
Chapter 4
Amoeba Techniques for Shape and Texture
Analysis

Martin Welk

Abstract Morphological amoebas are image-adaptive structuring elements for
morphological and other local image filters introduced by Lerallut et al. Their con-
struction is based on combining spatial distance with contrast information into an
image-dependent metric. Amoeba filters show interesting parallels to image filtering
methods based on partial differential equations (PDEs), which can be confirmed
by asymptotic equivalence results. In computing amoebas, graph structures are
generated that hold information about local image texture. This chapter reviews and
summarises the work of the author and his coauthors on morphological amoebas,
particularly their relations to PDE filters and texture analysis. It presents some
extensions and points out directions for future investigation on the subject.

4.1 Introduction

Mathematical morphology [38, 45, 46] has developed since the 1960s as a powerful
theoretical framework from which versatile instruments for shape analysis in images
can be derived, such as for structure-preserving denoising or shape simplification
[23]. The fundamental building blocks of classical mathematical morphology are
non-linear local image filters like dilation, erosion, and median filters. They rely on
aggregating intensities within a neighbourhood of any given pixel by e.g. maximum,
minimum, and median operations. The selection of neighbourhoods for processing
is classically done by shifting a sliding window of fixed size and shape across the
image. In the context of morphology, this sliding window is known as structuring
element.
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More recently, concepts for adaptivity have been developed generally in image
filtering and also specifically in morphology [5, 51]. One recent concept for adaptive
morphology are morphological amoebas introduced by Lerallut et al. [32]. These
are space-variant structuring elements constructed from a combination of spatial
distance measurement with local contrast measurement via an amoeba metric.

In earlier work by the author of the present chapter and his coauthors, properties
of amoeba filters and their relations to image filters based on partial differential
equations (PDEs) were investigated [54, 57, 58]. As an application to image
segmentation, an amoeba-based active contour method was designed [53, 54, 56].
Recently, a combination of edge-weighted graphs generated in the computation of
amoebas with graph indices was used to introduce a new class of texture descriptors
[55] which are currently under further investigation. This chapter reviews and
summarises the results from these works. Directions of ongoing research on this
topic are sketched.

With focus on giving a comprehensive overview of the theory that has been
developed in various earlier publications, the (mostly lengthy) proofs of the results
are omitted here and referred to the respective original sources. Nevertheless,
the main principles underlying the proofs are shortly outlined. Although amoeba
filtering of multi-channel images has been addressed to some extent in [57], this
aspect of the topic presents itself in a stage too early for a summarised presentation,
and is therefore not included in the present chapter.

In the following the structure of the chapter is detailed, highlighting contributions
that are novel in this presentation.

Section 4.2 introduces the concept of morphological amoebas as image-adaptive
structuring elements in the space-discrete as well as the space-continuous setting. To
ease bridging to the graph techniques discussed later in Sect. 4.6, the presentation
in the discrete case emphasises the modelling of discrete images by neighbourhood
graphs and uses standard terminology from graph theory, thereby following [55].
The presentation of the space-continuous case is similar to that e.g. in [57].

The application of amoebas in image filtering is the topic of Sect. 4.3. Median
filters, morphological dilation and erosion are presented together with their relation-
ship to PDE image filters, reproducing herein results from [54, 56–58]. Regarding
the association between amoeba metrics on the discrete filtering side and edge-
stopping functions occurring in the corresponding PDEs, the current work adds to
the previously considered exemplary L1 and L2 (Euclidean) amoeba metrics as a
third simple case the L1 (maximum) amoeba metric and states explicitly the corre-
sponding edge-stopping function. Moreover, the amoeba variants of morphological
opening and closing are included in the description for the first time. For dilation,
erosion, opening and closing filters, the presentation here emphasises the algebraic
background including max-plus/min-plus convolution and conjugacy of structure
elements.
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Section 4.4 considers the application of amoeba techniques to devise basic
algorithms for unsupervised segmentation of grey-value images, namely the amoeba
active contours (AAC) first introduced in [53] and further investigated in [54, 56].
Results from [56] on the relation between AAC and geodesic active contours are
reported.

In image filtering by nonlinear PDEs, one often computes the nonlinearities
not from the input images themselves but from Gaussian pre-smoothed versions
of these, in order to reduce noise sensitivity of filters and to improve numerical
stability. This is also the case with self-snakes and active contour PDEs; note that
the self-snakes PDE is even ill-posed without such pre-smoothing. Section 4.5
investigates the effect of pre-smoothing in the self-snakes PDE using perturbation
analysis on a synthetic example; furthermore, it discusses how a comparable
stabilisation can be achieved in the amoeba median filter framework. The analysis
presented in this section relies on previous work in [54, 57] in which oscillatory
perturbations aligned with the gradient direction were studied, and extends it by
including also perturbations aligned with the level line direction.

Section 4.6 is devoted to a different direction of application of amoeba ideas.
Noticing that the computation of discrete amoeba structuring elements is intimately
related with graph structures – a weighted neighbourhood graph, weighted and
unweighted Dijkstra search trees – in the neighbourhood of each pixel, one can
try to extract local texture information from these graphs. Quantitative graph theory
[13] offers a variety of graph indices for generating quantitative information from
graph structures. The presentation of the construction of texture descriptors from
amoebas and graph indices in this section follows [55]. Compared to the large
set of descriptors covered in [55], only a few representatives are shown here,
complementing their mathematical description by a visualised example. Extending
the previous work on texture discrimination in [55], the present chapter also shows
a first example of the new texture descriptors in texture segmentation by using the
descriptors as components of an input image for multi-channel GAC segmentation.

4.2 Morphological Amoebas

Well-known local image filters such as the mean filter, median filter, morphological
dilation or erosion consist of two steps: a sliding-window selection step, and the
aggregation of selected input values by taking e.g. the arithmetic mean, median,
maximum or minimum. A strategy to improve the sensitivity of such filters to
important image structures is to modify the selection step by using spatially adaptive
neighbourhoods instead of a fixed sliding window. The general idea is to give
preference in the selection to neighbouring image locations with similar intensities,
and thus to reduce the flow of grey-value information across high contrast steps or
slopes in the filter process.
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First introduced by Lerallut et al. [32, 33] as structuring elements for adaptive
morphology, morphological amoebas are a specific type of such spatially adaptive
neighbourhoods. Their construction relies on the combination of spatial distance in
the image domain with grey-value contrast into a modified metric on the image.

4.2.1 Edge-Weighted Neighbourhood Graph

To define morphological amoebas on discrete images, we start by considering edge-
weighted graphs based on the image grid.

Definition 4.1 Let f be a discrete image. Construct an edge-weighted graph
Gw. f / WD .V;E;w/ with vertex set V , edge set E and weights w as follows. The
vertex set V is formed by all pixels of f . Two vertices i, j are connected, fi; jg 2 E, if
and only if pixels i, j are neighbours under a suitably chosen neighbourhood notion.
To define the edge weights wi;j for an edge fi; jg 2 E, consider the corresponding
pixel locations pi and pj as well as the intensities fi and fj, and set wi;j to

wij WD '
�kpi � pjk2; ˇ j fi � fjj

�
(4.1)

where kpi � pjk2 denotes Euclidean distance in the image plane, ˇ > 0 is a contrast
scale parameter weighting between spatial and tonal distances, and ' is a norm on
R2 which can be rewritten as

'.s; t/ D
(

jtj � �.js=tj/ ; t > 0 ;

jsj ; t D 0
(4.2)

with a monotonically increasing function � W RC
0 ! RC (by continuity, �.0/ D 1).

The edge-weighted graph Gw. f / is called neighbourhood graph of f .

In this definition, neighbourhood can be understood as a 4-neighbourhood, as
done in [32], or as an 8-neighbourhood as in [55, 57, 58]. The latter choice gets
somewhat closer to a Euclidean measurement of spatial distances in the image plane
and is therefore also considered the default in the present work.

As to the norm function �, the setting �.z/ � �1.z/ D 1 C z corresponds to the
L1 metric also used in [32] that gives

wij D kpi � pjk2 C ˇ j fi � fjj ; (4.3)

whereas �.z/ � �2.z/ D
p

1 C z2 entails a Euclidean (L2) metric in which the edge
weights are obtained by the Pythagorean sum

wij D
q

kpi � pjk2
2 C ˇ2j fi � fjj2 (4.4)
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A straightforward generalisation is

�p.z/ D .1 C zp/1=p for p � 1 ; (4.5)

which in the limit p ! C1 also includes �1.z/ D maxf1; zg and the corresponding
edge weight

wij D max
˚kpi � pjk2; ˇ j fi � fjj

�
: (4.6)

4.2.2 Discrete Amoeba Metric

We use the edge-weighted neighbourhood graph to define the discrete amoeba
metric on image f .

Definition 4.2 Let a discrete image f be given. Let Gw. f / be its neighbourhood
graph with edge weights given by (4.1). Define for two pixels i and j their distance
d.i; j/ as the minimal total weight (length) among all paths between i and j in Gw. f /.
Then d is called (discrete) amoeba metric on f .

The metric d is called Lp amoeba metric, 1 � p < 1, if it is derived from (4.5),
or L1 amoeba metric if it is obtained from �.z/ D maxf1; zg. The L2 amoeba metric
is also called Euclidean amoeba metric.

Definition 4.3 In a discrete image f with amoeba metric d, an amoeba structuring
element (short: amoeba)A%.i/ � A%. f I i/ with amoeba radius % and reference point
at pixel i is a discrete %-ball around pixel i in the amoeba metric, i.e. the set of all
vertices within a distance % from i,

A%.i/ WD f j j d.i; j/ � %g : (4.7)

The derivation of amoebas from a metric with a global radius parameter % has an
interesting consequence: for two pixels i, j, one has

i 2 A%.j/ , j 2 A%.i/ ; (4.8)

which is helpful in the design of some morphological filters.

4.2.3 Computation of Discrete Amoebas

To compute amoebas in a discrete image, one has to search the neighbourhood of
each given reference pixel i in order to identify the pixels j with amoeba distance
d.i; j/ � %. Given that the edge weights wi;j in Gw. f / are nonnegative, this can be
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achieved by running Dijkstra’s shortest path algorithm [16] on Gw. f / starting at
pixel i. As this algorithm enumerates neighbour pixels in order of increasing path
weight, it can be stopped as soon as a pixel j with d.i; j/ > % is visited.

Moreover, by the construction of the amoeba distance it is clear that the Euclidean
distance in the image domain is a lower bound for the amoeba distance between
pixels. Therefore the Dijkstra algorithm for the start vertex i can be run on the
subgraph of Gf .w/ that contains just the pixels from the Euclidean %-neighbourhood
of i.

4.2.4 Amoebas on Continuous Domains

Even superficial inspection of results obtained by some amoeba filters indicates
that they have striking similarities to image processing methods based on partial
differential equations (PDEs). This observation has been substantiated in [56–58]
by studying space-continuous versions of amoeba filters; the results proven there
allow to interpret amoeba filters as time steps of explicit discretisations for suitable
PDEs.

To devise space-continuous versions of amoeba filters, one has to translate first
the notion of amoeba metric to the space-continuous setting. Once this is done, the
definition of an amoeba as a %-ball around a reference point is straightforward.

The amoeba metric for a space-continuous greyvalue image – a real-valued
function f over a connected compact image domain � � Rn – can be stated by
assigning to each two given points p; q 2 � as their distance the minimum of a
path integral between p and q. Just like the edge weights in the discrete amoeba
construction, the integrand of the path integral is obtained by applying a suitable
norm ' to the spatial metric (the Euclidean curve element of the path) and the
greyvalue metric (the standard metric on the real domain), such that the amoeba
distance reads as

d. p; q/ D min
c

1Z

0

'
�kc0.t/k2; ˇ j. f ı c/0.t/j� dt

D min
c

1Z

0

'
�kc0.t/k2; ˇ jr f Tc0.t/j� dt (4.9)

where c runs over all regular curves c W Œ0; 1� ! � with c.0/ D p, c.1/ D q, and '

can be chosen as in the discrete case.
Let us associate to the function f W R2 � � ! R its (vertically rescaled) graph,

the manifold � WD f.x; y; ˇ f .x; y// j .x; y/ 2 �g � R3. Then we see that the
amoeba distance d.˙p; ˙q/ between two points ˙p, ˙q in the image domain �

can be interpreted as a distance Od. p0; q0/ on � . The points p0; q0 2 � herein are
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image graph Γ

image plane IR2

Fig. 4.1 Amoeba as projection of the unit disk on the image graph to the image plane

given by p0 WD . p; f . p//, q0 WD .q; f .q//. To define the metric Od on � , consider
a metric Qd in the surrounding space R3 that combines Euclidean metric in the x-
y-plane with the standard metric in z-direction via the function ' from (4.2) that
appeared already in the original construction of the amoeba metric. Using Qd in R3,
the metric Od is obtained as its induced metric on the submanifold � � R3. Figure 4.1
illustrates that the amoeba structuring element is then the projection of a unit disk
on � back to the image plane.

Figure 4.2 shows typical amoeba shapes in smooth image regions for the three
exemplary amoeba metrics exposed in Sect. 4.2.2.

4.3 Amoeba-Based Image Filters

To obtain applicable image filters, the amoeba procedure described above is used
as a selection step and needs to be complemented by some aggregation step. We
consider here standard choices of aggregation operators from classical local filters;
introducing also modifications into this part of the filtering procedure is left as
a possible direction for future research. Moreover, keeping close to the original
context in which amoebas were developed, we focus on morphological operators.
Here, morphological operators are characterised by their invariance under arbitrary
monotonically increasing transformations of the intensities, see e.g. [37], which
means that also median and quantiles belong to this class.
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Fig. 4.2 Typical shapes of amoebas in the continuous domain for different amoeba metrics. Top
row shows amoebas on an image with equidistant straight level lines, bottom row shows amoebas
on curved level lines (schematic). Left column shows L1 amoeba metric, middle column Euclidean
amoeba metric, and the right column shows the maximum (L1) amoeba metric. Each amoeba is
shown with its reference point (bold) and level line through the reference point (dashed)

4.3.1 Median

A median filter aggregates the intensity values of the selected pixels by taking their
median. In the non-adaptive, sliding-window setting this filter can be traced back to
Tukey [50], and since then it has gained high popularity as a simple denoising filter
that preserves discontinuities (edges) and its robustness with respect to some types
of noise. Median filtering can be iterated. Unlike average filters, the median filter on
a discrete image possesses non-trivial steady states, so-called root signals [17], that
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depend on the filter window. The smaller the filter window, the faster the iterated
median filtering process locks in at a root signal.

Despite the nice preservation of edges, the non-adaptive median filter involves
a displacement of curved edges in inward direction and rounding of corners that
is often undesired. Amoeba median filtering greatly reduces this effect. Figure 4.3
demonstrates this by an example.

4.3.1.1 PDE Approximation

As noticed already in 1997 by Guichard and Morel [20], the overall robust denoising
effect and the characteristic corner-rounding behaviour of standard median filtering
resemble the properties of the well-known (mean) curvature motion PDE [1].
Further analysis confirmed this observation by proving an asymptotic relationship
between the two filters, as set forth in the following proposition.

Proposition 4.1 (Guichard and Morel [20]) For a smooth function u W � ! R,
one iteration of median filtering with a %-ball as structuring element approximates
for % ! 0 a time step of size � D %2=6 of the curvature motion PDE [1]

ut D jruj div

� ru

jruj
�

: (4.10)

This seminal result motivates the investigation of relations between amoeba and
PDE filters whose results are reviewed in the further course of the present paper.

Just like amoeba median filtering differs from standard median filtering by an
adaptation procedure that suppresses smoothing across edges, the curvature motion
equation (4.10) has a counterpart in which also the flow across edges is suppressed.
This so-called self-snakes filter [44] allows curvature-based image smoothing and
simplification, preserves and even enhances edges, while at the same time avoiding

Fig. 4.3 Non-adaptive and amoeba median filtering. (a) Original image. (b) Filtered by 5
iterations of standard median filtering with a discrete disk of radius 2 as structuring element. (c)
Filtered by 5 iterations of amoeba median filtering with Euclidean amoeba metric, ˇ D 0:2, % D 7
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to shift them, as curvature motion does. It turns out that indeed amoeba median
filtering is connected to self-snakes by a similar asymptotic relationship as that of
Proposition 4.1, as follows.

Theorem 4.1 ([57, 58]) For a smooth function u W � ! R, one iteration of amoeba
median filtering with amoeba radius % approximates for % ! 0 a time step of size
� D %2=6 of the self-snakes PDE [44]

ut D jruj div

�
g
�jruj� ru

jruj
�

(4.11)

where g W RC
0 ! RC

0 is a decreasing edge-stopping function that depends on the
amoeba metric being used.

Proofs for Theorem 4.1 have been given in [57, 58]. While these proofs are not
reproduced in detail here, it is of interest to describe the two different strategies
that are used in these proofs. These approaches form also the basis for the further
amoeba–PDE asymptotics results presented in Sect. 4.3.2.

4.3.1.2 Proof Strategies

The crucial observation for all median filter–PDE equivalence results since Gui-
chard and Morel’s proof of Proposition 4.1 in [20] is that the median of a smooth
function u within a given compact structuring element A is the function value
whose corresponding level line divides the structuring element into two parts of
equal area. Herein it is assumed that each value of u within the structuring element
is associated with a unique level line segment inside A , which is satisfied for
sufficiently small fixed or amoeba structuring elements whose reference point x0

is not an extremum of u, and therefore acceptable when studying the limit % ! 0.
The amount by which a single median filtering step changes the function

value at the reference point x0 of the structuring element then corresponds, up to
multiplication with jruj, to the distance between the area-bisecting level line and the
level line through x0, see the illustration in Fig. 4.4a. The two approaches discussed
in the following differ in the way how they measure the area of the structuring
elements and parts thereof.

Proof Strategy I

The first strategy has been followed in [58] to prove Theorem 4.1 for the entire
class of amoeba metrics discussed in Sect. 4.2 above, see also the more detailed
version in [57, Section 4.1.1]. It is close to the approach from [20] in that it develops
the smooth function u around the reference point x0 into a Taylor expansion up to
second order. The Taylor expansion is then used to approximate, for an amoeba
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•x0

(a)

x0
•

(b)

Fig. 4.4 (a) Amoeba with reference point x0, level line through x0 (dot-dashed) and bisecting
level line (dashed), schematic. (b) Amoeba with curvilinear coordinate system formed by level
lines (dashed) and gradient flow lines (solid)

A D A%.x0/, three items: first, the range of function values occurring within A ,
i.e. the minimum min

A
u and maximum maxA u, second, the length L.z/ of the level

line segment for each z 2 ŒminA u; maxA u�, and third, the density ı.z/ of level
lines around each z, which equals the steepness of the slope of u near the level line
of z.

Integrating the lengths of level lines over function values, weighted with their
reciprocal densities, yields the area of A , i.e.

Area.A / D
maxA uZ

minA u

L.z/

ı.z/
dz : (4.12)

As this integral effectively runs over level lines, splitting the integration interval
exactly corresponds to cutting A at some level line. The calculation of the desired
median of u within A is then achieved by determining a suitable splitting point in
the integration interval so that the integrals on both sub-intervals become equal.

Summarising, this strategy describes the amoeba shape in terms of a curvilinear
coordinate system aligned with the gradient and level line directions at x0, in which
the level lines take the role of coordinate lines, compare Fig. 4.4b.

Proof Strategy II

The second strategy abandons the consideration of the individual level lines within
A ; the only level line that is explicitly studied is the one through x0 itself. Instead
of the distorted Cartesian coordinate system one uses polar coordinates to describe
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the shape of the amoeba. This approach has first been used in [54] in the context
of amoeba active contours (see Sect. 4.4.1), and again in [57, Section 4.1.2], both
times restricted to the Euclidean amoeba metric. It has been extended to cover the
full generality of amoeba metrics under consideration in [56], again for amoeba
active contours.

Writing the outline of A as a function a.˛/ of the polar angle ˛ 2 Œ0; 2��,
the amoeba’s area is stated by the standard integral for areas enclosed by function
graphs in polar coordinates as

Area.A / D 1

2

2�Z

0

a.˛/2 d˛ : (4.13)

Unlike for (4.12), splitting this integral yields areas of sectors instead of segments;
however, if the level line through x0 happens to be a straight line, splitting up the
integral (4.13) at the pair of opposite angles corresponding to the level line direction
yields the areas of two segments into which A is cut by that level line, compare
Fig. 4.5a.

Provided that A is symmetric (w.r.t. point reflection at the reference point), the
two segments are of equal area, making in this case the median equal to u.x0/.
Deviations from this situation that make the median differ from u.x0/ can be
separated into two contributions: first, the asymmetry of the amoeba; second, the
curvature of the level lines. Cross-effects of the two contributions influence only
higher order terms that can be neglected in the asymptotic analysis; thus the two
sources can be studied independently. In approximating the area difference �1

caused by the asymmetric amoeba shape, one can assume that the level lines are
straight, see Fig. 4.5b, while the level line curvature effect �2 can be studied under
the assumption that A has symmetric shape, see Fig. 4.5c.

•x0

(a)

•x0

straight
level
line

Δ1

asymmetric
amoeba

(b)

•x0

curved
level
line

Δ2

symmetric
amoeba

(c)

Fig. 4.5 (a) Amoeba with straight level line (dot-dashed) through its reference point x0 and further
radial lines (dashed) of a polar coordinate system centred at x0. (b) Area difference �1 in an
asymmetric amoeba with straight level lines. The hashed region is enclosed between the right arc
of the amoeba contour and the point-mirrored copy of its left arc. (c) Area difference �2 in a
symmetric amoeba with curved level lines. (b), (c) from [54]
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Finally, the combined effect �1 C �2 must be compensated by a parallel shift
of the level line through x0, compare again Fig. 4.4a. From the shift the median,
and thus the right-hand side of the PDE approximated by the amoeba filter, can be
derived.

4.3.1.3 Amoeba Metrics and Edge-Stopping Functions

It remains to specify the relation between amoeba metric and edge-stopping function
mentioned in Theorem 4.1. In [57, 58], the following representation of g in terms of
the function � defining the amoeba metric has been proven.

g.z/ D 3

ˇ2s2�3.1=.ˇz//

1Z

0

	2

s

��2

�
1

	
�

�
1

ˇz

��
� 1

ˇ2z2
d	 ; (4.14)

where ��2.z/ is short for .��1.z//2, i.e. the square of the inverse of �, and �3.z/ for
the cube .�.z//3.

In the case of the Euclidean amoeba metric, �.z/ D
p

1 C z2, the expres-
sion (4.14) simplifies to

g.z/ � g2.z/ D 1

1 C ˇ2z2
; (4.15)

which is, up to the substitution 
 D 1=ˇ, the Perona-Malik diffusivity [39] that is
also one of the common choices for g in the self-snakes equation.

When using the L1 amoeba metric, �.z/ D 1 C z, the integral in (4.14) can be
numerically evaluated, and one obtains an edge-stopping function g.s/ � g1.s/
that differs from (4.15) in that it decreases away from g.0/ D 1 already with
nonvanishing negative slope, thus reacting more sensitive to even small image
contrasts.

Finally, for the L1 amoeba metric, �.z/ D maxf1; zg, it is again possible to state
g in closed form,

g.z/ � g1.z/ D

8
<̂

:̂

1 ; ˇz � 1 ;

1 �
�

1 � 1

ˇ2z2

�3=2

; ˇz > 1
(4.16)

which shows that g1 is completely insensitive to image contrasts up to z D 1=ˇ and
then starts decreasing with a kink. All three edge-stopping functions are depicted in
Fig. 4.6.
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Fig. 4.6 Edge-stopping
functions g1, g2 and g1

associated to L1, Euclidean
and L1 amoeba metrics,
respectively. Throughout
these metrics, the contrast
scale ˇ has been set to 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

g1
g2
g∞

Fig. 4.7 Grey-scale image
(256 � 256 pixels) used to
demonstrate non-adaptive and
amoeba-based morphological
filters

4.3.2 Dilation and Erosion

The two most fundamental operations of mathematical morphology, dilation and
erosion, use as aggregation step the maximum and minimum of intensities, respec-
tively. This can naturally be done also in combination with an amoeba-based pixel
selection step (Fig. 4.7).

We point out that the standard dilation of an image u with fixed structuring
element S can be written as

.u ˚ S/.i/ D max
j2iCS

u.j/ D max
j2�

�
u.j/ C !�

S .i � j/
�

; (4.17)

where !�
S denotes the function

!�
S .k/ D

(
0 ; �k 2 S ;

�1 ; else.
(4.18)
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The last term in (4.17) allows an interesting interpretation in terms of the max-plus
algebra [3, 42], an algebraic structure on R [ fC1; �1g in which the maximum
operation takes the role of addition in the usual algebra of real numbers, while
addition takes the role of multiplication. It is evident that (4.17) is nothing else
but a convolution of u and !�

S in the max-plus algebra, see [36].
In writing erosion in an analogous way, we follow a convention frequently used in

the literature by using instead of the structuring element S the conjugate structuring
element S�, which comes down geometrically to a point reflection on the origin,
S� D �S. The advantage of this convention is that subsequent definitions like those
for opening and closing become simpler [24], compare Sect. 4.3.3.
Defining then !C

S� as zero on S, but C1 outside, erosion is stated as

.u	S/.i/ D min
j2jCS�

u.j/ D min
j2�

�
u.j/C!C

S� .i�j/
� D min

j2�

�
u.j/C!C

S .j�i/
�

; (4.19)

which can be interpreted again as a convolution of u and !C
S� in the min-plus

algebra [36].
Abandoning the fixed window and using a family S WD fi 7! S.i/ j i 2 �g of

structuring elements S.i/ located at pixel i, one can write amoeba dilation as

.u ˚ S /.i/ D max
j2�

�
u.j/ C !�

S .i; j/
�

; (4.20)

!�
S .i; j/ D

(
0 ; j 2 S.i/ ;

�1 ; else.
(4.21)

Just as the last term in (4.17) is a max-plus convolution, the right-hand side (4.20)
is the max-plus analogon of a (discretised) integral operator. Herein, !�

S .i; j/ acts
as the max-plus counterpart of just the same type of integral kernel that appears as
point-spread function in space-variant image deconvolution models.

Similarly, amoeba erosion becomes a min-plus integral operator with a min-plus
kernel !C

S �.i; j/ � !C
S .j; i/. Generally, conjugate structuring elements in the space-

variant case are given by

S�.i/ D fj 2 � j i 2 S.j/g : (4.22)

Interestingly, if S is made up by amoebas S.i/ � A%.i/, there is no difference
whether the conjugate structuring elements S � or standard structuring elements S
are used in erosion: property (4.8) of the amoebas entails !Ṡ .j; i/ D !Ṡ .i; j/ for
all i; j 2 �, or equivalently

A �
% .i/ � A%.i/ : (4.23)

We will denote this property as self-conjugacy of amoebas.
Figure 4.7 shows the results of non-adaptive and amoeba dilation and erosion

of an example image depicted in Fig. 4.8. Non-adaptive as well as amoeba-based
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Fig. 4.8 Morphological dilation and erosion, non-adaptive and amoeba-based, of the test image
from Fig. 4.7. (a) Non-adaptive morphological dilation with disk of radius % D 5 as structuring
element. (b) Amoeba dilation with Euclidean amoeba metric, ˇ D 0:1, % D 10. (c) Non-adaptive
morphological erosion with structuring element as in (a). (d) Amoeba erosion with amoeba
parameters as in (b)

dilation extend bright image details, but it can be seen that the spreading of bright
image parts is stopped at strong edges; similarly for the propagation of dark details
by erosion.

4.3.2.1 PDE Approximation

It is a well-known fact that Hamilton-Jacobi PDEs

ut D ˙jruj (4.24)

describe dilation (“C” case) and erosion (“�”) of continuous-scale images or level-
set functions u in the sense that evolution of an initial image u.t D 0/ D f by (4.24)
up to time T D % yields the dilation or erosion of f with a Euclidean ball-shaped
structuring element of radius %. It can therefore be expected that amoeba dilation and



4 Amoeba Techniques for Shape and Texture Analysis 89

erosion, too, should be related to hyperbolic PDEs resembling (4.24). The following
result from [57] confirms this intuition.

Theorem 4.2 ([57]) For a smooth function u W � ! R, one step of amoeba
dilation or amoeba erosion with amoeba radius % and Euclidean amoeba metric
approximates for % ! 0 a time step of size � D % of an explicit time discretisation
of the Hamilton-Jacobi-type PDE

ut D ˙ jruj
p

1 C ˇ2 jruj2 ; (4.25)

where the “C” sign applies for dilation, and “�” for erosion.

The proof of this result can be found in [57]; it is based on Proof Strategy I from
Sect. 4.3.1.2.

Note that unlike in Theorem 4.1 the time step size here depends linearly, not
quadratically, on %. In [57] the theorem is formulated slightly more general to cover
also amoeba ˛-quantile filters that interpolate in a natural way between median
filtering (˛ D 1=2), dilation (˛ D 1) and erosion (˛ D 0). As a result of the different
order of decay of � for % ! 0, it comes as no surprise that for ˛ ¤ 1=2 always
the advection behaviour of the Hamilton-Jacobi equation (4.25) dominates over the
parabolic equation (4.10), thus turning quantile filters into “slower” approximations
to the same PDE.

4.3.3 Opening and Closing

In mathematical morphology, the opening of an image f with (fixed) structuring
element S is defined as the concatenation of an erosion followed by a dilation with
S. In case S is not point-symmetric it is essential that, as mentioned in Sect. 4.3.2,
the conjugate structuring element S� is used in the erosion step. Opening therefore
reads as

. f ıS/.i/ D �
. f 	S/˚S

�
.i/ D max

j2�
min
k2�

�
f .k/C!C

S� .j�k/C!�
S .i�j/

�
: (4.26)

Analogously, closing is defined as dilation followed by erosion,

. f 
S/.i/ D �
. f ˚S/	S

�
.i/ D min

j2�
max
k2�

�
f .k/C!�

S .j�k/C!C
S�.i�j/

�
: (4.27)

Again, it is straightforward to turn these operations into adaptive variants by
using amoeba structuring elements. Amoeba opening and closing of image f with
amoebas of radius % are given as

f ı S%. f / D �
f 	 S%. f /

� ˚ S%. f / ; (4.28)
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f 
 S%. f / D �
f ˚ S%. f /

� 	 S%. f / (4.29)

where S%. f / D fi 7! A%. f I i/ j i 2 �g.
It is worth noticing that the difficulty about using the conjugate set of structuring

elements for erosion disappears here due to the self-conjugacy (4.23) of the amoeba
structuring element set.

As it is essential to use the same set of structuring elements in the dilation and
erosion step, both steps must be carried out with the amoebas obtained from the
original image. The underlying principle is that in the second step (dilation for
opening or erosion for closing) each pixel should influence exactly those pixels
which have influenced it in the first step before. As a consequence, e.g. amoeba
opening is not exactly the same as amoeba erosion followed by amoeba dilation –
this sequence would be understood by default as recalculating amoebas after the
erosion step, i.e.

�
f 	 S%. f /

� ˚ S%

�
f 	 S%. f /

�
; (4.30)

which is inappropriate for an opening operation.
In Fig. 4.9 exemplary results of non-adaptive and amoeba-based closing and

opening of the test image from Fig. 4.7 are shown. Like its non-adaptive coun-
terparts, amoeba-based closing and opening remove small-scale dark or bright
details, respectively. However, the amoeba versions do this in a less aggressive way.
Extended narrow structures that are often removed partially by the non-adaptive
filters are more often preserved as a whole, with reduced contrast, or removed
completely by the amoeba filters, see e.g. the roof front edge descending to the
right from the chimney, and the acute roof corner separating it from the sky.

4.3.3.1 Opening and Closing Scale Spaces and PDEs

The association between median, dilation and erosion filters and PDEs is inherently
related to the scale space structures of these filters, compare [25]. All of these filters
form an additive semi-group in the sense that iterative application of the same filter
yields an increasing filter effect that naturally adds up over iteration numbers. In
the case of dilation and erosion iteration numbers are also in linear relation with
increasing structuring element size, as dilating an initial image n times with (non-
adaptive) structuring element radius % is equivalent to dilating once with radius n%.
Such an additive semi-group structure perfectly matches initial value problems for
PDEs in which, too, evolution times add up.

While opening and closing, too, have a scale space structure, their semi-group
operation is not additive but supremal as it is based on taking the maximum of
parameters. For example, repeating the same opening or closing operation on a
given image just reproduces the result of the first application of the filter (i.e.,
opening and closing operators are idempotent); and concatenating two openings or
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Fig. 4.9 Non-adaptive and amoeba-based morphological closing and opening applied to the test
image from Fig. 4.8. (a) Non-adaptive closing with disk-shaped structuring element of radius % D
5. (b) Amoeba closing with Euclidean amoeba metric, ˇ D 0:1, % D 10. (c) Non-adaptive opening
with structuring element as in (a). (d) Amoeba opening with amoeba parameters as in (b)

two closings with structuring element radii %1, %2 gives an opening or closing with
radius maxf%1; %2g.

For this reason, also amoeba opening and closing are not associated with PDE
evolutions in the same way as the previous filters. Possible relations to PDE-based
filters may be considered in future research.

4.4 Grey-Scale Segmentation

Following established terminology, image segmentation denotes the task to decom-
pose a given image into regions that are in the one or other way homogeneous
in themselves but different from each other, with the intention that these regions
are meaningful in that they are associated to objects being depicted. Intensity-
based segmentation uses intensity as the main criterion of homogeneity within and
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dissimilarity between segments. Specialising to the case of two segments (fore-
ground and background) with the additional geometric hypothesis that segments are
separated by sharp and smooth contours, contour-based segmentation approaches
based on curve or level set evolutions lend themselves as tools for segmentation,
with active contours as an important representative. In this section we show how
amoeba algorithms can be made useful in this context.

Despite the fact that experiments on magnetic resonance data are used to illustrate
the concepts in this section, this is not meant to make a claim that neither active
contour nor the related active region methods (which are not discussed further here)
in their pure form could serve as a state-of-the-art segmentation method for medical
images. In fact, competitive results in medical image segmentation are nowadays
achieved by complex frameworks that often include active contours and/or active
regions as a component but in combination with additional techniques that allow
to bring in anatomical knowledge such as shape and appearance models [11]. An
early representative of these frameworks is [34], which has been followed by many
more since then. Like classical geodesic active contours, the amoeba active contours
presented in the following could be integrated into this type of framework but this
has not been done so far.

4.4.1 Amoeba Active Contours

The standard procedure of an active contour, or snake, method starts with some
initial contour which may be obtained automatically from some previous knowledge
or heuristics regarding the position of a sought structure, or from human operator
input. Representing this contour either by a sampled curve or by a level-set function,
it is then evolved up to a given evolution time or up to a steady state by the action of
some parabolic PDE, which is often derived as a gradient descent of a segmentation
energy in the image plane. An important representative are geodesic active contours
(GAC) [9, 30]. Their segmentation energy is essentially a curve length measure of
the contour in a modified metric on the image plane that favours placing the contour
in high-contrast locations. The PDE for GAC in level-set representation reads

ut D jruj div

�
g
�jr f j� ru

jruj
�

: (4.31)

Herein, u is the evolving level-set function in the plane that represents the actual
evolving contour as one of its level sets (by default, the zero-level set), and f is
the invariable image being segmented. The similarity of (4.31) to self-snakes (4.11)
(which were actually inspired from active contours, thus the name) together with the
link between amoeba median filtering and self snakes established by Theorem 4.1
suggest that an amoeba median approach could be used to evolve the level set
function u instead of equation (4.31).
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Introduced in [53], the resulting amoeba active contour (AAC) algorithm pro-
ceeds as follows:

1. Compute amoeba structuring elements based on the input image f .
2. Initialise the evolving level-set function u to represent the initial contour.
3. Evolve the image u by median filtering with the amoebas from Step 1 as

structuring elements.

Results from this algorithm look qualitatively fairly similar to those from GAC,
as will also be demonstrated later in this section.

4.4.2 PDE Approximation

In order to study the relation between AAC and GAC, it makes sense again to
consider a space-continuous model and to investigate the PDE approximated by
AAC in the case of vanishing amoeba radius. The following result was proven in
[56]. Note that in this theorem the contrast scale parameter ˇ is fixed to 1 for
simplicity, which, however, is no restriction of the result because in the active
contour setting in question, the case ˇ ¤ 1 is easily mapped to ˇ D 1 by just
scaling the intensities of image f by ˇ.

Theorem 4.3 ([56]) Let a smooth level-set function u be filtered by amoeba median
filtering, where the amoebas are generated from a smooth image f . Assume that the
amoeba metric is given by (4.9), (4.2) with ˇ D 1. One step of this filter for u
then approximates for % ! 0 a time step of size � D %2=6 of an explicit time
discretisation of the PDE

ut D Gu�� � jruj � �
H1 f�� C 2H2 f�� C H3 f��

�
(4.32)

with the coefficients given by

G � G
�jr f j; ˛/ D 1

�
�jr f j sin ˛

�2
; (4.33)

�
H1 H2

H2 H3

�
�

�
H1

�jr f j; ˛/ H2

�jr f j; ˛/

H2

�jr f j; ˛/ H3

�jr f j; ˛/

�

D 3

2
�
�jr f j sin ˛

�
˛C�=2Z

˛��=2

�0�jr f j sin #
�

�
�jr f j sin #

�4

�
cos2 # sin # cos #

sin # cos # cos2 #

�
d# :

(4.34)
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Here, � D ru=jruj and � ? � are unit vectors in gradient and level line direction,
respectively, for u, whereas � D r f=jr f j and � ? � are the corresponding unit
vectors for f , and ˛ D †.�; �/ is the angle between both gradient directions.

The proof of this result is found for the case of the Euclidean amoeba metric
in [54], and for general amoeba metric in [56]. It relies on Proof Strategy II from
Sect. 4.3.1.2.

An attempt to analyse AAC using Proof Strategy I had been made in [53], where,
however, only a special case was successfully treated: The theorem proven in [53]
states that AAC approximates the GAC equation (4.31) if image f and level set
function u are rotationally symmetric about the same centre.

In fact, the rotational symmetry hypothesis can be weakened; what is needed
for (4.32), (4.33) and (4.34) to reduce to the exact GAC equation is actually,
whenever ˛ D 0 (thus, � D �, 	 D ), u�� D f�� D 0 and u��=jruj D f��=jr f j
hold, (4.32), (4.33) and (4.34) boil down to the GAC equation (4.31).

At first glance, this is still a very artificial choice; however, looking at the
geometrical implications of this setting, one sees that it means that the level lines of
u are aligned to those of f , have the same curvature, and the image contrast in both f
and u does not change along these level lines. Thereby the hypothesis of this special
case is well approximated in the near-convergence stage of a segmentation process
when the object–background contrast is more or less uniform along the contour.

As a consequence, the coincidence of AAC and GAC in this case justifies
that both approaches can expected to yield very similar types of segmentations.
The convergence behaviour towards these segmentations may differ more; a closer
comparison of both PDEs in [54, 56] based on typical geometric configurations
indicates that the amoeba active contour PDE drives contours toward image contours
in a more pronounced way.

Figure 4.10 presents an example that confirms the overall similarity between
amoeba and geodesic active contours but also the tendency of AAC to adapt more
precise to very small-scaled edge details. Frame (a) shows the original image with

Fig. 4.10 Amoeba and geodesic active contour segmentation. (a) Detail (70 � 70 pixels) from
an MR slice of a human brain with initial contour enclosing the cerebellum. (b) Amoeba active
contours with Euclidean amoeba metric, ˇ D 0:1, % D 12, 10 iterations. (c) Amoeba active
contours with L1 amoeba metric, ˇ D 0:1, % D 12, 60 iterations. (d) Geodesic active contours
with Perona-Malik edge-stopping function, 
 D 10, 960 iterations of explicit scheme with time
step size � D 0:25 (From [53, 56])
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an initial contour roughly enclosing the cerebellum. Frames (b) and (c) demonstrate
segmentation by AAC with Euclidean and L1 amoeba metrics, respectively, while
Frame (d) shows a GAC result for comparison.

4.4.3 Force Terms

Geodesic active contours in their basic form (4.31) suffer from some limitations.
First of all, when initialised with a contour enclosing a large area with one or
several small objects inside, the active contour process spends plenty of evolution
time to slowly move the contour inwards until it hits an object boundary, due to the
initially small curvature of the contour. Secondly, for pronounced concave object
geometries, the process tends to lock in at undesired local minima that detect well
some convex contour parts but short-cut concave parts via straight line segments.
Similar problems can occur when segmenting multiple objects within one initial
contour, see the examples in [31]. Thirdly, as the basic curvature motion process
involves only inward movement of contours, it is generally not possible with (4.31)
to segment objects from initial contours inside the object, which is sometimes
desirable in applications. Due to their similarity to GAC, amoeba active contours
share these problems.

A common remedy for these problems in the literature on active contour
segmentation is the introduction of a force term. Its typical form is ˙� jruj, i.e.
essentially the right-hand side of a Hamilton-Jacobi PDE for dilation or erosion,
compare (4.24). An erosion force accelerates the inward motion of the contour; it
allows to get past homogeneous areas faster, and helps the contour to find concave
object boundaries and to separate multiple objects. By a dilation force it is possible
to push the contour evolution in outward direction, which makes it possible to use
initial contours inside objects.

In both cases, however, the force strength needs careful adjustment because
dilation or erosion may also push the contour evolution across object boundaries,
thereby preventing their detection.

In [10] where this modification was proposed first (by the name of “balloon
force”), � was chosen as constant, but the possibility to steer it contrast-dependent,
was mentioned. This has been done in [9, 31, 35] by modulating the force term in
a geodesic active contour model with the same edge-stopping function g, such that
the entire force term reads as ˙� g.jr f j/ jruj with constant � .

The relation between amoeba quantile filters and Hamilton-Jacobi PDEs men-
tioned in Sect. 4.3.2 indicates how to achieve a similar modification in the amoeba
active contour algorithm: the median filter step should be biased, basically by
replacing the median with some quantile. The most obvious way to do this is to
use the ˛-quantile with a fixed ˛ ¤ 1=2. Within a discrete amoeba containing
p pixels, this means to choose the value ranked ˛p in the ordered sequence of
intensities. However, taking into account that the amoeba size p (or the amoeba
area in the continuous setting) varies even for fixed % with local image contrast, it is
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not less natural to think of ˛ as varying with the amoeba size. If one chooses ˛�1=2

inversely proportional to the amoeba size, this comes down to modify the median
with a fixed rank offset b, such that in an amoeba of p pixels one would choose
the intensity value with rank p=2 C b. These two variants of the AAC algorithm
have been proposed in [53]. In [56] a third variant (“quadratic bias”) was introduced
which chooses from the rank order the element with index p=2 C r p2 with fixed
r. For these three scenarios, further analysis was provided in [56], based on the
Euclidean amoeba metric. We summarise the results here.

Fixed Offset Bias

Choosing the entry at position p=2Cb from the rank order approximates a force term
C�b jruj �.jr f j sin ˛/ with �b � b. Note that in the symmetric case in which the
PDE approximated by AAC coincides with the GAC equation this becomes exactly
the “balloon force” term with constant dilation/erosion weight from [10].

Quantile Bias

Choosing the element with index p=2 C qp from the rank order within each amoeba

approximates a force term C�q jruj
q

.1 C jr f j2 sin2 ˛/=.1 C jr f j2/ with �q � q.
In the rotationally symmetric case this term lies between the constant weight of [10]
and the g-weight from [31].

Quadratic Bias

Choosing the entry at index p=2 C r p2 from the rank order of intensities yields an
approximated force term C�r jruj �.jr f j/=�.jr f j/2. In the rotationally symmetric
case this corresponds to the g-weight from [31].

To illustrate amoeba active contours with bias, Fig. 4.11 presents an example
(shortened from [56]). Frame (a) is a test image with initial contour inside a
mostly homogeneous object (the corpus callosum). Figure 4.11b, c then show
contours computed by amoeba active contours with fixed offset bias for two
different evolution times, one intermediate, one displaying the final segmentation.
For comparison, a segmentation with geodesic active contours is shown in (d).

We remark that in the AAC examples, a few pixels within the corpus callosum
region are excluded from the segment, see the small isolated contour loops there.
This is not a numerical artifact but a result from the precise adaption of amoebas
to image structures even up to the resolution limit (pixel precision) of the image –
the pixels not included in the segment are noise pixels with intensities significantly
deviating from the neighbourhood, which are simply not included in any amoeba
of outside pixels. Modifications like presmoothing input images can be applied to



4 Amoeba Techniques for Shape and Texture Analysis 97

Fig. 4.11 Segmentation with initialisation inside the sought object by amoeba and geodesic active
contours with dilation force. (a) Detail (164 � 114 pixels) from an MR slice of human brain
with initial contour placed inside the corpus callosum. (b) Amoeba active contour evolution with
Euclidean amoeba metric, ˇ D 2, % D 20, fixed offset bias b D 10, and 20 iterations. (c) Same as
in (b) but 35 iterations. (d) Geodesic active contours with Perona-Malik edge-stopping function,

 D 0:5, dilation force � D �0:16 (multiplied with the edge-stopping function) and erosion force
�c D 5 � 10�4 (independent of the edge-stopping function), explicit scheme with time step size
� D 0:25, 18,960,000 iterations (From [56])

avoid this. On the contrary, the absence of such difficulties in the GAC example is a
beneficial effect of the otherwise often undesirable numerical blurring effect of the
finite-difference scheme.

4.5 Pre-smoothing in Self-Snakes and Amoeba Filters

The approximation result of Theorem 4.1 associates iterated amoeba median fil-
tering with the self-snakes equation (4.11). Unlike (mean) curvature motion (4.10),
self-snakes possess edge-enhancing properties. Rewriting (4.11) by the product rule,
one can state the self-snakes process as

ut D g
�jruj� jruj div

� ru

jruj
�

C hrg;rui (4.35)
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in which the first summand is just a curvature motion process modulated by
g, whereas the second, advective, term is responsible for the edge-enhancing
behaviour. Unfortunately, this term has a shock-filter property which makes not only
its numerical treatment difficult – in finite difference schemes usually an upwind
discretisation will be required to approximate it – but even entails ill-posedness
of the PDE itself that is reflected in a noticeable staircasing behaviour. Indeed,
as demonstrated by an experiment in [58], the result of a numerical computation
of a self-snakes evolution differs significantly if the underlying grid resolution is
changed.

A common remedy to this ill-posed behaviour is to use pre-smoothing in the
argument of the edge-stopping function, i.e. to replace g.jruj/ in (4.11) or (4.35)
by g.jru� j/ where u� is the result of convolving u with a Gaussian of standard
deviation � . Thereby, the ill-posedness of self-snakes is removed, and a stable
filtering achieved, at the cost of the additional smoothing-scale parameter � .

In this section, we deal with the question whether this staircasing phenomenon
has also an analogue in the amoeba median filtering context, and what is an
appropriate counterpart for the pre-smoothing modification on the amoeba side. This
is done by quantitative analysis of a synthetic example, the first part of which has
been published before in [54, 57].

4.5.1 Pre-smoothing in Amoeba Median Filtering, and
Amoeba Radius

First of all, notice that a straightforward translation of the pre-smoothing procedure
to the amoeba median filtering context is to use u� in place of u when computing
the structuring elements in an amoeba median filtering step. This is actually an
instance of the generalised amoeba median filtering procedure of the amoeba active
contour setting, Sects. 4.4.1 and 4.4.2, such that the PDE approximation result from
Theorem 4.3 can be applied to see that it would approximate a PDE which is not
identical to the standard self-snakes with pre-smoothing, but closely related to it.

At second glance, however, it can be questioned whether the introduction of the
smoothing-scale parameter � into the amoeba median filter is necessary. Unlike
finite-difference schemes for self-snakes, amoeba filtering by construction already
involves a very similar smoothing-scale parameter, namely, the amoeba radius %.
One can conjecture that the positive % necessarily used in any amoeba computation
could already provide a pre-smoothing effect similar to the Gaussian convolution in
the PDE setting. This conjecture will be investigated in the following.
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4.5.2 Perturbation Analysis of Test Cases

The starting point for constructing the test cases is a simple slope function that
would be stationary under both self-snakes and amoeba median filter evolutions,
see Fig. 4.12a. From this slope, described by the function u0 W R2 ! R, u0.x; y/ D
x, test cases are derived by adding small single-frequency oscillations such as
" coshk; xi with frequency vectors k.

Given the nonlinear nature of the filters under investigation, there is no super-
position property for the effects of different perturbations of u0. Nevertheless,
interactions between u0 and the perturbations are always of higher order O."2/,
such that the analysis of the first-order effects of perturbations still gives a useful
intuition about the behaviour of the filters.

4.5.2.1 Test Case 1: Gradient-Aligned Oscillation

For the first test case, see [54, 57], the perturbation frequency is aligned with the
gradient direction, k D .k; 0/, yielding the input signal schematically depicted in
Fig. 4.12b,

u.x; y/ D x C " cos.kx/ ; " << 1 : (4.36)

y
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u
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Fig. 4.12 Schematic representation of example functions used in the perturbation analysis,
Sect. 4.5.2. (a) Graph �0 of unperturbed function u0 D x, with a Euclidean %-disk whose projection
to the x-y plane yields an amoeba. (b) Graph � of a function u of type (4.36) including a gradient-
aligned perturbation. (c) Graph � of a function u of type (4.39) including a level-line-aligned
perturbation. (d) Cut in x direction through the graph � from (c) and the unperturbed graph �0

from (a). The sketch includes further the amoeba A around .x0; y0/, the corresponding Euclidean
disk A � on � and the projection A 0 of A � to �0 which is centred at .x0

0; y0/



100 M. Welk

Self-Snakes Analysis

To determine the response of the self-snakes evolution (4.35) to the perturbed
signal (4.36), notice first that level lines of (4.36) are straight and parallel, such
that one has div.ru=jruj/ � 0 and hrg;rui D gxux. Further, one has ux D
1 � " k sin.kx/ and gx D " k2 cos.kx/=2 C O."2/, finally turning (4.35) into

ut D gxux D 1

2
k2" cos.kx/ C O."2/ : (4.37)

From this it can be read off that a frequency response factor k2=2 occurs that grows
indefinitely for high frequencies. Since the nonlinearity of (4.35) instantaneously
spreads out the single perturbation frequency k to higher harmonics, arbitrarily high
amplification appears already within short evolution time, and the regularity of the
evolving function is lost. This explains the stair-casing behaviour of self-snakes
without pre-smoothing.

Using pre-smoothed u� in the edge-stopping function argument, one has instead
@xu� D x C " exp.�k2�2=2/ cos.kx/, gx D k2" exp.�k2�2=2/ cos.kx/=2 and
therefore

ut D 1

2
k2" exp

�
�k2�2

2

�
cos.kx/ C O."2/ ; (4.38)

with the frequency response factor k2 exp.�k2�2=2/=2 that is globally bounded with
its maximum at k D p

2=� . Therefore, pre-smoothing ensures that the regularity of
the evolving function is maintained.

Amoeba Filter Analysis

To analyse the effect of amoeba median filtering (with Euclidean amoeba metric)
on the function (4.36), consider an amoeba of amoeba radius % around .x0; y0/,
and assume that the contrast scale is chosen as ˇ D 1. The median of u within
that amoeba can be expressed via an integral formula, see [54, 57], which can be
numerically evaluated to be approximately equal to u.x0; y0/ C ı.k/ � " cos.kx0/ with
a frequency response factor ı.k/. In other words, one amoeba median filter step
amplifies the perturbation u � u0 of (4.36) versus u0.x; y/ D x by the amplification
factor 
.k/ WD 1 C ı.k/.

Figure 4.13 shows results of numerical approximation of one amoeba median
filtering step with ˇ D 1, % D 1, on test images of type (4.36) with two different
frequencies k. The numerical computation was carried out on a discrete grid with
mesh size h D 0:0025. For best approximation to the space-continuous case,
amoeba distances between pixels were computed by numerical integration instead of
the Dijkstra search on the pixel graph. Denoting the filtered image by v, numerical
amplification factors can be computed as hv � u0; u� u0i=hu� u0; u� u0i (with the
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Fig. 4.13 Numerical computation results for the amplification of a gradient-aligned perturbation
of a linear slope function by one amoeba median filtering step. Top row shows k D 5, bottom row
k D 10. Graphs in left column show unperturbed function u0, perturbed input function u, and filter
result v; graphs in right column show perturbations u � u0 and v � u0 . Horizontal axes represent
x, vertical axes represent function values. Computations were carried out on a grid with mesh size
0:0025

usual scalar product of functions on a suitable bounded interval); these are in good
accordance with the theoretical result.

Figure 4.14 shows the amplification function 
.k/ for % D 1 together with its
counterpart 
s.k/ WD 1 C 1=6 � k2 exp.�k2�2=2/=2 for one time step of self-snakes
with pre-smoothing, with the time step size %2=6 D 1=6 matching the amoeba
radius according to Theorem 4.1. The figure also includes numerical amplification
factors for amoeba median filtering with the same parameters for frequencies
k D 1; 2; : : : ; 30. The parameter � D 0:268 in the self-snakes case has been chosen
for a good match to the first wave of ı.k/. With this parameter, the amplification
behaviour for frequencies up to approx. 10 is very similar for the pre-smoothed
self-snakes equation and amoeba median filtering. However, for higher frequencies
the amplification factor of pre-smoothed self-snakes rapidly approaches one (no
amplification) whereas it oscillates around 3=2 for the amoeba filter.

As a result, oscillations with sufficiently high frequency are just almost not
amplified in the pre-smoothed self-snakes evolution. With amoeba median filtering,
they are amplified by the globally bounded factor 
.k/ in each iteration step.
Whatever " was in the initial image u from (4.36), after a finite number of iterations
the oscillations grow to a level for which the hypothesis " << 1 of our analysis is no
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Fig. 4.14 Amplification of a gradient-aligned perturbation of a linear slope function by one
amoeba median filtering step (theoretical and numerical values) and a corresponding time step
of an explicit scheme for self-snakes with pre-smoothing (Adapted and extended from [54])

longer valid. Even in the space-continuous setting under consideration, oscillations
cannot actually grow infinitely because the median operation obeys the maximum–
minimum principle.

In practice, amoeba filters are computed in a space-discrete setting such that the
effective range of spatial frequencies (parametrised by the angular frequency k of
oscillations) is limited by the sampling theorem. For fixed amoeba radius % D 1

as in Fig. 4.14, the relevant range of frequencies is determined by the mesh size
of the pixel grid. If this mesh size is not below approx. �=10, the higher lobes of
the amplification function 
.k/ that make up the difference to self-snakes with pre-
smoothing do not take effect at all. Translating this to a grid with mesh size 1, as
common in image processing, this means that for amoeba radius % up to approx.
10=� � 3 the frequency response of amoeba median filtering does almost not differ
from that of self-snakes with pre-smoothing.

4.5.2.2 Test Case 2: Level-Line-Aligned Oscillation

To complement the perturbation analysis of gradient-aligned oscillations, a second
test case is considered in which the perturbation frequency is aligned with the
level line direction, k D .0; k/. The resulting input signal, compare the schematic
representation in Fig. 4.12c, reads

u.x; y/ D x C " cos.ky/ ; " << 1 : (4.39)

This test case was not presented in [54, 57]. Given that self-snakes act smoothing
along level line direction, it can be expected that this kind of perturbation is
dampened by their evolution. This will be confirmed by the analysis, and the
corresponding behaviour of the amoeba median filter will be stated.



4 Amoeba Techniques for Shape and Texture Analysis 103

Self-Snakes Analysis

Unlike for the first test case, gradient directions of u now vary across the image
range, combining constant ux D 1 with uy D �k" sin.ky/. Accordingly, the edge-
stopping function takes the values

g.x; y/ D 1

2 C k2"2 sin2.ky/
D 1

2

�
1 � k2"2

2
sin2.ky/

�
C O."3/ (4.40)

and thereby gx.x; y/ D O."3/, gy.x; y/ D �k3"2 sin.ky/ cos.ky/=2 C O."3/.
This leads further to

jruj D 1 C k2"2

2
sin2.ky/ C O."4/ ; (4.41)

div

� ru

jruj
�

D @x

�
1 � k2"2

2
sin2.ky/

�
C @y

��k" sin.ky/
� C O."3/

D �k2" cos.ky/ C O."2/ ; (4.42)

hrg;rui D O."3/ ; (4.43)

thus after inserting into (4.35)

ut D �1

2
k2" cos.ky/ C O."2/ (4.44)

which confirms by the negative sign of the frequency response factor �k2=2 that the
perturbation is smoothed out by the self-snakes process.

Pre-smoothing here leads to

g.x; y/ D 1

2

�
1 � k2"2

2
exp.�k2�2/ sin2.ky/

�
C O."3/ ; (4.45)

which in the further course of the calculation only influences higher-order terms,
such that (4.44) is replicated.

Remark on explicit time discretisations. A difference to the first test case to
be noted here is that the negative amplification factor does not depend on � . This
implies a time step size limit for explicit time discretisations of pre-smoothed self-
snakes: With k denoting the highest perturbation frequency that can occur in the
discretised image, given by the Nyquist frequency of the grid (k D � for spatial
mesh size h D 1), the amplification factor 
s.k/ WD 1 � � k2=2 within a single time
step of size � must not become �1 or lower, thus � < 4=k2 must be observed.
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Amoeba Filter Analysis

To determine the response of an amoeba median filter step to the perturbation (4.39),
we consider again Euclidean amoeba metric and ˇ D 1. The image graph � D
f.x; y; u.x; y// j .x; y/ 2 R2g of (4.39), compare Sect. 4.2.4, is a developable surface.
The amoeba structuring element A around .x0; y0/ then is the projection of a bent
Euclidean %-disk A � affixed to � to the image plane, compare Fig. 4.12c.

The orthogonal projection A 0 of the same bent %-disk A � not to the image
plane but to the unperturbed image graph �0 D f.x; y; x/ j .x; y/ 2 R2g, compare
Fig. 4.12d, is symmetric w.r.t. the line x D x0

0 WD x0 C " cos.kx0/=
p

2; note that the
point .x0; y0; u.x0; y0// projects to .x0

0; y0; x0
0/. Moreover, the projection from � to

�0 changes areas only by a factor 1 C O."2/. Similarly, projection from � to the
image plane changes areas by a factor

p
2=2 C O."2/.

The amoeba median can therefore be computed up to O."2/ from an area
difference within A 0 that solely results from the deviation of the projected level
line on � from the line x D x0

0.
The level line of u corresponding to .x0; y0/ is given by u.x; y/ D u.x0; y0/, thus

x.y/ D x0 C " cos.ky0/ � " cos.ky/; it projects on �0 as

x.y/ D x0
0 C 1

2

�
" cos.ky0/ � " cos.ky/

� C O."2/ : (4.46)

As the level line extends in y direction from y0 � % C O."2/ to y0 C % C O."2/, the
resulting area difference on �0 is compensated by a level line shift of

�x D �2

2 %

y0C%Z

y0�%

"

2

�
cos.ky0/ � cos.ky/

�
dy C O."2/

D
�

sin.k%/

k%
� 1

�
" cos.ky0/ C O."2/ ; (4.47)

making x0 C �x the sought median, and leading to a frequency reponse factor
ı.k/ WD sinc.k%/ � 1 for the increment of the perturbation.

As before, one amoeba median filter step changes the initial perturbation u � u0

of (4.39) versus u0.x; y/ D x by the amplification factor 
.k/ D 1 C ı.k/, i.e.

.k/ D sinc.k%/. Since 
.k/ is within .�1; 1/ for all k > 0, perturbations of all
frequencies are dampened.

Figure 4.15 shows the graphs of both amplification functions, 
.k/ for amoeba
median filtering with % D 1, and 
s.k/ D 1 C 1=6 � .�k2=2/ for the corresponding
time step of (4.44) with time step size %2=6 D 1=6, along with numerically com-
puted amplification factors for amoeba median filtering with the same parameters
for k D 1; 2; : : : ; 30.
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Fig. 4.15 Amplification of a level-line-aligned perturbation of a linear slope function by one
amoeba median filtering step (theoretical and numerical values) and a corresponding time step
of an explicit scheme for self-snakes (with or without pre-smoothing)

4.6 Amoebas and Texture

As mentioned before, Dijkstra’s shortest path algorithm on the neighbourhood graph
Gw. f / or a subgraph thereof is used to compute amoeba structuring elements.
Whereas in image filtering, only the resulting pixel set A%.i/ around pixel i is of
interest, the search tree created by Dijkstra’s algorithm bears valuable information
in itself: its structure depends sensitively on the local structure of contrasts in the
image, thus, on its texture. Building on work first presented in [55], this section
discusses an approach directed at exploiting this information for texture analysis.

4.6.1 Six Graph Structures for Local Texture Analysis

Looking at the amoeba construction in more detail, information about local image
texture is distributed to several features. The first aspect are the amoeba distances
between adjacent pixels themselves, i.e. the edge weights of Gw. f /. A second source
of information is the selected pixel set of the amoeba A%.i/. The third one is the
connectivity of the Dijkstra search tree. This leads to six setups for graphs that
encode these information cues in different combinations. Figure 4.16 illustrates
these setups.

For the first group of three graphs, the pixels within A%.i/ serve as vertices. For
these, one can consider either the full weighted subgraph of Gw. f /, which will be
denoted by GA

w , the superscript A referring to the use of the amoeba patch. Next, one
can consider just the weighted Dijkstra tree, TA

w . Third, deleting the edge weights
from this tree yields an unweighted tree, TA

u . Despite suspending the direct use
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Fig. 4.16 Six graph setups for texture feature construction from amoebas (schematic). For
simplicity, graphs are drawn based on 4-neighbourhood connectivity here. In the weighted graphs,
different line thicknesses symbolise edge weights

of edge weights in this setting, the connectivity structure derived thereof remains
present.

The second group of three graphs is analogous to the first one but chooses the
pixels of a fixed window of Euclidean radius % around pixel i. Again, one has the
corresponding weighted subgraph of Gw. f /, which will be denoted as GE

w, with the
superscript E referring to the Euclidean patch, the weighted Dijkstra tree TE

w and the
unweighted Dijkstra tree TE

u .

4.6.2 Quantitative Graph Theory: Graph Indices

We turn now to introduce exemplary graph descriptors that can be computed from
the previously mentioned graphs in order to obtain quantitative texture descriptors.
A larger set of graph descriptors is discussed in the same context in [55].

These graph descriptors are just samples from a tremendous variety of more than
900 concepts [14] that have been established over almost 70 years of research,
motivated from applications like the analysis of molecule connectivity in compu-
tational chemistry, see e.g. [4, 26, 29, 41, 61], inexact graph matching [19, 43], or
the quantitative analysis of (for instance, metabolistic) networks, see e.g. [12, 18].
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In the recent decade, the systematic study of these measures has been bundled in the
field of quantitative graph theory, see e.g. [13, 15, 18].

4.6.2.1 Distance-Based Indices

The historically first class of graph indices are computed directly from the vertex
distances within a graph.

Originally introduced for unweighted graphsG, the Wiener index [61] is obtained
by just summing up the distances (path lengths) between all pairs fi; jg of vertices,

W.G/ WD
X

fi;jg
d.i; j/ : (4.48)

A modification is the Harary index introduced by Plavšić et al. [41] that sums the
reciprocals instead of the distances themselves,

H.G/ WD
X

fi;jg

1

d.i; j/
: (4.49)

It is straightforward to apply both indices also for weighted graphs, replacing path
lengths as distances by total path weights just as in the amoeba definition.

4.6.2.2 Information-Theoretic Indices

Another important class of graph indices is based on entropy concepts. Since
Shannon’s work [47], the entropy

H. p/ WD �
nX

kD1

p.k/ log2 p.k/ (4.50)

has been established as the fundamental measure of the information content of a
discrete probability measure p on f1; : : : ; ng.

Bonchev-Trinajstić Information Indices

In [4], entropy has been applied in several ways to the distribution of distances
within unweighted graphs to characterise graph connectivity. We pick here two of
them. We consider a graphG with vertices 1; : : : ; n and denote by D.G/ its diameter,
i.e. the largest path distance between two of its vertices. By kd we denote for d D
1; : : : ;D.G/ the number of vertex pairs of exact distance d,
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kd WD #f.i; j/ j 1 � i < j � n; d.i; j/ D dg : (4.51)

In [4], the mean information on distances NI E
D and the total information on the

realised distances IW
D of G are defined, which (with a slight rewrite for IW

D ) read
as

NI E
D .G/ WD �

D.G/X

dD1

kd�n
2

� log2

kd�n
2

� ; (4.52)

IW
D .G/ WD W.G/ log2 W.G/ �

X

1�i<j�n

d.i; j/ log2 d.i; j/ ; (4.53)

where W.G/ is the Wiener index (4.48). Again, both definitions can formally be
applied to weighted graphs by performing the summation over the weighted path
lengths d occurring in G; however, in non-degenerate cases all kd will equal 1,
turning the mean information on distances NI E

D into a quantity that depends essentially
only on n, and does therefore not reveal much information about the graph. In
our texture analysis framework, NI E

D makes therefore sense only for the unweighted
graphs TA

u and TE
u . In contrast, the total information measure IW

D makes perfect sense
for weighted graphs and thus for all six graph setups under consideration.

Dehmer Entropies

While the Bonchev-Trinajstić indices are based on entropies on the set of distances
in a graph, a class of entropy indices defined in [12] works with distributions on the
vertex set. An arbitrary positive-valued function f (information functional) on the
vertices 1; : : : ; n of a graph G is converted into a probability density by normalising
the sum of all values to 1, such that the individual probabilities p.i/ read as

p.i/ WD f .i/
Pn

jD1 f .j/
: (4.54)

The entropy

If .G/ WD H. p/ (4.55)

is then a graph index based on the information functional f .
In [12], two choices for f have been considered in the case of unweighted graphs,

named f V and f P. For each of them, f .i/ is obtained from considering the set
of neighbourhoods of increasing radius around vertex i in the path metric of the
graph. While f V.i/ is the exponential of a weighted sum over the cardinalities of
such neighbourhoods, f P.i/ is the exponential of a weighted sum over the distance
sums within these neighbourhoods (i.e. the Wiener indices of the corresponding
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subgraphs). The weight factors assigned to increasing neighbourhoods in both f P

and f V can be chosen in different ways. Using what is called exponential weighting
scheme in [15] and measuring distances d by total edge weights along paths in edge-
weighted graphs, the resulting information functionals can be stated as

f V .i/ WD exp

0

@M
nX

jD1

qd.i;j/

1

A ; (4.56)

f P.i/ WD exp

0

@M
nX

jD1

qd.i;j/d.i; j/

1

A (4.57)

with parameters M > 0 and q 2 .0; 1/, see [55] where it is also detailed how these
expressions are derived from the original definitions from [12].

For the resulting entropy indices If P and If V as well as for a third one, If� ,
which is not discussed here, [15] demonstrated excellent discriminative power
for unweighted graphs, i.e. they are able to uniquely distinguish large sets of
different unweighted graphs. This finding lets appear If P and If V also as outstanding
candidates for texture analysis tasks.

4.6.3 Texture Discrimination

As a first, yet simple, application of the framework that combines amoebas and
graph indices, texture discrimination is considered. In [55], a total of 42 candidate
texture descriptors was considered. These descriptors resulted from applying nine
graph indices, including those described in Sect. 4.6.2 above, to the six graph setups
introduced in Sect. 4.6.1, using only those combinations that made sense (as e.g.
some graph indices cannot be used for weighted graphs). These graph indices were
compared to Haralick features [21, 22], a set of region-based texture descriptors
derived from several statistics of co-occurrence matrices of intensities. Despite
their long history of more than 40 years, Haralick features are still prominent in
texture analysis; together with some more recent modifications they continue to
yield competitive results [27, 28, 49].

For the texture discrimination task, the experimental setup in [55] was built to suit
the region-based Haralick features by aggregating the, actually local, amoeba-graph
features regionwise.

Amoeba-graph descriptors as well as Haralick features were computed for a
set of nine texture images from the VisTex database, [40]. Figure 4.17 shows a
composite image made up of the nine textures used in [55]. Figure 4.18 visualises
selected amoeba-graph features on this test image. It can be seen that the different
features respond with different degrees of sensitivity and locality to the local
structure of the textures.
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Fig. 4.17 Composite image containing patches of nine different textures; top left to bottom right in
rows: brick, fabric, flowers, food, leaves, metal, stone, water, wood. Texture patches originate from
the VisTex database, [40]; they have been converted to greyscale, downsampled and clipped (VisTex
database ©1995 Massachusetts Institute of Technology. Developed by Rosalind Picard, Chris
Graczyk, Steve Mann, Josh Wachman, Len Picard, and Lee Campbell at the Media Laboratory,
MIT, Cambridge, Massachusetts)

For each descriptor and texture pair, a statistical discrepancy measure u WD
j�1 � �2j=� was computed from the mean values �1, �2 of the texture descriptor
on both textures and the joint standard deviation � . Due to the variability of each
descriptor even within the same texture, thresholds for discrimination were gauged
from the measured discrepancies for different patches of the same textures: A
higher threshold, T1, was chosen as double the maximum of the nine intra-texture
discrepancies measured, and a lower threshold, T2, as the third-highest of the nine
intra-texture values. Texture pairs with discrepancy at least T1 were considered as
“certainly different”, and those with discrepancy at least T2 as “probably different”.

While not each texture descriptor could equally well distinguish each pair of
textures, it turns out that almost all texture pairs can be told apart by at least
some descriptors, with the overall discrimination capability being well comparable
with that achieved by the Haralick feature set under consideration. Indeed, the pair
water/wood (the last two patches in the bottom row of Fig. 4.17 was the only one
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Fig. 4.18 Examples of graph-index-based feature descriptors computed on the test image shown
in Fig. 4.17. Graph indices have been computed from amoebas with Euclidean amoeba metric,
ˇ D 0:1 and % D 5. All graph index images shown here are histogram equalised. (a) Harary index
on the weighted amoeba tree TA

w . (b) Dehmer entropy If P on TA
w . (c) IW

D on TA
w . (d) Harary index on

the weighted tree in the Euclidean neighbourhood TE
w . (e) Dehmer entropy If P on TE

w . (f) Dehmer
entropy If V on TE

w

that could not be distinguished with sufficient certainty, neither by the Haralick nor
the amoeba-graph feature set. The difficulty to distinguish these two textures can
also be seen in Fig. 4.18.

Given that different texture pairs are distinguished best with different descriptors,
it is of interest to study the similarity and dissimilarity of different amoeba-graph
texture descriptors with regard to what texture pairs they can distinguish. In [55]
a metric on the set of texture descriptors has been established in this way. In the
further perspective, this is intended to guide the selection of a subset of just a
few descriptors that complement each other well, which could therefore be a well-
manageable feature set for practical applications.

4.6.4 Texture Segmentation

Finally, we show a simple example that demonstrates the applicability of amoeba-
graph indices for texture segmentation. Here graph descriptors have been used as
input to a standard geodesic active contour method with an outward force term
� g jruj.
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Figure 4.19a shows a test image displaying a striped ring in front of a noisy
background. Figure 4.19b shows the field of graph indices If P computed on weighted
Dijkstra trees in Euclidean patches, TE

w , while Fig. 4.19c shows NI E
D on TA

u . It is
evident from these examples that amoeba-graph indices can turn the textured
foreground object into a more homogeneous region. Using just the two graph
descriptors as input channels for geodesic active contours one obtains a reasonable

Fig. 4.19 Texture segmentation by geodesic active contour evolution based on amoeba/graph
index texture features, pre-smoothing � D 3, force term � D �2, time step size � D 0:1. (a)
Original image with initial contour. (b) Graph index If P on weighted tree TE

w (normalised from
Œ0; 3:72� to Œ0; 255�). (c) Graph index NI E

D on unweighted tree TA
u (normalised from Œ0; 2:93� to

Œ0; 255�). (d) Contour after 500 iterations of GAC evolution using If P on TE
w and NI E

D on TA
u each

weighted 0:5, Perona-Malik threshold 
 D 0:036. (e) Same as (d) but 1000 iterations. (f) Same
as (d) but 2500 iterations. (g) Steady state of the segmentation process from (d)–(f) reached after
3300 iterations. (h) Segmentation using only If P on TE

w , Perona-Malik threshold 0:48, steady state
reached after 7500 iterations. (i) Segmentation using only NI E

D on TA
u , Perona-Malik threshold 0:4,

steady state reached after 1200 iterations
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segmentation, see Fig. 4.19g. One might ask whether one graph index alone does
the job, too. In the present example, this is indeed true; however, the results in
Fig. 4.19h, i are visibly less precise in locating the contour separating foreground
and background.

Note that this example is only a first proof of concept. A deeper investigation
of the potential of this approach to texture segmentation as well as the study of
parameter choice and comparison to other texture segmentation methods are topics
for future research.

4.7 Outlook

From the results reviewed in this chapter it can be seen that morphological amoebas
provide a powerful framework for adaptive image filtering with interesting cross-
relations to other classes of filters. They can also be applied fruitfully to related
tasks such as image segmentation. Combining amoeba procedures with ideas from
quantitative graph theory even allows to construct a new class of texture descriptors.

At the same time, there remain many questions for future research. So far, the
amoeba framework introduces adaptivity into local image filters solely by modifying
the first step of the filter procedure, i.e. the selection stage. The aggregation step like
median, maximum, or minimum is left unchanged. Could further improvements of
adaptivity be achieved by envisioning also image-dependent modifications to the
aggregation step? How do modifications of selection and aggregation step interact?

Addressing the selection step itself, it would be possible to weaken the dichotomy
of including or not including neighbour locations, and to consider unsharp or
weighted neighbourhoods.

No amoeba filter for multi-channel (such as colour) images have been studied
in the present chapter. In principle, there is little to prevent one from applying
amoeba procedures to multi-channel data. The amoeba computation step generalises
straightforwardly. There are also generalisations of median filters [2, 48, 52, 59, 60]
and supremum/infimum operations to multi-channel data [6–8] at hand. The
theoretical understanding of multi-channel amoeba filters, however, lags behind that
in the single-channel case. A result in [57] indicates that the median–PDE relation
even in its non-adaptive form, see Proposition 4.1, has no equally simple multi-
channel counterpart, thus leaving little hope to derive manageable PDE equivalents
of multi-channel amoeba filters. New approaches to a deeper understanding of the
properties of multi-channel amoeba filters will have to be sought.

The field of texture analysis addressed in Sect. 4.6 still is at an early stage of
research. Ongoing research is directed at extending the experimental evaluation of
the newly introduced amoeba-graph texture descriptors for texture discrimination
to a broader body of data. Another goal is the selection of a powerful set of a
few amoeba-graph descriptors with a high combined discrimination rate across
multiple textures. Tuning of the parameters of the descriptors has not been studied
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extensively so far and will therefore be addressed in the future. Attempts are also
underway to analyse the effect of the amoeba-graph descriptors theoretically.

In the field of texture segmentation the combination of amoeba-graph descriptors
with other segmentation frameworks than the GAC considered in Sect. 4.6.4 will be
investigated. An integration with an amoeba active contour procedure could lead to
a texture segmentation framework that uses the same sort of theoretically founded
procedure for both texture feature extraction and the actual segmentation step. In
many existing approaches, and also in the preliminary example from Sect. 4.6.4,
these two steps are based on rather unrelated approaches. With regard to the
graph-theoretical roots of the texture features under consideration, also graph-cut
approaches for the segmentation stage could be a candidate for further investigation.
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