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Abstract. Game logic is a modal logic the modalities of which model
the interaction of two players, Angel and Demon. It is known that game
logic is not adequately interpreted through relation based Kripke models.
The basic mechanism behind neighborhood models, which are used in-
stead, is given through effectivity functions. We give a brief introduction
to effectivity functions based on sets, indicate some of their coalgebraic
properties, and move on to a definition of stochastic effectivity functions
over general measurable spaces. An interpretation of game logics in terms
of these effectivity functions is sketched, and their relationship to prob-
abilistic Kripke models and to the interpretation of the PDL fragment is
indicated.

Modal Logics and Games. The formulas of a modal logics are given through the
grammar

ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉ϕ.
Here p is an atomic proposition, and a is a modality, which usually models
actions. Thus 〈a〉ϕ holds in a world w ∈ W iff we can make a transition by
executing action a ∈ A into a world w′ in which formula ϕ holds. This indicates
the usual interpretation of the logic: we associate with each action a a relation
Ra ⊆ W × W and define w |= 〈a〉ϕ iff w′ |= ϕ for some w′ ∈ Ra(w) := {w′′ |
〈w,w′′〉 ∈ Ra}; the Boolean connectives are interpreted as usual, and each atomic
proposition p is associated with a set V (p) ⊆ W such that w |= π iff w ∈ V (p).
Collect these data into a relation based Kripke model

(
W, (Ra)a∈A, V

)
.

If the modalities carry a structure of their own, one would expect that this is
reflected in the interpreting relations. This is the case, e.g., with Propositional
Dynamic Logic (PDL) or with Game Logic (GL), which are intended to model
simple programs, and two person games, respectively. We assume for the latter
that we have two adversaries, Angel and Demon, playing against each other,
taking turns. The grammar for games is given through

g ::= γ | g1 ∩ g1 | g1 ∪ g2 | g1; g2 | g∗ | gd | g× | ϕ?

with γ ∈ Γ a primitive game [6]. Here g1∪g2 denotes the nondeterministic choice
between games g1 and g2, g1; g2 is the sequential play of g1 and g2 in that order,
and g∗ is iteration of game g a finite number of times (including zero). The game
ϕ? tests whether or not formula ϕ holds, where ϕ is a formula from the logic.
ϕ? serves as a guard: (ϕ?; g1) ∪ (¬ϕ?; g2) tests whether ϕ holds, if it does g1 is
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played, otherwise, g2 is. This describes the moves of Angel. The moves of player
Demon are given by g1 ∩ g2, where Demon chooses between games g1 and g2;
this is demonic choice (in contrast to angelic choice g1 ∪ g2). With g×, Demon
decides to play game g a finite number of times (including not at all), and gd

indicates that Angel and Demon change places.
The informal meaning of 〈g〉ϕ is that formula ϕ holds after game g is played.

Let us just indicate informally by 〈g〉ϕ that Angel has a strategy in game g which
makes sure that playing g results in a state which satisfies formula ϕ. We assume
the game to be determined : if one player does not have a winning strategy, then
the other one has. Thus if Angle does not have a ϕ-strategy, then Demon has
a ¬ϕ-strategy, and vice versa. This means that we can derive the way Demon
plays the game from the way Angel does, and vice versa. Thus we may express
demonic choice g1 ∩ g2 through (gd1 ∪ gd2)

d, and demonic iteration g× through

angelic iteration
(
(gd)∗

)d
); clearly, gdd should be the same as g. In contrast to

Banach-Mazur games, we do not describe formally what a strategy is.

Neighborhood Models. Game logics are usually interpreted through neighborhood
models, which associate with each primitive game γ ∈ Γ and each world w ∈ W
a set Nγ(w) of subsets of W , A ∈ Nγ(w) indicating that Angel has a strategy
for achieving a state in A upon playing γ in state w. Thus Nγ(w) is an upper
closed subset of the power set P (W ) of W , hence A ∈ Nγ(w) and A ⊆ B
implies B ∈ Nγ(w); the elements of Nγ(w) are perceived as neighborhoods of w
under γ. These models are more general than Kripke models: given a relation
R ⊆ W × W , w 	→ {A ⊆ W | R(w) ⊆ A} yields for each w ∈ W an upper
closed set. Associating with Nγ a monotone map N+

γ : P (W ) → P (W ) through
N+

γ (A) := {w ∈ W | w ∈ Nγ(w)}, we may perform a syntax directed translation

from games to maps P (W ) → P (W ), e.g., N+
g1;g2 := N+

g1 ◦ N+
g2 , or N+

gd(A) :=

W \N+
g (W \A). In this way, each game g gets associated with such a monotone

map N+
g . We interpret the modal formula 〈g〉ϕ by defining [[〈g〉ϕ]] := N+

g ([[ϕ]]),
where, as usual, w ∈ [[ϕ]] iff w |= ϕ.

A coalgebraic point of view notices that the assignment V : W 	→ {V ⊆
P (W ) | V is upper closed} is the functorial part of a monad, and that each Nγ

is a Kleisli morphism for this monad, hence a coalgebra for V. Composition of
games is interpreted through Kleisli composition in the V-monad; the actions of
Demon may be obtained through demonization (the demonization of f : W →
V(W ) is given by ∂f : w 	→ {A | W \A �∈ f(w)}). The transformation Nγ 	→ N+

γ

is given by a natural transformation of the functors P → V.
Neighborhood models are strictly more general than Kripke models, which

turn out to be not adequate for interpreting general game logics. This is the
reason why: The interpretation of games through Kripke models is disjunctive,
which means that 〈g1; (g2 ∪ g3)〉ϕ is semantically equivalent to 〈g1; g2 ∪ g1; g3〉ϕ
for all games g1, g2, g3. This, however, is evidently not desirable: Angle’s decision
after playing g1 whether to play g2 or g3 should not be equivalent to decide
whether to play g1; g2 or g1; g3. Neighborhood models in their greater generality
do not display this equivalence [7].
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A Stochastic Interpretation of Game Logic. We modify first the modal formulas
〈g〉ϕ to the conditional modal formulas 〈g〉rϕ, indicating now that formula ϕ
should hold after playing g with a probability not smaller than r ∈ [0, 1]. It
replaces also sets of worlds by sets of probability distributions over these worlds.
Playing game g in state w, Ng(w) is an upper closed set, the elements of which
are now probability distributions over W , A ∈ Ng(w) indicating that Angel has
a strategy for achieving a distribution of new states taken from A. So this sounds
like simply replacing the set of states by the set of distributions over the states.
But things are not that straightforward, unfortunately. The reason is that we
need this new kind of neighborhood models be adaptable to the requirements
provided by the algebraic structure of the games, in particular it should support
the composition of games, and it should be closed under demonization.

This leads to the definition of stochastic effectivity functions, which model a
particular kind of stochastic nondeterminism [4,2]. One first notes that the set of
worlds W should carry a measurable structure, so that measures can be defined
on it. The set P (W ) of all probabilities on W then carries also a measurable
structure, which is given in a fairly natural way by evaluating probabilities at
events [3]. So an effectivity function P on world W should map W to the upper
closed measurable subsets of P (W ). This looks like an easy combination of two
monads — the probability functor P is a well known monadic functor, and the
upper closed functor is also monadic. Unfortunately, this does not work out well,
because the composition of two monads is usually not a monad, bad luck.

The following technical construction helps to bypass this difficulty. Assume
we have a measurable subset H ⊆ P (W ) × [0, 1], which may be thought of as
a combination of measures with their numerical evaluations, e.g., H = {〈μ, q〉 |
μ(A) ≥ q} for some measurable set A of worlds, then Hq := {μ | 〈μ, q〉 ∈ H}
cuts H at q (imagine a set in the plane and look at its horizontal cuts). It
can be shown that Hq is a measurable set of probabilities. We want the set
{〈w, q〉 ∈ W × [0, 1] | Hq ∈ P (w)} be a measurable subset of W × [0, 1] for all
such H ; if this is the case, we call the effectivity function t-measurable.

Just to get the idea, assume that K is a stochastic transition kernel on
W , hence K(w) is a probability on W for each w ∈ W , then w 	→ {A ⊆
P (W ) measurable | K(w) ∈ A} is such a t-measurable effectivity function (this
is comparable to moving from a point to the ultrafilter generated by it). An-
other example comes from finite transition systems. Let the world W be finite
and R a transition system on W with R(w) �= ∅ for all w ∈ W , define the set
of all weighted transitions from w through κ(w) := {∑w′∈R(w) αw′ · δw′ | αw′ ≥
0 rational,

∑
w′∈R(w) αw′ = 1}, then P (w) := {A ⊆ P (W ) measurable | κ(w) ⊆

A} defines a t-measurable effectivity function on W . Also, if the effectivity func-
tion P is t-measurable, then A ∈ ∂P (w) iff the complement of A is not in P (w)
defines a t-measurable effectivity function, the demonization of P .

As a whole, t-measurable effectivity functions have some fairly interesting
algebraic properties [2], and they may be used for defining the semantics of game
logics. This will be sketched now. The basic technical approach is to associate
with each game g a set transformer, depending on a threshold value r, specifically,
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to define for A ⊆ W the set Σ(g |A, r) of states for which Angel has a strategy
to achieve a member of A after playing g with a probability not smaller than
r as the next state. For example, Σ(γ |A, r) is defined for the primitive game
γ ∈ Γ as

{
w ∈ W | {μ | μ(A) ≥ r} ∈ Nγ(w)

}
, so we look at all worlds for

which Angel can achieve a distribution which evaluates A not smaller than r.
Similarly, we define Σ(gd |A, r) as W \ Σ(g |W \ A, r), thus Demon can reach
a state in A with probability greater than r iff Angel cannot reach a state in
W \A with probability greater than r. Finally — and here t-measurability kicks
in — we define for the composition γ; g with the primitive game γ ∈ Γ and
game g the transformation Σ(γ; g |A, r) := {w ∈ W | Qg(A, r) ∈ Nγ(w)},
where Qg(A, r) :=

{
μ ∈ P (W ) | ∫ 1

0 μ
(
Σ(g |A, s)) ds ≥ r

}
. For an explanation,

assume that Σ(g |A, r) is already defined for each r as the set of states for
which Angel has a strategy to achieve a state in A through playing g with
probability not smaller than r. Given a distribution μ over the states, the integral∫ 1

0
μ
(
Σ(g |A, s)) ds is the expected value for entering a state in A through

playing g for μ. The set Qg(A, q) collects all distributions, the expected value of
which is not smaller than q. We collect all states such that Angel has this set
in its portfolio when playing γ in this state. Selecting this set from the portfolio
means that, when playing γ and subsequently g, a state in A may be reached
with probability not smaller than q.

These are just some salient points in the definition of the transformation.
Other cases have to be defined, depending on the games’ syntax, in particular,
Σ(g∗ |A, r) has to be determined; the details are outlined in [3, Section 4.9.4].
We have

Theorem: If the measurable space W is complete, then Σ(g | ·, r) transforms
measurable sets into measurable sets. �

The reason why we need a complete measurable space here is that Σ(g∗ |A, r)
involves some unpleasant uncountable Boolean operations, under which, how-
ever, this class of spaces is closed.

With this in mind, we can define an interpretation for modal formulas in-
ductively through [[〈g〉rϕ]] := Σ(g | [[ϕ]], r), starting from some assignment of
primitive propositions to measurable sets. It follows that each validity set is
measurable, provided W is complete.

As in the set-valued case above, we have this property.

Proposition: If the interpretation is Kripke generated, then it is disjunctive. �

Suppose that we consider only Angel’s moves and forget about Demon. Then
we have the PDL-fragment of game logic, which is somewhat easier to inter-
pret. It turns out that the interpretation suggested here generalizes the known
interpretations from [5,1].

Proposition: A Kripke generated interpretation coincides on the PDL fragment
with the one defined through Kleisli composition in the Giry monad. �

Thus the composition of programs can be described in an equivalent way
through the convolution of Markov transition kernels.
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Now, What? Well, it is interesting to investigate expressivity, i.e., the rela-
tionship of logical equivalence, bisimilarity and behavioral equivalence for these
models. These properties have to be defined for stochastic effectivity functions
(partial suggestions have been proposed in [4,2]). It would also be interesting to
know whether simpler models of stochastic nondeterminism can be used for an
interpretation, which would have to support the composition of games; a monad
would be nice.

References

1. Doberkat, E.-E.: A stochastic interpretation of propositional dynamic logic:
Expressivity. J. Symb. Logic 77(2), 687–716 (2012)

2. Doberkat, E.-E.: Algebraic properties of stochastic effectivity functions. J. Logic and
Algebraic Progr. 83, 339–358 (2014)

3. Doberkat, E.-E.: Special Topics in Mathematics for Computer Science: Sets, Cate-
gories, Topologies, Measures. Springer (in print, 2015)
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