
Chapter 10
Sparse Models for Intrinsic Shape
Correspondence

Jonathan Pokrass, Alexander M. Bronstein, Michael M. Bronstein,
Pablo Sprechmann, and Guillermo Sapiro

Abstract We present a novel sparse modeling approach to non-rigid shape match-
ing using only the ability to detect repeatable regions. As the input to our algorithm,
we are given only two sets of regions in two shapes; no descriptors are provided
so the correspondence between the regions is not know, nor do we know how
many regions correspond in the two shapes. We show that even with such scarce
information, it is possible to establish very accurate correspondence between the
shapes by using methods from the field of sparse modeling, being this, the first non-
trivial use of sparse models in shape correspondence. We formulate the problem
of permuted sparse coding, in which we solve simultaneously for an unknown
permutation ordering the regions on two shapes and for an unknown correspondence
in functional representation. We also propose a robust variant capable of handling
incomplete matches. Numerically, the problem is solved efficiently by alternating
the solution of a linear assignment and a sparse coding problem. The proposed
methods are evaluated qualitatively and quantitatively on standard benchmarks
containing both synthetic and scanned objects.

10.1 Introduction

Matching of deformable shapes is a notoriously difficult problem playing an impor-
tant role in many applications [17]. Unlike rigid matching where the correspondence
can be parametrized by a small number of parameters (rotation and translation of
one shape w.r.t. the other [5, 10]), non-rigid matching typically uses point-wise
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representation of correspondence,which results in the number of degrees of freedom
growing exponentially with the number of matched points.

Non-rigid correspondence methods try to find correspondence by minimizing
some structure distortion. The structures can be point-wise (local descriptors [3, 14,
33, 37]), pair-wise (distances [6, 8, 13, 23]), or higher order [38].

In order to make the matching problem computationally feasible, it is crucial to
reduce the size of the search space [34]. Most methods use a combination of point-
and pair-wise structure matching in order to achieve this, and typically consist of
three main components: feature detection, feature description, and regularization.
Given two shapes, a feature detector allows to find a set of landmarks (points or
regions) that are repeatable, i.e., appear (possibly with some inaccuracy) on both
shapes. A feature descriptor then assigns to each feature a vector capturing some
local geometric properties of the shape; very often, the two processes are combined
into a single one. Using the descriptors, landmarks on two shapes can be matched
(it has been shown [27] that under some conditions, correct landmark matching
fully determines the intrinsic correspondence between the shapes). Such a matching
reduces the search space size to points with similar descriptors. However, since
the matching uses only local information, such correspondence can be noisy, and
some kind of regularization based on higher-order information is needed to rule out
bad or inconsistent correspondences. This information is also used to establish the
correspondence between the rest of the points on the shapes. Often, the process is
applied hierarchically, restricting the candidate matches to points in the proximity
of the landmarks [31].

Computer graphics and geometry processing literature contains a plethora of
approaches for each of the aforementioned components. Feature detection methods
try to locate stable points or regions [11, 21] that are invariant under isometric
deformations and robust to noise. Popular feature descriptors include the heat
kernel signature (HKS) [14, 33], wave kernel signature (WKS) [3], global point
signature (GPS) [30] or methods adopted from the domain of image analysis [37].
As regularization, pairwise structures such as geodesic [6, 23] or diffusion distances
[8] and higher-order structures [38] have been used.

Alternatively, there have been several attempts to represent correspondences
with a small set of parameters. Elad and Kimmel [13] used multidimensional
scaling (MDS)-type methods to embed the intrinsic structure of the shapes into
a low-dimensional Euclidean space, posing the problem of non-rigid matching
as a problem of rigid matching of the corresponding embeddings (“canonical
forms”). Mateus et al. [22] used spectral embeddings instead of MDS. Lipman and
Funkhouser [20] embedded the shapes into a disk by means of conformal maps and
represented the correspondence as a Möbius transformation.

More recently, Ovsjanikov et al. [26] introduced the functional representation
of correspondences, allowing to perform a “calculus” of correspondences. In this
approach, correspondence is modeled as a correspondence between functions on
two shapes rather than points, and can be compactly represented in the Laplace-
Beltrami eigenbasis as a matrix of coefficients of decomposition of the basis
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functions of the first shape in the basis of the second one. In this paper, we will
be relying upon this latter representation.

10.1.1 Main Contribution

The main practical contribution of this paper is an approach for finding dense
intrinsic correspondence between near-isometric shapes with very little known
information: we only assume to be able to detect regions in two shapes in a
repeatable enough way (i.e., that at least some regions in one shape correspond
accurately enough to some other regions in another shape). No region descriptors
are given, so the correspondence of the regions is unknown. The assumption of
near-isometry assures that in the functional representation of [26], the unknown
correspondence can be represented as a sparse matrix. The assumption of repeatable
regions implies that there exists some unknown permutation that orders the regions
according to their correspondence.

We formulate the problem of permuted sparse coding, in which we simultane-
ously look for the permutation and the correspondence, thereby introducing the
very successful area of sparse modeling into efficient and state-of-the-art shape
correspondence. We note that with the permutation fixed, our problem becomes
the standard sparse coding problem; having the correspondence fixed, the problem
becomes a linear assignment. This allows efficient numerical solution by alternating
the two aforementioned problems and employing efficient solvers that exist for both.

Our method relies on a pretty common assumption that the shapes are nearly-
isometric (though our experimental results show our approach still works even when
departing from this assumption), and out of all methods we are aware of, it uses
perhaps the scarcest amount of data to establish dense correspondence between the
shapes. For example, sandard region detectors with high repeatability such as [21]
are sufficient.

Compared to recent techniques for region-wise shape matching (see, e.g., [15, 16,
28, 36]), our approach has several important practical advantages: First, we do not
use any feature descriptor. Second, most region-wise correspondence approaches
require an additional step of extending the correspondence between matched regions
to the rest of the points.

The rest of the paper is organized as follows. In Sect. 10.2, we overview the
functional representation of correspondences, allowing to work with correspon-
dences as algebraic structures, and state the main notions in sparse modeling. In
Sect. 10.3, we formulate our problem of permuted sparse coding for establishing
correspondence from a set of repeatable regions given in unknown order. We then
extend the problem to the general setting where the region detection process is not
perfectly repeatable. In Sect. 10.4, we describe the numerical optimization used
to solve our permuted sparse coding problem. Experimental results are shown in
Sect. 10.5. Finally, Sect. 10.6 discusses the limitations and possible extensions of
the proposed framework and concludes the paper.
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10.2 Background

10.2.1 Functional Representation of Correspondences

The direct representation of correspondences as maps between two non-Euclidean
spaces limits the range of tools that can be employed for correspondence com-
putation due to the lack of an algebraic structure. In this paper, we rely on the
functional representation of correspondences introduced in [26], which overcomes
this limitation. In what follows, we briefly review the main idea of such functional
representations.

Let X and Y be two shapes, modeled as compact smooth Riemannian manifolds,
related by a bijective correspondence t W X ! Y. Then, for any real function f W
X ! R, we can construct a corresponding function g W Y ! R as g D f ı t�1.
The correspondence t uniquely defines a mapping between two function spaces T W
F .X;R/ ! F .Y;R/, where F .X;R/ denotes the space of real functions on X.
Such a representation is linear, since for every pair of functions f1; f2 and scalars
˛1; ˛2,

T.˛1 f1 C ˛2 f2/ D .˛1 f1 C ˛2 f2/ ı t�1

D ˛1 f1 ı t�1 C ˛2 f2 ı t�1 D ˛1T. f1/C ˛2T. f2/: (10.1)

Assuming that X is equipped with a basis f�igi�1, any f W X ! R can be
represented as

f D
X

i�1
ai�i (10.2)

with the ai being some representation coefficients (in case of an orthonormal basis,
ai D h f ; �ii; in the general case, the coefficients are found by projecting the function
f on the bi-orthonormal basis). Due to the linearity of T,

T. f / D T

0

@
X

i�1
ai�i

1

A D
X

i�1
aiT.�i/ (10.3)

If the shape Y is further equipped with a basis f jgj�1, then for every i there exists
coefficients cij such that

T.�i/ D
X

j�1
cij j; (10.4)
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and we can write

T. f / D
X

i;j�1
aicij j: (10.5)

Let us now assume finite sampling of X and Y, withm samples (for simplicity, we
assume that the shapes are sampled at the same number of samplesm. The extension
to the case with a different number of samples is straightforward). The bases are
represented as the m � n matrices ˆ and ‰ containing, respectively, n discretized
functions �i and  j as the columns. The functions f and g D T. f / can now be
represented as n-dimensional vectors f D ˆa and g D ‰b with the coefficients a
and b. Using this notation, Equation (10.5) can be rewritten as ‰b D T.ˆa/ D
‰CTa; since ‰ is invertible, this simply means that

bT D aTC: (10.6)

Thus, the n � n matrix C fully encodes the linear map T between the functional
spaces, and contains the coordinates in the basis ‰ of the mapped elements of the
basis ˆ.

10.2.2 Point-to-Point Correspondence

Point-to-point correspondences assume that each point i on X corresponds to
some point j on Y. In functional representation, this is equivalent to having C
that makes each row of ‰CT coincide with some row of ˆ [26]. In applications
requiring point-to-point correspondence, given some C, it can be converted into
a point-to-point correspondence by thinking of ˆ and ‰ as n-dimensional points
clouds, and orthogonal matrix C as a rigid alignment transformation between them.
This procedure is equivalent to iterative closest point (ICP) in n dimensions [26],
initialized with the given C0: first, for each row i of ‰C0

T, find the closest row
j�i in ˆ (this operation can be performed efficiently using approximate nearest

neighbor algorithms). Then, find orthonormalCminimizing
X

i

kˆj�i
�‰CTk2 and

set C0 D C. This operation is repeated until convergence and can be performed
efficiently over all the vertexes of X and Y using approximate nearest neighbor
algorithms.

A more naive approach not imposing orthonormality ofC is simply to map every
standard Euclidean basis vector ei in R

m representing a delta function centered at
point i on X to the band-limited approximation, ‰CˆTei, of the corresponding
indicator function on Y. If the maximum value of the latter vector is attained at point
j on Y, the correspondence between point i on X and point j on Y is established.
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10.2.3 Sparse Modeling

One of the main tools that will be used in this paper are sparse models. In what
follows, we give a very brief overview of this vast field, and refer the reader to [12]
for a comprehensive treatise. The central assertion of sparse modeling is that many
families of signals (and later operations as here introduced) can be represented as
a sparse linear combination in an appropriate domain, usually referred to as the
dictionary. This can be written as x � Dz, where x denotes the signal, D the
dictionary, and z the sparse vector of representation coefficients. The dictionary is
often selected to be overcomplete, i.e., with more columns than rows.

Finding the representation of a signal x in a given dictionaryD is usually referred
to as sparse representation pursuit or sparse coding. Among the variety of pursuit
methods, we will focus on the so-called Lasso formulation [35] that finds z as the
solution to the unconstrained convex program

min
z

kx � Dzk22 C �kzk1: (10.7)

The first term is the data fitting term, while the second term involving the `1 norm,
kzk1 D jz1j C : : : C jznj, promotes a sparse solution; the parameter � controls the
relative importance of the latter. Proximal splitting methods [24] are among the
most efficient and most frequently used numerical tools to solve problem (10.7); in
Sect. 10.4, we present a variant of the proximal splitting algorithms for the solution
of the pursuit problem arising in shape correspondence as detailed in the sequel.

In some cases, signals not admitting the simplistic model of element-wise
sparsity still manifest more intricate types of structured sparsity. In structured sparse
models, the non-zero elements of z come in groups or, more generally, in hierarchies
of groups. A common class of structured pursuit problems can be formulated as
convex programs of the form

min
z

kx � Dzk22 C �kzk1;2; (10.8)

where the `1;2 norm, kzk1;2 D kz1k2 C � C kzkk2, assumes that the vector z
is decomposed into k non-overlapping sub-vectors zi, and promotes group-wise
sparse solutions (i.e., the solution will have a small number of groups with non-
zero coefficients, but the sub-vectors representing each such non-zero group will be
dense).

While structured sparse models enforce group structure of each representation
vector independently, it is often useful to consider the structure shared by multiple
vectors. Collaborative sparse models operate on data matrices X, in which each
column corresponds to a data vector, and assert that the patterns of non-zero
coefficients are shared across the corresponding representation vectors, Z. This is
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achieved by solving a pursuit problem of the form

min
Z

kX � DZk2F C �kZk2;1; (10.9)

where the first term involving the Frobenius norm serves as the data fitting term, and
the second term with the `2;1 norm promotes row-wise sparsity of the solution. The
`2;1 norm is defined as kZk2;1 D kzT1k2C� � �CkzTmk2, where zTi denotes the i-th row
of Z (note the difference from the `1;2 column-wise counterpart!).

In this paper, we use formulate the shape correspondence problem using a sparse
model, and use sparse modeling tools to efficiently solve it.

10.3 Sparse Modeling of Correspondences

In case the shapes X and Y are isometric and the corresponding Laplace-Beltrami
operators have simple spectra (no eigenvalues with multiplicity greater than one),
the harmonic bases (Laplacian eigenfunctions) have a compatible behavior,  i D
T.�i/ such that cij D ˙ıij. Choosing the discretized eigenfunctions of the Laplace-
Beltrami operator as ˆ and ‰ causes every low-distortion correspondence being
represented by a nearly diagonal, and therefore very sparse, matrix C.

In practice, due to lack of perfect isometry and numerical inaccuracies, the
diagonal structure of C is manifested for the first eigenfunctions corresponding to
the small eigenvalues (low frequencies), and is gradually lost with the increase of
the frequency (see, e.g., Fig. 10.1). However, a correspondence with low metric
distortion will usually be represented by a sparse C. We use this property to

Π B A C O

Fig. 10.1 Near isometric shape correspondence as a sparse modeling problem (see details in text):
Indicator functions of repeatable regions on two shapes are detected and represented as matrices of
coefficients A and B in the corresponding orthonormal harmonic basesˆ and‰ . When the regions
are brought into correspondence, the point-to-point correspondence between the shapes can be
encoded by an approximately diagonal matrix C. In the proposed procedure termed as permuted
sparse coding, we solve …B D AC C O simultaneously for an approximately diagonal C and
the permutation … bringing the indicator functions into correspondence. To cope with imperfectly
matching regions, we relax the surjectivity of the permutation and absorb the mismatches into
a row-wise sparse outlier matrix O. For visualization purposes, the coloring of the regions is
consistent as after the application of the permutation. Correspondence is shown between a synthetic
TOSCA and scanned SCAPE shape
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formulate the computation of correspondences in terms of a sparse representation
pursuit problem.

Let us assume to have some region (or feature) detection process that given a
shape X produces a collection of functions f fi W X ! Rg based on the intrinsic
properties of the shape only. For example, the fi’s can be indicator functions of
the maximally stable components (regions) of the shape [21]. Since the process is
intrinsic, given a nearly isometric deformation Y or X, it should produce a collection
of similar functions fgj W Y ! Rg.

To simplify the presentation, let us assume that the process is perfectly repeatable
in the sense that it finds q functions on X and Y, such that for every fi there exists
a gj D fi ı t related by the unknown correspondence t. We stress that the ordering
of the fi’s and gj’s is unknown, i.e., we do not know to which gj in Y a fi in X
corresponds. This ordering can be expressed by an unknown q � q permutation
matrix … (in Sect. 10.3.2, we consider the more general case when the number of
functions detected on X and Y can be different, i.e.,… is non-square).

Representing the functions in the bases on each shape, we have fi D ˆai and
gj D ‰bj. Since each pair of corresponding fi and gj shall satisfy (10.6), we can
write

…B D AC; (10.10)

whereA and B are the q�nmatrices containing, respectively, aTi and b
T
j as the rows,

and �ij D 1 if ai corresponds to bj and zero otherwise.

10.3.1 Permuted Sparse Coding

Note that in relation (10.10), both … and C are unknown, and solving for them
is a highly ill-posed problem. However, by recalling that the correspondence we
are looking for should be represented by a nearly-diagonal C, we formulate the
following problem

min
C;…

1

2
k…B � ACk2F C �kW ˇ Ck1; (10.11)

where the minimum is sought over n � n matrices C (capturing the correspondence
t between the shapes in the functional representation) and q � q permutations
… (capturing the correspondence between the detected regions on the shapes).
The first term containing the Frobenius norm can be interpreted as the data term,
while the second term, containing the weighted `1 norm promotes a sparse C; ˇ
denotes element-wise multiplication, and the non-negative parameter � determines
the relative importance of the penalty. Small weights wij in W are assigned close to
the diagonal, while larger weights are selected for the off-diagonal elements. This
promotes diagonal solutions.
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The solution of (10.11) can be obtained using alternating minimization iterating
over C with fixed …, and … with fixed C. Note that with fixed …, we can denote
B0 D …B and reduce problem (10.11) to

min
C

1

2
kB0 � ACk2F C �kW ˇ Ck1; (10.12)

which resembles the Lasso problem frequently employed for the pursuit of sparse
representations. On the other hand, when C is fixed, we set A0 D AC, reducing the
optimization objective to

k…B � A0k2F D (10.13)

tr
�
BT…T…B

� � 2tr
�
BT…TA0� C tr

�
A0TA0� :

Since … is a permutation matrix, …T… D I, and the only non-constant term
remaining in the objective is the second linear term. Problem (10.11) thus becomes

max
…

tr
�
…TE

�
; (10.14)

where E D A0BT D ACBT and the maximization is performed over permutation
matrices. To make it practically solvable, we allow … to be a double-stochastic
matrix, which yields the following linear assignment problem:

max
…�0

vec.E/Tvec.…/ s:t:
�
…1 D 1
…T1 D 1:

(10.15)

We refer to problem (10.11) as permuted sparse coding, and propose to solve
it by alternating the solution of the standard sparse coding problem (10.12) and
the solution of the linear assignment problem (10.15). The sparsity constraint has
a regularization effect on this, otherwise extremely ill-posed, problem, and the
following strong property holds:

Proposition 10.1 The process alternating subproblems (10.12) and (10.15) con-
verges to a local minimizer of the permuted sparse coding problem (10.11).

Due to lack of space, the proof will be provided in an extended version of this
contribution. This result means, among other, that despite the relaxation of the per-
mutationmatrix to a double-stochasticmatrix in the assignment subproblem (10.15),
we are actually recovering a true permutation matrix. This follows from the total
unimodularity of the constraints in (10.15).

We further conjecture that when the solution of (10.12) attains a sufficiently
small value of the data fitting term (the `2 term), global convergence to a unique
minimizer can be guaranteed under non-restrictive technical assumptions. While we
do not yet have a formal proof for this empirically observed behavior, we believe
that techniques similar to [1] can be used to prove this conjecture.



220 J. Pokrass et al.

10.3.2 Robust Permuted Sparse Coding

So far, we have assumed the existence of a bijective, albeit unknown, correspon-
dence between the fi’s and the gj’s. In practice, the process detecting these functions
(e.g., stable regions) is often not perfectly repeatable. In what follows, we will make
a more realistic assumption that q functions fi are detected on X, and r functions
gj detected on Y (without loss of generality, q � r), such that some fi’s have no
counterpart gj, and vice versa. This partial correspondence can be described by a
q � r partial permutation matrix … in which now some columns and rows may
vanish.

Let us assume that s � q fi’s have corresponding gj’s. This means that there is no
correspondence between r� s rows of B and q� s rows of A, and the relation…B �
AC holds only for an unknown subset of its rows. The mismatched rows of B can be
ignored by letting some columns of… vanish, meaning that the correspondence is no
more surjective. This can be achieved by relaxing the equality constraint …T1 D 1
in (10.15) replacing it with …T1 � 1. However, dropping injectivity as well and
relaxing…1 D 1 to…1 � 1would result in the trivial solution… D 0. To overcome
this difficulty, we demand every row of A to have a matching row in B, and absorb
the r � s mismatches in a row-sparse q � n outlier matrix O that we add to the data
term of (10.11). This results in the following problem

min
C;O;…

1

2
k…B � AC � Ok2F C �kW ˇ Ck1 C �kOk2;1; (10.16)

which we refer to as robust permuted sparse coding. The last term involves the `2;1
norm

kOk2;1 D
rX

iD1
koTi k2; (10.17)

which can be thought of as the `1 norm of the vector of the `2 norms of the rows
oTi ofO. The `2;1 norm promotes row-wise sparsity, allowing to absorb the errors in
the data term corresponding to the rows of A having no corresponding rows in B;
the parameter � � 0 controls the amount of regularization. The q � r matrix … is
searched over all injective correspondences.

As before, problem (10.16) is split into two sub-problems, one with the fixed
permutation…,

min
C;O

1

2
kB0 � AC � Ok2F C �kW ˇ Ck1 C �kOk2;1; (10.18)

with B0 D …B, and the other one with the fixed C,

max
…�0

vec.E/Tvec.…/ s:t:
�
…1 D 1
…T1 � 1;

(10.19)
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with E D .AC/BT. Note that an injective correspondence is relaxed into a row-
wise stochastic and column-wise sub-stochastic matrix …. Proposition 10.1 simply
extends to the robust formulation as well.

10.4 Numerical Solution

The solution of the robust permuted sparse coding problem (10.16) is reduced to
alternating two relatively standard optimization problems, and there exist many
readily available efficient numerical tools to solve them. For the sake of complete-
ness, we provide a concise description of the involved numerics.

Problem (10.19), being a simple linear assignment problem, is solved using the
Hungarian algorithm. As an alternative, linear programming can be employed. To
reduce the search space size, we disallow certain impossible permutations such as
those relating regions with very distinct sizes.

In order to solve (10.18), we use the family of forward-backward splitting
algorithms [24] designed for solving unconstrained optimization problems in which
the cost function can be split into the sum of two terms,

min
x

h1.x/C h2.x/; (10.20)

one, h1, convex and differentiable with an ˛-Lipschitz continuous gradient and
another, h2, convex extended real valued and possibly non-smooth. Clearly, prob-
lem (10.18) falls in this category.

The forward-backward splitting method with fixed constant step defines a series
of iterates, fxkgk,

xkC1 D P˛h2

�
xk � 1

˛
rh1.xk/

�
; (10.21)

where

P˛h2 .x/ D argmin
u

ku � xjj22 C ˛h2.u/ (10.22)

denotes the proximal operator of h2. Many alternatives have been studied in the
literature to improve the convergence rate of forward-backward splitting algorithms
[4, 24]. Accelerated versions reach quadratic convergence rates (the best possible
for the class of first order methods). The discussion of theses methods is beyond of
the scope of this paper.

In our case, the objective comprises a quadratic function h1 D kB0 � AC � Ok2F
and the non-smooth function h2 D �kW ˇ Ck1 C �kOk2;1. The proximal operator
splits into two operators, one in C and another one in O, both having closed forms.
The proximal operator corresponding to the `1 norm term is given by the weighted
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input : Data B0;A; parameters �; �; step size ˛.
output: Sparse matrix O and row-wise sparse outlier matrix O
Initialize O0 D B0 and C0 D 0.
for k=1,2,. . . ,until convergence do

CkC1 D P1

�
.I � 1

˛
ATA/Ck � 1

˛
AT.Ok � B0/

�

OkC1 D P2

�
.1� 1

˛
/Ok � 1

˛
.ACk � B0/

�

end
Algorithm 1: Forward-backward splitting method for the solution of (10.18)

soft threshold function

P1.C/ D max

�
jCj � �

˛
W

�
ˇ sign.C/; (10.23)

where the absolute value and the sign functions are applied element-wise. The i-th
row of the proximal operator corresponding to the `2;1 norm term is given by

.P2.O//i D max
n
koTi k2 � �

˛

o oTi
koTi k2 : (10.24)

The gradient of the quadratic data term with respect to C and O is given
straightforwardly by

rCh1 D ATAC C ATO � ATB0

rOh1 D O C AC � B0: (10.25)

The Lipschitz constant of the gradient determining the step size is bounded by the
maximum eigenvalue

˛ � �max

�
ATA AT

I A

�
: (10.26)

Plugging the above expressions together into (10.21) yields the forward-backward
splitting optimization summarized in Algorithm 1.

10.5 Experimental Results

In order to evaluate our approach, we performed several experiments on data
from the TOSCA [7], SHREC’11 [9] and SCAPE [2] datasets. The TOSCA set
contains high-quality (10–50K vertices) synthetic triangular meshes of humans



10 Sparse Models for Intrinsic Shape Correspondence 223

and animals in different poses with known ground truth correspondences between
them. SHREC’11 contains meshes from the TOSCA set undergoing simulated
transformations. The SCAPE set contains high-resolution (12K vertices) scans of a
real human in different poses.

For each pair of shapes we calculated the MSERs using 6–10 eigenfunctions
and selected regions with areas of at least 5–10% of the total shape area, resulting
in about 5–15 detected regions (see Fig. 10.1). These parameters were selected
empirically for our data sets.

The segments of each shape were projected onto 20 eigenfunctions and the corre-
spondingC matrix was calculated by solving the sparse coding subproblem (10.18)
using an accelerated variant of the method described in Sect. 10.4. The linear
assignment subproblem (10.15) was solved using the Hungarian method [19]. We

initialized the permutation matrix with … D 1

q
11T, and the correspondence matrix

with C D 0. We observed a rapid convergence of the alternating minimization
procedure in one or two iterations (see Fig. 10.2 where for visualization purposes,
… was initialized to identity). We found that the method consistently converged to
the same solution regardless of the initialization. Finally, after convergence of the
alternating minimization, the resulting C was refined using the method described in
Sect. 10.2.2.

The robustness of the method is demonstrated in Figs. 10.3, 10.4, and 10.5;
correct correspondences are computed even when the shapes undergo non-isometric
deformations and are contaminated by geometric or topological noise. In Fig. 10.6,
we used around 45 WKS features detected on two SCAPE shapes, to demonstrate
that our method works equally well with point features. Observe how robust
permuted sparse coding detects and ignores features without matches, and note the

Fig. 10.2 Outer iterations of robust permuted sparse coding alternating the solution of the
sparse representation purusit problem (10.18) with the linear assignment problem (10.19). Three
iterations, shown left-to-right, are required to achieve convergence. Depicted are the permutation
matrix … (first row), the correspondence matrix C (second row), and the outlier matrix O (last
row). The resulting point-to-point correspondence and the correspondence matrix C refined using
the ICP as described in Sect. 10.2.2 are shown in the rightmost column



224 J. Pokrass et al.

Fig. 10.3 Dense point-to-point correspondences obtained between the left TOSCA human shape
and its approximate isometries. Corresponding points are marked with consistent colors. The
average correspondence distortion is depicted in units of the reference shape diameter. The highest
distortions are obtained on the non-isometric joints, but do not exceed 6% of the diameter

Fig. 10.4 Dense point-to-point correspondences obtained between the left SCAPE human shape
and various other poses. Corresponding points are marked with consistent colors

Fig. 10.5 First row: point-to-point correspondences obtained between different non-isometric
shapes: male and female (left); two strongly non-isometric deformations of the dog shape from
the TOSCA set (middle); TOSCA and SCAPE human shapes (right). Second row: Point-to-point
correspondences obtained between SHREC shapes undergoing nearly isometric deformations and
(from left to right) spike noise, Gaussian noise, and topological noise in the form of large and small
holes
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Fig. 10.6 Top: dense point-to-point correspondences obtained between two SCAPE human shapes
using 45 and 43 WKS point features (rejected features are marked in red). Corresponding points
are marked with consistent colors. Bottom, left-to-right: recovered permutation matrix… (rejected
matches are marked in red); outlier matrix O; and correspondence matrix C

effect of such outliers on the matrices … and O. Figure 10.7 shows a quantitative
evaluation and comparison of our algorithm to other correspondence algorithms on
the SCAPE data set. The evaluation was performed using the code and data from
[18]. Comparison to [26] was performed in two settings: In the first setting, k D 20

basis functions were used with indicator functions of the detected stable regions
(about ten regions per shape). In the second setting, k D 100 harmonics were
used, and 200 wave kernel maps were automatically generated for each region,
following verbatim [26]. Our method outperforms existing methods while using
less information. Finally, Fig. 10.8 shows the failure of our approach for very non-
isometric shapes.
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Fig. 10.7 Quantitative evaluation of the proposed permuted sparse coding (PSC) shape correspon-
dence algorithm and its comparison to other correspondence algorithms on the SCAPE shapes
using the evaluation protocol from [18]. Compared are Ovsjanikov et el. original method [26]
(OBSC), and blended maps [18]

Fig. 10.8 Dense point-to-point correspondences obtained between the left TOSCA human shape
and various other non-isometric shapes. The approach fails for significantly non-isometric shapes
due to deviation from the diagonal form of C

The code used in the experiments was implemented in Matalb with parts written
in C. The approximate nearest neighbor search in the ICP refinement step was
accelerated using the FLANN library. The experiments were run on a 2.4GHz Intel
Xeon CPU. End-to-end execution time varied from 10 to 50 s, with the detailed
breakdown summarized in Table 10.1.
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Table 10.1 Average runtime (in seconds) as a function of the shape size for different stages in
the proposed method: Basis – harmonic basis computation; MSER – region detection; Opt. – alter-
nating minimization procedure; Ref. – ICP-based refinement and point-to-point correspondence
computation; Tot. – total runtime

Vertices Basis MSER Opt. Ref. Tot.

5K 0.53 0.61 7.80 1.41 10.35
10K 0.99 1.32 7.91 2.70 12.92
20K 2.03 3.58 7.91 5.52 19.04
50K 5.57 14.23 7.85 13.99 41.64

10.6 Discussion and Conclusion

In this paper, we posed the problem of finding intrinsic correspondence between
near-isometric deformable shapes as a problem of sparse modeling. Given only two
sets of regions in the two shapes with unknown correspondence, we are able to
infer a dense correspondence between the shapes from two assumptions: that at
least some of the regions in the two sets are corresponding; and that the shapes are
nearly-isometric. The latter assumption implies that in functional representation in
harmonic bases the unknown correspondence between the shapes is modeled as a
sparse nearly-diagonal matrix; the former assumption implies that there exists an
unknown permutation that reorders the regions in corresponding order. To find both
the permutation and the correspondence, we formulate the novel permuted sparse
coding problem and propose its efficient solution. An additional sparse coding
term addressing outliers is added to the model for handling partial matching and
formulated as the robust permuted sparse coding.

To the best of our knowledge, among other dense correspondence techniques,
our method relies on the smallest amount of information (the ability to find
some repeatable regions) and quite generic assumption (near-isometric shapes). In
particular, it allows us to use only a region detector without a feature descriptor to
find a high-quality correspondence between two shapes.

We note that, as in [26], we explicitly assume that the shapes are nearly isometric,
and that their Laplacians have simple spectrum. This assumption assures that the
Laplacian eigenbases ˆ and ‰ have a compatible behavior, and as a result C has
a nearly-diagonal structure. If we try to relax the restriction on multiplicity, C will
still be sparse, but with unknown sparse structure. We can still use our problem in
this setting, imposing a different sparsity constraint on C.

Relaxing the assumptions even more, we can depart from the near-isometric
model, e.g. considering applications where one wishes to match shapes with roughly
similar geometry but very different details (such as a horse and an elephant). In such
a generic setting, the Laplacian eigenbases may differ dramatically, and thusC have
a non-sparse structure. It is possible to incorporate the bases ˆ and ‰ as variables
into our problem, and in addition to finding the permutation… and correspondence
C find also the bases in which C will have a diagonal structure. This problem
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is akin to dictionary learning used in the sparse modeling literature. In future
research, we will study such a generalization of our framework in the hope to find
correspondences between non-isometric shapes. Another possible generalization of
our problem is for finding correspondence between collections of shapes [18, 25].

It is also worthwhile noting that the novel structured sparse modeling techniques
introduced in [32] provide an alternative to the optimization-based pursuit by
replacing the iterative proximal algorithm with a learned fixed-complexity feed-
forward network. Approaching shape correspondence as a learning problem from
this perspective seems a very attractive future research direction.

Finally, being purely intrinsic, the described correspondence computation algo-
rithms are agnostic to intrinsic symmetries [29], i.e., automorphisms that do not
affect the manifold metric. Incorporating extrinsic information such as the direction
of the normal to the surface, or adding knowingly corresponding seed points [1] can
resolve these ambiguities. We leave these issues for future research.
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