
123

S PR I N G E R B R I E FS I N E L E C T R I C A L A N D CO M P U T E R
ENG INEER ING  CO N T R O L , AU TO M AT I O N A N D R O B OT I C S

Bruce A. Francis
Manfredi Maggiore

Flocking and
Rendezvous
in Distributed
Robotics

SpringerBriefs in Electrical and Computer
Engineering

Control, Automation and Robotics

Series editors

Tamer Başar
Antonio Bicchi
Miroslav Krstic

More information about this series at http://www.springer.com/series/10198

http://www.springer.com/series/10198

Bruce A. Francis • Manfredi Maggiore

Flocking and Rendezvous
in Distributed Robotics

123

Bruce A. Francis
Department of Electrical and Computer
Engineering

University of Toronto
Toronto, ON
Canada

Manfredi Maggiore
Department of Electrical and Computer
Engineering

University of Toronto
Toronto, ON
Canada

ISSN 2191-8112 ISSN 2191-8120 (electronic)
SpringerBriefs in Electrical and Computer Engineering
ISSN 2192-6786 ISSN 2192-6794 (electronic)
SpringerBriefs in Control, Automation and Robotics
ISBN 978-3-319-24727-4 ISBN 978-3-319-24729-8 (eBook)
DOI 10.1007/978-3-319-24729-8

Library of Congress Control Number: 2015950026

Springer Cham Heidelberg New York Dordrecht London
© The Author(s) 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To Lian Francis

Preface

Imagine a flock of birds migrating south before winter. The flock is composed of
identical birds, but no one bird is the leader, nor can any one bird always see all the
other birds. The birds obviously have a common objective—to fly from one general
area to another specified location. At any one time there is a small number of birds
at the front, but this group changes as the birds fatigue. The birds cooperate in order
to fulfill the overall function of group migration. We can view this flock of birds as
a distributed system, the adjective “distributed” not necessarily meaning geo-
graphically distributed, but rather distributed in function or authority. Besides a
flock of birds you could imagine a school of fish or a colony of ants. Now think of
such a system except where each bird (or fish or ant) is replaced by a mobile robot:
a wheeled rover on the ground or a quadrocopter in the air. Then you have a
distributed system of robots, and that is the subject of this book.

In the late twentieth century the research subject of distributed robotics burst on
the scene, grew very quickly, and has become a core subject within control theory
and engineering. Computer scientists, control theorists, roboticists, and other sci-
entists and engineers have contributed to the subject. There is now a significant
body of theory and also of experimental prototypes.

This book takes as its launchpad the 2014 IEEE Bode Lecture entitled “The
Rendezvous Problem.” The book covers the two most basic problems of distributed
robotics, the flocking problem and the rendezvous problem, for wheeled robots and
quadrocopters. Quadrocopters was not touched in the Bode Lecture and conse-
quently is a feature of this book. The book is aimed at graduate students and others
who wish to get into this subject. We view formation flying of quadrocopters as an
especially fertile field for new Ph.D. theses.

Acknowledgments

It is our pleasure to thank the students who worked on the subject of distributed
robotics under our supervisions: Alfred Sum, Zhiyun Lin, Joshua Marshall, Stephen
Smith, Laura Krick, Hien Goi, Flörian Dörfler, Johannes Dold, Mohammed

vii

El-Hawwary, and Ashton Roza. We also thank Mireille Broucke, Tim Barfoot, and
Luca Scardovi, our Toronto colleagues with whom we co-supervised some of these
students. Finally, thanks to Avraham Feintuch for his collaboration on the subject of
infinitely many robots (Sect. 4.6).

viii Preface

http://dx.doi.org/10.1007/978-3-319-24729-8_4

Contents

1 Introduction . 1
1.1 Motivation. 1
1.2 Models, Sensing, and Control Specifications 4
1.3 Notation . 5

2 Models of Mobile Robots in the Plane . 7
2.1 The Common Models . 7

2.1.1 A 1D Rover. 7
2.1.2 2D Integrator Point . 8
2.1.3 Unicycles . 10
2.1.4 Bicycles . 12
2.1.5 Summary. 16

2.2 Feedback Linearization of the Unicycle 17
2.3 Stabilizing the Unicycle to the Origin . 19

2.3.1 Summary. 23

3 The Flocking Problem . 25
3.1 Introduction . 25
3.2 Problem Formulation . 25
3.3 Flocking with Fixed Neighbours. 27

3.3.1 Derivation of the Kuramoto Model 29
3.3.2 Solution of the Flocking Problem 30

3.4 The Control Law of Jadbabaie, Lin, and Morse 32

4 The Rendezvous Problem: Fixed Neighbours 35
4.1 Introduction . 35
4.2 Cyclic Pursuit . 36
4.3 General Fixed Neighbours . 40

4.3.1 Rendezvous Problem for Integrator Points 40
4.3.2 Solution of the Rendezvous Problem 44

ix

http://dx.doi.org/10.1007/978-3-319-24729-8_1
http://dx.doi.org/10.1007/978-3-319-24729-8_1
http://dx.doi.org/10.1007/978-3-319-24729-8_1#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_1#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_1#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_1#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_1#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_1#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_2
http://dx.doi.org/10.1007/978-3-319-24729-8_2
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec7
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec7
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec8
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec8
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec9
http://dx.doi.org/10.1007/978-3-319-24729-8_2#Sec9
http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_4
http://dx.doi.org/10.1007/978-3-319-24729-8_4
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec5

4.4 Rendezvous of Unicycles. 46
4.5 From Rendezvous to Formation Stabilization 50
4.6 Infinitely Many Robots . 52
4.7 On Digital Implementation of Controllers 55

5 The Rendezvous Problem: Limited Camera Range 57
5.1 Introduction . 57
5.2 General Results . 59
5.3 Numerical Issues . 65

6 Introduction to Flying Robots . 69
6.1 Introduction . 69

6.1.1 Common Flying Robots . 69
6.1.2 Onboard Sensors . 71

6.2 Modelling . 72
6.2.1 2D Flying Robot . 72
6.2.2 3D Flying Robot . 74
6.2.3 Special Case: Quadrotor Helicopters 77

6.3 Flocking of 2D Flying Robots . 78
6.4 Flocking of 3D Flying Robots . 86
6.5 Rendezvous of 3D Flying Robots . 93

Series Editors’ Biography . 95

Appendix: On the Literature . 97

References. 103

x Contents

http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec7
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec7
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec8
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec8
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec9
http://dx.doi.org/10.1007/978-3-319-24729-8_4#Sec9
http://dx.doi.org/10.1007/978-3-319-24729-8_5
http://dx.doi.org/10.1007/978-3-319-24729-8_5
http://dx.doi.org/10.1007/978-3-319-24729-8_5#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_5#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_5#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_5#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_6
http://dx.doi.org/10.1007/978-3-319-24729-8_6
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec1
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec3
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec4
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec5
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec6
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec7
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec7
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec8
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec8
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec9
http://dx.doi.org/10.1007/978-3-319-24729-8_6#Sec9

Chapter 1
Introduction

1.1 Motivation

The problem of coordinated control of a network of mobile autonomous robots is
of interest in control and robotics because of the broad range of potential applica-
tions: planetary exploration, operations in hazardous environments, games such as
robot soccer, and so on. Distributed robot networks can potentially exhibit structural
flexibility, reliability through redundancy, and simple hardware as compared to a
complex individual robot.

The first robot rover exploration of Mars was in 1997—the Mars Pathfinder Mis-
sion. The rover, named Sojourner, is shown in Fig. 1.1. You can see the whip antenna.
The radio linkwas used to send commands fromEarth to the rover and receive images
and other data from the rover. Because the rover radio had a signal range similar to a
walkie-talkie, namely, about 10m, all rover communication was done with the aid of
the lander communications interface, as in Fig. 1.2. The rover telecommunications
system was a two-way wireless UHF (Ultra High Frequency) radio link between the
lander and the rover. The rover’s and lander’s UHF antennas worked very much like
the antennas on walkie talkies or on car radios, using a “monopole” antenna. The
signal to be transmitted enters the antenna through a coaxial connector located at the
bottom, travels through a short section of balanced coaxial line, and is radiated by
the monopole.

It is desirable to have an antenna radiation pattern shaped to match its particular
application. Satellite dishes are designed to look at a particular location in space and
therefore need to have narrow and directive radiation patterns. The rover antenna did
not need to look up into space, but rather needed to look horizontally in 360◦ given
that the lander could be in any direction. An ideal monopole has a 360◦ radiation
pattern that is donut shaped, oriented horizontally. It is not meant to look straight
up, and has poor reception in that direction. Certain metallic or rocky structures and
ground reflections near the monopole antenna will distort its radiation pattern and
cause holes or null zones to form. In these null zones the signal can drop significantly,

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8_1

1

2 1 Introduction

Fig. 1.1 Sojourner (Jet
Propulsion Lab, NASA).
(This image is in the public
domain and was downloaded
from the Web)

Fig. 1.2 Communications
interface (NASA). (This
image is in the public
domain and was downloaded
from the Web)

causing poor reception. It is important to knowwhere the rover is relative to the lander
when these null zones exist, for if two nulls happened to get pointed at each other,
there may be no radio reception at all.

As discussed, Sojourner had to be within about 10m of the lander to send radio
signals. This obviously is a limitation for scientific experiments. To get a longer radio
link, one could use a higher power signal. But power on a Mars robot is a luxury.
Another solution is an antenna array.

1.1 Motivation 3

Fig. 1.3 High Frequency Active Auroral Research Program. (This image is in the public domain
and was downloaded from the Web)

The purpose of an antenna array is to achieve directivity, the ability to send the
transmitted signal in a preferred direction. If a large number of array elements can be
used, it is possible to greatly enhance the strength of the signal transmitted in a given
direction. An interesting example is the High Frequency Active Auroral Research
Program (HAARP) in Alaska, whose purpose is to study the ionosphere. The site
consists of a 15 × 12 array of dipole antennas: see Fig. 1.3.

This leads us to the following scenario. A team of rovers doing scientific experi-
ments. Each has, besides scientific instruments, a radio transceiver and an antenna.
When it is time to communicate with the lander, the rovers arrange themselves in
a suitable formation to become an antenna array in order to optimize the signal
strength. In general, the larger the array, the higher the resolution it can achieve.

The preceding example leads to the sub-question: can we get a group of robot
rovers, placed initially at random, to form a circle or other shape? We study this
question for the simplest possible model of a robot, a point moving in the plane, then
for a model of a wheeled rover moving in the plane, and finally for a quadcopter in
3D space.

This monograph is about control theoretic robotics problems. There is frequently
a hubbub about the gap between theory and practice. Let us be clear about that:
Real problems cannot be solved just by applying formulas. So the methodology
of control engineering is to begin with a real problem; to abstract the central is-
sues and formulate an idealized, hypothetical problem; to develop, if necessary, new

4 1 Introduction

mathematical methods for its solution; and to work out a rigorous solution. Then one
has a framework on which to do the real problem.

For more about robots in space, go to http://www.jpl.nasa.gov.

1.2 Models, Sensing, and Control Specifications

In this monograph we present the two most basic distributed robotics problems:
flocking and rendezvous. The flocking problem is to get all the robots to move in the
same direction at the same speed; the rendezvous problem is to get all the robots to
converge to the samemeeting point. Such objectives are achieved by, possibly among
other factors, interacting with other robots.We call these others neighbours. Besides
the two objectives of flocking and rendezvous, one may characterize the setup by
how neighbours are defined: by proximity or just fixed from the start. For example,
one may distinguish n robots by numbering them and displaying the numbers on
them. Then the neighbour structure could be sequential, like this: 1’s neighbour is
2, 2’s neighbour is 3; etc.; n’s neighbour is 1. This is called cyclic pursuit and is
an example of a fixed neighbour structure. Alternatively, the neighbours of robot i
could be all other robots within, say, d metres of robot i . This is an example of a
proximity-based neighbour structure.

We see from the discussion above that there are three dimensions to consider
when classifying distributed robotics problems: the model of the robot one wishes
to control (e.g., the unicycle model); the sensing constraint (what sensors are avail-
able, and who can see whom at any given time); and the control specification (e.g.,
rendezvous). In this book we focus on three model classes: integrator points, kine-
matic unicycles, and flying vehicles. We present two types of sensing constraints:

Fig. 1.4 Twelve problems:
the goal can be flocking or
rendezvous; the robots can
be integrator points,
unicycles, or flying vehicles;
the neighbour sets can be
fixed or proximity dependent

http://www.jpl.nasa.gov

1.2 Models, Sensing, and Control Specifications 5

fixed neighbour structure and proximity-based neighbour structure. Finally, we in-
vestigate two control specifications: flocking and rendezvous. In this way we have
2 × 2 × 3 = 12 problems (Fig. 1.4).

It will turn out that not all twelve problems make sense, since flocking is a de-
generate problem for integrator points. Moreover, many of these problems are as yet
open. In the case of a proximity-based neighbour structure, flocking is an open prob-
lem for all model classes, and rendezvous has been solved only for integrator points.
In the case of a fixed neighbour structure, the flocking problem has been solved for
both unicycles and flying vehicles, while the rendezvous problem has been solved
only for integrator points and unicycles.

1.3 Notation

The notation follows fairly standard conventions in signals and systems. The set of
integers—negative, zero, and positive—is denoted Z. Continuous time and discrete
time are both denoted by t ; context will determine whether t is a real number (t ∈ R)

or an integer (t ∈ Z). Dot, as for example ẋ , denotes derivative with respect to time
t .

A vector in R2 is written as an ordered pair

x = (x1, x2)

or as a column vector

x =
[

x1
x2

]
,

whichever is more convenient at the time. Likewise, we might associate

(u, v) and

[
u
v

]

where u is an m-tuple and v an n-tuple. This permits us to avoid ugly expressions

like
[

uT vT
]T

for a column vector.
Mathematically, we can regard the plane as being the Euclidean plane R2 or the

complex plane C. If x = (x1, x2), y = (y1, y2) are two real vectors in R2, their dot
product is written

〈x, y〉 = x1y1 + x2y2.

Likewise and equivalently, members of C are written x1 + j x2. If x = x1 + j x2
and y = y1 + j y2, to be consistent with R

2 the dot product of x and y is defined to
be (overbar denotes complex conjugate and Re denotes real part)

6 1 Introduction

〈x, y〉 = Re x y

= Re (x1 + j x2)(y1 − j y2)

= x1y1 + x2y2
= Re x y.

Finally, we let {e1, . . . , en} denote the natural basis of Rn . Thus the vector ei has
a one in the i th position and all other elements are zero.

Chapter 2
Models of Mobile Robots in the Plane

2.1 The Common Models

In this book all systems, including robots, are modeled as operating in continuous
time. This is the natural world given to us by Newtonian physics. Controllers are
continuous-time too, but can be implemented digitally with samplers.

2.1.1 A 1D Rover

We begin with the simplest example: a wheeled rover of unit mass moves along a
straight infinite road that runs through the 2D plane.We can take the plane to be either
C or R2; we take the former for now. By translating and rotating if necessary, we
may suppose the road is the real line (the horizontal axis). The position of the rover
on the road is denoted by the real variable z. The rover has an onboard motor that
drives a wheel without slipping, imparting f Newtons of force (negative f implies
the force is to the left). We neglect viscous friction and say that Newton’s second
law is applicable:

z̈ = f .

Equivalently,
ż = v, v̇ = f .

See Fig. 2.1. Furthermore, if the robot has a velocity sensor, a high-gain feedback
in an inner loop, as shown in Fig. 2.2, converts the double integrator into the single

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8_2

7

8 2 Models of Mobile Robots in the Plane

Fig. 2.1 The simplest rover.
Force input, position output

f v z
s−1 s−1

Fig. 2.2 A high-gain inner
loop. If K is large, from u to
z is approximately s−1

−

inner loop

high gain
f v z

s−1 s−1K
u

integrator. A high-gain inner loop is placed around the dynamics. The transfer func-
tion from f to z is s−2, but from u, a command velocity, to z is approximately just
s−1 if K is sufficiently large. Thus a high-gain loop around the dynamics gives

ż = u.

2.1.2 2D Integrator Point

Now we turn to 2D robot models. The first obvious generalization of the 1D rover is
a unit mass moving freely on the plane. The position z of the mass is now a complex
variable and so is the force f :

z̈ = f .

Just as in the 1D case, we may use high-gain feedback and view the velocity as a
control input, in which case we obtain the model of an integrator point

ż = u.

Letting z := x + jy and u := v + jw we get an equivalent model in real variables:

ẋ = v

ẏ = w.

Is an integrator point a physically meaningful model of a robot? The robots we
consider are rigid bodies, or made up of rigid bodies. A rigid body in 3D has six
degrees of freedom (three for translation and three for rotation). A rigid body in 2D
has three degrees of freedom (two for translation and one for rotation). Integrator
points cannot represent something physical in the plane because there are only two
degrees of freedom instead of three. To account for the missing degree of freedom,
angular position, we could write

2.1 The Common Models 9

ẋ = v

ẏ = w

θ̇ = 0.

This robot canmove in any direction but its orientation does not change, and therefore
it is not related to motion. While it is possible to devise a mechanism that decouples
the orientation of the robot from its direction of motion, it is rather uncommon to
find physical robots with this property. Many researchers use integrator points so that
control problems can be easily solved, but it is not always clear how to apply such
solutions to physical robots.

Realistic models of 2D robots couple the robot’s orientation with its direction
of motion. An example of this kind of robot is shown in Fig. 2.3. The robot has an
omnidirectional camera (a conventional camera pointing up at a conical mirror), two
wheels with independentmotor drives, and a laptop to store a controller program. The
robot is confined to move on a floor (it cannot fly). Thus as a mechanical dynamical
system it has three degrees of freedom, which in conventional notation are x, y, θ.
The vector (x, y) locates the centre of mass on the floor, and θ specifies the heading
angle as measured from some fixed direction.

Fig. 2.3 A wheeled robot
with an omnidirectional
camera. (This image is in the
public domain and was
downloaded from Wikipedia,
Omnidirectional camera)

10 2 Models of Mobile Robots in the Plane

Fig. 2.4 The unicycle

To model a robot of the kind represented in Fig. 2.3, we turn to unicycles and
bicycles.1 These are kinematic models. Of course, a real robot has dynamics too, but
this can frequently be removed by a high-gain inner loop as we just did in Fig. 2.2.
Sometimes, it is convenient to make the complex plane the workspace where the
robots live. Recall that every complex number w can be written uniquely in polar
form as w = vejθ, where v = |w| and θ is a real number in the interval [0, 2π).

2.1.3 Unicycles

A kinematic unicycle is a robot with one steerable drive wheel (see Fig. 2.4). If we
assume that the wheel is always perpendicular to the ground, we may represent the
unicycle on the complex plane as in Fig. 2.5, where z := x + jy is the position vector
and ejθ the normalized velocity vector.

Convention. In Fig. 2.5 we represent a complex number in two different ways.
First, z is shown as a dot, obviously at the correct location in the complex plane.
On the other hand, ejθ, which is a complex number too, is shown as an arrow. The
convention is likely familiar. An element ofC (orR2) can be regarded geometrically
as a geometric vector or a point. A point, depicted as a dot, identifies a position
in space. A geometric vector, depicted as an arrow, identifies a magnitude and a
direction.

We return to the unicycle. Its degrees of freedom are x, y, θ, just as for the robot
in Fig. 2.3. From ż = vejθ we get the two equations

1Of course in everyday parlance bicycle refers to a real physical two-wheel vehicle that people ride.
We use the same word also for something else, namely, a mathematical model of the kinematic part
of a real bicycle. Likewise for unicycle.

2.1 The Common Models 11

Fig. 2.5 Unicycle in the
complex plane

ẋ = v cos(θ)

ẏ = v sin(θ).

Defining ω = θ̇ we get a third equation. In this way we arrive at the state equations

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω.

(2.1)

The state variables are x, y, θ and the inputs are v,ω. In terms of complex variables
we have

ż = vejθ

θ̇ = ω.

There is a third equivalent model in which one regards the unicycle as a moving
orthonormal frame. Consider the body frame B = {r, s} attached to the unicycle—
see the picture on the left in Fig. 2.6. The origin of the frame is at (x, y); r is the
normalized velocity vector, r = ejθ; finally, s is the counterclockwise rotation of r by
π/2, s := jr. Thus

Fig. 2.6 Unicycle body frame and the Frenet–Serret frame of a regular curve

12 2 Models of Mobile Robots in the Plane

ṙ = d

dt
ejθ

= jejθθ̇

= jrω

= sω.

Likewise
ṡ = −rω.

Using (z, r, s) as state of the unicycle, we find that the state model is

ż = vr

ṙ = sω

ṡ = −rω.

(2.2)

The control inputs are, as before, v and ω.
There is an intriguing relationship between the body frame B defined above and

the Frenet–Serret frame of differential geometry [7]. In differential geometry, the
Frenet–Serret frame is a moving orthonormal frame one associates with a regular
curve—see the picture on the right in Fig. 2.6. The relationship between the frame B
defined earlier and the Frenet–Serret frame is this: If in the unicycle model (2.2) we
set v(t) ≡ 1 and we let ω(t) be an arbitrary continuous function, then the moving
frame {r(t), s(t)} is precisely the Frenet–Serret frame associated with the curve z(t)
traced by the unicycle on the complex plane. Moreover, ω(t) is the signed curvature
of the curve. In differential geometry, the last two equations in (2.2) are called the
Frenet–Serret formulas associated with the curve z(t).

We conclude this part with a remark. The unicycle can move only in the direction
it is heading. That is, there is a no side-slip condition. To derive it, note that the
velocity vector of the unicycle is parallel to the body frame vector r, which in turn
is perpendicular to the body frame vector s. In other words, 〈ż, s〉 = 0, or

−ẋ sin(θ) + ẏ cos(θ) = 0.

This velocity constraint is called a nonholonomic constraint. Systems with non-
holonomic constraints are difficult to control in general. We will return to this issue
at the end of this chapter.

2.1.4 Bicycles

The simplest kinematic model of a bicycle is the one depicted in Fig. 2.7, in which
the bicycle frame is perpendicular to the ground and the steering axis passes through
the centre of the front wheel. We denote by (x, y) the coordinates of the point of

2.1 The Common Models 13

Fig. 2.7 Schematic: (x, y)
is the location of the rear
wheel, B is the wheelbase, θ
is the angle of the frame with
respect to the x-axis, γ is the
angle of the front wheel with
respect to the frame

contact of the rear wheel with the ground. We let θ be the angle that the frame makes
with the x axis, and γ the steering angle, as in the figure. While this model might not
be a faithful representation of a real bicycle, it turns out to be quite useful because
it captures the essential features of a car with four wheels, only the front two being
steerable.

Since the bicycle is assumed to be perpendicular to the ground, we may represent
it on the complex plane as in Fig. 2.8. In the figure, z1 is the position of the rear
wheel, i.e., z1 = x + jy, and z2 the position of the front wheel. The vector r1 is the
normalized difference z2 − z1, while r2, also a unit vector, represents the heading of
the front wheel. In terms of the angles θ and γ, we have r1 = ejθ and r2 = ej(θ+γ).

We see that the bicycle has four degrees of freedom: x, y, θ, γ. We take as control
inputs the speed of the point z1 and the steering rate γ̇. We denote them by v and ω,
respectively.

Fig. 2.8 Variables used to
describe the bicycle: z1 and
z2 are the positions of the
two wheels; r1 and r2 are the
normalized velocity vectors

14 2 Models of Mobile Robots in the Plane

Lemma 2.1 The kinematic model of the bicycle in Fig.2.7 is

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v

B
tan(γ)

γ̇ = ω.

(2.3)

Proof The velocity of the point of contact z1 is proportional to r1 and its magnitude
is v. Thus, ż1 = vr1. Writing the real and imaginary parts of this identity we get the
first two equations in (2.3).

Letting v1 := v and v2 := |ż2|, we have the following equations:

r1 = ejθ, r2 = ej(θ+γ), z2 − z1 = Br1 (2.4)

ż1 = v1r1, ż2 = v2r2. (2.5)

Differentiating the third equation in (2.4) we get

ż2 − ż1 = Bṙ1.

Substitute from Eqs. (2.4) and (2.5):

v2r2 − v1r1 = Bjθ̇r1.

Divide by r1:
v2e

jγ − v1 = Bjθ̇.

Write the real and imaginary parts:

v2 cos(γ) = v1, v2 sin(γ) = Bθ̇.

Divide the two equations and drop the subscript on v1:

θ̇ = v

B
tan(γ).

Finally, by definition we have ω = γ̇. �

The model (2.3) has four state variables, x, y, θ, γ, and two inputs, v,ω. Like the
unicycle, the bicycle has a nonholonomic constraint, the no-side slip condition of the
rear wheel. The constraint is

−ẋ sin(θ) + ẏ cos(θ) = 0.

2.1 The Common Models 15

Fig. 2.9 Block diagram of
the bicycle model

Compare the bicycle and unicycle models in (2.3) and (2.1). The two are very
similar. A control law developed for the unicycle can be adapted, with some limi-
tation, to the bicycle. The limitation is the obvious one that the front wheel of the
bicycle must never become orthogonal to the rear wheel.

Now consider the block diagram of the bicycle model shown in Fig. 2.9. The
middle box stands for the two-input, single-output nonlinear function (γ, v) �→ ω̄
given by

ω̄ = v

B
tan(γ).

The unicycle may be regarded as a subsystem. If we place a high-gain inner loop
around the dynamics of the steering angle, the bicycle and the unicycle become
approximately equivalent. More precisely, let v�(t) > 0 and ω�(t) be arbitrary con-
tinuous signals. Define

γ̄(t) := arctan(Bω�(t)/v�(t)),

and assume that γ̄(t) is a bounded signal.2 Define the following control law for the
steering rate of the bicycle:

ω(t) = K(γ̄(t) − γ(t)).

Here, K > 0 is a large gain. The block diagram of the bicycle with this control
law3 is depicted in Fig. 2.10. There is a high-gain negative feedback loop around the
steering angle, so that we have the approximate identity γ(t) ≈ γ̄(t). Assuming that
this is true, from the block diagram in Fig. 2.10 we have

ω̄(t) = v�(t)

B
tan(γ(t)) ≈ v�(t)

B
tan(γ̄(t)) = ω�(t).

Thus, in the block diagram of Fig. 2.10 we have the approximate identity ω̄(t) ≈
ω�(t), and the closed-loop bicycle dynamics are approximately equivalent to the
dynamics of a unicycle with control input (v�,ω�).

2Note that γ̄(t) may be unbounded if v�(t) → 0 as t → ∞.
3The signal γ̄(t) lies in the interval (−π/2,π/2). If the steering angle γ is initialized in this interval,
then it remains in it for all positive time, and therefore the signal ω̄(t) is well-defined for all t ≥ 0.

16 2 Models of Mobile Robots in the Plane

Fig. 2.10 A high-gain inner loop makes the bicycle look like a unicycle

In conclusion, if we are given control laws (v�,ω�) for the unicycle, we get control
laws (v,ω) for the bicycle through the formulas

v = v�

ω = K
(
arctan(Bω�/v�) − γ

)
, K > 0 large.

This works only if v�(t) > 0 and ω�(t)/v�(t) is bounded. In other words, if the
speed of the unicycle tends to zero we require the angular speed of the unicycle to
tend to zero at least as fast. This strategy, therefore, may be problematic when the
control specification requires the bicycle to stop (such is the case in the solution to
the rendezvous problem presented in Chap.4).

We stress that the argument outlined above is not mathematically rigorous, which
is why we do not state it as a theorem. A rigorous argument would rely on singular
perturbation theory.Nonetheless, the argument suggests that if one can solve a control
problem for the unicycle model, then it is possible to obtain a solution for the bicycle
model. For this reason, in this monograph we focus our attention on the unicycle
model.

2.1.5 Summary

1. The model of an integrator point robot on the complex plane is

ż = u.

In terms of real variables the model is

ẋ = v

ẏ = w.

This model is kinematic—mass is not included. It has only two degrees of free-
dom, x and y coordinates. It is not a complete model of a physical robot because

http://dx.doi.org/10.1007/978-3-319-24729-8_4

2.1 The Common Models 17

its orientation is fixed. The reason point robots were introduced was so that con-
trol problems could be solved. How to apply these mathematical solutions is not
always obvious.

2. A unicycle is a mathematical model of a wheeled robot with one steerable drive
wheel. Again it is a kinematic model. It is a more realistic model of a mobile
robot than is an integrator point robot. The equations of the unicycle on the real
plane are

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω.

The model on the complex plane is

ż = vejθ

θ̇ = ω.

We can also view the unicycle as a moving orthonormal frame, in which case its
equations are

ż = vr

ṙ = sω

ṡ = −rω.

3. A bicycle is a mathematical model of a wheeled car-type robot, with a non-
steerable drive wheel and a steerable non-drive wheel. It is a kinematic model. It
has four degrees of freedom. The equations are

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v

B
tan(γ)

γ̇ = ω.

The bicycle and unicycle models are very similar. A controller developed for the
unicycle can be adapted to the bicycle, with some limitation.

2.2 Feedback Linearization of the Unicycle

As we emphasized in the previous section, the integrator point robot is not a good
model of a real wheeled robot, whereas a unicycle is (except for articulated vehicles).
The virtue of an integrator point robot is that it makes it easier to solve mathematical

18 2 Models of Mobile Robots in the Plane

Fig. 2.11 Feedback
linearization of a unicycle
about a point just ahead

problems. However, a unicycle can be feedback linearized into an integrator point
robot. This suggests that to solve a wheeled robot problem, one can first feedback
linearize the unicycle robot, then solve the problem, and finally transform back to
the wheeled robot. Will this work? We begin to look at this question in this brief
section. We will return to it in Chap.4.

Start with the unicycle model viewed as a moving orthonormal frame:

ż = vr

ṙ = sω

ṡ = −rω.

Let ε > 0. The point
p = z + εr (2.6)

is a distance ε in front of the unicycle, as shown in Fig. 2.11. Differentiate both sides
of (2.6) with respect to t to get

ṗ = vr + εsω.

Define u to be the right-hand side:

u := rv + εsω. (2.7)

Take inner products of both sides of this equation first with r and then with s. Since
r, s are orthonormal, we obtain

v = 〈u, r〉, ω = ε−1〈u, s〉. (2.8)

The dynamics of the point p are simply

ṗ = u. (2.9)

To recap, the feedback linearized unicycle model is (2.9), which is in terms of the
point just-ahead p; the input u is related to the physical inputs v,ω via Eqs. (2.7) and
(2.8).

http://dx.doi.org/10.1007/978-3-319-24729-8_4

2.2 Feedback Linearization of the Unicycle 19

Fig. 2.12 A unicycle
controlled to go to
the origin: ε = 0.1,
(x(0), y(0)) = (−1, 1) and
(x(0), y(0)) = (1, 1). The
axes are x and y

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Example 2.1 We illustrate by a numerical example. The task is to get a unicycle
to drive to a beacon placed at the origin from any starting point. We start from the
feedback linearized model (2.9). We can drive the point p to the origin by the control
law u = −p, i.e., u = −z − εr. From (2.8)

v = −〈r, z〉 − ε, ω = −ε−1〈s, z〉.

Now our control laws are

v = −x cos(θ) − y sin(θ) − ε, ω = ε−1 (x sin(θ) − y cos(θ)) .

Figure2.12 shows simulation results. Because the robot is not initially headed
toward the origin, there are initial turns, followed by straight line segments. The
robot does not meet the origin. To get it to end up closer to the origin, one would
have to make ε smaller. Again, this makes ω have larger values, as can be seen from
the formula

ω(t) = ε−1 [
x(t) sin(θ(t)) − y(t) cos(θ(t))

]
.

For t = 0, x(0) = 1, y(0) = 1, θ(0) = 0, we have ω(0) = ε−1.

2.3 Stabilizing the Unicycle to the Origin

Consider the problem of stabilizing the unicycle to the origin. This problem is of little
practical interest, but it illustrates some of the challenges in dealingwith systemswith
nonholonomic constraints.Aconsequence of a celebrated result byBrockett [5] is that

20 2 Models of Mobile Robots in the Plane

Fig. 2.13 The robot is
positioned at z and heading
in the direction of r. The
vector 0 − z from the robot
to the beacon has coordinates
(xb, yb) in the frame {r, s}

z

r

s

ybs

xbr

for a class of systems with nonholonomic constraints there do not exist continuous
time-invariant control laws for equilibrium stabilization. The unicycle and the bicycle
are examples of such systems.

While it is impossible to stabilize the unicycle to the origin by means of a contin-
uous time-invariant control law, it is possible to do so by means of a continuous (in
fact, smooth) time-varying control law. We start with the unicycle model

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω.

Here it is convenient to decomplexify the quantities z and r defined earlier and regard
them as real vectors. Thus z = (x, y) and r = (cos(θ), sin(θ)).

Suppose the unicycle mounts a camera pointing in the direction of the body frame
vector r. Suppose also that there is a beacon at the origin, and that the camera is able
to measure the coordinates (xb, yb) of the beacon in the body frame B. To derive
(xb, yb), consider Fig. 2.13. The displacement of the beacon relative to the unicycle
is the vector−z. The scalars xb and yb are the projections of this vector onto the body
frame axes {r, s}. Therefore

xb = 〈−z, r〉 = [−x −y
] [

cos(θ)
sin(θ)

]
= −x cos(θ) − y sin(θ)

yb = 〈−z, s〉 = [−x −y
] [− sin(θ)

cos(θ)

]
= x sin(θ) − y cos(θ).

2.3 Stabilizing the Unicycle to the Origin 21

The controller equations are taken to be

v = kxb

= −k[x cos(θ) + y sin(θ)]
ω(t) = cos(t),

where k is a small positive gain. Note that only the measurement xb is needed, not
yb. The usefulness of the periodic ω will be revealed soon.

The position dynamics of the closed-loop unicycle are given by

ż = −kzT rr

= −krrT z.

Define the 2 × 2 matrix M = rrT . Then

ż = −kMz.

Now look at M:

r = (cos(θ), sin(θ))

M = rrT

=
[
cos(θ)
sin(θ)

] [
cos(θ) sin(θ)

]

=
[

cos2(θ) cos(θ) sin(θ)
cos(θ) sin(θ) sin2(θ)

]
.

Since θ(t) = θ(t0) + sin(t), so M(t) is a 2π-periodic function of t.
Whether or not the unicycle converges to the origin reduces to studying a period-

ically time-varying linear system. This is a post facto motivation for the control law
ω(t) = cos(t).

Look at the function cos2(θ(t)). Its average value over one period is

1

2π

∫ 2π

0
cos2(θ(t))dt.

Likewise, the average of M(t) is

M =
[

m1 m2
m2 m3

]

=
[

1
2π

∫ 2π
0 cos2(θ(t))dt 1

2π

∫ 2π
0 cos(θ(t)) sin(θ(t))dt

1
2π

∫ 2π
0 cos(θ(t)) sin(θ(t))dt 1

2π

∫ 2π
0 sin2(θ(t))dt

]
.

22 2 Models of Mobile Robots in the Plane

Lemma 2.2 M is positive definite.

Proof A symmetric matrix is positive definite if and only if its principle minors are
positive. Since m1 > 0, we just have to show det(M) > 0, i.e., m1m3 > m2

2.
We have already used the letters x, y, but for this proof alone let us use

x(t) = cos(θ(t)) and y(t) = sin(θ(t)). Also, we shall temporarily use the inner
product

〈x, y〉 = 1

2π

∫ 2π

0
x(t)y(t)dt.

Then m2
2 < m1m3 is equivalent to

〈x, y〉2 < 〈x, x〉〈y, y〉.

The Cauchy–Schwarz inequality gives

〈x, y〉2 ≤ 〈x, x〉〈y, y〉

with equality holding if and only if x is a scalar multiple of y or vice versa. Nei-
ther is the case here—since θ(t) is time-varying, we cannot have cos(θ(t)) =
c sin(θ(t)). �

With the periodically time-varying (PTV) linear system

ż(t) = −kM(t)z(t)

we associate the linear time-invariant (LTI) averaged system

ż(t) = −kMz(t).

Convergence in the LTI system is immediate since M is positive definite. We have
to show that this implies convergence in the PTV system for small enough k. This
uses averaging theory.

We begin by reviewing the general linear time-varying system

ẋ(t) = A(t)x(t). (2.10)

The transition matrix of (2.10) is the matrix that maps the state at one time, say t0,
to the state at another time, say t:

x(t) = Φ(t, t0)x(t0).

In general, there is no closed-form expression for Φ(t, t0) in terms of A(t) except in
some special cases.

2.3 Stabilizing the Unicycle to the Origin 23

1. As you well know, if A(t) = A, a constant matrix, then

Φ(t, t0) = eA(t−t0).

2. If A(t) is a scalar (1 × 1 matrix), then

Φ(t, t0) = e
∫ t

t0
A(τ)dτ

.

3. If, for every value of t1 and t2, A(t2) and
∫ t2

t1
A(τ)dτ commute, then

Φ(t, t0) = e
∫ t

t0
A(τ)dτ

.

Theorem 2.1 Let A(t) be periodic of period T. Suppose that

Ā = 1

T

∫ T

0
A(σ)dσ

has all its eigenvalues in the half plane �(s) < 0. Then there exists ε0 > 0 such that
the origin of

ẋ(t) = εA(t)x(t)

is exponentially stable for all 0 < ε < ε0.

You can find the proof in [19].

2.3.1 Summary

The simple controller
v = −kzT r, ω(t) = cos(t)

makes the position of the unicycle converge to the origin for any initial condition.
But the proof that it does the job is quite involved. If θ is a known function of t, then
the system

ẋ = v cos(θ)

ẏ = v sin(θ),

with state (x, y) and input v, is linear time-varying.

Chapter 3
The Flocking Problem

3.1 Introduction

In his influential paper [36], Reynolds describes his algorithm to simulate flocks of
birds by saying that each simulated bird is implemented as an independent actor that
navigates according to its local perception of the dynamic environment, the laws of
simulated physics that rule its motion, and a set of behaviors programmed into it by
the “animator.” The aggregate motion of the simulated flock is the result of the dense
interaction of the relatively simple behaviors of the individual simulated birds.

In this chapter we formulate a version of the flocking problem in which n robots
are required to move in the same direction with the same speed. Like Reynolds, we
require each robot to be an independent actor that takes decisions based on limited
information it can sense about its neighbours. To simplify, for now we think of just
robots in the planemodelled as unicycles. Later, inChap.6, we consider flying robots.

Under appropriate assumptions, the flocking problem for unicycles has a fasci-
nating connection with the problem of synchronizing coupled oscillators. In this
context, the Kuramoto model inspires a control law for flocking. We will establish
a connection between this control law and the flocking algorithm investigated by
Jadbabaie et al. [16].

3.2 Problem Formulation

We begin with n unicycles moving at unit speed:

żi = e jθi

θ̇i = ωi .

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8_3

25

http://dx.doi.org/10.1007/978-3-319-24729-8_6

26 3 The Flocking Problem

Recall that zi is the i th robot’s position, θi its heading angle, and ωi the steering
control. The steering controls are restricted to depend on certain sensed variables
as required by the nature of how the cameras function. We denote by ri = e jθi

the unit vector tangent to the trajectory. This is the velocity vector of unicycle i .
Synchronizing the velocity vectors of the unicycles corresponds to synchronizing
the heading angles θi .

Let z denote the vector whose components are the unicycle positions:

z = (z1, . . . , zn).

The neighbours of robot i are those robots that are visible by robot i . For example, if
robot i carries an omnidirectional camera then its neighbours are those robots whose
distances from robot i are not greater than the camera range. The set of neighbours
of robot i is denoted byNi (z) and is a set of indices. We repeat: zi is the location of
robot i (in the global coordinate frame), z is the vector of positions, andNi (z) is the
set of indices k such that robot k is visible by robot i .1 Notice that the neighbourhood
classNi (z) depends on z. The visibility graph G(z) is defined to have n nodes and an
edge between two nodes if they are neighbours. If the robot carries an omnidirectional
camera, G(z) is an undirected graph: if robot i can see robot k, then robot k can see
robot i . If the camera is not omnidirectional, G(z) is a directed graph.

Next, we need to define what steering control laws ωi are admissible. This is
the case if they are locally Lipschitz and they depend only on sensed data from the
onboard cameras. Let robot k be a neighbour of robot i . We assume robot i can see
the position and heading of robot k in its local frame; that is, vectors zk − zi and rk

in the local frame of robot i . To repeat, if robot k is a neighbour of robot i , then robot
i has the following sensed data:

〈zk − zi , ri 〉, 〈zk − zi , si 〉, 〈rk, ri 〉, 〈rk, si 〉,

or equivalently,
〈zk − zi , ri 〉, 〈zk − zi , si 〉, θk − θi .

Recall that s is the counterclockwise rotation of r by π/2: s = jr . Figure3.1 shows
the definition of the sensed data for two robots.

The flocking problem is to find, if they exist, admissible steering controls ωi so
that there exists ε > 0 such that for all initial conditions satisfying

(i) (∀i, k = 1, . . . , n) |θi (0) − θk(0)| < ε,
(ii) G(z(0)) is connected,
then

1In a given dynamical system model, the point locations will depend on time and we shall write, for
example, zi (t). In this way the neighbour set will depend on time:Ni (z(t)). But it would be incorrect
to write the time-dependence asNi (t), because knowing just t , and not, say, initial locations, is not
enough to know the neighbour set in general.

3.2 Problem Formulation 27

Fig. 3.1 Sensed data for two unicycles

(∃θss) lim
t→∞ θ(t) = θss1.

Thus we require that if initially the robots’ heading angles are sufficiently close
to each other and the visibility graph is connected, then the heading angles will
synchronize. Notice that this is a mathematical problem and that the following real
issues are not addressed: robots are not of zero dimensions and therefore collisions
are a real issue; real robots cannot be programmed all to go at the same speed and
therefore a control system would be required to keep the robots in a pack.

Despite the apparent simplicity of the formulation above, the flocking problem
remains unsolved. The challenge is to design admissible control laws that preserve the
connectivity of the visibility graph while achieving synchronization of the heading
angles. If wemake the unrealistic assumption that the visibility graph is fixed, i.e., the
neighbour sets Ni are constant, then the flocking problem admits a simple solution,
which we discuss next.

3.3 Flocking with Fixed Neighbours

If the visibility graph G is fixed (i.e., the neighbour sets Ni are constant) and con-
nected, then we no longer have to worry that the robots might come in and out of each
other’s field of view. In this case we may ignore the robots’ positions and consider
just their heading angle dynamics

θ̇i = ωi , i = 1, . . . , n. (3.1)

In this context,we seek controlsωi that rely only on the sensed data {θi −θk : k ∈ Ni },
and asymptotically stabilize the flocking manifold

F = {(θ1, . . . , θn) : θ1 = · · · = θn}. (3.2)

28 3 The Flocking Problem

We will also want the angles to converge to a constant, not just to each other.
Before proceeding with the solution of this problem, we need to clarify what the

state space of (3.1) is. Each θi is an angle measured modulo 2π. When we write
θi = θk , we mean that θi is equal to θk plus some integer multiple of 2π. An angle,
therefore, is not a real number, but rather an equivalence class of real numbers. To
make things precise, consider the equivalence relation on the real line

θ1 ∼ θ2 ⇐⇒ (∃l ∈ Z) θ1 − θ2 = 2πl.

For θ ∈ R, denote by [θ] the equivalence class of θ, defined as

[θ] := {θ + 2πl : l ∈ Z}.

Finally, let (R/∼) denote the set of all equivalence classes just defined. Then
each angle lives in (R/∼), and the state space of (3.1) is the n-fold product
(R/∼) × · · · × (R/∼).

How can we visualize the set (R/∼) × · · · × (R/∼)? First, it is not a vector
space, for the sum of two angles is well-defined but scalar multiplication is not (try
to multiply [π] by 1/2; do you get a unique angle in (R/∼)?). A useful way of
visualizing (R/∼) is to identify each element [θ] ∈ (R/∼) with the point e jθ on the
unit circle in the complex plane, which we denote by S

1. For an exercise, convince
yourself that this identification works. Prove that the map (R/∼) → S

1, [θ] �→ e jθ

is a bijection.2 From now on we will drop the notation [θ] and use θ to denote an
angle in (R/∼). We will also identify angles with points on the unit circle.

To summarize, the state space of (3.1) is the n-fold product S1 × · · · × S
1, called

the n-torus, and the flocking problem with fixed visibility graph corresponds to the
synchronization of points on the unit circle. Since the n-torus is not a vector space, it is
not possible to solve the flocking problem with a linear control law. More concretely,
for a control law to be well-defined on the n-torus, it must be a 2π-periodic function
of the angles (θ1, . . . , θn), and therefore nonlinear.

In 1975 the Japanese researcher Yoshiki Kuramoto proposed a simple model of
synchronization of coupled oscillators. Kuramoto represented the limit cycle behav-
iour of each oscillator by themotion of a point θi on the unit circle S1, and formulated
the following coupled differential equation representing the interconnection of the
oscillators:

θ̇i = μi − K

n

n∑
k=1

sin(θi − θk), i = 1, . . . , n. (3.3)

The scalar μi ≥ 0 represents the i th oscillator’s natural frequency and K > 0
determines the strength of the coupling among oscillators. This equation is known
as the Kuramoto model of coupled oscillators. In a moment we will derive the
Kuramoto model, but first we remark on its qualitative properties.

2In fact, the set (R/∼) can be given a differentiable structure turning it into a smooth manifold, and
such that the map (R/∼) → S

1 defined here is a diffeomorphism, not just a bijection.

3.3 Flocking with Fixed Neighbours 29

When the natural frequencies μi are positive, Kuramoto observed that as K
is increased beyond a minimum threshold Kmin (the so-called critical coupling
strength), some of the points θi begin to rotate around the unit circle in a cohe-
sive group, although not synchronized. The larger the ratio K/Kmin, the greater the
portion of oscillators moving cohesively and the smaller the distance between the
θi ’s. In the limit as K → ∞, all θi ’s become synchronized. Kuramoto’s results stimu-
lated a vigorous research activity in the physics and dynamical systems communities.
Some of that research is summarized in the paper by Strogatz [41]. Recently, Dörfler
and Bullo [10] made a breakthrough by precisely characterizing, among other things,
the critical coupling strength Kmin, the presence of a locally exponentially stable set
in the state space of (3.3), the size of the domain of attraction of this set, and the
bound on the distances between the θi ’s on this set.

When the natural frequencies μi are all zero, the qualitative properties of
model (3.3) are much simpler to analyze. As a matter of fact, we will see that for
any K > 0 the manifold3 {(θ1, . . . , θn) : θ1 = · · · = θn} is locally asymptotically
stable. In particular, when the initial conditions θi (0) are sufficiently close to each
other, all phases θi converge to a common constant θss . This result is precisely what
we need to solve the flocking problem. Before stating a formal result, we derive the
Kuramoto model.

3.3.1 Derivation of the Kuramoto Model

Consider a collection of points p1(t), . . . , pn(t) moving on the unit circle, with
pi (t) = e jθi (t). Differentiate with respect to time: ṗi = e jθi j θ̇i . Now let vi = θ̇i

and substitute into the preceding equation:

ṗi = vijpi. (3.4)

Since the circle has unit radius, the scalar vi represents the linear speed of the point
pi . This speed could be positive or negative. Notice that if we view pi as a vector
from the origin and view multiplication by j as rotation by π/2, then j pi can be
viewed as tangent to the circle at the point pi—see the picture on the left in Fig. 3.2.

Now we propose a feedback law for vi in Eq. (3.4); see the picture on the right in
Fig. 3.2. First we suppose that when there are no interactions, point pi has a nominal
speed μi . To model the interaction between pi and pk , we add a term proportional
to the projection of pk onto the line tangent to the circle at pi , that is, 〈pk, j pi 〉. We
then sum all these contributions to arrive at the control law

vi = μi + K

n

n∑
k=1

〈pk, j pi 〉.

3Recall that we called this set the flocking manifold F of the model (3.1).

30 3 The Flocking Problem

Fig. 3.2 Left The vectors
pi and j pi . Right The
contribution to the linear
speed vi of the interaction
between points i and k

The coefficient K/n determines the interaction strength between points.
Now we need to express vi in terms of the angles θk rather than the points pk . We

observe that
〈pk, j pi 〉 = Re (p̄k j pi)

= Re
(
e− jθk je jθi

)
= − sin(θk − θi).

Therefore,

θ̇i = vi = μi − K

n

n∑
k=1

sin(θi − θk).

This is the Kuramoto model in (3.3).

3.3.2 Solution of the Flocking Problem

We now return to the flocking problem for system (3.1). Kuramoto’s model (3.3)
with natural frequencies μi = 0 suggests the following choice4 of control laws:

ωi = −
n∑

k=1

aik sin(θi − θk), aik > 0.

These controls require each robot to see all other robots (i.e., the visibility graph G
is complete). It turns out that we may simply restrict the sum to the index set of the
neighbours of robot i :

4For maximum generality, we replace the coefficient K/n in the Kuramoto model by symmetric
gains aik = aki > 0.

3.3 Flocking with Fixed Neighbours 31

ωi = −
∑

k∈Ni

aik sin(θi − θk), aik = aki > 0. (3.5)

Theorem 3.1 If the visibility graph is fixed, undirected, and connected, then for any
aik = aki > 0, i, k = 1, . . . , n, the control law (3.5) makes the flocking manifold F
in (3.2) locally asymptotically stable and solves the flocking problem.

Proof Sketch Suppose for simplicity that the visibility graph is complete and
aik = 1, so that the closed-loop system reads as

θ̇i = −
n∑

k=1

sin(θi − θk), i = 1, . . . , n. (3.6)

This equation has the form θ̇ = g(θ), where the g(θ) is the gradient of a positive
definite function. Indeed, let re jψ denote the average of the points e jθ1, . . . , e jθn . Of
course, r and ψ are functions of θ, and so we have

r(θ)e jψ(θ) = 1

n

(
e jθ1 + · · · + e jθn

)

and therefore

r(θ) = 1

n

∣∣∣e jθ1 + · · · + e jθn

∣∣∣ .
The average of n points on the unit circle lives inside the unit disc, and therefore r(θ)
is a real number between 0 and 1. It equals 1 if and only if the n points are equal,
that is, the n angles are equal, and this is the case when the angles are on the flocking
manifold F .

Define the function

V (θ) = n2

2
r(θ)2

= 1

2

∣∣∣e jθ1 + · · · + e jθn

∣∣∣2

= 1

2

(
e jθ1 + · · · + e jθn

) (
e− jθ1 + · · · + e− jθn

)
.

Thus
∂V (θ)

∂θi
= sin(θ1 − θi) + · · · + sin(θn − θi)

and therefore (3.6) can be written θ̇ = ∂V (θ)/∂θ. This is a gradient equation. If θ(0)
is chosen so that all the phases are close enough together, then r(θ(0)) will be close
to 1, and therefore θ will move in a direction to increase V (θ), that is, increase r(θ),
until in the limit r(θ) = 1 and the phases are synchronized.

32 3 The Flocking Problem

In the general case of aik �= 1 and connected but not complete graph, the function
V should be replaced by

V (θ) = −
n∑

i=1

∑
k∈Ni ,k<i

aik(1 − cos(θi − θk)).

We will see in Chap.6 that −V (θ) can be regarded as the potential of a collection of
springs with constants aik that connect point-masses on the unit circle.

With the above definition of V the closed-loop system with controls (3.5) can still
be written as θ̇ = ∂V (θ)/∂θ, and it is still true that solutions in a neighbourhood of
the global maximum of V converge to the global maximum. It can be shown that if
the graph is connected, the global maximum of V is attained on the flockingmanifold
F . The details of this argument are presented later in the proof of a flocking theorem
for flying robots (Theorem 6.1). �

3.4 The Control Law of Jadbabaie, Lin, and Morse

The paper by Jadbabaie, Lin, and Morse [16] is on the flocking problem. Since it has
been referenced bymany other papers, it is instructive to review it from the viewpoint
of this chapter.

Although it is not stated in these terms, the paper studies a system of unicycles
moving at constant speed in the plane. It is assumed that if unicycle i can see unicycle
j , then j can see i . That is, the visibility graph is undirected at all times. The paper
studies a single control strategy in discrete time, namely, at time t + 1 (t an integer)
unicycle i changes its heading to the average heading at time t of itself and its
neighbours:

θi (t + 1) = 1

1 + ni (t)

⎛
⎝θi (t) +

∑
k∈Ni (t)

θk(t)

⎞
⎠ . (3.7)

Here ni (t) is the number of neighbours of robot i at time t . It is proved that all the
heading angles converge to a common value providedG(t) has a connectedness prop-
erty over time, namely, there exists T > 0 such that the union graph

⋃
t0≤t≤t0+T G(t)

is connected for all t0. Here, the union of graphs with the same node set is obtained by
taking the union of the edges. Unfortunately, the condition onG(t) is not checkable—
it would require an infinite time simulation. The proof uses a theorem of Wolfowitz
on ergodicity (1963).

In the theorems in [16] the vector θ(0) of initial heading angles is fixed in time.
This allows the visibility graph to be a function of t alone, and not both t and θ(0).
In actuality, as we remarked at the beginning of this chapter, for a sensible model
of limited visibility, the graph is state dependent, G = G(z). If the control strategy

http://dx.doi.org/10.1007/978-3-319-24729-8_6
http://dx.doi.org/10.1007/978-3-319-24729-8_6

3.4 The Control Law of Jadbabaie, Lin, and Morse 33

is given and if the state z(t) evolves uniquely from z(0), the visibility graph is a
function of time, G(z(t)).

Is the control law of [16] admissible? If we ignore the problem with the time-
varying visibility graph, it is admissible in the following sense. In continuous time,
consider the controls

ωi = − 1

ni (t) + 1

∑
k∈Ni (t)

(θi − θk). (3.8)

These are admissible because they rely on relative angles of neighbouring robots. The
forward-Euler discretization with unit sampling interval of the closed-loop system
is

θi (t + 1) = θi (t) − 1

ni (t) + 1

∑
k∈Ni (t)

(θi (t) − θk(t)),

which coincides with (3.7). Thus the update (3.7) results from a forward-Euler dis-
cretization of an admissible control law.

The update law (3.7) is not 2π-periodic. To illustrate the relevance of this property,
consider three robots (n = 3) and assume that 1 can see 2, 2 can see 1 and 3, and 3 can
see 2. Initialize the heading angles as follows: θ1(0) = 0, θ2(0) = 2π, θ3(0) = 4π.
Thus the initial headings are identical modulo 2π. At the next time step we have

θ1(1) = 1

2
(0 + 2π) = π

θ2(1) = 1

3
(2π + 0 + 4π) = 2π

θ3(1) = 1

2
(4π + 2π) = 3π.

Thus the heading angles move away from the flocking manifold. The flocking mani-
fold is unstable. More precisely, the problemwith the control law (3.7) is that it treats
the angles θi as real numbers, rather than as elements of S1. The control law (3.5),
on the other hand, is 2π-periodic and it respects the geometry of the state space.

As a final remark, notice the relationship between the Kuramoto-inspired control
law (3.5) and the control law (3.8). If the visibility graph is constant and undirected,
and we set aik = 1/(ni + 1), then (3.8) is the linearization of (3.5) at any point of
the flocking manifold.

Chapter 4
The Rendezvous Problem: Fixed Neighbours

4.1 Introduction

A dictionary definition of rendezvous is, for example, a meeting of people at a pre-
designated place and time. For this to happen, the place must be known by the peo-
ple beforehand. In the rendezvous problem, however, the place cannot be specified
beforehand because a robot, as we define it, has no knowledge of global coordinates.

The rendezvous problem for integrator point models can be stated as follows:

Get n identical mobile robots with only onboard sensors to move to a common location using
distributed control.

This is also called an agreement or consensus problem. It is a theoretical problem;
in practice it could be used to get the robots to gather near to each other. It is also
related to the problem of electing a leader. We emphasize that the terminal point is
not specified; in general it is unknown until the robots do meet.

All solutions to the rendezvous problem are based on the strategy of pursuit, so we
begin this chapter with the simplest such strategy: cyclic pursuit of integrator points.
Cyclic pursuit assumes a special kind of visibility graph. Later we generalize cyclic
pursuit to arbitrary fixed graphs. The key result is a theorem relating the spectral
properties of the Laplacian of the visibility graph to its connectedness.

The rendezvous problem for unicycles is considerably harder than for integrator
points.We present a rendezvous strategy for unicycles and highlight its practical lim-
itations. We then return to cyclic pursuit and illustrate some unexpected phenomena
arising when there are infinitely many integrator points. We conclude the chapter
with a discussion about discrete-time models of robots.

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8_4

35

36 4 The Rendezvous Problem: Fixed Neighbours

4.2 Cyclic Pursuit

Suppose three dogs are initially placed at the vertices of an equilateral triangle and
they chase each other at unit speed. Dog 1 chases dog 2; dog 2 chases dog 3; finally,
dog 3 chases dog 1. What curves do the dogs describe? The answer, depicted in
Fig. 4.1, is that each dog traces out a logarithmic spiral, and the dogs meet at a
common point inside the triangle. The curves of Fig. 4.1 are special instances of
pursuit curves.

If we let zi denote the position of dog i in the complex plane, then all pursuit
curves traced out by the three dogs in the complex plane arise from solutions of the
coupled differential equations

ż1 = z2 − z1
|z2 − z1|

ż2 = z3 − z2
|z3 − z2|

ż3 = z1 − z3
|z1 − z3| .

Wemay interpret the above equations like this. The dogs aremodelled as integrator
points żi = ui, and the pursuit strategy of dog i is the control law ui = (zi+1 −
zi)/|zi+1 − zi|. This control law is nonlinear. The control law ui = (zi+1 − zi) is
linear and preserves the essential qualitative properties of pursuit curves.

We now generalize the scenario above. Consider a collection of robots modelled
as integrator points. The robots are numbered 1 to n. Robot 1 pursues robot 2; it
in turn pursues robot 3; and so on; robot n − 1 pursues robot n; finally, robot n
pursues robot 1. This strategy is called cyclic pursuit. Notice that the robots must
be identifiable for cyclic pursuit to be implemented. Robot 1 must be able to identify
which of the other robots is robot 2, and it must be able to see it at all time.

Fig. 4.1 Pursuit curves

4.2 Cyclic Pursuit 37

Example 4.1 Consider four robots in cyclic pursuit. Model the robots as points in
the complex plane: z1, . . . , z4 ∈ C. The neighbour sets are Ni(z) = {i + 1} for
i = 1, 2, 3 and N4(z) = {1} and the differential equations are

ż1 = z2 − z1
ż2 = z3 − z2
ż3 = z4 − z3
ż4 = z1 − z4.

Define the vector and matrix

z =

⎡
⎢⎢⎣

z1
z2
z3
z4

⎤
⎥⎥⎦ , U =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ .

Then the preceding four equations can be combined into

ż = (U − I)z. (4.1)

The four trajectories can be found by familiar eigenvalue analysis. The characteristic
polynomial of U is s4 − 1, whose roots, i.e., eigenvalues of U, are 1, j,−1,−j, the
four roots of unity. Thus the eigenvalues of U − I are the four points

0,−1 + j,−2,−1 − j

as shown in Fig. 4.2. For a given z(0), the solution of (4.1) is the sum of four terms,
one for each eigenvalue. The three terms for the left half-plane eigenvalues go to zero
as t goes to ∞. The term for the zero eigenvalue is stationary. An eigenvector for

Fig. 4.2 The eigenvalues of
U − I are on the circle with
centre −1 and radius 1

38 4 The Rendezvous Problem: Fixed Neighbours

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 4.3 Simulations of cyclic pursuit

this zero eigenvalue is 1, the vector of all 1’s. Thus there exists a complex number c
such that z(t) → c1, or zi(t) → c for all i. This proves that the robots rendezvous.

Figure4.3 shows two simulations (more than 4 robots) to illustrate the behav-
iour.We observe that the centroid is stationary, each robot converges to the centroid,
and the trajectories sometimes intersect, but sometimes do not—it depends on the ini-
tial configuration. Furthermore, control is distributed in that the robots have identical
local strategies and the sensor requirements are minimal: Only n information-flow
links are needed for n robots. Also, there is an emergent behaviour—convergence
to a common point. �

More generally, consider finitely many, n ≥ 1, robots with positions z1, . . . , zn

in the complex plane. Let z denote the vector with components z1 up to zn. Let U
denote then×n realmatrixwithfirst row0, 1, 0 . . . , 0, 0, second row0, 0, 1, 0, . . . , 0,
and so on, until the last row 1, 0, . . . , 0. Then the cyclic pursuit model is ż = Mz,
M = U − I . In components,

żi = zi+1 − zi, i = 1, . . . , n − 1

żn = z1 − zn.
(4.2)

Theorem 4.1 System (4.2) has the property that the centroid of the robots’ positions,
(1/n)1T z(t), is stationary and for every initial condition, the robots asymptotically
rendezvous at this centroid, i.e., zi(t) → (1/n)1T z(0) for all i ∈ {1, . . . , n}.
Proof Let us see first that the centroid is stationary. The vector of points is z(t).
The centroid of these points equals (1/n)1T z(t). The derivative of this equals zero
because 1T M = 0.

The behaviour is completely specified by the eigenvalues and eigenvectors of M.
Let us first note that U is a companion matrix with characteristic polynomial sn − 1.

4.2 Cyclic Pursuit 39

The roots of this polynomial, and hence the eigenvalues of U, are the roots of unity,
namely, these n points on the unit circle:

eigenvalues ofU : ej2πk/n, k = 0, 1, . . . , n − 1.

By the spectral-mapping theorem, the eigenvalues of M = U − I are these n points
shifted left by 1:

eigenvalues ofM : ej2πk/n − 1, k = 0, 1, . . . , n − 1.

One of these is at the origin and all the others are strictly in the left half-plane. Thus
every solution of ż = Mz converges to the eigenspace of the zero eigenvalue. Let 1
denote the n-dimensional vector of all 1s. ClearlyU1 = 1 and henceM1 = 0. Thus 1
is an eigenvector of M for the zero eigenvalue. In other words, the eigenspace for the
zero eigenvalue is one-dimensional and spanned by 1. We denote this eigenspace by
ker M, where ker denotes kernel, which is also termed the nullspace. It follows from
linear system theory that every solution of ż = Mz converges to c1 for some complex
number c dependent on the initial condition. Hence the robots zi(t) all converge to
the same point. Since (1/n)1T z(t) is stationary, and since z(t) → c1, we have

(1/n)1T z(0) = lim
t→∞(1/n)1T z(t) = (1/n)1T c1 = c.

Thus all robots converge to the centroid of their initial positions. �

Notice that the robots are modelled as living in the complex plane, while the
aggregate state space is C

n. In C, there are n trajectories, all terminating at the same
point. In the state space C

n, there is one trajectory, as shown in Fig. 4.4.
Here is another type of rendezvous. You go to the zoo with a friend. At some time

you unfortunately become separated. How can you meet up again? This is a kind
of rendezvous problem. If you had pre-arranged that in the eventuality of becoming

Fig. 4.4 The trajectory
converges to the subspace
ker M

ker M

40 4 The Rendezvous Problem: Fixed Neighbours

separated youwould both go to the entrance (or someother beacon), therewould be no
problem, sowe exclude this situation. Likewise, we exclude the possibility ofmaking
an announcement over a PA system. The real problem is to devise identical search
procedures for you and your friend to guarantee meeting, preferably in a reasonable
time. Another example (from Naomi Leonard): n autonomous underwater vehicles
have been exploring the ocean; at the end of a certain time period it is desired that
they assemble at a common point so that their power supplies can be recharged. This
is a rendezvous problem. The flocking problem with fixed visibility graph of Chap.3
can be also viewed as a rendezvous problem for points on the unit circle.

We turn to implementation details. Assume each robot has onboard a camera, a
computer, and a clock. Also, each robot has a spherical head and the heads are all of a
different colour. (Thus one robot can compute the distance to another using a camera
by measuring the diameter of the latter’s sphere.) Assume there is a supervisor (a
human or computer) who can occasionally download instructions to the robots. We
think of this as a hybrid control setup: The supervisor at the discrete task level; the
robots at the lower level. Prior to the rendezvous task, the supervisor downloads
the pursuit instructions to the robots, for example, red should pursue green. The
supervisor also downloads a time value t0 at which the rendezvous task should begin.
Assume that at time t = 0 < t0 the robots are dispersed in some fashion, say, by
the supervisor. At t = t0 cyclic pursuit would begin and rendezvous would occur
(asymptotically).

In cyclic pursuit, robot i is assumed to see robot i + 1 with perfect accuracy and
no matter how far apart they are. Here is a more realistic scenario: There are n robots.
At time t, robot i can see (or otherwise sense) a subsetNi(t) of the others. He heads
for their centroid (or some other linear combination of their positions). The setNi(t)
may change with time, as for example if the sensor is a camera with a limited field
of view, such as a cone. So the visibility graph is time-varying. Can an emergent
collective behaviour be assured? We will study this in Chap. 5.

4.3 General Fixed Neighbours

We now formulate the rendezvous problem and generalize the cyclic pursuit strategy.

4.3.1 Rendezvous Problem for Integrator Points

Let there be n robots:
żi = ui, i = 1, . . . , n. (4.3)

Each robot can see some neighbours using an onboard camera. We assume that if
robot i can see robot j, then robot i is able to measure the relative displacement zj −zi.
Let Ni denote the set of sensed neighbours of robot i; Ni is a subset of the integers
from 1 to n, excluding i. Notice that neighbours are not determined by proximity

http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_5

4.3 General Fixed Neighbours 41

but rather just by definition. Furthermore, the neighbour sets do not change with
time—they are fixed.

A control law ui is admissible if it is a locally Lipschitz function of the relative
displacements zj −zi, j ∈ Ni. The rendezvous problem is to find admissible controls
ui so that for every z(0) there exists a complex number zss such that the solution z(t)
of (4.3) satisfies limt→∞ z(t) = zss1.

Let us clean up the notation by using vectors and matrices. Let z and u be the
vectors with components zi and ui. Let ni be the number of neighbours of robot i
and let yi ∈ C

ni be the vector of relative displacements sensed by robot i. Thus the
components of yi are the quantities zj − zi, j ∈ Ni. We may write yi = Ciz, where Ci

is a matrix ni × n. If ni = 0 then we set Ci to be the zero 1× n matrix. Admissibility
of the control law ui corresponds to requiring ui to be a function of yi. We consider
linear control laws, ui = Fiyi, where Fi is a matrix of dimension 1× ni. Now define

y =
⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ , C =

⎡
⎢⎣

C1
...

Cn

⎤
⎥⎦ , F =

⎡
⎢⎢⎢⎣

F1 0 · · · 0
0 F2 · · · 0
...

...
...

...

0 0 · · · Fn

⎤
⎥⎥⎥⎦ .

Then y = Cz and the combined control law is u = Fy.
To recap, the equations are

ż = u, y = Cz, u = Fy.

The closed-loop system is simply ż = FCz. These equations look very simple, but
the structure of the problem is embedded in the special forms of C and F. Each row
of C is either all 0’s (if the corresponding robot has no neighbours) or has only two
nonzero elements, +1 and −1, and F is block diagonal. These reflect the facts that
the sensors are onboard and control is decentralized.

Now we turn to graphical matters. Associated with the neighbour structure is a
visibility graph G. As in Chap.3, there is one node for each robot, and an edge from
i to j if i can see j, which we interpret as saying j ∈ Ni. The adjacency matrix of
the graph is the n × n matrix A defined by saying

aij = 1 if there is an edge from node i to node j, and
aij = 0 otherwise.

The out-degree of a node is the number of edges leaving it. The degree matrix of
the graph is the diagonal matrix D whose ith diagonal element is the out-degree of
node i. Finally, the Laplacian matrix of the graph is L := D − A. If the visibility
graph is undirected, then the Laplacian matrix is symmetric.

Example 4.2 Consider four robots in cyclic pursuit. The visibility graph is shown in
Fig. 4.5. The neighbour sets are

N1 = {2}, N2 = {3}, N3 = {4}, N4 = {1}.

http://dx.doi.org/10.1007/978-3-319-24729-8_3

42 4 The Rendezvous Problem: Fixed Neighbours

Fig. 4.5 Visibility graph for
four robots in cyclic pursuit

1 2

34

The sensed outputs are
y1 = z2 − z1
y2 = z3 − z2
y3 = z4 − z3
y4 = z1 − z4.

Pick unity control gains, Fi = 1. Then the closed-loop system is given by

ż = FCz =

⎡
⎢⎢⎣

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎤
⎥⎥⎦ z.

This is the cyclic pursuit strategy (4.2). TheLaplacianmatrix of the graph in Fig. 4.5 is

L =

⎡
⎢⎢⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

⎤
⎥⎥⎦ .

Thus we have the identity FC = −L and the dynamical system is therefore

ż = −Lz. (4.4)

This is an important equation, showing that robot dynamics is related to the system’s
graph through the graph’s Laplacian. �

Example 4.3 In our setup, everything is uniquely determined by specifying just the
number of robots and the neighbour sets. Consider n = 4 robots with neighbour sets

N1 = {2}, N2 = {3}, N3 = {2, 4}, N4 = {3}.

4.3 General Fixed Neighbours 43

Fig. 4.6 A visibility graph 1 2 3 4

Then the visibility graph is shown in Fig. 4.6. The sensed outputs are

y1 = z2 − z1
y2 = z3 − z2

y3 =
[

z2 − z3
z4 − z3

]

y4 = z3 − z4.

and therefore

C =

⎡
⎢⎢⎢⎢⎣

−1 1 0 0
0 −1 1 0
0 1 −1 0
0 0 −1 1
0 0 1 −1

⎤
⎥⎥⎥⎥⎦ .

In general, the matrices Ci are not really unique, but we can make them so if we
specify the order in which we will list the relative displacements

zj − zi, j ∈ Ni, i = 1, . . . , n

in the vector yi. The natural order is for increasing j.
The adjacency and degree matrices of the graph in Fig. 4.6 are

A =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 1 0 1
0 0 1 0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ ,

and therefore the Laplacian is

L = D − A =

⎡
⎢⎢⎣
1 −1 0 0
0 1 −1 0
0 −1 2 −1
0 0 −1 1

⎤
⎥⎥⎦ .

Note the important property of this decentralized control structure: If y1 = 0, that is,
if z1 is collocated with the only agent it senses, then u1 = 0, so ż1 = 0 and robot 1
does not move. The matrix F of local controllers has the form

44 4 The Rendezvous Problem: Fixed Neighbours

Fig. 4.7 Block diagram

sensor network

F =

⎡
⎢⎢⎣

F1 0 0 0
0 F2 0 0
0 0 F3 0
0 0 0 F4

⎤
⎥⎥⎦ .

The components F1, F2, F4 are 1× 1 and F3 is 1× 2. The decentralized structure is
shown by the block diagram in Fig. 4.7. This is a bit misleading because the concept
of a “sensor network” does not bring out the point that the sensors are all local. It is
a network of mobile sensors.

Now pick control gains

F1 = 1, F2 = 1, F3 = [1 1], F4 = 1.

You can check that the matrix of the closed-loop system is FC = −L. Its eigenvalues
are {0,−1,−1,−3}, and the robots rendezvous. �

4.3.2 Solution of the Rendezvous Problem

It is a fact that if the rendezvous problem is solvable by some controller whatever,
then it is solved by the controller1

Fi = 1T . (4.5)

To prove this requires a lot of work in graph theory; see [23]. We are going to accept
this result. With this F it can be checked that

FC = −L.

1The definition of Fi is irrelevant if Ci is the row of zeros, but it is handy to use Fi = 1 in this case
too.

4.3 General Fixed Neighbours 45

So now the question becomes, when does L have the property

(∀z(0))(∃zss) lim
t→∞ e−tLz(0) = zss1? (4.6)

The answer is contained in the following theorem.

Theorem 4.2 The following conditions are equivalent:

1. The rendezvous problem is solvable by some matrices Fi.
2. The controller F in (4.5) solves the rendezvous problem.
3. The Laplacian L has rank n − 1.
4. The visibility graph has a node that is reachable from every other node by some

directed path.

Proof We will prove only equivalence of the second and third conditions. If all
the robots are collocated at t = 0, they will not move. That is, C1 = 0. Therefore
L1 = 0, from which we conclude that 0 is an eigenvalue of L, that is, the rank of L is
less than n. An appeal to Gershgorin’s theorem shows that all the other eigenvalues
of −L have negative real part. Thus (4.6) will follow if the eigenspace of −L for the
zero eigenvalue has dimension not more than 1. �

Example 4.4 (Continued from Example 4.3) As we saw, the Laplacian is

L = D − A =

⎡
⎢⎢⎣
1 −1 0 0
0 1 −1 0
0 −1 2 −1
0 0 −1 1

⎤
⎥⎥⎦ .

The rank equals 3 and therefore rendezvous is achievable. The controllers

F1 = 1, F2 = 1, F3 = [
1 1

]
, F4 = 1

solve the rendezvous problem.
�

Example 4.5 Let us explore a little further, without proving anything, just doing
examples. In the visibility graph, Fig. 4.6, nodes {2, 3, 4} have the property that they
are reachable from every other node by a directed path. On the other hand, suppose
the neighbour sets are

N1 = {2}, N2 = ∅, N3 = {2, 4}, N4 = ∅.

46 4 The Rendezvous Problem: Fixed Neighbours

Draw the graph. We have

L =

⎡
⎢⎢⎣
1 −1 0 0
0 0 0 0
0 −1 2 −1
0 0 0 0

⎤
⎥⎥⎦ .

The rank of L equals only 2, which is less than n − 1 = 3. The closed-loop system
therefore does not enjoy the rendezvous property. The visibility graph shows that
there is no node that is reachable from all other nodes by directed paths.

Even though the problem is not solvable, we can continue and find C and F. It
will turn out that FC = −L still holds. Based on the neighbour sets, the measured
signals are

y1 = z2 − z1
y2 = 0

y3 =
[

z2 − z3
z4 − z3

]

y4 = 0.

Thus

C =

⎡
⎢⎢⎣

C1
C2
C3
C4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 1 0 0
0 0 0 0
0 1 −1 0
0 0 −1 1
0 0 0 0

⎤
⎥⎥⎥⎥⎦

and
F1 = 1, F2 = 1, F3 = [

1 1
]
, F4 = 1.

The equation FC = −L still holds. �

As we saw with cyclic pursuit, we have to allow zss to depend on the initial
positions for the goal to be feasible. For example, if all the robots are initially placed
at a point zi(0) = w, they will stay there forever. So it would necessarily follow that
zss = w.

4.4 Rendezvous of Unicycles

We now turn to rendezvous of unicycles. We present two approaches. In the first
approach we feedback linearize the unicycles as in Sect. 2.2 and then use the ren-
dezvous controller for integrator points. In the second approach, we develop a time-
varying control law that does not rely on feedback linearization.

http://dx.doi.org/10.1007/978-3-319-24729-8_2

4.4 Rendezvous of Unicycles 47

Consider n unicycles
żi = vie

jθi

θ̇i = ωi.
(4.7)

Recall that zi is the position of unicycle i in the complex plane, θi is its heading angle,
vi its linear speed, and ωi its angular speed. As before, we set ri := ejθi and si := jri.
As in Chap.3, we will say that a control law (vi,ωi) is admissible for unicycle i if it
is a locally Lipschitz function of the quantities

〈zk − zi, ri〉, 〈zk − zi, si〉, 〈rk, ri〉, 〈rk, si〉, k ∈ Ni.

The rendezvous problem for unicycles is to find admissible controls such that for
every (z(0), θ(0)) there exists a complex zss such that the solution z(t) of (4.7)
satisfies limt→∞ z(t) = zss1. Notice that we do not have any control specification
for the heading angles.

Recall from Sect. 2.2 that if we let pi := zi + εri and ui := rivi + εsiωi, then we
have

ṗi = ui.

Nowwe use the main result of the previous section. This requires a redefinition of the
sensed outputs yi in terms of pi. Accordingly, let yi denote the vector of differences
pj − pi, j ∈ Ni. Then, if the visibility graph satisfies condition 2 of Theorem4.2, the
control law ui = 1T yi makes the positions pi all converge to the same point. Is this
control law admissible? Interestingly, the answer is yes. The control ui is the sum of
terms pj − pi, j ∈ Ni. From ui we get the physical controls (vi,ωi) by solving the
equation ui = rivi + εsiωi. Suppose for simplicity that the control law for unicycle
1 is

u1 = p2 − p1.

Then
r1v1 + εs1ω1 = z2 + εr2 − z1 − εr1.

Taking inner products with r1 gives

v1 = 〈z2 − z1, r1〉 + ε〈r2, r1〉 − ε

and with s1 gives
ω1 = ε−1〈z2 − z1, s1〉 + 〈r2, s1〉.

Thus the controls are admissible.
However, to get the unicycles almost to rendezvous, we would need ε to be very

small. But then the term ε−1〈z2 − z1, s1〉 in ω1 would be very large, saturating
a real actuator. We conclude that controlling unicycles in this way is feasible but
performance is perhaps questionable.

http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_2

48 4 The Rendezvous Problem: Fixed Neighbours

We now turn to the second approach. The following control law does not rely on
feedback linearization:

vi = k
∑
k∈Ni

〈zk − zi, ri〉

ωi(t) = cos(t).

(4.8)

It has a severe practical limitation: The unicycles keep wiggling even after they have
rendezvoused. Nonetheless the following result is interesting.

Theorem 4.3 Assume that the visibility graph has a node that is reachable from
every other node by some directed path. Then there exists k� > 0 such that for all
k ∈ (0, k�), the control law (4.8) solves the rendezvous problem for unicycles.

Proof Sketch For simplicity we assume that the visibility graph is undirected, so
that the Laplacian L is a symmetric matrix. We also decomplexify zi and view it as
a vector in R

2. The positions of the unicycles are modeled by

żi = k
∑
k∈Ni

〈zk − zi, ri〉ri, i = 1, . . . , n.

Using the identity
〈z, r〉r = (rrT)z,

we get
żi = krir

T
i

∑
k∈Ni

(zk − zi), i = 1, . . . , n. (4.9)

Let us express these equations more compactly. To begin with, we may view θi(t)
as an exogenous signal because θ̇i = cos(t), so the evolution of θi is decoupled from
the position dynamics of the unicycles. We suppress t in θi(t) when convenient in
what follows. We have the unit direction vector

ri =
[
cos(θi)

sin(θi)

]
.

Define the matrix

Mi := rir
T
i =

[
cos2(θi) sin(θi) cos(θi)

sin(θi) cos(θi) sin2(θi)

]
,

so that from (4.9)
żi = kMi

∑
k∈Ni

(zk − zi), i = 1, . . . , n. (4.10)

4.4 Rendezvous of Unicycles 49

The position zi is a function of time t, and because θi is also a function of t, so too is
Mi a function of t and so we could write Mi(t). Next, let M denote the block diagonal
matrix with blocks {M1, . . . , Mn}. Finally, let

L(2) = L ⊗ I2,

where ⊗ denotes the Kronecker product of matrices and I2 is the 2 × 2 identity
matrix. To recap, element lij of L is replaced by the block lijI2. Then (4.10) can be
written simply

ż = −kML(2)z,

or, with t shown explicitly,
ż = −kM(t)L(2)z. (4.11)

This is a linear periodically time-varying system. The analysis from this point
onward is similar to what we did in Sect. 2.3 for stabilization of one unicycle to
the origin. In Lemma2.2 we showed that the average of M(t) is positive definite.
Denoting by M̄ this average, we have the averaged system

ż = −kM̄L(2)z.

The matrix L(2) is symmetric. Consider the Lyapunov function candidate

V (z) = 1

2
zT L(2)z.

By Theorem4.2 L has rank n − 1 and its kernel is spanned by 1. It follows that L(2)
has rank 2(n − 1), and its kernel is the image of the 2n × 2 matrix [I2 · · · I2]T .
Thus V (z) = 0 if and only if z1 = · · · = zn, i.e., the robots’ positions coincide. The
derivative of V along the averaged system is

V̇ = −kzT L(2)M̄L(2)z.

This is a quadratic function. Since M̄ is positive definite, V̇ ≤ 0. Moreover,
V̇ = 0 if and only if L(2)z = 0, or V (z) = 0. We thus conclude that the set
{z : V (z) = 0} is globally exponentially stable for the averaged system. Since we are
dealing with stability of a set, rather than of an equilibrium, we cannot directly
apply Theorem2.1. The idea is to extract from (4.11) the dynamics transversal
to the eigenspace of L(2) associated with the two eigenvalues at zero. Then ren-
dezvous becomes an equilibrium stability problem and we can apply Theorem2.1.
It is possible to show that for sufficiently small k, the set {z : V (z) = 0} is glob-
ally exponentially stable for the linear time-varying system (4.11), so that the uni-
cycles rendezvous. Moreover z(t) tends to a constant. The details are worked out
in [25]. �

http://dx.doi.org/10.1007/978-3-319-24729-8_2
http://dx.doi.org/10.1007/978-3-319-24729-8_2
http://dx.doi.org/10.1007/978-3-319-24729-8_2
http://dx.doi.org/10.1007/978-3-319-24729-8_2

50 4 The Rendezvous Problem: Fixed Neighbours

4.5 From Rendezvous to Formation Stabilization

The rendezvous problem is a gateway to more complex control specifications in
distributed control. In this section we show that if one can solve the rendezvous
problem for integrator points, then one can also make the points converge to any
desired formation in a distributed manner. While we focus on integrator points, the
discussion can be easily extended to unicycles.2

Consider an arbitrary polygon P representing a desired formation for the n robots,
for example the triangle displayed in Fig. 4.8. Each vertex of the polygon represents
the desired position of a specific robot modulo a translation common to all robots.
Label the vertices of P with the indices of the associated robots. To express the
polygon as a control specification, place it anywhere in the complex plane and let ci

denote the position of vertex i, as in Fig. 4.8. Finally, let c = (c1, . . . , cn). The vector
c is our formation specification.

The formation stabilization problem for the integrator points (4.3) is to find
admissible controls ui such that, for every initial condition, there exists zss ∈ C such
that the solution z(t) of (4.3) satisfies z(t) → zss1 + c. In other words, all robots
converge to P modulo translation (but not modulo rotation).

A simple modification of the rendezvous control law ui = Fiyi, Fi = 1T , solves
the formation stabilization problem. Let d = Lc, where L is the Laplacian matrix of
the visibility graph and define the control laws

ui = 1T yi + di, i = 1, . . . , n. (4.12)

Theorem 4.4 Suppose the rendezvous problem is solvable for (4.3). Then the above
control law solves the formation stabilization problem. In other words, for every
initial condition the robots converge to a translated version of the polygon P.

Proof The closed-loop system is given by

ż = −Lz + d = −L(z − c).

Define the error variable z̃ = z − c. Then ˙̃z = −Lz̃. If the rendezvous problem
is solvable, then by Theorem4.2 for every initial condition there exists a complex
number zss such that z̃(t) → zss1. Equivalently, z(t) converges to c + zss1, proving
that the robots converge to a translated version of the polygon P. �

Any error in the implementation of the biases di will cause the robots to drift.
Indeed, suppose that instead of implementing ui = Fiyi + di we implement
ui = Fiyi + di + εi. The closed-loop system in error coordinates becomes

˙̃z = −Lz̃ + ε.

2See [25]. In this case, each unicycle would have to carry a compass or some other device allowing
it to measure its own heading angle with respect to a common reference direction.

4.5 From Rendezvous to Formation Stabilization 51

Fig. 4.8 A polygon P

If ε is not in the image of the matrix L, z̃(t), and therefore z(t), will drift off to infinity.

Example 4.6 Consider six robots in cyclic pursuit. We want to stabilize a triangular
formation and a line formation. For the triangle, we choose

c =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
5 − j5

√
3

10 − j10
√
3

−j10
√
3

−10 − j10
√
3

−5 − j5
√
3

⎤
⎥⎥⎥⎥⎥⎥⎦

, which gives d =

⎡
⎢⎢⎢⎢⎢⎢⎣

−5 + j5
√
3

−5 + j5
√
3

10
10

−5 − j5
√
3

−5 − j5
√
3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For the line:

c =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−10
−20
−30
−40
−50

⎤
⎥⎥⎥⎥⎥⎥⎦

, which gives d =

⎡
⎢⎢⎢⎢⎢⎢⎣

10
10
10
10
10

−50

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Simulations are shown in Fig. 4.9. �
We conclude this section with a remark about invariance of formations. The

controller (4.12) relies on a notion of formation that is invariant under translation.
Indeed, two formation specifications c and c + h1 give the same controller because
d = Lc = L(c + h1). However, rotating the formation does not give the same
controller, so our notion of formation is not invariant under rotations. This is a little
odd, as it would make more sense to stabilize formations modulo translations and
rotations. To do that, a different representation of formation specifications is required,
for instance in terms of desired distances between robots. When characterizing for-
mations in terms of relative distances, the notion of formation rigidity comes into
play. This topic is addressed in [20].

52 4 The Rendezvous Problem: Fixed Neighbours

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 4.9 Triangle and line formations for six integrator points in cyclic pursuit

4.6 Infinitely Many Robots

In Sect. 4.2 we considered cyclic pursuit of a finite number of integrator points. We
found that the centroid remains stationary and the robots asymptotically rendezvous
at the centroid. In this section, primarily out of mere curiosity, we see if and how
that might be extended to infinitely many points.

There have been several papers written that consider infinitely many vehicles. For
example, in 1999 Swaroop and Hedrick [43] introduced and studied the concept of
string stability. Consider a one-dimensional straight road, with all traffic moving left
to right as depicted in Fig. 4.10. The car shown farthest to the right is the leader—
there is none to the right of it but there are infinitely many to its left. Suppose the
drivers are controlling their speeds according to some rule. For example, each car
accelerates or decelerates by a certain amount that depends on the gap between it
and the car ahead. Suppose the leader brakes suddenly. Is there any collision in the
convoy? If not, the convoy is said to possess string stability. Swaroop and Hedrick
studied this concept.

Thepractical value of an infinite stringmaybequestionable, although the approach
may be useful when the number of robots is very large. Justh and Krishnaprasad [18]
posed a problem having a continuum of masses, which is even more abstract.

Let Z denote the set of integers—negative, zero, and positive. Consider infinitely
many integrator points:

żi = ui, i ∈ Z.

Fig. 4.10 Infinitely many cars moving left to right in a convoy

4.6 Infinitely Many Robots 53

Wecannot prescribe cyclic pursuit because there are not first and last robots.However,
we can propose serial pursuit:

ui = zi+1 − zi.

Then
żi = zi+1 − zi, i ∈ Z. (4.13)

Bring in the infinite vector z and the infinite matrix U:

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

z−2
z−1

z0
z1
z2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...

. . . 0 1 0 0 0 . . .

. . . 0 0 1 0 0 . . .

. . . 0 0 0 1 0 . . .

. . . 0 0 0 0 1 . . .

. . . 0 0 0 0 0 . . .
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then Eq. (4.13) can be written simply as

ż = Mz,

where M = U − I . The problem is to find if and when all the components of z(t)
converge to the same point. The answer turns out to be yes, and the rendezvous point
is the origin, if the initial locations are square-summable:

∑
i∈Z

|zi(0)|2 < ∞.

It is interesting that the centroid of such a set of initial locations is 0, that is,

lim
N→∞

1

2N + 1

N∑
i=−N

zi(0) = 0.

This is left as a calculus exercise.

Theorem 4.5 If the components of z(0) are square-summable, then all the compo-
nents of z(t) converge to 0 as t tends to infinity.

A proof of this theorem is omitted, as it would take us too far afield. The interested
reader is referred to Theorems2 and 4 of [13].

The theorem is interesting for at least two reasons. The first is that the proof for
the finite number of robots case, i.e., cyclic pursuit, does not carry over to the infinite
robots case. To appreciate that, recall that the spectrum of U − I , that is, the set of
eigenvalues, lies on the circle with centre −1 and radius 1; see Fig. 4.11. As we saw

54 4 The Rendezvous Problem: Fixed Neighbours

Fig. 4.11 The eigenvalues
of U − I for 8 robots in
cyclic pursuit

Fig. 4.12 The eigenvalues
of U − I for infinitely many
robots

in the proof of Theorem4.1, rendezvous in this case follows since, in the eigenvector
expansion of z(t), the seven terms for the left half-plane eigenvalues go to zero. The
term for the zero eigenvalue is stationary. An eigenvector for this zero eigenvalue
is 1, the vector of all 1’s. By contrast, for infinitely many robots the spectrum of
U − I is as is shown in Fig. 4.12. The spectrum is a circle with centre −1 and radius
1. Consequently, one cannot argue just from the spectrum that z(t) decomposes into
the direct sum of two parts, one convergent to zero and the other stationary.

The second reason why the theorem is interesting is that the result is not true if
the condition “the components of z(0) are square-summable” is replaced by “the
components of z(0) are bounded.” For the consequence of this, imagine cars moving
one way along an infinite road, as in Fig. 4.13. Suppose the cars are numbered by
the integers and car n is travelling at speed vn(t). Suppose each car speeds up or
slows down in order to maintain a constant distance from the car ahead of it. And
suppose we, as control theorists, wish to know if this traffic flow is stable. Stable
means that all cars will return to their original velocities after a perturbation. A rea-
sonable perturbation is a small jump in vn(0). Let v(t) denote the infinite vector with

4.6 Infinitely Many Robots 55

Fig. 4.13 Infinitely many cars

components vn(t). What is a reasonable notion for a small v(0)? From Theorem4.5,
we might expect that if v(0) is square-summable, then the cars would return to their
equilibrium speeds. But if all the speeds are perturbed by, say, 1%, so that v(0)
is only bounded and not square summable, then we are not guaranteed a return to
equilibrium.

4.7 On Digital Implementation of Controllers

As stated elsewhere, all systems in this book, including robots, have been modeled
as operating in continuous time. Digital controllers, however, are typically used. In
this brief section we discuss the ramifications of this setup.

Consider the simplest of all possible cyclic pursuits – two integrator points:

ż1 = u1 = z2 − z1, ż2 = u2 = z1 − z2.

The associated block diagram is shown in Fig. 4.14. The equation ż1 = u1 says that
z1 is the integral of u1; likewise for z2 and u2. Hence the integral signs inside the
blocks. Consistent with this view, we regard an onboard controller to be a continuous-
time system too when viewed from its input to its output. But it is implemented by
two physical subsystems: a sampler S that converts a continuous-time signal into a
discrete-time signal, followed by a discrete-to-continuous subsystem H, typically a
zero-order hold. See Fig. 4.15. In this figure, since u1(t) and u2(t) are outputs of zero-
order holds, they are constant between sampling times. Let us denote the sampling
times as kT , k an integer.3 The integral over a period of width T of a constant u1(kT)

equals Tu1(kT). In this way we get that the sampled-data system in Fig. 4.15 has the
discrete-time model

z1[(k + 1)T] = z1(kT) + T [z2(kT) − z1(kT)] (4.14)

z2[(k + 1)T] = z2(kT) + T [z1(kT) − z2(kT)]. (4.15)

It is important to realize in Fig. 4.15 that there are two physical digital controllers, and
hence twophysical samplersS. ForEqs. (4.14) and (4.15) to be valid, the two samplers
S must be synchronized somehow, by a centralized clock and communication system.

3In this section alone, to avoid possible confusion the notation kT , k an integer, is used instead of
tT , t an integer.

56 4 The Rendezvous Problem: Fixed Neighbours

Fig. 4.14 Simple cyclic
pursuit ∫

∫

z1

z2

u1

u2

Fig. 4.15 After replacing
the unity controller by a
sample and hold. A dotted
arrow is a discrete-time
signal

S H

SH

u1

u2

z1

z2 −

−

∫

∫

So the system is not really distributed. Lackof synchroneitywould lead to jitter,which
could alternatively be modelled. (It is interesting to note that system (4.14), (4.15) is
unstable for large enough T .)

As a concluding observation, we note that many distributed robotics articles, for
example [16] by Jadbabaie et al., begin with discrete-time models. Implicit in these
articles is the assumption that local clocks are synchronized by a global network.
A justification for this assumption is rarely given.

Chapter 5
The Rendezvous Problem: Limited Camera
Range

5.1 Introduction

The theorems in Jadbabaie et al. [16] rely on the assumption that, for a fixed initial
condition, the time dependent visibility graph satisfies a connectivity property. As
we discussed in Chap. 3, for a sensible model of limited visibility, the graph is state
dependent, not time dependent. To see this, let us return to our unicycle robots. Sup-
pose robot i has an omnidirectional camera of range di . The set of visible neighbours
of robot i is

Ni (z) = { j : j ∈ {1, . . . , n}, |z j − zi | ≤ di }.

Notice that, since di ≥ 0, every robot is a neighbour of itself, and so i ∈ Ni (z). Then
there is an edge in the visibility graph from i to j iff j ∈ Ni (z), and therefore the
visibility graph is a function of z, G(z).

The stability analysis in the presence of state dependent graphs is quite diffi-
cult. Most researchers avoid this difficulty by assuming, as Jadbabaie et al. do, that
the visibility graph is time dependent. There is, however, a clever control law that
solves the rendezvous problem with limited camera range for kinematic points: the
circumcentre control law. We turn to it next.

Example 5.1 Consider six robots, with omnidirectional cameras of identical ranges,
positioned at t = 0 as shown in Fig. 5.1. The disks show the fields of view for robots
1 and 2. Since each camera has the same range, the visibility graph is undirected—see
Fig. 5.2. Thus the neighbour sets at t = 0 are

N1 = {1, 2}, N2 = {1, 2, 4}, N3 = {3, 4},

N4 = {2, 3, 4, 5}, N5 = {4, 5, 6}, N6 = {5, 6}.

The circumcentre control law is defined as follows: Robot 1 has two neighbours,
robot 1 itself and robot 2. Let Z1 denote the set of positions of the two neighbours,

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8_5

57

http://dx.doi.org/10.1007/978-3-319-24729-8_3

58 5 The Rendezvous Problem: Limited Camera Range

Fig. 5.1 Example of six
robots. The disks show the
regions of view of the
cameras on robots 1 and 2

1

2

3

4
5 6

Fig. 5.2 The visibility graph

1

2

3

4
5

6

Fig. 5.3 How robot 1 moves

1

2

3

4
5

6

Fig. 5.4 How robot 2 moves

1

2

3

4
5

6

{z1, z2}, and let c1 denote the circumcentre of Z1—the centre of the smallest circle
containing Z1. Then set u1 = c1 − z1—see Fig. 5.3. (In the picture, the little arrow
is u1 translated from the origin to z1.) So robot 1 moves towards the centre at t = 0:
ż1 = c1 − z1. Actually, in this case where 1 sees only 2, clearly c1 = (z1 + z2)/2,
so at t = 0

ż1 = 1

2
(z2 − z1).

Similarly, let c2 denote the circumcentre of the set {z j : j ∈ N2} and define u2 =
c2 − z2—see Fig. 5.4. And so on.

These control laws can actually be implemented using onboard cameras, that is,
relative positions, by translation. For example, for robot 2, the relative positions
{z1 − z2, z4 − z2} are sensed. Let Z ′

2 denote the set of points {0, z1 − z2, z4 − z2}

5.1 Introduction 59

(the translate of {z2, z1, z4} by −z2), and let c′
2 denote the circumcentre of Z ′

2. Then
define u2 = c′

2.
Let us look at u1 again. The set Z1 equals {z1, z2} and so the circumcentre c1 of

Z1 is a function of z; write c1(z). It turns out that c1(z) is continuous in z, but not
Lipschitz continuous—see below. In this way, the robots’ motions are governed by
the coupled equations

ż1 = u1(z) = c1(z) − z1
...

ż6 = u6(z) = c6(z) − z6,

or in aggregate form ż = u(z), where the vector field u(z) is only continuous,
not Lipschitz. Thus uniqueness of a solution is not guaranteed. In what follows, a
statement about a solution should be interpreted as applying to all solutions if indeed
there is more than one. �

5.2 General Results

The fact that the circumcentre control law is not a Lipschitz continuous function
causes difficulty in its use, as we will see later. So it is perhaps of interest to see a
proof [3].

Lemma 5.1 The circumcentre control law is not Lipschitz continuous.

Proof Construct three points {p1, p2, p3} and their circumcentre c, and three per-
turbed points {p1, p′

2, p′
3} and their circumcentre c′—see Fig. 5.5. Define the vectors

p = (p1, p2, p3), p′ = (p1, p′
2, p′

3).

Fig. 5.5 Proving
non-Lipschitz

p1

p2

c

p2
p3

p3

c

60 5 The Rendezvous Problem: Limited Camera Range

Fig. 5.6 Proving
non-Lipschitz (continued)

p1

p2

c

p2

c

θ

x

y

1
1

1

q

We will show that the ratio |c − c′|
‖p − p′‖

is not bounded by a constant. This proves the mapping p �→ c is not Lipschitz.
Let the radii of the circles be 1 and define x = |c − c′|, y = |p2 − p′

2|. Since p1
did not move and |p2 − p′

2| = |p3 − p′
3|,

‖p − p′‖ = √
2y.

Now look at Fig. 5.6. Define the angle θ. Then we have the lengths p1q = cos(θ),
qc′ = sin(θ). Thus qc = 1 − cos(θ), so by Pythagoras on the small triangle qcc′

x2 = (1 − cos(θ))2 + sin2 θ = 2(1 − cos(θ)),

and therefore qc = x2/2.

By Pythagoras again on the triangle qcc′, the length of qc′ equals x

√
1 − x2

4
.

Finally, apply Pythagoras to triangle qp2c′:

(y + 1)2 =
(
1 + x2

2

)2

+ x2
(
1 − x2

4

)
= 2x2 + 1.

Thus we have

x =
√
1

2
y2 + y,

5.2 General Results 61

and so
|c − c′|

‖p − p′‖ = x√
2y

= 1

2

√
1 + 2

y
.

�

The great thing about the circumcentre law is that it preserves connectivity of the
visibility graph, unlike, say, heading for the centroid of the neighbour set. Thus we
will have to assume only that the visibility graph is connected at t = 0. In fact, under
the circumcentre control law, no links are dropped (though the distances between
some neighbours may increase), so if G(z(0)) is connected, then G(z(t)) is connected
for all t > 0. Of course, new links may form: As the robots rendezvous, eventually
the graph becomes complete.

Lemma 5.2 Under the circumcentre control law, over time no links are dropped in
the visibility graph.

Proof For this proof it is more convenient to view a robot position zi as a vector in
R
2 instead of a complex number. Let t ≥ 0 be arbitrary. Let Vi j (z(t)) denote the

distance-squared between two neighbour robots i and j , and let V (z(t)) denote the
maximum distance-squared between any two neighbours:

V (z(t)) = max
i

max
j∈Ni (z(t))

Vi j (z(t)).

Let I(z(t)) denote the set of pairs of indices where the maximum is attained; that is,
(i, j) ∈ I(z(t)) iff robots i and j are neighbours of maximum distance apart among
all neighbours. Thus

V (z(t)) = max
(i, j)∈I(z(t))

Vi j (z(t)).

We would like to show that d/dtV (z(t)) ≤ 0. Unfortunately, V (z(t)) is not differ-
entiable. We need some non-smooth analysis—the upper Dini derivative:

D+V (z(t)) = lim supτ→0+
V (z(t + τ)) − V (z(t))

τ
.

Then, it is a fact that

D+V (z(t)) = max
(i, j)∈I(z(t))

d

dt
Vi j (z(t)). (5.1)

In this way we get

62 5 The Rendezvous Problem: Limited Camera Range

D+V (z(t)) = max
(i, j)∈I(z(t))

d

dt
‖zi (t) − z j (t)‖2

= max
(i, j)∈I(z(t))

2〈zi (t) − z j (t), żi (t) − ż j (t)〉
= max

(i, j)∈I(z(t))
2〈zi (t) − z j (t), ui (t) − u j (t)〉

= max
(i, j)∈I(z(t))

2{〈zi (t) − z j (t), ui (t)〉 + 2〈z j (t) − zi (t), u j (t)〉}
≤ max

(i, j)∈I(z(t))
2〈zi (t) − z j (t), ui (t)〉

+ max
(i, j)∈I(z(t))

2〈z j (t) − zi (t), u j (t)〉.

To conclude that
D+V (z(t)) ≤ 0, (5.2)

we will show that
max

(i, j)∈I(z(t))
〈zi (t) − z j (t), ui (t)〉 ≤ 0 (5.3)

and
max

(i, j)∈I(z(t))
〈z j (t) − zi (t), u j (t)〉 ≤ 0. (5.4)

To illustrate the argument, suppose (1, j) ∈ I(z(t)) for some j , that is, the
maximum separation between robot neighbours occurs for robot 1 (and perhaps
others). Suppose the neighbours of robot 1 are robots 2, 3, 4, 5 as in Fig. 5.7. See the
circumcentre control vector u1 (translated to z1). The figure shows three neighbour
robots—2, 3, and 4—on the smallest encompassing circle. Now in Fig. 5.8 construct
the line as shown through z1 perpendicular to u1, and using this line as diameter,
draw a second circle. In the shaded crescent there must be a neighbour of robot 1, for
otherwise the encompassing circle in the figure would be smaller (in fact it would
be the unshaded circle). Consider the robot in the shaded crescent that is maximum
distance from robot 1; in the figure it is robot 3. The angle between the vectors u1
and z1 − z3 is greater than π/2. Therefore

Fig. 5.7 Proving no links
are dropped

5.2 General Results 63

Fig. 5.8 Proving no links
are dropped (continued)

〈z1(t) − z3(t), u1(t)〉 ≤ 0

and so
max

(1, j)∈I(z(t))
〈z1(t) − z j (t), u1(t)〉 ≤ 0.

This proves (5.3), and (5.4) follows from this.
Finally, from (5.1) and (5.2), if two neighbours i and j are maximum distance

apart (among all neighbours), then d/dtVi j (z(t)) ≤ 0 and so the distance between
them is non-increasing. �

Here is the main result that the circumcentre control law solves the rendezvous
problem:

Theorem 5.1 Suppose z(0) is such that G(z(0)) is connected. Under the circum-
centre control law, the robots rendezvous.

The proof uses LaSalle’s theorem. Here we want to discuss the ideas without the
details.
Ideas for a Proof We are given that G(z(0)) is connected. By Lemma 5.2, G(z(t)) is
connected for all t > 0. Now G(z(t)) is either fixed or it is not. Suppose not. Then at
some time a new link appears (no link is dropped). After this, G(z(t)) is either fixed
or it is not. Suppose not. Then at some time, another new link appears. Since there
are only finitely many nodes, this process must stop. Thus we may assume without
loss of generality that G(z(t)) is fixed and connected for all t ≥ 0. (We do not assume
the graph is complete, but it must actually be so, since the robots rendezvous.)

Bring in the example in Fig. 5.9 for illustrative purposes. The picture in Fig. 5.10
shows the constellation at t = 0, its convex hull co{z(0)}, and the instantaneous
velocities ui (z(0)) of the robots at the vertices. Even though the vector fields ui (z(0))
point into co{z(0)}, we cannot conclude that zi (t) ∈ co{z(0)} because we do not have
Lipschitz continuity. So it is problematic to prove even that a solution z(t) is bounded.

Let a be an arbitrary point in the plane and define the function V a(z) to be the
distance squared from a to the farthest zi as in Fig. 5.11. (Again, we take the plane
R
2.) Assume for simplicity that the farthest-away robot does not change, that it is

always robot 3. Then V a(z) is differentiable and

64 5 The Rendezvous Problem: Limited Camera Range

Fig. 5.9 Illustration

1

2

3

4
5

6

Fig. 5.10 Illustration
(continued)

1

2

3

4
5

6

Fig. 5.11 Illustration
(continued)

d

dt
V a(z(t)) = d

dt
‖z3(t) − a‖2

= 2〈u3(z(t)), z3(t) − a〉.

From the vector orientations in the figure, 〈u3(z(t)), z3(t) − a〉 ≤ 0. Thus V a(z(t))
is nonincreasing, and this kind of argument shows that z(t) is defined for all t > 0
and is bounded.

Now invoke LaSalle’s theorem. The solution converges to the largest invariant
manifold M in {z : V̇ a(z) = 0}. To see what this manifold is, let z(0) ∈ M.
Continuing with the assumption that the farthest-away zi (0) from a is z3(0), we
have that u3(z(0)) and z3(0) − a are orthogonal. Looking at the figure we conclude
that u3(z(0)) = 0; for if u3(z(0))
= 0 then z4(0), the only neighbour of z3(0), is
farther from a than is z3(0). Since u3(z(0)) = 0, then z3 and z4 must be collocated at
t = 0. If z2(0) and z5(0), the neighbours of z4(0), are not also collocated with z4(0),
then z4(t) will move away from z3(0), which is impossible since M is invariant.
Using this kind of argument, one can prove that for z ∈ M, all zi are equal.

A rigorous proof is considerably more complicated since V a(z) is not actually
differentiable.

5.3 Numerical Issues 65

5.3 Numerical Issues

We have seen that the rendezvous problem with range-limited cameras, idealized
to have perfect vision up to one range and zero vision beyond this range, has the
interesting solution of a circumcentre control law. In this section we discuss what
would be involved if we actually wanted to implement this control law.

Consider a set of distinct points, p1, . . . , pn , inC and consider their circumcircle,
C. Either there are two points on C diametrically opposite, in which case the centre
is easily calculated as the midpoint between them, or there are three points on C
spanning an arc of more than π radians; in this case the centre lies within the triangle
formed from the three points. How to find these boundary points is not discussed
here.

We turn to the problem of computing the centre, c, of the circle in the latter case.
The setup is shown in Fig. 5.12, where the three points lie on a circle and the centre
of the circle lies inside the triangle. The centre is in the convex hull of p0, p1, p2
and therefore can be parametrized as

c = λ0 p0 + λ1 p1 + λ2 p2, (5.5)

where λi ≥ 0 and
λ0 + λ1 + λ2 = 1. (5.6)

To see this, shift p0 to the origin. Then c − p0 is in the convex hull (line) of two
points, α1(p1 − p0), α2(p2 − p0): see Fig. 5.13, Thus

c − p0 = λα1(p1 − p0) + (1 − λ)α2(p2 − p0),

and hence

c = [1 − λα1 − (1 − λ)α2]p0 + λα1 p1 + (1 − λ)α2 p2,

which has the form (5.5).

Fig. 5.12 Computing the
circumcentre

p0

p1

p2

66 5 The Rendezvous Problem: Limited Camera Range

Fig. 5.13 Computing the
circumcentre (continued)

The centre satisfies the two equations

|p2 − c| = |p0 − c|
|p1 − c| = |p0 − c|.

Thus

(p2 − c)(p̄2 − c̄) = (p0 − c)(p̄0 − c̄)

(p1 − c)(p̄1 − c̄) = (p0 − c)(p̄0 − c̄)

and hence

|p2|2 − 2Re(cp̄2) + |c|2 = |p0|2 − 2Re(cp̄0) + |c|2
|p1|2 − 2Re(cp̄1) + |c|2 = |p0|2 − 2Re(cp̄0) + |c|2.

This gives

|p2|2 − 2Re(cp̄2) = |p0|2 − 2Re(c p̄0)

|p1|2 − 2Re(cp̄1) = |p0|2 − 2Re(c p̄0),

or

2Re[c(p̄0 − p̄2)] = |p0|2 − |p2|2
2Re[c(p̄0 − p̄1)] = |p0|2 − |p1|2,

Now bring in (5.5) and (5.6):

2Re[(λ0 p0 + λ1 p1 + λ2 p2)(p̄0 − p̄2)] = |p0|2 − |p2|2
2Re[(λ0 p0 + λ1 p1 + λ2 p2)(p̄0 − p̄1)] = |p0|2 − |p1|2

λ0 + λ1 + λ2 = 1.

5.3 Numerical Issues 67

Thus

λ02Re[p0(p̄0 − p̄2)] + λ12Re[p1(p̄0 − p̄2)] + λ22Re[p2(p̄0 − p̄2)] = |p0|2 − |p2|2
λ02Re[p0(p̄0 − p̄1)] + λ12Re[p1(p̄0 − p̄1)] + λ22Re[p2(p̄0 − p̄1)] = |p0|2 − |p1|2

λ0 + λ1 + λ2 = 1.

This can be written as
⎡
⎣2Re[p0(p̄0 − p̄2)] 2Re[p1(p̄0 − p̄2)] 2Re[p2(p̄0 − p̄2)]
2Re[p0(p̄0 − p̄1)] 2Re[p1(p̄0 − p̄1)] 2Re[p2(p̄0 − p̄1)]

1 1 1

⎤
⎦

⎡
⎣λ0

λ1
λ2

⎤
⎦

=
⎡
⎣ |p0|2 − |p2|2

|p0|2 − |p1|2
1

⎤
⎦ .

The solution of this equation gives c via (5.5).
What about numerical sensitivity of this procedure? Consider the example in

Fig. 5.14. The points form an isosceles triangle: p0 = 0, p1 = je− jε, p2 = je jε.
The equation for the λi ’s is

⎡
⎣0 −2Re[p1 p̄2] −2Re[p2 p̄2]
0 −2Re[p1 p̄1] −2Re[p2 p̄1]
1 1 1

⎤
⎦

⎡
⎣λ0

λ1
λ2

⎤
⎦ =

⎡
⎣−|p2|2

−|p1|2
1

⎤
⎦ ,

and thus
⎡
⎣0 2Re[je− jε je− jε] −2
0 −2 2Re[je jε je jε]
1 1 1

⎤
⎦

⎡
⎣λ0

λ1
λ2

⎤
⎦ =

⎡
⎣−1

−1
1

⎤
⎦ ,

or ⎡
⎣ 0 −2Re[e− j2ε] −2
0 −2 −2Re[e j2ε]
1 1 1

⎤
⎦

⎡
⎣λ0

λ1
λ2

⎤
⎦ =

⎡
⎣−1

−1
1

⎤
⎦ ,

Fig. 5.14 Sensitivity of
computing the circumcentre

68 5 The Rendezvous Problem: Limited Camera Range

or finally ⎡
⎣0 2 cos(2ε) 2
0 2 2 cos(2ε)
1 1 1

⎤
⎦

⎡
⎣λ0

λ1
λ2

⎤
⎦ =

⎡
⎣1
1
1

⎤
⎦ .

As ε → 0, the left-hand matrix becomes singular, though λ0,λ1,λ2 converge
respectively to 1/2, 1/4, 1/4. Thus the linear equation to be solved can become
ill-conditioned. A sensible thing to do if you have two points very close together
(like p1, p2) is to ignore one of them.

Finally, consider n ≥ 2 point robotsmoving according to the circumcentre control
law. Assuming the initial visibility graph has a globally reachable node, the robots
rendezvous asymptotically. Thus eventually, say at time t1, they are all visible to
each other and there is only one circumcircle. On the time interval [t1,∞), the
circumcentre is stationary.

To see this, suppose three robots, z1, z2, z3, are on the circumcircle, all the others
being inside. We have for each robot that żi = c − zi . Thus

|ż1| = |ż2| = |ż3| =: smax ,

the maximum speed, while for every other i , |żi | < smax . It follows that z1, z2, z3
move radially toward c at the same speed and that they remain on the circumcircle
as it shrinks. The centre of the circumcircle remains stationary.

Chapter 6
Introduction to Flying Robots

6.1 Introduction

In this chapter we discuss helicopter flying robots. Unlike airplanes, helicopters
have the ability to hover at a fixed position in space. Their source of propulsion is
a collection of one or more rotors that can be thought of as rotating wings—see
Fig. 6.1. Similar to a wing, the relative velocity between the rotor blades and the
surrounding air generates a force transversal to the rotor plane. This force can be
reasonably assumed to be orthogonal to the rotor plane and to have a magnitude
proportional to the squared speed of rotation.

A rotor alone is not sufficient to produce stable flight. Somemechanism is required
to steer the helicopter, for otherwise one would have no way to affect the direction
of flight. Additionally, by Newton’s third law, a torque on the rotor shaft will cause
an opposite torque on the helicopter body, causing the helicopter to spin about the
rotor axis. One must therefore devise a way to counteract this spin and to produce
steering torques. There are many ways to achieve these desired properties; we will
mention a few.

6.1.1 Common Flying Robots

A ducted fan aircraft, schematically depicted in Fig. 6.2, has only one rotor and
two pairs of ailerons underneath it. Each aileron pair works like the ailerons on the
wings of an airplane, producing torques about two orthogonal axes. Together, the
four ailerons produce torques around three independent axes, and can be used to
steer the aircraft while preventing it from spinning.

A conventional helicopter has two rotors. The main rotor generates a lift force
while the tail rotor stabilizes the spin. The main rotor is mounted on a swash plate
that varies the pitch of the rotor blades to produce appropriate roll and pitch torques.

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8_6

69

70 6 Introduction to Flying Robots

Fig. 6.1 The rotor of a
helicopter, rotating with
speed ω and producing a lift
force with magnitude kω2

Fig. 6.2 Ducted fan aircraft

Fig. 6.3 Coaxial helicopter

The configuration of a conventional helicopter is not ideal for a miniature flying
robot, since the energy expended by the tail rotor is not used to generate lift. A more
energy efficient configuration is that of a co-axial helicopter, displayed in Fig. 6.3.
This helicopter has two rotors mounted on a common axis and rotating in opposite
directions. In this configuration, both rotors contribute to producing a lift force.
Moreover, if τr1 and τr2 denote the torques applied by motors to the two rotors—see
Fig. 6.3—then the helicopter body is subjected to a differential torque, τr1 − τr2 ,
about the rotor axis, which can be used to prevent the helicopter from spinning. Like
conventional helicopters, coaxial helicopters often use swash plates for steering.

Quadrotor helicopters (also called quadrocopters) are the most common flying ro-
bots. The structure of a quadrotor helicopter is shown in Fig. 6.4. It has four coplanar
rotors. Viewed from the top, the rotor shafts are placed on the vertices of a square.
Two rotors on a diagonal of the square rotate clockwise; the other two rotate coun-
terclockwise. In Fig. 6.4, τri denotes the torque that the i th motor applies to rotor
i , and fri denotes the magnitude of the force generated by rotor i (τri and fri are
naturally related to one another; we will discuss this relationship later). As a result
of this arrangement, three torques are applied about the body axes {b1, b2, b3} of
Fig. 6.4. By Newton’s third law, the torque τr1 + τr2 − τr3 − τr4 is applied about
axis b3; forces fr1 and fr2 produce a moment about axis b1, resulting in the torque

6.1 Introduction 71

Fig. 6.4 Quadrotor
helicopter

l(fr1 − fr2); similarly, forces fr3 and fr4 produce the torque l(fr3 − fr4) about axis
b2. Finally, the sum of the four forces fr1 + · · · + fr4 is the total vertical thrust on
the helicopter.

6.1.2 Onboard Sensors

Every flying robot is equipped with an inertial measurement unit (IMU). IMUs typi-
cally contain three accelerometers, three rate-gyroscopes, and three magnetometers.
The accelerometers measure the non-gravitational acceleration vector in a local coor-
dinate frame (often the frame is printed on the chip), that is, the difference between the
acceleration of the vehicle and the acceleration due to gravity. The rate-gyroscopes
measure the roll, pitch, and yaw angle rates of the robot. Finally, the magnetometers
measure the coordinates of the earth’s magnetic field vector in the local frame.

In addition to IMUs, flying robots may have one or more ultrasonic sensors to
detect proximity to objects or to the ground, a barometric pressure sensor, one or
more cameras (one pointing along the helicopter’s heading axis and sometimes one
pointing downward), and a GPS sensor.

Now consider a collection of flying robots, each carrying a camera and amarker. If
robot j’s marker is in the field of view of robot i’s camera, then from the dimension
and position of the marker in the camera image, robot i can deduce its relative
displacement to robot j in its own local frame. Moreover if the marker is suitably
designed, from the camera image it is possible to deduce the relative rotation between
the camera frame and the marker. In conclusion, we may assume that, in addition to
the IMUdata, vehicle i has access to the relative displacement and relative orientation
of vehicle j with respect to vehicle i’s local frame.

72 6 Introduction to Flying Robots

6.2 Modelling

The flying robots discussed in the introduction have something in common. If we
ignore the masses and moments of inertia of the rotors, each robot may be viewed as
a rigid body propelled by a thrust vector that has constant direction in the body frame
and is endowed with some steering mechanism that induces torques about three body
axes. We will now model such a general setup, beginning with the simpler planar
case.

6.2.1 2D Flying Robot

We begin with the simplified setup of Fig. 6.5, in which the robot flies in a horizontal
plane, propelled by a thrust vector f parallel to its heading. The state of the robot
is the position x = (x1, x2) of its centre of mass in an inertial coordinate frame,
the velocity ẋ , the heading angle θ, and the angular speed θ̇. There are two control
inputs: the magnitude, u, of the thrust vector and the torque, τ , about the axis coming
out of the page. The thrust vector f in inertial coordinates is given by

f = u

[
cos(θ)
sin(θ)

]
.

Let m denote the mass of the robot. Then Newton’s equation gives

mẍ = f.

Fig. 6.5 2D flying robot

6.2 Modelling 73

Fig. 6.6 Body frame

The torque τ causes the robot to rotate. Denoting by J the moment of inertia of the
robot about the axis coming out of the page, computed with respect to the centre of
mass, we have

J θ̈ = τ .

The complete model is therefore

mẍ = u

[
cos(θ)
sin(θ)

]

J θ̈ = τ .

(6.1)

There is a better way to represent model (6.1), one that lends itself to a 3D
generalization. Aswe did inChap.2 for the unicyclemodel, we attach an orthonormal
frameB = {r, s} to the robot as in Fig. 6.6, and we define the rotation matrix of frame
B with respect to the inertial frame as

R := [r s] =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Then, as in Chap.2, we have

Ṙ = R

[
0 −ω
ω 0

]
= RS(ω).

The thrust vector f is parallel to the body frame axis r and has magnitude u,

f = u Re1,

where e1 = [1 0]T . In conclusion, we can rewrite model (6.1) as follows:

mẍ = u Re1

Ṙ = RS(ω)

J ω̇ = τ .

(6.2)

http://dx.doi.org/10.1007/978-3-319-24729-8_2
http://dx.doi.org/10.1007/978-3-319-24729-8_2

74 6 Introduction to Flying Robots

We will now see that this model has a straightforward generalization to the three-
dimensional setting.

6.2.2 3D Flying Robot

Consider now the setup of Fig. 6.7, in which the robot flies in the three-dimensional
Euclidean space. As before, we fix an inertial frame I and a body frame B =
{b1, b2, b3}, both orthonormal and right-handed. We denote by x = (x1, x2, x3) the
coordinates of the robot’s centre of mass in frame I. The body is propelled by a
thrust vector f that is now assumed to point opposite to the body axis b3. There are
four control inputs: the magnitude u of the thrust vector and three torques τ1, τ2, τ3
about the three body axes. As in the planar case, we define the rotation matrix of
frame B with respect to frame I,

R = [b1 b2 b3].

We pause for a moment to highlight a notable property of the rotation matrix
R. Consider a vector with coordinates (v1, v2, v3) in frame B—see Fig. 6.8. Now
translate the tail of this vector to the origin of frame I and let (w1, w2, w3) be the
coordinates in frame I of this translated vector. What is the relationship between
the two coordinate representations (v1, v2, v3) and (w1, w2, w3)? Bring in the unit
vectors bi and note that

⎡
⎣w1
w2
w3

⎤
⎦ = v1b1 + v2b2 + v3b3 = R

⎡
⎣v1
v2
v3

⎤
⎦ .

In conclusion, the matrix R can be used to change the coordinate representation of
vectors between frames B and I.

Fig. 6.7 3D flying robot

6.2 Modelling 75

Fig. 6.8 Two coordinate
representations in frames I
and B

We now return to modelling. The thrust vector f is proportional to −b3 and has
magnitude u. Therefore in the coordinates of frame I we have

f = −u Re3.

The gravity vector is parallel to the third axis of frame I, and therefore its coordinate
representation in frame I is ge3. Newton’s equation gives

mẍ = mge3 − u Re3.

Next we need to model the rotation of the body. We begin with the observation
that, since the columns of R form an orthonormal basis ofR3, it holds that RT R = I3,
where I3 is the 3×3 identity matrix. Now suppose that the body undergoes a rotation,
so that R varies with time, R = R(t). It still holds that R(t)T R(t) = I3 for all t .
Differentiating both sides of this identity with respect to t , we obtain

ṘT R + RT Ṙ = 03×3,

or
(RT Ṙ)T = −(RT Ṙ).

In other words, the matrix RT Ṙ is skew-symmetric. Now, it is an easy exercise to
show that an arbitrary 3 × 3 skew-symmetric matrix has the form

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎤
⎦ ,

for suitable ω1,ω2,ω3. In fact, the set of 3 × 3 real skew-symmetric matrices

se(3) = {S ∈ R
3×3 : ST = −S}

is a subspace of R3×3, and the map R3 → se(3),

76 6 Introduction to Flying Robots

ω �→ S(ω) :=
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎤
⎦

is an isomorphism of vector spaces. It is a fun exercise to prove the following fact:
For any ω, v ∈ R

3, S(ω)v is the vector (or cross) product of ω and v, S(ω)v = ω×v.
So far we have established that corresponding to a rotation of the frame B, there

exists a unique time-dependent vector ω(t) such that RT Ṙ = S(ω). The vector ω
is called the angular velocity of frame B with respect to frame I represented in
frame B. Using the coordinate transformation property of R described earlier, one
gets that the angular velocity in frame I is Rω, but this vector will not be needed in
the following development. Since R RT = I , multiplying both sides of the identity
RT Ṙ = S(ω) on the left by R we get

Ṙ = RS(ω).

This is an ordinary differential equation whose state is the rotation matrix R. This
equation models the kinematics of rotation of the robot in terms of its body frame
angular velocity.

Now we need to model the evolution of ω. Euler’s second law states that the rate
of change of the angular momentum in frame I is equal to the total external torque
applied to the robot. Let J denote the inertia matrix of the robot in the coordinates
of frame B, defined with respect to its centre of mass. We assume that the robot is a
rigid body, so J is a constant matrix. The angular momentum of the robot in frame
B is the vector Jω. The representation of this vector in frame I is R Jω. The robot is
actuated by a torque vector τ = (τ1, τ2, τ3) in frame B, or Rτ in frame I. Therefore,
Euler’s second law gives

d

dt
(R Jω) = Rτ .

Multiplying both sides of the equation by RT and using the identity RT R = I , we get

RT d

dt
(R Jω) = τ ,

or
RT (Ṙ Jω + R J ω̇) = τ .

Using the identity Ṙ = RS(ω) and rearranging terms we obtain

J ω̇ + S(ω)Jω = τ .

Since S(ω)v = ω × v, the term S(ω)Jω equals ω × (Jω).

6.2 Modelling 77

In conclusion, the model1 of the 2D flying robot is

mẍ = mge3 − u Re3

Ṙ = RS(ω)

J ω̇ = −ω × (Jω) + τ .

(6.3)

The state is (x, ẋ, R,ω). There are four control inputs: the magnitude u of the thrust
vector and the three torques τ = (τ1, τ2, τ3).

6.2.3 Special Case: Quadrotor Helicopters

A quadrotor helicopter can be regarded as a rigid body propelled by a force vector
with constant direction in its body frame.Moreover as we have seen in Sect. 6.1, with
a judicious choice of the rotor speeds one may induce desired torques about the three
body axes. Quadrotor helicopters, therefore, fit within the class of robots modelled
by (6.3). How are the controls (u, τ) in (6.3) related to the physical control inputs of
a quadrotor helicopter? In this section we answer this question.

Consider the quadrotor helicopter of Fig. 6.9. The four rotors are driven by electric
motors applying torques τri , i = 1, . . . , 4. These can be regarded as the physical
control inputs. We seek a relationship between these inputs and the controls (u, τ)
of the model (6.3), also depicted in Fig. 6.9. To this end, denote by ωri the angular
speed of rotor i . Then it can be shown that each rotor is modelled by

Jri ω̇ri = −Bω2
ri

+ τri , i = 1, . . . , 4,

where the term −Bω2
ri
represents a torque due to the drag effects on the rotor blades.

In practice the moment of inertia Jri is negligible, so it is common to use a singular
perturbation argument and set Jri ω̇ri = 0, which gives τri = Bω2

ri
. The lift force

produced by rotor i is

fri = kω2
ri

= k

B
τri . (6.4)

Recall from Sect. 6.1 that

u = fr1 + fr2 + fr3 + fr4

τ1 = l(fr1 − fr2)

τ2 = l(fr3 − fr4)

τ3 = τr1 + τr2 − τr3 − τr4 .

1In the derivation of this model we have ignored drag and other aerodynamic effects. We have also
ignored the dynamics inherent in the propulsion mechanism.

78 6 Introduction to Flying Robots

Fig. 6.9 The physical inputs
τri of a quadrotor helicopter
and the corresponding
controls u, τ1, τ2, τ3 used in
model (6.3)

Using (6.4) we obtain an invertible feedback transformation (τr1 , . . . , τr4) �→ (u, τ):

⎡
⎢⎢⎣

u
τ1
τ2
τ3

⎤
⎥⎥⎦ = k

B

⎡
⎢⎢⎣

1 1 1 1
l −l 0 0
0 0 l −l
B
k

B
k − B

k − B
k

⎤
⎥⎥⎦

⎡
⎢⎢⎣

τr1
τr2
τr3
τr4

⎤
⎥⎥⎦ . (6.5)

In conclusion, themodel of a quadrotor helicopterwith control inputs (τr1 , . . . , τr4)

is given by (6.3) with (u, τ) given in (6.5).

6.3 Flocking of 2D Flying Robots

We now turn to the most basic coordination problem, flocking. We begin with the
2D case. Thus we have n robots modelled by

mi ẍi = ui Ri e1

Ṙi = Ri S(ωi)

Ji ω̇i = τi .

i = 1, . . . , n. (6.6)

A clarification about notation. From now on, a subscript i on a quantity indicates that
the quantity pertains to the i th robot.2 In particular, Bi is the body frame of robot i .
We let χi := (xi , ẋi , Ri ,ωi) denote the state of the i th robot, and χ := (χ1, . . . ,χn)

denote the collective state.
As in Chap.3, we indicate byNi (χ) the set of neighbours of robot i , and we rely

on the visibility graph G(χ) to keep track of who can see whom.

2This choice of notation creates a minor inconsistency with the previous section, where we have
used, for instance, ω1 to denote the first component of the angular velocity vector ω. From now on,
ωi will denote instead the angular velocity vector of robot i .

http://dx.doi.org/10.1007/978-3-319-24729-8_3

6.3 Flocking of 2D Flying Robots 79

Fig. 6.10 Relative
displacement and orientation
between robots i and k as
measured by robot i

Before delving into control design, we need to clarify what is an admissible
control for a flying robot. As discussed in Sect. 6.1, the onboard sensors of robot i
can be used to deduce robot i’s relative orientation with respect to any neighbour k ∈
Ni (χ) and the relative displacement measured in the local frameBi . These quantities
are illustrated in Fig. 6.10. We may also assume the time derivatives of the above
quantities to be available for feedback. Moreover, one of the rate gyroscopes in the
IMU measures ωi . In conclusion, any control law (ui , τi) will be called admissible
for robot i if it is a locally Lipschitz function depending only on the quantities

〈xk − xi , ri 〉, 〈xk − xi , si 〉, 〈rk, ri 〉, 〈rk, si 〉,
〈ẋk − ẋi , ri 〉, 〈ẋk − ẋi , si 〉, ωi ,

for each k ∈ Ni (χ).
An equivalent representation of the measured quantities above is obtained by

leveraging the coordinate transformation property of rotation matrices. For instance,
the relative displacement between robots i and k measured in robot i’s local frame is
obtained by converting the inertial displacement xk − xi to the coordinates of frame
Bi ,

(Ri)
−1(xk − xi) = RT

i (xk − xi).

The relative orientation between robot i and robot k is RT
i Rk (you can check that

this matrix corresponds to a counterclockwise rotation by angle θk − θi). In essence,
the measured quantities above can be represented as

RT
i (xk − xi), RT

i (ẋk − ẋi), RT
i Rk, ωi .

As in Chap.3, the flocking problem for the robots in (6.6) is to find, if they
exist, admissible controls (ui , τi) so that there exists ε > 0 such that for all initial
conditions satisfying

(i) (∀i, j = 1, . . . , n) |ẋi (0) − ẋ j (0)| < ε, |θi (0) − θ j (0)| < ε, |θ̇i (0)| < ε,

http://dx.doi.org/10.1007/978-3-319-24729-8_3

80 6 Introduction to Flying Robots

(ii) G(χ(0)) is connected,
then

(∃vss) lim
t→∞ ẋi (t) = vss, for all i = 1, . . . , n.

In otherwords, the flying robots are required tomove asymptotically along parallel
straight lines whose slope depends on their initial conditions.

As for kinematic unicycles, there is currently no solution to the flocking problem.
The main difficulty is the requirement of preserving the connectivity of the visibility
graph, a problem of considerable difficulty even when the robots are modelled as
kinematic integrators (see Chap.5).

In the interest of a self-contained mathematical treatment, we make two assump-
tions. First, we assume that the visibility graph is constant (the set of neighbours of
each robot does not change with time) and undirected (if robot i can see robot j ,
then robot j can see i). Second, we assume that each robot is affected by a drag force
pointing opposite to its velocity vector:

mi ẍi = ui Ri e1 − bẋi , b > 0.

The above assumptions considerably simplify the flocking problem, for they allow
us to discard the translational dynamics and focus on the subsystem

Ṙi = Ri S(ωi)

Ji ω̇i = τi , i = 1, . . . , n,

or, equivalently,
Ji θ̈i = τi , i = 1, . . . , n. (6.7)

Indeed, set u1 = · · · = un = ū > 0 and suppose we were to design admissible
controls τi making the angles θi converge to a common constant value θss . Then the
translational motion of each robot would be described by

mi
d

dt
ẋi = −bẋi + ū

[
cos(θss)

sin(θss)

]
+ ūδi (t),

where δi (t) = (cos(θi (t)) − cos(θss), sin(θi (t)) − sin(θss)) is a vanishing signal.
The above differential equation is a stable linear time invariant system driven by an
input signal converging to the constant vector. For this system we have ẋi → vss ,
with vss = ū/b(cos(θss), sin(θss)), and the robots flock. The situation is illustrated
in the block diagrams of Fig. 6.11.

To summarize, the flocking problem has been reduced to finding controls τi for
system (6.7) making (θi , θ̇i) → (θss, 0), i = 1, . . . , n. An admissible control law
for the reduced model (6.7) is one that relies only on θi − θk , k ∈ Ni , and θ̇i .

Our approach in the control design that follows will be to asymptotically stabilize
the flocking manifold

http://dx.doi.org/10.1007/978-3-319-24729-8_5

6.3 Flocking of 2D Flying Robots 81

Fig. 6.11 Block diagram of 2D flying robots with synchronization of the heading angles. In the
figure, f is the vector of thrust forces fi = ui Ri e1

F = {(θ1, . . . , θn, θ̇1, . . . , θ̇n) : θ1 = · · · = θn, θ̇1 = · · · = θ̇n = 0}, (6.8)

and then show that the θi ’s do not simply converge to each other, but they converge
to a constant.

At this point, you may want to pause for a moment and compare the flocking
problem under consideration to the one in Chap.3. The model (6.7) is a rotational
double-integrator, while the model (3.1) in Chap.3 is a single rotational integrator.
Since the control input here is an acceleration rather than a speed, we cannot di-
rectly apply the Kuramoto-inspired control law (3.5) to solve the flocking problem.
Not surprisingly, though, the solution we are about to present is a straightforward
adaptation of the Kuramoto-inspired control law.

Inspired by [11, 12], we begin our control design by a mechanical analogy. Con-
sider the point particle in Fig. 6.12. The particle has mass Ji and is constrained to
move around a circular track of radius 1 metre. A force τi is applied to the particle in
the direction tangent to the circle. The motion of such a particle is described by (6.7).
Now imagine a collection of such masses moving on a common unit circle with
the same visibility graph G as the flying robots. Solving the flocking problem for
the flying robots is equivalent to determining admissible forces τi synchronizing the
particles on the unit circle.

Consider the three particles i , k, l in Fig. 6.13, with particles k, l neighbours of
particle i . If we connect the particles by massless springs and add a damping force
to each mass, it is reasonable to expect that the particles will synchronize provided
their initial conditions are not too far apart and there are enough springs (this latter
requirement will translate to requiring that the visibility graph be connected).

http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3

82 6 Introduction to Flying Robots

Fig. 6.12 Mechanical
analogy for flocking control
design

Fig. 6.13 Mechanical
analogy for synchronization
mechanism

What is the control law τi corresponding to the setup of Fig. 6.13? The answer is
in the next lemma.

Lemma 6.1 Consider n point particles constrained to move on the unit circle. Sup-
pose the particles are connected by springs as described above, and each particle is
subjected to a viscous friction force. The model of the particles is

Ji θ̈i = −bi θ̇i −
∑

k∈Ni

aik sin(θi − θk), i = 1, . . . , n. (6.9)

Proof In order to avoid the computation of the reaction forces arising from the fact
that the particles move on a unit circle we take the Lagrangian approach.

The total kinetic energy of the collection of particles is

K =
n∑

l=1

1

2
Jl (θ̇l)

2.

6.3 Flocking of 2D Flying Robots 83

Letting dlk denote the length of the chord connecting robots l and k and alk > 0
denote the associated spring constant (in what follows, we pick akl = alk), we find
that the total potential energy is the sum of the potential energies of the springs:

U =
n∑

l=1

∑
k∈Nl ,k<l

1

2
alk d2

lk .

The condition k < l in the inner sum guarantees that the potential energy of the
spring connecting robots l and k is counted only once. It can be shown that d2

lk =
2 − 2 cos(θl − θk). Substituting this expression into U , we obtain the Lagrangian

L = K − U =
n∑

l=1

⎡
⎣1

2
Jl(θ̇l)

2 −
∑

k∈Nl ,k<l

alk(1 − cos(θl − θk))

⎤
⎦ .

This is the Lagrangian of the system of particles subject to the spring forces.
Using the Euler–Lagrange equation

d

dt

∂L
∂θ̇i

− ∂L
∂θi

= 0, i = 1, . . . , n,

we get (the steps are omitted)

Ji θ̈i +
∑

k∈Ni

aik sin(θi − θk) = 0, i = 1, . . . , n.

Adding viscous friction to each particle, we obtain (6.9). �

Comparing (6.7) and (6.9) we deduce the control law for robot i :

τi = −bi θ̇i −
∑

k∈Ni

aik sin(θi − θk). (6.10)

This control law is admissible. Does it solve the flocking problem? The answer is
found in the next theorem.

Theorem 6.1 If the visibility graph is constant, undirected, and connected, then for
any aik = aki > 0, bi > 0, i, k = 1, . . . , n, the control law (6.10) makes the flocking
manifold F in (6.8) locally asymptotically stable for (6.7) and solves the flocking
problem.

Proof The total energy of the particles,

E = K + U =
n∑

i=1

⎡
⎣1

2
Ji (θ̇i)

2 +
∑

k∈Ni ,k<i

aik(1 − cos(θi − θk))

⎤
⎦ ,

84 6 Introduction to Flying Robots

is a nonnegative function. We claim that the level set {E = 0} coincides with the
flocking manifoldF in (6.8). Indeed, since the energy is a sum of nonnegative terms,
E = 0 if and only if

θ̇i = 0 and 1 − cos(θi − θk) = 0, i = 1, . . . , n, k ∈ Ni , k < i.

Thus θi = θk for all i ∈ {1, . . . , n} and all k ∈ Ni , k < i . Since the visibility graph
is connected, this latter condition is equivalent to θ1 = · · · = θn . Thus {E = 0} = F
and the claim is proved.

The time derivative of E along solutions is given by

Ė = −
n∑

i=1

bi (θ̇i)
2 ≤ 0.

Thus the energy is nonincreasing along solutions, which implies that the flocking
manifold F is stable.

Let a := min aik , and for a given γ ∈ (0,π/2), define the energy sublevel set

Eγ := {(θ1, . . . , θn, θ̇1, . . . , θ̇n) : E(θ1, . . . , θn, θ̇1, . . . , θ̇n) < a(1 − cos γ)}.

Since E is nonincreasing along solutions, Eγ is positively invariant for any γ, that is,
all solutions of (6.9) initialized in Eγ remain there for all t ≥ 0. Moreover, solutions
in Eγ satisfy (1 − cos(θi (t) − θk(t))) < (1 − cos(γ)), or

(∀t ≥ 0)(∀i ∈ {1, . . . , n})(∀k ∈ Ni) |θi (t) − θk(t)| < γ. (6.11)

To visualize Eγ note that, in it, neighbouring particles lie on an arc of the unit
circle whose central angle is 2γ —see Fig. 6.14. Moreover, their speeds have a bound
that depends on γ.Wewill see that if the arc in question and the speeds are sufficiently
small (i.e., γ is small), then the particles synchronize.

Fig. 6.14 Interpretation of
set Eγ

6.3 Flocking of 2D Flying Robots 85

By the LaSalle invariance principle,3 solutions of (6.9) initialized in Eγ converge
to the largest invariant subset of Eγ ∩ {θ̇i = 0, i = 1, . . . , n}. We will show that
for sufficiently small γ, this set is contained in the flocking manifold F . To this end,
note that if θ̇i (t) ≡ 0, then θ̈i (t) ≡ 0, implying that

∑
k∈Ni

aik sin(θi − θk) ≡ 0.
Define a Laplacian matrix L as follows:

Lik := −aik, k ∈ Ni , k �= i,

Lik := 0, k /∈ Ni , k �= i,

Lii :=
∑

k∈Ni

aik .

Then L is the Laplacian of the visibility graph G with positive weights aik on the
graph’s edges. Since4 G is connected, L has rank n − 1 and ker L is spanned by 1.

Let θ = (θ1, . . . , θn) and define the vector function r(θ) as

ri (θ) :=
∑

k∈Ni

aik (sin(θi − θk) − (θi − θk)) , i = 1, . . . , n.

Then the condition
∑

k∈Ni
aik sin(θi − θk) ≡ 0, i = 1, . . . , n, may be expressed as

Lθ + r(θ) = 0.

The above identity can hold only if ‖Lθ‖ = ‖r(θ)‖. It can be shown that

lim
Lθ→0

ri (θ)

‖Lθ‖ = 0.

Therefore, for sufficiently small γ, the property (6.11) implies that

‖r(θ)‖ ≤ ‖Lθ‖/2.

For such small γ, the unique solution of

Lθ + r(θ) = 0

is Lθ = 0, or θ1 = · · · = θn .
We have thus shown that the largest invariant subset of Eγ∩{θ̇i = 0, i = 1, . . . , n}

is contained in F . By the LaSalle invariance principle, the flocking manifold F is
locally asymptotically stable, and the set Eγ is contained in its domain of attraction.

3The LaSalle invariance principle requires solutions to be bounded. The speeds θ̇i are bounded
because of the damping term −bi θ̇i in (6.9). As for the angles θi , we view them as points of a unit
circle, a compact set.
4This result is analogous to Theorem 4.2, which covers the case of unit weights, alk = 1 for all l, k.

http://dx.doi.org/10.1007/978-3-319-24729-8_4

86 6 Introduction to Flying Robots

We are left to show that θi converges to a constant. This part requires a little more
work, and it involves the centre manifold theorem. We omit the argument, but you
may look at the proof of Theorem 4 in [20] to get the idea. �

6.4 Flocking of 3D Flying Robots

In this section we generalize the flocking control law to 3D flying robots. The gener-
alization relies on the same mechanical analogy but now, instead of imagining point
particles on the unit circle, we imagine rigid bodies on the unit sphere.

Consider a collection of n robots, each one modelled by (6.3). As before, the
flocking problem5 is to find an admissible control law making the velocity vectors
ẋi converge to a common constant vector vss dependent on the initial conditions. We
assume, as before, that the visibility graph is constant and undirected, and that each
robot is affected by a drag force pointing opposite to its velocity vector. We now also
assume that the robots have identical masses m, so that their translational motions
are modelled by

mẍi = mge3 − ui Ri e3 − bẋi .

As in the 2D case, if we set u1 = · · · = un = ū > 0 and we make Ri e3 converge
to a common constant vector, then the velocities ẋi converge to a common constant
vector as well, and flocking is achieved. The problem has thus been reduced to the
synchronization of the vectors Ri e3, i = 1, . . . , n, whichwewill refer to as the thrust
axes of the robots. For the design of flocking controllers we focus our attention on
the rotational dynamics

Ṙi = Ri S(ωi)

Ji ω̇i + ωi × (Jiωi) = τi , i = 1, . . . , n.
(6.12)

Before continuing our development,we introduce someuseful notation, illustrated
in Fig. 6.15. We let qi := Ri e3 denote the thrust axis of robot i represented in the
common inertial frame I, and by Ri

j := RT
i R j the relative orientation of robot

j with respect to robot i . Operationally, Ri
j transforms a vector in frame j to its

representation in frame i . We let qi
j := Ri

j e3 denote the representation of robot j’s

thrust axis in the local frame of robot i . For flocking we would like to have qi
j = e3

for all i, j . Finally, we denote by ϕi
j the angle between the third axis of frame Bi

and qi
j . Flocking corresponds to the condition ϕi

j = 0 for all i, j .
With the notation just introduced, we have three equivalent definitions of the

flocking manifold:

5In our formulation of the flocking problem, nothing prevents the robots from crashing to the
ground. A more meaningful problem statement would require vss to be parallel to the ground, but
this problem is to date open and significantly harder than the one considered in this section.

6.4 Flocking of 3D Flying Robots 87

Fig. 6.15 Coordinate representations of the thrust axes of robots i and j

F : = {(R1, . . . , Rn,ω1, . . . ,ωn) : qi = q j , ωi = 0, i, j = 1, . . . , n}
= {(R1, . . . , Rn,ω1, . . . ,ωn) : qi

j = e3, ωi = 0, i, j = 1, . . . , n}
= {(R1, . . . , Rn,ω1, . . . ,ωn) : ϕi

j = 0, ωi = 0, i, j = 1, . . . , n}.
(6.13)

Thus, on F , the robots have zero angular velocity and identical thrust axes. This
latter requirement is expressed in three equivalent ways in (6.13). The first identity
expresses it in the common inertial frame I, while the second and third identities
express it in the robots’ body frames.

In the context of 3D flying robots, an admissible control law for the rotational
dynamics of robot i is one that depends only on the quantities

Ri
k, ωi , k ∈ Ni

and is a locally Lipschitz function.
Since the vectors qi have unit length, the flocking problem can be regarded as

one of synchronization on the unit sphere. In analogy with the 2D case, we imagine
that the thrust axis qi is the position of the centre of mass of a rigid body on the unit
sphere. We regard the control τi as a force applied at the centre of mass of the body in
a direction tangent to the sphere. Once again, we aim to synchronize these imaginary
rigid bodies by connecting them by springs and adding damping to each of them,
with the convention that a spring with constant aik > 0 interconnects bodies i and k

88 6 Introduction to Flying Robots

if and only if there is an edge between nodes i and k of the visibility graph. It is an

easy matter to check that the length of this spring is
√
2(1 − 〈qi

k, e3〉).
The total potential energy of the collection of springs is

U =
n∑

i=1

∑
k∈Ni ,k<i

aik(1 − 〈qi
k, e3〉).

The total energy of the robots connected by springs is

E =
n∑

i=1

1

2
ωT

i Jiωi +
n∑

i=1

∑
k∈Ni ,k<i

aik(1 − 〈qi
k, e3〉).

Inspired by the proof of Theorem 6.1, we define a control law for system (6.12) by
requiring that

Ė = −
n∑

i=1

ωT
i Biωi , (6.14)

where Bi is a symmetric positive definite matrix. By imposing this identity, we get
the control law

τi = −Biωi −
∑

k∈Ni

aik(q
i
k × e3), (6.15)

which can also be expressed as

τi = −Biωi − RT
i

∑
k∈Ni

aik(qk × qi).

We postpone the verification that this control law gives identity (6.14) to the proof of
Theorem 6.2. Note that this control law is admissible, as it relies only on Rk

i , k ∈ Ni

and ωi .
At this point you may want to reflect on the similarity between (6.15) and its 2D

counterpart (6.10). As an exercise, show that (6.10) is a special case of (6.13), in the
following sense. Suppose the third body frame axis of each robot is parallel to the
third axis of the inertial frame I, i.e., Ri e3 = e3. Thus the rotation matrix of robot i
has the form

Ri =
⎡
⎣ cos(θi) − sin(θi) 0

sin(θi) cos(θi) 0
0 0 1

⎤
⎦ .

Suppose further that the thrust axis is parallel to the first body axis rather than the
third. Thus qi

j = Ri
j e1. Finally, let Bi be a diagonal matrix with (Bi)33 = bi . Then

τi in (6.15) has the form τi = (0, 0, (τi)3), where (τi)3 coincides with (6.10).

6.4 Flocking of 3D Flying Robots 89

Theorem 6.2 If the visibility graph is constant, undirected, and connected, then for
every aik = aki > 0 and every symmetric positive definite matrix Bi , i, k = 1, . . . , n,
the control law (6.15) makes the flocking manifold F in (6.13) locally asymptotically
stable for (6.12) and solves the flocking problem.

Proof The energy E is nonnegative. It is zero if and only if ωi = 0 and 〈qi
k, e3〉 = 1

for all i = 1, . . . , n and j ∈ Ni . Since qi
k is a unit vector, the latter condition is

equivalent to qi
k = e3. Since the visibility graph is connected, this identity is true for

all i, k = 1, . . . , n, and therefore the level set {E = 0} coincides with the flocking
manifold F in (6.13).

Next we show that (6.14) holds. We have

Ė =
n∑

i=1

ωT
i Ji ω̇i −

n∑
i=1

∑
k∈Ni ,k<i

aik〈q̇i
k, e3〉.

Using the dynamics (6.12) with control (6.15), we get

Ė = −
n∑

i=1

ωT
i Biωi −

n∑
i=1

∑
k∈Ni

aikω
T
i (q

i
k × e3) −

n∑
i=1

∑
k∈Ni ,k<i

aik〈q̇i
k, e3〉.

Recalling the definition of qi
k , qi

k = RT
i Rke3, and differentiating this identity with

respect to time, we obtain

q̇i
k = ṘT

i Rke3 + RT
i Ṙke3

= S(ωi)
T RT

i Rke3 + RT
i Rk S(ωk)e3

= −S(ωi)q
i
k + Ri

k S(ωk)e3.

In the second identity we used the derivative of a rotation matrix in (6.12). For any
rotation matrix R and any vector v ∈ R

3, we have

RS(v)RT = S(Rv).

Using this identity and the linearity of the operator S, we obtain

q̇ i
k = S(−ωi + Ri

kωk)q
i
k

= (−ωi + Ri
kωk) × qi

k

= qi
k × (ωi − Ri

kωk)

= S(qi
k)(ωi − Ri

kωk).

90 6 Introduction to Flying Robots

We now take the inner product with e3:

〈q̇i
k, e3〉 = (ωi − Ri

kωk)
T S(qi

k)
T e3

= −(ωi − Ri
kωk)

T S(qi
k)e3

= −ωT
i S(qi

k)e3 + ωT
k (Ri

k)
T S(qi

k)e3

= −ωT
i (q

i
k × e3) + ωT

k S((Ri
k)

T qi
k)(Ri

k)
T e3

= −ωT
i (q

i
k × e3) + ωT

k S(e3)q
k
i

= −ωT
i (q

i
k × e3) − ωT

k (q
k
i × e3).

Using this result in the third term of the equation for Ė , we get

Ė = −
n∑

i=1

ωT
i Biωi −

n∑
i=1

∑
k∈Ni

aikω
T
i (q

i
k × e3)

+
n∑

i=1

∑
k∈Ni ,k<i

aikω
T
i (q

i
k × e3)

+
n∑

i=1

∑
k∈Ni ,k<i

aikω
T
k (q

k
i × e3).

Since the graph is undirected and aik = aki , the last sum can be rewritten as

n∑
k=1

∑
i∈Nk ,i>k

akiω
T
k (q

k
i × e3).

Now swap the indices i and k. Then the last three sums in the above expression for
Ė evaluate to zero, and

Ė = −
n∑

i=1

ωT
i Biωi ,

as required.
Let a := min aik , and for a given γ ∈ (0,π/2), define the energy sublevel set

Eγ := {(R1, . . . , Rn,ω1, . . . ,ωn) : E(R1, . . . , Rn,ω1, . . . ,ωn) < a(1 − cos γ)}.
As in the proof of Theorem 6.1, Eγ is positively invariant and all solutions initialized
in it satisfy 〈qi

k(t), e3〉 = cosϕi
k(t) > cos γ, or

(∀t ≥ 0)(∀i ∈ {1, . . . , n})(∀k ∈ Ni) |ϕi
k(t)| < γ.

Since the visibility graph G is connected, we may pick γ small enough that

6.4 Flocking of 3D Flying Robots 91

(
(∀i ∈ {1, . . . , n})(∀k ∈ Ni) |ϕi

k | < γ
)

=⇒ max
i,k∈{1,...,n}{|ϕ

i
k |} <

π

2
.

Thus all solutions initialized in Eγ have the property that their thrust axes qi (t) lie
on a common half plane for all time. More precisely, for all initial conditions in Eγ ,
the solutions of (6.12) with control (6.15) satisfy

(∀t ≥ 0)(∃v ∈ R
n, v �= 0)(∀i ∈ {1, . . . , n}) 〈qi (t), v〉 > 0. (6.16)

By (6.14) the energy E is nonincreasing along solutions. Since its zero level set is
the flocking manifold F , F is a stable set. By the LaSalle invariance principle,6 all
solutions of the closed-loop system initialized in Eγ converge to the largest invariant
set contained in Eγ ∩ {ωi = 0, i = 1, . . . , n}. We will show that this set is contained
in the flocking manifold.

If ωi (t) ≡ 0, then ω̇i (t) ≡ 0 and so Ji ω̇i (t) ≡ 0, implying that the control τi

in (6.15) is identically zero. Thus, we have

(∀i ∈ {1, . . . , n})
∑

k∈Ni

aik(q
i
k(t) × e3) ≡ 0.

Premultiplying this identity by Ri (t) we get

(∀i ∈ {1, . . . , n})
∑

k∈Ni

aik(qk(t) × qi (t)) ≡ 0,

or

(∀i ∈ {1, . . . , n}) qi (t) ×
⎛
⎝ ∑

k∈Ni

aikqk(t)

⎞
⎠ ≡ 0.

Thus qi (t) and
∑

k∈Ni
aikqk(t) are parallel, i.e., there exists a scalar λi (t) such that

qi (t) = λi (t)
∑

k∈Ni

aikqk(t). (6.17)

We claim that λi (t) > 0. Indeed, taking the inner product of both sides of (6.17)
with the vector v in (6.16) we obtain

〈qi (t), v〉 = λi (t)
∑

k∈Ni

aik〈qk(t), v〉.

6As in the proof of Theorem 6.1, wemay apply the LaSalle invariance principle because all solutions
of (6.12) with control (6.15) are bounded. The boundedness of ωi follows from the presence of the
dissipation term-Bi ωi in the τi . The matrices Ri have unit norm columns so they are bounded as
well.

92 6 Introduction to Flying Robots

By property (6.16), the left-hand side is positive. The sum in the right-hand side is
also positive because aik > 0 and each inner product is positive. Thus it must hold
that λi (t) > 0, as claimed. Since qi has unit norm we conclude that

λi (t) =
⎛
⎝∥∥∥ ∑

k∈Ni

aikqk(t)
∥∥∥
⎞
⎠

−1

. (6.18)

From now on, we drop the time dependence on all variables. Consider the follow-
ing weighted sum of the qi ’s, and use identity (6.17):

n∑
i=1

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ qi =

n∑
i=1

λi

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ ∑

l∈Ni

ailql .

The right-hand side of this identity is a linear combination of {q1, . . . , qn}. A generic
term q j appears in the right-hand side when l = j and j ∈ Ni , or since the visibility
graph is undirected, l = j , i ∈ N j . Thus the above identity can be rewritten as

n∑
i=1

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ qi =

n∑
j=1

μ j q j ,

with

μ j =
∑

i∈N j

λi

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ ai j .

We thus have
n∑

i=1

⎡
⎣

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ − μi

⎤
⎦ qi = 0. (6.19)

Consider the definition of λi in (6.18). Since the qi ’s have unit norm and aik > 0,
by the triangle inequality we have

λi ≥
⎛
⎝ ∑

k∈Ni

aik

⎞
⎠

−1

.

This lower bound on λi gives a lower bound on μ j ,

μ j ≥
∑

i∈N j

ai j .

6.4 Flocking of 3D Flying Robots 93

Thus the coefficient of qi in (6.19) is upper bounded as follows

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ − μi ≤

∑
k∈Ni

aik −
∑

k∈Ni

aki = 0.

In conclusion, the left-hand side of (6.19) is a linear combination of all qi ’s with
nonpositive coefficients. By property (6.16), identity (6.19) can hold only if

⎛
⎝ ∑

k∈Ni

aik

⎞
⎠ − μi = 0 for all i = 1, . . . , n,

which implies that λi =
(∑

k∈Ni
aik

)−1
, i = 1, . . . , n, or

∥∥∥ ∑
k∈Ni

aikqk

∥∥∥ =
∑

k∈Ni

aik for all i = 1, . . . , n.

This identity implies that, for each i ∈ {1, . . . , n}, the vectors {qk : k ∈ Ni } are
parallel to each other. By (6.17), the vectors {qi , qk : k ∈ Ni } are also parallel. We
have thus established that if robots i and k are neighbours in the visibility graph, then
qi and qk are parallel. Since the visibility graph is connected, this property implies
that q1, . . . , qn are parallel. Finally, the fact that the qi ’s have unit norm and lie on a
common half-plane (property (6.16)) implies that q1 = · · · = qn .

We have thus shown that the largest invariant subset of Eγ ∩ {ωi = 0, i =
1, . . . , n} is theflockingmanifoldF . By theLaSalle invariance principle, all solutions
originating in Eγ converge toF , and thereforeF is asymptotically stable. The proof
that the qi ’s converge to a constant is omitted. �

6.5 Rendezvous of 3D Flying Robots

The rendezvous problem is the gateway tomore complex coordination problems such
as the control of formations. The idea, as in Chap.4, is to get n identical flying robots
to convene using only feedback from onboard sensors. More precisely, consider n
robots modelled by

mẍi = mge3 − ui Ri e3

Ṙi = Ri S(ωi)

J ω̇i = −ωi × (Jωi) + τi ,

(6.20)

with state χ := (χ1, . . . ,χn), χi := (xi , ẋi , Ri ,ωi). We define the rendezvous
manifold

http://dx.doi.org/10.1007/978-3-319-24729-8_4

94 6 Introduction to Flying Robots

R = {χ : x1 = · · · = xn, ẋ1 = · · · = ẋn}.

On this set, the centres of mass and velocities of all robots coincide, but the robots
are not necessarily stationary. No constraint is placed on the robots’ orientations and
angular velocities.

As before, an admissible control for robot i is a locally Lipschitz function of the
quantities

RT
i (xk − xi), RT

i (ẋk − ẋi), RT
i Rk, ωi ,

for each k ∈ Ni .
We assume that the visibility graph is constant. The rendezvous problem for the

robots in (6.20) is to find, if they exist, admissible controls (ui , τi) so that there exists
a subset of the rendezvous manifold that is locally asymptotically stable.

Allowing the stabilization of a subset of R, rather than the entire R, makes the
problem less demanding and allowsone to take different lines of attack for its solution.
For instance, one may attempt to locally asymptotically stabilize the subset ofR on
which the thrust axes coincide,

{χ ∈ R : R1e3 = · · · = Rne3},

in which case the requirement on the initial conditions would be that the robots’
initial positions, velocities, and thrust axes be close to each other. Or one may even
attempt to fully synchronize the rotation matrices Ri . In another formulation, one
may require the robots to stop moving, in which case the subset of R of interest
would be

{χ ∈ R : ẋi = · · · = ẋn = 0}.

Combinations of the above formulations are of course possible, and they are all
special instances of the general problem statement above. One may also formulate
the global version of the rendezvous problem, or other variations along these lines
(almost-global, semi-global, practical, and so on).

Even in our weak formulation, the rendezvous problem for flying robots is to date
open. What makes the problem particularly hard is the requirement that robot i must
be able to compute its own control (ui , τi) without knowing its absolute position xi

and orientation Ri in the common inertial frame I.

Series Editors’ Biography

Tamer Başar is with the University of Illinois at Urbana-Champaign, where he
holds the academic positions of Swanlund Endowed Chair, Center for Advanced
Study Professor of Electrical and Computer Engineering, Research Professor at the
Coordinated Science Laboratory, and Research Professor at the Information Trust
Institute. He received the B.S.E.E. degree from Robert College, Istanbul, and the
M.S., M.Phil, and Ph.D. degrees from Yale University. He has published extensively
in systems, control, communications, and dynamic games, and has current research
interests that address fundamental issues in these areas alongwith applications such as
formation in adversarial environments, network security, resilience in cyber-physical
systems, and pricing in networks.

In addition to his editorial involvement with these Briefs, Basar is also the Editor-
in-Chief of Automatica, Editor of two Birkhäuser Series on Systems & Control and
Static & Dynamic Game Theory, the Managing Editor of the Annals of the Inter-
national Society of Dynamic Games (ISDG), and member of editorial and advisory
boards of several international journals in control, wireless networks, and applied
mathematics. He has received several awards and recognitions over the years, among
which are the Medal of Science of Turkey (1993); Bode Lecture Prize (2004) of
IEEE CSS; Quazza Medal (2005) of IFAC; Bellman Control Heritage Award (2006)
of AACC; and Isaacs Award (2010) of ISDG. He is a member of the US National
Academy of Engineering, Fellow of IEEE and IFAC, Council Member of IFAC
(2011–2014), a past president of CSS, the founding president of ISDG, and presi-
dent of AACC (2010–2011).

Antonio Bicchi is Professor of Automatic Control and Robotics at the University
of Pisa. He graduated from the University of Bologna in 1988 and was a postdoc
scholar at M.I.T. A.I. Lab between 1988 and 1990. His main research interests are in:

• dynamics, kinematics and control of complex mechanical systems, including ro-
bots, autonomous vehicles, and automotive systems;

• haptics and dextrous manipulation; and theory and control of nonlinear systems,
in particular hybrid (logic/dynamic, symbol/signal) systems.

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8

95

96 Series Editors’ Biography

• theory and control of nonlinear systems, in particular hybrid (logic/dynamic, sym-
bol/signal) systems.

He has published more than 300 papers in international journals, books, and refereed
conferences.

Professor Bicchi currently serves as the Director of the Interdepartmental Re-
search Center “E. Piaggio” of the University of Pisa, and President of the Italian
Association or Researchers in Automatic Control. He has served as Editor in Chief
of the Conference Editorial Board for the IEEE Robotics and Automation Society
(RAS), and as Vice President of IEEE RAS, Distinguished Lecturer, and Editor for
several scientific journals including the International Journal of Robotics Research,
the IEEE Transactions on Robotics and Automation, and IEEE RAS Magazine. He
has organized and co-chaired the first WorldHaptics Conference (2005), and Hybrid
Systems: Computation and Control (2007). He is the recipient of several best pa-
per awards at various conferences, and of an Advanced Grant from the European
Research Council. Antonio Bicchi has been an IEEE Fellow since 2005.

Miroslav Krstic holds the Daniel L. Alspach chair and is the founding director of the
Cymer Center for Control Systems and Dynamics at University of California, San
Diego. He is a recipient of the PECASE, NSF Career, and ONR Young Investigator
Awards, as well as the Axelby and Schuck Paper Prizes. Professor Krstic was the
first recipient of the UCSD Research Award in the area of engineering and has held
the Russell Severance Springer Distinguished Visiting Professorship at UC Berkeley
and the HaroldW. Sorenson Distinguished Professorship at UCSD. He is a Fellow of
IEEE and IFAC. Professor Krstic serves as Senior Editor for Automatica and IEEE
Transactions on Automatic Control and as Editor for the Springer series Commu-
nications and Control Engineering. He has served as Vice President for Technical
Activities of the IEEE Control Systems Society. Krstic has co-authored eight books
on adaptive, nonlinear, and stochastic control, extremum seeking, control of PDE
systems including turbulent flows and control of delay systems.

Appendix
On the Literature

In this concluding sectionwe discuss some relevant literature and specific references.
Flocking and rendezvous in distributed robotics have precursors and analogies in
other scientific domains, and that is something we shall look at now.

Robot Models

The literature on distributed robotics has several threads. One is in the context of
computer science and robots are modeled as formal computing devices, somewhat
similar to Turing machines, and may sometimes be called “processes”. A good ex-
ample of such a paper is [42] by Suzuki and Yamashita. It begins with an interesting
puzzle by way of motivation: Imagine an elementary school teacher and her class of
kids in the school playground. Suppose she wants all the kids themselves to form a
circle. Is it possible for the teacher to give an instruction simultaneously to all the
kids so that they will proceed to form a circle?

In contrast, in this book robot models are differential equations derived from
physics.

Flocking

The word “biomimetic” refers to human-made processes, substances, devices, or
systems that imitate nature. An archetypal biomimetic problem is to design and
build a group of robots that have the ability to fly and to flock while flying. In 1987
Craig Reynolds introduced amodel andwrote a program called boids (android birds)
that simulates a flock of birds in flight; they fly as a flock, with a common average
heading, and they avoid colliding with each other. Each boid has a local control

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8

97

98 Appendix: On the Literature

strategy—there is no leader broadcasting instructions—yet a desirable overall group
behaviour is achieved. The local strategy of each boid has three components:

1. Separation: steer to avoid crowding;
2. Alignment: steer towards the average heading of neighbours;
3. Cohesion: steer towards the average position of neighbours.

Following Reynolds is the paper [46] by Vicsek et al. that appeared in 1995.
They propose a simple discrete-time model of n autonomous agents i.e., points or
particles all moving in the plane with the same speed but with different headings.
Each agent’s heading is updated using a local rule based on the average of its own
heading together with the headings of its neighbours. Agent i’s neighbours at time t
are those agents that are either in or on a circle of pre-specified radius centred at agent
i’s current position. The paper provides a variety of interesting simulation results that
demonstrate that the nearest-neighbour rule can cause all agents eventually to move
in the same direction despite the absence of centralized coordination and despite
the fact that each agent’s set of nearest neighbours changes with time as the system
evolves.

Following Vicsek et al. is the paper [16] by Jadbabaie et al., considering the same
motion control law. Jadbabaie et al. prove that flocking occurs provided there is a
sufficient amount of connectivity over time of the visibility graph. But there are
limitations to the setup and results, as shown in Sect. 3.4.

In [18] Justh and Krishnaprasad solved the simplest flocking problem: two uni-
cycles always in sight of each other. Their controller is admissible in the sense we
use in this book. The main result states that if the unicycles are initialized at different
locations in the plane and they are not initially heading in opposite directions, then
they flock without colliding.

The solution to the unicycle flocking problem presented in Chap.3, inspired by
the Kuramoto model of coupled oscillators [21], has been derived by a number of
researchers in the literature. In particular, Sepulchre et al. [40] (see also Scardovi et
al. [39]) state a special case of Theorem 3.1 in which the visibility graph is complete
(i.e., each robot can see all other robots). Jadbabaie et al. [17] state a result analogous
to Theorem 3.1. Lin et al. [26] present a more general result. They show that the
Kuramoto-inspiredflocking controller solves theflockingproblemwhen thevisibility
graph is directed, time-varying, and enjoys a suitable connectivity property.

In articles [16, 46] the update law of the heading angles operates in discrete time.
One may take issue with this framework. Motion in nature is normally understood to
be a continuous-time phenomenon. Permitting two discrete-time bird models in the
same system presupposes temporal coordination of sampling; that is, the two clocks
internal to the birds must be synchronized by an uber-clock. Allowing such a thing
is inconsistent with the objective of studying autonomous agents.

http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3
http://dx.doi.org/10.1007/978-3-319-24729-8_3

Appendix: On the Literature 99

Agreement and Consensus

A group of robots rendezvousing, a problem in robotics, is analogous to a group of
agents arriving at a consensus about the value of a number θ , a problem in deci-
sion theory. In 1974 DeGroot formulated a problem in the latter subject. His paper,
Forming a Consensus [8], begins in this way: Consider a group of n agents who
must act together as a team or committee, and suppose that each of these agents can
specify its own subjective probability distribution for the value of θ . DeGroot’s pa-
per offers a model that describes how the group might reach a consensus and form a
common subjective probability distribution for θ simply by revealing their individual
distributions to each other and pooling their opinions.

Starting from DeGroot, Tsitsiklis and co-workers have studied distributed
decision-making in a large number of papers (see [4, 45], and other papers on his
website). In particular, in [4] is reviewed the “agreement algorithm”, briefly defined
as follows. For each of n agents, xi (t) denotes the value held by agent i at time t
about the value of a parameter θ . The time variable t is taken to be a nonnegative
integer. The n held values define a vector x(t), namely, the vector with components
x1(t), . . . , xn(t). The update equation for the vector x(t) is taken to be

x(k + 1) = A(k)x(k), (1)

where A(k) is a stochastic matrix, i.e., for every k ≥ 0, the elements of A(k) are
non-negative and its rows sum to 1. Thus, the value of θ held by agent i at time k +1
equals the dot product of row i of A(k) with the vector x(k). Consensus is said to
occur if there exists a number φ such that x(k) converges to φ1 as k → ∞, where
1 denotes the vector of 1’s. Whether or not consensus occurs depends on x(0), the
initial values, and the matrix function A(k). From a mathematical viewpoint, this
agreement problem is equivalent to the flocking problem investigated by Jadbabaie
et al. [16], and the conditions for consensus presented in [45] are analogous to the
ones in [16] under similar assumptions.

Pursuit

Every motion-control law for a robot outfitted with a camera has to be based on
pursuit, for if a robot is “here” and it needs to be “there”, and if its only sensor is a
camera, then it has to pursue something to get “there”. In this way, cyclic pursuit is
a strategy for rendezvous.

Mathematical pursuit has a long history that can be traced back to work by the
French mathematician Pierre Bouguer [1698–1758]. Much more recently, Martin
Gardner wrote a popular mathematics column in the Scientific American magazine.
Here is his puzzle called The Four Bugs Problem, published in 1965: Four bugs,
denoted A, B, C , and D, start at the corners of a square. Starting at t = 0, A pursues

100 Appendix: On the Literature

B at unit speed, B pursues C at unit speed, C pursues D at unit speed, and D pursues
A at unit speed. The question is whether or not the bugs meet, and if they do, at what
time.

The references for cyclic pursuit are [24, 27].

The Rendezvous Problem

There are essentially two different rendezvous problems, one where neighbour sets
are fixed for all time (i.e., the visibility graph does not change with time) and the
other where neighbours are defined by proximity. In the former case a control law
can be constructed by allowing each robot to pursue the centroid of its neighbour set.
It is not clear who first proved the equivalence of conditions 3 and 4 in Theorem 4.2.
Certainly Ren and Beard did prove it [34] and so did Lin et al. [25]. In the latter case
(where neighbours are determined by proximity), the visibility graph usually varies
with time. Allowing each robot to pursue the centroid of its neighbour set will not
always work, because visibility links may break. A control law that can be proved to
work is the circumcentre law presented in Chap.5, invented by Ando et al. [2]. This
control law turns out not to be Lipschitz continuous, and so proof that the control
law does indeed provide rendezvous is non-trivial. It was first proved in [26].

The solution of the rendezvous problem for unicycles presented in Theorem 4.3
is taken from [25], where this theorem is proved under more general assumptions.

We have presented solutions of the rendezvous problem for kinematic points
and unicycles. Other models have been considered in the literature. For double-
integrators, the solution of the rendezvous problem was developed by Ren et al. [31,
32]. Tanner et al. [44] proposed distributed control laws, involving potential func-
tions, that achieve rendezvous while avoiding collisions. Moreau [29] considered
the general context of nonlinear discrete-time systems. He proved that if each agent
moves towards the relative interior of the convex hull of the set of its neighbours, then
rendezvous is achieved. In [26], Lin et al. proved the continuous-time counterpart of
Moreau’s result. These results assume persistent connectivity of the visibility graph,
rather than guaranteeing it.

Flying Robots

The model of a thrust-propelled flying robot presented in Chap.6 is standard and has
been used in more or less the same form by a number of researchers (e.g., [15, 22]),
sometimes using the quaternion representation of the aircraft’s orientation [1], other
times using local representations such as Euler angles [7]. Our model ignores drag
effects, wind gusts, and related uncertainties.

Although the flocking problem for underactuated flying robots is not discussed in
the literature, the solution for the 2D case we have presented in Theorem 6.1 appears

http://dx.doi.org/10.1007/978-3-319-24729-8_4
http://dx.doi.org/10.1007/978-3-319-24729-8_5
http://dx.doi.org/10.1007/978-3-319-24729-8_4
http://dx.doi.org/10.1007/978-3-319-24729-8_6
http://dx.doi.org/10.1007/978-3-319-24729-8_6

Appendix: On the Literature 101

in the work of Dörfler and Bullo [11, 12] in the context of transient stability of power
networks. The solution for the 3D case presented in Theorem 6.2 is novel. Attitude
synchronization is related to flocking: instead of seeking to synchronize the thrust
axes of the robots, in attitude synchronization one wants to synchronize their entire
orientation. In this context, Nair and Leonard [30] and Sarlette et al. [38] presented
solutions similar to ours.

The rendezvous problem for flying robots remains open. A number of researchers
have attempted a solution, but in all cases the control laws are not distributed in
that they rely on measurements of the absolute positions or absolute orientations
of the robots. Recently, Roza et al. [37] have proposed a distributed solution of
the rendezvous problem. This solution, however, requires each robot to measure an
inertial vector such as gravity in its own body frame. Moreover, robots are required
to communicate certain variables to their neighbours.

Discrete-Event Robots

Versions of the rendezvous problem have been studied extensively in computer sci-
ence (where it is usually called the gathering problem). An example is [14]. Each
robot is viewed as a point in the plane. The robots have limited visibility: Each can
see only the other robots within a fixed radius. Moreover, the robots are modelled
as asynchronous discrete-event systems having four possible states: Wait, that is, not
moving and idle; Look, during which the robot senses the relative positions of the
other robots within its field of view; Compute, during which it computes its next
move; and Move, during which it moves at some pre-determined speed to its com-
puted destination. There are soft timing assumptions, such as, a robot can be in Wait
for only a finite period of time.

The robots have local coordinate frames and these are assumed to have a common
orientation, e.g., theymay eachhave a compass as shown inFig. 1. Thepaper proposes
the following control law, in the form of four if-then rules:

1. If in the Look state a robot sees another robot to its left or vertically above, then
it does not move.

2. If a robot sees robots only below on its vertical axis, then it moves down toward
the nearest robot.

3. If a robot sees robots only to its right, then it moves horizontally toward the
vertical axis of the nearest robot.

4. If a robot sees robots both below on its vertical axis and on its right, then it
computes a certain destination point and performs a diagonal move down and to
the right.

It is proved that, assuming the initial visibility graph is connected, the robots ren-
dezvous after a finite number of events. For example, starting as in the figure before,
the lower-right robotwill notmove, and the other threewill become collocatedwith it.

http://dx.doi.org/10.1007/978-3-319-24729-8_6

102 Appendix: On the Literature

Fig. 1 Synchronized
compasses

The proof is quite complicated, because, although each robot goes through a sequence
of event cycles Wait-Look-Compute-Move, the robots are entirely unsynchronized,
and so a robot may start to move before another has finished moving.

More General References

More general references for the subject of distributed robotics are the books [6, 28,
33, 35], and the survey [34].

References

1. Abdessameud, A., Tayebi, A.: Global trajectory tracking control of VTOL-UAVswithout linear
velocity measurements. Automatica 46(6), 1053–1059 (2010)

2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15, 818–828
(1999)

3. Bespamyatnikh, S., Bhattacharya, B., Kirkpatrick, D., Segal, M.: Mobile facility location.
In: Fourth International ACM Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pp. 46–53 (2000)

4. Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent
coordination, consensus, and flocking. In: Proceedings of IEEE Conference on Decision and
Control and European Control Conference, pp. 2996–3000 (2005)

5. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R., Millman, R.,
Sussmann, H. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhauser (1983)

6. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Princeton Univer-
sity Press, Princeton (2009)

7. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini
rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

8. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(342), 118–121 (1974)
9. doCarmo,M.P.:DifferentialGeometry ofCurves andSurfaces. Prentice-hall, EnglewoodCliffs

(1976)
10. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dyn.

Syst. 10(3), 1070–1099 (2011)
11. Dörfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform

Kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)
12. Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart

grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)
13. Feintuch, A., Francis, B.: Infinite chains of kinematic points. Automatica 48, 901–908 (2012)
14. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with

limited visibility. Lect. Notes Comput. Sci. 2010, 247–258 (2001)
15. Hua,M.D., Hamel, T.,Morin, P., Samson, C.: Introduction to feedback control of underactuated

VTOL vehicles: a review of basic control design ideas and principles. IEEEControl Syst. 33(1),
61–75 (2013)

© The Author(s) 2016
B.A. Francis and M. Maggiore, Flocking and Rendezvous in Distributed
Robotics, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-24729-8

103

104 References

16. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

17. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the Kuramoto model of coupled
nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301
(2004)

18. Justh, E., Krishnaprasad, P.S.: Steering laws and continuum models for planar formations. In:
Proceedings of CDC (2003)

19. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (2002)
20. Krick, L., Broucke, M.E., Francis, B.A.: Stabilization of infinitesimally rigid formations of

multirobot networks. Int. J. Control 82, 423–439 (2009)
21. Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. In: Araki,

H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics, Lecture
Notes in Physics, vol. 39, p. 420. Springer, Berlin (1975)

22. Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust tracking control of a quadrotor UAV
on SE(3). Asian J. Control 15(2), 391–408 (2013)

23. Lin, Z.: Coupled dynamic systems: From structure towards stability and stabilizability. Ph.D.
thesis, University of Toronto (2006)

24. Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous
agents. IEEE Trans. Autom. Control 49, 622–629 (2004)

25. Lin, Z., Francis, B.A., Maggiore, M.: Necessary and sufficient graphical connditions for for-
mation control of unicycles. IEEE Trans. Autom. Control 50, 121–127 (2005)

26. Lin, Z., Francis, B.A., Maggiore, M.: State agreement for coupled nonlinear systems with
time-varying interaction. SIAM J. Control Optim. 46, 288–307 (2007)

27. Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE
Trans. Autom. Control 49, 1963–1974 (2004)

28. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton
University Press, Princeton (2010)

29. Moreau, L.: Stability of multi-agent systems with time-dependent communication links. IEEE
Trans. Autom. Control 50, 169–182 (2005)

30. Nair, S., Leonard, N.E.: Stable synchronization of mechanical system networks. SIAM J.
Control Optim. 47(2), 661–683 (2008)

31. Ren,W.:On consensus algorithms for double-integrator dynamics. IEEETrans.Autom.Control
53(6), 1503–1509 (2008)

32. Ren, W., Atkins, E.: Distributed multi-vehicle coordinated control via local information ex-
change. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)

33. Ren, W., Beard, R.: Distributed Consensus in Multi-vehicle Cooperative Control. Communi-
cation and Control Engineering Series. Springer, London (2008)

34. Ren, W., Beard, R.W.: A survey of consensus problems in mulit-agent coordination. In: Pro-
ceedings American Control Conference, pp. 1859–1864 (2005)

35. Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks. Communication and
Control Engineering Series. Springer, London (2011)

36. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of
the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’87), vol. 21, pp. 25–34 (1987)

37. Roza, A., Maggiore, M., Scardovi, L.: A class of rendezvous controllers for underactuated
thrust-propelled rigid bodies. In: Proceedings of the IEEE Conference on Decision and Control
(CDC), pp. 1649–1654 (2014)

38. Sarlette, A., Sepulchre, R., Leonard, N.E.: Autonomous rigid body attitude synchronization.
Automatica 45(2), 572–577 (2009)

39. Scardovi, L., Sarlette, A., Sepulchre, R.: Synchronization and balancing on the N-torus. Syst.
Control Lett. 56, 335–341 (2007)

40. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: all-to-all
communication. IEEE Trans. Autom. Control 52(5), 811–824 (2007)

References 105

41. Strogatz, S.H.: From Kuramoto to Crawford: Exploring the onset of synchronization in popu-
lations of coupled oscillators. Physica D 143, 1–20 (2000)

42. Suzuki, Yamashita: Distributed anonymous mobile robots:formation of geometric patterns.
SIAM J. Comput. 28(4), 1347–1363 (1999)

43. Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Trans. Autom.
Control 41(3), 349–357 (1996)

44. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE
Trans. Autom. Control 52(5), 863–868 (2007)

45. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and sto-
chastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

46. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transitions
in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

	Preface
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Models, Sensing, and Control Specifications
	1.3 Notation

	2 Models of Mobile Robots in the Plane
	2.1 The Common Models
	2.1.1 A 1D Rover
	2.1.2 2D Integrator Point
	2.1.3 Unicycles
	2.1.4 Bicycles
	2.1.5 Summary

	2.2 Feedback Linearization of the Unicycle
	2.3 Stabilizing the Unicycle to the Origin
	2.3.1 Summary

	3 The Flocking Problem
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Flocking with Fixed Neighbours
	3.3.1 Derivation of the Kuramoto Model
	3.3.2 Solution of the Flocking Problem

	3.4 The Control Law of Jadbabaie, Lin, and Morse

	4 The Rendezvous Problem: Fixed Neighbours
	4.1 Introduction
	4.2 Cyclic Pursuit
	4.3 General Fixed Neighbours
	4.3.1 Rendezvous Problem for Integrator Points
	4.3.2 Solution of the Rendezvous Problem

	4.4 Rendezvous of Unicycles
	4.5 From Rendezvous to Formation Stabilization
	4.6 Infinitely Many Robots
	4.7 On Digital Implementation of Controllers

	5 The Rendezvous Problem: Limited Camera Range
	5.1 Introduction
	5.2 General Results
	5.3 Numerical Issues

	6 Introduction to Flying Robots
	6.1 Introduction
	6.1.1 Common Flying Robots
	6.1.2 Onboard Sensors

	6.2 Modelling
	6.2.1 2D Flying Robot
	6.2.2 3D Flying Robot
	6.2.3 Special Case: Quadrotor Helicopters

	6.3 Flocking of 2D Flying Robots
	6.4 Flocking of 3D Flying Robots
	6.5 Rendezvous of 3D Flying Robots

	Series Editors’ Biography
	Appendix
On the Literature
	References

