
Chapter 11
Applying Random Forests to the Problem
of Dense Non-rigid Shape Correspondence

Matthias Vestner, Emanuele Rodolà, Thomas Windheuser, Samuel Rota Bulò,
and Daniel Cremers

Abstract We introduce a novel dense shape matching method for deformable,
three-dimensional shapes. Differently from most existing techniques, our approach
is general in that it allows the shapes to undergo deformations that are far from
being isometric. We do this in a supervised learning framework which makes use
of training data as represented by a small set of example shapes. From this set, we
learn an implicit representation of a shape descriptor capturing the variability of
the deformations in the given class. The learning paradigm we choose for this task
is a random forest classifier. With the additional help of a spatial regularizer, the
proposed method achieves significant improvements over the baseline approach and
obtains state-of-the-art results while keeping a low computational cost.

11.1 Introduction

Matching three-dimensional shapes is a pervasive problem in computer vision,
computer graphics and several other fields. Nevertheless, while the advances made
by works such as [2, 4, 10, 14, 23, 29] have been dramatic, the problem is far from
being solved.

Many methods in shape matching use a notion of similarity that is defined on
a very general set of possible shapes. Due to the highly ill-posed nature of the
shape matching problem, it is very unlikely that a general method will reliably find
good matchings between arbitrary shapes. In fact, while many matching methods
(such as methods based on metric distortion [4, 20, 22] and eigen-decomposition
of the Laplacian [2, 23, 29]) mostly capture near-isometric deformations, others
might consider too general deformations which are not consistent with the human
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intuition of correspondence. In applications where the class of encountered shapes
is in-between, adapting the matching methods at hand is often very tedious.

In this paper we try to bridge the gap between general shape matching methods
and application-specific algorithms by taking a learning-by-examples approach.

In our scenario, we assume to have a set of training shapes which are equivalent
up to some class of non-isometric deformations. Our goal is to learn from these
examples how to match two shapes falling in the equivalence class represented by
the training set. To this end, we treat the shape matching problem as a classification
problem, where input samples are points on the shape manifold and the output class
is an element of a canonical label set, which might e.g. coincide with the manifold
of one of the shapes in the training set. A first contribution of this paper consists in
a new random forest classifier, which can tackle this unconventional classification
problem in an efficient and effective way, starting from a general parametrizable
shape descriptor. Our classifier is designed in a way to randomly explore the
descriptor’s parametrization space and find the most discriminative features that
properly recover the transformation map characterizing the shape category at hand.
In this work, we consider the wave kernel signature (WKS) [2] as the shape
descriptor. This descriptor is known to be invariant to isometric transformations,
but the forest can effectively exploit it to match shapes that undergo non-rigid and
non-isometric deformations.

In some sense, the output of the random forest can be seen as a new descriptor
by itself that is tuned to the shapes and deformations appearing in the training set.
In this respect, the proposed method is complementary to existing shape descriptors
as it can improve the performance of a given descriptor [11, 12, 32]. Early attempts
to apply machine learning techniques to the problem of non-rigid correspondence
[25, 28] consider shapes represented by signed distance functions. We follow the
intrinsic view point, considering shapes given by their boundary surface, seen as a
Riemannian manifold.

One of the main benefits of our approach is the fact that the random forest
classifier gives for each point on the shape an ordered set of matching candidates,
hence delivering a dense point-to-point matching. Since such a descriptor does
not include any spatial regularity, we propose to use a regularization technique
along the lines of the functional maps framework [16]. We experimentally validate
that the proposed learning approach improves the underlying general descriptor
significantly, and it performs better than other state-of-the-art matching algorithms
on equivalent benchmarks.

An earlier version of this work was published in [21].

11.1.1 Intrinsic Point Descriptors

We consider 3D shapes that are represented by their boundary surface, a two-
dimensional Riemannian manifold .M; g/ without boundary. A point descriptor is
a function � that assigns to each point on the surface an element of a metric space
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Fig. 11.1 A good point descriptor should at the same time assign similar values to corresponding
points on deformed shapes and dissimilar values to non-corresponding points

D, the descriptor space. A good point descriptor should satisfy two competing
properties (Fig. 11.1):

• deformation-invariance: it should assign similar values to corresponding points
on deformed shapes

• discriminativity: it should well distinguish non-corresponding points

While it is in principle possible to construct a descriptor that is invariant under
an arbitrary large class of deformations (e.g. the constant function), it is evident that
there will always be a tradeoff between deformation-invariance and discriminativity.

The descriptors we consider are based on the spectrum of the Laplace-Beltrami
operator �M D �divM.rM/. Being a symmetric operator the spectrum of �M con-
sists of real eigenvalues �1; �2; : : : and the corresponding eigenfunctions �1; �2; : : :
can be chosen to be real valued and orthonormal. Moreover, �M is a non-negative
operator with a one-dimensional kernel and a compact pseudo-inverse, so we can
order the eigenvalues 0 D �1 < �2 � : : : and assign to each point x 2 M a vector
p 2 R

2K , p D .�1; : : : ; �K ; �1.x/; : : : ; �K.x//. The Laplace Beltrami Operator is
purely intrinsic as it is uniquely determined by the metric tensor g D .gij/

2
i;jD1

(respectively its inverse .gij/2i;jD1):

�M D 1p
det g

2X

i;jD1

@

@xi

�
gij
p
det g

@

@xj

�
: (11.1)

As a consequence the eigenvalues �k as well as the corresponding eigenspaces
do not change whenever a shape undergoes an isometric deformation. The eigen-
bases however are not uniquely determined, even in the case of one dimensional
eigenspaces the normalized eigenvectors are only unique up to sign. Nevertheless
from the representation p it is possible to construct descriptors that are invariant
under isometric deformations. Given a collection .ti/

n
iD1 of positive numbers, the



234 M. Vestner et al.

Heat Kernel Signature (HKS)

HKS. p/ D
 
X

k

exp.��kti/�k.x/2
!n

iD1
2 R

n (11.2)

is a n-dimensional intrinsic point-descriptor [29]. From a physical point of view
each component tells us how much heat u.x; ti/ remains at point x after time ti when
the initial distribution of heat is a unit heat source at the very same point:

�u D ut (11.3)

u.0; �/ D ıx (11.4)

Since the class of isometric deformations includes reflections, any intrinsic descrip-
tor will assign identical values to a point and its symmetric counterpart, whenever
shapes exhibit bilateral intrinsic symmetries. Using information about the symmetry
[18] or making use of extrinsic information as in [27] would overcome this problem.

From a signal processing viewpoint HKS can be seen as a collection of low-pass
filters and thus it is not appropriate to localize features, see Fig. 11.2. Motivated by
this observation Aubry et al. [2] introduced the Wave Kernel Signature (WKS), a
descriptor where the low-pass filters are replaced by band pass filters:

WKS.p/ D
 
X

k

f.ei;�2i /.�k/
2�k.x/

2

!n

iD1
2 R

n (11.5)

Here the parameters .ei; �2i / correspond to mean and variance of the log-normal
energy distributions

f.e;�2/.�/ / exp.� .log e � log�/2

2�2
/ (11.6)

Fig. 11.2 The weighting functions of the heat kernel signature (left) can be seen as low-pass filters,
the ones of the wave kernel signature (right) in contrary behave like band-pass filters
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Fig. 11.3 Finding a correspondence between shapes should be feasible even if they are far from
being isometric

The authors propose fixed values for the parameters .ei; �i/ depending on the
truncated spectrum of the Laplace-Beltrami-operator. Moreover they equip the
descripor with a metric related to the L1-distance.

In this work the parameters will be learned from training data, a distance function
between vector valued descriptors is unneeded since descriptors are compared
component wise in a hierarchical manner (Sects. 11.2.1.1 and 11.2.1.3).

Both, HKS and WKS, are invariant under isometric deformations. However the
human notion of similarity by far exceeds the class of isometries. Asking for a
correspondence between an adult and a child or even an animal like a gorilla is
a feasible task for us. Figure 11.3 shows examples of shapes taken from different
datasets [1, 5, 19, 21] that could in principle be put into correspondence.By choosing
application dependent parameters one can achieve descriptors that are less sensitive
to the type of deformation one is interested in. In this work we implicitly determine
optimal parameters when the deformation class is represented by a set of training
shapes with known ground truth correspondence.

11.1.2 Discretized Surfaces and Operators

In practice the shapes are given as triangular meshes M D .VM;FM/. We will
henceforth identify a shapeM by the set of it vertices VM. A one-to-one correspon-
dence between two shapes can then be represented by a permutation matrix, a fuzzy
correspondence, i.e. a function that assigns to each point a probability distribution
over the other shape, respectively as a left-stochastic matrix. Functions defined on a
shape become vectors and linear operators acting on them, e.g. the Laplace-Beltrami
operator can be written as matrices. Inner products between functions are calculated
via an area-weighted inner product between the vectors representing them.We chose
the popular cotangent scheme [15] as the discretization of the Laplacian.
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11.2 Dense Correspondence Using Random-Forests

In this work we treat the shape matching problem as a classification problem,
where input samples are points on the shape and the output class is an element
of a canonical label set, which might e.g. coincide with one of the shapes in the
training set (the reference shapes). The classifier we choose is a Random forest,
designed in a way to randomly explore the descriptor’s parametrization space and
find the most discriminative features that properly recover the transformation map
characterizing the shape category at hand. In this work, we consider the wave kernel
signature (WKS) as the parametrizable point descriptor (weak classifier). In general
other choices of parametrizable descriptors, e.g. HKS, are possible. As mentioned
in Sect. 11.1.1 any classifier based on isometry-invariant point descriptors can not
distinguish a point from its symmetric counterpart. Thus the fuzzy outcome of
the Random forest classifier has to be regularized in order to get a consistent
correspondence.

11.2.1 Learning and Inference Using Random Forests

Random forests [3] are ensembles of decision trees that have become very popular in
the computer vision community to solve both classification and regression problems
with applications ranging from object detection, tracking and action recognition [9]
to semantic image segmentation and categorization [26], and 3D pose estimation
[30], to name just a few. The forest classifier is particularly appealing because
its trees can be trained efficiently and techniques like bagging and randomized
feature selection allow to limit the correlation among trees and thus ensure good
generalization. We refer to [7] for a detailed review.

11.2.1.1 Inference

In the context of shape matching, a decision tree comprised by the forest routes a
pointm of a test shapeM from the root of the tree to a leaf node, where a probability
distribution defined on a discrete label set L is assigned to the point. The path from
the root to a leaf node is determined by means of binary decision functions called
split functions located at the internal nodes, which given a shape point return L or R
depending on whether the point should be forwarded to the left or to the right with
respect to the current node. According to this inference procedure, each tree t 2 F
of a forestF provides a posterior probability P .`jm; t/ of label ` 2 L, given a point
m 2 M in a test shapeM (Fig. 11.4).

This probability measure is the one associated with the leaf of tree t 2 F that the
shape point would reach. The prediction of the whole forest F is finally obtained
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Fig. 11.4 At each inner node
of a decision tree a binary
split function is evaluated.
Depending on the result the
point m is either routed to the
left or to the right. Leafs of
the tree correspond to
probability distributions in
the label space. A random
forest is a collection of
mulitple decision trees

...

... ...
P (�|m, t) P(�|m, t)

m ∈ M

(m)

L R

by averaging the predictions of the single trees:

P .`jm;F / D 1

jF j
X

t2F
P .`jm; t/ : (11.7)

The outcome of the prediction over an entire shape M can be represented as a left-
stochastic matrix XM encoding the probabilistic canonical transformation, where

.XM/ij D P
�
`ijmj;F

�
(11.8)

for each `i 2 L and mj 2 M. Using Bayes’ theorem we can further construct a
fuzzy correspondence between two previously unseen shapes (i.e. no members of
the training set).

11.2.1.2 Learning

During the learning phase, the structure of the trees, the split functions and the leaf
posteriors are determined from a training set. Let f.Ri;Ti/gmiD1 be a set ofm reference
shapes Ri each equippedwith a canonical transformation, i.e. a bijection Ti W Ri ! L
between the vertex set of the reference shape and the label set L. A training set T
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for the random forest is given by the union of the graphs of the mappings Ti, i.e.

T D f.r;Ti.r// W r 2 Ri; 1 � i � mg : (11.9)

The learning phase that creates each tree forming the forest consists in a recursive
procedure that starting from the root iteratively splits the actual terminal nodes.
During this process each shape point of the training set is routed through the tree
in a way to partition the whole training set across the terminal nodes. The decision
whether a terminal node has to be further split and how the splitting will take place
is purely local as it involves exclusively the shape points that have reached that node.
A terminal node typically becomes a leaf of the tree if the depth of the node exceeds
a given limit, if the size of the subset of training samples reaching the node is small
enough, or if the entropy of the sample’s label distribution is low enough. If this is
the case, then the leaf node is assigned the label distribution of subset S of training
samples that have reached the leaf, i.e.

P .`jS/ D jf.r; `/ 2 Sgj
jSj : (11.10)

The probability distribution P .�jS/ will become the posterior probability during
inference for every shape point reaching the leaf. Consider now the case where the
terminal node is split. In this case, we have to select a proper split function  .r/ 2
fL;Rg that will route a point r reaching the node to the left or right branch. An
easy and effective strategy for guiding this selection consists in generating a finite
pool � of random split functions and retaining the one maximizing the information
gain with respect to the label space L. The information gain IG . / due to split
function 2 � is given by the difference between the entropy of the node posterior
probability defined as in (11.10) before and after having performed the split. In
detail, if S � T is the subset of the training set that has reached the node to be split
and SL, SR is the partition of S induced by the split function  then IG . / is given
by

IG . / D H .P .�jS// � H .P .�jS/ j / ; (11.11)

where H .�/ denotes the entropy and

H .P .�jS/ j / D jSLj
jSj H

�
P
��jSL��C jSRj

jSj H
�
P
��jSR�� : (11.12)

Intuitively the information gain of a split function is higher, the better it seperates
members belonging to different classes (see Fig. 11.5).
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Fig. 11.5 The split function
visualized as a solid line has
the highest information gain
(IG) among the three
candidates

11.2.1.3 Choice of Decision Functions

During the build up of the forest the randomized training approach allows us to vary
the parametrization of the shape descriptor for each point of the shape. In fact, we
can in principle let the forest automatically determine the optimal discriminative
features of the chosen descriptor for the matching problem at hand. In this work
we have chosen the Wave Kernel Signature (WKS) but as mentioned above, in
principle any parametrizable feature descriptor (e.g. HKS) can be considered. From
a practical perspective, it can be shown [2] that the sum in (11.5) can be restricted
to the first k < 1 components. We make explicit in (11.5) the dependency on k by
writing:

p.mI e; k/ D
kX

kD1
f 2e .�k/�

2
k .m/ : (11.13)

We are now in the position of generating at each node of a tree during the training
phase a pool of randomized split functions by sampling an energy level ei, a number
of eigenpairs ki and a threshold 	i. Accordingly, the split functions will take the
form:

 i.m/ D
(
L if p.mI ei; ki/ > 	i
R otherwise .

(11.14)

11.2.2 Interpretation and Regularization of the Forests
Prediction

The simplest way to infer a correspondence from a forest prediction consists in
assigning each point m 2 M to the most likely label according to its final distribu-
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Fig. 11.6 The coordinate functions from a test shape M (standing cat) are transferred to a
reference shape R (walking cat) via the functional map TXM;R induced by the forest prediction.
Most of the ambiguities arise in fx, and are due to the global intrinsic symmetry of the cat. The
first column shows the map fx on the test cat, while the second and third columns are obtained
by mapping fx without and with regularization respectively. The remaining four columns show the
mappings of fy and fz without regularization. The symmetric ambiguities disappear as a result of
the regularization process (columns (a)–(c), matches encoded by color)

tion, i.e., the label maximizing P .`jm;F /. If we are also given a reference shape R
from the training set, the maximum a posteriori estimate of ` can be transformed into
a point-to-point correspondence from M to R via the known bijection T W R ! L.
Figure 11.6a, b show an example of this approach. The resulting correspondence
is exact for about 50% of the points, whereas it induces a large metric distortion
on the rest of the shape. However, this is not a consequence of the particular
criterion we adopted when applying the prediction. Indeed, the training process can
not distinguish symmetric points and is oblivious to the underlying manifolds as
it is only based on pointwise information: the correspondence estimates are taken
independently for each point and thus the metric structure of the test shape is not
taken into account during the regression. Nevertheless, as we shall see, the predicted
distributions carry enough information that can be exploited to obtain a consistent
matching.

11.2.2.1 Functional Maps

Multiplying XM (as defined in (11.8)) from the left with the permutation matrix
associated to the known bijection T W L ! R between the label space L and a
reference shape R gives raise to another left-stochastic matrix XM;R. As pointed out
in [16] this (fuzzy) correspondence XM;R can be interpreted as a linear map TXM;R W
L2.M/ ! L2.R/. In Fig. 11.6 (first 7 columns) we use such a construction to map
the coordinate functions fi W M ! R (where i 2 fx; y; zg) to scalar functions on
R. Specifically, we plot f i and their reconstructions gi D TXM;Rf i. Note that the
reference shape is axis-aligned, so that the x coordinates of its points grow from the
right side (blue) to the left side of the model (red).

As in [16] from now on we consider TXM;R in the truncated harmonic bases on the
resprective shapes and by that dramatically reduce the size of the problem. Since
the LB-eigenfunctions are chosen to form orthonormal bases, the norms considered
in the following section are invariant under this basis-transform. For simplicity we
will still denote the associated matrix by XM;R.
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11.2.2.2 Metric Distortion Using Functional Maps

The plots we show in Fig. 11.6 tell us that most of the error in the correspondence
arises from the (global) intrinsic symmetries of the shape. As mentioned previously,
this is to be expected since the training process does not exploit any kind of
structural information about the manifolds.

This suggests the possibility to regularize the prediction by introducing metric
constraints on the correspondence. Specifically, we consider an objective of the form

E.X/ D c.XM;R;X/C 
.X/ ; (11.15)

where X is a correspondence between shapes M and R. The first term (or cost)
ensures closeness to the prediction given by the forest, while the second term is
a regularizer giving preference to geometrically consistent solutions.

A functional map is assumed to be geometrically consistent if it approximately
preserves distance maps. Suppose for the moment we are given a sparse collection
of matches O � M � R. Then for each .p; q/ 2 O we can define the two distance
maps dp W M ! R and dq W R ! R as

dp.x/ D dM.p; x/ ; dq. y/ D dR.q; y/ : (11.16)

With these definitions, we can express the regularity term 
.C/


.C/ D
X

.p;q/2O
!pqkXM;Rdp � dqk22 ; (11.17)

with weights !pq 2 Œ0; 1� (Fig. 11.7).
In order for the regularization to work as expected, the provided collection of

matches should constrain well the solution, in the sense that it should help to

Fig. 11.7 In the regularization step first a coarse subsampling of the shape is constructed via
Euclidean farthest point sampling (dots on the left shape). In the small set of predicted matches
O (cross product of dots on the two shapes) a sparse correspondence is obtained using an l1

constrained optimazation technique. We expect a consistent correspondence to approximately
preserve the distance maps dp
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disambiguate the intrinsic symmetries of the shape. For example, matches along
the tail of the cat would bring little to no information on what solution to prefer.
In practice, we can seek for a few matches that cover the whole shape and be as
accurate as possible. To this end, we generate evenly distributed samples Vfps � M
on the test shape via farthest point sampling [13] by using the extrinsic Euclidean
metric. Then, we construct a matching problem restricted to the set of predicted
matches

O D f.m; r/ 2 Vfps � R j .XM;R/rm > 0g : (11.18)

In practice this set is expected to be small, since the prediction given by the forest
is very sparse and we select around 50 farthest samples per test shape (�0.2% of
the total number of points on the adopted datasets). This results in a small matching
problem that we solve via game-theoretic matching [20], a `1-regularized technique
that allows to obtain sparse, yet very accurate solutions in an efficient manner. Once
a sparse set of matches is obtained, we solve (11.15) as the weighted least-squares
problem

min
X

kXM;R � Xk2F C
X

.p;q/2O
!pqkXdp � dqk22 ; (11.19)

where !pq 2 Œ0; 1� are weights (provided by the game-theoretic matcher) giving a
measure of confidence for each match .p; q/ 2 O. Figure 11.6c shows the result of
the regularization performed using 25 sparse matches (indicated by small spheres).

Notice that the distance between functional maps is yet not well understood. The
authors of [6] suggest to replace the Frobenius norm in (11.19) with a regularized l0

norm of the vector of singular values:

kAk" D
X

i

�.A/2i
�.A/2i C "

(11.20)

Assuming the shapes to be (nearly) isometric one can expect the Laplace
Beltrami operators on the shapes to commute with the functional map, i.e. (in the
harmonic bases):

X�M D �RX (11.21)

where �M and �R are the diagonal matrices of the singular values. A measure of
deviation from (11.21) can be used as an alternative regularity cost.
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11.2.3 Experimental Results

In all our experiments we used the WKS as pointwise descriptor for the training
process. As in [16], we limited the size of the bases on the shapes to the first
100 eigenfunctions of the Laplace-Beltrami operator, computed using the cotangent
scheme [15].

11.2.3.1 Comparison with Dense Methods

In this set of experiments we compare with the state of the art techniques in (dense)
non-rigid shape matching, namely the functional maps pipeline [16], blended
intrinsic maps (BIM) [10], and the coarse-to-fine combinatorial approach of [24].
We perform these comparisons on the TOSCA high-resolution dataset [5]. The
dataset consists of 80 shapes belonging to different classes, with resolutions ranging
in 4–52K points. Shapes within the same class have the same connectivity and
undergo nearly-isometric deformations. Ground-truth point mapping among shapes
from the same class is available. In particular, given a predicted map f W M ! N and
the corresponding ground-truth g W M ! N, we define the error of f as

". f ; g/ D
X

m2M
dN.f .m/; g.m// ; (11.22)

where dN is the geodesic metric on N, normalized by
p
Area.N/ to allow inter-class

comparisons. Similarly, we define the average (pointwise) geodesic error as
".f ; g/

jMj .

Although the methods considered in these experiments do not rely on any prior
learning, the comparison is still meaningful as it gives an indication of the level of
accuracy that our approach can attain in this class of problems. The experiments
were designed on the same benchmark and following a procedure similar to the one
reported in [10, 16]. Specifically, for each model M of a class (e.g., the class of
dogs), we randomly picked other 6 models from the same class (not including M),
and trained a random forest with them (thus, we only considered classes with at
least 6 shapes). Then we predicted a dense correspondence for M according to the
technique described in Sect. 11.2.2.

We show the results of this experiment in Fig. 11.8 (right). Each curve depicts
the percentage of matches that attain an error below the threshold given on the x-
axis. Our method (red line) detects 90% correct correspondences within a geodesic
error of 0.05. Almost all correct matches are detected within an error of 0.1. This
is compatible with and even improves the results given by the other methods on the
same data. Note that our training process only makes use of pointwise information
(namely, the WKS); in contrast, the functional maps pipeline (blue line) adopts
several heuristics (WKS preservation constraints in addition to orthogonality of C,
region-wise features, etc.) in order to constrain the solution optimally [16]. Upon
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Fig. 11.8 Left: Fraction of exact matches predicted by a random forest vs. maximum support size
of the probability distributions on a test shape. The forest was trained with 9 shapes. Middle:
Sensitivity to number of shapes used in the training set. Note how the correspondence predicted
using little training data (top-left model) is only partially regularized. Right: Comparison with the
state-of-the-art methods on nearly-isometric shapes (TOSCA). Symmetric correspondences are
considered correct solutions for all methods

visual inspection, we observed that most of the errors in our method were due to
the poor choice of points made in the regularization step. This is analogous to what
is reported for the BIM method [10]. Typically, we observed that around 20 well-
distributed points are sufficient to obtain accurate results.

11.2.4 Sensitivity to Training Parameters

We performed a sensitivity analysis of our method with respect to the parameters
used in the training process, namely the size of the training set and the number
of trees in the forest. In these experiments we employed the cat models from the
TOSCA dataset (28K vertices) with the corresponding ground-truth.

In Fig. 11.8 (middle) we plot the average geodesic error obtained by a test shape
(depicted along the curve) as we varied the number of shapes in the training set. The
geodesic error of the correspondence stabilizes when at least 6 shapes are used for
training. This means that only 6 samples per label are sufficient in order to determine
an optimal parametrization of the nearly-isometric deformations occurring on the
shape. This result contrasts the common setting in which random forests are trained
with copious amounts of data [8, 30], making the approach rather practical when
only limited training data is available.

Figure 11.8 (left) shows the change in accuracy as we increase the number of
trees in the forest. Note that increasing the number of trees directly induces a larger
support of the probability distributions over L. In other words, each point of the test
shape receives more candidate matches if the forest is trained with more trees (see
Eq. (11.7)). The hit ratio in the bar plot is defined as the fraction of exact predictions
given by the forest over the entire test shape. We compare the results with the hit
ratio obtained by looking for k-nearest neighbors in WKS descriptor space, with k
equal to the maximum support size employed by the forest at each level. From this
plot we see that the forest predictions are twice as accurate as WKS predictions for
equal support sizes. In particular, random forest predicts the exact match for almost
half (around 14K points) of the shape when trained with 15 trees.
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reference match using match using match using point on point matched point matched
shape reg. forest WKS affinity reg. WKS affinity reference shape by forest by WKS affinity

Fig. 11.9 Comparison between our method and an approach based on WKS affinity using shapes
from the dataset of Vlasic et al. Columns one to four show the predicted and regularized solutions
for both approaches. The last three columns show how the indicator function at one point gets
functionally mapped to a second shape, by using the (non-regularized) X obtained from the forest,
and by XWKS

Finally, in Fig. 11.9 we show a qualitative comparison between our method and
an approach based on WKS. The rationale of this experiment is to show that the
prediction given by the forest gives better results than what can be obtained without
prior learning within the same pipeline (i.e., prediction followed by regularization).
Specifically, for each point in one shape we construct a probability distribution on
the other shape based on a measure of descriptor affinity in WKS space. We then
estimated a functional map CWKS from the resulting set of constraints, and plotted a
final correspondence before and after regularization.

11.2.5 Learning Non-isometric Deformations

In this section we consider a scenario in which the shapes to be matched may
undergo more general (i.e., far from isometric) deformations. Examples of such
deformations include local and global changes in scale, topological changes,
resampling, partiality, and so forth. Until now, few methods have attempted to tackle
this class of problems.Most dense approaches [10, 16, 17, 24] are well-defined in the
quasi-isometric and conformal cases only; instances of inter-class matching were
considered in [10], but the success of the method depends on the specific choice
of (usually hand-picked) feature points used in the subsequent optimization. Sparse
methods considering the general setting from ametric perspective [4, 20, 22] attempt
to formalize the problem by using the language of quadratic optimization, leading to
difficult and highly non-convex formulations. An exception to the general trend was
given in [31], where the matching is formulated as a linear program in the product
space of manifolds. The method allows to obtain dense correspondences for more
general deformations, but it assumes consistent topologies and is computationally
expensive (	2 h to match around 10K vertices). Another recent approach [11]
attempts to model deviation from isometry in the framework of functional maps,
by seeking compatible harmonic bases among two shapes. However, it relies on
a (sparse) set of matches being given as input and it shares with [31] the high
computational cost.
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Fig. 11.10 Example of dense shape matching using random forests under non-isometric deforma-
tions. Shapes in the shaded area are a subset of the training set. The forest is trained with wave
kernel descriptors and consists of 80K training classes with 19 samples per class. Matches are
encoded by color

As described in Sect. 11.2, the forest does not contain any explicit knowledge of
the type of deformations it is asked to parametrize. This means that, in principle,
one could feed the learning process with training data coming from any collection
of shapes, with virtually no restrictions on the transformations that the shapes
are allowed to undergo. Clearly, an appropriate choice of the pointwise descriptor
should be made in order for the forest to provide a concise and discriminative
model. To test this scenario, we constructed a synthetic dataset consisting of 8 high-
resolution (80K vertices) models of a kid under different poses (quasi-isometries),
and 11 additional models of increasingly corpulent variants of the same kid (local
scale deformations) with a fixed pose (see Fig. 11.10). The shapes have equal
number of points and point-to-point ground-truth is available. We test the trained
random forest with a plump kid having a previously unseen pose.

Note that the result is reasonably accurate if we keep in mind the noisy setting:
the forest was trained with WKS descriptors, which are originally designed for
quasi-isometric deformations, and thus not expected to work well in the more
general setting [12]. Despite being just a qualitative evaluation, this experiment
demonstrates the generality of our approach. The matching process we described
can still be employed in general non-rigid scenarios if provided with limited, yet
sufficiently discriminative training data.

11.3 Conclusions

In this article, we showed how the random forest learning paradigm can be employed
for problems of dense correspondence among deformable 3D shapes. To our
knowledge, this is among the first attempts at introducing a statistical learning view



11 Applying Random Forests to the Problem of Dense Non-rigid Shape. . . 247

on this family of problems. The effectiveness of our approach is demonstrated on a
standard benchmark, where we obtain comparable results with respect to the state of
the art, and very low prediction times for shapes with tens of thousands of vertices.
The approach is flexible in that it provides a means to model deformations which
are far from isometric, and it consistently obtains high predictive performance on
all tested scenarios.
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