
Chapter 3
The Flocking Problem

3.1 Introduction

In his influential paper [36], Reynolds describes his algorithm to simulate flocks of
birds by saying that each simulated bird is implemented as an independent actor that
navigates according to its local perception of the dynamic environment, the laws of
simulated physics that rule its motion, and a set of behaviors programmed into it by
the “animator.” The aggregate motion of the simulated flock is the result of the dense
interaction of the relatively simple behaviors of the individual simulated birds.

In this chapter we formulate a version of the flocking problem in which n robots
are required to move in the same direction with the same speed. Like Reynolds, we
require each robot to be an independent actor that takes decisions based on limited
information it can sense about its neighbours. To simplify, for now we think of just
robots in the planemodelled as unicycles. Later, inChap.6, we consider flying robots.

Under appropriate assumptions, the flocking problem for unicycles has a fasci-
nating connection with the problem of synchronizing coupled oscillators. In this
context, the Kuramoto model inspires a control law for flocking. We will establish
a connection between this control law and the flocking algorithm investigated by
Jadbabaie et al. [16].

3.2 Problem Formulation

We begin with n unicycles moving at unit speed:

żi = e jθi

θ̇i = ωi .
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26 3 The Flocking Problem

Recall that zi is the i th robot’s position, θi its heading angle, and ωi the steering
control. The steering controls are restricted to depend on certain sensed variables
as required by the nature of how the cameras function. We denote by ri = e jθi

the unit vector tangent to the trajectory. This is the velocity vector of unicycle i .
Synchronizing the velocity vectors of the unicycles corresponds to synchronizing
the heading angles θi .

Let z denote the vector whose components are the unicycle positions:

z = (z1, . . . , zn).

The neighbours of robot i are those robots that are visible by robot i . For example, if
robot i carries an omnidirectional camera then its neighbours are those robots whose
distances from robot i are not greater than the camera range. The set of neighbours
of robot i is denoted byNi (z) and is a set of indices. We repeat: zi is the location of
robot i (in the global coordinate frame), z is the vector of positions, andNi (z) is the
set of indices k such that robot k is visible by robot i .1 Notice that the neighbourhood
classNi (z) depends on z. The visibility graph G(z) is defined to have n nodes and an
edge between two nodes if they are neighbours. If the robot carries an omnidirectional
camera, G(z) is an undirected graph: if robot i can see robot k, then robot k can see
robot i . If the camera is not omnidirectional, G(z) is a directed graph.

Next, we need to define what steering control laws ωi are admissible. This is
the case if they are locally Lipschitz and they depend only on sensed data from the
onboard cameras. Let robot k be a neighbour of robot i . We assume robot i can see
the position and heading of robot k in its local frame; that is, vectors zk − zi and rk

in the local frame of robot i . To repeat, if robot k is a neighbour of robot i , then robot
i has the following sensed data:

〈zk − zi , ri 〉, 〈zk − zi , si 〉, 〈rk, ri 〉, 〈rk, si 〉,

or equivalently,
〈zk − zi , ri 〉, 〈zk − zi , si 〉, θk − θi .

Recall that s is the counterclockwise rotation of r by π/2: s = jr . Figure3.1 shows
the definition of the sensed data for two robots.

The flocking problem is to find, if they exist, admissible steering controls ωi so
that there exists ε > 0 such that for all initial conditions satisfying

(i) (∀i, k = 1, . . . , n) |θi (0) − θk(0)| < ε,
(ii) G(z(0)) is connected,
then

1In a given dynamical system model, the point locations will depend on time and we shall write, for
example, zi (t). In this way the neighbour set will depend on time:Ni (z(t)). But it would be incorrect
to write the time-dependence asNi (t), because knowing just t , and not, say, initial locations, is not
enough to know the neighbour set in general.
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Fig. 3.1 Sensed data for two unicycles

(∃θss) lim
t→∞ θ(t) = θss1.

Thus we require that if initially the robots’ heading angles are sufficiently close
to each other and the visibility graph is connected, then the heading angles will
synchronize. Notice that this is a mathematical problem and that the following real
issues are not addressed: robots are not of zero dimensions and therefore collisions
are a real issue; real robots cannot be programmed all to go at the same speed and
therefore a control system would be required to keep the robots in a pack.

Despite the apparent simplicity of the formulation above, the flocking problem
remains unsolved. The challenge is to design admissible control laws that preserve the
connectivity of the visibility graph while achieving synchronization of the heading
angles. If wemake the unrealistic assumption that the visibility graph is fixed, i.e., the
neighbour sets Ni are constant, then the flocking problem admits a simple solution,
which we discuss next.

3.3 Flocking with Fixed Neighbours

If the visibility graph G is fixed (i.e., the neighbour sets Ni are constant) and con-
nected, then we no longer have to worry that the robots might come in and out of each
other’s field of view. In this case we may ignore the robots’ positions and consider
just their heading angle dynamics

θ̇i = ωi , i = 1, . . . , n. (3.1)

In this context,we seek controlsωi that rely only on the sensed data {θi −θk : k ∈ Ni },
and asymptotically stabilize the flocking manifold

F = {(θ1, . . . , θn) : θ1 = · · · = θn}. (3.2)
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We will also want the angles to converge to a constant, not just to each other.
Before proceeding with the solution of this problem, we need to clarify what the

state space of (3.1) is. Each θi is an angle measured modulo 2π. When we write
θi = θk , we mean that θi is equal to θk plus some integer multiple of 2π. An angle,
therefore, is not a real number, but rather an equivalence class of real numbers. To
make things precise, consider the equivalence relation on the real line

θ1 ∼ θ2 ⇐⇒ (∃l ∈ Z) θ1 − θ2 = 2πl.

For θ ∈ R, denote by [θ] the equivalence class of θ, defined as

[θ] := {θ + 2πl : l ∈ Z}.

Finally, let (R/∼) denote the set of all equivalence classes just defined. Then
each angle lives in (R/∼), and the state space of (3.1) is the n-fold product
(R/∼) × · · · × (R/∼).

How can we visualize the set (R/∼) × · · · × (R/∼)? First, it is not a vector
space, for the sum of two angles is well-defined but scalar multiplication is not (try
to multiply [π] by 1/2; do you get a unique angle in (R/∼)?). A useful way of
visualizing (R/∼) is to identify each element [θ] ∈ (R/∼) with the point e jθ on the
unit circle in the complex plane, which we denote by S

1. For an exercise, convince
yourself that this identification works. Prove that the map (R/∼) → S

1, [θ] �→ e jθ

is a bijection.2 From now on we will drop the notation [θ] and use θ to denote an
angle in (R/∼). We will also identify angles with points on the unit circle.

To summarize, the state space of (3.1) is the n-fold product S1 × · · · × S
1, called

the n-torus, and the flocking problem with fixed visibility graph corresponds to the
synchronization of points on the unit circle. Since the n-torus is not a vector space, it is
not possible to solve the flocking problem with a linear control law. More concretely,
for a control law to be well-defined on the n-torus, it must be a 2π-periodic function
of the angles (θ1, . . . , θn), and therefore nonlinear.

In 1975 the Japanese researcher Yoshiki Kuramoto proposed a simple model of
synchronization of coupled oscillators. Kuramoto represented the limit cycle behav-
iour of each oscillator by themotion of a point θi on the unit circle S1, and formulated
the following coupled differential equation representing the interconnection of the
oscillators:

θ̇i = μi − K

n

n∑

k=1

sin(θi − θk), i = 1, . . . , n. (3.3)

The scalar μi ≥ 0 represents the i th oscillator’s natural frequency and K > 0
determines the strength of the coupling among oscillators. This equation is known
as the Kuramoto model of coupled oscillators. In a moment we will derive the
Kuramoto model, but first we remark on its qualitative properties.

2In fact, the set (R/∼) can be given a differentiable structure turning it into a smooth manifold, and
such that the map (R/∼) → S

1 defined here is a diffeomorphism, not just a bijection.
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When the natural frequencies μi are positive, Kuramoto observed that as K
is increased beyond a minimum threshold Kmin (the so-called critical coupling
strength), some of the points θi begin to rotate around the unit circle in a cohe-
sive group, although not synchronized. The larger the ratio K/Kmin, the greater the
portion of oscillators moving cohesively and the smaller the distance between the
θi ’s. In the limit as K → ∞, all θi ’s become synchronized. Kuramoto’s results stimu-
lated a vigorous research activity in the physics and dynamical systems communities.
Some of that research is summarized in the paper by Strogatz [41]. Recently, Dörfler
and Bullo [10] made a breakthrough by precisely characterizing, among other things,
the critical coupling strength Kmin, the presence of a locally exponentially stable set
in the state space of (3.3), the size of the domain of attraction of this set, and the
bound on the distances between the θi ’s on this set.

When the natural frequencies μi are all zero, the qualitative properties of
model (3.3) are much simpler to analyze. As a matter of fact, we will see that for
any K > 0 the manifold3 {(θ1, . . . , θn) : θ1 = · · · = θn} is locally asymptotically
stable. In particular, when the initial conditions θi (0) are sufficiently close to each
other, all phases θi converge to a common constant θss . This result is precisely what
we need to solve the flocking problem. Before stating a formal result, we derive the
Kuramoto model.

3.3.1 Derivation of the Kuramoto Model

Consider a collection of points p1(t), . . . , pn(t) moving on the unit circle, with
pi (t) = e jθi (t). Differentiate with respect to time: ṗi = e jθi j θ̇i . Now let vi = θ̇i

and substitute into the preceding equation:

ṗi = vijpi. (3.4)

Since the circle has unit radius, the scalar vi represents the linear speed of the point
pi . This speed could be positive or negative. Notice that if we view pi as a vector
from the origin and view multiplication by j as rotation by π/2, then j pi can be
viewed as tangent to the circle at the point pi—see the picture on the left in Fig. 3.2.

Now we propose a feedback law for vi in Eq. (3.4); see the picture on the right in
Fig. 3.2. First we suppose that when there are no interactions, point pi has a nominal
speed μi . To model the interaction between pi and pk , we add a term proportional
to the projection of pk onto the line tangent to the circle at pi , that is, 〈pk, j pi 〉. We
then sum all these contributions to arrive at the control law

vi = μi + K

n

n∑

k=1

〈pk, j pi 〉.

3Recall that we called this set the flocking manifold F of the model (3.1).
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Fig. 3.2 Left The vectors
pi and j pi . Right The
contribution to the linear
speed vi of the interaction
between points i and k

The coefficient K/n determines the interaction strength between points.
Now we need to express vi in terms of the angles θk rather than the points pk . We

observe that
〈pk, j pi 〉 = Re ( p̄k j pi )

= Re
(
e− jθk je jθi

)

= − sin(θk − θi ).

Therefore,

θ̇i = vi = μi − K

n

n∑

k=1

sin(θi − θk).

This is the Kuramoto model in (3.3).

3.3.2 Solution of the Flocking Problem

We now return to the flocking problem for system (3.1). Kuramoto’s model (3.3)
with natural frequencies μi = 0 suggests the following choice4 of control laws:

ωi = −
n∑

k=1

aik sin(θi − θk), aik > 0.

These controls require each robot to see all other robots (i.e., the visibility graph G
is complete). It turns out that we may simply restrict the sum to the index set of the
neighbours of robot i :

4For maximum generality, we replace the coefficient K/n in the Kuramoto model by symmetric
gains aik = aki > 0.
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ωi = −
∑

k∈Ni

aik sin(θi − θk), aik = aki > 0. (3.5)

Theorem 3.1 If the visibility graph is fixed, undirected, and connected, then for any
aik = aki > 0, i, k = 1, . . . , n, the control law (3.5) makes the flocking manifold F
in (3.2) locally asymptotically stable and solves the flocking problem.

Proof Sketch Suppose for simplicity that the visibility graph is complete and
aik = 1, so that the closed-loop system reads as

θ̇i = −
n∑

k=1

sin(θi − θk), i = 1, . . . , n. (3.6)

This equation has the form θ̇ = g(θ), where the g(θ) is the gradient of a positive
definite function. Indeed, let re jψ denote the average of the points e jθ1, . . . , e jθn . Of
course, r and ψ are functions of θ, and so we have

r(θ)e jψ(θ) = 1

n

(
e jθ1 + · · · + e jθn

)

and therefore

r(θ) = 1

n

∣∣∣e jθ1 + · · · + e jθn

∣∣∣ .

The average of n points on the unit circle lives inside the unit disc, and therefore r(θ)
is a real number between 0 and 1. It equals 1 if and only if the n points are equal,
that is, the n angles are equal, and this is the case when the angles are on the flocking
manifold F .

Define the function

V (θ) = n2

2
r(θ)2

= 1

2

∣∣∣e jθ1 + · · · + e jθn

∣∣∣
2

= 1

2

(
e jθ1 + · · · + e jθn

) (
e− jθ1 + · · · + e− jθn

)
.

Thus
∂V (θ)

∂θi
= sin(θ1 − θi ) + · · · + sin(θn − θi )

and therefore (3.6) can be written θ̇ = ∂V (θ)/∂θ. This is a gradient equation. If θ(0)
is chosen so that all the phases are close enough together, then r(θ(0)) will be close
to 1, and therefore θ will move in a direction to increase V (θ), that is, increase r(θ),
until in the limit r(θ) = 1 and the phases are synchronized.
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In the general case of aik �= 1 and connected but not complete graph, the function
V should be replaced by

V (θ) = −
n∑

i=1

∑

k∈Ni ,k<i

aik(1 − cos(θi − θk)).

We will see in Chap.6 that −V (θ) can be regarded as the potential of a collection of
springs with constants aik that connect point-masses on the unit circle.

With the above definition of V the closed-loop system with controls (3.5) can still
be written as θ̇ = ∂V (θ)/∂θ, and it is still true that solutions in a neighbourhood of
the global maximum of V converge to the global maximum. It can be shown that if
the graph is connected, the global maximum of V is attained on the flockingmanifold
F . The details of this argument are presented later in the proof of a flocking theorem
for flying robots (Theorem 6.1). �

3.4 The Control Law of Jadbabaie, Lin, and Morse

The paper by Jadbabaie, Lin, and Morse [16] is on the flocking problem. Since it has
been referenced bymany other papers, it is instructive to review it from the viewpoint
of this chapter.

Although it is not stated in these terms, the paper studies a system of unicycles
moving at constant speed in the plane. It is assumed that if unicycle i can see unicycle
j , then j can see i . That is, the visibility graph is undirected at all times. The paper
studies a single control strategy in discrete time, namely, at time t + 1 (t an integer)
unicycle i changes its heading to the average heading at time t of itself and its
neighbours:

θi (t + 1) = 1

1 + ni (t)

⎛

⎝θi (t) +
∑

k∈Ni (t)

θk(t)

⎞

⎠ . (3.7)

Here ni (t) is the number of neighbours of robot i at time t . It is proved that all the
heading angles converge to a common value providedG(t) has a connectedness prop-
erty over time, namely, there exists T > 0 such that the union graph

⋃
t0≤t≤t0+T G(t)

is connected for all t0. Here, the union of graphs with the same node set is obtained by
taking the union of the edges. Unfortunately, the condition onG(t) is not checkable—
it would require an infinite time simulation. The proof uses a theorem of Wolfowitz
on ergodicity (1963).

In the theorems in [16] the vector θ(0) of initial heading angles is fixed in time.
This allows the visibility graph to be a function of t alone, and not both t and θ(0).
In actuality, as we remarked at the beginning of this chapter, for a sensible model
of limited visibility, the graph is state dependent, G = G(z). If the control strategy

http://dx.doi.org/10.1007/978-3-319-24729-8_6
http://dx.doi.org/10.1007/978-3-319-24729-8_6
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is given and if the state z(t) evolves uniquely from z(0), the visibility graph is a
function of time, G(z(t)).

Is the control law of [16] admissible? If we ignore the problem with the time-
varying visibility graph, it is admissible in the following sense. In continuous time,
consider the controls

ωi = − 1

ni (t) + 1

∑

k∈Ni (t)

(θi − θk). (3.8)

These are admissible because they rely on relative angles of neighbouring robots. The
forward-Euler discretization with unit sampling interval of the closed-loop system
is

θi (t + 1) = θi (t) − 1

ni (t) + 1

∑

k∈Ni (t)

(θi (t) − θk(t)),

which coincides with (3.7). Thus the update (3.7) results from a forward-Euler dis-
cretization of an admissible control law.

The update law (3.7) is not 2π-periodic. To illustrate the relevance of this property,
consider three robots (n = 3) and assume that 1 can see 2, 2 can see 1 and 3, and 3 can
see 2. Initialize the heading angles as follows: θ1(0) = 0, θ2(0) = 2π, θ3(0) = 4π.
Thus the initial headings are identical modulo 2π. At the next time step we have

θ1(1) = 1

2
(0 + 2π) = π

θ2(1) = 1

3
(2π + 0 + 4π) = 2π

θ3(1) = 1

2
(4π + 2π) = 3π.

Thus the heading angles move away from the flocking manifold. The flocking mani-
fold is unstable. More precisely, the problemwith the control law (3.7) is that it treats
the angles θi as real numbers, rather than as elements of S1. The control law (3.5),
on the other hand, is 2π-periodic and it respects the geometry of the state space.

As a final remark, notice the relationship between the Kuramoto-inspired control
law (3.5) and the control law (3.8). If the visibility graph is constant and undirected,
and we set aik = 1/(ni + 1), then (3.8) is the linearization of (3.5) at any point of
the flocking manifold.
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