
Chapter 2
A Comparison of Non-Lambertian Models
for the Shape-from-Shading Problem

Silvia Tozza and Maurizio Falcone

Abstract In this paper we present in a unified approach Shape-from-Shading
models under orthographic projection for non-Lambertian surfaces and compare
them with the classical Lambertian model. Those non-Lambertian models have been
proposed in the literature by various authors in order to take into account more
realistic surfaces such as rough and specular surfaces. The advantage of our unified
mathematical model is the possibility to easily modify a single differential model to
various situations just changing some control parameters. Moreover, the numerical
approximation we propose is valid for that general model and can be easily adapted
to the real situation. Finally, we compare the models on some benchmarks including
real and synthetic images.

2.1 Introduction

The three dimensional reconstruction of an object is a topic of great interest in many
different fields of application: from the digitization of curved documents [12] to the
reconstruction of archaeological finds [18]. Other examples come from astronomy
for the characterization of properties of planets or other astronomical entities [20,
31, 47]. Facial recognition of individuals [45] is useful for application to security.

This problem has always attracted a great attention because there is still no
global method for its resolution under realistic assumptions despite the fact that
its formulation is rather simple. The pioneering work of Horn [22] and his activity
with the collaborators at MIT [23, 24] produced first formulation of the Shape from
Shading (SfS) problem in mathematical terms, via a partial differential equation
(PDE) and variational problem. These inspiring works gave rise to many other
contributions (see e.g. the two surveys [15, 61] for an extensive list of references).

S. Tozza (�)
Dipartimento di Matematica “G. Castelnuovo”, Sapienza – Università di Roma, Roma, Italy
e-mail: tozza@mat.uniroma1.it

M. Falcone
Dipartimento di Matematica “G. Castelnuovo”, Sapienza – Università di Roma, Roma, Italy
e-mail: falcone@mat.uniroma1.it

© Springer International Publishing Switzerland 2016
M. Breuß et al. (eds.), Perspectives in Shape Analysis, Mathematics
and Visualization, DOI 10.1007/978-3-319-24726-7_2

15

mailto:tozza@mat.uniroma1.it
mailto:falcone@mat.uniroma1.it


16 S. Tozza and M. Falcone

Several approaches to the SfS problem for classical Lambertian surfaces have
been proposed in order to compute a solution. These models mainly belong to two
classes: methods based on partial differential equations (PDEs) and optimization
methods based on the variational approach. In the first class we can find rather
old works based on the method of characteristics and recent works based on the
approximation of viscosity solutions for first order Hamilton-Jacobi equations (for
a comprehensive presentation of the theory of viscosity solutions we refer the
interested reader to the book [4]).

In this work we use the differential approach based on Hamilton-Jacobi equations
trying to solve some non-Lambertian models which have been proposed in the
literature to overcome some of the limitations of the Lambertian model. It is
well known that the classical approach leads to a nonlinear partial differential
equation of the first order (of Hamilton-Jacobi type) and it has been shown that this
problem is ill-posed even in the framework of viscosity solutions (see the seminal
papers by Lions, Rouy and Tourin [30, 43] and also [6, 39]). In fact, there can be
many viscosity solutions (no matter which regularity is required for the solutions)
unless additional conditions/informations are added to the problem or an a-priori
choice is made to compute the maximal solution of the Hamilton-Jacobi equation
(see [8, 9, 15]). This explains the growing importance of a generalization of this
classical problem in order to obtain uniqueness of the solution while reducing the
assumptions on the physical reflectance properties of the objects.
A continuous effort has been made by the scientific community to take into
account more realistic reflectance models [2, 3, 42, 56], different scenarios including
perspective deformations [1, 11, 34, 38, 49, 57] and/or multiple images of the same
object [59, 60]. The images can be taken from the same point of view but with
different light sources as in the photometric stereo method [29, 32, 48, 58] or from
different points of view but with the same light source as in stereo vision [10].
Recent works have considered more complicated scenarios, e.g. when the light
source is not at the optical center under perspective camera projection [26]. It is
possible to consider in addition other supplementary issues, as the estimation of
the albedo [5, 45, 46, 62] or of the direction of the light source that are usually
considered known quantities for the model but in practice are hardly available for
real images. Depending on what we know the model has to be adapted leading to
a calibrated or uncalibrated problem (see [19, 41, 59, 60] for more details). In this
work we will assume that the albedo and the light direction are given.

Our Contribution We want to take into account more realistic models for generic
surfaces with nonuniform reflection properties, which means that the light intensity
of the image does not depend only on the angle between the outgoing normal to
the surface and the light source as in the Lambertian model. In particular, we will
focus our attention on two non-Lambertian models under orthographic projection
originally proposed by Oren-Nayar [35, 36] and by Phong [37]. These models have
been introduced to deal respectively with rough or shiny surfaces and are not well
suited for other surfaces such as objects with multiple materials, human skin or
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glass. Typical examples of rough materials are clay and plaster works whereas
bronze and plastic are shiny materials.

We should mention that other authors have contributed to the SfS problem for
non-Lambertian surfaces. We mention in particular the contributions in [2], who
derived the PDEs associated to several models solving them via a Lax-Friedrichs
Sweeping (LFS) method and in [26] where the Hamilton-Jacobi equations based on
the Oren-Nayar reflectance model appear in spherical coordinate under perspective
camera projection. As we said, here we work in Cartesian coordinate under
orthographic projection to derive the Hamilton-Jacobi equations for the above
mentioned models under general light directions. Some preliminary results just for
the Oren-Nayar problem have appeared in [51] and the Lambertian SfS problem
with oblique light direction has been studied in [17]. Extending these results to
another non-Lambertian model (the Phong model), we will show that the three
models share the same fixed point form so that we can have a unified approach
to their analysis and approximation. Moreover, we propose a semi-Lagrangian
approximation scheme for that general first order PDE, we give evidence that this
scheme converges to the weak solution (in the viscosity sense) of that equation
and we compare the performances of this approximation scheme with other finite
difference solvers. The scheme is also used to test the models on a number of real
and synthetic images in order to understand if the introduction of non-Lambertian
models can be really effective.

Organization of the paper In Sect. 2.2 we present an overview of the most relevant
non-Lambertian models and derive their Hamilton-Jacobi formulation. In Sect. 2.3
we present the semi-Lagrangian schemes for these equations and shortly the Fast
Marching and the Fast Sweeping schemes based on finite difference solver. In
Sect. 2.4 we compare these methods and algorithms on a series of benchmarks on
synthetic and real images. Finally, we conclude with some comments and future
perspectives.

2.2 Some Non-Lambertian Models for the Orthographic SfS

Let us consider a surface given as a graph z D u.x/; x 2 R
2. We will denote by

˝ the region inside the silhouette and we will assume ( just for technical reasons)
that ˝ is an open and bounded subset of R

2. We assume that u.x/ � 0 and
the surface is standing on a flat background (hence u.x/ D 0 on @˝). Note that
non homogeneous Dirichlet boundary condition like u.x/ D g.x/ can be easily
handled in our approach. The function g.x/ will represent the height of the surface
at the boundary of the silhouette. Clearly, this is an additional information which in
general is not available but can be derived, for example, for rotational surfaces or by
symmetry arguments.
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It is well known that the Shape-from-Shading problem is described by the image
irradiance equation introduced by Bruss [7]

I.x/ D R.N.x//; (2.1)

where I.x/ is the normalized brightness of the given grey-value image, N.x/ is the
unit normal to the surface at the point .x; u.x// and R.N.x// is the reflection map
giving the value of the light reflection on the surface as a function of its orientation
(i.e., of the normal) at each point. Note that a more general formulation of the
reflectance function R present in the irradiance equation (2.1) consists of adding
a dependence on x too, in order to include several features like e.g. non uniform
ambient light depending on some diffuse lights in the ambient (that can be generated
by other light sources at finite distance). We will not consider this generalization in
this paper.

For the analysis of the different models, it would be useful to introduce a
representation of the brightness function I.x/ in which we can distinguish different
terms representing the contribution of ambient, diffused reflected and specular
reflected light. We will write then

I.x/ D kAIA.x/ C kDID.x/ C kSIS.x/; (2.2)

where IA.x/, ID.x/ and IS.x/ are respectively the above mentioned components and
kA, kD and kS indicate the percentages of these components such that their sum
is equal to 1 (we do not consider absorption phenomena). Note that the diffuse or
specular albedo is inside the definition of ID.x/ or IS.x/, respectively. This will allow
to switch on and off the different contributions depending on the model. Let us note
that the ambient light term represents light present everywhere in a given scene. As
we will see in the following sections, the intensity of diffusely reflected light in each
direction is proportional to the cosine of the angle �i between surface normal and
light source direction, without taking into account the point of view of the observer,
but another diffuse model (the Oren–Nayar model) will consider it in addition. The
amount of specular light reflected towards the viewer is proportional to .cos �s/

˛ ,
where �s is the angle between the ideal (mirror) reflection direction of the incoming
light and the viewer direction, ˛ being a constant modelling the specularity of the
material. In this way we have a more general model and, dropping the ambient and
specular component, we retrieve the Lambertian reflection as a special case. In order
to underline the differences, let us briefly sketch the classical Lambertian model (L–
model) and two non-Lambertian models: the Oren-Nayar model (ON–model) and
the Phong model (PH–model). Our goal in this section is to derive the nonlinear
PDEs corresponding to each model.
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2.2.1 Lambertian Model

Let us consider a single light source located at infinity in the direction of the unit
vector !. For a Lambertian surface, which generates a purely diffuse model, the
specular component does not exist. So, the general Eq. (2.2) becomes

I.x/ D kAIA.x/ C kDID.x/; (2.3)

whose diffuse component ID.x/ is

ID.x/ D �D N.x/ � !; (2.4)

where �D is the diffuse albedo. Neglecting the ambient component that can be
considered as a constant (i.e. setting kA D 0), recalling that the sum kACkDCkS must
be equal to 1, we obtain that necessarily kD D 1 and we can omit it in the following.
Then, for a Lambertian surface the image irradiance equation (2.1) becomes

I.x/ D �D N.x/ � !; (2.5)

where we assume to know �D (in the sequel we suppose uniform albedo and we
put �D D 1, that is all the points of the surface reflect completely the light that hits
them). For Lambertian surfaces [23, 24], just considering an orthographic projection
of the scene, we can write the model for SfS via a first order nonlinear PDE which
describes the relation between the surface u.x/ (our unknown) and the brightness
function I.x/. The data are the grey-value image I.x/, the direction of the light
source ! and the albedo �D.

Recalling that the normal to a graph is given by

N.x/ D .�ru.x/; 1/=
p

1 C jru.x/j2; (2.6)

we can write (2.1) as

I.x/
p

1 C jru.x/j2 C Q! � ru.x/ � !3 D 0 in ˝; (2.7)

where Q! WD .!1; !2/. This is a Hamilton-Jacobi type equation which does not
admit in general a regular solution. It is known that the mathematical framework
to describe its weak solutions is the theory of viscosity solutions as in [30].
It is important to note that if the light is oblique we have shadows in the image since
the object projects its shadow on the flat background. Then, we can divide the image
into subdomains

˝l � fx W I.x/ > 0g; ˝s � fx W I.x/ D 0g; (2.8)
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which represent respectively the “light” and the “black shadow” regions. Naturally,
˝ D ˝l [ ˝s and we assume for simplicity that the projection of the shadows on
the background also falls in ˝ .

In ˝l the equation is always the same, whereas in the “shadow” region the surface
can have any shape since the model is naturally not able to describe the real surface
there. One approach is to deal only with the “light” region setting the equation only
on ˝l, however this will require to use oblique boundary conditions (e.g., Neumann
boundary conditions) on @˝l to treat the problem in ˝l because the height there
is not known on @˝l. This can in turn create difficulties in the construction of the
numerical algorithm since the curved boundary of ˝l can be nonsmooth and can be
efficiently approximated only via a triangulation (which collides with the use of a
simple structured grid).

Our approach (see [17] for details) includes the region ˝s in the computation by
defining there a virtual surface which replaces the unknown surface corresponding
to the “black shadow” region. Conventionally, we will substitute it to the surface
generated by the “separation plane” (or “shadow plane”), i.e. the plane separating
light from shadow. That plane has the same direction of !. This means that in ˝s

we have to solve the equation

.!1; !2/ � ru.x/ � !3 D 0; x 2 ˝s: (2.9)

Note that the irradiance equation coincides with (2.9) since I D 0 in ˝s. Then,
we can use the same equation everywhere in ˝ avoiding in this way the use of
boundary conditions on ˝l, i.e. we can write the global problem as

(
I.x/

p
1C j ru.x/ j2 C .!1; !2/ � ru.x/ � !3 D 0; x 2 ˝;

u.x/ D 0 x 2 @˝:
(2.10)

Writing the surface as S.x; z/ D z � u.x/ D 0 for x 2 ˝; z 2 R, we can obtain a
more compact form for (2.10). In fact, rS.x; z/ D .�ru.x/; 1/ and (2.10) becomes

�
I.x/ j rS.x; z/ j �rS.x; z/ � ! D 0; x 2 ˝;

u.x/ D 0 x 2 @˝:
(2.11)

Using the equivalence j rS.x; z/ j� max
a2@B3.0;1/

fa � rS.x; z/g, we get

max
a2@B3.0;1/

f .I.x/a1 � !1; I.x/a2 � !2; I.x/a3/ � rS.x; z/g D !3: (2.12)

For analytical and numerical reasons it is useful to introduce the exponential
Kružkov transform �v.x/ D 1 � e��u.x/. By this change the variable v.x/ will
assume values only in Œ0; 1=�� whereas u is in principle unbounded. So the change
of variable avoids the risk of an overflow in the approximation. Note that here �

is a free positive parameter without a specific physical meaning, but it is important
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because varying its value it is possible to modify the slope (the slope increases for
increasing values of �). Clearly, once v is obtained we can always get back to the
original surface u simply setting u.x/ D � ln.1��v.x//=�. By the above approach
we can write (2.10) in a fixed point form in the new variable v as

(
�v.x/ D min

a2@B3

fbL.x; a/ � rv.x/ C f L.x; a; v.x//g; for x 2 ˝;

v.x/ D 0; for x 2 @˝;
(2.13)

where bL W ˝ � @B3.0; 1/ ! R
2 and f L W ˝ � @B3.0; 1/ � Œ0; 1=�� ! R are defined

as

bL.x; a/ WD 1

!3

.I.x/a1 � !1; I.x/a2 � !2/ ; (2.14)

f L.x; a; v.x// WD � I.x/a3

!3

.1 � �v.x//g C 1; (2.15)

where B3 denotes the unit ball in R
3 and @B3.0; 1/ its boundary.

2.2.2 Oren-Nayar Model

The diffuse reflectance ON–model [35, 36] is an extension of the previous L-
model which explicitly allows to handle rough surfaces. The idea of this model
is to represent a rough surface as an aggregation of V-shaped cavities, each with
Lambertian reflectance properties (see Fig. 2.1a).

The ID brightness equation for the ON–model [36] is given by

ID.x/ D �D cos.�i/.A C B sin.˛/ tan.ˇ/ maxŒ0; cos.'r � 'i/�/ (2.16)

Fig. 2.1 Description of the ON–model (Figure adapted from [25]). (a) Facet model for surface
patch dA consisting of many V-shaped Lambertian cavities. (b) Diffuse reflectance for the ON–
model
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where

A D 1 � 0:5 �2.�2 C 0:33/�1 (2.17)

B D 0:45�2.�2 C 0:09/�1: (2.18)

Note that A and B are two nonnegative constants depending on the statistics of the
cavities via the roughness parameter � that we can imagine to take values between 0

and �=2, representing the slope of the roughness for the surface considered. In this
model (see Fig. 2.1b), �i represents the angle between the unit normal to the surface
N.x/ and the light source direction !, �r stands for the angle between N.x/ and
the observer direction V, 'i is the angle between the projection of the light source
direction ! and the x1 axis onto the .x1; x2/-plane, 'r denotes the angle between the
projection of the observer direction V and the x1 axis onto the .x1; x2/-plane and the
two variables ˛ and ˇ are given by

˛ D max Œ�i; �r� and ˇ D min Œ�i; �r� : (2.19)

For smooth surfaces, we have � D 0 and the ON–model becomes identical to
the L–model. In the particular case ! D V D .0; 0; 1/, or, more precisely, when
cos.'r � 'i/ � 0, the equation simplifies and reduces to a L–model scaled by
the coefficient A. This happens for example when the unit vectors ! and V are
perpendicular so that cos.'r�'i/ D �1 or, more in general, when the scalar product
between Q! D .!1; !2/ and QV D .V1;V2/ is equal to zero. Therefore the ON–model
is more general and flexible than the L–model.

Also for this diffuse model we neglect the ambient component. Then, we get
kD D 1 and, as a consequence, in the general Eq. (2.2) the total light intensity I.x/ is
equal to the only diffuse component ID.x/, in this case described by the Eq. (2.16).
Hence, for what follows, we will write I.x/ instead of ID.x/.

To deal with this equation one has to resolve the min and max operators which
appear in (2.16) and (2.19). In general, several cases must be considered but here
we just take one to illustrate the technique. Namely, we consider the particular case
where the position of the light source ! and of the observer V coincide in a general
oblique direction (see [50, 52] for the other cases and compare with [26] in order to
note that we obtain the same cases). This choice implies maxŒ0; cos.'i � 'r/� D 1,
then defining � WD �i D �r D ˛ D ˇ and putting for simplicity the albedo �D D 1,
the Eq. (2.16) simplifies to

I.x/ D cos.�/
�
ACB sin.�/2 cos.�/�1

�
(2.20)

and we arrive to a first order nonlinear Hamilton-Jacobi equation

.I.x/ � B/.
p

1 C jru.x/j2/ C A. Q! � ru.x/ � !3/ C B
.� Q! � ru.x/ C !3/2

p
1 C jru.x/j2 D 0;

(2.21)
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where Q! D .!1; !2/. Following [51], we write the surface as S.x; z/ D z�u.x/ D 0,
for x 2 ˝ , z 2 R, and rS.x; z/ D .�ru.x/; 1/, so (2.21) becomes

.I.x/ � B/jrS.x; z/j C A.�rS.x; z/ � !/ C B

� rS.x; z/

jrS.x; z/j � !
�2

jrS.x; z/j D 0:

(2.22)

Defining d.x; z/ WD rS.x; z/=jrS.x; z/j and c.x; z/ WD I.x/ � B C B.d.x; z/ � !/2,
using the equivalence jrS.x; z/j � max

a2@B3

fa � rS.x; z/g we get

max
a2@B3

fc.x; z/ a � rS.x; z/ � A! � rS.x; z/g D 0: (2.23)

Defining the vector field for the ON-model

bON.x; a/ WD 1

A!3

.c.x; z/a1 � A!1; c.x; z/a2 � A!2/ ; (2.24)

introducing the exponential Kružkov transform �v.x/ D 1�e��u.x/ as already done
for the L–model, we can finally write the Dirichlet problem in the new variable v

8
<

:
�v.x/ C max

a2@B3

f�bON.x; a/ � rv.x/ C c.x; z/a3

A!3

.1 � �v.x//g D 1; x 2 ˝;

v.x/ D 0; x 2 @˝ .
(2.25)

Note that the simple homogeneous Dirichlet boundary condition is due to the
flat background behind the object but a condition like u.x/ D g.x/ can also be
considered if necessary.

In the particular case when cos.'r � 'i/ D 0, the Eq. (2.16) simply reduces to

I.x/ D A cos.�/ (2.26)

and, as a consequence, the Dirichlet problem in the variable v is equal to (2.25) with
c.x; z/ D I.x/.

2.2.3 Phong Model for Specular Surfaces

The PH–model introduces a specular component to the brightness function I.x/. As
we said at the beginning of this section, this can be described in general as the sum
I.x/ D kAIA.x/ C kDID.x/ C kSIS.x/, where IA.x/, ID.x/ and IS.x/ are the ambient,
diffuse and specular light component, respectively. We will set for simplicity kA D 0

and represent the diffuse component ID.x/ as the Lambertian reflectance model.
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The most simple specular model is obtained putting the incidence angle equal to
the reflection one and !, N.x/ and R.x/ belong to the same plane. The PH–model is
an empirical model that was developed by Phong [37] in 1975. This model describes
the specular light component IS.x/ as a power of the cosine of the angle between the
unit vectors V and R.x/ (it is the vector representing the reflection of the light ! on
the surface), then for the Phong model

IPHS .x/ D �S.R.x/ � V/˛ (2.27)

where ˛ expresses the specular reflection characteristics of a material.
Hence, the brightness equation for the PH–model is

I.x/ D kD�D.N.x/ � !/ C kS�S.R.x/ � V/˛; (2.28)

where �D and �S represent the diffuse and specular albedo, respectively.
We will illustrate in details the PH–model and the numerical scheme to which

we arrive in the case of a general oblique light source ! and observer V D .0; 0; 1/.
Assuming that N.x/ is the bisector of the angle between ! and R.x/, we obtain

N.x/ D ! C R.x/

jj! C R.x/jj which implies R.x/ D jj! C R.x/jjN.x/ � !: (2.29)

From the parallelogram law, taking into account that !, R.x/ and N.x/ are unit
vectors, we can write jj!CR.x/jj D 2.N.x/ �!/, then we can derive the unit vector
R.x/ as follow:

R.x/ D 2.N.x/ � !/N.x/ � ! D 2

 
� Q! � ru.x/ C !3p

1 C jru.x/j2

!

N.x/ � .!1; !2; !3/

D
��2 Q! � ru.x/ C 2!3

1 C jru.x/j2
�

.�ru.x/; 1/ � .!1; !2; !3/: (2.30)

For V D .0; 0; 1/ we have

R.x/ � V D �2 Q! � ru.x/ C 2!3

1 C jru.x/j2 � !3 D �2 Q! � ru.x/ C !3.1 � jru.x/j2/
1 C jru.x/j2 :

(2.31)
Then, putting ˛ D 1, Eq. (2.28) becomes

I.x/.1 C jru.x/j2/ �kD�D.�ru.x/ � ! C !3/.
p

1 C jru.x/j2/
�kS�S

��2 Q! � ru.x/ C !3.1 � jru.x/j2/� D 0;
(2.32)

to which we add a Dirichlet boundary condition equal to zero assuming that the
surface is standing on a flat background. As we have done for the previous models,



2 A Comparison of Non-Lambertian Models for the Shape-from-Shading Problem 25

we write the surface as S.x; z/ D z � u.x/ D 0, for x 2 ˝ , z 2 R, and rS.x; z/ D
.�ru.x/; 1/, so (2.32) will be written as

I.x/jrS.x; z/j2 �kD�D.rS.x; z/ � !/.jrS.x; z/j/

�kS�S.2rS.x; z/ � ! � jrS.x; z/j2!3/ D 0:

(2.33)

Dividing both the terms by jrS.x; z/j, defining d.x; z/ WD rS.x; z/=jrS.x; z/j as in
the ON–model and c.x/ WD I.x/ C !3kS�S, we get

c.x/jrS.x; z/j � kD�D.rS.x; z/ � !/ � 2kS�S.d.x; z/ � !/ D 0: (2.34)

By the equivalence jrS.x; z/j � max
a2@B3

fa � rS.x; z/g we obtain

max
a2@B3

fc.x/ a � rS.x; z/ � kD�D.! � rS.x; z// � 2kS�S.d.x; z/ � !/g D 0: (2.35)

Defining the vector field

bPH.x; a/ WD 1

QPH.x; z/
.c.x/a1 � kD�D!1; c.x/a2 � kD�D!2/ (2.36)

where

QPH.x; z/ WD 2kS�S.d.x; z/ � !/ C kD�D!3; (2.37)

and using the exponential Kružkov transform �v.x/ D 1 � e��u.x/ as done for the
previous models, we can finally write the nonlinear problem corresponding to the
PH–model
8
<

:
�v.x/ C max

a2@B3

f�bPH.x; a/ � rv.x/ C c.x/a3

QPH.x; z/
.1 � �v.x//g D 1; x 2 ˝;

v.x/ D 0; x 2 @˝ .
(2.38)

Again, note that the simple homogeneous Dirichlet boundary condition considered
is due to the flat background behind the object but a different boundary condition
can also be considered.

2.3 Numerical Approximation

Let us describe some numerical schemes for the solution of the problems described
in the previous section. Here we will focus our attention on semi-Lagrangian (SL)
schemes which have shown to be very effective for first order problems since they
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try to mimic at the discrete level the method of characteristics (see [16] for more
details). Other approaches based on finite differences or finite volumes are feasible.
As we have seen there are basically two main problems related to the vertical light
case and the oblique light case. In the vertical case, we have to solve an eikonal-
type equation for each model. In the oblique case, we get the more general first-
order Hamilton-Jacobi (HJ) equations (2.7), (2.21), and (2.32) where the nonlinear
term is also coupled with linear terms. The general framework for these type of
problems is the theory of viscosity solutions which guarantees (under appropriate
assumptions) existence and uniqueness results for the vertical light case. A similar
approach can also be applied to the case of an oblique light source when the surface
is not smooth and black shadows are present in the image [17]. It should be noted
that to have uniqueness when the eikonal equation is degenerate (i.e. when the right-
hand side vanishes at some points) one has to add additional assumptions or more
informations (like the height at maximum brightness points or the fact that we select
to approximate the maximal solution, as introduced in [8]). General convergence
results for the approximation scheme to the maximal solution of the degenerate
eikonal equation can be found in [9, 15].

There are two types of algorithms based on the semi-Lagrangian approach. The
first type of algorithm is global and gives an approximation of the fixed point
problem on the whole grid at every iteration till the stopping rule is satisfied. Some
acceleration methods, like the Fast Sweeping method [27, 28], can be introduced to
speed up convergence. The second type of method is local and tries to concentrate
the numerical effort only in a neighborhood of a region which is considered to
be already exact (the so called Accepted region). The Fast Marching method
(extensively described in [13, 44]) is a typical example of this class of methods.

The algorithms corresponding to the models presented in the previous section
compute the maximal solution in the domain without additional information of the
surface and with a single boundary condition which can be either homogeneous
u D 0 or not (but to set u D g on the boundary of the mask one has to know or
guess the right solution there). This is due to the monotonicity properties of the
discrete operator corresponding to the schemes. The interested reader can find in
[16] a detailed presentation of the properties of semi-Lagrangian schemes and in
[17] an application to the Shape-from-Shading problem with black shadows.

As already stated in Sect. 2.2, we suppose a surface given as a graph. In the case
of vertical light, for such a surface we do not have shadows covering an open domain
(i.e. the points where I.x/ D 0 are either isolated or curves in the plane). If the light
is oblique, we usually have shadows so that we can divide the support of the surface
(the domain of u) into two regions, ˝l � fx W I.x/ > 0g and ˝s � fx W I.x/ D 0g,
which represent respectively the “light” and the “shadow” regions. Typically they
have both nonempty interior and, naturally, ˝ D ˝l [ ˝s. Note that ˝ now
represents the new mask which also includes black regions. Moreover, we assume
that ˝ � Q, where Q is the rectangular domain corresponding to the image.
As we already explained, we can use the same equation everywhere in our
computational domain Q and we do not need to introduce any boundary condition
on @˝l (see [17] for more details).



2 A Comparison of Non-Lambertian Models for the Shape-from-Shading Problem 27

Now, look at the discrete schemes for the described models.
Let Wi D w.xi/ so that W will be the vector solution giving the approximation

of the height of u at every node xi of the grid. Following [16], the semi-Lagrangian
scheme for the above models can be written in a fixed point form. In general, we
will write it as

Wi D TM
i .W/; (2.39)

where M is the acronym identifying the model, then M D L;ON or PH. Denoting
by G the global number of nodes in the grid, the operator for the L–model TL W
R

G ! R
G is defined componentwise by

TL
i .W/ WD min

a2@B3

fe��hw.xi C hbL.xi; a// � �
I.xi/a3

!3

.1 � �w.xi//g C �; (2.40)

where � WD .1 � e�� h/=� and w.xi C hbL.xi; a// is obtained interpolating on W.
It has been shown in [17] that the corresponding operator TL has three important

properties: it is monotone, is a contraction mapping in Œ0; 1=�/G and 0 � W � 1

�

implies 0 � T.W/ � 1

�
.

Similarly, the SL fully discrete scheme for the ON–model at a node xi will be
given by the discrete operator

TON
i .W/ WD min

a2@B3

fe��hw.xiChbON.xi; a//��
c.xi; z/a3

A!3

.1��w.xi//gC�: (2.41)

The SL fully discrete scheme for the PH–model at a node xi is given by the
discrete operator TPH defined as

TPH
i .W/ WD min

a2@B3

fe��hw.xiChbPH.xi; a//��
c.xi/a3

QPH.xi; z/
.1��w.xi//gC�; (2.42)

with QPH.xi; z/ WD 2kS�S.d.xi; z/ � !/ C kD�D!3.
Although the operators TON and TPH present some differences and additional terms,
they converge and have similar properties of the operator TL (see [50, 52] for the
analytical proof of these properties).

In the numerical tests we will also compare results obtained with Fast Sweeping
(FS) and Fast Marching (FM) methods so we briefly sketch here their properties.
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2.3.1 Fast Marching [21, 44, 55]

For the implementation of Fast-Marching algorithm, the grid defined on the image
is divided into three sets at every iteration n:

the set of Accepted nodes ACCEPTED(n), whose value has been already com-
puted and accepted;
the set of Considered nodes CONSIDERED(n), or Narrow Band, for which the
value has to be computed at the present iteration;
the set of Far nodes FAR(n), that are the nodes which will be computed in future
iterations.

The engine of the method is the local fixed point operator. ACCEPTED(0) at the
first iteration is the set of nodes where we have to apply boundary conditions
(which are known). Then, at iteration n, the set CONSIDERED(n) contains the
neighboring nodes of ACCEPTED(n) and FAR(n) are the remaining nodes where
we do nothing at that iteration. The algorithm computes the value in CONSID-
ERED(n). The node xj where the minimum is achieved is marked ACCEPTED (i.e.
ACCEPTED(n+ 1)=ACCEPTED(n)[fxjg), the set CONSIDERED(n) is updated adding
the neighboring nodes to xj and we compute the solution in CONSIDERED(n + 1).
The algorithms accepts only one node for each iteration and ends only when the
FAR region is empty. The method converges in a finite number of iterations and
has a complexity of O.G ln.G// where G is the cardinality of the grid nodes.
Unfortunately, its application is limited to eikonal type equations.

2.3.2 Fast Sweeping [14, 40, 54]

FS is another popular method for solving HJ equations. The main advantage of
this method is its implementation, which is extremely easy (easier than that of
Fast Marching). FS method is basically the classical iterative (fixed-point) method,
since each node is visited in a predefined order, until convergence is reached. Here,
the visiting directions (sweeps) are alternated in order to follow all the possible
characteristic directions, trying to exploit causality. In two-dimensional problems,
the grid is visited sweeping in four directions: S ! N & W ! E, S ! N & E ! W,
N ! S & E ! W and N ! S & W ! E.

The key point is the Gauss-Seidel-like update of grid nodes, which allows one
to compute a relevant part of the grid nodes in only one sweep. Indeed, it is well
known that in the case of eikonal equations FS converges in only four sweeps.
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2.4 Numerical Experiments

We call G the discrete grid of points xij, with size card.G/ D n � m. We define
Gin WD fxij W xij 2 ˝g as the set of grid points inside ˝; Gout WD G n Gin. The
boundary @˝ is defined as the set Gb � Gout such that at least one of the neighboring
points belongs to Gin. For each image we define a map, called mask or silhouette,
where the pixels xij 2 Gin are white and the pixel xij 2 Gout are black. In this way it
is easy to distinguish the nodes that we have to use for the reconstruction (the nodes
inside ˝) and the nodes on the boundary @˝ (see e.g. Fig. 2.4b, d).

In all our numerical experiments, we neglect the ambient component that we
consider as a constant (i.e. setting for simplicity kA D 0). Our work is mainly
focusing on the semi-Lagrangian approach and also our intent is to analyze the
behavior of the parameters involved in the two non-Lambertian models. For these
reasons, the simulations focus the attention on SL performances and on the behavior
of the parameters.

2.4.1 Synthetic Images

The synthetic tests are useful for a quantitative analysis on the behavior of the
parameters and also because it is possible to compute the error on the surface. The
synthetic image that we are going to present here is defined on the domain G, that
is a rectangle containing the support of the image ˝ , G � Œ�1; 1� � Œ�1; 1�. We
can easily modify the number of the pixels choosing different values for the steps in
space 	 x and 	 y. In this case we will use 256 � 256 pixels. X and Y represent the
real size (e.g. for G � Œ�1; 1�� Œ�1; 1�, X D 2;Y D 2). As already said in Sect. 2.2,
we can use homogeneous Dirichlet boundary condition but it is possible to define,
if useful, the function g.x/, that is the height of the surface at the boundary of the
silhouette. In this test we will use this general boundary condition that we can easily
derive being the object a solid of rotation. In fact, if we denote by c WD .cx; cy/ the
center of the circle with ray R at the bottom of the vase we can write

.x � cx/
2 C .y � cy/

2 D R2 (2.43)

and then

y D
p
R2 � .x � cx/2 C cy (2.44)

that gives us the values of g.x/.
In iterative methods, the method stops when we have reached the required

tolerance 
 or when we have exceeded the maximum number of iterations allowed.
In an iterative method of fixed point, the point is reached when jjWnC1 � Wnjj < 
.
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2.4.1.1 Synthetic Vase

We use this test in order to analyze and compare the performances of the SL scheme
with respect to the three different models by varying the values of the parameters
involved.

The synthetic vase is defined as

(
u.x; y/ D

p
P.Ny/2 � x2 .x; y/ 2 Gin;

u.x; y/ D g.x; y/ .x; y/ 2 Gout;
(2.45)

where Ny D y=Y,

P.Ny/ D .�10:8 Ny6 C 7:2 Ny5 C 6:6 Ny4 � 3:8 Ny3 � 1:375 Ny2 C 0:5 Ny C 0:25/X

and

Gin D f.x; y/jP.Ny/2 > x2g:

The input images generated by L–model, ON–model and PH–model with a vertical
light source (! D .0; 0; 1/) are visible in Fig. 2.2. We show in Table 2.1 the values of
the parameters related to some numerical tests performed. It is possible to compute
the error in L1, L2, L1 norm on the image (Lp.I/) and on the surface (Lp.S/) because
for synthetic images we know the real surface (for the vase this is given by (2.45)).
Given a vector T representing the exact solution (or the original image) on the
grid and a vector QT representing its approximation, we define the error vector as

Fig. 2.2 Input vase images by L–model, ON–model .� D 0:6/, PH–model .kS D 0:3/ with
! D .0; 0; 1/
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Table 2.1 Synthetic vase:
parameter values used in the
models. When a parameter
doesn’t exist for a model we
put a dash

Model kA kD kS ˛ �

LAM 0 1 – – –

ON-00 0 1 – – 0

ON-04 0 1 – – 0.4

ON-06 0 1 – – 0.6

ON-10 0 1 – – 1

PH-00 0 1 0 1 –

PH-03 0 0.7 0.3 1 –

PH-07 0 0.3 0.7 1 –

PH-10 0 0 1 1 –

e D T � QT and

err1 D jjejjL1 D 1

N

X

i

jeij

err2 D jjejjL2 D
(

1

N

X

i

jeij2
) 1=2

err1 D jjejjL1 D max
i

fjeijg

where N is the total number of grid points used for the computation, i.e. the grid
points belonging to Gin.
The reconstructions of the surfaces and the output images obtained with the three
models, starting from the input images in Fig. 2.2, are visible in Fig. 2.3.

In Table 2.2 we can observe the performances of the SL–scheme. In details, we
reported the number of iterations, the CPU time (in seconds) and the error estimates
in three different norms between the input image and the image reconstructed
from the u approximation. Note that to obtain the reconstructed image we need an
approximation of the gradient of u which is obtained via a centered finite difference
which guarantees a second order accuracy. Looking at these errors, we note that the
ON–model performs better increasing the parameter � both on the image I and on
the surface, with the same error order than the L–model but always lower. Instead,
for the PH–model we can see that the errors on the surface decrease increasing the
parameter kS, except for the case completely specular (kS D 1), but it is not true
with respect to the errors on the image that increase for increasing values of kS.

The errors on the images in different norms show how well the reprojection fits
the input data. The L1 errors on the image I, that indicate the maximum over all
the pixels of the difference in absolute value between the input image and the image
computed as said before, are so big because if in only one point the reconstruction
is not good, e.g. in a point on the boundary of the domain, then the error will be so
big.
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Fig. 2.3 Synthetic vase: output images and 3D reconstructions for the three models

Table 2.2 Synthetic vase: numerical results for ! D .0; 0; 1/ with the errors on the image and on
the surface

SL–schemes Iter. Œsec:� L1.I/ L2.I/ L1.I/ L1.S/ L2.S/ L1.S/

LAM 1337 0.73 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569

ON-00 1337 0.72 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569

ON-04 1341 0.73 0.0054 0.0316 0.6118 0.0263 0.0282 0.0562

ON-06 1344 0.75 0.0049 0.0277 0.5373 0.0259 0.0277 0.0553

ON-10 1334 0.74 0.0044 0.0229 0.4510 0.0254 0.0274 0.0547

PH-00 1337 0.76 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569

PH-03 1331 0.73 0.0068 0.0396 0.8078 0.0264 0.0283 0.0561

PH-07 1356 3.81 0.0075 0.0419 0.9098 0.0235 0.0252 0.0496

PH-10 737 0.40 0.0081 0.0472 0.9961 0.1496 0.1590 0.2309

Table 2.3 Synthetic vase:
errors on the surface via
ON–model changing the size
of the input image with
vertical light source
! D .0; 0; 1/

SL–schemes Size L1.S/ L2.S/ L1.S/

ON-04 64 � 64 0.0459 0.0496 0.0898

ON-04 128 � 128 0.0347 0.0384 0.0819

ON-04 256 � 256 0.0263 0.0282 0.0562

ON-04 512 � 512 0.0177 0.0187 0.0360

ON-04 1024 � 1024 0.0121 0.0129 0.0280

In order to confirm that the non-Lambertian models converge to the surface
depth, we reported in Tables 2.3 and 2.4 the errors on the surface with respect to
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Table 2.4 Synthetic vase:
errors on the surface via
PH–model changing the size
of the input image with
vertical light source
! D .0; 0; 1/

SL–schemes Size L1.S/ L2.S/ L1.S/

PH-03 64 � 64 0.0462 0.0499 0.0904

PH-03 128 � 128 0.0349 0.0386 0.0828

PH-03 256 � 256 0.0264 0.0283 0.0561

PH-03 512 � 512 0.0177 0.0187 0.0356

PH-03 1024 � 1024 0.0120 0.0127 0.0267

Fig. 2.4 Real input images and masks. (a) Beethoven input. (b) Beethoven mask. (c) Horse input.
(d) Horse mask

different size of the vase image, from 64 � 64 to 1024 � 1024 obtained doubling the
size. What we can note is that increasing the number of the pixels, hence considering
a smaller and smaller space step, the errors decrease for both the models.

2.4.2 Real Images

In this section we will consider two real input images: the bust of Beethoven (size
.256 � 256/) and the black horse (size .184 � 256/), both visible in Fig. 2.4a, c.

Unless otherwise specified, the value of 
 for the stopping criterion of the
iterative method is fixed to 10�8 and the maximum number of allowed iterations
is 9000. If a scheme arrives to the maximum of 9000 iterations, we put a 	 before it
in the table.

Obviously, for the real tests we do not know the real depth hence we cannot
compute the error on the surface. The only quantity that is available is the image
I, our data, and we added Tables in order to give a quantitative support to the
qualitative analysis visible from the Figures reported below in the paper.

2.4.2.1 Beethoven

In this case, we have compared the performances of the SL–scheme applied to the
three models using the parameters reported in Table 2.5 with two different cases for
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Table 2.5 Beethoven:
parameter values used in the
models. When a parameter
doesn’t exist for a model we
put a dash

Model kA kD kS ˛ �

LAM 0 1 – – –

ON-00 0 1 – – 0

ON-01 0 1 – – 0.1

ON-02 0 1 – – 0.2

ON-03 0 1 – – 0.3

ON-04 0 1 – – 0.4

ON-06 0 1 – – 0.6

PH-00 0 1.0 0 1 –

PH-01 0 0.9 0.1 1 –

PH-02 0 0.8 0.2 1 –

PH-03 0 0.7 0.3 1 –

PH-04 0 0.6 0.4 1 –

Table 2.6 Beethoven:
numerical results for
!vert D .0; 0; 1/ with the
errors on the image

SL–schemes Iter. Œsec:� L1.I/ L2.I/ L1.I/

LAM vertical 2920 1.68 0.0325 0.0605 0.4118

ON-00 vertical 2920 2.24 0.0325 0.0605 0.4118

ON-01 vertical 2885 2.89 0.0325 0.0605 0.4118

ON-02 vertical 2790 2.23 0.0326 0.0605 0.4118

ON-06 vertical 2264 1.94 0.0355 0.0628 0.4157

PH-00 vertical 2920 2.29 0.0325 0.0605 0.4118

PH-01 vertical 2676 2.12 0.0329 0.0609 0.4118

PH-02 vertical 2423 1.92 0.0333 0.0613 0.4118

PH-03 vertical 2160 1.92 0.0337 0.0617 0.4118

PH-04 vertical 1887 1.72 0.0337 0.0619 0.4118

the light source: the vertical case (!vert D .0; 0; 1/) and the oblique case (!obl D
.0:0168; 0:198; 0:9801/). This test will show better the crucial role of the parameters
involved for the convergence. As we can see in Table 2.6, in the vertical case all the
models converge in less than 3 s with the same order of iteration. Looking at the
errors on the images, they are of the same order for all the cases, L1.I/ is a little
bit higher for the ON–model with � D 0:6. We can note that in the case of � D 0

for the ON–model and kS D 0 for the PH–model we obtain the same errors and
number of iterations too because the three models coincide as expected. With respect
to the ON–model, by increasing the value of � the errors grow slightly or remain
unchanged. The same behavior has the PH–model with respect to the parameter kS.
In fact, by increasing the value of kS the errors tend to increase, remaining of the
same order.

Looking at Table 2.7, we can note that the oblique cases require higher CPU time
with respect to the corresponding vertical cases due to the fact that the equations are
more complex because of additional terms involved. Analyzing the errors on the
images, as noted just before, the cases of � D 0 for the ON–model and kS D 0 for
the PH–model coincide with the L–model in terms of number of iterations used and
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Table 2.7 Beethoven: numerical results for !obl D .0:0168; 0:198; 0:9801/ with the errors on the
image

SL–schemes Iter. Œsec:� L1.I/ L2.I/ L1.I/ 


LAM oblique 3129 234:60 0.0397 0.0659 0.4039 10�8

LAM oblique 236 40:85 0.0464 0.0696 0.4039 10�3

ON-00 oblique 236 46:85 0.0464 0.0696 0.4039 10�3

ON-01 oblique 242 50:90 0.0439 0.0656 0.4118 10�3

ON-02 oblique 262 53:43 0.0484 0.0699 0.4196 10�3

ON-03 oblique 270 53:76 0.0550 0.0763 0.4039 10�3

ON-04 oblique 314 65:63 0.0604 0.0830 0.4314 10�3

ON-04 oblique 3598 709:80 0.0672 0.0890 0.4314 10�4

ON-06 oblique 362 75:91 0.0722 0.0989 0.5647 10�3

PH-00 oblique 236 47:42 0.0464 0.0696 0.4039 10�3

PH-01 oblique 237 44:59 0.0712 0.0917 0.4510 10�3

PH-02 oblique 303 58:04 0.1095 0.1291 0.4784 10�3

PH-03 oblique 513 97:09 0.1506 0.1743 0.5333 10�3

PH-04 oblique 9000� 1149:00 0.1701 0.2041 0.5765 10�3

�Indicates the maximum number of iterations

error estimations. With respect to the ON–model, the errors increase by increasing
the parameter � . The same holds for the PH–model with respect to kS. Because
of additional terms involved in the oblique case, in Table 2.7 we have reported
the results obtained using a value of the tolerance 
 for the stopping rule of the
iterative method equal to 10�3. This is the maximum accuracy achieved by the non-
Lambertian models since roundoff errors coming from several terms occur and limit
the accuracy since the schemes are first order accurate. Only for the ON–model with
� D 0:4 we have reported the result also for 
 D 10�4 and for the L–model with

 D 10�8. Lastly, we can note that choosing kS D 0:4 the PH–model not converges
in the maximum number of allowed iterations, i.e. in 9000 iterations.

The 3D reconstructions and the output images for the three models are visible in
Fig. 2.5. The first two rows refer to the vertical case, the others to the oblique case.
The reconstructions in the vertical case are more accurate than the corresponding
in the oblique case also because obtained with a tolerance 
 D 10�3 instead of

 D 10�8 as in the vertical case. Moreover, it is important to note that there is a
concave/convex inversion in the reconstructed surface due to the classical ambiguity
of the SfS model. This typically depends also on the correctness of the Dirichlet
boundary conditions (as one can see in the synthetic vase test where we have applied
a correct boundary condition u D g imposing a circular shape on that part of the
boundary).
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Fig. 2.5 Beethoven: output images and 3D reconstructions for the three models
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2.4.2.2 Black Horse

We use this test to compare the performances of the global SL–scheme with respect
to the acceleration schemes (FM and FS) based on a finite difference (FD) solver
(FM-FD, FS-FD). The comparison will be made for all the models (L–model,
ON–model, PH–model) with the parameter values reported in the second and third
column of Table 2.8. Note that the SL–scheme, that is slower than FM-FD and FS-
FD methods as expected, however it is more accurate with respect to the schemes
based on FD. This confirms that the SL approach is competitive with other numerical
techniques. We can also note that the parameters play an important role in these
models. For example, in the PH–model passing from kS D 0:4 to kS D 0:8

the errors change significantly in L1 and L2 norm for the FM-FD and the FS-FD
methods. In Fig. 2.6 one can see the output images and the 3D reconstructions of
the surface obtained by the SL–schemes applied to the three models. Note that the
reconstruction obtained by the PH–model recognizes better the object in the picture
and this is coherent with the fact that the surface is shiny, so the PH–model seems
to be the more realistic in this case.

Table 2.8 Black horse:
parameters, CPU time and
errors on the image with
vertical light source. When a
parameter doesn’t exist for a
model we put a dash

Model kS � Œsec:� L1.I/ L2.I/ L1.I/

LAM-FM – – 0.08 0.0363 0.0610 0.6902

LAM-FS – – 0.08 0.0362 0.0607 0.6902

LAM-SL – – 2.62 0.0346 0.0590 0.6863

ON-02-FM – 0.2 0.07 0.0363 0.0611 0.6902

ON-02-FS – 0.2 0.02 0.0362 0.0608 0.6902

ON-02-SL – 0.2 2.49 0.0347 0.0591 0.6902

ON-03-FM – 0.3 0.14 0.0364 0.0611 0.6941

ON-03-FS – 0.3 0.14 0.0363 0.0609 0.6941

ON-03-SL – 0.3 2.39 0.0348 0.0592 0.6902

PH-04-FM 0.4 – 0.28 0.0441 0.0677 0.6902

PH-04-FS 0.4 – 0.77 0.0439 0.0674 0.6902

PH-04-SL 0.4 – 1.06 0.0358 0.0606 0.6863

PH-08-FM 0.8 – 0.16 0.0788 0.1132 0.7098

PH-08-FS 0.8 – 0.63 0.0788 0.1132 0.7098

PH-08-SL 0.8 – 0.53 0.0463 0.0736 0.7059
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Fig. 2.6 Black horse: output images and 3D reconstructions for the three models

2.5 Conclusions and Perspectives

In this paper we derived the Hamilton-Jacobi equations related to three reflectance
models and we presented some numerical methods to solve them. In our formulation
the models share the same mathematical structure and this allows to switch on and
off the different terms related to ambient, diffuse and specular reflection in a very
simple way. This general model is very flexible to treat different light conditions
with vertical and oblique light sources. As we noted in some of our tests, via non-
Lambertian models it is not possible to solve the classical concave/convex ambiguity
of the Lambertian SfS problem based on a single image despite the fact that these
models can deal with more general surfaces (see [50, 52] for more details on the
analysis performed on non-Lambertian models). This ambiguity can be eliminated
only adding additional information on the image or dealing with more than one
image as already done via the Photometric Stereo technique in the case of the
Lambertian model [32, 33]. The application of the Photometric Stereo technique
to models with a specular component goes beyond the scopes of this paper. Some
results of this work can be found in [53].
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From the numerical point of view, comparing the numerical methods we noted
that the SL–schemes approximate in a rather effective way the equations related to
non-Lambertian models and they are more accurate with respect to FD schemes.
Looking at the numerical experiments of the three models, the PH–model seems to
be the model more sensible to the values of the parameters involved, as visible in
Table 2.8. This model recognizes better the object with respect to the L–model and
the ON–model, although the errors computed on the image are higher. However,
our numerical tests showed that all the schemes are consistent and we obtain good
results for synthetic and real input images. Looking at the test performed with an
oblique light source, we have some comments that are common to the PH–model
and the ON–model. The equations corresponding to this case have additional terms
and the corresponding discrete operators become more complex and require more
iterations to converge. This produces an accumulation of floating point errors which
reduces the accuracy of the approximation. Moreover, for real images, we do not
know the exact direction of the light source and this introduces another perturbation
in the model which affects the results. A possible improvement, at least when we
know the light source direction, could be the use of second order schemes.

Another interesting direction would be to mix the models, e.g. coupling the ON–
model with the PH–model. To this end, we need to verify if the new mixed model
still can be written in the same fixed point form in order to apply the same approach.
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