising 
over 60 % of total cell volume [ 43 ,  44 ]. Interestingly, RyR channels expressed in 
this organ are similar to that in the mammalian slow-twitch muscle (which is thought 
to be more important for thermogenesis than fast-twitch muscle). Thermogenesis 
in heater cells is initiated by depolarization, which causes calcium release by the 
 sarcoplasmic reticulum. ATP is then consumed by Ca 2+ -ATPase, which returns 
 calcium to the sarcoplasmic reticulum. Reduction in the ATP pool drives fuel 
 oxidation. Thus, depolarization-induced calcium entry into the cytoplasm is directly 
linked to Ca 2+  cycling and subsequent thermogenesis [ 45 ]. 

 In mammals, the potential of Ca 2+  cycling is demonstrated by malignant hyper-
thermia, wherein in genetically predisposed individuals or animals (a mutation in 
the skeletal muscle ryanodine receptor [ 46 ]), certain environmental factors such as 
some anesthetics, or stress, can make the sarcoplasmic reticulum leaky, with an 
ensuing hyperthermia. Furthermore, it is possible that some leakage occurs in the 
normal resting muscle contributing to obligatory thermogenesis. Based on 
 observations made in isolated sarcoplasmic vesicles, it was estimated that the 
 calcium recycling across the sarcoplasmic membrane could account for 30–70 % 
(depending on the calcium pool size in the muscle) of the resting muscle energy 
expenditure. As mentioned, muscle is a major site of nonshivering thermogenesis 
in birds, and it has been found that SERCA1 and RyR channels increase in muscle 
of ducklings during cold adaptation. The above-mentioned observations support to 
the hypothesis that sarcoplasmic reticulum calcium leak; coupled to rapid recapture 
by SERCA could subserve a thermogenic role.  

4     Identifi cation of SERCA Uncoupling Drugs 

 ATP hydrolysis by SERCA has been proposed to be the major source of heat in 
skeletal muscle [ 47 ,  48 ]. SR preparations have been shown to undergo slippage, 
where the pump fails to actively transport occluded Ca 2+ , leading to a decrease in 
the coupling ratio. Slippage increases signifi cantly in the presence of high Ca 2+  
concentration in the SR lumen [ 49 ]. SERCA is thought to be quiescent in the resting 
 skeletal muscle (perhaps with basal activity associated with Ca 2+  dependent signal 
transduction events). We have identifi ed the fi rst chemical factor that produces 
SERCA uncoupling [ 50 ]. Capsaicin is an active component of chili peppers, a plant 
that belongs to the genus  Capsicum . It produces a burning effect resulting from 
stimulation of the transient receptor potential vanilloid type (TPRV1), highly 
expressed in sensory neurons. The burning effect is due to a capsaicin-mediated 
Ca 2+  infl ux through TPRV1. We have documented that capsaicin produces 
 severalfold stimulation of the hydrolytic activity of SERCA. The stimulation by 
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capsaicin requires Ca 2+  gradient across the SR membranes, as detergent-opened 
membrane fragments are stimulated by capsaicin to a much lower level. A series of 
kinetic and biochemical analyses were performed to unravel the mechanism 
whereby capsaicin modulates SERCA [ 50 ]. Capsaicin did not affect Ca 2+  accumula-
tion into SR vesicles nor did it affect equilibrium Ca 2+  binding, showing that the 
plant-derived vanilloid did not affect the high-affi nity Ca 2+  (E 1 ) form. Capsaicin 
increased the rate of phosphoryl transfer (E 1 →E 1 P) but decreased the rate of ADP-
dependent dephosphorylation. The drug increased the rate of E 2 P hydrolysis and 
this could explain the signifi cant stimulation of steady-state ATP hydrolysis. The 
observed effect of capsaicin on SERCA, i.e., accelerating phosphoryl transfer and 
hydrolysis without affecting Ca 2+  binding, is consistent with the conclusion 
that  capsaicin interacts with the cytoplasmic domains of the pump, but not the 
 transmembrane domains. This conclusion is supported by proteolytic cleavage 
experiments. Digestion with proteinase K of SERCA stabilized in the E 1  form 
 produces a cleavage between Thr 242  and Glu 243  (producing an N-terminal p28N and 
a C-terminal p83C [ 51 ]). An extra cleavage occurs between Leu 119  and Lys 120  in the 
presence of ligands stabilizing the E 2  form (producing an N-terminal p14N and a 
C-terminal p95C [ 52 ]). Capsaicin was found to increase the amount of the p28N 
fragment compared to control samples, showing that capsaicin exposes the link 
between the A domain and M3 [ 50 ]. Hence, we concluded that capsaicin controls 
the position of the A domain, explaining how capsaicin affects phosphoryl transfer 
and phosphoenzyme hydrolysis, both events are controlled by A domain rotation 
[ 53 ]. The proteolytic cleavage data strongly indicate that capsaicin interacts directly 
with SERCA, that is, the increased SERCA activity is not due to increased Ca 2+  
infl ux through other passive Ca 2+  routes. The discovery that capsaicin induced direct 
effects on SERCA indicates that capsaicin (or related drugs) may directly induce 
uncoupled ATP hydrolysis in the resting muscle cell, in other words, increased 
 passive Ca 2+  transport through channels in the SR (or in the plasma membrane) is 
not a prerequisite for the increase in the hydrolytic activity of SERCA. The effect of 
ingested capsaicin on heat generation may thus be accounted for (at least in part) by 
its direct effect on SERCA. The cross-reaction of capsaicin with at least three Ca 2+ -
handling proteins together with its low affi nity effect on SERCA precludes its use 
as an uncoupling pharmacon. However, the discovery of this plant-derived drug 
would suggest the existence of animal-derived uncoupling agents. 

 Focus was then directed to animal-derived molecules that can function similar 
to capsaicin. Searching among different structurally related molecules sheds light 
into several endogenous lipid metabolites of the multifunctional endocannabinoid 
family of drugs, which function as effectors of the cannabinoid receptor (CB) in 
the central nervous system [ 54 ], and vanilloid receptors in sensory neurons [ 55 ]. 
We have identifi ed  N -arachidonoyl dopamine (NADA) as a relatively potent 
 stimulator of SERCA uncoupling ( K  D  = 0.36 ± 0.12 μM). The effect of NADA is 
highly specifi c, as the structurally related molecules  N -palmitoyl dopamine and 
 N -oleoyl domapine produce no effect on SERCA. Interestingly, NADA was found 
to modulate SERCA through a mechanism distinct from that of capsaicin [ 56 ]. 
NADA interacts potently with SERCA in the presence of sub-μM Ca 2+  concentrations, 
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i.e., comparable to that in the resting muscle cell. Higher Ca 2+  concentrations increase 
the  K  D  for NADA stimulation (i.e., decreases the affi nity of SERCA for NADA). 
NADA also requires a Ca 2+  gradient to produce SERCA uncoupling;  however, in the 
absence of Ca 2+  gradient, NADA instead inhibits SERCA activity (the biochemical 
basis of the inhibition of SERCA by NADA in open membrane fragments is outside 
the scope of this report). In contrast to capsaicin, NADA was found to stabilize an E 1  
form of SERCA, as evidenced from the NADA induced decrease in Ca 2+  interaction 
with the luminal sites. NADA decreased the rate of SERCA dephosphorylation 
which is unexpected for a drug that increases the  hydrolytic activity of SERCA. 
Proteinase K cleavage showed that NADA increased the protection of phosphory-
lated SERCA at neutral pH [ 56 ], in opposition to what was obtained after capsaicin 
treatment [ 50 ]. We have proposed that NADA modifi es SERCA by modifying 
the communication between the A and P domains. This would likely impair the 
E 1 P→E 2 P transition and hence coupled Ca 2+  transport across the membrane [ 50 ]. 
Investigations on cultured skeletal muscle cells revealed that 100 nM NADA was 
enough to produce a signifi cant decrease in cytoplasmic ATP levels in the absence, 
but not in the presence, of 5 mM glucose [ 56 ]. This result is expected as glucose 
would rapidly restore ATP levels through increased oxidative phosphorylation. The 
decrease in cellular ATP levels was fully reversed by pretreatment with Tg, indicat-
ing that the effect is mediated through direct interaction of the drug with SERCA. 

 Figure  13.2  shows the effect of another member of the endocannabinoid family, 
arachidonoyl ethanolamine (AEA, anandamide), on SERCA activity in the presence 
of different Ca 2+  concentrations. Strikingly, the apparent affi nity for AEA is strongly 
dependent on the free Ca 2+  concentration present in the extravesicular medium, i.e., 
cytoplasmic Ca 2+ . Hence, the uncoupling produced by these molecules requires low 
cytoplasmic Ca 2+ . Uncoupling relies on Ca 2+  binding, phosphate transfer from ATP, 
but failure to transport Ca 2+  to the SR lumen and hence Ca 2+  return to the cytoplasm. 
Low cytoplasmic Ca 2+  concentrations would favor this Ca 2+  slippage from the 
 binding sites. It was concluded that the long chain polyunsaturated fatty acid chain 
is responsible for the uncoupling effect of these drugs, with the different head group 
structure of the uncoupling molecule responsible for the fi ne kinetic effects on 
SERCA. It would be of particular importance to develop molecules that interact 
with SERCA but not with the other targets (CB1 or TRPV1 receptors [ 54 ,  55 ]). This 
strategy will develop SERCA uncoupling drugs without indirect stimulation of 
 passive Ca 2+  fl uxes across the SR membrane through the other routes.

   SLN is now well recognized that sarcolipin, as a SERCA uncoupling protein, 
increases thermogenesis by skeletal muscle cells [ 57 ,  58 ]. This demonstrates that 
SERCA uncoupling may be produced by several independent factors. The impor-
tance of the SERCA-SLN interaction has recently emphasized by new crystal 
 structures showing that SLN co-crystallizes with an E 1 -like form of SERCA grown 
in the presence of Mg 2+  and in the absence of Ca 2+  [ 59 ,  60 ]. SLN was found to 
stabilize the Ca 2+  empty E 1 -Mg 2+  state, lying between M2, M6, and M9, and seems 
to retard the movement of M2 and hence transition to the E 2 (2Ca 2+ ) form. 
Biochemical investigations are necessary to understand the dynamics of the M2 
movement mediated by SLN and how it leads to phosphoryl transfer not coupled 
with Ca 2+  transport.  
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5     Drug-Mediated Uncoupling of the Sodium Pump 

 Capsazepine (CPZ) is a synthetic vanilloid antagonist that was developed to 
 abrogate the stimulation of TRPV1 by capsaicin [ 61 ,  62 ]. CPZ was found to pro-
duce no effect on the hydrolytic activity of the Na + ,K + -ATPase in the absence of K + . 
However, CPZ inhibits the pump in the presence of K + , showing that the drug selec-
tively abolishes the contribution of K +  to pump activation. In order to understand 
how this is achieved, we have performed a large set of biochemical and biophysical 
experiments. CPZ was found to increase the apparent affi nity for K +  with no effect 
on Na +  affi nity [ 63 ]. The drug strongly decreased the steady-state phosphoenzyme 
level measured in the presence of micromolar ATP concentrations at 0 °C. However, 
CPZ was found to stabilize this remaining small amount of phosphoenzyme. The 
phosphoenzyme intermediate stabilized by CPZ is increased by ADP, showing that 
CPZ stabilizes an ADP-insensitive, unique pump conformer. Strikingly, CPZ has no 
effect on active  22 Na +  infl ux into liposomes containing inside-out pumps when the 
ATP concentration was 10 μM, but inhibits the fl ux at 300 μM ATP. These results 
indicate that CPZ separates an Na +  cycle from an Na + /K +  cycle in the pump; the  Na + /

  Fig. 13.2    SERCA 
uncoupling molecules.  Top . 
Structure of 
 N -arachidonoyl dopamine 
(NADA) and arachidonoyl 
ethanolamine (AEA). 
 Bottom . Effect of 
arachidonoyl ethanolamine 
(AEA) on SERCA activity, 
measured at 37 °C as 
described in [ 56 ]. The 
ATPase reaction contained 
30 mM MOPS buffer 
pH 7.2, 0.5 μg SR vesicles, 
130 mM KCl, 3 mM 
MgATP and the indicated 
AEA concentrations. The 
reactions were performed 
at different Ca 2+  
concentrations (calculated 
using WinmaxC), as shown       
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K +  cycle seems inoperative in the presence of low ATP concentrations but only 
operates at saturating ATP. CPZ only attacks the K +  cycle, leaving the Na +  cycle 
intact. This conclusion challenges the concept of coupled 3Na + /2K +  transport and 
suggests that one Na +  has its own entrance and exit pathway. A similar proposal was 
indeed concluded in early studies on reconstituted Na + ,K + -ATPase; detailed kinetic 
analyses indicated the presence of two separate sodium pump cycles, one releasing 
a single Na +  per ATP molecule hydrolyzed [ 64 ,  65 ]. 

 Additional biochemical and biophysical studies have been performed to under-
stand the CPZ modifi cation of the Na + ,K + -ATPase. Patch clamp experiments showed 
that CPZ decreased pump-mediated current in the presence of extracellular K + . In 
the absence of K + , however, CPZ increased pump current, indicating increased Na +  
effl ux [ 66 ], in full agreement with the in vitro measurement on the kidney enzyme 
[ 63 ]. This conclusion was further supported by employing Asante NaTRIUM green 
II (ASG II), an Na +  sensitive dye. Pump-mediated change in intracellular Na +  was 
estimated by measuring the fl uorescence of ASG II loaded into cultured human 
embryonic kidney cells. In the presence of extracellular K + , CPZ increased ASG II 
fl uorescence, indicating an increase in intracellular Na +  as a consequence of inhibi-
tion of the coupled Na + /K +  transport. However, in the absence of K +  (Na + /Na +  
exchange conditions) the fl uorescence instead decreased, showing an increase in 
Na +  effl ux from the cells [ 66 ]. Thus, CPZ abolishes the K +  transporting steps (and 
hence the Na +  transport associated with it) but stimulates Na +  release. 

 The above studies were further confi rmed using shark Na + ,K + -ATPase reconsti-
tuted in lipid vesicles, where the effect of CPZ on the electrogenicity of the pump 
can be estimated. Liposomes containing inside-out reconstituted pumps (orienting 
their cytoplasmic domains outside the liposomal lumen) can be stimulated by 
MgATP to catalyze Na +  infl ux (3Na + /2Na +  stoichiometry) into liposomes (cellular 
effl ux). This brings a net positive charge across the liposomal lumen, producing an 
inside positive membrane potential that can be registered as a function of time using 
the potential sensitive dye oxonol VI. When reconstituted pump was incubated 
in media containing Na +  and Mg 2+  and then stimulated by 75 μM ATP, oxonol VI 
 fl uorescence increased, likely refl ecting the exchange of two intravesicular Na +  with 
three extravesicular Na +  and hence establishment of a membrane potential across 
the liposomal membrane, positive inside. The fl uorescence reached maximum 
( plateau) when the inside positive potential impairs active Na +  release from the 
E 2 P(Na + ) conformer. Addition of CPZ increased the fl uorescence to new plateau 
with a magnitude that was twice the plateau obtained in the absence of CPZ [ 66 ]. 
Thus, CPZ seems to decrease the sensitivity of the extracellular sites for Na + . When 
the intravesicular medium was made to contain 30 mM K + , the same result 
was obtained except for the higher rate of oxonol fl uorescence associated with 
Na + /K +  exchange, refl ecting the difference in affi nity between extracellular K +  and 
 extracellular Na + . The increase in fl uorescence seen after CPZ treatment in the 
 presence of K +  is likely an effect on Na + /Na +  exchange, as K +  is rapidly washed out 
of the liposomes. The most striking observation was the effect of CPZ on oxonol VI 
fl uorescence in the presence of ion gradient across the liposomal membrane. In 
the presence of a K +  gradient, CPZ produced an ATP-independent increase in 
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 fl uorescence. This effect is K +  specifi c; a similar Na +  gradient produced no effect on 
fl uorescence. Thus, the increase in fl uorescence is not associated with active 
 transport but is likely related to electrogenic K +  binding facilitated by the chemical 
gradient across the membrane. It does not seem likely that K +  is transported to 
inside the vesicles. Extravesicular (cytoplasmic) K +  likely binds to a site in the 
 protein and produces a shift in the orientation of the negatively charged oxonol dye 
in the membrane and hence an increase in fl uorescence. 

 Studies on purifi ed enzyme showed that the insensitivity of Na + -ATPase to CPZ 
depends on the medium pH. Thus, CPZ was found to inhibit Na + -ATPase at basic 
pH values, showing that the interaction of CPZ with the pump is switched by 
 protons. In other words, CPZ blocks the K +  sites at acidic and neutral pH and 
 apparently blocks all three sites at basic pH (as observed from the complete loss of 
Na + -ATPase activity induced by CPZ). Wang and Horisberger observed an inward 
proton current through the pump in the absence of external Na +  and K + ; the current 
is stimulated by a decrease in extracellular pH or at more negative membrane poten-
tial [ 67 ]. Proton transport has been linked to the unique Na +  site as evidenced from 
site-directed mutagenesis combined with electrical measurements [ 68 ]. Recently, 
patch clamp studies revealed that proton leak occurs independently from Na + /K +  
exchange, but was found to be facilitated by impairment of forward K +  binding/
occlusion [ 69 ]. Similar conclusions were attained using pumps expressed in oocytes 
[ 70 ]; however, the authors stated that “binding of two Na +  or two protons to sites 
I and II inhibits proton transport.” These results point to a high degree of interaction 
between the Na +  unique site and the shared sites. 

 Thus, we concluded that one of the Na +  sites (likely site III) functions indepen-
dent of the two other sites [ 63 ,  66 ]. The pump may catalyze uncoupled Na +  transport 
wherein a single Na +  ion is able to bind from the intracellular side and be released 
to the external medium. For this to occur, it is necessary to assume that two of the 
sites are either constitutively occupied with two K +  ions or blocked [ 66 ], and that the 
site through which uncoupled transport occurs may have entrance and exit pathways 
distinct from the other sites. That transport across the Na +  specifi c site occurs 
through a distinct pathway independent from the shared sites has been proposed 
earlier [ 71 ]. In order to investigate these proposals, we sought to use ion congeners 
that bind the different sites on exclusive basis. Studies by the group of Artigas have 
introduced what we have been looking for. Based on early studies on Na +  channels 
[ 72 ,  73 ], they tested the responsiveness of the Na + ,K + -ATPase to several alkali metal 
and organic cations. They concluded that guanidinium (Gua + ) functions as an Na +  
congener at the Na +  unique site but not the shared sites, as it produces voltage- 
dependent inhibition of an outward current in the presence of external K +  and 
 produces inward current by permeating the pump at negative potentials [ 74 ]. On 
the other hand, acetamidinium (Acet + ) and formamidinium (Form + ) were reported 
to function as K +  congeners, interacting exclusively with the shared sites [ 75 ]. 

 Trypsin cleavage has been used to study conformational transitions of the 
α-subunit of the renal Na + ,K + -ATPase [ 76 ,  77 ]. Incubation with trypsin in the 
 presence of Na +  produces two cleavages at the N-terminal third of the α-subunit 
(site T 2  at the N-terminal tail and site T 3  in the A domain) whereas in the presence 
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of K +  a single cleavage at the middle of the α-subunit occurs (site T 1  in the N domain 
[ 76 ,  77 ]). We were the fi rst to study the effect of Gua +  on pump conformation [ 66 ]. 
Gua +  produced cleavage preferentially at T 3 , i.e., a similar cleavage pattern as 
expected for the E 1 (Na + ) form. Importantly, a short peptide was exposed to cleavage 
by trypsin in the presence of Gua +  (site T 4 ). This fragment is derived from the 
C-terminus of the α-subunit following cleavage between R1005 and P1006 [ 66 ], 
showing that the distal part of M10, expected to be buried in the membrane, becomes 
exposed to trypsin attack in the Gua +  bound form. Figure  13.3  shows the location of 
the T 4  site in the crystal structure of the C-terminal M8M10 region of the α-subunit 
in the E 1 ·AlF 4  − ·ADP·3Na +  form (PDB accession nr 3WGU [ 78 ]) and the 
E 2 ·MgF 4  2− ·2K +  form (PDB accession nr 2ZXE [ 79 ]). The architecture of the M8M10 
region is almost identical in both structures, except for a tiny disposition of the 
C-terminal tail (~2.5 Å) and an even smaller shift in the M8M9 loop. Factors that 
expose the C-terminal tail include Gua + , high pH (known to shift the conformational 
equilibrium of the pump toward the E 1  form), and CPZ [ 66 ]. Notably, Gua +  does not 
produce ATP hydrolysis either alone or in combination with Na +  and K +  despite 
being occluded in the pump.

  Fig. 13.3    Structure of the C-terminal part of the Na + ,K + -ATPase α-subunit. The fi gure shows the 
M8M10 part in the two available conformations. The location of the T 4  site is indicated by  arrow . 
D926, located in M8, is shown in  red . The intracellular M8M9 loop and the extracellular M9M10 
loop are shown in  white . Positive amino acids in the M8M9 loop and in the C-terminal tail are 
shown in  blue . The  dashed yellow line  indicates a hypothetical situation where movements of M10 
perpendicular to the membrane—likely regulated by changes in membrane potential—would 
change the position of the C-terminal tail. Movement of M10 would likely change the position of 
D926 in M8, thereby regulating Na +  interaction with the pump. D926 is an important, Na +  affi nity- 
determining residue. Taken from [ 66 ]       
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6        Conclusions 

 Novel information on the uncoupling of SERCA and Na + ,K + -ATPase has been 
uncovered. We have identifi ed the fi rst SERCA uncoupling agent and characterized 
its interaction with SERCA. In addition, we provided information on how  uncoupling 
would be achieved in mammals through interaction of Ca 2+  transport proteins with 
multifunctional lipid metabolites of the endocannabinoid family. These studies will 
hopefully persuade future studies on how the lipid metabolites are synthesized 
and released to their precise sites of action (e.g., [ 80 ]). 

 We have demonstrated uncoupling of the sodium pump by chemical modifi ca-
tion. The uncoupled pumps release a single Na +  with the shared site likely fi lled 
with strongly bound K + . Previous studies on H + ,K + -ATPase have indicated that a 
mutation adding a positive charge in M6 (neutralizing a negative charge on Glu820), 
mimicking K +  binding, fully activate H + ,K + -ATPase activity and compensate for 
the absence of K +  [ 81 ]. Whether uncoupling of the Na + ,K + -ATPase may have 
 physiological signifi cance remains to be determined. A major unresolved issue is 
how the Na +  specifi c site communicates with the shared sites [ 66 ]. Gua +  and H +  
were found to leak through what is meant to be site III in the pump. In contrast, Na +  
was found not to permeate [ 75 ]. The pump likely contains a sort of valve that 
 prevents the reverse fl ow of Na +  but allows other ions to permeate. Our results [ 66 ] 
indicate that the highly polar M10 may be involved in the regulation of ion 
 interaction with site III, thereby regulating ion interaction with the shared sites. 

 In the crystal structure of the E 1  form [ 78 ], D926 coordinates Na +  in the unique 
site, explaining the strong effect of the mutation of Na +  affi nity without affecting K +  
interaction. Interestingly, D926 is the only ion-coordinating residue present in M8; 
all the other coordinating residues are located in M4, M5, and M6. Based on our 
results as well as literature data, it seems likely that αM10 functions as a membrane 
potential responsive element. In studies on Ca 2+ -ATPase, the αM7-M10 domain has 
been thought of as a membrane anchor [ 82 ,  83 ]. Yet, αM10 contains a relatively 
large number of polar amino acids and is thus expected to be loosely associated 
with the membrane. This expectation is supported by thermal denaturation studies 
 reporting the exposure of the M9M10 loop to the extracellular medium upon heat-
ing [ 84 – 86 ]. In consistence, we showed previously that low temperatures expose 
 cytoplasmic stalk segments of the regulatory protein FXYD10, implying movement 
of the domains toward the cytoplasm [ 87 ]. A large number of studies have indicated 
the importance of the C-terminus of the pump in ion selectivity and voltage 
 dependence [ 74 ,  88 – 91 ], suggesting its involvement in the regulation of an ion 
 permeation pathway. That αM10—carrying the C-terminal tail—moves perpendic-
ular to the membrane would explain how the ion permeation pathway is regulated. 
The distal part of αM10 contains several positively charged amino acids, favoring 
the aforementioned idea. In this regard, the K1003E mutation, located in the 
 membrane upstream the C-terminal tail, was shown to shift the voltage dependence 
of charge translocation (Na + /Na +  exchange conditions) by −12 mV compared to 
wild-type enzyme [ 92 ]. Finally, the exposure of the C-terminal tail to trypsin 

13 Uncoupling of P-Type Pumps



236

 cleavage in response to the different stimuli [ 66 ] indicates that αM10 moves during 
 conformational changes (dashed arrow in Fig.  13.3 ). In principle, modifying the 
position of αM10 (and the associated C-terminal tail) would regulate two function-
ally important events; (1) indirect effect on the position of M8 carrying D926 and 
(2) direct interaction with the ion binding core through the C-terminal tail, thereby 
modulating the inclination of αM5 (expected to modulate ion selectivity at the 
shared sites). Crystal structures—based on protein crystals grown in the absence of 
membrane potential—would not be able to judge the effect of membrane potential 
on pump structure. Biophysical and biochemical studies will be required to confi rm 
whether or not αM10 moves in response to changes in membrane potential. 
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    Chapter 14   
 Phospholemman: A Brief Overview                     
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    Abstract     Na + /K + -ATPase (NKA) plays the key role in maintaining Na +  and K +  
gradients in cells, which is essential for regulation of cell volume and membrane 
potential. PLM (aka FXYD1) interacts with NKA and Na + /Ca 2+  exchanger (NCX) 
and modulates their activities in tissue specifi c and physiological state specifi c man-
ner. Protein kinase A (PKA) and protein kinase C (PKC) targets different pools of 
PLM associated with NKA and NCX, thereby regulating their activities. 
Additionally, some signal transducers such as phosphatases, phosphodiesterases 
and nitric oxide play important roles in modulating functions of PLM, especially 
under phosphorylated conditions, toward the activities of NKA and 
NCX. Understanding the above phenomenon is of signifi cance in developing novel 
therapeutics for recovery of patients suffering from a variety of pathophysiological 
conditions, especially cardiovascular and neural diseases.  

  Keywords     Phospholemman   •   FXYD1   •   Na + /K + -ATPase   •   Na + /Ca 2+  exchanger   • 
  Ageing   •   Exercise  

1         Introduction 

 Na + /K + -ATPase (NKA) consists of two subunits, α and β. The enzyme plays an 
important role in maintaining Na +  and K +  gradients in cells, which is essential for 
preservation of cell volume and membrane potential. Phospholemman (PLM or 
FXYD1) is one of the members of the NKA regulatory proteins, FXYDs. FXYD 
denotes for the conserved extracellular Phe.ala-X-Tyr-Asp motif. PLM was fi rst 
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identifi ed in 1985 as a 15 kDa sarcolemmal (SL) protein [ 1 ]. In humans, PLM gene 
is localized to chromosome 19q13.1 [ 2 ]. PLM is expressed predominantly in tissues 
that are electrically excitable or are specialized in transport [ 3 ,  4 ], while in other 
tissues, PLM mainly functions as a regulator of cell volume via NKA [ 5 ,  6 ]. 

 PLM interacts specifi cally with the NKA and modulates its functional properties 
in a tissue specifi c and physiological state specifi c manner [ 7 – 10 ]. The functions of 
PLM are mediated by its cytoplasmic domain, which associate with different regions 
of the α-subunit of NKA and regulate the enzyme activity by mechanisms such as 
phosphorylation, glutathionylation and palmitoylation [ 11 ]. 

 Understanding the physiological functions of PLM in different tissues, for exam-
ple, in heart are evident from studies with PLM knockout mice [ 12 ]. NKA enzy-
matic activity is higher in heart of PLM knockout mice, which has been shown to 
reverse the NKA inhibition caused by PLM. Higher NKA activity in the PLM 
knockout heart results in lower[Na + ] i  and that leads to a decrease in cardiac contrac-
tility [ 13 ]. However, basal [Na + ] i  was similar between wild-type and PLM knockout 
cardiac cells, for example, myocytes [ 14 ,  15 ], indicating that PLM does not affect 
the basal tone.  

2     Localization of PLM 

 All of the FXYD proteins, except PLM, were primarily found in the basolateral 
plasma membrane. PLM was found to colocalize and sequester in the endoplasmic 
reticulum (ER) by its last three carboxy terminal amino acids (RRR) motif. The 
C-terminal cytoplasmic tail of human, dog, rabbit and rat PLM contains three serines 
(at residues 62, 63 and 68) and one threonine (at residue 69), which is replaced by 
serine in mouse PLM [ 7 ]. Cellular stimulation activates second messengers leading 
to the phosphorylation of SSST: 62, 63, 64, 69 amino acid residues of PLM. The 
increased translocation of phosphorylated PLM to the plasma membrane may refl ect 
its ability to override retention signals in the ER. Alternatively, phosphorylation of 
PLM may allow it to interact with other factors and traffi c to the plasma membrane. 
Upon entry to the plasma membrane, the phosphorylated PLM associate with other 
proteins to perform its physiological function [ 16 ]. Understanding the regulation of 
PLM phosphorylation could provide insights into the function of PLM and its puta-
tive protein partners. The relationship between PLM and the Na +  pump is dynamic 
and that PLM can dissociate from the pump once it comes at the cell surface [ 17 ].  

3     Structural Aspects of PLM-NKA 

 PLM is synthesized as a 92 amino acid peptide with a 20 amino acid N-terminus 
signal peptide, which is cleaved off during processing. The modifi ed protein 
 contains 72 amino acid residues of which the fi rst 17 amino acids reside in the extra-
cellular domain (H1). The transmembrane (TM) region contains 20 amino acids 
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(H2) followed by a short chain (H3) and a stretch of amino acids (H4), which are 
located at the C-terminus in the cytoplasm [ 4 ,  18 ]. Two domains of PLM, the mem-
brane domain (H2) and the C-terminal domains (including H4) are involved in bind-
ing with NKA (Fig.  14.1 ).

4        PLM and NKA Activity 

 PLM is a major substrate for both protein kinase A (PKA) and protein kinase C 
(PKC). PLM can be phosphorylated by PKA at Ser68 and by PKC at both Ser63 and 
Ser68 [ 19 ], which paralleled positive inotropic response of the heart [ 20 ,  21 ]. 

  Fig. 14.1    Position of PLM 
relative to the α-subunit of 
NKA is shown in  green , N 
domain in  cyan , P domain 
in  yellow , and A domain in 
 purple . The β-subunit is 
 red . Sodium ( purple 
sphere ) is shown in its 
proposed binding sites. 
Helices H2, H3 and H4 of 
the PLM are labelled. 
Taken from Ref. [ 74 ] with 
permission       
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 PLM is unique among FXYD proteins in that it has consensus sequence for 
phosphorylation by PKA (RRXS), PKC (RXXSXR)n and never in mitosis aspergil-
lus (NIMA) kinase (FRXS/T). PLM is also a substrate for myotonic dystrophy pro-
tein kinase [ 4 ]. Elevation of cAMP that occurs in β adrenergic receptor activation 
upon isoproterenol treatment to cells activates cAMP-dependent kinase (PKA), 
which in turn phosphorylates Ser68 on PLM [ 21 ]. This not only overcomes PLM 
inhibition of the Na + /K +  pump, but also stimulates the NKA activity by increasing 
 V  max , thereby augmenting sensitivity of the pump to intracellular Na +  [ 22 ]. The stim-
ulatory effect of isoproterenol on the pump has not been observed in PLM knockout 
mice [ 24 ]. Figure  14.2  depicts schematically the relationship between PLM and 
NKAα subunit and subsequent alterations induced by PLM upon phosphorylation.

   PKA and PKC targets different pools of PLM associated with different NKA 
isozymes. PKA phosphorylates the pool of PLM which is associated with NKAα1β1 
isozyme and increase their apparent Na +  affi nity [ 23 ]. On the other hand, PKC phos-
phorylate PLM which is associated α2β1 isozymes, whereas activation of α2β1, but 

  Fig. 14.2    Diagram showing the suggested relationship between phospholemman (PLM) and the 
NKAα-subunit and alterations induced by PLM phosphorylation. PLM is a single transmembrane 
spanning protein that inserts into the sarcolemma with its carboxy terminus on the cytoplasmic site 
of the membrane. The cytoplasmic tail of PLM contains three phosphorylation sites at Ser63, 
Ser68 and Thr69 (Ser69 in mouse) ( a ), the helical structure of PLM normally orients with the 
cytoplasmic region of the α-subunit close to, or inserted into, the membrane. The basic nature of 
this region (+) means that it associates with the negatively charged phospholipids of the membrane. 
However, when PLM is phosphorylated at any or all of the phosphorylation sites indicated in ( a ); 
the orientation of the cytoplasmic tail may shift altering its interaction with the NKAα-subunit and 
disinhibiting/stimulating ion transport ( b ). Taken from Ref. [ 75 ] with permission       
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not α1β1, isozyme produces functional effects in cells [ 23 ]. The α2β1 isozyme 
contributes to only about 11 % of total NKA [ 24 ], albeit that plays a prominent role 
in cardiac contractility compared to that of the α1β1 isozyme [ 25 ] due to its prefer-
ential localization in T tubules and their colocalization with NCX [ 24 ,  26 ]. 

 Thus, PLM phosphorylation by PKA and PKC play differential roles in regulat-
ing different NKA isozymes. PKA and PKC produce additive effects in phosphory-
lation on PLM on NKA activity, which are observed in cells such as cardiac 
myocytes [ 22 ] and pulmonary artery smooth muscle cells [ 23 ], leading to an 
increase in Na +  extrusion, which limits Na +  overload during sympathetic stimulation 
in both the left and right ventricles.  

5     PLM and NCX Activity 

 Na + /Ca 2+  exchanger (NCX) is one of the major Ca 2+  effl ux mechanisms, thereby 
restoring [Ca 2+ ] i  to resting levels and maintains steady state Ca 2+  balance [ 28 ]. 
Steady state [Ca 2+ ] i  in each excitation-contraction cycle mainly depends on the 
proper functioning of NCX [ 28 ]. NCX function has interdependency on the activi-
ties of NKA [ 27 ]. 

 NCX1, the most important member of NCX family, is a 938 amino acid (939 
amino acids in rat) comprising the fi rst fi ve TM segments, a large intracellular loop 
and a –COOH terminal domain consisting of the last four TM segments [ 28 ,  29 ]. 
The –NH 2  terminus of NCX1 is extracellular and the –COOH terminus is intracel-
lular. The α repeats in TM segments 2,3 and 7 of NCX1 are important in Ca 2+  trans-
port, while the large intracellular loop contains the regulatory domains of the 
exchanger [ 30 ,  31 ]. PLM interacts and associates with residues 218–358 of the 
intracellular loop of NCX1 [ 32 ]. Molecular model of phospholemman and NCX is 
schematically represented in Fig.  14.3 .

   Phosphorylation of PLM by PKA and PKC at Ser 68 causes inhibition of NCX 
activity and mutation in this single amino acid completely eliminates the capabil-
ity of PLM to inhibit NCX activity [ 33 ]. In HEK293 cells, upon co-expression of 
both NCX and PLM, the stimulatory effects of the PKC activator, PMA on NCX 
activity was inhibited by increased PLM phosphorylation [ 34 ]. Co-expression of 
PLM and NCX inhibited both forward and reverse mode of NCX and decreased 
Na + -dependent Ca 2+  uptake. Inhibition of NCX by PLM seems specifi c because 
ablation of dual PKA and PKC phosphorylation at Ser68 in PLM by Ala replace-
ment led to the loss of function and nullifi es its inhibitory effect on NCX activity. 
In cardiac myocytes, over expression of PLM causes an increase in [Ca 2+ ] i  and 
subsequently produces contraction [ 33 ]. Thus, the effects of PLM on cardiac exci-
tation-contraction coupling not only occur due to changes in Na +  ion gradient 
resulting from PLM inhibition on NKA activity [ 29 ], but also by interaction of 
PLM with NCX [ 27 ,  35 ,  36 ]. 

 Mutation in Ser 63 (Ser63A) results in modest inhibition of NCX when com-
pared with wild type PLM, which suggests that phosphorylation at Ser63, also con-
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tributes to the inhibitory effect of PLM on NCX [ 37 ]. However, Ser68 phosphorylation 
plays a major role in the inhibition of NCX by PLM. Changes in PLM conformation 
by mutating Ser68 (Ser68A) alters its interaction with NCX by not allowing it to 
interact with PKC, conceivably due to steric hindrance [ 34 ]. 

 PLM exist in at least two subpopulations based on its accessibility: one only to 
PKA and the other only to PKC indicating that only one population of NKA is avail-
able to PKA, and another proportion to PKC. It has been suggested that these sub-
populations represent two isoforms (α1β1 and α2β1) of NKA [ 23 ,  36 ].  

6     Physiological Signifi cance 

 In intact heart, β-adrenergic stimulation mediated depolarization increases Na +  
infl ux into the myocytes. In addition, L-type Ca 2+  currents also increase upon 
β-adrenergic stimulation, resulting in an enhancement of Ca 2+  entry. To maintain 

  Fig. 14.3    Molecular model of phospholemman and Na + /Ca 2+  exchanger.  Left : nuclear magnetic 
resonance studies of highly purifi ed phospholemman in micelles reveal four helices of the pro-
tein with a single transmembrane (TM) domain. The FXYD motif is in the extracellular domain, 
and the physiologically important phosphorylation sites Ser63 and Ser68 are in the cytoplasm. 
 Right : the mature Na + /Ca 2+  exchanger is modelled to consist of nine TM segments with two re-
entrant loops (between TM2 and TM3 and between TM7 and TM8) as of the conserved α repeat 
motifs that are important in ion transport activity. The N-terminus is extracellular and the 
C-terminus is intracellular. Between TM5 and TM6 is a large intracellular loop (residues 218–
764) which contains the regulatory domains of the exchanger. Specifi cally, the proximal linker 
domain (residues 218–358) which interacts with PLM, the exchange activity peptide (XIP) 
region (residues 219–238), the two calcium binding domains 1 (residues 371–500) and 2 (resi-
dues 505–689) connected in tandem by a short linker (residues 501–504), and the interaction site 
for endogenous XIP (residues 562–679) all reside within the intracellular loop. The two specifi c 
segments (residues 248–252 [PASKT] and residues 300–304 [QKHPD]) in the proximal linker 
domain responsible for inhibition of Na + /Ca 2+  exchanger by phospholemman as shown. Taken 
from Ref. [ 76 ] with permission       
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steady state Ca 2+  balance, Ca 2+  effl ux by forward mode of NCX and subsequent 
entry of Na +  occurs into the cell. Therefore, an increase in NKA activity by PLM 
phosphorylation during β-adrenergic stimulation prevents intracellular Na +  over-
loads [ 34 ]. Importantly, unchecked stimulation of NKA activity could decrease 
[Na + ] i , thereby augmenting the NCX activity, which causes further [Ca 2+ ] i  depletion. 
Therefore, mechanisms in which PLM upon phosphorylation at Ser68 enhances 
NKA activity [ 5 ,  8 ], but inhibits NCX activity, have physiological signifi cance, for 
example, ischemia-reperfusion induced contraction to blood vessels leading to 
hypertension [ 34 ,  38 ].  

7     PLM-Thr69 Phosphorylation 

 In cardiac myocytes, a new phosphorylation site has been identifi ed in PLM-
Thr69 residue of PLM, which is phosphorylated by PKCα/ε [ 39 ]. A notable 
property of Thr69 phosphorylation in cardiac myocytes is its transient nature 
especially in comparison to Ser63 and Ser68 phosphorylation [ 16 ]. In kidney 
cells, Thr69 phosphorylation plays an important role for transport of PLM from 
ER to the cell membrane [ 16 ]. However, in cardiac myocytes, PLM mainly 
resides in the sarcolemma and T-tubules [ 35 ,  37 ], and the transient nature of 
agonist induced Thr69 phosphorylation could not induce PLM traffi cking from 
the intracellular store, while sustained PKC activation is necessary to induce 
PLM traffi cking in kidney cells [ 16 ]. The physiological relevance of Thr69 phos-
phorylation of PLM remains unclear.  

8     Role of Phosphatase 

 The phosphorylation status of Ser68 of PLM is known to be regulated by protein 
phosphatase inhibitor (PPI), inhibitor-1 (I-1), PKA and PKC [ 40 ], whereas the 
phosphorylation status of Ser63 is mainly governed by PP2A and PKC (Fig.  14.4 ). 
So, in addition to their phosphorylation, the phosphorylation status of the two pools 
of PLM is determined by colocalization with a phosphatase [ 36 ]. Armouche et al. 
[ 40 ] have reported that hyperphosphorylation of PLM in the failing human heart 
may be due to the down regulation of the inhibitor-1 and also protein phosphatase-1 
(PP-1) activity [ 41 ].

   PLM phosphorylation and cardiac NKA activity are negatively regulated by 
 protein phosphatase-1 (PP-1). PP-1 has been implicated in modulating cardiac β 
agonist response and is a negative regulator of cardiac contractility [ 42 – 44 ]. Ser68 
is a downstream target of I-1, which allows a cross talk mechanism in which PKA 
regulates the function of NKA by regulating I-1 [ 40 ].  
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9     Phosphodiesterase and PLM 

 Sildenafi l, a selective inhibitor of phosphodiesterase enzyme type 5 (PDE5) pre-
vents the hydrolysis of cGMP and plays an important role in ameliorating ischemia- 
reperfusion injury [ 45 ,  46 ]. Sildenafi l induces PKG mediated phosphorylation of 
PLM during ischemic reperfusion injury and stimulates the NKA activity. This 
would limit Na +  and Ca 2+  overload [ 49 ]. 

 Two pools of cGMP exist in a cell: particulate guanyl cyclise (P-GC) is pres-
ent in cell membrane, while soluble guanylate cyclase (S-GC) is a cytosolic 
enzyme and both types of GCs upon activation produce cGMP [ 22 ]. P-GC can 
trigger discrete signal transduction compared with the soluble enzyme (S-GC) 
in elevating cGMP locally instead of globally in a cell [ 47 ,  48 ]. Sildenafi l medi-
ated cardioprotection may involve stabilization of cGMP produced in the par-
ticulate fraction in contrast to that derived from S-GC, since sildenafi l could not 
inclusively maintain the elevated level of cGMP [ 46 ]. Figure  14.5  outlines the 
cardioprotective function of sildenafi l. Sildenafi l at reperfusion activates PKG 
leading to the phosphorylation of PLM Thr69, but not Ser63 or Ser68, in a 
PKC-dependent manner. The phosphorylation of PLM at position Thr69 leads 
to the activation of NKA, which provides a mechanism for sildenafi l-mediated 
cardioprotection against reperfusion injury mainly by attenuating cellular Na +  
overload [ 46 ].

  Fig. 14.4    Signalling pathways regulating Na +  pump activity via phosphorylation of PLM. PLM 
phosphorylation state is regulated by the kinase activity of PKA and PKC and phosphatise activity 
of PP-1 and PP2A, PKA and PKC phosphorylate phospholemman and thus stimulate Na +  pump 
(denoted by +), whereas PP-1 and PP2A remove phosphates from phospholemman and thus inhibit 
the pump (denoted by -).  ET-1  endothelin-1;  ET   A   endothelin receptor;  NOS  nitric oxide synthase; 
 AR  adrenergic receptor. Taken from Ref. [ 77 ] with permission       
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10        Nitric Oxide and PLM 

 Endogenous NO maintains Na +  and Ca 2+  homeostasis, for example, in isolated myo-
cytes. Exogenously added NO increases apparent Na +  affi nity of NKA activity in rat 
myocytes in a dose-dependent manner [ 48 ]. NO is known to stimulate NKA activity 
via PKCε induced phosphorylation of PLM at Ser63 and Ser68 [ 48 ]. 

 NO has been reported to both inhibit and stimulate NKA activity. At low 
doses, NO stimulates NKA activity by increasing its apparent Na +  affi nity [ 49 ]. 
Conceivably, the differences in the NO donors used and the concentration of NO 
generated may explain the apparent ambiguity of NO. The NO donor,  S -nitroso- N - 
acetylpenicillamine  (SNAP) produces biphasic contractile effects in cardiac tissue, 
with a positive inotropy at low NO concentrations and negative inotropy at high 
concentrations [ 50 ]. Inhibition of endogenous NO has been shown to cause positive 

  Fig. 14.5    Schematic diagram to illustrate the potential cardioprotective signalling mechanism, for 
sildenafi l at reperfusion.  NO  nitric oxide;  sGC  soluble guanylate cyclase;  PDE5  phosphodiesterase 
enzyme type 5;  8-Br- cGMP  8-bromo-cGMP. Taken from Ref. [ 46 ] with permission       
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inotropy. It is possible that the inhibitory effect of excess production of NO could 
be due to the formation of the potent oxidant, peroxynitrite (NO + O 2  •−  → ONOO −• ), 
which inhibits NKA activity [ 31 ,  32 ]. The signalling pathway through which NO 
exert its effects could occur via PKCε-mediated phosphorylation of Ser63 and 
Ser68 residues of PLM [ 51 ].  

11     Palmitoylation and Glutathionylation 

11.1     Glutathionylation 

 PLM in cells is susceptible to glutathionylation. Mutagenesis identifi ed the specifi c 
reactive cysteine in the cytoplasmic terminal. Na +  pump β1 subunit glutathionyl-
ation induced by oxidative signals results in the pump inhibition [ 52 ]. 
Glutathionylation of the β1 subunit increases in myocardium of PLM−/− mice [ 36 ]. 
By facilitating deglutathionylation of the β1 subunit, PLM reverses oxidative inhibi-
tion of the Na +  pump and plays a dynamic role in its regulation [ 36 ]. 

 The transmembrane domain of the β subunit is detached from the transmembrane 
domain of the α-subunit and their interaction is stabilized by single hydrogen bond 
[ 58 ]. Movements of α/β subunits relative to each other during the change to the E1 
conformation [ 53 ,  26 ] may disrupt the interaction and shift Cys46 into a domain acces-
sible to the aqueous environment of the cytosol where glutathionylation can occur. 

 There may be pathological implications of PLM-dependent redox regulation of 
membrane transport. An enhancement in the level of neurohormones during oxida-
tive stress [ 54 ,  55 ] and subsequent dysregulation of cytosolic Na +  and Ca 2+  handling 
have been suggested to contribute to the pathophysiology of heart failure [ 56 ]. 
Decreased PLM expression may accentuate several abnormalities associated with 
Na +  and Ca 2+  dysregulation, for example, ischemia-reperfusion [ 35 ] and that may 
also be modifi ed by glutathionylation of PLM and NKAβ1 subunits [ 36 ].  

11.2     Palmitoylation 

 Protein S-palmitoylation is currently considered as an important and common post 
translational modifi cation in a variety of cells [ 57 ]. S-palmitoylation is the reversible 
covalent post translational attachment of palmitic acid to the thiol groups of cysteine 
via an acyl thioester linkage [ 58 ]. Protein-S-palmitoylation is catalyzed by palmitoyl 
acyl transferases and reversed by protein thioester, and that occurs dynamically and 
reversibly in a manner analogous to protein phosphorylation [ 58 ]. In silico algo-
rithms and analysis suggest that human PLM can be palmitoylated at Cys-40 and 
Cys-42 residues, which resides in the intracellular region of PLM [ 59 ]. 

 Phe28 of PLM and Glu960 of the α-subunit of NKA are critical for their interac-
tion [ 60 ]. Palmitoylation of PLM at Cys42, but not Cys40, could impinge on PLM 
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Phe28 and α subunit of Glu960, thereby alter their interaction. Importantly, PLM 
protects the Na +  pump from oxidative inhibition through oxidation of an intracel-
lular cysteine [ 61 ], which could be of signifi cantly greater functional consequence 
for the pump if a pool of non-oxidized PLM exists to exchange with the recently 
oxidized Na +  pump associated PLM [ 36 ].  

11.3     Relationship Between Palmitoylation 
and Glutathionylation 

 Glutathionylation of PLM at Cys42 enhances Na +  pump activity by relieving the 
inhibition of the Na +  pump, which occurs due to oxidative modifi cation [ 61 ] and the 
mechanism seems complex. Palmitoylation and glutathionylation, therefore, could 
compete for the same cysteine. The ability of the Cys42 to receive either glutathione 
or palmitate will depend on whether it has already been modifi ed with the other. 
PLM may act as a pump activator or inhibitor depending on its phosphorylation and 
redox state [ 64 ]. Oxidant stress itself leads to PLM phosphorylation [ 62 ], whereas 
an inhibition of the pump by palmitoylation has also been demonstrated.   

12     PLM and Brain CSF 

 PLM is highly expressed in selective structures of the CNS [ 51 ]. It is most abundant in 
cerebellum, where it was detected, for example, in Purkinje neurons and in axons tra-
versing the granule cell layer. PLM is particularly enriched in choroid plexus, the organ 
that secretes CSF in the ventricles, where it colocalizes with NKA in the apical mem-
brane [ 63 ]. In cerebellum and choroid plexus, PLM physically associates with the NKA 
and regulates brain ventricle size upon playing a role as a “volume sensor”. Either an 
increase or decrease in CSF volume can be pathological throughout life [ 63 ]. 

 The NKAα subunit regulates brain development with the involvement of 
PLM. NKA acts as a key regulator of brain ventricle formation by impacting three 
processes: neuroepithelium formation, neuroepithelial permeability and CSF pro-
duction. Involvement of NKA in water movements has been shown to occur either 
with aquaporins in plasma membrane or through the paracellular pathway. 
Aquaporins are strongly expressed in “choroid plexus” and its knock-out mice have 
abnormal CSF production [ 63 ,  51 ].  

13     PLM in Ageing and Exercise 

 Both insulin and exercise induce phosphorylation of PLM in muscle [ 38 ]. Insulin 
and exercise are known to promote PLM phosphorylation via PKA and PKC [ 19 ]. 
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 Endurance exercise training has been shown to reverse some of the ageing related 
defi cits. The level of expression of PLM was not modifi ed by advancing age, but 
was signifi cantly increased by exercise training in aged rats [ 64 ]. Exercise training 
alters expression of PLM by transiently increasing the phosphorylation of PLM 
Ser63 and Ser68 without modifying Thr69, while ageing modulates the level of 
PLM associated α1 isoform and exercise training modulates the levels of PLM asso-
ciated α1 and α2 isoform. The increase in PLM associated α1 in comparison to that 
of α2 with age indicates that PLM plays a more important role in regulating α1 than 
α2 during ageing [ 65 ]. 

 PLM is less likely to be involved in long-term skeletal muscle adaptations. 
Endurance training induced changes in Na +  and K +  handling during skeletal 
muscle contraction due mainly to the adaptive increase in NKA and PKCα/βII 
have been demonstrated to play a role as an upstream kinase that phosphorylates 
PLM is response to acute exercise [ 66 ]. PLM contains a potential phosphoryla-
tion site for CaMKII. It, therefore, remains to be determined whether CaMKII 
is upstream or downstream to the PKCα/βII for PLM phosphorylation during 
acute exercise [ 18 ].  

14     Summary 

 PLM is the only among FXYD member that regulates the activities of both NKA 
and NCX, which suggests that PLM, NCX and NKA form a macromolecular 
complex. There are signifi cant differences, however, between the mechanisms by 
which PLM regulates the activities of these two important ion transporters. 
Phosphorylation of PLM relieves inhibition of NKA, whereas it is the phosphory-
lated form of PLM that actively inhibits NCX [ 35 ]. NKA is known to play a role 
in cell volume regulation [ 67 ]. Inhibition of NKA by PLM, therefore, may have 
profound consequences during cardiac ischemia when disordered cell volume 
regulation and electrical instability are present [ 68 ]. Alpha2β1 isozyme of NKA 
has been demonstrated to play a more important role in cardiac contractility in 
comparison to the α1β1 isozyme due to its preferential localization in T-tubules, 
where it colocalizes with NCX [ 22 ]. 

 PLM is highly expressed in heart and brain (cerebellum and choroid plexus) 
[ 63 ], but in kidney it is limited to the juxtaglomerular apparatus [ 69 ]. An increase in 
PLM expression was observed in response to cardiac infarction and nerve injury 
[ 66 ,  69 ]. 

 Juel et al. [ 70 ] have demonstrated that PLM Ser68 phosphorylation was higher 
after exercise compared with rest in type II (slow twitch) fi bres, whereas the type 
1(fast twitch) fi bres showed no discernible change. PKA and PKC mediated PLM 
Ser68 and PLM Ser63 phosphorylations, in addition to some other kinases, could 
non-specifi cally phosphorylate other residues after exercise in type II fi bres result-
ing in an increase in NKA activity [ 71 ].  
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15     Conclusions 

 Some signals that infl uence the traffi cking of NKA through the ER have been 
identifi ed to some extent. For example, a stretch of negatively charged amino acids 
act as a signal for transport from the ER to the cell membrane [ 16 ]. However, the 
proteins that are involved for the translocation of NKA to the cell membrane are 
currently unknown and require investigation. 

 PLM upon phosphorylation at Ser63, Ser68 and Thr69 enhances NKA activity, 
but inhibits Na + /Ca 2+  exchange activity in some types of cells, for example, cardiac 
myocytes. The consequences of NKA activation on the one hand and NCX inhibi-
tion on the other on cellular Ca 2+  homeostasis and contractility seems complex. 
Notably, phosphorylations of Ser68 and Ser69 have been well studied in contrast to 
the Thr69 phosphorylation [ 34 ]. Thus, mechanism(s) that regulates Thr69 phos-
phorylation in modulating NKA activity requires further research. 

 Bossuyt et al. [ 72 ] have demonstrated hyperphosphorylation in a rabbit model of 
volume overload induced dilated heart failure. Armouche et al. [ 40 ] have reported 
hyperpolarization of PLM in the failing human hearts attributable to the down regu-
lation of inhibitor-1 (I-1) and increase in protein phosphatase- 1 (PP-1) activity. So, 
considering only up- or the downregulation of PLM phosphorylation do not seem to 
explain properly progression of a disease, for example, heart failure. Future studies 
are required to determine whether any correlation exists between I-1 and PP-1 with 
cell volume regulation during PKA and PKC mediated hyperphosphorylation of 
Ser63, Ser68 and Thr69 of PLM. 

 PLM has unique distribution in axons of cerebellum. Considering the three NKAα 
isoforms and three β isoforms that are expressed in different brain cell types in differ-
ent combinations [ 51 ,  63 ,  73 ], the potential subunit diversity of the Na +  pump and 
their physiological signifi cance in axons of brain cells requires adequate attention. 

 Endurance exercise training has been demonstrated to reverse some of ageing 
related dysregulation of NKA activity [ 65 ]. The level of PLM expression is not 
modifi ed by advancing age, but has been shown to signifi cantly increase by exercise 
training in aged animals. An increase in the level of PLM may modulate NKA activ-
ity upon phosphorylation. Thus, systematic studies on long-term vs acute effects of 
exercise in trained and untrained subjects may provide important insights on the 
regulation of NKA activity regulated by exercise.     
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    Chapter 15   
 Regulation of the Cardiac Na + /K + -ATPase 
by Phospholemman                     

       Hansraj     Dhayan    ,     Rajender     Kumar    , and     Andreas     Kukol    

    Abstract     Phospholemman (PLM) is a regulatory subunit of the cardiac Na + /K + -ATPase 
(NKA), but exists also as an independent tetramer. The membrane-spanning protein 
consists of 72-amino acid residues and is the fi rst member of the FXYD motif-containing 
family of tissue-specifi c NKA regulatory subunits (FXYD1). A comparative model of 
the human PLM/NKA complex shows the interactions between NKA and the extracel-
lular FXYD motif as well as the transmembrane helix-helix interactions. A variety of 
intracellular posttranslational modifi cations point to a highly dynamic picture of interac-
tions between NKA and the intracellular part of PLM. Posttranslational modifi cations of 
PLM include NKA-activating phosphorylation, inhibiting palmitoylation and activating 
glutathionylation. PLM gene expression has the potential for posttranscriptional regula-
tion by the formation of potassium-ion-stabilised G-quadruplex structures in pre-splic-
ing mRNA. The overall physiological role of cardiac PLM is to protect the heart under 
conditions of increased heart rate and oxidative stress avoiding calcium overload of the 
cytoplasm and arrhythmias. The PLM tetramer possibly exists as a storage pool in order 
for the heart to react quickly to changing conditions.  

  Keywords     fxyd1   •   Cardiac protein   •   Transmembrane protein   •   Protein-protein 
interactions   •   Posttranslational modifi cation   •   Oligomerisation  

1         Introduction 

 The Na + /K + -ATPase (NKA) is a P-type ATPase originally discovered by Skou [ 1 ] 
and responsible for the export of three sodium ions to the outside of the cell and the 
import of two potassium ions. This ion transport against the concentration gradient 
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is driven by the hydrolysis of ATP. The ion gradient established by NKA is essential 
to many membrane transport processes including the generation of action potentials 
in nerve and muscle cells. NKA is composed of a minimum of two subunits, namely 
the catalytically active α subunit with a molecular mass of approximately 100 kDa 
and the β subunit with approximately 33 kDa (in humans), which is required for 
intracellular transport of NKA to the plasma membrane [ 2 ]. At least four isoforms of 
α subunits and three β isoforms are known, while in cardiac muscle α 1 β 1  and α 2 β 1  are 
mainly expressed. With ouabain-based photoaffi nity labels a third γ subunit (also 
known as FXYD2) was discovered in the porcine kidney [ 3 ] and later it was reported 
that NKA is generally associated with a third subunit. Whether this association is 
permanent or transient remains a matter of investigation. The identity of the third 
subunit varies in different tissues, but the FXYD (phenylalanine-X- tyrosine- 
aspartate) sequence motif is common to the third subunit in all tissues [ 4 ]. In cardiac 
muscle tissue the third subunit is termed phospholemman [ 5 ] or FXYD1, which is 
also used as the name of the gene encoding for the protein phospholemman (PLM). 

 While the structure and function of NKA have been reviewed in Chap.   1     of this 
volume, this chapter focuses on the structural and biochemical aspects of the NKA 
regulation by PLM and its physiological consequences. First, the protein structure 
of PLM is discussed with reference to various sites of posttranslational modifi ca-
tion, followed by the structure of the human FXYD1 gene and its potential for regu-
lation at the level of transcription and mRNA processing, and fi nally the physiological 
consequences of PLM-NKA interaction are reviewed. Many excellent reviews 
about PLM and its physiological role in particular have appeared in the literature 
[ 6 – 9 ] and should be consulted by the interested reader in addition to this chapter.  

2      Phospholemman Sequence and Structure 

 The protein phospholemman (PLM) was originally characterised as a major plasma 
membrane substrate of protein kinase A (PKA) and C (PKC) that consisted of 
72-amino acid residues in the mature protein and a cleavable 20-residue N-terminal 
signal sequence [ 10 ]. PLM is expressed in the heart, skeletal muscle, smooth mus-
cle and liver, while it is absent from the brain and the kidney. Later, as outlined 
above, PLM was classifi ed as the fi rst member of the FXYD class of proteins [ 4 ]. 
The phosphorylation sites have been identifi ed in later studies as Ser63 (PKC) and 
Ser68 (PKA and PKC) and Thr69 (PKC) [ 11 ]. Palmitoylation occurs at Cys40 and 
Cys42 [ 12 ] and glutathionylation at Cys42 [ 13 ]. Due to the increasing number of 
genome sequencing projects we can, at the time of writing, identify 25 sequences of 
FXYD1 from UniProt [ 14 ]. Except the  Ophiophagus hannah  (king cobra) FXYD1, 
all other 24 organisms FXYD1 sequence show >50 % sequence identity. The mul-
tiple sequence alignment of FXYD1 protein sequences without signal sequence is 
shown in Fig.  15.1  colour coded by conservation with a blue-red gradient. It can be 
seen that there are very few variations to the FXYD motif. Other regions of high 
conservation are the transmembrane domain as well as the intracellular C-terminal 
domain between Cys40 and Arg66 with some exceptions. Note that PLM follows 
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the positive-inside rule for transmembrane proteins [ 15 ] showing a higher number 
of positively charged residues on the intracellular part of the protein as well as 
aromatic residues Tyr11 and Tyr13 at the membrane water interface.

2.1       The Phospholemman Monomer 

 The 3D structure of the PLM monomer was determined by solution-state NMR 
spectroscopy (PDB-ID: 2JO1) in SDS micelles at pH 5 [ 16 ]. It reveals, in addition 
to a long helix from Gln14 to Phe44 encompassing the transmembrane domain, 
short helical segments in the N-terminal part and a longer helical segment from 
Phe60 to Thr69 in the C-terminal part. The angle of the helical axes between the two 
main helical segments is approximately 90° giving rise to the characteristic L-shape 
of the PLM monomer. The C-terminal part including the helix is very basic contain-
ing altogether six Arg residues between Phe60 and Arg72; thus it is positively 
charged at physiological pH. This explained the association with the negatively 
charged micelle surface in the NMR study. Teriete et al. suggested that negative 
charges introduced by phosphorylation could lead to a reorientation of the C-terminal 
segment facilitated by the fl exible linker region between Asp45 and Thr59. 
Interestingly there is a high level of conservation in the linker region among FXYD1 
orthologues (Fig.  15.1 ).  

2.2     The Phospholemman Tetramer 

 Gel electrophoresis of synthetic PLM transmembrane peptides with perfl uoro- 
octanoate, a detergent that keeps transmembrane protein complexes intact, has 
shown that PLM forms tetramers [ 17 ]. In the same study it was shown by attenuated 
total refl ection Fourier transform infrared spectroscopy (ATR-FTIR) that the 

  Fig. 15.1    Multiple sequence alignment of FXYD1 orthologues. The alignment is coloured 
according to alignment quality (=conservation) with a  red  (low conservation) to  blue  (high conser-
vation) gradient. Important functional sites of the human sequence discussed in the text are indi-
cated. The fi gure was prepared with JalView [ 54 ]       
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lipid-membrane- embedded tetramers are α-helical and have a predominantly trans-
membrane orientation similar to the monomer structure obtained in SDS micelles. 
A solid-state magic angle spinning  17 O-NMR study of the lipid-membrane-embed-
ded PLM transmembrane domain indicated that the tetramer is not completely sym-
metric, but may have a C 2  (dimer of dimers) or C 1  rotational symmetry along the 
bilayer normal [ 18 ]. An atomic structural model of the tetrameric PLM transmem-
brane domain was obtained by a combination of orientational constraints derived 
from site-specifi c infrared dichroism (reviewed in [ 19 ]) and a systematic conforma-
tional search based on molecular dynamics simulation of a transmembrane helical 
bundle protein [ 20 ]. The PLM transmembrane helical bundle reveals an average helix 
tilt angle of 7.3° in line with the previous solution state NMR-study of the monomer. 
The tetramer is closely packed and does not show any indication of an open pore in 
the centre of the tetramer. However, the helix-helix packing shows the unusual feature 
that some small residues, such as Gly19 and Gly20, point to the outside of the helical 
bundle (Fig.  15.2a ), which supported the hypothesis that a PLM tetramer may occur 
in vivo as a storage form that readily interacts with NKA [ 21 ]. A two- stage model of 
PLM-NKA interaction was proposed that involves a slow interaction of the PLM tet-
ramer with NKA leading to the abstraction of one PLM monomer (Fig.  15.2b ). In the 
second stage the remaining PLM trimer interacts fast with other NKA molecules. The 
existence of PLM tetramers in human embryonic kidney cells has been confi rmed by 
fl uorescence resonance energy transfer (FRET) and it was shown that the tetramer is 
stabilised by phosphorylation [ 22 ]. More recently the existence of PLM homo-oligo-
mers was reported in cardiac muscle [ 23 ]. In this carefully conducted study a signifi -
cant proportion of PLM (>50 %) was identifi ed that was not associated with NKA but 
formed a separate pool of multimeric PLM. The stoichiometry of multimeric PLM 
was not clearly identifi ed, but using formaldehyde cross-linking without denaturation 
prior to electrophoresis resulted in a band consistent with a tetramer that was detected 
by Western-blotting probed with a PLM-phospho-Ser68-specifi c antibody. The phos-
phorylation pattern of NKA- associated and multimeric PLM is different, with NKA-
associated PLM being unphosphorylated or phosphorylated at Ser68, while multimeric 
PLM shows Ser63 phosphorylation in addition to phosphorylation at other sites. It 
was suggested that phosphorylation does not change the distribution between multi-
meric and NKA- associated PLM, but the protein phosphatase PP2A associated with 
NKA leads to a dephosphorylation of PLM-Ser63 [ 23 ]. The PLM multimer in cardiac 
muscle cells located in the same membrane compartment as NKA does not seem to 
interact with other proteins; thus it was suggested that it acts as storage pool for PLM 
confi rming the postulation made in earlier work [ 21 ]. There is a potential parallel to 
phospholamban (PLB) that regulates the sarco/endoplasmic reticulum Ca-ATPase 
(SERCA). Although not related by sequence similarity, PLB is structurally similar to 
PLM with 52-amino acid residues and one transmembrane domain. It associates with 
and regulates SERCA via phosphorylation and exists as a pentamer in its non-associ-
ated form (reviewed in [ 24 ]). Since PLB shows measureable ion channel activity, the 
function of the PLB pentamer is still under discussion [ 25 ,  26 ], while based on the 
structure of the PLM tetramer transmembrane domain, no potential for ion conduction 
was found [ 21 ], thus the hypothesis of the PLM tetramer as a storage pool for regula-
tion of NKA seems the most likely one.
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2.3        The Structure of the Phospholemman-NKA Complex 

 The atomic structure of the cardiac human phospholemman-NKA complex is not 
known, but a number of potassium-bound homologue structures are available in the 
Protein Data Bank, namely the pig renal NKA with parts of FXYD2 at 3.5 Å resolu-
tion (PDB-ID: 3B8E) [ 27 ], a shark NKA model in the E2 state with FXYD10 at 
2.4 Å resolution (PDB-ID: 2ZXE) [ 28 ] and a sodium bound form from pig kidney 

  Fig. 15.2    ( a ) The structure of the PLM transmembrane domain tetramer showing the protein 
solvent-accessible surface. Residues in dark shade have been used to derive orientational con-
straints with site-specifi c infrared dichroism. ( b ) A putative model of the PLM tetramer–NKA 
interaction utilising the tetramer as a storage form of PLM       
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at 4.2 Å resolution (PDB-ID: 4HQJ) [ 29 ]. In particular the high-resolution shark 
NKA model shows a large portion of the FXYD10 subunit including the FXYD 
motif. The sequence identity between the shark and the human NKA subunits is 
88 % for the α-subunit, 65 % for the β-subunit and 35 % between FXYD10 and 
PLM, while a 30 % sequence identity is considered as the lower limit for compara-
tive modelling [ 30 ]. For this review we have prepared a comparative model of the 
human NKA/PLM complex using the shark 2ZXE and the human PLM monomer 
structure (2JO1, 100 % sequence identity) as templates with the explicit inclusion 
of three potassium ions, one Mg 2+  and one phosphate analogue MgF 4  2−  ion found in 
the 2ZXE template. The structure of this comparative model shown in Fig.  15.3  is 
discussed in the following text. The PLM backbone structure is coloured according 
to sequence conservation showing a tendency towards lower conservation of resi-
dues facing away from NKA. The arrangement of subunits is shown in Fig.  15.4a , 
revealing the details of the interactions of the FXYD1 motif with NKA (Fig.  15.4b ), 
namely Phe9 is interacting with residues Val183, Gln69 Val72, Ala73 and Phe186 
of the β-subunit, and Tyr11 is interacting with Tyr68, Asp70 (β-subunit), Lys984 
and Pro985 (α-subunit), while Asp10 is not involved in close interactions with its 
side chain pointing towards the solvent.

    The palmitoylation sites Cys40 and Cys42 are located at the C-terminal end of 
the long helix and face to opposite sites of the helix. Cys40 points towards the out-
side (Fig.  15.4c ), while Cys42 (hidden in Fig.  15.4c ) points towards the α-subunit 
with the closest contact being the guanidinium group of Arg353 at a distance of 
5.8 Å from the cysteine sulphur atom. The positive Arg328 could stabilise the thio-
late anion of Cys42 at physiological pH, which may explain the susceptibility of 
Cys42 to glutathionylation (see Sect.  4.3 ). The thiolate anion is much more reactive 
towards forming disulphide bonds than the protonated form. Some information 
about the structural consequences of phosphorylation comes from fl uorescence 
resonance energy transfer (FRET) experiments between cyan fl uorescent protein- 
labelled NKA and yellow fl uorescent protein-labelled PLM. Upon phosphorylation 
of Ser63 and Ser68, the amount of FRET decreased indicating that the intermolecu-
lar distance between PLM and NKA was increased [ 31 ]. It is possible that phos-
phorylation increases the fl exibility of the PLM C-terminus and releases it from 
NKA binding sites. Another possibility is that the phosphorylated PLM C-terminus 
shifts to other phospho-specifi c NKA-binding sites as indicated by experiments 
with PLM knockout mice. Upon addition of a synthetic Ser68 phosphopeptide 
(PLM residues 54–72), NKA activation was observed [ 32 ]. A FRET study that 
investigated alanine mutations on the α1-subunit of NKA at Phe956, Glu960, 
Leu964 and Phe967 identifi ed the interaction between Glu960 and Phe28 of PLM 
to be among the critical interaction sites between PLM and NKA. The comparative 
model of NKA/PLM developed for this review identifi es a close interaction between 
Glu960 and Phe28 as shown in Fig.  15.5 , although this information was not included 
in the modelling protocol. The structure of the short C-terminal helix containing the 
phosphorylation sites is entirely based on the solution-state NMR structure of the 
PLM monomer; thus the orientation and any interactions shown are not indicative 
of the native PLM-NKA complex. In the absence of structural detail, even available 
through comparative modelling, molecular dynamics simulations of the PLM-NKA 
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complex in realistic lipid bilayers [ 33 ] could be carried out to assess the molecular 
details of this interaction.

3         The Phospholemman/FXYD1 Gene 

 The human FXYD1 gene is located on the q arm of chromosome 19 from bases 
35,138,789–35,143,055 (assembly GRCh38) amounting to 4286 bases in the full 
transcript. There are in total eight exons including one 5′ and one 3′ untranslated 
exon. As outlined above the PLM protein is a target of signifi cant posttranslational 

  Fig. 15.3    A protein 
surface model of NKA 
with PLM shown as 
ribbons colour coded by 
conservation calculated 
from the alignment shown 
in Fig.  15.1 . Protein 
structure displays were 
made with Rasmol [ 55 ]       
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modifi cation. Another way to regulate proteins is via the regulation of gene expres-
sion. As part of the ENCODE project transcription factors associated with genes 
were identifi ed with ChIP-Seq (chromatin immuno-precipitation sequencing) 
experiments [ 34 ]. Using the ENCODE ChIP-Seq Signifi cance Tool [ 35 ] a number 
of potential transcription factors were found around the transcription start site of 
FXYD1 (shown in Table  15.1 ). Among general transcription factors, such as TAF 
required for the DNA transcription activity, there are a number of transcription fac-
tors involved in cell differentiation, such as BHLHE40 and EGR1. P300 is the only 
cardiac-related transcription factor implicated in the enlargement of cardiac myo-
cytes. This may refl ect the variety of cell types analysed in the ENCODE project 
with underrepresentation of cardiac myocytes due to the diffi culties of obtaining 
functional cardiac myocytes in cell culture. It can, however, be concluded that the 
FXYD1 gene is under the control of transcription factors.

  Fig. 15.4    ( a ) A backbone ribbon display of the NKA/PLM complex based on comparative model-
ling with Modeller 9v6 [ 56 ] as explained in the text. ( b ) Details of the interaction of PLM ( blue ) 
with NKA α1 ( green tint ) and β1 ( blue tint ) subunits. The amino acid residues from NKA interact-
ing with PLM are shown in spacefi ll representation, while PLM residues are shown as sticks. ( c ) 
Structural details of the C-terminal phosphorylation and palmitoylation/glutathionylation sites       
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   The initial pre-mRNA transcript is subjected to the process of splicing and 11 
transcripts are reported in Ensembl Human Release 77 [ 36 ]. Nine of those are sup-
ported by at least one expressed sequence tag (transcript support levels 1–3). Most 
transcripts differ in the position of the transcription start site and the length and or 
existence of the last non-protein-coding exon. Transcript FXYD1-008 encodes for a 
115-residue protein that contains a 27-residue insert after the transmembrane 
domain (after LIVLS in Fig.  15.1 ). The 115-residue protein appears to have a 
12-residue shortened signal peptide, but a 5′ truncation in the transcript evidence 
prevented the complete assignment of the coding sequence; thus the transcript may 
indeed contain the full 20-residue signal peptide. Two of the well-supported tran-
scripts, FXYD1-004 and FXYD1-010, have a retained intron but do not contain any 
protein-coding region as annotated by the HAVANA team [ 37 ]. 

 A computational analysis of the  Homo sapiens  FXYD1 pre-mRNA alongside 16 
orthologues revealed that the FXYD1 pre-mRNA contains sequences capable of 

  Fig. 15.5    Detail of the 
interaction between 
PLM-Phe28 and NKA-α1- 
Glu960 shown to be 
important in FRET 
experiments       
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folding into higher order intramolecular RNA structures called G-quadruplexes and 
that this feature is conserved in evolution [ 38 ]. G-quadruplexes are formed by 
square planar arrangements of four guanine bases (G-tetrads) stabilised by hydrogen 
bonds. At least two G-tetrads stack together stabilised by sandwiched potassium ions 
[ 39 ]. In FXYD1 and orthologues it was found that stretches of three Gs were conserved 
indicating that three G-tetrads could form a stable G-quadruplex structure. Using 
synthetic oligonucleotides with sequences taken from human and bovine FXYD1 
pre-mRNA, the formation of G-quadruplexes was shown in vitro using fl uorescence 
spectroscopy and native polyacrylamide gel electrophoresis [ 38 ]. It is interesting to 
note in the context of the sodium-potassium exchanging NKA that the required 
potassium ion concentration for stable G-quadruplexes to form is in the region of 
100 mM, which is similar to the intracellular potassium ion concentration of 
120 mM. Considering the evolutionary conservation of G-quadruplex-forming 
sequences it was suggested that G-quadruplex formation of FXYD1 pre-mRNA 
may control the splicing (either through inhibition or favouring alternative spliced 

   Table 15.1    Fxyd1 transcription factors detected in the ENCODE project based on ChIP-Seq 
(minimum false discovery rate = 0.05). A region from 2500 bases upstream to 500 bases downstream 
of the transcription start site was included   

 Transcription 
factor a   Function b  

 BHLHE40 
  CEBPB  
 CMYC 
 EGR1 
  FOXA1  
 GABP 
 HNF4A 
 HNF4G 
 MAX 
 MBD4 
 MXI1 
 P300 
 POL2 
 RXRA 
 SP1 
 TAF 
 USF1 
 ZBTB7A 

 Circadian control and cell differentiation. 
 Transcriptional activator involved in immune and infl ammatory responses. 
 A proto-oncogene involved in cell division (negative regulation), apoptosis. 
 Transcription activator of genes required for mitogenesis and differentiation. 
 Embryonic development, establishment of tissue-specifi c gene expression, 
modulates transcriptional activity of nuclear hormone receptors, cell-cycle 
regulation, regulation of apoptosis, glucose homeostasis. 
 Transcription activator, necessary for the expression of the adenovirus E4 gene. 
 Required for the transcription of alpha 1-antitrypsin, apolipoprotein CIII, 
transthyretin genes and HNF1-alpha, may be essential for development of the 
liver, kidney and intestine. 
 Acts in complex with CMYC as repressor and in complex with MAD as activator. 
 DNA  N -glycosylase involved in DNA repair. 
 Competes with CMYC for binding to MAX, thus antagonises CMYC function. 
 Histone acetyltransferase P300, regulates transcription via chromatin remodelling, 
promotes cardiac myocyte enlargement, participates in circadian rhythms. 
 Subunit of RNA polymerase II, that synthesises mRNA precursors. 
 Retinoic acid receptor, regulates gene expression in complex with other nuclear 
receptors, regulates various biological processes. 
 Regulates expression of a large number of genes involved in cell growth, 
apoptosis, differentiation and immune response. 
 General transcription factor required for transcription of genes. 
 Upstream stimulatory factor one, binds to the promoter of a variety of genes. 
 Transcription repressor, possibly involved in the development of B-cells among 
other roles. 

   a Factors in  bold  are supported by the strongest level of evidence 

  b Function obtained from UniprotKB [ 14 ]  
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products) and thus the expression of the phospholemman protein product [ 38 ] (see 
Fig.  15.6 ). However, these in vitro results await further experimental confi rmation 
in particular in cardiomyocytes.

4        Physiology of NKA Regulation by Phospholemman 

 While the presence of PLM is not essential for survival as PLM knockout experiments 
have shown [ 40 ], PLM may have a protective role for the heart under conditions such 
as increased heart rate and oxidative stress. PLM knockout mice showed slightly 
depressed cardiac contractile function as well as a mild cardiac hypertrophy. Under 
the conditions of increased stimulation frequency and β-adrenoreceptor activation 
PLM knockout mice showed a larger increase in intracellular sodium concentration, a 
larger calcium load of the sarcoplasmic reticulum and a larger calcium transient leading 
to more arrhythmias compared to wild-type mice [ 40 ]. Therefore it was postulated by 
Pavlovic et al. that the physiological role of PLM “may be to limit the rise in intracel-
lular Na +  during sympathetic stimulation and thereby preventing Ca 2+  overload and 
triggered arrhythmias in the heart” [ 8 ]. 

  Fig. 15.6    Cartoon of G-quadruplex formation in FXYD1 pre-mRNA between exon 6 and exon 7 
that may affect expression of the PLM protein product       
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4.1     Phospholemman Phosphorylation 
and Dephosphorylation 

 PLM is phosphorylated by protein kinase A (PKA) at Ser68 [ 41 ] and at Ser63, 
Ser68 and Thr69 by protein kinase C [ 11 ]. The biochemical consequence of PKA 
phosphorylation is an increase in sodium affi nity [ 42 ], while PKC phosphorylation 
increases  v  max  [ 43 ]. Overall PLM phosphorylation stimulates NKA, while unphos-
phorylated PLM inhibits NKA activity [ 5 ,  32 ] explaining the physiological role of 
PLM mentioned above. 

 The regulation of PLM by phosphatases has been investigated to a much lesser 
extent than kinases, but recently it was shown that the Ser/Thr phosphatase 1 (PP-1) 
acts on Ser68 [ 44 ], but not on Thr69 under physiological conditions as the reported 
EC 50  of 2.7 μM for Thr69 was too high. Ser63 is dephosphorylated by Ser/Thr pro-
tein phosphatase 2A (PP-2A) [ 44 ], which was shown to be associated with the NKA 
complex [ 45 ]. As outlined above the PLM Ser63 dephosphorylation occurs most 
likely, when PLM is associated with NKA, but not in the PLM tetramer complex 
[ 23 ]. Taken together PLM phosphorylation exerts a protective effect on the heart 
muscle [ 46 ]. In the absence of PLM an increased heart rate and β-adrenergic stimu-
lation would lead to a higher intracellular sodium concentration and a larger 
calcium content of the sarcoplasmic reticulum leading to more arrhythmias. NKA 
activation via phosphorylation of PLM prevents this.  

4.2     Phospholemman Palmitoylation 

 As outlined in Sect.  2 , PLM is palmitoylated at Cys40 and Cys42 [ 12 ]. The effect 
of palmitoylation is an increase of the half-life of PLM and a decrease of NKA 
activity. Furthermore, PLM phosphorylation at Ser68 increased its palmitoylation 
[ 12 ], which is surprising as phosphorylation and palmitoylation events are causing 
opposite effects. At this point the physiological signifi cance of PLM palmitoylation 
has not been established. The enzymes responsible for palmitoylation of proteins 
are palmitoyl-S-transferase enzymes (known as DHHC proteins) and depalmi-
toylation is catalysed by thioesterase enzymes. It was shown in human fi broblast-
derived cardiomyocytes that overexpression of DHCC5 decreased NKA pump 
currents by 55 %, while siRNA knockdown of DHCC5 increased NKA pump cur-
rents by 38 % [ 47 ]. Thus, DHCC5 contributes to palmitoylation of PLM leading to 
a subsequent decrease in NKA activity. In the same study it was postulated that the 
damage caused by reoxygenation of cardiac tissue after an ischemic event may be 
related to PLM palmitoylation. Upon reperfusion massive endocytosis of cardiac 
cell membrane including the NKA/PLM complex occurs that limits the recovery 
after an ischemic event. Several observations linked PLM palmitoylation to this 
event, namely internalised PLM was palmitoylated to a higher level than cell-
surface- bound PLM and the extent of massive endocytosis was reduced in hearts 
lacking PLM or DHHC5. Thus reperfusion damage may be reduced by inhibition 
of palmitoylation [ 47 ]. The normal physiological function of PLM palmitoylation 
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may be to regulate NKA under conditions of metabolic stress or to contribute to 
NKA/PLM turnover.  

4.3      Phospholemman Glutathionylation 

 The sensitivity of NKA to oxidative stress and to the cellular sulfhydryl redox status 
is already known since a long time [ 48 ,  49 ] and linked to glutathionylation of the α 
[ 50 ] and β1 subunit [ 51 ], which both have inhibitory effects. PLM has been shown 
to reverse glutathionylation of the β1 subunit by becoming itself glutathionylated at 
Cys42, thus exerting an activating effect on NKA [ 13 ]. However, the physiological 
role of PLM glutathionylation is complicated, as it is linked with phosphorylation 
by PKA and palmitoylation that also occurs at Cys42. Palmitoylation of PLM, 
which has an inhibitory effect, is promoted by PKA phosphorylation at Ser68 [ 12 ], 
and to further complicate matters, oxidative stress can activate PKA [ 52 ]. Possibly 
electrophysiological modelling of cardiomyocyte activity taking explicit account of 
PLM could explain some of the complexities. Models of heart failure that highlight 
the importance of sodium currents and NKA activity have been recently presented 
[ 53 ], albeit modulation of NKA by PLM was not included.   

5     Conclusions 

 PLM has emerged as an important modulator of NKA in particular under conditions 
of stress, such as increased heart rate or metabolic stress. A number of posttransla-
tional modifi cations of PLM have been characterised and their physiological conse-
quences have been described. Further research is needed to understand the interplay 
between different posttranslational modifi cations and how they relate to overall car-
diac physiology. Additionally, PLM regulation may occur at the level of gene 
expression, involving transcription, processing of mRNA and regulation of the sta-
bility of mRNA and the rate of transcription. Gene regulation with regards to PLM 
is largely unexplored, but the exciting possibility of potassium ion-stabilised higher-
order G-quadruplex structures of PLM pre-mRNA warrants further investigations. 
Progress has been made in the area of structural biology with the determination of 
high-resolution human homologue NKA/PLM structures, the structure of a PLM 
monomer and a tetramer complex. These structures can be used for comparative 
modelling of the human NKA/PLM complex as it was attempted for this review. 
However, experimentally determined protein structures and comparative models 
provide only a static picture, while the NKA-PLM interactions modulated by post-
translational modifi cations are surely dynamic. Most experimental methods investi-
gating this dynamic interaction will be confounded by the heterogeneity of PLM 
posttranslational modifi cations in cardiomyocytes; thus single-molecule-based 
experimental methods together with complementary in silico simulation methods 
may be required to resolve this heterogeneity. 
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    Chapter 16   
 Regulation of Brain Na-K ATPase Activity 
by Noradrenaline with Particular Reference 
to Normal and Altered Rapid Eye Movement 
Sleep                     

       Megha     Amar    ,     Abhishek     Singh    , and     Birendra     N.     Mallick    

    Abstract     Rapid eye movement sleep (REMS) is naturally expressed at least in all 
the mammals, including humans, studied so far. It is regulated by interplay among 
complex neuronal circuitry in the brain involving various neurotransmitters. 
Although the precise function and role of REMS is yet to be deciphered, loss of 
REMS increases brain excitability; however, the mechanism of action was unknown. 
As Na-K ATPase is the key molecule that maintains ionic homeostasis across neu-
ronal membrane and modulates the excitability status of neurons, we proposed that 
REMS deprivation (REMSD) could affect the neuronal Na-K ATPase activity. On 
the other hand, evidences suggest that REMSD would elevate noradrenaline (NA) 
level in the brain and it has been proposed that REMS maintains brain NA at an 
optimum level. Therefore, while attempting to understand and explain the mecha-
nism of action we hypothesized that REMSD-induced elevated NA could modulate 
Na-K ATPase activity in the brain and thus modulates the neuronal and brain excit-
ability. In this chapter fi rst we discuss the mechanism of increase in NA level in the 
brain after REMSD. Then we discuss the effect of such elevated NA on neuronal 
and glial Na-K ATPase activity. We observed that REMSD-induced increase in NA 
affected neuronal and glial Na-K ATPase activities in opposite manner, while it 
increased neuronal Na-K ATPase, and it decreased the same in glia. An intricate 
regulation of Na-K ATPase activity in neurons and glia is likely to be responsible 
for maintenance of ionic homeostasis in the brain during normal situation, which 
when disturbed including upon REMS loss patho-physiological changes and symp-
toms are expressed.  
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1         Introduction 

 Basic rest and activity cycle (BRAC) is among the fundamental properties of a living 
system. In addition to the physical movement, the conscious and cognitive levels of 
the animals (particularly those higher in evolution) also differ during these states. 
Normally higher levels of consciousness and cognition are associated with waking 
state of an individual as opposed to that of during sleeping state when the levels 
remain subdued. As of our present-day understanding these states are manifested in 
an appreciable manner in animals higher in evolution having evolved brain. 
Notwithstanding, although cognition and consciousness may exist in other lower 
living species (organisms) without having brain or having a rudimentary brain, we 
do not understand them as yet due to lack of more fundamental, objective and strin-
gent criteria to defi ne and identify them. As the brain is made up of specialized 
excitable tissues the neurons, factors modulating the neuronal behaviour would 
affect the cognitive and conscious levels of an individual and vice versa. 

 One of the main characteristic properties of neurons as compared to other living 
cells in the body is its dynamic excitability, which is a refl ection of the instanta-
neous changes in the potential difference across the neuronal membrane, the trans-
membrane potential. The transmembrane potential difference is a fundamental 
characteristic of all living cells, including neurons, and is caused due to differential 
ionic concentrations across the semipermeable biological membrane of a living cell. 
As the ionic concentrations across the membrane of a neuron are in a dynamic equi-
librium, transmembrane potential needs to be continuously and effectively main-
tained at an optimum level for the brain to function effectively. 

 The Na-K ATPase plays a major role in maintaining such ionic balance across 
living cells including neurons [ 1 – 3 ]. Therefore, alteration in the Na-K ATPase activity 
is likely to affect the neuronal excitability and associated brain-controlled behaviour 
including cognitive and conscious levels and vice versa. As differences in the levels 
of consciousness and cognition are among the fundamental criteria to differentiate 
between sleep from other conscious states, we hypothesized that the brain Na-K 
ATPase activity is likely to be affected upon sleep disturbances resulting in associ-
ated behavioural changes, and conversely changes in the said enzyme activity would 
affect sleep. Further, while understanding the mechanism of action, we observed that 
noradrenaline (NA) is responsible for inducing the sleep-loss- associated changes in 
the Na-K ATPase activity, which we will explain subsequently.  

2     Sleep-Wakefulness-REMS 

 Sleep and wakefulness are expressed in animals higher in evolution and are consid-
ered to be modifi ed form of BRAC. These states have been objectively defi ned and 
identifi ed by the presence of electrophysiological signals recorded simultaneously 
from the brain, the antigravity muscles and due to the eye movements. These elec-
trophysiological signals not only helped classifying different levels of conscious-
ness and mental states, they also discovered a unique, distinct and active state of the 
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brain during sleep. This state was identifi ed in mid-twentieth century [ 4 ] and has 
been termed as rapid eye movement sleep (REMS); interestingly most dreams usu-
ally appear during this state [ 5 – 7 ]. Thus, the sleep state has been classifi ed as REMS 
and non-REMS. As REMS does not normally appear during waking and it appears 
only after continuation of non-REMS for a variable period, loss of non- REMS usu-
ally is accompanied with REMS loss as well. However, as REMS is a distinct state 
and animals can be deprived almost exclusively of REMS alone to a reasonable 
extent with minimum disturbance to non-REMS and suitable control experiments 
can be designed to compensate for the small disturbance in the non- REMS state, we 
conducted studies by depriving the animals of REMS. Details of methods of REMS 
deprivation (REMSD) and their advantages and disadvantages have been published 
elsewhere [ 8 – 10 ]. 

2.1     REMS in Health and Diseases 

 Sleep, waking and dreaming during sleep were experienced by individuals and were 
known to humans ever since the evolution of knowledge; however, the neural mech-
anism of their regulations was unknown though. Unlike external behavioural mani-
festations of sleep and waking, there was no visible manifestation of occurrence of 
dreams until the discovery of dream- and REMS-associated expressions of electro-
physiological signals. The REMS is present across species higher in evolution and 
the total quantity as well as proportion of REMS as compared to total sleep time 
varies among species [ 11 – 14 ]. The quantity of REMS is maximum in babies and it 
reduces with ageing [ 15 ,  16 ]. It is expressed more in the preterm babies and in those 
born immature [ 17 ,  18 ], suggesting that REMS has a role in brain development and 
maturity [ 19 ,  20 ]. The quantity of REMS has been found to be affected in most of 
the diseases from simple fever to complex psycho-somatic disorders [ 21 – 24 ]. 
Experimental REMS loss has been reported to affect psycho-somatic behaviour 
including memory consolidation [ 25 – 29 ], irritability, concentration, mood and 
behaviour [ 8 ,  30 ]. Based on these observations, as a unifi ed hypothesis, we had 
proposed that REMS maintains brain excitability [ 31 ,  32 ]. As explained above the 
potential gradient across the neuronal membrane, the transmembrane potential, is 
the underlying cause for manifestation of neuronal excitability, and Na-K ATPase 
plays a major role in maintenance of transmembrane potential and brain excitability. 
Hence, we had proposed that REMS loss could affect neuronal and brain excitabil-
ity by altering Na-K ATPase activity or vice versa and consequently the function of 
REMS is to maintain brain excitability.   

3     Neuronal Excitability and Na-K ATPase 

 Due to unequal distribution of ions across neuronal membrane the intracellular 
compartment of neuron is relatively negative with reference to the extracellular 
space. Variations in the ionic concentration across the neuronal membrane alter the 
excitability status of neurons that affects neuronal behaviour and functioning. 
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The Na-K ATPase is a key naturally occurring biomolecule (factor) that simulta-
neously extrudes 3Na +  and imports 2K +  at the cost of energy released by hydrolysis 
of one ATP molecule in each cycle and maintains transmembrane potential gradi-
ent for optimum functioning of neurons. The importance of Na-K ATPase in 
maintaining the ionic gradient is emphasized by the fi ndings that disruption of 
Na-K ATPase activity caused hyper-excitability and severe alterations in neuronal 
functioning [ 33 ,  34 ]. Additionally, modulation of Na-K ATPase activity may also 
affect several other neuronal functions including exchange of Ca 2+  [ 35 ], transcrip-
tion [ 36 ], neurotransmitter release [ 37 ], synapse formation [ 38 ], neuronal volume 
[ 39 ] and apoptosis [ 40 ]. 

3.1     REMS Loss and Na-K ATPase Activity 

 The transmembrane potential is the key index to infer about the excitability status of 
a neuron. Therefore, to comment on changes in neuronal excitability due to modula-
tion of sleep-waking-REMS, ideally recording of intracellular potential needs to be 
carried out in animals under control and experimental conditions during various 
stages of sleep, waking, REMS and their losses. However, due to technical limita-
tions it is not possible to record transmembrane (intracellular) potential from the 
same neuron in freely moving behaving animals and follow it up continuously 
through days under normal and altered behavioural conditions including sleep loss 
and REMSD. Hence, we settled for estimation of Na-K ATPase activity as a refl ec-
tion of excitability level of neurons in the whole brain or in anatomically identifi ed 
areas in the brain in control and after REMSD. 

 An enzyme activity (all other conditions remaining unaltered) normally 
depends on its allosteric modulation and/or transcriptional regulation of its mol-
ecules. As there was no study of REMS loss-associated changes in brain Na-K 
ATPase activity, rats were subjected to REMSD for 2–8 days and suitable control 
experiments were carried out. At the end of the experiments the enzyme activity 
was estimated in the rat brain. The Na-K ATPase activity increased in the whole 
brain as well as in localized brain regions of the experimental rats but not in the 
brains of rats maintained under various control conditions [ 10 ]. We also observed 
that the enzyme activity was increased fi rst in the brainstem and then the increase 
spread to other brain regions [ 10 ,  41 ]. A representation for relative changes in 
Na-K ATPase activity under various conditions in different brain regions is shown 
in Fig.  16.1 . As the Na-K ATPase activity increased after REMSD, it suggested 
that normally REMS is likely to maintain the Na-K ATPase activity of neurons in 
the brain and in the absence of REMS the activity was increased. Thus, the results 
for the fi rst time supported our hypothesis with experimental data; however, it 
raised the next question that how REMS-loss, a behavioural change, could affect 
the Na-K ATPase activity.

M. Amar et al.



281

3.2        Mechanism of Action of Na-K ATPase 

 Na-K ATPase belongs to a P-type ATPase, the class of evolutionarily conserved 
enzymes that catalyze active transport of cations at the expense of hydrolysis of 
ATP across the plasma membrane in all mammalian cells. The P-type refers to the 
unique characteristic of these enzymes in forming a transient, phosphorylated aspar-
tyl residue during the catalytic cycle. The P-type ATPases are divided into fi ve sub-
families P1–P5 (each of which is further divided into subgroups), and they differ 
from each other in their transported ligands and regulatory pathways. P-type 
ATPases contain fi ve functional and structurally distinct domains: three cytoplasmic 
domains, viz. actuator domain (A-domain), nucleotide-binding domain (N-domain) 
and phosphorylation domain (P-domain) and two membrane-embedded domains, 
transport domain (T-domain) and class-specifi c support domain (S-domain). We 
proposed that REMSD must be inducing some changes in the molecules in the body 
fl uids, which then would affect the Na-K ATPase and increase its activity. 

  Fig. 16.1    Heat map analysis of relative levels of Na-K ATPase activity in different brain regions 
under various conditions in vivo ( based on data from Gulyani and Mallick  [ 41 ]). Abbreviations: 
 FMC  free moving control;  FMC+PRZ  FMC treated with prazosin (α1-AR antagonist);  FMC+CLN  
FMC treated with clonidine (α2-AR agonist);  FMC+PRN  FMC treated with propranolol (β-AR 
antagonist);  REMSD  REMS deprived group;  REMSD+PRZ  REMSD treated with prazosin (α1-AR 
antagonist);  REMSD+CLN  REMSD treated with clonidine (α2-AR agonist);  REMSD+PRN  
REMSD treated with propranolol (β-AR antagonist);  Low  lower Na-K ATPase activity compared 
to respective brain region of FMC group;  High  increased Na-K ATPase activity compared to 
respective brain region of FMC group       
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Further, we hypothesized that REMSD would cause changes in the level of one or 
more biomolecules related to REMS regulation so that such neural circuitry is likely 
to be disturbed during REMSD resulting in release of factors and/or alteration of 
biomolecules, which then would increase the Na-K ATPase activity; therefore, it is 
necessary to understand the neural regulation of REMS.   

4     Clue from Our Understanding on Neural Regulation 
of REMS 

 The REMS is regulated by the interaction of REM-ON and REM-OFF neurons in 
the brainstem and these neurons are under the infl uence of host of other neurons in 
the brain [ 42 ,  43 ]. In short, the NA-ergic neurons in the locus coeruleus (LC), the 
REM-OFF neurons, normally cease activity during REMS [ 44 ], they continue fi ring 
during REMSD [ 45 ] and if they are kept active, REMS does not appear [ 46 ]. These 
results suggested that if the NA-ergic neurons cease fi ring during normal REMS, the 
excess NA would get washed-off from the neuronal projection sites in the brain. 
However, instead, if these neurons continue firing, as it has been reported dur-
ing REMSD [ 45 ], the brain (synaptic sites) would get fl ooded with NA during 
REMSD. Based on our fi ndings we proposed that cessation of the NA-ergic REM- 
OFF neurons is a pre-requisite for REMS generation [ 47 ] and there would be ele-
vated NA in the brain after REMSD [ 48 ,  49 ]. 

4.1     Additional Support for Elevated NA in the Brain 
After REMSD  

 The enzyme monoamine oxidase (MAO) is responsible for breakdown of the excess 
NA at the synaptic cleft and thus helps maintaining brain NA level at an optimum 
level. REMSD has been reported to reduce the MAO in the brain [ 50 ]; therefore, it 
would not be suffi cient to break down NA and consequently there would be elevated 
level of NA in the brain after REMSD. Additionally, it has been found that after 
REMSD there is increased level of tyrosine hydroxylase (TH), the rate-limiting 
enzyme for synthesis of NA in the brain [ 51 – 53 ], which would increase NA synthe-
sis in the brain. Finally, as a direct evidence in a recent study we have observed that 
NA level increased in brain regions after REMSD (manuscript under preparation).  

4.2     Elevated NA Increases Na-K ATPase Activity 
in the Brain after REMSD 

 Isolated, independent studies showed that NA level and Na-K ATPase activity 
increased in the rat brain upon REMSD. To confi rm if there exists any cause and 
effect relationship between them we argued that NA antagonist should be able 
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to prevent REMSD-associated stimulation of the enzyme activity in vivo; NA 
should stimulate the Na-K ATPase activity in vitro and NA antagonist should 
prevent such NA-induced stimulation of the enzyme activity in vitro. Indeed it 
was observed in vivo that the REMSD-induced stimulation of the rat brain Na-K 
ATPase activity was prevented by α1-adrenoceptor (AR) antagonist, prazosin 
[ 41 ]. Also, NA stimulated the enzyme activity in vitro and the effect was pre-
vented by prazosin [ 54 – 56 ]. These results confi rmed that the REMSD-associated 
elevated NA stimulated the Na-K ATPase activity in the rat brain. However, we 
needed to confi rm the source of NA for inducing such action, particularly if the 
NA was released from neurons in the brain and was not imported from the 
periphery.  

4.3     Locus Coeruleus NA-Ergic Neuronal Activities Are 
Responsible for REMSD-Associated Stimulation of Na-K 
ATPase Activity 

 The LC is the primary source of NA in the brain [ 57 ,  58 ] and the brain receives most 
of the NA from these neurons [ 59 – 62 ]. It was already known that under normal 
condition these REM-OFF neurons cease fi ring during REMS [ 63 ] and they con-
tinue fi ring during REMSD [ 45 ]. Further, we and others had also shown using vari-
ous methods that if these REM-OFF neurons in the LC were kept active or were not 
allowed to cease fi ring, REMS was prevented [ 46 ,  64 ,  65 ]. Therefore, there was 
substantial evidence that the NA released from these neurons is likely to stimulate 
the Na-K ATPase activity in the brain; however, it needed to be confi rmed. Taking 
clue from the fi ndings from our other studies it was hypothesized that if the neurons 
in the LC were not allowed to cease activity, there should be reduced REMS and 
increase in the Na-K ATPase activity in the rat brain. 

 To confi rm, chronic rats were surgically prepared with bilateral chemitrode 
(guide cannulae) aiming the LC for microinjection of chemicals and electrodes for 
recording electrophysiological signals to identify sleep-waking. After recovery 
from surgical trauma and acclimatization of the rats to the recording environment, 
under freely moving conditions sleep-wake-REMS were recorded in these rats for 
48 h with or without infusing GABA-antagonist picrotoxin bilaterally into the 
LC. The assumption was that picrotoxin in LC would not allow the inhibitory 
GABA to inhibit the NA-ergic REM-OFF neurons to cease activity and therefore 
REMS would not appear. Indeed it was observed that upon picrotoxin infusion the 
REMS was signifi cantly reduced and the brain Na-K ATPase activity was signifi -
cantly increased to a level comparable to otherwise normal rats deprived of REMS 
[ 64 ]. This confi rmed that the NA released due to non-cessation (activity) of the 
NA-ergic LC-REM-OFF neurons indeed is responsible for REMSD-associated 
increased Na-K ATPase activity (schematically shown in Fig.  16.2 ), which in turn 
would increase the brain excitability.
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5         Na-K ATPase Activation-Induced Alterations in Neuronal 
Excitability and REMS 

 Our hypothesis is that REMS maintains brain excitability. In support we showed 
that REMSD increased Na-K ATPase activity, which could be the sole (or at least a 
signifi cant factor) cause or effect for the altered brain excitability. Our contention 
was supported by the fact that inhibition of Na-K ATPase activity was reported to 
induce increased neuronal excitability [ 34 ] and elevated intracellular Na + , that 
occurs during increased neuronal excitability, is reported to stimulate the Na-K 
ATPase activity [ 66 ,  67 ]. Nevertheless, to confi rm the same in vivo particularly with 
reference to REMS, we hypothesized that if the Na-K ATPase activity of the neu-
rons in the LC were stimulated, the REM-OFF neurons would be activated and there 
should be reduced REMS. 

 It was known that the cerebrospinal fl uid contains endobains (naturally occurring 
anti-Na-K ATPase molecules) and their levels are altered in psychological disorders 
when REMS is also affected [ 68 ,  69 ]. As a strategy, fi rst antibodies against the natu-
rally occurring endobains were raised [ 70 ,  71 ]. Thereafter, chronic rats were surgi-
cally prepared with bilateral cannulae in the LC and electrodes for electrophysiological 

  Fig. 16.2    Experimental intervention increasing LC-neuronal activity. The fi gure represents exper-
imentally supported relationship between LC-neuronal activity, Na-K ATPase activity and REMS. 
 Left half  shows the application of anti-ouabain antibodies in LC reduces REMS which in turn 
increases Na-K ATPase activity.  Right half  shows application of picrotoxin increased LC-neuronal 
activity by blockage of GABA receptor, reduces REMS and increases Na-K ATPase activity. The 
 numbers in parenthesis  show the citation in the reference list       
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sleep-waking recording. After recovery from surgical trauma sleep-waking recording 
was done under control injection and after injection of the antibodies against endo-
bains into the LC [ 68 ]. The antibodies were expected to neutralise the naturally 
occurring endobains (Na-K ATPase antagonist) around the LC-REM-OFF neurons 
leading to activation of those neurons and cause loss of REMS (analogous to 
REMSD condition). Indeed it was observed that the rats injected with the antibodies 
showed reduced REMS as compared to controls [ 68 ], which was comparable to that 
of activation of LC neurons by electrical stimulation [ 46 ] or by microinjection of 
picrotoxin into the LC [ 64 ] (schematically summarized in Fig.  16.2 ). All these fi nd-
ings taken together confi rmed in vivo that REMSD elevated the level of NA in the 
brain, which in turn increased Na-K ATPase activity in the rat brain. As Na-K 
ATPase plays a key role in the maintenance of brain excitability and REMS main-
tains NA level at an optimum level in the brain (by preventing rise of NA level), we 
proposed that REMS maintains brain excitability [ 31 ,  72 ]. 

5.1     Allosteric or Transcriptional Modulation of Na-K ATPase 

 An enzyme activity may be affected by either or both allosteric modulation or by 
transcriptional regulation. We showed that REMSD modulated both the  K  m  as well 
as the  V  max  of the Na-K ATPase in the rat brain [ 73 ], suggesting that upon REMSD, 
the enzyme activity was increased by modulation of both the factors. It led us to 
propose that short-term effect of REMSD could be mediated by allosteric mecha-
nism, while the long-term REMSD increased the synthesis of the enzyme with or 
without allosteric regulation. Further, as we discussed above that the REMSD 
induced effects were mediated by NA, it needed to be evaluated if both the effects 
were mediated by the elevated level of NA.  

5.2     Involvement of AR-Subtype in Mediating the REMSD 
Associated NA-Induced Increase in Na-K ATPase Activity 

 Synaptosomal membranes were prepared from normal rat brain and the effects of 
various doses of NA on the isolated synaptosomal membrane Na-K ATPase activity 
was estimated in vitro in the presence and absence of various AR-antagonists. It was 
observed that in such membrane preparation the NA stimulated the Na-K ATPase 
activity in vitro in a dose-dependent manner and the effects were prevented by pre- 
treating the samples with prazosin (α1-AR-antagonist), but not by propranolol 
(β-AR-antagonist). These fi ndings confi rmed that the NA stimulated the Na-K 
ATPase in isolation and the effects were mediated by NA acting on α1-AR [ 56 ]. We 
also observed that while NA increased the Na-K ATPase activity in vitro in isolated 
membrane prepared from normal rat brain, it was ineffective in membrane prepared 

16 REMS, Noradrenaline and Na-K ATPase Activity 



286

from the brain of rats already deprived of REMS [ 56 ]. These fi ndings although 
 supported allosteric modulation of Na-K ATPase activity by NA, it did not allow us 
to comment if NA is involved in transcriptional regulation of the enzyme.  

5.3     Molecular Mechanism of Action of NA-Induced 
Stimulation of Na-K ATPase Activity 

 Our results showed that NA stimulates Na-K ATPase activity by acting on 
α1-AR. The α1-AR is a member of GPCR family and Na-K ATPase activity is 
known to be inhibited by the Ca 2+  [ 74 – 76 ]. Therefore, we attempted to understand 
if Ca 2+  plays any role in NA-induced stimulation of the enzyme activity. We observed 
that the NA acting on α1-AR activated phospholipase-C (PLC) and stimulated the 
Na-K ATPase activity [ 56 ]. As Ca 2+  is released as a downstream signaling of PLC, 
the results suggested that some intracellular Ca 2+  was necessary for NA-induced 
stimulation of the enzyme activity. In a series of experiments it was observed that in 
synaptosomal membrane preparation NA stimulated the enzyme in the presence as 
well as absence of Ca 2+  in the medium [ 76 – 78 ]. All these results taken together sug-
gest that the latter (Ca 2+ ) is likely to be membrane bound, which got released by the 
action of NA and stimulated the enzyme activity. 

 Notwithstanding the above, in other studies we found that REMSD reduced the 
synaptosomal Ca 2+  level [ 77 ] suggesting that reduced intracellular Ca 2+  may be the 
cause of stimulating Na-K ATPase activity. Further, the NA inactivated the L-type 
calcium channel and prevented the infl ux of extracellular Ca 2+  [ 77 ]. As a molecular 
mechanism of action we also observed that the NA and REMSD increased the 
dephosphorylated form of the enzyme, the active form of the Na-K ATPase [ 73 ], 
suggesting that NA dephosphorylates the enzyme. Taking together all these fi ndings 
we proposed a model that elevated level of NA (including during REMSD) acting 
on α1-AR on one hand reduced infl ux of Ca 2+ , while on the other hand released 
some Ca 2+ , possibly bound to the membrane (may or may not be linked to the 
enzyme) which then dephosphorylated the Na-K ATPase in a coupled reaction [ 9 ]. 
As all these studies were conducted on isolated membrane preparation, although the 
results indicated allosteric modulation of NA on Na-K ATPase activity, NA-induced 
transcriptional regulation is yet to be understood, which is underway. 
Notwithstanding, the question that follows is that if the NA exerts such harmful 
effect on the brain, why through evolution NA remained into existence and it 
 continues to play such signifi cant role in a unique manner through evolution espe-
cially in relation to REMS. We argued that a critical (optimal) level (like a set point) 
of NA in the brain is likely to be very important in maintaining normal physiologi-
cal processes and if that is disturbed, disease or predisposition to disease sets in 
(Fig.  16.3 ). However, as the REMS and LC neurons are modulated by several fac-
tors (inputs) even during healthy condition, the NA level is likely to vary though 
within physiological limit, the Na-K ATPase activity would be altered, which in 
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turn would affect the neuronal excitability. As an explanation we proposed that as 
glia in the brain is known to have buffering action, it may directly or indirectly play 
a role in maintaining neuronal excitability.

6         Possible Role of Glia in Homeostasis Maintenance 

 Glia is known to maintain the milieu of neurons including ionic balance across the 
neuronal membrane [ 79 ,  80 ]. As NA affects the neuronal Na-K ATPase activity and 
the glia also possesses Na-K ATPase [ 81 ], we evaluated in vivo the effect of REMSD 
and in vitro the effect of NA on glial Na-K ATPase activity. We observed that in rats 
upon REMSD the elevated NA infl uences the neuronal and glial Na-K ATPase in an 
opposite manner; while the neuronal Na-K ATPase activity was increased, the 
enzyme activity was decreased in the glia [ 54 ]. These results may be supported by 
our recent in vitro fi ndings that NA downregulated Na-K ATPase in C6 cell line, 
while it up-regulated the enzyme in the Neuro2a cell line (manuscript under prepa-
ration). These fi ndings may be summarised as in the brain NA modulates neuronal 

  Fig. 16.3    Flow diagram of the intracellular mechanism of REMS loss induced increased brain 
excitability. REMS loss elevates NA level which in turn increases Na-K ATPase activity and con-
sequently alters brain excitability leading to diseased state. Abbreviations:  LC  Locus coeruleus; 
 MAO  monoamine oxidase;  TH  tyrosine hydroxylase.  NA  noradrenaline;  Ca   2+   calcium ion. The 
 numbers in parenthesis  show the citation in the reference list       
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and glial Na-K ATPase in an intricate and well-orchestrated manner that helps 
homeostatic regulation of the neuronal (brain) excitability (Fig.  16.4 ), which ulti-
mately affects the behaviour.

7        REMS Serves Housekeeping Function for Optimum Brain 
Function 

 We know that the LC is the primary site for NA-ergic neurons in the brain and these 
neurons project throughout the brain [ 57 ]. These LC-neurons are maximally active 
through waking, reduces during non-REMS and cease activity during REMS [ 82 , 
 83 ]. Further, these neurons do not cease fi ring during REMSD [ 45 ], if they are kept 
inactive, REMS appears [ 84 ] and if these neurons are not allowed to cease activity 
or if they are kept active by any means [ 46 ,  64 ,  65 ], appearance of REMS is 

  Fig. 16.4    Proposed model of role of glia in maintenance of K + -homeostasis across neuronal mem-
brane.  Left panel —in normal REMS condition optimum level of NA is maintained, and thus opti-
mal activity of neuronal and glial Na-K ATPase maintains extracellular ionic homeostasis.  Right 
panel —during REMS loss, the elevated NA infl uences neuronal and glial Na-K ATPase in oppo-
site manner; the Na-K ATPase activity increases in neurons while it decreases in glia [ 54 ], possibly 
as a compensatory effect, which helps maintaining the extracellular ionic homeostasis required for 
optimal Na-K ATPase activity. ( Dashed line  shows the basal activity, while  solid line  shows altered 
modulation in Na-K ATPase activity by the elevated level of NA)       

 

M. Amar et al.



289

prevented. Such behaviour of the LC-NA-ergic neurons suggests that NA is essential 
for brain functioning; however, it may have a dose-dependent effect. Therefore, we 
proposed that normally during waking state, due to continuous activity of the LC 
neurons, NA is continuously released in the brain. The NA maintains the Na-K 
ATPase activity of the neurons and glia in an opposite manner and maintains the 
excitability level of the neurons in the brain at an optimum level for the brain to 
perform optimally. This is required because during waking the brain is at a higher 
state of alertness and sensitivity to perform various functions ideally with least iner-
tia. The advantage of NA being associated for such alertness is that the associated 
increased oxidative damage can be taken care of by the same NA, which has an 
antioxidant property as well [ 85 – 87 ]. However, it cannot continue uninterrupted 
possibly because of normal wear and tear and no system can work by sustained 
activation. Therefore, as compared to waking state during non-REMS the LC neu-
rons slow down activity reducing the level of NA in the brain and fi nally during 
REMS, due to cessation of the LC neurons, NA release is stopped. This withdrawal 
(complete or partial) of NA normally prevents building up of excess NA, helping the 
synapses (brain) to wash off the built-up NA and its metabolites. This action is a 
natural mechanism of recuperation of the neurons in the brain, which could be anal-
ogous to overcoming refractoriness of the neurons, so that the system is in its opti-
mum level of excitability (activity) to express normal behaviour(s). As the Na-K 
ATPase activity maintains neuronal (brain) excitability, the fundamental property of 
neurons, we proposed that REMS serves housekeeping function of the brain, the 
brain excitability [ 9 ].  

8     Conclusion 

 REMS is an instinct behaviour expressed in the higher forms of living species. The 
LC NA-ergic REM-OFF neurons in the brain are active in all states except during 
REMS; however, they continue to remain active during REMSD. Therefore, the NA 
level is withdrawn during REMS; however, during REMSD its level is increased. 
The NA stimulates and inhibits the neuronal and glial Na-K ATPase activity, respec-
tively, possibly to maintain the ionic homeostasis so that the neuronal and brain 
excitability is maintained at an optimum level. However, if the NA level is disturbed 
as in REMS-loss for instance, the Na-K ATPase is affected leading to alteration in 
neuronal excitability. The latter then affects many, if not most of the physiological 
processes regulated by the brain; thus REMSD affects almost all the physiological 
processes. These fi ndings have led us to propose that REMS maintains brain NA 
level, which maintains brain excitability and thus serves as housekeeping function 
of the brain.     
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    Abstract     The Na + /K + -ATPase or sodium pump (NKA) is a membrane-anchored 
protein responsible for creating and maintaining the Na +  and K +  gradients across 
the plasma membrane of animal cells by using ATP hydrolysis to move three Na +  
out of the cell and two K +  into the cell. In the nervous system, NKA activity is 
essential for the proper functioning of neurons and glial cells and for the driving 
of diverse brain processes. Regulation of NKA activity in the brain is achieved 
through multitude of complex mechanisms. The purpose of this chapter is to 
present an overview of mechanisms through which neurotransmitters such as 
glutamate, dopamine, and serotonin regulate NKA activity in neurons and glial 
cells. Here, the focus is on the signaling pathways and protein kinases that medi-
ate neurotransmitter effects on the NKA activity. In addition, the chapter consid-
ers the regulation of neuronal and glial NKA activity by its direct interacting 
partners, that is, a diverse plasma membrane, synapse associated, cytoskeleton, 
and signaling cytoplasmic proteins that form complexes with NKA in the brain. 
Such complexes not only regulate NKA activity but also enable the pump to 
function as a signal transducer in the brain. In view of important physiological 
role that NKA plays in the brain, the perturbed regulation of NKA activity in 
neurons and glial cells and its association with the onset and progress of nervous 
system disorders is also addressed.  
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1         Introduction 

1.1     Overview of Na + /K + -ATPase Properties 

 Na + /K + -ATPase or sodium pump (NKA) is ubiquitous membrane-bound protein that 
uses energy of ATP hydrolysis to move three Na +  out of the cell and two K +  into the 
cell [ 1 ], thereby maintaining the Na +  and K +  gradients across the plasma membrane 
of animal cells. This fundamental machinery of the NKA has been known for many 
years, and recently it was found that 3Na + /2K +  movement is associated with the 
proton import, which points to a more complex function of NKA [ 2 ]. Accumulating 
evidence from recent years showed that this membrane pump forms complexes with 
multitude of cellular proteins and is involved in various signal transduction path-
ways [ 3 ]. For example, NKA signaling pathway triggers dendritic growth in devel-
oping neurons via induction of a specifi c program of gene expression [ 4 ]. 

 Physiological functions of the NKA in the brain have been mainly deduced from 
its transporting role. There is general agreement that steep Na +  and K +  gradients set 
by the NKA infl uence a variety of brain processes including activities of voltage 
gated ion channels and synaptic activity [ 5 – 13 ]. It has been fi rmly established that 
neuronal and glial uptake of K +  released during neuronal activity, necessary for 
maintenance of neuronal signaling, occurs primarily by active transport mediated 
by NKA [ 6 ,  14 – 16 ]. Activity of NKA can be specifi cally inhibited by cardiotonic 
steroids which directly bind to an enzyme and interrupt the transport cycle by plug-
ging the ion pathway from extracellular side [ 17 ]. Some of the well-known NKA 
inhibitors are plant-derived drugs ouabain and digoxin. In addition, endogenous 
ouabain-like inhibitors were also found to be present in the brain [ 18 – 20 ]. All the 
transport-related functional properties of NKA reside in the catalytic α subunit 
which is differentially expressed in the brain [ 21 – 28 ]. In adult mammalian brain the 
α1 isoform is expressed in both neurons and glia, α3 isoform is characteristic for 
neurons, and α2 isoform is specifi c for glial cells. 

 In essence, the regulation of NKA activity is crucial for the maintenance of neuro-
nal and glial function and thereby preservation of brain stability. In part, brain NKA 
activity is fi nely tuned by the presence and a combination of three α subunit isoforms 
that possess distinct kinetics. However, multiple regulatory events are also involved 
in the regulation of NKA activity in the brain. An overview, by no means complete, 
of reported regulatory mechanisms will be given in the following sections focusing 
on the regulation of NKA activity by neurotransmitters, as well as specifi c proteins 
that through direct interaction affect NKA activity in both neurons and glial cells.   

2     Regulation of NKA Activity by Neurotransmitters 

 Numerous studies spanning couple of decades reported that neurotransmitters modulate 
activity of the NKA. A variety of data indicate that modulation of NKA activity by 
neurotransmitters is accomplished by controlling the phosphorylation state of the pump. 
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Regulation of NKA activity is associated with neurotransmitter receptor- mediated 
modulation of protein kinases activities through secondary messenger signaling cas-
cades. Protein kinases involved in the regulation of NKA activity are protein kinase 
A (PKA) activated by cAMP, cGMP-activated protein kinase G (PKG), and phos-
pholipid/Ca 2+ -dependent protein kinase C (PKC) [ 29 – 31 ]. With the exception of 
PKG, the phosphorylation targets for other two protein kinases are determined to be 
specifi c Ser residues in the NKA α subunit. Even though the underlying molecular 
mechanisms of phosphorylation remain to be fi rmly established, the direct effect of 
phosphorylation on the NKA activity most likely arises from an alteration in the 
pump structure caused by phosphorylation of the Ser residue. Many of the effects of 
protein kinases on the NKA activity are countered by protein phosphatases. In fact, 
signaling cascades promoted by protein kinases at the same time involve inhibition of 
protein phosphatases [ 29 ]. The mechanisms of neurotransmitter- mediated regulation of 
NKA involve modulation of the pump activity already located in the plasma membrane 
and translocation of NKA to or from plasma membrane. Summarized fi ndings on the 
regulation of NKA activity by some of the most studied neurotransmitters will be fur-
ther presented. 

2.1     Glutamate 

 The effects of major excitatory neurotransmitter glutamate on NKA activity have 
been extensively investigated, since glutamate mediates nearly 80 % of synaptic 
transmission in the brain [ 32 ]. Neuronal receptors and glial transporters for glu-
tamate are proteins that rely on sodium gradients principally established by the 
NKA. Given that ionotropic glutamate AMPA receptors are primarily sodium 
channels while NMDA receptors permit sodium and calcium [ 33 ,  34 ], neuronal 
glutamate receptors are directly coupled to NKA activity (Fig.  17.1a ). The stimu-
latory effect of glutamate was observed in Purkinje neurons, whereby increase in 
the NKA activity via activation of NMDA receptors was attenuated by blocking 
the PKG [ 35 ]. A pronounced and rapid activation of NKA was observed after 
incubation of cerebellar neurons with glutamate and activation of NMDA recep-
tors [ 33 ]. The observed increase in the NKA activity was associated with the 
decrease in PKC- mediated phosphorylation of NKA through a mechanism that 
involves activation of calcineurin. In cultured cerebral neurons activation of 
ionotropic glutamate receptors has a differential effect on the activity of NKA 
isoforms as distinguished by isoform sensitivity to ouabain [ 36 ]. Thus, glutamate 
caused marked increase in the activity of highly sensitive NKA isoform, while 
slight decrease in activity was detected for isoform weakly sensitive to ouabain. 
Relation between metabotropic glutamate receptors and increase in the NKA 
activity was established in Purkinje neurons [ 35 ]. This relation was found to be 
mediated by PKC and most probably inositol-triphosphate production, since 
inhibition of PKC completely abolished the glutamate-induced increase in the 
NKA activity.
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   Glutamate uptake in the brain is performed predominantly by astrocytes 
through the action of Na + -dependent glutamate transporters GLAST/EAAT1 and 
GLT1/EAAT2 (Fig.  17.1b  [ 37 ]). Administration of glutamate at high levels was 
found to increase NKA α1 and α2 subunit expression in astrocytes in fetal telen-
cephalic neuron- glia culture [ 38 ]. Glutamate-induced increase in NKA activity 
was also reported in cultured cortical astrocytes as measured by ouabain-sensitive 
 86 Rb uptake [ 39 ]. Increased NKA activity observed in astrocytes has been related 
to the α2 isoform, since the large proportion of augmented pump activity was sen-
sitive to low concentrations of ouabain. Increase in the NKA activity was also 
observed in cultured human fetal astrocytes after administration of  L -glutamate 

  Fig. 17.1    Overview of the neurotransmitters and various cellular proteins that regulate Na + /K + -
ATPase activity in neurons ( a ) and glial cells ( b ). Na + /K + -ATPase interacting plasma membrane, 
synapse associated, cytoskeleton, and signaling proteins are presented. Known changes in the Na + /
K + -ATPase activity are depicted by  arrows. Black upward arrows  depict the increase, while  black 
downward arrows  depict the decrease of Na + /K + -ATPase activity.  Open arrows  depict proposed 
changes in the Na + /K + -ATPase activity.  Abbreviations :  NKA  Na + /K + -ATPase;  Glux  glutamate 
receptors;  D   x   dopamine receptors;  5-HT  serotonin receptors;  A   x   adenosine receptors;  PSD-95  post-
synaptic density protein;  IP   3   R  inositol 1,4,5-trisphosphate receptors;  FSTL-1  follistatin-like 1 pro-
tein;  MONaKA  modulator of NKA activity;  Na   x   type of sodium channels;  h-channel  
hyperpolarization-activated channels;  AQP-4  aquaporin 4       
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[ 40 ]. The same study detected that, in the presence of glutamate, redistribution of 
GLAST from the cytoplasm to the astrocytic plasma membrane is accompanied 
with an increase in the NKA activity. Additional data are needed to further eluci-
date the physiological signifi cance of regulation of glial NKA by glutamate. 
Nevertheless, available data suggest that glutamate-induced recruitment of addi-
tional NKA capacity in astrocytes may be necessary for keeping the normal extra-
cellular glutamate concentration during the periods of neuronal activity. In 
addition, the sodium-coupled uptake of glutamate and increased NKA activity in 
astrocytes stimulate uptake of glucose which is further processed to the lactate 
[ 41 ]. When released from astrocytes, lactate is uptaken by neurons in which it can 
fuel energy requirements. Recent data revealed that other types of receptors can 
modulate NKA activity and affect glutamate uptake by astrocytes demonstrating 
additional complexity of NKA regulation by neurotransmitters. Thus, activation 
of adenosine A 2A  receptors has been shown to decrease NKA activity and inhibit 
glutamate uptake by astrocytes [ 9 ].  

2.2     Dopamine 

 The effect of dopamine on the NKA activity has been documented in striatum, a 
brain region characterized with highly expressed dopamine receptors that are mem-
bers of a family of G protein-coupled receptors (Fig.  17.1a  [ 42 ]). Inhibition of NKA 
activity by dopamine through activation of D1 and D2 dopamine receptors has been 
demonstrated in isolated neostriatal neurons [ 43 ]. Inhibitory effect of dopamine on 
the NKA activity was also observed in striatum and it was linked to the cAMP sig-
naling cascade and activation of PKA [ 44 ]. Another study on striatum showed that 
dopamine D1 receptor activation inhibits NKA α subunit activity via signaling that 
is PKA dependent and involves phosphorylation of dopamine- and cAMP-regulated 
phosphoprotein of 32 kDa (DARPP-32) [ 45 ]. Furthermore, it has been shown that 
dopamine in neostriatal neurons can exert its inhibitory effect through a mechanism 
that does not involve direct NKA phosphorylation [ 46 ]. Study conducted on medium 
spiny neurons isolated from neostriatum showed that inhibitory effect of dopamine 
on the NKA activity is linked to the removal of active pumps from the plasma mem-
brane. Thus, it was shown that dopamine induced decrease in the plasma membrane 
expression of NKA α2 subunit, while no change was observed in total Na + /K +  con-
tent [ 47 ]. Further research on neostriatal neurons revealed that inhibitory effect of 
dopamine on NKA can be specifi cally attributed to the D1 type of dopamine recep-
tors [ 10 ]. Generally, dopamine exerts inhibitory effect on NKA activity in striatum, 
at least when it binds to D1 receptors. On the other hand, D2 receptors in striatal 
neurons may be presumably involved in activation of NKA, since activation of 
these receptors by dopamine increase activity of sodium channels and by increasing 
intracellular sodium concentration may stimulate NKA activity [ 10 ].  
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2.3     Serotonin 

 Serotonin (5-hydroxytryptamine; 5-HT) receptors are characterized by great 
diversity and except for one member of the family, a 5-HT 3  receptor which is a 
ligand- gated ion channel, are mostly G protein-coupled metabotropic receptors 
[ 48 ,  49 ]. In the brain, 5-HT receptor subtypes are distributed in highly distinct 
pattern. Some of the receptors from 5-HT family are known to modulate ion fl uxes 
and cause alterations in neuronal membrane potential. Modulation of NKA activ-
ity by 5-HT in the brain was found to be bidirectional pointing toward the involve-
ment of complex and interconnected signaling pathways (Fig.  17.1a ). Early 
biochemical studies showed that administration of 5-HT increases NKA activity 
in the cerebral cortex of developing and adult rats [ 50 ,  51 ]. However, 5-HT-induced 
inhibition of NKA mediated by cAMP cascade was observed in leech tactile sen-
sory neurons [ 52 ]. Furthermore, 5-HT inhibited NKA activity via 5-HT 3  receptors 
in hippocampal CA1 pyramidal neurons as revealed by electrophysiological mea-
surements [ 11 ]. Another study showed that 5-HT 2B  receptors mediate the decrease 
of NKA activity in 1C115-HT neuronal cell. In these cells 5-HT 2B  dependent PKC 
activation promotes phosphorylation of NKA α1 subunit [ 53 ]. 5-HT also affects 
activity of NKA in glia, since glial cells uptake 5-HT via Na + -dependent trans-
porter [ 54 – 56 ]. Research on glial cells (Fig.  17.1b ) showed that 5-HT activates 
NKA in rat cerebral cortex [ 57 ]. Glial NKA activity is modulated by more than 
one type of 5-HT receptors. Increase in the NKA activity via activation of 5-HT 6  
receptors was observed in cerebellum while 5-HT 1A  receptors mediate NKA 
increase in cerebral cortex and hippocampus most probably through pathways 
involving adenylate-cyclase coupled to G protein [ 12 ].   

3     Regulation of NKA Activity by Direct Interaction 
with Specifi c Proteins 

 Over the past decade, considerable interest has been directed at elucidating the 
interaction and assembling of NKA in various protein complexes. Formation of 
such complexes has been shown to be important for the regulation of NKA activity 
in neurons and glial cells and to enable the pump to function as a signal transducer 
in the brain (Fig.  17.1a, b ). Here, attention is drawn to the data showing NKA 
assemblies with some plasma membrane, synapse associated, cytoskeleton, and 
cytoplasmic signaling proteins. 

3.1     Plasma Membrane Proteins 

 NKA often tightly associates with small single-span membrane proteins that 
belong to the FXYD family [ 58 ]. These proteins are identifi ed and named after 
the sequence of their conserved motif (phenylalanine-X-tyrosine-aspartate 
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amino acid sequence). Several of FXYD proteins FXYD1, FXYD2, FXYD6, and 
FXYD7 are expressed in the brain [ 40 ,  59 – 61 ]. Some of them have been shown 
to bind to the NKA and modulate its activity. One of the members, phospholem-
man (FXYD1), was found to interact with NKA α isoforms in a nonspecifi c man-
ner, since phospholemman expression was observed in both α3-containing 
neurons and α2-containing glia [ 60 ]. FXDY1 protein was found to reduce NKA 
activity without infl uencing the pump Na +  affi nity in purifi ed choroid plexus 
preparation. Another member, FXYD7, is expressed in both neurons and astro-
cytes and associates specifi cally with NKA α1 subunit isoform in the brain. 
When associated with α1 NKA and expressed in  Xenopus  oocytes, FXYD7 
reduces the NKA transport function by affecting the affi nity of NKA for external 
K +  [ 59 ]. It can be hypothesized that by acquiring lower K +  affi nity as a result of 
association with FXYD proteins in the brain, NKA becomes more effi cient in 
extracellular K +  clearance, thereby ensuring proper neuronal activity. In this 
way, FXYD proteins are acting as fi ne modulators of NKA activity and tune the 
pump activity according to the specifi c physiological demands. Novel cloned 
membrane-bound protein, named modulator of NKA activity (MONaKA), was 
also found to be a binding partner of NKA [ 62 ]. The MONaKA protein is highly 
expressed in astrocytes and by association with NKA inhibits its ATPase and ion 
transport activities. NKA interaction with some ion channels has also been 
shown. For example, Na x  channels associate with NKA in glial cells and modu-
late its function [ 63 ]. Na x  channels are characterized as an atypical leak channels 
that detect changes in extracellular concentration of Na + . Direct interaction 
between NKA α1 and α2 subunit isoforms and Na x  channels was found to medi-
ate Na + -dependent activation of NKA in glia. Increased NKA activity may stim-
ulate anaerobic glycolysis and production of lactate which is important to fuel 
neuronal activity especially during prolonged fi ring. Codistribution and func-
tional interaction between NKA and h-channels has been found in neurons [ 64 ]. 
The current generated by NKA and the h-current fl owing through hyperpolariza-
tion-activated channels (h-channels) participate in generating the resting mem-
brane potential of neurons. Both proteins are codistributed in the soma and spines 
of mesencephalic trigeminal neurons whereby activation of h-channels by Na +  
infl ux generates ouabain- sensitive NKA current. NKA also interacts with water 
channels AQP4 expressed at the end feet of astrocytes. NKA and AQP4 are 
placed in close proximity at the plasma membrane whereby NH 2  terminus of 
AQP4 interacts with both α1 and α2 isoforms of catalytic NKA subunit [ 65 ]. In 
addition, the same NH 2  terminus of AQP4 also interacts with main astrocytic 
metabotropic glutamate receptor 5 (mGluR5) which suggests existence of a mac-
romolecular transporting complex encompassing NKA, AQP4, and mGluR5 in 
astrocytic membrane. Clearly, further studies are needed to confi rm the existence 
of such complex and to examine its functionality. However, it can be assumed 
that stimulation of mGLuR5 and uptake of glutamate via Na + -dependent trans-
porters would increase NKA activity whereby intracellular Na +  in the domains 
surrounding NKA would be simultaneously buffered by infl ux of water through 
AQP4 channels.  
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3.2     Synapse-Associated Proteins 

 Postsynaptic density protein (PSD-95) located beneath the postsynaptic membrane 
can be regarded as a main protein responsible for distribution of NKA in synapse. 
The PSD-95 was found to form a complex with NKA α subunit isoforms in dendritic 
processes of neurons [ 23 ,  34 ,  66 ]. NKA and PSD-95 are codistributed in high degree 
at synaptic sites and associate via specifi c PDZ3 domain of PSD-95 and N-terminus 
of α NKA. In addition, PSD-95 was also found to bind to the glutamate [ 67 ], sero-
tonin [ 68 ], and dopamine receptors [ 69 ] which are known to functionally interact 
with NKA. Furthermore, PSD-95 binds to and enhances the current carried through 
glial Kir 4.1 channels [ 70 ], channels that are functionally coupled to the activity of 
NKA in regulating extracellular K +  concentration. PSD-95 has also been identifi ed 
as a binding partner of Kv channels in neurons [ 71 ], channels that are functionally 
coupled with NKA in determination of membrane potential. Such PSD-95 protein 
organization roughly sketches assembling of NKA with functionally related pro-
teins in synapses which would certainly have effect on the NKA activity. 

 Another synapse-associated protein that specifi cally binds to the NKA is agrin. 
This protein is not only released for the nerve terminals of motor neurons as origi-
nally found but also synthesized and released by neurons in the brain [ 72 ,  73 ]. Agrin 
interacts with α3 NKA subunit isoform via its C-terminus and inhibits NKA activity 
most likely by displacing the pump from the plasma membrane [ 74 ,  75 ]. In fact, some 
portion of the α3 NKA is normally inhibited by endogenous neuron-released agrin. 

 Follistatin-like 1 (FSTL-1) was also found to directly interact with NKA [ 76 ]. 
This glycoprotein is transported to axon terminals via small vesicles and has presyn-
aptic distribution. Secreted FSTL1 increases NKA activity upon binding to the α1 
subunit isoform and thereby acts as an NKA agonist. FSTL-1 was found to activate 
presynaptic NKA which causes hyperpolarization of membrane potential and sup-
pression of synaptic transmission. 

 As already discussed, NKA activity in the brain is modulated by neurotransmit-
ters. Accordingly, several studies reported that NKA directly associates with neu-
rotransmitter receptors and transporters at synapses. Specifi c association of NKA 
α1 subunit isoform and AMPARs was found in dendrites of cortical neurons [ 34 ]. 
Association of astroglial α2 NKA subunit isoform with GLAST and GLT-1 was 
detected in somatosensory cortex and cerebellum [ 77 ,  78 ]. Direct interaction 
between D1 receptors and α3NKA has been shown in the postsynaptic areas of 
dendritic spines in cultured neostriatal neurons [ 66 ]. Direct association of adenosine 
A 2A  receptors and α2 NKA was recently demonstrated in astrocytes in the cerebral 
cortex and striatum [ 9 ].  

3.3     Cytoskeleton Proteins 

 An interaction of NKA with components of the cytoskeleton has also been documented. 
This interaction is thought to be important for correct traffi cking and targeting of NKA 
to the specifi c membrane domains [ 29 ]. Some of the cytoskeletal proteins that directly 
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interact with NKA in the brain are adducin and tubulin. Adducin is highly expressed in 
the brain and plays an essential role in the assembly and regulation of actin mesh as it 
caps the fast-growing ends of actin fi laments and thereby controls cytoskeleton-mem-
brane interactions [ 79 ]. α-adducin specifi cally binds to the α2-NKA subunit isoform 
which is predominantly expressed in glial cells [ 80 ]. Direct interaction and formation of 
α-adducin/α2 NKA complex is implicated in the regulation of NKA expression. The 
NKA activity is also modulated through association and dissociation from tubulin, a 
dynamic component of microtubules [ 81 – 83 ]. More precisely, the NKA α subunit inter-
acts with the tubulin which is posttranslationally modifi ed through acetylation. 
Association with acetylated tubulin inhibits NKA activity. As demonstrated in cultured 
astrocytes, increase in NKA activity induced by  L -glutamate is related to the dissocia-
tion of acetylated tubulin from NKA.  

3.4     Signaling Proteins 

 NKA is considered to be a transducer of signals from extracellular milieu to the 
interior of cell as it communicates with certain cytosolic signaling proteins. Src 
kinase, a cytosolic protein involved in several signaling pathways, has been identi-
fi ed as an NKA binding partner. The family of Src kinases are non-receptor-type 
tyrosine kinases and fi ve members of this family, Src, Fyn, Lyn, Yes, and Lck, are 
present at substantial levels in the brain [ 84 ,  85 ]. These Src kinases regulate neuro-
nal excitability and synaptic transmission by modulating activities of ion channels, 
NMDA, AMPA, and GABA type A neurotransmitter receptors [ 86 – 88 ]. A study on 
cortical neurons has shown that Src tyrosine phosphorylation also regulates activity 
of NKA [ 89 ]. The administration of several tyrosine kinases inhibitors such as 
genistein, lavendustin, and herbimycin was found to attenuate the NKA activity as 
measured by the decrease in the pump current. By testing the effect of several tyro-
sine kinases present in the brain, Lyn kinase was identifi ed as a specifi c kinase that 
promotes increase in the NKA activity as measured by the augmentation of the 
pump current. Immunoprecipitation and Western blotting assays revealed that Lyn 
kinase directly interacts with NKA α3 subunit isoform. Lyn kinase appears to 
directly phosphorylate tyrosine residues of α3 NKA; however, the site for Lyn/NKA 
interaction needs to be further characterized. Interestingly, inhibitors of Src kinase 
were found to inhibit glutamate transporter activity in astrocytes [ 78 ]. Therefore, it 
can be suggested that Src kinase is a component of NKA/glutamate transporter 
complex. 

 NKA has also been identifi ed as a binding partner of inositol 1,4,5-trisphosphate 
receptors (IP 3 R), a ligand-gated Ca 2+  channel predominantly located at the mem-
brane of intracellular Ca 2+  stores such as endoplasmic reticulum [ 90 ]. These recep-
tors are target for secondary messenger IP 3  and are responsible for the release of 
Ca 2+  from endoplasmic reticulum, whereby released Ca 2+  controls numerous cell 
activities including signal transmission and synaptic plasticity in the brain. Increase 
in the cytosolic Ca 2+  concentration through activation of IP 3 R has been shown to 
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increase NKA activity in astrocytes but not in neurons maintained in cultures [ 91 ]. 
It has been shown that NKA subunit isoforms, α2 in astrocytes and α3 in neurons, 
have confi ned distribution within the plasma membrane which parallel underlying 
endoplasmic reticulum thereby constituting specialized Ca 2+  signaling complexes 
[ 92 ,  93 ]. Furthermore, a well-conserved motif in N-terminal tail of α1 NKA subunit 
isoform directly binds to the N-terminus of IP 3 R in lysates from the whole rat brain 
[ 94 ], while in cultured hippocampal astrocytes NKA was found to associate with 
IP 3 R via ankyrin-B [ 95 ]. As IP 3 R binds directly to numerous molecules and func-
tion as a center of multiple signaling cascades [ 90 ], investigating the effect of NKA/
IP 3 R association on the NKA activity points to a new framework of research that 
integrates various IP 3 R signal complexes.   

4     Conclusions 

 The accumulated fi ndings supported by a wealth of acquired experimental data have 
revealed the complexity of mechanisms involved in the regulation of NKA activity 
and pushed forward our understanding of the role this enzyme has in the nervous 
system. Coupling of NKA activity with neurotransmitter receptors and transporters 
in both neurons and glial cells through signaling cascades as well as through direct 
interaction emphasizes the importance of modulation of NKA activity in the regula-
tion of synaptic transmission in the nervous system. Furthermore, as recognized 
from the experimental data, a well regulation of NKA activity is accomplished 
through specifi c interactions with certain cellular proteins that are responsible for 
traffi cking, precise targeting of the pump at the plasma membrane, and fi ne-tuning 
of enzyme activity to meet the specifi c physiological demands. Other interactions, 
such as NKA interaction with Src kinase and IP 3 R, favor the formation of signaling 
complexes that are able to modify numerous cellular functions. Novel partners and 
regulatory pathways that modulate NKA activity are most certainly waiting to be 
revealed, given the importance of the Na +  and K +  gradients set by the NKA for the 
functioning of many proteins in the nervous system. 

 There is increasing evidence that alterations in mechanisms that underlie the regula-
tion of NKA activity are associated with the onset and progress of certain nervous system 
disorders. It has been shown that NO-mediated regulatory pathway acting through cGMP 
is compromised and unable to regulate the NKA activity in mouse model of amyotrophic 
lateral sclerosis (ALS), a neurodegenerative disease characterized by dysfunction of 
motor neurons in the spinal cord, brainstem, and cortex. The same study revealed NKA 
collapses in both neurons and glial cells due to the loss of all three catalytic α subunit 
isoforms [ 96 ]. Recent research also showed that protein complex consisting of α2 NKA 
and α-adducin is enriched in astrocytes of ALS mouse model while elevated levels of 
α2 NKA and α-adducin were also observed in the spinal cord of ALS patients [ 80 ]. In 
vivo knockdown of spinal cord α2 NKA/α-adducin complex was found to suppress 
degeneration of motor neurons and increase life span of ALS mouse. In mouse model 
of familial hemiplegic migraine type 2, human mutation in gene for α2 NKA subunit 
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isoform causes retention of NKA protein in the endoplasmic reticulum [ 97 ] indicating 
that traffi cking of the enzyme to the plasma membrane is compromised in this disease. 
Reduced brain NKA activity has been detected in animal models of depression, anxiety- 
and mania-like behavior [ 98 – 101 ]. In Myshkin mouse model of mania-like behavior, 
suppression of agrin was found to increase brain NKA activity. This fi nding implicates 
the regulation of NKA activity by agrin as a potential therapeutic target for the treatment 
of behavior-related disorders. More research is needed to establish the importance of 
different mechanisms that underlie the regulation of NKA activity in the onset and 
progress of nervous system disorders. Given the advance that has been accomplished, 
this research is certainly very promising.     
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 Regulation of Membrane Na + -K +  ATPase 
in Health and Disease                     
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    Abstract     Na + -K +  ATPase is primarily localized in the plasma membrane and 
occurs in the form of α-subunits (α-1, -2, and -3 isoforms) and β-subunits (β-1 and 
-2 isoforms) mainly. The inhibition of this enzyme by cardiac glycosides such as 
ouabain has been shown to raise the intracellular concentration of Na +  and promote 
the increase in cardiac contractile force as a consequence of increased Na + -Ca 2+  
exchange. Several studies have observed that Na + -K +  ATPase not only serves as a 
receptor for cardiac glycosides but also acts as a Na + -pump for maintaining the 
electrolyte homeostasis as well as a signal transducer for the formation of reactive 
oxygen radicals and cellular growth. Different hormones and endogenous factors 
such as marinobufagenin are considered to regulate the Na + -K +  ATPase activity 
through protein kinase-induced phosphorylation of phospholemman, a membrane 
protein which is tightly associated with this enzyme. Stimulation of Na + -K +  ATPase 
by catecholamines and phosphorylation of phospholemman seems to be an adaptive 
mechanism for the prevention of Ca 2+ -overload-induced arrhythmias whereas exces-
sive increase in the plasma levels of marinobufagenin or high concentrations of 
cardiac glycosides are considered to induce cardiac dysfunction associated with 
depression of the Na + -K +  ATPase activity.  
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1         Introduction 

 Since the discovery of Na + -K +  ATPase in 1957 [ 1 ], extensive studies have examined 
the role of this enzyme in both health and disease conditions [ 2 – 10 ]. It is now well 
known that Na + -K +  ATPase or Na + -pump ATPase is intimately involved in the trans-
port of Na +  and K + , and thus maintains the electrochemical gradient across the cell 
membrane [ 2 ,  8 ,  11 ,  12 ]. Cardiac glycosides have been demonstrated to inhibit the 
Na + -K +  ATPase activity and increase the intracellular concentration of Na + , which 
then increases the cytoplasmic concentration of Ca 2+  through Na + -Ca 2+  exchanger and 
thus produces the positive inotropic action in the heart [ 3 ,  13 ,  14 ]. In addition to serv-
ing as receptor for cardiac glycosides for the treatment of heart failure [ 3 ], Na + -K +  
ATPase is considered to act as a signal transducer for promoting cellular growth and 
thus may participate in the pathogenesis of cancer [ 15 ,  16 ]. While this enzyme has 
been suggested to be involved in cell survival, complete inhibition of Na + -K +  ATPase 
by ouabain was associated with cell death due to necrosis [ 17 ]. Likewise, ouabain at 
low doses has benefi cial effects in the heart whereas at high concentrations, it exerts 
cardiotoxic actions [ 3 ]. Such actions of ouabain may be related to the high and low 
affi nities of ouabain binding sites on Na + -K +  ATPase [ 18 ]. This chapter focuses on the 
structural and functional properties of Na + -K +  ATPase with particular emphasis on 
cardiac membranes. Some evidence has also outlined to indicate the involvement of 
Na + -pump ATPase as a signal transducer. Furthermore, it is planned to describe some 
of the regulatory mechanisms for changes in the Na + -K +  ATPase activity.  

2     Structural and Functional Properties 

 Although Na + -K +  ATPase is considered to be primarily localized in the cell mem-
brane, the functional density of Na + -K +  pump current in the t-tubules was found to 
be 3–3.5-fold higher than that in the sarcolemma of myocardium [ 19 ]. Several stud-
ies have been carried out to examine the biochemical properties of partially purifi ed 
Na + -K +  ATPase [ 20 – 23 ] from the tissue as well as that of the enzyme present in the 
sarcolemmal membrane. Treatment of the sarcolemmal membrane with phospholi-
pase C and trypsin was observed to depress the Na + -K +  ATPase activity [ 22 ]. It was 
shown that Na + -K +  ATPase undergoes conformational changes during its activation 
by Na +  and K + , which subserve the possible mechanism underlying the active trans-
port of cations [ 21 ]. The inhibition of the enzyme by ouabain, unlike that by Ca 2+ , 
was allosteric in nature; Na + -K +  ATPase was also depressed by different inhibitors 
of sulfhydryl groups [ 23 ]. It should be mentioned that initial attempts for the solubi-
lization and purifi cation of Na + -K +  ATPase from the cardiac muscle by the use of 
both ionic and nonionic detergents yielded the enzyme with low activity in the range 
of 20–30 μmol P i /mg protein/h [ 14 ,  24 – 26 ]. On the other hand, when the purifi cation 
of Na + -K +  ATPase from cardiac tissue was carried out by the treatment with deoxy-
cholate and NaI, the activity was found to be in the range of 140–160 μmol P i /mg 
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protein/h [ 23 ,  27 ]. The fact that detergents and chaotropic salts did not alter the key 
properties of Na + -pump ATPase from those seen in native sarcolemmal enzyme 
indicates that Na + -K +  ATPase is an integral membrane protein. 

 The Na + -K +  ATPase is made up of α- and β-subunits and undergoes E 1 –E 2  transi-
tion, a characteristic feature of the P-type ATPases [ 28 – 32 ]. The occurrence of three 
α-subunit isoforms (α 1 , α 2 , and α 3 ) and two β-subunit isoforms (β 1  and β 2 ) has been 
reported. It was suggested that these isoforms of the enzyme confer evolutionary 
advantage and regulation of gene expression during development in a tissue-specifi c 
manner [ 33 ]. The differential expression of Na + -K +  ATPase in different cells or tis-
sues appears to be due to its structural heterogeneity [ 34 ]. By X-ray microdialysis 
of frozen cryosections, the Na + -K +  pump was identifi ed to be present in the apical 
and basal cell membranes [ 35 ]. A monoclonal antibody, anti-BSP-3, directed 
against brain cell surface protein [ 36 ] recognized mouse Na + -pump and immuno-
precipitated Na + -K +  ATPase in microsomal fraction of the kidney; basolateral cell 
surface of polarized cells was stained by BSP-3 antibody. The α-subunit (MW 
84–120 kDa) was considered to play a vital role in the catalytic activity of Na + -
pump ATPase. Sheep kidney Na + -K +  ATPase β-subunit (MW 55 kDa) cDNA was 
cloned and it was shown that p-subunit amino acid sequence was structurally simi-
lar to Kdp c subunit of Na + -K +  ATPase in  E. coli  [ 37 ]. The β-subunit of the Na + -
pump has been shown to play a critical role in cellular resistance to cardiac 
glycosides [ 38 ]. Decreasing the α-helix conformation of plasma membrane proteins 
was found to inhibit the Na + -pump due to high concentrations of Ca 2+  [ 39 ]. The 
amino acid sequence of the catalytic subunit of Na + -K +  ATPase (α-isoform) was 
derived from its cDNA [ 40 ]. Expression of the entire mouse cDNA coding for 
α-subunit conferred ouabain resistance in monkey CV-1 cells whereas deletion of 
the C-terminal of the α-subunit cDNA resulted in impairing this property [ 41 ]. Thus 
the behavior of Na + -K +  ATPase activity is considered to be determined by the com-
position of its isoforms. 

 Substitution of amino acids, Gln-Ala-Ala-Thr-Glu-Glu-Glu-Pro-Gln-Asn-Asp- 
Asn-ò Arg-Ser-Ala-Thr-Glu-Glu-Glu-Pro-Pro-Asn-Asp-Asp, in the N-terminal at 
extracellular domain of the α-subunit of the Na + -K +  ATPase in HeLa cells conferred 
ouabain resistance [ 42 ,  43 ]. The three α-subunit isoform gene structures have been 
characterized; all three isoforms have similar exon-intron structure [ 44 ]. Upregulation 
of β-subunit modulates the number of K + -pump formation and translocation to the 
membrane surface in addition to regulating the α-β heterodimer formation [ 45 ]. 
Vascular smooth muscle Na + -K +  ATPase α-subunit isoform is regulated by alterna-
tive splicing of single transcript [ 46 ]. Since γ-thio ATP was found to be bound to ATP 
binding site in the Na + -pump ATPase and mediate the inhibitory effect, addition of 
ATP was observed to remove this inhibition [ 47 ]. The activity of inactivated enzyme 
was also restored by incubating with a sulfhydryl reactive agent [ 48 ]. Substitution of 
amino acids α 1  C113 → Y and α 1  C113 → F of the Na + -pump ATPase renders ouabain 
resistance compared to the wild type [ 49 ]. It has been shown that the Na + -pump 
activity is regulated in part by a liver fatty acid binding protein by increasing the 
plasma membrane fl uidity [ 50 ]. Substitution of amino acid Y317→ C in α 1 -subunit 
ecto-domain H 3 –H 4 , caused an increased ouabain resistance in Madin-Darby canine 
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kidney cell line by affecting the ouabain binding to α-subunit [ 51 ]. Amino acid 
residues 496-HLLVMKGAPER-506 form the fl uorescein isothiocyanate (FITC) 
binding domain in the catalytic α-subunit of the Na + -pump ATPase. 494-PRHLL-
498 is the most critical sequence for nucleoside binding [ 52 ]. Transfection of HeLa 
cells with double mutants generated by the amino acid substitutions at Asp111 and 
Arg122 in the H 1 –H 2  extracellular domain of sheep Na + -pump α-subunit rendered 
ouabain resistance to the cells. It was suggested that H 1 –H 2  extracellular domain of 
Na + -pump α-subunit possesses the functional unit of the Na + -K +  ATPase [ 43 ]. 

 The yeast Na + -K +  ATPase is made up of α- (catalytic), β- (structural), and puta-
tive γ-subunit. Presence of α-β-subunit complex alone confers the ouabain- 
inhibitable Na + -pump activity whereas the γ-subunit is redundant [ 47 ]. The 
Cys104 in H 1  transmembrane domain of α-subunit of Na + -pump possesses the car-
diac glycoside binding site [ 53 ]. The α-subunit hydrophobic domain H 1  and H 2  
serves as signal-anchor type II whereas H 2 –H 4  confers “halt” transfer signal. The 
membrane insertion property of Na + -pump is conferred by amino-terminal possess-
ing signal/anchor type II/halt transfer sequences [ 54 ]. The region corresponding to 
Gly554 → Pro785 in the cytoplasmic domain of α-subunit is essential for complex 
formation [ 55 ]. Substitution of amino acid at D369 → N porcine kidney Na + -K +  
ATPase α-subunit caused an 18-fold increase in ATP binding by net reduction in 
negative charge in the phosphorylation site D369 → N [ 56 ]. Based on hydropathy 
plot, different numbers of transmembrane domains, varying from six [ 57 ], seven 
[ 58 ], and eight [ 40 ], have been proposed for the α-subunit. The H 1 –H 2  and H 3 –H 4  
domains were orienting to the extracellular face and FITC [ATP] binding site, fac-
ing the cytoplasm [ 34 ]. Both N-terminus and C-terminus in the α-subunit are pres-
ent in the cytoplasm; N-terminus is the most divergent whereas the H 1 –H 2  and H 3 –H 4  
domains are shown to participate in ouabain binding. Amino acid residues Asp 369 
and Lys 501 were labeled by FITC whereas Cys356, Asp 710, and Lys 719 were 
identifi ed as ATP binding region of α-subunit [ 28 ,  40 ,  59 ]. It is pointed out that the 
α-subunit isoform distribution is well conserved across the species [ 28 ]. The 
β-subunit has been shown to mediate the membrane insertion and its transmem-
brane domain is also conserved across the species. The extracellular domain of dif-
ferent isoforms of β-subunit has different glycosylation sites. Six cysteine residues 
are critical for the disulfi de bridge formation in all β-isoforms [ 60 ]. It has been 
conclusively demonstrated that the stoichiometry of Na + -pump ATPase is 3 Na +  
(effl ux):2 K +  (infl ux) and is similar in epithelial and excitable cells [ 28 ].  

3     Signal Transduction by Na + -K +  ATPase 

 It has become clear that the inhibition of Na + -K +  ATPase by cardiac glycosides affects 
cation fl uxes and produces direct actions on cardiac contractility, electrical excitabil-
ity, and conduction [ 61 ]. Synchronized modulation of Na + -K +  pump ATPase has been 
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shown to elicit membrane potential hyperpolarization in the cardiac cells [ 62 ]. 
It should also be noted that transmural gradient in the cardiac Na + -K +  pump has 
been observed to generate a transmural gradient on Na + -Ca 2+  exchange [ 63 ]. There 
is a functional communication between Na + -K +  ATPase and ATP-sensitive K +  chan-
nels [ 64 ]; the activation of K + -ATP channels by the inhibition of Na + -K +  ATPase has 
been shown to occur in the membrane [ 65 ]. It has been reported that the binding of 
ouabain to Na + -K +  ATPase converts this enzyme to a signal transducer and initiates 
different gene regulatory pathways through the activation of tyrosine kinase and 
Ras/Raf/MEK/MAPK pathway as well as the increased production of reactive oxy-
gen species in the cardiomyocytes [ 66 ]. Not only did the inhibition of Na + -K +  
ATPase activate tyrosine kinase-mediated signaling, ouabain was also found to 
increase mitochondrial production of reactive oxygen species and regulate the intra-
cellular concentration of Ca 2+  [ 67 ]. Furthermore, the inhibition of Na + -K +  ATPase 
resulted in an impairment of mitochondrial Ca 2+ -retention, increased oxidative 
stress, and enhanced oxidative phosphorylation [ 68 ]. In fact, redox-activated protein 
kinases including PKA, PKC, and CaMKII have been shown to affect Na +  and Ca 2+  
transporter as well as cationic channels [ 69 ]. It was interesting to observe that phos-
phorylation of sarcolemmal Na + -K +  ATPase (α-subunit) due to CaMKII caused a 
signifi cant reduction in the activity of this enzyme [ 70 ]. These results clearly indi-
cate that different protein kinases and redox-related system are intimately involved 
in the signal transduction mechanisms when Na + -K +  ATPase activity is inhibited by 
cardiac glycosides. 

 In order to examine the role of Na + -K +  ATPase inhibition due to cardiac glyco-
sides in producing the increase in intracellular Ca 2+  in cardiomyocytes, a pharmaco-
logic approach was employed to understand the involvement of different signal 
transduction mechanisms [ 71 – 73 ]. The results were found to support the view that 
in addition to sarcolemmal Na + -Ca 2+  exchanger, sarcolemmal L-type Ca 2+ -channels 
and store-operated Ca 2+ -channels may be involved in raising the intracellular con-
centration of Ca 2+  upon the inhibition of Na + -K +  ATPase. Furthermore, both sarco-
lemmal Na + -H +  exchanger and Na + -channels may play a critical role in increasing 
the ouabain-induced increase in the concentration of Ca 2+  in cardiomyocytes [ 71 , 
 72 ]. These results are interpreted to suggest that the inhibition of sarcolemmal Na + -
K +  ATPase markedly affects the function of other membrane proteins. The involve-
ment of sarcoplasmic reticulum in raising the intracellular concentration of Ca 2+  due 
to the Na + -K +  ATPase inhibition was also tested by incubating cardiomyocytes with 
agents that affect the sarcoplasmic reticulum Ca 2+  stores. Treatments with caffeine, 
ryanodine, and cyclopiazonic acid attenuated the ouabain-induced increase in the 
levels of intracellular Ca 2+ . Inhibitors of CaMKII, PKA, and inositol-3-phosphate 
receptors were also observed to depress the ouabain-induced increase in the intra-
cellular Ca 2+  in cardiomyocytes [ 73 ]. These results show that the participation of 
sarcoplasmic reticulum in raising the intracellular concentrations due to the inhibi-
tion of Na + -K +  ATPase by ouabain is of indirect nature and may involve multiple 
signal transduction mechanisms in cardiomyocytes.  

18 Membrane Na+-K+ ATPase



316

4     Regulation of Na + -K +  ATPase 

 Various hormones, prostaglandins, and neuropeptides have been shown to exert 
regulatory effect on Na + -K +  ATPase in a tissue-specifi c manner. For example, cate-
cholamines were found to stimulate the Na + -K +  ATPase activity in the heart through 
the activation of β-adrenoceptors and PKA mechanisms [ 74 ,  75 ]. Angiotensin II 
showed biphasic effects on renal Na + -K +  ATPase as the enzyme was stimulated at its 
low concentrations and inhibited by its high concentrations [ 76 ]. The stimulatory 
effect of angiotensin II was associated with increased activities of MAP kinase, 
tyrosine kinase, and NADPH oxidase. Estradiol-induced expression of Na + -K +  
ATPase catalytic isoforms in vascular tissue was mediated through the formation of 
nitric oxide [ 77 ]. A neuropeptide, myomodulin, was observed to depress the Na + -K +  
ATPase activity in heart interneurons [ 78 ]. Different purine nucleosides, inosine, 
guanosine, and adenosine, were found to stimulate Na + -K +  ATPase activity in a 
dose-dependent manner in erythrocytes [ 79 ]. Marinobufagenin, an endogenous 
ligand of α-1 subunit of Na + -K +  ATPase, has been reported to depress the myocar-
dial enzyme activity [ 80 ]. Likewise, thromboxane B2, a product of thromboxane A2 
during the synthesis of prostaglandin, was shown to inhibit the Na + -K +  ATPase 
activity in the heart [ 81 ]. Thus the activity of Na + -K +  ATPase is regulated by a wide 
variety of hormones and endogenous factors and seems to play an important role in 
the adaptation and maladaptation of different organ function in the body. 

 The regulation of Na + -K +  ATPase is considered to be affected mainly by phos-
phorylation and dephosphorylation of phospholemman, a small transmembrane pro-
tein which is associated with the enzyme [ 82 – 85 ]. Phospholemman is a member of 
the FXYD family of proteins and is a major substrate for different protein kinases 
[ 86 ,  87 ]. In its dephosphorylated form, phospholemman exerts an inhibitory action 
on Na + -K +  ATPase whereas it is stimulatory in the phosphorylated form. 
Phospholemman phosphorylation and modulation of Na + -K +  ATPase due to cate-
cholamines and ischemia in the heart has been suggested to function in a manner 
similar to the interaction of phospholamban and Ca 2+ -pump ATPase in the sarcoplas-
mic reticulum [ 88 ,  89 ]. It should be mentioned that both PKA and PKC have been 
shown to phosphorylate phospholemman at conserved serine residue (Ser 68) in its 
cytoplasmic domain and induce major changes in the protein conformation and thus 
alter the Na + -K +  ATPase activity [ 86 ]. Furthermore, phospholemman phosphoryla-
tion and Na + -K +  ATPase stimulation has been suggested to be an integral part of 
sympathetic fi ght-or-fl ight response for limiting Ca 2+ -overload-induced arrhythmias 
as a consequence of attenuated rise in the intracellular concentration of Na +  [ 83 ]. 

 Na + -K +  ATPase is regulated by different hormones not only in physiological con-
ditions, but this enzyme is also a target of regulation by various factors under dis-
eased situations. Extensive work has indicated marked changes in the Na + -K +  ATPase 
activity in diverse cardiovascular diseases [ 4 – 7 ,  9 ]. In view of the ability of Na + -K +  
ATPase to maintain cell volume [ 90 ], it is possible that changes in the enzyme activ-
ity may alter cellular function by inducing changes in cell volume. During cardiac 
hypertrophy and transition to heart failure due to hypertension, a decrease in α-1 
isoform and an increase in α-3 isoform in cardiac Na + -K +  ATPase are associated with 

V. Elimban et al.



317

an increase in the plasma levels of endogenous ligand, marinobufagenin [ 91 ]. In fact, 
depressed cardiac Na + -K +  ATPase activity and associated reduction in Na + -K +  
ATPase α-1 isoform in heart failure were seen upon the infusion of marinobufagenin 
[ 92 ]. Different hypertrophic stimuli have been reported to alter the enzyme activity 
by affecting the gene expression of Na + -K +  ATPase β-1 and α-3 isoforms [ 93 ]. The 
inhibition of Na + -K +  ATPase and the development of cardiac dysfunction in endotox-
emia were associated with myocardial TNF-α protein expression via calcium/mTOR 
signaling [ 94 ]. A modest diet-induced increase in serum cholesterol was found to 
increase the sensitivity of sarcolemmal Na + -K + -pump to intracellular Na + , whereas a 
large increase in cholesterol levels decreased the sensitivity to Na +  [ 95 ]. Some inves-
tigators have also observed the arrhythmogenic role of Na + -K +  ATPase in human 
heart failure and have suggested its involvement as an important modulator of excit-
ability and refractoriness in human atria [ 96 ,  97 ]. Such results provide evidence that 
Na + -K +  ATPase is regulated by diverse mechanisms during the development of heart 
disease. Different diseases including diabetes [ 98 ] have been shown to alter the prop-
erties of this enzyme and thus can be seen to regulate the Na + -K +  ATPase.  

5     Conclusions 

 From the foregoing discussion, it is evident that the membrane Na + -K +  ATPase not 
only serves as a Na +  pump for maintaining the homeostasis of electrolytes in the cell 
but also forms an essential component of the signal transduction mechanisms. 
Various hormones and endogenous factors have been shown to regulate the Na + -K +  
ATPase activity through phosphorylation and dephosphorylation of phospholem-
man, a membrane protein which is associated with this enzyme. Although α-isoforms 
(α-1, -2, and -3 subunits) and β-isoforms (β-1 and -2 subunits) of the Na + -K +  ATPase 
are tissue specifi c, their role in the regulation of enzyme activities has been sug-
gested in the development of disease processes. A shift in the Na + -K +  ATPase iso-
form composition seems to occur during the transition of cardiac hypertrophy to 
heart failure. Particularly, the plasma level of the endogenous ligand, marinobufa-
genin, has been shown to increase in heart failure due to hypertension which may 
phosphorylate phospholemman, change the composition of Na + -K +  ATPase iso-
forms, and depress the enzyme activity.     
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    Chapter 19   
 Redox Regulation of the Na + -K +  ATPase 
in the Cardiovascular System                     

       Keyvan       Karimi Galougahi     and     Gemma     A.     Figtree    

    Abstract     The Na + -K +  ATPase is called “the oldest pump” as it has been the fi rst of 
P-Type ATPases family to be discovered. This α/β heterodimeric molecule has an 
essential role in membrane transport of ions and organic molecules, and in cardiac 
myocytes, plays a key role in excitation–contraction coupling. Due to dynamic 
changes in the complex in vivo milieu, the pump function is tightly regulated in 
order to adapt to changing needs. Accumulating evidence has formed a consensus 
view that pump regulation is mediated by changes in phosphorylation of the FXYD1 
protein that associates with the pump. However, this view is challenged by the lack 
of putative phosphorylation sites on the whole family of FXYD proteins that are 
expressed in tissue-specifi c manner. Moreover, the proposed functional effects of 
the phosphorylation, e.g. via β adrenergic signalling, are at odds with the role of the 
pump in clinical conditions like heart failure, and the clinical effi cacy of drugs that 
block β 1  adrenergic signalling. Regulation of the pump function via oxidative post- 
translational modifi cation has emerged as an alternative with glutathionylation of β 1  
pump subunit and FXYD1 playing a dynamic regulatory role via receptor-coupled 
signalling in a variety of clinical conditions. In this chapter we briefl y review struc-
ture and function of the Na + -K +  pump, and discuss in detail its regulation by redox 
pathways in the heart and critical regulatory role of FXYD1 proteins. We present 
the emerging role of redox regulation in the vasculature, where such signalling can 
have broad effects on cellular processes including vascular proliferation.  
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1         Introduction 

1.1     Function of the Na + -K +  Pump 

 The Na + -K +  pump was the fi rst of the family of P-type ATPases to be discovered [ 1 ]. 
P-type ATPases function to hydrolyze ATP to translocate ions across the cell mem-
brane against their transmembrane gradients. The Na + -K +  pump is expressed in all 
eukaryotic cells and hydrolyzes an ATP molecule to export 3Na +  ions in exchange 
for the import of 2K +  ions [ 2 ]. The Na + -K +  ATPase cycle is described by the Post–
Albers scheme [ 3 ,  4 ]. The Na + -K +  ATPase cycles through two major conformational 
states, E1 and E2, which are characterised by differences in their interactions with 
Na + -K +  and ATP [ 5 ]. Na +  and ATP bind with high affi nity to the E1 conformation of 
the enzyme, during which phosphorylation occurs [ 6 ]. Three Na +  ions are then 
occluded while the enzyme remains phosphorylated. The enzyme in the E1-P(3Na + ) 
conformation loses its affi nity for Na +  while the affi nity for K +  is increased. 
Therefore, 3Na +  ions are released to the extracellular medium and 2K +  ions are 
bound. The binding of K +  induces a spontaneous dephosphorylation of the E2-P 
conformation. The dephosphorylation of E2-P leads to the occlusion of 2K +  ions, 
forming the E2(2K + ) conformation [ 6 ]. Intracellular ATP promotes the release of K +  
from the E2(2K + ) conformation to fi nish the cycle back to the E1ATPNa +  conforma-
tion. These three main reactions form the full catalytic cycle of Na + -K +  ATPase, 
which is illustrated in Fig.  19.1 .

   The 3Na + :2K +  exchange ratio results in a net outward current and produces an 
electrochemical gradient across the cell membrane [ 2 ] which provides the energy 
for various active secondary co- and counter-transport processes, including Na + :H +  
exchange, Na + :Ca 2+  exchange, Na +  dependent Cl −  transport [ 7 ,  8 ] and the transport 
of organic molecules such as glucose. The Na + -K +  pump thus has a central role in 
the establishment and maintenance of homeostasis in the intracellular milieu. The 
essential function of the pump in maintaining the transmembrane Na +  gradient plays 
a key role in excitation–contraction coupling in cardiac myocytes through modulat-
ing effects on intracellular Ca 2+  via Na + :Ca 2+  exchange, which transports one Ca 2+  
ion in exchange for three Na +  ions [ 9 ]. Relatively small changes in intracellular Na +  
can have signifi cant effects on contractile force [ 10 ]. Of pathophysiological signifi -
cance, the relationship between intracellular Na +  and contractility is distinctively 
different in the normal heart compared to the failing heart in which increased [Na + ] i  
is believed to contribute to contractile decline and arrhythmias [ 11 ,  12 ]. These 
adverse effects occur in part because Na + /Ca 2+  exchange increases cytosolic Ca 2+ . 
Ca 2+ -induced diastolic Ca 2+  releases from the sarcoplasmic reticulum then reduces 
the amount available for release in systole [ 11 ,  13 ]. Raised [Na + ] i  is also thought to 
contribute to the heart failure phenotype by reducing mitochondrial Ca 2+  uptake, 
which in turn increases the production of reactive oxygen species (ROS) [ 14 ]. An 
inhibitory oxidative modifi cation of mitochondrial ATP synthase [ 15 ] then reduces 
the energy supply [ 16 ].  
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1.2     Structure of the Na + -K +  Pump 

 The Na + -K +  pump is a heterodimer comprised of a large α subunit and a smaller β 
subunit. The α subunit has ten transmembrane helices [ 17 ] and includes the cytoplas-
mic catalytic domain (ATP-binding and phosphorylation sites) and the extracellular 
ouabain binding site [ 18 ]. The major isoform, α 1 , is expressed in nearly every tissue. 

  Fig. 19.1    The structure and catalytic cycle of the Na + -K +  pump. ( a ) The three-dimensional 
structure of the α/β/FXYD complex in a conformation analogous to E2PiK 2  + . Transmembrane 
domains are between the two  unbroken green lines . The β subunit and the FXYD proteins are 
single-transmembrane- spanning while ten helices of the α subunit span the membrane. Reactive 
cysteine residues in β 1  subunit (C46) and FXYD (C2) are indicated. The expanded section illus-
trates the proximity of the glutathionylation site to hydrogen bonds between β- and α subunits 
( broken lines ). ( b ) Albers–Post scheme for Na + -K +  pump catalytic cycle. When three Na +  ions have 
been bound to the E1 conformation ( 1 ) the cytoplasmic access gate is closed and locked with 
phosphorylation of the α subunit ( 2 ), causing occlusion of Na +  ([Na + ] 3 ) within the molecule. A gate 
opens to the outside and Na +  is released ( 3  and  4 ) when its binding affi nity decreases with 
E1P → E2P change. K +  is bound ( 5 ), the gate is closed and the resultant conformational change of 
the pump stimulates its dephosphorylation ( 6 ). The E2PiK 2  +  product state of dephosphorylation 
(shown in the  box ) is the conformation for which the three-dimensional crystal structure is known. 
( c ) Sequence alignment of FXYD1–3 and 7. Numbering corresponds to the FXYD1 sequence and 
begins at 1 after the signal peptide (not shown). Conserved residues are marked using  fi lled circles , 
with conserved cysteine residues labelled C1 and C2. TM indicates the transmembrane domain       
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In contrast, the expression of α 2 , α 3  and α 4  isoforms is restricted to specifi c tissues. 
The β subunit is a single membrane-crossing protein with its amino terminus in the 
cytoplasm. It is required for folding, membrane insertion and membrane delivery of 
the catalytically active α subunits [ 18 ], and has highly conserved glycosylation sites 
and disulfi de bridge-forming cysteine residues [ 19 ]. In addition to this chaperone-
like function, the β subunit is essential for enzyme activity and infl uences the trans-
port properties of mature sodium pumps. There is strong evidence for a modulatory 
function of the β subunit for ion translocation, cation transport and K +  occlusion 
[ 19 ]. Currently, three different Na + -K +  ATPase β isoforms have been identifi ed, 
which are distributed in a tissue-dependent manner. Like the α 1  subunit, the β 1  sub-
unit is expressed in nearly every tissue. 

 A third subunit, termed γ, is part of the FXYD family of small, single transmem-
brane proteins, named after their signature extracellular FXYD sequence [ 20 ]. They 
are expressed in a tissue-specifi c manner [ 21 ] and associate with the Na + -K +  pump 
in all tissues. Despite a close association, FXYD proteins are not an integral part of 
the catalytic and ion transporting function of the Na + -K +  pump. However, it is fi rmly 
established that the presence or absence of FXYD proteins modulates Na + -K +  pump 
function [ 22 ,  23 ]. The three-dimensional structure of the α/β/FXYD complex in a 
conformation analogous to E2PiK 2  +  is shown in Fig.  19.1 .   

2     Regulation of the Cardiac Na + -K +  Pump 

2.1     Dependence of Pump Function on Ligands and Membrane 
Voltage 

 [Na + ] i  is a major determinant of pump activity [ 24 ], with Na +  levels of 70–100 mM 
causing maximal pump activation [ 25 ]. [K + ] i  regulates Na + -K +  pump activity by 
competing with intracellular Na +  for binding to the E1 form [ 26 ], which results in 
pump inhibition. Extracellular K +  stimulates pump activity. However, the concen-
tration of K +  required for half-maximum pump activity is variable (1.5–2.7 mM) 
[ 27 ] with saturation occurring at a concentration of 10 mM of extracellular K +  [ 28 ]. 
Extracellular Na +  inhibits the release of Na +  from the E2 conformational form, thus 
modulating pump function [ 28 ,  29 ]. 

 The pump turnover rate is also dependent on the membrane voltage [ 30 ]. The 
major voltage-dependent steps can be interpreted in terms of the “access chan-
nel” model. According to this, the translocation of charge through the membrane 
is a result of the location of the Na +  and K +  binding sites within the electrical 
fi eld [ 30 ]. Major steps in the pump cycle that are voltage-dependent include the 
release of Na +  ions and the binding of the extracellular K +  ions at the external 
pump site [ 31 – 34 ].  
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2.2     Regulation of the Cardiac Na + -K +  Pump by Signalling 
Pathways: Historical Controversies 

 Receptor-coupled signalling cascades regulate the activity of the pump in response to 
changing needs. Effects of the adrenergic receptor-coupled activation of protein 
kinases A and C (PKA and PKC) on pump function have been extensively studied, 
but remarkably, the functional consequences of such signalling on the cardiac pump 
have remained a matter of controversy [ 35 ]. According to a multitude of studies per-
formed on cardiac myocytes, a “consensus view” has emerged that, unlike is seen in 
other tissues, PKA mediates pump  stimulation  in the heart. The most recent of these 
studies have attributed the stimulation to phosphorylation of Ser68 in the cytoplas-
mic terminal of FXYD1, which relieves an inhibitory effect of FXYD1 on the pump 
[ 35 ]. In striking contrast to this consensus view, the work from the Rasmussen 
Laboratory with whom we collaborate has shown that PKA activation with exposure 
of isolated cardiac myocytes to the adenylyl cyclase activator forskolin in vitro 
causes Na + -K +  pump  inhibition . We have shown this to be mediated by the activation 
of PKC and NADPH oxidase in a downstream pathway that is shared with Ang II 
[ 36 ,  37 ]. As previously reviewed, differences in experimental protocols between the 
studies [ 35 ,  36 ] and potential experimental sources of error in Na + -K +  pump studies 
in cardiac myocytes, in particular specifi c details of how the voltage clamp technique 
was applied to measure the electrogenic pump current [ 36 ], may have contributed to 
the discrepancies. Moreover, reconciling the effects of protein kinase-dependent sig-
nalling on the pump that are attributed to phosphorylation with the structure of the 
pump and the expression pattern of its subunits in different tissues poses a challenge. 
A regulatory role for phosphorylation of FXYD is diffi cult to reconcile with the fact 
that only FXYD1, expressed in the heart, has functional phosphorylation sites [ 23 ] 
which cannot account for the regulation of the pump by this mechanism in other tis-
sues. An ideal consensus motif for PKA phosphorylation on the α 1  pump subunit 
exists, and despite an expected poor access of PKA to the site [ 38 ], it can undergo 
phosphorylation. However, functional effects and molecular mechanisms have been 
diffi cult to establish [ 39 ]. An amino acid mutation designed to mimic phosphoryla-
tion of the PKA motif seemed to have no functional effect in  Xenopus  oocytes, a 
result that was consistent with molecular dynamics simulations. In contrast, simu-
lated phosphorylation of the wild-type amino acid suggested that phosphorylation 
decreases Na +  binding affi nity and hence should  inhibit  the pump [ 39 ]. PKC can 
phosphorylate subunits despite the absence of a consensus motif for this family of 
kinases, but the functional signifi cance is uncertain [ 39 ].  

2.3     Redox Signalling and Role of Glutathionylation 
in Regulation the Cardiac Na + -K +  Pump Function 

 Since phosphorylation of the Na + -K +  pump molecular complex cannot readily 
account for effects of the protein kinase-dependent regulation of the Na + -K +  pump 
function, we have explored the role of oxidative post-translational modifi cations in 

19 Redox Regulation of the Na+-K+ Pump



328

kinase-dependent pump regulation in collaboration with the Rasmussen Laboratory. 
Oxidative modifi cations can affect the structure and function of proteins in a manner 
analogous to phosphorylation [ 40 ]. They seemed a plausible alternative because 
chemical oxidants can inhibit Na + -K +  ATPase in membrane fragments [ 41 ] as well 
as pump activity in cardiac myocytes [ 42 ]. 

 Protein glutathionylation (protein-GSS) was considered as a plausible candidate 
for mediating this redox regulation, due to its stability and reversibility. Because of 
the classic role of Ang II in activation of NADPH oxidase [ 43 ], we examined the 
effects of Ang II on pump function and a role for protein-GSS. Exposure of myo-
cytes to Ang II increased the co-immunoprecipitation of the membranous p22  phox   
subunit of NADPH oxidase with the cytosolic p47  phox   subunit in myocyte lysate, 
consistent with the translocation of p47  phox   to the cell membrane that is required for 
activation of NADPH oxidase [ 44 ]. It also increased co-immunoprecipitation of the 
Na + -K +  pump molecular complex with p47  phox  . Ang II decreased the electrogenic 
Na + -K +  current ( I  p ) measured in voltage clamped cardiac myocytes. The decrease in 
 I  p  was abolished by blocking translocation of p47  phox  , and hence NADPH oxidase 
activation, and by blocking εPKC activation [ 44 ]. These results are consistent with 
PKC-dependent phosphorylation of p47  phox   necessary for its translocation. The Ang 
II-induced activation of oxidative signalling was associated with glutathionylation 
of the β 1  subunit of the Na + -K +  pump (β 1 -GSS) [ 45 ]. Mutational studies of Na + -K +  
pumps expressed in  Xenopus  oocytes identifi ed C46 as the reactive residue in the β 1  
subunit [ 45 ] and, consistent with the NADPH oxidase-dependence of Ang II-induced 
inhibition of  I  p  in cardiac myocytes [ 44 ], there was a causal relationship between 
ONOO − -induced β 1  subunit glutathionylation and pump inhibition [ 45 ]. The posi-
tion of C46 in the three-dimensional structure of the pump is illustrated in Fig.  19.1 . 

 Previous has also examined whether β 1  AR-dependent signalling causes down-
stream oxidative modifi cation of the Na + -K +  pump. Forskolin was used in vitro to 
activate adenylyl cyclase that is coupled to the β 1  AR as an alternative to using a 
receptor agonist. This approach was used to overcome issues related to imperfect 
selectivity of the available agonists [ 46 ]. Forskolin was shown to activate NADPH 
oxidase via PKA- and PKC-dependent pathways and, via this signalling cascade 
and resulting β 1  subunit glutathionylation, inhibit  I  p  of cardiac myocytes [ 36 ]. 
Glutathionylation of C46 of the β 1  Na + -K +  pump subunit thus has fulfi lled the crite-
ria suggested by Gallogly et al. [ 47 ] for being a regulatory mechanism of pump 
function. However, the in vivo signifi cance of these fi ndings in physiology and 
pathophysiology remained to be examined. Given the substantial differences in 
redox status between in vitro and in vivo settings [ 48 ,  49 ], and since the in vitro 
effects of Forskolin on the pump were transient and waned after 30 min of exposure 
[ 36 ], it was imperative to examine the kinase-dependent Na + -K +  pump regulation 
in vivo. Thus the effects of PKA and PKC on pump regulation in the heart were 
examined through the modulation of β 1  AR- and Ang II receptor-coupled signalling 
in vivo. The study protocol was specifi cally designed to also address the technical 
issues in multiple studies, all performed in vitro, which shaped the consensus view 
of PKA-dependent pump stimulation [ 35 ]. We have performed the fi rst in vivo 
examination of the effects of PKA/PKC-dependent signalling on the cardiac Na + -K +  
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pump, and have comprehensively demonstrated that, in contrast to previous reports 
[ 35 ], β 1  AR-coupled, PKA-mediated signalling inhibits the cardiac Na + -K +  pump 
via redox-dependent mechanisms [ 50 ]. 

 This fi nding has broad implications in cardiac physiology. Due to an expected 
increase in myocyte [Ca 2+ ] i  with a rise in [Na + ] i  secondary to PKA-mediated oxida-
tive pump inhibition, it is expected to augment the β 1  AR-coupled, Ca 2+ -dependent 
facilitation of excitation–contraction coupling [ 51 ]. Moreover, in contrast to the 
suggested phosphorylation-dependent stimulation of the pump, a PKA-mediated 
decrease in pump current would prolong the action potential duration and hence 
prolong voltage-dependent Ca 2+  infl ux [ 51 ]. The PKA-dependent Na + -K +  pump 
inhibition therefore should act in synergy with other mechanisms to increase car-
diac contractility with β 1  adrenergic stimulation in the normal heart. 

 This newly proposed scheme also has important implications for understanding 
pathophysiology and treatment of heart failure. It readily integrates the diverse para-
digms of adverse effects of high [Na + ] i  [ 52 ], oxidative stress and cellular energy 
defi ciency in heart failure [ 53 ]. Historically, the clinical use of “β blockers” has 
been based on small clinical trials and not through a bench-to-bedside approach 
[ 54 ], and therefore, the mechanisms for the effi cacy of this class of drugs are poorly 
understood. Our scheme integrates redox signalling into β 1  AR-coupled signal 
transduction and is in good agreement with the clinical effi cacy of β 1  AR blockade 
in heart failure. Based on this data, and the scheme that has evolved, β 1  AR blockade 
is expected to reverse oxidative inhibition of the sarcolemmal Na + -K +  pump and be 
benefi cial in heart failure.  

2.4     Activation of β 3  ARs and Redox Regulation 
of the Na + -K +  Pump 

 Three different β ARs are expressed in human cardiac myocytes with a rank order 
of β 1  AR > β 2  AR > β 3  AR. They are mainly activated by norepinephrine released 
from sympathetic nerve fi bres that form a network around the myocytes, but a cir-
culating pool of norepinephrine and other catecholamines also contributes to adren-
ergic signalling [ 55 ]. β 1  AR is classically known to be coupled to the stimulatory G 
protein (Gs), which activates adenylyl cyclase and cyclic AMP synthesis. The β 2  AR 
is coupled to Gs as well as the inhibitory G protein (Gi)-mediated signalling, 
whereas the β 3  AR in cardiac myocytes is coupled to Gi proteins [ 56 ]. The down-
stream pathway activated by β 3  AR includes NOS, NO-activated guanylyl cyclase, 
and cyclic GMP synthesis [ 57 ]. In contrast to the Na + -K +  pump inhibition in 
response to β 1  AR-coupled signalling, we have shown with the Rasmussen 
Laboratory that selective stimulation of β 3  ARs in vitro increases the  I  p  of cardiac 
myocytes from normal rabbits [ 58 ]. As expected from activation of the Na + -K +  
pump, acute intravenous administration of a β 3  AR agonist has opposite effects on 
cardiac performance in sheep with and without heart failure, consistent with the 
known differential effects on excitation–contraction coupling with changes in [Na + ] i  
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from low and high baseline levels [ 58 ]. The β 3  AR is upregulated in human heart 
failure [ 59 ]. This has been widely considered to be maladaptive. However, when 
seen in light of the β 3  AR-dependent Na + -K +  pump activation, human studies actu-
ally suggest that β 3  AR agonists might be benefi cial, as reviewed [ 60 ]. The in vivo 
effects of β 3  AR stimulation on redox regulation of the pump, both under normal 
physiological and pathophysiological conditions, are not known. In a preliminary 
report, we show that this modifi cation mediates inhibition of the Na + -K +  pump in 
cardiac myocytes in diabetes. This is of pathophysiological signifi cance given the 
central role of the pump in maintenance of the homeostasis of the intracellular 
milieu, and in processes such as excitation–contraction coupling amongst others, 
thus contributing to pathogenesis of diabetic cardiomyopathy. In vivo β 3  AR activa-
tion abolished diabetes-induced increase in eNOS-GSS, shown to mediate uncou-
pling of the enzyme, thus promoting maintenance of the coupled state of eNOS in 
cardiac myocytes. This effect that was independently supported by a signifi cant 
increase in eNOS-GSS in myocardium of β 3  AR −/−  mice and is consistent with a 
previous report of a marked increase in eNOS uncoupling in β 3  AR −/−  mice shown 
by eNOS monomerization with pressure-overload induced hypertrophic cardiomy-
opathy [ 15 ].  

2.5     FXYD Proteins and Redox-Dependent Na + -K +  Pump 
Regulation 

 While phosphorylation of FXYD1 is implicated in the regulation of the cardiac 
myocyte Na + -K +  pump, there are no known functional phosphorylation sites on 
FXYD2–7. In contrast, two cysteine residues in the cytoplasmic terminal, named 
C1 and C2 in Fig.  19.1 , are conserved in the seven-member mammalian family 
(Fig.  19.1 ). While most cysteine residues in proteins do not undergo oxidative mod-
ifi cations, C1 and C2 are good candidates for susceptibility to glutathionylation, 
because they are fl anked by the basic amino acids lysine and arginine [ 61 ]. 

 FXYD1, native to cardiac myocytes, and other FXYD proteins that we expressed 
in  Xenopus  oocytes were susceptible to glutathionylation, with the exception of 
FXYD2. Mutagenesis identifi ed C2 but not C1 as reactive, with the reactivity of C2 
depending on fl anking basic amino acids. C2 is fl anked by two basic amino acids in 
FXYD1 but only one in FXYD2 (Fig.  19.1 ) and mutation of the non-basic amino 
acid to a basic one made FXYD2 susceptible to glutathionylation, similar to other 
members of FXYD family [ 61 ]. In addition to the importance of surrounding basic 
amino acids in the 2D protein structure, surrounding residues in the 3D structure 
also play a critical role. Indeed, the 3D structure of the Na + -K +  pump suggests that 
proximity to basic amino acids in the α subunit might account for the differences in 
reactivity between C1 and C2 [ 61 ]. 

 A reactive cysteine in the C2 position of FXYD proteins was critical for the 
reversal of glutathionylation of C46 of the β 1  subunit and Na + -K +  pump inhibition 
induced by chemical oxidants or exposure of myocytes to Ang II. This conclusion 
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was independently supported by results obtained in  Xenopus  oocytes expressing 
FXYD proteins with and without a reactive C2 (see Bibert et al. for details) [ 61 ]. Of 
importance for receptor-coupled signalling, a decrease from baseline glutathionyl-
ation of C46 and an increase in  I  p  induced by a β 3  AR agonist was also dependent on 
a reactive C2 [ 61 ].   

3     The Na + -K +  Pump Cycle and Redox-Dependent Regulation 
of Pump Function 

3.1     Susceptibility of C46 in β 1  Na + -K +  Pump Subunit 
to Glutathionylation 

 Since GSH is hydrophilic and strictly cytosolic, glutathionylation of C46 is counter-
intuitive in view of its location in the transmembrane segment (Fig.  19.1 ), with its 
sulfhydryl group facing the lipid bulk phase. The three dimensional structure that 
indicates this location is known in only one of the Na + -K +  pump’s conformations 
and we subsequently showed that susceptibility to glutathionylation of C46 depends 
on the conformational states the pump undergoes in its catalytic cycle (Fig.  19.1 ) 
[ 62 ]. The β subunit forms many contacts with transmembrane segments 7 (αM7) 
and 10 of the α subunit [ 63 ] with polar residues lining the interface between the 
subunits from the cytoplasm to C46 [ 64 ] and, using molecular dynamics simula-
tions, Thøgersen and Nissen [ 64 ] demonstrated that minor structural changes in the 
pump molecular complex are likely to cause a membrane deformation that yields a 
hydrophilic environment for C46. This might explain the conformation-dependence 
of access for GSH. 

 There are no neighbouring basic amino acids that would promote the low p K a of 
the sulfhydryl group to promote glutathionylation of C46 in the primary sequence. 
However, a cluster of four arginines and one lysine near the C terminus of αM10 is 
~15 Å from the side chain of C46 in the known crystal structure [ 63 ] and might 
move in response to Na +  binding. Such movement and membrane deformation 
allowing access of the sulfhydryl group of C46 can provide an environment promot-
ing glutathionylation of C46. Correlation between conformation-dependent access 
for trypsin to digest the β 1  subunit and the C terminus of αM10 [ 65 ] would seem 
consistent with such speculations. 

 Speculations about changes in p K a of C46 during the catalytic cycle are based 
on the tacit assumption that glutathionylation must always be accounted for by 
physicochemical properties of the glutathionylated cysteine residue. However, in 
intact cells, glutathionylation of proteins can be catalysed by glutathione 
 S -transferase (GST) [ 66 ]. Similarly, deglutathionylation is not necessarily only 
described in physicochemical terms. Deglutathionylation of proteins is selectively 
catalysed by glutaredoxin 1 (Grx1). Grx1 co-immunoprecipitates with FXYD1 and 
the β 1  pump subunit in cardiac myocyte lysate [ 61 ] and addition of recombinant 
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Grx1 to the lysate reverses β 1  subunit glutathionylation induced by oxidative stress 
[ 61 ]. When included in patch pipette solutions, recombinant Grx1 also counter-
acted oxidative stress-induced inhibition of  I  p  [ 45 ]. We have found that transloca-
tion of Grx1 may contribute to the in vivo deglutathionylation that occurs with 
blockade of the β 1  AR [ 50 ]. A balance between opposing effects of GST and Grx1 
may be important in determining the level of glutathionylation of the Na + -K +  pump 
in a manner reminiscent of the roles kinases and phosphatases have in determining 
phosphorylation of proteins. Differential access of GST and Grx1 to the Na + -K +  
pump in its different conformations may contribute to conformation-dependence 
of glutathionylation in cells.  

3.2     Glutathionylation and Na +  i /K +  i -Dependence of Na + -K +  
Pump Turnover 

 A monensin-induced increase in [Na + ] i  renders the β 1  Na + -K +  pump subunit resistant 
to glutathionylation in intact myocytes [ 62 ], and an Ang II-induced increase in oxi-
dative stress inhibits  I  p  of voltage clamped myocytes when [Na + ] in patch pipette 
solutions is near physiological intracellular levels but not when it is high or when 
pipette solutions are K + -free [ 62 ]. The in vivo relevance of this is highlighted by the 
dependence of an increase in  I  p  on [K + ] in pipette solutions when myocytes are 
studied ex vivo after treatment of rabbits with an ACE-inhibitor [ 67 ]. Corresponding 
results have been obtained in diabetes, known to be associated with oxidative stress. 
Diabetes induced experimentally in rabbits caused a decrease in  I  p  that was depen-
dent on the pipette [K + ] as was reversal of the decrease when the rabbits had been 
treated with an Ang II receptor antagonist [ 68 ]. 

 The dependence of oxidative Na + -K +  pump inhibition on [Na + ] i  and [K + ] i  is con-
sistent with the susceptibility of the β 1  subunit to glutathionylation in different con-
formational states of the pump. Binding of Na +  occurs to Na + -K +  pump species in 
the E1 conformation (Fig.  19.1b ), a confi rmation that is highly susceptible to gluta-
thionylation [ 62 ]. Since Na +  binds in competition with K + , kinetically incompetent, 
susceptible E1 species that have bound K +  accumulate when [K + ] i  is high while a 
high [Na + ] i  has the opposite effect, i.e. it is expected to decrease the abundance of 
E1 species and hence decrease glutathionylation. Such a dependence of glutathio-
nylation on [Na + ] i  and [K + ] i  has important consequences for pump function. 

 Glutathionylation-dependent Na + -K +  pump inhibition could become self- 
amplifying if an increase in [Na + ] i  were to increase oxidative stress. However, the 
increase in the [Na + ] i : [K + ] i  ratio with pump inhibition should reduce susceptibility 
to glutathionylation and hence eliminate the risk of self-amplifying pump inhibi-
tion abolishing all function during oxidative stress. Although less abundantly 
expressed than pumps with β 1  subunits, pumps with β 2  or β 3  subunits should pro-
vide some additional back-up function because these subunits are not susceptible 
to glutathionylation [ 45 ]. Na +  i - and K +  i -dependence of β 1  subunit glutathionylation 
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is also expected to mediate receptor-coupled, protein kinase-dependent regulation 
of Na + -K +  pump function in a manner that might traditionally have been attributed 
to effects on ligand binding sites. For example, the Ang II-induced pump inhibition 
at low- but not high [Na + ] i  [ 62 ] we referred to above that might have been due to 
effects of Ang II-dependent signalling on Na +  binding can also be accounted for 
the inverse relationship between [Na + ] i  and the susceptibility of C46 in β 1  subunits 
to glutathionylation. This relationship would effectively mimic a change in the 
pump’s Na +  affi nity.   

4     Regulation of the Na + -K +  Pump in the Vasculature 

 It is well established that in the vasculature, the Na + -K +  pump participates in the 
modulation of contractility in vascular smooth muscle cells (VSMCs) and hence in 
vascular tone [ 69 – 72 ]. This is attributed predominantly to its coupling with the Na + /
Ca 2+  exchange, with inhibition of the Na + -K +  pump increasing [Na + ] i . This, in turn, 
activates the reverse mode of the Na + /Ca 2+  exchanger, increasing intracellular Ca 2+  
([Ca 2+ ] i ) and, subsequently, contractility of VSMCs [ 73 – 76 ]. Despite the physiolog-
ically important role of the Na + -K +  pump in vascular function, mechanisms for the 
regulation of its activity in health and disease are poorly understood. 

 A role for redox regulation of the Na + -K +  pump could not be extrapolated from 
the cardiac myocytes to the VSMCs given the tissue-specifi c expression of the 
pump subunits, differential susceptibility of pump subunits to glutathionylation, and 
possible differences in the signalling pathways coupled to the Na + -K +  pump in 
VSMCs vis-à-vis cardiac myocytes. Therefore, we examined whether glutathionyl-
ation of the β 1  Na + -K +  pump subunit and oxidative Na + -K +  pump inhibition occur in 
VSMCs, and whether this contributes to altered vascular function in response to 
Ang II-induced NADPH oxidase activation. We have reported that glutathionylation 
of the Na + -K +  pump’s β 1  subunit occurs in the vasculature. Moreover, Ang II 
increases glutathionylation of the β 1  Na + -K +  pump subunit and decreases the activity 
of the pump in VSMCs in an NADPH oxidase-dependent manner [ 77 ]. This novel 
oxidative pathway is also observed in both rabbit and human vessels. The signifi -
cance in regulation of the pump activity in vessels is suggested by the associated 
reduction in K + -induced vasorelaxation, an index of Na + -K +  pump function, in  aortic 
rings exposed to Ang II in vitro, and the increase in K + -induced vasorelaxation by 
disruption of the renin-angiotensin system by ACE inhibition in vivo [ 77 ]. 

 The effects of the oxidative pathway on the pump function in VSMCs we have 
shown are expected to mediate alterations in vascular contractility through the 
effects of [Na + ] i  on [Ca 2+ ] i  [ 73 ,  76 ]. Since Na + -K +  pump is also implicated in mediat-
ing the effects of NO in vascular smooth muscle relaxation [ 78 ], redox regulation of 
the pump may have signifi cance for altered regulation of vascular tone in patho-
physiological conditions such as diabetes mellitus and hypertension that are charac-
terised by neurohormonal abnormalities and increased oxidative stress. 
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 A technical challenge in delineating the contribution that β 1 -GSS and pump 
inhibition make to Ang II-induced changes in vascular tone is the direct effect of 
ouabain, the specifi c inhibitor of the Na + -K +  pump extensively used to measure the 
function of the pump, in causing vasoconstriction. One approach to overcome this 
issue, especially in vivo, is the careful use of transgenic mouse technologies. In order 
to understand the physiological impact of glutathionylation of C45 (reactive cysteine 
in mice), the cysteine residue can be mutated to a non-glutathionylable residue, and 
this way, a “knock-in” mouse is created where the endogenous protein is replaced by 
the mutant version of the protein. This amino acid replacement strategy has the 
advantage that no interference exists with the endogenous protein, as seen in knock 
out (KO) systems, and that the mutant protein is regulated and, presumably, expressed 
in the same manner as the wild type protein. The knock-in methodology can, in prin-
ciple, provide a unique opportunity to examine the specifi c role of β 1 -GSS in vascular 
function and in regulation of systemic blood pressure in a variety of experimental 
designs, such as Ang II infusion or disease states, like diabetes. 

 Our ex vivo data supports an important role for FXYD proteins in the regulation 
of vasculature tone. We show that oxidative inhibition of the Na + -K +  pump was 
dramatically increased in a FXYD1 KO model, as suggested by decreased K + -
induced relaxation. Furthermore, pre-incubation of VSMCs with recombinant 
FXYD protein reduced Ang II-induced β 1 -GSS and prevented Ang II-induced pump 
inhibition. FXYD1 also protected against Ang II-induced altered vascular tone in 
intact aortic rings ex vivo, consistent with effect of FXYD1 to relieve redox- 
mediated Na + -K +  pump inhibition. 

 Whilst a critical role for FXYD1 in promoting relief of oxidative Na + -K +  pump 
inhibition is supported by our report, the pathophysiological signifi cance of this role 
remains to be elucidated. Inhibition of the Na + -K +  pump at baseline in the FXYD1 
KO model indicates that under pathophysiological conditions, such as Ang 
II-induced oxidative stress or in diabetes, these mice might have an augmentation of 
adverse cardiovascular remodelling due to a lack of FXYD to counter-balance oxi-
dative pump inhibition. 

 In addition to mediating acute alterations in vascular tone, ROS play important 
roles in signalling promoting VSMC growth [ 79 ]. Since the Na + -K +  pump is increas-
ingly recognised as a signalling molecule that is coupled to Src kinase-dependent 
pathways [ 80 ], redox regulation of the Na + -K +  pump can have a role in signalling 
that regulates VSMC proliferation. Modulation of these effects by FXYD1 to inhibit 
the effects of chronic oxidative stress on vascular proliferation has the potential to 
make this protein a promising target for treatment of ROS-mediated vascular dys-
function in a variety of disease states.  

5     Conclusions 

 Redox modifi cation of Na + -K +  pump through glutathionylation of its β 1  subunit is 
integral in physiological regulation of the pump in heart and vasculature. Change in 
β 1  subunit glutathionylation in either direction mediates functional stimulation or 
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inhibition of the pump in response to receptor-coupled stimuli. In disease conditions 
with oxidative stress, such as heart failure, Na + -K +  pump function is inhibited 
through an increase in β 1  subunit glutathionylation. Targeting the redox inhibition of 
the pump, e.g. by utilising the associated FXYD1 protein, is a rational approach to 
treat a variety of cardiovascular pathologies.     
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    Chapter 20   
 Regulation of Na + -K + -ATPase in Pulmonary 
Vasculature                     
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    Abstract     Na + -K + -ATPase plays important role in maintaining pulmonary vascular 
tone as well as homoeostasis. Two different isoforms of Na + -K + -ATPase has been 
identifi ed in ovine pulmonary artery. α-1 subunit of Na + -K + -ATPase is responsible 
for the regulation of basal tone of pulmonary artery in sheep. Arachidonic acid 
inhibits Na + -K + -ATPase in ovine pulmonary artery via 20-HETE production and 
protein kinase C pathway. Whereas, lipoxygenase has a secondary role in arachi-
donic acid-induced inhibition of Na + -K + -ATPase in this particular vasculature. BAY 
41-2272 a NO-independent activator of sGC induces cGMP-independent vasodila-
tion of sheep pulmonary artery through stimulation of sodium pump which is the 
primary target for the vasodilation of this vasculature. Eicosapentaenoic acid inhib-
its functional Na + -K + -ATPase through decrease in the protein expression of the α-1 
subunit of sodium pump in pulmonary artery but this attenuation is independent of 
cGMP production. Sodium nitroprusside induced vasodilation is the result of the 
link between increased intracellular cGMP and activated sarcolemmal Na + -K + -
ATPase in canine pulmonary arterial smooth muscle cells. High salt diet leads to 
electrical changes in rat pulmonary artery which may be due to the opening of K +  
channels and activation of sodium pump. H 2 O 2 , xanthine, and xanthine oxidase 
stimulate sodium pump activity of bovine pulmonary arterial endothelial cells. 
Regulation of sodium pump expression or activity and traffi cking occurs by activa-
tion of dopamine receptors in various tissues including lungs and vascular beds. 
In conclusion, Na + -K + -ATPase is regulated in pulmonary vasculature of different 
species like ovine, canine, bovine and human by different signaling pathways.  
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1         Introduction 

 Sodium pump plays an important role in the regulation of smooth muscle contractil-
ity and tone in several vascular beds [ 1 – 3 ]. It also regulates pulmonary arterial 
smooth muscle tone [ 4 ,  5 ]. Inhibition of sodium pump by hypothalamic inhibitory 
factor an endogenous inhibitor of the enzyme with ouabain like property causes 
pulmonary hypertension in rats [ 6 ]. Pulmonary arterial sodium pump also contrib-
utes to monocrotaline-induced pulmonary hypertension [ 7 ]. Stimulation of sodium 
pump leads to relaxation of the vascular smooth muscle through the membrane 
hyperpolarization which is the result of decrease in intracellular Ca 2+  infl ux through 
the voltage-gated Ca 2+  channels. One more mechanism for the relaxation of vascular 
smooth muscle has been explained by the stimulation of the sodium pump through 
Na + –Ca 2+  exchange mechanism which is also responsible for the reduction in the 
intracellular Ca 2+  in the cell. On the other hand, inhibition of the plasmalemmal 
sodium pump leads to contraction in smooth muscle.  

2     Regulation of Na + -K + -ATPase in Ovine Pulmonary 
Vasculature and Its Signal Transduction Pathways 

 Two isoforms of Na + -K + -ATPase in sheep pulmonary vasculature have been identi-
fi ed by using polyclonal western blot technique. These isoforms are α-1 and α-2 
subunit of sodium pump. Functionally both the isoforms are characterized by the 
use of concentration-response curve to ouabain-induced inhibition of the Na + -K + -
ATPase. The curve is biphasic in nature representing low ouabain sensitive α-1 iso-
form and the high oubain sensitive α-2 isoform. Approximately, molecular size of 
both the subunits is 110 kDa. Ouabain at 1 μM inhibits sodium pump and leads to 
increase in basal tone of sheep pulmonary artery. 5-hydroxy tryptamine does not 
regulate sodium pump in this vasculature. It has been also reported that protein 
kinase G inhibitor KT5823 has no effect on sodium pump in this vessel [ 5 ]. Even 
cGMP is unable to stimulate the Na + -K + -ATPase in ovine pulmonary artery. Chanda 
and coworkers also reported that low affi nity isoform of sodium pump (α-1) regu-
lates the basal tone of sheep pulmonary vasculature. Endothelium plays an impor-
tant role in regulation of vascular sodium pump in different vessels but in sheep 
pulmonary artery endothelium has no effect on the pump (Fig.  20.1 ).

   Arachidonic acid and its metabolites play an important role in the pathogenesis of 
pulmonary hypertension in different animals. Endothelin-induced pulmonary hyper-
tension in sheep is mediated by cyclooxygenase products of arachidonic acid [ 8 ] 
while, in sheep fetal pulmonary circulation, 20-Hydroxyeicosatetraenoic acid (20-
HETE), a cytochrome P450 metabolite of the fatty acid is responsible to maintain 
high pulmonary vascular resistance [ 9 ]. 15-Hydroxyeicosatetraenoic acid (15- HETE), 
a lipooxygenase product of arachidonic acid has been shown to enhance pulmonary 
artery contraction in female rabbits [ 10 ]. Various metabolites of  arachidonic acid 
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cause hypoxic pulmonary vasoconstriction in rats [ 11 ] and rabbits [ 12 ]. Multiple 
 signaling mechanisms have been implicated in the constriction of pulmonary artery 
smooth muscles by arachidonic acid and its metabolites. 

 As shown in Fig.  20.2  arachidonic acid inhibits functional activity of the Na + -K + -
ATPase in the vascular smooth muscle of the sheep intralobar pulmonary artery 
[ 13 ]. Arachidonic acid slightly increases basal tone of sheep pulmonary vascula-
ture. Arachidonic acid inhibits sodium pump through 20-HETE production. 
Lipoxygenase pathway has a secondary role in sodium pump inhibition by arachi-
donic acid. However, cyclooxygenase pathway has no role in arachidonic acid- 
induced inhibition of sodium pump. Singh and coworkers also reported that protein 
kinase C is involved in the inhibition of Na + -K + -ATPase by arachidonic acid/20- 
HETE in sheep pulmonary artery. It is important to consider the role of Na + -K + -
ATPase in the maintenance of ovine pulmonary arterial tone and inhibitory effect of 
arachidonic acid on this enzyme is responsible in understanding the role of the fatty 
acid in pulmonary hypertension [ 13 ].

Na+-K+-ATPase

Ovine 
PASMC

(-)

P

α1 isoform α2 isoform

Ouabain

Low affinity High affinity
P

(-)

Pulmonary arterial basal tone

  Fig. 20.1    Ovine PASMC express two isoforms of Na + -K + -ATPase (α 1  and α 2 ). Isoform (α 1 ) having 
low affi nity towards ouabain has important role in maintaining pulmonary arterial basal tone       
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  Fig. 20.2    Arachidonic acid (AA) from membrane phospholipids, gets metabolized by three path-
ways in pulmonary arterial smooth muscle cells (PASMC). Cytochrome P450 ω-hydroxylase 
(CYP) produces 20-HETE in ovine PASMC, which activates protein kinase C (PK-C). PK-C 
inhibits Na + -K + -ATPase by phosphorylation. AA through metabolism by lipoxygenase (LOX) 
pathway also inhibits Na + -K +  ATPase. COX metabolites do not have any effect on Na + -K +  ATPase       
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   Impairment in NO-cGMP signaling has been implicated in the pathogenesis of 
pulmonary hypertension. Direct stimulation of sGC by pyrazolopyridines such as 
riociguat (BAY 63-2521), BAY 41-2272 and BAY 41-8543 provides a therapeutic 
strategy for the management of pulmonary hypertension. BAY 41-2272 induces vas-
cular relaxation in sheep pulmonary artery [ 14 ]. It is an NO-independent stimulator 
of soluble guanylyl cyclase which leads to increase in intracellular cGMP. BAY 
41-2272 has a potential against cardiovascular disorders [ 15 ]. It has been seen that 
BAY 41-2272 produces relaxation through cGMP dependent as well as cGMP- 
independent signaling pathway. BAY 41-2272 induces cGMP-independent vasodila-
tion of sheep pulmonary artery through stimulation of sodium pump which looks like 
the primary target for the dilation of this vasculature (Fig.  20.3 ). However, sodium 
pump is not stimulated by protein kinase A in this pulmonary vasculature [ 14 ].

   Eicosapentaenoic acid is one of the omega-3 fatty acids and is useful in prevention 
of cardiovascular diseases. Eicosapentaenoic acid has vasodilatory effect in various 
vascular beds including ovine pulmonary artery. This vasorelaxation is endothelium-
dependent as well as -independent in nature [ 16 ]. Eicosapentaenoic acid has vasocon-
strictor potential in rabbit pulmonary vascular bed [ 17 ]. On the other hand, 
eicosapentaenoic acid shows inhibition of the sodium pump in the sheep pulmonary 
vasculature at high concentration. Eicosapentaenoic acid inhibits functional Na + -K + -
ATPase through decrease in the protein expression of the α-1 subunit of sodium pump 
in pulmonary artery but this attenuation is independent of cGMP production [ 18 ].  

3     Regulation of Na + -K + -ATPase in Canine Pulmonary 
Vasculature 

 Sodium pump plays an important role in sodium nitroprusside-induced vasorelax-
ation in canine pulmonary artery. However, in hypoxic condition, sodium pump has 
no role in sodium nitroprusside-induced vasorelaxation. Sodium pump activity is 
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  Fig. 20.3    Bay 41-2272 stimulates Na + -K + -ATPase in cGMP-independent manner, which in turn 
activates Na + –Ca 2+  exchanger to stimulate Ca 2+  effl ux and inhibit voltage-dependent Ca 2+  channel 
(VDCC) to attenuate Ca 2+  infl ux, leading to vasodilation       
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resistant to hypoxic condition in canine pulmonary vessel [ 19 ]. Apart from this 
sodium nitroprusside-induced vasodilation is the result of the link between increased 
intracellular cGMP and activated sarcolemmal Na + -K + -ATPase in canine pulmonary 
arterial smooth muscle cells (Fig.  20.4 ). This link establishes a fact that sodium 
pump has a role in cGMP-mediated vasodilation in these smooth muscle cells [ 20 ].

4        Regulation of Na + -K + -ATPase in Bovine Pulmonary 
Vasculature and Its Signaling Pathway 

 U46619 inhibits the sodium pump activity in bovine pulmonary smooth muscle cells. 
The inhibition occurs through two different parallel pathways: one is mediated by 
glutathionylation of the sodium pump and the other by augmenting the inhibitory 
activity of the 70 kDa inhibitor protein of sodium pump. U46619 as an inhibitor is 
responsible for irreversible inhibition of sodium pump in an isoform specifi c manner 
during treatment of the cells with U46619 but at the same time phospholemman 
deglutathionylates the sodium pump which leads to pump activation [ 21 ]. A new 
protein inhibitor of sodium pump has been identifi ed which has a molecular weight 
of 15.6 kDa. This protein inhibitor is present in cytosolic fraction of bovine pulmo-
nary artery smooth muscle cells and exhibits differential affi nity toward α 2 β 1  and α 1 β 1  
subunits of Na + -K + -ATPase. It has been noticed that α-2 subunit is more sensitive than 
α-1. This protein inhibitor interacts reversibly with the E1 site of the enzyme. This 
interaction blocks the phosphorylated intermediate formation at the enzyme. Thus the 
protein inhibitor leads to an alteration in the confi rmation of the Na + -K + -ATPase [ 22 ]. 

 Low dose of ouabain (10 nM) increases intracellular calcium and leads to stimu-
lation of m-calpain activity and further proteolytically activates protein kinase C 
alpha (PKCalpha) in caveolae (signalosomes) of the cells in the pulmonary artery 
smooth muscle cells of bovine. The activation of PKCalpha increases the bovine 
pulmonary arterial smooth muscle cell proliferation through Go/G1 to S/G2-M 
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  Fig. 20.4    Sodium nitroprusside (SNP) releases nitric oxide (NO) which activates soluble guanylyl 
cyclase (sGC) causing increase in i/c cGMP level. Intracellular cGMP stimulates Na + -K + -ATPase 
by an undetermined mechanism       
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phase transition. This data confi rms the signaling pathway of low dose of ouabain- 
mediated pulmonary artery smooth muscle cell proliferation and this signaling path-
way plays a vital role in pulmonary artery smooth muscle cell proliferation [ 23 ]. 
Protein kinase C acts as the endogenous regulator in these endothelial cells. 
However, effects of hydrogen peroxide (H 2 O 2 ) as oxidant are not mediated by acti-
vation of PKC or by changes in the expression or phosphorylation of alpha1 subunit 
of the sodium pump [ 24 ].  

5     Regulation of Na + -K + -ATPase in Rat Pulmonary 
Vasculature and Its Signal Transduction Pathway 

 It has been observed that high salt diet leads to electrical changes in rat pulmonary 
artery which may be due to the opening of K +  channels and activation of sodium 
pump [ 25 ]. Endothelium Infl uences beta-adrenoceptor-mediated mechanical and 
electrical functions in rat pulmonary artery. Isoprenaline-induced hyperpolarization 
involves activation of K +  channels and sodium pump of smooth muscle cells possi-
bly in parallel but mutually dependent on the presence of endothelial cells in pulmo-
nary arteries of rat [ 26 ]. Protein kinase C mediates phosphorylation of 
phospholemman, a homologue of Na-K-ATPase γ subunit, when it is associated with 
the α-2 subunit of sodium pump. However, phosphorylation of phospholemman by 
protein kinase A occurs when it is associated with the α-1 isoform of sodium pump 
in the caveolae of pulmonary artery smooth muscle cells. Phospholemman is puri-
fi ed from the caveolae and reconstituted into the liposomes which are used to unravel 
the mechanism of regulation of α-2 subunit of sodium pump by protein kinase 
C. However, phosphorylated phospholemman does not change the affi nity of the 
sodium pump for the sodium and even after phosphorylation by protein kinase C in 
the caveolae of pulmonary artery smooth muscle cells [ 27 ]. Inhibition of α-2 subunit 
of sodium pump by ouabain (a sodium pump inhibitor) plays a crucial role in modu-
lating the Ca 2+  infl ux regulatory components in the caveolae microdomain for 
marked increase in intracellular Ca 2+  in the pulmonary smooth muscle, which may 
be important for the manifestation of pulmonary hypertension [ 28 ]. In rat pulmonary 
artery, spermine NONOate produces cyclic GMP-independent relaxation partially 
through the activation of Na + -K + -ATPase, sarco-endoplasmic reticulum Ca 2+ -
ATPase, and calcium-activated potassium channels in rat pulmonary artery [ 29 ]. 

 According to an observation, inhibition of sodium pump with ouabain leads to 
blockade of ACh-induced relaxation persisting in the presence of inhibition of cyclo-
oxygenase (COX), nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) 
in pulmonary artery in hypoxia-induced pulmonary hypertension [ 30 ]. One more 
study of the same group shows that inhibition of sodium pump abolishes NS309 
(SK ca  and IK ca  channels opener)-induced relaxation mediated by KCa2 and KCa3.1 in 
rat small pulmonary arteries. The low concentrations of K +  (1–6 mM) induced endo-
thelium-independent relaxations are abolished in the presence of ouabain [ 31 ]. 
Inhibition or depletion of PKC did not prevent H 2 O 2 -induced increases in pump 
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activity. Sodium pump activity is regulated by a protein kinase C in bovine pulmo-
nary artery endothelial cell. Acute lung injury occurs due to presence of oxidant in 
many cases and these oxidants are the causative agents for injury of pulmonary vas-
cular endothelium. The injury occurs due to oxidant leads to alteration in the func-
tion of sodium pump. H 2 O 2 , xanthine, and xanthine oxidase stimulate sodium pump 
activity of bovine pulmonary arterial endothelial cells and this effect is prevented by 
catalase. This increase in sodium pump activity of bovine pulmonary arterial endo-
thelial cells by H 2 O 2  is mediated by increased intracellular sodium and an increased 
rate of sodium pump turnover. Further, it has been suggested that the increased pump 
activity may acts as an early marker of endothelial cell perturbation [ 32 ]. 

 Hypoxia has no infl uence on function of sodium pump in rat pulmonary artery 
endothelial cells [ 33 ]. Chronic pulmonary artery occlusion for 14 days increases 
alveolar fl uid clearance through α-1 subunit of sodium pump overexpression in rats 
[ 34 ]. Reversible temperature-sensitive alterations in lung fl uid balance have been 
observed in rat lung preparations which are exposed to hypothermic perfusion. 
Hypothermia induces pulmonary edema formation, which is rapidly cleared upon 
re-warming by activation of ouabain-sensitive sodium pump [ 35 ]. Apart from this, 
active sodium transport through alveolar epithelium keeps alveoli of the lungs rela-
tively dry and hyperoxia increases epithelial permeability which leads to pulmonary 
edema. However, hyperoxia leads to complex and nonparallel changes in Na + -K + -
ATPase antigenic protein, hydrolytic activity and unidirectional active sodium 
resorption in rats [ 36 ]. Nitric oxide exposure and sulfhydryl modulation alter  L - 
arginine  transport in cultured pulmonary artery endothelial cells occurs partially 
through sodium pump [ 37 ].  

6     Regulation of Na + -K + -ATPase in Human Pulmonary 
Artery 

 Human plasma and urine contain an endogenous bufodienolide vasoconstrictor 
marinobufagenin-like immunoreactive Na + -K + -ATPase inhibitor. It causes 
concentration- dependent vasoconstriction in human pulmonary artery [ 38 ]. This is 
clearly important to investigate whether an elevated plasma concentration of the 
cardiotonic steroids such as endogenous ouabain, digoxin, marinobufagenin, and 
telocinobufagin may have a role in pulmonary hypertension and other cardiovascular 
disorders [ 39 ].  

7     General Signaling Pathways in Pulmonary System 

 Dopamine, a GPCR agonist is an endogenous regulator of Na + -K + -ATPase. 
Regulation of sodium pump expression or activity and traffi cking occurs by activa-
tion of dopamine receptors in various tissues including lungs and vascular beds [ 40 ]. 
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However, dopamine receptor-mediated regulation of sodium pump activates a large 
range of cellular responses which include endocytosis or exocytosis, phosphoryla-
tion or dephosphorylation of α isoform of sodium pump, and different signaling 
pathways. These pathways include phosphatidylinositol (PI)-phospholipase C (PLC) 
or protein kinase C (PKC), PI3K, adaptor protein 2, cAMP/protein kinase A (PKA), 
tyrosine phosphatase, and mitogen-activated protein kinase (MAPK) or extracellular 
signal-regulated protein kinase (ERK). These signaling mechanisms are responsible 
for the cross talk between DA receptors and sodium pump activity [ 40 ]. 

 It is well established that basolateral Na + -K + -ATPase plays a critical role for 
removal of alveolar pulmonary edema fl uid. This depends on active ion transport 
across the alveolar epithelium of lungs. Na +  enters through the sodium channels 
which are present on the luminal epithelium and extruded into the lung interstitium 
by basolaterally located sodium pump thereby establishing a local osmotic gradient 
to reabsorb water fraction of the edema fl uid from the airspaces of the lungs. There 
are several regulators for the resolution of alveolar edema across the tight epithelial 
barrier. These regulators are cyclic adenosine monophosphate (cAMP)-dependent 
mechanisms through adrenergic or dopamine receptor stimulation as well as various 
several others cAMP-independent mechanisms which include thyroid hormone, 
dopamine, glucocorticoids and growth factors [ 41 ]. In a study, it has been observed 
that high-frequency jet ventilation is a successful treatment for the pulmonary 
edema after seawater drowning. The mechanism of successful high-frequency jet 
ventilation treatment is due to better correction of hypoxemia and improvement in 
the rehabilitation of sodium pump activity in the rabbit’s lungs [ 42 ].  

8     Conclusions 

 The understanding of signaling mechanisms regulating Na + -K + -ATPase in pulmo-
nary arterial cells, endothelial cells and epithelial cells is of immense importance in 
the therapeutic management of lung diseases such as pulmonary hypertension and 
pulmonary edema. Further, the signaling pathways in the regulation of Na + -K + -
ATPase explain the basic physiological mechanisms in the control of pulmonary 
circulation and alveolar fl uid clearance.     
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    Chapter 21   
 Exercise-Induced Regulation of the Na, 
K-Pump in Skeletal Muscles                     

       Carsten     Juel    

    Abstract     Ion gradients across the skeletal muscle membrane undergo pronounced 
changes during intense muscle contractions. These changes infl uence excitability 
and muscle performance. The ion changes are counteracted by the activity of the 
Na, K-pump. Regulation of the Na, K-pump in association with muscle activity is 
therefore important for muscle function. This short review focuses on exercise- 
induced acute changes in Na, K-pump activity in skeletal muscles. The Na, K-pump 
is dependent on the intracellular Na +  concentration, which is infl uenced by muscle 
activity. Exercise changes the number of functional pumps in the outer membrane 
(translocation). In addition, the Na, K-pump activity is infl uenced by hormones, 
purines, nitric oxide and exercise-induced oxidative stress, which increases subunit 
S-glutathionylation. Some of these regulatory changes are mediated by changes in 
the interaction between the Na, K-pump α and β subunits and the regulatory protein 
phospholemman (FXYD1). Thus, exercise-induced acute regulation of the Na, 
K-pump in skeletal muscles is a multifactorial process.  

  Keywords     Na, K-ATPase   •   Muscle ion changes   •   Hormones   •   Purines   
•   Glutathionylation   •   Nitric oxide   •   Phospholemman  

1         Introduction 

1.1     Ion Shifts, Importance of the Pump 

 Ion gradients across the skeletal muscle membrane undergo pronounced changes 
during intense muscle contractions. These changes are caused by the repetitive 
action potentials invading sarcolemma and T-tubules. Many studies have focused on 
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the extracellular accumulation of K + , which has been shown to be dependent on the 
intensity of the work done by the muscle. Changes in the K +  gradient likely modu-
late excitability, which may infl uence sarcoplasmatic reticulum Ca 2+  release. 
Changes in K +  are therefore one of the underlying mechanisms for skeletal muscle 
fatigue. It is diffi cult to design a study that could offer direct proof for K +  as a 
fatigue factor. However, many studies have suggested a link between K +  accumula-
tion and a reduction in force. Muscle activity also increases the intracellular Na +  
concentration, which likewise may decrease muscle excitability. However, the effect 
of Na +  shifts in association with muscle activity and muscle fatigue is less-often 
studied. The ion-shifts during muscle activity are counteracted by the activity of the 
Na, K-pump. The regulation of the pump during muscle activity is therefore highly 
important for muscle function. 

 The Na, K-pump is active in the resting muscle to counteract the passive fl uxes 
of Na +  and K +  due to membrane leakage. Another mechanism that challenges the 
pump is the extra Na +  effl ux due to pH regulatory transport systems, such as the 
Na + /H +  exchange and the Na + -bicarbonate co-transport. pH regulation accounts for 
30–40 % of the Na, K-ATPase activity in the resting muscle [ 1 ]. 

 In conclusion, muscle activity is associated with a large increase in Na +  and K +  
fl uxes due to action potential activity and increased activity in pH-regulating trans-
port systems. Therefore, muscle activity puts an extra load on the Na, K-pump, 
which can be accelerated up to 50-fold. The acute regulation of the Na, K-pump 
during muscle activity is a multifactorial process. These processes are the topic of 
the present review.   

2     Methods to Quantify the Na, K-Pump Activity 

 Labelling with radiolabelled ouabain has long been used to quantify the number of 
Na, K-pump proteins in skeletal muscle. This technique is also suitable for quantify-
ing long-term changes in the number of pumps, for instance in association with 
training and age. However, this technique cannot detect acute changes in the activity 
of existing pumps. The same holds for the western blotting technique, which is, 
however, able to measure isoform content and changes in isoform distribution. 

 The activity of the pump has been quantifi ed using indirect methods, such as ion 
fl ux measurements and changes in muscle ion content. Direct measurements of Na, 
K-pump activity in skeletal muscle are associated with great diffi culties. This is due 
to the presence of other ATPase, especially the Ca 2+ -ATPase. One compromise is to 
use the K +  stimulated 3-O-methylfl uorescein phosphatase assay (3-O-MFP method), 
which uses 3-O-MFP as an artifi cial substrate [ 2 ]. This method is advantageous 
because the ATPase activity can be measured in muscle homogenates since the method 
is specifi c and not sensitive to other ATPase, such as the Ca 2+ -ATPase. However the 
measurements are carried out without any Na +  present; the method is therefore insen-
sitive to changes in pump activity mediated by Na +  affi nity changes. A more direct 
quantifi cation of the Na, K-pump activity is obtained using an assay that directly 
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quantifi es the release of inorganic P from the hydrolysis of ATP. These measurements 
can be carried out without Na +  and with different Na +  concentrations, and conse-
quently, the method can be used to quantify Na + -sensitive ATPase activity and changes 
in Na +  affi nity ( K  m  for Na + ). However, it is necessary to reduce the background ATPase 
activity. This is done by membrane purifi cation using centrifugation steps [ 3 ].  

3     Effect of Exercise 

 A number of studies in humans have shown that the maximal in vitro Na, K-pump 
activity quantifi ed with the 3-O-MFPase technique is reduced with exercise. This 
phenomenon has been referred to as exercise-induced inactivation of the pump [ 4 ,  5 ]. 
The exercise protocols included both submaximal and fatiguing exercises of differ-
ent durations. Similar experiments in rats have shown confl icting results. 

 Experiments in rat models with the ATPase assay technique have clearly shown 
that 30 min of exercise increases the maximal in vitro Na, K-pump activity [ 6 ]. In 
humans, exhaustive exercise performed for a duration of 4 min has been shown to 
result in an increased Na, K-ATPase activity after exercise [ 7 ]. In contrast, intermit-
tent exercise of 30 min duration has been demonstrated to  reduce  the maximal Na, 
K-pump activity [ 8 ]. 

 These contradictory results are partly due to the different techniques used. One 
obvious difference is that the 3-O-MFPase technique is insensitive to affi nity 
changes, whereas the Na, K-ATPase assay reveals changes in both  V  max  and  K  m  
(affi nity). It is also obvious that a number of underlying mechanisms could be 
involved and the possibility exists that these mechanisms could be both stimulatory 
and inhibitory. The following chapters describe a number of proposed underlying 
mechanisms for changes in pump activity during muscle activity.  

4     Ion Sensitivity of the Pump 

 The Na, K-pump is sensitive to the intracellular Na +  concentration. Therefore, 
exercise- induced changes in the internal Na +  concentration will affect the pump 
rate, a simple and appropriate regulatory mechanism. The  K  m  for the Na + -dependent 
activity of the Na, K-pump varies with the interval, 6–14 mM, if quantifi ed in rat 
muscle homogenates with a Na, K-ATPase assay. The  K  m  is dependent on the Na, 
K-pump protein isoform composition [ 3 ]. The functional pump is a heterodimer 
comprising one α and one β subunit. The  K  m  for sodium is lower (affi nity higher) in 
heterodimers with α1 and β1 subunits compared to heterodimers with α2 and β2 
subunits. In rat muscles, α1 and β1 are the most abundant in oxidative muscles, and 
consequently, the pumps in these muscles have a higher affi nity for Na +  compared 
to in glycolytic muscles [ 3 ]. In human skeletal muscles, the distribution of the Na, 
K-pump isoform seems to be independent of the muscle fi bre types (unpublished). 
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 The intracellular Na +  in intact muscles is approximately 15 mM, which is close 
to the  K  m  for Na + . Consequently, the Na, K-pump is sensitive to small muscle 
activity- induced changes in cellular Na + . The sodium-dependent activation of the 
pump is already important at the onset of exercise. The affi nity of the Na, K-pump 
is high for K +  (the  K  m  is low compared to the K +  plasma concentration). The pump 
is therefore considered to be saturated with K + , and changes in K +  concentrations 
considered without importance for regulation during muscle activity. 

 It has been suggested that low frequency muscle activation (excitation) is associ-
ated with increased Na, K-pump activity that is not dependent on intracellular Na +  
increases [ 9 ]. Any underlying mechanism for such excitation-induced Na, K-pump 
activation has not been suggested. It could be argued against that even low fre-
quency stimulation produces a local Na +  infl ux, which, although not measurable, 
could locally activate the pump. Changes in pH during muscle activity are consid-
ered unimportant for Na, K-pump regulation, but may affect the whole-body ion 
balance via other mechanisms [ 10 ].  

5     Hormones 

 Catecholamines are released into the blood during exercise. In vitro experiments 
with isolated muscles have demonstrated an increased Na +  effl ux, K +  infl ux, and 
hyperpolarisation during incubation with epinephrine and norepinephrine [ 11 ]. 
Similar effects have been obtained with the beta agonists isoproterenol and salbuta-
mol. The effects could be mimicked by cAMP derivatives, suggesting a role for 
adenylate cyclase, and probably for protein kinase A. Although most of the original 
experiments were done in vitro, it is generally accepted that catecholamines stimu-
late the Na, K-pump during muscle activity. Insulin has also been demonstrated to 
increase pump activity by increasing the turnover number of the protein. But insulin 
level is not related to exercise intensity. Insulin is, therefore, not considered to have 
a regulatory role during muscle activity.  

6     Translocation of Pump Subunits 

 It has been suggested that exercise (and insulin) induce a translocation of Na, 
K-pump proteins from an intracellular store to the plasma membrane [ 12 – 15 ], which 
could contribute to the acute increase in Na, K-pump activity in association with 
muscle activity. These studies were carried out using rat models. Studies in humans 
with purifi ed sarcolemmal membranes have also reported an increased membrane 
content of Na, K-pump proteins after exercise [ 16 ]. However, the mechanism has 
also been questioned [ 17 ]. The problem is that it is impossible (with the ouabain 
labelling technique) to detect an intracellular store of pumps where pump proteins 
could be translocated to the outer membrane. More recent studies have confi rmed an 
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increased number of pumps in purifi ed outer membranes after exercise. In addition, 
it was reported that the pump proteins are associated with caveolin- 3, a marker pro-
tein for caveolae, and that the association changes with exercise [ 18 ]. Therefore, the 
most likely model for translocation is that the pumps are recruited from caveolae 
close to the surface membrane instead of from intracellular stores. The translocation 
process is reversible with a half time of approximately 20 min [ 19 ]. The signalling 
mechanism underlying subunit translocation in skeletal muscles is partly unknown, 
but the involvement of AMP kinase has been suggested [ 20 ].  

7     Effect of Purines 

 Purines, such as ATP and ADP, were fi rst demonstrated to restore force in rat muscle 
depressed with an elevated K+ concentration [ 21 ]. A later study confi rmed that purines 
also increase the Na, K-pump activity in purifi ed rat muscle membranes, i.e. with no 
intact cells present. It was therefore concluded that the pathway leading to pump acti-
vation includes protein–protein interaction. Studies with agonists and antagonists 
revealed that the stimulatory effects of purines are mediated by two independent 
mechanisms: a P2Y receptor mediated increase in Na, K-pump capacity ( V  max ) and a 
P2Y receptor independent phosphorylation of phospholemman (FXYD1) and α1 sub-
units. This phosphorylation induces Na +  affi nity changes [ 22 ]. It was suggested that 
purines released during muscle activity may contribute to the exercise-induced up-
regulation of the pump, which has been reported in rat muscles [ 6 ]. However, similar 
studies with muscle membranes from humans muscle failed to demonstrate a stimula-
tory effect of purines on the Na, K-pump [ 23 ]. The difference between rat and human 
muscles may be related to differences in P2Y receptor isoform distribution or differ-
ences in the suggested protein–protein interaction. Alternatively, any stimulatory 
effects of purines are overruled by other inhibitory mechanisms.  

8     Oxidative Stress—Glutathionylation 

 Reactive oxygen species are generated in skeletal muscle during activity [ 24 ,  25 ]. 
Oxidative stress may lead to chemical modifi cation of a number of muscle proteins 
that are important for skeletal muscle function. The induced oxidative modifi cations 
involve the formation of reversible disulphide bonds between glutathione and reac-
tive cysteine thiols (a phenomenon called S-glutathionylation). Glutathionylation 
has been demonstrated to increase contractile apparatus Ca 2+  sensitivity in rat and 
human skeletal muscles [ 26 ]. In addition, it has been reported that glutathionylation 
of Na, K-pump proteins may lead to modifi cations in pump function in the heart 
muscle [ 27 – 29 ]. Glutathionylation of the Na, K-pump in heart muscles has been 
reported to involve the β1 isoform [ 28 ,  30 ], the α subunits [ 31 ,  32 ] and the regula-
tory protein PLM (FXYD) [ 33 ]. 
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 The involvement of reactive oxygen species in Na, K-pump inhibition after exer-
cise is supported by the fi nding that hypoxia increases the reduction in pump func-
tion in human skeletal muscles [ 4 ]. Studies with rat muscle membranes have 
demonstrated the existence of a basal glutathionylation of both α and β units of the 
Na, K-pump [ 34 ]. In addition, experimentally induced glutathionylation with oxi-
dised glutathione was demonstrated to reduce the maximal in vitro activity of the 
Na, K-pump. Thus there seems to be a correlation between the level of glutathionyl-
ation and inhibition of Na, K-pump activity. One consequence of these fi ndings is 
that the maximal Na, K-pump activity cannot be simply calculated from the number 
of Na, K-pump proteins (for instance, as determined by the binding of radiolabelled 
ouabain); the degree of glutathionylation must also be taken into account. Na, 
K-pump subunit glutathionylation has also been suggested to be of importance in 
human skeletal muscles. In a study with muscle samples from human subjects, exer-
cise and β2-adrenergic stimulation lead to an unexpected decrease in the in vitro 
maximal Na, K-pump activity. Glutathionylation was suggested to cause the reduced 
Na, K-pump activity [ 8 ].  

9     Nitric Oxide (NO) 

 Skeletal muscle possesses nitric oxide synthase, and NO has been shown to be 
released during skeletal muscle activity. A number of studies have shown that NO 
stimulates the Na, K-pump in cardiac myocytes [ 35 ,  36 ]. The studies in cardiac myo-
cytes have suggested a number of possible mechanisms for NO-dependent activation 
of the Na, K-ATPase. The classical signalling pathway involves guanylate cyclase, 
the generation of cGMP and activation of cGMP sensitive kinases. Other kinases 
(PKCε) may be involved and changes in Na, K-pump affi nity may be mediated by 
phosphorylation of the regulatory subunits phospholemman (FXYD1) [ 36 ,  37 ]. 
Another possibility is NO-dependent posttranslational modifi cations, such as protein 
S-nitrosylation (and S-glutathionylation) of Na, K-pump subunit proteins or proteins 
involved in regulatory mechanisms that are important for the pump [ 37 ,  38 ]. The 
effects of glutathionylation are described above. Based on the fi ndings above, it is 
obvious to assume that NO also stimulates the Na, K-pump in skeletal muscles, but 
there is a lack of direct evidence.  

10     Regulation Mediated by FXYD 

 The FXYD family consists of a number of isoforms with a tissue-specifi c distribu-
tion. Skeletal muscle expresses the FXYD1 isoform, also named phospholemman 
(PLM). PLM coexpression with the Na, K-pump subunits decrease the Na +  affi nity 
(increased  K  m  for Na + ), but the interaction with the subunits is dependent on the 
degree of PLM phosphorylation [ 39 ]. It has been demonstrated that exercise 
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translocates the PLM protein to the plasma membrane (probably from caveolae) and 
increases the association with the α1 subunits [ 40 ]. However, the effect of exercise 
on the Na, K-pump is an increased  V  max , which is explained by simultaneous 
exercise- induced PLM phosphorylation [ 41 ]. As mentioned above, the FXYD1 sub-
unit may also be the target for a number of regulatory mechanisms, such as gluta-
thionylation and hormone- and NO-induced phosphorylation.  

11     Conclusions 

 The table below summarises the exercise-related mechanisms of importance for 
regulation of the Na, K-pump in skeletal muscles. Factors involved in long-term 
changes are not included.

 Effect of exercise  Effect on the Na, K-pump  Mechanism 

 Increased level of hormones 
(adrenaline) 

 Stimulation  Phosphorylation of α and FYYD 
subunits (increased Na +  affi nity) 

 Release of purines 
(ATP, ADP) 

 Stimulation (in rat)  Phosphorylation of α and FYYD 
subunits (increased Na +  affi nity) 

 Increased glutathionylation  Inhibition  Block of α and β subunits 
 Nitric oxide (NO)  Stimulation?  Phosphorylation of α and FYYD 

subunits (increased Na +  affi nity) 
 Translocation of pumps  Increased capacity  Increased number of active pumps 
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    Chapter 22   
 Advances in the Understanding of Renal 
Proximal Tubular Na + /K +  ATPase Regulation 
by Parathyroid Hormone and Dopamine                     

       Syed     J.     Khundmiri     ,     Rebecca     D.     Murray    , and     Eleanor     D.     Lederer   

    Abstract     Na + /K +  ATPase activity is highly regulated in the renal proximal tubules 
by several hormones including PTH and dopamine. Both parathyroid hormone 
(PTH) and dopamine decrease Na + /K +  ATPase activity and expression by similar yet 
distinct signaling mechanisms. The role of PTH in regulation of Na + /K +  ATPase in 
renal proximal tubules is not very well studied. In contrast, dopamine regulation of 
Na + /K +  ATPase is extensively studied. This chapter focuses on the differential regu-
lation of Na + /K +  ATPase by PTH and dopamine in renal proximal tubule cells.  

  Keywords     Na+/K+ ATPase   •   PTH   •   Dopamine   •   NHERF1   •   Proximal tubules   • 
  Signaling  

1         Introduction 

 Na + /K +  ATPase is a ubiquitous enzyme that maintains the intracellular Na +  and K +  
concentrations and electrochemical gradients across the plasma membrane in all 
animal cells [ 1 ]. The electrochemical gradients formed provide the driving force for 
various cellular functions, including membrane potential from potassium gradients, 
sodium-dependent vectorial transport of metabolites across the plasma membrane, 
and neuronal signaling [ 2 ]. The Na + /K +  ATPase is a heteromeric enzyme made up 
of two essential subunits, a catalytic α subunit and a β subunit, and an optional γ 
subunit [ 3 – 5 ]. Four α subunits (α1-4), and three β subunits (β1-3), and at least seven 
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isoforms of γ or FXYD subunits have been described in the literature [ 6 – 8 ]. Using 
Xenopus oocytes, Ackerman and Geering demonstrated that (1) the α and β subunits 
assemble in the endoplasmic reticulum, (2) the β subunit is essential for the stability 
of α subunit structure, and (3) both the subunits depend on each other to exit the 
endoplasmic reticulum and be inserted into the plasma membrane [ 9 ]. In kidney 
tissues, only the α1 isoform of the α subunit has been shown to be expressed [ 10 , 
 11 ]. In kidney epithelial cells, the function of Na + /K +  ATPase is extremely important 
both for energizing active ion transport across the apical membranes as well as regu-
lating total body sodium homeostasis. As such, the activity of Na + /K +  ATPase is 
regulated throughout the nephron by the action of several hormones, including para-
thyroid hormone, dopamine, angiotensin II, aldosterone, and corticosteroids. The 
aim of this chapter is to review the regulation of Na + /K +  ATPase by PTH and dopa-
mine in the renal proximal tubules. Regulation of Na + /K +  ATPase by other hor-
mones is reviewed elsewhere in the book by Katyare et al. and Yingst.  

2     Regulation by PTH 

 Binding of PTH to the PTH receptor results in the activation of protein kinase A 
(PKA) and C (PKC) signaling. Mandel and colleagues in the early 1990s were the 
fi rst to describe acute regulation of Na + /K +  ATPase by PTH in renal proximal tubu-
lar cells [ 12 – 14 ]. Mandel’s laboratory demonstrated that PTH directly inhibits Na + /
K +  ATPase without changing the mitochondrial oxygen consumption. They further 
demonstrated that analogues of PTH, such as PTH1-34 (activating both PKA and 
PKC) and PTH3-34 (activating only PKC), decrease Na + /K +  ATPase-mediated ion 
transport through the activation of PKC-PLC pathway. McDonough and colleagues 
demonstrated acute PTH treatment results in inhibition of Na + /K +  ATPase function 
in animal models [ 15 ]. In a series of publications, our laboratory demonstrated 
some of the molecular mechanisms by which PTH regulates Na + /K +  ATPase activ-
ity, expression, and phosphorylation. We fi rst dissected the signaling pathways 
involved in the inhibition of Na + /K +  ATPase activity and expression by PTH in 
opossum kidney proximal tubule cells, a cell culture model for the study of renal 
proximal tubules. We demonstrated that PTH inhibits Na + /K +  ATPase activity and 
increases serine phosphorylation of the Na + /K +  ATPase α1 subunit in a biphasic 
manner. The short-term inhibition was mediated through a PKC-PLA2 dependent 
pathway and the long-term by PKA-PLA2 dependent mechanisms. Our results from 
this study also demonstrated that PTH-stimulated mitogen activated protein kinase 
(MAPK)/extracellular regulated kinase (ERK) plays an essential role in the activa-
tion of PKC and subsequent regulation of Na + /K +  ATPase by PTH [ 16 ]. In collabo-
ration with Bertorello’s laboratory we next demonstrated that activation of the 
PKC-ERK pathway results in phosphorylation of Ser11 in the rodent Na + /K +  ATPase 
α1 subunit and Ser16 in the Na + /K +  ATPase α1 subunit of other species (the location 
of serine differs due to different translation initiation sites in rodents versus other 
species) on the Na + /K +  ATPase α1 subunit. This phosphorylation of the Na + /K +  
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ATPase α1 subunit triggers clathrin-mediated endocytosis of Na + /K +  ATPase α1 
subunit into early and late endosomes [ 17 ]. We then identifi ed the specifi c PKC 
isoforms activated by PTH during the regulation of Na + /K +  ATPase. Our data dem-
onstrated that PTH activates two PKC isoforms, PKC α and βI in opossum kidney 
proximal tubule cells. However, inhibition of PKC α by a specifi c peptide inhibitor 
blocked PTH-mediated regulation of Na + /K +  ATPase [ 18 ]. Our laboratory then com-
pleted the mapping of the signaling pathway involved in the regulation of Na + /K +  
ATPase by PTH. Binding of PTH to its receptor activates ERK in a Src kinase-, 
PLC-, and calcium-dependent but PLA2-independent manner. We showed that acti-
vation of ERK then results in the activation of PLA2. The by-products of PLA2 
activation, 20-HETE and arachidonic acid then activate PKCα, which upon activa-
tion translocates to the plasma membrane and associates with Na + /K +  ATPase. This 
association produces phosphorylation of Na + /K +  ATPase at Ser11/16 by PKCα, pro-
moting endocytosis of Na + /K +  ATPase [ 19 ]. 

 In recent years our laboratory focused on identifying proteins associated with 
Na + /K +  ATPase α1 subunit and the role of the associated proteins in the hormonal 
regulation of the Na + /K +  ATPase α1 subunit, including regulation by 
PTH. Immunoprecipitation studies followed by proteomic analysis revealed that 
sodium-hydrogen exchanger regulatory factor-1 (NHERF1) associates with the 
Na + /K +  ATPase α1 subunit. This came as a surprise to us, because at that time, 
NHERF1 expression had only been found in the apical membrane and not the baso-
lateral membrane. NHERF1 was initially discovered as an accessory protein 
required for regulation of sodium-hydrogen exchanger 3 (NHE3) in renal proximal 
tubule [ 20 ], although it has since been demonstrated to regulate several more ion 
transport processes in the proximal tubule. NHERF1 expresses two canonical PDZ 
binding domains (PDZ1 and PDZ2) and a C-terminal ezrin-binding domain (EBD), 
and associates with several ion transporters and transmembrane G-protein coupled 
receptors in renal proximal tubules and intestinal membranes [ 21 ]. Our data demon-
strated that lack of the C-terminal EBD prevents PTH-mediated phosphorylation, 
endocytosis, and inhibition of Na + /K +  ATPase α1 subunit. However, lack of the EBD 
of NHERF1 does not affect the membrane expression and basal activity of Na + /K +  
ATPase [ 22 ]. In a seminal study, Mahon and Segre demonstrated that NHERF1 
associates with the PTH receptor and is absolutely required for activation of PLC 
and downstream signaling by PTH [ 23 ]. Based on these studies, our laboratory 
focused on the role of NHERF1 in the regulation of Na + /K +  ATPase α1 subunit. 
Using NHERF1-defi cient opossum kidney proximal tubule cells (OKH), we dem-
onstrated that NHERF1 is essential for regulation of Na + /K +  ATPase α1 subunit by 
PTH. Transfection of NHERF1 into OKH cells completely restored the regulation 
of Na + /K +  ATPase α1 subunit by PTH. Our laboratory also demonstrated that under 
basal conditions, Na + /K +  ATPase α1 subunit associates with NHERF1. Upon treat-
ment with PTH, this association decreased and association with PKCα increased, 
resulting in phosphorylation, endocytosis, and inhibition of Na + /K +  ATPase α1 sub-
unit. We went on to demonstrate that the PDZ1 domain mediates this association 
between Na + /K +  ATPase α1 subunit and NHERF1 [ 24 ]. Weinman and his colleagues 
demonstrated that PTH phosphorylates two residues, Ser77 and Thr96, within the 
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PDZ1 domain of NHERF1. Taken together, we propose that PTH-activated PKCα 
fi rst phosphorylates NHERF1, allowing it to dissociate from the Na + /K +  ATPase α1 
subunit. This is followed by the subsequent phosphorylation of Na + /K +  ATPase α1 
subunit at Ser11/16. Phosphorylation of the Na + /K +  ATPase α1 subunit then allows 
association with AP2 and clathrin heavy chain, followed by endocytosis through 
clathrin-dependent mechanisms (Fig.  22.1 ). Further studies are required to address 
this hypothesis.

3        Regulation by Dopamine 

 Dopamine is a natural catecholamine that is required for the synthesis of epineph-
rine and norepinephrine. Dopamine also acts as a neurotransmitter and is a strong 
natriuretic hormone. In fact under conditions of high salt intake almost 50 % of the 
natriuretic response is due to the action of dopamine [ 25 ]. Dopamine acts through 
two subclasses of G-protein coupled receptors D1 like and D2 like receptors [ 26 ]. 
Mutations in D1R results in about 25 mmHg increase in blood pressure [ 27 ]. Renal 
dopamine is produced mainly from S1 and S2 segments of the proximal tubules and 
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  Fig. 22.1    Regulation of Na + /K +  ATPase by PTH: Na + /K +  ATPase basolateral membrane expres-
sion and function are regulated through its interaction with NHERF-1. PTH stimulation of the PTH 
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to a lesser extent from dopaminergic nerves [ 28 ]. In proximal tubule cells  L -3,4 
dihydroxyphenylalanine ( L -DOPA) is converted to dopamine by the action of 
 L -amino acid decarboxylase (AAAD) [ 29 ] and is not converted to norepinephrine 
due to the lack of dopamine β-hydroxylase. Unlike neural cells, in renal proximal 
tubule cells tyrosine is not converted to  L -DOPA due to the lack of expression of 
tyrosine hydroxylase [ 29 ]. Therefore, the  L -DOPA required as a substrate for dopa-
mine synthesis is transported into the proximal tubule cells by Na+-independent and 
pH-sensitive type 2 L-type amino acid transporter (LAT2) [ 30 ]. Dopamine synthe-
sized from  L -DOPA is then released both in the luminal and peritubular sides and 
acts in an autocrine/paracrine fashion. Dopamine released thus binds to its receptor(s) 
to inhibit the activities of NHE3 and Na + /K +  ATPase respectively [ 31 ,  32 ]. The action 
of dopamine on these salt transporters is highly compartmentalized. In the luminal 
side dopamine almost exclusively stimulates cAMP generation and activates PKA 
while in the peritubular side it activates PLC-PKC pathway [ 33 ]. 

 Studies from the laboratories of Aperia and Pedemonte demonstrated that dopa-
mine signals through activation of protein kinase C to inhibit Na + /K +  ATPase activ-
ity [ 34 ,  35 ]. Bertorello’s laboratory in a series of studies demonstrated that 
dopamine-mediated activation of PKC results in phosphorylation of Na + /K +  
ATPase α1 subunit at Ser18/23 (rodents/other species) [ 36 ,  37 ]. They further dem-
onstrated that this phosphorylation is important for endocytosis of Na + /K +  ATPase 
α1 subunit [ 37 ]. The inhibition of Na + /K +  ATPase by dopamine is dependent upon 
several signaling molecules including PI3 kinase, 14-3-3ζ, AP-2, and dynamin and 
on the intracellular sodium concentrations [ 38 – 49 ]. The human isoform of Na + /K +  
ATPase α1 subunit is shown to be similarly phosphorylated at the same serine resi-
dues as the rat isoform by dopamine [ 50 ]. Different PKC isoforms exert opposite 
effects on the activity of Na + /K +  ATPase. Activation of PKCβ increases the activity 
of Na + /K +  ATPase while activation of PKCζ inhibits the activity of Na + /K +  ATPase 
[ 35 ]. Our laboratory demonstrated that dopamine inhibits the activity and phos-
phorylation of Na + /K +  ATPase through activation of PKC in a pertussis toxin 
dependent but ERK independent pathway [ 16 ]. We showed that dopamine activates 
PKCβ and PKCζ but Na + /K +  ATPase α1 subunit associates only with PKCζ. 
Bertorello’s laboratory demonstrated that Na + /K +  ATPase α1 subunit associates 
with exogenously expressed PATJ, a PDZ protein [ 51 ]. Weinman and colleagues 
demonstrated that dopamine phosphorylates NHERF1 [ 52 ,  53 ]. Based on these 
studies, our laboratory hypothesized that NHERF1 plays an essential role in the 
regulation of the Na + /K +  ATPase α1 subunit by dopamine. Using OKH cells we 
demonstrated that lack of NHERF1 prevents dopamine-mediated inhibition and 
endocytosis of the Na + /K +  ATPase α1 subunit. We showed that upon treatment with 
dopamine, NHERF1 dissociates from Na + /K +  ATPase α1 subunit and PKCζ associ-
ates with Na + /K +  ATPase α1 subunit. We further demonstrated that contrary to 
PTH, dopamine-mediated inhibition and endocytosis of the Na + /K +  ATPase α1 
subunit requires the PDZ2 domain of NHERF1 [ 54 ]. Thus, in some ways similar to 
the action of PTH, dopamine fi rst phosphorylates NHERF1, resulting in its disso-
ciation from the Na + /K +  ATPase α1 subunit, which then allows phosphorylation of 
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the Na + /K +  ATPase α1 subunit at serine 18/23. Phosphorylation of Na + /K +  ATPase 
α1 subunit then triggers clathrin-mediated endocytosis of Na + /K +  ATPase α1 sub-
unit through binding to 14-3-3ζ and AP-2 (Fig.  22.2 ).

   The action of dopamine is mediated through G-protein coupled receptors 
(GPCRs). In mammals two types of dopamine receptors have been described, the 
D1R like receptors (D1R and D5R) and D2R like receptors (D2R, D3R, and D4R) 
[ 29 ,  55 ,  56 ]. The D1 like receptors couple to G 0 , G s , G αq , and G α12/13  and stimulate 
adenylate cyclase activity [ 57 – 60 ]. D5R can directly stimulate phospholipase C 
(PLC) activity [ 61 ] but D1R require D2R for stimulation of PLC activity [ 62 ]. The 
D2 like receptors couple to G 0  and G αi  and activates PLC-PKC pathway [ 55 ,  63 ,  64 ]. 
All of the dopamine receptors are expressed, however, differentially along the neph-
ron segments. All of the dopamine receptors are expressed in the proximal tubule. 
In medullary thick ascending limb D1, D3, and D5Rs are expressed while in the 
cortical thick ascending limb only D3R is expressed. In the distal convoluted tubules 
only D1R and D3R are expressed. The cortical collecting duct expresses all dopa-
mine receptors except D2R. Dopamine regulates sodium transport all along the 
nephron segments [ 55 ,  65 ,  66 ]. It specifi cally inhibits the activity of several ion 
transporters including NHE1 [ 67 ], NHE3 [ 68 – 71 ], sodium–phosphate cotransporter 
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[ 72 – 76 ], sodium and chloride bicarbonate exchangers [ 77 ,  78 ], Na + /K +  ATPase [ 41 , 
 45 ,  51 ,  54 ,  79 – 89 ], NCC [ 90 ], and epithelial sodium channel [ 91 – 95 ] in the kidney 
tubules. The activity of NKCC2 is stimulated by dopamine in the medullary thick 
ascending limb. However, overall sodium transport in this segment of the nephron 
is decreased because of the inhibition of Na + /K +  ATPase activity [ 96 ]. The D2 like 
receptors are important in the regulation of potassium channel activity in the neph-
ron segments [ 97 ]. 

 The expression of dopamine receptors is highly regulated. In conditions of 
high salt ingestion, dopamine receptors are sensitized and translocate to the 
plasma membrane following dephosphorylation by protein phosphatase 2A. In 
conditions of low salt intake the receptors are desensitized and pulled from the 
plasma membrane through phosphorylation and endocytosis [ 98 – 101 ]. Acutely, 
the receptors are regulated by the action of G-protein coupled receptor kinases 
(GRKs). To date seven different GRKs have been described in the literature [ 102 ]. 
The role of GRK4 has been demonstrated to be critical in development of hyper-
tension and regulation of dopamine receptors [ 103 ,  104 ]. In fact in humans with 
salt-sensitive hypertension three different haplotypes of GRK4 have been 
described. Most patients with hypertension express 65L/142V/486A haplotype of 
GRK4 [ 105 ]. For a detailed discussion, the readers are directed to an excellent 
review article by Jose et al. [ 59 ]. 

 Dopamine-mediated regulation of Na + /K +  ATPase α1 subunit and sodium 
excretion has been shown to be dependent upon interaction with other hormones/
receptors involved in the regulation of sodium transport. Stimulation of dopamine 
receptors has been shown to inhibit release of catecholamines [ 106 ]. In contrast, 
inhibition of β-adrenergic receptors increase membrane translocation of D1R and 
increase natriuresis by inhibiting the activities of Na + /K +  ATPase and other sodium 
transporters [ 107 ]. The most important interaction of dopaminergic system in 
development of hypertension and salt sensitivity is through regulation by and of 
renin–angiotensin system (RAS) [ 108 ]. Under low salt dietary conditions, angio-
tensin II decreases dopamine production [ 109 ] and may increase salt reabsorption 
by stimulating the activities of Na + /K +  ATPase and other sodium transporters. 
Conversely, under high dietary salt conditions, dopamine decreases angiotensin II 
type 1 receptors (AT1R) in the plasma membrane [ 110 – 112 ] that may increase 
natriuresis by inhibiting the activities of Na + /K +  ATPase and other sodium trans-
porters. Both D1 and D2 like dopamine receptors negatively interact with AT1R 
[ 113 – 115 ]. Interestingly, activation of D1R increases AT2R expression in the 
plasma membrane to increase salt excretion [ 116 ]. Activation of both D1R and 
D3R has been demonstrated to inhibit renin release from macula densa by inhibi-
tion of cyclooxygenase II [ 117 ]. Activation of D3R increases the activity of 
angiotensin converting enzyme II (ACE2) that synthesizes angiotensin 1-7 and 
increase natriuresis and vasodilation [ 118 ]. In normotensive rat models like Wistar 
Kyoto rats AT1R and D1R heterodimerize and inhibit each other’s functions. In 
salt hypertensive SHR rats, the ability of D1R to heterodimerize with AT1R is 
impaired [ 110 ]. In normotensive rat models D3R activation results in inhibition of 
AT1R while in salt hypertensive models D3R activation increases AT1R expression 
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in plasma membrane [ 115 ]. The regulation of this interaction has been 
 demonstrated to be dependent upon GRK4. Wild-type GRK4 activates D1R trans-
location to the plasma membrane but prevents AT1R translocation to the plasma 
membrane. In contrast, GRK4 variants increase AT1R phosphorylation and 
expression in the plasma membrane but inhibit D1R translocation through 
increased phosphorylation and endocytosis from the plasma membrane (Fig.  22.3 ) 
[ 59 ]. Interested readers are directed to an excellent review on interaction of dopa-
mine receptors with RAS and other hormones that regulate sodium transport by 
Zeng and Jose [ 104 ]. Thus, dopamine through binding to its receptors and regula-
tion of other hormone receptors cooperatively regulate Na + /K +  ATPase activity 
and membrane expression.
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4        Conclusions 

 In summary, both PTH and dopamine play important roles in the regulation of renal 
Na + /K +  ATPase and salt reabsorption. PTH acutely inhibits Na + /K +  ATPase activity. 
However, sustained PTH desensitizes the effects of PTH on Na + /K +  ATPase activity 
and membrane expression. Not much is known about the role of PTH in the patho-
genesis or perpetuation of essential hypertension or on the regulation of Na + /K +  
ATPase. However, secondary hyperparathyroidism as seen in patients with chronic 
kidney disease may be an important contributing factor in the regulation of blood 
pressure and salt homeostasis in these patients. Dopamine plays a more important 
role in the regulation of Na + /K +  ATPase and salt homeostasis. The role of dopamine 
in regulation of renal Na + /K +  ATPase is extensively studied. The role of different 
dopamine receptors and GRK4 is well established. Other factors may also contrib-
ute in regulation of sodium homeostasis in general and Na + /K +  ATPase in particular. 
For example, oxidative stress [ 119 ] and infl ammation [ 120 ], regulation of the other 
hormones by dopamine (natriuretic peptide, prolactin, angiotensin II, and insulin) 
may contribute to the regulation of Na + /K +  ATPase by dopamine [ 121 ,  122 ]. The 
differences in the regulation of Na + /K +  ATPase by PTH and dopamine may be due 
to the differences in the signaling cascades activated by these hormones. While the 
effects of PTH are ERK-dependent, dopamine-mediated regulation of Na + /K +  
ATPase is ERK-independent. They activate different isoforms of PKC, PKCα by 
PTH and PKCζ by dopamine. The differences may also in part be due to the han-
dling of Na + /K +  ATPase α1 subunit after endocytosis. Some studies have shown that 
Na + /K +  ATPase α1 subunit recycles back to the plasma membrane after PTH treat-
ment while others have demonstrated degradation of Na + /K +  ATPase α1 subunit in 
lysosomes/peroxisomes after dopamine treatment. Further studies are required to 
determine the role of PTH and dopamine in the regulation of total body sodium 
homeostasis in general and Na + /K +  ATPase in particular especially in old age and 
chronic kidney diseases.     
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    Chapter 23   
 Regulation of Na,K-ATPase in Epithelial–
Mesenchymal Transition and Cancer                     

       Zhiqin     Li     and     Sigrid     A.     Langhans    

    Abstract     Na,K-ATPase is an ion pump that creates an electrochemical gradient 
across the plasma membrane. In addition, Na,K-ATPase functions as a receptor and 
a signaling scaffold and its β-subunit has cell adhesion function. Many of the signal-
ing pathways modulated by Na,K-ATPase have been linked to cell growth, apopto-
sis, cell adhesion, and motility. Changes in Na,K-ATPase function and expression 
have been reported in various cancers, even early during tumor development. 
Epithelial–mesenchymal transition (EMT) in which epithelial cells undergo a shift 
from a well-differentiated polarized epithelial phenotype to a fi broblastic, mesen-
chymal phenotype is one of the earliest steps in tumor progression. EMT can be 
induced by growth factors that activate signaling pathways to trigger an intricate 
network of transcriptional regulators. Interestingly, some of the transcription factors 
induced during EMT are known regulators of Na,K-ATPase expression. Here we 
summarize some of the best characterized EMT-inducing pathways, the transcrip-
tion factors modulated by these signaling pathways and discuss how they may affect 
Na,K-ATPase subunit expression.  

  Keywords     Na,K-ATPase α-subunit   •   Na,K-ATPase β-subunit   •   Transcription   • 
  Cancer   •   Transforming growth factor-beta   •   Epithelial–mesenchymal transition 
(EMT)  

1         Introduction 

 Na,K-ATPase is an ubiquitous protein well known for its ion transport function 
which is critical for maintaining sodium and potassium homeostasis. The enzyme 
consists of a catalytic α-subunit, an essential β-subunit involved in the enzyme’s 
membrane transport, translation and regulation of sodium and potassium affi nity 
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and an optional, tissue specifi c subunit belonging to the FXYD proteins [ 1 ,  2 ]. Four 
α-subunit isoforms (α 1 -α 4 ) and three β-subunit isoforms (β 1 -β 3 ) have been identifi ed 
so far [ 3 ]. Na,K-ATPase also serves as a receptor for cardiac glycosides, is a signal-
ing molecule and has cell adhesion function. Abnormal expression of Na,K- ATPase 
subunits and altered enzyme activity play an important role in the initiation and 
progression of cancers, especially in carcinoma, the most common type of cancer 
which originates from epithelial cells. Epithelial cells exhibit an apical–basal polar-
ity characterized by the apical and basolateral domains of the plasma membrane, 
which are two structurally and functionally different regions. In most tissues, the 
apical membrane domain faces towards the lumen or the outside of the body, the 
basolateral domain contacts with the basement membrane and the adjacent cells. 
The apical and basolateral domains have distinct molecular composition and are 
separated by different cell junctions, such as tight junctions, adherens junctions, and 
desmosomes [ 4 ]. Apical–basal polarity is fundamental to the asymmetric distribu-
tion of cell fate determinants and the correct orientation of mitotic spindles in epi-
thelial stem cells [ 5 ]. Loss of cell polarity can lead to defects in asymmetric cell 
division, thereby inducing tumor initiation [ 6 ]. Furthermore, epithelial cells tightly 
attach to one another and form epithelial sheets to cover the surface of organs and 
line the cavities throughout the body. The continuous epithelial layer forms a physi-
cal barrier, preventing tumor metastasis and invasion. During carcinoma progres-
sion, epithelial cells lose their apical–basal polarity and cell–cell adhesion; 
reorganize their cytoskeleton network; and adopt a fi broblast-like phenotype. This 
process is called epithelial-mesenchymal transition (EMT).  

2     The Role of EMT in Cancer 

 EMT was fi rst recognized in embryogenesis as a natural developmental process for 
numerous tissue and organ formations. EMT can also be activated during wound 
healing and tissue fi brosis [ 7 ]. However, the understanding of EMT has advanced 
greatly since it was recognized that activation of EMT is a critical mechanism of 
tumor invasiveness and metastasis. Cells undergoing EMT acquire tumor cell prop-
erties such as increased motility, invasiveness, resistance to therapy, and generation 
of stem-like cancer cells that are thought to be critical in cancer progression [ 8 ,  9 ]. 
In addition, some cells can gain the ability to sustain proliferative signaling by pro-
ducing growth factor ligands, by increasing receptor levels at the cell surface result-
ing in hyper-responsiveness to otherwise limiting amounts of growth factors or by 
constitutive activation of downstream signaling pathways [ 10 ]. 

 Several well-known interconnected signaling pathways that can initiate EMT have 
been identifi ed [ 11 ]. These include transforming growth factor-β (TGF-β), fi broblast 
growth factor (FGF), epidermal growth factor (EGF), insulin-like growth factor (IGF), 
hepatocyte growth factor (HGF), Wnt, and Sonic hedgehog (Shh). Hypoxia and some 
activated oncogenes like Ras, ErbB2/Her2, and mutant p53 have also been associated 
with EMT [ 12 ]. Many of these pathways share common downstream signaling effectors 
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forming EMT-inducing networks that converge on EMT- related transcription factors. 
These transcription factors either repress the expression of epithelial cell markers (such 
as E-cadherin, cytokeratins, ZO-1, and laminin-1) or activate genes associated with a 
mesenchymal phenotype [such as N-cadherin, fi bronectin, vimentin, and α-smooth 
muscle actin (α-SMA)] [ 7 ]. As a result, the junctional complexes between epithelial 
cells are disrupted, the basement membrane and extracellular matrix (ECM) underlying 
the cells are degraded, the cytoskeleton networks are reorganized. Epithelial cells lose 
their apical–basal polarity and cell–cell adhesion and acquire the capacity of invasive-
ness and migration and render the cells resistant to senescence and apoptosis. 

 A hallmark of the EMT process is the loss of E-cadherin expression. E-cadherin 
is a calcium-dependent cell–cell adhesion glycoprotein that is required for proper 
establishment of apical–basal polarity in epithelial cells. The protein is composed of 
three major domains: a single transmembrane domain, a large extracellular fi ve-
cadherin- repeats domain, which mediates homophilic cellular interactions; and a 
highly conserved cytoplasmic domain, which anchors to the actin cytoskeleton 
through association with α-, β-, γ-catenins and p120 catenin. E-cadherin is the key 
component of adherens junctions, but also regulates the formation of other cell junc-
tions, such as tight junctions and desmosomes [ 13 ,  14 ]. Na,K-ATPase acts synergis-
tically with E-cadherin to maintain epithelial junctions and polarity [ 15 – 17 ].  

3     Transcriptional Control of EMT 

 Molecular changes during EMT occur at multiple levels, including epigenetic gene 
regulation, alternative splicing, protein transport, and transcriptional regulation of 
target genes. Several key transcription factors that promote EMT directly regulate 
the expression of both cell adhesion and cell polarity complexes, with  CDH1  encod-
ing E-cadherin being a major target gene. Transcription factors that repress 
E-cadherin and drive the EMT process include the members of the Snail, Zinc fi nger 
E-box binding homeobox (ZEB) and Twist families (Fig.  23.1 ) [ 18 – 20 ].

3.1       Transcription Factors 

 The Snail family belongs to the zinc-fi nger transcription factors and consists of 
three members in vertebrates (SNA1, SNA2, and SNA3), with SNA1 being the best 
characterized transcription factor that mediates EMT. SNA1 functions as a tran-
scriptional repressor binding to E-box consensus sequences (CAGGTG) on the pro-
moter region of E-cadherin and other target genes involved in cell polarity and 
development like the Crumbs, Par, and Scribble complexes [ 21 ,  22 ]. The promoter 
of the Na,K-ATPase β 1 -subunit gene  ATP1B1  contains four E-boxes and a nonca-
nonical E-box and SNA1 has been shown to bind to the noncanonical E-box to 
repress β 1 -subunit expression [ 23 ]. 
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 ZEB1 is one of two members of the vertebrate ZEB family and acts downstream 
of Snail and Twist in EMT [ 20 ]. ZEB transcription factors bind to E-boxes on the 
promoter of target genes (CACCT and CACCTG) to activate gene transcription [ 24 ]. 
A consensus ZEB1 binding sequence has been found in the promoter of rat Na,K-
ATPase α 1 -subunit gene  Atp1a1  and ZEB1 can activate gene transcription in various 
cells [ 25 – 27 ]. ZEB binding sites were also found on the  FXYD1  promoter [ 26 ]. 

 The Twist family has two members: Twist1 and Twist2. The Twist transcription 
factors have a basic Helix-Loop-Helix (bHLH) domain that mediates DNA binding 
and homo/hetero-dimerization and a twist box at the C-terminus that is involved in 
transcription activation or repression [ 20 ]. Twist1/2 represses E-cadherin expres-
sion independently of Snail, likely through interactions with other repressors [ 28 ]. 
However, there is no evidence, yet, to show that Twist regulates the transcription of 
Na,K-ATPase. 

 Ultimately, most signals induce EMT through activation of these transcription fac-
tors to repress epithelial genes and upregulate mesenchymal genes and genes involved 
in extracellular matrix remodeling, cytoskeletal reorganization and cell movement 
[ 19 ]. These EMT-activated transcription factors repress epithelial gene expression by 
direct binding to the conserved E-Box on the promoter regions of target genes. They 
also increase mesenchymal and other EMT related genes through indirect activating 
intracellular signaling pathways [ 19 ]. Adding to the complexity of transcriptional 
regulation, cross-regulations occur at the transcriptional and posttranscriptional lev-
els among EMT-activated transcription factors (Fig.  23.1 ), and Snail’s functions are 
independent of EMT in cell survival, stem cell function and immune regulation [ 29 ].  

  Fig. 23.1    Transcription factors in epithelial–mesenchymal transition (EMT)       

 

Z. Li and S.A. Langhans



379

3.2     Epigenetic Mechanisms 

 Epigenetic reprogramming is an important contributor to the initiation and progres-
sion of EMT [ 30 ] and indeed Snail represses E-cadherin expression by forming a 
corepressor complex with histone deacetylases (HDAC)-1 and -2 [ 31 ]. Changes in 
histone acetylation and even more so, histone and DNA methylation, have important 
implications in the dysregulation of gene expression during EMT [ 32 ]. Methylation 
is also important in the regulation of Na,K-ATPase expression. Conserved CpG 
islands that remain unmethylated were found in  ATP1B1  and  Atp1b2  promoter 
regions [ 33 ,  34 ] but  ATP1B1  promoter was hypermethylated in tumor samples with 
clear-cell renal cell carcinoma [ 33 ]. Higher methylated CpGs were also found in the 
 Atp1a3  promoter regulating the transcription of the Na,K- ATPase α 3 -subunit [ 35 ]. 
Methylation is also involved in the transcriptional regulation of FXYD1 and the 
FXYD1 promoter contains methylated cytosines and a predicted CpG island [ 36 ]. 
However, at this point it is not known whether epigenetic modifi cations during EMT 
indeed result in deregulated Na,K-ATPase subunit levels.  

3.3     MicroRNA Regulation of EMT 

 MicroRNAs (miRNAs) are small noncoding RNA molecules that are important 
players during EMT through their key roles in posttranscriptional regulation of gene 
expression and infl uence multiple signaling pathways [ 37 ,  38 ]. Some examples 
include miR-138 that targets EMT-related genes vimentin and ZEB2 [ 39 ], miR-200 
that targets E-cadherin, ZEB1 and ZEB2 [ 40 ] and miR-30a that promotes TGF-β-
induced EMT through targeting Snail1 [ 41 ]. miRNAs also regulate the expression 
of Na,K-ATPase. For example, miR-92 directly targets Na,K-ATPase β 1 -subunit 
[ 42 ]. miR-192 selectively suppresses Na,K-ATPase β 1 -subunit expression, but has 
no effect on the α 1 -subunit [ 43 ]. Notably, miR-192 also targets ZEB2, which indi-
cates that miRNAs which target genes in EMT might also regulate Na,K-ATPase.   

4     Na,K-ATPase, Transforming Growth Factor (TGF)-β 
Signaling and EMT 

4.1     Na,K-ATPase in EMT and Cancer 

 Na,K-ATPase is a multifunctional protein that not only functions as an ion pump but 
also as a signaling scaffold and a cell-adhesion molecule. Both pump-dependent and 
pump-independent functions of Na,K-ATPase contribute to maintaining the epithe-
lial phenotype of normal cells [ 16 ,  17 ,  44 – 52 ]. Loss of Na,K-ATPase function or 
subunit expression in cancer may contribute to tumor progression in multiple ways 
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including reduced cell aggregation [ 17 ,  48 ,  49 ,  52 – 54 ], altered epithelial junctions 
and polarity [ 16 ,  17 ,  47 ] and increased cell motility and invasiveness [ 17 ,  55 ]. Altered 
expression patterns of Na,K-ATPase have been observed in many human cancers. In 
human carcinoma, the β 1 -subunit expression is reduced in many cases, including 
renal [ 56 ] and lung [ 57 ] cell carcinomas, androgen-dependent human prostate cancer 
cells [ 58 ], prostatic adenocarcinoma [ 59 ], and urothelial carcinoma [ 60 ]. The β 2 -
subunit is also reduced in human renal, lung, and hepatocellular carcinomas [ 57 ] and 
glioma [ 61 ]. In contrast to the β-subunit, the expression of α-subunits varies among 
different types of cancer tissues. The α 1 -subunit is either increased or decreased in 
non-small-cell lung cancer depending on reports [ 62 ,  63 ], decreased in human 
colorectal adenocarcinomas [ 64 ], advanced prostatic adenocarcinoma [ 59 ], gastric 
cancers and urothelial carcinoma [ 60 ], or does not change as reported in human renal, 
lung, and hepatic tumors [ 56 ,  57 ]. The α 3 -subunit was upregulated, but α 2 - and α 4 -
subunit were decreased in human colorectal adenocarcinomas [ 64 ]. Moreover, the 
expression levels of α 1 - and β 1 -subunit have been reported as predictors of clinical 
outcomes in patients with bladder cancer, renal clear-cell carcinoma and lung cancer 
[ 60 ,  63 ,  65 ]. Patients with high α 1 - and low β 1 -subunit expression had a high risk for 
early recurrence in bladder cancer [ 60 ], high levels of α 1 -subunit were associated 
with poor survival in patients with renal clear-cell carcinoma [ 65 ], and higher α 1 -
subunit levels had a signifi cant survival advantage in lung adenocarcinoma [ 63 ]. 
Interestingly, in ovarian cancer, low β 1 -subunit levels were associated with resistance 
to the chemotherapeutic oxaliplatin [ 66 ], suggesting that the role of Na,K-ATPase in 
cancer is not only limited to changes associated with EMT. 

 The functions of Na,K-ATPase in EMT progression are still not fully understood. 
Some studies point to a role of Na,K-ATPase in the formation and maintenance of 
epithelial cell polarity. Na,K-ATPase functions as a cell adhesion molecule [ 17 ,  48 , 
 49 ,  52 – 54 ] and α 1 - and β 1 -subunit co-localize with adherens junctions in Madin 
Darby canine kidney (MDCK) cells [ 52 ]. The β 1 -subunit forms trans-dimers 
between adjacent cells or cis-dimers within the same membrane, which is important 
for initiation and maintenance of cell junctions [ 50 ,  53 ]. Overexpression of the β 1 - 
subunit increased cell–cell adhesion and inhibited cell motility in Moloney Sarcoma 
virus-transformed MDCK cells (MSV-MDCK) [ 17 ,  55 ]. The α 1 -subunit indirectly 
associates with E-cadherin and the spectrin/actin cytoskeleton via ankyrin, an actin 
binding protein, which stabilizes adherens junctions [ 50 ]. In MSV-MDCK cells that 
express low levels of E-cadherin and β 1 -subunit, simultaneous overexpression of 
E-cadherin and the β 1 -subunit rescued the epithelial phenotype but expression of 
either protein alone was not suffi cient to induce tight junctions and epithelial polar-
ity and to inhibit invasiveness and motility of these cells [ 17 ]. In breast cancer cells, 
knockdown of the β 1 -subunit increased proliferation, migration, and invasion [ 42 ]. 
The β 2 -subunit, initially known as the adhesion molecule on glia (AMOG), plays an 
important role in cellular adhesion and migration in the central nervous system [ 61 , 
 67 ]. Loss of the β 2 -subunit has been implicated in glioma migration and invasion 
[ 68 ]. In polycystic kidney disease, abnormal expression of the β 2 -subunit could be 
the origin of the apical mislocalization of Na,K-ATPase [ 69 ] suggesting that abnor-
mal expression of the β 2 -subunit and/or mislocalization of the Na,K-ATPase is not 
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suffi cient to disrupt epithelial integrity. On the other hand, impaired Na,K-ATPase 
activity leads to the loss of tight junctions and epithelial polarity. Inhibition of 
Na,K-ATPase either by ouabain or K +  depletion not only prevented the formation of 
tight junctions and desmosomes, thus disrupting cell polarity [ 16 ]; but also increased 
the permeability of tight junctions [ 45 ,  70 ]. Thus, it appears that structural loss of 
Na,K-ATPase alone may not explain the role of Na,K-ATPase in EMT but rather 
disruption of the intricate interplay between Na,K-ATPase activity, cell–cell adhe-
sion, and signaling has to occur for changes in Na,K-ATPase to contribute to EMT.  

4.2     TGF-β Signaling and EMT 

 Among all signaling pathways that can trigger EMT, TGF-β is a major inducer [ 28 ]. 
The TGF-β superfamily comprises TGF-βs, bone morphogenetic proteins (BMP), 
activins, and other related proteins. These secreted proteins regulate numerous phys-
iological processes, including cell differentiation, proliferation, development, and 
survival. Interestingly, Na,K-ATPase is one of the target molecules of TGF-β 
 signaling [ 47 ,  71 – 73 ]. The TGF-β receptor complexes at the cell surface consist of 
two type II and two type I transmembrane receptors and binding of TGF-β family 
proteins to the tetrameric receptor complex enables type II receptors to phosphory-
late and activate type I receptors. Two major signaling mechanisms which mediate 
TGF-β induced EMT are SMAD-dependent and SMAD-independent pathways 
(Fig.  23.2 ). SMAD-dependent signaling involves phosphorylation and activation of 
SMAD2 and SMAD3 by the type I receptor, that then bind to SMAD4 to form a 
trimeric SMAD complex. The SMAD complex translocates into the nucleus and 
associates with other transcription factors to modulate the expression of target genes. 
The inhibitory SMADs, SMAD6 and SMAD7, can compete for the same binding 
sites on type I receptor for SMAD2 and SMAD3 and inhibit TGF-β signaling [ 74 – 76 ]. 
TGF-β also signals through SMAD-independent pathways with MAPK, phos-
phoinositide-3 kinase (PI3K), and Rho-GTPases being the three major SMAD-
independent pathways that promote EMT. The TGF-β receptor can phosphorylate 
associated ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) to activate 
TGF-β-activated kinase 1 (TAK1), which phosphorylates MKK3/6 and MKK4, 
leading to activation of p38 MAPK and JNK [ 74 – 76 ]. The MAPK pathways may 
regulate EMT related gene expression directly or by cooperating with other tran-
scription factors, such as SMAD complexes. TGF-β also activates PI3K, and then 
phosphorylates and activates Akt, leading to activation of mammalian TOR complex 
1 (mTORC1) and mTORC2, which increases translation effi ciency and cell size. In 
addition, TGF-β can activate Rho-like GTPase, like RhoA, resulting in actin reorga-
nization. TGF-β-induced RhoA activation also regulates EMT-related gene expres-
sion including α-SMA [ 28 ,  77 ]. SMAD-dependent and -independent pathways 
cooperate and interplay in EMT initiation and progression, and either blocking 
SMAD-dependent signaling or selectively inhibiting SMAD-independent pathways 
dramatically decreases TGF-β-induced EMT [ 11 ,  28 ].
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4.3        Transcriptional Regulation of Na,K-ATPase in TGF-β- 
Induced EMT 

 Na,K-ATPase is a target of TGF-β signaling in various cell types. In renal epithelial 
cells, TGF-β 1  repressed β 1 -subunit levels when undergoing EMT [ 47 ,  72 ]. However, 
in LLC-PK1 cells, a porcine kidney epithelial cell line, TGF-β 1  appeared to decrease 
β 1 -subunit expression at the posttranslational level since no signifi cant reduction 
in β 1 -subunit mRNA levels were found under the experimental conditions [ 47 ]. This 
would be consistent with studies in human renal clear-cell carcinoma tissues, in 
which no changes in β 1 -subunit mRNA levels were found despite a drastic reduction 
in β 1 -subunit expression in these tumors [ 56 ]. Nevertheless, recent studies revealed 
that  ATP1B1  promoter was hypermethylated in tumor samples obtained from clear-
cell renal cell carcinoma suggesting that  ATP1B1  is epigenetically silenced by pro-
moter methylation in these tumors [ 33 ]. Further studies will be required to address 
these fi ndings. 

 In human retinal pigment epithelial cells, TGF-β 2  selectively decreased β 1 - 
subunit expression and knockdown of β 1 -subunit resulted in a mesenchymal cell 
morphology and induced fi bronectin and other EMT markers [ 71 ]. In these cells 
TGF-β 2  decreased the transcription of β 1 -subunit through two transcription factors: 
Smad 3 and hypoxia inducible factor (HIF) [ 71 ]. HIF is a member of the basic helix-
loop-helix (bHLH) superfamily and is composed of a hypoxia-inducible HIF-α sub-

  Fig. 23.2    TGF-β signaling in epithelial–mesenchymal transition (EMT)       
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unit (HIF-1α, HIF-2α, and HIF-3α) and a constitutively expressed HIF-1β subunit. 
Aside from hypoxia, HIF-1 can be regulated in an oxygen-independent manner, 
including TGF-β [ 71 ,  78 ,  79 ]. In retinal pigment epithelial cells, TGF-β 2  increased 
HIF-1α and as the  ATP1B1  promoter contains a Smad binding domain (SBD) in 
close proximity to a putative hypoxia-responsive element (HRE), it is likely that 
both Smad3 and HIF1-α cooperated in regulating the expression of β 1 -subunit 
expression by TGF-β 2  in these cells [ 71 ]. 

 In retinal pigment epithelial cells, TGF-β2 signaling suppressed only β 1 - subunit 
and not α 1 -subunit. Nevertheless, TGF-β 1  reduced β 1 -subunit as well as α 1 -, α 2 -, and 
α 3 -subunit mRNA levels in rat thyroid cells [ 73 ]. Furthermore, TGF-β 1  prevented 
the increase in α 1 -subunit mRNA level induced by steroid hormones [ 80 ]. Thus, 
Na,K-ATPase subunit regulation by TGF-β may depend on the cellular background. 
This is consistent with TGF-β signaling playing a complex role in cancer develop-
ment and progression, where it can function either as a tumor suppressor or a tumor 
promoter [ 74 ]. Whether TGF-β-dependent regulation of Na,K-ATPase contributes 
to this cell-type specifi c function of TGF-β remains to be determined.   

5     Hypoxia, Na,K-ATPase and EMT 

 As tumors grow, cancer cells adjust to hypoxia and lack of nutrients by activating 
angiogenesis-specifi c and metabolic and glycolytic pathways [ 81 – 83 ] and TGF-β 
signaling can integrate hypoxia-associated signals [ 11 ]. One of the best character-
ized hypoxia genes is HIF-1α which is frequently upregulated in solid tumors and 
promotes EMT and tumor progression and facilitates metastasis [ 84 – 87 ]. HIF-1α 
can upregulate EMT-mediating transcription factors Snail, ZEB1/2 and Twist result-
ing in repression of E-cadherin levels [ 88 – 90 ] and interacts with other EMT- 
associated signaling pathways [ 11 ]. HIF-1α contains three major domains, a 
N-terminal DNA-binding domain, an oxygen-dependent degradation domain as 
HIF-1α is rapidly degraded in normoxia, and a C-terminal domain that recruits tran-
scriptional co-activators [ 78 ]. In hypoxic conditions, HIF-1α is stabilized, translo-
cates to the nucleus and forms a dimer with HIF-1β to associate with the HRE in the 
regulatory regions of target genes. HIF-1α generally functions as a transcriptional 
activator and transcriptional repression by HIF-1α induction may require additional 
transcription repressors. In the case of Na,K-ATPase, the  ATP1B1  promoter region 
contains a Smad binding domain (SBD) and a putative HRE in close proximity. 
Both HIF-1α and Smad3 bound to  ATP1B1  promoter and likely cooperated in 
repressing the expression of β 1 -subunit [ 71 ]. While it is well known that Na,K-
ATPase subunit levels are regulated by endocytosis and degradation under hypoxic 
conditions [ 91 ], it is possible that additional transcriptional mechanisms exist in 
hypoxic tumor cells undergoing EMT to suppress Na,K- ATPase subunit 
expression.  
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6     Conclusions 

 EMT is an important process in cancer development and progression, characterized 
by induction of mesenchymal genes and repression of epithelial genes. These EMT-
associated genes are under tight control at multiple levels, including both, transcrip-
tional and posttranscriptional levels. Notably, many regulators of EMT- related 
genes also modulate Na,K-ATPase expression. For example, the transcription factor 
Snail1 induces EMT and also represses the expression of Na,K-ATPase β 1 -subunit. 
miR-192 modulates both ZEB2 and β 1 -subunit expression. However, the role of 
Na,K-ATPase in EMT is not completely clear, yet. Some studies indicate that Na,K-
ATPase might facilitate the EMT process. For instance, loss of Na, K-ATPase results 
in altered epithelial polarity and increased cell motility and invasiveness, which are 
characteristic events in EMT, β 1 -subunit is a target of TGF- β, a major inducer of 
EMT, and introducing E-cadherin or Na,K-ATPase alone into MSV-MDCK cells 
cannot induce epithelial polarity and inhibit invasiveness and motility of these cells. 
However, simultaneous overexpression of E-cadherin and the β 1 -subunit rescued the 
epithelial phenotype. Despite all of this circumstantial evidence, a causal role for 
Na,K-ATPase in cancer development has not been demonstrated so far. It is likely 
that only once initial steps in the EMT process are triggered that an additional loss 
of Na,K-ATPase contributes to EMT progression and tumor formation.     
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 Metal Based Compounds, Modulators of Na, 
K-ATPase with Anticancer Activity                     
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    Abstract     Involvement of Na, K-ATPase in different biological processes and its 
overexpression in pathological states enables its use as a target in anticancer studies. 
For the past 10 years, a variety of metal-based complexes have been synthesized 
which offer good tolerance, potent action, selectivity, and less toxicity in cancer 
treatment. This chapter gives an overview of the interaction of platinum, gold, 
ruthenium, vanadium, and palladium complexes with Na, K-ATPase and their effect 
on the enzyme function and activity. The mechanism of Na, K-ATPase activity inhi-
bition with metal based complexes is supported with extensive kinetic analysis. The 
inhibition can be achieved via the complexes interaction with –SH groups of the 
enzyme and cleavage of the disulfi de bridges, required for the enzyme functionality. 
Moreover, the inhibitory effect of selected compounds can be prevented and recov-
ered by the addition of –SH donors,  L -cysteine and glutathione, the biomolecules 
usually present in physiological liquids. The conclusion is made that gold, ruthe-
nium, and palladium complexes are expected to overcome platinum complexes 
toxic side effects.  

  Keywords     Anticancer   •   Glutathione   •   Inhibition   •    L -cysteine   •   Ligand   •   Metal com-
plexes   •   Na, K-ATPase   •   Prevention   •   Recovery   •   Thiol  

1         Introduction 

 A variety of metal-based compounds have been synthesized so far, in an effort to 
offer better tolerance, more potent action, better selectivity, and less toxicity in can-
cer treatment [ 1 ,  2 ]. A mechanistic understanding of how metal complexes produce 
their biological activities is critical for their clinical success. Proteins have been 
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proven to be possible targets for antitumor metal complexes as well as importance 
of their involvement in the overall mechanism of action of anticancer metallo-drugs 
[ 3 ]. The modifi cation of cysteine residues in proteins due to its ability to strongly 
coordinate complex metal ions is one of the arguments of critical importance for the 
design of the novel types of pharmacological agents, based on Pt(II), Au(III) and 
Pd(II) complexes [ 4 – 6 ]. It is well known that sodium pump (Na, K-ATPase) has a 
critical role in cell survival, proliferation, adhesion, and migration [ 7 – 12 ] as well as 
its increased expression and elevated activity in some types of cancers [ 7 ]. In this 
chapter, we present an overview of anticancer metal-based complexes which affect 
and modulate the activity and function of Na, K-ATPase.  

2     Na, K-ATPase 

2.1     Structure and Function 

 Na, K-ATPase is a membrane enzyme ubiquitous in animal cells that involve 5′-ade-
nosine triphosphate (ATP) as a substrate for their functioning. It is responsible for 
establishing and maintaining the electrochemical gradient in animal cells, due to the 
free energy resulting from the hydrolysis of an intracellular ATP [ 13 – 15 ]. The 
sodium pump contributes substantially to the maintenance of the ion concentration 
gradient throughout the membrane, and enables the animal cell to control its volume 
and actively transport carbohydrates as well as amino acids. It is also required for 
nerve and muscle excitation [ 16 ]. 

 The minimum functional unit of Na, K-ATPase is an oligomer composed of stoi-
chiometric amounts of two major polypeptides, α- and β-subunits. The α-subunit, 
responsible for the catalytic and transport properties of the enzyme, is a protein with 
a molecular mass of ~112,000 Da that contains the binding sites for the cations and 
ATP. It acts as the receptor for specifi c inhibitors, cardiac glycosides such as ouabain, 
which are bound to the extracellular side of the protein at very high affi nity and lead 
to the inhibition of enzymatic activity [ 17 – 19 ]. The β-subunit is a polypeptide that 
crosses the membrane once and has a molecular weight between 40,000 and 60,000 Da, 
depending on the degree of glycosylation in different tissues. The β-subunit is essen-
tial for the normal activity of the enzyme [ 20 ], and it appears to be involved in the 
occlusion of K +  and the modulation of the K +  and Na +  affi nity of the enzyme [ 21 ]. The 
enzyme has two major conformation states, E 1  and E 2  which act as “fl ip-fl op” model, 
in which both α subunits show complementary conformations [ 22 ]:

  E E E E1 2 2 1    

where E is the conformation of each α subunit. According to this model when one 
of the α subunits is in the E 1  conformation, the other one is necessarily in the E 2 . 
These states have different tertiary structures, different catalytic activities, and dif-
ferent ligand specifi cities. Biochemical and spectroscopic data show that 

T.G. Momić et al.



391

long-range E 1 –E 2  conformational transitions in the α-subunit mediate interactions 
between cytoplasmic domains and the cation sites in the intramembrane domain 
[ 13 ,  23 ,  24 ]. These transitions couple the scalar processes of ATP binding, phos-
phorylation, and dephosphorylation to the vectorial extrusion of three Na +  ions and 
uptake of two K +  ions. 

 The sodium pump is characterized by a complex molecular heterogeneity that 
results from the expression and differential association of multiple isoforms of both 
its α- and β-subunits. Individual genes of four α (α1, α2, α3, and α4)-subunit iso-
forms and at least three β (β1, β2, and β3)-subunit isoforms of Na, K-ATPase have 
been identifi ed in mammalian cells [ 25 – 27 ]. The distribution of the Na, K-ATPase 
α and β subunits isoforms is tissue- and developmental-specifi c, suggesting that 
they may play specifi c roles, either during development or coupled to specifi c physi-
ological processes [ 27 – 29 ].  

2.2     Expression of Na, K-ATPase in Pathological States 

 In some pathological states, like cancer, expression of Na, K-ATPase is changed 
compared with the normal tissue. Na, K-ATPase is highly expressed in cancer cells 
including human glioblastoma cells [ 7 ,  8 ,  30 ,  31 ]. Human T98G glioblastoma cells 
that are resistant to the chemotherapy drug temozolomide showed a unique high 
expression of the Na, K-ATPase α2 and α3 subunits compared to the temozolomide- 
sensitive cell line LN229 and normal human astrocytes [ 7 ]. It was shown that Na, 
K-ATPase α1 subunit expression is markedly higher in a signifi cant proportion of 
non-small-cell lung cancer (NSCLC) clinical samples compared to normal lung tis-
sue [ 32 ,  33 ]. In the neuroblastoma cell line the level of β1 subunit mRNA was found 
to be higher than in neuron primary cell culture. The level of α1 mRNA in investi-
gated tumors was the same as in normal tissues. These results may give evidence of 
the involvement β2-subunit in the process of tumorigenesis as was shown for some 
other adhesion molecules [ 34 ]. Also, there are the data that some type of cancers 
showing lower expression of Na, K-ATPase than of normal tissue. In normal human 
gastric tissues Na, K-ATPase subunits are highly expressed, but in tumorous tissue 
expression of the enzyme is reduced [ 35 ]. The β1-subunit of Na, K-ATPase was 
isolated and identifi ed as an androgen downregulated gene. Expression was observed 
at high levels in androgen-independent as compared to androgen-dependent (respon-
sive) human prostate cancer cell lines and xenografts when grown in the presence of 
androgens [ 36 ]. Compared with the benign fi elds, the mean protein expression for 
both Na, K-ATPase α- and β-subunits were found to be decreased overall in in situ 
and invasive bladder tumors, as well as in tumor-adjacent dysplastic fi elds [ 37 ]. It 
was reported that poorly differentiated human carcinoma cell lines derived from 
colon, breast, kidney, and pancreas show reduced expression of the Na, K-ATPase 
β1-subunit [ 38 ]. Substantial decrease in the level of Na, K-ATPase β2-subunit 
mRNA in xenografts of human renal, lung and hepatocellular carcinomas in nude 
mice as compared with corresponding normal tissues, as well as in the 
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neuroblastoma cell line as compared with the neuron primary cell culture. The level 
of β1 mRNA is decreased in kidney and lung tumor cells, but is unchanged in hepa-
tocellular carcinoma. Reduced expression of β-subunit of Na, K-ATPase in human 
clear-cell renal cell carcinoma (RCC) was found, and at the same time the α-subunit 
level in RCC lysates was generally near or above the levels relative to normal kid-
ney [ 39 ]. Stomach and colon adenocarcinomas showed opposite patterns of 
β1-isoform glycoprotein expression. Stomach adenocarcinomas showed lower 
expression levels of Na, K-ATPase β1 subunit than did control tissue, and colon 
adenocarcinomas showed higher expression of the same isoform than of normal 
surrounding tissue [ 40 ]. In human colorectal cancer upregulation of Na, K-ATPase 
α3-isoform and downregulation of the α1-isoform was detected [ 41 ].   

3     Metal Complexes Modulating Na, K-ATPase 
with Anticancer Activity 

 The activity of metal complexes depends not only on the metal itself but also on its 
oxidation state, number and types of ligands bound, and the coordination geometry 
of the metal complex [ 42 ]. Even subtle changes in the charge of a metal result usu-
ally in a great change in the coordination structure of the metal complex. These 
changes lead to dramatic alterations of the physicochemical and thus biological 
properties in the application of the metal complex as drug. Many metal-based drugs 
act as prodrugs that undergo ligand substitution and redox reactions before they 
reach their targets [ 43 ]. 

3.1     Platinum Complexes 

 History of platinum (Pt) based anticancer drugs investigation and application begins 
with cisplatin which was discovered accidentally by Rosenberg in 1965 [ 44 ]. 
Cisplatin (Fig.  24.1a ) was introduced in cancer therapy after the discovery that it 
inhibits bacterial cell division when platinum-conducting plates are used for cell 
growth and stops cell proliferation [ 44 ]. In 1978, US Food and Drug Administration 
(FDA) approved cisplatin under the name of Platinol ®  for treating patients with 
metastatic testicular or ovarian cancer in combination with other drugs, and for 
treating bladder cancer as well [ 45 ]. Cisplatin is known as an effective anticancer 
drug for various human solid cancers, such as those of head, neck, lungs, testes, 
bladder, and ovaries [ 46 – 49 ]. Despite its potent anticancer activity, cisplatin induces 
nephrotoxicity and gastrointestinal toxicity, which are major dose-limiting factors 
in its clinical use [ 50 ,  51 ]. In 1979, Bristol-Myers Squibb licensed carboplatin 
(Fig.  24.1b ), a second-generation platinum drug with fewer side effects, which 
entered the US market as Paraplatin ®  in 1989 for initial treatment of advanced 
o varian cancer in combination with other approved chemotherapeutic agents [ 52 ]. 
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A second cisplatin analog, nedaplatin ( cis -diammine-glycolatoplatinum) 
(Fig.  24.1c ) was developed in 1983 to provide a treatment with effectiveness similar 
to that of cisplatin but with decreased renal and gastrointestinal toxicities [ 53 ,  54 ] 
and approved as a drug (Aqupla ® ) [ 55 ,  56 ]. Nedaplatin has the same ammine carrier 
ligands as cisplatin, but has a different leaving group, consisting of a fi ve-membered 
ring structure in which glycolate is bound to the platinum ion as a bidentate ligand. 
Similar to cisplatin, nedaplatin reacts with nucleosides forming a nucleoside–plati-
num complex. It has been confi rmed that the types of combined bases in nedaplatin 
after reaction with DNA are identical to those observed in cisplatin [ 57 ]. In 1994, 
one more platinum anticancer drug was approved—oxaliplatin (Fig.  24.1d ) under 
the trade name of Eloxatin ® . It was the fi rst platinum-based drug to be active against 
metastatic colorectal cancer in combination with fl uorouracil and folinic acid [ 58 , 
 59 ]. However, the clinical use of platinum anticancer agents is limited by tumor 
resistance and unwanted normal tissue toxicities [ 60 – 62 ]. The reason for the tumor 
resistance is the increased platinum accumulation in the tumor tissue due to reduced 
uptake and/or increased effl ux. Cellular platinum accumulation is a key determinant 
of the sensitivity of a wide range of cancer cells to cisplatin [ 63 ], oxaliplatin [ 64 ], 
carboplatin [ 65 ], and ZD0473 [ 66 ]. Ovarian cancer patients who responded to 
platinum- containing therapy had higher tumor platinum concentrations than those 
who did not [ 67 ]. Although several toxic side effects induced by platinum antican-
cer drugs were noticed, nephrotoxicity is the main limiting factor in their clinical 
use [ 50 ,  51 ]. In recent years, the studies were directed to decreasing tumor tissue 
resistance induced by interaction of platinum anticancer drugs with thiol-containing 
molecules. These investigations resulted in the synthesis of picoplatin in which one 

  Fig. 24.1    Platinum anticancer agents. Chemical structures of ( a ) cisplatin, ( b ) carboplatin, ( c ) 
nedaplatin, and ( d ) oxaliplatin       
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of the amines linked to platinum was replaced by a bulky methyl substituted pyridine 
allowing the drug more time to reach its target, DNA [ 68 ,  69 ]. Development of 
improved delivery strategies using liposomes and polymers led to discovery of lipo-
somal cisplatin or lipoplatin being under a phase III randomized clinical trial for 
patients suffering from small cell lung cancer [ 70 ,  71 ]. Besides, polymer-based 
platinum drug, Prolindac™ has been under investigation for pretreated ovarian can-
cers in several European countries [ 72 ,  73 ].

3.1.1       Interaction of Platinum Complexes with Na, K-ATPase 

 Due to many severe toxic side effects coupled to an antitumor activity of platinum 
complexes, it is important to be aware of its infl uences on various proteins, such as 
protein structural alterations and enzymatic changes that are implicated in its mech-
anism of action. Among all platinum complexes mentioned earlier, cisplatin is the 
most studied [ 74 ]. It is reasonable to assume that the translocation process of ions 
operated by Na, K-ATPase is infl uenced by enzyme–ligand interaction, which can 
induce signifi cant changes in the protein confi guration, possibly near the ligand 
binding sites. Spectroscopic studies have shown that the complexation of the Na, 
K-ATPase with different metal cations induces signifi cant secondary structural 
changes, while several other investigations showed that there are minor structural 
changes [ 74 ]. The nature of cisplatin interaction with Na, K-ATPase at physiologi-
cal pH was characterized with the drug binding constant and the protein secondary 
structure in the cisplatin–ATPase complexes drug binding mode. The spectroscopic 
results obtained showed that cisplatin binds Na, K-ATPase through lipid carbonyl 
group at low concentrations (0.1 μM) and at higher drug concentrations (1 mM) 
binding extends to polypeptide C=O and C–N groups with the binding constant of 
 K  = 1.93 × 10 4  M [ 74 ]. 

 The effi cacy of complexes is dependent on their accumulation in cells. The 
uptake of the platinating agents was long thought to be a result of simple passive 
diffusion. However, years of research have provided better understanding of this 
important step in the drug’s action [ 75 ]. The uptake of cisplatin is infl uenced by 
factors such as sodium and potassium ion concentrations and pH. Ported and gated 
channels have been postulated in addition to passive diffusion also [ 76 ]. 
Unfortunately, the exact mechanisms involved have not been completely defi ned 
and may differ between different cell types. For instance, the infl uence of Na, 
K-ATPase in the uptake of cisplatin in human ovarian carcinoma cells it is reported 
[ 77 ]. This study has shown that cisplatin accumulation in human ovarian carcinoma 
cells is neither saturable nor competitively inhibited by structural analogs. These 
data strongly imply that cisplatin transport is not carrier mediated in these cells 
[ 77 – 79 ]. However, cisplatin accumulation is modulated by cAMP, dependent on the 
membrane potential, partially ouabain inhibitable, partially energy dependent, and 
partially sodium dependent [ 77 ,  80 ,  81 ]. Many of these observations point to a cen-
tral role for the Na, K-ATPase in cisplatin accumulation [ 77 ]. The connection 
between cisplatin toxicity and Na, K-ATPase has been made also in the kidney and 
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the inner ear. Cisplatin is particularly damaging to these tissues, not because it 
inhibits or platinates this key protein, but simply because the presence of high levels 
of the Na, K-ATPase α1 isoform may cause much higher levels of cisplatin to be 
brought into these cells. The converse, however, is not true since hepatic tissue is 
virtually devoid of Na, K-ATPase, yet it accumulates signifi cant amounts of cispla-
tin [ 77 ,  82 ,  83 ]. Clearly, the connection between Na, K-ATPase levels and cisplatin 
toxicity is more complicated than a simple correlation with cisplatin accumulation.  

3.1.2     Inhibition of Na, K-ATPase Activity with Platinum Complexes 

 With the aim to check if the platinum compounds induced nephrotoxicity could be 
resulted from the inhibition of kidney Na, K-ATPase activity, Kitada et al. investi-
gated in vitro infl uence of cisplatin, nedaplatin, and carboplatin on the activity of 
purifi ed renal Na, K-ATPase from pig kidneys and on the viability of human renal 
proximal tubule epithelial cells (HRPTE cells) [ 84 ]. The viability of HRPTE cells 
which were cultured for 3 days in the presence of various concentrations of the 
investigated platinum analogs was measured. The obtained results showed 
concentration- dependent decrease in HRPTE cells, but with varying toxic potencies 
of the platinum agents. The concentrations to decrease 50 % of the viable cells were 
50, 120, and 380 μM for cisplatin, nedaplatin, and carboplatin, respectively [ 84 ]. 

 Afterwards, the effects of different concentrations of cisplatin, nedaplatin, and 
carboplatin on purifi ed renal Na, K-ATPase activity from a pig kidney were tested. 
Cisplatin and nedaplatin inhibited the enzyme activity in concentration-dependent 
manner with obtained half maximal inhibition concentrations of 0.6 and 1.5 mM, 
respectively for cisplatin and nedaplatin, after 3 h preincubation in the presence of 
these compounds. In these preliminary experiments, it was found that the inhibition 
was not only concentration dependent but also preincubation time-dependent. The 
obtained dependence of the enzyme activity on preincubation time shows the prein-
cubation time-dependent inhibition of Na, K-ATPase in the presence of 1 mM plati-
num analogs. The extent of inhibition after 3 h preincubation was 83, 44, and 29 % 
( p  < 0.05) for cisplatin, nedaplatin, and carboplatin, respectively [ 84 ]. 

 The inhibitory effect of Na, K-ATPase was rated as cisplatin > nedaplatin > car-
boplatin, which is in accordance with the rating in decreasing viable HRPTE cells. 
The observed coincidence indicated that the platinum compounds induced nephro-
toxicity could be resulted from the inhibition of kidney Na, K-ATPase activity. This 
explanation is confi rmed by the reported clinic studies about the reduced nephrotox-
icity of carboplatin and nedaplatin, second-generation platinum anticancer drugs 
having equivalent or superior antitumor activity related to cisplatin [ 85 ,  86 ]. The 
concentrations to decrease the viable cells and to inhibit the Na, K-ATPase activity 
were different, which may be explained by the difference in the time necessary for 
the experiments. Three days were necessary to test cell viability, and the change in 
drugs from an inactive to an active form continued during those 3 days [ 87 ]. On the 
other hand, several hours were necessary to analyze the effects on the ATPase activ-
ity, and only a small part of the drugs changed during this period. Preincubation 
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time-dependent inhibition also might have been caused by the slow change in the 
drugs from the inactive to the active form [ 84 ]. Additionally, the more detailed 
infl uence of cisplatin on purifi ed renal Na, K-ATPase activity was tested. The 
enzyme reaction was done in the presence of various cisplatin concentrations and 
for various preincubation periods with cisplatin, and then the remaining activity 
(a percentage of the enzyme activity related to control activity obtained without 
inhibitor) was measured. The inhibition was evidently both concentration- and pre-
incubation time-dependent [ 84 ]. 

 Sakakibara et al. studied the effect of cisplatin on partially purifi ed Na, K-ATPase 
from Ca9-22 cells derived from a human squamous cell carcinoma of the gingiva 
[ 88 ]. The authors started their study from the assumption that Na, K-ATPase is 
involved in the transport of cisplatin into cells and acts as a modulator of 
5- fl uorouracil in combination therapy of cisplatin and 5-fl uorouracil. Additionally, 
Na, K-ATPase is expected to have effects on both anticancer therapy and nephrotox-
icity induced by cisplatin treatment. As in previously described study, the obtained 
cisplatin induced inhibition of Na, K-ATPase activity depended on both, the drug 
concentration and preincubation time of the enzyme with cisplatin. The infl uence of 
cisplatin on the partial reactions of the enzyme, Na + -dependent ATP hydrolysis and 
K + -dependent  p -nitrophenylphosphate hydrolysis activities was also tested, to deter-
mine which step in the reaction sequence of Na, K-ATPase was inhibited. Cisplatin 
inhibited both activities depending on its concentration and the preincubation time, 
whereas the Na + -dependent ATP hydrolysis activity was inhibited even at lower 
concentrations. Formation of a phosphointermediate of Na, K-ATPase was also 
inhibited by cisplatin, depending on the concentration and preincubation time. 
These results suggested that the active form of cisplatin inhibits the Na, K-ATPase 
activity by inhibiting the formation of a phosphointermediate of the enzyme [ 88 ]. 

 Uozumi and Litterst studied the effect of cisplatin on renal ATPase activity in 
in vitro and in vivo conditions to investigate the correlation between nephrotoxicity 
and the inhibition of ATPase activity induced by cisplatin [ 89 ]. In the fi rst set of 
in vitro experiments, commercially available purifi ed Na, K-ATPase from dog kid-
ney was preincubated during 0–240 min with cisplatin at concentrations of 
50–800 μM before the determination of the enzyme activity. The obtained inhibition 
of the enzyme activity was time- and concentration-dependent. In the experiments 
performed without preincubation of the enzyme with inhibitor, high concentration 
of cisplatin of 280 μM was necessary to achieve IC 50  value (platinum concentration 
inducing 50 % the enzyme inhibition related to control activity in the absence of 
inhibitor). In the case of a lower platinum concentration (200 μM), 50 % inhibition 
of Na, K-ATPase activity was reached at a long period of preincubation (160 min). 
Another set of in vitro experiments was carried out using kidney homogenate from 
female Sprague-Dawley rats instead of purifi ed Na, K-ATPase. Na, K-ATPase in rat 
kidney homogenate was less sensitive toward cisplatin, compared with the purifi ed 
enzyme. Actually, the activity of the enzyme present in kidney homogenate was 
inhibited by 50 % after 110 min preincubation with 800 μM cisplatin or 160 min 
preincubation with 400 μM cisplatin. In in vivo experiments, female Sprague- 
Dawley rats were treated with 5, 7, or 10 mg/kg of cisplatin. ATPase activity and 
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platinum concentration in kidney homogenate were evaluated 1 h, 6 h, 1 day, 3 days, 
and 5 days after cisplatin injection. Normal ATPase activity was preserved after 3 
days of the treatment at all administered doses. The highest concentration of plati-
num determined in kidney tissue was 19.3 μg/g tissue. However, this platinum con-
centration was not suffi cient to signifi cantly inhibit Na, K-ATPase activity 
determined under the described in vitro conditions. On the basis of this fact, the 
authors conclude that it seems unlikely that the inhibition of ATPase activity is the 
cause of nephrotoxicity, although cisplatin can affect ATPase activity [ 89 ]. 

 Oppositely, some authors are claiming that cisplatin, however, is an ineffective 
inhibitor of Na, K-ATPase either in vitro or in vivo, requiring high concentrations to 
cause an affect if any [ 75 ,  77 ,  90 ].  

3.1.3     Recovery of Cisplatin-Induced Na, K-ATPase Inhibition 

 Some earlier studies indicated that some drugs containing sulfhydryl reagent can 
suppress the nephrotoxicity of cisplatin without comprising its antitumor activity 
[ 91 ,  92 ]. For this reason, Kitada et al. [ 84 ] tested the effects of thiol (–SH) contain-
ing compounds: 2-mercaptoethanol (2-ME), a reduced form of glutathione (GSH), 
an oxidized form of glutathione (GSSG), cysteine (Cys), sodium thiosulfate (STS), 
sodium sulfate, and fosfomycin to fi nd out whether cisplatin-inhibited Na, K-ATPase 
activity could be recovered by them. Preliminary experiments demonstrated that the 
tested compounds did not inhibit Na, K-ATPase activity at the concentrations used 
in the recovery experiments. At fi rst, the enzyme was preincubated with 0.5 mM 
cisplatin for 120 min, when about 70–80 % of the activity was lost. Then, the solu-
tions containing the tested reagents at the fi nal concentrations were added, and pre-
incubation was continued. The Na, K-ATPase activity was measured at 180 and 
240 min after the start of incubation. The activity without any reagent (only cispla-
tin was present) was continued to decrease until 240 min [ 84 ]. 

 The addition of 2-ME gradually recovered cisplatin-inhibited Na, K-ATPase 
activity, depending on both its concentration and incubation time. Cys, GSH, and 
STS also recovered the activity, but their extents of recovery were very small com-
pared to that of 2-ME. On the other hand, the recovery of cisplatin-inhibited activity 
was not observed by the addition of GSSG, sodium sulfate, or fosfomycin, which do 
not contain thiol groups [ 84 ]. 

 Sakakibara et al. investigated possibility of 2-ME to recover Na, K-ATPase activ-
ity inhibited by cisplatin [ 88 ]. In this purpose, Na, K-ATPase was partially purifi ed 
from Ca9-22 cells derived from a human squamous cell carcinoma of the gingiva. 
In recovery experiments, previously inhibited Na, K-ATPase by cisplatin was 
treated with an appropriate 2-ME concentration. In prevention experiments, cispla-
tin and 2-ME were added in a ratio before the enzyme reaction. The obtained results 
demonstrated that 500 μM cisplatin and eightfold higher concentration of 2-ME 
(4 mM) prevented inactivation of Na, K-ATPase by cisplatin. Furthermore, the Na, 
K-ATPase activity inhibited by pretreatment with cisplatin was also recovered 
almost completely by 2-ME addition. 
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 The described ability of the thiol compounds to effectively recover and prevent 
the inactivated Na, K-ATPase activity suggests that they could be promising candi-
dates to decrease nephrotoxicity during anticancer therapy with platinum contain-
ing drugs.   

3.2     Gold Complexes 

 The interests for the application of gold (Au) in the fi eld of medicinal inorganic 
chemistry as a potential anticancer drug have dramatically increased because of 
very promising results of its complexes in cancer treatment [ 93 – 97 ]. Great number 
of gold(III) complexes were synthesized with the aim to overcome side effects of 
the platinum(II) anticancer drugs, such as gastrointestinal and hematological toxic-
ity, or drug-resistance phenomena [ 98 ,  99 ]. Unlike platinum drugs, it was found that 
proteins, rather than DNA, are the main target for the biological actions of gold 
complexes [ 100 ]. Thus it was proposed that the molecular basis for the biological 
action of gold(III) complexes could be the modifi cation of surface protein residues 
and associate loss of protein function [ 43 ,  101 ]. A number of gold(III) compounds 
showing signifi cant antiproliferative effects in vitro against a number of cancer cells 
[ 102 ]. It was shown that some bipyridyl gold(III) compounds ([Au(bipy)(OH) 2 ]
[PF 6 ], (bipy = 2,2′-bipyridine) (Aubipy)) exhibit excellent cytotoxic properties 
towards various human cancer cell lines: ovarian cell lines A2780 and SKOV3, as 
well as CCRF-CEM leukemic cell line interact with sodium pump [ 103 ]. 

3.2.1     Structure and Chemistry of Gold Complexes 

 Gold is isoelectronic with platinum(II) and forms tetra-coordinate complexes with 
the same square-planar geometries as cisplatin [ 104 ]. Great number of gold(III) 
complexes were synthesized in order to reproduce the main features of cisplatin, 
and were later found to have completely different molecular targets. There is an 
evidence that borate capped Au nanoparticles interacts with protein molecules 
due to the chemical bonding between nanoparticles surface and positive charged 
cysteine moiety [ 105 ]. Highly reactive gold(III) complexes have large positive 
redox potentials but show a relatively poor stability under physiological conditions 
[ 99 ,  106 ]. Multidentate ligands with nitrogen atoms as donors, such as polyamines, 
cyclams, terpyridines, phenanthrolines, and bdma ( N -benzyl- N , N -dimethylamine), 
were the most effective in stabilizing the gold(III) center and improving stabil-
ity of gold(III) complexes [ 95 – 97 ,  101 ]. In particular, square planar gold(III) 
complexes that contain functionalized bipyridine ligands of general formula 
[Au( N , N )Cl 2 ][PF 6 ] (where  N , N  = 2,2′-bipyridine, 4,4′-dimethyl-2,2′-bipyridine, 
4,4′-dimethoxy-2,2′-bipyridine, and 4,4′-diamino-2,2′-bipyridine) (Fig.  24.2 ) [ 101 , 
 107 ] are stable under physiological conditions. These complexes displayed appre-
ciable stability in solution [ 108 ]. As an example, [Au(bipy c -H)(OH)][PF 6 ] (where 
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bipy c  = 6-(1,1-methylbenzyl)-2,20-bipyridine) (Fig.  24.2 ,  1 ) and [Au(bipy)(OH) 2 ]
[PF 6 ] (bipy = bipyridine) (Fig.  24.2 ,  2 ) exerted only small deviations from ideal 
square planar geometry characteristic for the classical bipyridyl complexes whereas 
such deviations are quite large in the case of cyclometallated derivatives. Both men-
tioned compounds exhibited suffi cient solubility in watery solutions. In [Au(bipy)
(OH) 2 ][PF 6 ], the Au(III) center is coordinated by two nitrogens of the bidentate 
bipyridyl ligand and by two hydroxide groups. On the contrary, [Au(bipy c -H)(OH)]
[PF 6 ] is an organogold(III) complex in which donors to the Au(III) center are two 
nitrogens from the bipyridyl moiety, the C2 carbon of the phenyl group, and a 
hydroxide group. Only small deviations from ideal square planar geometry were 
seen in the classical bipyridyl complexes whereas such deviations are quite large in 
the case of cyclometallated derivatives [ 101 ].

   Since Au(III) complexes manifest the strong affi nity towards S-donor ligands 
such as glutathione and  L -cysteine, and a limited reactivity against nucleosides and 
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  Fig. 24.2    Structures of Au(III) complexes. Schematic drawing of [Au(bipy c -H)(OH)][PF 6 ] ( 1 ), 
[Au(bipy)(OH) 2 ][PF 6 ] ( 2 ), [Au(bipy dmb -H)(2.6-xylidine-H)][PF 6 ] ( 3 ), [Au(py dmb -H)(AcO) 2 ] ( 4 ) 
(where bipy dmb  = 6-(1,1-dimethylbenzyl)-2,2′-bipyridine; py dmb  = 2-(1,1-dimethylbenzyl)-pyridine) 
and of the gold(III) dithiocarbamate complexes containing  N , N -dimethyldithiocarbamate ( 5 ) and 
ethylsarcosinedithiocarbamate ( 6 ) ligands       
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their bases, exposed cysteine residues of proteins might be their proper targets. 
They can also cleave the disulfi de bond of cystine [ 109 ,  110 ], and oxidize methio-
nine [ 111 – 113 ] and glycine [ 114 ], suggesting that amino terminus of peptides and 
proteins could be deaminated by Au(III).  

3.2.2     Inhibition of Na, K-ATPase Activity with Gold(III) Complexes 

 In vitro inhibition studies of complexes [Au(bipy)(OH) 2 ][PF 6 ], [Au(py dmb -H)
(CH 3 COO) 2 ], [Au(bipy dmb -H)(OH)][PF 6 ], [AuCl 4 ] − , [Au(DMSO) 2 Cl 2 ]Cl, and 
[Au(bipy)Cl 2 ]Cl (Fig.  24.2 :  2 ,  4 ,  1 , respectively and Fig.  24.3 ) performed with Na, 
K-ATPase purifi ed from human red blood cells and from porcine cerebral cortex 
showed that Au(III) complexes dose-dependently inhibit Na, K-ATPase activity 
(Fig.  24.4 ) [ 115 ,  116 ]. Inhibitory parameters obtained using Hill analysis of inhibi-
tion curves (Fig.  24.4 , insets) demonstrate variable potencies of the Au(III) com-
plexes (Table  24.1 ) [ 115 ,  116 ]. In all cases, the high Hill coeffi cient ( n  > 1) is 
observed. This suggests a strong positive cooperation of the inhibitor binding to the 
Na, K-ATPase. The kinetic studies results in curves which obeyed typical Michaelis–
Menten kinetics, presented in Fig.  24.5a . Obtained kinetic parameters ( V  max  and  K  m ) 
were derived using Lineweaver–Burk transformation of the experimental data 
(Fig.  24.5b ) [ 116 ].

      Such analysis transformed the hyperbolic Michaelis–Menten function into linear 
Lineweaver–Burk function with the possibility for much easier determining of  V  max  
and  K  m  values. The obtained results are summarized in Table  24.2  [ 115 ,  116 ]. These 
data suggest that  V  max  decreased in the presence of the inhibitors, while  K  m  remained 
constant, comparing to the control. This kind of enzyme behavior in the presence of 
Au(III) complexes indicated the noncompetitive reversible type of Na, K-ATPase 
inhibition. This mode of interaction suggests that the inhibitor and the substrate 
bind randomly and independently of each other at different enzyme sites. Na, 
K-ATPase affi nity for binding with [Au(bipy)(OH) 2 ][PF 6 ], [Au(py dmb -H)
(CH 3 COO) 2 ], and [Au(bipy dmb -H)(OH)][PF 6 ] is determined, using the secondary 

  Fig. 24.3    Structural formulas of Au(III) compounds. ( a ) [AuCl 4 ] − , ( b ) [Au(DMSO) 2 Cl 2 ]Cl, and 
( c ) [Au(bipy)Cl 2 ]Cl       
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  Fig. 24.4    Inhibition of Na, K-ATPase from porcine cerebral cortex activity with Au(III) com-
plexes. ( a ) [Au(bipy)(OH) 2 ][PF 6 ], [Au(py dmb -H)(CH 3 COO) 2 ], [Au(bipy dmb -H)(OH)][PF 6 ]; and ( b ) 
[AuCl 4 ] − , [Au(DMSO) 2 Cl 2 ]Cl, and [Au(bipy)Cl 2 ]Cl. The dependencies of relative enzyme activity 
(REA), expressed as a percentage of the control value (Na, K-ATPase activity obtained without 
inhibitor on the concentration of Au(III) complexes).  Inset : Hill analysis of inhibition curves. The 
values given are the mean of at least three experiments ± S.E.M. [ 115 ,  116 ], respectively       
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replot of the Lineweaver–Burk graph (Fig.  24.5c ), and presented as the inhibitor 
constant ( K  i ), i.e., dissociation constant of the enzyme–inhibitor complex in 
Table  24.2  [ 116 ].

3.2.3        Prevention and Recovery of Gold(III) Complexes Induced Na, 
K-ATPase Inhibition 

 The inhibitory effect of Au(III) complexes can be prevented and recovered by the 
addition of –SH donors,  L -cysteine and GSH, the biomolecules usually present in 
physiological liquids. The dose-dependent prevention of enzyme inhibition with 
[Au(bipy)(OH) 2 ][PF 6 ], [Au(py dmb -H)(CH 3 COO) 2 ], and [Au(bipy dmb -H)(OH)][PF 6 ] 
in the presence of both –SH donors is presented in Fig.  24.6  [ 115 ,  116 ]. For each 
inhibitor the concentrations were equal to their IC 20 , IC 50 , and IC 100  values, i.e., the 
concentrations of inhibitor which induce 20 %, 50 % and 100 % enzyme inhibition, 
respectively. The complete prevention of inhibition in the presence of –SH donors 
was achieved for inhibitor concentration corresponding to the IC 20  values of each of 
the three investigated Au(III) complexes [ 116 ]. The recovery effect of –SH donors 
on the inhibition of Na, K-ATPase induced by the Au(III) complexes was also 
shown. In the case of GSH, even 1 × 10 −4  M showed the signifi cant recovery of the 
inhibited enzyme activity (about 40 %) in the presence of complexes which induced 
the complete inhibition [ 116 ]. The similar results were obtained for prevention and 
reactivation of Na, K-ATPase activity with complexes [AuCl 4 ] − , [Au(DMSO) 2 Cl 2 ]
Cl and [Au(bipy)Cl 2 ]Cl [ 115 ].

   The likely reason for prevention of inhibition is the fast formation of the inactive 
[AuCl( L -Cys)(DMSO) 2 ] + complex analogous to the [PtCl( L -Cys)(DMSO) 2 ] of 
Bugarčić et al. [ 117 ], prior to the formation of the [Au(III)complex (enzyme)] +  
 complex. Further reduction of Au(III), resulting in the formation of Au(I) and Au 
colloids in the slower second reaction step, is likely in the prevention and the recov-
ery experiments when GSH and  L -Cys were added to the media. This process is 
common for –SH containing ligands, and the fast replacement of the ligand in coor-
dination sphere of Au(III) complexes leads usually to reduction [ 118 ]. This reduc-
tion leads also to the formation of colloidal Au particles which are even able to 

   Table 24.1    IC 50  values and Hill coeffi cients for the inhibition of Na, K-ATPase, isolated from 
human blood cells and porcine cerebral cortex (PCC), induced by Au(III) complexes   

 IC 50  × 10 6  (M)   n  

 Complex  Human blood cells  PCC  PCC 

 AubipyOH [ 116 ]  2.5 ± 0.5  3.5 ± 0.1  1.1 ± 0.2 
 AupyOAc [ 116 ]  6.9 ± 0.5  7.6 ± 0.1  1.6 ± 0.4 
 Aubipy c  [ 116 ]  6.4 ± 0.5  7.3 ± 0.1  1.6 ± 0.3 
 [AuCl 4 ] −  [ 115 ]  Not done  7.24 ± 0.02  5.26 ± 0.01 
 [Au(DMSO) 2 Cl 2 ] +  [ 115 ]  Not done  5.49 ± 0.02  2.25 ± 0.01 
 [Au(bipy)Cl 2 ] +  [ 115 ]  Not done  3.84 ± 0.02  4.52 ± 0.01 
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  Fig. 24.5    Kinetic analysis 
of Na, K-ATPase porcine 
cerebral cortex showed that 
interaction with [Au(bipy)
(OH) 2 ][PF 6 ], [Au(py dmb -H)
(CH 3 COO) 2 ], and 
[Au(bipy dmb -H)(OH)][PF 6 ]. 
( a ) Initial reaction rate ( v  0 ) 
vs. MgATP 2−  concentration 
in the absence (control) 
and presence of 
2.5 × 10 −6  M AubipyOH, 
5 × 10 −6  M AupyOAc and 
5 × 10 −6  M Aubipyc. The 
values given are the mean 
of at least three 
experiments; ( b ) 
Lineweaver–Burk 
linearization of the 
obtained results. ( c ) 
Secondary replots of 
Lineweaver–Burk graphs: 
slope vs. the inhibitor 
concentrations for Au(III) 
complexes [ 116 ]       
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    Table 24.2    The values of kinetic parameters and inhibitory constants for Au(III) complexes 
determined from Lineweaver–Burk linearization of Michaelis–Menten hyperbola   

 Sample   K  m  (mM)   V  max  (mmol/h/mg)   K  i  (M) 

 Control [ 116 ]  0.69 ± 0.07  0.094 ± 0.005  – 
 AubipyOH [ 116 ]  0.68 ± 0.10  0.052 ± 0.005  1.42 × 10 −6  
 AupyOAc [ 116 ]  0.68 ± 0.12  0.050 ± 0.006  5.97 × 10 −6  
 Aubipyc [ 116 ]  0.67 ± 0.09  0.051 ± 0.004  6.02 × 10 −6  
 Control [ 115 ]  0.79 ± 0.07  0.094 ± 0.005  – 
 [AuCl 4 ] −  [ 115 ]  0.63 ± 0.10  0.047 ± 0.004  – 
 [Au(DMSO) 2 Cl 2 ] +  [ 115 ]  0.73 ± 0.11  0.059 ± 0.005  – 
 [Au(bipy)Cl 2 ] +  [ 115 ]  0.67 ± 0.11  0.057 ± 0.009  – 

  Fig. 24.6    Prevention and recovery of Au(III) complexes inhibition of Na, K-ATPase with –SH 
donors. Prevention of Na, K-ATPase inhibition ( a ) and recovery ( b ) by  L -cysteine; and prevention 
( c ) and recovery ( d ) by GSH, in the presence of gold(III) complexes at concentrations which 
induce 20 % ( line group 1 ), 50 % ( line group 2 ) and 100 % ( line group 3 ) enzyme inhibition. These 
characteristic concentrations were: IC 20  = 6 × 10 −6  M, IC 50  = 2.5 × 10 −6  M, and IC 80  = 6 × 10 −7  M, for 
AubipyOH; IC 20  = 1.5 × 10 −5  M, IC 50  = 7 × 10 −6  M, and IC 80  = 2 × 10 −6  M for AupyOAc and 
IC 20  = 1.5 × 10 −5  M, IC 50  = 7 × 10 −6  M, and IC 80  = 2 × 10 −6  M for Aubipyc [ 115 ,  116 ]       
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enhance the enzyme activity [ 105 ]. The recovery of the activity was achieved when 
the concentration of thiols was equal or higher than the concentration of the 
 complexes. These results can be explained by enzyme extruding from [Au(III)
complex(enzyme)] complex and its substitution with smaller and more reactive –SH 
donor. A similar effect was earlier demonstrated on Pd(II) complexes [ 119 ]. In addi-
tion, Au(III) compounds can oxidatively cleave disulfi de bonds of β unit, and this 
may contribute to the lost non-recoverable enzyme activity [ 109 ,  110 ,  120 ]. 

 For all studied Au(III) complexes the action of gold is more complex than simple 
interaction with the –SH groups of the enzyme, and the redox reactions with  L -Cys 
residues and disulfi de bonds of Na, K-ATPase must be also taken into account. The 
disulfi de bridges in the Na, K-ATPase are required for enzyme functionality. 
The removal of disulfi de bonds from the β subunit due to the redox reactions of gold 
complexes can lead to the signifi cant functional alterations [ 120 ].   

3.3     Ruthenium Complexes 

 Ruthenium (Ru) arene anticancer complexes are being widely studied as potential 
alternatives to platinum chemotherapeutics especially because resistance to 
platinum- based drugs represents a major clinical drawback for compounds such as 
cisplatin and oxaliplatin [ 121 ,  122 ]. Compared to Pt drugs Ru complexes cause less 
side effects and resistances against the drug are less likely [ 123 ,  124 ]. 

 Ruthenium coordination compound KP1019 indazolium  trans -[tetrachlorobis
(1 H -indazole)ruthenate (III)] (FFC14A) (Fig.  24.7 ) is a ruthenium complex with 
promising anticancer activity [ 123 ]. It was one of the two fi rst of its kind transferred 
into clinical trials. Ruthenium complex KP1019 entered phase I clinical trials in 2003 
as an anticancer drug which is among others very active against colon carcinomas 

  Fig. 24.7    Chemical 
structure of KP1019       
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and their metastases [ 125 ]. KP1019 more recently showed activity in vitro on 
colorectal cancer cell lines [ 126 ,  127 ] and in vivo on the chemoresistant MAC15A 
colon carcinoma—main tumor type effected colorectal human and animal [ 128 ]. 
KP1019 has been shown to act as a cytostatic and cytotoxic drug on colorectal 
tumor cells in vivo and in vitro [ 129 ,  130 ]. Resistance of tumor cells against this 
compound during chemotherapy is very low. This feature distinguishes this ruthe-
nium compound from many other anticancer drugs. It was shown that KP1019 acts 
as a substrate and as an inhibitor of P-glycoproteins including Na, K-ATPase, 
Ca-ATPase and mitochondrial ATPase. KP1019 dose-dependently inhibited 
P-glycoproteins activity, with an IC 50  value of approximately 31 μM. A week intrin-
sic resistance against KP1019 in highly P-glycoprotein-overexpressing tumors has 
to be taken in consideration [ 123 ].

   Iminopyridine complexes of general formula [Ru(η6- p -cymene)( N , N -dimethyl- 
N    ′-[( E )-pyridine-2-ylmethylidene]benzene-1,4-diamine)X]PF 6  bearing two differ-
ent halido ligands X = Cl (Complex 1) or X = I (Complex 2) (Fig.  24.8 ) possess 
antiproliferative effect [ 121 ]. The structural features of these Ru II  “piano-stool” 
complexes allow fi ne-tuning of their physical and chemical properties and optimiza-
tion of their biological activity [ 2 ,  131 – 133 ]. These complexes contain three basic 
building blocks as shown in Fig.  24.11 : an arene ligand (the “seat” of the “stool”), 
used to control hydrophobicity and to stabilize the oxidation state of the metal cen-
ter, a monodentate ligand, X, initially included as an activation site, and a bidentate 
ligand which provides additional stability [ 134 – 136 ].

   Antiproliferative effect for the complexes in A2780 ovarian, A549 lung, 
HCT116 colon, and MCF7 breast carcinoma cells are presented in Table  24.3  
[ 136 ]. Changes in the monodentate ligand can modify the cellular uptake and accu-
mulation pathways involved in the fi rst stages of drug action. This leads to varia-
tions in cellular distribution of the drug and, in turn, to different apoptotic pathways 
being triggered as a consequence of cellular compartmentalization, hence deter-
mining differences in IC 50  values [ 137 ]. Role of Na, K-ATPase in cellular metal 
accumulation as a facilitated diffusion endocytosis pathway was shown. A2780 
human ovarian carcinoma cells were co-incubated with the complexes and various 
concentrations of ouabain, during 24 h at 37 °C. The amount of Ru taken up by the 
cells was determined by ICP-MS. Co-administration of complexes 1 and 2 with car-
diac glycoside ouabain impaired cellular Ru accumulation. Ruthenium accumulation 

  Fig. 24.8    Structure of Ru 
complexes 1 and 2       
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from complex 1 is almost halved when co-administered with 200 mM of ouabain. 
Similarly, for complex 2, Ru accumulation decreases by ca. 40 % when co-admin-
istered with the same concentration of ouabain. These results suggest that the cel-
lular uptake of these ruthenium complexes relies at least in part on facilitated 
diffusion, and in particular is dependent on the membrane potential [ 121 ].

3.4        Vanadium Complexes 

 Vanadium (V), is a metal possessing a well-defi ned geometry of its inner coordina-
tion sphere, regarding to the usual oxidation states of the metal [(III), (IV) and (V)], 
while its outer sphere (moieties) is not subject to such limitations. There is, thus, a 
donation of an electron pair from ligands of the inner sphere to the metal, conferring 
a high degree of covalent character to the resulting bond. Structural information on 
the oligomeric species in aqueous solution is diffi cult to obtain [ 138 ]. At high pH 
V(V) (Fig.  24.9a ) is the most stable form of vanadium in aqueous solution, whereas 
at low pH the V(IV) (Fig.  24.9b ) species is more favored. From pH 2 to 6, the major 
V(V) species is the decamer, [V 10 O 28 ] 6−  (Fig.  24.9c ) and its various protonated 
forms. The biological effects of aqueous solutions containing mixtures of oxovana-
dates refl ect that some structural analogy to the corresponding phosphate deriva-
tives does exist [ 138 ]. Vanadate (V) and oxovanadium (IV) complexes are, both 
inhibitors of protein phosphotyrosines (PTPs) in many cells, acting with different 

   Table 24.3    Antiproliferative activity of complexes 1 and 2, in A2780, A549, HCT116, and MCF7 
cell lines and cellular accumulation of Ru in A2780 cells after 24 h of the drug exposure at 37 °C*   

 Complexes 

 IC 50  (μM)  Cell accumulation 

 A2780  A549  HCT116  MCF7  A2780 

 1  16.2 ± 0.9  105 ± 0.8  3.4 ± 0.4  12.1 ± 0.3  7.8 ± 0.5 
 2  3.0 ± 0.2  15.3 ± 0.9  8.6 ± 0.8  4.4 ± 0.3  11.5 ± 0.8 

   * Cell accumulation experiments did not include recovery time in drug free media. Results are 
expressed as ng Ru per 10 6  cells, and the concentrations used were equipotent, in all cases IC 50 /3  

  Fig. 24.9    Schematic structures of vanadium complexes. ( a ) Orthovanadate, ( b ) oxovanadium, and 
( c ) decavanadate anions. Va, Vb, and Vc represent the three different types of vanadium atoms       
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mechanisms [ 139 – 141 ]. The inhibitory studies assume that vanadate acts as a phos-
phate analog and presumably inhibits the enzymes as a transition state analog for 
the phosphoryl group transfer [ 142 – 144 ].

   It is suggested that vanadium complexes might be used in chemotherapy due to 
their antiproliferative activity, cytostatic/cytotoxic activity (in apoptotic or necrotic 
way) and antimetastatic activity [ 145 ,  146 ]. It was reported that vanadium com-
plexes prevent animal carcinogens by inhibition of mouse and rat cells prolifera-
tion and differentiation [ 147 ] and that early protective effect of vanadium in 
chemically induced rat colon carcinogenesis may be mediated by a reduction of 
carcinogen- induced DNA damage [ 148 ]. It was reported that CoV 10  in vitro inhibited 
the proliferation in human SMMC-7721 cells (liver cancer) and human SK-OV-3 
cells (ovary cancer), and also the tumor growth was inhibited with the administration 
of CoV 10  in vivo, which showed higher antitumoral activity both in vitro and in vivo. 
Although the mechanism of antitumoral activity of CoV 10  had not been clarifi ed 
yet the data suggest that CoV 10  specifi cally induced cell apoptosis [ 149 ]. Antitumor 
activity of two ammonium decavanadate compounds (H 2tmen ) 3 V 10 O 28  × 6H 2 O and 
(H 2en ) 3 V 10 O 28  × 2H 2 O against human A549 (lung carcinoma) and mouse P388 (leu-
kemia) cells lines was shown using MTT-based assay. Both compounds inhibit 
 proliferation of these two kinds of tumor cells [ 150 ]. It was shown that intracellular 
vanadium blocks several events essential for terminal differentiation, one of which 
is a decrease in Na, K pump activity [ 12 ]. 

3.4.1     Inhibition of Na, K-ATPase Activity with Vanadate Complexes 

 Vanadate is a specifi c and potent Na, K-ATPase inhibitor in vitro. The dog kidney 
Na, K-ATPase is inhibited 50 % by 40 nM Na 3 VO 4  under optimal conditions 
(28 mM Mg 2+ ) and the inhibition is 100 % reversible by millimolar concentrations 
of norepinephrine [ 151 ]. Vanadate interactions with the Na, K-ATPase were charac-
terized. Vanadate binds to one high affi nity site ( K  l  = 4 nM) and one low affi nity site 
( K  2  = 0.5 μM) per enzyme molecule (i.e., per ouabain binding site) under optimal 
conditions. Saturation of the high affi nity site is suffi cient to cause greater than 
95 % inhibition of Na, K-ATPase activity. Competitive inhibition experiments indi-
cate that the high affi nity vanadate site is identical with a low affi nity ATP site 
( K  m  = 3 mM) on the enzyme. The low affi nity vanadate site is responsible for inhibi-
tion of Na + -stimulated adenosine triphosphatase activity and is probably the high 
affi nity ATP site associated with sodium-dependent protein phosphorylation [ 152 ]. 
Using fl uorescein-labeled Na, K-ATPase Karlish et al. showed that vanadate inhib-
its Na, K-ATPase by blocking a conformational change of the unphosphorylated 
form [ 153 ]. 

 Cytoplasmic reduction of vanadate by glutathione has been recognized since 
1980 [ 154 ]. During vanadate uptake and reduction by red cells, Na, K-ATPase was 
inhibited 60 %. Cytoplasmic reduction of vanadium (V) to vanadium (IV) can explain 
why the Na, K-ATPase in vivo seemed resistant to inhibition by vanadate [ 154 ]. 
Vanadium (IV) is a less potent inhibitor of the Na, K ATPase and when vanadium (V) 
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is reduced to vanadium (IV), it cannot inhibit this enzyme at attainable in vivo con-
centrations of vanadium (IV) [ 154 ,  155 ]. Tetravalent vanadium was a relatively 
potent inhibitor of membrane bound kidney Na, K-ATPase producing nearly com-
plete inhibition at a concentration of less than 5 μM in some highly purifi ed prepara-
tions of the enzyme. It was not possible to defi ne an equilibrium constant for the 
inhibition since the degree of inhibition varied greatly between different enzyme 
preparations and vanadyl ion stability over time [ 156 ]. 

 It was reported that decavanadate (V 10 ) is the major protein-bound species of 
vanadium and have a stronger effect on various enzymes, when compared to other 
vanadate oligomers [ 157 ]. Inhibitions of several adenosine triphosphatases, such as 
P-type ATPases have been shown [ 158 ]. The effect of V 10  on synaptic plasma mem-
brane (SPM) and commercial porcine cerebral cortex Na, K-ATPase activity was 
investigated by in vitro exposure to the enzymes [ 159 ]. The results show that V 10  
induce inhibition of enzymatic activity in a concentration-dependent manner in both 
cases (Fig.  24.10a ). The IC 50  values of the investigated compound for both samples 

  Fig. 24.10    Inhibition of 
Na, K-ATPase with V 10 . 
( a ) The concentration- 
dependent inhibition, and 
( b ) Hill analysis of SPM 
Na, K-ATPase ( square ) 
and commercial porcine 
cerebral cortex Na, 
K-ATPase ( asterisk ) by V 10  
[ 159 ]       
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were determined by sigmoidal fi tting the experimental results (Fig.  24.10b ) as well 
as by Hill analysis and are summarized in Table  24.4  [ 159 ]. The nature of commer-
cial porcine cerebral cortex Na, K-ATPase inhibition by V 10  was characterized as 
mixed type of inhibition. V 10  induced signifi cant decrease of enzyme maximal 
velocity ( V  max ), as well as decrease of its apparent affi nity for the substrate (ATP) 
(increased  K  m  value) (Table  24.4  and Fig.  24.11 ) [ 159 ].

    Table 24.4    The inhibition parameters of the SPM and commercial Na, K-ATPase inhibition by 
V 10  obtained by fi tting the experimental points using sigmoidal function and Hill analysis. Kinetic 
analysis of commercial porcine cerebral cortex Na, K-ATPase activity in the absence (control) and 
presence of V 10  (1.30 × 10 −6  M) [ 159 ]   

 Sigmoidal fi tting  Hill analysis 

 IC 50  (M)   n   IC 50  (M) 

 SPM Na, K-ATPase  (4.74 ± 1.15) × 10 −7   0.81 ± 0.13  4.79 × 10 −7  
 Commercial Na, K + -ATPase  (1.30 ± 0.10) × 10 −6   0.88 ± 0.03  1.71 × 10 −6  
 Michaelis–Menten kinetics 

 Control  V 10  
  K  m  (mM)  1.68 ± 0.14 a  

 1.76 ± 0.02 b  
 2.38 ± 0.20 a  
 2.69 ± 0.09 b  

  V  max  (μmol P i /h/mg)  59.93 ± 2.02 a  
 61.13 ± 1.75 b  

 39.65 ± 1.72 a  
 41.87 ± 1.35 b  

   a Values obtained by Lineweaver–Burk transformation 
  b Values obtained by nonlinear regression fi tting-hyperbola function;  n —Hill’s coeffi cient;  K  m —
Michaelis constant;  V  max —maximum enzymatic velocity; P i —released inorganic phosphate  
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  Fig. 24.11    Kinetics of Na, K-ATPase inhibition with V 10 . ( a ) Na, K-ATPase activity dependence 
on (MgATP 2− ) in the absence ( square ) and presence of 1 × 10 −6  M ( circle ) V 10 , and ( b ) Lineweaver–
Burk transformation of the data. The values given are the mean of at least three experiments ± SEM, 
conducted in duplicate [ 159 ]       
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3.5           Palladium Complexes 

 Palladium (Pd) complexes are closely related to their platinum analogs, due to their 
structural similarities and signifi cant overlap of coordination chemistry for the two 
metals. Due to the steric effect that results from the bulk on the donor atoms, these 
ligands could minimize any possible  cis – trans  isomerism and ensure the direct sep-
aration of the desired  trans -Pd isomers [ 160 ]. The importance of the  trans -geometry 
around the palladium center has been attributed to the comparatively higher cyto-
toxicity values as those for  cis -isomers [ 161 ]. Palladium complexes exhibit promis-
ing activity against different human tumor cell lines: HCT-15 (colon cancer), MCF-7 
and MDA-MB-231 [ 162 ] (breast cancer), K-562 CML (leukemia), U-251 Glio 
(central nervous system), PC 3 and DU145 [ 163 ] (prostate cancer) cell lines [ 164 ], 
G361 (malignant melanoma) [ 165 ], HeLa (cervical cancer), and HCT 116 (colon 
adenocarcinoma) [ 166 ], A2780 cisR  (ovarian cancer) [ 167 ]. 

3.5.1    Mechanism of [Pd(dien)Cl] +  Interaction with Na, K-ATPase 

 It was confi rmed that Pd(II) complexes interact with Na, K-ATPase preferably 
through bonding to the enzymatic –SH groups. The mechanism of Pd(II) com-
plex—(μ 3 -diethylentriamino)-chloro-palladium(II)-chloride ([PdCl(dien)]Cl) with 
Na, K-ATPase from porcine cerebral cortex was investigated in vitro [ 4 ]. The com-
plex formation between [PdCl(dien)] +  and –SH containing ligands  L -cysteine or 
GSH was monitored spectrophotometrically in the standard reaction medium for 
proper functioning of the enzyme, at pH 7.4 (Fig.  24.12 ) [ 4 ]. The change of the 
absorption spectrum of [PdCl(dien)] +  in the presence of the enzyme is analogous to 
its changes in presence of –SH containing ligands, cysteine or GSH. Such similarity 
suggested that the complex ion interacts with sulfhydryl groups of Na, K-ATPase. 
The enzyme–inhibitor interaction was verifi ed by  1 H NMR spectra indicating that 
the intensity of the peak of the free enzyme (δ 3.823 ppm) decreased with time 
while intensity of the new peak that can be ascribed to the product of this interaction 
(δ 3.044 ppm) increased (Fig.  24.13 ) [ 4 ]. The time course of the reaction between 
[PdCl(dien)] +  and the enzyme is shown in Fig.  24.14  [ 4 ]. The consequence of this 
interaction was the concentration-dependent inhibition of the enzyme activity.

3.5.2         Inhibition of Na, K-ATPase Activity with Palladium Complexes 

 In vitro studies showed that Pd(II) complexes [PdCl 4 ] 2− , [PdCl(dien)] +  and 
[PdCl(Me 4 dien)] +  inhibit dose-dependently Na, K-ATPase from porcine cerebral 
cortex [ 119 ]. Sigmoid-shaped inhibition curves were obtained in all cases 
(Fig.  24.15 ). IC 50  values were determined by Hill analysis of the experimental 
curves (Fig.  24.15 , inset) and presented in Table  24.5  together with Hill coeffi cients 
[ 119 ]. Results indicated that inhibition power of complexes is depended on the 
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  Fig. 24.12    Interaction of [PdCl(dien)] +  and –SH containing ligands. Absorption spectra of 0.1 mM 
[PdCl(dien)] +  ( curve 1 ) in the presence of 2 mg/ml Na, K-ATPase ( curve 2 ), 5 mM  L - cysteine  
( curve 3 ), and 5 mM GSH ( curve 4 ) at pH 7.4 [ 4 ]       

  Fig. 24.13     1 H NMR spectra of the reaction of [PdCl(dien)] +  (5 mM) with Na, K-ATPase as a func-
tion of time [ 4 ]       

 

 



413

  Fig. 24.14    Product 
formation during the 
reaction of [PdCl(dien)] +  
with Na, K-ATPase. 
Calculations were 
performed by relative 
integration (estimated error 
5 %) of suitable proton 
signals of reaction product 
and starting materials 
during reaction [ 4 ]       

  Fig. 24.15    Inhibition of Na, K-ATPase activity by Pd(II) complexes. Dependence of Na, 
K-ATPase activity on [PdCl 4 ] 2−  ( up triangles ), [PdCl(dien)] +  ( squares ) and [PdCl(Me 4 dien)] +  ( cir-
cles ) concentration. The values given are the mean of at least three experiments ± S.E.M. The Hill 
plots constructed from the data obtained by inhibition experiments is shown in the  inset . Regression 
lines were calculated by means of the least square method [ 119 ]       
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structure of ligands. Complexes with massive tridentate ligands and high steric 
hindrance, such as [PdCl(dien)] +  and [PdCl(Me 4 dien)] +  showed lower potency to 
inhibit Na, K-ATPase activity. Hill coeffi cients for the investigated Pd(II) com-
plexes were below 1 ( n  ˂  1) and indicated negative cooperation for binding of these 
inhibitors to Na, K-ATPase. Steric hindrance seems to be responsible for a decrease 
in  n  value below 1 and the loss of the cooperativity. The kinetic properties of the 
enzyme were determined in the presence of inhibitor concentrations as the concen-
trations that inhibited 40–60 % of the enzyme activity and using Eadie–Hofstee 
transformation of the experimental data (Fig.  24.16 ) [ 119 ]. Pd(II) complexes induced 
signifi cant decrease of enzyme  V  max , while  K  m  values remained the same as in the 
control sample (Table  24.6  and Fig.  24.16 ), i.e., substrate (MgATP 2− ) and inhibitor 
were bonded to different sites on enzyme, and the binding of the inhibitor did not 
affect binding of the substrate. According to these results, the nature of Na, K-ATPase 
inhibition by Pd(II) complexes was characterized as noncompetitive type of inhibi-
tion. Affi nities of Na, K-ATPase for binding with Pd(II) complexes were determined 
and characterized with inhibitor constants ( K  i ) (Fig.  24.17  and Table  24.6 ) [ 119 ]. 
Pd(II) complex affi nity for binding to Na, K-ATPase deducted from  K  i  values is: [Pd
Cl 4 ] 2−  > [PdCl(dien)] +  > [PdCl(Me 4 dien)] + . Most likely, the main reason for low 
enzyme–inhibitor affi nity of [PdCl(dien)] +  and [PdCl(Me 4 dien)] +  was steric bulki-
ness that hindered contact of these complexes with enzyme. The values of stability 
constants of enzyme–inhibitor complex, generated as reciprocal inhibitor constants 
( K  s  = 1/ K  i  ≈ 10 4 ), are close to the value of overall binding constants that have been 
reported for the interaction of Na, K-ATPase with Pt(II) complexes [ 74 ].

3.5.3            Prevention and Recovery of Palladium(II) Complexes-Induced Na, 
K-ATPase Inhibition 

 The inhibitory effect of Pd(II) complexes can be prevented and recovered by the 
addition of  L -cysteine or GSH. Pd(II) complexes have a great affi nity for substitu-
tion of the Cl −  ligand by SH-donor ligands, GSH, and  L -cysteine [ 168 ,  169 ]. 

   Table 24.5    IC 50  values and Hill coeffi cients ( n ) for Pd(II) complexes-induced inhibition of Na, 
K-ATPase in the absence and the presence of 1 mM  L -cysteine and GSH [ 119 ]   

 Complex  Thiol  IC 50  (M)   n  

 [PdCl 4 ] 2−   /   a 2.25 ± 0.21 × 10 −5    a 0.88 ± 0.03 
  L -cys  2.5 ± 0.6 × 10 −4  
 GSH  3.1 ± 0.3 × 10 −4  

 [PdCl(dien)] +   /   a 1.21 ± 0.13 × 10 −4    a 0.70 ± 0.05 
  L -cys  7.4 ± 0.8 × 10 −4  
 GSH  8.0 ± 0.5 × 10 −4  

 [PdCl(Me 4 dien)] +   /   a 2.36 ± 0.30 × 10 −4    a 0.69 ± 0.02 
  L -cys  8.2 ± 0.9 × 10 −4  
 GSH  1.4 ± 0.2 × 10 −3  

   a Data obtained by Hill analysis  
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Na, K-ATPase can be observed as a SH-donor ligand since the enzyme has 36 –SH 
groups which are held responsible for interactions of this enzyme with various 
metal ions [ 170 ]. It is generally considered that the nonspecifi c bonding of metal 
ions to enzyme sulfhydryl groups is accompanied by the inhibition of enzymatic 
activity [ 170 ,  171 ]. The inhibitor constants for Pd(II) complexes, obtained by kinetic 
analysis, indicated low stability of inhibitor–enzyme complex compared to the sta-
bility of [PdCl 3− n  L  n  (GSH)] (2−(3− n ))  or [PdCl 3− n  L  n  ( L -Cys)] (2−(3− n ))  [ 117 ]. The prevention 

  Fig. 24.16    Kinetic 
analysis of Na, K-ATPase 
interaction with Pd(II) 
complexes. Initial reaction 
rate ( v ) vs. MgATP 2−  
concentration in the 
absence ( open squares ) 
and presence of 5 × 10 −5  M 
[PdCl 4 ] 2−  ( solid up 
triangles ), 1 × 10 −4  M 
[PdCl(dien)] +  ( solid 
squares ), and 1 × 10 −4  M 
[PdCl(Me 4 dien)] +  ( solid 
circles ). The values given 
are the mean of at least 
three experiments ± S.E.M. 
 Inset : The Eadie–Hofstee 
transformation of the data 
[ 119 ]       

    Table 24.6    Kinetic analysis of Na, K-ATPase in the absence (control) and presence of Pd(II) 
complexes [ 119 ]   

 Inhibitor  Conc. (M)   K  m  (mM)   V  max  (μM P i /h/mg)   K  i  (M) 

 Control  0  0.29 ± 0.01  2.71 ± 0.03  – 
 [PdCl 4 ] 2−   5 × 10 −5   0.29 ± 0.02  1.17 ± 0.03  3.97 × 10 −5  
 [PdCl(dien)] +   1 × 10 −4   0.29 ± 0.01  1.39 ± 0.02  1.04 × 10 −4  
 [PdCl(Me 4 dien)] +   1 × 10 −4   0.29 ± 0.01  1.94 ± 0.03  4.20 × 10 −4  
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of Na, K-ATPase inhibition with [PdCl 4 ] 2−  has been achieved using  L -Cys and GSH 
(Fig.  24.18 ) [ 119 ]. Analogous inhibition curves in the presence of thiols were 
observed for the other two Pd(II) complexes [ 4 ]. The IC 50  values determined from 
inhibition curves in the absence and presence of 1 mM  L -cysteine and GSH for all 
investigated Pd(II) complexes are presented in Table  24.7 . Obviously, the sensitivity 
of Na, K-ATPase to Pd(II) complexes decreased in the presence of SH-containing 

  Fig. 24.17    Dixon transformation of the kinetic analysis data. Reciprocal value of initial reaction 
rate (1/ v ) vs. [PdCl 4 ] 2−  concentration in the presence of several MgATP 2−  concentrations. The  symbols  
representing MgATP 2−  concentrations are shown in the  inset  [ 119 ]       

  Fig. 24.18    Prevention of 
[PdCl 4 ] 2−  induced 
inhibition of Na, K-ATPase 
activity with. 1 mM  L -Cys 
( open up triangles ) and 
1 mM GSH ( open down 
triangles ). The activity of 
control sample without 
SH-donor ligands is given 
as  solid up triangles  [ 119 ]       
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ligands. It was shown that that  L -cysteine and GSH have a dose-dependent recovery 
effect on Na, K-ATPase activity (Fig.  24.19 ). Full recovery was achieved when the 
concentration of SH-containing ligands was equal or higher than the Pd(II) complex 
concentration [ 4 ].

     These Pd(II) complexes could be employed for investigation of their ability to 
detoxify after chemotherapy, since the intracellular concentration of GSH is up to 
8 mM [ 172 ], and is usually much greater than those of cysteine.    

4     Conclusions 

 Involvement of Na, K-ATPase in different biological processes and its overexpres-
sion in pathological states enables its use as a target in anticancer studies. Metal 
based complexes inhibit Na, K-ATPase activity via the –SH groups of the enzyme. 

   Table 24.7    The IC 50  values for [PdCl(dien)] + -induced 
inhibition of Na, K-ATPase in absence and presence of 
1 × 10 −3  M  L -cysteine and 1 × 10 −3  M GSH determined 
by sigmoid fi t of experimental data [ 4 ]           

 Complex  IC 50  (M) 

 [PdCl(dien)] +   (1.1 ± 0.1) × 10 −4  
 [PdCl(dien)] +  +  L -cysteine  (6.9 ± 0.8) × 10 −4  
 [PdCl(dien)] +  + GSH  (7.7 ± 0.5) × 10 −4  

  Fig. 24.19    Recovery effect of  L -cysteine and GSH on the Na, K-ATPase activity inhibited in the 
presence of 5 × 10 −5  M [PdCl 4 ] 2−  ( up triangles ), 1 × 10 −4  M [Pd(dien)Cl] +  ( squares ) and 1 × 10 −4  M 
[Pd(Me 4 dien)Cl] +  ( circles ) [ 119 ]       
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This inhibitory effect of complexes can be prevented and recovered by the addition 
of –SH donors,  L -cysteine and GSH, the biomolecules usually present in physiological 
liquids. These interactions of –SH donor molecules with Na, K-ATPase inhibited 
with the complexes could be used for the development of approaches for prevention 
of toxic side effects of chemotherapy by metal-based drugs.     
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