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Preface

In everyday life, geometric shapes surround us, and thus the field of shape analysis
has a growing variety of applications, including ergonomic design, virtual shopping,
scientific and medical visualization, realistic simulation, photo-realistic rendering,
the design of natural user interfaces, and semantic scene understanding. The
efficient processing of shapes and the discovery and investigation of informative
representations for shapes are core tasks in the context of shape analysis research.

Traditionally, the notion of shape has been studied either by analyzing a sparse
set of marker positions on three-dimensional (3-D) shapes, primarily for medical
imaging applications, or by analyzing projections of shapes in 2-D images, chiefly
for image processing and computer vision applications. New challenges in the anal-
ysis and processing of such data arise with the increasing amount of data captured
by sensors used to acquire shapes, and with modern applications such as natural
user interfaces that require real-time processing of the input shapes. Recently,
it has also become increasingly affordable to digitize 3-D shapes using multiple
modalities, such as laser-range scanners, image-based reconstruction systems, or
depth cameras like the Kinect sensor. Using these dense 3-D shapes in the above
mentioned applications calls for processing and describing the shapes in an efficient
and informative way.

The purpose of this book is to highlight recent advances that address these
challenges from different perspectives with the help of the latest tools for geometric,
algorithmic, and numerical concepts. As the analysis of 3-D shapes and deformable
shape models has received considerable attention recently, classic shape analysis
tools from differential geometry now have a fresh influence on the field. As they
address the issue of how to represent shapes efficiently, the research areas of sparse
data representation and machine learning have begun to influence shape analysis
modeling and the numerics. Especially in the context of three-dimensional data (or
even higher-dimensional data sets), efficient optimization methods will certainly
become increasingly important, since many shape analysis tasks can be formulated
as optimization problems. As the efficiency of shape analysis methods is of general
importance in all of these fields as well as for the evolution of classic approaches,
we also examine numerical computing as an important research theme.

vii
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As is typical for many fields within image processing, it is often impossible to
distinguish a single aspect of the topics mentioned above as a given article’s main
contribution. For instance, a model for deformable shapes can be at the heart of a
novel optimization approach derived from a sparsity concept, which in turn gives
rise to an efficient computational model. Especially, the development of new model
formulations is closely related to computational approaches. Naturally, this is also
the case with regard to the contributions in this volume. Nevertheless, we have
sought to emphasize the importance and originality of certain core developments
by grouping the content into the following main areas:

Part I: Numerical computing for shape analysis
Part II: Sparse data representation and machine learning for shape analysis
Part III: Deformable shape modeling

Let us now give a brief account of the themes represented in the respective
chapters.

A typical task in shape analysis is the segmentation of objects in images.
With regard to the numerical computation of proper image segmentations, various
approaches have been proposed in the literature. In the first chapter, a classical
method for this purpose is reexamined, using the screened Poisson equation as a
computational basis. The model is given via a partial differential equation (PDE)
and, in this chapter, is employed for the purpose of ornament analysis.

The book then goes on to explore another PDE-based approach, this time to the
classical shape-from-shading (SFS) problem. In contrast to the first chapter, where
the elliptic Poisson equation was at the heart of the developments, here hyperbolic
PDEs are addressed. The semi-Lagrangian method employed for the computations
in the second chapter offers an efficient method for this purpose.

In turn, the third chapter shows how to make use of robust variational approaches
to deal with the SFS problem. The computational problem that arises here in the
corresponding energy minimization problem is based on solving a parabolic PDE
for its elliptic steady state, and in the discrete scheme, also typical components from
hyperbolic numerics are also employed. Therefore, the first three chapters nicely
show that in today’s shape analysis, models of all three fundamental types of PDEs
and corresponding computational approaches are important.

Turning to the fourth chapter, which concerns morphological amoebas, again
a method useful for segmentation is investigated. Let us emphasize that here the
mathematical basis is provided by differential geometry. From a computational point
of view, the adaptive amoeba construction shows a strong relation to nonstandard
discretizations of the arising PDEs. Here, the task of the numerical description
of image content such as texture, and of shapes themselves, is intimately related
to segmentation ideas. These aspects are addressed in both Chaps. 4 and 5, while
methodically we now turn from PDE-based methods to other approaches.

Chapter 5 especially focuses on numerical shape characteristics that have an
intuitive meaning and are useful for building shape discriminators and classifying
shapes. The latter issue is also part of the objective of Chap. 6, where the effect of
shape distances in an energy minimization method is studied. At a technical level,
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in this chapter we arrive very obviously at optimization methods. Here a specific
trust region scheme is at the heart of the investigation, and the different shape
distances are shown to define distinct trust regions. In the spectral method used
for segmentation of point clouds in RGB-D data in Chap. 7, a large optimization
problem is tackled via the numerical solution of the generalized eigenvalue problem
for a specific graph Laplacian.

Summarizing Part I, we conclude that computational methods for PDEs and
optimization problems are essential tools in the field of shape analysis. It is
extremely difficult to say which techniques are the most prominent ones, as a
large variety of different problems appear. We feel this is an intriguing aspect of
shape analysis, as it leaves the field open for introducing advances from many
branches of computational mathematics. Let us also note that, on a technical level,
approaches for reducing the size of computational problems are also often employed
(as especially apparent in Chap. 7). All these modeling and computational tools
naturally resurface in several parts of this book.

Turning to Part II of this volume, a prominent aspect in the corresponding
chapters when compared to those of Part I is that fully discrete concepts that lead
to efficient shape representations are investigated, e.g., with the aim of reducing
storage or for constructing shape abstractions (Chap. 8). In comparison to the works
of Part I, this is especially important for analyzing 3-D shapes, which appears natural
as the additional third dimension leads to large data sets, making it all the more
important to reduce the data load. The topology of 3-D shapes is investigated in
Chap. 9 via Morse theory, while the correspondence between sparse 3-D shapes,
exploring shape similarity and also referring to deformable shape models, is the
subject of Chap. 10. Concepts from machine learning and related optimization tools
in the context of deformable shapes are also explored in Chaps. 11 and 12. Lastly,
Chap. 12 discusses the extensive use of machine learning techniques for 2-D images.

Summarizing the key points from Part II, one may note that the sparsity and
machine learning techniques explored here are naturally intimately related to the
arising optimization methods and numerical computing, while some of the models
are concerned with deformable shapes, as they deal with shape correspondence
methods. However, we chose to group these works here in a separate section, given
the high significance of introducing machine learning and sparsity concepts into
these fields.

Coming finally to Part III, we show here that the field of deformable shapes is
already rich in terms of the different aspects that can be explored, complementing
and completing the previous works in the other parts of this volume. Beginning
with correspondences between deformable shapes in the spectral domain (Chap. 13),
which also connects to Chaps. 10 and 11, we turn to the use of morphable shape
models in computer vision in Chap. 14. The use of multimodal data for shape
recognition, as well as a related use of machine learning methods, is explored in
Chap. 15. Moreover, one may find that the concept of a morphable model is related
to the template fitting approach explored for shape analysis in MRI data in Chap. 16.

Summarizing important concepts from Part III, one may note that deformable
shape modeling includes the important problems of correspondence computation
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and statistical analysis and directly relates to a diverse range of applications. One
recent trend is to extend classic applications of shape analysis techniques to cover
new applications in other fields of science. An example of this is the application of
shape analysis methods in computational linguistics and speech science in Chaps. 15
and 16.

The content of this book represents the contributions of respected experts in the
field of shape analysis that highlight different new perspectives on the mentioned
tasks. A key aspect of this book that sets it apart from other volumes is that it
includes both discrete and continuous settings in shape analysis, as both are relevant
for the modeling and processing of shape representations.

This volume originated in the inspiring research discussions that took place at
a Dagstuhl seminar in February 2014. Both new scientific results and tutorial-style
chapters that survey recent aspects in the field are included. As the demands in
the individual fields are high, the research groups in which the most interesting
techniques are proposed are highly specialized. This not only holds true for discrete
and continuous-scale modeling and numerical computing but also for the areas
of sparsity and machine learning highlighted here. Thus, in spite of the strong
interconnections between the works as they are represented in this volume, at the
moment there is no regular conference that could produce such a dedicated book.

It was a great pleasure to exchange scientific ideas with all of our colleagues who
participated in the Dagstuhl seminar on New Perspectives in Shape Analysis and
contributed to this volume. We hope that this collection will inspire new research
ideas and promote further collaboration.

Cottbus, Germany Michael Breuß
Haifa, Israel Alfred Bruckstein
Athens, Greece Petros Maragos
Grenoble, France Stefanie Wuhrer
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Chapter 1
Ornament Analysis with the Help of Screened
Poisson Shape Fields

Sibel Tari

Abstract In this chapter, some thought-provoking application problems in Orna-
ment Analysis are examined. Fields constructed via Screened Poisson Equation
are used as intermediate level representations towards developing solutions. In the
considered problems, the fields serve to a variety of purposes – i.e., to embed critical
point detection process into a suitable morphological scale space, to regularise an
ill-posed search problem, and finally to integrate features in a context – extending
the visual functions of the Screened Poisson Equation based shape fields.

1.1 Introduction

Ornaments are a part of human culture, independent of time and location. In modern
times, as important as ever, an ornament is a beautiful link between art and science.
In this chapter, I consider some problems in Ornament Analysis.

Towards developing solutions to selected problems, shape fields governed by
the Screened Poisson Equation serve as intermediate level representations. Hence,

S. Tari (�)
Middle East Technical University, 06800 Ankara, Turkey
e-mail: stari@metu.edu.tr

© Springer International Publishing Switzerland 2016
M. Breuß et al. (eds.), Perspectives in Shape Analysis, Mathematics
and Visualization, DOI 10.1007/978-3-319-24726-7_1

3

mailto:stari@metu.edu.tr


4 S. Tari

before discussing the problems, let us define Screened Poisson Shape Fields.
Imagine a drawing on a frame. Let the frame be ˝ � R2, and the drawing be
g W ˝ ! f0; 1g. Consider v W ˝ ! R governed by

�v � v

�2
D 0 (1.1)

vjf.x;y/ s:t: g.x;y/D1g D 1 and

@v

@n
j@˝ D 0

where
1

�2
is the screening parameter. The value of v is approximately equal to e

� jdj

�2 ,

d is the distance from .x; y/ to the nearest point where g.x; y/ D 1. Thus, ��p
ln v

defines a smooth distance field where the parameter � controls both the smoothing
and the decay. It has been further shown that v is an implicit coder of the level curve
curvature [12]:

v.x; y/ � �

�
1C �

2
curv.x; y/

�
@v

@n
C O

�
�3
�

(1.2)

Implicitly coding curvature is the main difference of the v-field (Screened Poisson
Shape Field) from the simple distance transform.

The v-field has been employed for solving shape related tasks since mid
1990s [10, 11]. It has been proposed as an intermediate level representation that
bridges filtering and segmentation with shape abstraction [12]. In modified forms,
it has been used to address local-to-global integration issues and multi perspective
partitioning of shapes [8, 9].

In the ornament analysis problems considered in this chapter, the v-fields are
used to embed critical point detection process into a suitable morphological scale
space [5], to regularise an ill-posed search problem where the goal is to locate a
subpart in crowded drawings [2, 6], and finally to integrate features in a context.
The considered problems significantly extend the utility of Screened Poisson based
shape fields.

The rest of the material is organised as two sections. In Sect. 1.2, parts in an
ornament – be it a single shape drawn with a creational brush or a tile containing
parts hidden in a context – are searched. In Sect. 1.3, structure discovery in tiles are
addressed by integrating features from local to global.

1.2 Creative Design with Shapes: Seeing a Part

Consider the task of creating new designs starting from an existing one. In [7], Stiny
argues that creative design is merely a cut-and-paste process. The creative element
is in the process of seeing the right part to be cut (Fig. 1.1). That is towards the grand
goal of modelling creative design, a basic question is which part of the whole is to
be selected.
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Fig. 1.1 From one design to another. Design as cut-and-paste (Adopted from [7])

Fig. 1.2 A letter T drawn using an ornamental font

1.2.1 Natural Break Up Locations

A highly popular view since Attneave [1] is that the wholes break up to natural parts
at the critical points such as corners, curvature extrema, intersection points and end
points. Following this line of thinking, several computational methods for detecting
curvature related criticalities in line drawings are developed. These computational
methods can be used for cutting out the curved triangle in Fig. 1.1. But they fail if
the drawing is produced using creational brushes or ornamental fonts (Fig. 1.2).

In [5], we proposed an alternative route for detecting natural break points. Rather
than measuring bending, we measured the deviation at each point on the drawing
from a reference drawing that is provided externally. The reference drawing is a
straight cut out from the original drawing as in Fig. 1.2. It is also possible to select
the reference drawing externally as a regular straight line. In such case, due to the
selection of the reference drawing, the deviation correlates with the curvature.

Our method is as follows: we compute v fields for both the original drawing
and the reference drawing, i.e. straight line segment drawn in ornamental pattern.
Offline, by placing ellipse and disk shaped windows of varying sizes centered at the
middle of the reference drawing, we collect statistics on v. The search for critical
break up points is performed as a two step iterative refinement process. In the first
step, starting with a large size ellipse-shaped window, each location on the drawing
for which the field statistics deviates from the stored reference statistics is marked
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as critic. Then the critic points are grouped into chunks based on connectivity
(Fig. 1.3 the top row). Then at the centre of each chunk a disk-shaped window of
which size is proportional to the area of the chunk is placed (Fig. 1.3 the bottom
row). In the second step, contents of the field inside the disk-shaped windows are
compared to the contents of the respective windows on the reference field. If the
deviation is significant, the process returns to the first step with a reduced size for
the ellipse-shaped window; the size reduction is proportional to the deviation. If,
however, the deviation in the second step is not significant, the iterations stop. The
size of the disk-shaped window of the last iteration is taken as the critical window
size meaning the smallest window size below which the pattern as seen from an
aperture no longer deviates from the so called straight line. This procedure returns
quite consistent results if the goal is to break up the whole via the so called critical
points (Figs. 1.4 and 1.5).

Even if the method is applied in the usual setting where the drawing is drawn
using regular pen, our approach has significant advantages from a computational
point of view. First of all, through the introduction of straight-line reference as
an external drawing, we eliminate the need to develop discrete counterparts of the
continuous concepts of curvature, bending, and points being on a line. Second of
all, because both the analyzed drawing and the external reference are objects of
the same type, i.e., images, it becomes easier to compare them. They can also be
compared in a scale space. In the suggested framework there are three intertwined
scales. One being related to the local scope (aperture), the other two to the diffusion
of the pattern. Inside each window, the level curves of the v-field are successively

Fig. 1.3 A demonstration of the iterative process [5]

Fig. 1.4 Sample results [5]
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Fig. 1.5 Sample results with Photoshop brush effects. The top row depicts critical locations
detected from a line drawing drawn using a variety of effects via Photoshop. The bottom row
depicts zoomed cuts from the top left corner of each figure in the top row. The effects are Ripple
(left), Glass (middle), and Stroke (right). More examples are in [5]

r = 4 r = 64 r = 4 r = 64

Fig. 1.6 For a cat drawn on a rectangular frame, two v fields with � D 4 and 64. The one
parameter family defines a 2D scale space representation of the cat boundary – coarsening in the
direction of increasing � and increasing v. The plots on the right are the level curves of v. The cat
boundary is depicted by the black curve

evolved (mimicking diffusive erosion) versions of the drawing with the speed of
diffusion related to the screening parameter � (Fig. 1.6). The diffusive effect is to a
large extent responsible for the robustness of the method.

On convergence, each detected location is equipped with a representative “scale”,
the aperture size below which the pattern as seen through the aperture no longer
deviates from the reference. This final scale is quite consistent within critical points
of the same type. For example, in Fig. 1.4, observe that the final windows of
equivalent criticalities are consistent. For sharp points, the lower the curvature the
larger is the window. Furthermore, the three end points of letter T, the two round
corners of the heart shape, the six corners the six-pointed star in the hexagram,
or the six corners of the inscribed hexagon are all consistent. These consistently
detected points may facilitate a passage from one motif to another as the sample
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demonstration in the front page depicts. The D3 shape (dihedral symmetry group
of order 3) in the second column is constructed using very simple rules. Each pair
of straight line segments linking the six corners the six-pointed star – one type of
criticality in the initial motif – is replaced with a curved line and the line segments
connecting the six points of the hexagon – the second type of criticality in the initial
motif – are deleted. In the third column, the D3motif is repeated to fill the plane and
the resulting ornament is coloured with the help of the level curves of the v-field.

1.2.2 Embedded Parts

In some situations, the so-called natural break points lose relevance (Fig. 1.7). There
are many examples both in art and Gestalt psychology where simple shapes are
embedded in more complex organisations [4], a variety of visual puzzles for children
and a whole genre of artistic expression around the basic idea of intentionally hidden
shapes. Psychologists study embedded shapes for possible correlation between
a person’s creativity and his/her ability to eliminate the distracting influence of
context.

In Fig. 1.7, two sample designs containing embedded shapes are depicted. The
figure on the left has been designed by a colleague M. Ozkar based on an actual
carving from Seljuk times in Anatolia [6]. The figure on the right contains a hidden
clover [2].

In the case of embedded parts, because the natural break points lose relevance,
the most viable option appears to be to know what one is looking for. Technically,
this reduces the problem to template matching. The intended fragment needs to be
matched to the entire drawing. The search for the pose, scale and location can be
formulated as an optimisation where the right pose, scale and location parameters
are the ones that maximize the match between the fitted target and the respective part

Fig. 1.7 Embedded shapes. Natural break points become irrelevant
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of the original drawing. But this is an ill-posed problem because local information
is insufficient. Consider searching a pentagon in the design shown in the left in
Fig. 1.7. Let us consider four different hypothesis as shown in Fig. 1.8. Brown
hypotheses yield lower matching cost compared to blue hypotheses, even though
the later ones are better fits. This is because most of the pixels on the design plane
are background pixels and contain no information. A point is either on the drawing
or not.

Our solution to this problem is to assign values coding features of the design to
the informationless background pixels. We achieved this via v-fields since a v-field
value at a point depends on the distance of the point to the nearest point on the
design as well as the curvature at the nearest point [11]. A sample result where we
searched a winding line in the previous design is shown in Fig. 1.9. The key point,
here, is to use empty background pixels to code contextual clues. Value of a v-field
at any background location is an aggregation of information from a certain context

Fig. 1.8 Comparing four hypothesis when searching a pentagon

Fig. 1.9 Finding an embedded part. The winding line on the top left is being searched on the
pattern shown in red box. The best outcome of the search process is shown on the right [6]
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capturing interaction among a pair of locations and their surrounding; it codes the
distance to the nearest point on the drawing as well as the curvature feature at that
point. We have also experimented with alternative approximate fields in figure hunt
[2, 3].

In the hands of a skilled design person, our method and the accompanying
software [6] is a powerful tool (Fig. 1.9). But it can also be useful for the not-so-
skilled, as demonstrated in the next section for the task of structure discovery in
tiles.

1.3 Structure Discovery in Tiles

Tiles are stunning ornaments constructed by repeating one or more shapes. A tile
has two complementary sides, one being mechanic, the other one being artistic. The
shapes drawn (motifs) form the artistic side, and the way they are repeated form the
mechanic side. The scientific study of tiles is the study of the repetition structure,
the mechanic side.

1.3.1 Repeated Search

In Fig. 1.10, the outcomes of two experiments where two target figures are repeat-
edly searched in the previous ornament. Repeated embeddings weighted by the
number of hits are displayed. Neither of the target figures are special. The first target
is a small cut-out from the original design. The second target is a pentagram, which
is not even a part of the original design. (Indeed, use of the pentagram as a target
is suggested by M. Ozkar, the colleague who had drawn the design.) Yet, repeated
embedding reveals structures and nodes that are not easily perceivable to the naked
eye, hence, sheds light into the repetition process.

Fig. 1.10 Repeated embedding reveals structure. The probe in the first experiment (middle) is a
cut-out from the original design (left) whereas the one in the second experiment (right) is a generic
shape with five-fold symmetry which is not even an embedded part of the original
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1.3.2 Integrating Mid-level Features in a Context

Each v-field is a member of a one parameter family parameterized by the screening
parameter (Fig. 1.11). Converting a shape (or a design) to v-field is a kind of
feature integration. Individual pixel level information is gathered to form higher-
level information. What is represented by v-value is a complex interaction among
a group of locations and their surrounding. As � increases, the extent of the
surrounding increases. This multi-scale information can be gathered to form higher
level integration where the v-values are integrated. Technically, this can be done in
a number of ways.

That being said, a preliminary experiment is depicted in Fig. 1.12. In this
preliminary experiment, we have collected first and second order statistics and
gradient magnitude information from each of the four Screened Poisson fields
with varying � (Fig. 1.11) to form a 12-dimensional feature vector. We then re-
organize this data by applying dimensionality reduction. For simplicity, we use
multidimensional scaling. As the parameter � can be seen as a spectral variable,
what this organization achieves is spatial-spectral integration. In the figure, the
second component and its thresholded negative values are depicted to convey some

Fig. 1.11 The v-fields for four different values of the screening parameter, � D 2; 4; 8; 16 from
left to right, top to bottom. As � increases global features prevail
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Fig. 1.12 The second component obtained by multi-dimensional scaling of 4 scale 3 measurement
feature vector. The image on the middle depicts the second component in false color. The image
on the right depicts the thresholded negative values of the second component. Best viewed from a
distance

impression. Especially when viewed from a distance, both the second component
and its thresholded form highlight nodes of construction not easily noticeable in the
input design. This is just a preliminary illustration shown as a proof of concept. In
general, the choice of scales as well as the measurements that are employed could
be task-dependent.

1.4 Summary

Two major problems in Ornament Analysis, defining and detecting parts and
discovering structure, are addressed. For each problem, two separate strategies all
using Screened Poisson fields are suggested. For the first problem, the first strategy
is to seek for natural parts whereas the second one is to search a given target. Both
strategies involve the designer in the loop, respectively via the reference line and the
embedded part. The second strategy can be used for structure discovery in tiles via
repetitive search, thus, links the two problems. The key idea in structure discovery
is the integration of local and global information, whether be it using a single field
or a collection of fields with varying screening parameter.
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Chapter 2
A Comparison of Non-Lambertian Models
for the Shape-from-Shading Problem

Silvia Tozza and Maurizio Falcone

Abstract In this paper we present in a unified approach Shape-from-Shading
models under orthographic projection for non-Lambertian surfaces and compare
them with the classical Lambertian model. Those non-Lambertian models have been
proposed in the literature by various authors in order to take into account more
realistic surfaces such as rough and specular surfaces. The advantage of our unified
mathematical model is the possibility to easily modify a single differential model to
various situations just changing some control parameters. Moreover, the numerical
approximation we propose is valid for that general model and can be easily adapted
to the real situation. Finally, we compare the models on some benchmarks including
real and synthetic images.

2.1 Introduction

The three dimensional reconstruction of an object is a topic of great interest in many
different fields of application: from the digitization of curved documents [12] to the
reconstruction of archaeological finds [18]. Other examples come from astronomy
for the characterization of properties of planets or other astronomical entities [20,
31, 47]. Facial recognition of individuals [45] is useful for application to security.

This problem has always attracted a great attention because there is still no
global method for its resolution under realistic assumptions despite the fact that
its formulation is rather simple. The pioneering work of Horn [22] and his activity
with the collaborators at MIT [23, 24] produced first formulation of the Shape from
Shading (SfS) problem in mathematical terms, via a partial differential equation
(PDE) and variational problem. These inspiring works gave rise to many other
contributions (see e.g. the two surveys [15, 61] for an extensive list of references).
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Several approaches to the SfS problem for classical Lambertian surfaces have
been proposed in order to compute a solution. These models mainly belong to two
classes: methods based on partial differential equations (PDEs) and optimization
methods based on the variational approach. In the first class we can find rather
old works based on the method of characteristics and recent works based on the
approximation of viscosity solutions for first order Hamilton-Jacobi equations (for
a comprehensive presentation of the theory of viscosity solutions we refer the
interested reader to the book [4]).

In this work we use the differential approach based on Hamilton-Jacobi equations
trying to solve some non-Lambertian models which have been proposed in the
literature to overcome some of the limitations of the Lambertian model. It is
well known that the classical approach leads to a nonlinear partial differential
equation of the first order (of Hamilton-Jacobi type) and it has been shown that this
problem is ill-posed even in the framework of viscosity solutions (see the seminal
papers by Lions, Rouy and Tourin [30, 43] and also [6, 39]). In fact, there can be
many viscosity solutions (no matter which regularity is required for the solutions)
unless additional conditions/informations are added to the problem or an a-priori
choice is made to compute the maximal solution of the Hamilton-Jacobi equation
(see [8, 9, 15]). This explains the growing importance of a generalization of this
classical problem in order to obtain uniqueness of the solution while reducing the
assumptions on the physical reflectance properties of the objects.
A continuous effort has been made by the scientific community to take into
account more realistic reflectance models [2, 3, 42, 56], different scenarios including
perspective deformations [1, 11, 34, 38, 49, 57] and/or multiple images of the same
object [59, 60]. The images can be taken from the same point of view but with
different light sources as in the photometric stereo method [29, 32, 48, 58] or from
different points of view but with the same light source as in stereo vision [10].
Recent works have considered more complicated scenarios, e.g. when the light
source is not at the optical center under perspective camera projection [26]. It is
possible to consider in addition other supplementary issues, as the estimation of
the albedo [5, 45, 46, 62] or of the direction of the light source that are usually
considered known quantities for the model but in practice are hardly available for
real images. Depending on what we know the model has to be adapted leading to
a calibrated or uncalibrated problem (see [19, 41, 59, 60] for more details). In this
work we will assume that the albedo and the light direction are given.

Our Contribution We want to take into account more realistic models for generic
surfaces with nonuniform reflection properties, which means that the light intensity
of the image does not depend only on the angle between the outgoing normal to
the surface and the light source as in the Lambertian model. In particular, we will
focus our attention on two non-Lambertian models under orthographic projection
originally proposed by Oren-Nayar [35, 36] and by Phong [37]. These models have
been introduced to deal respectively with rough or shiny surfaces and are not well
suited for other surfaces such as objects with multiple materials, human skin or
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glass. Typical examples of rough materials are clay and plaster works whereas
bronze and plastic are shiny materials.

We should mention that other authors have contributed to the SfS problem for
non-Lambertian surfaces. We mention in particular the contributions in [2], who
derived the PDEs associated to several models solving them via a Lax-Friedrichs
Sweeping (LFS) method and in [26] where the Hamilton-Jacobi equations based on
the Oren-Nayar reflectance model appear in spherical coordinate under perspective
camera projection. As we said, here we work in Cartesian coordinate under
orthographic projection to derive the Hamilton-Jacobi equations for the above
mentioned models under general light directions. Some preliminary results just for
the Oren-Nayar problem have appeared in [51] and the Lambertian SfS problem
with oblique light direction has been studied in [17]. Extending these results to
another non-Lambertian model (the Phong model), we will show that the three
models share the same fixed point form so that we can have a unified approach
to their analysis and approximation. Moreover, we propose a semi-Lagrangian
approximation scheme for that general first order PDE, we give evidence that this
scheme converges to the weak solution (in the viscosity sense) of that equation
and we compare the performances of this approximation scheme with other finite
difference solvers. The scheme is also used to test the models on a number of real
and synthetic images in order to understand if the introduction of non-Lambertian
models can be really effective.

Organization of the paper In Sect. 2.2 we present an overview of the most relevant
non-Lambertian models and derive their Hamilton-Jacobi formulation. In Sect. 2.3
we present the semi-Lagrangian schemes for these equations and shortly the Fast
Marching and the Fast Sweeping schemes based on finite difference solver. In
Sect. 2.4 we compare these methods and algorithms on a series of benchmarks on
synthetic and real images. Finally, we conclude with some comments and future
perspectives.

2.2 Some Non-Lambertian Models for the Orthographic SfS

Let us consider a surface given as a graph z D u.x/; x 2 R
2. We will denote by

˝ the region inside the silhouette and we will assume ( just for technical reasons)
that ˝ is an open and bounded subset of R

2. We assume that u.x/ � 0 and
the surface is standing on a flat background (hence u.x/ D 0 on @˝). Note that
non homogeneous Dirichlet boundary condition like u.x/ D g.x/ can be easily
handled in our approach. The function g.x/ will represent the height of the surface
at the boundary of the silhouette. Clearly, this is an additional information which in
general is not available but can be derived, for example, for rotational surfaces or by
symmetry arguments.
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It is well known that the Shape-from-Shading problem is described by the image
irradiance equation introduced by Bruss [7]

I.x/ D R.N.x//; (2.1)

where I.x/ is the normalized brightness of the given grey-value image, N.x/ is the
unit normal to the surface at the point .x; u.x// and R.N.x// is the reflection map
giving the value of the light reflection on the surface as a function of its orientation
(i.e., of the normal) at each point. Note that a more general formulation of the
reflectance function R present in the irradiance equation (2.1) consists of adding
a dependence on x too, in order to include several features like e.g. non uniform
ambient light depending on some diffuse lights in the ambient (that can be generated
by other light sources at finite distance). We will not consider this generalization in
this paper.

For the analysis of the different models, it would be useful to introduce a
representation of the brightness function I.x/ in which we can distinguish different
terms representing the contribution of ambient, diffused reflected and specular
reflected light. We will write then

I.x/ D kAIA.x/C kDID.x/C kSIS.x/; (2.2)

where IA.x/, ID.x/ and IS.x/ are respectively the above mentioned components and
kA, kD and kS indicate the percentages of these components such that their sum
is equal to 1 (we do not consider absorption phenomena). Note that the diffuse or
specular albedo is inside the definition of ID.x/ or IS.x/, respectively. This will allow
to switch on and off the different contributions depending on the model. Let us note
that the ambient light term represents light present everywhere in a given scene. As
we will see in the following sections, the intensity of diffusely reflected light in each
direction is proportional to the cosine of the angle �i between surface normal and
light source direction, without taking into account the point of view of the observer,
but another diffuse model (the Oren–Nayar model) will consider it in addition. The
amount of specular light reflected towards the viewer is proportional to .cos �s/

˛ ,
where �s is the angle between the ideal (mirror) reflection direction of the incoming
light and the viewer direction, ˛ being a constant modelling the specularity of the
material. In this way we have a more general model and, dropping the ambient and
specular component, we retrieve the Lambertian reflection as a special case. In order
to underline the differences, let us briefly sketch the classical Lambertian model (L–
model) and two non-Lambertian models: the Oren-Nayar model (ON–model) and
the Phong model (PH–model). Our goal in this section is to derive the nonlinear
PDEs corresponding to each model.
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2.2.1 Lambertian Model

Let us consider a single light source located at infinity in the direction of the unit
vector !. For a Lambertian surface, which generates a purely diffuse model, the
specular component does not exist. So, the general Eq. (2.2) becomes

I.x/ D kAIA.x/C kDID.x/; (2.3)

whose diffuse component ID.x/ is

ID.x/ D �D N.x/ � !; (2.4)

where �D is the diffuse albedo. Neglecting the ambient component that can be
considered as a constant (i.e. setting kA D 0), recalling that the sum kACkDCkS must
be equal to 1, we obtain that necessarily kD D 1 and we can omit it in the following.
Then, for a Lambertian surface the image irradiance equation (2.1) becomes

I.x/ D �D N.x/ � !; (2.5)

where we assume to know �D (in the sequel we suppose uniform albedo and we
put �D D 1, that is all the points of the surface reflect completely the light that hits
them). For Lambertian surfaces [23, 24], just considering an orthographic projection
of the scene, we can write the model for SfS via a first order nonlinear PDE which
describes the relation between the surface u.x/ (our unknown) and the brightness
function I.x/. The data are the grey-value image I.x/, the direction of the light
source ! and the albedo �D.

Recalling that the normal to a graph is given by

N.x/ D .�ru.x/; 1/=
p
1C jru.x/j2; (2.6)

we can write (2.1) as

I.x/
p
1C jru.x/j2 C Q! � ru.x/� !3 D 0 in ˝; (2.7)

where Q! WD .!1; !2/. This is a Hamilton-Jacobi type equation which does not
admit in general a regular solution. It is known that the mathematical framework
to describe its weak solutions is the theory of viscosity solutions as in [30].
It is important to note that if the light is oblique we have shadows in the image since
the object projects its shadow on the flat background. Then, we can divide the image
into subdomains

˝l � fx W I.x/ > 0g; ˝s � fx W I.x/ D 0g; (2.8)
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which represent respectively the “light” and the “black shadow” regions. Naturally,
˝ D ˝l [ ˝s and we assume for simplicity that the projection of the shadows on
the background also falls in ˝ .

In˝l the equation is always the same, whereas in the “shadow” region the surface
can have any shape since the model is naturally not able to describe the real surface
there. One approach is to deal only with the “light” region setting the equation only
on˝l, however this will require to use oblique boundary conditions (e.g., Neumann
boundary conditions) on @˝l to treat the problem in ˝l because the height there
is not known on @˝l. This can in turn create difficulties in the construction of the
numerical algorithm since the curved boundary of˝l can be nonsmooth and can be
efficiently approximated only via a triangulation (which collides with the use of a
simple structured grid).

Our approach (see [17] for details) includes the region˝s in the computation by
defining there a virtual surface which replaces the unknown surface corresponding
to the “black shadow” region. Conventionally, we will substitute it to the surface
generated by the “separation plane” (or “shadow plane”), i.e. the plane separating
light from shadow. That plane has the same direction of !. This means that in ˝s

we have to solve the equation

.!1; !2/ � ru.x/� !3 D 0; x 2 ˝s: (2.9)

Note that the irradiance equation coincides with (2.9) since I D 0 in ˝s. Then,
we can use the same equation everywhere in ˝ avoiding in this way the use of
boundary conditions on ˝l, i.e. we can write the global problem as

(
I.x/

p
1C j ru.x/ j2 C .!1; !2/ � ru.x/� !3 D 0; x 2 ˝;

u.x/ D 0 x 2 @˝: (2.10)

Writing the surface as S.x; z/ D z � u.x/ D 0 for x 2 ˝; z 2 R, we can obtain a
more compact form for (2.10). In fact, rS.x; z/ D .�ru.x/; 1/ and (2.10) becomes

�
I.x/ j rS.x; z/ j �rS.x; z/ � ! D 0; x 2 ˝;
u.x/ D 0 x 2 @˝: (2.11)

Using the equivalence j rS.x; z/ j� max
a2@B3.0;1/

fa � rS.x; z/g, we get

max
a2@B3.0;1/

f .I.x/a1 � !1; I.x/a2 � !2; I.x/a3/ � rS.x; z/g D !3: (2.12)

For analytical and numerical reasons it is useful to introduce the exponential
Kružkov transform �v.x/ D 1 � e��u.x/. By this change the variable v.x/ will
assume values only in Œ0; 1=�� whereas u is in principle unbounded. So the change
of variable avoids the risk of an overflow in the approximation. Note that here �
is a free positive parameter without a specific physical meaning, but it is important
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because varying its value it is possible to modify the slope (the slope increases for
increasing values of �). Clearly, once v is obtained we can always get back to the
original surface u simply setting u.x/ D � ln.1��v.x//=�. By the above approach
we can write (2.10) in a fixed point form in the new variable v as

(
�v.x/ D min

a2@B3
fbL.x; a/ � rv.x/C f L.x; a; v.x//g; for x 2 ˝;

v.x/ D 0; for x 2 @˝;
(2.13)

where bL W ˝ � @B3.0; 1/ ! R
2 and f L W ˝ � @B3.0; 1/� Œ0; 1=�� ! R are defined

as

bL.x; a/ WD 1

!3
.I.x/a1 � !1; I.x/a2 � !2/ ; (2.14)

f L.x; a; v.x// WD � I.x/a3
!3

.1 � �v.x//g C 1; (2.15)

where B3 denotes the unit ball in R
3 and @B3.0; 1/ its boundary.

2.2.2 Oren-Nayar Model

The diffuse reflectance ON–model [35, 36] is an extension of the previous L-
model which explicitly allows to handle rough surfaces. The idea of this model
is to represent a rough surface as an aggregation of V-shaped cavities, each with
Lambertian reflectance properties (see Fig. 2.1a).

The ID brightness equation for the ON–model [36] is given by

ID.x/ D �D cos.�i/.A C B sin.˛/ tan.ˇ/maxŒ0; cos.'r � 'i/�/ (2.16)

Fig. 2.1 Description of the ON–model (Figure adapted from [25]). (a) Facet model for surface
patch dA consisting of many V-shaped Lambertian cavities. (b) Diffuse reflectance for the ON–
model
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where

A D 1 � 0:5 �2.�2 C 0:33/�1 (2.17)

B D 0:45�2.�2 C 0:09/�1: (2.18)

Note that A and B are two nonnegative constants depending on the statistics of the
cavities via the roughness parameter � that we can imagine to take values between 0
and 	=2, representing the slope of the roughness for the surface considered. In this
model (see Fig. 2.1b), �i represents the angle between the unit normal to the surface
N.x/ and the light source direction !, �r stands for the angle between N.x/ and
the observer direction V, 'i is the angle between the projection of the light source
direction ! and the x1 axis onto the .x1; x2/-plane, 'r denotes the angle between the
projection of the observer direction V and the x1 axis onto the .x1; x2/-plane and the
two variables ˛ and ˇ are given by

˛ D max Œ�i; �r� and ˇ D min Œ�i; �r� : (2.19)

For smooth surfaces, we have � D 0 and the ON–model becomes identical to
the L–model. In the particular case ! D V D .0; 0; 1/, or, more precisely, when
cos.'r � 'i/ 	 0, the equation simplifies and reduces to a L–model scaled by
the coefficient A. This happens for example when the unit vectors ! and V are
perpendicular so that cos.'r �'i/ D �1 or, more in general, when the scalar product
between Q! D .!1; !2/ and QV D .V1;V2/ is equal to zero. Therefore the ON–model
is more general and flexible than the L–model.

Also for this diffuse model we neglect the ambient component. Then, we get
kD D 1 and, as a consequence, in the general Eq. (2.2) the total light intensity I.x/ is
equal to the only diffuse component ID.x/, in this case described by the Eq. (2.16).
Hence, for what follows, we will write I.x/ instead of ID.x/.

To deal with this equation one has to resolve the min and max operators which
appear in (2.16) and (2.19). In general, several cases must be considered but here
we just take one to illustrate the technique. Namely, we consider the particular case
where the position of the light source ! and of the observer V coincide in a general
oblique direction (see [50, 52] for the other cases and compare with [26] in order to
note that we obtain the same cases). This choice implies maxŒ0; cos.'i � 'r/� D 1,
then defining � WD �i D �r D ˛ D ˇ and putting for simplicity the albedo �D D 1,
the Eq. (2.16) simplifies to

I.x/ D cos.�/
�
ACB sin.�/2 cos.�/�1

�
(2.20)

and we arrive to a first order nonlinear Hamilton-Jacobi equation

.I.x/� B/.
p
1C jru.x/j2/C A. Q! � ru.x/� !3/C B

.� Q! � ru.x/C !3/
2p

1C jru.x/j2 D 0;

(2.21)
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where Q! D .!1; !2/. Following [51], we write the surface as S.x; z/ D z�u.x/ D 0,
for x 2 ˝ , z 2 R, and rS.x; z/ D .�ru.x/; 1/, so (2.21) becomes

.I.x/� B/jrS.x; z/j C A.�rS.x; z/ � !/C B

� rS.x; z/
jrS.x; z/j � !

�2
jrS.x; z/j D 0:

(2.22)

Defining d.x; z/ WD rS.x; z/=jrS.x; z/j and c.x; z/ WD I.x/ � B C B.d.x; z/ � !/2,
using the equivalence jrS.x; z/j � max

a2@B3
fa � rS.x; z/g we get

max
a2@B3

fc.x; z/ a � rS.x; z/� A! � rS.x; z/g D 0: (2.23)

Defining the vector field for the ON-model

bON.x; a/ WD 1

A!3
.c.x; z/a1 � A!1; c.x; z/a2 � A!2/ ; (2.24)

introducing the exponential Kružkov transform�v.x/ D 1�e��u.x/ as already done
for the L–model, we can finally write the Dirichlet problem in the new variable v

8<
:
�v.x/C max

a2@B3
f�bON.x; a/ � rv.x/C c.x; z/a3

A!3
.1 � �v.x//g D 1; x 2 ˝;

v.x/ D 0; x 2 @˝ .
(2.25)

Note that the simple homogeneous Dirichlet boundary condition is due to the
flat background behind the object but a condition like u.x/ D g.x/ can also be
considered if necessary.

In the particular case when cos.'r � 'i/ D 0, the Eq. (2.16) simply reduces to

I.x/ D A cos.�/ (2.26)

and, as a consequence, the Dirichlet problem in the variable v is equal to (2.25) with
c.x; z/ D I.x/.

2.2.3 Phong Model for Specular Surfaces

The PH–model introduces a specular component to the brightness function I.x/. As
we said at the beginning of this section, this can be described in general as the sum
I.x/ D kAIA.x/C kDID.x/C kSIS.x/, where IA.x/, ID.x/ and IS.x/ are the ambient,
diffuse and specular light component, respectively. We will set for simplicity kA D 0

and represent the diffuse component ID.x/ as the Lambertian reflectance model.
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The most simple specular model is obtained putting the incidence angle equal to
the reflection one and !, N.x/ and R.x/ belong to the same plane. The PH–model is
an empirical model that was developed by Phong [37] in 1975. This model describes
the specular light component IS.x/ as a power of the cosine of the angle between the
unit vectors V and R.x/ (it is the vector representing the reflection of the light ! on
the surface), then for the Phong model

IPH
S .x/ D �S.R.x/ � V/˛ (2.27)

where ˛ expresses the specular reflection characteristics of a material.
Hence, the brightness equation for the PH–model is

I.x/ D kD�D.N.x/ � !/C kS�S.R.x/ � V/˛; (2.28)

where �D and �S represent the diffuse and specular albedo, respectively.
We will illustrate in details the PH–model and the numerical scheme to which

we arrive in the case of a general oblique light source ! and observer V D .0; 0; 1/.
Assuming that N.x/ is the bisector of the angle between ! and R.x/, we obtain

N.x/ D ! C R.x/
jj! C R.x/jj which implies R.x/ D jj! C R.x/jjN.x/� !: (2.29)

From the parallelogram law, taking into account that !, R.x/ and N.x/ are unit
vectors, we can write jj!CR.x/jj D 2.N.x/ �!/, then we can derive the unit vector
R.x/ as follow:

R.x/ D 2.N.x/ � !/N.x/� ! D 2

 
� Q! � ru.x/C !3p
1C jru.x/j2

!
N.x/� .!1; !2; !3/

D
��2 Q! � ru.x/C 2!3

1C jru.x/j2
�
.�ru.x/; 1/� .!1; !2; !3/: (2.30)

For V D .0; 0; 1/ we have

R.x/ � V D �2 Q! � ru.x/C 2!3

1C jru.x/j2 � !3 D �2 Q! � ru.x/C !3.1 � jru.x/j2/
1C jru.x/j2 :

(2.31)
Then, putting ˛ D 1, Eq. (2.28) becomes

I.x/.1C jru.x/j2/ �kD�D.�ru.x/ � ! C !3/.
p
1C jru.x/j2/

�kS�S
��2 Q! � ru.x/C !3.1 � jru.x/j2/� D 0;

(2.32)

to which we add a Dirichlet boundary condition equal to zero assuming that the
surface is standing on a flat background. As we have done for the previous models,
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we write the surface as S.x; z/ D z � u.x/ D 0, for x 2 ˝ , z 2 R, and rS.x; z/ D
.�ru.x/; 1/, so (2.32) will be written as

I.x/jrS.x; z/j2 �kD�D.rS.x; z/ � !/.jrS.x; z/j/

�kS�S.2rS.x; z/ � ! � jrS.x; z/j2!3/ D 0:

(2.33)

Dividing both the terms by jrS.x; z/j, defining d.x; z/ WD rS.x; z/=jrS.x; z/j as in
the ON–model and c.x/ WD I.x/C !3kS�S, we get

c.x/jrS.x; z/j � kD�D.rS.x; z/ � !/ � 2kS�S.d.x; z/ � !/ D 0: (2.34)

By the equivalence jrS.x; z/j � max
a2@B3

fa � rS.x; z/g we obtain

max
a2@B3

fc.x/ a � rS.x; z/� kD�D.! � rS.x; z//� 2kS�S.d.x; z/ � !/g D 0: (2.35)

Defining the vector field

bPH.x; a/ WD 1

QPH.x; z/
.c.x/a1 � kD�D!1; c.x/a2 � kD�D!2/ (2.36)

where

QPH.x; z/ WD 2kS�S.d.x; z/ � !/C kD�D!3; (2.37)

and using the exponential Kružkov transform �v.x/ D 1 � e��u.x/ as done for the
previous models, we can finally write the nonlinear problem corresponding to the
PH–model
8<
:
�v.x/C max

a2@B3
f�bPH.x; a/ � rv.x/C c.x/a3

QPH.x; z/
.1 � �v.x//g D 1; x 2 ˝;

v.x/ D 0; x 2 @˝ .
(2.38)

Again, note that the simple homogeneous Dirichlet boundary condition considered
is due to the flat background behind the object but a different boundary condition
can also be considered.

2.3 Numerical Approximation

Let us describe some numerical schemes for the solution of the problems described
in the previous section. Here we will focus our attention on semi-Lagrangian (SL)
schemes which have shown to be very effective for first order problems since they
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try to mimic at the discrete level the method of characteristics (see [16] for more
details). Other approaches based on finite differences or finite volumes are feasible.
As we have seen there are basically two main problems related to the vertical light
case and the oblique light case. In the vertical case, we have to solve an eikonal-
type equation for each model. In the oblique case, we get the more general first-
order Hamilton-Jacobi (HJ) equations (2.7), (2.21), and (2.32) where the nonlinear
term is also coupled with linear terms. The general framework for these type of
problems is the theory of viscosity solutions which guarantees (under appropriate
assumptions) existence and uniqueness results for the vertical light case. A similar
approach can also be applied to the case of an oblique light source when the surface
is not smooth and black shadows are present in the image [17]. It should be noted
that to have uniqueness when the eikonal equation is degenerate (i.e. when the right-
hand side vanishes at some points) one has to add additional assumptions or more
informations (like the height at maximum brightness points or the fact that we select
to approximate the maximal solution, as introduced in [8]). General convergence
results for the approximation scheme to the maximal solution of the degenerate
eikonal equation can be found in [9, 15].

There are two types of algorithms based on the semi-Lagrangian approach. The
first type of algorithm is global and gives an approximation of the fixed point
problem on the whole grid at every iteration till the stopping rule is satisfied. Some
acceleration methods, like the Fast Sweeping method [27, 28], can be introduced to
speed up convergence. The second type of method is local and tries to concentrate
the numerical effort only in a neighborhood of a region which is considered to
be already exact (the so called Accepted region). The Fast Marching method
(extensively described in [13, 44]) is a typical example of this class of methods.

The algorithms corresponding to the models presented in the previous section
compute the maximal solution in the domain without additional information of the
surface and with a single boundary condition which can be either homogeneous
u D 0 or not (but to set u D g on the boundary of the mask one has to know or
guess the right solution there). This is due to the monotonicity properties of the
discrete operator corresponding to the schemes. The interested reader can find in
[16] a detailed presentation of the properties of semi-Lagrangian schemes and in
[17] an application to the Shape-from-Shading problem with black shadows.

As already stated in Sect. 2.2, we suppose a surface given as a graph. In the case
of vertical light, for such a surface we do not have shadows covering an open domain
(i.e. the points where I.x/ D 0 are either isolated or curves in the plane). If the light
is oblique, we usually have shadows so that we can divide the support of the surface
(the domain of u) into two regions, ˝l � fx W I.x/ > 0g and ˝s � fx W I.x/ D 0g,
which represent respectively the “light” and the “shadow” regions. Typically they
have both nonempty interior and, naturally, ˝ D ˝l [ ˝s. Note that ˝ now
represents the new mask which also includes black regions. Moreover, we assume
that ˝ � Q, where Q is the rectangular domain corresponding to the image.
As we already explained, we can use the same equation everywhere in our
computational domain Q and we do not need to introduce any boundary condition
on @˝l (see [17] for more details).
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Now, look at the discrete schemes for the described models.
Let Wi D w.xi/ so that W will be the vector solution giving the approximation

of the height of u at every node xi of the grid. Following [16], the semi-Lagrangian
scheme for the above models can be written in a fixed point form. In general, we
will write it as

Wi D TM
i .W/; (2.39)

where M is the acronym identifying the model, then M D L;ON or PH. Denoting
by G the global number of nodes in the grid, the operator for the L–model TL W
R

G ! R
G is defined componentwise by

TL
i .W/ WD min

a2@B3
fe��hw.xi C hbL.xi; a//� 
 I.xi/a3

!3
.1 � �w.xi//g C 
; (2.40)

where 
 WD .1 � e�� h/=� and w.xi C hbL.xi; a// is obtained interpolating on W.
It has been shown in [17] that the corresponding operator TL has three important

properties: it is monotone, is a contraction mapping in Œ0; 1=�/G and 0 	 W 	 1

�

implies 0 	 T.W/ 	 1

�
.

Similarly, the SL fully discrete scheme for the ON–model at a node xi will be
given by the discrete operator

TON
i .W/ WD min

a2@B3
fe��hw.xiChbON.xi; a//�
 c.xi; z/a3

A!3
.1��w.xi//gC
: (2.41)

The SL fully discrete scheme for the PH–model at a node xi is given by the
discrete operator TPH defined as

TPH
i .W/ WD min

a2@B3
fe��hw.xiChbPH.xi; a//�
 c.xi/a3

QPH.xi; z/
.1��w.xi//gC
; (2.42)

with QPH.xi; z/ WD 2kS�S.d.xi; z/ � !/C kD�D!3.
Although the operators TON and TPH present some differences and additional terms,
they converge and have similar properties of the operator TL (see [50, 52] for the
analytical proof of these properties).

In the numerical tests we will also compare results obtained with Fast Sweeping
(FS) and Fast Marching (FM) methods so we briefly sketch here their properties.
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2.3.1 Fast Marching [21, 44, 55]

For the implementation of Fast-Marching algorithm, the grid defined on the image
is divided into three sets at every iteration n:

the set of Accepted nodes ACCEPTED(n), whose value has been already com-
puted and accepted;
the set of Considered nodes CONSIDERED(n), or Narrow Band, for which the
value has to be computed at the present iteration;
the set of Far nodes FAR(n), that are the nodes which will be computed in future
iterations.

The engine of the method is the local fixed point operator. ACCEPTED(0) at the
first iteration is the set of nodes where we have to apply boundary conditions
(which are known). Then, at iteration n, the set CONSIDERED(n) contains the
neighboring nodes of ACCEPTED(n) and FAR(n) are the remaining nodes where
we do nothing at that iteration. The algorithm computes the value in CONSID-
ERED(n). The node xj where the minimum is achieved is marked ACCEPTED (i.e.
ACCEPTED(n + 1)=ACCEPTED(n)[fxjg), the set CONSIDERED(n) is updated adding
the neighboring nodes to xj and we compute the solution in CONSIDERED(n + 1).
The algorithms accepts only one node for each iteration and ends only when the
FAR region is empty. The method converges in a finite number of iterations and
has a complexity of O.G ln.G// where G is the cardinality of the grid nodes.
Unfortunately, its application is limited to eikonal type equations.

2.3.2 Fast Sweeping [14, 40, 54]

FS is another popular method for solving HJ equations. The main advantage of
this method is its implementation, which is extremely easy (easier than that of
Fast Marching). FS method is basically the classical iterative (fixed-point) method,
since each node is visited in a predefined order, until convergence is reached. Here,
the visiting directions (sweeps) are alternated in order to follow all the possible
characteristic directions, trying to exploit causality. In two-dimensional problems,
the grid is visited sweeping in four directions: S ! N & W ! E, S ! N & E ! W,
N ! S & E ! W and N ! S & W ! E.

The key point is the Gauss-Seidel-like update of grid nodes, which allows one
to compute a relevant part of the grid nodes in only one sweep. Indeed, it is well
known that in the case of eikonal equations FS converges in only four sweeps.
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2.4 Numerical Experiments

We call G the discrete grid of points xij, with size card.G/ D n � m. We define
Gin WD fxij W xij 2 ˝g as the set of grid points inside ˝; Gout WD G n Gin. The
boundary @˝ is defined as the set Gb � Gout such that at least one of the neighboring
points belongs to Gin. For each image we define a map, called mask or silhouette,
where the pixels xij 2 Gin are white and the pixel xij 2 Gout are black. In this way it
is easy to distinguish the nodes that we have to use for the reconstruction (the nodes
inside ˝) and the nodes on the boundary @˝ (see e.g. Fig. 2.4b, d).

In all our numerical experiments, we neglect the ambient component that we
consider as a constant (i.e. setting for simplicity kA D 0). Our work is mainly
focusing on the semi-Lagrangian approach and also our intent is to analyze the
behavior of the parameters involved in the two non-Lambertian models. For these
reasons, the simulations focus the attention on SL performances and on the behavior
of the parameters.

2.4.1 Synthetic Images

The synthetic tests are useful for a quantitative analysis on the behavior of the
parameters and also because it is possible to compute the error on the surface. The
synthetic image that we are going to present here is defined on the domain G, that
is a rectangle containing the support of the image ˝ , G � Œ�1; 1� � Œ�1; 1�. We
can easily modify the number of the pixels choosing different values for the steps in
space � x and � y. In this case we will use 256 � 256 pixels. X and Y represent the
real size (e.g. for G � Œ�1; 1�� Œ�1; 1�, X D 2;Y D 2). As already said in Sect. 2.2,
we can use homogeneous Dirichlet boundary condition but it is possible to define,
if useful, the function g.x/, that is the height of the surface at the boundary of the
silhouette. In this test we will use this general boundary condition that we can easily
derive being the object a solid of rotation. In fact, if we denote by c WD .cx; cy/ the
center of the circle with ray R at the bottom of the vase we can write

.x � cx/
2 C .y � cy/

2 D R2 (2.43)

and then

y D
p

R2 � .x � cx/2 C cy (2.44)

that gives us the values of g.x/.
In iterative methods, the method stops when we have reached the required

tolerance � or when we have exceeded the maximum number of iterations allowed.
In an iterative method of fixed point, the point is reached when jjWnC1 � Wnjj < �.
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2.4.1.1 Synthetic Vase

We use this test in order to analyze and compare the performances of the SL scheme
with respect to the three different models by varying the values of the parameters
involved.

The synthetic vase is defined as

(
u.x; y/ D

p
P.Ny/2 � x2 .x; y/ 2 Gin;

u.x; y/ D g.x; y/ .x; y/ 2 Gout;
(2.45)

where Ny D y=Y,

P.Ny/ D .�10:8 Ny6 C 7:2 Ny5 C 6:6 Ny4 � 3:8 Ny3 � 1:375 Ny2 C 0:5 Ny C 0:25/X

and

Gin D f.x; y/jP.Ny/2 > x2g:

The input images generated by L–model, ON–model and PH–model with a vertical
light source (! D .0; 0; 1/) are visible in Fig. 2.2. We show in Table 2.1 the values of
the parameters related to some numerical tests performed. It is possible to compute
the error in L1, L2, L1 norm on the image (Lp.I/) and on the surface (Lp.S/) because
for synthetic images we know the real surface (for the vase this is given by (2.45)).
Given a vector T representing the exact solution (or the original image) on the
grid and a vector QT representing its approximation, we define the error vector as

Fig. 2.2 Input vase images by L–model, ON–model .� D 0:6/, PH–model .kS D 0:3/ with
! D .0; 0; 1/
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Table 2.1 Synthetic vase:
parameter values used in the
models. When a parameter
doesn’t exist for a model we
put a dash

Model kA kD kS ˛ �

LAM 0 1 – – –

ON-00 0 1 – – 0

ON-04 0 1 – – 0.4

ON-06 0 1 – – 0.6

ON-10 0 1 – – 1

PH-00 0 1 0 1 –

PH-03 0 0.7 0.3 1 –

PH-07 0 0.3 0.7 1 –

PH-10 0 0 1 1 –

e D T � QT and

err1 D jjejjL1 D 1

N

X
i

jeij

err2 D jjejjL2 D
(
1

N

X
i

jeij2
) 1=2

err1 D jjejjL1 D max
i

fjeijg

where N is the total number of grid points used for the computation, i.e. the grid
points belonging to Gin.
The reconstructions of the surfaces and the output images obtained with the three
models, starting from the input images in Fig. 2.2, are visible in Fig. 2.3.

In Table 2.2 we can observe the performances of the SL–scheme. In details, we
reported the number of iterations, the CPU time (in seconds) and the error estimates
in three different norms between the input image and the image reconstructed
from the u approximation. Note that to obtain the reconstructed image we need an
approximation of the gradient of u which is obtained via a centered finite difference
which guarantees a second order accuracy. Looking at these errors, we note that the
ON–model performs better increasing the parameter � both on the image I and on
the surface, with the same error order than the L–model but always lower. Instead,
for the PH–model we can see that the errors on the surface decrease increasing the
parameter kS, except for the case completely specular (kS D 1), but it is not true
with respect to the errors on the image that increase for increasing values of kS.

The errors on the images in different norms show how well the reprojection fits
the input data. The L1 errors on the image I, that indicate the maximum over all
the pixels of the difference in absolute value between the input image and the image
computed as said before, are so big because if in only one point the reconstruction
is not good, e.g. in a point on the boundary of the domain, then the error will be so
big.
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L–model ON–model PH–model
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Fig. 2.3 Synthetic vase: output images and 3D reconstructions for the three models

Table 2.2 Synthetic vase: numerical results for ! D .0; 0; 1/ with the errors on the image and on
the surface

SL–schemes Iter. Œsec:� L1.I/ L2.I/ L1.I/ L1.S/ L2.S/ L1.S/

LAM 1337 0.73 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569

ON-00 1337 0.72 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569

ON-04 1341 0.73 0.0054 0.0316 0.6118 0.0263 0.0282 0.0562

ON-06 1344 0.75 0.0049 0.0277 0.5373 0.0259 0.0277 0.0553

ON-10 1334 0.74 0.0044 0.0229 0.4510 0.0254 0.0274 0.0547

PH-00 1337 0.76 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569

PH-03 1331 0.73 0.0068 0.0396 0.8078 0.0264 0.0283 0.0561

PH-07 1356 3.81 0.0075 0.0419 0.9098 0.0235 0.0252 0.0496

PH-10 737 0.40 0.0081 0.0472 0.9961 0.1496 0.1590 0.2309

Table 2.3 Synthetic vase:
errors on the surface via
ON–model changing the size
of the input image with
vertical light source
! D .0; 0; 1/

SL–schemes Size L1.S/ L2.S/ L1.S/

ON-04 64� 64 0.0459 0.0496 0.0898

ON-04 128� 128 0.0347 0.0384 0.0819

ON-04 256� 256 0.0263 0.0282 0.0562

ON-04 512� 512 0.0177 0.0187 0.0360

ON-04 1024� 1024 0.0121 0.0129 0.0280

In order to confirm that the non-Lambertian models converge to the surface
depth, we reported in Tables 2.3 and 2.4 the errors on the surface with respect to
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Table 2.4 Synthetic vase:
errors on the surface via
PH–model changing the size
of the input image with
vertical light source
! D .0; 0; 1/

SL–schemes Size L1.S/ L2.S/ L1.S/

PH-03 64� 64 0.0462 0.0499 0.0904

PH-03 128� 128 0.0349 0.0386 0.0828

PH-03 256� 256 0.0264 0.0283 0.0561

PH-03 512� 512 0.0177 0.0187 0.0356

PH-03 1024� 1024 0.0120 0.0127 0.0267

Fig. 2.4 Real input images and masks. (a) Beethoven input. (b) Beethoven mask. (c) Horse input.
(d) Horse mask

different size of the vase image, from 64� 64 to 1024� 1024 obtained doubling the
size. What we can note is that increasing the number of the pixels, hence considering
a smaller and smaller space step, the errors decrease for both the models.

2.4.2 Real Images

In this section we will consider two real input images: the bust of Beethoven (size
.256 � 256/) and the black horse (size .184 � 256/), both visible in Fig. 2.4a, c.

Unless otherwise specified, the value of � for the stopping criterion of the
iterative method is fixed to 10�8 and the maximum number of allowed iterations
is 9000. If a scheme arrives to the maximum of 9000 iterations, we put a 
 before it
in the table.

Obviously, for the real tests we do not know the real depth hence we cannot
compute the error on the surface. The only quantity that is available is the image
I, our data, and we added Tables in order to give a quantitative support to the
qualitative analysis visible from the Figures reported below in the paper.

2.4.2.1 Beethoven

In this case, we have compared the performances of the SL–scheme applied to the
three models using the parameters reported in Table 2.5 with two different cases for
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Table 2.5 Beethoven:
parameter values used in the
models. When a parameter
doesn’t exist for a model we
put a dash

Model kA kD kS ˛ �

LAM 0 1 – – –

ON-00 0 1 – – 0

ON-01 0 1 – – 0.1

ON-02 0 1 – – 0.2

ON-03 0 1 – – 0.3

ON-04 0 1 – – 0.4

ON-06 0 1 – – 0.6

PH-00 0 1.0 0 1 –

PH-01 0 0.9 0.1 1 –

PH-02 0 0.8 0.2 1 –

PH-03 0 0.7 0.3 1 –

PH-04 0 0.6 0.4 1 –

Table 2.6 Beethoven:
numerical results for
!vert D .0; 0; 1/ with the
errors on the image

SL–schemes Iter. Œsec:� L1.I/ L2.I/ L1.I/

LAM vertical 2920 1.68 0.0325 0.0605 0.4118

ON-00 vertical 2920 2.24 0.0325 0.0605 0.4118

ON-01 vertical 2885 2.89 0.0325 0.0605 0.4118

ON-02 vertical 2790 2.23 0.0326 0.0605 0.4118

ON-06 vertical 2264 1.94 0.0355 0.0628 0.4157

PH-00 vertical 2920 2.29 0.0325 0.0605 0.4118

PH-01 vertical 2676 2.12 0.0329 0.0609 0.4118

PH-02 vertical 2423 1.92 0.0333 0.0613 0.4118

PH-03 vertical 2160 1.92 0.0337 0.0617 0.4118

PH-04 vertical 1887 1.72 0.0337 0.0619 0.4118

the light source: the vertical case (!vert D .0; 0; 1/) and the oblique case (!obl D
.0:0168; 0:198; 0:9801/). This test will show better the crucial role of the parameters
involved for the convergence. As we can see in Table 2.6, in the vertical case all the
models converge in less than 3 s with the same order of iteration. Looking at the
errors on the images, they are of the same order for all the cases, L1.I/ is a little
bit higher for the ON–model with � D 0:6. We can note that in the case of � D 0

for the ON–model and kS D 0 for the PH–model we obtain the same errors and
number of iterations too because the three models coincide as expected. With respect
to the ON–model, by increasing the value of � the errors grow slightly or remain
unchanged. The same behavior has the PH–model with respect to the parameter kS.
In fact, by increasing the value of kS the errors tend to increase, remaining of the
same order.

Looking at Table 2.7, we can note that the oblique cases require higher CPU time
with respect to the corresponding vertical cases due to the fact that the equations are
more complex because of additional terms involved. Analyzing the errors on the
images, as noted just before, the cases of � D 0 for the ON–model and kS D 0 for
the PH–model coincide with the L–model in terms of number of iterations used and
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Table 2.7 Beethoven: numerical results for !obl D .0:0168; 0:198; 0:9801/ with the errors on the
image

SL–schemes Iter. Œsec:� L1.I/ L2.I/ L1.I/ �

LAM oblique 3129 234:60 0.0397 0.0659 0.4039 10�8

LAM oblique 236 40:85 0.0464 0.0696 0.4039 10�3

ON-00 oblique 236 46:85 0.0464 0.0696 0.4039 10�3

ON-01 oblique 242 50:90 0.0439 0.0656 0.4118 10�3

ON-02 oblique 262 53:43 0.0484 0.0699 0.4196 10�3

ON-03 oblique 270 53:76 0.0550 0.0763 0.4039 10�3

ON-04 oblique 314 65:63 0.0604 0.0830 0.4314 10�3

ON-04 oblique 3598 709:80 0.0672 0.0890 0.4314 10�4

ON-06 oblique 362 75:91 0.0722 0.0989 0.5647 10�3

PH-00 oblique 236 47:42 0.0464 0.0696 0.4039 10�3

PH-01 oblique 237 44:59 0.0712 0.0917 0.4510 10�3

PH-02 oblique 303 58:04 0.1095 0.1291 0.4784 10�3

PH-03 oblique 513 97:09 0.1506 0.1743 0.5333 10�3

PH-04 oblique 9000� 1149:00 0.1701 0.2041 0.5765 10�3

�Indicates the maximum number of iterations

error estimations. With respect to the ON–model, the errors increase by increasing
the parameter � . The same holds for the PH–model with respect to kS. Because
of additional terms involved in the oblique case, in Table 2.7 we have reported
the results obtained using a value of the tolerance � for the stopping rule of the
iterative method equal to 10�3. This is the maximum accuracy achieved by the non-
Lambertian models since roundoff errors coming from several terms occur and limit
the accuracy since the schemes are first order accurate. Only for the ON–model with
� D 0:4 we have reported the result also for � D 10�4 and for the L–model with
� D 10�8. Lastly, we can note that choosing kS D 0:4 the PH–model not converges
in the maximum number of allowed iterations, i.e. in 9000 iterations.

The 3D reconstructions and the output images for the three models are visible in
Fig. 2.5. The first two rows refer to the vertical case, the others to the oblique case.
The reconstructions in the vertical case are more accurate than the corresponding
in the oblique case also because obtained with a tolerance � D 10�3 instead of
� D 10�8 as in the vertical case. Moreover, it is important to note that there is a
concave/convex inversion in the reconstructed surface due to the classical ambiguity
of the SfS model. This typically depends also on the correctness of the Dirichlet
boundary conditions (as one can see in the synthetic vase test where we have applied
a correct boundary condition u D g imposing a circular shape on that part of the
boundary).
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Fig. 2.5 Beethoven: output images and 3D reconstructions for the three models
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2.4.2.2 Black Horse

We use this test to compare the performances of the global SL–scheme with respect
to the acceleration schemes (FM and FS) based on a finite difference (FD) solver
(FM-FD, FS-FD). The comparison will be made for all the models (L–model,
ON–model, PH–model) with the parameter values reported in the second and third
column of Table 2.8. Note that the SL–scheme, that is slower than FM-FD and FS-
FD methods as expected, however it is more accurate with respect to the schemes
based on FD. This confirms that the SL approach is competitive with other numerical
techniques. We can also note that the parameters play an important role in these
models. For example, in the PH–model passing from kS D 0:4 to kS D 0:8

the errors change significantly in L1 and L2 norm for the FM-FD and the FS-FD
methods. In Fig. 2.6 one can see the output images and the 3D reconstructions of
the surface obtained by the SL–schemes applied to the three models. Note that the
reconstruction obtained by the PH–model recognizes better the object in the picture
and this is coherent with the fact that the surface is shiny, so the PH–model seems
to be the more realistic in this case.

Table 2.8 Black horse:
parameters, CPU time and
errors on the image with
vertical light source. When a
parameter doesn’t exist for a
model we put a dash

Model kS � Œsec:� L1.I/ L2.I/ L1.I/

LAM-FM – – 0.08 0.0363 0.0610 0.6902

LAM-FS – – 0.08 0.0362 0.0607 0.6902

LAM-SL – – 2.62 0.0346 0.0590 0.6863

ON-02-FM – 0.2 0.07 0.0363 0.0611 0.6902

ON-02-FS – 0.2 0.02 0.0362 0.0608 0.6902

ON-02-SL – 0.2 2.49 0.0347 0.0591 0.6902

ON-03-FM – 0.3 0.14 0.0364 0.0611 0.6941

ON-03-FS – 0.3 0.14 0.0363 0.0609 0.6941

ON-03-SL – 0.3 2.39 0.0348 0.0592 0.6902

PH-04-FM 0.4 – 0.28 0.0441 0.0677 0.6902

PH-04-FS 0.4 – 0.77 0.0439 0.0674 0.6902

PH-04-SL 0.4 – 1.06 0.0358 0.0606 0.6863

PH-08-FM 0.8 – 0.16 0.0788 0.1132 0.7098

PH-08-FS 0.8 – 0.63 0.0788 0.1132 0.7098

PH-08-SL 0.8 – 0.53 0.0463 0.0736 0.7059
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Fig. 2.6 Black horse: output images and 3D reconstructions for the three models

2.5 Conclusions and Perspectives

In this paper we derived the Hamilton-Jacobi equations related to three reflectance
models and we presented some numerical methods to solve them. In our formulation
the models share the same mathematical structure and this allows to switch on and
off the different terms related to ambient, diffuse and specular reflection in a very
simple way. This general model is very flexible to treat different light conditions
with vertical and oblique light sources. As we noted in some of our tests, via non-
Lambertian models it is not possible to solve the classical concave/convex ambiguity
of the Lambertian SfS problem based on a single image despite the fact that these
models can deal with more general surfaces (see [50, 52] for more details on the
analysis performed on non-Lambertian models). This ambiguity can be eliminated
only adding additional information on the image or dealing with more than one
image as already done via the Photometric Stereo technique in the case of the
Lambertian model [32, 33]. The application of the Photometric Stereo technique
to models with a specular component goes beyond the scopes of this paper. Some
results of this work can be found in [53].
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From the numerical point of view, comparing the numerical methods we noted
that the SL–schemes approximate in a rather effective way the equations related to
non-Lambertian models and they are more accurate with respect to FD schemes.
Looking at the numerical experiments of the three models, the PH–model seems to
be the model more sensible to the values of the parameters involved, as visible in
Table 2.8. This model recognizes better the object with respect to the L–model and
the ON–model, although the errors computed on the image are higher. However,
our numerical tests showed that all the schemes are consistent and we obtain good
results for synthetic and real input images. Looking at the test performed with an
oblique light source, we have some comments that are common to the PH–model
and the ON–model. The equations corresponding to this case have additional terms
and the corresponding discrete operators become more complex and require more
iterations to converge. This produces an accumulation of floating point errors which
reduces the accuracy of the approximation. Moreover, for real images, we do not
know the exact direction of the light source and this introduces another perturbation
in the model which affects the results. A possible improvement, at least when we
know the light source direction, could be the use of second order schemes.

Another interesting direction would be to mix the models, e.g. coupling the ON–
model with the PH–model. To this end, we need to verify if the new mixed model
still can be written in the same fixed point form in order to apply the same approach.

Acknowledgements The first author wishes to acknowledge the support obtained by Gruppo
Nazionale per il Calcolo Scientifico (GNCS-INdAM).
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Chapter 3
Direct Variational Perspective Shape from
Shading with Cartesian Depth Parametrisation

Yong Chul Ju, Daniel Maurer, Michael Breuß and Andrés Bruhn

Abstract Most of today’s state-of-the-art methods for perspective shape from
shading are modelled in terms of partial differential equations (PDEs) of Hamilton-
Jacobi type. To improve the robustness of such methods w.r.t. noise and missing
data, first approaches have recently been proposed that seek to embed the underlying
PDE into a variational framework with data and smoothness term. So far, however,
such methods either make use of a radial depth parametrisation that makes the
regularisation hard to interpret from a geometrical viewpoint or they consider
indirect smoothness terms that require additional consistency constraints to provide
valid solutions. Moreover the minimisation of such frameworks is an intricate task,
since the underlying energy is typically non-convex. In this chapter we address all
three of the aforementioned issues. First, we propose a novel variational model that
operates directly on the Cartesian depth. In contrast to existing variational methods
for perspective shape from shading this refers to both the data and the smoothness
term. Moreover, we employ a direct second-order regulariser with edge-preservation
property. This direct regulariser yields by construction valid solutions without
requiring additional consistency constraints. Finally, we also propose a novel coarse-
to-fine minimisation framework based on an alternating explicit scheme. This
framework allows us to avoid local minima during the minimisation and thus to
improve the accuracy of the reconstruction. Experiments show the good quality of
our model as well as the usefulness of the proposed numerical scheme.
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3.1 Introduction

Shape from Shading (SfS) is a classic task in computer vision. Given information
on light reflectance and illumination in a photographed scene, the aim of SfS is to
compute based on the brightness variation the 3D structure of a depicted object from
a single input image. SfS has a wide variety of applications, ranging from large scale
problems such as astronomy [42] or terrain reconstruction [7] to small scale tasks
such as dentistry [2] or endoscopy [35, 52, 53].

Classical Methods. First approaches to SfS go back to 1951 and 1966, respec-
tively, when Van Diggelen [19] and Rindfleisch [42] used SfS techniques to
reconstruct the surface of the moon. Later on in the 1970s, Horn [24] was the
first one to tackle the SfS problem by solving a partial differential equation (PDE)
approach. In 1981, he and Ikeuchi were also the first ones to model the SfS problem
using a variational framework [29]. The most prominent classical variational
approach is given by the work of Horn and Brooks [26]. Assuming a simple
orthographic projection model, a light source at infinity as well as a Lambertian
reflectance model, they proposed to compute the normals of the unknown surface as
minimiser of an energy functional.

Those first approaches, however, had several drawbacks. The model assumptions
were very simple and mainly suitable in the context of astronomical applications.
In fact, the use of an orthographic projection model with a light source located at
infinity requires the distances between camera, light source and illuminated object to
be huge. Also the depth was not estimated directly such that the SfS process required
a postprocessing step that performed a numerical integration of the estimated surface
normals. Thereby, inconsistent gradient fields turned out to be a problem, so that
extensions of the original model were required that tried to enforce this consistency
during or after the estimation [22, 27]. Finally, in case of variational methods,
the smoothness term was restricted to a quadratic regulariser [26, 29]. While such
standard smoothness terms simplify the minimisation of the underlying energy, they
do not allow to preserve discontinuities in the depth and thus lead to oversmoothed
solutions [36]. For a detailed review of most of the classical methods the reader is
referred to [20, 25, 27, 54].

Perspective Shape from Shading. At the end of the 1990s research mainly
focused on novel concepts for formulating orthographic SfS such as viscosity
solutions [44] and level set formulations [31]. However, for most applications results
were not satisfactory [54]. In the early 2000s, the situation changed completely.
Inspired by the work of Okatani and Deguchi [35], independently, Prados and
his co-workers [39, 40] as well as two other research groups [16, 46] proposed
to consider a perspective camera model. Evidently, such a model is particularly
appropriate for tasks that require the object to be relatively close to the camera such
as e.g. in medical endoscopy. In such cases the perspective effects dominate and an
orthographic projection model would cause significant systematic errors as shown



3 Direct Variational Perspective SfS with Cartesian Depth Parametrisation 45

in [47]. Secondly, Prados and colleagues proposed to shift the light source location
from infinity to the camera centre which can be seen as a good approximation of
a camera with photoflash. This made shape from shading attractive for a variety of
photo-based applications. Finally, also a physically motivated light attenuation term
was introduced that models a quadratic fall-off due to the inverse square law. As
discussed in [9], the use of this term largely resolved the convex-concave ambiguity
that was inherent to the classical orthographic model although some ambiguities
are still present. Even the generalisation of such approaches to advanced reflectance
models such as the Oren-Nayar [37] or the Phong reflectance model [38] have been
recently investigated [4, 50].

However, this evolution of SfS models was accompanied by a different way of
formulating the SfS problem. Instead of using variational methods, the perspective
SfS problem was formulated in terms of hyperbolic PDEs [40]. Although such
PDE formulations allow for an efficient computation of the solution using fast
marching schemes [45], they suffer from two inherent drawbacks: (i) On the one
hand, they are prone to noise and missing data, since they do not rely on any form
of regularisation or filling-in. This can be particularly problematic in the context
of real-world images. (ii) On the other hand, it is difficult to extend the underlying
model of such PDE-based schemes by additional constraints such as smoothness
terms, multiple views, or additional light sources. While there have been recently
some PDE-based approaches to photometric stereo [33], one has to take care of
ensuring the uniqueness of the solution if the input data from multiple images is not
consistent, cf. the discussion in [34].

Variational Perspective Shape from Shading. Given the flexibility and robust-
ness of variational methods, it is not surprising that recently researchers tried to
close the evolutionary loop by integrating the perspective SfS model into a suitable
variational framework. So far, however, there are only a few works in the literature
that deal with this recent idea. On the one hand, there is the work of Ju et al. [30]
that embeds the PDE of Prados et al. [40] as data term into a variational model
and complements it with a discontinuity-preserving second order smoothness term.
However, since the approach penalises deviations from the PDE directly and uses
a parametrisation in terms of the radial depth, deviations in both the data and
the smoothness term are difficult to interpret geometrically or photometrically. On
the other hand, there is the approach of Abdelrahim et al. [3] that formulates the
data term in terms of brightness differences and makes use of a Cartesian depth
parametrisation. While the corresponding energy functional is thus more meaningful
from a geometric and photometric viewpoint, it defines smoothness based on
surface normals and thus needs an additional integrability constraint. Moreover, the
corresponding smoothness term is restricted to a simple homogeneous regulariser
that does not allow to preserve object edges during the reconstruction. Finally,
there are the works of Zhang et al. [55] and Wu et al. [53] that also make
use of a Cartesian depth parametrisation but rely on an indirect estimation using
auxiliary variables. While the approach of Zhang et al. [55] resolves the resulting
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consistency problem by considering an integrability constraint, the method of Wu
et al. [53] repeatedly integrates the surface normals during computation to ensure
valid solutions. Moreover, both approaches use derivations for their surface normals
that are based on the orthographic projection model of Horn and Brooks [27].
Unfortunately, the resulting models are thus only valid in case of weak perspective
distortions.

A final issue that is common to all four of the aforementioned works is the
difficulty of minimising the underlying energy. Since this energy is non-convex,
two of the methods rely on initialisations provided by closely related PDE-based
SfS approaches [3, 55]. This, however, contradicts the idea of introducing robustness
into the estimation – in particular in the presence of noise or missing data. In con-
trast, the other two methods estimate the solution from scratch [30, 53]. However,
those methods do not provide any quantitative assessment of the reconstruction
quality.

Let us summarise: While from a modelling viewpoint, it would be desirable to
design a variational model that directly solves for the Cartesian depth without the
need of integrability constraints or repeated integrations steps, it would be helpful
from an optimisation viewpoint to develop a minimisation scheme that neither
depends on the solution of other SfS techniques as in [3, 55] nor requires an accurate
initialisation to produce meaningful results.

Our Contributions. In this book chapter we contribute to the field of variational
SfS in three ways: (i) First, we consider a variational model for perspective SfS that
makes use of a Cartesian depth parametrisation and an edge-preserving Cartesian
depth regularisation. By penalising deviations from the image brightness in the data
term and regularising the Cartesian depth in the smoothness term directly, we obtain
an approach that is geometrically and photometrically meaningful. In this context,
we also point out a popular mistake in the derivation of the surface normal and
show two different ways to derive the normal correctly. (ii) Our method is a direct
approach to depth computation, i.e. it does not yield gradient fields that need to
be integrated in a subsequent step, nor do we employ integrability constraints. (iii)
Apart from the novel model, we also propose a novel minimisation strategy. By
embedding an alternating explicit scheme into a coarse-to-fine scheme, we obtain
an optimisation framework that allows to obtain significantly better results than a
traditional explicit scheme. Experiments with synthetic and real-world images show
the good quality of our reconstructions and the advantages of our numerical scheme.

Organisation of the Chapter. In Sect. 3.2 we propose a novel PDE-based model
for perspective SfS that is based on a Cartesian parametrisation of the depth. In
Sect. 3.3 we then embed this PDE into a variational framework with appropriate
second order smoothness term. Details on the minimisation and the discretisation
are provided in Sect. 3.4, while Sect. 3.5 comments on the integration of intrinsic
camera parameters. Finally, a detailed evaluation of our approach is presented in
Sect. 3.6. The paper concludes with a summary in Sect. 3.7.
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3.2 Perspective SfS with Cartesian Depth Parametrisation

In this section, we introduce a novel PDE-based SfS model that is parametrised in
terms of the Cartesian depth. In contrast to most existing SfS models that estimate
the radial depth or multiples thereof, such a Cartesian parametrisation expresses the
unknown surface directly in terms of the Euclidean distance along the z-axis, which
is the axis orthogonal to the image plane.

Parametrisation of the Surface. The starting point for our new model is formed
by the classical PDE-approach of Prados et al. [40] which is originally parametrised
in terms of the radial depth. Key assumptions of this SfS model are that a point light
source is located at the optical centre of a perspective camera and that the surface
reflectance is Lambertian with uniform albedo that is fixed to one. The unknown
surface S W ˝x ! R

3 can then be described as

S .x; u.x// D

8̂<
:̂

fq
jxj2 C f2

u.x/

2
4 x

y
�f

3
5
ˇ̌̌
ˇ̌
ˇ x WD .x; y/> 2 ˝x

9>=
>; ; (3.1)

where x D .x; y/> 2 ˝x is the position in the closure ˝x of the rectangular image
domain˝x � R

2, f denotes the focal length of the camera and u.x/ is a multiple of
f that describes the radial distance (depth) of the surface from the camera centre.

Since the third component in Eq. (3.1) corresponds to the negative Cartesian
depth z, we can derive the following relationship to the radial depth uf

z.x/ D fq
jxj2 C f2

u.x/f
(3.1)D Q.x/ u.x/f ; (3.2)

where Q.x/ denotes a spatially variant conversion factor given by

Q.x/ D fpjxj2 C f2
: (3.3)

This relation is illustrated in Fig. 3.1.
Plugging Eq. (3.3) into Eq. (3.1), we then obtain the parametrisation of the

original surface S with respect to the Cartesian depth z
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Fig. 3.1 Relation between the radial depth factor u.x/ (quotient between green and blue distance)
that denotes the depth in multiples of the focal length f and the Cartesian depth z.x/ (red distance)

Brightness Equation. After we have parametrised the original surface in terms of
the Cartesian depth, let us now derive the resulting brightness equation that relates
the local orientation of the surface to the image brightness. Assuming a Lambertian
reflectance model and a quadratic light attenuation term that follows the inverse
square law, we obtain the following general brightness equation [40]:

I.x/ D 1

r.x/2

�
n.x/

jn.x/j � L.x/
�
; (3.5)

where I is the recorded image, n is the surface normal vector, L stands for the
normalised light direction vector, and r is the (radial) distance of the light source to
the surface. Knowing that r D f u and using Eq. (3.2) we can express the quadratic
light attenuation term using the Cartesian depth z

r.x/ D fu.x/ D z.x/
Q.x/

) 1

r.x/2
D Q.x/2

z.x/2
: (3.6)

What remains to be computed in terms of the Cartesian depth are the surface normal
n and the light direction vector L, respectively.

Surface Normal. Let us start by deriving the surface normal. Since the surface
normal is the normal vector of the tangent plane, we first have to compute the partial



3 Direct Variational Perspective SfS with Cartesian Depth Parametrisation 49

derivatives of the surface in Eq. (3.4) in x- and y-direction, respectively

Sx.x; z/ D

2
664

zx x C z

fzx y

f
�zx

3
775 ; Sy.x; z/ D
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f
zy y C z

f
�zy

3
775 : (3.7)

Here and for the whole paper we dropped the spatial dependency of z, zx and zy on
x for the sake of clarity. Taking the cross-product then yields the direction of the
surface normal

n.x/ D Sx.x; z/ � Sy.x; z/ D

2
6664

zx z

fzy z

f
z Œ.rz � x/C z�

f2

3
7775 : (3.8)

Light Direction. Let us now turn towards the computation of the light direction.
Since the light source is assumed to be located in the camera centre which coincides
with the origin of the coordinate system, the direction of the light rays and the
direction of the optical rays coincide (up to sign). Hence, the light direction can just
be read off Eq. (3.1) as

L.x/ D 1pjxj2 C f2

2
4�x

�y
f

3
5 : (3.9)

PDE-Based Model. By plugging the surface normal from Eq. (3.8) and the
light direction from Eq. (3.9) into the brightness Eq. (3.5) we finally obtain our
perspective SfS model with the new Cartesian depth parametrisation

I � Q3

z
q
f2 jrzj2 C Œ.rz � x/C z�2

D 0 : (3.10)

Here and for the whole paper we dropped the spatial dependency of I and Q on
x for the sake of clarity.

The main properties of our new model (3.10) are naturally inherited from the
original PDE [40]: (i) Eq. (3.10) still belongs to the class of Hamilton-Jacobi
equations (HJEs) which have been intensively studied in the SfS literature. (ii)
Therefore, well-posedness can be achieved in the viscosity sense [9, 14, 40]. (iii)
Proper numerical discretisations must be considered when solving the HJE.

Let us note that the framework of viscosity solutions is a natural setting for HJEs
such as Eq. (3.10). The basic idea behind the notion of viscosity solutions is to add
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a (typically, second order) regularisation term to the PDE and study the solution
as this term goes to zero. This proceeding yields desirable stability properties and
enables to consider even solutions with non-differentiable features like e.g. kinks.
We refer the interested reader to [5, 14] for studying properties of viscosity solutions
and to [12] for their use in computer vision.

Furthermore, please note that our model can be seen as a generalisation of
the PDE-based approach in [56] that already makes use of the Cartesian depth
parametrisation, but does not yet consider the light attenuation term from physics.

3.3 Variational Model for Perspective SfS with Cartesian
Depth Parametrisation

So far we have derived a novel PDE-based model for perspective SfS with Cartesian
depth parametrisation. Let us now discuss how this model can be integrated into a
variational framework with smoothness term.

Variational Model. To this end, we follow the idea from [30] and use a quadratic
error term based on our novel PDE as data term which is complemented with
a suitable second order regulariser. More precisely, we propose to compute the
Cartesian depth z as minimiser of the following energy functional

E .z/ D
Z
˝x

c.x/ D.x; z;rz/„ ƒ‚ …
Data term

C ˛ S.Hess.z//„ ƒ‚ …
Smoothness term

dx ; (3.11)

where D is the data term, S is the smoothness term, c W x 2 ˝x � R
2 ! Œ0; 1�

is a confidence function and ˛ 2 R
C is a regularisation parameter that steers the

degree of smoothness of the solution. As mentioned before our data term is based
on a quadratic formulation that penalises deviations from our novel PDE. It is given
by

D.x; z;rz/ D
�

I.x/� Q.x/3

z W.x; z;rz/

�2
(3.12)

with

W.x; z;rz/ D
q
f2 jrzj2 C Œ.rz � x/C z�2 : (3.13)

As smoothness term, we propose to use the following subquadratic and thus edge-
preserving second-order regulariser based on the Frobenius norm of the Hessian

S .Hess.z// D �
�
kHess.z/k2F

�
D �

�
z2xx C 2z2xy C z2yy

�
(3.14)
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where � is the Charbonnier function [13]

�.s2/ D 22
q
1C s2

2
(3.15)

with contrast parameter . Such higher-order smoothness terms have already been
successfully applied in the context of perspective SfS parametrised in terms of the
radial depth [30], orthographic SfS [49], image denoising [32], optical lithography
[21] and motion estimation [18]. Finally, the use of the confidence function c in the
data term allows to exclude unreliable image regions which have been identified a
priori, e.g. by a texture detector or by a background segmentation algorithm. Such
functions are particularly useful in the context of real-world images that contain
texture, noise, or missing data [17, 30].

Properties. Our variational model from Eq. (3.11) has the following distinct
features:

(i) Since the data term in Eq. (3.12) is inherited from Eq. (3.10), the perspective
camera projection is already taken into account. Moreover, since the repro-
jection error is penalised in the data term, deviations have a photometric
interpretation.

(ii) Since the regulariser is applied directly to the Cartesian depth, also deviations
from smoothness become now more meaningful than in the case of a radial
depth parametrisation. In particular, they can be interpreted geometrically.

(iii) Moreover, in contrast to most existing approaches, the regulariser is able to
preserve edges in the reconstruction despite of the regularisation effect.

(iv) Unreliable regions can be excluded from the data term via a confidence
function such that the smoothness term takes over and fills in information
from the neighbourhood. This can be advantageous in the context of texture,
noise, or missing data. Please note that in contrast to [30], we always
guarantee a fixed amount of regularisation by not restricting the smoothness
term to unreliable locations.

(v) The depth of the surface is directly computed since we minimise for the
unknown depth z in Eq. (3.11). This is in contrast to most variational methods
that estimate the depth in two steps, see e.g. [10, 22, 29] where first the surface
normals are computed by a variational model and then the depth is determined
by integration.

(vi) The solution given by the model fulfils the integrability constraint per
construction since we solve for z and use zxy D zyx in the smoothness term.
Otherwise, such as in [3], an additional integrability term would be needed to
encourage valid solutions.

(vii) Another advantage of the new parametrisation is that it allows a straightfor-
ward combination with other reconstruction methods such as stereo [43] or
scene flow estimation [6], since such approaches typically make use of the
same Cartesian parametrisation and thus could be easily integrated into a joint
framework.
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Table 3.1 Comparison of the literature on variational models for perspective shape from shading

(viii) A final advantage is the fact that the approach could easily be extended to
multiple views, since transformations between the views are simpler if the
approach is parametrised in terms of the Cartesian depth instead of the radial
depth.

To make the difference of our model to other variational approaches from the
literature explicit, the features of the different methods are compared in Table 3.1.

3.4 Minimisation

Let us now discuss the minimisation of the proposed energy. To this end, we will first
derive the associated Euler-Lagrange equation and then discuss its discretisation.
Finally, we will sketch a coarse-to-fine minimisation strategy with an alternating
explicit scheme to solve the resulting nonlinear equations.

Euler-Lagrange Equation. The calculus of variations [15] tells us that the min-
imiser z of our energy in Eq. (3.11) has to fulfil the corresponding Euler-Lagrange
equation. Omitting the dependencies on all variables in order to ease the readability,
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this equation is given by
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where we exploited the fact that
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On a structural level, this Euler-Lagrange equation is somewhat more complicated
than its counterparts for indirect methods in [53, 55]. Such indirect methods model
the surface normal using auxiliary variables p D zx and q D zy and thus do not have
the additional data term contributions @

@x ŒD�zx
and @

@y ŒD�zy
.

Let us now take a closer look at all the individual terms that occur in Eq. (3.17).
After some computations we obtain
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where the derivative of the penaliser function �.s2/ reads

� 0.s2/ D @

@.s2/
�.s2/ D 1q

1C s2

2

: (3.24)

While the contributions of the data term are related to the influence of z and rz on
the brightness equation, the contributions of the smoothness term define an edge-
preserving fourth-order diffusion process. This becomes explicit as follows: Since
� 0.s2/ becomes small for large values of s2, this reduces the effect of the smoothing
at locations with high curvature, i.e. where kHess.z/k2F is large. After we have
derived the resulting Euler-Lagrange equation, let us now discuss how this equation
can be discretised appropriately.

Discretisation. In order to discretise the contributions of the data term given by
Eqs. (3.18), (3.19) and (3.20), we employ the upwind scheme from [44] in view
of the hyperbolic nature of the underlying PDE. In 1D, the corresponding upwind
discretisation reads

Qzx � max
�
D�z;�DCz; 0

�
; (3.25)

with

D�z D zi � zi�1
hx

and DCz D ziC1 � zi

hx
; (3.26)

where hx denotes the grid size. Please note that in contrast to upwind schemes
for eikonal equations [45] that typically approximate only the magnitude of the



3 Direct Variational Perspective SfS with Cartesian Depth Parametrisation 55

gradient, the sign matters in our case, such that we have to choose

zx D
�

DCz if Qzx D �DCz ;
Qzx otherwise :

(3.27)

This selects the actual forward difference, if the second argument in (3.25) is the
maximum [8, 9]. This scheme can be extended in a straightforward way to 2D. For
discretising the contributions of the smoothness term, a standard central difference
scheme is used.

Since it is difficult to discretise the Euler-Lagrange equation directly, we followed
a first discretise then optimise scheme. To this end, we used the aforementioned
finite difference approximations to discretise the energy in (3.11) applying the
upwind scheme for the data term and a central difference approximation for the
smoothness term. Then, by computing the derivatives of the discrete energy we
obtain a proper discretisation for the Euler-Lagrange equation.

Finally, by using the Euler forward time discretisation method

zt � znC1 � zn



; (3.28)

with 
 being a time step size, we can reformulate the solution of Eq. (3.17) as
the steady state of the corresponding evolution equation in artificial time. Thus we
obtain the following explicit scheme

znC1 � zn



C ELn D 0 , znC1 D zn � 
 ELn ; (3.29)

where ELn is the discretisation of the Euler-Lagrange equation evaluated at time n.
Please note that this discretisation may change over time, since we re-discretised the
energy in each iteration by adapting the direction of the discretisation of the upwind
scheme (forward, backward, no contribution) based on evaluating Eqs. (3.25), (3.26)
and (3.27) for the result of the previous time step. In that sense we use a lagged
discretisation approach, where the discretisation is updated in each iteration.

Coarse-to-Fine Approach. Since the underlying energy functional is highly non-
convex, the proposed explicit scheme may get trapped in local minima. To tackle
this problem, we propose to embed the estimation into a coarse-to-fine framework.
Starting from a very coarse resolution, we successively refine the input image while
repeatedly reconstructing the surface. Thereby, solutions from coarser levels serve
as initialisation for the finer scales. Similar hierarchical schemes have already been
successfully applied to many other problems in computer vision; see e.g. [8, 11].

Apart from improving the quality of the results by avoiding local minima, coarse-
to-fine schemes also render the estimation more robust w.r.t. the choice of the
initialisation. In fact, if sufficiently many resolution levels were used, we could
hardly observe any impact of the initialisation on the quality of the final results.
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Since a good initial guess can still be useful to speed up the computation, we propose
to initialise the depth by pointwise solving the data term in Eq. (3.12) for rz D 0

D.x; z; 0/ D 0 ) z D
s

Q.x/3

I.x/
: (3.30)

This can be seen as an efficient compromise between using the full model which is
evidently not feasible and only considering the inverse square law, i.e. z D 1=

p
I.x/,

which completely neglects the effect of the surface orientation and thus actually
provides a local upper bound for the correct depth. In any case, in contrast to other
variational SfS methods from the literature, our technique does not have to rely
on initialisations from non-variational SfS approaches [3, 55] or surface integration
methods [53] to provide meaningful results.

Let us now discuss the details of our coarse-to-fine approach. To this end, we
introduce the parameter � that specifies the downsampling factor between two
consecutive resolution levels and that is typically chosen in the interval .0:5; 1/.
Then the grid size at level k of our coarse-to-fine approach can be computed as

hk
x D hx � ��k ; hk

y D hy � ��k : (3.31)

where k D 0 is the original resolution and k D kmax is the coarsest level. This
tells us that the grid size becomes larger at coarser scales which intuitively makes
sense, since the size of the image plane remains constant while the number of pixels
decreases. At the same time, however, this increase of the grid size leads to a major
problem: Since the contributions of the smoothness term given by Eqs. (3.21), (3.22)
and (3.23) involve fourth-order derivatives that scale proportionally to 1=h4, the
strength of the regularisation actually decreases with �4k on coarser scales. In order
to compensate for this effect, we thus propose to scale the smoothness weight ˛
according to

˛k D ��4k � ˛ : (3.32)

This guarantees a similar amount of regularisation for all resolution levels.

Alternating Explicit Scheme. Finally, we observed in our experiments that the
terms in Eqs. (3.19) and (3.20) that refer to the influence of the depth gradient rz
on the brightness equation require to select the time step size 
 rather small. In
particular, these terms do not have a weighting parameter such as the smoothness
term that can be adjusted appropriately. As a consequence, the minimisation
typically needs several thousands or even millions of iterations. To counter this
problem, we propose the following alternating estimation strategy at each resolution
level: For a fixed number of iterations n, instead of performing n iterations using
the original explicit scheme, we propose an alternating iterative scheme that first
does n=2 iterations with a simplified explicit scheme neglecting the two terms in
Eqs. (3.19) and (3.20), followed by n=2 iterations with the entire explicit scheme.
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Since the neglected terms are based on second-order derivatives and the remaining
terms did not strongly affect the convergence, we empirically found out that we
can choose the time step size approximately min.h�2

x ; h�2
y / times larger for the first

n=2 iterations (given that hx; hy � 1). In our experiments this leads to speed-
ups of about one to four orders of magnitude. Moreover, in most cases, even the
simplified scheme was sufficient to achieve excellent results. Thereby one should
note that, from a numerical viewpoint, the simplified scheme can be understood
as an optimisation method for a series of energy functionals of type of Eq. (3.11),
where the gradient rz is lagging and thus has no direct influence on the optimisation.

3.5 Intrinsic Parameters

So far we have derived a variational model for perspective SfS with Cartesian depth
parametrisation that is given in terms of image coordinates. Let us now discuss
how the model and the minimisation has to be adapted if we additionally consider
the intrinsic camera parameters, i.e. if we express the model in terms of pixel
coordinates.

Coordinate Transformation. Let the corresponding calibration matrix be given by

K D
2
4f=hx 0 c1

0 f=hy c2
0 0 1

3
5 : (3.33)

where .c1; c2/> denotes the location of the focal point, and hx and hy is the grid
size in x- and y-direction, respectively [23]. Knowing this matrix allows us to
reformulate the image coordinates x D .x; y/> of our original model in terms of
pixel coordinates a D .a; b/>. The corresponding transformation is given by

2
4 a

b
�1

3
5 D K

1

f

2
4 x

y
�f

3
5 )

2
4 x

y
�f

3
5 D f K�1

2
4 a

b
�1

3
5 ; (3.34)

where one has to take care that the image plane is at distance f of the camera centre.
Plugging Eq. (3.33) into Eq. (3.34) then yields

x.a/ D
	

x.a/
y.b/



D
	

hx 0

0 hy


 	
a
b



�
	

hx c1
hy c2



: (3.35)

Variational Model. Now we are in the position to reformulate our entire model
in terms of pixel coordinates. Substituting Eq. (3.35) into our original energy and
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transforming the integration domain ˝a D x�1.˝x/ accordingly, we obtain the
following variational model expressed in terms of pixel coordinates

E .z.x.a/// D
Z
˝a

c.x.a// D.x.a/; z.x.a//;rz.x.a///„ ƒ‚ …
Data term

C˛ S.Hess.z/.x.a///„ ƒ‚ …
Smoothness term

da :

(3.36)

Please note that we omitted the substitution factor given by jdet.J.x.a///j, where J
is the Jacobian, since this factor is constant and thus does not change the minimiser
of our energy. Let us now derive the corresponding Euler-Lagrange equation for our
novel model expressed in terms of pixel coordinates.

Euler-Lagrange Equation. Analogously to Eq. (3.17) we drop the dependencies
on all variables and obtain the following Euler-Lagrange equation

0 D c
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where we exploited the following relation between derivatives in pixel and image
coordinates due to Eq. (3.35)
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The equality between Eqs. (3.37) and (3.38) shows that the Euler-Lagrange
equations of our models in pixel and image coordinates are basically identical. One
only has to parametrise the terms (3.18), (3.19), (3.20), (3.21), (3.22) and (3.23) that
have been originally derived in image coordinates using the coordinate transform in
Eq. (3.35). Apart from that, the discretisation can be performed in accordance with
our explanations from the previous section. In this context, the grid size is given by
the intrinsic parameters hx and hy. Moreover, one has to adapt the camera matrix K
at each level of the coarse-to-fine scheme. This requires to scale both the grid size
and the principal point .c1; c2/>.
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3.6 Evaluation

Test Images and Error Measures. In order to evaluate our novel approach we
make use of four synthetic images with ground truth that fulfil the underlying
assumptions regarding reflectance and illumination. This allows us to compute two
error measures: one with respect to the reconstructed surface and the other one with
respect to reprojected image. The first error measure is the relative surface error
(RSE) of a point wise computed Euclidean distance between the computed surface
S and the ground truth surface S gt. It is given by

RSE D
P

˝a
jS .x.a//� S gt.x.a//jP

˝a
jS gt.x.a//j ; (3.41)

where the normalisation allows to determine the reconstruction error relative to
the ground truth shape. This in turn makes errors of differently scaled surfaces
comparable. The second error measure is the relative image error (RIE) between
the reprojected image I and the given input image Igt. It is defined as follows

RIE D
P

˝a
jI.x.a// � Igt.x.a//jP
˝a

jIgt.x.a//j : (3.42)

This time, however, the normalisation is performed with respect to the brightness
of the input image to make reprojection results for input images with different
brightness scale comparable. Summarising: While the first measure reflects how
well the reconstruction matches the ground truth surface, the second measure
determines how well the reprojection fits the input data.

Let us now discuss the considered test images which are depicted in Fig. 3.2
in detail. The first synthetic test image Sombrero was generated from a known
parametric surface, using the following equation

Z.X;Y/ D 0:5
sin .r.X;Y//

r.X;Y/
C 1:7 ; r.X;Y/ D

q
.10X/2 C .10Y/2 : (3.43)

The image was rendered using Eq. (3.5) at a size of 256�256 pixels, where the
focal length was set f D 1, the grid size was chosen to be hx D hy D 1=200 and

Fig. 3.2 Synthetic test images. From left to right: Sombrero, Suzanne, Stanford Bunny and
Dragon
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the principal point was fixed at c D .128; 128/>. The second test image Suzanne
was generated using the open-source software Blender [28]. In this context, the Z-
buffer of the rendering path and the corresponding intrinsic parameters (f D 35,
hx D 1=16, hy D 9=128, c D .256; 128/>) were extracted and the final image
was rendered at a size of 512 � 256 using Eq. (3.5) as before. The other two
test images Stanford Bunny and Dragon have been computed likewise using 3-D
models obtained from the Stanford 3D scanning repository [48]. For them a size
of 256�256 pixels and the intrinsic parameters (f D 35, hx D 1=8, hy D 9=128,
c D .128; 128/>) were chosen. Finally, all images were saved as 8-bit grey-value
images.

Let us finally comment on the selection of the parameters in our experiments.
In order to keep the number of parameters low, we choose a preferred standard
set of parameters for all the following experiments, unless otherwise stated: A
downsampling factor of � D 0:8 for the coarse-to-fine approach, n D 106 solver
iterations on each coarse-to-fine level and a contrast parameter of  D 10�3.
Moreover, the time step size 
 provided in the different experiments always refers
to the simplified explicit scheme. The time step size for the full explicit scheme is
min.h2x ; h

2
y/ times smaller.

Results on Synthetic Test Images. In our first experiment we evaluate the
reconstruction quality of our novel approach. To this end, we applied our perspective
SfS algorithm to all four of the previously discussed test images and compared
the reprojected image and the reconstruction to the ground truth; see Figs. 3.3 and
3.4. Herein, the depth values are colour-coded in such a way that depth increases
from red via green to blue. As one can see, both the reprojected image as well
as the estimated depth values coincide very well with the ground truth. This is
also confirmed by the corresponding surface error maps in Fig. 3.5. Indeed, only
small differences for the Stanford bunny (right paw) and the Dragon (tail tip) are
visible. As a consequence both error measures which are listed in Table 3.2 are very
small. Moreover, one can see that the proposed subquadratic penaliser outperforms a
quadratic smoothness term in most cases. Only for the Sombrero which has a rather
smooth surface, the reconstruction error is smaller in the quadratic case.

Influence of the Regularisation. In our second experiment we investigate the
influence of the regularisation on the quality of the reconstruction and its reprojec-
tion. To this end, we consider the Sombrero test image and vary the regularisation
parameter ˛ while the other parameters are kept fixed (
 D 0:001, n D 104). The
outcome is visualised in Fig. 3.6. While the reprojection related error measure (RIE)
increases for a moderate amount of regularisation but is overall very low, the surface
related error measure (RSE) decreases by almost a factor 3 (from 4:4 � 10�2 to
1:7 � 10�2). This, however, is not surprising, since the computed surface typically
exhibits some form of smoothness and thus benefits from a moderate amount of
regularisation. Since the actual purpose of SfS is to find the correct surface, this
shows that the regularisation may have an overall positive impact on the quality of
the results.
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Fig. 3.3 First column, from top to bottom: Input image, reprojected image, ground truth depth,
computed depth for the Sombrero test image (˛ D 7:5 � 10�5 , 
 D 10�2, n D 106). Second
column: Ditto for the Stanford Bunny test image (˛ D 7:5 � 10�5, 
 D 10�3, n D 106). Third
column: Ditto for the Dragon test image (˛ D 7:5 � 10�8, 
 D 10�3 , n D 106)
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Fig. 3.4 First row, from left to right: Input image and ground truth depth of the Suzanne test
image. Second row: Reprojected image and the computed depth (˛ D 10�7 , 
 D 10�3, n D 106)

Fig. 3.5 Surface error maps. From left to right: Stanford Bunny, Dragon and Suzanne. Red
denotes errors above 1 %, where the intensity encodes the error magnitude. White denotes errors
below 1 %. The Sombrero is not shown, since the error is below 1 % everywhere

Table 3.2 Results for our approach with quadratic and subquadratic penaliser.
Error measures are given in terms of the relative surface error (RSE) and the
relative image error (RIE). Best results for each test image are highlighted
boldface. Same parameters as in Figs. 3.3 and 3.4

Quadratic Subquadratic

RSE RIE RSE RIE Runtime

Sombrero 0.00208 0.00694 0.00318 0.00209 29,113 s

Stanford Bunny 0.00546 0.00015 0.00439 0.00007 23,969 s

Dragon 0.01376 0.00028 0.01376 0.00028 2535 s

Suzanne 0.00392 0.00011 0.00251 0.00002 48,395 s

Independence of the Initialisation. In our third experiment we analyse the
dependency of our approach on the initialisation. To this end, we use the Stanford
Bunny (z 2 Œ1; 2�) and compare our initialisation on the coarsest scale of the
proposed coarse-to-fine scheme (cf. Eq. 3.30) with two other initialisations based
on plain surfaces (z D 1, z D 10). The initial error and the outcome after n D 106

iterations are listed in Table 3.3. While the initial error for a good guess (z D 1) and
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Fig. 3.6 Impact of the
amount of regularisation on
the reconstruction quality and
the reprojection accuracy for
the Sombrero test image
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Table 3.3 Impact of different initialisations on the reconstruc-
tion quality and reprojection accuracy for the Stanford Bunny
(˛ D 7:5 � 10�5 , 
 D 10�3, n D 106)

Initial error After computation

RSE RIE RSE RIE

Plane (z D 1) 0.25804 1.63174 0.00439 0.00007

Plane (z D 10) 6.41960 0.97373 0.00439 0.00007

Proposed 0.37712 0.74363 0.00439 0.00007

a poor initialisation (z D 10) differs significantly, the quality of the reconstruction
and the reprojection is identical after sufficiently many iterations. This also holds
for our initialisation which can be computed from the input image without requiring
a specific knowledge of the depth. That all initialisations converge to the same
solution, however, is not surprising since the estimation is embedded in our coarse-
to-fine scheme.

Comparison of Numerical Schemes. In our fourth experiment we compare the
different numerical schemes proposed in Sect. 3.4: the full explicit scheme, the
simplified explicit scheme and the alternating explicit scheme. In the first part
of the experiment we juxtapose the quality of the different numerical schemes
for equal stopping times (iterations � time step size). As one can see from the
results in Table 3.4, the full explicit scheme clearly gives the best results in terms
of reconstruction quality and reprojection accuracy. However, this comes at the
expense of a significantly larger runtime, since more iterations are needed due to the
time step restrictions discussed in Sect. 3.4. In fact the runtime is up to four orders
of magnitude larger making the approach hardly feasible for larger image sizes. In
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Table 3.4 Comparison of different numerical schemes for equal stopping time t D n � 
 . Results
and runtimes refer to smaller versions of the four test images. Same parameters as in Figs. 3.3 and
3.4 except for n, which is given by n D t=


Alternating scheme Simplified scheme Full scheme

Test image RSE RIE RSE RIE RSE RIE

Small Sombrero 0:01823 0:01920 0:01820 0:02048 0:00785 0:00527
(128 � 128) (runtime: 30 s) (runtime: 15 s) (runtime: 178;021 s)

Small Stanford Bunny 0:00659 0:00151 0:00667 0:00257 0:00576 0:00097
(128 � 128) (runtime: 303 s) (runtime: 150 s) (runtime: 4278 s)

Small Dragon 0:01667 0:00267 0:01673 0:00620 0:01526 0:00205
(128 � 128) (runtime: 308 s) (runtime: 149 s) (runtime: 4304 s)

Small Suzanne 0:00899 0:00514 0:01055 0:01909 0:01022 0:00203
(128 � 96) (runtime: 223 s) (runtime: 111 s) (runtime: 2384 s)

Table 3.5 Comparison of different numerical schemes for equal number of iterations. Results
refer to the smaller versions of the four test images, see Table 3.4. The same parameters as in
Figs. 3.3 and 3.4 have been used except for n, which is given by n D 107

Alternating scheme Simplified scheme Full scheme

Test image RSE RIE RSE RIE RSE RIE

Small Sombrero 0:02357 0:00082 0:02392 0:00659 0:00358 0:00319

Small Stanford Bunny 0:00390 0:00001 0:00378 0:00004 0:00489 0:00047

Small Dragon 0:00572 0:00001 0:00562 0:00001 0:00964 0:00170

Small Suzanne 0:00319 0:00002 0:00320 0:00001 0:00505 0:00056

the second part of the experiment we compared the numerical schemes for an equal
number of iterations. From the results in Table 3.5 it becomes evident that in this
case the simplified explicit scheme and in particular the alternating explicit scheme
perform best in most cases in terms of reconstruction quality and reprojection
accuracy. This demonstrates that it can be worthwhile to (partly) omit the terms
that are added in the full explicit scheme since they slow down the convergence, but
doing so does not necessarily compromise the quality.

Reconstruction with Inpainting. In our fifth experiment we demonstrate the
inpainting capabilities of the regularisation in combination with the confidence
function c embedded in the data term. For this reason we created a pair of degraded
Stanford Bunny test images together with the corresponding confidence functions,
which are both depicted in Fig. 3.7. In addition, the computed depth values and the
reprojected images are shown. One can see that in both cases the missing regions in
the input image can hardly deteriorate the quality of the results since the smoothness
term fills in the information from the neighbourhood. This is also reflected in the
error measures given in Table 3.6. In case of the perforated version the surface error
even remains the same compared to the result for the original version.

Comparison with a PDE-Based Approach. In our seventh experiment we com-
pare the results of our variational method with the PDE-based approach of Vogel
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Fig. 3.7 First row, from left to right: Perforated version of the Stanford Bunny test image,
corresponding confidence function c, computed depth values, reprojected image (˛ D 7:5� 10�5,

 D 10�3, n D 106). Second row: Ditto for the sliced version (same parameters)

Table 3.6 Evaluation of inpainting properties for degraded versions of the Stanford Bunny test
image. Same parameters as in Fig. 3.7

Perforated version
(Fig. 3.7, top row)

Sliced version
(Fig. 3.7, bottom row) Original version (Fig. 3.2)

RSE 0:00439 0:00509 0:00439

RIE 0:00039 0:00249 0:00007

et al. [51] with Lambertian reflectance model. This essentially comes down to a
comparison to the baseline method of Prados et al. [40] which is solved by Vogel
et al. [51] as part of a Phong-based model using an efficient fast marching scheme
[45]. In this experiment we consider two scenarios, that nicely demonstrate the
advantages and shortcomings of the different types of methods: On the one hand,
we use input images without noise, on the other hand, we added Gaussian noise of
standard deviation � D 20 before applying the two methods. The corresponding
results are summarised in Tables 3.7 and 3.8, respectively. For the test images
without noise both approaches give excellent results with errors among or below
1 % of the solution. Thereby the approach of Vogel et al. gives slightly better results
in terms of the relative surface error (RSE), while the variational approach gives
better results in terms of the relative image error (RIE). From the viewpoint of the
variational approach this can be explained as follows: While the data term penalises
deviations from the photometric reprojection error and thus gives rather small RIE
values, the regulariser and the coarse-to-fine scheme yield a moderate smoothing of
the surface resulting in slightly higher RSE values. In the case of the noisy input
images the findings are completely different. Here, the variational method can take
advantage of both the regulariser and the independence of the initialisation. While
a higher smoothness weight allows to obtain a smooth surface, the hierarchical
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Table 3.7 Comparison between our variational method and the
PDE-based approach of Vogel et al. [51] with Lambertian reflectance
model (D baseline model of Prados et al. [40]). Error measures are
given in terms of the relative surface error (RSE) and the relative
image error (RIE). Same parameters as in Figs. 3.3 and 3.4

Vogel et al. [51] Our method

(PDE-based approach) (variational method)

RSE RIE RSE RIE

Sombrero 0.00301 0.00495 0.00318 0.00209

Stanford Bunny 0.00266 0.00154 0.00439 0.00007

Dragon 0.00422 0.00255 0.01376 0.00028

Suzanne 0.00253 0.00082 0.00251 0.00002

Table 3.8 Performance under noise. Comparison between our variational
method and the PDE-based approach of Vogel et al. [51] with Lambertian
reflectance model (D baseline model of Prados et al. [40]). Gaussian noise
of standard deviation � D 20. Error measures are given in terms of the
relative surface error (RSE) and the relative image error (RIE). The applied
parameters are as follows: Sombrero (˛ D 0:1, 
 D 10�5, n D 106),
Stanford Bunny (˛ D 1:0, 
 D 10�5, n D 106), Dragon (˛ D 1:0, 
 D
10�5, n D 106), Suzanne (˛ D 1:0, 
 D 5� 10�6, n D 106)

Vogel et al. [51] Our method.

(PDE-based approach) (variational method)

RSE RIE RSE RIE

Noisy Sombrero 0.19530 0.27254 0.05118 0.13239

Noisy Stanford Bunny 0.10973 0.17347 0.03235 0.15279

Noisy Dragon 0.12240 0.19409 0.05395 0.18767

Noisy Suzanne 0.12134 0.16783 0.01256 0.14302

initialisation via the coarse-to-fine scheme does not require to rely on noisy solutions
at critical points as the PDE-based approach of Vogel et al. As a consequence, the
resulting surface errors of 3–6% for our variational approach are significantly lower
than those of the PDE-based model (11–20%). This can also be seen from the
depth estimates for the Stanford Bunny depicted in Fig. 3.8. Not surprisingly our
findings are in full accordance with the observation in [30], in which the robustness
of variational methods for perspective SfS has been investigated.

Results on Real-World Images. Finally, in order to evaluate our approach on real-
world images, we used two images of faces provided by Prados [41]. According to
Prados, these images have been taken with a cheap digital camera in a dark place,
where the scene is illuminated by the flash of the camera. The focal length is f D
5:8mm and the grid size is approximately hx D hy D 0:018mm. The test images as
well as additional images rendered from a new viewpoint using the computed depth
are shown in Fig. 3.9. In both cases the results look quite realistic. One can also see
how the depth values at the eyes have been inpainted in the reconstruction, since a
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Fig. 3.8 From left to right: Noisy version of the Stanford Bunny (Gaussian noise with � D 20),
ground truth depth, computed depth using our variational approach (˛ D 1:0, 
 D 10�5, n D 106),
computed depth using the PDE-based approach of Vogel et al. [51] with Lambertian model

Fig. 3.9 First row, from left to right: Face with closed eyes, three images rendered from a new
viewpoint using the estimated depth (˛ D 7:5� 10�5 , 
 D 5� 10�3, n D 2� 105). Second row:
Ditto for the second test image (˛ D 7:5� 10�5, 
 D 5� 10�3 , n D 2� 105)

manually defined confidence function was used to mask out those regions where the
assumption of a Lambertian surface is violated.

3.7 Conclusion

In this paper, we described a novel variational model for perspective shape from
shading that not only has many desirable theoretical properties but also yields
very convincing reconstruction results for synthetic and real-world input images,
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even in the presence of noise or other deteriorations in an input image. While the
arising optimisation problem has turned out to be challenging, we have proposed an
alternating explicit scheme embedded in a coarse-to-fine framework that is robust
with respect to the initialisation and that allows reasonable computation times
compared to a standard explicit scheme.

Besides the results that are documented via extensive experiments in this chapter,
let us point out that we see a main contribution of our work in a different context, as
we have layed the fundamental building block for a conceptually correct, working
variational framework that can combine perspective shape from shading with other
techniques from computer vision such as e.g. stereo vision. We aim to explore the
arising possibilities in a future work.

Acknowledgements This work has been partially funded by the Deutsche Forschungs-
gemeinschaft (DFG) as a joint project (BR 2245/3-1, BR 4372/1-1).

Appendix

Alternative Derivation of the Surface Normal. Instead of computing the deriva-
tives with respect to the 2-D image coordinates x and y, one can also derive the
surface normal in an alternative way that is often used in the literature, see e.g. [53].
The idea is to interpret the original surface in Eq. (3.4) as a function of the 3-D
coordinates X, Y and Z.X;Y/

S .X.x; z/;Y.x; z/;Z.X.x; z/;Y.x; z/// D
2
4 X.x; z/

Y.x; z/
Z.X.x; z/;Y.x; z//

3
5 WD

2
664

z x

fz y

f
�z

3
775 :

(3.44)

Dropping the dependency of X, Y and Z.X;Y/ on x, z and computing the partial
derivatives with respect to X and Y via the chain rule
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then gives the tangent vectors to the surface
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After some computations we finally obtain the corresponding normal direction

On.x/ D SX.x; z/ � SY.x; z/ D f2

.z C zx x/.z C zy y/
n.x/ : (3.46)

where n.x/ is the normal direction from Eq. (3.8) As expected, both vectors
only differ by scale, i.e. they have the same direction. Hence, the corresponding
normalised vectors n=jnj and On=j Onj are identical. While this alternative derivation
was not used in our paper, it helps to clarify a common mistake in the literature that
will be explained in the following.

Remark Please note that, unlike in the orthographic case, the cross derivatives
@X=@Y and @Y=@X do not vanish for the perspective model. Hence, using the
orthographic derivation of the normal direction from Horn and Brooks [27]
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with zero cross derivatives and simply replacing the remaining partial derivatives ZX

and ZY by the corresponding expressions from (3.45) is not completely correct for
the perspective case. Such an approach has for instance been proposed in [53, 55]. It
actually mixes the orthographic and the perspective model and thus typically gives
worse results in the case of strong perspective distortions. Moreover, apart from
not being completely correct, this strategy also yields significantly more complex
models that typically require auxiliary variables to be solved, see again e.g. [53, 55].
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Chapter 4
Amoeba Techniques for Shape and Texture
Analysis

Martin Welk

Abstract Morphological amoebas are image-adaptive structuring elements for
morphological and other local image filters introduced by Lerallut et al. Their con-
struction is based on combining spatial distance with contrast information into an
image-dependent metric. Amoeba filters show interesting parallels to image filtering
methods based on partial differential equations (PDEs), which can be confirmed
by asymptotic equivalence results. In computing amoebas, graph structures are
generated that hold information about local image texture. This chapter reviews and
summarises the work of the author and his coauthors on morphological amoebas,
particularly their relations to PDE filters and texture analysis. It presents some
extensions and points out directions for future investigation on the subject.

4.1 Introduction

Mathematical morphology [38, 45, 46] has developed since the 1960s as a powerful
theoretical framework from which versatile instruments for shape analysis in images
can be derived, such as for structure-preserving denoising or shape simplification
[23]. The fundamental building blocks of classical mathematical morphology are
non-linear local image filters like dilation, erosion, and median filters. They rely on
aggregating intensities within a neighbourhood of any given pixel by e.g. maximum,
minimum, and median operations. The selection of neighbourhoods for processing
is classically done by shifting a sliding window of fixed size and shape across the
image. In the context of morphology, this sliding window is known as structuring
element.
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More recently, concepts for adaptivity have been developed generally in image
filtering and also specifically in morphology [5, 51]. One recent concept for adaptive
morphology are morphological amoebas introduced by Lerallut et al. [32]. These
are space-variant structuring elements constructed from a combination of spatial
distance measurement with local contrast measurement via an amoeba metric.

In earlier work by the author of the present chapter and his coauthors, properties
of amoeba filters and their relations to image filters based on partial differential
equations (PDEs) were investigated [54, 57, 58]. As an application to image
segmentation, an amoeba-based active contour method was designed [53, 54, 56].
Recently, a combination of edge-weighted graphs generated in the computation of
amoebas with graph indices was used to introduce a new class of texture descriptors
[55] which are currently under further investigation. This chapter reviews and
summarises the results from these works. Directions of ongoing research on this
topic are sketched.

With focus on giving a comprehensive overview of the theory that has been
developed in various earlier publications, the (mostly lengthy) proofs of the results
are omitted here and referred to the respective original sources. Nevertheless,
the main principles underlying the proofs are shortly outlined. Although amoeba
filtering of multi-channel images has been addressed to some extent in [57], this
aspect of the topic presents itself in a stage too early for a summarised presentation,
and is therefore not included in the present chapter.

In the following the structure of the chapter is detailed, highlighting contributions
that are novel in this presentation.

Section 4.2 introduces the concept of morphological amoebas as image-adaptive
structuring elements in the space-discrete as well as the space-continuous setting. To
ease bridging to the graph techniques discussed later in Sect. 4.6, the presentation
in the discrete case emphasises the modelling of discrete images by neighbourhood
graphs and uses standard terminology from graph theory, thereby following [55].
The presentation of the space-continuous case is similar to that e.g. in [57].

The application of amoebas in image filtering is the topic of Sect. 4.3. Median
filters, morphological dilation and erosion are presented together with their relation-
ship to PDE image filters, reproducing herein results from [54, 56–58]. Regarding
the association between amoeba metrics on the discrete filtering side and edge-
stopping functions occurring in the corresponding PDEs, the current work adds to
the previously considered exemplary L1 and L2 (Euclidean) amoeba metrics as a
third simple case the L1 (maximum) amoeba metric and states explicitly the corre-
sponding edge-stopping function. Moreover, the amoeba variants of morphological
opening and closing are included in the description for the first time. For dilation,
erosion, opening and closing filters, the presentation here emphasises the algebraic
background including max-plus/min-plus convolution and conjugacy of structure
elements.
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Section 4.4 considers the application of amoeba techniques to devise basic
algorithms for unsupervised segmentation of grey-value images, namely the amoeba
active contours (AAC) first introduced in [53] and further investigated in [54, 56].
Results from [56] on the relation between AAC and geodesic active contours are
reported.

In image filtering by nonlinear PDEs, one often computes the nonlinearities
not from the input images themselves but from Gaussian pre-smoothed versions
of these, in order to reduce noise sensitivity of filters and to improve numerical
stability. This is also the case with self-snakes and active contour PDEs; note that
the self-snakes PDE is even ill-posed without such pre-smoothing. Section 4.5
investigates the effect of pre-smoothing in the self-snakes PDE using perturbation
analysis on a synthetic example; furthermore, it discusses how a comparable
stabilisation can be achieved in the amoeba median filter framework. The analysis
presented in this section relies on previous work in [54, 57] in which oscillatory
perturbations aligned with the gradient direction were studied, and extends it by
including also perturbations aligned with the level line direction.

Section 4.6 is devoted to a different direction of application of amoeba ideas.
Noticing that the computation of discrete amoeba structuring elements is intimately
related with graph structures – a weighted neighbourhood graph, weighted and
unweighted Dijkstra search trees – in the neighbourhood of each pixel, one can
try to extract local texture information from these graphs. Quantitative graph theory
[13] offers a variety of graph indices for generating quantitative information from
graph structures. The presentation of the construction of texture descriptors from
amoebas and graph indices in this section follows [55]. Compared to the large
set of descriptors covered in [55], only a few representatives are shown here,
complementing their mathematical description by a visualised example. Extending
the previous work on texture discrimination in [55], the present chapter also shows
a first example of the new texture descriptors in texture segmentation by using the
descriptors as components of an input image for multi-channel GAC segmentation.

4.2 Morphological Amoebas

Well-known local image filters such as the mean filter, median filter, morphological
dilation or erosion consist of two steps: a sliding-window selection step, and the
aggregation of selected input values by taking e.g. the arithmetic mean, median,
maximum or minimum. A strategy to improve the sensitivity of such filters to
important image structures is to modify the selection step by using spatially adaptive
neighbourhoods instead of a fixed sliding window. The general idea is to give
preference in the selection to neighbouring image locations with similar intensities,
and thus to reduce the flow of grey-value information across high contrast steps or
slopes in the filter process.
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First introduced by Lerallut et al. [32, 33] as structuring elements for adaptive
morphology, morphological amoebas are a specific type of such spatially adaptive
neighbourhoods. Their construction relies on the combination of spatial distance in
the image domain with grey-value contrast into a modified metric on the image.

4.2.1 Edge-Weighted Neighbourhood Graph

To define morphological amoebas on discrete images, we start by considering edge-
weighted graphs based on the image grid.

Definition 4.1 Let f be a discrete image. Construct an edge-weighted graph
Gw. f / WD .V;E;w/ with vertex set V , edge set E and weights w as follows. The
vertex set V is formed by all pixels of f . Two vertices i, j are connected, fi; jg 2 E, if
and only if pixels i, j are neighbours under a suitably chosen neighbourhood notion.
To define the edge weights wi;j for an edge fi; jg 2 E, consider the corresponding
pixel locations pi and pj as well as the intensities fi and fj, and set wi;j to

wij WD '
�kpi � pjk2; ˇ j fi � fjj

�
(4.1)

where kpi � pjk2 denotes Euclidean distance in the image plane, ˇ > 0 is a contrast
scale parameter weighting between spatial and tonal distances, and ' is a norm on
R2 which can be rewritten as

'.s; t/ D
(

jtj � �.js=tj/ ; t > 0 ;

jsj ; t D 0
(4.2)

with a monotonically increasing function � W RC
0 ! RC (by continuity, �.0/ D 1).

The edge-weighted graph Gw. f / is called neighbourhood graph of f .

In this definition, neighbourhood can be understood as a 4-neighbourhood, as
done in [32], or as an 8-neighbourhood as in [55, 57, 58]. The latter choice gets
somewhat closer to a Euclidean measurement of spatial distances in the image plane
and is therefore also considered the default in the present work.

As to the norm function �, the setting �.z/ � �1.z/ D 1 C z corresponds to the
L1 metric also used in [32] that gives

wij D kpi � pjk2 C ˇ j fi � fjj ; (4.3)

whereas �.z/ � �2.z/ D
p
1C z2 entails a Euclidean (L2) metric in which the edge

weights are obtained by the Pythagorean sum

wij D
q

kpi � pjk22 C ˇ2j fi � fjj2 (4.4)
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A straightforward generalisation is

�p.z/ D .1C zp/1=p for p � 1 ; (4.5)

which in the limit p ! C1 also includes �1.z/ D maxf1; zg and the corresponding
edge weight

wij D max
˚kpi � pjk2; ˇ j fi � fjj

�
: (4.6)

4.2.2 Discrete Amoeba Metric

We use the edge-weighted neighbourhood graph to define the discrete amoeba
metric on image f .

Definition 4.2 Let a discrete image f be given. Let Gw. f / be its neighbourhood
graph with edge weights given by (4.1). Define for two pixels i and j their distance
d.i; j/ as the minimal total weight (length) among all paths between i and j in Gw. f /.
Then d is called (discrete) amoeba metric on f .

The metric d is called Lp amoeba metric, 1 	 p < 1, if it is derived from (4.5),
or L1 amoeba metric if it is obtained from �.z/ D maxf1; zg. The L2 amoeba metric
is also called Euclidean amoeba metric.

Definition 4.3 In a discrete image f with amoeba metric d, an amoeba structuring
element (short: amoeba)A%.i/ � A%. f I i/with amoeba radius % and reference point
at pixel i is a discrete %-ball around pixel i in the amoeba metric, i.e. the set of all
vertices within a distance % from i,

A%.i/ WD f j j d.i; j/ 	 %g : (4.7)

The derivation of amoebas from a metric with a global radius parameter % has an
interesting consequence: for two pixels i, j, one has

i 2 A%.j/ , j 2 A%.i/ ; (4.8)

which is helpful in the design of some morphological filters.

4.2.3 Computation of Discrete Amoebas

To compute amoebas in a discrete image, one has to search the neighbourhood of
each given reference pixel i in order to identify the pixels j with amoeba distance
d.i; j/ 	 %. Given that the edge weights wi;j in Gw. f / are nonnegative, this can be
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achieved by running Dijkstra’s shortest path algorithm [16] on Gw. f / starting at
pixel i. As this algorithm enumerates neighbour pixels in order of increasing path
weight, it can be stopped as soon as a pixel j with d.i; j/ > % is visited.

Moreover, by the construction of the amoeba distance it is clear that the Euclidean
distance in the image domain is a lower bound for the amoeba distance between
pixels. Therefore the Dijkstra algorithm for the start vertex i can be run on the
subgraph of Gf .w/ that contains just the pixels from the Euclidean %-neighbourhood
of i.

4.2.4 Amoebas on Continuous Domains

Even superficial inspection of results obtained by some amoeba filters indicates
that they have striking similarities to image processing methods based on partial
differential equations (PDEs). This observation has been substantiated in [56–58]
by studying space-continuous versions of amoeba filters; the results proven there
allow to interpret amoeba filters as time steps of explicit discretisations for suitable
PDEs.

To devise space-continuous versions of amoeba filters, one has to translate first
the notion of amoeba metric to the space-continuous setting. Once this is done, the
definition of an amoeba as a %-ball around a reference point is straightforward.

The amoeba metric for a space-continuous greyvalue image – a real-valued
function f over a connected compact image domain � � Rn – can be stated by
assigning to each two given points p; q 2 � as their distance the minimum of a
path integral between p and q. Just like the edge weights in the discrete amoeba
construction, the integrand of the path integral is obtained by applying a suitable
norm ' to the spatial metric (the Euclidean curve element of the path) and the
greyvalue metric (the standard metric on the real domain), such that the amoeba
distance reads as

d. p; q/ D min
c

1Z
0

'
�kc0.t/k2; ˇ j. f ı c/0.t/j� dt

D min
c

1Z
0

'
�kc0.t/k2; ˇ jr f Tc0.t/j� dt (4.9)

where c runs over all regular curves c W Œ0; 1� ! � with c.0/ D p, c.1/ D q, and '
can be chosen as in the discrete case.

Let us associate to the function f W R2 � � ! R its (vertically rescaled) graph,
the manifold � WD f.x; y; ˇ f .x; y// j .x; y/ 2 �g � R3. Then we see that the
amoeba distance d.˙p;˙q/ between two points ˙p, ˙q in the image domain �
can be interpreted as a distance Od. p0; q0/ on � . The points p0; q0 2 � herein are
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Fig. 4.1 Amoeba as projection of the unit disk on the image graph to the image plane

given by p0 WD . p; f . p//, q0 WD .q; f .q//. To define the metric Od on � , consider
a metric Qd in the surrounding space R3 that combines Euclidean metric in the x-
y-plane with the standard metric in z-direction via the function ' from (4.2) that
appeared already in the original construction of the amoeba metric. Using Qd in R3,
the metric Od is obtained as its induced metric on the submanifold� � R3. Figure 4.1
illustrates that the amoeba structuring element is then the projection of a unit disk
on � back to the image plane.

Figure 4.2 shows typical amoeba shapes in smooth image regions for the three
exemplary amoeba metrics exposed in Sect. 4.2.2.

4.3 Amoeba-Based Image Filters

To obtain applicable image filters, the amoeba procedure described above is used
as a selection step and needs to be complemented by some aggregation step. We
consider here standard choices of aggregation operators from classical local filters;
introducing also modifications into this part of the filtering procedure is left as
a possible direction for future research. Moreover, keeping close to the original
context in which amoebas were developed, we focus on morphological operators.
Here, morphological operators are characterised by their invariance under arbitrary
monotonically increasing transformations of the intensities, see e.g. [37], which
means that also median and quantiles belong to this class.
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Fig. 4.2 Typical shapes of amoebas in the continuous domain for different amoeba metrics. Top
row shows amoebas on an image with equidistant straight level lines, bottom row shows amoebas
on curved level lines (schematic). Left column shows L1 amoeba metric, middle column Euclidean
amoeba metric, and the right column shows the maximum (L1) amoeba metric. Each amoeba is
shown with its reference point (bold) and level line through the reference point (dashed)

4.3.1 Median

A median filter aggregates the intensity values of the selected pixels by taking their
median. In the non-adaptive, sliding-window setting this filter can be traced back to
Tukey [50], and since then it has gained high popularity as a simple denoising filter
that preserves discontinuities (edges) and its robustness with respect to some types
of noise. Median filtering can be iterated. Unlike average filters, the median filter on
a discrete image possesses non-trivial steady states, so-called root signals [17], that
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depend on the filter window. The smaller the filter window, the faster the iterated
median filtering process locks in at a root signal.

Despite the nice preservation of edges, the non-adaptive median filter involves
a displacement of curved edges in inward direction and rounding of corners that
is often undesired. Amoeba median filtering greatly reduces this effect. Figure 4.3
demonstrates this by an example.

4.3.1.1 PDE Approximation

As noticed already in 1997 by Guichard and Morel [20], the overall robust denoising
effect and the characteristic corner-rounding behaviour of standard median filtering
resemble the properties of the well-known (mean) curvature motion PDE [1].
Further analysis confirmed this observation by proving an asymptotic relationship
between the two filters, as set forth in the following proposition.

Proposition 4.1 (Guichard and Morel [20]) For a smooth function u W � ! R,
one iteration of median filtering with a %-ball as structuring element approximates
for % ! 0 a time step of size 
 D %2=6 of the curvature motion PDE [1]

ut D jruj div

� ru

jruj
�
: (4.10)

This seminal result motivates the investigation of relations between amoeba and
PDE filters whose results are reviewed in the further course of the present paper.

Just like amoeba median filtering differs from standard median filtering by an
adaptation procedure that suppresses smoothing across edges, the curvature motion
equation (4.10) has a counterpart in which also the flow across edges is suppressed.
This so-called self-snakes filter [44] allows curvature-based image smoothing and
simplification, preserves and even enhances edges, while at the same time avoiding

Fig. 4.3 Non-adaptive and amoeba median filtering. (a) Original image. (b) Filtered by 5
iterations of standard median filtering with a discrete disk of radius 2 as structuring element. (c)
Filtered by 5 iterations of amoeba median filtering with Euclidean amoeba metric, ˇ D 0:2, % D 7
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to shift them, as curvature motion does. It turns out that indeed amoeba median
filtering is connected to self-snakes by a similar asymptotic relationship as that of
Proposition 4.1, as follows.

Theorem 4.1 ([57, 58]) For a smooth function u W � ! R, one iteration of amoeba
median filtering with amoeba radius % approximates for % ! 0 a time step of size

 D %2=6 of the self-snakes PDE [44]

ut D jruj div

�
g
�jruj� ru

jruj
�

(4.11)

where g W RC
0 ! RC

0 is a decreasing edge-stopping function that depends on the
amoeba metric being used.

Proofs for Theorem 4.1 have been given in [57, 58]. While these proofs are not
reproduced in detail here, it is of interest to describe the two different strategies
that are used in these proofs. These approaches form also the basis for the further
amoeba–PDE asymptotics results presented in Sect. 4.3.2.

4.3.1.2 Proof Strategies

The crucial observation for all median filter–PDE equivalence results since Gui-
chard and Morel’s proof of Proposition 4.1 in [20] is that the median of a smooth
function u within a given compact structuring element A is the function value
whose corresponding level line divides the structuring element into two parts of
equal area. Herein it is assumed that each value of u within the structuring element
is associated with a unique level line segment inside A , which is satisfied for
sufficiently small fixed or amoeba structuring elements whose reference point x0
is not an extremum of u, and therefore acceptable when studying the limit % ! 0.

The amount by which a single median filtering step changes the function
value at the reference point x0 of the structuring element then corresponds, up to
multiplication with jruj, to the distance between the area-bisecting level line and the
level line through x0, see the illustration in Fig. 4.4a. The two approaches discussed
in the following differ in the way how they measure the area of the structuring
elements and parts thereof.

Proof Strategy I

The first strategy has been followed in [58] to prove Theorem 4.1 for the entire
class of amoeba metrics discussed in Sect. 4.2 above, see also the more detailed
version in [57, Section 4.1.1]. It is close to the approach from [20] in that it develops
the smooth function u around the reference point x0 into a Taylor expansion up to
second order. The Taylor expansion is then used to approximate, for an amoeba
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•x0

(a)

x0
•

(b)

Fig. 4.4 (a) Amoeba with reference point x0, level line through x0 (dot-dashed) and bisecting
level line (dashed), schematic. (b) Amoeba with curvilinear coordinate system formed by level
lines (dashed) and gradient flow lines (solid)

A D A%.x0/, three items: first, the range of function values occurring within A ,
i.e. the minimum min

A
u and maximum maxA u, second, the length L.z/ of the level

line segment for each z 2 ŒminA u;maxA u�, and third, the density ı.z/ of level
lines around each z, which equals the steepness of the slope of u near the level line
of z.

Integrating the lengths of level lines over function values, weighted with their
reciprocal densities, yields the area of A , i.e.

Area.A / D
maxA uZ

minA u

L.z/

ı.z/
dz : (4.12)

As this integral effectively runs over level lines, splitting the integration interval
exactly corresponds to cutting A at some level line. The calculation of the desired
median of u within A is then achieved by determining a suitable splitting point in
the integration interval so that the integrals on both sub-intervals become equal.

Summarising, this strategy describes the amoeba shape in terms of a curvilinear
coordinate system aligned with the gradient and level line directions at x0, in which
the level lines take the role of coordinate lines, compare Fig. 4.4b.

Proof Strategy II

The second strategy abandons the consideration of the individual level lines within
A ; the only level line that is explicitly studied is the one through x0 itself. Instead
of the distorted Cartesian coordinate system one uses polar coordinates to describe
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the shape of the amoeba. This approach has first been used in [54] in the context
of amoeba active contours (see Sect. 4.4.1), and again in [57, Section 4.1.2], both
times restricted to the Euclidean amoeba metric. It has been extended to cover the
full generality of amoeba metrics under consideration in [56], again for amoeba
active contours.

Writing the outline of A as a function a.˛/ of the polar angle ˛ 2 Œ0; 2	�,
the amoeba’s area is stated by the standard integral for areas enclosed by function
graphs in polar coordinates as

Area.A / D 1

2

2	Z
0

a.˛/2 d˛ : (4.13)

Unlike for (4.12), splitting this integral yields areas of sectors instead of segments;
however, if the level line through x0 happens to be a straight line, splitting up the
integral (4.13) at the pair of opposite angles corresponding to the level line direction
yields the areas of two segments into which A is cut by that level line, compare
Fig. 4.5a.

Provided that A is symmetric (w.r.t. point reflection at the reference point), the
two segments are of equal area, making in this case the median equal to u.x0/.
Deviations from this situation that make the median differ from u.x0/ can be
separated into two contributions: first, the asymmetry of the amoeba; second, the
curvature of the level lines. Cross-effects of the two contributions influence only
higher order terms that can be neglected in the asymptotic analysis; thus the two
sources can be studied independently. In approximating the area difference �1

caused by the asymmetric amoeba shape, one can assume that the level lines are
straight, see Fig. 4.5b, while the level line curvature effect �2 can be studied under
the assumption that A has symmetric shape, see Fig. 4.5c.

•x0

(a)

•x0

straight
level
line

Δ1

asymmetric
amoeba

(b)

•x0

curved
level
line

Δ2

symmetric
amoeba

(c)

Fig. 4.5 (a) Amoeba with straight level line (dot-dashed) through its reference point x0 and further
radial lines (dashed) of a polar coordinate system centred at x0. (b) Area difference �1 in an
asymmetric amoeba with straight level lines. The hashed region is enclosed between the right arc
of the amoeba contour and the point-mirrored copy of its left arc. (c) Area difference �2 in a
symmetric amoeba with curved level lines. (b), (c) from [54]
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Finally, the combined effect �1 C �2 must be compensated by a parallel shift
of the level line through x0, compare again Fig. 4.4a. From the shift the median,
and thus the right-hand side of the PDE approximated by the amoeba filter, can be
derived.

4.3.1.3 Amoeba Metrics and Edge-Stopping Functions

It remains to specify the relation between amoeba metric and edge-stopping function
mentioned in Theorem 4.1. In [57, 58], the following representation of g in terms of
the function � defining the amoeba metric has been proven.

g.z/ D 3

ˇ2s2�3.1=.ˇz//

1Z
0

�2

s
��2

�
1

�
�

�
1

ˇz

��
� 1

ˇ2z2
d� ; (4.14)

where ��2.z/ is short for .��1.z//2, i.e. the square of the inverse of �, and �3.z/ for
the cube .�.z//3.

In the case of the Euclidean amoeba metric, �.z/ D
p
1C z2, the expres-

sion (4.14) simplifies to

g.z/ � g2.z/ D 1

1C ˇ2z2
; (4.15)

which is, up to the substitution  D 1=ˇ, the Perona-Malik diffusivity [39] that is
also one of the common choices for g in the self-snakes equation.

When using the L1 amoeba metric, �.z/ D 1 C z, the integral in (4.14) can be
numerically evaluated, and one obtains an edge-stopping function g.s/ � g1.s/
that differs from (4.15) in that it decreases away from g.0/ D 1 already with
nonvanishing negative slope, thus reacting more sensitive to even small image
contrasts.

Finally, for the L1 amoeba metric, �.z/ D maxf1; zg, it is again possible to state
g in closed form,

g.z/ � g1.z/ D

8̂
<
:̂
1 ; ˇz 	 1 ;

1 �
�
1 � 1

ˇ2z2

�3=2
; ˇz > 1

(4.16)

which shows that g1 is completely insensitive to image contrasts up to z D 1=ˇ and
then starts decreasing with a kink. All three edge-stopping functions are depicted in
Fig. 4.6.



86 M. Welk

Fig. 4.6 Edge-stopping
functions g1, g2 and g1

associated to L1, Euclidean
and L1 amoeba metrics,
respectively. Throughout
these metrics, the contrast
scale ˇ has been set to 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

g1
g2
g∞

Fig. 4.7 Grey-scale image
(256 � 256 pixels) used to
demonstrate non-adaptive and
amoeba-based morphological
filters

4.3.2 Dilation and Erosion

The two most fundamental operations of mathematical morphology, dilation and
erosion, use as aggregation step the maximum and minimum of intensities, respec-
tively. This can naturally be done also in combination with an amoeba-based pixel
selection step (Fig. 4.7).

We point out that the standard dilation of an image u with fixed structuring
element S can be written as

.u ˚ S/.i/ D max
j2iCS

u.j/ D max
j2�

�
u.j/C !�

S .i � j/
�
; (4.17)

where !�
S denotes the function

!�
S .k/ D

(
0 ; �k 2 S ;

�1 ; else.
(4.18)
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The last term in (4.17) allows an interesting interpretation in terms of the max-plus
algebra [3, 42], an algebraic structure on R [ fC1;�1g in which the maximum
operation takes the role of addition in the usual algebra of real numbers, while
addition takes the role of multiplication. It is evident that (4.17) is nothing else
but a convolution of u and !�

S in the max-plus algebra, see [36].
In writing erosion in an analogous way, we follow a convention frequently used in

the literature by using instead of the structuring element S the conjugate structuring
element S�, which comes down geometrically to a point reflection on the origin,
S� D �S. The advantage of this convention is that subsequent definitions like those
for opening and closing become simpler [24], compare Sect. 4.3.3.
Defining then !C

S� as zero on S, but C1 outside, erosion is stated as

.uS/.i/ D min
j2jCS�

u.j/ D min
j2�

�
u.j/C!C

S� .i�j/
� D min

j2�
�
u.j/C!C

S .j�i/
�
; (4.19)

which can be interpreted again as a convolution of u and !C
S� in the min-plus

algebra [36].
Abandoning the fixed window and using a family S WD fi 7! S.i/ j i 2 �g of

structuring elements S.i/ located at pixel i, one can write amoeba dilation as

.u ˚ S /.i/ D max
j2�

�
u.j/C !�

S .i; j/
�
; (4.20)

!�
S .i; j/ D

(
0 ; j 2 S.i/ ;

�1 ; else.
(4.21)

Just as the last term in (4.17) is a max-plus convolution, the right-hand side (4.20)
is the max-plus analogon of a (discretised) integral operator. Herein, !�

S .i; j/ acts
as the max-plus counterpart of just the same type of integral kernel that appears as
point-spread function in space-variant image deconvolution models.

Similarly, amoeba erosion becomes a min-plus integral operator with a min-plus
kernel!C

S �.i; j/ � !C
S .j; i/. Generally, conjugate structuring elements in the space-

variant case are given by

S�.i/ D fj 2 � j i 2 S.j/g : (4.22)

Interestingly, if S is made up by amoebas S.i/ � A%.i/, there is no difference
whether the conjugate structuring elements S � or standard structuring elements S
are used in erosion: property (4.8) of the amoebas entails !Ṡ .j; i/ D !Ṡ .i; j/ for
all i; j 2 �, or equivalently

A �
% .i/ � A%.i/ : (4.23)

We will denote this property as self-conjugacy of amoebas.
Figure 4.7 shows the results of non-adaptive and amoeba dilation and erosion

of an example image depicted in Fig. 4.8. Non-adaptive as well as amoeba-based
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Fig. 4.8 Morphological dilation and erosion, non-adaptive and amoeba-based, of the test image
from Fig. 4.7. (a) Non-adaptive morphological dilation with disk of radius % D 5 as structuring
element. (b) Amoeba dilation with Euclidean amoeba metric, ˇ D 0:1, % D 10. (c) Non-adaptive
morphological erosion with structuring element as in (a). (d) Amoeba erosion with amoeba
parameters as in (b)

dilation extend bright image details, but it can be seen that the spreading of bright
image parts is stopped at strong edges; similarly for the propagation of dark details
by erosion.

4.3.2.1 PDE Approximation

It is a well-known fact that Hamilton-Jacobi PDEs

ut D ˙jruj (4.24)

describe dilation (“C” case) and erosion (“�”) of continuous-scale images or level-
set functions u in the sense that evolution of an initial image u.t D 0/ D f by (4.24)
up to time T D % yields the dilation or erosion of f with a Euclidean ball-shaped
structuring element of radius %. It can therefore be expected that amoeba dilation and
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erosion, too, should be related to hyperbolic PDEs resembling (4.24). The following
result from [57] confirms this intuition.

Theorem 4.2 ([57]) For a smooth function u W � ! R, one step of amoeba
dilation or amoeba erosion with amoeba radius % and Euclidean amoeba metric
approximates for % ! 0 a time step of size 
 D % of an explicit time discretisation
of the Hamilton-Jacobi-type PDE

ut D ˙ jrujp
1C ˇ2 jruj2 ; (4.25)

where the “C” sign applies for dilation, and “�” for erosion.

The proof of this result can be found in [57]; it is based on Proof Strategy I from
Sect. 4.3.1.2.

Note that unlike in Theorem 4.1 the time step size here depends linearly, not
quadratically, on %. In [57] the theorem is formulated slightly more general to cover
also amoeba ˛-quantile filters that interpolate in a natural way between median
filtering (˛ D 1=2), dilation (˛ D 1) and erosion (˛ D 0). As a result of the different
order of decay of 
 for % ! 0, it comes as no surprise that for ˛ ¤ 1=2 always
the advection behaviour of the Hamilton-Jacobi equation (4.25) dominates over the
parabolic equation (4.10), thus turning quantile filters into “slower” approximations
to the same PDE.

4.3.3 Opening and Closing

In mathematical morphology, the opening of an image f with (fixed) structuring
element S is defined as the concatenation of an erosion followed by a dilation with
S. In case S is not point-symmetric it is essential that, as mentioned in Sect. 4.3.2,
the conjugate structuring element S� is used in the erosion step. Opening therefore
reads as

. f ıS/.i/ D �
. f S/˚S

�
.i/ D max

j2� min
k2�

�
f .k/C!C

S� .j�k/C!�
S .i�j/

�
: (4.26)

Analogously, closing is defined as dilation followed by erosion,

. f �S/.i/ D �
. f ˚S/S

�
.i/ D min

j2� max
k2�

�
f .k/C!�

S .j�k/C!C
S�.i�j/

�
: (4.27)

Again, it is straightforward to turn these operations into adaptive variants by
using amoeba structuring elements. Amoeba opening and closing of image f with
amoebas of radius % are given as

f ı S%. f / D �
f  S%. f /

�˚ S%. f / ; (4.28)
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f � S%. f / D �
f ˚ S%. f /

� S%. f / (4.29)

where S%. f / D fi 7! A%. f I i/ j i 2 �g.
It is worth noticing that the difficulty about using the conjugate set of structuring

elements for erosion disappears here due to the self-conjugacy (4.23) of the amoeba
structuring element set.

As it is essential to use the same set of structuring elements in the dilation and
erosion step, both steps must be carried out with the amoebas obtained from the
original image. The underlying principle is that in the second step (dilation for
opening or erosion for closing) each pixel should influence exactly those pixels
which have influenced it in the first step before. As a consequence, e.g. amoeba
opening is not exactly the same as amoeba erosion followed by amoeba dilation –
this sequence would be understood by default as recalculating amoebas after the
erosion step, i.e.

�
f  S%. f /

�˚ S%

�
f  S%. f /

�
; (4.30)

which is inappropriate for an opening operation.
In Fig. 4.9 exemplary results of non-adaptive and amoeba-based closing and

opening of the test image from Fig. 4.7 are shown. Like its non-adaptive coun-
terparts, amoeba-based closing and opening remove small-scale dark or bright
details, respectively. However, the amoeba versions do this in a less aggressive way.
Extended narrow structures that are often removed partially by the non-adaptive
filters are more often preserved as a whole, with reduced contrast, or removed
completely by the amoeba filters, see e.g. the roof front edge descending to the
right from the chimney, and the acute roof corner separating it from the sky.

4.3.3.1 Opening and Closing Scale Spaces and PDEs

The association between median, dilation and erosion filters and PDEs is inherently
related to the scale space structures of these filters, compare [25]. All of these filters
form an additive semi-group in the sense that iterative application of the same filter
yields an increasing filter effect that naturally adds up over iteration numbers. In
the case of dilation and erosion iteration numbers are also in linear relation with
increasing structuring element size, as dilating an initial image n times with (non-
adaptive) structuring element radius % is equivalent to dilating once with radius n%.
Such an additive semi-group structure perfectly matches initial value problems for
PDEs in which, too, evolution times add up.

While opening and closing, too, have a scale space structure, their semi-group
operation is not additive but supremal as it is based on taking the maximum of
parameters. For example, repeating the same opening or closing operation on a
given image just reproduces the result of the first application of the filter (i.e.,
opening and closing operators are idempotent); and concatenating two openings or
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Fig. 4.9 Non-adaptive and amoeba-based morphological closing and opening applied to the test
image from Fig. 4.8. (a) Non-adaptive closing with disk-shaped structuring element of radius % D
5. (b) Amoeba closing with Euclidean amoeba metric, ˇ D 0:1, % D 10. (c) Non-adaptive opening
with structuring element as in (a). (d) Amoeba opening with amoeba parameters as in (b)

two closings with structuring element radii %1, %2 gives an opening or closing with
radius maxf%1; %2g.

For this reason, also amoeba opening and closing are not associated with PDE
evolutions in the same way as the previous filters. Possible relations to PDE-based
filters may be considered in future research.

4.4 Grey-Scale Segmentation

Following established terminology, image segmentation denotes the task to decom-
pose a given image into regions that are in the one or other way homogeneous
in themselves but different from each other, with the intention that these regions
are meaningful in that they are associated to objects being depicted. Intensity-
based segmentation uses intensity as the main criterion of homogeneity within and
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dissimilarity between segments. Specialising to the case of two segments (fore-
ground and background) with the additional geometric hypothesis that segments are
separated by sharp and smooth contours, contour-based segmentation approaches
based on curve or level set evolutions lend themselves as tools for segmentation,
with active contours as an important representative. In this section we show how
amoeba algorithms can be made useful in this context.

Despite the fact that experiments on magnetic resonance data are used to illustrate
the concepts in this section, this is not meant to make a claim that neither active
contour nor the related active region methods (which are not discussed further here)
in their pure form could serve as a state-of-the-art segmentation method for medical
images. In fact, competitive results in medical image segmentation are nowadays
achieved by complex frameworks that often include active contours and/or active
regions as a component but in combination with additional techniques that allow
to bring in anatomical knowledge such as shape and appearance models [11]. An
early representative of these frameworks is [34], which has been followed by many
more since then. Like classical geodesic active contours, the amoeba active contours
presented in the following could be integrated into this type of framework but this
has not been done so far.

4.4.1 Amoeba Active Contours

The standard procedure of an active contour, or snake, method starts with some
initial contour which may be obtained automatically from some previous knowledge
or heuristics regarding the position of a sought structure, or from human operator
input. Representing this contour either by a sampled curve or by a level-set function,
it is then evolved up to a given evolution time or up to a steady state by the action of
some parabolic PDE, which is often derived as a gradient descent of a segmentation
energy in the image plane. An important representative are geodesic active contours
(GAC) [9, 30]. Their segmentation energy is essentially a curve length measure of
the contour in a modified metric on the image plane that favours placing the contour
in high-contrast locations. The PDE for GAC in level-set representation reads

ut D jruj div

�
g
�jr f j� ru

jruj
�
: (4.31)

Herein, u is the evolving level-set function in the plane that represents the actual
evolving contour as one of its level sets (by default, the zero-level set), and f is
the invariable image being segmented. The similarity of (4.31) to self-snakes (4.11)
(which were actually inspired from active contours, thus the name) together with the
link between amoeba median filtering and self snakes established by Theorem 4.1
suggest that an amoeba median approach could be used to evolve the level set
function u instead of equation (4.31).
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Introduced in [53], the resulting amoeba active contour (AAC) algorithm pro-
ceeds as follows:

1. Compute amoeba structuring elements based on the input image f .
2. Initialise the evolving level-set function u to represent the initial contour.
3. Evolve the image u by median filtering with the amoebas from Step 1 as

structuring elements.

Results from this algorithm look qualitatively fairly similar to those from GAC,
as will also be demonstrated later in this section.

4.4.2 PDE Approximation

In order to study the relation between AAC and GAC, it makes sense again to
consider a space-continuous model and to investigate the PDE approximated by
AAC in the case of vanishing amoeba radius. The following result was proven in
[56]. Note that in this theorem the contrast scale parameter ˇ is fixed to 1 for
simplicity, which, however, is no restriction of the result because in the active
contour setting in question, the case ˇ ¤ 1 is easily mapped to ˇ D 1 by just
scaling the intensities of image f by ˇ.

Theorem 4.3 ([56]) Let a smooth level-set function u be filtered by amoeba median
filtering, where the amoebas are generated from a smooth image f . Assume that the
amoeba metric is given by (4.9), (4.2) with ˇ D 1. One step of this filter for u
then approximates for % ! 0 a time step of size 
 D %2=6 of an explicit time
discretisation of the PDE

ut D G u�� � jruj � �H1 f�� C 2H2 f�� C H3 f��

�
(4.32)

with the coefficients given by

G � G
�jr f j; ˛/ D 1

�
�jr f j sin ˛

�2 ; (4.33)

�
H1 H2

H2 H3

�
�
�

H1

�jr f j; ˛/ H2

�jr f j; ˛/
H2

�jr f j; ˛/ H3

�jr f j; ˛/
�

D 3

2
�
�jr f j sin ˛

� ˛C	=2Z
˛�	=2

�0�jr f j sin#
�

�
�jr f j sin#

�4
�

cos2 # sin# cos#
sin# cos# cos2 #

�
d# :

(4.34)
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Here, � D ru=jruj and � ? � are unit vectors in gradient and level line direction,
respectively, for u, whereas � D r f=jr f j and � ? � are the corresponding unit
vectors for f , and ˛ D †.�;�/ is the angle between both gradient directions.

The proof of this result is found for the case of the Euclidean amoeba metric
in [54], and for general amoeba metric in [56]. It relies on Proof Strategy II from
Sect. 4.3.1.2.

An attempt to analyse AAC using Proof Strategy I had been made in [53], where,
however, only a special case was successfully treated: The theorem proven in [53]
states that AAC approximates the GAC equation (4.31) if image f and level set
function u are rotationally symmetric about the same centre.

In fact, the rotational symmetry hypothesis can be weakened; what is needed
for (4.32), (4.33) and (4.34) to reduce to the exact GAC equation is actually,
whenever ˛ D 0 (thus, � D �, � D �), u�� D f�� D 0 and u��=jruj D f��=jr f j
hold, (4.32), (4.33) and (4.34) boil down to the GAC equation (4.31).

At first glance, this is still a very artificial choice; however, looking at the
geometrical implications of this setting, one sees that it means that the level lines of
u are aligned to those of f , have the same curvature, and the image contrast in both f
and u does not change along these level lines. Thereby the hypothesis of this special
case is well approximated in the near-convergence stage of a segmentation process
when the object–background contrast is more or less uniform along the contour.

As a consequence, the coincidence of AAC and GAC in this case justifies
that both approaches can expected to yield very similar types of segmentations.
The convergence behaviour towards these segmentations may differ more; a closer
comparison of both PDEs in [54, 56] based on typical geometric configurations
indicates that the amoeba active contour PDE drives contours toward image contours
in a more pronounced way.

Figure 4.10 presents an example that confirms the overall similarity between
amoeba and geodesic active contours but also the tendency of AAC to adapt more
precise to very small-scaled edge details. Frame (a) shows the original image with

Fig. 4.10 Amoeba and geodesic active contour segmentation. (a) Detail (70 � 70 pixels) from
an MR slice of a human brain with initial contour enclosing the cerebellum. (b) Amoeba active
contours with Euclidean amoeba metric, ˇ D 0:1, % D 12, 10 iterations. (c) Amoeba active
contours with L1 amoeba metric, ˇ D 0:1, % D 12, 60 iterations. (d) Geodesic active contours
with Perona-Malik edge-stopping function,  D 10, 960 iterations of explicit scheme with time
step size 
 D 0:25 (From [53, 56])
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an initial contour roughly enclosing the cerebellum. Frames (b) and (c) demonstrate
segmentation by AAC with Euclidean and L1 amoeba metrics, respectively, while
Frame (d) shows a GAC result for comparison.

4.4.3 Force Terms

Geodesic active contours in their basic form (4.31) suffer from some limitations.
First of all, when initialised with a contour enclosing a large area with one or
several small objects inside, the active contour process spends plenty of evolution
time to slowly move the contour inwards until it hits an object boundary, due to the
initially small curvature of the contour. Secondly, for pronounced concave object
geometries, the process tends to lock in at undesired local minima that detect well
some convex contour parts but short-cut concave parts via straight line segments.
Similar problems can occur when segmenting multiple objects within one initial
contour, see the examples in [31]. Thirdly, as the basic curvature motion process
involves only inward movement of contours, it is generally not possible with (4.31)
to segment objects from initial contours inside the object, which is sometimes
desirable in applications. Due to their similarity to GAC, amoeba active contours
share these problems.

A common remedy for these problems in the literature on active contour
segmentation is the introduction of a force term. Its typical form is ˙� jruj, i.e.
essentially the right-hand side of a Hamilton-Jacobi PDE for dilation or erosion,
compare (4.24). An erosion force accelerates the inward motion of the contour; it
allows to get past homogeneous areas faster, and helps the contour to find concave
object boundaries and to separate multiple objects. By a dilation force it is possible
to push the contour evolution in outward direction, which makes it possible to use
initial contours inside objects.

In both cases, however, the force strength needs careful adjustment because
dilation or erosion may also push the contour evolution across object boundaries,
thereby preventing their detection.

In [10] where this modification was proposed first (by the name of “balloon
force”), � was chosen as constant, but the possibility to steer it contrast-dependent,
was mentioned. This has been done in [9, 31, 35] by modulating the force term in
a geodesic active contour model with the same edge-stopping function g, such that
the entire force term reads as ˙� g.jr f j/ jruj with constant � .

The relation between amoeba quantile filters and Hamilton-Jacobi PDEs men-
tioned in Sect. 4.3.2 indicates how to achieve a similar modification in the amoeba
active contour algorithm: the median filter step should be biased, basically by
replacing the median with some quantile. The most obvious way to do this is to
use the ˛-quantile with a fixed ˛ ¤ 1=2. Within a discrete amoeba containing
p pixels, this means to choose the value ranked ˛p in the ordered sequence of
intensities. However, taking into account that the amoeba size p (or the amoeba
area in the continuous setting) varies even for fixed % with local image contrast, it is



96 M. Welk

not less natural to think of ˛ as varying with the amoeba size. If one chooses ˛�1=2
inversely proportional to the amoeba size, this comes down to modify the median
with a fixed rank offset b, such that in an amoeba of p pixels one would choose
the intensity value with rank p=2 C b. These two variants of the AAC algorithm
have been proposed in [53]. In [56] a third variant (“quadratic bias”) was introduced
which chooses from the rank order the element with index p=2 C r p2 with fixed
r. For these three scenarios, further analysis was provided in [56], based on the
Euclidean amoeba metric. We summarise the results here.

Fixed Offset Bias

Choosing the entry at position p=2Cb from the rank order approximates a force term
C�b jruj �.jr f j sin˛/ with �b � b. Note that in the symmetric case in which the
PDE approximated by AAC coincides with the GAC equation this becomes exactly
the “balloon force” term with constant dilation/erosion weight from [10].

Quantile Bias

Choosing the element with index p=2C qp from the rank order within each amoeba

approximates a force term C�q jruj
q
.1C jr f j2 sin2 ˛/=.1C jr f j2/ with �q � q.

In the rotationally symmetric case this term lies between the constant weight of [10]
and the g-weight from [31].

Quadratic Bias

Choosing the entry at index p=2C r p2 from the rank order of intensities yields an
approximated force term C�r jruj �.jr f j/=�.jr f j/2. In the rotationally symmetric
case this corresponds to the g-weight from [31].

To illustrate amoeba active contours with bias, Fig. 4.11 presents an example
(shortened from [56]). Frame (a) is a test image with initial contour inside a
mostly homogeneous object (the corpus callosum). Figure 4.11b, c then show
contours computed by amoeba active contours with fixed offset bias for two
different evolution times, one intermediate, one displaying the final segmentation.
For comparison, a segmentation with geodesic active contours is shown in (d).

We remark that in the AAC examples, a few pixels within the corpus callosum
region are excluded from the segment, see the small isolated contour loops there.
This is not a numerical artifact but a result from the precise adaption of amoebas
to image structures even up to the resolution limit (pixel precision) of the image –
the pixels not included in the segment are noise pixels with intensities significantly
deviating from the neighbourhood, which are simply not included in any amoeba
of outside pixels. Modifications like presmoothing input images can be applied to
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Fig. 4.11 Segmentation with initialisation inside the sought object by amoeba and geodesic active
contours with dilation force. (a) Detail (164 � 114 pixels) from an MR slice of human brain
with initial contour placed inside the corpus callosum. (b) Amoeba active contour evolution with
Euclidean amoeba metric, ˇ D 2, % D 20, fixed offset bias b D 10, and 20 iterations. (c) Same as
in (b) but 35 iterations. (d) Geodesic active contours with Perona-Malik edge-stopping function,
 D 0:5, dilation force � D �0:16 (multiplied with the edge-stopping function) and erosion force
�c D 5 � 10�4 (independent of the edge-stopping function), explicit scheme with time step size

 D 0:25, 18,960,000 iterations (From [56])

avoid this. On the contrary, the absence of such difficulties in the GAC example is a
beneficial effect of the otherwise often undesirable numerical blurring effect of the
finite-difference scheme.

4.5 Pre-smoothing in Self-Snakes and Amoeba Filters

The approximation result of Theorem 4.1 associates iterated amoeba median fil-
tering with the self-snakes equation (4.11). Unlike (mean) curvature motion (4.10),
self-snakes possess edge-enhancing properties. Rewriting (4.11) by the product rule,
one can state the self-snakes process as

ut D g
�jruj� jruj div

� ru

jruj
�

C hrg;rui (4.35)
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in which the first summand is just a curvature motion process modulated by
g, whereas the second, advective, term is responsible for the edge-enhancing
behaviour. Unfortunately, this term has a shock-filter property which makes not only
its numerical treatment difficult – in finite difference schemes usually an upwind
discretisation will be required to approximate it – but even entails ill-posedness
of the PDE itself that is reflected in a noticeable staircasing behaviour. Indeed,
as demonstrated by an experiment in [58], the result of a numerical computation
of a self-snakes evolution differs significantly if the underlying grid resolution is
changed.

A common remedy to this ill-posed behaviour is to use pre-smoothing in the
argument of the edge-stopping function, i.e. to replace g.jruj/ in (4.11) or (4.35)
by g.jru� j/ where u� is the result of convolving u with a Gaussian of standard
deviation � . Thereby, the ill-posedness of self-snakes is removed, and a stable
filtering achieved, at the cost of the additional smoothing-scale parameter � .

In this section, we deal with the question whether this staircasing phenomenon
has also an analogue in the amoeba median filtering context, and what is an
appropriate counterpart for the pre-smoothing modification on the amoeba side. This
is done by quantitative analysis of a synthetic example, the first part of which has
been published before in [54, 57].

4.5.1 Pre-smoothing in Amoeba Median Filtering, and
Amoeba Radius

First of all, notice that a straightforward translation of the pre-smoothing procedure
to the amoeba median filtering context is to use u� in place of u when computing
the structuring elements in an amoeba median filtering step. This is actually an
instance of the generalised amoeba median filtering procedure of the amoeba active
contour setting, Sects. 4.4.1 and 4.4.2, such that the PDE approximation result from
Theorem 4.3 can be applied to see that it would approximate a PDE which is not
identical to the standard self-snakes with pre-smoothing, but closely related to it.

At second glance, however, it can be questioned whether the introduction of the
smoothing-scale parameter � into the amoeba median filter is necessary. Unlike
finite-difference schemes for self-snakes, amoeba filtering by construction already
involves a very similar smoothing-scale parameter, namely, the amoeba radius %.
One can conjecture that the positive % necessarily used in any amoeba computation
could already provide a pre-smoothing effect similar to the Gaussian convolution in
the PDE setting. This conjecture will be investigated in the following.
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4.5.2 Perturbation Analysis of Test Cases

The starting point for constructing the test cases is a simple slope function that
would be stationary under both self-snakes and amoeba median filter evolutions,
see Fig. 4.12a. From this slope, described by the function u0 W R2 ! R, u0.x; y/ D
x, test cases are derived by adding small single-frequency oscillations such as
" coshk; xi with frequency vectors k.

Given the nonlinear nature of the filters under investigation, there is no super-
position property for the effects of different perturbations of u0. Nevertheless,
interactions between u0 and the perturbations are always of higher order O."2/,
such that the analysis of the first-order effects of perturbations still gives a useful
intuition about the behaviour of the filters.

4.5.2.1 Test Case 1: Gradient-Aligned Oscillation

For the first test case, see [54, 57], the perturbation frequency is aligned with the
gradient direction, k D .k; 0/, yielding the input signal schematically depicted in
Fig. 4.12b,

u.x; y/ D x C " cos.kx/ ; " << 1 : (4.36)

y
x

u

(a) (b) (c)

x

u

x0

∗
′

x′
0

Γ
Γ0

(d)

Fig. 4.12 Schematic representation of example functions used in the perturbation analysis,
Sect. 4.5.2. (a) Graph �0 of unperturbed function u0 D x, with a Euclidean %-disk whose projection
to the x-y plane yields an amoeba. (b) Graph � of a function u of type (4.36) including a gradient-
aligned perturbation. (c) Graph � of a function u of type (4.39) including a level-line-aligned
perturbation. (d) Cut in x direction through the graph � from (c) and the unperturbed graph �0
from (a). The sketch includes further the amoeba A around .x0; y0/, the corresponding Euclidean
disk A � on � and the projection A 0 of A � to �0 which is centred at .x0

0; y0/
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Self-Snakes Analysis

To determine the response of the self-snakes evolution (4.35) to the perturbed
signal (4.36), notice first that level lines of (4.36) are straight and parallel, such
that one has div.ru=jruj/ � 0 and hrg;rui D gxux. Further, one has ux D
1 � " k sin.kx/ and gx D " k2 cos.kx/=2C O."2/, finally turning (4.35) into

ut D gxux D 1

2
k2" cos.kx/C O."2/ : (4.37)

From this it can be read off that a frequency response factor k2=2 occurs that grows
indefinitely for high frequencies. Since the nonlinearity of (4.35) instantaneously
spreads out the single perturbation frequency k to higher harmonics, arbitrarily high
amplification appears already within short evolution time, and the regularity of the
evolving function is lost. This explains the stair-casing behaviour of self-snakes
without pre-smoothing.

Using pre-smoothed u� in the edge-stopping function argument, one has instead
@xu� D x C " exp.�k2�2=2/ cos.kx/, gx D k2" exp.�k2�2=2/ cos.kx/=2 and
therefore

ut D 1

2
k2" exp

�
�k2�2

2

�
cos.kx/C O."2/ ; (4.38)

with the frequency response factor k2 exp.�k2�2=2/=2 that is globally bounded with
its maximum at k D p

2=� . Therefore, pre-smoothing ensures that the regularity of
the evolving function is maintained.

Amoeba Filter Analysis

To analyse the effect of amoeba median filtering (with Euclidean amoeba metric)
on the function (4.36), consider an amoeba of amoeba radius % around .x0; y0/,
and assume that the contrast scale is chosen as ˇ D 1. The median of u within
that amoeba can be expressed via an integral formula, see [54, 57], which can be
numerically evaluated to be approximately equal to u.x0; y0/C ı.k/ � " cos.kx0/ with
a frequency response factor ı.k/. In other words, one amoeba median filter step
amplifies the perturbation u � u0 of (4.36) versus u0.x; y/ D x by the amplification
factor .k/ WD 1C ı.k/.

Figure 4.13 shows results of numerical approximation of one amoeba median
filtering step with ˇ D 1, % D 1, on test images of type (4.36) with two different
frequencies k. The numerical computation was carried out on a discrete grid with
mesh size h D 0:0025. For best approximation to the space-continuous case,
amoeba distances between pixels were computed by numerical integration instead of
the Dijkstra search on the pixel graph. Denoting the filtered image by v, numerical
amplification factors can be computed as hv� u0; u � u0i=hu � u0; u � u0i (with the
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Fig. 4.13 Numerical computation results for the amplification of a gradient-aligned perturbation
of a linear slope function by one amoeba median filtering step. Top row shows k D 5, bottom row
k D 10. Graphs in left column show unperturbed function u0, perturbed input function u, and filter
result v; graphs in right column show perturbations u � u0 and v � u0 . Horizontal axes represent
x, vertical axes represent function values. Computations were carried out on a grid with mesh size
0:0025

usual scalar product of functions on a suitable bounded interval); these are in good
accordance with the theoretical result.

Figure 4.14 shows the amplification function .k/ for % D 1 together with its
counterpart s.k/ WD 1C 1=6 � k2 exp.�k2�2=2/=2 for one time step of self-snakes
with pre-smoothing, with the time step size %2=6 D 1=6 matching the amoeba
radius according to Theorem 4.1. The figure also includes numerical amplification
factors for amoeba median filtering with the same parameters for frequencies
k D 1; 2; : : : ; 30. The parameter � D 0:268 in the self-snakes case has been chosen
for a good match to the first wave of ı.k/. With this parameter, the amplification
behaviour for frequencies up to approx. 10 is very similar for the pre-smoothed
self-snakes equation and amoeba median filtering. However, for higher frequencies
the amplification factor of pre-smoothed self-snakes rapidly approaches one (no
amplification) whereas it oscillates around 3=2 for the amoeba filter.

As a result, oscillations with sufficiently high frequency are just almost not
amplified in the pre-smoothed self-snakes evolution. With amoeba median filtering,
they are amplified by the globally bounded factor .k/ in each iteration step.
Whatever " was in the initial image u from (4.36), after a finite number of iterations
the oscillations grow to a level for which the hypothesis " << 1 of our analysis is no



102 M. Welk

0 5 10 15 20 25 30

k

1.0

1.2

1.4

1.6

1.8

2.0

λ
,
λ s

λ (k) (amoebas, r = 1)
λs(k) (self-snakes, σ = 0.268)

computed (amoebas, r = 1)

Fig. 4.14 Amplification of a gradient-aligned perturbation of a linear slope function by one
amoeba median filtering step (theoretical and numerical values) and a corresponding time step
of an explicit scheme for self-snakes with pre-smoothing (Adapted and extended from [54])

longer valid. Even in the space-continuous setting under consideration, oscillations
cannot actually grow infinitely because the median operation obeys the maximum–
minimum principle.

In practice, amoeba filters are computed in a space-discrete setting such that the
effective range of spatial frequencies (parametrised by the angular frequency k of
oscillations) is limited by the sampling theorem. For fixed amoeba radius % D 1

as in Fig. 4.14, the relevant range of frequencies is determined by the mesh size
of the pixel grid. If this mesh size is not below approx. 	=10, the higher lobes of
the amplification function .k/ that make up the difference to self-snakes with pre-
smoothing do not take effect at all. Translating this to a grid with mesh size 1, as
common in image processing, this means that for amoeba radius % up to approx.
10=	 � 3 the frequency response of amoeba median filtering does almost not differ
from that of self-snakes with pre-smoothing.

4.5.2.2 Test Case 2: Level-Line-Aligned Oscillation

To complement the perturbation analysis of gradient-aligned oscillations, a second
test case is considered in which the perturbation frequency is aligned with the
level line direction, k D .0; k/. The resulting input signal, compare the schematic
representation in Fig. 4.12c, reads

u.x; y/ D x C " cos.ky/ ; " << 1 : (4.39)

This test case was not presented in [54, 57]. Given that self-snakes act smoothing
along level line direction, it can be expected that this kind of perturbation is
dampened by their evolution. This will be confirmed by the analysis, and the
corresponding behaviour of the amoeba median filter will be stated.
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Self-Snakes Analysis

Unlike for the first test case, gradient directions of u now vary across the image
range, combining constant ux D 1 with uy D �k" sin.ky/. Accordingly, the edge-
stopping function takes the values

g.x; y/ D 1

2C k2"2 sin2.ky/
D 1

2

�
1� k2"2

2
sin2.ky/

�
C O."3/ (4.40)

and thereby gx.x; y/ D O."3/, gy.x; y/ D �k3"2 sin.ky/ cos.ky/=2C O."3/.
This leads further to

jruj D 1C k2"2

2
sin2.ky/C O."4/ ; (4.41)

div

� ru

jruj
�

D @x

�
1 � k2"2

2
sin2.ky/

�
C @y

��k" sin.ky/
�C O."3/

D �k2" cos.ky/C O."2/ ; (4.42)

hrg;rui D O."3/ ; (4.43)

thus after inserting into (4.35)

ut D �1
2

k2" cos.ky/C O."2/ (4.44)

which confirms by the negative sign of the frequency response factor �k2=2 that the
perturbation is smoothed out by the self-snakes process.

Pre-smoothing here leads to

g.x; y/ D 1

2

�
1 � k2"2

2
exp.�k2�2/ sin2.ky/

�
C O."3/ ; (4.45)

which in the further course of the calculation only influences higher-order terms,
such that (4.44) is replicated.

Remark on explicit time discretisations. A difference to the first test case to
be noted here is that the negative amplification factor does not depend on � . This
implies a time step size limit for explicit time discretisations of pre-smoothed self-
snakes: With k denoting the highest perturbation frequency that can occur in the
discretised image, given by the Nyquist frequency of the grid (k D 	 for spatial
mesh size h D 1), the amplification factor s.k/ WD 1 � 
 k2=2 within a single time
step of size 
 must not become �1 or lower, thus 
 < 4=k2 must be observed.
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Amoeba Filter Analysis

To determine the response of an amoeba median filter step to the perturbation (4.39),
we consider again Euclidean amoeba metric and ˇ D 1. The image graph � D
f.x; y; u.x; y// j .x; y/ 2 R2g of (4.39), compare Sect. 4.2.4, is a developable surface.
The amoeba structuring element A around .x0; y0/ then is the projection of a bent
Euclidean %-disk A � affixed to � to the image plane, compare Fig. 4.12c.

The orthogonal projection A 0 of the same bent %-disk A � not to the image
plane but to the unperturbed image graph �0 D f.x; y; x/ j .x; y/ 2 R2g, compare
Fig. 4.12d, is symmetric w.r.t. the line x D x0

0 WD x0 C " cos.kx0/=
p
2; note that the

point .x0; y0; u.x0; y0// projects to .x0
0; y0; x

0
0/. Moreover, the projection from � to

�0 changes areas only by a factor 1 C O."2/. Similarly, projection from � to the
image plane changes areas by a factor

p
2=2C O."2/.

The amoeba median can therefore be computed up to O."2/ from an area
difference within A 0 that solely results from the deviation of the projected level
line on � from the line x D x0

0.
The level line of u corresponding to .x0; y0/ is given by u.x; y/ D u.x0; y0/, thus

x.y/ D x0 C " cos.ky0/� " cos.ky/; it projects on �0 as

x.y/ D x0
0 C 1

2

�
" cos.ky0/ � " cos.ky/

�C O."2/ : (4.46)

As the level line extends in y direction from y0 � %C O."2/ to y0 C %C O."2/, the
resulting area difference on �0 is compensated by a level line shift of

�x D �2
2 %

y0C%Z
y0�%

"

2

�
cos.ky0/� cos.ky/

�
dy C O."2/

D
�

sin.k%/

k%
� 1

�
" cos.ky0/C O."2/ ; (4.47)

making x0 C �x the sought median, and leading to a frequency reponse factor
ı.k/ WD sinc.k%/ � 1 for the increment of the perturbation.

As before, one amoeba median filter step changes the initial perturbation u � u0
of (4.39) versus u0.x; y/ D x by the amplification factor .k/ D 1 C ı.k/, i.e.
.k/ D sinc.k%/. Since .k/ is within .�1; 1/ for all k > 0, perturbations of all
frequencies are dampened.

Figure 4.15 shows the graphs of both amplification functions, .k/ for amoeba
median filtering with % D 1, and s.k/ D 1C 1=6 � .�k2=2/ for the corresponding
time step of (4.44) with time step size %2=6 D 1=6, along with numerically com-
puted amplification factors for amoeba median filtering with the same parameters
for k D 1; 2; : : : ; 30.
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Fig. 4.15 Amplification of a level-line-aligned perturbation of a linear slope function by one
amoeba median filtering step (theoretical and numerical values) and a corresponding time step
of an explicit scheme for self-snakes (with or without pre-smoothing)

4.6 Amoebas and Texture

As mentioned before, Dijkstra’s shortest path algorithm on the neighbourhood graph
Gw. f / or a subgraph thereof is used to compute amoeba structuring elements.
Whereas in image filtering, only the resulting pixel set A%.i/ around pixel i is of
interest, the search tree created by Dijkstra’s algorithm bears valuable information
in itself: its structure depends sensitively on the local structure of contrasts in the
image, thus, on its texture. Building on work first presented in [55], this section
discusses an approach directed at exploiting this information for texture analysis.

4.6.1 Six Graph Structures for Local Texture Analysis

Looking at the amoeba construction in more detail, information about local image
texture is distributed to several features. The first aspect are the amoeba distances
between adjacent pixels themselves, i.e. the edge weights of Gw. f /. A second source
of information is the selected pixel set of the amoeba A%.i/. The third one is the
connectivity of the Dijkstra search tree. This leads to six setups for graphs that
encode these information cues in different combinations. Figure 4.16 illustrates
these setups.

For the first group of three graphs, the pixels within A%.i/ serve as vertices. For
these, one can consider either the full weighted subgraph of Gw. f /, which will be
denoted by GA

w , the superscript A referring to the use of the amoeba patch. Next, one
can consider just the weighted Dijkstra tree, TA

w . Third, deleting the edge weights
from this tree yields an unweighted tree, TA

u . Despite suspending the direct use
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Fig. 4.16 Six graph setups for texture feature construction from amoebas (schematic). For
simplicity, graphs are drawn based on 4-neighbourhood connectivity here. In the weighted graphs,
different line thicknesses symbolise edge weights

of edge weights in this setting, the connectivity structure derived thereof remains
present.

The second group of three graphs is analogous to the first one but chooses the
pixels of a fixed window of Euclidean radius % around pixel i. Again, one has the
corresponding weighted subgraph of Gw. f /, which will be denoted as GE

w, with the
superscript E referring to the Euclidean patch, the weighted Dijkstra tree TE

w and the
unweighted Dijkstra tree TE

u .

4.6.2 Quantitative Graph Theory: Graph Indices

We turn now to introduce exemplary graph descriptors that can be computed from
the previously mentioned graphs in order to obtain quantitative texture descriptors.
A larger set of graph descriptors is discussed in the same context in [55].

These graph descriptors are just samples from a tremendous variety of more than
900 concepts [14] that have been established over almost 70 years of research,
motivated from applications like the analysis of molecule connectivity in compu-
tational chemistry, see e.g. [4, 26, 29, 41, 61], inexact graph matching [19, 43], or
the quantitative analysis of (for instance, metabolistic) networks, see e.g. [12, 18].
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In the recent decade, the systematic study of these measures has been bundled in the
field of quantitative graph theory, see e.g. [13, 15, 18].

4.6.2.1 Distance-Based Indices

The historically first class of graph indices are computed directly from the vertex
distances within a graph.

Originally introduced for unweighted graphs G, the Wiener index [61] is obtained
by just summing up the distances (path lengths) between all pairs fi; jg of vertices,

W.G/ WD
X
fi;jg

d.i; j/ : (4.48)

A modification is the Harary index introduced by Plavšić et al. [41] that sums the
reciprocals instead of the distances themselves,

H.G/ WD
X
fi;jg

1

d.i; j/
: (4.49)

It is straightforward to apply both indices also for weighted graphs, replacing path
lengths as distances by total path weights just as in the amoeba definition.

4.6.2.2 Information-Theoretic Indices

Another important class of graph indices is based on entropy concepts. Since
Shannon’s work [47], the entropy

H. p/ WD �
nX

kD1
p.k/ log2 p.k/ (4.50)

has been established as the fundamental measure of the information content of a
discrete probability measure p on f1; : : : ; ng.

Bonchev-Trinajstić Information Indices

In [4], entropy has been applied in several ways to the distribution of distances
within unweighted graphs to characterise graph connectivity. We pick here two of
them. We consider a graph G with vertices 1; : : : ; n and denote by D.G/ its diameter,
i.e. the largest path distance between two of its vertices. By kd we denote for d D
1; : : : ;D.G/ the number of vertex pairs of exact distance d,
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kd WD #f.i; j/ j 1 	 i < j 	 n; d.i; j/ D dg : (4.51)

In [4], the mean information on distances NI E
D and the total information on the

realised distances IW
D of G are defined, which (with a slight rewrite for IW

D ) read
as

NI E
D .G/ WD �

D.G/X
dD1

kd�n
2

� log2
kd�n
2

� ; (4.52)

IW
D .G/ WD W.G/ log2 W.G/�

X
1�i<j�n

d.i; j/ log2 d.i; j/ ; (4.53)

where W.G/ is the Wiener index (4.48). Again, both definitions can formally be
applied to weighted graphs by performing the summation over the weighted path
lengths d occurring in G; however, in non-degenerate cases all kd will equal 1,
turning the mean information on distances NI E

D into a quantity that depends essentially
only on n, and does therefore not reveal much information about the graph. In
our texture analysis framework, NI E

D makes therefore sense only for the unweighted
graphs TA

u and TE
u . In contrast, the total information measure IW

D makes perfect sense
for weighted graphs and thus for all six graph setups under consideration.

Dehmer Entropies

While the Bonchev-Trinajstić indices are based on entropies on the set of distances
in a graph, a class of entropy indices defined in [12] works with distributions on the
vertex set. An arbitrary positive-valued function f (information functional) on the
vertices 1; : : : ; n of a graph G is converted into a probability density by normalising
the sum of all values to 1, such that the individual probabilities p.i/ read as

p.i/ WD f .i/Pn
jD1 f .j/

: (4.54)

The entropy

If .G/ WD H. p/ (4.55)

is then a graph index based on the information functional f .
In [12], two choices for f have been considered in the case of unweighted graphs,

named f V and f P. For each of them, f .i/ is obtained from considering the set
of neighbourhoods of increasing radius around vertex i in the path metric of the
graph. While f V.i/ is the exponential of a weighted sum over the cardinalities of
such neighbourhoods, f P.i/ is the exponential of a weighted sum over the distance
sums within these neighbourhoods (i.e. the Wiener indices of the corresponding
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subgraphs). The weight factors assigned to increasing neighbourhoods in both f P

and f V can be chosen in different ways. Using what is called exponential weighting
scheme in [15] and measuring distances d by total edge weights along paths in edge-
weighted graphs, the resulting information functionals can be stated as

f V .i/ WD exp

0
@M

nX
jD1

qd.i;j/

1
A ; (4.56)

f P.i/ WD exp

0
@M

nX
jD1

qd.i;j/d.i; j/

1
A (4.57)

with parameters M > 0 and q 2 .0; 1/, see [55] where it is also detailed how these
expressions are derived from the original definitions from [12].

For the resulting entropy indices If P and If V as well as for a third one, If� ,
which is not discussed here, [15] demonstrated excellent discriminative power
for unweighted graphs, i.e. they are able to uniquely distinguish large sets of
different unweighted graphs. This finding lets appear If P and If V also as outstanding
candidates for texture analysis tasks.

4.6.3 Texture Discrimination

As a first, yet simple, application of the framework that combines amoebas and
graph indices, texture discrimination is considered. In [55], a total of 42 candidate
texture descriptors was considered. These descriptors resulted from applying nine
graph indices, including those described in Sect. 4.6.2 above, to the six graph setups
introduced in Sect. 4.6.1, using only those combinations that made sense (as e.g.
some graph indices cannot be used for weighted graphs). These graph indices were
compared to Haralick features [21, 22], a set of region-based texture descriptors
derived from several statistics of co-occurrence matrices of intensities. Despite
their long history of more than 40 years, Haralick features are still prominent in
texture analysis; together with some more recent modifications they continue to
yield competitive results [27, 28, 49].

For the texture discrimination task, the experimental setup in [55] was built to suit
the region-based Haralick features by aggregating the, actually local, amoeba-graph
features regionwise.

Amoeba-graph descriptors as well as Haralick features were computed for a
set of nine texture images from the VisTex database, [40]. Figure 4.17 shows a
composite image made up of the nine textures used in [55]. Figure 4.18 visualises
selected amoeba-graph features on this test image. It can be seen that the different
features respond with different degrees of sensitivity and locality to the local
structure of the textures.
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Fig. 4.17 Composite image containing patches of nine different textures; top left to bottom right in
rows: brick, fabric, flowers, food, leaves, metal, stone, water, wood. Texture patches originate from
the VisTex database, [40]; they have been converted to greyscale, downsampled and clipped (VisTex
database ©1995 Massachusetts Institute of Technology. Developed by Rosalind Picard, Chris
Graczyk, Steve Mann, Josh Wachman, Len Picard, and Lee Campbell at the Media Laboratory,
MIT, Cambridge, Massachusetts)

For each descriptor and texture pair, a statistical discrepancy measure u WD
j�1 � �2j=� was computed from the mean values �1, �2 of the texture descriptor
on both textures and the joint standard deviation � . Due to the variability of each
descriptor even within the same texture, thresholds for discrimination were gauged
from the measured discrepancies for different patches of the same textures: A
higher threshold, T1, was chosen as double the maximum of the nine intra-texture
discrepancies measured, and a lower threshold, T2, as the third-highest of the nine
intra-texture values. Texture pairs with discrepancy at least T1 were considered as
“certainly different”, and those with discrepancy at least T2 as “probably different”.

While not each texture descriptor could equally well distinguish each pair of
textures, it turns out that almost all texture pairs can be told apart by at least
some descriptors, with the overall discrimination capability being well comparable
with that achieved by the Haralick feature set under consideration. Indeed, the pair
water/wood (the last two patches in the bottom row of Fig. 4.17 was the only one
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Fig. 4.18 Examples of graph-index-based feature descriptors computed on the test image shown
in Fig. 4.17. Graph indices have been computed from amoebas with Euclidean amoeba metric,
ˇ D 0:1 and % D 5. All graph index images shown here are histogram equalised. (a) Harary index
on the weighted amoeba tree TA

w . (b) Dehmer entropy If P on TA
w . (c) IW

D on TA
w . (d) Harary index on

the weighted tree in the Euclidean neighbourhood TE
w . (e) Dehmer entropy If P on TE

w . (f) Dehmer
entropy If V on TE

w

that could not be distinguished with sufficient certainty, neither by the Haralick nor
the amoeba-graph feature set. The difficulty to distinguish these two textures can
also be seen in Fig. 4.18.

Given that different texture pairs are distinguished best with different descriptors,
it is of interest to study the similarity and dissimilarity of different amoeba-graph
texture descriptors with regard to what texture pairs they can distinguish. In [55]
a metric on the set of texture descriptors has been established in this way. In the
further perspective, this is intended to guide the selection of a subset of just a
few descriptors that complement each other well, which could therefore be a well-
manageable feature set for practical applications.

4.6.4 Texture Segmentation

Finally, we show a simple example that demonstrates the applicability of amoeba-
graph indices for texture segmentation. Here graph descriptors have been used as
input to a standard geodesic active contour method with an outward force term
� g jruj.
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Figure 4.19a shows a test image displaying a striped ring in front of a noisy
background. Figure 4.19b shows the field of graph indices If P computed on weighted
Dijkstra trees in Euclidean patches, TE

w , while Fig. 4.19c shows NI E
D on TA

u . It is
evident from these examples that amoeba-graph indices can turn the textured
foreground object into a more homogeneous region. Using just the two graph
descriptors as input channels for geodesic active contours one obtains a reasonable

Fig. 4.19 Texture segmentation by geodesic active contour evolution based on amoeba/graph
index texture features, pre-smoothing � D 3, force term � D �2, time step size 
 D 0:1. (a)
Original image with initial contour. (b) Graph index If P on weighted tree TE

w (normalised from
Œ0; 3:72� to Œ0; 255�). (c) Graph index NI E

D on unweighted tree TA
u (normalised from Œ0; 2:93� to

Œ0; 255�). (d) Contour after 500 iterations of GAC evolution using If P on TE
w and NI E

D on TA
u each

weighted 0:5, Perona-Malik threshold  D 0:036. (e) Same as (d) but 1000 iterations. (f) Same
as (d) but 2500 iterations. (g) Steady state of the segmentation process from (d)–(f) reached after
3300 iterations. (h) Segmentation using only If P on TE

w , Perona-Malik threshold 0:48, steady state
reached after 7500 iterations. (i) Segmentation using only NI E

D on TA
u , Perona-Malik threshold 0:4,

steady state reached after 1200 iterations
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segmentation, see Fig. 4.19g. One might ask whether one graph index alone does
the job, too. In the present example, this is indeed true; however, the results in
Fig. 4.19h, i are visibly less precise in locating the contour separating foreground
and background.

Note that this example is only a first proof of concept. A deeper investigation
of the potential of this approach to texture segmentation as well as the study of
parameter choice and comparison to other texture segmentation methods are topics
for future research.

4.7 Outlook

From the results reviewed in this chapter it can be seen that morphological amoebas
provide a powerful framework for adaptive image filtering with interesting cross-
relations to other classes of filters. They can also be applied fruitfully to related
tasks such as image segmentation. Combining amoeba procedures with ideas from
quantitative graph theory even allows to construct a new class of texture descriptors.

At the same time, there remain many questions for future research. So far, the
amoeba framework introduces adaptivity into local image filters solely by modifying
the first step of the filter procedure, i.e. the selection stage. The aggregation step like
median, maximum, or minimum is left unchanged. Could further improvements of
adaptivity be achieved by envisioning also image-dependent modifications to the
aggregation step? How do modifications of selection and aggregation step interact?

Addressing the selection step itself, it would be possible to weaken the dichotomy
of including or not including neighbour locations, and to consider unsharp or
weighted neighbourhoods.

No amoeba filter for multi-channel (such as colour) images have been studied
in the present chapter. In principle, there is little to prevent one from applying
amoeba procedures to multi-channel data. The amoeba computation step generalises
straightforwardly. There are also generalisations of median filters [2, 48, 52, 59, 60]
and supremum/infimum operations to multi-channel data [6–8] at hand. The
theoretical understanding of multi-channel amoeba filters, however, lags behind that
in the single-channel case. A result in [57] indicates that the median–PDE relation
even in its non-adaptive form, see Proposition 4.1, has no equally simple multi-
channel counterpart, thus leaving little hope to derive manageable PDE equivalents
of multi-channel amoeba filters. New approaches to a deeper understanding of the
properties of multi-channel amoeba filters will have to be sought.

The field of texture analysis addressed in Sect. 4.6 still is at an early stage of
research. Ongoing research is directed at extending the experimental evaluation of
the newly introduced amoeba-graph texture descriptors for texture discrimination
to a broader body of data. Another goal is the selection of a powerful set of a
few amoeba-graph descriptors with a high combined discrimination rate across
multiple textures. Tuning of the parameters of the descriptors has not been studied
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extensively so far and will therefore be addressed in the future. Attempts are also
underway to analyse the effect of the amoeba-graph descriptors theoretically.

In the field of texture segmentation the combination of amoeba-graph descriptors
with other segmentation frameworks than the GAC considered in Sect. 4.6.4 will be
investigated. An integration with an amoeba active contour procedure could lead to
a texture segmentation framework that uses the same sort of theoretically founded
procedure for both texture feature extraction and the actual segmentation step. In
many existing approaches, and also in the preliminary example from Sect. 4.6.4,
these two steps are based on rather unrelated approaches. With regard to the
graph-theoretical roots of the texture features under consideration, also graph-cut
approaches for the segmentation stage could be a candidate for further investigation.
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Chapter 5
Increasing the Power of Shape Descriptor Based
Object Analysis Techniques

Joviša Žunić, Paul L. Rosin, and Mehmet Ali Aktaş

Abstract An advantage of shape based techniques, for object analysis tasks, is that
shape allows a large number of numerical characterizations. Some of these have an
intuitively clear meaning, while others do not, but they are still very useful because
they satisfy some desirable properties (e.g. invariance with respect to a set of certain
transformations). In this chapter we focus on numerical shape characteristics that
have a clear intuitive interpretation – i.e. based on such numerical values, we can
predict, to some extent, what the considered object looks like. This is beneficial,
since it enables a priori appraisal of whether certain shape characteristics have suit-
able discriminative potential that make them appropriate for the intended task. By
their nature, the number of such methods cannot be as large as the number of meth-
ods to allocate shape/object characteristics based on some formalism (algebraic,
geometric, probabilistic, etc.). Because of that, some other possibilities to increase
the discriminative capacity of the methods based on numerical shape characteristics,
with an intuitively predictable meaning, are considered. Herein, we observe two
such possibilities: the use of tuning parameters to obtain a family of shape
characteristics, and the use of multiple shapes derived from the objects analyzed.

5.1 Introduction

Shape is an important component of the human visual system, and is also widely
used in computer vision to provide a means of describing objects as a precursor
to identifying them. If object boundaries can be reliably extracted (which of course
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remains a challenge for unconstrained scenes, but is achievable in many other cases)
then shape descriptors offer many advantages to those based on intensity, colour,
texture, etc. First, although those latter approaches incorporate more information,
offering a richer descriptive power, they are consequently also more sensitive
to potentially irrelevant variations in illumination, colouring, etc. For instance,
whereas the shape of a typical car is clear cut, cars come in many colours, and
so colour (unlike shape) is not helpful to the task of assigning an object to the
general class of cars. Second, most shape descriptors can be easily normalised so
that they are invariant to many transformations (e.g. translation, rotation, scaling,
shearing) without requiring expensive and less reliable methods such as scale-space
based image processing. Third, many techniques for shape based analysis provide
a compact descriptor, that is not only efficient to store, but is also well suited to
efficient matching.

Many shape properties, herein called shape descriptors, are known to be very
suitable for a numerical evaluation (e.g. shape convexity, ellipticity, elongation,
compactness, linearity, sigmoidality, tortuosity, etc.). Methods developed to evaluate
a certain shape descriptor will be called shape measures. Examples of shape
measures already developed are: convexity [26, 32, 42], circularity [8, 16, 25, 45],
compactness [18], linearity [11, 36, 40], ellipticity [1, 25, 30, 38, 44], sigmoidality
[31], rectilinearity [41], tortuosity [13], and many more. As it can be seen, there are
shape descriptors with multiple measures developed for their numerical evaluation.
This is because none of the shape measures are ideally suited for all the possible
applications.

Apart from the shape measures mentioned, which relate to a certain shape
property, there are generic shape measures which are not originally designed
to measure a specific shape property/characteristic. Among them are: Fourier
descriptors [5, 39], moment invariants [17, 21], shape-illumination invariants [3],
and so on. Those measures satisfy some desirable properties (e.g. invariance with
respect to some transformations) and their power comes from the fact that, at least
in theory, an infinite number of them can be generated and assigned to a given
object/shape. A drawback is that their behavior is not well explained and cannot
be predicted. This further implies that their suitability for a certain task has to be
verified through an intensive experimental study, which is always a time consuming
process.

Contrary to the generic shape measures, the measures which do relate to a certain
shape property have a well understood and predictable behavior. Their disadvantage
is that their number is limited. This further causes a limited discriminative power
of the object analysis tools based on such measures, particularly when dealing
with huge data sets. In this chapter we consider possibilities of increasing the
discriminative power of such tools, with applications in image processing and
computer vision tasks. We discuss the following possibilities: (i) An involvement
of a tuning parameter; (ii) Allocation of multiple shapes to the objects considered;
(iii) A combination of the approaches in (i) and (ii). Our discussion is supported
with experimental results.
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Throughout this chapter we will assume that all occurring shapes are bounded.
In order to avoid discussions on pathological situations, we will say that two shapes
are equal if their set differences have area equal to zero. This is obviously not a
restriction in practical applications – e.g. a closed ellipse f.x; y/ j x2 C 3 � y2 	 1g
and the “open” one f.x; y/ j x2 C 3 � y2 < 1g are considered to be the same shape.

The geometric moment mp;q.S/ of a given shape S, represented by a planar
bounded region, is defined as

mp;q.S/ D
ZZ

S
xp yq dx dy: (5.1)

Obviously, m0;0.S/ equals the area of S. As a short reminder, the centroid of a given
shape S is defined as

�RR
S x dx dyRR
S dx dy

;

RR
S y dx dyRR
S dx dy

�
D

�
m1;0.S/

m0;0.S/
;

m0;1.S/

m0;0.S/

�
: (5.2)

Since shape does not change under translation, we will assume that all the
appearing shapes are positioned such that their centroid coincides with the origin.
In other words:

m1;0.S/ D
ZZ

S
x dx dy D 0 and m0;1.S/ D

ZZ
S

y dx dy D 0

(5.3)
will be assumed, even if not mentioned, for all the shapes considered.

Finally, S.!/ will denote the shape S rotated around its centroid by the angle !.

5.2 Power Increase by Introducing a Tuning Parameter

In this section we discuss a family of circularity measures, introduced as a
generalization of the first Hu moment invariant [17], by incorporating one parameter
[45]. The role of this introduced parameter is to control the behavior of the
circularity measures from the given family. Shape interpretation of the first Hu
moment invariant, I1.S/;

I1.S/ D
ZZ

S
.x2 C y2/ dx dy (5.4)

has been analyzed in [45]. It has been shown that the first Hu moment invariant,

I1.S/; ranges over the interval Œ
1

2	
;1/ and returns the minimum possible value



120 J. Žunić et al.

0.9579 0.8755 0.4506 0.3361 0.1390

Fig. 5.1 Fish shapes are ranked with respect to their computed C .S/ circularity values

1

2	
for circles only. This property has been used to define the new circularity

measure, C .S/; for planar shapes:

C .S/ D 1

2	
� m0;0.S/2

m2;0.S/C m0;2.S/
D 1

2 � 	 � I1.S/
: (5.5)

Such a circularity measure C .S/ ranges over the interval .0; 1�; produces the
value 1 if and only if the considered shape S is a circle, and is invariant with respect
to translation, rotation, and scaling transformations. It also might be said that the
new circularity measure fits well with our perception of what a circularity measure
should be – a quantity which indicates how much a shape given differs from a circle.
Shapes with relatively large C .S/ values are nearly circular, while shapes with small
C .S/ values have a nearly linear structure. We illustrate this by a small collection of
fish shapes and their assigned circularity values, but more examples can be found in
[45]. Five fish shapes are listed in Fig. 5.1, in accordance with their computed C .S/
circularity values. The largest circularity 0:9579 is assigned to the shape on the left,
which is as expected since this shape is nearly circular. The smallest circularity value
0:1390 is assigned to the shape on the right. Again, such a small circularity comes
from the fact that this shape has a nearly linear structure. Our judgment is that we
may say that these values, as well as the remaining three values, and the ranking
obtained, are in accordance with human perception.

The circularity measure C .S/ is area based, and because of this is robust, i.e.
relatively resistant to small shape deformations or to defects caused by noise, for
example. Of course, such a (robustness) property is an advantage in many situations
but it could be a disadvantage in situations when high precision is required. To avoid
such a possible drawback, the measure C .S/ has been modified. A tuning parameter
˛ was introduced [45] to produce a family of circularity measures C˛.S/ as follows:

C˛.S/ D 1

.˛ C 1/ � 	˛ � m0;0.S/˛C1RR
S.x

2 C y2/˛dxdy
(5.6)

for all ˛ > 01 and for all bounded compact planar shapes S. Obviously, the measure
C .S/ also belongs to the new family of circularity measures defined in (5.6),

1For an extension to the circularity measures with ˛ 2 .�1; 0/, see [45].
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since C .S/ D C˛D1.S/: All circularity measures from the family C˛.S/ keep the
basic desirable properties. They range over .0; 1�; with the equality C˛.S/ D 1

satisfied for circles only. Measures C˛.S/ are invariant with respect to similarity
transformations as well. The main role of the tuning parameter ˛ is to enable control
of the sensitivity/robustness properties of C˛.S/. It has been shown that bigger
values of ˛ lead to a more sensitive measure C˛.S/. More detailed discussion can be
found in [45], but here we give a lemma which supports the previous statement.
Indeed, Lemma 5.1 says that for any shape S different from a circle, there is a
parameter ˛ such that C˛.S/ is arbitrarily close to 0. In other words, there is a
choice of circularity measure C˛.S/ (i.e. the choice of the parameter ˛) which would
penalize, strongly enough, any existing difference between the shape S and a circle.

Lemma 5.1 For a bounded planar compact shape S; different from a circle, the
following equality is true

lim
˛!1C˛.S/ D 0: (5.7)

Some of the benefits from having the possibility to tune the behavior of
circularity measures are illustrated by examples in Fig.5.2. All the four shapes listed
can be understood as very similar to a circle. The first shape is a regular 7-gon
while the remaining three shapes are obtained from a circle by adding noise. For the
second and third shape a different level noise is added to the shape boundary, while
salt noise (i.e. holes) is added to the interior of the fourth shape. The circularity
C .S/ of all these shapes is very close to 1; and C .S/ can neither distinguish among
these shapes nor detect the presence of the obvious irregularities. These irregularities
become visible once measures C˛.S/ from the new family are employed. Indeed,
looking at the graphs of C˛.S/ (considered as a function in ˛), displayed in the
second row in Fig.5.2, we see that an increase of ˛ leads to a decrease of C˛.S/:
After some point, it becomes clearly evident that all the given shapes differ from a
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Fig. 5.2 Graphs of the measured circularities C˛.S/; for ˛ 2 Œ0; 20�; are given below the
corresponding shapes
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circle, and also that each of these shapes differs from the others. For example, if we
set ˛ D 20 then, for all the shapes displayed, the computed C˛.S/ circularities are
all mutually different.

Next, we illustrate that some classification accuracies, reached by some of the
well known shape measures, can be outperformed by selecting a suitable measure
from the familyC˛.S/: For this purpose we will use the standard circularity measure,
and the circularity measures of Proffitt [25] and Haralick [16]. The standard
circularity measure Cst.S/ exploits the fact that among all shapes with the same
perimeter, the circle has the largest area. It is defined as

Cst.S/ D 4 � 	 � Area_of _S

.Perimeter_of _S/2
: (5.8)

Note that in the following experiments the perimeter of S was calculated for
Cst.S/ either directly from the pixel boundaries extracted from the images with
inter-pixel weights set according to Dorst and Smeulders [9], or alternatively the
perimeters were calculated from polygonal approximations of the boundaries [27].
For classification, leave one out testing was performed with a nearest neighbor
classifier using Euclidean distances.

For this example, circularity was measured for the set of 54 masses from
mammograms, combining images from the MIAS and Screen Test databases [28],
see Fig. 5.3. Rangayyan et al. [28] assessed the measures by classifying them as

CB CM SB SM

Fig. 5.3 Examples of the four classes of mammographic masses: circumscribed benign (CB),
circumscribed malignant (CM), spiculated benign (SB), spiculated malignant (SM). The masses
were extracted from the mammograms (top row), and have been drawn rescaled (bottom row)
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Table 5.1 Applications of
the circularity measures to
classification of
mammographic masses. The
classification accuracies, for
three classification tasks, are
given for different choices of
the circularity measures. The
best performing measure was
C˛D32.S/ (the score
highlighted in bold)

Circularity Mammography

Measure circ./spic. mal./ben. 4 groups

C˛D1=8.S/ 83:33 66:67 51:85

C˛D1=4.S/ 85:19 64:81 51:85

C˛D1=2.S/ 75:93 57:41 42:59

C˛D1.S/ 68:52 68:52 51:85

C˛D2.S/ 75:93 68:52 53:70

C˛D4.S/ 72:22 46:30 33:33

C˛D8.S/ 79:63 59:26 50:00

C˛D16.S/ 87:04 57:41 51:85

C˛D32.S/ 90:74 70:37 64:81
Cst.S/ pixel 87:04 59:26 57:41

Cst.S/ polygon 85:19 59:26 57:41

Haralick [16] 68:52 46:30 37:04

Proffitt [25] 51:85 42:59 25:93

circumscribed/spiculated, benign/malignant, and CB/CM/SB/SM, in two group and
four group classification experiments. Their best shape measure results for the three
classification tasks were: (i) circumscribed versus spiculated: 88.9 % achieved by
both Cst.S/ and a Fourier based shape factor, (ii) benign versus malignant: 75.9 %
achieved by the Fourier based shape factor, (iii) four-way discrimination: 64.8 %
achieved by both Cst.S/ and the Fourier based shape factor.2 From Table 5.1 we see
that the best results from using C˛.S/ occurred for ˛ D 32 and were respectively
better, worse, and equal to Rangayyan et al.’s. The other circularity measures did
not perform as well as C˛.S/.

5.3 Family of Ellipticity Measures with an Application in an
Galaxy Classification Task

Shape ellipticity measures are intensively studied in the literature. An early attempt
[38] goes back to 1910. Notice that there are two approaches for how to measure
shape ellipticity. The first one assumes that all ellipses are of the same shape,
regardless of their axis length ratios, e.g. [1, 30]. Another approach assumes that
ellipses whose axis ratios differ also differ in shape, e.g. [2]. It is not possible to say
a priori which approach is better. In some applications the first approach would be
more appropriate, whilst in some others the second is preferred.

2We note that our results for Cst.S/ listed in Table 5.1 do not match Rangayyan et al.’s [28] reported
accuracies for Cst.S/. This can be attributed to several factors: (i) different classifiers were used,
and also (ii) different methods for estimating perimeter may have been used.
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Ellipticity measures considered in this section, from the family introduced
recently [2], assume that ellipses with a different axis length ratio are different in
shape. A precise definition follows.

Definition 5.1 Let a bounded planar shape S; whose centroid coincides with the
origin, be given. For every � 2 .0; 1� the ellipticity measure E�.S/ of S; is defined as

E�.S/ D 1

2 � 	 � m0;0.S/4

min
!2Œ0;2	�

RR
S.!/

�
x2

�
C � � y2

�
dx dy

: (5.9)

Note 5.1 The formula in (5.9) enables an easy and straightforward numerical
computation of E�.S/, with � 2 .0; 1�: There is also a closed formula for the
computation of E�.S/, derived recently in [46].

All the ellipticity measures E�.S/, from Definition 5.1 have the following
properties (for a proof see [2]):

(a) E�.S/ 2 .0; 1�; for any shape S;
(b) E�.S/ D 1 if and only if S is an ellipse whose axis length ratio is �;
(c) E�.S/ is invariant with respect to similarity transformations.

Theoretical foundations for understanding the behavior of the new ellipticity
measures E�.S/ are established in [2]. Here we give a brief discussion. The
parameter � can be understood as a tuning parameter, because the behavior of
the ellipticity measures, from fE�.S/ j � 2 .0; 1�g; depends on the choice of the
parameter �. For a fixed �, the measure E�.S/ indicates how much the considered
shape S differs from a perfect ellipse E.�/ whose axes length ratio is �. The highest
score, equal to 1, is given only to the E.�/ ellipses. For all the shapes different from
E.�/, including the ellipses whose axes length ratio differs from �, the computed
E�.S/ ellipticities are strictly less than 1. Which values of the parameter � should
be selected depends on the application which is going to be performed. Ellipticity
E�.S/; corresponding to one selection of the parameter �, can perform well in one
application, but also can have a poor performance in another.

In this section, in addition to the use of a tunable ellipticity measures, we consider
another possibility to increase the discriminative capacity of shape based object
analysis tools. The idea is to assign a number of shapes to an object presented in an
image, instead of just a single shape, as is the common approach. Multiple shapes
can be assigned in several ways (e.g. as it is done in this section – see Fig. 5.5,
and also as it is done in Sect. 5.4 – see Fig. 5.8, or in [29], etc.). In this section we
will assign two shapes to each object by using two versions of Otsu’s thresholding
method [23]: A “global” one (the same threshold level is applied to all pixels) and a
“local” one (the original method is applied to blocks of the original image, so that the
threshold level applied varies). This means that we allocate two shapes (represented
as two binary images) for each object. For each of these two shapes/images we will
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compute three shape measures, which will comprise the components of the feature
vectors used for classification.

This approach will be applied to a galaxy classification task. The elliptical and
spiral galaxies, listed in the Nearby Galaxy Catalog [10], are used as the data/shape
set. The same data set has been used by many others, and the classification task has
been already recognized as a difficult problem [19]. Many approaches have been
applied and used to provide an automatic machine galaxy classification, e.g. neural
networks approaches [4, 15, 22], fuzzy sets theory [20], geometric shape features
[12, 14], shape squareness [34], fractal signatures [19], etc.

The benchmark results, prior to a 100 % classification rate obtained in [2], were
92.3 % and 95.1 %, obtained in [19] by using nearest neighbor and neural network
classifiers, respectively.

5.3.1 Ellipticity Measures Used and Classification Results
Obtained

Three ellipticity measures were used to perform the galaxy classification task. Two
of them are from the family E�.S/:

• E�D0:7.S/ D 1

2 � 	 � m0;0.S/4

min
!2Œ0;2	�

RR
S.!/

�
x2

0:7
C 0:7 � y2

�
dx dy

(m1)

• E�D0:9.S/ D 1

2 � 	 � m0;0.S/4

min
!2Œ0;2	�

RR
S.!/

�
x2

0:9
C 0:9 � y2

�
dx dy

(m2)

while the third ellipticity measure used is introduced in [1] and is defined as
follows

• E .S/ D 1

2 � 	 � m0;0.S/4

min
!2Œ0;2	�

RR
S.!/

�
x2

�
C � � y2

�
dx dy

(m3)

where the parameter � is defined as

� D
q
�2;0.S/C �0;2.S/Cp

4 � .�1;1.S//2 C .�2;0.S/� �0;2.S//2q
�2;0.S/C �0;2.S/�p

4 � .�1;1.S//2 C .�2;0.S/� �0;2.S//2
:
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Fig. 5.4 E�.S/; � 2 .0; 1�; graphs for the shapes S obtained by thresholding of 32 randomly
selected galaxy images: global thresholding applied (on the left) and local thresholding applied (on
the right)

Ellipticity measures E�D0:7.S/ and E�D0:9.S/ were selected according to the
graphs displayed in Fig. 5.4. Precisely, 32 shapes were selected randomly and then
thresholded by both the global and local methods. The graphs of E�.S/, for � varying
through the interval .0; 1�; were computed. The graphs of E�.S/ corresponding to
shapes obtained by the global thresholding are on the left in Fig. 5.4, while the
graphs E�.S/ for shapes obtained by the local thresholding are on the right in
Fig. 5.4. Our hypothesis was: “Since for both � D 0:7 and � D 0:9 the values of
E�.S/ are “scattered” reasonably well, an efficient discrimination among the galaxy
shapes would be enabled by using the functions/measures E�D0:7.S/ and E�D0:9.S/”.
Also, the selected parameters are preferred to be reasonably different. It turns out
that, at least in this case, the hypothesis was valid.

Thus, each galaxy g was represented by a 6-dimensional feature vector deter-
mined as follows:

�
E�D0:7.S0

g/; E�D0:9.S0
g/; E .S

0
g/; E�D0:7.S00

g/; E�D0:9.S00
g /; E .S

00
g /
�

(5.10)

where S0
g and S00

g are the shapes (i.e. binary images) obtained from the original image
(of the galaxy g) thresholded by two selected methods (the global and local one).
Some examples are in Fig. 5.5: original images are in the left column, shapes S0

g

obtained by the global thresholding are in the middle column, while shapes S00
g

obtained by local thresholding are in the right column.
We have used the k-Nearest Neighbour Classifier (k-NN), with k D 5. For the

training set we have used 4 elliptical and 28 spiral galaxies (e.g. approximately
30% of the galaxies have been used for the training – the same percentage as in
[19]). The classification was performed on the complete data set (galaxies selected
for the training were also included). In order to get a reliable indicator about
the efficiency of the classification “mechanism” described above, 100 experiments
were performed. The experiments were mutually independent – i.e. galaxies for the
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NGC no.: 4125 global thresholding local thresholding

NGC no.: 4486 global thresholding local thresholding

NGC no.: 4450 global thresholding local thresholding

NGC no.: 3893 global thresholding local thresholding

Fig. 5.5 Original images and their NGC number are in the left column; shapes obtained by the
global and local thresholding are in the middle and right column, respectively

training set (4 elliptical and 28 spiral galaxies) have been selected randomly in every
experiment.

The classification results were very good, and outperform the previous accu-
racies. Among 100 experiments performed, the classification rate of 100% was
achieved 3 times. The average classification rate was 95:6% – better than both
best rates obtained by k-NN and neural network classifiers in [19]. The minimal
classification rate of 90:2% was obtained 4 times. The classification results, for
each of the 100 experiments, are displayed in Fig. 5.6. It is worth mentioning
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Fig. 5.6 Classification rates
obtained for 100 mutually
independent galaxy
classification experiments

that because the ellipticity measures have predictable behavior, it was expected
that good classification results might be expected (galaxy shapes have an elliptical
structure). Such a prediction would not be possible if some generic shape measures
were used instead. The additional tool which led to the maximum classification
is the use of multiple shapes assigned to an object/image. To illustrate the latter
statement we provide the classification results in experiments where a single shape
is allocated to each galaxy. The same ellipticity measures: E�D0:7.S/; E�D0:9.S/; and
E .S/ were used again. As expected, smaller classification rates were obtained. The
classification results, based on 100 mutually independent experiments, are displayed
in Fig. 5.7. As it can be seen:

• If the shapes obtained by the global thresholding and the 3-dimensional feature
vector

�
E�D0:7.S0

g/; E�D0:9.S0
g/; E .S

0
g/
�

(5.11)

were used, the following rates were achieved:

– the average classification rate: 87:5%;
– the maximum classification rate: 92:1%;
– the minimal classification rate: 82:4%.

• If single shapes, obtained by the local thresholding method, and the 3-
dimensional feature vector

�
E�D0:7.S00

g /; E�D0:9.S00
g /; E .S

00
g /
�

(5.12)

were used, then the following rates were achieved:

– the average classification rate: 92:2%;
– the maximum classification rate: 96:0%;
– the minimal classification rate: 84:3%.
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Fig. 5.7 Classification rates
obtained for 100 mutually
independent, simplified
classification experiments.
Top row: the global
thresholding method and the
feature vector (5.11) are used.
Bottom row: the local
thresholding method and the
feature vector (5.12) are used

5.4 Multiple Shapes Assigned to Boundary Simplification

A final pair of experiments is described in which multiple shapes will be derived for
each object. Distinct from the experiments in Sects. 5.2 and 5.3, classification will
be performed using boundary based features. Therefore boundary based methods
will be employed to generate multiple shapes. This is the most straightforward and
appropriate approach if the input data consists of boundaries, and also ensures that
the number of components does not change, that open curves remain open, etc.

Our approach to generate multiple shapes from the given data is to perform
simplification of the input shapes. This can be applied at different degrees to create
an arbitrary number of additional shapes. For the two examples described in this
section two approaches are taken: Gaussian blurring and polygonal approximation.

Unlike the previous examples, only boundary information is provided, and there
is no additional information such as object intensities. This means that the additional
shapes generated will not introduce new information, although there is still a
potential benefit to be gained by making different aspects of the data more explicit,
whilst suppressing others. Nevertheless, the expected performance gain is likely to
be less than in Sect. 5.3.
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5.4.1 Closed Curves Example: MPEG-7 CE-1

In [34] a set of five shape based features (namely, a Fourier based triangularity
measure [5], roundness based on the ratio of the areas of the shape and its
circumscribing circle, rectangularity based on the ratio of the areas of the shape
S and its minimum bounding rectangle, ellipticity based on the first affine moment
invariant [30], and convexity based on the areas of the shape and its convex hull)
along with two squareness measures (QˇD2.S/ and Qfit.S/) were combined to
achieve a bull’s eye test score of 74.74 % when applied to the MPEG-7 CE-1 set
of 1400 shapes using a minimum Mahalanobis distance classifier.

A richer feature set can be obtained by expanding the data set to include multiple
smoothed versions of the 1400 curves, and using them to compute additional
features. For example, Gaussian blurring was applied at scales f� D 2; 32; 128g,
see some examples in Fig. 5.8. When the additional convexity values produced from
these scales was included in the classifier then the test score increased to 75.76 %.

Fig. 5.8 MPEG-7 CE-1 shapes at three levels of smoothing (from left to right: f� D 2; 32; 128g)
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) ( j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Fig. 5.9 Characters from the UJI Pen character data set. Top row: (a) single simple curve; (b) two
intersecting curves; (c) three intersecting curves; (d) three non-intersecting curves; (e) a mixture
of open and closed curves; (f) Spanish character; (g) non-ASCII character. Middle row: examples
showing the variability of a single character across different writers. Lower row: one character
progressively simplified by increasing degrees of polygonal approximation

5.4.2 Open Curves Example: UJI Pen Characters

The next experiment uses the UJI Pen character data set [6], in which handwriting
samples were captured with a stylus. Each of the participating 60 writers wrote
two samples of 97 characters, that included ASCII, Spanish and other non-ASCII
characters, making up 11640 samples in total. Note that some of the characters are
multi-stroke, and that of those, their component strokes do not necessarily touch.
The top row in Fig. 5.9 illustrates some of the different types of characters in the
data set, while the middle row demonstrates the wide variability in handwriting
styles for a single character. The creators of the data set have split the characters
into disjoint training and test sets created by 40 writers and 20 writers respectively.

We used a Support Vector Machine (SVM) to perform classification of the
characters: LIBSVM [7] with a Radial Basis Function (RBF) kernel and default
settings. Grid search and five-fold cross validation in the training set were used to
obtain the optimized parameters and the model was then applied to the test data.
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The challenging nature of the data potentially complicates the processes of
feature extraction and/or matching, and in the original paper [6] the experiments
were restricted to the ASCII alpha-numeric characters, while more recent work
has further restricted the task to 26 classes [37]. In our experiments we will use
the full set of 97 character classes. The features need to be chosen such that
they can be applied to open or closed boundaries comprised of single or multiple
components, ruling out many standard shape measures. In our experiments we have
used: anisotropy [35], aspect ratio, convexity [43], linearity [33], line moments (both
Hu’s first seven rotation, translation and scale moment invariants [17] were used as
well as six further moment invariants designed for character recognition [24] which
are invariant to change in aspect ratio, but are not orientation dependent so that e.g.
‘6’ and ‘9’ can be distinguished), rectilinearity [41] (both the regular version R1 and
a modification in which the measure is not maximized over orientation), and the
absolute sum of turning angles.

The classification rate obtained was 51.2 % for features extracted from the raw
data. Next, the data was simplified using Ramer’s polygonal approximation method
[27] over a range of scales (distance thresholds of f1; 2; 4; 8; 16; 32; 64; 128g/ – see
the bottom row in Fig. 5.9 for some examples. When classification was performed
on the data set using features from any single approximation level then no advantage
was found, as the classification rate dropped to 36.40 %–50.56 %. However, when
the features from several scales were combined – namely the raw data, and Ramer
thresholds f2; 64g – then an increase of classification to 56.67 % was achieved.
This demonstrates the benefit of augmenting the data set by additional alternative
versions of the shapes.

Of course, further improvements could be obtained by developing and using
additional features, in particular those specific to the stylus and multi-stroke
characteristics of the data. Examples are: trajectories (i.e. temporal information),
the number of strokes, the distribution of various stroke characteristics within a
character, etc.

5.5 Conclusion

In this chapter we have considered some possibilities to increase the discrimination
capabilities of shape based tools used in image processing and computer vision
tasks. We focused on shape based characteristics/properties with a intuitively clear
meaning. Many of these properties, commonly named shape descriptors, are clearly
identified (e.g. convexity, linearity, elongation, circularity, sigmodality, etc.) and
methods for their computation (i.e. numerical evaluation/estimation) are derived.
These methods are called shape measures. It has been noted that a single method
for evaluation of a given shape descriptor does not suit all applications. That is why,
for several shape descriptors, multiple shape measures have already been developed.
Among them, convexity, circularity, and ellipticity are probably the shape descrip-
tors with the largest number of measures developed for their evaluation. Multiple
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measures, related to the same descriptors, are used (either alternatively or jointly)
as components in the feature vectors allocated to the objects/shapes analyzed. More
shape measures increase the dimensionality of the space of the feature vectors, and
consequently, the potential for greater efficiency in shape based tasks (classification,
recognition, matching, etc.) increases as well. But the number of approaches to
design a measure to certain shape property is limited. Thus, the question: “How else
can we increase the power of shape descriptor/measure based tools?” arises. Here,
we have discussed some possibilities. In Sects. 5.2 and 5.3, we considered area based
shape measures (in which all the shape points are used) and show how incorporating
a tuning parameter can lead to an infinite family of circularity and ellipticity
measures. In Sects. 5.3 and 5.4, we have illustrated that further improvements can
be obtained by assigning multiple shapes to the objects considered. As mentioned,
area based measures were used in Sect. 5.3, while in Sect. 5.4 shape boundaries
(i.e. operations on them) were used to allocate the multiple shapes to the objects
considered, and then boundary based shape measures were employed.

Acknowledgements This work is partially supported by the Ministry of Science of the Republic
of Serbia.

References
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3. Arandjelović, O.: Computationally efficient application of the generic shape illumination
invariant to face recognition from video. Pattern Recognit. 45, 92–103 (2012)

4. Bazell, D., Peng, Y.: A comparison of neural network algorithms and preprocessing methods
for star-galaxy discrimination. Astrophys. J. Suppl. Ser. 116, 47–55 (1998)

5. Bowman, E.T., Soga, K., Drummond, T.: Particle shape characterization using Fourier analysis.
Geotechnique 51, 545–554 (2001)

6. Castro-Bleda, M.J., Boquera, S., Gorbe, J., Zamora, F., Llorens, D., Marzal, A., Prat, F., Vilar-
Torres, J.M.: Improving a DTW-based recognition engine for on-line handwritten characters
by using MLPs. In: Proceedings of the 10th International Conference on Document Analysis
and Recognition, Barcelona, pp. 1260–1264 (2009)

7. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2, 27 (2011)

8. Di Ruberto, C., Dempster, A.: Circularity measures based on mathematical morphology.
Electron. Lett. 36, 1691–1693 (2000)

9. Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Comput. Vis. Graph.
Image Process. 40, 311–333 (1987)

10. Frei, Z., Guhathakurta, P., Gunn, J.E., Tyson, J.A.: A catalog of digital images of 113 nearby
galaxies. Astron. J. 111, 174–181 (1996)
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Chapter 6
Shape Distances for Binary Image Segmentation

Frank R. Schmidt, Lena Gorelick, Ismail Ben Ayed, Yuri Boykov, and
Thomas Brox

Abstract Shape distances are an important measure to guide the task of shape
classification. In this chapter we show that the right choice of shape similarity is
also important for the task of image segmentation, even at the absence of any shape
prior. To this end, we will study three different shape distances and explore how
well they can be used in a trust region framework. In particular, we explore which
distance can be easily incorporated into trust region optimization and how well these
distances work for theoretical and practical examples.

6.1 Shape Acquisition and Shape Distances

An important task of shape analysis is the acquisition of shapes that we want
to analyze. One classical approach is binary image segmentation that can be
formulated as an energy minimization approach. In other words, we define an energy
function E W S ! R that evaluates how well a certain shape S 2 S of a chosen
shape space S fits to the observed image and we are interested in the minimizer
S� WD arg min

S2S E.S/ of the energy E.

The shape space S is usually equipped with a distance distWS �S ! RC
0 . The

literature is divided on the exact definition of a distance. Sometimes, but not always
it is equated with a metric. In this chapter we call any positive-definite function
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dist.�; �/ a distance. Such functions satisfy

dist.A;B/ D 0 , A D B:

In the literature these functions are also referred to as pre-metrics. Any shape
distance defines a topology of the shape space. In contrast to finite dimensional
metric spaces, these topologies are in general not equivalent to one another. In other
words, whether a shape S 2 S is a local minimum of an energy E depends on the
chosen shape distance dist.�; �/.

In this chapter, we will explore the influence that a shape distance can have on
an image segmentation problem. This influence is only observable if E.�/ cannot be
minimized globally. Note that in contrast to other image segmentation applications
like [7–9, 15], we do not use a shape distance in order to enforce a specific shape
prior. The only influence that the shape distance has on our optimization task is the
definition of a local minimum of the energy E.

This chapter is organized as follows. In Sect. 6.2, we will revisit binary image
segmentation that can be solved globally and its extension to the trust region
approach [14]. In Sect. 6.3, we will present different shape distances and explore
if they can be used in a trust region framework. In Sect. 6.4, we will show how
the chosen shape distance drives the optimization process. Section 6.5 provides a
summary of this chapter.

6.2 Binary Image Segmentation

Binary image segmentation is an important task in computer vision. The goal is to
distinguish the object from the background within an image. An image is a mapping
IW˝ ! R3 that assigns to every pixel x 2 ˝ of the d-dimensional connected image
domain ˝ � Rd a color I.x/ 2 R3. A binary segmentation can be modelled as
a mapping uW˝ ! B where B D f0; 1g encodes the object (u.x/ D 1) and the
background (u.x/ D 0) respectively. A segmentation can also be represented as a
subset S � ˝ . The relationship between S and u is described via x 2 S , u.x/ D 1.
In the following, we call the binary labeling u a segmentation and the set S a shape.

Given a shape S, one can apply different image filters to object and background
in order to emphasize the object (cf. Fig. 6.1). In medical image analysis, S can be
used to visualize organs or arteries [23]. Object detection tasks can be addressed
better if one works with a segmented object instead of a bounding box [12].

6.2.1 Appearance Models

Classically, the binary image segmentation models the object and the background of
an image as a sampling from color distributions pdfobj and pdfbg. Using the notation
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Fig. 6.1 If the observed object is easy to distinguish from the background (left image), a per-pixel
data term works very well in practice. To remove noise from a threshold solution (central image),
an additional length term is used (right image). The resulting energy (6.1) can be easily optimized
via a graph cut [1] or a primal-dual approach [5]

h f ; gi WD
Z
˝

f .x/ �g.x/ dx, image segmentation can be cast as minimizing the energy

E.u/ D hf ; ui with f .x/ D log

 
pdfbg.x/

pdfobj.x/

!
:

While this energy can be easily optimized via a simple thresholding method, the
optimal solution exhibits typically a high amount of noise (cf. Fig. 6.1). Therefore,
Mumford and Shah proposed in [18] to add the length of the segmentation’s
boundary as a regularizing term to the energy, resulting in

E.u/ D hf ; ui C len.@S/ with S D fx 2 ˝ju.x/ D 1g: (6.1)

A discrete formulation approximates the length term via the Cauchy-Crofton
formula and minimizes the energy via a graph cut approach [1]. A continuous
formulation solves the problem via a primal-dual approach that can be efficiently
parallelized on GPUs [5]. In the following, we assume that we work in a computer
environment where (6.1) can be easily optimized. Whether the discrete or the
continuous formulation is used is not important for the rest of this chapter.

In general, f W ˝ ! R can be an arbitrary integrable function that need not to be
derived from color distributions. In the past, different attempts have been made to
model the appearance of object and background by using more information than just
the color information I.x/ at a pixel x. Besides using more modalities like depth or
infra-red information, it is common to use local features like Fourier features, Gabor
features or more general texture features [4, 24]. All these approaches can be seen as
an attempt of altering the data term f in (6.1). In practice, these approaches improve
the segmentation. Nonetheless, these patch-based approaches become less reliable
for pixels close to the object’s boundary, since the features will then mix object and
background information. In the following, we revisit alternative approaches.
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6.2.2 Multiple Models and Holistic Distributions

While the energy (6.1) can be applied very successfully if the appearance of object
and background vary considerably, it struggles if certain appearances appear in
both, the object and the background regions. It was therefore suggested by Delong
et al. [10] not to use one but multiple distributions for object and background (cf.
Fig. 6.2). The method computes a sub-labeling u0W˝ ! f1; : : : ;Kg of the image
domain ˝ and a binary labeling u1W f1; : : : ;Kg ! B of these K sub-labels. As a
result, the method computes simultaneously a superpixel representation u0 and its
binary segmentation u1. In conjunction, these two functions induce a binary labeling
uW˝ ! B via u.x/ D u1 ı u0.x/.

While the resulting minimization problem is the instance of an NP hard problem,
the approximation that is obtained via ˛-expansion [3, 11] proved to be more reliable
than the binary segmentation driven by (6.1). Nonetheless, the optimization process
can take a long time and is therefore not fit for fast segmentation tasks.

In order to model the appearance of different colors without the need to find an
optimal superpixel representation, we advocate the concept of holistic histograms.
To this end, let us assume that we have pre-detected n appearances in an image. An
appearance can be based on color, texture or other features. Further, assume that we
can decide for every pixel x 2 ˝ whether this appearance is present at x. This results
in n appearance detectors fiW˝ ! B. If we partition an image into disjoint areas of
the same color, each fi would represent the indicator function of one of these areas.
Nonetheless, it is also possible that different fi intersect in certain areas. This is for
example the case if we have one detector for “blue pixels” and one feature-based
detector for the image class “sky”. Given a segmentation u, we can now compute
the following histogram

h.u/ D .hf1; ui ; : : : ; hfn; ui/ 2 Rn: (6.2)

Fig. 6.2 If the object and the background contain similar appearances (a), the global optimum
of (6.1) does not provide a good segmentation (b). Performing a hierarchical segmentation [10]
improves the model of the scene (c) and provides a more accurate binary segmentation (d)
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Note that this histogram cannot be pre-computed on the pixel-level. It depends on
the whole segmentation u and will change during the optimization process. Since
there are also detectors that provide only probabilities about the presence of a certain
appearance, we can extend the detectors to fiW˝ ! RC

0 .
If we want to solve a segmentation task that is scale-invariant, we prefer to work

with distributions, i.e., normalized histograms, instead of histograms. Given the
appearance detectors fi as above, we obtain the holistic distribution

p.u/ D
0
@ hf1; uiDPn

jD1 fj; u
E ; : : : ; hfn; uiDPn

jD1 fj; u
E
1
A 2 Rn: (6.3)

If a prior distribution q 2 Rn is learned, we would like to use a distribution distance
to penalize the deviation of p.u/ from the prior q. Combining the Bhattacharyya
distance between the distributions with a length term results in the energy

E.u/ D � log

0
B@

nX
iD1

vuut qi � hfi; uiDPn
jD1 fj; u

E
1
CAC len.u/ (6.4)

that we want to minimize.

6.2.3 Submodular and Convex Relaxations

Recently, Tang et al. [25] proposed an unsupervised segmentation approach that
rewards the L1-distance between the object’s histogram h.u/ and the background’s
histogram h.1 � u/. Since this results in the minimization of a submodular energy,
it can be solved globally and its solution provides for a much better segmentation
than the optimization of (6.1). Nonetheless, it cannot be used in order to solve (6.4),
which uses distributions instead of histograms.

Nieuwenhuis et al. [19] addressed a problem related to (6.4). Instead of a binary
segmentation they addressed a multi-region segmentation, where ratio constraints
for each region are encouraged. They addressed this problem by computing the
global optimum of an approximation of the original energy with respect to labelings
uiW˝ ! Œ0; 1�. Since the threshold theorem [6] is not satisfied for the convex
function, it cannot be guaranteed that the derived segmentations OuiW˝ ! B is even
a local optimum of the approximation.

To guarantee local optimality, Gorelick et al. [14] proposed a method that
combines the trust region framework with a class of energies that also includes (6.4).
Since we want to explore the relationship between local optimization methods and
shape distances, we will focus on the approximation scheme of [14]. After revisiting



142 F.R. Schmidt et al.

it in Sect. 6.2.4, in Sect. 6.3, we will study shape distances that define different trust
regions and thus, compute different local minima.

6.2.4 Trust Region

Trust region methods are used to find a (local) minimum of a function E. Naturally,
these methods are only used if it is difficult to find the global optimum of the energy
E. The idea is to use an approximation QE of E that is exact at a certain feasible
solution u0. If the set of all feasible solutions is equipped with a distance function
dist.�; �/, the trust region approach iteratively solves the trust region sub-problem

arg min
dist.u0;u/<d

QE.u/: (6.5)

If the solution Ou of this problem reduces the actual energy considerably, i.e.,

E.Ou/ 	 ˛E.u0/ with 0 < ˛ < 1;

Ou is accepted as a new approximate solution u0 (cf. Fig. 6.3). Otherwise the region
in which we trust the approximation is reduced, i.e., d is multiplied with a factor ˇ,
0 < ˇ < 1. These steps are repeated until the distance d is small enough.

Since we have to minimize the trust region sub-problem (6.5) globally, we like
to use approximations QE that are easy to optimize. If E is differentiable it can be
approximated by a linear Taylor approximation. In the case that the space of feasible
solutions is a linear space RN equipped with the canonical metric dist.u0; u/ D

Fig. 6.3 Left: For a complex energy E one can use an approximation QE that is exact at a point u0
(white dot). Middle: The global minimizer u� (red dot) of QE will in general not improve the value
of the original energy E. Right: Trust region approaches trust QE in a small vicinity of u0 (colored
circle). For a sufficient small vicinity, the optimizer Ou (yellow dot) of (6.6) improves the energy E
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ku0 � uk, a solution of (6.5) is

arg min
ku�u0k<d

E.u0/C ˝
E0.u0/; u � u0

˛ D u0 � d � E0.u0/
kE0.u0/k :

Therefore, the trust region approach can be understood as a generalization of the
normalized gradient descent approach. In practice, second order approximations of
E are used [20].

Gorelick et al. [14] used functions E that can be described as the sum of a
differentiable function E1 and a length term. The approximation QE only uses a linear
approximation for E1. The length term is not approximated at all, resulting in:

E.u/ D E1.u/C len.u/ QE.u/ D E1.u0/C ˝
E0
1.u0/; u � u0

˛C len.u/

To solve the trust region sub-problem (6.5), a Lagrangian formulation1

arg min
u

˝
E0
1.u0/; u

˛C len.u/C  dist.u0; u/ (6.6)

was used and a reciprocal relationship between the Lagrangian factor  and the
distance d was exploited. For more details we refer to [14].

Remark 6.1 Note that in contrast to a gradient descent approach, the length term
need not to be approximated, since we can optimize energies of the form (6.1)
that also include length terms. If we also approximated the length term, the
resulting sub-problem would include a curvature motion as explored in the level
set framework [21]. It was shown in [13] that not approximating the length term
is beneficial in practice. The resulting method is faster and possesses fewer local
minima than the level set approach of [16].

Remark 6.2 The Lagrangian formulation (6.6) uses the current solution u0 as a
prior. If we want to trust QE in a smaller vicinity,  is automatically increased and the
prior has a stronger influence. This results in a process where the global optimum
of (6.6) is pushed towards u0 with increasing . Note that it is not necessary to tune
the parameter  to the application.  is instead automatically adapted by the trust
region framework. This adaptation is driven by the original energy E.

Since the prior in (6.6) depends on the distance dist.�; �/, we explore in the next
section different distance functions for shapes. These distances define different
sub-problems (6.6) and thus different local minima of E. In order to globally
optimize (6.6), we focus on shape distance functions that are affine in u. In these
cases, the trust region sub-problem is of the form (6.1), which we can easily
optimize.

1Since we are only interested in the minimizer, we removed constant terms from the energy.
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6.3 Shapes and Shape Distances

In order to avoid shapes S � ˝ that can only be created by the set-theoretical axiom
of choice or sets that are null-sets in the Lebesguean sense, we want to focus on
shapes S that are open sets. Since we will also be interested in the boundary @S of a
shape S, we want to exclude those shapes whose boundaries are empty. With

S WD fS � ˝jS is open and @S ¤ ;g (6.7)

we denote the set of all those shapes. Since the boundary @S WD S \ Sc is the
intersection of the closure of S and the closure of its complement Sc, only the
empty set and the whole domain ˝ are exempted from the shape space S . This
is a consequence of ˝ being connected.

In order to equip the shape space S with a distance, we have two choices. We
can either define a distance dist.S0; S1/ with respect to the whole shapes Si or with
respect to their boundaries @Si. In the first case we speak of region-based distances
and in the latter case we speak of contour-based distances. While contour-based
distances proved to be very descriptive [17], it is difficult to incorporate them into
image segmentation tasks. The goal of this section is to overcome this limitation of
contour-based distances by approximating them in a regional sense.

To study relationships between S and @S, we use the following representations.

Definition 6.1 Given a shape S 2 S , we denote the indicator function, the
signed indicator function, the distance function and the signed distance function
(cf. Fig. 6.4) as 1S, sidS, dfS, sdfSW˝ ! R and define them via

1S.x/ WD
(
1 , x 2 S

0 , x 62 S
sidS.x/ WD

(
�1 , x 2 S

C1 , x 62 S

dfS.x/ WD min
s2@S

kx � sk sdfS.x/ WD sidS.x/ � dfS.x/:

S sidS dfS sdfS

Fig. 6.4 For a shape S 2 S , we use different implicit representations, the indicator function 1S,
the signed indicator function sidS , the distance function dfS and the signed distance function sdfS
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In Sect. 6.3.1 we will study the Hamming distance distH.�; �/ and show its
restrictions for the trust region sub-problem (6.6). In Sect. 6.3.2, we will study a
contour-based distance distL2 .�; �/ and explore its regional approximation dist2.�; �/.

In particular, we will show that both, distH.u0; u/ and dist2.u0; u/ are affine in u
and can therefore be easily incorporated into (6.6). distL2 .u0; u/ on the other hand is
not affine in u and cannot be used in the trust region framework. For that reason, we
have to approximate it with the distance dist2.u0; u/ that is affine in u.

6.3.1 Regional Hamming Distance and Its Restrictions

The Hamming distance of two shapes A;B 2 S is defined as the area of its
symmetric difference A M B WD .A n B/ t .B n A/:

distH.A;B/ WD area.A M B/: (6.8)

Using the signed indicator function sidA, we can rewrite the Hamming distance as

distH.A;B/ D
Z

B
sidA.x/ dx �

Z
A

sidA.x/ dx: (6.9)

To see that Eqs. (6.8) and (6.9) describe the same function, note that (Fig. 6.5)

Z
B

sidA.x/ dx�
Z

A
sidA.x/ dx D

Z
.BnA/

t.B\A/

sidA.x/ dx �
Z
.AnB/

t.B\A/

sidA.x/ dx

D
Z
.BnA/

1 dx �
Z
.AnB/

.�1/ dx D area .A M B/ :

Shapes A,B ∈ sidHamming distance A

Fig. 6.5 The Hamming distance distH.A;B/ of two shapes A;B 2 S is the area of its symmetric
difference. Using the signed indicator function sidA, this distance becomes affine in B (cf. (6.9))
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The advantage of the formulation (6.9) is that it can be integrated into the trust

region sub-problem (6.6). Using the notation hf ; Si WD hf ;1Si D
Z

S
f .x/ dx, we

obtain

distH.A;B/ D hsidA;Bi C C; C WD � hsidA;Ai ;

which is affine in B. We will show in the following that the Hamming distance is
a shape distance that is disadvantageous for shape prior-based image segmentation.
For this reason we want to study different shape distances.

Example 6.1 Let us consider two different shapes A;B 2 S and the energy
function E.S/ WD hsidA; Si. Its unique minimizer is S� D A. Adding a weighted
shape prior with respect to B leads to the energy

E.S/ D.1 � / � E.S/C  � distH.B; S/

D h.1 � / sidA C sidB; Si C C; C WD � hsidB;Bi :

If we denote with S�
 a global minimum of E.S/, we obtain a mapping m W  7! S�



that starts at S�
0 D A and ends at S�

1 D B. One major disadvantage of the used
Hamming distance is that m is not a continuous morphing (cf. 1st plot of Fig. 6.6).

Theorem 6.1 If we define a mapping m W Œ0; 1� ! S as above, the following holds:

m./ D A; if 0 	  <
1

2

m./ D B; if
1

2
<  	 1

Proof A minimizer of E is easily found by thresholding .1 � / sidA C sidB at 0.
The following observation

.1 � / sidA.x/C  sidB.x/ D

8̂
ˆ̂̂<
ˆ̂̂̂:

�1C 2 , if x 2 A n B

1 � 2 , if x 2 B n A

�1 , if x 2 A \ B

1 , if x 62 A t B

proves the theorem. �

Because of this theorem, we cannot use distH in (6.6) in order to push the segmen-
tation towards a specific shape. As mentioned in Remark 6.2, continuous morphings
are essential for a successful trust region computation. With the Hamming distance
we can only encode a hard constraint. In order to handle soft constraints, we will
explore next a contour-based distance and its region-based approximation.
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6.3.2 L2 Contour Distance and Its Regional Approximation

An L2 distance between two shapes A;B 2 S can be formulated as

distL2 .A;B/ WD
�Z

@B
min
x2@A

kx � sk2 ds

� 1
2

: (6.10)

This distance only considers the shapes’ boundaries. The interior of the shapes is
completely ignored. In order to simplify the study of this distance, we will only
consider concentric balls B� of radius � > 0. For these examples, the distance can
be computed analytically. Given two concentric balls of radius r and R, we obtain

distL2 .Br;BR/
2 D

Z
@BR

.R � r/2 ds D 2	R � .R � r/2:

The distance distL2 .�; �/ is not symmetric and thus not a metric. Analogously to
Sect. 6.3.1, we want to study the influence that a dist2L2 -based shape prior has on
image segmentation.

Example 6.2 Let us consider the radii 0 < r 	 R. The unique minimizer of the
energy E.�/ D ˝

sidBR ;B�
˛

is obtained for �� D R. Adding Br as a shape prior,
results in the following energy

E.�/ D.1 � / ˝sidBR ;B�
˛C  distL2 .B�;Br/

D.1 � / ˝sidBR ;B�
˛C 

Z
@Br

min
x2@B�

kx � sk2 ds

D.1 � / ˝sidBR ;B�
˛C  � 2	r.� � r/2

D
(
 � 2	r.� � r/2 � .1 � /	�2 , if � 	 R

 � 2	r.� � r/2 C .1 � /	.�2 � 2R2/ , if � > R

The global minimum of E is (cf. 2nd plot of Fig. 6.6)

��./ D
8<
:

R ,  	 1
2rC1

min
�

r C .1�/r
2r�.1�/ ;R

�
,  > 1

2rC1 :

First of all, this means that �� continuously changes from ��.0/ D R to
��.1/ D r. We are therefore able to continuously push the segmentation to a
certain shape prior. Secondly, there is a small range for  where the shape prior
is ignored. This means that a strong data term always overrules the shape prior.
Both of these properties are important for the trust region sub-problem (6.6). A
major disadvantage of dist2L2 over the Hamming distance is the fact that it cannot
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Fig. 6.6 Image: As shapes we consider concentric balls B� of radius �. Given the radii 0 < r � R,
we consider an energy E.�/ D .1 � /

˝
sidBR ;B�

˛C  dist.Br;B�/. The first term favors � D R
and the second term favors � D r. The minimizer �� of E depends on . Plots: Using distH leads
to a non-continuous function ��./. For distL2 and dist2, �

�./ becomes continuous

be incorporated into (6.6) in such a way that results in an energy of the form (6.1).
This is because dist2L2 .A;B/ is not affine in B. Therefore, we seek in the following
an affine approximation of dist2L2 .

In order to compute dist2L2 .A;B/, an explicit matching �W @B ! @A between the
shapes’ boundaries is computed, where �.s/ WD arg min

x2@A
kx � sk. If we denote the

straight line from �.s/ to s as

`s W Œ0; 1� ! ˝ `s.t/ WD .1 � t/ � �.s/C t � s;

we observe dfA.`s.t// D t � k�.s/ � sk. This leads to

distL2 .A;B/
2 D

Z
@B

min
x2@A

kx � sk2 ds D
Z
@B

k�.s/ � sk2 ds

D
Z
@B

Z 1

0

2t k�.s/ � sk2 dt ds

D
Z
@B

Z 1

0

2 dfA.`s.t// � ��`0
s.t/
�� dt ds

D
Z
@B

Z
`s

2 dfA.x/ dx ds

In the last equation, we rewrote the equation in means of the line integral evaluated
along the line `s, which still depends on �.s/. Since � is in general difficult to
compute, we want to replace the integration domain .s; t/ 7! .1� t/ � �.s/C t � s with
a simpler domain. Note that if both A and B are concentric circles, the integration
domain is exactly A M B. Therefore, we will approximate dist2L2 via

dist2.A;B/ WD
Z

BnA
2 dfA.x/ dx C

Z
AnB

2 dfA.x/ dx

D
Z

Bn.B\A/
2 sdfA.x/ dx �

Z
An.B\A/

2 sdfA.x/ dx
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D
Z

B
2 sdfA.x/ dx �

Z
A
2 sdfA.x/ dx (6.11)

This distance can be easily integrated into the sub-problem (6.6), because it is
affine in B, similar to the Hamming distance formulation (6.9). The main difference
between these two distances is that instead of sidA we use the signed distance
function sdfA.

Note that in general, dist2 does not approximate dist2L2 very well. First of all, the
integration domain .s; t/ 7! .1 � t/ � �.s/ C t � s does not always coincide with
A M B. Even if it does, the explicit parameterization of the integration domain is
partly ignored. Only the variation in the direction of `s is considered correctly. As a
result, the distance between two concentric balls becomes

dist2.Br;BR/ D
Z

BR

2.jxj � r/ dx �
Z

Br

2.jxj � r/ dx D 4	

�
R3

3
� R2r

2
C r3

6

�

D2	R.R � r/2 �
�
1C r � R

3R

�
:

The scaling factor 1 C r � R

3R
is the result of the reparametrization and is only

negligible if jR � rj � r. Only in that sense can we speak of dist2 as an
approximation of dist2L2 . Note that even for balls, dist2 is only a zeroth order
approximation for dist2L2 .

In order to see whether dist2 is as useful for shape prior-based image segmen-
tation as dist2L2 , let us take another look at Example 6.2 of Page 147. If we replace
dist2L2 with dist2, the energy E becomes

E.�/ D.1� /
˝
sidBR ;B�

˛C  dist2.Br;B�/

D.1� /

Z
B�

sidBR.x/ dx C 2	

3

�
2�3 � 3�2r C r3

�

D
(
2	
3

�
2�3 � 3�2r C r3

� � .1 � /	�2 , if � 	 R
2	
3

�
2�3 � 3�2r C r3

�C .1 � /	.�2 � 2R2/ , if � > R

and its global optimum is realized at (cf. 3rd plot of Fig. 6.6)

��./ D
(

R ,  	 1
1C2.R�r/

r C 1�
2

,  > 1
1C2.R�r/ :

As for dist2L2 , �
� starts at ��.0/ D R and changes continuously to ��.1/ D r. It

also remains at the initial solution �� D R for a certain range of . Therefore, we
consider dist2 as a good compromise between distH and dist2L2 to be used in the trust
region framework as proposed in [14].
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To use a shape distance that depends on the shapes’ signed distance function is
not a new concept. Rousson and Paragios [22] used the distance

distsdf.A;B/ D
�Z

˝

.sdfA.x/ � sdfB.x//
2 dx

� 1
2

to penalize shape dissimilarity. distsdf depends in contrast to dist2 on the size of
the image domain ˝ , e.g., distsdf.Br;BR/ D .R � r/2 area.˝/. It is therefore not a
general, domain-independent shape measure. In addition, we cannot use distsdf as
shape distance for the trust region sub-problem, because it depends on computing
the signed distance function of both shapes. As a result, distsdf.A; S/ is not affine in
S. Therefore, the sub-problem (6.6) does not become an energy of the form (6.1).

The distance dist2 is very different in that respect. If we use dist2.A; �/ in (6.6), A
is known and sdfA can be pre-computed. This makes dist2 much easier to handle than
distsdf. To our knowledge, dist2 was first applied to a computer vision application by
Boykov et al. in [2].

6.4 Experiments

In the following we present two applications of the trust region method. To solve the
subproblem (6.6) we use the primal-dual method of [5]. Since only a few iterations
are necessary, we will present most of the iterations. By doing so, we substantiate
the theoretical results in Sect. 6.3 with practical examples.

6.4.1 Volume Constraint

We consider the energy EVol.u/ D .h1; ui � V/2 C len.u/, which penalizes the
deviation of the volume h1; ui from the target volume V > 0. The additional length
term len.u/ guarantees that the global minimum u� of EVol describes a circle of
radius r that satisfies 2	 � r3 � 2Vr C 1 D 0. For this toy example, we set the target
volume V to cover 50% of the image domain ˝ . In Fig. 6.7 we show how the trust
region method finds the global optimum in just a few iterations. While the shape
from one iteration to the next changes drastically in the beginning, the energy EVol

decreases in each iteration and moves the shape to the global optimum of the energy.
Besides the energy, we also show the derivative E0 of the regional energy

E.u/ D .h1; ui � V/2. If the current solution uk
0 is smaller than the target volume,

E0.uk
0/ is constantly negative (blue or cyan in Fig. 6.7) in the image domain and

encourages larger segmentations. If on the other hand uk
0 is larger than the target

volume, E0.uk
0/ is constantly positive (orange and yellow in Fig. 6.7) and encourages

smaller segmentations. Without the distance constraint in (6.6), the approximation
E0.u/Clen.u/would either choose ; or˝ as u.kC1/

0 . Together with the scaled signed
distance function that originates from the dist2 distance, we are able to smoothly
change the shape in a way that the overall energy EVol decreases.
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u(k)
0 E ′ (u0) E ′ +λ · sdfu0 u(k)

0 E ′ (u0) E ′ + · sdfu0

k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

l

Fig. 6.7 In this toy example we explore the volume constraint .h1; ui � V/2 , where V D 1

2
j˝j

represents 50% of the image domain’s area. Using a man shaped initialization (1st image of top
row), the method computes in a few iterations a circle (last image of last row). Each row represents
two iterations of the trust region method. 1st; 4th column: At each iteration k, we start with a
current solution u.k/0 . 2nd; 5th column: The derivative E0.u0/ could define a gradient descent. The
global optimum of this energy is a trivial solution (˝ or ;). 3rd; 6th column: E0.u0/ C  � sdfu0
is the data term for the Lagrangian formulation (6.6) of the trust region approach [14].  is
chosen automatically by the trust region method. 4th; 1st column: Ou is the global optimizer of the
Lagrangian trust region sub-problem. It becomes u0 of the next iteration. Note that in the beginning
we can experience big jumps with respect to the segmentation. Nonetheless, the energy decreases
in each iteration until we reach a local minimum of the original energy, which for this toy example
is a global optimum

6.4.2 Distribution Constraint

We consider the energy function (6.4) as introduced in Sect. 6.2.2. For this applica-
tion, we assume knowledge about the object and describe it with 512 color models
(8 per color channel). The results are presented in Fig. 6.8. As in the previous
experiment, the data term of the approximation QE is in general not very informative
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u(k)
0 E ′(u0) E ′(u0)+ · sdfu0 û

k = 1

k = 3

k = 5

k = 7

k = 8

k = 9

l

Fig. 6.8 We explore the segmentation task (6.4) that uses a distribution of 512 entries. Using
a square as initialization (1st image of top row), the method computes in a few iterations the
segmentation of the flower (last image of last row). Each row represents one iteration of the trust
region method. 1st column: At each iteration k we start with a current solution u0. 2nd column:
The derivative E0.u0/ could define a gradient descent, but it provides only for a weak data term.
3rd column: E0.u0/ C  � sdfu0 is the data term for the Lagrangian formulation (6.6) of the trust
region approach [14].  is chosen automatically by the trust region method. 4th column: Ou is the
global optimizer of the Lagrangian trust region sub-problem. For visualization purposes we set the
background in the first two rows to blue and in the remaining rows to the gray-scale of the original
image
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(cf. 2nd column of Fig. 6.7). Only in combination with the distance dist2 do we
obtain a data term (cf. 3rd column of Fig. 6.8) that helps to improve the segmentation
(cf. 4th column of Fig. 6.8).

6.5 Summary

In this chapter we demonstrated that the choice of a shape distance influences the
result for image segmentation applications, even at the absence of any shape prior.
The importance of the chosen shape distance becomes apparent if we want to deal
with local optimization. In particular, we analyzed the behavior with respect to
three different distances in the context of the fast trust region image segmentation
framework of [14]. In order to obtain good segmentation results, we advocate the
use of the distance dist2.
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Chapter 7
Segmentation in Point Clouds from RGB-D
Using Spectral Graph Reduction

Margret Keuper and Thomas Brox

Abstract In this chapter, we tackle the problem of segmentation in point clouds
from RGB-D data. In contrast to full point clouds, RGB-D data only provides a
part of the volumetric information, the depth information of the one view given
in the corresponding RGB image. Still, this additional information is valuable for
the segmentation task as it helps disambiguating texture gradients from structure
gradients. In order to create hierarchical segmentations, we combine a state-of-the-
art method for natural RGB image segmentation based on spectral graph analysis
with an RGB-D boundary detector. We show that spectral graph reduction can be
employed in this case, facilitating the computation of RGB-D segmentations in large
datasets.

7.1 Introduction

The decomposition of images into meaningful segments has been in the scope of
computer vision research for decades. In many biological and medical applications,
segmenting images into meaningful parts is a necessary step for data analysis [16,
17]. In natural images, segmentations help to implement higher-level applications
such as scene understanding [21].

Hierarchical segmentations [1] produce image decompositions at different levels
of granularity. The finest level segmentations aim at a complete oversegmentation
and should have full recall i.e. all object objects are separated. Segments at this
level are referred to as superpixels and facilitate further analysis of the data as well
as higher-level reasoning [18, 23].

Main applications for the segmentation of RGB-D data so far are scene clas-
sification, and support analysis, i.e. analyzing which object present in the scene
is supported by which other part of the scene [12, 29]. Segmentations of image
sequences can also be used to improve 3D reconstructions [20, 33].The additional
information present in the depth channel helps generating reliable segmentations
and disambiguating texture from structure gradients. The main challenges are how

M. Keuper (�) • T. Brox
University of Freiburg, Freiburg im Breisgau, Germany
e-mail: keuper@cs.uni-freiburg.de; brox@cs.uni-freiburg.de

© Springer International Publishing Switzerland 2016
M. Breuß et al. (eds.), Perspectives in Shape Analysis, Mathematics
and Visualization, DOI 10.1007/978-3-319-24726-7_7

155

mailto:keuper@cs.uni-freiburg.de
mailto:brox@cs.uni-freiburg.de


156 M. Keuper and T. Brox

RGB channel depth map proposed segmentation

Fig. 7.1 Hierarchical segmentation of an RGB-D Image. The darker the marked contour, the
higher it is in the segmentation hierarchy

to extract the contour cues from the depth channel and how to combine these cues
with the RGB derived contour information. Furthermore, the RGB-D data can be
large and one potentially wants to apply segmentation not only to single images but
to image sequences. Runtime and memory consumption should therefore be kept
small.

In image segmentation, the currently leading methods rely on a good boundary
probability estimation followed by a spectral analysis of the manifold created from
these probabilities. More concrete, the eigenvectors of the graph Laplacian defined
by boundary probabilities are used to create a hierarchical partitioning of the image.
An obvious way to approach RGB-D segmentation is thus given by combining the
top algorithm for boundary detection in RGB-D, the RGB-D version of [7], with a
spectral method generating hierarchical segmentations [1, 2] (Fig. 7.1). A similar
approach has been implemented in [12]. However, spectral methods can easily
become expensive in runtime and memory consumption, making an application to
large RGB-D datasets challenging or impossible. We show how this issue can be
handled using the spectral graph reduction technique from [11].

7.2 Overview on Existing Work

The first step of successful image segmentation algorithms is to find reliable contour
cues. This can be achieved by computing local image gradients [4]. More recent
methods make use of oriented contour cues [22] computed on image patches such
that also texture gradients can be represented. Structured random forests [7] are
a state-of-the-art method for boundary probability computation. They make use
of the correlation between local image information computed on image patches
and the boundary inside these patches. Using a random forest learning framework,
they produce a structured output, i.e. a boundary patch, around every pixel from
which a boundary probability map can be computed for the whole image. Finally,
deep learning based methods [3] make use of convolutional neural networks to
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produce highly reliable boundary probabilities that can be used to generate image
segmentations.

For the segmentation of natural RGB images, methods relying on a spectral
analysis step [28] and a subsequent hierarchical segmentation produce state-of-the-
art results [1, 2, 14] but are expensive in terms of runtime and memory consumption.
To reduce runtime and memory consumption of such methods, several algorithms
for approximate eigenvector computation have been proposed. In Fowlkes et al.
[10], the Nyström method is employed, producing a sampled solution that can be
extrapolated to the original problem. Similarly, Chen and Cai [5] use landmark
points to represent the original problem. Generally, an issue with sampling points
from the original problem is that points formerly linked via transitivity might
get disconnected. In Arbeláez et al. [2], this probem is addressed by computing
the eigenvectors of a subsampled, squared affinity matrix, i.e. the affinities are
propagated to neighboring points before sampling. Still, the solution must be
extrapolated from the sampled points. A different approach has been presented in
Galasso et al. [11], Taylor [30]. Both works use superpixels to agglomerate points
in the graph instead of sampling. In Galasso et al. [11] it is shown how to adjust
the weights in the reduced graph of agglomerated points such that the original
normalized cut problem is not altered. In the proposed RGB-D segmentation
framework, we are using this spectral graph reduction technique in the spectral
analysis step.

Some segmentation methods presented for RGB-D data [29] omit the spectral
analysis step and put more emphasis on extracting the additional information present
in the depth channel. In Silberman et al. [29], surface normals are used to align the
scene and extract 3D planes. The boundary strength is then predicted from RGB-D,
position features, and features from the plane information using a boosted decision
tree. The methods presented in Kim et al. [19], Zheng et al. [34] attempt to solve
a voxel-wise 3D segmentation of the scene from RGB-D data. Both use heuristics
to estimate the volumetric information from RGB-D. In Zheng et al. [34] the actual
segmentation is done using cues from physics i.e. optimizing the energetic status of
a scene. The method of Kim et al. [19] is based on a conditional random field that
jointly infers geometric and semantic structures.

In Gupta et al. [12], a depth-aware contour detection is performed using geo-
metric contour cues like depth gradients and concave and convex normal gradients.
Additionally, the depth information as well as a spectral gradient are input to an
additive kernel support vector machine (SVM). The probabilistic output of the SVM
defines the contour strength. The remaining pipeline including the spectral analysis
is kept as in Arbeláez et al. [1]. The work presented in Gupta et al. [13] builds upon
Gupta et al. [12] for RGB-D segmentation and reuses all the above mentioned depth
features defined in Gupta et al. [12]. Additionally, Gupta et al. [13] include the RGB
boundary detection results of Dollár and Zitnick [7] for better boundary localization
and employ the learning framework of Dollár and Zitnick [7].
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The method from Karpathy et al. [15] directly works on sparse 3D point clouds
generated from the kinect camera. On these large datasets, the fast and greedy graph-
based segmentation method of Felzenszwalb and Huttenlocher [9] is employed on
normal gradients.

7.3 Image Segmentation Using Spectral Methods

Pixels of an image are represented by a set of points P D fp1; : : : ; png and a graph
G D .V ;E / with vertex set V and undirected edges e 2 E , such that each point
pi 2 P is represented by a vertex vi 2 V . Each edge ei;j between vertices vi and vj is
weighted by the pairwise affinity wij of these vertices computed from the underlying
image data. Spectral methods seek to partition according to the minimal ratio cut
(RCut) of V into sets A and B with A [ B D V and A \ B D ;

RCut.A;B/ D cut.A;B/

jAj C cut.A;B/

jBj ; (7.1)

where j:j denotes the cardinality of a set, or they aim at partitioning according to the
normalized cut (NCut)

NCut.A;B/ D cut.A;B/

vol.A/
C cut.A;B/

vol.B/
; (7.2)

with cut.A;B/ D
X

i2A;j2B

wij and vol.A/ D
X

i2A;j2V
wij. These objectives are optimized

using spectral clustering [6, 24, 31]. In image segmentation, NCut is the more
desired objective [27, 28, 32, 32]. As shown in von Luxburg [31], the normalized
cut problem can be formulated equivalently as

min f 0Lf subject to Df ? 1; f 0Df D vol.V /;

and fi D
8<
:

q
vol.B/
vol.A/ if vi 2 A

�
q

vol.A/
vol.B/ if vi 2 B

; (7.3)

where L D D � W is the graph Laplacian with W being the matrix containing the
pairwise affinities wij between vertices vi and vj and D being the degree matrix with

dij D 0 8i ¤ j and dii D
X
j2V

wij. With 1 we denote the constant one vector having

the same length as f and ? denotes orthogonality.
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Finding the exact solution to the NCut problem is NP-hard. However, by relaxing
the problem and allowing f to take arbitrary real values and substituting g WD
D1=2f , the problem reduces to a generalized eigenvalue problem, i.e. to finding
the generalized second eigenvector of the normalized graph Laplacian Lsym D
I � D� 1

2 WD� 1
2 .

2 D min g0Lsymg D min
X
i;jD1

wij

 
gip
dii

� gjp
djj

!2

subject to g ? D1=21; kgk2 D vol.V / (7.4)

This formulation allows for the application of the Rayleigh-Ritz theorem and thus
for the numerical computation of the generalized eigenvalues and eigenvectors, i.e.
the relaxated partition function f . The complexity of this computation is in general
O.n3/ [5].

The eigenvectors related to the NCut play a crucial role in state-of-the-art
segmentation algorithms [1, 2, 14]. In the following, we will have a closer look
at Arbeláez et al. [1] since the spectral analysis commonly used in all these methods
was originally defined here.

The workflow of Arbeláez et al. [1] basically consists of four steps: a boundary
detection step (mPb), the globalization of the boundary cues gPb, the computation
of an oriented watershed transform (OWT), and finally the generation of the region
hierarchy called ultrametric contour map (UCM). The newer algorithms presented
in Arbeláez et al. [2], Isola et al. [14] and Gupta et al. [12] are similar in the last
three steps but differ in how the input to the globalization step is generated.

The globalization itself consists of spectral clustering and represents the compu-
tational bottleneck for these algorithms, limiting their application to small images
(e.g. 640 � 480 px) or images patches that need to be stitched together after
segmentation.

For a better understanding, let us briefly sketch the original gPb computation
of Arbeláez et al. [1]. In a first step, multiscale boundary probabilities mPb are
generated from color, brightness, and texture gradients at different scales and
orientations. The second step consists of a spectral analysis of the feature space
induced by the mPb and results in so-called global boundary probabilities (gPb).
Instead of the mPb any distance measure inducing boundary probabilities between
at least directly neighboring pixels can be used in theory. The method of Arbeláez
et al. [2] uses a combination of mPb and the boundary probabilities from the RGB
version of Dollár and Zitnick [7] while in Isola et al. [14] boundary probabilities are
derived from pointwise mutual information. Both improve over Arbeláez et al. [1]
on standard benchmarks [1].

A pixel adjacency graph G D .V ;E / is built such that every pixel, represented
by a vertex vi 2 V , is connected to its neighbors with maximal distance r by an
undirected edge eij 2 E weighted by the affinity between vi and vj. Hereby, the
sparse affinity matrix W is built based on the boundary information in mPb. For
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every pair of pixels within a spherical neighborhood with radius r, wij is computed
from the maximal value of mPb on the line Nij connecting the two pixels i and j (the
intervening contour cue) as

wij D exp

�
� max

p2Nij
max
�

mPb. p; �/

�

�
; (7.5)

where � is a constant. Thus, W represents the pixel affinity graph, where every
pixel i is represented by a node vi and every edge between two nodes vi and vj

is indicated by a positive matrix entry wij. For the graph Laplacian L D D � W
with D being the degree matrix, the generalized eigenvalue problem is solved.
Instead of directly clustering the image pixels according to these eigenvectors as
suggested in the literature [31], the spectral information is used in a soft way.
On every resulting eigenvector, the spatial gradients are computed, yielding filter
responses that contain the spectral contour information sPb. The linear combination
with learned weighting of the local, original boundary cues and the more global sPb
finally forms the global probability of boundaries gPb.

The method proposed in Arbeláez et al. [2] improves over Arbeláez et al. [1]
not only by using richer boundary cues. Also, the computation of the gPb, OWT,
and UCM is repeated for three different scale segmentations. The computation of
the eigenvectors is approximated using a fast sampling method. The final UCM
is computed from the different scales such that the boundary localization of the
finest resolution is combined with the hierarchical information from coarser scales
(compare Fig. 7.2).

Fig. 7.2 Workflow from Arbeláez et al. [2] for the generation of multiscale segmentation
hierarchies. The boundary probability computation and spectral analysis steps are part of the first
step in the depicted workflow: Fixed-Scale Segmentation. The visualization is following Arbeláez
et al. [2]
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7.4 Adaptation for RGB-D Data

The affinity matrix computation in Arbeláez et al. [2] is based on boundary
probabilities computed using structured random forests [7]. Structured random
forests [7] can predict a local boundary patch from an image patch. To generate
boundary probabilities for an entire image, boundary patches are predicted from
several decision trees for every second pixel and averaged. The quality of these
boundary probabilities can be improved using a multiscale detection [7], i.e. by
applying the boundary detection step at multiple scales, resizing and averaging the
resulting edge maps. To further improve the boundary probability maps, Dollár and
Zitnick [8] propose an edge sharpening procedure, basically warping the boundary
prediction to the original image patch. This sharpening step helps improve the
exact boundary localization. The extension of this boundary prediction framework
to RGB-D data proposed by Dollár and Zitnick [7] is straightforward: The depth
information is treated as a fourth channel in the same learning framework. Some
results are displayed in Fig. 7.3. For the affinity matrix computation according
to (7.5), we set � to 0:12.

Fig. 7.3 RGB-D boundary probabilities produced by Dollár and Zitnick [8] on examples from
NYU Depth (v2)
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7.5 Spectral Graph Reduction

For larger problems, the runtime and memory consumption of the eigenvector
computation (7.3) can be prohibitive. In Galasso et al. [11] it is shown how to adjust
the weights in the reduced graph of agglomerated points such that the original NCut
problem is not altered. We will briefly summarize this work in the following.

We assume we are given a user or image-driven point pre-grouping (for example
superpixels) G D fI1; : : : ; Img with I1 [ � � � [ Im D P and Ii \ Ij D ; 81 	 i; j 	 m.
Constraining the partitioning to this given grouping, we reduce G to a new graph
NG D . NV ; NE /, such that the optimal partitioning of NV D fvI1 ; : : : ; vIm g according

to the NCut is as similar as possible to the partitioning in the original, unreduced
graph. Compare Fig. 7.4. Assuming we can find the optimal solution in both cases,
the problem can be formulated as

8 NA D fvI` ; : : : ; vIk g � f pi; : : : ; pjg � fvi; : : : ; vjg D A
and NB � B respectively

with NA [ NB D NV and NA \ NB D ; W
NCut. NA; NB/ ŠD NCut.A;B/;

i.e. the value of the NCut must not change for any possible partitioning. According
to Galasso et al. [11] and Rangapuram and Hein [25], this can be achieved by setting

wIJ D
X
i2I

X
j2J

wij (7.6)

for all vI and vJ in NV . This is equivalent to imposing must-link constraints to all the
grouped points in the original graph [25].

(b)(a)

Fig. 7.4 In the original graph, close-by nodes are agglomerated and linked by must-link con-
straints. Given the correct handling of edge weights, these agglomerated nodes can be treats as
one single node, yielding a reduced graph with exactly the same normalized cut cost. (a) Original
graph. (b) Equivalent graph (Visualization according to [11])
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In Galasso et al. [11], this method was applied to image segmentation in the
framework of Arbeláez et al. [1]. To reduce the complexity of the spectral analysis
step in Arbeláez et al. [1], the pixels with low gradients are pre-grouped by the
watershed regions of the mPb to build the reduced graph G Q D .V Q;E Q/. For
G Q affinities wQ

IJ are computed preserving the NCut (7.6). The remaining original
workflow from Arbeláez et al. [1] was pursued on the reduced graph. By this
approach, runtime and memory consumption were reduced by factor two with
practically no loss in precision or recall.

Similarly, we want to replace the spectral analysis step of Arbeláez et al. [2] with
a spectral analysis on a reduced graph. An overview of the workflow in Arbeláez
et al. [2] was given is Fig. 7.2. The spectral analysis is part of the fixed-scale
segmentation step and is only approximated in Arbeláez et al. [2] using sampling.
As in Galasso et al. [11] we agglomerate the pixels based on the watershed regions.
These watershed regions are computed on the RGB-D boundary probabilities from
Dollár and Zitnick [7], reducing the number of nodes from 238,000 to 3,500 on
average, depending of the structures in the image. On the reduced graph, the spectral
analysis can be computed correctly. The workflow of the fixed-scale segmentation
step without and with spectral graph reduction is depicted in Fig. 7.5. The remaining
steps are kept as in Arbeláez et al. [2].

Fig. 7.5 Workflow of the fixed-scale segmentation step with the adaptation to RGB-D data. The
upper column shows the original workflow. A weighted, oriented watershed transform is computed
from boundary probabilities. From this OWT, an affinity matrix is computed using the intervening
contour cue. Eigenvectors of the corresponding graph Laplacian are computed to generate the
UCM segmentation. We propose to compute a smaller graph G Q D .V Q; E Q/ from the OWT with
one vertex for every watershed region, preserving the original NCut problem. The eigensystem is
solved in the reduced graph
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7.6 Experiments and Results

We evaluate the effect of the spectral graph reduction on the NYU Depth dataset
(v2) [29] using the boundary metrics proposed in Arbeláez et al. [1]. The dataset
contains 1,449 pairs of RGB and depths images. For every image, two annotations
are provided: a semantic labeling and an instance labeling. In [12], the dataset has
been adapted for evaluation with the metrics from Arbeláez et al. [1]. Therefore,
the image boundaries were cut off and the ground truth was cleaned from double
contours. The dataset is split into 795 training and 654 test images. The images
in the resulting dataset have a size of 425 � 560 pixels. In Ren and Bo [26], a
second adaptation of the dataset is proposed for the evaluation. The data is further
downsampled and a different split into training and test images is proposed. For
our evaluation, we stick to the version of Gupta et al. [12] which contains the
larger data. An example of the original data and annotations is given in Fig. 7.6.
In order to measure boundary precision and recall, a distance threshold has to be set
to determine which boundary candidates are accepted as correct detections. In the
evaluation metrics provided in Arbeláez et al. [1] his threshold is given in terms
of pixel distance as a fraction of the image diagonal. In Gupta et al. [12], this
value is set to 0.011. We compare the effect of the spectral graph reduction on the
multiscale method for UCM generation of Arbeláez et al. [2] (M-UCM) against the

depthRGB

semantic labels instance labels

Fig. 7.6 An image with RGB and Depth channel from NYU Depth dataset (v2) [29] with the
original label and instance annotations
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Fig. 7.7 Boundary precision and recall on the NYU Depth dataset (v2). In blue, we show the
performance of Arbeláez et al. [2] (M-UCM) using boundary probabilities from Dollár and
Zitnick [7]. In red, we show our result, applying spectral graph reduction (M�UCMCSGR). SGR
improves over the RGB-D adapted version of Arbeláez et al. [2]

original method. Instead of the graph reduction, Arbeláez et al. [2] reduce runtime
by using an approximate eigenvector computation. In both cases we use the RGB-D
boundary probabilities from Dollár and Zitnick [7]. The boundary precision/recall
curve is plotted in Fig. 7.7. Basically, the performance is very similar. The spectral
graph reduction improves only a little over [2] (M-UCM). The average precision
is 0.65 for M-UCM, 0.67 for the proposed setup. With the same threshold for
all segmentations, i.e. the optimal dataset score (ODS), the resulting f-measure is
0.66 for both. If we allow different thresholds per dataset (optimal individual score
(OIS)), the f-measure is 0.70. This improves over the baseline method [1] by 0.03
for the ODS and 0.12 in average precision (numbers for Arbeláez et al. [1] taken
from Gupta et al. [12]). Still, Gupta et al. [12] who build upon specially designed
depth gradients and solve the full eigensystem correctly for the spectral analysis
perform better at equal error rate, with an f-measure at ODS of 0.69. In the high
recall range, their curve drops below ours (compare Fig. 7.7). For results on some
examples compare Fig. 7.8.

For an image at the original scale (425 � 560 pixels), our method takes about
2.87 s on a 3.30 GHz CPU, Arbeláez et al. [2] need slightly more (3.02 s). Solving
the full eigensystem amounts at 12.97 s of computation time per image. In Gupta
et al. [12], computing the RGB and depth features already takes about 135 s.
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Fig. 7.8 Results of the segmentation with spectral graph reduction on some expamples from NYU
Depth (v2). We show the overlay of the segmentation at the optimal dataset scale (ODS) and the
full UCM
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7.7 Conclusion

We have presented a fast method for hierarchical segmentation in RGB-D data. In
order to produce reliable segmentations, we combine a state-of-the-art method for
image segmentation [2] with an RGB-D boundary detection [7]. We could show that
by applying spectral graph reduction in that framework, we would not only reduce
runtime but also improve on the average precision.

Acknowledgements We acknowledge funding by the ERC Starting Grant VideoLearn.
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Chapter 8
Shape Compaction

Honghua Li and Hao Zhang

Abstract We cover and discuss techniques that are designed for compaction
of shape representations or shape configurations. The goal of compaction is to
reduce storage space, a fundamental problem in many application domains. We
consider compaction both at the representation level (i.e., digital storage) and in
physical domains (i.e., physical storage). Shape representation compaction focuses
on reducing the memory space allocated for storing the shape geometry data,
whilst shape compaction techniques in the physical domain reduce the physical
space occupied by shape configuration. We use the term shape configuration to
refer to how a shape, real or conceptual, is physically modeled (e.g., design and
composition of its parts) and spatially arranged (e.g., shape parts positioning and
possibly in relation to other shapes). In this paper we briefly cover the representation
compaction techniques whilst placing our focus on the less explored realm of shape
compaction approaches on physical configurations.

8.1 Introduction

Memory space is valuable in digital environment. Digital models of 3D shapes are
widely used in a vast number of industrial and scientific applications. Typically
the same shape admits multiple mathematical representations which may vary
significantly in storage cost. Among them the most compact ones in terms of storage
cost are usually more preferable since they can reduce the cost of storage, transmis-
sion, computation and visualization, as well as facilitate shape understanding and
intelligent shape processing.

Physical space is also costly and thus the demand for compact products is
strong in practice. Objects that can change the arrangement of their parts or their
spatial relation with other shapes (the so-called shape configuration) to save space
when storing or transporting them, are of great value for survival (e.g., fire fighter
equipment, army weapons and tools), camping in the wild (e.g., tent, pocket knife),
living (e.g., IKEA furniture) and leisure (e.g., LEGO assembling toys).
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In this paper, we use the term shape compaction to refer to techniques that
can either assist human beings to reduce the storage size of shapes on both
representation level and configuration domain, or automatically accomplish this
goal. While numerous algorithms have been proposed for compaction of shape
representations in literature, including simplification, abstraction, compression, etc.,
the compaction of shape configuration is still a realm that remains unexplored.

8.1.1 Compaction of Shape Representation

Given shape representation R0 of a 3D object S, representation compaction is to (1)
reorganize the data of R0 to reduce its storage space or (2) find a new representation
R of S which occupies less storage space subject to some criteria.

Shape representations are mathematical models conveying the geometry of 3D
objects, and their size is measured as the amount of memory required to store
such models. There are two key factors that influence the data size of a shape
representation: the number of low-level primitives, and the statistical redundancy in
geometric data. Shape representation compaction approaches addressing the former
factor fall into the category of shape simplification and abstraction, while methods
addressing the latter are usually regarded as shape compression techniques.

Shape simplification and abstraction The basic idea is to find a proxy
with fewer primitives to represent the original object that consists of many finer
primitives. Shape simplification aims to preserve the geometric fidelity within a
prescribed error tolerance, while shape compaction has more freedom to modify the
topology or geometry as long as the new generated representations are perceptually
equivalent to the original shapes.

Compression Data compression techniques either exploit statistical redundancy
in the underlying data to represent data more concisely (lossless), or modify the
data in a subtle manner such that the statistical redundancy is enhanced (lossy).
Mesh compression is the application of data compression on polygonal meshes.
Typical mesh compression algorithms encode the connectivity and geometry data
separately. Both natural and man-made objects present huge amount of regular and
repeated substructures, which are usually captured by symmetries within the shape.
Traditional mesh compression approaches do not explicitly utilize this statistical
redundancy on the structure level. In a recent trend of research, several hierarchical
representation techniques have been proposed to compactly represent complex
shapes with rich symmetries in their structures.
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8.1.2 Compaction of Shape Configuration

Size reduction of physical storage space is significantly different from that of
memory space occupied by shape representations. The redundancy in digital models
can be efficiently encoded to reduce the total storage space, which however isn’t
useful for physical storage reduction at all. For example, a shape with reflective
symmetry can be compactly represented by half of its geometry and the associated
reflection plane. In contrast, the two identical halves (in terms of reflection) both
need to physically exist and thus occupy the same amount of space.

An intriguing problem about compact shapes is: what makes some objects
more amenable to saving space than others? In an excellent introduction to space-
saving designs, [37] discussed twelve collapsible principles. Collapsible objects
are able to adjust in size by switching between two opposite configurations: one
unfolded and functional, the other folded for storage. The existence of functional
and storage configurations only makes it possible for an object to be collapsible.
To be practically collapsible, the transformation between these two configurations
must be feasible and easy to conduct.

Shape configuration is the arrangement of shape parts and/or the spacial relation-
ships between shapes.

Collapsible objects can save space either individually involving the organization
of parts within a shape, which is called intra-shape configuration, or cooperatively
involving spacial relationships among multiple objects, which is called inter-shape
configuration. The chairs in Fig. 8.1a, b demonstrate two examples of intra-shape
collapsing strategies: folding and decompose-and-pack. The stackable chair in
Fig. 8.1c has a set of identical chairs involved while storing them. The outdoor tea
table set in Fig. 8.1d consists of one tea table and four seats, which as a group can
be packed compactly when not in use.

Given a 3D object S, configuration compaction is to find a new 3D object T such
that (1) T is close to S, (2) T is able to change configuration to save space.

The problem has a trivial solution if sufficiently large perturbation from the
source object S is allowed (e.g., let T be a cube). The “closeness” between two
objects needs to be formalized such that it preserves the essence, i.e., structure and
functionality of the original shape S. We classify compaction techniques into two
categories based on the type of shape configuration they attempt to tackle.

(a) (b) (c) (d)

Fig. 8.1 Four collapsible mechanisms with the functional(left in each cell) and storage(right in
each cell) configurations. (a) Folding. (b) Decompose-pack. (c) Stacking. (d) Group packing
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Intra-shape configuration is the arrangement of shape parts within a shape.
Compaction approaches in this category produce new shapes that preserve the
essences of the original shapes in terms of either geometric appearance or func-
tionality. Shape parts of the output can be transferred into a storing configuration
which takes much less physical storage space than the original shape.

Inter-shape configuration indicates the internal relations between multiple
shapes. Given a set of shapes, finding out the optimal configuration itself is a very
challenging problem. Moreover there are algorithms that can modify the original
shapes subtly such that the final packing result can be more space-saving.

8.2 Simplification and Abstraction

Given a representation, simplification and abstraction approaches output another
representation option for the underlying shape which consists of fewer primitives
than the original one. Dozens of simplification algorithms have been proposed by
researchers in computer graphics. A detailed review of simplification techniques
in literature is beyond the scope of this paper. Interested readers should refer to
[14, 28, 29] for a broader survey on simplification approaches.

Representing complex objects with low bit budget goes beyond the capability of
a error-metric-driven simplification method and the answer often lies in the area of
human perception and cognition. Given a shape S, the goal of shape abstraction
is to produce a proxy S such that perceptually S and S are comparable, but
representationally jS j � jSj. Note that S andS are likely to be quite different from
a purely geometric point of view. These compact representations are visually more
appealing than the detailed original models, which might appear visually cluttered.
Therefore they are widely used for prototyping and concept communication.

The boundary between shape simplification and abstraction sometimes is blurry.
Simplification with extremely low bit budget can be considered as abstraction, and
abstraction at a very fine level may produce comparable results to simplification.
The key characteristic of abstraction is that it directly extracts the shape defining
features of objects which usually are inspired from human perception and cognition
(Fig. 8.2).

Curve networks Sparse characteristic feature curves are typically sufficient for
humans to identify a shape. Despite the fact that CG lines (image intensity edges,
geometric ridges and valleys, suggestive contours, and apparent ridges) seem likely
to succeed in conveying shapes [5, 6], they are usually not well organized and might
be view-dependent. De Goes et al. [8] proposed the so-called exoskeleton to convey
both the perceptual and the geometric structure of a 3D model. They first segment
the input shape into parts, and further divide the shape surface into patches. The
boundaries of these resulted patches form the exoskeleton.
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(a) (b) (c)

(d) (e) (f)

Fig. 8.2 Various shape abstractions. (a) Exoskeletion. (b) Surface model. (c) Slices. (d) Collage.
(e) Subvolume. (f) Skeletons

Surface models Unlike simplification approaches which operate at low-level
primitives and usually do not preserve shape defining features under extreme
simplification, [33] extracts a sparse network of space curves that capture the
essential characteristic features of a given man-made object, from which a abstract
surface model can be reconstructed. Their method operates in two steps. First, a
closed manifold envelope surface that wraps the entire input model is extracted
from the voxelization of the input object. Second, they extract a network of curves
or vectors from the computed envelope.

Planar sections Inspired by section planes in medical and engineering visu-
alization which illustrate the interior details of complex shapes, [32] proposed an
approach for generating shape proxies consisting of planar sections. In their method,
planes are progressively selected to maximally capture shape features weighted
by their importance, which is learned from the user study trying to discover how
humans define planar section representations for various 3D shapes.

Collage Collage is an abstract and expressive visual style that build a new
whole by assembling given primitives in a database. In a collage, both the parts
and the whole can be easily recognized. Gal et al. [13] created 3D collages that
express the target shape using a database of objects as primitive building block. In a
parallel thread of work, [47] generated animation collage from mesh animation. In
a recent work, [19] developed an algorithm for creating a collage which represents a
given image with multiple Internet images. Note that the primitives used for collage
are usually more complex than simple geometry primitives, therefore the collage
techniques are considered as shape abstraction approaches solely because the little
number of primitives.

Subvolumes Yumer and Kara [53] proposed an abstraction method that is
built on subvolumes. The most abstract form is generated first and more details
that are represented by volume chunks can be added or subtracted to the current
abstraction. The main contribution of this work is that they can generate a spectrum
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of abstractions for each shape, and rely on the co-analysis on the associated shape
collections to determine the “right” abstraction.

Skeletons The most well-known skeletal shape representation is probably the
medial axis transform (MAT) [3]. In computer graphics, curve skeletons [7] are
more broadly utilized due to their compactness and ease of manipulation. We refer
the interested readers to recent advances on curve skeleton extraction [2, 18, 45, 46]
for more details.

8.3 Compression

Data compression means to encode information using fewer bits than the original
representation. Compression can be either lossless or lossy. Lossless compression is
conducted by eliminating the statistical redundancy in the data. Some information
lost is acceptable in lossy compression. By modifying in a subtle way, the data could
be more amenable to coding, thus higher compression rate can be achieved.

The output of shape compression has to be decoded to be used, which is never
a free lunch. However, shape compression has the advantage of using a given
budget of storage space to represent more detailed shapes. Moreover, compression
techniques can be used together with shape simplification and abstraction to obtain
more compact shape representations. We refer interested readers to [1, 40] for a
deeper and broader review of mesh compression techniques.

With the recent advance on shape structure analysis [36], compression techniques
have been proposed to address data redundancy at structure level. Repeating
substructures in digital models can be explicitly encoded to reduce its space
complexity [39]. Due to the nested nature of symmetries, the simple strategy may
encode the same symmetry multiple times. A hierarchical encoding, however, can
reflect the nested structure and produce a more compact representation of the entire
shape.

As a recent advance, there has been three pieces of work that develop hierarchical
representation of single objects or complex scenes to address this type of structural
redundancy.

Folding mesh Simari et al. [43] used a folding tree data structure to encode the
reflective symmetries within a mesh by recursively applying a symmetry detection
algorithm. The data structure encodes the non-redundant regions of the original
geometry as well as the reflection planes. The folding tree can eventually be
unfolded to recover the original shape approximately, see Fig. 8.3 (top right).

Symmetry and instancing Martinet [30] proposed the hierarchical assembly
graph (HAG) to represent the structural information in scenes. A HAG is a directed
graph, in which each node denotes an object and a arc denotes the sub-part relation
between two objects. An object is defined as a closed frequent pattern, which is a
part of the scene that does not have subpart having higher frequency than itself, see
Fig. 8.3 (left).
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Fig. 8.3 Structural shape compression techniques: hierarchical assembly graph (left), folding
mesh (top right), and symmetry hierarchy (bottom right)

Symmetry hierarchy Wang et al. [50] described an analogous method to
construct the symmetry hierarchical (SYMH) organization of object parts by
using perceptual grouping criteria. The input mesh is initially segmented into
parts which are refined by symmetries detected in the original shape. An initial
graph is built to encode inter-part symmetry and connectivity relations among the
resulting segments, as well as self-symmetry for individual segments. The symmetry
hierarchy is then constructed from the initial graph via graph contraction, which
either groups parts by symmetry, or assembles connected sets of parts. The order
of graph contraction is determined by a set of rules designed to respect human
perceptions and the principle of compactness. See Fig. 8.3 (bottom right) for an
example.

The HAG proposed by [30] is a directed graph which is different from the tree
structures described by the other two. The advantage of a graph structure is that
different part of the shape can share the same set of geometry primitives stored
in leaf nodes. Primitives geometry represented by leaf nodes are building blocks
when establishing hierarchical representations. Although different algorithms have
been explored, finding the “best” primitive geometries still remains an open
problem.
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8.4 Compaction of Intra-shape Configuration

Shapes can reduce size individually by changing their own configuration. Given a
3D object, compaction of intra-shape configurations is to find another object that is
close to the input in terms of geometrical appearance, structural form, or functional
essence, but also is able to adjust its configuration to meet the requirement of space-
saving. This can be achieved by either modifying the original shape or creating a
new shape via approximation. In this section we discuss two mechanisms – folding
and decomposing – that are frequently utilized for shape compaction.

8.4.1 Folding

Folding via hinges is a popular collapsible principle that impacts many tools in our
daily lives. Generally speaking a hinge is a movable joint that connects two objects
and typically allows rotation between them. The most popular form of folding is
probably paper folding [9, 20], with origami [31] being the best known instance.

Pop-up design Popups are paper arts that can be closed down to a flat surface
and opened up again without tearing the paper or introducing new creases other than
those in the design. A popup is collapsible since it has both functional and storing
configurations, one of which can be easily transformed into the other without extra
forces other than holding and turning two support pages.

Origamic architectures, also called paper architectures (PA), are paper buildings
created by cutting and folding from a single piece of paper. The simple mechanisms
of parallel PA enabled development of automated algorithms to construct a PA from
an input 3D model [25, 35] as well as interactive tools [34], see Fig. 8.4a. Li et al.

(a) (b) (c)

(d) (e)

Fig. 8.4 Shape compaction techniques utilizing the folding mechanisms. (a) Popup. (b) V-style
popup. (c) Multi-style popup. (d) Boxelization. (e) Foldabilization
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[24] studied the general v-style popups, which contain two more parallel groups of
planes with multiple pieces of paper, see Fig. 8.4b. Ruiz et al. [41] extend the pop-
up design to multi-style by fitting volumetric primitives and mapping to selected
mechanisms, see Fig. 8.4c.

Foldable puzzle design In a recent work, [54] approximates the input shape
using a voxel-tree that can fold from the input shape into a cube. The goal of
boxelization is to find a physically achievable solution for transforming a shape into
a cube. Compactness is one of the objective terms in the optimization procedure and
shape compaction is therefore achieved as a by-product. Their algorithm involves
three major steps: finding a good voxelization, finding the tree structure that can
form the input and target shapes’ configurations, and finding a non-intersecting
folding sequence.

Foldable furniture design Space-saving furniture designs are ubiquitous in
our lives and folding is perhaps the most popular mechanism observed and
practiced [37]. However the design process of foldable furniture has to follow the
trial-and-error iteration, which is usually both tedious and time consuming. Here we
pose an open foldabilization problem: given a 3D furniture, how to apply a minimum
amount of modification to the input to allow it to be folded? Figure 8.4e provides
an example solution: by introducing hinges on the seat and back and shrinking the
back, the modified chair is able to fold into a flat configuration.

8.4.2 Decomposing

The functional configuration of an object usually leaves large amount of free space
among its parts, which increases the cost for fabrication or storing. Decomposing
provides an option to reorganize shape parts to reduce this unused space.

Decompose-and-print Layered printing has been widely used in 3D printers.
Usually support structure has to be printed together with the object itself to allow
complex shapes to be fabricated, which however causes material cost and takes
longer time to print. The amount of support material depends on the free space
within the projection volume of an object. Inspired by pyramidal shapes which
always have solid projection volume with respect to the given base, [17] proposed
an algorithm to decompose the input 3D model into approximately pyramidal parts,
see Fig. 8.5a. By printing each pyramidal parts individually and gluing, the original
object can be fabricated. The pyramidal composition is more compact than the
original object in terms of projection volume.

Decompose-and-pack Decompose-and-pack is a time-honored collapsible
principle. A number of separate parts are assembled into a whole to perform
functions, and then later are dismantled again into its parts for storage. An excellent
example is flat pack furniture which supports almost the entire business of IKEA.
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(a) (b)

Fig. 8.5 Shape compaction techniques using the decomposing mechanism. (a) Approximate
pyramidal decomposition. (b) Cardboard sculpture

The cardboard sculpture is another example where cardboard pieces have
prefabricated slits along which they can be slid to assemble the whole shape.
Obviously these cardboard pieces can be stored much more compact than as a
whole. Hildebrand et al. [15] proposed an algorithm to automatically generate
cardboard sculptures with guaranteed constructibility, see Fig. 8.5b.

Given an arbitrary 3D model, searching for the decomposition and packing
strategy that leads to the most compact packing remains an open problem.

8.5 Inter-shape Configuration Compaction

Shapes can work cooperatively to save space. This group strategy involves changing
the spatial relations with other shapes. A set of objects can be packed more
compactly under rigid transformations as long as the unused space within one
shape’s bonding volume can be used by another shape, see Fig. 8.1c, d.

Without modifying input shapes in any way, the problems we are discussing
here degenerate into the classic nesting problems. As a specific type of cutting
and packing (C&P) problems, nesting problems consider packing irregular shapes
in order to optimize the packing volume. The problem is NP-hard and as a result
solution methodologies usually utilize heuristics. The term “compaction” was also
used by [26] to refer to a simultaneous motion of the components that generates a
more densely packed layout.

A dense nesting is possible only if the irregular shapes can fit into each other very
well. An extreme case is tiling [49], where each tile can exactly fit into its neighbours
such that all tiles together can cover the entire plane. However arbitrary shapes
usually do not have such nice properties. In many cases the input geometries do
not have to keep unchanged but their essences, e.g. main features and functionality.
In fact, allowing subtle changes to the input shapes can greatly improve nesting
results [21, 23].

In this section, we first briefly overview the challenges and state-of-the-art
solutions of nesting problems, then follow up with techniques that modify and
optimize the geometry of input shapes for more compact packing results.
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8.5.1 Without Shape Modification

The topic of cutting and packing covers a variety of problems of a common logical
structure which is usually classified under the heading of packing, packaging,
layout, configuration, container stuffing, pallet loading or spatial arrangement in
the literature. Dyckhoff and Wäscher et al. [10, 51] introduced a useful typology
of C&P problems, where C&P problems can be classified into regular packing and
irregular packing, the latter is also called nesting problems.

The nesting problem is usually abstracted as an optimization problem where an
assignment of the positions and orientations of components that minimizes an objec-
tive is sought. Comparing to regular packing [27], irregular components increase the
complexity of the solution space. The problem is a NP-hard combinatorial problem
[38] such that meta-heuristics are typically used to generate acceptable solutions.
Hopper and Turton [16] reviewed these meta-heuristic algorithms, in particular
genetic algorithms, for both 2D regular and irregular packing problems. As research
progressed, new breakthroughs have been achieved in recent years. Timmerman
[48] compared different optimization methods using benchmarks and concludes that
extended local search [22] is the best method currently available.

3D nesting problem shares most characteristics with its two-dimensional coun-
terpart, but the geometric complexity of 3D irregular components makes it a more
challenging problem. Cagan et al. [4] reviewed a spectrum of approaches ranging
from deterministic algorithms to stochastic algorithms proposed for solving 3D lay-
out problems. The geometric representation and interference detection approaches
of 3D components are also discussed in that survey. Most algorithms are originally
designed for 2D nesting problems and have the potential to be extended to 3D
[11, 44]. In contrast, the extended pattern search algorithm [52] was particularly
designed for 3D nesting problems.

8.5.2 With Shape Modification

Modifying the input shapes is not necessary, but when applied it has the potential to
improve the nesting density. Shape modification is not always possible or allowed,
since traditionally nesting is an independent post procedure after the design of
a product has been fixed. If nesting quality is not considered during the product
design, a nesting algorithm solely is doomed to fail on finding very dense packing
layout. In fact products that are successful in space saving are originally designed to
be so. Instead of barely relying on the designer’s experience and letting the designers
improve their design in a trial-and-error iteration, computational algorithms can be
designed to either assist designers to speed up the iterations or automatically modify
the design in a subtle manner to achieve more compact packing layout.

Escherization Tiling is a special case of 2D nesting problems because each
component (tile) can exactly fit into its neighbors such that the entire plane can be
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(a) (b)

Fig. 8.6 Shape compaction techniques with modification. (a) Escherization. (b) Stackabilization

covered seamlessly. The Dutch artist M.C. Escher spent his career on producing
a notebook with more than a hundred of ingenious and playful designs of tiling
[42]. Inspired by Escher’s work, [21] presented a solution to the “Escherization”
problem: given a closed figure, find a new closed figure that is similar to the input
and tiles the entire plane, see Fig. 8.6a. Their approach utilizes a simulated annealer
to optimize over a parameterization of the isohedral tilings, which is flexible enough
to encompass nearly all of Escher’s own tilings.

Stackabilization Stacking objects on top of each other is a common strategy
performed by humans to save space. The nesting layout of a stack along a stacking
direction can be achieved by repeated application of a translation and a possible
rotation on object copies until two adjacent objects are just touching each other
without overlap or gaps. One of the most celebrated examples of stackable objects
are chairs [12].

Li et al. [23] first introduced the geometric problem of stackabilization: how
to geometrically modify a 3D object so that it is more amenable to stacking?
They consider the class of stackings that involves only translation in the stacking
configuration. The main challenge in stackabilization lies in the desire to modify
the input geometry only subtly so that the intended functionality and aesthetic
appearance of the original object are not significantly affected.

8.6 Conclusion

This is the first general introduction on shape compaction techniques, at both
the digital representation level and the physical configuration domain. These two
compaction categories share the same goal of finding economy solutions for storing
and transporting objects, which is beneficial in a large range of applications. They
also share the spirit of utilizing shape modification to facilitate the compaction
results. In particular, simplification and abstraction of shape representation would
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have strong connection to shape compaction of intra-shape configuration, e.g. popup
and cardboard sculpture.

Due to the strong practical demands on compact digital and physical objects,
more effort from researchers is expected to commit in this realm. To conclude this
paper we list a few possible future directions along this thread of research.

Because of the conceptual nature, shape abstraction is worth more creative
investigation. Structure analysis has attracted tremendous attention recently, which
provides opportunities for finding better structural compression approaches.

By now 3D nesting problems have not drawn comparable amount of attention
from researchers as that in 2D. The needs arising in the product layout, rapid
prototyping, and efficient use of resources (e.g., 3D printing material) justify the
development of efficient nesting approaches for 3D components with complex
geometry.

Most intra-shape configuration compaction approaches, e.g. popup designs, and
boxelization, can only approximate the appearance of the input in a very rough
manner. The reason is that the feasibility of particular collapsibility usually serves as
hard constraint, while sacrificing the appearance and even the essential of the given
3D model. An open problem is how to develop generic computational approaches
for generating collapsible objects that can preserve the functionality or at least the
structure of the input.

Generally speaking, compaction of shape configuration is a relatively unexplored
area with numerous open problems waiting to be studied. Solving these problems
will benefit a huge amount of practical applications which are sensitive to physical
storage space.
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Chapter 9
Homological Shape Analysis Through Discrete
Morse Theory

Leila De Floriani, Ulderico Fugacci, and Federico Iuricich

Abstract Homology and persistent homology are fundamental tools for shape
analysis and understanding that recently gathered a lot of interest, in particular
for analyzing multidimensional data. In this context, discrete Morse theory, a
combinatorial counterpart of smooth Morse theory, provides an excellent basis
for reducing computational complexity in homology detection. A discrete Morse
complex, computed over a given complex discretizing a shape, drastically reduces
the number of cells of the latter while maintaining the same homology. Here, we
consider the problem of shape analysis through discrete Morse theory, and we
review and analyze algorithms for computing homology and persistent homology
based on such theory.

9.1 Introduction

Recently, in shape analysis, the computation of topological features, which provide
global information about a shape, has drawn particular attention, specifically in
analyzing medium- and high-dimensional data sets, where pure geometric tools
are usually not sufficient. Morse theory [44] and its discrete counterpart [28] have
been recognized as important tools for analyzing shapes in several application
domains, including physics, chemistry, medicine and geography, thus studying the
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relationships between the topology of a manifold and the critical points of a real-
valued function defined on it (scalar fields).

Discrete Morse theory [28] offers a way to compute and represent Morse
complexes in an efficient way. When working with cell complexes, a scalar function
is not naturally defined, though Morse complexes can still be computed. The
description obtained in such cases is related to the notion of homology, a topological
invariant counting the number of independent non-bounding k-cycles characterizing
the shape.

Independently on whether the scalar function is defined or not, the problem of
computing Morse complexes reduces to the definition of a valid gradient vector
field (Forman gradient) on the shape. Here, we review the main algorithms in
the literature for computing a Forman gradient and its homology. We distinguish
between two classes of algorithms, that we call constrained and unconstrained
algorithms. Constrained algorithms compute a Forman gradient conforming with
the scalar function defined on the shape. Unconstrained algorithms do not have
limitations regarding the scalar function and they have to agree only with the
topology of the shape itself.

Discrete Morse theory is not the only tool to obtain efficient methods for
homology and persistent homology computation. Other techniques to efficiently
retrieve homology can be roughly classified into approaches based on simplification
operators [20, 46], distributed approaches [7, 41], which are based on a decom-
position of the shape, and approaches based on hierarchical models [15]. Here,
we focus on unconstrained algorithms, discussing how discrete Morse theory can
be combined with homology computation based on reductions and coreductions.
We also believe that discrete Morse theory could be combined with distributed and
hierarchical methods in order to further improve complexity of such algorithms.

The remainder of this paper is organized as follows. In Sect. 9.2, we present
some background notions on homology, persistent homology and discrete Morse
theory. In Sect. 9.3, we describe a compact encoding for a Forman gradient. In
Sect. 9.4, we review and classify classical methods for computing a Forman gradient
on a cell complex. In Sect. 9.5, we discuss how to extract Morse and Morse-Smale
complexes from a Forman gradient, and we present a combinatorial representation
of such complexes. Finally, in Sect. 9.6, we discuss how discrete Morse theory can
be used to efficiently compute homology, homological generators and persistent
homology of a cell complex, showing some application domains where homological
information plays a crucial role.

9.2 Background Notions

This section is devoted to the presentation of some background notions that we will
use in the rest of the paper, such as cell and simplicial complexes and regular grids,
homology, persistent homology and discrete Morse theory.
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9.2.1 Cell Complexes, Simplicial Complexes and Regular Grids

Cell complexes [38, 42] are used as a discretization and modeling tool in a wide
range of application domains.

Intuitively, a cell complex defines a decomposition of a shape into simple subsets,
called cells, glued together along their boundaries. We define the k-disk as Dk D
fx 2 R

k W jxj 	 1g and the .k � 1/-sphere as Sk�1 D fx 2 R
k W jxj D 1g. A k-cell

(or cell of dimension k) is a homeomorphic image of the open k-disk int.Dk/ D
Dk n S

k�1. A space � � R
n is called a cell complex if � is a finite disjoint union of

cells such that, for each k-cell � of � , there exists a map ˚� W Dk ! � restricting
to a homeomorphism ˚� jint.Dk/ W int.Dk/ ! � and taking the .k � 1/-sphere S

k�1

into � k�1, where, for each i, � i (called the i-skeleton of � ) is the union of the cells
of � with dimension less than or equal to i.

We define the dimension of a cell complex � , denoted as dim.� /, to be the
largest dimension of a cell of � .

Let � be a cell complex, and let � and 
 be two cells of � . � is called a (proper)
face of 
 if � is contained in the boundary of the cell 
 ; 
 is called a (proper) coface
of � . Any cell of � , which is not a face of any cell of � , is called a top cell. The
star of a cell � 2 � is the set of cells 
 2 � which are cofaces of � . A k-cell � is
said to be adjacent to a k-cell � 0 if � and � 0 share a .k � 1/-face (see Fig. 9.1b). The
link of a cell � 2 � , denoted as Lk.�/, is the set of cells 
 2 � such that 
 is a face
of a coface of � , and is not incident in � (see Fig. 9.1c). A cell complex is said to
be regular, if, for each k-cell � , map ˚� W Dk ! � is a homeomorphism. In other
words, the boundary of each cell has no identification. Because of their importance
in the applications, in the following we will just consider regular cell complexes and
write cell complex in place of regular cell complex.

In many applications, however, simplicial complexes and regular grids are
extensively used to discretize a shape or the domain of a scalar field. Cell complexes
encompass both of them.

Simplicial complexes can be viewed as a special case of cell complexes, in which
the cells are simplices. A simplex of dimension k, or a k-simplex, is the convex hull of
k C 1 affinely independent points in R

n which are called the vertices of the simplex.

Fig. 9.1 (a) Cell complex composed of 2-cells bounded by 1-cells (bold lines) and 0-cells (full
dots). (b) The star of the blue vertex is composed of five 1-cells (blue lines) and five 2-cells (blue
surfaces) incident in it. (c) The link of the central red vertex is composed of the eight 1-cells (red
lines) in the neighborhood of the vertex as well as the eight 0-cells (red dots) incident in them
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Given a k-simplex 
 , any simplex � , which is the convex hull of a non-empty subset
of the points generating 
 , is called a face of 
 . A simplicial complex˙ is a finite set
of simplices, such that each face of a simplex in˙ belongs to˙ , and the non-empty
intersection of any two simplices in ˙ is a face of both. Examples of simplicial
complexes are triangle or tetrahedral meshes.

We consider an axis-parallel k-dimensional hyper-cube � in R
n is the Cartesian

product of n closed intervals, where exactly k of them are non-degenerate with equal
length, i.e., � D fp D .x1; : : : ; xn/ 2 R

n j xi 2 Œai; bi�g, where #fi j ai < big D k
and, for such i, bi �ai is constant. We say that hyper-cube � is generated by intervals
Œai; bi�. Usually, intervals have integer endpoints and unit length, i.e., ai 2 Z, and
bi D ai or bi D ai C 1. Given a hyper-cube �, generated by intervals Œai; bi�, i D
1; : : : ; n, any hyper-cube �0 generated by intervals Œa0

i; b
0
i�, with either a0

i D ai and
b0

i D bi, or a0
i D b0

i D ai, or a0
i D b0

i D bi, is called a face of �. Hyper-cube �0 is a
proper face of � if �0 ¤ �.

A regular (hyper-cubic) grid in R
n is a finite collection H of hyper-cubes of

different dimensions, such that:

• for any hyper-cube � 2 H, all hyper-cubes that are proper faces of � are in H;
• for any pair of hyper-cubes �1; �2 2 H, either �1 \ �2 D ;, or �1 \ �2 is a

hyper-cube of H;

and the domain of H is a hyper-cube in R
n. A 2D regular grid is also called a square

grid, and a 3D regular grid a cubic grid.

9.2.2 Simplicial and Cellular Homology

For the sake of brevity, we will present only the notion of simplicial homology which
can be suitably extended to cell complexes obtaining cellular homology [42]. Both
simplicial and cellular homology theories are special cases of the singular homology
theory defined for topological spaces [38].

A chain complex C� D .Ck; dk/k2N is a collection of Abelian groups Ck and
a collection of group homomorphisms dk W Ck ! Ck�1 such that dkdkC1 D 0

(or, equivalently, Im dkC1 � ker dk). Given a simplicial complex ˙ , it is possible
to define the notion of simplicial homology of ˙ by associating a chain complex
C�.˙/ D .Ck.˙/; @k/k2N with ˙ [48].

Chain groups Ck.˙/ are the free Abelian groups generated by the k-simplices of
˙ and maps @k W Ck.˙/ ! Ck�1.˙/, called boundary maps, encode the boundary
relations between the k- and the .k � 1/-simplices of ˙ and are defined as follows.
Having chosen an order on the set of the vertices of ˙ , we can uniquely write
each k-simplex � of ˙ as Œv0; v1; : : : ; vk�, where � is generated by v0; : : : ; vk and
v0 < v1 < � � � < vk. We can define @k W Ck.˙/ ! Ck�1.˙/ by setting, for each

k-simplex � D Œv0; : : : ; vk�, @k.�/ D
kX

iD0
.�1/iŒv0; : : : ;bvi; : : : ; vk�, where bvi means



9 Homological Shape Analysis Through Discrete Morse Theory 191

that the vertex vi is not present. We denote as Zk.˙/ D ker @k the group of the k-
cycles of ˙ and as Bk.˙/ D Im @kC1 the group of the k-boundaries of ˙ . Since
@k@kC1 D 0, we can define the kth homology group of ˙ with coefficients in Z as
the kth homology group of the chain complex C�.˙/, i.e.,

Hk.˙/ D Hk.C�.˙// D Zk.˙/

Bk.˙/
:

Intuitively, homology detects the presence of holes in a shape. Specifically, a
non-null element in a homology group is a cycle not representing the boundary of
any collection of simplices of ˙ .

As a consequence of the theorem of structure for finitely generated Abelian
groups (see [3], Chapter 12), the homology groups of a simplicial complex˙ can be
expressed as Hk.˙/ Š Z

ˇk hc1; : : : ; cˇk i ˚Z1hc0
1i ˚ � � � ˚ Zpk

hc0
pk

i, with iC1 j i

and with i non-invertible. We call ˇk the kth Betti number of˙ ,
pkM

iD1
Zi the torsion

part of Hk.˙/ and c1; : : : ; cˇk ; c
0
1; : : : ; c

0
pk

the generators of Hk.˙/.
Simplicial homology is a topological invariant which provides global quantitative

and qualitative information about a shape. For each k, the kth Betti number ˇk

measures the number of independent non-bounding k-cycles in ˙ . In dimension
0, ˇ0 counts the number of connected components of the complex, in dimension
1, ˇ1 counts the number of its tunnels and its holes, in dimension 2, ˇ2 counts the
number of voids or cavities, and so on.

Given an arbitrary Abelian group A, we can define the kth homology group with
coefficients in A of˙ as Hk.˙ I A/ D Hk.C�.˙/˝ZA/, where ˝Z denotes the tensor
product of Abelian groups. If we consider A D Z2, C�.˙/ ˝Z Z2 D .Ck.˙/ ˝Z

Z2; @k ˝ZZ2/k2Z is the chain complex whose groups Ck.˙/˝ZZ2 are the Z2-vector
spaces generated by the k-simplices of ˙ and homomorphisms @k ˝Z Z2 are the
boundary maps @k of ˙ considered modulo 2. It can be proven (see [2], Chapter X)
that, for simplicial complexes embeddable in R

3, each homology group is free, and,
thus, its torsion part is trivial. For this reason, the Z-homology groups of a simplicial
complex ˙ embeddable in R

3 can be retrieved by just computing the homology of
˙ with Z2 coefficients.

Independently of the coefficient group chosen, homology computation is com-
putationally expensive. Smith Normal Form (SNF) reduction [1, 48], an algorithm
similar to Gauss elimination, represents the classical tool to compute homology,
allowing to retrieve the whole homological information by reducing the matrices
representing the boundary maps @k of the input simplicial complex. The complexity
of such algorithm is super-cubical in the number of simplices of ˙ and, thus, is
impractical when working with large datasets.
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9.2.3 Persistent Homology

Persistent homology [24, 30, 61] is an important tool in topological shape analysis,
which aims at overcoming intrinsic limitations of classical homology by allowing
a multi-scale approach to shape description. The possibility to retrieve essential
topological features of a shape has led to an increasing development of persistent
homology in various applications, such as biology and chemistry [13, 18, 57],
automatic classification of images [4, 10, 12], and coverage of sensor networks [56].
Similarly to classical homology, persistent homology can be defined for chain and
cell complexes. In spite of this, it is typically introduced for simplicial complexes
or regular grids.

Let ˙ be a simplicial complex. A filtration of ˙ is a finite sequence of
subcomplexes f˙m j 0 	 m 	 Mg of ˙ such that ; D ˙0 � ˙1 � � � � � ˙M D
˙ . The associated chain filtration is defined as the following sequence of chain
complexes

where maps im arise from inclusion of groups.
For p 2 N, we denote as im;p W C�.˙m/ ! C�.˙mCp/ the composition imCp�1 �

: : : � im when it makes sense. The p-persistent kth homology group of ˙m is defined
to be

Hp
k .˙m/ D im;p.Zk.˙m//

im;p.Zk.˙m// \ Bk.˙mCp/
:

Informally, Hp
k .˙m/ consists of the k-cycles included from Ck.˙m/ into

Ck.˙mCp/ modulo boundaries. Persistent homology is a more powerful tool than
classical homology, since it allows capturing the changes in homology of a filtered
shape by retrieving the cycles that are non-boundary elements in a certain step of the
filtration and that will turn into boundaries in some subsequent step. The persistence
of a cycle during the filtration gives quantitative information allowing to distinguish
significant and irrelevant cycles of a shape.

Persistent homology of a filtered complex can be computed by utilizing an SNF
reduction algorithm but, focusing on persistent homology with coefficients in a field
(such as Z2), it can be retrieved more efficiently [61]. In this case, the proposed
algorithm is incremental and it partitions the simplices into creators and destroyers
of homology classes pairing simplices associated with the same homology class.
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9.2.4 Discrete Morse Theory

Forman theory [28] is a discrete counterpart of Morse theory, generalizing the results
of the smooth theory from the context of manifolds to cell complexes. This goal is
achieved by considering a function (also called a Forman function) defined over all
the cells of a cell complex. A discrete function F, defined on all the cells of � , is
called a Forman function if, for any k-cell � , all the .k � 1/-faces of � have a lower
F value than � , and all the .k C 1/-faces have a higher F value than � , with at most
one exception. A k-cell is called a critical with index k (or a k-saddle) if there is
no exception. Specifically, a 0-saddle is called a minimum and, if d D dim.� /, a
d-saddle a maximum.

Figure 9.2a shows a Forman function F defined on a simplicial 2-complex. Each
simplex is labeled with the corresponding value of function F. Vertex 0 is critical
(minimum), since F has higher value on all edges incident to it. Triangle 9 is critical
(maximum), since F has lower value on all edges incident to it. Edge 5 is critical
(saddle), since F has higher value on the incident triangles, and lower values on its
extreme vertices.

The unique exception to the above rule which holds for a non-critical cell �
permits to pair � with either one of its faces, or one of its cofaces. A discrete vector
field V on a cell complex � is a collection of pairs .�; 
/ such that each cell of �
is in at most one pair of V . A Forman function F induces a discrete vector field VF

called the gradient vector field (or Forman gradient) of F on � consisting of the
collection of pairs .�; 
/, where � is a .k �1/-cell and 
 is a k-cell, coface of � such
that F.�/ � F.
/. Such pair can be depicted as an arrow going from � (tail) to 

(head).

Each cell is a head or a tail of at most one arrow, and critical cells are those cells
that are neither the head nor the tail of any arrow.

A V-path (or gradient path) is a sequence �1; 
1; �2; 
2; : : : ; �r; 
r of .k �1/-cells
�i and k-cells 
i, i D 1; : : : ; r with r � 1, such that .�i; 
i/ 2 V , �iC1 is a face of

i, and �i ¤ �iC1. A V-path with r > 1 is closed if �1 is a face of 
r different from
�r�1.

There is a correspondence between Forman functions and discrete vector fields
without closed V-paths [27]. Namely, a discrete vector field V is the gradient vector
field of a discrete Morse function F if and only if V has no closed paths. Figure 9.2b
shows the gradient vector field VF corresponding to the Forman function F in
Fig. 9.2a.

Fig. 9.2 (a) A Forman
function defined on a
simplicial complex and
(b) the corresponding Forman
gradient
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Given a cell complex � endowed with a gradient vector field V , we can obtain a
compact homology-equivalent model for � , called the discrete Morse complex and
denoted as M� D .Mk; Q@k/k2N. Its chain groups Mk are generated by the critical
cells of � and the boundary maps Q@k can be retrieved by following the V-paths of
the gradient vector field.

As proven by Thm. 8.2 in [28], the discrete Morse complex of a gradient vector
field V on � and the cell complex � are homologically equivalent. In the proof
of this result given in [36], the equivalence is demonstrated by providing a chain
equivalence between the two complexes which allows recovering the homology
generators of � through the knowledge of the homology generators of the discrete
Morse complex M�.

As shown in [45], discrete Morse theory can be used to efficiently compute
persistent homology. Similarly to what happens for homology groups, we can
establish an equivalence between persistent homology of a cell complex � and of a
discrete Morse complex associated with it. In this context, if we want persistent
homology information to be preserved, a compatibility condition between the
chosen filtration and the Forman gradient must to be satisfied. More precisely, given
a cell complex � and its filtration F D f�m j 0 	 m 	 Mg, a gradient vector field
V of � is said a filtered gradient vector field of F if, for each pair .�; 
/ 2 V there
exists m 2 f1; : : : ;Mg such that � , 
 2 �m and � , 
 … �m�1. If such condition holds,
the persistent homology groups of � and of the discrete Morse complex induced by
V are equivalent.

9.3 Encoding the Forman Gradient Vector Field

Defining a compact representation for a Forman gradient V corresponds to com-
pactly encoding all the cells paired in V based on the representation used for the
complex on which V is defined. In this section, we describe the most common
representation used for cell complexes, the Incidence Graph (IG), and the encoding
of the Forman gradient V on it. Then, we describe how the IG and the corresponding
Forman gradient can be efficiently encoded on a regular grid using bit-vectors.
Finally, we describe how to encode the Forman gradient on a simplicial complex
described through a compact data structure.

An Incidence Graph (IG) [23] is a topological graph-based data structure
describing the Hasse diagram of a cell complex � , which is the partial order set
of the cells of � and their boundary relations. Thus, the IG is a graph, whose nodes
correspond to the cells of � and such that an arc connects two nodes of consecutive
dimension, if the corresponding cells � and � 0 are mutually incident, i.e., if � is a
face or a coface of � 0.

The arcs of the IG encode all the possible pairings that can be defined on �
by considering two cells of consecutive dimension. As discussed in Sect. 9.2.4, a
Forman gradient V can be described as a pairing between the cells of � such that
each cell is involved in at most one pair (see Fig. 9.3c). Thus, a Forman gradient V
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Fig. 9.3 (a) Example of a cell complex and a Forman gradient V. Red arrows indicate cell pairings
and the blue triangle indicate the minimum. (b) IG corresponding to the cell complex in (a) with
nodes (colored points) and arcs (dotted lines). (c) Arcs depicted in red are the subset of arcs in the
IG, involved in a pairing in V. Notice that all the nodes are connected to at most one red arc except
for the blue node corresponding to the minimum

Fig. 9.4 8-connectivity (a) and 26-connectivity (b) for a square and cubic grid, respectively

is a subset of the pairings in the set of arcs in the IG, and it can be encoded on the
IG by adding 1 bit flag for each arc indicating whether such pairing is also a valid
pair in V .

In a regular grid, a d-cell is connected through a .d�1/-face to the 2d neighboring
elements lying in the directions of the Cartesian axes (known as the 4-connectivity
model for 2D grids), or to the 3d �1 elements lying in the axis-parallel and diagonal
directions (8-connectivity model for 2D grids) [53]. Figure 9.4 illustrates the 8-
connectivity (a) and 26-connectivity (b) for a square and cubic grid, respectively.
Considering the central hyper-cube � of dimension d, hyper-cubes sharing a .d �1/-
face with � are depicted in green, hyper-cubes sharing a .d � 2/-face with � are
depicted in purple and hyper-cubes sharing a .d � 3/-face are depicted in yellow.
Indices shown in Fig. 9.4 indicate the position of the hyper-cube with respect to the
index k of �.

Having fixed a connectivity model, all the cells of a regular grid are indexed.
Thus, given a cell � all the faces/cofaces/adjacents cells of � are retrieved through



196 L. De Floriani et al.

arithmetic operations on the index of �. A Forman gradient V defined on the regular
grid is, thus, compactly defined as a bit-vector on the same indexing schema [31].

When dealing with a simplicial complex, a data structure encoding all simplices
and their incidence relations, like the IG, is definitively too verbose. On the other
hand, there exist data structures for simplicial complexes which are much more
compact and scale well with the dimension, by encoding only its vertices and
top simplices [9, 17]. The use of such data structures makes the computation of
the Forman gradient and of the Morse and Morse-Smale complexes on simplicial
complexes of large size feasible [26, 29, 59]. On the other hand, an encoding for the
Forman gradient is required which associates the gradient pairs only with the top
simplices. We call such an encoding compact gradient [59].

In a d-dimensional simplicial complex ˙ , a d-simplex � has

 
d C 1

k C 1

!
faces of

dimension k, and each face has in turn .kC1/ faces of dimension .k�1/. Since each
k-simplex can be paired with any of the simplices on its boundary or coboundary,

there are
d�1X
kD1

 
d C 1

k C 1

!
� .k C 1/ possible pairs in the restriction of the Forman

gradient V to � . Adding the d C 1 additional pairs from a .d � 1/-simplex on the

boundary of � to an adjacent d-simplex provides a total of
d�1X
kD1

 
d C 1

k C 1

!
� .k C 1/C

d C 1 possible pairs. In Fig. 9.5, these pairs are shown with arrows for a 2-simplex
(triangle) and 3-simplex (tetrahedron). Red arrows indicate pairings between the d-
simplex and its faces, green arrows are between .d � 1/-simplices and their faces
and blue arrows between 1-simplices (edges) and vertices. We refer to such set of
pairs as local frame.

Because in a discrete vector field each simplex can be involved in at most
one pair, there are significantly fewer valid local frame configurations than the
possibilities provided by the bit flag representation. Thus, a local frame can be
compressed by representing only the valid configurations. Since each such pair
within a local frame encodes a single bit of information (i.e., the presence or absence
of that pair), each local frame can be encoded using a bit-vector per d-simplex.

Fig. 9.5 Set of pairings that
can be defined inside a
triangle (a) or tetrahedron (b)
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In a simplicial 2-complex, the encoding associates with a triangle (2-
simplex) � 2 ˙ a subset of the pairs involving its faces. A triangle has
2X

iD1

 
3

k C 1

!
� .k C 1/ C 3 D 3 � 2 C 1 � 3 C 3 D 12 possible pairs for a total

of 212 D 4;096 cases. However, for a Forman gradient, there are only 97 valid cases
for a triangle. Thus, all possible configurations can be encoded by using only 1 byte
per triangle. Similarly, in 3D, there are 32 arrows for a total of 232 D 4;294;967;296

possible configurations, and the valid ones are only 51;030, thus they can be
represented with 2 bytes per tetrahedron.

9.4 Computing a Forman Gradient Vector Field

The algorithms proposed in the literature for computing a Forman gradient V
have been applied in two large areas: scalar field analysis via topological features
and homology and persistent homology computation. The two areas have led
to algorithms with different peculiarities. Algorithms developed for scalar field
analysis [11, 31, 32, 34, 39, 52, 54, 55] compute a combinatorial gradient simulating
the gradient of the function defined at the vertices of the scalar field. We call them
constrained algorithms (see Sect. 9.4.1).

Algorithms for homology computation, instead, are based on reduction operators
used to reduce the dataset in an homologically consistent way [5, 21, 29, 36, 40, 46,
47]. The simplification of the datasets is performed by removing pair of cells but,
working with discrete Morse theory, this can be seen as the construction of pairings
for a Forman gradient V . Specifically, the gradient is obtained as a set of paired cells
(arrows of the gradient) and set of unpaired cells (critical cells). Since the rules for
applying the reduction operators are purely combinatorial, we call these algorithms
unconstrained.

9.4.1 Constrained Approaches

Computing a Forman gradient, i.e., simulating the gradient of a function defined
on a scalar field dataset, is a challenging task recently addressed in the literature
[11, 31, 32, 34, 39, 52, 54, 55]. Datasets produced in this area are generally
characterized by a huge number of points regularly distributed on a 2D or 3D
domain. Since topological feature analysis is based on the critical points (simplices)
identified on the function under consideration, such algorithms must be designed
so as to minimize the number of spurious critical points. This means computing a
combinatorial gradient as much similar as possible to the one of the smooth function.
Moreover, because of the size of the available datasets, some of them [52, 54, 55, 59]
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have been defined to be easily parallelizable or have been specifically developed for
distributed computation.

In [11], the first constrained algorithm is proposed adapting the unconstrained
algorithm described in [40] when a scalar function f (i.e., the discrete Connolly’s
function [16]) is defined on the vertices of a triangle mesh ˙ , and then extended to
its edges and triangles. Roughly speaking, the Connolly function can be considered
as an analog of the mean curvature within a fixed size neighborhood of each point.
Let the primal H and dual graphs HD be two graphs having as arcs the edges of ˙ .
The nodes of H are in one-to-one correspondence with the vertices of ˙ while the
nodes of HD correspond to the triangles of ˙ . Then, a spanning tree on HD is built
for each maximum of f processing the edges by increasing function value and thus
obtaining a spanning forest TD. Dually, a spanning tree is created, for each local
minimum, on H obtaining the spanning forest T. The Forman gradient V of ˙ is
computed by considering T and TD. Roots of T(/TD) are the minima(/maxima) of
V and edges that do not belong to either T and TD are the saddles. Starting from
each root of T, paths to the leaves are visited in a depth-first manner. The visit on
T induces a pairing between each node and the arc to its father, or equivalently a
paring on V of the type (vertex,edge). Dually, for TD the pairings created are of the
type (edge,triangle). The algorithm can be extended to d-dimensional complexes
but only by restricting to the computation of the pairings between 0-simplices and
1-simplices (forming V-paths connecting minima to 1-saddles) and between .d�1/-
simplices and d-simplices (forming V-paths connecting maxima to .d �1/-saddles).

King et al. [39] propose one of the first constrained algorithms addressing the
problem of minimizing the number of critical points. Let the lower link Lk�.�/
of a simplex the subset of the link of � (see Sect. 9.2.1) containing only simplices
with a lower function value than � . The algorithm builds the Forman gradient on a
tetrahedral mesh ˙ working locally in the lower link Lk�.v/ of each vertex v. The
pairing is extended to the cone .vI Lk�.v//, which is the simplex generated by the
union of the vertices of v and Lk�.v/. The number of critical points introduced by
this method is arbitrary large and, thus, a simplification step for reducing the number
of critical cells, locally to each lower link, is expected [28].The algorithm proposed
by Gyulassy et al. in [33] is one of the first algorithms defined in a dimension
independent way and implemented for regular grids. Function f defined on the input
vertices is extended on all cells of � in such a way that, for each cell 
 and each face
� , the function value of 
 is slightly larger than the value of � . The Forman gradient
V is then computed sweeping over the cells of � according to increasing dimension
and function values. A cell, that is not yet critical or paired, is inserted in V as
critical if it has no unpaired cofaces. Otherwise, it is paired with the coface of lowest
function value. Since the different k-cells in � may have the same function value,
the resulting process is not deterministic and some unnecessary critical cells may be
produced by the algorithm. This problem has been addressed in [54] and [55] where
the algorithms, defined for 2D and 3D regular grids respectively, produce pairs
independently of the order in which the cells are considered. Such approaches are
based on the definition of a new function called weighted discrete function and they
provide a basis for a parallelization of the algorithm also. In [32], a similar algorithm
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is proposed which focuses on improving the poor geometric approximation of the
gradient caused by the local assignment of the gradient arrows. This is especially
useful in scalar field analysis, but not for homology computation.

Robins et al. proposed in [52] a dimension-independent algorithm for cell
complexes � with scalar values given at the vertices of the complex. In [52], an
implementation is provided for regular grids, while in [26, 59] the same algorithm
has been implemented for simplicial complexes in 2D and in 3D in combination with
a compact representation for the underlying complex and for the Forman gradient.
Let the lower star of a cell � be the subset of the star of � (see Sect. 9.2.1) containing
only cells with a lower function value than � . The lower star of each vertex v in � is
processed independently, thus leading to a straight-forward parallel implementation.
Each cell inside the star is processed in ascending order of function values and of
dimension. Similarly to [33], each cell is always considered after its faces but here,
pairings between cells are defined based on homotopy expansion. Two cells, k-cell
� and .k C 1/-cell 
 , are paired via homotopy expansion when: � have no unpaired
boundary cells and 
 has only one unpaired boundary cell (i.e., �). As shown in
[52], the critical cells identified by the algorithm in the 3D case are in one-to-one
correspondence with the topological changes in the lower level sets of the scalar
function. This behavior is the one to be expected in a smooth Morse setting. This
makes this algorithm one of the best topologically correct algorithms for computing
a Forman gradient.

Table 9.1 summarizes the algorithms discussed in this section. Algorithms
[32, 54, 54] are not indicated in the table since they are improvements of the idea
presented in [33].

The only dimension-specific algorithms are the one in [11], specifically defined
for 2D simplicial complexes, and the one in [39]. The gradient computation in
the algorithm by Kings et al. [39] could be extended to higher dimensions but
the simplification step could be problematic in higher dimensions (as described
in Sect. 9.6). All of them are implemented for specific complexes (regular grids
[33, 52] or simplicial complexes [11, 39]). Algorithms implemented for regular grids
are typically used for the analysis of gridded volume datasets.

However, since they all rely on discrete Morse theory, they can be easily adapted
to cell complexes.

Table 9.1 Summary of the reviewed algorithms. For each of them the expected input and the
worst time complexity are indicated. Note that jXj denotes the cardinality of set X, and X0 is the
set of the vertices of X

Algorithm Input Time complexity

Cazals et al. [11] 2D simplicial complex ˙ O.j˙ j.logj˙ j C ˛.j˙ j///
King et al. [39] 3D simplicial complex ˙ O.j˙0js/
Gyulassy et al. [33] nD cell complex � O.j� jlogj� j/
Robins et al. [52] nD cell complex � O.j�0jc/
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We can classify the algorithms described above into two groups based on their
time complexity. The algorithms in [39, 52] are based on an implicit subdivision
of the cells of the complex into independent sets (based on the vertices). Both
algorithms consider each cell, in the independent set, exactly once. Since all the
operations are performed in constant time, the complexity depends only on the
number of simplices s [cells c] in each independent set. In most of applications, s
and c are considered negligible with respect to the number of vertices v and thus the
complexity of the entire process is considered linear. The algorithms in [11, 32, 33],
instead, require as initial step a sorting of the simplices. In [11], all the edges are
sorted (with O.j˙ jlogj˙ j/ complexity) and a further step, for the forest creation,
is performed in O.j˙ j˛.j˙ j// with ˛.�/ the inverse of Ackerman’s function. Also
algorithms in [32, 33] sort the cells of the cell complex � based on the Forman
function.

9.4.2 Unconstrained Approaches

Several algorithms have been proposed for computing a Forman gradient on a cell
complex without any constraint, such as scalar values at the vertices of the complex.

The algorithm by Lewiner et al. [40] is the first algorithm of this kind proposed
in the literature with the aim of providing a combinatorial descriptor for 3D shapes.
It has been defined on triangle meshes and then extended to general 2-complexes
� . The algorithm is similar to the one described in [11] (see Sect. 9.4.1), but here
the spanning forests are built by considering a spanning tree for each connected
component of the shape, without ordering the edges of complex � based on a
function value.

With the exception of this latter algorithm, most of the unconstrained algorithms
are based on two simplification operators, called reduction and coreduction. Those
operators are homology-preserving operators which delete a pair of cells from a cell
complex � while preserving the homology groups of � . In the context of discrete
Morse theory, the removal of a pair of incident cells can be seen as a pairing and,
thus, it can be used for building a Forman gradient V on � . Here, we describe these
algorithms presenting a dual strategy for computing the Forman gradient [5, 37].

Let � be a cell complex and let � be a k-cell of � . We call (immediate)
coboundary of � with respect to � the set cbd� � of the .kC1/-dimensional cofaces
of � . Moreover, we call (immediate) boundary of � with respect to � the set bd� �
of the .k � 1/-dimensional faces of � .

A reduction corresponds to a deformation retraction of a cell, which is a face of
only one other cell onto the complex. A pair .�; 
/ of cells of � is a reduction pair
if cbd� � D f
g. The pair of cells can be removed from � without affecting the
homology groups of the cell complex.

The algorithm proposed in [5], builds a Forman gradient on a cell complex �
by randomly applying reduction operators to � . The algorithm starts setting the
working dimension to d, where d is the maximum dimension among the cells of � .
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As long as there are available reductions between a d-cell � and one of it faces 
 ,
the algorithm removes the two cells from � and adds the pair .�; 
/ to V . When
no more reduction is feasible, a d-cell is excised, which becomes a critical cell in
V . When both the set of available reductions and the set of top cells is empty the
working dimension is decreased by one.

The algorithm proposed in [36, 37] is based on a homology-preserving operator
dual to reduction, called a coreduction. In a similar fashion to the algorithm
proposed in [5], coreductions are used in [36] for the construction of a Forman
gradient, on a cell complex � . Let a free cell be a cell with an empty immediate
boundary. The algorithm starts by setting the working dimension to 0. All the
available coreduction pairs between a 0-cell and a 1-cell are excised from the
complex and the corresponding pairing is added to V . When no more coreduction
is possible, a free 0-cell is excised from the cell complex and added as critical to V .
When no more 0-cells are available, the working dimension is increased by one.

The two approaches can be considered dual to each other. In particular, it has
been proven in [29] that the two methods can produce the same Forman gradient.
More formally, any Forman gradient obtained through a sequence of reductions and
removals of top cells can also be obtained through a sequence of coreductions and
removals of free cells and vice versa. The two operators can also be combined to
represent a powerful preprocessing tool to efficiently compute the homology of a
cell complex, as described in [21, 46, 47]. In [29], an algorithm has been proposed
to build a gradient vector field by executing reduction and coreduction pairs in an
interleaved way. It has been shown that any interleaved approach still produces a
Forman gradient and that such a gradient can be obtained through a reduction or a
coreduction pairing.

In [29], two implementations of such methods based on different data structures
have been compared and the trade off between using a verbose data structure
encoding all the boundary/coboundary relations (the Incidence Graph (IG) ) and a
compact data structure, encoding only the vertices and top simplices of a simplicial
complex (IA� data structure) [9], has been shown. The first implementation consid-
ered is Perseus [49], an IG-based software for persistent homology computation.
In Perseus, an algorithm involving both reductions and coreductions has been
developed. Since in the IG all the incidence relations for each simplex are explicitly
encoded, both operators are computationally efficient and their usage can be inter-
leaved. In practical applications however, only a subset of the boundary/coboundary
relations are explicitly stored in order to decrease the storage cost. Then, in order to
avoid inefficiency, only one simplification operator has to be chosen. We will choose
reductions or corrections depending on whether we can retrieve the boundary or
coboundary relations faster, respectively.

For this reason, the IA�-based implementation proposed in [29] performs
correction operators only. In both implementations, the homology of each complex
has been retrieved by computing the Forman gradient and extracting the homology
generators. To evaluate performances, for each dataset, the maximum amount of
memory required by the two algorithms and the timings for computing homology
has been computed.



202 L. De Floriani et al.

Table 9.2 Comparison between timings (in seconds) for the homology computation algorithms
based on the IA� and IG data structures. For dataset Elephant, the IG implementation runs out of
memory. d indicates the maximum dimension for the simplices in the dataset

Dataset Buddha Elephant Fertility Skull Neghip Klein Sphere

d 2 3 7 9

IA� 300 120 62 10 32 149 138

IG 304 � 110 12 47 9 12

The storage cost required by the two implementations (IG/IA�), considering
the maximum amount of memory used at runtime, has been compared. Working
with triangle meshes, the IG-based implementation occupies 3 times more memory
than the IA�, it increases to 4 with tetrahedral meshes and it occupies 17 and 24
times more when working with 7- and 9- complexes, respectively. As expected, the
storage cost for the IA� is dependent of the number of top simplices in the simplicial
complex only. The IG representation, instead, limits the maximum size of the input
complex that can be handled when working in higher dimensions. However, the
timings provided by the two structures are still comparable for 2- and 3-complexes
while the IA� becomes slower in higher dimensions as showing in Table 9.2.

9.5 Computing the Morce Incidence Graph

The Morse Incidence Graph (MIG) [8, 14, 25, 35] is an efficient graph-based
representation for the boundary maps represented by a Forman gradient V . The MIG
associated with V is a graph G D .N;A; �/ such that each k-node in N is in one-to-
one correspondence with a critical k-cell in V and there is an arc joining a k-node
� with a .k C 1/-node 
 if and only if there is a V-path connecting k-saddle � to
.k C1/-saddle 
 . Each arc connecting a k-node � to a .k C1/-node 
 is labeled with
the number of V-paths connecting � to 
 . The label, denoted as �..�; 
//, is also
called the multiplicity of arc .�; 
/.

The Morse Incidence Graph has been originally defined for representing the
incidence relations between the cells of the Morse and Morse-Smale complexes. We
refer to [59] for a complete description of the relations among a Forman gradient
V , the Morse and Morse-Smale complexes that V implicitly represent and the
corresponding Morse Incidence Graph.

The MIG is computed by traversing the V-paths of the compact gradient V
defined on the given complex � . A node is created for each critical cell, and an arc
between two nodes is created if there is a V-path in V connecting them. Since only
the connection of critical cells is needed, ad-hoc strategies can be used to reduce the
number of cells traversed. In 2D, the set of V-paths between saddles and minima are
visited by starting from each critical 1-cell and following the gradient paths until a
minimum is reached. Such paths never branch and, thus, a limited number of 1-cells
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are visited in practice during their traversal. The set of V-paths between saddles and
maxima are obtained in a similar way by considering the 1-cells and the 2-cells of �
The two subgraphs of the MIG connecting minima and 1- saddles and maximal and
.d � 1/-saddles, called extrema graphs, is performed in a dimension-independent
way, leading to the same reduction in complexity. In dimension three or higher, a
new step is introduced to compute the saddle connectors, i.e., the arcs of the MIG
between k-saddles � and .k C 1/-saddles 
 , with k ¤ 0; d � 1. All the gradient
paths starting from 
 are considered, and all the traversed .k C 1/-cells are marked
as visited. Then, starting from � , the same process is performed visiting the gradient
paths in reverse order and considering only the .k C 1/-cells previously marked as
visited.

In three and higher dimensions, gradient paths can branch and merge potentially
resulting in many-to-many adjacency relationships between critical k-cells and
critical .k C 1/-cells. Let us consider a simplicial 3-complex ˙ with v vertices,
whose Forman function contains O.v/ critical 1-cells, each of which connects to
O.v/ critical 2-cells. This produces a discrete Morse complex containing O.v2/
gradient paths between critical 1- and 2-simplices. Since the number of critical 1-
and 2-cells is bounded by v, the number of traversals for any cell during the breadth-
first search is also bounded by v and so the complexity of the whole extraction
process is O.v3/.

A simple solution proposed in [31, 55, 59] aims at reducing the time complexity
of the above algorithm by slightly increasing the space complexity. This is achieved
by storing the k-cells visited during a gradient path traversal. In this way, no cell
is ever visited twice and the time complexity drops to O.v2/. This method works
well when the computation of the saddle connectors is sequential, but there is a
high memory increase for a parallel implementation. The algorithm proposed in
[55] is based on a priority queue which allows counting the number of times a cell
is visited, i.e., each cell is inserted in the queue only a constant number of times and
the complexity of the resulting algorithm has been proven to be O.v2 log v/. This
algorithm is especially well suited for parallel implementations.

9.6 Homology and Persistent Homology Computation

As mentioned before, a discrete Morse complex associated with a cell complex �
provides a compact homology-equivalent model of � . This equivalence allows us
to compute the homology of � by applying the SNF reduction algorithm [1, 48]
on the discrete Morse complex M�. Since the number of critical cells generating
M� is usually negligible with respect to the number of cells of � , this method
considerably improves the efficiency of homology computation. This procedure can
be applied to compute homology of a cell complex � with coefficients different
from Z. The homological equivalence still holds for homology with coefficients in
any arbitrary Abelian group, but typically, only coefficients in Z2 are considered
in the applications. The chain complex to be considered in this case, and on which
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the SNF reduction algorithm is applied, is M�.˙/ ˝Z Z2. This chain complex is
generated by the same critical cells as M� and its boundary maps Q@ ˝Z Z2 can be
obtained, as described in Sect. 9.5, by considering the Z-coefficient boundary maps
Q@ modulo 2.

9.6.1 Computing Homology Generators

The homological equivalence between chain complex M� and cell complex �
implies that, by using the SNF reduction algorithm, we are able to obtain the cellular
homology of � . The homology generators of degree k (Hk) are computed through
SNF reduction. Their geometric realization is obtained starting from the critical k-
cells of V and navigating the gradient pairs. Computing the homology generators
corresponds to compute, for each critical k-cell � , the V-paths connecting � to a
critical .k � 1/-cell.

The computation of such gradient paths starts from a critical k-cell � . All the
.k � 1/-cells in the immediate boundary of � are then selected and, among them,
only the .k � 1/-cells paired with a k-cell different from � are considered. Such
k-cells are inserted into a queue, and the traversal of the complex � continues in
a breadth-first fashion until all the V-paths starting from � have been visited. In
2D, for example, we start from a critical 2-cell (maximum) � and, by following
gradient pairs, we continue adding adjacent 2-cells until all V-paths from � have
been traversed.

The computation of the gradient paths originated from a critical cell is performed
through constant time operations at each cell on the visited V-paths. In 2D, the
extraction of the gradient paths starting from a critical k-cell requires time linear in
the number of cells of � involved in a such V-path since each cell is visited at most
once. As discussed in Sect. 9.5, in three dimensions and higher, visiting the gradient
paths among saddles may exhibit a cubical time complexity.

9.6.2 Computing Persistent Homology

As mentioned in Sect. 9.2.4, it is possible to obtain the persistent homology of
the input cell complex � by studying the persistent homology of a considerably
smaller discrete Morse complex. Both constrained and unconstrained algorithms
can be used for persistent homology computation. In the constrained approaches,
the values of the function associated with the vertices of cell complex � naturally
induce a filtration of � defined by the lower level sets of such function. In [52], for
example, the generic element �m of the filtration induced by the input function on �
is the cell complex containing all the cells of � that have no vertex with a function
value greater than m.
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For unconstrained approaches, the point of view is different. The first difference
is that, in this context, there is no a scalar function assigned to the vertices of the
cell complex, and thus, there is no naturally induced filtration. Once a filtration is
selected, the construction of the Forman gradient is limited by suitable constrains
to obtain a filtered gradient vector field, so as to preserve persistent homology
information [22, 45]. One can obtain a Forman gradient by sequences of homology-
preserving operators such as removals of reduction or coreduction pairs. When using
approaches based on homology-preserving operators, each removal of a pair needs
to be compatible with the filtration. For example, the compatibility condition for
reduction and coredution pairs requires that both the cells in a pair belong to the
same subcomplex of the filtration.

A new approach to efficiently compute persistent homology is based on the
notion of annotation of a simplicial complex [6, 19]. An interesting avenue of
research would be to generalize the definition and the computation of the anno-
tations to the context of chain complexes.

9.6.3 Applications

Homology and persistent homology computation have been applied in many
different fields with a growing attention in the analysis of data in high dimensions
where pure geometric tools are usually not sufficient. In addition, discrete Morse
theory turned out to be a fundamental tool for computing boundary matrices, which
are at the basis of any application involving homology and persistent homology
computation.

In multivariate data analysis, persistent homology has been used to extract sig-
nificant structures in arbitrary high-dimensional data sets, such as high-dimensional
real-world data sets arising from research in cultural heritage [51], and multivariate
point clouds from particle physics, political science and meteorology [50]. In
[56], homological tools provide a criterion for certifying a coverage in sensor
network analysis. In chemistry and biology, methods based on topology are used
for understanding energy landscapes [43]. In astrophysics, homological information
allows to study the topology of the Megaparsec Cosmic Web [60].

In [52] and [31], persistence homology is applied to the study of 3D images.
As described in Sect. 9.4.1, the critical cells obtained with the algorithm defined in
[52] (in the 3D case) are in one-to-one correspondence with the topological changes
in the sub-level complexes and, thus, the persistent homology of the input complex
corresponds to the persistent homology of the much smaller discrete Morse complex
computed.
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9.7 Concluding Remarks

We have reviewed algorithms for computing a Forman gradient on a cell complex
and we have described how to retrieve information from it in order to compute
homology, homology generators and persistent homology of the corresponding
discrete Morse complex.

The Forman gradient, encoded on a regular grid or “on”? i.e., “or on a simplicial
complex”? a simplicial complex, offers an effective framework for retrieving all
information required, such as the Morse chain complex, the boundary maps of the
Morse cells and a filtration. However, optimizing the storage requirements of such
information and their efficient computation need to be investigated.

Datasets are characterized by a constantly growing number of sample points and
consequently by a huge number of simplices, in particular when working in medium
dimensions. In this area, it is crucial to be able to work effectively and efficiently
with simplicial complexes or grids of high dimensions and large size. When dealing
with such kind of data, the ratio between the number of simplices and sample points
of the datasets increases exponentially.

The development of parallel approaches seems to be the most promising research
trend. Taking advantage of GPU and multicore architectures, for improving the
computation time without reducing memory, would be fundamental for developing
interactive tools based on homology computation. In this direction, enhancing
topological data structures with spatial indexes [58] could be an excellent way
for handling huge datasets. Such data structures offer compact representations for
simplicial complexes and infer a natural subdivision on them defining independent
decompositions to be used in parallel computation. The preliminary results obtained
in high dimensions using data stuctures based on the encoding of only the top
simplices [29] further encourage the use of spatio-topological data structures, as
mentioned above.
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Chapter 10
Sparse Models for Intrinsic Shape
Correspondence

Jonathan Pokrass, Alexander M. Bronstein, Michael M. Bronstein,
Pablo Sprechmann, and Guillermo Sapiro

Abstract We present a novel sparse modeling approach to non-rigid shape match-
ing using only the ability to detect repeatable regions. As the input to our algorithm,
we are given only two sets of regions in two shapes; no descriptors are provided
so the correspondence between the regions is not know, nor do we know how
many regions correspond in the two shapes. We show that even with such scarce
information, it is possible to establish very accurate correspondence between the
shapes by using methods from the field of sparse modeling, being this, the first non-
trivial use of sparse models in shape correspondence. We formulate the problem
of permuted sparse coding, in which we solve simultaneously for an unknown
permutation ordering the regions on two shapes and for an unknown correspondence
in functional representation. We also propose a robust variant capable of handling
incomplete matches. Numerically, the problem is solved efficiently by alternating
the solution of a linear assignment and a sparse coding problem. The proposed
methods are evaluated qualitatively and quantitatively on standard benchmarks
containing both synthetic and scanned objects.

10.1 Introduction

Matching of deformable shapes is a notoriously difficult problem playing an impor-
tant role in many applications [17]. Unlike rigid matching where the correspondence
can be parametrized by a small number of parameters (rotation and translation of
one shape w.r.t. the other [5, 10]), non-rigid matching typically uses point-wise
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representation of correspondence, which results in the number of degrees of freedom
growing exponentially with the number of matched points.

Non-rigid correspondence methods try to find correspondence by minimizing
some structure distortion. The structures can be point-wise (local descriptors [3, 14,
33, 37]), pair-wise (distances [6, 8, 13, 23]), or higher order [38].

In order to make the matching problem computationally feasible, it is crucial to
reduce the size of the search space [34]. Most methods use a combination of point-
and pair-wise structure matching in order to achieve this, and typically consist of
three main components: feature detection, feature description, and regularization.
Given two shapes, a feature detector allows to find a set of landmarks (points or
regions) that are repeatable, i.e., appear (possibly with some inaccuracy) on both
shapes. A feature descriptor then assigns to each feature a vector capturing some
local geometric properties of the shape; very often, the two processes are combined
into a single one. Using the descriptors, landmarks on two shapes can be matched
(it has been shown [27] that under some conditions, correct landmark matching
fully determines the intrinsic correspondence between the shapes). Such a matching
reduces the search space size to points with similar descriptors. However, since
the matching uses only local information, such correspondence can be noisy, and
some kind of regularization based on higher-order information is needed to rule out
bad or inconsistent correspondences. This information is also used to establish the
correspondence between the rest of the points on the shapes. Often, the process is
applied hierarchically, restricting the candidate matches to points in the proximity
of the landmarks [31].

Computer graphics and geometry processing literature contains a plethora of
approaches for each of the aforementioned components. Feature detection methods
try to locate stable points or regions [11, 21] that are invariant under isometric
deformations and robust to noise. Popular feature descriptors include the heat
kernel signature (HKS) [14, 33], wave kernel signature (WKS) [3], global point
signature (GPS) [30] or methods adopted from the domain of image analysis [37].
As regularization, pairwise structures such as geodesic [6, 23] or diffusion distances
[8] and higher-order structures [38] have been used.

Alternatively, there have been several attempts to represent correspondences
with a small set of parameters. Elad and Kimmel [13] used multidimensional
scaling (MDS)-type methods to embed the intrinsic structure of the shapes into
a low-dimensional Euclidean space, posing the problem of non-rigid matching
as a problem of rigid matching of the corresponding embeddings (“canonical
forms”). Mateus et al. [22] used spectral embeddings instead of MDS. Lipman and
Funkhouser [20] embedded the shapes into a disk by means of conformal maps and
represented the correspondence as a Möbius transformation.

More recently, Ovsjanikov et al. [26] introduced the functional representation
of correspondences, allowing to perform a “calculus” of correspondences. In this
approach, correspondence is modeled as a correspondence between functions on
two shapes rather than points, and can be compactly represented in the Laplace-
Beltrami eigenbasis as a matrix of coefficients of decomposition of the basis
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functions of the first shape in the basis of the second one. In this paper, we will
be relying upon this latter representation.

10.1.1 Main Contribution

The main practical contribution of this paper is an approach for finding dense
intrinsic correspondence between near-isometric shapes with very little known
information: we only assume to be able to detect regions in two shapes in a
repeatable enough way (i.e., that at least some regions in one shape correspond
accurately enough to some other regions in another shape). No region descriptors
are given, so the correspondence of the regions is unknown. The assumption of
near-isometry assures that in the functional representation of [26], the unknown
correspondence can be represented as a sparse matrix. The assumption of repeatable
regions implies that there exists some unknown permutation that orders the regions
according to their correspondence.

We formulate the problem of permuted sparse coding, in which we simultane-
ously look for the permutation and the correspondence, thereby introducing the
very successful area of sparse modeling into efficient and state-of-the-art shape
correspondence. We note that with the permutation fixed, our problem becomes
the standard sparse coding problem; having the correspondence fixed, the problem
becomes a linear assignment. This allows efficient numerical solution by alternating
the two aforementioned problems and employing efficient solvers that exist for both.

Our method relies on a pretty common assumption that the shapes are nearly-
isometric (though our experimental results show our approach still works even when
departing from this assumption), and out of all methods we are aware of, it uses
perhaps the scarcest amount of data to establish dense correspondence between the
shapes. For example, sandard region detectors with high repeatability such as [21]
are sufficient.

Compared to recent techniques for region-wise shape matching (see, e.g., [15, 16,
28, 36]), our approach has several important practical advantages: First, we do not
use any feature descriptor. Second, most region-wise correspondence approaches
require an additional step of extending the correspondence between matched regions
to the rest of the points.

The rest of the paper is organized as follows. In Sect. 10.2, we overview the
functional representation of correspondences, allowing to work with correspon-
dences as algebraic structures, and state the main notions in sparse modeling. In
Sect. 10.3, we formulate our problem of permuted sparse coding for establishing
correspondence from a set of repeatable regions given in unknown order. We then
extend the problem to the general setting where the region detection process is not
perfectly repeatable. In Sect. 10.4, we describe the numerical optimization used
to solve our permuted sparse coding problem. Experimental results are shown in
Sect. 10.5. Finally, Sect. 10.6 discusses the limitations and possible extensions of
the proposed framework and concludes the paper.
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10.2 Background

10.2.1 Functional Representation of Correspondences

The direct representation of correspondences as maps between two non-Euclidean
spaces limits the range of tools that can be employed for correspondence com-
putation due to the lack of an algebraic structure. In this paper, we rely on the
functional representation of correspondences introduced in [26], which overcomes
this limitation. In what follows, we briefly review the main idea of such functional
representations.

Let X and Y be two shapes, modeled as compact smooth Riemannian manifolds,
related by a bijective correspondence t W X ! Y. Then, for any real function f W
X ! R, we can construct a corresponding function g W Y ! R as g D f ı t�1.
The correspondence t uniquely defines a mapping between two function spaces T W
F .X;R/ ! F .Y;R/, where F .X;R/ denotes the space of real functions on X.
Such a representation is linear, since for every pair of functions f1; f2 and scalars
˛1; ˛2,

T.˛1 f1 C ˛2 f2/ D .˛1 f1 C ˛2 f2/ ı t�1

D ˛1 f1 ı t�1 C ˛2 f2 ı t�1 D ˛1T. f1/C ˛2T. f2/: (10.1)

Assuming that X is equipped with a basis f�igi�1, any f W X ! R can be
represented as

f D
X
i�1

ai�i (10.2)

with the ai being some representation coefficients (in case of an orthonormal basis,
ai D h f ; �ii; in the general case, the coefficients are found by projecting the function
f on the bi-orthonormal basis). Due to the linearity of T,

T. f / D T

0
@X

i�1
ai�i

1
A D

X
i�1

aiT.�i/ (10.3)

If the shape Y is further equipped with a basis f jgj�1, then for every i there exists
coefficients cij such that

T.�i/ D
X
j�1

cij j; (10.4)
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and we can write

T. f / D
X
i;j�1

aicij j: (10.5)

Let us now assume finite sampling of X and Y, with m samples (for simplicity, we
assume that the shapes are sampled at the same number of samples m. The extension
to the case with a different number of samples is straightforward). The bases are
represented as the m � n matrices ˆ and ‰ containing, respectively, n discretized
functions �i and  j as the columns. The functions f and g D T. f / can now be
represented as n-dimensional vectors f D ˆa and g D ‰b with the coefficients a
and b. Using this notation, Equation (10.5) can be rewritten as ‰b D T.ˆa/ D
‰CTa; since ‰ is invertible, this simply means that

bT D aTC: (10.6)

Thus, the n � n matrix C fully encodes the linear map T between the functional
spaces, and contains the coordinates in the basis ‰ of the mapped elements of the
basis ˆ.

10.2.2 Point-to-Point Correspondence

Point-to-point correspondences assume that each point i on X corresponds to
some point j on Y. In functional representation, this is equivalent to having C
that makes each row of ‰CT coincide with some row of ˆ [26]. In applications
requiring point-to-point correspondence, given some C, it can be converted into
a point-to-point correspondence by thinking of ˆ and ‰ as n-dimensional points
clouds, and orthogonal matrix C as a rigid alignment transformation between them.
This procedure is equivalent to iterative closest point (ICP) in n dimensions [26],
initialized with the given C0: first, for each row i of ‰C0

T, find the closest row
j�i in ˆ (this operation can be performed efficiently using approximate nearest

neighbor algorithms). Then, find orthonormal C minimizing
X

i

kˆj�i
�‰CTk2 and

set C0 D C. This operation is repeated until convergence and can be performed
efficiently over all the vertexes of X and Y using approximate nearest neighbor
algorithms.

A more naive approach not imposing orthonormality of C is simply to map every
standard Euclidean basis vector ei in R

m representing a delta function centered at
point i on X to the band-limited approximation, ‰CˆTei, of the corresponding
indicator function on Y. If the maximum value of the latter vector is attained at point
j on Y, the correspondence between point i on X and point j on Y is established.
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10.2.3 Sparse Modeling

One of the main tools that will be used in this paper are sparse models. In what
follows, we give a very brief overview of this vast field, and refer the reader to [12]
for a comprehensive treatise. The central assertion of sparse modeling is that many
families of signals (and later operations as here introduced) can be represented as
a sparse linear combination in an appropriate domain, usually referred to as the
dictionary. This can be written as x � Dz, where x denotes the signal, D the
dictionary, and z the sparse vector of representation coefficients. The dictionary is
often selected to be overcomplete, i.e., with more columns than rows.

Finding the representation of a signal x in a given dictionary D is usually referred
to as sparse representation pursuit or sparse coding. Among the variety of pursuit
methods, we will focus on the so-called Lasso formulation [35] that finds z as the
solution to the unconstrained convex program

min
z

kx � Dzk22 C kzk1: (10.7)

The first term is the data fitting term, while the second term involving the `1 norm,
kzk1 D jz1j C : : : C jznj, promotes a sparse solution; the parameter  controls the
relative importance of the latter. Proximal splitting methods [24] are among the
most efficient and most frequently used numerical tools to solve problem (10.7); in
Sect. 10.4, we present a variant of the proximal splitting algorithms for the solution
of the pursuit problem arising in shape correspondence as detailed in the sequel.

In some cases, signals not admitting the simplistic model of element-wise
sparsity still manifest more intricate types of structured sparsity. In structured sparse
models, the non-zero elements of z come in groups or, more generally, in hierarchies
of groups. A common class of structured pursuit problems can be formulated as
convex programs of the form

min
z

kx � Dzk22 C kzk1;2; (10.8)

where the `1;2 norm, kzk1;2 D kz1k2 C � C kzkk2, assumes that the vector z
is decomposed into k non-overlapping sub-vectors zi, and promotes group-wise
sparse solutions (i.e., the solution will have a small number of groups with non-
zero coefficients, but the sub-vectors representing each such non-zero group will be
dense).

While structured sparse models enforce group structure of each representation
vector independently, it is often useful to consider the structure shared by multiple
vectors. Collaborative sparse models operate on data matrices X, in which each
column corresponds to a data vector, and assert that the patterns of non-zero
coefficients are shared across the corresponding representation vectors, Z. This is
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achieved by solving a pursuit problem of the form

min
Z

kX � DZk2F C kZk2;1; (10.9)

where the first term involving the Frobenius norm serves as the data fitting term, and
the second term with the `2;1 norm promotes row-wise sparsity of the solution. The
`2;1 norm is defined as kZk2;1 D kzT

1k2C� � �CkzT
mk2, where zT

i denotes the i-th row
of Z (note the difference from the `1;2 column-wise counterpart!).

In this paper, we use formulate the shape correspondence problem using a sparse
model, and use sparse modeling tools to efficiently solve it.

10.3 Sparse Modeling of Correspondences

In case the shapes X and Y are isometric and the corresponding Laplace-Beltrami
operators have simple spectra (no eigenvalues with multiplicity greater than one),
the harmonic bases (Laplacian eigenfunctions) have a compatible behavior,  i D
T.�i/ such that cij D ˙ıij. Choosing the discretized eigenfunctions of the Laplace-
Beltrami operator as ˆ and ‰ causes every low-distortion correspondence being
represented by a nearly diagonal, and therefore very sparse, matrix C.

In practice, due to lack of perfect isometry and numerical inaccuracies, the
diagonal structure of C is manifested for the first eigenfunctions corresponding to
the small eigenvalues (low frequencies), and is gradually lost with the increase of
the frequency (see, e.g., Fig. 10.1). However, a correspondence with low metric
distortion will usually be represented by a sparse C. We use this property to

Π B A C O

Fig. 10.1 Near isometric shape correspondence as a sparse modeling problem (see details in text):
Indicator functions of repeatable regions on two shapes are detected and represented as matrices of
coefficients A and B in the corresponding orthonormal harmonic bases ˆ and ‰ . When the regions
are brought into correspondence, the point-to-point correspondence between the shapes can be
encoded by an approximately diagonal matrix C. In the proposed procedure termed as permuted
sparse coding, we solve …B D AC C O simultaneously for an approximately diagonal C and
the permutation … bringing the indicator functions into correspondence. To cope with imperfectly
matching regions, we relax the surjectivity of the permutation and absorb the mismatches into
a row-wise sparse outlier matrix O. For visualization purposes, the coloring of the regions is
consistent as after the application of the permutation. Correspondence is shown between a synthetic
TOSCA and scanned SCAPE shape
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formulate the computation of correspondences in terms of a sparse representation
pursuit problem.

Let us assume to have some region (or feature) detection process that given a
shape X produces a collection of functions f fi W X ! Rg based on the intrinsic
properties of the shape only. For example, the fi’s can be indicator functions of
the maximally stable components (regions) of the shape [21]. Since the process is
intrinsic, given a nearly isometric deformation Y or X, it should produce a collection
of similar functions fgj W Y ! Rg.

To simplify the presentation, let us assume that the process is perfectly repeatable
in the sense that it finds q functions on X and Y, such that for every fi there exists
a gj D fi ı t related by the unknown correspondence t. We stress that the ordering
of the fi’s and gj’s is unknown, i.e., we do not know to which gj in Y a fi in X
corresponds. This ordering can be expressed by an unknown q � q permutation
matrix … (in Sect. 10.3.2, we consider the more general case when the number of
functions detected on X and Y can be different, i.e., … is non-square).

Representing the functions in the bases on each shape, we have fi D ˆai and
gj D ‰bj. Since each pair of corresponding fi and gj shall satisfy (10.6), we can
write

…B D AC; (10.10)

where A and B are the q�n matrices containing, respectively, aT
i and bT

j as the rows,
and 	ij D 1 if ai corresponds to bj and zero otherwise.

10.3.1 Permuted Sparse Coding

Note that in relation (10.10), both … and C are unknown, and solving for them
is a highly ill-posed problem. However, by recalling that the correspondence we
are looking for should be represented by a nearly-diagonal C, we formulate the
following problem

min
C;…

1

2
k…B � ACk2F C kW ˇ Ck1; (10.11)

where the minimum is sought over n � n matrices C (capturing the correspondence
t between the shapes in the functional representation) and q � q permutations
… (capturing the correspondence between the detected regions on the shapes).
The first term containing the Frobenius norm can be interpreted as the data term,
while the second term, containing the weighted `1 norm promotes a sparse C; ˇ
denotes element-wise multiplication, and the non-negative parameter  determines
the relative importance of the penalty. Small weights wij in W are assigned close to
the diagonal, while larger weights are selected for the off-diagonal elements. This
promotes diagonal solutions.
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The solution of (10.11) can be obtained using alternating minimization iterating
over C with fixed …, and … with fixed C. Note that with fixed …, we can denote
B0 D …B and reduce problem (10.11) to

min
C

1

2
kB0 � ACk2F C kW ˇ Ck1; (10.12)

which resembles the Lasso problem frequently employed for the pursuit of sparse
representations. On the other hand, when C is fixed, we set A0 D AC, reducing the
optimization objective to

k…B � A0k2F D (10.13)

tr
�
BT…T…B

� � 2tr
�
BT…TA0�C tr

�
A0TA0� :

Since … is a permutation matrix, …T… D I, and the only non-constant term
remaining in the objective is the second linear term. Problem (10.11) thus becomes

max
…

tr
�
…TE

�
; (10.14)

where E D A0BT D ACBT and the maximization is performed over permutation
matrices. To make it practically solvable, we allow … to be a double-stochastic
matrix, which yields the following linear assignment problem:

max
…�0

vec.E/Tvec.…/ s:t:

�
…1 D 1
…T1 D 1:

(10.15)

We refer to problem (10.11) as permuted sparse coding, and propose to solve
it by alternating the solution of the standard sparse coding problem (10.12) and
the solution of the linear assignment problem (10.15). The sparsity constraint has
a regularization effect on this, otherwise extremely ill-posed, problem, and the
following strong property holds:

Proposition 10.1 The process alternating subproblems (10.12) and (10.15) con-
verges to a local minimizer of the permuted sparse coding problem (10.11).

Due to lack of space, the proof will be provided in an extended version of this
contribution. This result means, among other, that despite the relaxation of the per-
mutation matrix to a double-stochastic matrix in the assignment subproblem (10.15),
we are actually recovering a true permutation matrix. This follows from the total
unimodularity of the constraints in (10.15).

We further conjecture that when the solution of (10.12) attains a sufficiently
small value of the data fitting term (the `2 term), global convergence to a unique
minimizer can be guaranteed under non-restrictive technical assumptions. While we
do not yet have a formal proof for this empirically observed behavior, we believe
that techniques similar to [1] can be used to prove this conjecture.
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10.3.2 Robust Permuted Sparse Coding

So far, we have assumed the existence of a bijective, albeit unknown, correspon-
dence between the fi’s and the gj’s. In practice, the process detecting these functions
(e.g., stable regions) is often not perfectly repeatable. In what follows, we will make
a more realistic assumption that q functions fi are detected on X, and r functions
gj detected on Y (without loss of generality, q 	 r), such that some fi’s have no
counterpart gj, and vice versa. This partial correspondence can be described by a
q � r partial permutation matrix … in which now some columns and rows may
vanish.

Let us assume that s 	 q fi’s have corresponding gj’s. This means that there is no
correspondence between r� s rows of B and q� s rows of A, and the relation …B �
AC holds only for an unknown subset of its rows. The mismatched rows of B can be
ignored by letting some columns of … vanish, meaning that the correspondence is no
more surjective. This can be achieved by relaxing the equality constraint …T1 D 1
in (10.15) replacing it with …T1 	 1. However, dropping injectivity as well and
relaxing …1 D 1 to …1 	 1 would result in the trivial solution … D 0. To overcome
this difficulty, we demand every row of A to have a matching row in B, and absorb
the r � s mismatches in a row-sparse q � n outlier matrix O that we add to the data
term of (10.11). This results in the following problem

min
C;O;…

1

2
k…B � AC � Ok2F C kW ˇ Ck1 C �kOk2;1; (10.16)

which we refer to as robust permuted sparse coding. The last term involves the `2;1
norm

kOk2;1 D
rX

iD1
koT

i k2; (10.17)

which can be thought of as the `1 norm of the vector of the `2 norms of the rows
oT

i of O. The `2;1 norm promotes row-wise sparsity, allowing to absorb the errors in
the data term corresponding to the rows of A having no corresponding rows in B;
the parameter � � 0 controls the amount of regularization. The q � r matrix … is
searched over all injective correspondences.

As before, problem (10.16) is split into two sub-problems, one with the fixed
permutation …,

min
C;O

1

2
kB0 � AC � Ok2F C kW ˇ Ck1 C �kOk2;1; (10.18)

with B0 D …B, and the other one with the fixed C,

max
…�0

vec.E/Tvec.…/ s:t:

�
…1 D 1
…T1 	 1;

(10.19)
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with E D .AC/BT. Note that an injective correspondence is relaxed into a row-
wise stochastic and column-wise sub-stochastic matrix …. Proposition 10.1 simply
extends to the robust formulation as well.

10.4 Numerical Solution

The solution of the robust permuted sparse coding problem (10.16) is reduced to
alternating two relatively standard optimization problems, and there exist many
readily available efficient numerical tools to solve them. For the sake of complete-
ness, we provide a concise description of the involved numerics.

Problem (10.19), being a simple linear assignment problem, is solved using the
Hungarian algorithm. As an alternative, linear programming can be employed. To
reduce the search space size, we disallow certain impossible permutations such as
those relating regions with very distinct sizes.

In order to solve (10.18), we use the family of forward-backward splitting
algorithms [24] designed for solving unconstrained optimization problems in which
the cost function can be split into the sum of two terms,

min
x

h1.x/C h2.x/; (10.20)

one, h1, convex and differentiable with an ˛-Lipschitz continuous gradient and
another, h2, convex extended real valued and possibly non-smooth. Clearly, prob-
lem (10.18) falls in this category.

The forward-backward splitting method with fixed constant step defines a series
of iterates, fxkgk,

xkC1 D P˛h2

�
xk � 1

˛
rh1.xk/

�
; (10.21)

where

P˛h2 .x/ D arg min
u

ku � xjj22 C ˛h2.u/ (10.22)

denotes the proximal operator of h2. Many alternatives have been studied in the
literature to improve the convergence rate of forward-backward splitting algorithms
[4, 24]. Accelerated versions reach quadratic convergence rates (the best possible
for the class of first order methods). The discussion of theses methods is beyond of
the scope of this paper.

In our case, the objective comprises a quadratic function h1 D kB0 � AC � Ok2F
and the non-smooth function h2 D kW ˇ Ck1 C �kOk2;1. The proximal operator
splits into two operators, one in C and another one in O, both having closed forms.
The proximal operator corresponding to the `1 norm term is given by the weighted
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input : Data B0;A; parameters ; �; step size ˛.
output: Sparse matrix O and row-wise sparse outlier matrix O
Initialize O0 D B0 and C0 D 0.
for k=1,2,. . . ,until convergence do

CkC1 D P1

�
.I � 1

˛
ATA/Ck � 1

˛
AT.Ok � B0/

�

OkC1 D P2

�
.1� 1

˛
/Ok � 1

˛
.ACk � B0/

�

end
Algorithm 1: Forward-backward splitting method for the solution of (10.18)

soft threshold function

P1.C/ D max

�
jCj � 

˛
W


ˇ sign.C/; (10.23)

where the absolute value and the sign functions are applied element-wise. The i-th
row of the proximal operator corresponding to the `2;1 norm term is given by

.P2.O//i D max
n
koT

i k2 � �

˛

o oT
i

koT
i k2 : (10.24)

The gradient of the quadratic data term with respect to C and O is given
straightforwardly by

rCh1 D ATAC C ATO � ATB0

rOh1 D O C AC � B0: (10.25)

The Lipschitz constant of the gradient determining the step size is bounded by the
maximum eigenvalue

˛ 	 max

�
ATA AT

I A

�
: (10.26)

Plugging the above expressions together into (10.21) yields the forward-backward
splitting optimization summarized in Algorithm 1.

10.5 Experimental Results

In order to evaluate our approach, we performed several experiments on data
from the TOSCA [7], SHREC’11 [9] and SCAPE [2] datasets. The TOSCA set
contains high-quality (10–50 K vertices) synthetic triangular meshes of humans
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and animals in different poses with known ground truth correspondences between
them. SHREC’11 contains meshes from the TOSCA set undergoing simulated
transformations. The SCAPE set contains high-resolution (12 K vertices) scans of a
real human in different poses.

For each pair of shapes we calculated the MSERs using 6–10 eigenfunctions
and selected regions with areas of at least 5–10 % of the total shape area, resulting
in about 5–15 detected regions (see Fig. 10.1). These parameters were selected
empirically for our data sets.

The segments of each shape were projected onto 20 eigenfunctions and the corre-
sponding C matrix was calculated by solving the sparse coding subproblem (10.18)
using an accelerated variant of the method described in Sect. 10.4. The linear
assignment subproblem (10.15) was solved using the Hungarian method [19]. We

initialized the permutation matrix with … D 1

q
11T, and the correspondence matrix

with C D 0. We observed a rapid convergence of the alternating minimization
procedure in one or two iterations (see Fig. 10.2 where for visualization purposes,
… was initialized to identity). We found that the method consistently converged to
the same solution regardless of the initialization. Finally, after convergence of the
alternating minimization, the resulting C was refined using the method described in
Sect. 10.2.2.

The robustness of the method is demonstrated in Figs. 10.3, 10.4, and 10.5;
correct correspondences are computed even when the shapes undergo non-isometric
deformations and are contaminated by geometric or topological noise. In Fig. 10.6,
we used around 45 WKS features detected on two SCAPE shapes, to demonstrate
that our method works equally well with point features. Observe how robust
permuted sparse coding detects and ignores features without matches, and note the

Fig. 10.2 Outer iterations of robust permuted sparse coding alternating the solution of the
sparse representation purusit problem (10.18) with the linear assignment problem (10.19). Three
iterations, shown left-to-right, are required to achieve convergence. Depicted are the permutation
matrix … (first row), the correspondence matrix C (second row), and the outlier matrix O (last
row). The resulting point-to-point correspondence and the correspondence matrix C refined using
the ICP as described in Sect. 10.2.2 are shown in the rightmost column
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Fig. 10.3 Dense point-to-point correspondences obtained between the left TOSCA human shape
and its approximate isometries. Corresponding points are marked with consistent colors. The
average correspondence distortion is depicted in units of the reference shape diameter. The highest
distortions are obtained on the non-isometric joints, but do not exceed 6% of the diameter

Fig. 10.4 Dense point-to-point correspondences obtained between the left SCAPE human shape
and various other poses. Corresponding points are marked with consistent colors

Fig. 10.5 First row: point-to-point correspondences obtained between different non-isometric
shapes: male and female (left); two strongly non-isometric deformations of the dog shape from
the TOSCA set (middle); TOSCA and SCAPE human shapes (right). Second row: Point-to-point
correspondences obtained between SHREC shapes undergoing nearly isometric deformations and
(from left to right) spike noise, Gaussian noise, and topological noise in the form of large and small
holes
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Fig. 10.6 Top: dense point-to-point correspondences obtained between two SCAPE human shapes
using 45 and 43 WKS point features (rejected features are marked in red). Corresponding points
are marked with consistent colors. Bottom, left-to-right: recovered permutation matrix … (rejected
matches are marked in red); outlier matrix O; and correspondence matrix C

effect of such outliers on the matrices … and O. Figure 10.7 shows a quantitative
evaluation and comparison of our algorithm to other correspondence algorithms on
the SCAPE data set. The evaluation was performed using the code and data from
[18]. Comparison to [26] was performed in two settings: In the first setting, k D 20

basis functions were used with indicator functions of the detected stable regions
(about ten regions per shape). In the second setting, k D 100 harmonics were
used, and 200 wave kernel maps were automatically generated for each region,
following verbatim [26]. Our method outperforms existing methods while using
less information. Finally, Fig. 10.8 shows the failure of our approach for very non-
isometric shapes.
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Fig. 10.7 Quantitative evaluation of the proposed permuted sparse coding (PSC) shape correspon-
dence algorithm and its comparison to other correspondence algorithms on the SCAPE shapes
using the evaluation protocol from [18]. Compared are Ovsjanikov et el. original method [26]
(OBSC), and blended maps [18]

Fig. 10.8 Dense point-to-point correspondences obtained between the left TOSCA human shape
and various other non-isometric shapes. The approach fails for significantly non-isometric shapes
due to deviation from the diagonal form of C

The code used in the experiments was implemented in Matalb with parts written
in C. The approximate nearest neighbor search in the ICP refinement step was
accelerated using the FLANN library. The experiments were run on a 2.4 GHz Intel
Xeon CPU. End-to-end execution time varied from 10 to 50 s, with the detailed
breakdown summarized in Table 10.1.
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Table 10.1 Average runtime (in seconds) as a function of the shape size for different stages in
the proposed method: Basis – harmonic basis computation; MSER – region detection; Opt. – alter-
nating minimization procedure; Ref. – ICP-based refinement and point-to-point correspondence
computation; Tot. – total runtime

Vertices Basis MSER Opt. Ref. Tot.

5 K 0.53 0.61 7.80 1.41 10.35
10 K 0.99 1.32 7.91 2.70 12.92
20 K 2.03 3.58 7.91 5.52 19.04
50 K 5.57 14.23 7.85 13.99 41.64

10.6 Discussion and Conclusion

In this paper, we posed the problem of finding intrinsic correspondence between
near-isometric deformable shapes as a problem of sparse modeling. Given only two
sets of regions in the two shapes with unknown correspondence, we are able to
infer a dense correspondence between the shapes from two assumptions: that at
least some of the regions in the two sets are corresponding; and that the shapes are
nearly-isometric. The latter assumption implies that in functional representation in
harmonic bases the unknown correspondence between the shapes is modeled as a
sparse nearly-diagonal matrix; the former assumption implies that there exists an
unknown permutation that reorders the regions in corresponding order. To find both
the permutation and the correspondence, we formulate the novel permuted sparse
coding problem and propose its efficient solution. An additional sparse coding
term addressing outliers is added to the model for handling partial matching and
formulated as the robust permuted sparse coding.

To the best of our knowledge, among other dense correspondence techniques,
our method relies on the smallest amount of information (the ability to find
some repeatable regions) and quite generic assumption (near-isometric shapes). In
particular, it allows us to use only a region detector without a feature descriptor to
find a high-quality correspondence between two shapes.

We note that, as in [26], we explicitly assume that the shapes are nearly isometric,
and that their Laplacians have simple spectrum. This assumption assures that the
Laplacian eigenbases ˆ and ‰ have a compatible behavior, and as a result C has
a nearly-diagonal structure. If we try to relax the restriction on multiplicity, C will
still be sparse, but with unknown sparse structure. We can still use our problem in
this setting, imposing a different sparsity constraint on C.

Relaxing the assumptions even more, we can depart from the near-isometric
model, e.g. considering applications where one wishes to match shapes with roughly
similar geometry but very different details (such as a horse and an elephant). In such
a generic setting, the Laplacian eigenbases may differ dramatically, and thus C have
a non-sparse structure. It is possible to incorporate the bases ˆ and ‰ as variables
into our problem, and in addition to finding the permutation … and correspondence
C find also the bases in which C will have a diagonal structure. This problem
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is akin to dictionary learning used in the sparse modeling literature. In future
research, we will study such a generalization of our framework in the hope to find
correspondences between non-isometric shapes. Another possible generalization of
our problem is for finding correspondence between collections of shapes [18, 25].

It is also worthwhile noting that the novel structured sparse modeling techniques
introduced in [32] provide an alternative to the optimization-based pursuit by
replacing the iterative proximal algorithm with a learned fixed-complexity feed-
forward network. Approaching shape correspondence as a learning problem from
this perspective seems a very attractive future research direction.

Finally, being purely intrinsic, the described correspondence computation algo-
rithms are agnostic to intrinsic symmetries [29], i.e., automorphisms that do not
affect the manifold metric. Incorporating extrinsic information such as the direction
of the normal to the surface, or adding knowingly corresponding seed points [1] can
resolve these ambiguities. We leave these issues for future research.

Acknowledgements Work partially supported by GIF, ISF, and BSF. M.B. is supported by the
ERC Starting grant No. 307047. A.B. is supported by the ERC Starting Grant No. 335491.

References

1. Aflalo, Y., Bronstein, A., Kimmel, R.: On convex relaxation of graph isomorphism. Proc. Nat.
Acad. Sci. 112(10), 2942–2947 (2015)

2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape
completion and animation of people. In: Proceedings of the SIGGRAPH Conference, Los
Angeles (2005)

3. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical
approach to shape analysis. In: Proceeding of Workshop on Dynamic Shape Capture and
Analysis, Barcelona (2011)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Img. Sci. 2, 183–202 (2009)

5. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. Trans. PAMI 14, 239–256
(1992)

6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a
framework for isometry-invariant partial surface matching. PNAS 103(5), 1168–1172 (2006)

7. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes.
Springer, New York (2008)

8. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-
Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape
matching. IJCV 89(2–3), 266–286 (2010)

9. Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J.,
Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen,
D., Zaharescu, A., Zobel, V., Boyer, E., Bronstein, A.M.: Shrec 2011: robust feature detection
and description benchmark. In: EUROGRAPHICS Workshop on 3D Object Retrieval (3DOR),
Llandudno (2011)

10. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In:
Proceeding of Conference on Robotics and Automation, Sacramento (1991)



10 Sparse Models for Intrinsic Shape Correspondence 229

11. Digne, J., Morel, J.M., Audfray, N., Mehdi-Souzani, C.: The level set tree on meshes. In:
Proceeding 3DPVT, Paris (2010)

12. Elad, M.: Sparse and redundant representations: from theory to applications in signal and image
processing. Springer, New York (2010)

13. Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proceedings of CVPR,
Colorado, pp. 168–174 (2001)

14. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion
function. Comput. Graph. Forum 28(5), 1405–1413 (2009)

15. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3d models. Comput. Graph. 33(3),
262–269 (2009)

16. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. TOG
30, 125 (2011)

17. Kaick, O.V., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence.
Comput. Graph. Forum 20, 1–23 (2010)

18. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. TOG 30(4), 79 (2011)
19. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Quart. 2,

83–97 (1955)
20. Lipman, Y., Funkhouser, T.: Mobius voting for surface correspondence. ACM Trans. Graph.

(Proc. SIGGRAPH) 28(3), 72 (2009)
21. Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable compo-

nent detection in deformable shapes. Comput. Graph. 35(3), 549–560 (2011)
22. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching

using Laplacian eigenfunctions and unsupervised point registration. In: Proceeding CVPR,
Anchorage (2008)

23. Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant
recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

24. Nesterov, Y.: Gradient methods for minimizing composite objective function. In: CORE
Discussion Paper 2007/76, Center for Operations Research and Econometrics (CORE).
Catholic University of Louvain, Louvain-la-Neuve (2007)

25. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., Guibas, L.: An optimization approach to
improving collections of shape maps. Comput. Graph. Forum 30, 1481–1491 (2011)

26. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a
flexible representation of maps between shapes. TOG 31(4), 129–139 (2012)

27. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the
heat kernel. Comput. Graph. Forum 29, 1555–1564 (2010)

28. Pokrass, J., Bronstein, A.M., Bronstein, M.M.: A correspondence-less approach to matching
of deformable shapes. In: Proceeding SSVM, Ein-Gedi (2011)

29. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Symmetries of non-rigid shapes. In:
Proceeding of Workshop on Non-rigid Registration and Tracking Through Learning (NRTL),
Stony Brook (2005)

30. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representa-
tion. In: Proceeding of SGP, Barcelona, pp. 225–233 (2007)

31. Sahillioglu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape
correspondence. Comput. Graph. Forum 32, 177–189 (2012)

32. Sprechmann, P., Bronstein, A.M., Sapiro, G.: Learning efficient structured sparse models. In:
Proceedings of ICML, Edinburgh (2012)

33. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature
based on heat diffusion. In: Proceedings of SGP, Berlin (2009)

34. Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.P.: Intrinsic shape matching by planned
landmark sampling. Comput. Graph. Forum 30, 543–552 (2011)

35. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 58(1),
267–288 (1996)



230 J. Pokrass et al.

36. Van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen, D.-Or, Wolf, L., Hamarneh, G.:
Prior knowledge for part correspondence. Comput. Graph. Forum 30, 553–562 (2011)

37. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description
with applications to mesh matching. In: Proceedings of CVPR, Miami (2009)

38. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface
registration using high-order graph matching. In: Proceedings of CVPR, San Francisco (2010)



Chapter 11
Applying Random Forests to the Problem
of Dense Non-rigid Shape Correspondence

Matthias Vestner, Emanuele Rodolà, Thomas Windheuser, Samuel Rota Bulò,
and Daniel Cremers

Abstract We introduce a novel dense shape matching method for deformable,
three-dimensional shapes. Differently from most existing techniques, our approach
is general in that it allows the shapes to undergo deformations that are far from
being isometric. We do this in a supervised learning framework which makes use
of training data as represented by a small set of example shapes. From this set, we
learn an implicit representation of a shape descriptor capturing the variability of
the deformations in the given class. The learning paradigm we choose for this task
is a random forest classifier. With the additional help of a spatial regularizer, the
proposed method achieves significant improvements over the baseline approach and
obtains state-of-the-art results while keeping a low computational cost.

11.1 Introduction

Matching three-dimensional shapes is a pervasive problem in computer vision,
computer graphics and several other fields. Nevertheless, while the advances made
by works such as [2, 4, 10, 14, 23, 29] have been dramatic, the problem is far from
being solved.

Many methods in shape matching use a notion of similarity that is defined on
a very general set of possible shapes. Due to the highly ill-posed nature of the
shape matching problem, it is very unlikely that a general method will reliably find
good matchings between arbitrary shapes. In fact, while many matching methods
(such as methods based on metric distortion [4, 20, 22] and eigen-decomposition
of the Laplacian [2, 23, 29]) mostly capture near-isometric deformations, others
might consider too general deformations which are not consistent with the human
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intuition of correspondence. In applications where the class of encountered shapes
is in-between, adapting the matching methods at hand is often very tedious.

In this paper we try to bridge the gap between general shape matching methods
and application-specific algorithms by taking a learning-by-examples approach.

In our scenario, we assume to have a set of training shapes which are equivalent
up to some class of non-isometric deformations. Our goal is to learn from these
examples how to match two shapes falling in the equivalence class represented by
the training set. To this end, we treat the shape matching problem as a classification
problem, where input samples are points on the shape manifold and the output class
is an element of a canonical label set, which might e.g. coincide with the manifold
of one of the shapes in the training set. A first contribution of this paper consists in
a new random forest classifier, which can tackle this unconventional classification
problem in an efficient and effective way, starting from a general parametrizable
shape descriptor. Our classifier is designed in a way to randomly explore the
descriptor’s parametrization space and find the most discriminative features that
properly recover the transformation map characterizing the shape category at hand.
In this work, we consider the wave kernel signature (WKS) [2] as the shape
descriptor. This descriptor is known to be invariant to isometric transformations,
but the forest can effectively exploit it to match shapes that undergo non-rigid and
non-isometric deformations.

In some sense, the output of the random forest can be seen as a new descriptor
by itself that is tuned to the shapes and deformations appearing in the training set.
In this respect, the proposed method is complementary to existing shape descriptors
as it can improve the performance of a given descriptor [11, 12, 32]. Early attempts
to apply machine learning techniques to the problem of non-rigid correspondence
[25, 28] consider shapes represented by signed distance functions. We follow the
intrinsic view point, considering shapes given by their boundary surface, seen as a
Riemannian manifold.

One of the main benefits of our approach is the fact that the random forest
classifier gives for each point on the shape an ordered set of matching candidates,
hence delivering a dense point-to-point matching. Since such a descriptor does
not include any spatial regularity, we propose to use a regularization technique
along the lines of the functional maps framework [16]. We experimentally validate
that the proposed learning approach improves the underlying general descriptor
significantly, and it performs better than other state-of-the-art matching algorithms
on equivalent benchmarks.

An earlier version of this work was published in [21].

11.1.1 Intrinsic Point Descriptors

We consider 3D shapes that are represented by their boundary surface, a two-
dimensional Riemannian manifold .M; g/ without boundary. A point descriptor is
a function � that assigns to each point on the surface an element of a metric space
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Fig. 11.1 A good point descriptor should at the same time assign similar values to corresponding
points on deformed shapes and dissimilar values to non-corresponding points

D, the descriptor space. A good point descriptor should satisfy two competing
properties (Fig. 11.1):

• deformation-invariance: it should assign similar values to corresponding points
on deformed shapes

• discriminativity: it should well distinguish non-corresponding points

While it is in principle possible to construct a descriptor that is invariant under
an arbitrary large class of deformations (e.g. the constant function), it is evident that
there will always be a tradeoff between deformation-invariance and discriminativity.

The descriptors we consider are based on the spectrum of the Laplace-Beltrami
operator �M D �divM.rM/. Being a symmetric operator the spectrum of �M con-
sists of real eigenvalues 1; 2; : : : and the corresponding eigenfunctions �1; �2; : : :
can be chosen to be real valued and orthonormal. Moreover, �M is a non-negative
operator with a one-dimensional kernel and a compact pseudo-inverse, so we can
order the eigenvalues 0 D 1 < 2 	 : : : and assign to each point x 2 M a vector
p 2 R

2K , p D .1; : : : ; K ; �1.x/; : : : ; �K.x//. The Laplace Beltrami Operator is
purely intrinsic as it is uniquely determined by the metric tensor g D .gij/

2
i;jD1

(respectively its inverse .gij/2i;jD1):

�M D 1p
det g

2X
i;jD1

@

@xi

�
gij
p

det g
@

@xj

�
: (11.1)

As a consequence the eigenvalues k as well as the corresponding eigenspaces
do not change whenever a shape undergoes an isometric deformation. The eigen-
bases however are not uniquely determined, even in the case of one dimensional
eigenspaces the normalized eigenvectors are only unique up to sign. Nevertheless
from the representation p it is possible to construct descriptors that are invariant
under isometric deformations. Given a collection .ti/

n
iD1 of positive numbers, the
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Heat Kernel Signature (HKS)

HKS. p/ D
 X

k

exp.�kti/�k.x/
2

!n

iD1
2 R

n (11.2)

is a n-dimensional intrinsic point-descriptor [29]. From a physical point of view
each component tells us how much heat u.x; ti/ remains at point x after time ti when
the initial distribution of heat is a unit heat source at the very same point:

�u D ut (11.3)

u.0; �/ D ıx (11.4)

Since the class of isometric deformations includes reflections, any intrinsic descrip-
tor will assign identical values to a point and its symmetric counterpart, whenever
shapes exhibit bilateral intrinsic symmetries. Using information about the symmetry
[18] or making use of extrinsic information as in [27] would overcome this problem.

From a signal processing viewpoint HKS can be seen as a collection of low-pass
filters and thus it is not appropriate to localize features, see Fig. 11.2. Motivated by
this observation Aubry et al. [2] introduced the Wave Kernel Signature (WKS), a
descriptor where the low-pass filters are replaced by band pass filters:

WKS.p/ D
 X

k

f.ei;�
2
i /
.k/

2�k.x/
2

!n

iD1
2 R

n (11.5)

Here the parameters .ei; �
2
i / correspond to mean and variance of the log-normal

energy distributions

f.e;�2/./ / exp.� .log e � log/2

2�2
/ (11.6)

Fig. 11.2 The weighting functions of the heat kernel signature (left) can be seen as low-pass filters,
the ones of the wave kernel signature (right) in contrary behave like band-pass filters
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Fig. 11.3 Finding a correspondence between shapes should be feasible even if they are far from
being isometric

The authors propose fixed values for the parameters .ei; �i/ depending on the
truncated spectrum of the Laplace-Beltrami-operator. Moreover they equip the
descripor with a metric related to the L1-distance.

In this work the parameters will be learned from training data, a distance function
between vector valued descriptors is unneeded since descriptors are compared
component wise in a hierarchical manner (Sects. 11.2.1.1 and 11.2.1.3).

Both, HKS and WKS, are invariant under isometric deformations. However the
human notion of similarity by far exceeds the class of isometries. Asking for a
correspondence between an adult and a child or even an animal like a gorilla is
a feasible task for us. Figure 11.3 shows examples of shapes taken from different
datasets [1, 5, 19, 21] that could in principle be put into correspondence. By choosing
application dependent parameters one can achieve descriptors that are less sensitive
to the type of deformation one is interested in. In this work we implicitly determine
optimal parameters when the deformation class is represented by a set of training
shapes with known ground truth correspondence.

11.1.2 Discretized Surfaces and Operators

In practice the shapes are given as triangular meshes M D .VM;FM/. We will
henceforth identify a shape M by the set of it vertices VM. A one-to-one correspon-
dence between two shapes can then be represented by a permutation matrix, a fuzzy
correspondence, i.e. a function that assigns to each point a probability distribution
over the other shape, respectively as a left-stochastic matrix. Functions defined on a
shape become vectors and linear operators acting on them, e.g. the Laplace-Beltrami
operator can be written as matrices. Inner products between functions are calculated
via an area-weighted inner product between the vectors representing them. We chose
the popular cotangent scheme [15] as the discretization of the Laplacian.
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11.2 Dense Correspondence Using Random-Forests

In this work we treat the shape matching problem as a classification problem,
where input samples are points on the shape and the output class is an element
of a canonical label set, which might e.g. coincide with one of the shapes in the
training set (the reference shapes). The classifier we choose is a Random forest,
designed in a way to randomly explore the descriptor’s parametrization space and
find the most discriminative features that properly recover the transformation map
characterizing the shape category at hand. In this work, we consider the wave kernel
signature (WKS) as the parametrizable point descriptor (weak classifier). In general
other choices of parametrizable descriptors, e.g. HKS, are possible. As mentioned
in Sect. 11.1.1 any classifier based on isometry-invariant point descriptors can not
distinguish a point from its symmetric counterpart. Thus the fuzzy outcome of
the Random forest classifier has to be regularized in order to get a consistent
correspondence.

11.2.1 Learning and Inference Using Random Forests

Random forests [3] are ensembles of decision trees that have become very popular in
the computer vision community to solve both classification and regression problems
with applications ranging from object detection, tracking and action recognition [9]
to semantic image segmentation and categorization [26], and 3D pose estimation
[30], to name just a few. The forest classifier is particularly appealing because
its trees can be trained efficiently and techniques like bagging and randomized
feature selection allow to limit the correlation among trees and thus ensure good
generalization. We refer to [7] for a detailed review.

11.2.1.1 Inference

In the context of shape matching, a decision tree comprised by the forest routes a
point m of a test shape M from the root of the tree to a leaf node, where a probability
distribution defined on a discrete label set L is assigned to the point. The path from
the root to a leaf node is determined by means of binary decision functions called
split functions located at the internal nodes, which given a shape point return L or R
depending on whether the point should be forwarded to the left or to the right with
respect to the current node. According to this inference procedure, each tree t 2 F
of a forest F provides a posterior probability P .`jm; t/ of label ` 2 L, given a point
m 2 M in a test shape M (Fig. 11.4).

This probability measure is the one associated with the leaf of tree t 2 F that the
shape point would reach. The prediction of the whole forest F is finally obtained
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Fig. 11.4 At each inner node
of a decision tree a binary
split function is evaluated.
Depending on the result the
point m is either routed to the
left or to the right. Leafs of
the tree correspond to
probability distributions in
the label space. A random
forest is a collection of
mulitple decision trees

...

... ...
P (�|m, t) P(�|m, t)

m ∈ M

(m)

L R

by averaging the predictions of the single trees:

P .`jm;F / D 1

jF j
X
t2F

P .`jm; t/ : (11.7)

The outcome of the prediction over an entire shape M can be represented as a left-
stochastic matrix XM encoding the probabilistic canonical transformation, where

.XM/ij D P
�
`ijmj;F

�
(11.8)

for each `i 2 L and mj 2 M. Using Bayes’ theorem we can further construct a
fuzzy correspondence between two previously unseen shapes (i.e. no members of
the training set).

11.2.1.2 Learning

During the learning phase, the structure of the trees, the split functions and the leaf
posteriors are determined from a training set. Let f.Ri;Ti/gmiD1 be a set ofm reference
shapes Ri each equipped with a canonical transformation, i.e. a bijection Ti W Ri ! L
between the vertex set of the reference shape and the label set L. A training set T
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for the random forest is given by the union of the graphs of the mappings Ti, i.e.

T D f.r;Ti.r// W r 2 Ri; 1 	 i 	 mg : (11.9)

The learning phase that creates each tree forming the forest consists in a recursive
procedure that starting from the root iteratively splits the actual terminal nodes.
During this process each shape point of the training set is routed through the tree
in a way to partition the whole training set across the terminal nodes. The decision
whether a terminal node has to be further split and how the splitting will take place
is purely local as it involves exclusively the shape points that have reached that node.
A terminal node typically becomes a leaf of the tree if the depth of the node exceeds
a given limit, if the size of the subset of training samples reaching the node is small
enough, or if the entropy of the sample’s label distribution is low enough. If this is
the case, then the leaf node is assigned the label distribution of subset S of training
samples that have reached the leaf, i.e.

P .`jS/ D jf.r; `/ 2 Sgj
jSj : (11.10)

The probability distribution P .�jS/ will become the posterior probability during
inference for every shape point reaching the leaf. Consider now the case where the
terminal node is split. In this case, we have to select a proper split function  .r/ 2
fL;Rg that will route a point r reaching the node to the left or right branch. An
easy and effective strategy for guiding this selection consists in generating a finite
pool � of random split functions and retaining the one maximizing the information
gain with respect to the label space L. The information gain IG . / due to split
function 2 � is given by the difference between the entropy of the node posterior
probability defined as in (11.10) before and after having performed the split. In
detail, if S � T is the subset of the training set that has reached the node to be split
and S

L, SR is the partition of S induced by the split function  then IG . / is given
by

IG . / D H .P .�jS// � H .P .�jS/ j / ; (11.11)

where H .�/ denotes the entropy and

H .P .�jS/ j / D jSLj
jSj H

�
P
��jSL��C jSRj

jSj H
�
P
��jSR�� : (11.12)

Intuitively the information gain of a split function is higher, the better it seperates
members belonging to different classes (see Fig. 11.5).
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Fig. 11.5 The split function
visualized as a solid line has
the highest information gain
(IG) among the three
candidates

11.2.1.3 Choice of Decision Functions

During the build up of the forest the randomized training approach allows us to vary
the parametrization of the shape descriptor for each point of the shape. In fact, we
can in principle let the forest automatically determine the optimal discriminative
features of the chosen descriptor for the matching problem at hand. In this work
we have chosen the Wave Kernel Signature (WKS) but as mentioned above, in
principle any parametrizable feature descriptor (e.g. HKS) can be considered. From
a practical perspective, it can be shown [2] that the sum in (11.5) can be restricted
to the first k < 1 components. We make explicit in (11.5) the dependency on k by
writing:

p.mI e; k/ D
kX

kD1
f 2e .�k/�

2
k .m/ : (11.13)

We are now in the position of generating at each node of a tree during the training
phase a pool of randomized split functions by sampling an energy level ei, a number
of eigenpairs ki and a threshold 
i. Accordingly, the split functions will take the
form:

 i.m/ D
(
L if p.mI ei; ki/ > 
i

R otherwise .
(11.14)

11.2.2 Interpretation and Regularization of the Forests
Prediction

The simplest way to infer a correspondence from a forest prediction consists in
assigning each point m 2 M to the most likely label according to its final distribu-
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Fig. 11.6 The coordinate functions from a test shape M (standing cat) are transferred to a
reference shape R (walking cat) via the functional map TXM;R induced by the forest prediction.
Most of the ambiguities arise in fx, and are due to the global intrinsic symmetry of the cat. The
first column shows the map fx on the test cat, while the second and third columns are obtained
by mapping fx without and with regularization respectively. The remaining four columns show the
mappings of fy and fz without regularization. The symmetric ambiguities disappear as a result of
the regularization process (columns (a)–(c), matches encoded by color)

tion, i.e., the label maximizing P .`jm;F /. If we are also given a reference shape R
from the training set, the maximum a posteriori estimate of ` can be transformed into
a point-to-point correspondence from M to R via the known bijection T W R ! L.
Figure 11.6a, b show an example of this approach. The resulting correspondence
is exact for about 50 % of the points, whereas it induces a large metric distortion
on the rest of the shape. However, this is not a consequence of the particular
criterion we adopted when applying the prediction. Indeed, the training process can
not distinguish symmetric points and is oblivious to the underlying manifolds as
it is only based on pointwise information: the correspondence estimates are taken
independently for each point and thus the metric structure of the test shape is not
taken into account during the regression. Nevertheless, as we shall see, the predicted
distributions carry enough information that can be exploited to obtain a consistent
matching.

11.2.2.1 Functional Maps

Multiplying XM (as defined in (11.8)) from the left with the permutation matrix
associated to the known bijection T W L ! R between the label space L and a
reference shape R gives raise to another left-stochastic matrix XM;R. As pointed out
in [16] this (fuzzy) correspondence XM;R can be interpreted as a linear map TXM;R W
L2.M/ ! L2.R/. In Fig. 11.6 (first 7 columns) we use such a construction to map
the coordinate functions fi W M ! R (where i 2 fx; y; zg) to scalar functions on
R. Specifically, we plot f i and their reconstructions gi D TXM;Rf i. Note that the
reference shape is axis-aligned, so that the x coordinates of its points grow from the
right side (blue) to the left side of the model (red).

As in [16] from now on we consider TXM;R in the truncated harmonic bases on the
resprective shapes and by that dramatically reduce the size of the problem. Since
the LB-eigenfunctions are chosen to form orthonormal bases, the norms considered
in the following section are invariant under this basis-transform. For simplicity we
will still denote the associated matrix by XM;R.
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11.2.2.2 Metric Distortion Using Functional Maps

The plots we show in Fig. 11.6 tell us that most of the error in the correspondence
arises from the (global) intrinsic symmetries of the shape. As mentioned previously,
this is to be expected since the training process does not exploit any kind of
structural information about the manifolds.

This suggests the possibility to regularize the prediction by introducing metric
constraints on the correspondence. Specifically, we consider an objective of the form

E.X/ D c.XM;R;X/C �.X/ ; (11.15)

where X is a correspondence between shapes M and R. The first term (or cost)
ensures closeness to the prediction given by the forest, while the second term is
a regularizer giving preference to geometrically consistent solutions.

A functional map is assumed to be geometrically consistent if it approximately
preserves distance maps. Suppose for the moment we are given a sparse collection
of matches O � M � R. Then for each .p; q/ 2 O we can define the two distance
maps dp W M ! R and dq W R ! R as

dp.x/ D dM.p; x/ ; dq. y/ D dR.q; y/ : (11.16)

With these definitions, we can express the regularity term �.C/

�.C/ D
X

.p;q/2O

!pqkXM;Rdp � dqk22 ; (11.17)

with weights !pq 2 Œ0; 1� (Fig. 11.7).
In order for the regularization to work as expected, the provided collection of

matches should constrain well the solution, in the sense that it should help to

Fig. 11.7 In the regularization step first a coarse subsampling of the shape is constructed via
Euclidean farthest point sampling (dots on the left shape). In the small set of predicted matches
O (cross product of dots on the two shapes) a sparse correspondence is obtained using an l1

constrained optimazation technique. We expect a consistent correspondence to approximately
preserve the distance maps dp
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disambiguate the intrinsic symmetries of the shape. For example, matches along
the tail of the cat would bring little to no information on what solution to prefer.
In practice, we can seek for a few matches that cover the whole shape and be as
accurate as possible. To this end, we generate evenly distributed samples Vfps � M
on the test shape via farthest point sampling [13] by using the extrinsic Euclidean
metric. Then, we construct a matching problem restricted to the set of predicted
matches

O D f.m; r/ 2 Vfps � R j .XM;R/rm > 0g : (11.18)

In practice this set is expected to be small, since the prediction given by the forest
is very sparse and we select around 50 farthest samples per test shape (�0.2 % of
the total number of points on the adopted datasets). This results in a small matching
problem that we solve via game-theoretic matching [20], a `1-regularized technique
that allows to obtain sparse, yet very accurate solutions in an efficient manner. Once
a sparse set of matches is obtained, we solve (11.15) as the weighted least-squares
problem

min
X

kXM;R � Xk2F C
X

.p;q/2O

!pqkXdp � dqk22 ; (11.19)

where !pq 2 Œ0; 1� are weights (provided by the game-theoretic matcher) giving a
measure of confidence for each match .p; q/ 2 O. Figure 11.6c shows the result of
the regularization performed using 25 sparse matches (indicated by small spheres).

Notice that the distance between functional maps is yet not well understood. The
authors of [6] suggest to replace the Frobenius norm in (11.19) with a regularized l0

norm of the vector of singular values:

kAk" D
X

i

�.A/2i
�.A/2i C "

(11.20)

Assuming the shapes to be (nearly) isometric one can expect the Laplace
Beltrami operators on the shapes to commute with the functional map, i.e. (in the
harmonic bases):

X�M D �RX (11.21)

where �M and �R are the diagonal matrices of the singular values. A measure of
deviation from (11.21) can be used as an alternative regularity cost.
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11.2.3 Experimental Results

In all our experiments we used the WKS as pointwise descriptor for the training
process. As in [16], we limited the size of the bases on the shapes to the first
100 eigenfunctions of the Laplace-Beltrami operator, computed using the cotangent
scheme [15].

11.2.3.1 Comparison with Dense Methods

In this set of experiments we compare with the state of the art techniques in (dense)
non-rigid shape matching, namely the functional maps pipeline [16], blended
intrinsic maps (BIM) [10], and the coarse-to-fine combinatorial approach of [24].
We perform these comparisons on the TOSCA high-resolution dataset [5]. The
dataset consists of 80 shapes belonging to different classes, with resolutions ranging
in 4–52K points. Shapes within the same class have the same connectivity and
undergo nearly-isometric deformations. Ground-truth point mapping among shapes
from the same class is available. In particular, given a predicted map f W M ! N and
the corresponding ground-truth g W M ! N, we define the error of f as

". f ; g/ D
X
m2M

dN.f .m/; g.m// ; (11.22)

where dN is the geodesic metric on N, normalized by
p

Area.N/ to allow inter-class

comparisons. Similarly, we define the average (pointwise) geodesic error as
".f ; g/

jMj .

Although the methods considered in these experiments do not rely on any prior
learning, the comparison is still meaningful as it gives an indication of the level of
accuracy that our approach can attain in this class of problems. The experiments
were designed on the same benchmark and following a procedure similar to the one
reported in [10, 16]. Specifically, for each model M of a class (e.g., the class of
dogs), we randomly picked other 6 models from the same class (not including M),
and trained a random forest with them (thus, we only considered classes with at
least 6 shapes). Then we predicted a dense correspondence for M according to the
technique described in Sect. 11.2.2.

We show the results of this experiment in Fig. 11.8 (right). Each curve depicts
the percentage of matches that attain an error below the threshold given on the x-
axis. Our method (red line) detects 90 % correct correspondences within a geodesic
error of 0.05. Almost all correct matches are detected within an error of 0.1. This
is compatible with and even improves the results given by the other methods on the
same data. Note that our training process only makes use of pointwise information
(namely, the WKS); in contrast, the functional maps pipeline (blue line) adopts
several heuristics (WKS preservation constraints in addition to orthogonality of C,
region-wise features, etc.) in order to constrain the solution optimally [16]. Upon
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Fig. 11.8 Left: Fraction of exact matches predicted by a random forest vs. maximum support size
of the probability distributions on a test shape. The forest was trained with 9 shapes. Middle:
Sensitivity to number of shapes used in the training set. Note how the correspondence predicted
using little training data (top-left model) is only partially regularized. Right: Comparison with the
state-of-the-art methods on nearly-isometric shapes (TOSCA). Symmetric correspondences are
considered correct solutions for all methods

visual inspection, we observed that most of the errors in our method were due to
the poor choice of points made in the regularization step. This is analogous to what
is reported for the BIM method [10]. Typically, we observed that around 20 well-
distributed points are sufficient to obtain accurate results.

11.2.4 Sensitivity to Training Parameters

We performed a sensitivity analysis of our method with respect to the parameters
used in the training process, namely the size of the training set and the number
of trees in the forest. In these experiments we employed the cat models from the
TOSCA dataset (28K vertices) with the corresponding ground-truth.

In Fig. 11.8 (middle) we plot the average geodesic error obtained by a test shape
(depicted along the curve) as we varied the number of shapes in the training set. The
geodesic error of the correspondence stabilizes when at least 6 shapes are used for
training. This means that only 6 samples per label are sufficient in order to determine
an optimal parametrization of the nearly-isometric deformations occurring on the
shape. This result contrasts the common setting in which random forests are trained
with copious amounts of data [8, 30], making the approach rather practical when
only limited training data is available.

Figure 11.8 (left) shows the change in accuracy as we increase the number of
trees in the forest. Note that increasing the number of trees directly induces a larger
support of the probability distributions over L. In other words, each point of the test
shape receives more candidate matches if the forest is trained with more trees (see
Eq. (11.7)). The hit ratio in the bar plot is defined as the fraction of exact predictions
given by the forest over the entire test shape. We compare the results with the hit
ratio obtained by looking for k-nearest neighbors in WKS descriptor space, with k
equal to the maximum support size employed by the forest at each level. From this
plot we see that the forest predictions are twice as accurate as WKS predictions for
equal support sizes. In particular, random forest predicts the exact match for almost
half (around 14K points) of the shape when trained with 15 trees.
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reference match using match using match using point on point matched point matched
shape reg. forest WKS affinity reg. WKS affinity reference shape by forest by WKS affinity

Fig. 11.9 Comparison between our method and an approach based on WKS affinity using shapes
from the dataset of Vlasic et al. Columns one to four show the predicted and regularized solutions
for both approaches. The last three columns show how the indicator function at one point gets
functionally mapped to a second shape, by using the (non-regularized) X obtained from the forest,
and by XWKS

Finally, in Fig. 11.9 we show a qualitative comparison between our method and
an approach based on WKS. The rationale of this experiment is to show that the
prediction given by the forest gives better results than what can be obtained without
prior learning within the same pipeline (i.e., prediction followed by regularization).
Specifically, for each point in one shape we construct a probability distribution on
the other shape based on a measure of descriptor affinity in WKS space. We then
estimated a functional map CWKS from the resulting set of constraints, and plotted a
final correspondence before and after regularization.

11.2.5 Learning Non-isometric Deformations

In this section we consider a scenario in which the shapes to be matched may
undergo more general (i.e., far from isometric) deformations. Examples of such
deformations include local and global changes in scale, topological changes,
resampling, partiality, and so forth. Until now, few methods have attempted to tackle
this class of problems. Most dense approaches [10, 16, 17, 24] are well-defined in the
quasi-isometric and conformal cases only; instances of inter-class matching were
considered in [10], but the success of the method depends on the specific choice
of (usually hand-picked) feature points used in the subsequent optimization. Sparse
methods considering the general setting from a metric perspective [4, 20, 22] attempt
to formalize the problem by using the language of quadratic optimization, leading to
difficult and highly non-convex formulations. An exception to the general trend was
given in [31], where the matching is formulated as a linear program in the product
space of manifolds. The method allows to obtain dense correspondences for more
general deformations, but it assumes consistent topologies and is computationally
expensive (�2 h to match around 10K vertices). Another recent approach [11]
attempts to model deviation from isometry in the framework of functional maps,
by seeking compatible harmonic bases among two shapes. However, it relies on
a (sparse) set of matches being given as input and it shares with [31] the high
computational cost.
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Fig. 11.10 Example of dense shape matching using random forests under non-isometric deforma-
tions. Shapes in the shaded area are a subset of the training set. The forest is trained with wave
kernel descriptors and consists of 80K training classes with 19 samples per class. Matches are
encoded by color

As described in Sect. 11.2, the forest does not contain any explicit knowledge of
the type of deformations it is asked to parametrize. This means that, in principle,
one could feed the learning process with training data coming from any collection
of shapes, with virtually no restrictions on the transformations that the shapes
are allowed to undergo. Clearly, an appropriate choice of the pointwise descriptor
should be made in order for the forest to provide a concise and discriminative
model. To test this scenario, we constructed a synthetic dataset consisting of 8 high-
resolution (80K vertices) models of a kid under different poses (quasi-isometries),
and 11 additional models of increasingly corpulent variants of the same kid (local
scale deformations) with a fixed pose (see Fig. 11.10). The shapes have equal
number of points and point-to-point ground-truth is available. We test the trained
random forest with a plump kid having a previously unseen pose.

Note that the result is reasonably accurate if we keep in mind the noisy setting:
the forest was trained with WKS descriptors, which are originally designed for
quasi-isometric deformations, and thus not expected to work well in the more
general setting [12]. Despite being just a qualitative evaluation, this experiment
demonstrates the generality of our approach. The matching process we described
can still be employed in general non-rigid scenarios if provided with limited, yet
sufficiently discriminative training data.

11.3 Conclusions

In this article, we showed how the random forest learning paradigm can be employed
for problems of dense correspondence among deformable 3D shapes. To our
knowledge, this is among the first attempts at introducing a statistical learning view
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on this family of problems. The effectiveness of our approach is demonstrated on a
standard benchmark, where we obtain comparable results with respect to the state of
the art, and very low prediction times for shapes with tens of thousands of vertices.
The approach is flexible in that it provides a means to model deformations which
are far from isometric, and it consistently obtains high predictive performance on
all tested scenarios.
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Chapter 12
Accelerating Deformable Part Models
with Branch-and-Bound

Iasonas Kokkinos

Abstract Deformable Part Models (DPMs) play a prominent role in current object
recognition research, as they rigorously model the shape variability of an object
category by breaking an object into parts and modelling the relative locations
of the parts. Still, inference with such models requires solving a combinatorial
optimization task. In this chapter, we will see how Branch-and-Bound can be
used to efficiently perform inference with such models. Instead of evaluating the
classifier score exhaustively for all part locations and scales, such techniques allow
us to quickly focus on promising image locations. The core problem that we will
address is how to compute bounds that accommodate part deformations; this allows
us to apply Branch-and-Bound to our problem. When comparing to a baseline
DPM implementation, we obtain exactly the same results but can perform the part
combination substantially faster, yielding up to tenfold speedups for single object
detection, or even higher speedups for multiple objects.

12.1 Introduction

In computer vision the term ‘shape’ is used in a strict sense to refer to explicit
geometric information, such as contours that correspond to surface boundaries,
and in a broader sense to describe whatever is unaffected by appearance changes.
The treatment of shape in terms of contours was the main theme of geometric
3D recognition [19, 33, 36, 53] before the advent of statistical techniques at the
beginning of the previous decade. Shape has hence been used in high-level vision in
its second sense, through features such as Shape Context [1], Scale-Invariant Feature
Transforms (SIFT) [34] or Histograms-of-Gradients (HOG) [5], which describe
shape in terms of distributions on invariant features, such as gradient histograms, or
Convolutional Neural Networks [15, 16, 28, 37], which learn transformation-robust
object representations. While such features provide a robust description of shape to
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object detection tasks, a more explicit represention of shape is desireable in tasks
which require a more detailed object description, such as pose estimation.

Such a representation is currently most successfully provided by deformable
part models (DPM), defined in terms of a set of parts that deform with respect
to each other. Such models have been shown to largely outperform rigid detectors
on challenging benchmarks when trained discriminatively [10], and have become
a standard in object detection and pose estimation research [50, 52]. At the heart
of these models lies the optimization of a merit function with respect to the part
displacements. In this work we take the merit function for granted, using the
discriminatively trained models of [10], and focus on the computational efficiency
of the optimization problem.

The most common detection algorithm used in conjunction with DPMs relies
on the Generalized Distance Transform (GDT) algorithm [11], whose complexity
is linear in the image size. Despite the algorithm’s striking efficiency this approach
still needs to thoroughly evaluate the object score everywhere in the image, which
can become time demanding. In this work we introduce bounding-based techniques,
which extend to part-based models the Branch-and-Bound (BB) and Cascaded
Detection (CD) techniques used for Bag-of-Word classifiers in [29, 30] respectively.
For this we exploit and adapt the Dual Tree (DT) data structure of [18] to provide
the bounds required by BB/CD; we originally presented this technique in [24], but
the current chapter provides a more thorough presentation and evaluation.

Our method is fairly generic; it applies to any star-shaped graphical model
involving continuous variables, and pairwise potentials expressed as separable,
decreasing binary potential kernels. We evaluate our technique using the mixture-
of-deformable part models of [10]. Our algorithm delivers exactly the same results,
but is substantially faster. We also develop a multiple-object detection variation of
the system, where all object hypotheses are inserted in the same priority queue. If
our task is to find the best (or k-best) object hypotheses in an image this can result in
more than a 100-fold speedup. These speedups refer to the part combination process,
after the unary part scores have been computed.

This chapter is structured as follows: after briefly covering prior work in
Sect. 12.2, in Sect. 12.3 we first describe the cost function used in DPMs, and
then motivate the use of bounding-based techniques for efficient object detection.
In Sect. 12.4 we start with a high-level description of BB and CD in a general
setting, and then proceed to describe the details of their implementation for
detection with DPMs: in Sect. 12.4.3 we describe how we bound the DPM score
and in Sect. 12.4.3.3 we describe how we keep the computation of the bound
tractable. Qualitative results are provided throughout the text; we provide systematic
experimental results on the Pascal VOC dataset in Sect. 12.5.
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12.2 Previous Work on Efficient Detection

Cascade Detection (CD) algorithms were introduced in the beginning of the
previous decade in the context of boosting [47] and coarse-to-fine detection [14]
and have led to a proliferation of computer vision applications. However these works
deal with ‘monolithic’ object models, i.e. there is no notion of deformable parts in
the representation. Incorporating parts can make detection more challenging, since
combinatorial optimization problems emerge.

The combinatorics of matching have been extensively studied for rigid objects
[19], while [35] used A� for detecting object instances. For categories, recent works
[4, 13, 27, 31, 39, 43] have focused on reducing the high-dimensional pose search
space during detection by initially simplifying the cost function being optimized,
mostly using ideas similar to A� and coarse-to-fine processing. In the recent work
of [10] thresholds pre-computed on the training set are used to prune computation
and result in substantial speedups compared to GDTs. However this approach
requires tuning thresholds using the training set and comes only with approximate
guarantees.

A line of work which brought new ideas into detection has been based on Branch-
and-bound (BB). Even though BB was studied at least as early as [20], it was
typically considered to be appropriate only for geometric matching/instance-based
recognition. A most influential paper has been the Efficient Subwindow Search
(ESS) technique of [29], where an upper bound of a bag-of-words classifier score
delivers the bounds required by BB. Later [32] combined Graph-Cuts with BB for
object segmentation, while in [30] a Cascaded Detection (CD) system for efficient
detection was devised by introducing a minor variation of BB.

Our work is positioned with respect to these works as follows: unlike existing
BB/CD works [29–32], we use the DPM cost and thereby accommodate parts in
a rigorous energy minimization framework. And unlike the pruning-based works
[4, 10, 13, 39], we do not make any approximations or assumptions about when it is
legitimate to stop computation; our method is exact.

We obtain the bounds required by BB/CD by adapting the Dual Tree data
structure of [18], originally developed in the context of nonparametric density
estimation. To the best of our knowledge, Dual Trees have been minimally used
in object detection; we are only aware of the work in [21] which used Dual Trees to
efficiently generate particles for Nonparametric Belief Propagation. Here we show
that Dual Trees can be used for part-based detection, which is related conceptually,
but entirely different technically.

A considerable body of work has been developed around the efficient approxima-
tion of the part scores of DPMs [6, 7, 25, 26, 40–42, 44, 46]. These can be understood
as complementary to the work presented here, in the sense that we consider that the
part scores have been computed, and tackle the remaining combinatorial problem
of ‘assembling’ the object parts. We actually deal with the approximations incurred
by fast part computation in [25, 26] and show that they can be seamlessly integrated
into the bounding-based framework presented here.
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12.3 Object Detection with DPMs

The state x of a general DPM, e.g. [12, 49] encodes the object’s putative configura-
tions in terms of P position vectors, xp; p D 1; : : :P:

x D fx1; : : : ; xPg; xp 2 Œ1;K� � Œ1;L�; (12.1)

where xp can correspond to any of the K � L D N image pixels. For the most
general graph topology NP part combinations would need to be considered, severely
raising the computational cost of DPMs. Coming up with algorithms of a smaller
complexity is thus crucial for fast object detection in the presence of deformations.

Star-shaped DPMs [8–10] take a step in this direction, by constraining the
model’s topology so that a single part is designated as the ‘root’ node of a graph,
and the remaining parts as the leaf nodes. All leaf nodes p D 2; : : : ;P are connected
exclusively with the root node p D 1, i.e. we have a star-shaped graphical model.

If the root node is placed at x, the score for a part p being placed at x0 is given by
mp.x

0; x/ D Up.x
0/ C Bp.x

0; x/, where the unary term Up.x
0/ measures the fidelity

of the image around position x0 to the appearance model of the p-th part and the
pairwise term Bp; .xp; x0

p/ measures the geometric consistency of the positions of
part p with respect to the root’s position.

In particular, in [9] the appearance term Up.x
0/ D hwp;H.x

0/i is formed as the
inner product of a HOG feature H.x0/ at x0 with a discriminant wp for p. This
captures the local fidelity of the image to the appearance model of part p. The
pairwise terms constrain the relative location x0 of each part p w.r.t. the location
x of the root in terms of a quadratic function of the form:

Bp.x
0; x/ D � �x0 � x � �p

�T
Ip
�
x0 � x � �p

�
; (12.2)

where Ip D diag.Hp;Vp/ is a diagonal ‘precision’ matrix, �p is the nominal relative
location vector, and for the root node, p D 1, we consider:

B1.x
0; x/ D

� �1; x0 ¤ x
0; x0 D x

(12.3)

for convenience, practically ensuring that the ‘root’ part is pinned at position x. We
can view the expression in Eq. 12.2 as related to the log-likelihood of the relative
locations under a diagonal-covariance Gaussian model.

A star-shaped DPM scores a configuration x D .x1; : : : ; xP/ by summing the
merit of its parts:

M.x/ D
PX

pD1
mp.xp; x1/: (12.4)
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To decide if a location x can serve as the root of an object, we maximize over all
configurations that place the root at x:

S.x/
:D max

xWx1Dx
M.x/

Eq: 12.4D max
x

PX
pD1

mp.xp; x/ (12.5)

D
PX

pD1
mp.x/; where mp.x/

:D max
x0

Up.x
0/C Bp.x

0; x/: (12.6)

To go from Eqs. 12.5 to 12.6 we use the fact that M.x/ factorizes over xp; mp.x/
serves as notation for the ‘messages’ being sent from the part nodes to the root node,
and is obtained by eliminating x0 from mp.xp; x/. The part-to-root message passing
described by Eq. 12.6 is identical to the leaf-to-parent message passing equations of
the Max-Product algorithm [23] if we use the logarithm of the probabilities.

The flow of computation of this algorithm is illustrated in Fig. 12.1. As one
can see, the part scores have sharply peaked responses, but tend to provide many
false positives, while the result of message passing (left-to-right transition) and

Fig. 12.1 Pipeline of object detection with star-shaped Deformable Part Models: the image
features are filtered with a set of templates, providing part-specific unary terms. These are used to
pass messages regarding the object’s position to the root, where messages are summed to compute
the overall score. From the maximum of this score we can obtain the best-scoring object hypothesis,
as well as the position of the parts that support it
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summation (top-to-bottom transition), performed at the root node provides a well-
localized estimate of the object’s position.

12.3.1 Complexity of Object Detection with Star-Shaped DPMs

During detection our goal is to identify either (a) M� D farg max
x

S.x/g, or (b)

M� D fx W S.x/ � �g. We will refer to case (a) as first-best detection and (b) as
threshold-based detection. Case (a) is encountered commonly in pose estimation,
or during latent SVM training, when maximizing over latent variables. Case (b)
corresponds to the common setup for detection, where all image positions scoring
above a threshold are used as object hypotheses.

A naive approach to solve both of those cases is to consider all possible values
of x, evaluate S.x/ on them and then recover the solutions. The complexity of this
would be O.PN2/, where N D jfxgj is the cardinality of the set of possible locations
considered (Eq. 12.6 suggests doing N maximizations per point, and we have N
points and P parts).

But due to the particular form of the pairwise term in Eq. 12.2, the maximization
within each summand mp.x/ in Eq. 12.6 lends itself to efficient computation in batch
mode for all values of x using a Generalized Distance Transform (GDT) [11], in
time O.N/. So the standard approach taken so far is to maximize each summand
separately with GDTs and then add up the scores at all image locations to obtain
the overall object score; this yields an overall complexity of O.PN/. Even though
the O.PN/ complexity achieved with GDTs is remarkably fast (requiring 1–2 s for
multi-scale processing of VGA-sized images), the N factor can still slow things
down for large images. This motivates an approach to detection that can potentially
operate with a complexity that is sublinear in the number of pixels – which can
only be accomplished if we can somehow ‘skip’ unpromising pixel positions. This
is implemented in a rigorous, fail-proof manner with bounding-based techniques, as
described below.

12.4 Bounding-Based Detection with DPMs

Our approach to accelerating detection starts from the observation that if we use
a fixed threshold for detection, e.g. �1 for an SVM classifier, then the GDT-based
approach outlined above can be wasteful. In particular it treats equally all image
locations, even when we can quickly realize that some of them score far below the
threshold. This is illustrated in Fig. 12.2: in (a) we show the part-root configuration
that gives the maximum score, and in (b) the score of a bicycle model from [10] over
the whole image domain. The tiny part of the image scoring above a conservative
threshold of �1 is encircled by a black contour in (b).
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(a) Input & Detection result (b) Detector score S(x)

(c) Branch and Bound for {argmaxx S(x)} (d) Cascaded Detection for

{x : S(x) ≥ −1}.

Fig. 12.2 Motivation for a bounding-based approach (note that the classifier is designed to ‘fire’
on the top-left corner of the object’s bounding box): standard part-based models evaluate a
classifier’s score S.x/ over the whole image domain. Typically only a tiny portion of the image
domain should have large scores – in (b) we draw a black contour around fx W S.x/ > �1g for an
SVM-based classifier. Our algorithm ignores large intervals with low S.x/ by upper bounding their
values, and postponing their exploration in favor of more promising ones. In (c) we show as heat
maps the upper bounds of the intervals visited by our algorithm until the strongest location was
explored, and in (d) of the intervals visited until all locations x with S.x/ > �1 were explored

Our approach instead speeds up detection by upper bounding the score of the
detector within intervals of x. These bounds can be rapidly obtained using low-cost
operations, as will be detailed in the following. Having a bound allows us to use
a coarse-to-fine strategy that starts from an interval containing all possible object
locations and then gradually subdivides it to refine the bounds on promising sub-
intervals, while avoiding the exploration of less promising ones.

This is demonstrated in Fig. 12.2c, d where we show as heat maps the upper
bounds of the intervals visited by our approach for first-best and threshold-based
detection respectively. The parts of the image where the heat maps are more fine-
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grained correspond to image locations that seemed promising and were explored at
a finer level. Coarse-grained parts correspond to intervals whose upper bound was
low, and the refinement of the bound was therefore avoided.

Even though the number of operations performed by our bounding-based
approach is image-dependent, we can say that it is roughly logarithmic in the image
size, since our approach recursively subdivides the explored intervals (the best-case
complexity of our algorithm is O.jMjP log N/). So rescaling an image by a factor
of 2 will require roughly two more iterations for our algorithm, while for the GDT-
based computation it will require four times the original number of operations (since
we now have four times as many pixels).

We now make these high-level ideas more concrete by first describing Branch-
and-Bound and Cascaded Detection, which respectively address the first-based and
threshold-based detection problems outlined in Sect. 12.3.1, and then get into the
technical details involved in the bound computation.

12.4.1 First-Best Detection with Branch and Bound

Branch and Bound (BB) can be used a generic maximization algorithm for non-
convex or even non-differentiable functions. BB searches for the interval containing
the function’s maximum by using a prioritized search strategy; the priority of an
interval is determined by the function’s upper bound within it. The operation of
BB for the maximization of a function over a domain X0 is illustrated in Fig. 12.3:
BB finds the maximum of a function by using a prioritized search strategy over
intervals; at each step branching first takes place, where an interval – X0, here – is
split into two subintervals, X1;X2. Then bounding takes place, where the value of
the function is upper bounded within each of the new intervals. This upper bound
serves as a priority and dictates which interval is explored next.

The main hurdle in devising a BB algorithm is coming up with a bound that is
relatively tight and also easy to compute. In Fig. 12.3 a parabola is used to upper
bound a complex, non-concave function; the interval’s priority can then be rapidly
estimated by constructing an analytical upper bound on the parabola’s value.

More concretely, if the function we want to maximize is S.x/, BB requires that
we are able to construct an upper bound of this function’s value within an interval.

Fig. 12.3 Illustration of how
Branch-and-Bound proceeds
to maximize a complex,
non-concave function within
an interval by branching and
bounding the function within
intervals. Please see text for
details

X0 X1 X2

a b
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With a slight abuse of notation we introduce:

S.X/
:D max

x2X
S.x/; (12.7)

i.e. we ‘overload’ function symbols to take intervals as arguments. Denoting the
upper bound to function S as S the requirement is that:

S.X/ � S.X/ D max
x2X

S.x/ 8X; S.fxg/ D S.x/; (12.8)

i.e. on a singleton our bound should be tight.
With such a bounding function at our disposal, BB searches for the maximum of

a function using prioritized search over intervals, as illustrated by the pseudocode in
Table 12.1. Starting from an interval corresponding to all possible object locations
(X0) the algorithm splits it into subintervals and uses the upper bounds of the latter as
priorities in search. At each step the algorithm visits the most promising subinterval
and the algorithm terminates when the first singleton interval, say x, is popped. This
is guaranteed to be a global maximum: since the bound is tight for singletons, we
know that the solutions contained in the remaining intervals of the priority queue
will score below or equal to x, since the upper bound of their scores is at most
S.fxg/ D S.x/.

Table 12.1 Pseudocode for Brand-and-Bound (BB) and Cascaded Detection (CD). Both algo-
rithms use a KD-tree for the image domain, where the root node, X0, corresponding to an interval
for the whole image domain and the leaves to singletons (pixels). BB starts from the root interval
and performs prioritized search to find the interval containing the best configuration. CD starts
from the root node and performs a Center-Left-Right traversal of the tree to return all singletons
scoring above a fixed threshold

Branch-and-Bound

M� D BB.X0; S/
INITIALIZE: Q D f.X0; S.X0/g
while 1 do

X D PopŒQ�
if SingletonŒX� then

RETURN X { // First singleton: best
X}

end if
ŒX1;X2� D BranchŒX�
PushŒQ; .X1; S.X1//�; PushŒQ; .X2; S.X2//�

end while

Cascaded Detection

M� D CD.X; S; �/
if S.X/ < � then

RETURN fg
end if
if SingletonŒX� then

RETURN X { //Singleton with score �
�}

end if
ŒX1;X2� D BranchŒX�
M� D CD.X1; S; �/[ CD.X2; S; �/
RETURN M�
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12.4.2 Threshold-Based Detection: Cascaded Detection

The BB algorithm described above is appropriate if we search for the first-best (or
k-best) scoring configuration(s). This is typically the case for tasks such as training
or pose estimation. But for detection we typically want to find all object locations
that score above a threshold � . To accommodate this in [24] we proposed to use
prioritized search, but stop when the popped interval scores below � . This will return
all singletons scoring above � indeed, but it is more efficient to use a cascaded
detection algorithm similar to [30], which avoids the overhead of inserting/removing
elements from a priority queue and is also easy to parallelize.

In particular, our adaptation of the algorithm in [30] uses a tree of intervals, with
the root corresponding to the whole domain and the leaves to singletons (single
pixels). The algorithm, described in pseudocode in Table 12.1, starts from the root
and recursively traverses the tree in a center-left-right manner. At the center we
check if the upper bound of the current node is above threshold. If it is not, we return
an empty set, meaning that none of the node’s children can contain an object above
threshold. Otherwise, if the node is singleton, we return the actual location. Finally
if the node is non-singleton we recurse to its left and right children (subintervals),
and return the union of their outputs.

12.4.3 Bounding the DPM Score

Having given a high-level description of BB/CD we describe in this subsection how
we compute the bounds and in the following one how we organize the computation.

The main operation required by both algorithms is to compute ‘cheap’ upper
bounds of the DPM score function S.x/within an interval X. From Eq. 12.6 we have
that S.x/ D

X
p

mp.x/ and we are now concerned with forming an upper bound for

the quantity S.X/ D max
x2X

X
p

mp.x/. We can upper bound S.X/ as follows:

S.X/
:D
X

p

mp.X/ �
X

p

mp.X/ D
X

p

max
x2X

mp.x/ � max
x2X

X
p

mp.x/ D S.X/;

(12.9)

where mp.X/ are upper bounds on the value of mp.x/ within X – we describe these
below. On the left we have the construction of our upper bound and on the right the
quantity we wanted to bound in the first place. The first inequality stems from the
fact that mp.X/ is an upper bound for mp.X/, the next equality from the definition of
the ‘overloaded’ notation for m.X/. The second inequality stems from the fact that
max
x2X

f .x/Cmax
x2X

g.x/ � max
x2X

f .x/Cg.x/ for any two functions f ; g, and any interval X.
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We clarify that the maximization showing up here is over the interval X for which
the upper bound is computed; it is not the maximization implicit in the definition of
the messages in Eq. 12.6.

As we will focus on the individual summands mp.X/, we omit the p subscript.
Based on Eq. 12.6, m.X/ should satisfy:

m.X/ � m.X/
Eq: 12.7D max

x2X
m.x/

Eq: 12.6D max
x2X

	
max
x02X0

m.x0; x/


; (12.10)

where X and X0 do not need to be identical (by the definition of Eq. 12.6 X0 is the
whole image domain). We now proceed to describe how we compute the relevant
bounds efficiently.

12.4.3.1 Dual Trees and Domain Paritioning

We decompose the computation of the upper bound in Eq. 12.10 into smaller parts
by using the partitions X D [d2DXd, X0 D [s2SXs as illustrated in Fig. 12.4. We call
points contained in X0 the source locations and points in X the domain locations,
with the intuition that the points in X0 contribute to a score in X. Making reference
to Fig. 12.4, the ‘domain’ intervals-d could be the letters and the ‘source’ intervals
could be the numbers.

For a given partition of X;X0 we can rewrite m.X/ in Eq. 12.10 as:

m.X/ D max
d

max
x2Xd

max
s

max
x02Xs

m.x0; x/ D max
d

max
s
�s

d; where (12.11)

�s
d
:D max

x2Xd

max
x02Xs

m.x0; x/: (12.12)

The quantity �s
d quantifies the maximal contribution of any source-interval point

Xs to any domain-interval point Xd; and m.X/ expresses the maximal contribution

Fig. 12.4 We rely on a partition of the ‘source’ (red) and ‘domain’ (blue) points to derive rapidly
computable bounds of their ‘interactions’. This could indicate for example that points lying in
square 6 cannot have a large effect on points in square A, and therefore we do not need to go to a
finer level of resolution to exactly estimate their interactions
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that any point within any source-interval can have to any point within any domain-
interval.

In order to compute m.X/ we have at our disposal a range of partitions for the
domain and source points to choose from, represented using separate KD-trees
(hence the ‘Dual Tree’ term). As we illustrate in Fig. 12.6 and further detail in
Sect. 12.4.3.3, we start from coarse partitions of X;X0 and iteratively refine and
prune both. To describe how exactly this takes place we first provide bounds for
the associated terms.

12.4.3.2 Bounding the Appearance and Geometric Terms

Based on Eq. 12.12 and the definition of m.x0; x/ we can upper bound�s
d as follows:

�s
d D max

x2Xd

max
x02X0

s

�
U.x0/C B.x0; x/

� 	 max
x02X0

s

U.x0/C max
x2Xd

max
x02Xd

B.x0; x/ :D �s
d;

(12.13)

where again we use the fact that max
x2X

f .x/C max
x2X

g.x/ � max
x2X

. f .x/C g.x//.

For reasons that will become clear in Sect. 12.4.3.3, we also need to lower bound
the quantity

s
d D min

x2Xd
max
x02Xs

�
U.x0/C B.x0; x/:

�
(12.14)

This provides the weakest contribution to a domain point in Xd by any source point
in Xs. To bound s

d we have two options:

s
d;1 D max

x02Xs

U.x0/C min
x2Xd

min
x02Xs

B.x0; x/ 	 s
d; (12.15)

s
d;2 D min

x02X0
s

U.x0/C min
x2Xd

max
x02Xs

B.x0; x/ 	 s
d: (12.16)

The first bound corresponds intuitively to placing the point of Xs with the best unary
score, say xb to the worst location within Xs and then evaluating the support that it
lends to the ‘hardest’ point of Xs. This is a lower bound since xb will actually be
in at least as good a position with respect to the hardest point. The second bound
corresponds to taking the point of Xs with the worst unary score, say xw and placing
it at the location in Xs that supports the hardest point of Xd. This again is a lower
bound since in practice the point of Xs supporting the hardest point in Xd will have
at least as good a unary score as xw does.

We combine these two bounds into a single and tighter lower bound as:

s
d D max

�
s

d;1; 
s
d;2

�
: (12.17)
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In [24] we had used only the first bound. Computing Eq. 12.17 requires some
additional operations, but the bound is tighter and accelerates detection by a factor
of 10–20 %.

We can rapidly compute the terms involved in the bounds of Eqs. 12.13, 12.14,
12.15, and 12.16. First, the appearance-based terms, max

x2Xs

U.x/ and min
x2Xs

U.x/, can

be computed with fine-to-coarse max-/min-imization through the KD-tree data
structures. The overall complexity of computing all of the relevant terms turns out
to be linear in the image size but with a particularly low constant, equal to the cost
of the max=min operation.

Second, the geometric terms min
x2Xd

max
x02Xs

B.x0; x/;max
x2Xd

max
x02Xd

B.x0; x/ can be rapidly

computed by exploiting the fact that Xd and Xs are rectangular. For clarity’s sake
we now abandon the x notation for coordinates and switch to horizonal and vertical
coordinates, .h; v/. Making reference to Fig. 12.5, we consider two 2D intervals, one
for the domain-node Xd and one for the domain-node Xs; Xd is centered at .hd; vd/,
and has an horizontal/vertical half-range of �d/�d, while for Xs the respective
quantities are .hs; vs/; �s; �s. Using the .h; v/ notation, we can write the pairwise
term between two points, say x 2 Xd; x

0 2 Xs as:

Gx;x0 D �H.h � h0/2 � V.v � v0/2 (12.18)

(hd, vd)

ηd

νd

(hs, vs)

ηs

νs

hd,s hd,s

hd,s

vd,s

vd,s

vd,s

Fig. 12.5 Illustration of the terms involved in the geometric bound computations of Eqs. 12.24,
12.25, and 12.26. The d=s subscript indicates quantities relevant to the domain/source intervals
respectively (we want to bound the score within the domain interval, using contributions from the
source interval)
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where H;V are the diagonal elements of the precision matrix showing up in Eq. 12.2;
we omit the effect of the means � in Eq. 12.2 for simplicity, but they can be trivially
incorporated in what follows.

Since the pairwise cost is separable in the horizontal and vertical dimensions,
we can use distributivity to break the max-/min-imization operations along separate
axes. In particular, we have to compute:

Gd;s
:D max

x2Xd

max
x02Xs

Gx;x0 D max
h2Xh

d

max
h02Xh

s

�H.h � h0/2 C max
v2Xvd

max
v02Xvs

�V.v � v0/2

(12.19)

D �Hh2d;s � Vv2d;s; (12.20)

where hd;s
:D min

h2Xh
d

min
h02Xh

s

jh � h0j; vd;s
:D min
v2Xvd

min
v02Xc

s

jv � v0j (12.21)

where we use i; i to indicate respectively that we are max-/min-imizing with respect
to the points belonging to domain i, and denote by Xv;Xh the projections of a 2D
interval X on the horizontal and vertical axes respectively. Similarly we get:

Gd;s
:D min

x2Xd
max
x02Xs

Gx;x0 D �Hh2
d;s

� Vv2
d;s
; Gd;s

:D min
x2Xd

min
x02Xs

Gx;x0 D �Hh2
d;s

� Vv2
d;s
;

where hd;s
:D max

h2Xh
d

min
h02Xh

s

jh � h0j; vd;s
:D max
v2Xvd

min
v02Xvs

jv � v0j (12.22)

hd;s
:D max

h2Xh
d

max
h02Xh

s

jh � h0j; vd;s
:D max
v2Xvd

max
v02Xvs

jv � v0j (12.23)

For the particular configuration shown in Fig. 12.5 we have:

hd;s D .hd C �d/ � .hs C �s/; vd;s D .vd C �d/ � .vs C �s/;

(12.24)

hd;s D .hd � �d/ � .hs C �s/; vd;s D .vd � �d/ � .vs C �s/;

(12.25)

hd;s D .hd C �d/ � .hs � �s/;

vd;s D .vd C �d/ � .vs � �s/ (12.26)

If we consider all possible relative placements of the two rectangles we obtain the
following forms for the horizontal coordinate:

hd;s D djhd � hsj C .�d � �s/e (12.27)

hd;s D djhd � hsj � .�d C �s/e (12.28)

hd;s D jhd � hsj C .�d C �s/ (12.29)
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where d�e :D max.�; 0/; similar expressions are used for the vertical coordinate after
substituting v; � for h; � respectively.

12.4.3.3 Dual Recursion and Supporter Pruning

We now describe how to control the complexity of maximizing over d and s in
Eq. 12.11. The range of d and s will scale inversely with the cardinality of the
intervals Xs;Xd, meaning that as the bounds get finer a larger number of terms will
be involved; in the limit of singletons Xs;Xd we have a quadratic complexity in the
number of pixels. We now describe how we use a coarse-to-fine algorithm to quickly
prune the range of s involved for every d without sacrificing accuracy.

For this we use a Dual Recursion algorithm akin to the one originally introduced
for Dual Trees by [18]. An illustration of how the algorithm works is provided in
Fig. 12.6: starting from the root and going to the leaves, we recursively prune the
range of source (s) intervals that should be used to bound the value at any domain
(d) interval. In particular we ‘descend’ simultaneously on the source and domain
trees; at the beginning (top) the root node of the source tree is used to bound the
score of the root node of the domain tree and at the end the leaves of the source tree
are used to compute the exact score of the leaves of the domain tree.

We use a recursive algorithm to limit the number of operations involved until
getting to the leaves. Consider that in Eq. 12.11 we know that only a set of
‘supporter’ intervals Sd D fsig should be used in the bound computation relevant
to a domain node-interval d. This means that all other source intervals cannot
contribute something to any of the points contained in d. To reduce the number
of operations when refining these domain and source intervals there are two
observations that allow us to speed things up.

First, the children (sub-intervals) of d need to use only the children (sub-
intervals) of S , i.e. Sd � [Spa.d/fch.si/g, where pa; ch denote the parent and child
operators. If any other points were necessary, these should have been included in the
domain Sd, by the definition of the ‘supporter’ intervals. Second, we can remove
some elements of [Spa.d/fch.si/g when forming Sd, if we know that these cannot
contribute to the optimal score at a domain node. This requires combining �s

d and
the lower bounds of s

d, and relies on the following rationale, illustrated in Fig. 12.7:
consider that a node d has supporters m; n; o. If two nodes n and m support a node
d and their bounds are related by �n

d < m
d , the descendants of interval n can be

ignored from the following maximization. This is intuitively so because the bounds
become tighter as the intervals become smaller, namely lower bounds increase and
upper bounds decrease.
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Fig. 12.6 Illustration of supporter pruning. The left column illustrates the succession of domain
intervals that leads to the optimal object configuration. The next four columns illustrate the
associated ‘supporters’ of that interval for four distinct object parts. Our algorithm starts at the
top with a large interval that is supported by equally large intervals. On the way the domain and
supporter intervals get refined. For each part the supporter intervals are also pruned in every step,
making the overall optimization tractable. At the bottom row the domain interval is a singleton, and
is supported by a single, and singleton, supporter interval. This indicates the optimal part placement
for the given domain interval
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1
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Fig. 12.7 Supporter pruning: source nodes fm; n; og are among the possible supporters of domain-
node l. Their upper and lower bounds (shown as numbers to the right of each node) are used to
prune them. Here, the upper bound for n (3) is smaller than the maximal lower bound among
supporters (4, from o): this implies the upper bound of n’s children contributions to l’s children
(shown here for l1) will not surpass the lower bound of o’s children. We can thus safely remove n
from the supporters. Please see text for details

Below we provide a more concrete stament of this result, while making reference
to Fig. 12.7: denote by s1; s2 the two children of a supporter node s, with s being one
of the three right-most nodes and by d1; d2 the two children of node d, on the left.
We have that

�s
d � �s

d � �
si
dj

8i 2 f1; 2g;8j 2 f1; 2g (12.30)

The first inequality holds from the fact that � is an upper bound to �. The second
inequality holds because according to Eq. 12.12, �s

d
:D max

x2Xs

max
x02Xd

m.x; x0/ while

Xs0 � Xs;Xd0 � Xd; so maximizing a function over a smaller domain will lead to a
smaller quantity. In words, Eq. 12.30 tells us that the contribution �si

dj
of any child

of s to any child of d cannot be larger than the upper bound �s
d to the contribution

of s to d.
We also have that:

s
d 	 s

d 	 s
di

D max.s1
di
; 

s2
di
/; i 2 f1; 2g: (12.31)

The first inequality holds from the fact that s
d lower bounds s

d. The second from
the definition of s

d D min
x2Xd

max
x02Xs

m.x; x0/ in Eq. 12.14, and the fact that Xdi � Xd:

since for s
di

we are minimizing over a smaller set, it follows that s
di

� s
d. Finally

the last equality stems from the definition of s
d and the fact that Xs D Xs1 [ Xs2 .

In words, Eq. 12.31 tells us that if we include both children, s1; s2 of s as potential
supporters of a child di of d, the support at the worst point of di will be at least equal
to s

d.
Having obtained the expressions in Eqs. 12.30 and 12.31 for an arbitrary source

node s, we now turn to how these expressions can be used in order to prune the
children of a node, say n, in the light of the support delivered by another node, say
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m. The condition for doing this is that �n
d 	 m

d . If this holds, then it follows that

�
ni
dj

	 max.m1
dj
; 

m2
dj
/; j 2 f1; 2g; i 2 f1; 2g (12.32)

This tells us that within the domain interval dj any point will be getting a support
from m1;m2 that will be at least as good as the best support it can get from n1 or n2.
Therefore the intervals n1; n2 do not need to be considered anymore, and node n can
be safely pruned – this is illustrated in Fig. 12.6 by the lack of connections between
n1; n2 and the children of d.

Concisely, we prune the children of supporter l to node d if �l
d < max

j2Sd


j
d.

This allows us to keep the maximization over d in Eq. 12.11 manageable at any
point. In practice less than 15 supporters are typically involved at any point of the
computation, as also shown in Fig. 12.6.

12.5 Results: Application to Deformable Object Detection

To estimate the merit of BB we first compare with the mixtures-of-DPMs developed
and distributed in [17]. We directly extend the Branch-and-Bound technique that
we developed for a single DPM to deal with multiple scales and mixtures (‘ORs’)
of DPMs [10, 51], by inserting all object hypotheses into the same queue. In the
Cascaded Detection case we simply do a for-loop over scales and components.

Our technique delivers the same results as [17]: other than differences due to
floating/double point arithmetic the results are identical. We therefore do not provide
any detection performance curves, but only timing results.

Coming to time efficiency we compare the results of the original DPM mixture
model and our implementation, using 1200 images from the Pascal dataset and the
models of [17] for all 20 object categories. As a first experiment we consider the
standard detection scenario where we want to detect all objects in an image that
score above a certain threshold. We show in Fig. 12.8a how the threshold affects the
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Fig. 12.8 (a) Single-object speedup of Cascaded Detection over GDTs on images from the Pascal
dataset, (b, c) Multi-object speedup. Please see text for details
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speedup we obtain: for a conservative threshold the speedup is typically tenfold, but
as we become more aggressive it doubles.

As a second application, we consider the problem of identifying the ‘dominant’
object present in the image, i.e. the category that gives the largest score. Typically
simpler models, like bag-of-words classifiers are applied to this problem, based
on the understanding that part-based models can be time-consuming, therefore
applying a large set of models to an image would be impractical.

Our claim is that Branch-and-Bound allows us to pursue a different approach,
where in fact having more object categories can increase the speed of detection,
if we leave the unary potential computation aside. Specifically, our approach can
be directly extended to the multiple-object detection setting; as long as the scores
computed by different object categories are commensurate, they can all be inserted
in the same priority queue. In our experiments we observed that we can get a
response with less computation per model by introducing more models. The reason
for this is that including into our object repertoire a model giving a large score helps
BB stop; otherwise BB keeps searching for another object.

The plots in Fig. 12.8b, c show systematic results for this experiment on
the Pascal dataset. We compare the time that would be required by GDT to
perform detection of all multiple objects considered in Pascal, to that of a model
simultaneously exploring all categories. In (b) we show how finding the first-best
result is accelerated as the number of objects (M) increases; while in (c) we show
how increasing the ‘k’ in ‘k-best’ affects the speedup. For small values of k the gains
become more pronounced. Of course if we use Cascaded Detection the speedup does
not change for multiple categories when compared to plot (a), since essentially the
objects do not ‘interact’ in any way (we do not use nonmaximum suppression). But
as we turn to the best-first problem, the speedup becomes dramatic, and can often
be more than 100-fold.

We note that the timings in these plots refer to the ‘message passing’ part
implemented with GDT and not the computation of unary potentials, which is
common for both models, or the KD-tree construction, which is linear in the image
size.

A more thorough breakdown of all costs can be found in Table 12.2. These results
are obtained by summing over all 20 categories, and averaging over 1200 images
from the Pascal VOC dataset; we report mean and standard deviation.

The first two rows report the cost of computing unary terms – these costs are
common to the two methods being compared. The first method uses the BLAS-
accelerated implementation of inner products provided in [17], while the second
method uses the FFT in conjunction with the patchwork technique of [7] in order to
accelerate computations. The method of [7] has a clear advantage.

The next row reports the time required to construct the KD-trees for the part
and root intervals, alongside with the associated fine-to-coarse max-/min-imization
operations; these are unique to our method, and of linear complexity, but we observe
that their overall cost is negligible with respect to the overall computation costs.
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Table 12.2 Timings for the
treatment of all 20 categories
per image on a single core, in
seconds. Please see text for
details

Our work GDT-DPMs [17]

Unary terms (BLAS) 23:20˙ 1:49 23:20˙ 1:49

Unary terms (FFT) [7] 9:20˙ 1:21 9:20˙ 1:21

KD-trees 1:72˙ 0:21 0:00˙ 0:00

Detection, � D 0:0 0:25˙ 0:07 10:74˙ 1:02

Detection, � D �:2 0:47˙ 0:12 10:74˙ 1:02

Detection, � D �:4 0:93˙ 0:22 10:74˙ 1:02

Detection, � D �:6 1:95˙ 0:42 10:74˙ 1:02

Detection, � D �:8 4:17˙ 0:84 10:74˙ 1:02

Detection, � D �1 9:14˙ 1:79 10:74˙ 1:02

Detection, 1-best 0:41˙ 0:08 10:74˙ 1:02

Detection, 5-best 0:47˙ 0:09 10:74˙ 1:02

Detection, 10-best 0:48˙ 0:10 10:74˙ 1:02

The next six rows compare the cost of Cascaded Detection for a range of
thresholds, with the linear-complexity GDT.1 The last three rows compare the cost
of Branch-and-Bound for K-best detection with GDT.

Apart from the clear relative improvements with respect to GDTs, we observe
that by combining the FFT-based unary term computation with our Branch-and-
Bound implementation of DPM inference we can detect 20 objects in potentially
less than 10 s per image; these computation costs can be easily reduced further with
multi-threaded computation and of course also by porting part of the computation
to GPUs.

We are working on incorporating such aspects into our existing implementation,
which is available from http://cvn.ecp.fr/personnel/iasonas/dpms.html

12.6 Conclusions and Discussion

In this work we have introduced Dual-Tree Branch-and-Bound for efficient part-
based detection. We have used Dual Trees to compute upper bounds on the
cost function of a part-based model and thereby derived Branch-and-Bound and
Cascaded Detection algorithms for detection. Our algorithm is exact and makes
no approximations, delivering identical results with the DPMs used in [10], but
substantially smaller time. Further, we have shown that the flexibility of prioritized
search allows us to consider new tasks, such as multiple-object detection, which
yielded speedups by two orders of magnitude or more in certain cases.

The work presented in this chapter focuses on the combinatorial optimization
problem related to the ‘assembly’ of a deformable object from its parts; we have

1In our comparisons we use the original- and faster-GDT algorithm of [11] instead of the one
provided in [17].

http://cvn.ecp.fr/personnel/iasonas/dpms.html
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thus only treated one of the many aspects of deformable part modelling. In parallel
works we have been exploring complementary aspects, including (i) the acceleration
of the part score computations [25, 26], see also [6, 7, 40–42, 44, 46] (ii) extensions
of Dual-Tree Branch-and-Bound to 3D [3] (iii) the treatment of better training
criteria and richer graph topologies for shape segmentation with DPMs [2] (iv) the
incorporation of segmentation information in DPMs [45] and, most recently (v) the
use of Deep Convolutional Neural Network (DCNN) features in DPMs [37, 38] –
see also [16, 48] for parallel works. These advances hint at the breadth of problems
accommodated by DPMs, and shape modelling in general. We anticipate that
properly treating the combinatorial structure of the optimization problem underlying
DPMs will help further fuel progress across all these problems.
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Chapter 13
Non-rigid Shape Correspondence Using Surface
Descriptors and Metric Structures
in the Spectral Domain

Anastasia Dubrovina, Yonathan Aflalo, and Ron Kimmel

Abstract Finding correspondence between non-rigid shapes is at the heart of
three-dimensional shape processing. It has been extensively addressed over the last
decade, but efficient and accurate correspondence detection still remains a challeng-
ing task. Generalized Multidimensional Scaling (GMDS) is an approach that finds
correspondence by mapping one shape into another, while attempting to preserve
distances between pairs of corresponding points on the two shapes. A different
approach consists in detecting correspondence between shapes by matching their
pointwise surface descriptors. Recently, the Spectral GMDS (SGMDS) approach
was introduced, according to which the GMDS was re-formulated in the natural
spectral domain of the shapes. Here, we propose a method that combines matching
based on geodesic distances and pointwise surface descriptors. Following SGMDS,
in the proposed solution the entire problem is translated into the spectral domain,
resulting in efficient correspondence computation. Efficiency and accuracy of the
proposed method are demonstrated by comparing it to state-of-the-art approaches,
using a standard correspondence benchmark.

13.1 Introduction

Shape matching is an important component of various three-dimensional shape
processing tasks. When rigid shape matching is considered, the problem is reduced
to the space of rigid transformations with six degrees of freedom, for which there
exist several efficient solutions [3, 10, 18, 40]. However, non-rigid shape matching
is challenging to formulate as a low dimensional optimization problem. When
formulated as a problem of detection of point-to-point correspondence between
shapes, represented by sampled surfaces, for instance, the size of the space of its
possible solutions is exponential in the number of samples. Even when it is restricted
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to the space of isometric transformations, which we focus on in this work, the
problem remains a combinatorial one, if the continuity of the matching is ignored.

A common approach to shape matching consists in minimizing a certain
measure of dissimilarity between shapes, which is based on robust shape properties,
remaining approximately invariant under the transformation relating the shapes. In
one line of approaches, the shapes were treated as metric spaces, and the discrepancy
between them was measured using the Gromov-Hausdorff distance [17, 26] and
its variants. Memoli and Shapiro [41, 42] first suggested to treat sampled shapes
within the Gromov-Hausdorff framework. Bronstein et al. [12–14] introduced a
numerical method, the GMDS, approximating the Gromov-Hausdorff distance by
embedding one shape into another. The GMDS framework can be applied with
geodesic [14, 42], diffusion [9, 15, 19], or commute time distances [16].

In order to detect a meaningful initial solution for the minimization problem,
feature point detectors and descriptors, such as the spin images [30], heat kernel
signature (HKS) [24, 62] and heat kernel maps (HKM) [45], global point signature
(GPS) [56], wave kernel signature (WKS) [7], and scale-space representation [64],
were employed [5, 22, 28, 53, 66]. To avoid correspondence ambiguities, as in the
case of intrinsically symmetric shapes, higher order structures were employed in
[61, 65]. Still, the direct consequence of this correspondence problem formulation
is the large number of dimensions involved, which makes the problem intractable
for large number of potentially corresponding points, or dense point matching. Some
of the previous approaches addressed this problem by adopting hierarchical solvers
and iterative refinement techniques (e.g., [14, 53, 58, 60, 63]), while others reduced
the problem complexity by searching for correspondence between shape segments,
instead of point-to-point matching [6, 29, 49].

Mapping shapes into domains other than the original 3D Euclidean space can
help resolving some of the difficulties mentioned above. A different embedding
domain may reduce the matching complexity significantly, if in this new domain the
transformation between shapes can be modelled with a small number of parameters.
Such approaches include embedding shapes into a flat Euclidean domain, by means
of multidimensional scaling (MDS) [11, 23, 67], or by exploiting the eigenspace of
the Laplace-Beltrami operators (LBO) of the shapes [19, 39, 57]. In these domains,
isometric transformation between the shapes becomes a rigid one, and can be
detected using the aforementioned algorithms for rigid alignment [3, 10, 18, 40]. In
[37, 38], the shapes were conformally embedded into disks, and the transformation
between them was modelled by a six parameter Möbius transform. The results
obtained by Lipman and Funkhouser [38] and Lipman and Daubechies [37] were
further improved by Kim et al. [33], where a set of locally good conformal maps
were tailored into a globally consistent matching. However, in these approaches,
the matching complexity alleviation comes at the cost of possible embedding errors
and ambiguities, such as the possibly unbounded conformal factor in Lipman and
Funkhouser [38], or the sign ambiguity [39, 57], which decreases the quality of the
matching.

Spectral domain has been widely adopted for shape analysis and processing,
and in particular – for shape matching. The eigenspace of the Laplace-Beltrami



13 Non-rigid Shape Correspondence in the Spectral Domain 277

operator, commonly used for this goal [36], was exploited for surface descriptor
computation [7, 22, 24, 57, 62], shape descriptor computation [54], shape flatenning
[19, 39], distances computation on surfaces [9, 16, 19], spectral mesh compression
[31], etc. Lately, various attempts were made to translate the matching problem
into the spectral domain. Ovsjanikov et al. [44] introduced the notion of functional
maps, where, instead of point-wise surface correspondence, they considered corre-
spondence between spaces of functions defined on the two shapes. They showed that
any transformation relating the shapes, point-to-point correspondence in particular,
could by translated into a linear relationship between their corresponding Laplace-
Beltrami eigenspaces, and could be parameterized by a matrix relating these
eigenspaces. For computing functional maps, a number of matching regions, or
feature points, denoted in Ovsjanikov et al. [44] as functional constraints, was
required. Pokrass et al. [50] used maximally stable extremal regions (MSER)
[20, 49] for that goal, and suggested a method for simultaneous functional map
and region correspondence estimation. Shtern and Kimmel [60] used normalized
spectral kernels as functional constraints, achieving state-of-art matching results.
To match non-isometric shapes, which do not have compatible Laplace-Beltrami
eigenspaces, Kovnatsky et al. [35] suggested constructing a common approximated
eigenbase, using joint diagonalization. Ovsjanikov et al. [46] extended the func-
tional maps approach [44] for matching symmetric shapes. There, the matching
ambiguity was solved by performing the matching in an appropriate quotient space,
where the symmetry was factored out. Rodola et al. [55] combined the functional
maps approach with random forests classifier. The classifier was used to produce
a dense fuzzy correspondence, which was then regularized using Ovsjanikov et al.
[44], applied with geodesic distance-based functional constraints.

13.1.1 Contributions

In this paper, which extends our previous work [1], we consider the L2 version
of the Gromov-Hausdorff framework, augmented with surface descriptor preser-
vation term. We cast the corresponding optimization problem into the spectral
domain, using eigenbasis of the Laplace-Beltrami operator, which was proven in
to be optimally tailored for representing smooth functions on manifolds [2]. We
thus obtain a problem formulation, generalizing the previous spectral matching
approaches [1, 44]. The resulting optimization problem is formulated in the standard
least squares form, and solved analytically. In addition, in the proposed problem
formulation, the distance preservation term allows us to achieve higher matching
accuracy than the previous approaches, while maintaining comparable computation
cost. The proposed method was evaluated using the popular TOSCA [12] and
SCAPE [4] non-rigid shape datasets, and the Princeton correspondence benchmark
[32].
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13.2 Correspondence Problem Formulation

Let us consider the shape correspondence problem, which consists in searching for
the best point to point assignment between two given shapes, S and Q. We assume
that each shape is endowed with a distance measure, dS W S � S ! R

C [ f0g
and dQ W Q � Q ! R

C [ f0g, and a set of pointwise k-dimensional surface
descriptors hS W S ! R

k and hQ W Q ! R
k. Both the distance measures and

the surface descriptors are assumed to be approximately invariant with respect to
the transformation relating the shapes S and Q. Then, given a pair of shapes, a
discrete point-to-point assignment between them can be defined through an indicator
function C W S � Q ! f0; 1g, such that

C .s; q/ D
�
1; s 2 S corresponds to q 2 Q;
0; otherwise:

(13.1)

The correspondence problem can then be formulated as a search for an assignment
C that introduces the smallest possible distortion into surface descriptors and metric
structures of the shapes, as it was previously suggested in [21, 22, 52]. However,
when applied to smooth metric spaces like shapes, modelled by two-dimensional
surfaces embedded into R

3, for instance, this is a combinatorial hard problem that
ignores their continuous nature.

In this work, we consider a continuous weak form of the above. Instead of
the binary assignment C W S � Q ! f0; 1g, we employ a continuous fuzzy
correspondence function p W S � Q ! R

C. We define the space of valid
correspondences as all mappings p.s; q/ for which the following holds

Z
S

p.s; q/das D 1; 8q 2 Q;
Z

Q
p.s; q/daq D 1; 8s 2 S: (13.2)

For p.s; q/ describing pointwise correspondence between S and Q, and any pair of
corresponding points s0 2 S; q0 2 Q,

p.s0; q/ D ı.q � q0/; p.s; q0/ D ı.s � s0/:

Here, the delta function ı.s/ is defined in a classical sense, such that
Z

S
ı.s/das D

1 and
Z

S
f .s/ı.s � s0/ds D f .s0/, for any continuous function f W S ! R. In a

more general setting, for any q0 2 Q; s0 2 S, p.s; q0/ could be interpreted as the
probability that s 2 S corresponds to q0, and p.s0; q/ – as the probability that q 2 Q
corresponds to s0.
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Given a one-dimensional descriptor hS W S ! R, its mapping to Q is defined as

Z
S

hS.s/p.s; q/das: (13.3)

For a k-dimensional descriptor, the above transformation is applied separately on
each of the k descriptor components. The surface description distortion, introduced
by the mapping p, is defined as

Z
Q

����
Z

S
hS.s/p.s; q/das � hQ.q/

����
2

daq: (13.4)

Similarly, given a pair of points s 2 S and q 2 Q, the distance between s and the
mapping of q to S is defined as

Z
S

dS.s; s
0/p.s0; q/das0; (13.5)

and the distance between q and the mapping of s to Q is defined as

Z
Q

dQ.q
0; q/p.s; q0/daq0 : (13.6)

Then, the metric distortion, introduced by p, can be defined as

Z
S�Q

�Z
S

dS.s; s
0/p.s0; q/das0 �

Z
Q

dQ.q
0; q/p.s; q0/daq0

�2
dasdaq: (13.7)

Discrete setting In practice, we detect correspondences between shapes represented
by triangulated meshes. In this discrete setting, the correspondence between the
shapes is given by a matrix P, which represents a sampled function p.s; q/. We
further denote by AS and AQ diagonal area element matrices, where .AS/ii � dasi .
Given a triangulated surface, an area element dasi about a specific vertex si 2 S
is approximated by the area of the Voronoi cell about that vertex, as described
in Pinkall and Polthier [48]. The symmetric inter-geodesic distance matrices are
denoted by DS and DQ, such that .DS/ij D dS.si; sj/, that is, the geodesic distance
between points si 2 S and sj 2 S.

The above distortion measures are rewritten in matrix notation, as follows: the
metric distortion (13.7) reads

kPASDS � DQAQPk2S;Q; (13.8)

where kFk2S;Q is the L2 square norm of the function F W Q � S ! R discretized by
the matrix F, defined as kFk2S;Q D trace

�
FTAQFAS

�
. Here, to account for different
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distribution of sampled points on the two shapes, an inner product of a pair of
functions F, G, defined on S, is computed as hF;GiS D FTASG.

The descriptor distortion (13.4) reads

kPASHS � HQk2Q: (13.9)

where kFk2Q D trace
�
FTAQF

�
. To make the descriptor distortion symmetric, we

also add to it the following symmetric term

kHS � PTAQHQk2S; (13.10)

where kFk2S D trace
�
FTASF

�
. When the correspondence is orthonormal in the

sense PTAQPAS D PASPTAQ D I , where I is the identity matrix, Equations (13.9)
and (13.10) are equivalent.

The constraints (13.2) in matrix notation take the form

PAS1 D 1; PTAQ1 D 1; (13.11)

where 1 is a vector of ones. Thus, we require that a valid correspondence P is a
weighted doubly stochastic matrix.

Finally, the metric and the descriptor distortion measures can be combined into a
single optimization problem

min
P

kPASDS � DQAQPk2S;Q C �
�kPASHS � HQk2Q C kHS � PTAQHQk2S

�

s.t. PAS1 D 1; PTAQ1 D 1; (13.12)

which we solve to obtain the optimal matching. In order to guarantee convergence
to significant solutions, shape descriptors could be augmented with a sparse initial
point to point correspondence between shapes. The latter could be represented either
as the Dirac delta functions, or Gaussians centred at the corresponding points.

13.3 Problem Formulation in the Spectral Domain

The size of the optimization problem (13.12) is determined by the number of shapes’
vertices. Specifically, for shapes S and Q with jSj and jQj vertices respectively,
the size of the correspondence matrix P is jQj � jSj. Recently, several papers
[1, 44, 50] showed that the computational complexity can be reduced by formulating
the matching problem in the spectral domain associated with the shapes. For
approximately isometric shape matching, a natural spectral domain is given by the
eigendecomposition of the Laplace-Beltrami operator (LBO). There exist several
discretizations of the Laplace-Beltrami operator for triangulated meshes. Here, we
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employ the cotangent-weight scheme suggested in [43, 48]. According to it, a
triangulated surface LBO is given by L D A�1W, where again .A/ii � dasi ,
and W is the sparse matrix of cotangent weights. Let us denote by ˚S the matrix
whose columns are the eigenvectors f�S

i g of the discrete Laplace-Beltrami operator
of the shape S, and by �S – the diagonal matrix of their associated eigenvalues fS

i g.
The Laplace-Beltrami eigendecomposition is then posed as a generalized eigenvalue
problem

WS�
S
i D S

i AS�
S
i : (13.13)

Both W and A are symmetric matrices, and A is positive semi-definite, thus
the generalized eiegnvalues S

i are real. Their corresponding eigenfunctions are
orthonormal with respect to the weighted inner product

˝
�S

i ; �
S
j

˛
S

D .�S
i /

TAS�
S
j D

ıij, where ıij is the Kronecker delta function. It follows that

˚T
S AS˚S D I: (13.14)

A function f W S ! R is expressed in the spectral domain of S as

f .s/ D
X

i

˝
f ; �S

i

˛
S
�S

i .s/ D
X

i

ai�
S
i .s/; (13.15)

where ai D ˝
f ; �S

i

˛
S are the spectral decomposition coefficients.

Correspondence matrix P Given the fuzzy correspondence p.s; q/ W S � Q ! Œ0; 1�,
we first express it in the spectral domain of S

p.s; q/ D
X

i

˝
p.s; q/; �S

i .s/
˛
S
�S

i .s/ D
X

i

˛i.q/�
S
i .s/:

For each i, ˛i.q/ is a scalar function defined on Q, and thus it in turn can be expressed
in the spectral domain of Q as

˛i.q/ D
X

j

D
˛i.q/; �

Q
j .q/

E
Q
�

Q
j .q/ D

X
j

˛ij�
Q
j .q/:

We now combine the last two expressions into a single spectral representation of the
correspondence p.s; q/ in spectral domains of both S and Q

p.s; q/ D
X

i

X
j

˛ij�
Q
j .q/�

S
i .s/: (13.16)

In matrix notation, the above translates to

P D ˚Q˛˚T
S ; (13.17)
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Fig. 13.1 Top: Mapping 5 surface-points (indicated by yellow spheres) to their own location,
using (from left to right) 10, 50, 100, 500 and 1000 eigenvectors of the Laplace-Beltrami
operator, respectively. Bottom: Geodesic distance error between surface points and their mapping
to themselves using 10–1000 eigenfunctions, averaged over 50 points randomly sampled from S

where the entries of the matrix ˛ are f˛gij D ˛ij. Thus, knowing ˛ allows us to
compute P – a fact that we will exploit in our spectral matching formulation, which
will be described in the section.

Next, we study the effect of truncating the number of the eigenvectors used in
the spectral representation, to only a few leading eigenvectors. For this, consider
a mapping from a shape to itself, that is S D Q, so that the mapping is given by
P D ˚S˛˚T

S , and ˛ D I. Figure 13.1 illustrates how truncating the eigenbasis to a
varying number of eigenvectors affects the location of the surface points mapped to
themselves using such mapping P. Specifically, if the original locations of the points
are given by delta functions, after the mapping we obtain filtered delta functions,
as shown in Fig. 13.1 (top). The accuracy of the mapping, measured by the sum of
geodesic distances between the original delta function locations and maxima of their
filtered versions, and weighted by

p
AS, is shown in Fig. 13.1 (bottom).

From these experiments it follows that using the leading m D 100 eigenfunctions
allows faithful representation of the correspondence. Furthermore, truncating the
eigenbasis to m eigenvectors allows us to reduce the size of the matching problem:
instead of searching for the correspondence matrix P of size jQj � jSj, we now
need to compute the matrix ˛, relating the bases ˚S and ˚Q, of size m � m. Let us
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now translate the rest of the correspondence problem ingredients into the spectral
domain.
The double stochastic conditions Equation (13.11) in the spectral domain take the
form

˚Q˛˚T
S AS1 D 1 and ˚S˛T˚T

QAQ1 D 1:

We further denote �S D ˚T
S AS1 and �Q D ˚T

QAQ1, and re-write the above as

˛�S D �Q and ˛T�Q D �S: (13.18)

Distances and descriptors Given a d-dimensional descriptor HS W S ! R
d, its

spectral representation in the eigenspace of S is

HS D ˚SıS; (13.19)

where ıS D ˚T
S ASHS. In a continuous setting, this reads

ıij D
Z

S
.HS.s//j�i.s/das;

where .HS.s//j is the j-th element of the descriptor HS at s 2 S.
The spectral representation of the distance dS W S � S ! fRC; 0g is a special case

of Equation (13.16), for Q D S, and is given by

d.s; s0/ D
X

i

X
j

ˇij�
S
j .q/�

S
i .s/; (13.20)

with the coefficients ˇij computed using

ˇij D ˝˝
d.s; s0/; �S

i .s/
˛
S
; �S

j .s
0/
˛
S

D
Z

S�S
dS.s; s

0/�S
i .s/�

S
j .s

0/dasdas0 :

In matrix formulation, the above becomes

DS D ˚SˇS˚T
S ;

with

ˇS D ˚T
S ASDSAS˚S:

When, instead of n, m � n eigenvectors of the LBO are used, we obtain an
approximate distance measure, that we denote by QDS.
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When matching shapes with large number of vertices, the spectral representation
of DS can be efficiently approximated even without knowing all inter-geodesic
distances. Instead, only distances computed between a small set of sampled points,
usually up to 5% of the total number of shape points, may be used to estimate
the spectral distance representation ˇS. The estimation is based on the fact that
distances, computed from the sampled points to the rest of the surface, capture the
global structure of the shape, and the smooth local structure can be interpolated
from it, using the leading eigenfunctions of the Laplace-Beltrami operator. Here,
the spectral representation ˇ was obtained by minimizing the bi-harmionic equation,
used for distance interpolation [59].

13.4 Correspondence in Spectral Domain

We now have all the necessary ingredients to re-formulate the complete correspon-
dence problem (13.12) in the spectral domain. Using

PASDS D ˚Q˛˚T
S AS˚SˇS˚T

S D ˚Q˛ˇS˚T
S ;

and, similarly,

QDQAQP D ˚QˇQ˛˚T
S ;

the first term of the objective function in Equation (13.12) is translated into the
spectral domain by

kPASDS � DQAQPkS;Q D k˚Q
�
˛ˇS � ˇQ˛

�
˚T

S kS;Q:

In the above derivation, we used the orthonormality of the LBO eigenfunctions,
namely ˚T

S AS˚S D I;˚T
QAQ˚Q D I. We can show that k˚QF˚T

S kS;Q D kFk2F , so
that the distance distortion terms reads

kPAS QDS � QDQAQPkS;Q D k˛ˇS � ˇQ˛k2F: (13.21)

Similarly, for the descriptor distortion term we have

PASHS D ˚Q˛˚T
S AS˚SıS D ˚Q˛ıS;

PTAQHQ D ˚S˛T˚T
QAQ˚QıQ D ˚S˛TıQ:
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We can also show that k˚QFkQ D kFk2F , so that the descriptor distortion term reads

kPASHS � HQk2Q C kHS � PTAQHQk2S Dk˚Q.˛ıS � ıQ/k2Q C k˚S.ıS � ˛TıQ/k2S
Dk˛ıS � ıQk2F C kıS � ˛TıQk2F:

(13.22)

Finally, we re-write the optimization problem (13.12) in the spectral domain, as
follows

min
˛

k˛ˇS � ˇQ˛k2F C �
�k˛ıS � ıQk2F C kıS � ˛TıQk2F

�
s.t.

˛�S D �Q; and ˛T�Q D �S: (13.23)

Relation to functional maps We started the analysis above by formulating the
problem of pointwise shape correspondence in terms of the correspondence matrix
P. We then obtained spectral problem formulation (13.23) by translating each of the
problem’s components into the spectral domain, where the unknown is the matrix
˛, relating between eigenspaces of the shapes S and Q. In the functional maps
approach [44], similar problem formulation was derived based on the requirement
of preservation of functions mapped from one shape to another, and the spectral
correspondence matrix ˛ was termed the functional map.
Pointwise correspondence computation For each vertex s 2 S, we can compute its
corresponding vertex on Q by mapping an indicator function 1s, defined in S and
centred at the vertex s, to Q, using the obtained spectral mapping ˛

P1s D ˚Q˛˚T
S AS1s:

The vertex q 2 Q corresponding to s is given by

q D argmax
Qq2Q

.P1s/.Qq/:

Alternatively, the pointiwse correspondence between the shapes may be com-
puted as suggested in Ovsjanikov et al. [44], by directly comparing the spectral
representations of indicator functions defined on the two shapes.

13.4.1 Double Stochasticity Constraints

The first eigenvalue of the Laplace-Beltrami operator is 0 D 0, with the
corresponding constant eigenvector �1 D 
.1 1 1 1 1 � � � 1/T . The eigenbasis ˚ is
orthonormal with respect to the inner product defined on the shape. In particular,
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�T
1 A�1 D 1, and therefore the constant 
 is


 D
 X

i

Aii

!�1=2
:

Let us recall that �S and �Q are defined as �S D ˚T
S AS1 and �Q D ˚T

QAQ1.
Again, using the orthonormality of ˚ , that is �T

j A�1 D 0;8j ¤ 1, we obtain

� D ˚TA1 D ˚TA 
�1�1 D 
�1.1 0 0 � � � 0/T :

For approximately isometric shapes, we can assume that 
S Š 
Q, that is the
total area of the shape is preserved by an isometric transformation. Therefore, the
constraints ˛�S D �Q;˛

T�Q D �S become

˛

0
BBB@
1

0
:::

0

1
CCCA D

0
BBB@
1

0
:::

0

1
CCCA and ˛T

0
BBB@
1

0
:::

0

1
CCCA D

0
BBB@
1

0
:::

0

1
CCCA ;

or, equivalently,

˛ D

0
BBB@
1 0 � � � 0
0 ˛22 � � � ˛2m
:::
:::

:::
:::

0 ˛m2 � � � ˛mm

1
CCCA :

Note that the above constraint preserves the constant eigenvectors of the two shapes.

13.4.2 Unconstrained Problem Formulation

Let us define a matrix Q̨ , such that

Q̨ D

0
B@
˛22 � � � ˛2m
:::

:::
:::

˛m2 � � � ˛mm

1
CA and ˛ D

�
1 0

0 Q̨
�
: (13.24)
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Similarly, let us define ˇ11;ˇ.1/;ˇ.2/; Q̌ , such that

ˇ D
�
ˇ11 ˇ.1/

ˇ.2/ Q̌
�
; (13.25)

where ˇ11 2 R;ˇ.1/ 2 R
1�.N�1/;ˇ.2/ 2 R

.N�1/�1; Q̌ 2 R
.N�1/�.N�1/, and N is the

number of points on the shape. In addition, let us define

ı D
�

ı.1/

Qı
�
; (13.26)

where ı.1/ 2 R
1�N , Qı 2 R

.N�1/�N . Thus, matrix products ˛ˇS, ˇQ˛ can be written
as

˛ˇS D
 
ˇ11S ˇ

.1/
S

Q̨ ˇ
.2/
S Q̨ Q̌

S

!
; ˇQ˛ D

 
ˇ11Q ˇ

.1/
Q Q̨

ˇ
.2/
Q

Q̌
Q Q̨

!
; (13.27)

and ˛ıS, ˛TıQ can be written as

˛ıS D
�

ı1S
Q̨ QıS

�
; ˛TıQ D

�
ı1Q
Q̨ T QıQ

�
: (13.28)

The optimization problem (13.23) then reads

min
Q̨

k Q̨ Q̌
S � Q̌

Q Q̨ k2F C kˇ
.1/
S � ˇ

.1/
Q Q̨ k2 C k Q̨ ˇ

.2/
S � ˇ

.2/
Q k2 C

�
�
k Q̨ QıS � QıQk2F C kQıS � Q̨ T QıQk2F

�
: (13.29)

Finally, to obtain ˛, one can solve the above problem numerically, for instance,
using the PBM optimization toolbox by M. Zibulevsky [8], and construct ˛ from
Q̨ using Equation (13.24). Another possibility is to formulate (13.29) as a standard
least squares problem, and solve it analytically – as demonstrated in the next section.
Optionally, the least squares solution may be followed by the post-processing
iterative refinement [44]. While Ovsjanikov et al. [44] also suggested using least
squares to compute functional maps, they employed only the descriptor preservation
term, and did not enforce bi-stochastisity of the correspondence.
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13.4.3 Alternative Formulation as a Standard Least Squares
Problem

Denote N̨ D vec . Q̨ / D Q̨ .W/. Then

vec
�

Q̨ Q̌
S

�
D . Q̌ T

S ˝ I/ N̨ ;

vec
� Q̌

Q Q̨
�

D .I ˝ Q̌
Q/ N̨ ;

vec
�

Q̨ QıS

�
D .QıT

S ˝ I/ N̨ ;

vec
�

Q̨ T QıQ

�
D ˘ ..I ˝ QıT

S / N̨ /; (13.30)

where ˝ denotes Kronecker tensor product, and ˘ is a matrix that satisfies the
relationship vec . Q̨ / D ˘ vec

� Q̨ T
�
. By further denoting

Mˇ D Q̌ T
S ˝ I � I ˝ Q̌

Q;

MıS D QıT
S ˝ I; MıQ D ˘ .I ˝ QıT

S /;

NıQ D vec
�QıQ

�
; NıS D vec.QıS/;

MˇS
D ˇ

.2/
S ˝ I; MˇQ

D I ˝ ˇ
.1/
Q ;

Ň
S D vec

�
ˇ
.1/
S

�
; Ň

Q D vec
�
ˇ
.2/
Q

�
; (13.31)

we reformulate (13.29) as

minN̨ kMˇ N̨ k2 C kMˇQ
N̨ � Ň

Sk2 C kMˇS
N̨ � Ň

Qk2

C� �kMıS N̨ � NıQk2 C kMıQ N̨ � NıSk2� : (13.32)

This is a standard least squares problem, for which the optimal N̨ is computed
analytically.

13.5 Experimental Results

To evaluate the proposed method we used two publicly available datasets – TOSCA
[12] and SCAPE [5]. The first dataset, TOSCA, contains 90 synthetic human and
animal shapes, with known point-to-point correspondences between shapes in the
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Fig. 13.2 Quantitative evaluation of the proposed approach (SGMDS + features) on all the shapes
from the TOSCA (left) and SCAPE (right) datasets, using the evaluation protocol from the
Princeton benchmark [33]

same class (cats, dogs, humans, etc.). The number of vertices of the shapes in
this dataset varies between approximately 4000 and 50,000. The second dataset,
SCAPE, contains scans of real human bodies in different poses.

In our experiments, we first sub-sampled the shapes, to obtain approximately 5%
of the shapes’ vertices, using the farthest point sampling method [25, 27], and pre-
computed geodesic distances between them using the fast marching method [34].
These distance were then used to compute the spectral representations ˇS;ˇQ. The
Wave Kernel Signatures [7] were used as point-wise surface descriptors.

We implemented the proposed method in Matlab, with time consuming parts
of the code implemented as Mex files in C++. All the experiments were executed
on a 2:7GHz Intel Core i7 laptop with 16GB RAM. The solution of the least
squares problem (13.32) was implemented using Matlab sparse matrix support.
In our experiments we used up to 100 eigenvectors of the LBO, for which the
computation time of least squares problem (13.32) was of order of 40 s.

In Fig. 13.2, we compare the proposed method with existing algorithms, using
the Princeton shape correspondence benchmark [33] and the evaluation procedure
suggested therein. The experiments were conducted on both TOSCA [12] and
SCAPE [5] datasets. For other methods, we used the information provided in Kim
et al. and Ovsjanikov et al. [33, 44], and the results provided by Pokrass et al. [50].
The evaluation was performed as follows: in the protocol of Kim et al. [33], the
ground-truth correspondences between small subset of feature points on the shapes
are given. Then, given a predefined set of pairs of shapes, each pair belonging
to the same group (cat, dog, etc.), we compute a mapping between each pair,
and measure the geodesic distances between true locations of these feature points,
and their mappings. These geodesic distances are then normalized by the shape’s
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squared root of the area. Figure 13.2 presents the distortion curves of different
algorithms, given by the percentage of the points falling within a certain geodesic
distance from their true location, and averaged over all pairs of shapes. The proposed
method produces accurate matching results, outperforming the existing methods,
except for the recently proposed Iterative Closest Spectral Kernel Maps (ICSKM)
by Shtern and Kimmel [60]. The ICSKM iterates between map estimation and
descriptor computation, while the proposed approach uses a single iteration of the
least squares solver, to estimate the matching. It is possible to apply the ICSKM
as a refinement step for the proposed method, to further improve its performance.
The results of the proposed method were obtained using a small set of seven
known initial correspondences between pairs of shapes, formulated as functional
constraints. Note that similar constraints, formulated as a initial pointiwse or region-
wise correspondence, or as eigenvector pre-alignment, were also employed by
[44, 50, 60], for obtaining meaningful correspondence results.
The effect of different combinations of descriptor and distance preservation terms
Figure 13.3 presents the distortion curves, obtained, as detailed above, for TOSCA
dataset, with different algorithm configurations. First, the method was applied using

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Geodesic Error

%
 C

or
re

sp
on

de
nc

es

Only WKS, 20 eigenvectors
WKS + initial correspondence, 30 eigenvectors
Only geodesic distances, 100 eigenvectors
Distances + initial correspondence, no WKS, 100 eigenvectors
Distances + WKS, no initial correspondence, 100 eigenvectors
Full setup, 30 eigenvectors
Full setup, 50 eigenvectors
Full setup, 100 eigenvectors
Full setup, 100 eigenvectors, refined

Fig. 13.3 Comparison of different algorithm setups, TOSCA dataset
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Fig. 13.4 Dense point-to-point correspondence between six almost isometric shapes from the
SCAPE dataset

only the descriptor preservation term, with and without initial sparse correspondence
set, which is equivalent to the functional maps method [44]. In this setting, the
method is effectively limited to using only up to 30 eigenvectors; because of the low
descriptor rank, when more eigenvectors are used, the least squares problem (13.32)
becomes ill-posed.

When adding the spectral distance representation term, it is possible to extend
the eigenbasis and include more eigenfunctions, to significantly improve accuracy
of the results. Thus, the distance preservation term acts as a regularization for the
least squares problem. In our test cases, we used 30–100 first eigenfunctions of
the Laplace-Beltrami operator – much more than in the previous setup, with only
the descriptor preservation term. Note that the matching accuracy gets higher as
more eigenvectors are used. Having an initial sparse correspondence between the
shapes further improves the algorithm results. Finally, when both spectral distance
and descriptor representations are used, the proposed method achieves best results,
outperforming all previous setups. The results can be slightly improved further,
using the refinement procedure, suggested in Ovsjanikov et al. [44].
Additional correspondence examples Figure 13.4 visualizes point-to-point corre-
spondences between several almost isometric shapes from the SCAPE dataset [5],
obtained using the proposed method. Figures 13.5 and 13.6 visualize the mapping
quality for shapes from the TOSCA dataset, by transferring the eigenvectors of the
Laplace-Beltrami operator and smoothed delta functions, from one shape to another.
In all the examples, the proposed method produces visibly plausible correspondence
results. Note that there exists an inherent correspondence ambiguity problem when
matching intrinsically symmetric shapes [21, 47, 51]. The propose method would
produce one of the possible matches, which could be affected by the choice of the
initial correspondence or surface descriptors.
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Fig. 13.5 Mapping functions between two almost isometric shapes via our spectral matching. Top:
eigenfunctions of the Laplace-Beltrami operator. Bottom: smoothed point indicator functions
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Fig. 13.6 Mapping functions between two almost isometric shapes via our spectral matching. Top:
eigenfunctions of the Laplace-Beltrami operator. Bottom: smoothed point indicator functions

13.6 Conclusions

In this paper, we suggested extending the spectral generalized multidimensional
scaling (SGMDS) method, by incorporating additional information from pointwise
surface descriptors. The discrepancy measure, minimized by the algorithm, was
defined as a sum of the metric distortion, and the surface descriptor distortion,
introduced by the mapping. We showed that combination of these two distortion
measures into a single optimization problem improves accuracy of the matching,
compared to the case when each of them is used separately. By exploiting the
smoothness of the inter-geodesic distances and surface descriptors, we were able
to translate the problem into the spectral domain, where the matching computation
is extremely efficient. In our future research, we plan to extend the proposed method
to detect correspondence between non-isometric shapes, or shapes with local scale
differences, but with similar global structures.
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46. Ovsjanikov, M., Mérigot, Q., Pătrăucean, V., Guibas, L.: Shape matching via quotient spaces.
In: Computer Graphics Forum, vol. 32, pp. 1–11. Wiley Online Library (2013)

47. Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. In: Computer
Graphics Forum, vol. 27, pp. 1341–1348 (2008)

48. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math.
2(1), 15–36 (1993)

49. Pokrass, J., Bronstein, A.M., Bronstein M.M.: A correspondence-less approach to matching of
deformable shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 592–603.
Springer, Berlin/New York (2012)

50. Pokrass, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G.: Sparse modeling
of intrinsic correspondences. Comput. Graph. Forum (EUROGRAPHICS) 32, 459–268 (2013)

51. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-
rigid shapes. Int. J. Comput. Vis. (IJCV) (2009)

52. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical shape matching. In: Proceedings of the
Scale Space and Variational Methods (SSVM), Ein-Gedi (2011)

53. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Scale
Space and Variational Methods in Computer Vision, pp. 604–615. Springer, Berlin (2012)

54. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “shape-DNA” of surfaces
and solids. Comput. Aided Design 38, 342–366 (2006)

55. Rodola, E., Bulo, S.R., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape
correspondence using random forests. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Columbus (2014)

56. Rustamov, R., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based
exploration of intrinsic shape differences and variability. In: SIGGRAPH, Hong Kong. ACM
(2013)

57. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape repre-
sentation. In: Proceedings of the Symposium on Geometry Processing (SGP), Barcelona,
pp. 225–233 (2007)
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Chapter 14
The Perspective Face Shape Ambiguity

William A.P. Smith

Abstract When a face is viewed under perspective projection, its shape (i.e. the
2D position of features) changes dramatically as the distance between face and
camera varies. This causes substantial variation in appearance which is significant
enough to disrupt human recognition of unfamiliar faces. However, a face viewed
at any distance is still perceived as natural and humans are bad at interpreting the
subject-camera distance given only a face image. We show that perspective viewing
of faces leads to an ambiguity. Namely, that observed configurational information
(position of projected vertices) and shading can be explained by a continuous class
of possible faces. To demonstrate the ambiguity, we propose a novel method for
efficiently fitting a 3D morphable model to 2D vertex positions when the subject-
camera distance is known. By varying this distance, we obtain a subspace of faces,
all of which are consistent with the observed data. We additionally show that faces
within this subspace can all produce approximately the same shading pattern via a
spherical harmonic lighting model.

14.1 Introduction

When a human face is viewed under perspective projection, its projected shape
varies with the distance between the camera and subject. The change in the relative
distances between facial features can be quite dramatic. When a face is close to the
camera, it appears taller and slimmer with the features closest to the camera (nose
and mouth) appearing relatively larger and the ears appearing smaller and partially
occluded. As distance increases and the shape converges towards the orthographic
projection, faces appear broader and rounder with ears that protrude further and
the internal features more concentrated towards the centre of the face. We show
some examples of this effect in Fig. 14.1. Images from the Caltech Multi-Distance
Portraits database [10] are shown in which subjects are viewed at a distance of 60 cm
and 490 cm. Each face is cropped and rescaled such that the interocular distance is
the same. The distortion caused by perspective transformation is clearly visible.
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60cm

490cm

Fig. 14.1 Perspective transformation of real faces (From [10]). The subject is the same in each
column but the change in viewing distance induces a significant change in projected shape

When the faces are unfamiliar, it is difficult to believe that the identity of the faces
in the first row are the same as those in the second.

The change in face appearance under perspective projection has been widely
noted before, for example in art history [20] and psychology [22, 23]. However, the
vast majority of 2D face analysis methods that involve estimation of 3D face shape
or fitting of a 3D face model neglect this effect and assume an affine camera (e.g.
scaled orthographic or “weak perspective”). Such a camera does not introduce any
perspective transformation. While this assumption is justified in applications where
the subject-camera distance is likely to be large, any situation where a face may be
viewed from a small distance must account for the effects of perspective.

While such close viewing conditions may appear contrived, there are many
examples of scenarios where this occurs in both machine and human vision. In the
former case, so-called “selfies” are an example of a widely popular picture format in
which the subject-camera distance is small. Another example would be secure door
entry systems where a subject presents themselves directly in front of the camera.
The latter case includes security peepholes or even a mother nursing a child (where,
presumably, crucial learning of the mother’s face is occurring).

We do not believe that the perspective effect has previously been viewed as an
ambiguity. Namely that, two different faces viewed at different distances could
give rise to the same (or very similar) configuration and appearance. We call this
the perspective face shape ambiguity. This ambiguity has implications for face
recognition, 3D face shape estimation, forensic image analysis and establishing
model-image dense correspondence.

Variation in face shape and appearance over a population is highly amenable to
description using a linear statistical model. In particular, a 3D morphable model
has been shown to accurately capture 3D face shape and generalise well to novel,
unseen faces. We use such a model to represent prior knowledge about the space
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of face shapes. We address the face shape ambiguity by presenting a novel method
for fitting a 3D morphable model to projected 2D vertex positions under perspective
projection and with a specified subject-camera distance. Hence, observed 2D vertex
positions provide a continuous class of solutions as the subject-camera distance is
varied. We verify that, indeed, multiple explanations of observed 2D shape data is
possible. We show that two faces with significantly different 3D shape can produce
almost identical 2D projected shapes. We then go further by showing that a change
in illumination (using a diffuse spherical harmonic model) can produce almost
identical shading and hence appearance. This suggests that the ambiguity is not
only geometric but also photometric.

14.2 Related Work

Faces under perspective projection The effect of perspective transformation on
face appearance has been studied from both a computational and psychological
perspective previously.

In art history, Latto and Harper [20] discuss how uncertainty regarding subject-
artist distance when viewing a painting results in distorted perception. To investigate
this further, they conducted a study which showed that perceptions of body weight
from face images are influenced by subject-camera distance. Perona et al. [9, 27]
investigated a different effect, noting that perspective distortion influences social
judgements of faces. In psychology, Liu et al. [22, 23] show that human face
recognition performance is degraded by perspective transformation.

There have been two recent attempts to address the problem of estimating
subject-camera distance from monocular, perspective views of a face [10, 12]. The
idea is that the configuration of projected 2D face features conveys something about
the degree of perspective transformation. Flores et al. [12] approach the problem
using exemplar 3D face models. They fit the models to 2D landmarks using the
EPnP algorithm [21] and use the mean of the estimated distances as the estimated
subject-camera distance. Burgos-Artizzu et al. [10] on the other hand work entirely
in 2D. Their idea is to describe 2D landmarks in terms of their offset from mean
positions, with the mean calculated either across views at different distances of the
same face, or across multiple identities at the same distance. They can then perform
regression to relate offsets to distance.

Our results highlight the difficulty that both of these approaches face. Namely
that many interpretations of 2D facial landmarks are possible, all with varying
subject-camera distance. We approach the problem in a different way by showing
how to solve for shape parameters when the subject-camera distance is known. We
can then show that multiple explanations are possible.

3D face shape from 2D geometric features Facial landmarks, i.e. points with
well defined correspondence between identities, are used in a number of ways in
face processing. Most commonly, they are used for registration and normalisation,
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as is done in training an Active Appearance Model [11]. For this reason, there has
been sustained interest in building feature detectors capable of accurately labelling
face landmarks in uncontrolled images [29].

The robustness and efficiency of 2D facial feature detectors has improved
significantly in recent years. This has motivated the use of 2D facial landmarks as a
cue for the recovery of 3D face shape. In particular, by fitting a 3D morphable model
to these detected landmarks [2, 6, 19, 25]. All of these methods assume an affine
camera and hence the problem reduces to a multilinear problem in the unknown
shape and camera parameters.

Some work has considered other 2D shape features besides landmark points.
Keller et al. [17] fit a 3D morphable model to contours (both silhouettes and inner
contours due to texture, shape and shadowing). A related problem is to describe
the remaining flexibility in a statistical shape model that is partially fixed. In other
words, if the position of some points, curves or subset of the surface is known, the
goal is to characterise the space of shapes that approximately fit these observations.
Albrecht et al. [1] show how to compute the subspace of faces with the same profile.
Lüthi et al. [24] extended this approach into a probabilistic setting.

We emphasise that the ambiguity occurs only in monocular, uncalibrated images.
For example, Amberg et al. [3] describe an algorithm for fitting a 3D morphable
model to stereo face images. In this case, the stereo disparity cue used in their
objective function conveys depth information which helps to resolve the ambiguity.
However, note that even here, their solution is unstable when camera parameters
are unknown. They introduce an additional heuristic constraint on the focal length,
namely they restrict it to be between 1 and 5 times the sensor size.

Other ambiguities There are other known ambiguities in the perception of 3D
shape, some of which have been studied in the context of faces.

The bas relief ambiguity [5] shows that certain transformations of a surface
can yield identical images when the lighting and albedo are also appropriately
transformed. Specifically, a Generalised Bas Relief (GBR) transformation applied to
a surface represented as an orthographic depth map yields ambiguous images (under
the assumption of Lambertian reflectance). The GBR is a linear transformation
and the bas relief ambiguity is exact (two different surfaces can produce identical
appearance).

On the other hand, the perspective face ambiguity is nonlinear (perspective trans-
formation has a nonlinear effect on projected shape) and approximate (we minimise
error between observed and fitted vertex positions). It is also predominantly a
geometric ambiguity – it is concerned with the projection of vertex positions to
2D, rather than appearance (although we show that shading can be approximately
recreated). However, most importantly, the perspective face ambiguity is statistically
constrained. The transformed faces stay within the span of a statistical model and,
hence, remain plausible face shapes. A GBR transformation of a face surface will
inevitably produce shapes that are not plausible faces.

Exploiting this fact, Georghiades et al. [13] resolve the bas-relief ambiguity
by exploiting the symmetries and similarities in faces. Specifically they assume:
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bilateral symmetry; that the forehead and chin should be at approximately the same
depth; and that the range of facial depths is about twice the distance between the
eyes. Such assumptions would not resolve the perspective face ambiguity that we
describe as all fitted faces lie within the span of a statistical model and hence are
plausible.

In the hollow face illusion [16], shaded images of concave faces are interpreted
as convex faces with inverted illumination. The illusion even holds when hollow
face is moving, with rotations being interpreted as reversed. This illusion is nothing
other than the convex/concave ambiguity encountered in single image shape-
from-shading. In human vision, this is always resolved for faces using a convex
interpretation since experience of face shape makes the concave interpretation
extremely unlikely. Again, the convex/concave ambiguity is not related to the
perspective face ambiguity since a concave face would be impossible in the context
of a statistical face model.

14.3 Preliminaries

Our approach is based on fitting a 3DMM to observations under perspective
projection. Hence, we begin by describing the 3D morphable model and pinhole
camera model.

14.3.1 3D Morphable Model

A 3D morphable model is a deformable mesh M .˛/ D .K ; s.˛//, whose shape is
determined by the shape parameters ˛ 2 R

S. Shape is described by a linear model
learnt from data using Principal Components Analysis (PCA) [7]. So, the shape of
any object from the same class as the training data can be approximated as:

s.˛/ D P˛ C Ns; (14.1)

where P 2 R
3N�S contains the S principal components, Ns 2 R

3N is the mean shape
and the vector s.˛/ 2 R

3N contains the coordinates of the N vertices, stacked to
form a long vector: s D Œu1 v1 w1 : : : uN vN wN �

T. Hence, the ith vertex is given
by: vi D Œs3i�2 s3i�1 s3i�

T.
The connectivity or topology of the deformable mesh is fixed and is given by

the simplicial complex K , which is a set whose elements can be vertices fig, edges
fi; jg or triangles fi; j; kg with the indices i; j; k 2 Œ1::N�.

For convenience, we denote the sub-matrix corresponding to the ith vertex as
Pi 2 R

3�S and the corresponding vertex in the mean face shape as Nsi 2 R
3, such that

the ith vertex is given by: vi D Pi˛ C Nsi: Similarly, we define the row corresponding
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to the u component of the ith vertex as Piu (similarly for v and w) and define the u
component of the ith mean shape vertex as Nsiu (similarly for v and w).

14.3.2 Pinhole Camera Model

The perspective projection of the 3D point v D Œu v w�T onto the 2D point x D Œx y�T

is given by the pinhole camera model x D pinholeŒv;�;˝ ;�� where

pinholeŒv;�;˝ ;�� D

2
664
�.!11u C !12v C !13w C 
x/

!31u C !32v C !33w C 
z
C ıx

�.!21u C !22v C !23w C 
y/

!31u C !32v C !33w C 
z
C ıy

3
775 (14.2)

where

˝ D
2
4!11 !12 !13!21 !22 !23

!31 !32 !33

3
5

is a rotation matrix and � D �

x 
y 
z

�T
is a translation vector which relate model

and camera coordinates (the extrinsic parameters). The matrix:

� D
2
4� 0 ıx

0 � ıy

0 0 1

3
5

contains the intrinsic parameters of the camera, namely the focal length � and the
principal point .ıx; ıy/.

This nonlinear projection can be written in linear terms by using homogeneous
representations Qv D Œu v w 1�T and Qx D Œx y 1�T :

Qx D �
�
˝ �

� Qv; (14.3)

where  is an arbitrary scaling factor. Without loss of generality, we work with a
zero-centred image (i.e. ıx D ıy D 0).

14.4 Perspective Fitting to 2D Projections

In this section we present an algorithm for fitting a 3D morphable model to the
2D positions of the projected model vertices under perspective projection with
an uncalibrated camera. As we will show, this process is ambiguous so we solve
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the problem for the case when the subject-camera distance is known. We do
not consider the problem of computing correspondence between the model and
observed data, since this is unnecessary for the demonstration of the ambiguity.
Unknown correspondences could only increase the space of solutions consistent
with the observations. Our approach is based on a linear approximation to the
underlying objective function which we derive based on the direct linear transform
method.

Our observations are the projected 2D positions xi D Œxi yi�
T (i D 1 : : :L) of

the L vertices that are visible (unoccluded). Without loss of generality, we assume
that the ith 2D position corresponds to the ith vertex in the morphable model. The
objective of fitting a morphable model to these observations is to obtain the shape
parameters that minimise the reprojection error between observed and predicted 2D
positions:

˛� D arg min
˛

LX
iD1

kxi � pinhole ŒPi˛ C Nsi;�;˝ ;�� k2: (14.4)

This optimisation is non-convex due to the nonlinearity of perspective projection.
Moreover, the intrinsic and extrinsic parameters may also be unknown. Neverthe-
less, a good approximate solution can be found using linear methods. This initial
estimate provides a suitable initialisation for local nonlinear optimisation to further
refine the shape parameters.

14.4.1 Direct Linear Transform

From Equations 14.1 and 14.3 we can relate each model vertex and observed 2D
position via a linear similarity relation:

	
xi

1



� �

�
˝ �

� 	Pi˛ C Nsi

1



; (14.5)

where � denotes equality up to a non-zero scalar multiplication. Such sets of
relations can be solved using the direct linear transformation (DLT) algorithm [15].
Accordingly, we write

	
xi

1



�

�
�
˝ �

� 	Pi˛ C Nsi

1



D 0 (14.6)
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where 0 D Œ0 0 0�T and Œ:�� is the cross product matrix:

Œx�� D
2
4 0 �x3 x2

x3 0 �x1
�x2 x1 0

3
5 : (14.7)

This means that each vertex yields three linear equations in the unknown shape
parameters ˛ (although only two are linearly independent). However, the intrinsic
and extrinsic parameters are, in general, also unknown.

To simplify our consideration, we ignore the effects of rotation (i.e. ˝ D I3).
Note that introducing rotations would only increase the ambiguity since it would
allow the model to explain a broader set of observations.

Since we are interested in the effect of varying subject-camera distance, we limit
translations to the z direction, hence � D Œ0 0 
z�

T . It has been shown previously that
translating a face away from the centre of projection (i.e. in the x and y directions)
does not affect human recognition performance [23]. We believe that this is because
the relatively small field of view in a typical camera means that the change in
perspective appearance has only a small dependence on such translations. For this
reason, we do not study its effect here and concentrate only on subject-camera
distance.

Substituting these simplifications yields:

2
4 0 �� yi 
zyi

� 0 �xi �
zxi

��yi �xi 0 0

3
5	Pi˛ C Nsi

1



D 0: (14.8)

The only remaining unknown besides the shape parameters ˛ is the focal length
of the camera �. Recall that changing the focal length amounts only to a uniform
scaling of the projected points in 2D. Note that this corresponds exactly to the
scenario in Fig. 14.1. There, subject-camera distance was varied before each image
was rescaled such that the interocular distance was constant. We now seek to
explore the ambiguity by varying subject-camera distance, solving for the best
shape parameters whilst choosing the 2D scaling that minimises distance between
observed and predicted 2D vertex positions.

14.4.2 Alternating Least Squares Solution

This problem is bilinear in the unknown shape and focal length parameters. We solve
this problem using alternating linear least squares . Hence, we begin by writing the
linear equations for each vertex in terms of the shape parameters, leading to a system
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of linear equations for all visible vertices:

2
66666666664

y1P1w � �P1v
�P1u � x1P1w

x1P1v � y1P1u
:::

yLPLw � �PLv

�PLu � xnPLw

xLPLv � ynPLu

3
77777777775

„ ƒ‚ …
C

˛ D

2
66666666664

�Ns1v � y1Ns1w � 
zy1
x1Ns1w � �Ns1u C 
zx1

y1Ns1u � x1Ns1v
:::

�NsLv � ynNsLw � 
zyL

xLNsLw � �NsLu C 
zxL

yLNsLu � xLNsLv

3
77777777775

„ ƒ‚ …
d

: (14.9)

Hence, we have a linear system of the form C˛ D d. Since the number of vertices is
much larger than the number of model dimensions, the problem is over constrained.
Hence, we solve in a least squares sense subject to an additional constraint to
ensure plausibility of the solution. We follow Brunton et al. [8] and use a hyperbox
constraint on the shape parameters. This ensures that each parameter lies within k
standard deviations of the mean by introducing a linear inequality constraint on the
shape parameters. We use a hard hyperbox constraint in preference to a soft elliptical
prior as it avoids mean-shape bias and having to choose a regularisation weight.

To solve for focal length, we again form a linear system of equations which leads
to a simple linear regression problem with a straightforward closed form solution:

�� D
PL

iD1 Œ.xi.Piu˛ C Nsiu/C yi.Piv˛ C Nsiv/� Œ
z C Piw˛ C Nsiw�PL
iD1.Piv˛ C Nsiv/2 C .Piu˛ C Nsiu/2

(14.10)

We alternate between solving Equations 14.9 and 14.10, alternately fixing ˛ and
�. This process converges rapidly and usually 5 iterations are sufficient. We initialise
by using the mean shape from the morphable model to solve for focal length first,
i.e. we substitute the zero vector ˛ D 0 into Equation 14.10. The overall approach
can be viewed as solving the following minimisation problem:

˛.
z/ D arg min
˛

min
�

kC˛ � dk2 ; s.t.

	
Im

�Im



˛ 	

2
6666666664

k�1
:::

k�m

k�1
:::

k�m

3
7777777775

(14.11)

where �i is the standard deviation of the ith shape parameter. Note that solving this
minimisation is not equivalent to solving the original objective in Equation 14.4.
Hence, we can further refine the solution by applying nonlinear optimisation over ˛

and �, using the original objective function. In practice, the improvement obtained
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by doing this is very small – typically the fitting energy is reduced by less than
1 % with no visible difference in the fitted model. So in our experimental results we
simply use the alternating least squares solution with 5 iterations.

14.4.3 The Perspective Face Shape Ambiguity

Given 2D observations xi, we therefore have a continuous space of solutions ˛.
z/ as
a function of subject-camera distance. This is the perspective face shape ambiguity.

Note that this can be viewed as a transformation within the shape parameter space
of the morphable model. If the target observations xi are provided by projecting a 3D
face obtained from Equation 14.1 with shape parameters ˛1 and distance 
z D d1,
then solutions ˛.d2/ can be seen as a nonlinear transformation within parameter
space, yielding a new set of shape parameters ˛2, as a function of the fitted distance

z D d2. When d1 D d2 the fitted face will be approximately equal to the target face.

14.5 Fitting Lighting to Diffuse Shading

The fitting process described in the previous section aims to minimise the distance
between the 2D projected positions of target and fitted vertices. In other words, it
recreates the 2D configuration of features present in the target face. However, this
does not mean that the two faces will have the same appearance. Since the 3D shape
of the faces is different (as will be shown in the experimental results), the surface
normals at corresponding points will be different. Under the same illumination, this
will lead to different shading and hence appearance.

We now show how the shape obtained using the method in the previous section
can be shaded so as to minimise the difference in appearance between the target and
fitted face. We do not consider the effect of surface texture (i.e. diffuse albedo). The
effect of albedo on appearance is to simply scale the diffuse shading. Hence, it plays
no role in the perspective shape ambiguity. In fact, if albedo is also allowed to vary
between target and fitted face, it may be able to improve the approximation of the
observed appearance and hence enhance the ambiguity. We show here simply how
to make the diffuse shading pattern approximately equal.

If ni 2 R
3 is the surface normal at vertex i, with knik D 1, the order 2 spherical

harmonic lighting basis vector for that vertex (ignoring constant factors) is given
by [4]:

bi D �
1 ni;x ni;y ni;z 2n2i;z�n2i;x�n2i;y ni;xni;y ni;xni;z ni;yni;z n2i;x�n2i;y

�
: (14.12)
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Hence, the matrix of basis vectors for the L observed vertices is given by:

B D

2
64

b1
:::

bL

3
75 : (14.13)

We compute basis matrices BT and BF for the target and fitted faces respectively. If
the target face is illuminated by known spherical harmonic lighting vector lT then the
diffuse shading for the mesh is given by: BT lT . The lighting vector that minimises
the difference in appearance of the fitted face to the target is given by solving the
linear system of equations:

l�F D arg min
lF

kBT lT � BFlFk2: (14.14)

This provides the optimal transformation of lighting for the fitted face.

14.6 Experimental Results

We use the Basel Face Model [26] (BFM) which is a 3D morphable model
comprising 53,490 vertices and which is trained on 200 faces. We use the shape
component of the model only. The model is supplied with 10 out-of-sample faces
which are scans of real faces that are in correspondence with the model. Unusually,
the model does not factor out scale, i.e. faces are only aligned via translation and
rotation. This means that the vertex positions are in absolute units of distance. This
allows us to specify camera-subject distance in physically meaningful units.

We begin with a target face. For this purpose, we either use the BFM out-of-
sample faces or we randomly generate a face. We do this by sampling randomly
from the multivariate normal distribution with zero mean and covariance matrix
˙ D diag.�21 ; : : : ; �

2
n / to yield a shape parameter vector and hence shape. We

arbitrarily set the focal length � D 1 and choose the subject-camera distance. We
then project every vertex of the target face to provide 2D observations. We use all
S D 199 model dimensions and constrain parameters to be within k D 3 standard
deviations of the mean.

14.6.1 Subspace of Ambiguity

We begin by visualising the subspace associated with the perspective face shape
ambiguity for a single target face. We randomly generate shape parameters, yielding
the target face shown in column 1 of Fig. 14.2. Note that in the figure the face is
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Target Fitted results

d1 = 60cm d2 = 35cm d2 = 60cm d2 = 160cm d2 = 390cm

Fig. 14.2 Target (column 1) and fitted results (columns 2–5) shown under orthographic projection.
When the target is viewed under perspective projection at distance d1 and the fitted faces at
distances d2, they give almost identical 2D projections
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Fig. 14.3 An illustration of the nonlinearity of the perspective face ambiguity. We plot the fitted
parameter vectors in a 2D MDS space as the subject-camera distance is varied. The target face is
the same as in Fig. 14.2, again with d1 D 60 cm

shown in orthographic projection. For our observations, we project the face under
perspective projection at a distance of d1 D 60 cm. We then solve for the optimal
fit at distances ranging from d2 D 35 to 390 cm. We show a sample of these fitted
results, again under orthographic projection, in columns 2–5 of Fig. 14.2. There is
significant variation in the shape of the face, yet all produce the same projected 2D
positions when viewed at different distances.

To verify that the transformation is indeed nonlinear, in Fig. 14.3 we perform
multidimensional scaling (MDS) on the fitted parameter vectors. We then plot
the trajectory of the fitted faces through the space formed by the first two MDS
dimensions. We highlight the positions in MDS space associated with the fitting
results from Fig. 14.2. It is clear that the trajectory, and hence the perspective
ambiguity, is highly nonlinear.
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14.6.2 Shape Fitting

In Figs. 14.4 and 14.5 we show the result of fitting to 4 of the BFM scans (i.e.
the targets are real, out-of-sample faces). We experiment with two subject-camera
distances for either extreme (
z D 30 cm) or moderate (
z D 90 cm) perspective
distortion. In Fig. 14.4, the target face is close to the camera (
z D 30 cm) and we fit
the model at a far distance (
z D 90 cm). This configuration is reversed in Fig. 14.5.
For visualisation we show the results both as shaded surfaces and with the texture
of the real target face.

The target face is shown under perspective and orthographic projection in the
first and third columns respectively. The fitted face is similarly shown in the second
and fourth columns. Hence, the observations are provided by column 1 and the fitted
result in column 2. The orthographic views in columns 3 and 4 enable comparison
between the target and fitted shape under the same projection. This demonstrates
clearly that two faces with significantly different 3D shape can give rise to almost
identical 2D landmark positions under perspective projection.

Quantitatively, dS is the mean Euclidian distance between the target and fitted
surface. In all cases, dS is significant, sometimes as much as 1 cm. On the other
hand, in all cases, the mean distance between fitted and target landmarks is less than
a pixel (and less than 1 % of the interocular distance). Note that Burgos-Artizzu
et al. [10] found that the difference between landmarks on the same face placed by
two different humans was typically 3 % of the interocular distance. Similarly, the
300 faces in the wild challenge [29] found that even the best methods did not obtain
better than 5 % accuracy for more than 50 % of the landmarks. Hence, the vertex
fitting error is substantially smaller than the accuracy of either human or machine
placed landmarks.

There are clear differences in shading with the fittings in Fig. 14.4 exhibiting
sharper features and hence more dramatic shading and in Fig. 14.5, flatter features
and hence flatter shading. This is seen more clearly in Fig. 14.6 where we show
rotated views of the target and two fitted surfaces.

14.6.3 Illumination Fitting

We now show how a change in illumination can enable the fitted face to produce
almost identical shading to the target, despite the large difference in 3D shape. For
this experiment, we render the target face under perspective projection with frontal
illumination and Lambertian shading. We then solve for the spherical harmonic
lighting parameters that minimise the error between this target shading and that of
the fitted face. In Figs. 14.7 and 14.8 we show the results of this experiment, again
for two scenarios of near and distant target.

In the top row we show the fitted face rendered with the same illumination as the
target. In the middle row we show the target face. It is clear that there is a significant
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Fig. 14.4 Fitting results
(near target): target at 30 cm,
fitted result at 90 cm

Perspective fitting Orthographic re-rendering
Target Fitting Target Fitting

dS = 9.02mm

dS = 5.98mm

dS = 5.33mm

dS = 7.28mm
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Fig. 14.5 Fitting results
(distant target): target at
90 cm, fitted result at 30 cm

Perspective fitting Orthographic re-rendering
Target Fitting Target Fitting

dS = 5.48mm

dS = 9.74mm

dS = 11.21mm

dS = 5.10mm
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Target Fitted (distant target) Fitted (near target)

Fig. 14.6 Rotated views of target (left), fitting to distant target (middle) and fitting to near target
(right). The faces in each row can produce almost identical projected 2D shapes

difference in shading. In the bottom row, we show the target face rendered with fitted
spherical harmonic lighting. Notice that the shading is now much closer to that of
the target face. This perceptual improvement is corroborated quantitatively where it
can be seen that the RMS error in the image intensity reduces in all cases.
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Shape
only fit

RMS error 0.110 0.097 0.091 0.093

Target

Shape and
lighting fit

RMS error 0.087 0.071 0.070 0.079

Fig. 14.7 Illumination fitting results (close target): target at 30 cm, fitted result at 90 cm. RMS
errors are computed for intensity of foreground pixels

Shape
only fit

RMS error 0.151 0.104 0.162 0.139

Target

Shape and
lighting fit

RMS error 0.140 0.093 0.150 0.124

Fig. 14.8 Illumination fitting results (distant target): target at 90 cm, fitted result at 30 cm. RMS
errors are computed for intensity of foreground pixels



316 W.A.P. Smith

14.7 Discussion

In this paper we have introduced a new ambiguity which arises when faces are
viewed under perspective projection. We have shown that 2D shape and shading
can be explained by a space of possible faces which vary significantly in 3D shape.
There are a number of interesting implications of this ambiguity. First, any attempt
to recover 3D facial shape from 2D shape or shading observations is ill-posed under
perspective projection, even with a statistical constraint. Second, metric distances
between landmark points in 2D images are not unique. We have shown that faces
with very different shapes can give rise to almost identical projected 2D shapes
(with mean differences less than 1 % of interocular distance in all cases). This casts
doubt on the use of metric distances between features as a way of comparing the
identity of two face photographs. This has previously been used in forensic imaging
[28]. The perspective face shape ambiguity perhaps partially explains the studies
that have demonstrated the weakness of these approaches [18].

We consider it surprising that the natural variability in face shape (at least as
far as is captured by a morphable model) should include variations consistent with
perspective transformation. An intuitive interpretation of this is that there are faces
which look like they have been subjected to perspective transformation when they
have not. There must be a limit to this. For example, to fit to a target face that is
distant requires the close fitted face to have large protruding ears (see Fig. 14.5). If
this fitted face was then used as a distant target, the ears would need to increase in
size again for a close fitting. Clearly, repeating this process would quickly take the
fitted result outside the span of the model (or the hyper box constraint would simply
limit the ability of the model to explain the observations).

14.7.1 Generality of Assumptions

The perspective face ambiguity applies in an uncalibrated scenario, i.e. when camera
focal length or pixel size is unknown and therefore the subject-camera distance
cannot be estimated from the size of the face in the image. Images taken by digital
cameras usually contain meta data including the focal length and camera model.
The pixel size is fixed for a particular camera model and so could, in principle, be
stored in a database. Hence, it appears that in practice some calibration information
is likely to be available and the ambiguity resolved. In fact, there are two reasons
why this is not the case:

1. In a fully calibrated situation (i.e. when camera focal length and pixel size is
known) then the size of a face in the image does give some indication as to
the subject-camera distance. However, head size varies significantly across the
population: e.g. the bitragion breadth (i.e. face width) ranges from 12.51 cm
to 15.87 cm for males and females [14] – a variation of over 25 %. With an
uncertainty in the distance estimate of �25 %, the perspective ambiguity remains
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significant, particularly when the face is close to camera. Moreover, in statistical
shape modelling, the scale of each sample is often factored out when generalised
Procrustes analysis is used to register the training data. This means that the
statistical shape model has no explicit scale, rendering the size cue even less
accurate for distance estimation.

2. Images that have been modified in any way, e.g. cropped, resized or compressed,
will often no longer contain meta data or the meta data will incorrectly describe
the effective camera geometry. This is likely to be the case for a large proportion
of the images on the web (and the images in Fig. 14.1 are perfect examples: these
files contain no metadata). In this case, no calibration information is available
and the ambiguity is exactly as described in this paper.

14.7.2 Future Work

There are many ways in which the work can be extended. First, there are a number
of simplifications that we made which could be relaxed and their effect investigated.
This includes allowing rotations and hence considering the ambiguity in non-frontal
poses. There appears to be very little work investigating the effect of perspective
transformation on non-frontal faces. Intuitively, the effects may be less dramatic
since it is the large (relative) depth variation between nose tip and ears that makes
the effect so noticeable. We also ignored the effect of the skew parameter and
translations in x and y away from the centre of projection. A more complex camera
model could even be used, for example considering radial distortion.

Next, our shape estimation approach could be cast in probabilistic terms. We
take a rather simplistic approach, simply seeking to minimise the 2D vertex error
in a least squares sense. As has been shown previously [1, 24], partially fixing a
statistical shape model still leaves flexibility. Hence, our fitting algorithm could
return the subspace of faces that is approximately consistent with the observed
vertices. Shape fitting could also be extended to edge features such as silhouettes.
These are interesting because there is no longer a one-to-one correspondence
between 2D shape features and model vertices. This suggests that the ambiguity
would be even more significant in this case. An interesting follow-up to the work
of Amberg et al. [3] would be to investigate whether there is an ambiguity in
uncalibrated stereo face images.

Our consideration of appearance was limited to diffuse shading under a spherical
harmonic illumination model. It is known that light source attenuation is a useful
cue for the interpretation of shading under perspective projection so this may be an
interesting avenue for future work. Similarly, cast shadows and specular reflections
may also help resolve the ambiguity.
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Chapter 15
On Shape Recognition and Language

Petros Maragos, Vassilis Pitsikalis, Athanasios Katsamanis, George Pavlakos,
and Stavros Theodorakis

Abstract Shapes convey meaning. Language is efficient in expressing and struc-
turing meaning. The main thesis of this chapter is that by integrating shape
with linguistic information shape recognition can be improved in performance.
It broadens the concept of shape to visual shapes that include both geometric
and optical information and explores ways that additional linguistic information
may help with shape recognition. Towards this goal, it briefly describes some
shape categories which have the potential of better recognition via language, with
emphasis on gestures and moving shapes of sign language, as well as on cross-
modal relations between vision and language in videos. It also draws inspiration
from psychological studies that explore connections between gestures and human
languages. Afterwards, it focuses on the broad class of multimodal gestures that
combine spatio-temporal visual shapes with audio information. In this area, an
approach is reviewed that significantly improves multimodal gesture recognition
by fusing 3D shape information from motion-position of gesturing hands/arms
and spatio-temporal handshapes in color and depth visual channels with audio
information in the form of acoustically recognized sequences of gesture words.

15.1 Introduction

This chapter explores the fusion of shape and linguistic information for improving
shape recognition. While its main objective is to address the computer vision
problem of shape recognition for shape categories where linguistic information
is available by using statistical pattern classification methodologies, it also draws
inspiration from psychological studies that explore connections between shapes
and human languages. Towards this goal, we broaden the meaning of “shape” to
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include not only geometric but additional optical attributes; this augmented shape
information is referred to as “visual shape”. Thus, as explained in Sect. 15.2.1,
shape is meant here in a broader sense of visual information that may encompass
brightness, color, depth and time dynamics, even if the main channel is the 2D
geometrical shape (or the projection-silhouette of a 3D shape) as time evolves.
It focuses on gesture shapes, inspired by the long-term studies of the importance
of gestures for the origins of human language and their synergy with speech
[3, 25, 31, 47].

We begin with Sect. 15.2 that clarifies how we mean the information conveyed by
a shape and in which ways it can be supplemented by linguistic information. We also
use statistical inference to intuitively explain how shape recognition may benefit
from additional linguistic information. Next, Sect. 15.3 provides a brief survey
of shape categories which have the potential of better recognition by combining
visual with linguistic information, with emphasis on gestures and moving shapes
of sign language, as well as on cross-modal relations between vision and language
in videos. This is followed by a motivating Sect. 15.4 on the importance of gestures
for human communication. Afterwards, we focus in Sect. 15.5 on the main paradigm
of the chapter, which is the broad class of multimodal gestures combining spatio-
temporal shapes and other visual cues with audio information in the form of
sequences of spoken commands accompanying the gestures; in this section we
review an approach [37, 38] that fuses shapes with linguistic information, which
is audio-visually expressed, for significantly improving the automated recognition
of multimodal gestures. While discussing the examples of both Sects. 15.3 and 15.5
we draw analogies with the main ideas of this chapter.

15.2 Visual Shapes and Linguistic Information

15.2.1 Visual Shapes

Shapes are traditionally perceived and understood as objects of geometry, two-
dimensional (2D) or three-dimensional (3D). For a better understanding, perception
attributes may be added to them, e.g. as in Gestalt psychology. For automated shape
recognition, the computer vision community further explores broader appearance
characteristics of shapes by viewing them (whenever possible) as gray intensity
images that have both shape and texture. Thus, if 2D shapes are perceived from
images, they obtain a third dimension of brightness texture. Instead of brightness,
we may also add color to a 2D shape. Temporal dynamics are also important in
recognizing moving shapes. Another way of adding a third dimension to a 2D shape
to be recognized as a projected silhouette of a 3D object is by using depth. For 3D
shapes, including brightness or time evolution will add a fourth dimension.

Thus, in addition to their 2D main projection or silhouette, shapes of world
objects can have some additional geometric attributes such as depth and region
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summary as exemplified by their skeleton axis and its branch points, or even
optical attributes, e.g. intensity, color, as well as motion (in case of moving shapes)
possibly represented by dynamics of the above attributes as time evolves. We shall
call this augmented shape information a visual shape, meaning that it contains
attributes both from geometry (2D or 3D) and optics (photometry and motion). A
rich category of such visual shapes that include all the above attributes and will be
the main paradigm of this chapter are gestures. Both from a human perception and a
computer representation viewpoint, gestures comprise several information streams
which include a main 2D shape information such as the projection of the handshapes
and possibly the moving arms on the image plane, color information, 3D shape, 3D
motion, and by using appropriate sensors or computer vision algorithms they can be
supplemented with depth and skeleton information. This is illustrated in Fig. 15.1
through an example showing a user performing the Italian gesture “basta” (“that’s
enough!”). We sampled the video of a user performing this gesture and selected non-
uniformly five frames to depict the most important states of the “basta” gesture as
time evolves. We supplement the RGB frames with skeleton and depth information,
as well as images of the right or both handshapes. In this example the RGB, depth

Fig. 15.1 Sequence of frames sampled for a video of a user performing the Italian gesture “basta”
(“that’s enough!”), obtained with a Kinect sensor. Each column corresponds to a different temporal
section of the gesture performance, covering the overall range of motion. Given the start and the
end frames here, the duration of the gesture is 36 frames, i.e. 1.8 s (with the frame rate at 20 fps).
First row: RGB frames accompanied with the skeleton of the user that is superimposed on them.
Second row: The respective depth frames. Third row: Images of the segmented handshapes



324 P. Maragos et al.

and skeleton data were provided by a Kinect sensor. The skeleton information of
this sensor includes the human skeleton axis and its branch points, such as hands’
centers, elbows, shoulders, face, knees and other critical points.

As exemplified in Fig.15.1, shape information can become richer, and hence its
recognition easier, if we augment the geometry of a shape with optical attributes. We
offer an intuitive explanation from the domain of statistical pattern classification, by
using Bayesian inference. Let Si represent the i-th class from a collection of shape
classes. Suppose we are given measurable data D , which may contain either only
geometric information G or geometric and optical information O, and the goal is to
infer the shape class given the data via the maximum-a-posteriori principle. If we
have information only from geometry, then D D fGg, and

P.Si=D/ D P.Si/P.G=Si/

P.D/
(15.1)

where P.�/ denotes probability or likelihood. In the case of geometry plus optics,
D D .G;O/ and hence

P.Si=D/ D P.Si/P.G=Si/P.O=Si;G/

P.D/
(15.2)

In the above combined case, the deciding numerator of the right hand side, excluding
the prior class probability P.Si/ which is common in both cases (15.1) and (15.2),
is a product of two terms, the probability of optical data given the shape class
and geometry times the probability of the geometric data given the shape class.
By exploiting these two terms we may be able to increase the discriminatory
potential of their product. Thus, we may improve the classification of the shape
by using statistical knowledge about both its corresponding geometric and optical
data, whenever such information is available.

From the domain of philosophy, an extreme such example of the richness of
visual shapes versus geometric shapes is Plato’s allegory of the cave (presented
in his work “The Republic”) where silhouettes of real world objects, whose fire-
produced shadows are cast on a cave wall while the real objects are being moved
behind human spectators, cannot be recognized. In contrast, if the same real objects
are seen with direct eye contact and under the sunlight, they reveal their true identity.
In Fig. 15.2 we attempted to create an example that illustrates only the visual aspects
of the cave allegory. Namely, Fig. 15.2 shows time snapshots from a video of
people running and contrasts the complete visual perception provided by the video
RGB frames (shape geometry plus color) versus the obviously poorer insufficient
information of the 2D silhouettes (shape geometry only) of the moving objects. As
motion played an important role in the previous gesture sequence of Fig.15.1, we
also see in Fig. 15.2 that motion is an important visual cue for understanding of
moving shapes.
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Fig. 15.2 Moving shapes: time sequence of sample frames from a video showing people running
(bottom row) and their silhouettes (top row). The frame rate for this video is at 30 fps. Second
frame column is apart from the first by 34 frames (1.13 s), while third frame column is apart from
the second by 48 frames (1.6 s)

Fig. 15.3 Greek sign language alphabet: shapes, images, letters

So far, one main conclusion is that a geometric shape, defined as a 2D or 3D set
of points representing an object in the Euclidean space, is a minimalistic form of a
visual shape, where “visual” means augmenting geometry with optical attributes.

15.2.2 Adding Linguistic Information

The main message from the previous discussion, i.e. that shape inference is enriched
if we couple geometry with optics, is further illustrated in the first two rows of
Fig. 15.3. The top row shows only silhouettes of handshapes from a sign language.
The silhouette only information has some ambiguities, one of which is the question
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whether the front or back side of the handshapes is visible. In contrast, the middle
row shows their corresponding gray images (shape plus brightness texture), i.e. an
example of what we call visual shapes, which disambiguate both the visible side of
the handshape and add texture details on the visible surface. If a viewer did not know
sign language, the first two rows of Fig. 15.3 would just be some handshapes with
shape differences among them. However, if we add the information of the third row
which corresponds these handshapes with distinct letters of the Greek sign language
alphabet, then we have augmented information of a visual shape plus language. This
addition of linguistic information can improve the recognition of such handshapes,
both from an intuitive viewpoint and from a Bayesian inference viewpoint. To
detail the latter (as inspired from statistical speech recognition [23, 40]), assume
for example that we are given a time sequence S D .s1; s2; : : : ; sT/ of shapes
si from a visual language, in the form of spatio-temporal visual data, and each
shape corresponds to a word wi, then we can recognize the unknown sequence of
visual words W D .w1;w2; : : : ;wT / by estimating it via the maximum-a-posteriori
principle:

W� D arg max
W

P.W=S/ D arg max
W

P.S=W/P.W/

P.S/
(15.3)

Thus, the likelihood P.S=W/ of the visual shape sequence given its linguistic
structure is combined with the prior probability P.W/ of the linguistic sequence;
this can potentially improve the recognition by exploiting statistical knowledge of
the language, e.g. if the n-gram probabilities P.wi=wi�1 � � � wi�nC1/ are known.

One way of creating a correspondence between visual shapes and words of some
language is via clustering. As further elaborated in Sect. 15.4 on the importance
of gestures for human communication, imagine given a sequence of visual shape
data that span a domain of visual realizations of concepts or objects common to
some human community and are represented by visual feature vectors. Then, by
some clustering method such as for example the K-means algorithm we can partition
the data over this domain into cells (which are regions of the feature space), each
representing a concept or object. The mapping of visual shapes in each cell to the
cell centroid is some form of feature encoding known as vector quantization. Then,
these centroids can play the role of words or subword units in some language.
In addition to its general usefulness in pattern recognition and machine learning
[5, 14, 46], clustering via vector quantization has also been used in signal processing
for data compression [20], in speech recognition for converting continuous feature
vectors into discrete patterns [40], and in computer vision for action or object
recognition based on the bag of visual words approach [19, 27, 43].

In the following sections we shall briefly describe some paradigms where
visual shape information is supplemented by additional linguistic information. We
distinguish three cases:

(1) Relationships between visual shapes and linguistic information. These include
(i) direct correspondences as for example in Fig. 15.3 and the pictograms
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mentioned in the beginning of Sect. 15.3; (ii) cross-modal relationships in
Sect. 15.3.2 between visual objects, represented by their shape information, and
linguistic information as corresponding words in text or related audio sounds,
employed in a multimedia analysis framework.

(2) In the second case, we employ linguistic information from sign language
at the level of visual phonetics. For example, in sign language recognition
(Sect. 15.3.1) the video segment corresponding to the visual word of an isolated
sign is decomposed into a time sequence of subunits that have a phonetic
meaning.

(3) In the third case, which focuses on multimodal gesture recognition (Sect. 15.5),
linguistic information is expressed in parallel audio and visual modalities: in the
visual stream, gestures occur in a time sequence; in parallel, in the audio stream
a sequence of corresponding keywords (or spoken commands) accompanies the
visual gestures and provides additional linguistic information.

In all the above paradigms the linguistic information we employ stays only in the
specific examples as case studies, and at the level of words or word-subunits; for
instance, we do not discuss linguistic structure at the level of sentences.

15.3 Shape and Language Paradigms

Among the earliest paradigms of correspondences between shape and language are
the ideographic and logographic writing systems. In the ideographic system the
graphemes are the ideograms which are graphic symbols expressing pictorially
some concept, independently of any specific language but often assuming some
prior convention. A special case are the pictograms which further provide a pictorial
resemblance with a physical object. Thus, in pictograms there is a direct connection
between shape and language. The logographic system is based on logograms which
are graphemes that represent words or morphemes and may also contain phonetic
elements. Examples of logograms include numerous Egyptian hieroglyphs and
Chinese characters. A famous example that may fit in one of the above cases are
the shapes on the Phaistos Disk, which was discovered in 1908 at the Minoan
palace of Phaistos on the Greek island of Crete, possibly dating from the 2nd
millennium B.C.; see Fig. 15.4. Although the ancient Egyptian hieroglyphs have
been deciphered after the discovery of the Rosetta Stone in 1799, the glyphs on the
Phaistos Disk still remain an archeological mystery.

In the two following subsections we highlight some ideas relevant to this chapter
from two broad categories of moving shapes where we encounter numerous corre-
spondences between shapes and language: (i) sign gestures and facial expressions
encountered in sign language and (ii) multimodal relationships between vision plus
language (audio or text) that are abundant in movie videos.
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Fig. 15.4 Phaistos disk (At
the archaeological museum of
Heraklion, Crete)

15.3.1 Sign Language

Human languages include both spoken and sign languages. Sign languages are
natural languages communicable purely by vision via sequences of time-varying
3D shapes. They serve for communication in the Deaf communities, as well as
among deaf and hearing people if the latter learn to sign. They convey information
and meaning via spatio-temporal visual patterns, which are formed by manual
(handshapes) and non-manual cues (facial expressions and upper body motion). A
coarse correspondence of a word in spoken language is a sign in sign language. See
[15, 28] for surveys of linguistic and cognitive aspects of sign language. The area of
computer-based processing and recognition of sign videos is also broadly related to
vision-based human-computer interaction using gesture recognition [22].

While significant progress exists in the field of automatic sign language recogni-
tion from the computer vision and pattern recognition fields, e.g. see [1, 8, 32, 44,
45, 49] and the references therein, it still remains a quite challenging task especially
for continuous sign language. In addition to signs having a complex multi-cue 4D
space-time structure, the difficulty in their automatic recognition is also due to the
large variability with respect to inter-signer or intra-signer variations of signing
while expressing the same concept-word. An example exhibiting such variations
is shown in Fig. 15.5. This variation is due to various sources: (i) the physiology of
each signer and the manner of his/her signing, (ii) the coarticulation – continuous
variability that causes multiple pronunciations, and (iii) the existence of multiple
pronunciations per se (e.g. from different dialects). Due to the above variability,
instead of recognizing each sign as a whole word, a more efficient approach
(inspired by speech recognition) is to decompose signs into subunits, resembling
the phonemes of speech, and recognize them as a specific sequence of subunits by
using some statistical model, e.g. via Hidden Markov Models (HMMs). Clearly,
the subunits approach performs much better on large vocabularies and continuous
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Fig. 15.5 Multiple realizations for sign /airplane/. (a) and (b) are due to inter-signer variability.
(c) and (d) are due to intra-signer variability. On each image we superimpose the beginning and
end frames of the sign with an arrow

language; further, the subunits are reusable and help with signer adaptation. In lack
of a lexicon, a computational technique to find such subunits is data-driven, i.e.
perform unsupervised clustering on a large database and use the cluster centroids
as subunits. This performs well in several instances, especially when the subunits
are pre-classified and statistically modeled based on visual features into dynamic
vs. static, as done by Theodorakis et al. [45], where the dynamic or static refers to
the type of the signer’s hands and arms motion. However, a superior performance
accompanied with phonetic interpretability may be obtained if the chosen subunits
are also based on the phonetic structure of a sign, as for example by incorporating
the Posture-Detention-Transition-Steady Shift (PDTS)1 system [24] of phonetic
labels. A sequence of PDTS phonetic subunits is shown in Fig. 15.6. Pitsikalis et al.
[39] combined the phonetic information provided by the PDTS transcriptions of
sign videos with the automatically extracted visual features to create (1) statistically
trained phonetic subunits and a corresponding lexicon, which were then used for
(2) optimally aligning (via Viterbi decoding) the data with the phonetic labels
and hence providing the missing temporal segmentation, as well as (3) better sign
recognition. Thus, we have a clear paradigm of improved shape recognition when
the visual information is coupled with linguistic information.

While information and meaning in sign languages are mainly conveyed by
moving handshapes, they are also conveyed in part by non-manual cues such
as facial expressions. These expressions can be visually modeled by deformable
models that encode both geometric shape and brightness texture information. Such
a class of models often used in computer vision are the active appearance models
(AAMs) [11]. Examples of the deformable geometric masks of such facial AAMs
are illustrated in Fig. 15.7, which shows a few frames from a sign sequence that
involves eye blinking. The transient phenomenon of eye blinking, where the eyes
may take one of the open/closed states, conveys low-level linguistic information
such as sentence – and possibly sometimes sign – boundaries, as described in Anton-

1In the PDTS system, D is a “hold” but for shorter duration than P. S is a “movement” without
acceleration. T is more abrupt motion.
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Fig. 15.6 Sample frames from the sign /pile/ from the Greek sign language. Images marked with
“T” and “E” represent dynamic segments with the phonetic labels “Transition (T)” and “Epenthesis
(E)”, visualized by superimposing on the same image the beginning and end frames with an arrow.
Images marked with “P” represent static segments with the phonetic label “Posture (P)”, visualized
by a single frame (Figure courtesy of Pitsikalis, Theodorakis, Vogler and Maragos [39])

Fig. 15.7 Sign boundary detection based on eye blinking detection on a Greek Sign Language
database. Indicative frames (up) are marked with a black dot in the detection diagram (down)
(Figure courtesy of Antonakos, Pitsikalis and Maragos [2])

akos et al. [2] and the references therein. The detection of the eye opening/closing
transitions can be detected from the changes in the corresponding AAM parameters.
Figure 15.7 presents an example of such a detection between neutral-close-neutral
(neutral is considered as intermediate) and its correspondence with the annotated
sign boundaries. This is another paradigm of synergy between visual shape and
language.

15.3.2 Multimodal Relations Between Shapes and Language

Every day communication between people is a blend of different modalities.
Humans often combine different pieces of information, e.g. visual and linguistic, in
order to communicate and interact. In multimedia data such as multimodal videos,
visual, auditory and linguistic information coexist as well. In multimodal videos
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we encounter a variety of visual objects that we can recognize more easily when
there exists a concurrent linguistic reference either in the text domain or as an
acoustic event. (Note that linguistic information can also exist in a video without
text or audio, e.g. in sign language videos as described in Sect. 15.3.1.) This is
one aspect of a broader class of phenomena with audio-visual modality integration,
which is an active research area in behavioral psychophysics, e.g. see [48], and
in neuroscience where, for instance, brain activity during watching TV programs
as measured by fMRI reveals correlations between audio and visual stimuli [7].
From a computational viewpoint, this audio-visual synergy can improve recognition
performance in multimedia systems via cross-modal integration, as surveyed in [29]
and the references therein. In general, there has been significant evidence that human
perception is multimodal and hence perception of visual objects can be improved
when different modalities are synergetically employed.

A corpus-based framework for analyzing and modeling multimedia dialec-
tics is the COSMOROE framework [36] which describes the semantic interplay
between verbal and non-verbal communication; specifically, the cross-media seman-
tic interrelation between images, language (in the form of either spoken language
transcription, graphic/scene text shown on the video, or acoustic stimuli, e.g.
human/animal or environmental sounds) and body movement. In Fig. 15.8 we
provide two such examples from cross-modal relations between visual shapes and
linguistic information. For instance, in a quite complex scene as presented in
Fig. 15.8a, where there is interaction between people (with clothing that attracts
human attention), the image of the dog could go unnoticed; however, the fact that
the dog is barking guides our look towards it. Same observation applies to Fig. 15.8b
as well; the lamp could easily get overlooked if the acoustic stimulus as in the phrase
“Take the lamp out on the porch” did not take place. This association of a visual
object with the linguistic information may render the recognition procedure easier
for humans and more robust for computers.

In short, the COSMOROE framework [36] aims at finding and analyzing rela-
tions from linguistics to other modalities, especially visual shapes, in multimodal
corpora. In parallel, there is a recent trend in computer vision in the opposite

Fig. 15.8 Correspondence between shapes and linguistic information (aural or textual) in movie
videos. (a) Acoustic event: dog barking. (b) Utterance: “Take the lamp out on the porch”
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direction, i.e. associating visual objects with linguistic attributes, which can benefit
recognitions problems such as action recognition [27] and person recognition [12]
in movie videos, as well as general object recognition [18, 35].

15.4 Gestures in Human Communication

In Sect. 15.3.1 on sign language we summarized that certain types of moving bodily
shapes can convey linguistic messages that represent complete languages. Here we
further extend this idea by providing a brief survey on how gestures have been
of great significance in human communication. In particular, according to specific
theories [3, 31, 47], they have supported the beginnings of language formation, after
which gesture shapes and language can reinforce each other.

By gestures we mean visible actions involving shapes of manual and non-manual
bodily motions and postures; most of them are dynamic (i.e. time-varying for part
of their duration) and use the hands. Kendon [25] classifies human gestures in
(1) Gesticulations, (2) Speech-framed, (3) Pantomimes, (4) Emblems (quotable
gestures), and (5) Sign language. The above sequence has been called Kendon’s
continuum [30]. As the numerical index of the gesture class increases, the degree to
which speech should accompany a gesture decreases whereas the degree to which a
gesture shows language-like properties increases.

The theory that gesture-based human communication evolved first whereas
conventional languages evolved later has had many supporters from the antiquity
until it became more definite in the eighteenth century; afterwards gesture and
sign languages started being studied as natural languages. Wittgenstein in his work
[52] on the philosophy of language argued that “What we call meaning must be
connected with the primitive language of gestures”. In search of the origins of
human communication, Tomasello [47] has provided ample evidence about the
critical importance of gestures, in particular of the pointing and pantomiming
types, for humans to develop (i) social cognitive skills that create a common con-
ceptual ground, including joint attention, shared experience and common cultural
knowledge, and (ii) social motives such as requesting, informing, helping and
sharing with others. These developments of social cognition and motivation create a
shared intentionality, as is called by some modern philosophers of action, e.g. [42].
Quoting from [47], “pointing (deictic gestures) direct the attention of a recipient
to something in the immediate perceptual environment, whereas pantomiming
(iconic gestures) direct the imagination of a recipient to something that typically
is not in the immediate perceptual environment by simulating an action, relation,
or object”. Interestingly apes have also developed pointing (attention-getters) and
pantomiming (intention-movements) gestures for their communication. One big
difference between the gesture-based ape versus human communication is that
for apes it serves individual intentionality, whereas for humans it serves shared
intentionality. This shared intentionality is at the heart of the cooperative model
for human communication [47].



15 On Shape Recognition and Language 333

Thus, according to the theory and evidences in [47], the human social cognitive
skills and social motivation create a cooperative psychological infrastructure of
human communication based on gestures, which laid the foundations for the
later development of conventional languages. By “conventional language” we
mean a symbolic communicative code, which assumes some preexisting codified
form of communication like the gesture modality. Such a linguistic code is
based on a non-linguistic infrastructure of intentional understanding and common
conceptual ground [47, 51]. From a computational viewpoint, we may conjecture
that nowadays, if we are given a collection of gestures referring to a common
perceptual ground of objects, then by clustering and feature encoding we could
in theory map gestures to some abstract language words which could be the
cluster centroids. Of course, after their early development, human conventional
languages, mainly spoken languages, evolved into a very creative and versatile
form of communication which, despite its complexity, has fundamentally supported
and propelled human civilization. In contrast to gestures, the vocal modality in
nonhuman mammals remained inflexible and has not created a language. Quoting
from [47], “for all mammals, including nonhuman primates, vocal displays are
mostly unlearned, genetically fixed, emotionally urgent, involuntary, inflexible
responses to evolutionarily important events that benefit the vocalizer. In stark
contrast, a significant number of nonhuman primate gestures, especially those of
great apes, are individually learned and flexibly produced communicative acts,
involving an understanding of important aspects of individual intentionality.”

Another supporter of the “gesture-first” conjecture is Arbib [3] who supports a
theory that human language evolved as a result of biological and cultural evolution
starting from simple manual gestures we share with apes, progressing to the
imitation of manual skills and pantomime, and culminating to the development of
sign language and speech.

In addition to the gesture-first theory which advocates that human language
started as non-spoken gestures and signs, there are also combined theories that
advocate a fusion of the gesture and speech modality. For example, based on
evidence from neurological and psychological data, McNeill [31] argues for a two-
phase development of language acquisition in children: The first phase is based
only on gestures without speech. Later, when the required brain structures have
matured at age about 3–4, the second phase begins and involves both speech and
gestures. This gesture-speech unity continues in adult life and uniquely characterizes
the human language that we have actually evolved as a species.

It is this multimodal view of the language, containing both imagery via gestures
and linguistic codes via speech, that we further pursue in this chapter by discussing
computational approaches to automate its recognition, as explained next in the
paradigm of audio-visual gesture recognition.
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15.5 Multimodal Gesture Recognition

Multimodal gestures, i.e. time sequences of isolated gestures with simultaneous
utterance of the corresponding keyword (or spoken command), is a primary domain
where the fusion of visual shapes (gestures) with linguistic information (spoken
commands) leads to significantly improved recognition over visual only recognition.
They are becoming increasingly useful for human-computer interaction [6, 22, 26,
34]. In this section we highlight the main ideas and method of the chapter authors’
recent works in [37] and [38] for the effective recognition of multimodally expressed
gestures as performed freely by multiple users. The experiments were performed
on a demanding dataset [17] which was acquired via Kinect for the purpose of
the ChaLearn multimodal gesture recognition challenge (in conjunction with ACM
ICMI 2013) [16]. It comprises multimodal cultural-anthropological gestures of
everyday life, in multi-user spontaneous realizations of both spoken and hand-
gesture articulations, intermixed with other random and irrelevant hand or body
movements and spoken phrases. The use of Kinect enables multimodal capturing
and provides four information streams, three visual (RGB color video, depth video,
and skeleton with tracking of its branch points) and one aural (audio stream),
all essential to multimodal processing. In the next subsections, we briefly review
the approach in [37, 38] for multimodal gesture recognition, where the additional
employment of speech significantly improves the performance of recognition over
using only visual shape information (handshape and skeleton).

15.5.1 Methodology

The multimodal gesture recognition system exploits the color, depth, skeleton and
audio signals captured by the Kinect sensor. See Fig. 15.9 for an overall view of
the proposed fusion scheme. It extracts features for the handshape configuration,
the movement of the hands and the speech signal, and it essentially implements a
two-level2 fusion approach:

1st Pass (P1): To independently account for the specificities of each of
the modalities involved, we first train separate gesture-word models for each
modality. These unimodal models are then used to generate a set of possible
gesture-word sequence hypotheses for a given recording. Then, this original set
of hypotheses is multimodally rescored and resorted.

2In the work of [38] the P1/P2 terms are not employed any more compared to [37], since [38]
includes several other contributions, the discussion of which is beyond the scope of this chapter.
Herein we keep the P1/P2 terms only for descriptive reasons.
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Fig. 15.9 Overview of the multimodal fusion scheme for gesture recognition based on multimodal
hypotheses rescoring. Single-stream models are first used to generate possible hypotheses for the
observed gesture sequence. The hypotheses are then rescored by all streams and the best one is
selected. Finally, the observed sequence is segmented at the temporal boundaries suggested by the
selected hypothesis and parallel fusion is applied to classify the resulting segments. Details are
given in Sect. 15.5.1.2 (Figure courtesy of Pitsikalis, Katsamanis, Theodorakis and Maragos [38])

2nd Pass (P2): Based on the temporal boundaries of the gestures in the best
fused hypothesis, a parallel segmental fusion step as in [49] exploiting all three
modalities further improves recognition.

Gestures in our case occur in parallel with their semantically corresponding
speech words, without implying however strictly synchronous realizations in all
modalities. Given a vocabulary V D fgig, i D 1; : : : ; jVj, of multimodal gestures
gi that are to be detected and recognized in a recording and a set C D fOmg,
m D 1; : : : ; jCj, of measurements from multiple information channels/streams that
are concurrently observed, our goal is to generate the best multimodal hypothesis
h for the sequence of gesture appearances, based on these observations. In our
experiments, the latter set comprises three streams, namely handshape features,
skeleton features and audio spectral features. In essence, any set of information
streams can be employed in this framework, although the combination of visual and
audio cues significantly enhances recognition results.

15.5.1.1 Single Information Stream Modeling

The modeling methodology essentially follows the keyword-filler paradigm for
speech [41, 50] and is based on hidden Markov models (HMMs). For a tutorial on
HMMs and their application to speech recognition, the reader is referred to [23, 40].
The problem of recognizing a limited number of gesture-words in a video possibly
comprising other heterogeneous events as well, is seen as a keyword detection
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problem. The gesture-words to be recognized are the keywords and all the rest is
ignored. Each gesture-word is modeled by a left-to-right HMM with a common
number of states and with Gaussian mixture models (GMMs) representing the state-
dependent observation probability distributions. There are also two separate filler
HMMs to represent either silence/inactivity, or all other possible events (called
“background model” – BM) appearing in that stream.

15.5.1.2 Multimodal Fusion

N-Best Rescoring and Resorting: Using the single stream gesture models and a
gesture grammar G, which defines the set of alternative hypotheses allowed, a list
of N-best possible hypotheses is initially generated for the unknown sequence for
each stream. Specifically, by applying Viterbi decoding [40] we can estimate the
best hypothesis Ohm per stream:

Ohm D arg max
h2G

log P.Omjh; m/; m D 1; : : : ; jCj; (15.4)

where Om is the observation sequence for modality m, m is the corresponding set
of HMM models, and G is the set of alternative hypotheses allowed by the gesture
grammar.

Similarly, in the more general case, we can generate a complete list of the N-
best gesture-word sequences per stream, and form a set H D fh1; : : : ;hLg of all
the hypotheses (L in total) for the available modalities. Given this set, we sort
the hypotheses [10, 21, 33] and identify the most likely hypothesis exploiting all
modalities. In this direction, we estimate a combined score for each possible gesture
sequence as a weighted sum of standardized modality based scores:

vi D
jCjX

mD1
wmv

s
m;i; i D 1; : : : ;L (15.5)

where the weights wm for each modality m can be determined experimentally (by
maximizing the recognition score on the validation set). The modality-based scores
vs

m;i are standardized versions of vm;i which are estimated by means of Viterbi
decoding:

vm;i D max
h2Ghi

log P.Omjh; m/; i D 1; : : : ;L; m D 1; : : : ; jCj; (15.6)

This maximization searches over acceptable gesture sequences that follow a spe-
cific hypothesis-dependent finite-state grammar Ghi . Thus, this is a constrained
recognition problem where the search space of possible state sequences includes
only sequences corresponding to the hypothesis hi plus possible variations by
keeping the appearances of target gestures unaltered and only allow SIL (silence)
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and BM (background model) labels to be inserted, deleted and substituted with
each other. The most probable gesture-word sequence hypothesis h� D hi� , where
i� D arg max

i
vi, after this step is the one with the maximum combined score.

Segmental Parallel Step: Herein we exploit the modality-specific time boundaries
(found via forced alignment) for the most likely gesture sequence and segment each
observation stream, to reduce the recognition problem to a segmental classification
one. For every segment and each stream, we compute the log probability:

LLt
m;j D max

q2Q
log P.Ot

m;qjm;j/; j D 1; : : : ; jVj; (15.7)

where t is the time index of the segment, m;j are the parameters of the HMM model
for the gesture gj and the stream m; q is a possible state sequence. These segmental
scores are linearly combined across modalities to get a multimodal score:

LLt
j D

jCjX
mD1

w0
mLLt

m;j (15.8)

where w0
m is the stream-weight for modality m set to optimize recognition perfor-

mance of this step. Finally, the recognized gesture for each segment t is the one
with the highest multimodal score. This final stage is expected to give additional
improvements, allowing local refinements by exploiting possible benefits of a
segmental classification process.

15.5.2 Experimental Results

15.5.2.1 Multimodal Gesture Dataset

For the experimental work we employed the ChaLearn multimodal gesture chal-
lenge dataset [17], which focuses on multiple-instance, user-independent learning
of gestures from multimodal data. It provides via Kinect RGB and depth images of
face and body, user masks, skeleton information, as well as concurrently recorded
audio including the speech utterance accompanying the gesture. See top row of
Fig. 15.10 for an example of the data. The vocabulary contains 20 Italian cultural-
anthropological gestures, performed by 39 users in 13,858 gesture-word instances
in total. Gesture recognition over this dataset presents several challenges: presence
of distracting gestures, large number of categories, length of gesture sequences, user
variety and corresponding variability in gestures and spoken dialects, variations in
background and lighting; see Fig. 15.11.
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Fig. 15.10 A collection of sample cues as well as extracted features for each modality. Top row:
visual data (RGB and depth) and audio data. Bottom row: visual features (skeletal points, HOGs in
the RGB and depth channels) and audio features (MFCCs)

Fig. 15.11 (a,b) Arm position variation (low, high) for gesture “vieni qui” (“come here”);
(c,d) Left- and right-handed instances of gesture “vattene” (“go away”). Gesture motion is
visualized by superimposing on the same image the beginning and end frames with an arrow

15.5.2.2 Multimodal Features

We statistically train separate HMMs at the level of word-gestures per each
modality, i.e. handshape, skeleton and audio.
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Table 15.1 Single
modalities evaluation
expressed as accuracy (in %)

Audio Skeleton HandShape

87.2 49.1 20.2

Table 15.2 Our approach in
comparison with the first
three places of the ACM 2013
Gesture Challenge

Approach Accuracy %

Ours [38] 93:3

iva.mm [53] 87:2

wweight [17] 84:6

E.T. [4] 82:9

Handshape Cue: The features employed are Histograms of Oriented Gradients
(HOGs) [13] as extracted in both hands’ segmented images for both RGB and
depth modality. We segment the hands by employing the hand’s tracking and by
performing threshold depth segmentation. Essentially, any visual descriptor could
be computed on the handshape information; HOGs are just an example that is used
widely in the literature (e.g. in [9]).

Skeleton Cue: The features employed for the skeleton cue include: the hands’
and elbows’ 3D position, the hands’ 3D position with respect to the corresponding
elbow, the 3D direction of the hands’ movement, and the 3D distance of hands’
centroids.

Audio Cue: To efficiently capture the spectral properties of speech signals, our
frontend generates 39 acoustic features every 10 ms. Each feature vector comprises
13 Mel Frequency Cepstral Coefficients (MFCCs) along with their first and second
derivatives.

A visualization of the extracted features for all the available modalities is
presented in bottom row of Fig. 15.10.

15.5.2.3 Recognition Results

We summarize the most recent3 experimental results from [38].
In Table 15.1 we show the recognition results for each modality. The results

are expressed in accuracy (%), which is computed as 100 � WER where WER is
the percent word error rate that includes insertions, deletions and substitutions. As
observed, the audio modality is the strongest one.

Table 15.2 shows the performance of the proposed multimodal two-pass fusion
scheme [38] in comparison with other approaches who participated in the Gesture
Challenge [17]. Our scheme begins with a first-pass fusion step (P1) leading to

3The multimodal gesture recognition system in [38] is an extension of [37], where additional
components are included such as voice and gesture activity detection and a gesture-loop grammar,
which improve the recognition results.
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the best fused hypothesis as a result of the N-best rescoring. Then follows the P2
component as the second-pass fusion step; in this we employ the gesture-word
level segmentation of the above best fused hypothesis, leading to the second-
pass fused result and the final recognized words. This multimodal fusion yields
a recognition accuracy of 93.3 %, which outperforms the other approaches and
reduces the smallest previous error by a relative 47 %.

A gesture sequence decoding example is shown in Fig. 15.12. Herein we illustrate
both audio and visual modalities for a word sequence accompanied with the ground
truth word-level transcriptions (row: “REF”). In addition we show the decoding
output employing the single-audio modality (AUDIO) and the three presented fusion
cases (P1, P2 and P1CP2). As we observe there are several cases where the subject
pronounces an out-of-vocabulary (OOV) word and either performs a gesture or not.
This indicates the difficulty of the task as these cases should be ignored. By focusing
on the recognized word sequence that employs the single-audio modality we notice
two insertions (words “PREDERE” and “FAME”). By employing either the P1 or
P2 the above word insertions are corrected as the visual modality is integrated and
helps identifying that these segments correspond to OOV words. Further, the single
pass fusion components lead to errors which the proposed approach manages to
deal with: P1 causes insertion of “OK”, P2 of a word deletion “BM”. These are in
contrast to P1C P2 which recognizes correctly the whole sentence.

Note that for the above audio-visual fusion on the Gesture Challenge dataset,
we implicitly address inter-stream differences, since (a) our modeling deals with
not perfectly aligned audio and visual information (we enforce different boundaries
for each stream), and (b) with fusion we can handle cases where one stream is less
informative than the others. In fact, Fig. 15.12 presents cases (third and sixth frame)
where the audio modality is ambiguous (and estimates the wrong word), whereas

Fig. 15.12 An example of recognizing a gesture-word sequence. Audio (top) and visual modalities
(second) via a sequence of images for a word sequence. Ground truth transcriptions (“REF”).
Decoding results for the single-audio modality (AUDIO) and the three different fusion schemes
(P1, P2 and P1+P2). Errors are highlighted: deletions (blue color) and insertions (green color). A
background model (BM) models the out-of-vocabulary (OOV) words (Figure courtesy of Pitsikalis,
Katsamanis, Theodorakis and Maragos [38])
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for the visual streams we are more confident about the gesture, so with fusion of the
results we get the correct gesture-word for these segments.

15.6 Conclusions

In this chapter we have proposed a broader view of shapes and their temporal
sequences as communicative devices. In particular, we have emphasized the connec-
tions between shape and language and have argued for improving shape recognition
by adjoining linguistic information. To illustrate this idea we have provided several
paradigms including examples from sign recognition and shape-language relations
in multimodal videos. Then, we have focused on the class of multimodal gesture
sequences and showed the great improvement in gesture recognition achievable by
fusing visual gesture shapes with spoken commands in multimodal videos. These
paradigms employed some specific methodologies from pattern recognition, i.e.
HMMs, motivated by the relative success they have had in speech recognition
on integrating acoustic with linguistic information, but there are also alternative
machine learning approaches that could be applied. However, despite the possibility
of employing more efficient methodologies, the main thesis of this chapter remains
the capability of improving shape recognition by adding linguistic information. This
is possible and meaningful for those categories of shapes whose modeling can be
considered in a linguistic context.
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Chapter 16
Tongue Mesh Extraction from 3D MRI Data
of the Human Vocal Tract

Alexander Hewer, Stefanie Wuhrer, Ingmar Steiner, and Korin Richmond

Abstract In speech science, analyzing the shape of the tongue during human
speech production is of great importance. In this field, magnetic resonance imaging
(MRI) is currently regarded as the preferred modality for acquiring dense 3D
information about the human vocal tract. However, the desired shape information
is not directly available from the acquired MRI data. In this chapter, we present a
minimally supervised framework for extracting the tongue shape from a 3D MRI
scan. It combines an image segmentation approach with a template fitting technique
and produces a polygon mesh representation of the identified tongue shape. In our
evaluation, we focus on two aspects: First, we investigate whether the approach can
be regarded as independent of changes in tongue shape caused by different speakers
and phones. Moreover, we check whether an average user who is not necessarily
an anatomical expert may obtain acceptable results. In both cases, our framework
shows promising results.
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16.1 Introduction

Shape analysis is of great importance in speech science. In this research area,
analyzing and understanding the shape and the motions of the human tongue during
the production of speech is of great interest. For example, a tongue model may be
integrated into virtual avatars for multimodal spoken interaction or computer-aided
pronunciation training. In the latter case, the user can be shown how to move the
tongue to produce a specific sound [9]. Furthermore, such a tongue model could be
used in articulatory speech synthesis to approximate the vocal tract area function.

Observing and imaging the tongue during speech is a challenging task, since
it is inside the mouth and therefore almost completely hidden from view. Thus,
traditional imaging modalities based on light, such as photography, are of limited
use for acquiring information about the tongue. Currently, magnetic resonance
imaging (MRI) can be regarded as the state-of-the-art technique for imaging the
human vocal tract. This method is capable of providing 3D information about the
inside of the mouth of a speaker without being hazardous or invasive.

The data acquired by MRI has to be further processed to extract the desired
shape information, and manually extracting shape information from MRI scans can
be a tedious and time-consuming task. This motivates an extended version of our
framework [13] that combines image segmentation and template fitting to extract
the tongue surface from a 3D MRI scan in a minimally supervised fashion. The
only user input required by our method is a sparse set of annotated landmarks.
Optionally, the user may additionally crop the MRI scan to the region containing the
tongue for improved performance. We demonstrate experimentally that our method
is stable with respect to inaccurate landmarks, which implies that a user who is not
necessarily an anatomical expert is able to get acceptable results with only minimal
input.

It is desirable to represent the extracted tongue surface using a high level
representation. In this work, we choose as representation a polygon mesh. This
representation has the advantage that it can be directly used in various fields of
application, as meshes can be used to produce piecewise linear approximations of
scenes of arbitrarily complex geometry and topology. The meshes can be textured
and subsequently rendered in real-time to produce photo-realistic images. This even
holds for large models, as polygon meshes can be easily represented in a hierarchy
of resolutions using subdivision [5, Chapter 1]. Furthermore, polygon meshes are
often employed in computer graphics to generate animations of complex objects [5,
Chapter 9], and in computer vision to conduct a statistical analysis of a class of
shapes, as for example faces [7]. By using polygon models, such deformations and
statistical summaries can easily be computed for the extracted tongue surfaces. In
speech processing, polygon models of tongues have been used to generate acoustical
simulations [4], and using polygon models for our meshes allows us to use the
extracted surfaces in existing simulation tools.

Our method uses a single generic template represented by a polygon mesh that
was constructed based on an MRI scan by a non-expert. Experiments indicate that
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our approach has a success rate of 75 % for the dataset of Adam Baker [3] and the
Ultrax project [1]. Furthermore, we show that our method is independent of shape
changes caused by different speakers and phones.

This chapter is organized as follows. Section 16.2 gives an overview of related
work and Sect. 16.3 describes our framework and elaborates on the motivation
behind the design. Section 16.4 provides background information on the datasets
used as the source of the 3D MRI scans in our experiments. It is worth noting
that compared to our previous work, we had data from more speakers available. In
Sect. 16.5, we focus on investigating whether our approach is speaker- and phone-
independent, and whether a non-expert user can achieve acceptable results. Finally,
Sect. 16.6 gives conclusions and discusses open problems.

16.2 Related Work

As it is tedious to manually extract information from MRI scans, a number of
methods have been proposed to facilitate this process. Here, we provide a brief
overview of recent methods.

The method of Peng et al. [22] aims at identifying the tongue’s contour in a 2D
mid-sagittal scan. It is based on an active contours approach [17] where a previously
trained shape model is used to control the evolution of the contour. This technique
was later extended by Eryildirim et al. [10] to align the contour’s end points to the
corresponding extremities of the tongue. More recently, Raessy et al. [23] showed
that it is possible to train oriented active shape models [20] in such a way that they
can be used to reliably identify the boundary of the tongue in 2D scans. These
methods depend on manually preparing a training set and are restricted to the 2D
case.

Lee et al. [16] proposed a framework for extracting the tongue from 3D dynamic
MRI in a minimally supervised fashion. The random walker technique [11], which
requires a user to manually place some seeds, was used as the base segmentation
method. This framework produces a low-level volume segmentation.

Harandi et al. [12] used a template-matching technique to extract a mesh
representation of the tongue from 3D MRI scans. A template is extracted from a
source scan by an anatomical expert. This template is then fitted to a target scan
using color information. Specifically, the mesh points are moved in such a way that
the color at the original point in the source scan is similar to the deformed point
in the target scan. This approach is limited by requiring an expert to provide the
templates.



348 A. Hewer et al.

16.3 Framework

Our framework consists of three main steps. First, we apply an image segmentation
technique to the MRI data to identify the spatial support of the tongue and related
tissue.

Second, we extract the surface points of the tissue, thereby reducing the data to
a purely geometric representation. This is motivated by the fact that it is relatively
easy to combine geometric information from different sources. For example, the
surface point cloud obtained from one scan might be incomplete. In this case, the
information obtained from a second scan of the same speaker could be used to
reconstruct certain missing data by simply adding the corresponding points to the
point cloud of the first scan.

Third, we apply a template fitting technique to obtain a polygon mesh repre-
sentation of the tongue surface from the point cloud. Using such a method has the
advantage that we can exploit prior knowledge about the shape of the tongue in the
form of a provided template. This is especially useful in situations where the point
cloud is noisy, incomplete, or contains additional information other than the tongue.

16.3.1 Interpretation of a Scan as a 3D Image

Before discussing our proposed method, we describe how an MRI scan can be
turned into a 3D image.

Formally, a scan is given by g W S ! R where S � R
3 is a discrete domain in

the form of a rectangular box. The scan domain S contains the positions x at which
the scanner took the measurements. Thus, g.x/ represents the density of hydrogen
molecules measured by the scanner at coordinate x. Each sample position represents
a point on a regular grid with grid spacings hx; hy, and hz.

A 3D image, on the other hand, is given by f W ˝ ! Œ0; 255� where ˝ � R
3

is again a discrete domain in the form of a rectangular box. Here, f .y/ is the gray-
value at voxel coordinate y. In contrast to the sample positions, however, these voxel
coordinates are arranged on a Cartesian grid with hx D hy D hz D 1.

This means we first have to find a mapping s W ˝ ! S from the voxel coordinates
in our image representation to the sample positions of the scan. Here, we can use
y D .x; y; z/> 2 ˝ as an index to access the vertices of the regular grid in S, as

s.y/ WD
�

xhx; yhy; zhz

�>
: (16.1)

To visualize the measured hydrogen density, we define a quantization operator
q W R ! Œ0; 255� that maps the observed densities to 256 values. This allows us to
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Fig. 16.1 Two different slice types of a 3D image showing the human vocal tract. Left: Sagittal
slice. Right: Coronal slice

interpret the scan as 3D image f W ˝ ! Œ0; 255� where

f .y/ D q
�
g.s.y//

�
(16.2)

can be seen as the quantized gray-value representation of the hydrogen density at
sample position s.y/.

In the following, we assume that the data was recorded in a standard sagittal
manner, and refer to an .x; y/-plane of an MRI scan as a sagittal slice and to a .y; z/-
plane of an MRI scan as a coronal slice. Both types of slices are shown in Fig. 16.1.

16.3.2 Image Segmentation

The first step of our method aims to identify the spatial support of the tongue. That
is, we wish to divide ˝ into an object region˝O and a background region˝B. The
object region˝O should contain points that are related to the tongue. However, it is
also allowed to contain regions that belong to other organic tissue. This relaxation is
necessary as in some images no boundary may be detectable between the tongue and
other tissues with which it is in contact, such as the palate. The background region
˝B consists of parts of the scan we have no interest in. These are, for example,
bones, air, or other tissue not related to the tongue.

Figure 16.1 demonstrates that an object can be distinguished from the back-
ground by using color information. This motivates the use of image segmentation
techniques that make use of color information to extract˝O.
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Fig. 16.2 Example result of Chan-Vese in 2D. Left: Sagittal slice. Right: Resulting segmentation.
˝O is colored in red, ˝B in blue. The initial contour used is shown as a white circle

As we aim to apply our method to large datasets, the segmentation method must
satisfy two requirements. First, the required manual input from the user should
be minimal. Second, the segmentation method should be robust. To satisfy both
requirements, we compute segmentations using the method by Chan and Vese [8].
This method is robust and generates smooth boundaries between˝O and˝B, which
can later be used to derive clean surface normals.

The method by Chan and Vese requires as initialization a closed contour C that
separates˝ into ˝O and ˝B. In our approach, this initial contour can be computed
automatically: Given a sparse set of manually annotated landmarks L as described
in Sect. 16.5.1, a sphere can be placed at the centroid of these landmarks in ˝ .
Alternatively, it can be positioned at the center of ˝ if the image mainly shows the
tongue, as for example in Fig. 16.2.

The approach evolves the initial contour C such that the gray-value variance
inside the regions is minimized, i.e.

ECV.C/ D
X

x2˝O

�
f .x/ � �˝O

�2 C
X

x2˝B

�
f .x/� �˝B

�2 C  length.C/; (16.3)

where˝O and˝B are the regions induced by C and �X represents the average gray-
value in region X. The method has a regularizer weighted by  > 0 that tries to
minimize the length of the contour. To minimize the energy, we apply the standard
scheme of Chan and Vese. That is, we start with a continuous version of the energy
that uses a level set representation [21] of the contour, and subsequently derive the
Euler-Lagrange equation of this energy to set up a gradient descent approach that is
discretized using a finite differences implicit scheme. Figure 16.2 shows an example
result in 2D that used a circle as the initial contour.



16 Tongue Mesh Extraction from 3D MRI Data of the Human Vocal Tract 351

Note that the remainder of our method is independent of the selected seg-
mentation method, and any segmentation method can be freely selected if this is
advantageous for a specific dataset. In our preliminary experiments [13], we also
explored a graph cut method [6] for segmentation. However, we did not explore this
option further as approaches of the graph cut family require a significant amount of
manual input, rendering them impractical when processing large datasets.

16.3.3 Surface Point Extraction

Given a partition˝ D ˝O [˝B, we compute the surface information by extracting
surface points P� WD fpig of ˝O and normals N WD fnig for P�, such that ni is the
normal at pi. Surface points pi are points of ˝O that have at least one neighboring
point q in ˝B. Surface normals are chosen to point towards the outside of˝O. Note
that due to the relaxation we formulated earlier for ˝O, P� may contain surface
points belonging to other articulators than the tongue. Furthermore, P� is a subset
of˝ , i.e., the surface information was computed in the image domain. The template
fitting, however, should operate on the domain of the observed vocal tract to be
anatomically correct. Thus, we apply the mapping from Equation (16.1) to obtain
the correct surface information P as

P WD fs.p/ j p 2 P�g: (16.4)

The surface P consists of a loose collection of points, as shown in Fig. 16.3.
Furthermore, the point cloud may be missing information and may contain data
other than the tongue. Therefore, surface reconstruction approaches like the Poisson
reconstruction [14] may produce undesirable results. To avoid this problem, in the
following, we utilize the information that a subset of P forms part of the surface of
a tongue.

16.3.4 Template Fitting

We use a template fitting technique [25] to jointly find the subset of P representing
the tongue and a polygon mesh representation of the tongue surface. That is, we
deform a template mesh M WD .V;F/ to match the point cloud data P. We use
a vertex-face representation of meshes, i.e., V WD fvig denotes the vertex set of
the mesh with vi 2 R

3 and F its face set. To obtain a deformation, the approach
computes a set A WD fAig where Ai W R3 ! R

3 is a rigid body motion for the vertex
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Fig. 16.3 Example result of the template fitting method. Top row: Sagittal slice of the used MRI
scan (left) and obtained point cloud (right). Bottom row: Template used in our approach (left) and
result of the template fitting (right)

vi by minimizing the energy

EDef.A/ D ˛
1

jV�j
X
vi2V�

�
distD

�
Ai.vi/; arg min

pj2P
kAi.vi/ � pjk

��

C ˇ
1

jVj
X
vi2V

 X
vj2N .vi/

distS
�
Ai;Aj

�!

C �
1

jLj
X

.vi;qi/2L

�
distL

�
Ai.vi/;qi

��
: (16.5)

This energy consists of three terms. Each term is weighted by a non-negative value,
˛; ˇ, or � , that is normalized according to the number of participating vertices in
the respective term. This normalization makes it easier to compare the influences of
the different terms.

The data term distD.�/ measures the distance between the transformed vertex
Ai.vi/ and the normal plane at its nearest neighbor. This term is minimized when
the template is close to the point cloud P. In our implementation, this term is only
evaluated at V� � V to increase robustness to noise. In particular, a vertex vi is
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ignored if the Euclidean distance between vi and its nearest neighbor is too large or
if the angle between the outer normals of vi and its nearest neighbor is too large. This
commonly used heuristic [2, 18] is meant to distinguish valid data observations from
invalid ones. Additionally, we do not consider vertices that are part of the landmark
set L to avoid distorting any manually provided correspondences.

The deformation smoothness term distS.�/ measures the difference in rigid body
motion Ai between vi and the vertices of the neighborhoodN .vi/ that consists of the
one-ring neighbors of vi and vertices of the mesh within distance of 2�res.M/ from vi

where res.M/ is the average edge length of the template mesh M. The minimization
of distS.�/ encourages the template to preserve its overall shape during deformation,
which helps to keep the mesh away from data points that do not belong to the surface
of the tongue and allows missing parts to be filled in smoothly. This term is active
at all vertices.

Finally, the landmark term distL.�/ is optional. This term computes the squared
Euclidean distance between pairs of manually annotated vertices vi 2 V and
corresponding coordinates qi 2 R

3 that are contained in a set of landmarks
L WD f.vi;qi/g. Note that the coordinates qi do not have to be contained in P.
By minimizing this term, the approach will move the selected vertices to the user-
provided coordinates.

We discover that minimizing both the data and the smoothness terms will move
the mesh to a subset of P that resembles a tongue-like surface.

We follow a similar strategy as Wuhrer et al. [25] to obtain a minimizer A of the
energy. Before performing the optimization, we perform a rigid alignment of the
template. This step uses the user-provided landmarks and the point cloud to find a
good scale and position for the template.

The energy given in Equation (16.5) is not differentiable with respect to A, which
prevents us from minimizing it directly. Therefore, we perform the optimization
by minimizing a series of differentiable energies Et

Def.A
t/ where t 2 Œ1; tmax�. The

energy Et
Def differs from the original energy EDef in the following way: In Et

Def, we
use the minimizer of the previous energy in the series to transform the vertex in
distD.�/: At�1

i .vi/. This means that arg minpj2P.�/ no longer depends on At. Thus,
the energy becomes differentiable and we can use a quasi-Newton technique [19]
to compute the minimizer. Moreover, for tmax > 1, the weight ˇ of the smoothness
term changes in each iteration. Given a base value ˇ, the weights ˇt used in iteration
t are computed as

ˇt D 2ˇ � .t � 1/
ˇ

tmax � 1
: (16.6)

This means that we start the optimization by promoting smooth transformations.
The weight is then gradually reduced until we arrive at the base weight ˇ in the last
iteration.

After the minimization of the last energy, we obtain the sought transformations
A as Atmax . Note that we use the identity A0i .vi/ D vi as A0 that is needed in the
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first energy E1Def. Furthermore, we apply a coarse-to-fine strategy to cope with large
deformations.

Figure 16.3 illustrates an example of the template fitting.

16.4 Datasets

This study is evaluated on a large dataset of 12 speakers, and extends our previous
work [13], which only considered data from a single speaker. We use two MRI
datasets to validate our method, that of Adam Baker [3], and the full dataset from
the Ultrax project [1].

The Baker dataset contains static 3D MRI scans of a male speaker. Twenty-five
of these scans are speech related and show vocal tract configurations for different
phones. This data was acquired as part of the Ultrax project, but released separately.

The remainder of the Ultrax dataset consists of static 3D MRI scans of 11 adult
speakers. Seven of these speakers are female and four are male. While scanning, the
subjects, who were all phonetically trained, were asked to sustain the articulatory
configurations for a given phone for around 20 s. Prompts were displayed to the
subject using a laptop connected to video-goggles. Each subject recorded scans for
the following phone set [i, e, E, a, A, 2, O, o, u, 0, @, s, S], with an additional scan for
the pose at rest. Simultaneous audio recordings were made using a FOMRI-III fiber
optic microphone. This microphone is specially designed for use in MRI scanners,
using both a pair of microphones and adaptive noise cancellation algorithms to
reduce the level of MRI scanner noise. Though it is not possible to remove the
scanner noise entirely, the use of this microphone does make it possible to monitor
and verify the subject’s phone production acoustically. The Ultrax dataset also
contains other types of MRI scans for all subjects, but those were not used in this
work.

The scans were acquired using a Siemens Verio 3T scanner at the Clinical
Research Imaging Centre in Edinburgh. Each scan comprises 44 sagittal slices with
a thickness of 1:2 mm and an image size (whole head) of 320 � 320 pixels in the
image domain. In the scan domain, we have distances of hx D hy D 1:1875 mm and
hz D 1:2 mm, corresponding to a voxel size of 1:1875 mm � 1:1875 mm � 1:2 mm.
The scans were acquired with an echo time of 0:93 ms and a repetition time of
2:36 ms.

16.5 Evaluation

The focus of this section is on investigating whether our approach can be regarded
as independent of shape changes caused by different speakers and phones. To show
this independence, we demonstrate that is possible to obtain satisfying results across



16 Tongue Mesh Extraction from 3D MRI Data of the Human Vocal Tract 355

different speakers and phones by always applying the same procedure. To this end,
all parameters except for the landmarks are fixed for all scans.

In the following, we first outline how the template is created and how the scans
are prepared. We then describe experiments to evaluate the stability of the weights
in the template fitting, investigate whether our approach is applicable to different
speakers and phones, and analyze the robustness of our approach to erroneously
placed landmarks.

16.5.1 Template Creation

The template is manually extracted from a scan of the Baker dataset. After the
extraction, we adjust the mesh to be symmetric to remove this particular bias
towards the original speaker. Note that the template only models the upper part of
the tongue surface and does not include its sublingual part. The template consists of
5864 vertices and 11,724 faces, and is shown in Fig. 16.4.

We select seven vertices as landmarks. These vertices and an example of the
corresponding user-provided coordinates on an MRI scan are shown in Fig. 16.4.
Five landmarks are distributed on a sagittal slice that is located roughly at the
center of the tongue. Three of these landmarks are located at feature points that
are relatively easy to locate for an average user, namely the tongue root near the
epiglottis and the pharynx (green landmark), the tongue tip (red landmark), and the
position where the tongue surface connects to its sublingual part (pink landmark).
The remaining two landmarks in the mid-sagittal slice are placed at approximately
1
3

and 2
3

of the distance from the tongue tip to the root, corresponding to the tongue
blade (yellow landmark) and back (orange landmark), respectively. We believe that
using this feature-free approach to select the tongue blade and back facilitates the
landmark placement. The tongue blade landmark serves as anchor for two additional
lateral landmarks that may be positioned using a coronal slice. These are located

Fig. 16.4 Placement of the landmarks. Left: Selected vertices for the landmarks on the template.
The left image shows a front view of the template, the right one a view from the back. Right:
Sagittal and coronal slice showing an example of the corresponding user-provided landmarks on
an MRI scan
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near the left (blue landmark) and right (white landmark) boundaries of the tongue’s
upper surface and serve to add lateral information to the landmark set.

Note that not all landmarks are required for our approach. If the user does not
provide coordinates for a subset of the landmarks, these landmarks will simply be
ignored in the optimization process.

16.5.2 Scan Selection and Preparation

We consider the data of all available speakers to ensure high variance with respect
to speaker-specific anatomy. To obtain a high variance of intra-speaker tongue
shape, scans corresponding to the three corner vowels [A, i, u] are considered for
each speaker. These vowels show the tongue in different extreme positions, e.g.
as far back and low in the mouth as possible for [A] [15]. We discovered that one
speaker showed a high activity of the soft palate leading to contacts with the tongue.
Therefore, we removed scans of this specific speaker from further processing.
Furthermore, we removed one scan from another speaker because a part of the
tongue was not visible.

After this selection process, the data is pre-processed using three steps. First,
each scan is cropped to a region of interest containing the vocal tract.

Second, each scan is segmented automatically using the Chan-Vese method.
Here, we use  D 140 and initialize C to a sphere of radius 15 located at the center
of the image representation of the cropped scan. We found that this approach failed
to properly segment the scans of one speaker, and all scans of this speaker were
removed from further processing. After these steps, 29 point clouds derived from
the scans were available for further experiments.

Third, we manually select the landmark coordinates in each scan. To facilitate
this task, we developed a graphical user interface that allows landmarks to be placed
on the image representation of the scan. Subsequently, the landmark positions are
mapped to the scan domain. In our experiments, we encountered scans where the
placement of the two lateral landmarks posed a problem. Due to contact with other
tissue, the left and right boundaries of the tongue’s upper surface were difficult to
identify. We found that these landmarks are not always needed to obtain acceptable
results. For our experiments, we use the 2 lateral landmarks for only 13 of the 29
scans.

Note that this workflow may be modified. In particular, it is possible to omit
the cropping step, thereby reducing the amount of manual pre-processing required
of the user. Working with the full scans produces the same results as working
with the cropped scans if the Chan-Vese method is initialized after pre-aligning
the scans based on the provided landmarks. However, working with the cropped
scans decreases the processing time of the segmentation method and the memory
requirements for computing the point cloud.
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16.5.3 Experiments

As no ground truth is available, we evaluate the results by computing the Euclidean
distances between vertices on the deformed template and their nearest neighbors in
the point cloud. Since our template is incomplete, we ignore vertices at the bottom of
the mesh, as they are not part of the tongue’s boundary. To quantitatively summarize
the results, we compute cumulative error functions. For a qualitative evaluation, we
show the visual quality of some of the results.

In all following experiments, the parameters ˛ D 1 and tmax D 20 are fixed. In
the data term, we use the same heuristic as [25] to identify valid data observations:
We consider only vertices of the template mesh M whose nearest neighbor in the
point cloud is at distance at most 5 � res.M/ and whose normal deviates at most 60ı.

16.5.3.1 Influence of Parameters

We first evaluate the stability of the weights ˇ and � used in the optimization. This
evaluation consists of two parts. First, we check if there is a weight ˇ that produces
acceptable results for all scans by setting � D 0 and testing the ten weights ˇ D
1; 2; : : : ; 10. In this experiment, the landmarks are used only for rigid alignment.

The parameter value ˇoptimal D 4 represents a good compromise between close-
ness to the data and smoothness of the resulting mesh. This can be seen in Fig. 16.5,
which shows the results for an example scan from the Baker dataset. On the one
hand, low weights for ˇ lead to overfitting, which produces a very noisy mesh. On
the other hand, high weights for ˇ reduce the amount of alignment because the
smoothness term has too much influence. Note that the very large distances visible
in the cumulative error function are due to holes in the corresponding point cloud
and can therefore be disregarded. We encountered 13 scans where this choice for ˇ
produced suboptimal results. The poor performance in 4 of those scans was related
to palate contacts of the tongue or segmentation issues. In the remaining 9 scans,
the poor performance stems from template fitting related problems. For example,
the tongue tip of the template was aligned to the front palate region in some results.
Additionally, in some scans, parts of the template were not aligned to the data, as
shown in Fig. 16.6c.

Second, we analyze whether activating the landmark energy in equation (16.5)
can improve the results for fixed ˇoptimal. Specifically, we consider weights � D
0:1; 0:2; : : : ; 1. Hence, for this experiment, the landmarks were used in the template
fitting.
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Fig. 16.5 Example showing how the weight ˇ of the smoothness term affects the result. (a)
Sagittal slice of the used MRI scan. (b) Generated point cloud. (c) Result for ˇ D 1. (d) Result for
ˇ D 4. (e) Result for ˇ D 10. (f) Cumulative error functions for the different results
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Fig. 16.6 Example showing how the landmark energy can help to improve the result. (a) Sagittal
slice of the used MRI scan. (b) Generated point cloud. (c) Result for deactivated landmark energy
(� D 0). (d) Result for active landmark energy (� D 0:1). (e) Cumulative error functions for the
two results
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Figure 16.6 shows that even using small values of � can improve the results
significantly. The figure shows a particular scan from the Ultrax dataset where
activating the landmark energy drastically improves the mesh alignment. On our
dataset, the value �optimal D 0:1 led to the best results. For this parameter setting, 6
of the 9 scans that had template fitting problems for � D 0 are aligned correctly.

16.5.3.2 Evaluation of Independence of Speakers and Phones

We now evaluate the template fitting results obtained for parametersˇoptimal D 4 and
�optimal D 0:1 across different speakers and phones. For these parameter settings,
our approach was successful for 22 of the 29 considered scans. These 22 scans
include scans from all 10 speakers for which scan preparation was successful and
scans from all three considered phones. To evaluate whether the method is biased
towards specific speakers or phones, we consider the set of cumulative error plots
across different phones and speakers. To avoid large distances originating from
potential holes in the point cloud, we only consider distances below 5 mm in the
error computation. Figure 16.7a shows the distribution of cumulative error plots
for different phones, and Fig. 16.7b shows the distribution of cumulative error plots
for different speakers. Note that all cumulative error plots are similar, and hence
the variance between the plots is low. This shows that for our dataset, there is no
significant bias towards any specific speaker or phone, and leads us to conclude that
our approach is speaker- and phone-independent.

16.5.3.3 Evaluation of Noisy Landmark Placement

In the final experiment, we analyze the robustness of our approach against errors
in the coordinates of the landmarks provided by the user. To this end, we add
Gaussian noise with mean 0 mm and standard deviation 5 mm to each component
of the original coordinates to simulate the input of an inexperienced user. We only
consider the scans where our framework succeeded and used the optimal weights
ˇ D ˇoptimal and � D �optimal.

Errors in the landmarks do not have a significant effect on the results. In all but
one of the tested scans, our approach obtains acceptable results even when noisy
landmarks are used. Figure 16.8 shows a representative example of a deformed
template computed using noisy landmarks. Note that the shape of the deformed
templates obtained with clean and noisy landmarks is globally quite similar and
only leads to localized differences. However, we encountered one scan where the
noisy landmarks lead to a suboptimal result.
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Fig. 16.7 Visualizations of the cumulative error for the 22 scans where our approach succeeded.
(a) Cumulative error of the results grouped by phone. The plot shows the mean error (line) and the
standard deviation (ribbon) of all results belonging to the corresponding phone. (b) Cumulative
error grouped by speaker. Missing lines indicate that no result was obtained for the specific phone
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Fig. 16.8 Example showing the effect of noise in the landmarks. (a) Sagittal slice of the used MRI
scan. (b) Generated point cloud. (c) Result for the original landmarks. (d) Result for landmarks
with added noise. (e) Cumulative error functions for the two results
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16.5.4 Discussion

Our approach succeeded in 75 % of the selected scans for a fixed template and
fixed parameter settings. Furthermore, the proposed framework did not show any
significant bias towards a specific phone or speaker, which indicates that it is phone-
and speaker-independent. Here, we want to note that in the study of Harandi et al.
[12] only the speaker-independence of their approach was analyzed. In particular,
they only considered the tongue in the resting position and evaluated their method
across 18 speakers. Moreover, our approach is robust against errors in the landmarks
provided by the user. Thus, even an inexperienced user may obtain acceptable results
using our method.

The observed failure cases stem from three main causes. Issues with the
segmentation approach forced us to discard data from certain speakers completely,
or prevented our framework from producing acceptable results. Using more than
one segmentation technique may help to overcome these problems. Multiple
segmentation results could be generated, and the user could then select the best
one to use in the subsequent processing steps.

Furthermore, for scans where a contact between tongue and palate occurred,
finding surface information of the tongue in the contact area is difficult because
it may not be visible, which leads to a hole in the point cloud. Note that if we
reconstruct the hard palate surface in this region, it may be used to represent the
portion of the tongue surface in contact with the palate. For a point cloud P where
such a hole is present due to a contact in the region of the hard palate, we explored
the following approach to reconstruct the palate. First, a scan is selected where the
hard palate is clearly visible, and the subset of points H representing the palate
surface is extracted. Second, the hard palate is manually aligned to match the vocal
tract configuration in P, which results in the set of transformed points H�. Note that
this alignment is easy to perform manually because the hard palate can only undergo
rigid body motions. Third, P and H� are merged into a single point cloud, which is
used in the template fitting. This palate reconstruction can improve the results in
cases where palate contact results in incomplete point clouds.

Finally, for the scans where the template fitting failed, we suspect that using more
landmarks could help to align the template correctly to the point cloud.

16.6 Conclusion

In this chapter, we presented a minimally supervised approach to extract mesh
representations of the human tongue from MRI data of the vocal tract. The
experiments performed revealed promising results, as the presented approach leads
to results of high quality in 75 % of our tests. An important feature of the approach is
its independence with respect to changes in tongue shape due to different speakers
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and phones. Furthermore, the approach is robust to noise in the manually placed
landmarks.

We leave the following open problems for future work. A palate reconstruction
could help to significantly increase the number of scans that can be processed
successfully by our approach. Hence, it is important to facilitate the process of
palate reconstruction. We plan to replace the process of manually aligning the palate
surface to the MRI data with a rigid alignment approach based on landmarks that
are not necessarily located on the tongue.

Our template fitting could be improved by including more information, such as
the sublingual part of the tongue, more annotated landmarks, or typical MR-values
at the vertices. Such modifications may improve the performance of the template
fitting.

Moreover, the evaluation of our approach could be made more thorough by using
more datasets and comparing the results to other methods in literature. However,
datasets in literature are in general not easy to access due to privacy concerns for the
recorded subjects.

For the future, we also think that it would be worthwhile to explore the perfor-
mance of robust unsupervised methods, like for example [24], in the segmentation
part of the framework. Detecting the position of the landmarks automatically would
be another interesting modification. Both improvements could make the framework
more accurate and further reduce the input required by the user or even make it fully
automatic.
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