
Completeness and Incompleteness

in Nominal Kleene Algebra�

Dexter Kozen1, Konstantinos Mamouras1, and Alexandra Silva2

1 Computer Science Department, Cornell University
{kozen,mamouras}@cs.cornell.edu

2 Intelligent Systems, Radboud University Nijmegen
alexandra@cs.ru.nl

Abstract. Gabbay and Ciancia (2011) presented a nominal extension of
Kleene algebra as a framework for trace semantics with statically scoped
allocation of resources, along with a semantics consisting of nominal lan-
guages. They also provided an axiomatization that captures the behavior
of the scoping operator and its interaction with the Kleene algebra op-
erators and proved soundness over nominal languages. In this paper, we
show that the axioms proposed by Gabbay and Ciancia are not complete
over the semantic interpretation they propose. We then identify a slightly
wider class of language models over which they are sound and complete.

1 Introduction

Nominal sets are a convenient framework for handling name generation and
binding. They were introduced by Gabbay and Pitts [5] as a mathematical model
of name binding and α-conversion.

Nominal extensions of classical automata theory have been explored quite
recently [1], motivated by the increasing need for tools for languages over in-
finite alphabets. These play a role in various areas, including XML document
processing, cryptography, and verification. An XML document can be seen as a
tree with labels from the (infinite) set of all unicode strings that can appear as
attribute values. In cryptography, infinite alphabets are used as nonces, names
used only once in cryptographic communications to prevent replay attacks. In
software verification, infinite alphabets are used for references, objects, pointers,
and function parameters.

In this paper, we focus on axiomatizations of regular languages and how these
can be lifted in the presence of a binding operator and an infinite alphabet of
names. This work builds on the recent work of Gabbay and Ciancia [8], who pre-
sented a nominal extension of Kleene algebra as a framework for trace semantics
with statically scoped allocation of resources, along with a semantics consisting
of nominal languages. Gabbay and Ciancia also provided an axiomatization that
captures the behavior of the scoping operator and its interaction with the usual
Kleene algebra operators. They proved soundness of their axiomatization over

� This work was done while visiting Radboud University Nijmegen.

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-24704-5�4

52 D. Kozen, K. Mamouras, and A. Silva

nominal languages, but left open the question of completeness. In this paper we
address this problem.

Intuitively, the challenge behind showing completeness is twofold. On one
hand, one needs to find the appropriate (language) model, or in other words, the
free model. On the other hand, there is a need to find an appropriate normal
form for a given expression. Normal forms are a vehicle to completeness: two
expressions are equivalent if they can be reduced to the same normal form,
and the axioms are complete if they enable us to derive normal forms for all
expressions.

Our approach is modular. We show that under the right definition of a lan-
guage model, one can prove completeness by first transforming each expression
to another expression for which only the usual Kleene algebra axioms are needed.
The steps of the transformation make use of the usual axioms of Kleene algebra
along with axioms proposed by Gabbay and Ciancia for the scoping operator.

We also show that the axioms are not complete for the language model pro-
posed by Gabbay and Ciancia. We explain exactly what the problem is with their
original language model, which contains what they called non-maximal planes.
This technical difference will be clear later in the paper. We also show that the
axioms are not complete for summation models in which the scoping operator is
interpreted as a summation operator over a fixed set.

In devising the proof of completeness, we have developed a novel technique
that might be useful in other completeness proofs. More precisely, we have made
use of the well known fact that the Boolean algebra generated by finitely many
regular sets consists of regular sets and is atomic. Hence, expressions can be
written as sums of atoms. This is crucial in obtaining the normal form. To our
knowledge this has not been used before in completeness proofs.

The paper is organized as follows. In §2 we recall basic material on Kleene
algebra (KA), nominal sets, and the nominal extension of KA (NKA) of Gabbay
and Ciancia. In §3 we discuss the possible language models, starting with the
original one proposed in [8] and then introducing two new ones: our own alter-
native language model and the summation models. We give a precise description
of the difference between the two language models. In §4 we present our main
result on completeness. The completeness proof is given in four steps: exposing
bound variables, scope configuration, canonical choice of bound variables, and
semilattice identities. In §5 we present concluding remarks and directions for
future work.

2 Background

In this section we review basic background material on Kleene algebra (KA),
nominal sets, and the nominal extension of KA (NKA) of Gabbay and Ciancia
[8]. For a more thorough introduction, the reader is referred to [7,12] for nominal
sets, to [14] for Kleene (co)algebra, and to [8] for NKA.

Completeness and Incompleteness in Nominal Kleene Algebra 53

2.1 Kleene Algebra (KA)

Kleene algebra is the algebra of regular expressions. Regular expressions are
normally interpreted as regular sets of strings, but there are other useful inter-
pretations: binary relation models used in programming language semantics, the
(min,+) algebra used in shortest path algorithms, models consisting of convex
sets used in computational geometry, and many others.

A Kleene algebra is any structure (K,+, ·,∗ , 0, 1) where K is a set, + and · are
binary operations on K, ∗ is a unary operation on K, and 0 and 1 are constants,
satisfying the following axioms:

x+ (y + z) = (x+ y) + z x(yz) = (xy)z x+ y = y + x

1x = x1 = x x+ 0 = x+ x = x x0 = 0x = 0

x(y + z) = xy + xz (x+ y)z = xz + yz 1 + xx∗ ≤ x∗

y + xz ≤ z ⇒ x∗y ≤ z y + zx ≤ z ⇒ yx∗ ≤ z 1 + x∗x ≤ x∗

where we define x ≤ y iff x + y = y. The axioms above not involving ∗ are
succinctly stated by saying that the structure is an idempotent semiring under
+, ·, 0, and 1, the term idempotent referring to the axiom x+x = x. Due to this
axiom, the ordering relation ≤ is a partial order. The axioms for ∗ together say
that x∗y is the ≤-least z such that y+xz ≤ z and yx∗ is the ≤-least z such that
y + zx ≤ z.

2.2 Group Action

A group action of a group G on a set X is a map G × X → X , written as
juxtaposition, such that π(ρx) = (πρ)x and 1x = x. For x ∈ X and A ⊆ X ,
define the subgroups

fixx = {π ∈ G | πx = x} FixA =
⋂

x∈A

fixx = {π ∈ G | ∀x ∈ A πx = x}.

Note that fixA = {π ∈ G | πA = A}, thus FixA and fixA are different: they are
the subgroups of G that fix A pointwise and setwise, respectively.

A G-set is a set X equipped with a group action G × X → X . A function
f : X → Y between G-sets is called equivariant if f ◦ π = π ◦ f for all π ∈ G.

2.3 Nominal Sets

Let A be a countably infinite set of atoms and let G be the group of all finite
permutations of A (permutations generated by transpositions (a b)). The group
G acts on A in the obvious way, making A into a G-set. If X is another G-set,
we say that A ⊆ A supports x ∈ X if FixA ⊆ fixx. An element x ∈ X has finite
support if there is a finite set A ⊆ A that supports x. A nominal set is a G-set
X such that every element of X has finite support.

54 D. Kozen, K. Mamouras, and A. Silva

It can be shown that if A,B ⊆ A and A∪B
= A, then Fix(A∩B) is the least
subgroup of G containing both FixA and FixB. Thus if A and B are finite and
support x, then so does A ∩ B. It follows that if x is finitely supported, there
is a smallest set that supports it, which we call suppx. Moreover, one can show
that A supports x iff πA supports πx. In particular, suppπx = π suppx. Also,
for x ∈ X , Fix suppx ⊆ fixx ⊆ fix suppx. Both inclusions can be strict.

We write a#x and say a is fresh for x if a
∈ suppx.

2.4 Syntax of Nominal KA

NKA expressions over an alphabet Σ of primitive letters are

e ::= a ∈ Σ | e+ e | ee | e∗ | 0 | 1 | νa.e.

The scope of the binding νa in νa.e is e. The precedence of the binding oper-
ator νa is lower than product but higher than sum; thus in products, scopes
extend as far to the right as possible. For example, νa.ab νb.ba should be read
as νa.(ab νb.(ba)) and not (νa.ab)(νb.ba). The set of NKA expressions over Σ is
denoted ExpΣ .

A ν-string is an expression with no occurrence of +, ∗, or 0, and no occurrence
of 1 except to denote the null string, in which case we use ε instead:

x ::= a ∈ Σ | xx | ε | νa.x.

The set of ν-strings over Σ is denoted Σν .
The free variables FV(e) of an expression or ν-string e are defined inductively

as usual. We write e[a/x] for the result of substituting a for variable x in e.
The nominal axioms proposed by Gabbay and Ciancia [8] are:

νa.(d+ e) = νa.d+ νa.e a#e ⇒ νb.e = νa.(a b)e

νa.νb.e = νb.νa.e a#e ⇒ (νa.d)e = νa.de (1)

a#e ⇒ νa.e = e a#e ⇒ e(νa.d) = νa.ed.

3 Models

3.1 Nominal KA

A nominal Kleene algebra (NKA) over atoms A is a structure (K,+, ·,∗ , 0, 1, ν)
with binding operation ν : A×K → K such that K is a nominal set over atoms
A, the KA operations and ν are equivariant in the sense that

π(x+ y) = πx+ πy π(xy) = (πx)(πy) π0 = 0

π(x∗) = (πx)∗ π(νa.e) = ν(πa).(πe) π1 = 1

for all π ∈ G (that is, the action of every π ∈ G is an automorphism of K), and
all the KA and nominal axioms are satisfied.

Completeness and Incompleteness in Nominal Kleene Algebra 55

3.2 Nominal Language Model

Now we describe a nominal language interpretation NL : ExpA → P(A∗) for each
expression e that interprets expressions over A as certain subsets of A∗. This is
the language model of [8]. The definition is slightly nonstandard, as care must
be taken when defining product to avoid capture.

First we give an intermediate interpretation I : Exp
A
→ P(Aν) of expressions

as sets of ν-strings over A. The regular operators +, ·, ∗, 0, and 1 have their
usual set-theoretic interpretations, and

I(νa.e) = {νa.x | x ∈ I(e)} I(a) = {a}.

We maintain the scoping of ν-subexpressions in the ν-strings. Examples:

I(νa.a) = {νa.a}
I(νa.νb.(a + b)) = {νa.νb.a, νa.νb.b}

I(νa.(νb.ab)(a + b)) = {νa.(νb.ab)a, νa.(νb.ab)b}
I(νa.(ab)∗) = {νa.ε, νa.ab, νa.abab, νa.ababab, . . .}
I((νa.ab)∗) = {ε, νa.ab, (νa.ab)(νa.ab), (νa.ab)(νa.ab)(νa.ab), . . .}.

Now we describe the map NL : Aν → P(A∗) on ν-strings. Given a ν-string x,
first α-convert so that all bindings in x are distinct and different from all free
variables in x, then delete all binding operators νa to obtain a string x′ ∈ A

∗. For
example, (νa.ab)(νa.ab)(νa.ab)′ = abcbdb. Here we have α-converted to obtain
(νa.ab)(νc.cb)(νd.db), then deleted the binding operators to obtain abcbdb. The
choice of variables in the α-conversion does not matter as long as they are distinct
and different from the free variables.

Now we define for each ν-string x and expression e

NL(x) = {πx′ | π ∈ Fix FV(x)} NL(e) =
⋃

x∈I(e)

NL(x).

The set NL(x) is the plane x′ �

FV(x) in the notation of [8]. Thus we let the bound
variables range simultaneously over all possible values in A they could take on,
as long as they remain distinct and different from the free variables, and we
accumulate all strings obtained in this way. For example,

NL((νa.ab)(νa.ab)(νa.ab)) = {abcbdb | a, c, d ∈ A distinct and different from b}.
As mentioned, the fresh variables used in the α-conversion does not matter, thus

NL(x) = {πy | π ∈ Fix FV(x)} (2)

for any y ∈ NL(x).
For x, y ∈ A

ν , write x ≡ y if x and y are equivalent modulo the nominal
axioms (1). The following lemma says that the nominal axioms alone are sound
and complete for equivalence between ν-strings in the nominal language model.

56 D. Kozen, K. Mamouras, and A. Silva

Lemma 1. For x, y ∈ A
ν , x ≡ y if and only if NL(x) = NL(y).

Proof. Soundness (the left-to-right implication) holds because each nominal ax-
iom preserves NL, as is not difficult to check. For completeness (the right-to-left
implication), suppose NL(x) = NL(y). We must have FV(x) = FV(y), because if
a ∈ FV(x)− FV(y), then NL(y) would contain a string with no occurrence of a,
whereas all strings in NL(x) contain an occurrence of a. Now α-convert x and
y so that all bound variables are distinct and different from the free variables,
and move the bound variables to the front, so that x = νA.x′ and y = νB.y′

for some x′, y′ ∈ A
∗. By (2), y′ = πx′ for some π ∈ Fix FV(x) = Fix FV(y), so

x = πy, and πy ≡ y by α-conversion. �
Lemma 2. For any x ∈ A

∗ and A,B ⊆ FV(x),

A ⊆ B ⇔ NL(νA.x) ⊆ NL(νB.x)

(in the notation of [8], A ⊆ B ⇔ x
�
B′ ⊆ x

�

A′ , where A′ = FV(x) − A and
B′ = FV(x)−B).

Proof. If A ⊆ B, then FixA′ ⊆ FixB′, therefore

NL(νA.x) = {πx | π ∈ FixA′} ⊆ {πx | π ∈ FixB′} = NL(νB.x).

Conversely, if a ∈ A − B, then x[b/a] ∈ NL(νA.x) − NL(νB.x), where b is any
element of A− FV(x). �
Lemma 3. Let y ∈ NL(e) and A ⊆ FV(y) maximal such that NL(νA.y) ⊆ NL(e)
(in the notation of [8], this is y

�

A′ ∝ NL(e), where A′ = FV(y) − A). Then
νA.y ∈ I(e), and νA.y is the unique ν-string up to nominal equivalence for
which this is true.

Remark 1. This is the essential content of [8, Theorem 3.16]. This is impor-
tant for us because it says that the set NL(e) uniquely determines the maximal
elements of I(e) up to nominal equivalence (Lemma 4 below).

Proof. Let x1, . . . , xn ∈ I(e) be all ν-strings such that y ∈ NL(xi). There are
only finitely many of these. Then

NL(νA.y) ⊆ NL(x1) ∪ · · · ∪NL(xn) ⊆ NL(e).

Using the nominal axioms (1), we can move the quantification in each xi to the
front of the string and α-convert so that the quantifier-free part is y. This is
possible because y ∈ NL(xi). Thus we can assume without loss of generality
that each xi = νAi.y for some Ai ⊆ FV(y).

Let z ∈ NL(νA.y) such that (FV(z)− FV(νA.y)) ∩ FV(νAi.y) = ∅, 1 ≤ i ≤ n.
Since

NL(νA.y) ⊆ NL(x1) ∪ · · · ∪ NL(xn) = NL(νA1.y) ∪ · · · ∪ NL(νAn.y),

we must have z ∈ NL(νAi.y) for some i. But then FV(νA.y),FV(νAi.y) ⊆ FV(z)
and FV(νAi.y) ⊆ FV(νA.y) by choice of z, therefore A ⊆ Ai. Since A was
maximal, A = Ai. �

Let Î(e) = {x ∈ I(e) | NL(x) is maximal in NL(e)}.

Completeness and Incompleteness in Nominal Kleene Algebra 57

Lemma 4. NL(e1) = NL(e2) if and only if Î(e1) = Î(e2) modulo the nominal
axioms (1).

Proof. Suppose NL(e1) = NL(e2). By Lemma 3, each y ∈ NL(e1) is contained
in a unique maximal NL(νA.y), and νA.y ∈ Î(e1). As NL(e1) = NL(e2), these
planes are also contained in NL(e2). Similarly, the maximal planes of NL(e2) are
contained in NL(e1). Since the two sets contain the same set of maximal planes,
they must be equal, therefore Î(e1) = Î(e2) modulo the nominal axioms.

For the reverse implication, note that

NL(e) =
⋃

x∈I(e)

NL(x) =
⋃

x∈Î(e)

NL(x)

by the fact that every plane of e is contained in a maximal one. Then

NL(e1) =
⋃

x∈Î(e1)

NL(x) =
⋃

x∈Î(e2)

NL(x) = NL(e2).

�

3.3 Alternative Nominal Language Model

Let Σ and A be countably infinite disjoint sets. Letters a, b, c, . . . range over A,
x, y, z, . . . over Σ, and u, v, w, . . . over (Σ ∪ A)∗. Quantification is only over Σ.

A language is a subset A ⊆ (Σ ∪A)∗ such that πA = A for all π ∈ G. The set
of languages is denoted L.

The operations of nominal KA are defined on L as follows:

A+B = A ∪B AB = {uv | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩ A = ∅} 0 = ∅
A∗ =

⋃

n

An νx.A = {w[a/x] | w ∈ A, a ∈ A− FV(w)}, x ∈ Σ 1 = {ε}.

Lemma 5. The set L is closed under the operations of nominal KA.

Proof. For sum, π(
⋃

n An) =
⋃

n πAn =
⋃

n An. For product,

π(AB) = {π(uv) | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩ A = ∅}
= {(πu)(πv) | u ∈ A, v ∈ B, FV(πu) ∩ FV(πv) ∩ πA = ∅}
= {uv | u ∈ πA, v ∈ πB, FV(u) ∩ FV(v) ∩ A = ∅}
= (πA)(πB) = AB.

The case of A∗ follows from the previous two cases. The cases of 0 and 1 are
trivial. Finally, for νx.A, we have

π(νx.A) = {π(w[a/x]) | w ∈ A, a ∈ A− FV(w)}
= {(πw)[πa/x] | w ∈ A, a ∈ A− FV(w)}
= {w[a/x] | π−1w ∈ A, π−1a ∈ A− FV(π−1w)}
= {w[a/x] | w ∈ πA, a ∈ πA− πFV(π−1w)}
= {w[a/x] | w ∈ A, a ∈ A− FV(w)} = νx.A.

�

58 D. Kozen, K. Mamouras, and A. Silva

We can interpret nominal KA expressions as languages in L. The interpre-
tation map AL : ExpΣ → L is the unique homomorphism with respect to the
above language operations such that AL(x) = {x}. Note that in this context,
atoms a ∈ A do not appear in expressions or ν-strings.

Theorem 1. The nominal axioms (1) hold in this model.

The proof is long but not conceptually difficult.
We can also define I : ExpΣ → Σν and Î : ExpΣ → Σν exactly as in §3.2 for

the nominal language model, with the modification that expressions are over Σ
and not A.

Lemma 6. AL(e) =
⋃

w∈I(e) AL(w).

Proof. This can be proved by a straightforward induction on the structure of e.
We argue the case of products and binders explicitly.

AL(e1e2) = {uv | u ∈ AL(e1), v ∈ AL(e2), FV(u) ∩ FV(v) ∩ A = ∅}
= {uv | u ∈

⋃

p∈I(e1)

AL(p), v ∈
⋃

q∈I(e2)

AL(q), FV(u) ∩ FV(v) ∩A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

{uv | u ∈ AL(p), v ∈ AL(q), FV(u) ∩ FV(v) ∩ A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

AL(pq) =
⋃

r∈I(e1e2)

AL(r).

AL(νx.e) = νx.AL(e)

= {w[a/x] | w ∈ AL(e), a ∈ A− FV(w)}
= {w[a/x] | w ∈

⋃

p∈I(e)

AL(p), a ∈ A− FV(w)}

=
⋃

p∈I(e)

{w[a/x] | w ∈ AL(p), a ∈ A− FV(w)}

=
⋃

p∈I(e)

νx.AL(p) =
⋃

p∈I(e)

AL(νx.p) =
⋃

w∈I(νx.e)

AL(w).

�

Lemma 7. Every plane AL(νA.w) in AL(e) is maximal; that is, I(e) = Î(e).

Proof. Replace each x ∈ A in w with a distinct element of A to get w′. Then
AL(νA.w) = {πw′ | π ∈ G}. This is maximal, as all finite permutations of A are
allowed. �

Completeness and Incompleteness in Nominal Kleene Algebra 59

Lemma 7 characterizes the key difference between the nominal language model
of [8] described in §3.2 and the alternative nominal language model of this sec-
tion. It explains why the axioms are complete for the alternative model but not
for the model of §3.2. In the model of §3.2, there are non-maximal planes, and
these are “hidden” by the maximal planes, whereas this cannot happen in the
alternative model, as all planes are maximal.

3.4 Summation Models

There are several other interesting models in which ν is interpreted as some
form of summation operator: a summation model over the free KA, a summa-
tion model over languages, a summation model over an arbitrary KA, and an
evaluation model. The axioms are sound over these models, but incomplete for
other reasons.

4 Completeness

In this section we prove our main theorem:

Theorem 2. The axioms of nominal Kleene algebra are sound and complete for
the equational theory of nominal Kleene algebras and for the equational theory
of the alternative language interpretation of §3.3.

We thus show that if two nominal KA expressions e1 and e2 are equivalent in
the alternative language interpretation of §3.3 in the sense thatAL(e1) = AL(e2),
then e1 and e2 are provably equivalent in the axiomatization of Gabbay and
Ciancia [8]. This says that the alternative language model of §3.3 is the free
nominal KA. This is not true of Gabbay and Ciancia’s language model presented
in §3.2, as the inequality a ≤ νa.a holds in the language model of §3.2 but not
in the summation models. Neither is it true of the summation models of §3.4, as
νa.aa ≤ νa.νb.ab holds in the summation models but not in the language model.
However, it is true of Gabbay and Ciancia’s language model if one restricts to
closed terms, as the closed terms of the language models of §3.2 and §3.3 are the
same.

We show that every expression can be put into a particular canonical form that
will allow us to apply the KA axioms to prove equivalence. This construction will
consist of several steps: exposing bound variables, scope configuration, canonical
choice of bound variables, and determining semilattice identities. Each step will
involve a construction that is justified by the axioms.

For the purposes of exposition, we write (
a
e)
a
instead of νa.e so that it is

easier to see the scope boundaries. In this notation, the nominal axioms take the
following form:

60 D. Kozen, K. Mamouras, and A. Silva

νa.(d+ e) = νa.d+ νa.e (
a
d+ e)

a
= (

a
d)

a
+ (

a
e)
a

(3)

νa.νb.e = νb.νa.e (
a
(
b
e)

b
)
a
= (

b
(
a
e)
a
)
b

(4)

a#e ⇒ νa.e = e a#e ⇒ (
a
e)
a
= e (5)

a#e ⇒ νb.e = νa.(a b)e a#e ⇒ (
b
e)

b
= (

a
(a b)e)

a
(6)

a#e ⇒ (νa.d)e = νa.de a#e ⇒ (
a
d)

a
e = (

a
de)

a
(7)

a#e ⇒ e(νa.d) = νa.ed a#e ⇒ e (
a
d)

a
= (

a
ed)

a
. (8)

We remark that writing scope boundaries of ν-expressions as letters (
a
and)

a
is

merely a notational convenience. Although it appears to allow us to violate the
invariant that starred expressions and ν-expressions are mutually well-nested, in
reality this is not an issue, as all our transformations are justified by the axioms,
which maintain this invariant.

4.1 Exposing Bound Variables

A ν∗-string is a string of

– letters a,
– well-nested scope delimiters (

a
and)

a
, and

– starred expressions e∗ whose bodies e are (inductively) sums of ν∗-strings.

We say that the bound variables of a ν∗-string are exposed if

(i) the first and last occurrence of each bound variable occur at the top level in
the scope of their binding operator,1 and

(ii) the bound variables of all ν∗-strings in the bodies of starred subexpressions
are (inductively) exposed.

A typical ν∗-string is (
a
(
b
abb(ab (

a
ab)

a
+b (

b
ba)

b
)∗ba)

b
)
a
. The bound variables

are exposed in this expression because the first and last occurrences of a and b
occur at the top level. Inside the starred subexpression, the bound variables in
the two ν∗-strings are exposed because there are no starred subexpressions.

Lemma 8. Every expression can be written as a sum of ν∗-strings whose bound
variables are exposed.

Proof. It is straightforward to see how to use the nominal axiom (3) in the left-
to-right direction and the distributivity and 0 and 1 laws of Kleene algebra to
write every expression as a sum of ν∗-strings.
1 “Top level” means not inside a starred subexpression. Inside a starred expression e∗,
“top level” means not inside a starred subexpression of e.

Completeness and Incompleteness in Nominal Kleene Algebra 61

Exposing the bound variables is a little more difficult. It may appear at first
glance that one can simply unwind e∗ as 1+e+ee∗e and then unwind the starred
subexpressions of e inductively, but this is not enough. For example,

(a+ b)∗ = 1 + a+ b + (a+ b)(a+ b)∗(a+ b)

= 1 + a+ b + a(a+ b)∗a+ a(a+ b)∗b+ b(a+ b)∗a+ b(a+ b)∗b,

and the subexpression a(a+ b)∗a does not satisfy (i). The following more com-
plicated expression is needed:

(a+ b)∗ = 1 + a+ b + aa∗a+ bb∗b+ ab+ ba (9)

+ aa∗ab+ aa∗ba∗a+ baa∗a+ abb∗b+ bb∗ab∗b+ bb∗ba (10)

+ aa∗abb∗b+ aa∗b(a+ b)∗ab∗b+ aa∗b(a+ b)∗ba∗a (11)

+ bb∗a(a+ b)∗ab∗b+ bb∗a(a+ b)∗ba∗a+ bb∗baa∗a (12)

Line (9) covers strings containing no a’s or no b’s or one of each. Line (10) covers
strings containing one a and two or more or more b’s or one b and two or more
or more a’s. Lines (11) and (12) cover strings containing at least two a’s and at
least two b’s.

For the general construction, we first argue the case of (a1 + · · ·+ an)
∗. Write

down all strings containing either zero, one, or two occurrences of each letter.
For each such string, insert a starred subexpression in each gap between adjacent
letters. The body of the starred expression inserted into a gap will be the sum
of all letters a such that the gap falls between two occurrences of a.

For example, the second term of (11) is obtained from the string abab. There
are three gaps, into which we insert the indicated starred expressions:

a b a b
↑ ↑ ↑
a∗ (a+ b)∗ b∗

In the first gap we inserted a∗ because the gap falls between two occurrences of
a but not between two occurrences of b. In the second gap we inserted (a+ b)∗

because the gap falls between two occurrences of a and two occurrences of b.
This construction covers all strings whose first and last occurrences of each

letter occur in the order specified by the original string before the insertion.
If a letter occurs twice before the insertion, then after the insertion those two
occurrences are the first and last, and they occur at the top level. If a letter occurs
once before the insertion, then that is the only occurrence after the insertion,
and it is at the top level. If a letter does not occur at all before the insertion,
then it does not occur after.

For the general case e∗, we first perform the construction inductively on all
starred subexpressions of e, writing e∗ = (e1 + · · · + en)

∗ where each top-level
ν∗-string ei satisfies (i) and (ii). Now take the sum constructed above for (a1 +
· · · + an)

∗ and substitute ei for ai in all terms. This gives an expression of the
desired form. �

62 D. Kozen, K. Mamouras, and A. Silva

4.2 Scope Configuration

For this part of the construction, we first α-convert using (6) to make all bound
variables distinct and different from any free variable. This is called the Baren-
dregt variable convention.

Now we transform each ν∗-string to ensure that every top-level left delimiter
(
a
occurs immediately to the left of a free occurrence of a that it binds:

· · ·(
a
a · · ·(

b
b · · ·(

c
c · · ·)

c
· · ·)

b
· · ·)

a
· · · (13)

That occurrence is at the top level due to the preprocessing step of §4.1. We do
this without changing the order of any occurrences of variables in the string, but
we may change the order of quantification.

Starting at the left end of the string, scan right, looking for top-level left
delimiters. For all top-level left delimiters that we see, push them to the right as
long as we do not encounter a variable bound by any of them. Stop when such
a variable is encountered. For example,

· · · (
a
· · · (

b
· · · (

c
· · · b · · ·)

c
· · ·)

b
· · ·)

a
· · · ⇒ · · ·(

a
(
b
(
c
b · · ·)

c
· · ·)

b
· · ·)

a
· · ·

Here we are using the nominal axiom (8) in the right-to-left direction to skip
over letters and starred expressions. If such a variable is encountered, it will be
at the top level because of the preprocessing step of §4.1.

In this example, we must keep the (
b
to the left of that occurrence of b, but

we wish to move the (
a
and (

c
past the b. The c can be moved in using (8), but

to move the a in, we must exchange the order of quantification of a and b. To
do this, we push the corresponding right delimiter of b up to the right delimiter
of a using the nominal axiom (7) in the left-to-right direction.

· · ·(
a
(
b
(
c
b · · ·)

c
· · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
(
c
b · · ·)

c
· · ·)

b
)
a
· · ·

This is always possible, as there is no free occurrence of b to the right of the)
b

due to the Barendregt variable convention. Now we can exchange the order of
quantification using the nominal axiom (4).

· · · (
a
(
b
(
c
b · · ·)

c
· · ·)

b
)
a
· · · ⇒ · · ·(

b
(
a
(
c
b · · ·)

c
· · ·)

a
)
b
· · ·

This allows us to move the a and c in past the (
b
and continue.

· · · (
b
(
a
(
c
b · · ·)

c
· · ·)

a
)
b
· · · ⇒ · · ·(

b
b (
a
(
c
· · ·)

c
· · ·)

a
)
b
· · ·

When looking for the first occurrence of a free variable bound to a left delim-
iter, perhaps no free occurrence is encountered before seeing a right delimiter.

Completeness and Incompleteness in Nominal Kleene Algebra 63

In this case there is no free occurrence of the variable in the scope of the binding,
so we can just forget the binding altogether.

· · ·(
a
(
b
(
c
)
c
· · · b · · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
· · · b · · ·)

b
· · ·)

a
· · ·

This uses the nominal axiom (5).
If there exists a free occurrence of a inside a scope (

a
· · ·)

a
, then the leftmost

one occurs at the top level due to the construction of §4.1. Thus, when we are
done, any remaining left delimiters (

a
in the string occur immediately to the left

of a free occurrence of a that is bound to that delimiter, as illustrated in (13).
Now we finish up the construction by moving the right delimiters to the left

as far as possible without exchanging order of quantification. Because of the
preprocessing step of §4.1, the rightmost occurrence of any variable quantified
at the top level occurs at the top level. Thus every right delimiter)

a
occurs

either immediately to the right of an occurrence of a bound to that delimiter or
immediately to the right of another right delimiter)

b
with smaller scope.

At this point we have transformed the expression so that every ν∗-string
satisfies the following properties:

(i) every ν-subformula is of the form νa.ae; that is, the leftmost symbol of every
scope is a variable bound by that scope; and

(ii) the rightmost boundary of every scope is as far to the left as possible, subject
to (i).

The position of the scope delimiters is canonical, because scopes are as small
as possible: the left delimiters are as far to the right as they can possibly be,
and the right delimiters are as far to the left as they can possibly be given the
positions of the left delimiters. It follows that if two expressions are equivalent,
then they generate the same ν-strings up to renaming of bound variables.

4.3 Canonical Choice of Bound Variables

Now we would like to transform the expression so that the bound variables are
chosen in a canonical way. This will ensure that if two expressions are equiva-
lent, then they generate the same ν-strings, not just up to renaming of bound
variables, but absolutely. This part of the construction will thus relax the Baren-
dregt variable convention, so that variables can be bound more than once and
can occur both bound and free in a string.

Choose a set of variables disjoint from the free variables of the expression and
order them in some arbitrary but fixed order a0, a1, Moving through the
expression from left to right, maintain a stack of variable names corresponding
to the scopes we are currently in. When a left scope delimiter (

a
is encountered,

and we are inside the scope of n ν-formulas, the variables a0, . . . , an−1 will be
on the stack. We rename the bound variable a to an using the nominal axiom
(6) for α-conversion and push an onto the stack. When a right scope delimiter is

64 D. Kozen, K. Mamouras, and A. Silva

encountered, we pop the stack. This construction guarantees that every ν-string
generated by the expression satisfies:

– For every symbol in the string, if the symbol occurs in the scope of n nested ν-
expressions, then those expressions bind variables a0, . . . , an−1 in that order
from outermost to innermost scope.

It follows that two semantically equivalent expressions so transformed generate
exactly the same set of ν-strings.

4.4 Determining Semilattice Identities

After transforming e1 and e2 by the above construction, we know that if e1
and e2 are equivalent, then they generate the same sets of ν-strings; that is,
I(e1) = I(e2). Now we wish to show that any two such expressions can be
proved equivalent using the KA and nominal axioms in conjunction with the
following congruence rule for ν-formulas:

e1 = e2
νa.e1 = νa.e2

. (14)

In order to do this, there is one more issue that must be resolved. Let us first
assume for simplicity that e1 and e2 are of ν-depth one; that is, they only contain
bindings of one variable a. There may be several subexpressions in e1 and e2 of
the form νa.d, but all with the same variable a. We will relax this restriction
later.

Any substring of the form νa.x of a ν-string generated by e1 or e2 must be
generated by a subexpression of the form νa.d. However, there may be several
different subexpressions of this form, and the string νa.x could be generated
by more than one of them. In general, the sets of ν-strings generated by the
ν-subexpressions could satisfy various semilattice identities, and we may have to
know these identities in order to prove equivalence.

For example, consider the two expressions c1 + c2 and d1 + d2 + d3, where

c1 = νa.a(aa)∗ c2 = νa.aa(aa)∗

d1 = νa.a(aaa)∗ d2 = νa.aa(aaa)∗ d3 = νa.aaa(aaa)∗
(15)

(ci generates strings with i mod 2 a’s and di generates strings with i mod 3 a’s).
Both c1+c2 and d1+d2+d3 generate all nonempty strings of a’s, but in different
ways. If c1 + c2 occurs in e1 and d1 + d2 + d3 occurs in e2, we would have to
know that they are equivalent to prove the equivalence of e1 and e2.

To determine all semilattice identities such as c1 + c2 = d1 + d2 + d3 that
hold among the ν-subexpressions, we express every ν-subexpression in e1 or e2
as a sum of atoms of the Boolean algebra on sets of ν-strings generated by these
ν-subexpressions. In the example above, the atoms of the generated Boolean
algebra are bi = νa.ai(a6)∗, 1 ≤ i ≤ 6 (bi generates strings with i mod 6 a’s).
Rewriting the expressions (15) as sums of atoms, we would obtain

c1 = b1 + b3 + b5 c2 = b2 + b4 + b6 d1 = b1 + b4 d2 = b2 + b5 d3 = b3 + b6.

Completeness and Incompleteness in Nominal Kleene Algebra 65

The equivalences are provable in pure KA plus the nominal axiom (3). Then
c1 + c2 and d1 + d2 + d3 become

c1 + c2 = (b1 + b3 + b5) + (b2 + b4 + b6)

d1 + d2 + d3 = (b1 + b4) + (b2 + b5) + (b3 + b6),

which are clearly equivalent.
Now we observe that any ν-string νa.x generated by e1 or e2 is generated

by exactly one atom. Moreover, if νa.f is an atom and νa.x ∈ I(νa.f), and if
νa.x is generated by νa.f in the context u(νa.x)v ∈ I(νa.e1), then for any other
νa.y ∈ I(νa.f), we have u(νa.y)v ∈ I(νa.e1) as well. This says that we may
treat νa.f as atomic. In fact, once we have determined the atoms, if we like
we may replace each atom νa.f by a single letter aνa.f in e1 and e2, and the
resulting expressions are equivalent, therefore provable. Then a proof of the two
expressions with the letters aνa.f can be transformed back to a proof with the
atoms νa.f by simply substituting νa.f for aνa.f . However, note that it is not
necessary to do the actual substitution; we can carry out the same proof on the
original expressions with the νa.f .

For expressions of ν-depth greater than one, we simply perform the above
construction inductively, innermost scopes first. We use the KA axioms and the
semilattice identities on depth-n ν-subexpressions to determine the semilattice
identities on depth-(n−1) ν-subexpressions, then use the nominal axiom (3) and
the rule (14) to prepare these semilattice identities for use on the next level.

This completes the proof of Theorem 2.

5 Conclusion

We have presented results on completeness and incompleteness of nominal Kleene
algebra as introduced by Gabbay and Ciancia [8]. There are various directions
for future work.

The normalization procedure presented in this paper yields a decision proce-
dure that, although effective, is likely to be prohibitively expensive in practice
due to combinatorial explosions in the preprocessing step of §4.1 and in the
intersection of regular expressions in §4.4. In a companion paper [10], we have
explored the coalgebraic theory of nominal Kleene algebra with the aim of de-
veloping a more efficient coalgebraic decision procedure, which would be of par-
ticular interest for the applications mentioned in the introduction. Coalgebraic
decision procedures have been devised for the related systems KAT and NetKAT
[2,4,13] and have proven quite successful in applications, and we suspect that a
similar approach may bear fruit here.

Another interesting direction would be to follow recent work by Joanna
Ochremiak [11] involving nominal sets over atoms equipped with both relational
and algebraic structure. This is an extension of the original work of Gabbay and
Pitts in which atoms can only be compared for equality.

The proof we have provided is concrete and does not explore the rich cate-
gorical structure of nominal sets. It would be interesting to rephrase the proof

66 D. Kozen, K. Mamouras, and A. Silva

in more abstract terms, which would also be more amenable to generalizations
such as those mentioned above.

Acknowledgments. We are grateful to Jamie Gabbay for bringing the orig-
inal NKA paper to our attention. We would like to thank Filippo Bonchi,
Paul Brunet, Helle Hvid Hansen, Bart Jacobs, Tadeusz Litak, Daniela Petrişan,
Damien Pous, Ana Sokolova, and Fabio Zanasi for many stimulating discussions,
comments, and suggestions. This research was performed at Radboud Univer-
sity Nijmegen and supported by the Dutch Research Foundation (NWO), project
numbers 639.021.334 and 612.001.113, and by the National Security Agency.

References

1. Bojanczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical
Methods in Computer Science 10(3) (2014)

2. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: POPL 2013, pp. 457–468 (January 2013)

3. Fernández, M., Gabbay, M.J.: Nominal rewriting with name generation: abstraction
vs. locality. In: PPDP 2005. ACM Press (July 2005)

4. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: POPL 2015, Mumbai, India, pp. 343–355 (January
2015)

5. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax involving binders. In:
LICS 1999, Trento, Italy, pp. 214–224 (July 1999)

6. Gabbay, M.J.: A study of substitution, using nominal techniques and Fraenkel-
Mostowski sets. Theor. Comput. Sci. 410(12-13) (March 2009)

7. Gabbay, M.J.: Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bull. Symbolic Logic 17(2), 161–229 (2011)

8. Gabbay, M.J., Ciancia, V.: Freshness and Name-Restriction in Sets of Traces with
Names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380.
Springer, Heidelberg (2011)

9. Gabbay, M.J., Mathijssen, A.: Nominal universal algebra: equational logic with
names and binding. J. Logic and Computation 19(6), 1455–1508 (2009)

10. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene coalgebra. TR,
Computing and Information Science, Cornell University (February 2015),
http://hdl.handle.net/1813/39108

11. Ochremiak, J.: Nominal sets over algebraic atoms. In: Höfner, P., Jipsen, P., Kahl,
W., Müller, M.E. (eds.) RAMiCS 2014. LNCS, vol. 8428, pp. 429–445. Springer,
Heidelberg (2014)

12. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press (2013)

13. Pous, D.: Symbolic algorithms for language equivalence and Kleene algebra with
tests. In: POPL 2015, Mumbai, India, January 2015, pp. 357–368 (2015)

14. Silva, A.: Kleene Coalgebra. PhD thesis, University of Nijmegen (2010)

http://hdl.handle.net/1813/39108

	Completeness and Incompleteness in Nominal Kleene Algebra
	1Introduction
	2Background
	Kleene Algebra (KA)
	Group Action
	Nominal Sets
	Syntax of Nominal KA

	3Models
	Nominal KA
	Nominal Language Model
	Alternative Nominal Language Model
	Summation Models

	4Completeness
	Exposing Bound Variables
	Scope Configuration
	Canonical Choice of Bound Variables
	Determining Semilattice Identities

	5Conclusion

