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Preface

Relations and formal languages are omnipresent in computer science and in
software design. While quantifier-oriented (first- or higher-)order logics can be
used to specify and reason about relations, this “element-level style” often ob-
fuscates the structure of specifications and makes reasoning harder. A useful
analogy is to consider how element-level reasoning gives way to matrix-level cal-
culations in linear algebra. Similarly, relation algebra allows for calculational,
largely quantifier-free reasoning about relations, and shares a large subtheory
with Kleene algebra, the mathematical theory of the regular expressions used for
the specification of certain formal languages.

An international collaboration to establish a conference series as a forum for
the use of relational methods in computer science, RelMiCS, was initiated during
the “38th Banach Semester on Algebraic Methods in Logic and their Computer
Science Application” in Warsaw, Poland, September and October 1991. Adapt-
ing essentially a one-and-a-half year rhythm, the first 11 RelMiCS conferences
were held from 1994 to 2009 on all inhabited continents except Australia. Start-
ing with RelMiCS 7, these were were held as joint events with “Applications of
Kleene Algebras” (AKA) conferences. At RelMiCS 11 / AKA 6 in Doha, Qatar,
it was decided to continue the series under the unifying name “Relational and
Algebraic Methods in Computer Science (RAMiCS).” The next events, RAMiCS
12–14, were then held in Rotterdam, The Netherlands, in 2011, Cambridge, UK,
in 2012 and Marienstatt, Germany, in 2014.

This volume contains the proceedings of the 15th International Conference on
Relational and Algebraic Methods in Computer Science (RAMiCS 2015), held in
Braga, Portugal, from September 28 to October 1, 2015, exactly 24 years after
the Banach Semester that resulted in founding this conference series.

The call for papers invited submissions about the theory of relation algebras
and Kleene algebras, process algebras, fixed point calculi, idempotent semirings,
quantales, allegories, and dynamic algebras, and cylindric algebras, and about
their applications in areas such as verification, analysis and development of pro-
grams and algorithms, algebraic approaches to logics of programs, modal and
dynamic logics, interval and temporal logics, etc.

We were fortunate to be able to invite Gheorghe Stefanescu and Ian Hodkin-
son who, with their presentations on “A Quest for Kleene Algebra in 2 Dimen-
sions” and “Connections Between Relation Algebras and Cylindric Algebras”,
nicely emphasized the two traditional theoretical pillars of the RAMiCS confer-
ences, and Ernst-Erich Doberkat, whose presentation “Towards a Probabilistic
Interpretation of Game Logic,” opened up new opportunities related to modal
logic.

The body of this volume is made up of invited papers accompanying these
three invited talks, and of 20 contributions by researchers from around the world



VI Preface

The papers have been arranged into three groups:

Theoretical Foundations
Including studies of relation-algebraic theories ranging from nominal Kleene
algebra to allegories and covering a range of relation concepts, including
multirelations, n-ary relations, and relational resource semantics

Reasoning About Computations and Programs
With contributions addressing refinement, type checking, and verified relation-
and Kleene-algebraic programming

Applications of Relational and Algebraic Methods
Including to fuzzy databases, rough set theory, preferences, optimization,
and text categorization

The contributed papers were selected by the Program Committee from 25 rel-
evant submissions. Each submission was reviewed by at least three Program
Committee members; the Program Committee did not meet in person, but had
over one week of intense electronic discussions.

We are very grateful to the members of the Program Committee and the
subreviewers for their care and diligence in reviewing the submitted papers. We
would like to thank the members of the RAMiCS Steering Committee for their
support and advice especially in the early phases of the conference organiza-
tion. We are grateful to INESC TEC and the University of Minho for generously
providing administrative support, and we gratefully appreciate the excellent fa-
cilities offered by the EasyChair conference administration system. Last but not
least, we thank FCT (Fundação para a Ciência e a Tecnologia, Portugal) for
their financial support.

July 2015 Wolfram Kahl
Michael Winter
José N. Oliveira
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José N. Oliveira Universidade do Minho, Portugal



VIII Organization

Ewa Or�lowska National Institute of Telecommunications,
Poland

Agnieszka Rusinowska Université Paris 1, France
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Decomposition of Database Preferences on the Power Set
of the Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Patrick Roocks

Roughness by Residuals: Algebraic Description of Rough Sets and an
Algorithm for Finding Core Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Martin E. Müller

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395



 
 
 
 
 
 
 
 
 
 
 
 

Invited Papers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A Quest for Kleene Algebra in 2 Dimensions

Gheorghe Stefanescu

Department of Computer Science, University of Bucharest, Romania
gheorghe.stefanescu@fmi.unibuc.ro

Abstract. The term Kleene algebra refers to a certain algebraic struc-
ture, built up using sequential composition, its iterated version, and
union. The key operation is composition: on strings, it connects the final
point of the first string to the initial point of the second string.

The quest for Kleene algebra in 2 dimensions starts with the clari-
fication of the notions of word and composition in 2 dimensions. A 2-
dimensional word is an arbitrary shape area, consisting of unit square
cells, and filled with letters. Word composition puts two words together,
without overlapping, and controls the contact elements of the contours
of these words. This method actually defines a family of composition op-
erations, indexed by the restrictions used to control the words’ contact
parts.

Finite automata and regular expressions are extended to 2 dimensions.
The former is relatively easy and it reduces to tiling. For the latter, a
few recently introduced classes of regular expressions n2RE and x2RE
are presented. The formalism is completed with a mechanism to specify
and solve recursive systems o equations for generating languages in 2
dimensions.

Finite automata and regular expressions are equivalent and Kleene
algebra provides a beautiful algebraic setting to formalize this result. A
section on the limits of our current understanding on lifting this result
to 2 dimensions is included.

Finally, we briefly show that, enriched with spatial and temporal data
attached to tiles, the formalism leads to a natural model for interactive,
distributed programs.

Keywords: finite automata, regular expressions, Kleene algebra, self-
assembling tile systems, 2-dimensional languages, 2-dimensional regu-
lar expressions, recursive specifications, interactive systems, scenarios,
relational semantics.

1 Introduction

The term Kleene algebra is used for a certain algebraic structure, defined using
sequential composition, its iterated version, union, zero, and identities.

Words and Composition in 2 Dimensions. A key operation in Kleene algebra is
composition. The definition of composition in the model of Kleene algebra on
strings is simple. A string is a totally ordered structure and, beside its contents
(letters), it has 2 end points: an initial point and a final point. Composition puts

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 3–26, 2015.
DOI: 10.1007/978-3-319-24704-5_1



4 G. Stefanescu

two strings together connecting the final point of the first string to the initial
point of the second string.

To extend this composition to 2-dimensional words, first we need to specify the
class of 2-dimensional words we are working with. For us, a 2-dimensional word
is an arbitrary shape area, consisting of unit square cells, placed with corners in
points with integer coordinates, and filled with letters. Beside its contents, such
an area has a contour. A natural definition of 2-dimensional word composition
is: put the words together, without overlapping, and control the contact elements
of the contours of these words in the composed word. While in the case of strings
we have a unique composition operation, now we have a family of composition
operations, indexed by the restrictions used to control these contour contact
parts.

Finite Automata, in 2 Dimensions. Finite automata provide a low-level formal-
ism for sequential computation. Technically, (sequential) composition is modelled
by attaching state labels to the transitions and connect them using these labels:
namely, for two transitions a and b, with labels a : p → p′ and b : q → q′, the
sequential composition a · b : p → q′ is possible if the contact labels are equal,
i.e., p′ = q.

A natural way to extend transitions in 2 dimensions is by considering two
orthogonal (west-east and north-south) finite automata transitions with the same
label, say a : p→ p′ and a : q → q′. This means, we are attaching 4 labels to each
transition, say a : (p, q) → (q, q′), getting a tile, i.e., a cell letter with labels on
each west/north/east/south border. However, in 2 dimensions the linear order
of sequentiality is lost, hence in the abstract tile models we make no distinction
between the border labels – nevertheless, in applications modelling distributed,
interactive programs the direction from west-north to east-south is preserved.
As in the case of automata, tile composition produces scenarios (2-dimensional
paths) and requires to have the same label on common borders. To conclude,
path composition of transitions in finite automata becomes scenario composition
of tiles in 2 dimensions.

Except for transitions, we need to consider initial and final labels. The re-
sulting 2-dimensional extension of finite automata is called self-assembling tile
system (SATS). We want to stress that the accepted words of a SATS are de-
fined in terms of scenarios built up from tiles, having specified labels on each
west/north/east/south external border. This last condition is needed for having
a compositional model.

Regular Expressions and Recursive Definitions, in 2 Dimensions. Regular ex-
pressions are equivalent with finite automata, but they offer a quite different
specification mechanism. Rather than starting with 1-letter transitions, they
use sets of large chunks of transitions (“events”, as Kleene called them [25]) and
compose them using union, sequential composition, and its iterated version. For-
tunately, the labels used by accepted paths in finite automata can be eliminated
and equivalent label-free specifications using regular expressions can be found.
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Extending regular expressions in 2 dimensions is not an easy task. Somehow,
on has to mimic scenario composition of SATSs, where two complicate shapes
can be glueing together whenever the labels of their contact parts are the same.

Recently two classes of 2-dimensional regular expressions have been proposed:
n2RE [4] and x2RE [5]. The former uses constraints on 2-dimensional word
contours, defined by a boolean logic built up from comparison formulas described
in terms of corners and edges. In addition, the latter uses the information that
certain cells are extreme (they have at most one neighbour in the word). Whether
one of this logics is powerful enough to capture all the patterns of labels occurring
at the contact parts of SATS scenario compositions is not yet known. Hence,
currently we do not have a class of 2-dimensional regular expressions equivalent
to SATSs.

SATS with 2-color Border Tiles. We have investigated a few hundreds of SATSs
consisting of 2-color border tiles. We hope the analysis of this particular class
of SATSs will gather enough information to identify a good regular expressions
candidate for all SATSs.

Adding Data to Get Programs, in 2 Dimensions. The development of this funda-
mental investigation is parallel with an attempt to develop rigours and powerful
programming formalisms for open, interactive, large-scale, distributed systems.
Extending a classical slogan that “program = control + data”, the new slogan is:

interactive, distributed program
= (control & interaction) + (spatial & temporal) data

Our interest in SATSs or 2-dimensional regular expressions mainly comes from
a basic fact that these models are used to specify the contol & interaction part
of distributed systems. Understanding the structure of the languages defined
by these models is of fundamental importance for understanding distributed
programs. A structured programming language Agapia [15], [37] has been intro-
duced, using regular expressions over rectangular words. Arbitrary shape words
may be useful for extensions including spatial and temporal pointers [20].

Structure of the Paper: We start with a brief recall of basic Kleene algebra re-
sults in 1 dimension. Then, we define words and languages in 2 dimensions. In
Section 4 we identify a Language Product Problem to be used for specifying
2-dimensional languages as product of two 1-dimensional languages. Next, self-
assembling tile systems (SATSs), as a 2-dimensional version of finite automata,
are presented. A section is devoted to 2-dimensional word composition, a key
operation in getting a compositional approach to 2-dimensional tiling. The next
section, Section 7, describes regular expressions and recursive systems of equa-
tions in 2 dimensions. In Section 8 we present a few partial results regarding
languages accepted by SATSs using 2-colors border tiles. Our current limita-
tions in understating SATS languages, applications to interactive systems, and
comments on related works conclude the paper.
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2 A Reference Point: Kleene Algebra in 1 Dimension

A well-known result says that finite automata and regular expressions are equiv-
alent. There is a beautiful algebraic formalization of this result using Kleene
algebras. We sketch the result below, following Chapter 8 of [44].

Abstract Automata: Let (S,+, ·, 0, 1) be a semiring [44] and “∗” an operation
on (square) matrices over S. A matricial presentation of a regular language is a

matrix M =

(
A B
C D

)
over (S,+, ·, 0, 1) of type (1+n)× (1+n), where: 1, . . . , n

represent the states of the automaton; A represents the direct input-output
connection (if any); B = (bj)1≤j≤n specifies the input states; C = (ci)1≤i≤n

specifies the final states; and D = (dij)1≤i,j≤n specifies the transitions.
The language specified by a matricial presentation, defined with the above

notation, is L(M) = A+B ·D∗ ·C, where “+” and “·” are the usual operations
on matrices induced by the operations in S.

Simulation: Two matricial presentations Mi =

(
Ai Bi

Ci Di

)
, with ni states, for

i ∈ {1, 2}, are similar via a relation ρ ⊆ {1, . . . , n1} × {1, . . . , n2}, denoted
M1 →ρ M2, if: A1 = A2, B1ρ = B2, C1 = ρC2, and D1ρ = ρD2.

The importance of simulation relation comes from the following facts:

Soundness: Simulation preserves the language.

Completeness: Two nondeterministic finite automata accept the same lan-
guage if and only if they may be connected1by a chain of simulations.

Conway and Kleene Algebras. Let M = (M(m,n)m,n,+, ·, ∗, 0m,n, In) be a
doubly-ranked family, enriched with operations:

0m,n ∈ M(m,n); In ∈ M(n, n); + :M(m,n)×M(m,n)→M(m,n);
· :M(m,n)×M(n, p)→M(m, p); ∗ :M(n, n)→M(n, n).

Suppose (M(m,n)m,n,+, ·, 0m,n, In) is a semiring of matrices [44]. We also con-
sider the following axioms for star:

(I) (In)
∗ = In

(S) (a+ b)∗ = (a∗ · b)∗ · a∗
(P) (a · b)∗ = In + a · (b · a)∗ · b

(Inv) a · ρ = ρ · b⇒ a∗ · ρ = ρ · b∗, where ρ is a matrix over 0,1.

All these axioms define Kleene theories. Without (Inv) one gets the axioms for
Conway theories. They are idempotent if a+ a = a.

1 For example, for two automata A1 and A2, accepting the same language, the relation

A1
rel←− D(A1)

inj←− · sur−→ D(A1)min = D(A2)min
sur←− · inj−→ D(A2)

rel−→ A2

holds, where: D denotes the deterministic automaton obtained by classical power-

set construction; (...)min denotes the minimal deterministic automaton; and
rel−→/

inj−→/
sur−→ denotes simulation via relations/injective-functions/surjective-functions,

respectively.
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Fundamental Result (Theorem 8.26 in [44]): The idempotent Kleene the-
ory axioms give a correct (i.e., sound and complete) axiomatization for the al-
gebra of regular languages.

The definitions of accepted language and simulation are given in terms of
matrices. For completeness, a key technical result is a method to compute the
star of a matrix in terms of star of smaller matrices.

Star of Matrices (Theorem 8.21 in [44]): In an idempotent Conway theory
the following identity is valid[

a b
c d

]∗
=

[
a∗ + a∗bwca∗ a∗bw

wca∗ w

]
where w = (ca∗b+ d)∗.

Repeatedly applied, this identity leads to a procedure to compute the star
of a matrix in terms of star of its elements. Actually, this is another, more
formal, presentation of Kleene theorem. It can be proved in the weaker setting
of Conway theories. As a final remark, we mention that the Conway theory
axioms themselves follow from the weaker version where they are required only
on elements, not on matrices [28].

3 Words and Languages, in 2 Dimensions

Words. A 2-dimensional word is a finite area of unit cells, placed with their cor-
ners in points with integer coordinates, and labelled with letters from a specified
alphabet. A 2-dimensional letter is a 2-dimensional word consisting of a unique
cell. A 2-dimensional language is a set of 2-dimensional words.

By convention, these 2-dimensional words are invariant with respect to trans-
lation by integer offsets, but not with respect to mirror or rotation.

A word may have several disconnected components. A component (respec-
tively, a horizontally-vertically connected component) is a maximal set of cells,
connected using horizontal, vertical and diagonal directions (respectively, using
only horizontal and vertical directions). Tiles, to be introduced in Section 5, con-
strain the letters of horizontal and vertical neighbouring cells. Consequently, our
focus will be on the structure of horizontally-vertically connected components,
shortly called hv-components.

Examples of words are presented in Fig. 1: A rectangular word is presented
in (a); Then, in (b), we present a word of arbitrary shape, with no holes and 1
component; Finally, a word with 1 hole and 2 components is shown in (c). The
words in Fig. 1(a), (b), (c) have 1, 3, 7 hv-components, respectively.

Formal Representation. Formally, a 2-dimensional word is represented as (c, v),
where c specifies its contour and v is a listing of its letters, contained in the in-
ternal area of the contour and sorted by rows. For example, the word in Fig. 1(b)
is represented by the pair

(rdrrdrdlluldlurulu, acedab)
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(a) (b) (c)

Fig. 1. Examples of 2-dimensional words

where u/d/r/l stands for “up”/“down”/“right”/“left”, respectively, and acedab
is the listing of the letters in the word, sorted by rows.

This word representation is unique up to “identities” and the placement of
the starting point used in the representation of its contour; here, by definition,
an identity is a word with a contour surrounding an empty internal area. For
instance, the word representation (rdlu, a) is equivalent to (lurEd, a), where E
is the identity rurdrluldl.

Parts of Contours. In the sequel, we will refer to several parts of word contours.
A few such elements of interest on word contours are:

side borders: w (west), e (east), n (north), and s (south). For instance, a unit
edge of the contour is an e-edge if it is a vertical edge and the cell on the
left is inside the word.

land corners: nw, ne, sw, and sw - these are corner points seen from inside the
word. For instance, a point on the contour is a nw-corner if the cell at the
bottom-right of the point is inside the word, while the other 3 cells around
the point are not inside the word.

golf corners: nw’, ne’, sw’, and sw’ - these are corner points seen from outside
the word. For instance, a point on the contour is a nw’-corner if the cell at
the bottom-right of the point is outside the word, while those at the top-right
and bottom-left of the point are inside the word.

These elements are used to define restrictions controlling word composition.

4 LPP: A Language Product Problem

4.1 The Problem

(LPP) Given two string languages Lrow and Lcol, over the same alphabet V ,
find their product Lrow ⊗ Lcol, seen as a 2-dimensional language over V .

By definition, the product Lrow ⊗ Lcol consists of all 2-dimensional words,
of arbitrary shape, satisfying the following properties:

1. for any row, any maximal continuous sequence of the word, lying in this
row and read in the left-to-right order, defines a string in Lrow;

2. for any column, any maximal continuous sequence of the word, lying in
this column and read in the top-to-bottom order, defines a string in Lcol.
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Fig. 2. The ⊗-product: Lrow ⊗ Lcol

An illustration of the ⊗-product is presented in Fig. 2. On the emphasized
row, the strings c, cba, bd are from Lrow, while on the emphasized column, the
strings ac, c are from Lcol.

A key term in this problem statement is the word “find”. We actually ask for

a constructive description of this language as a recursive tiling procedure2

generating all 2-dimensional words in Lrow ⊗ Lcol.
This characterization would provide a better understanding of the structure of
the words in Lrow ⊗ Lcol.

We can restrict ourselves to the study of those 2-dimensional words con-
sisting of one hv-component, as different hv-components can be independently
processed.

4.2 A Motivation: Combining UML State and Sequence Diagrams

UML [39] is a popular and powerful specification language used to cope with the
complexity of modern software systems. It allows the user to specify different
views of the system (s)he wants to develop. Two particularly useful views are
described using state diagrams and sequence diagrams. The former allows the
user to look at the running of the processes, ignoring their interactions, while
the latter allows to focus on chains of process interactions, ignoring their state
evolution. After providing these independent specifications, the user has to figure
out how the system will evolve, provided both specifications hold.

Question: Is it difficult to combine state diagrams and sequence dia-
grams?

We think it is a difficult problem and its study will make a worthwhile con-
tribution aiming to help UML users with results and tools useful to understand
the result of their state and sequence diagram combination. At the practical

2 The interest in tiling comes from a basic fact that, in 2 dimensions, word composition
(catenation) is defined as a family of restricted tiling operators.
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level, combined state and sequence diagrams are already in use, hence the LPP
formalism and results will help getting a solid foundation for these approaches.

It is not hard to see that LPP is related to this state and sequence diagram
integration. Indeed, one may consider a particular interpretation of LPP when
the vertical dimension represents time, while the horizontal dimension repre-
sents space. Then, the language for columns Lcol may be taken to represent
the control sequences of the UML state diagrams, while the row language Lrow
to represent the interaction sequences specified by the sequence diagram. Their
product Lrow ⊗ Lcol represents abstract runs of the specified system.

4.3 An Example: The Dutch-Roof Language

This example is taken from [48] - more details can be found there, including a
recursive tiling specification. It uses four letters 0, 2, a, c. The language for rows is
specified by the regular expression3 Lrow = a∗c(0+2a∗c)∗. Here, a typical word
has the following structure: take a c followed by an arbitrary number of sequences
2c; then, insert between 2 and c an arbitrary number of a’s and between c and
2 an arbitrary number of 0’s; and finally, put any number of a’s in front of the
word and any number of 0’s at the end of the word. For columns, the language
is specified by the simpler regular expression Lcol = c(0 + 2 + a)∗. A typical
word for columns consists of a top letter c, followed by an arbitrary number of
occurrences of 0’s, 2’s, or a’s.

Fig. 3. Dutch-roof language [48]: the language obtained as the product Lrow ⊗ Lcol
of Lrow = a∗c(0 + 2a∗c)∗ and Lcol = c(0 + 2 + a)∗

The words in the language Lrow⊗Lcol have a structure resembling the struc-
ture of Dutch roofs. An example is presented in Fig. 3. A hv-component in a
Dutch-roof word can be obtained by tiling using the following procedure:

(1. typical case) (i) Build a continuous sequences of c’s, going along the diag-
onals, from left to right, and alternating the directions in a roof-like style:
up-down-up-down-. . . (each sequence can start/end with either “up” or
“down”). (ii) From a peak c, there is a kind of separation line of 2’s go-
ing down, each 2 having one c at the left and one c at the right (on its row),

3 Equivalently, the language Lrow can be defined by a simple finite automaton con-

sisting of: states {0, 1}, transitions {0 0−→ 0, 0
2−→ 1, 1

c−→ 0, 1
a−→ 1}, initial state

1, and final state 0.
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but such that no more than one 2 is on each row between two consecutive
c’s. (iii) Connect in a stair-like style each bottom 2 with a bottom c on the
left4 and fill the area between c’s, 2’s, and this line with 0’s. (iv) Do a similar
construction on the right, but, finally, fill the area with a’s instead of 0’s.

(2. roof’s ends) (i) If the construction starts with a “down” direction for c’s,
then add the following step: draw a stair-like line from the 1st c (a peak
element) to a bottom c on the right and fill the area with a’s. (ii) If the con-
struction ends with an “up” direction for c’s, then do a similar construction
at the right end of the roof, filling the area with 0’s.

(3. linking bottom 2’s with further bottom c’s) The bottom c’s, selected
to be chosen in step 1.(iii) or 2.(ii), need not be the nearest bottom c’s on
the left. However, if a more distant c is chosen, than each bottom c between
the chosen one and the current 2 should have a 2 on the row, on the left,
such that the full area on the left of that ignored bottom c is filled (no holes
are allowed). A similar observation holds with regards to the right direction
and the areas filled with a’s.

4.4 The Pitfalls of Renaming Operator

In concurrent systems modelling, it is quite common to use independent state
evolution and interaction evolution views and to combine them. For instance,
this method is used in the definition of classical 2-dimensional regular expressions
(for rectangular words) [18],[31], of regular expressions for Petri nets [17], or of
regular expressions for timed automata [2]. Technically, these formalisms use the
renaming operator as follows:

– first, a renaming is used to make all occurrences of the letters be different;
– then, an independent characterisation of evolution on each dimension is pro-

vided, say Lr for rows and Lc for columns5;
– next, one combines these two views using, say, a notation Lr × Lc;
– finally, use a renaming operator, say ρ, to come back to the original letters.

Therefore, the result is a characterisation of the system behaviours presented as
ρ(Lr × Lc).

It is not hard to see that a key step is the third step, a step similar to LPP.
However, a structural characterization of the resulting language is left open in
these formalisms.

The point we want to discuss here is on the mismatch resulting from the
combination of renaming ρ and ⊗-product. Formally, the following relation is
not always true

ρ(Lcol ⊗ Lrow) = ρ(Lcol)⊗ ρ(Lrow)
showing this kind of language characterisations, based on renaming and product,
critically depends on the used letters.

4 This line connects the south-west corner of 2 to the south-east corner of c.
5 For Petri nets or timed automata the result is in terms of 1-dimensional traces, hence
an extra flattening operator mapping 2-dimensional words to (set of) 1-dimensional
words, is used. An example of flattening operator is presented in [46].
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A particular consequence of this negative result is that one can not safely use
even letter-to-letter substitutions. For example, if we rename all letters 0, 2, a, c
as x in the example on the Dutch-roof language (presented in Fig. 3), then the
resulted language [x∗x(x + xx∗x)∗] ⊗ [x(x + x + x)∗] consists of all rectangles
of x’s having at least 1 row and 1 column. This language is different form what
one gets by replacing 0, 2, a, c with x directly in the Dutch-roof language.

4.5 Tiling Specifications for the LPP Results

The LPP explicitly asks to find an intrinsic characterisation of the words of a
⊗-product in terms of word composition, defined as a family of restricted tiling
operators. Such a characterisation depends on the structure of the words and it
is independent of the used letters. The approach can be safely combined with a
letter-to-letter renaming. Even general letter-to-word or letter-to-language sub-
stitutions may be safely used in this framework, lifting to 2 dimensions a key
feature of string languages.

5 Finite Automata in 2 Dimensions as Self-assembling
Tile Systems

Tiles and Scenarios. A tile is a letter enriched with additional information on
each border. Abstractly, this information is represented as an element from a
finite set6 and is called border label. The role of border labels is to impose local
glueing constraints on self-assembling tiles: two neighbouring cells, sharing a
horizontal or a vertical border, should agree on the label on that border. A
scenario is similar to a 2-dimensional word, but: (1) each letter is replaced by a
tile; and (2) horizontal or vertical neighbouring cells have the same label on the
common border. Examples of tiles and scenarios are presented in Fig. 4(a).

(a) (b)

Fig. 4. Scenarios and accepted words

6 Often, we use sets of numbers or sets of colors.
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Self-assembling Tile Systems. A self-assembling tile system (shortly, SATS ) is
defined by a finite set of tiles, together with a specification of what border labels
are to be used on the west/north/east/south external borders. An accepting
scenario of a SATS F is a scenario obtained by self-assembling tiles form F and
having the specified labels on the external borders. Finally, the 2-dimensional
language accepted by a SATS F , denoted L(F), is the set of 2-dimensional words
obtained from the accepting scenarios of F , dropping the border labels.

tiles

labels for external w/n/e/s borders {7,8}/{1}/{9}/{2}
Fig. 5. A example of SATS

Example. Let F be the SATS defined by the specification in Fig. 5. All scenarios
in Fig. 4(a) are correct scenarios of F . The first two are accepting scenarios,
while the last one is not (there is a label 4, different of 2, on the south border).
By dropping the border labels in the accepting scenarios in Fig. 4(a) one gets
the accepted words in Fig. 4(b).

6 Composition

It is not at all obvious how to define 2-dimensional word composition, extending
usual 1-dimensional word composition (catenation). We start with the simpler
definition of scenario composition, then we try to capture the scenario composi-
tion effect, on the associated words, into the definition of word composition.

6.1 Scenario Composition

Scenario Composition. For two scenarios v and w, the scenario composite v.w
consists of all valid scenarios resulting from putting v and w together, without
overlapping. This actually means if v and w share some borders in a particular
placement, then the labels on the shared borders should be the same.

Example. We consider two scenarios v and w, presented in Fig. 6(a), (b). The
composite v.w has 3 results, sharing at least one cell border; they are presented
in Fig. 6(c), (d), (e).

6.2 Word Composition

Word composition is defines as a family of restricted word composition operators,
based on constraints using relevant information of word contours (see [4], [5],
and [6]).
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v = w =

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 6. Scenario composition and (restricted) word compositions

General Restricted Word Composition. Take two words v and w, with selected
features:

1. a selected point p on the contour of v
2. a selected point q on the contour of w
3. a subset Y of elements of the contour of v
4. a subset G of elements of the contour of w
5. the subset B of the contact elements of both contours after composing v

with w by identifying p and q,

and a ternary relation R(U, V,W ). Then, define

vp R(Y,G,B) wq =

⎧⎪⎨⎪⎩
− the word obtained

from v and w
by identifying p and q

, if R(Y,G,B) is true

− undefined , otherwise.

The restricted composition operator R(U, V,W ) is

v R(U, V,W ) w = {vp R(Y,G,B) wq : for all p, q, Y,G,B}.
Its iterated version is denoted by *R(U, V,W ) (put a “∗” in front).

Example. Fig. 7 illustrates this definition. The selected composition points p
and q are indicated by the little arrows; Y consists of the emphasized elements
on the contour of v; the elements of G are emphasized on the contour of w;
finally, B consists of the emphasized elements in the composed picture described
in (c). For this example, a relation R making the restricted composition valid is:
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(a) v (b) w (c) v R(Y,G,B) w

Fig. 7. General restricted word composition

G ⊆ Y ∧G ⊆ B (after composition, all the emphasized elements on the contour
of w are on the common border and included in the set of emphasized elements
of v).

Example: Scenario Composition vs. Word Composition. To get the words cor-
responding to the scenario composition in Fig. 6(c,d,e), we can use the compo-
sitions illustrated in Fig. 6(f,g,h). They are obtained with the following restric-
tions:

1. v(w=e)w - the west border of v is equal to the east border of w; this com-
position is shown in Fig. 6(f) and yields a similar result as in Fig. 6(c);

2. v(sw’=sw)w - the south-west golf corners of v (there is only one) are iden-
tified with the south-west land corners of w (there is only one); composition
with this restriction is shown in Fig. 6(g) and is similar to Fig. 6(d);

3. v(ne>nw)w - the north-east corners of v (there are two) includes the north-
west corners of w (there is only one); this is shown in Fig. 6(h) and is similar
to Fig. 6(e).

7 Regular Expressions

7.1 Regular Expressions

A new approach for defining classes of 2-dimensional regular expressions has
been introduced in [4], [5], [6]. This approach uses arbitrary shape words and
classes of restricted composition operators.

Class n2RE. Besides union, zero, and identities, the basic class n2RE uses com-
positions and iterated compositions corresponding to the following restrictions :

1. the selected elements of the word contours are: side borders, land corners,
and golf corners ;

2. the atomic comparison operators are: equal-to ‘=’, included-in ‘<’, non-empty
intersection ‘#’;

3. the general comparison formulas are boolean formulas built up from the
atomic formulas defined in item 2.

(see [5] for more details and examples).
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Class x2RE. An enriched class x2RE [5] is obtained adding “extreme cells”
glueing control. A cell is extreme in a word if it has at most one neighbouring
cell in that word, considering all vertical, horizontal, and diagonal directions.
The restricted composition may use parts of a contour bordering extreme cells.
They are denoted by prefixing the normal n2RE restrictions with ‘x’; e.g., xw,
xse, xnw’, etc. For instance, v(e>xw)w is true if the west borders of the extreme
cells in w are included in the east borders of v.

7.2 Systems of Recursive Equations

Recursive Definitions. A system of recursive equations is defined using variables
representing sets of 2-dimensional words and regular expressions. Formally, a
system of recursive equations is defined by a set of equations⎧⎨⎩

X1 =
∑

i1=1,k1
E1i1(X1, . . . , Xn)

. . .
Xn =

∑
in=1,kn

Enin(X1, . . . , Xn)

whereXi are variables (denoting sets of 2-dimensional words) and Eij are regular
expressions from a specified class, extended with occurrences of variables Xi.

If nothing else is said, the default class is n2RE. Moreover, we can use ∗-free
regular expressions, as ∗-operation can be defined by recursion.

Fig. 8. Recursive equations

Examples: 1. The language consisting of square words filled with a, except for
the center which contains x, may be represented by the equation (this equation
is illustrated in Fig. 8):

(∗) X = x+ E(X)

where:

Er = ((a*(e=w))(se=ne)(a*(s=n)))
(sw=ne) ((a*(e=w))(nw=sw)(a*(s=n)))

Erect = (Er((nw>ne)&(nw>sw))a) ((se>ne)&(se>sw)) a
E(X) = X((n<s)&(e<w)&(s<n)&(w<e))Erect
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The expression Er generates a rectangle without 2 corners, Erect a rectangle,
and E(X) a rectangle with an X inside. The recursive procedure (*) starts with
a square x, so we get precisely the required square words.

2. The example above can be adapted to produce square diamonds of b’s, having
y in the center (Y in Fig. 8). One may use the se=nw and sw=ne restrictions to
produce diagonal bars, then use extreme cells to locate the corners in the heads
of the bars to be connected. The result is an expression in x2RE, not in n2RE.

3. Finally, U and V in Fig. 8 describe a mutually recursive definition built on
top of the languages in items 1 and 2.

More examples of regular expressions and recursive specifications may be
found in [5], [3], [48]. A recursive specification for the Dutch-roof language, fol-
lowing the tiling procedure informally presented in Subsection 3.3, is presented
in [48].

7.3 Comparing SATS, LPP, and Recursive Specifications

Basic fact: If S is a SATS, consisting of tiles labelled with distinct letters,
and Lr and Lc are the languages accepted by the finite automata resulting
projecting S on the horizontal and vertical dimension, then L(S) = Lr⊗Lc.

However, this may be false if S has several tiles labelled with the same letter.
The workaround this problem is to find a recursive specification over some class
of 2-dimensional regular expressions. This recursive specification may be safely
used even when several tiles have the same letter.

P = Lr ⊗ Lc
=

ρ(P )

���
��

��
��

��
��

��

L(S)
(S is a SATS, with
distinct-letters)

=

Lr,Lc
��

E
(2RE+Recursion)

ρ

��

ρ(Lr)⊗ ρ(Lc)
?=

L(ρ(S))
(ρ(S) is a SATS,

with
nondistinct-letters)

=

ρ(Lr),ρ(Lc)
��

ρ−1

��

ρ(E)
(2RE+Recursion)

Fig. 9. SATS, LLP, and recursive specifications

The role of the LPP problem is to get information on the structure of the
language associated to a SATS with distinct letters and to find a recursive char-
acterization of this language. Later on, the method may be applied to any SATS:
first, get distinct tile labels, i.e., choose an S with distinct labels and a renam-
ing ρ such that our system is of the form ρ(S); then, apply the previous step;
and finally, rename the label in the recursive specification according to the ini-
tial labelling. Shortly, the left part of the diagram, which is not stable under
substitution, is replaced by the right part.
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8 Languages Generated by 2-Colors Border Tiles

Tiles. A non-trivial SATS has at least 2 labels for each vertical and horizontal
dimension. Up to a bijective representation, the tiles of SATSs using 2 labels on
each dimension can be identified with subsets of elements in the following set

0

0

0

0

0 0

0
0

1
1 0

0
1

0
2 0

0

1

13
1

0

0

0
4

1

0
1

05
1

1

0
0 6

1
1

0
1

7
0

1

0

0
8

0

1
1

09
0

1

0
1 a

0
1

1
1

b
1

1

0

0

c
1

1

0

1
d

1

1

1

0

e
1

1
1

1f

In this representation, the labels for the vertical and the horizontal borders are
0 and 1. The letter associated to a tile is the hexadecimal number obtained from
the binary representation of the sequence of its west-north-east-south 0/1 digits,
in this order. All together, there are 65536 distinct subsets; a subset is denoted
by Ft1t2 . . . tk, where t1, t2, . . . , tk are the tiles of the subset.

External Labels. For simplicity, we consider SATSs with only one label for each
west/north/east/south external border. There are 16 possibilities, each one de-
noted by a hexadecimal number representing the sequence of the west-north-
east-south 0/1 labels used for the external borders.

SATS Notation. The SATSs to be investigated are represented as Ft1t2 . . . tk.z,
where t1, t2, . . . , tk are the tiles and the binary digits of z specify the labels
used for the external borders. As an example, the SATS used in the Dutch-roof

language is F02ac.c, consisting of tiles 0

0

0

0

0 0

0
1

0
2

0
1

0
1 a

1

1

0

0

c and labels 1/1/0/0

used for external west/north/east/south borders, respectively.

State-of-the-Art. By using various symmetries, the number of subsets to be
studied can be reduced from 65536 to 2890. Currently, we have clarified the
structure of a few hundreds of cases.

Table 1. UB students work, using a fixed order of adding tiles

Team Order of adding tiles The longest prefix analysed

E01 a614c27d9e5b3f80 5 tiles

E02 2ab8157df096ce34 6 tiles

E03 2a357bd6c89f1e40 5 tiles

E05 fb0259134adec786 5 tiles

E06 0ac3b17f64d5e892 4 tiles

Part of the work has been done by the University of Bucharest (UB) students.
In the 2015 spring semester, the UB master students participating to the Design
of Interactive Applications course were exposed to a research project. They were
grouped in up to 5 member teams. Each team selected a permutation of the
sixteen tiles 0, . . . , f , specifying the order of adding new tiles. For each prefix
analysed they considered all 16 SATSs obtained taking all combinations of labels
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for the external borders. 5 participating teams performed pretty well and their
results are presented in Table 1. As a general remark, we mention that the tiling
becomes more complicate when the automaton for Lrow and the automaton
for Lcol have paths in both directions 0 → 1 and 1 → 0. We hope to have a
published version of these results available soon.

9 A Nebulous Point: Kleene Algebra in 2 Dimensions

Kleene Theorem, in 2 Dimensions. In 1 dimension, Kleene theorem relates two
rather different methods to generate regular languages: finite automata (FA) and
regular expressions (RE). Finite automata process one-action-at-a-time and use
state labels to handle continuation. By contrast, regular expressions combine
large chunks of computation, leading to a more structural and scalable notation.
Among others, finite automata are used in low-level models and in flowchart
programs, while regular expressions are more suited for high-level models and
for structured programs.

Self-assembling tile systems (SATS), our 2-dimensional extension of finite au-
tomata, inherit finite automata properties: they use labels for continuation and
process one-action-at-a-time.

SATS languages have a very rich structure, mostly yet waiting to be revealed.
While we have a mechanism to define classes of regular expressions in 2 dimen-
sions, what is the appropriate one for SATS languages is still unclear. Find a
Kleene theorem in 2 dimensions, to relate SATS and a specific class of regular
expressions in 2 dimensions, depends on the understanding of the structure of
SATS languages and the ability to identify equivalent regular expression based
representations for these languages.

Kleene Algebra, in 2 Dimensions. Even solving the above problems, going to an
algebraic setting, similar to 1-dimensional Kleene algebra, is still more challeng-
ing. For completeness, we need to formally capture SATS equivalence, perhaps
as simulation captures FA equivalence. But SATS equivalence is undecidable
[30], [42]. Restricted to rectangular words, even the emptiness problem is unde-
cidable [30]. In the current setting of arbitrary shape words, we expect even the
membership problem is undecidable; more precisely, we conjecture the model of
SATSs over arbitrary shape 2-dimensional words is universal.

Rewards. If there are so many obstacles, why does one try to follow this quest?
The effort deserves to be done, we think: it is a good intellectual challenge and
even partial results may have a huge impact in active research areas as image
processing (computer vision) and modelling large scale distributed computing
systems.

10 Interactive Programs

Reading this section requires some familiarity with the register-voice interactive
systems model (rv-IS) – a few pointers to the literature are indicated at the
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end of the section. For the reader unfamiliar with the rv-IS model the message
is the following: the passing from rectangular words to arbitrary shape words
supports interactive programming models where spatial and temporal resources
are directly managed, for example by using spatial and temporal pointers.

From Self-assembling Tile Systems to Interactive, Distributed Programs. A clas-
sical slogan says that “program = control + data”. The control part for simple
sequential programs is provided by finite automata. We can extend this slogan
saying that

“interactive, distributed program
= (control & interaction) + (spatial & temporal) data”

The control & interaction part may be specified by SATSs. Spatial and tem-
poral data can be added to SATSs to get completely specified interactive, dis-
tributed programs. A basic step is to enrich tiles with data associated to their
border labels to get specific basic blocks, called interactive modules. Our con-
vention is that the data on the north and south borders represent spatial data
(memory states), the data on the west and east borders represent temporal
data (communication messages), and the cell itself has an associated relational
transformation connecting these data. SATSs may be used to produce scenarios
describing system runs, built up out of these interactive modules.

A model along these lines, the register-voice interactive systems (rv-IS) model,
accompanied by a kernel programming language and a few specification and
verification techniques has been introduced in 2004 [46] and gradually developed
till now - the most notable development is the introduction of Agapia in 2007
[15], a structured programming language based on the rv-IS model.

Words and Scenarios: Rectangular or Arbitrary Shapes? The control & inter-
action part of distributed programs may also be specified by particular classes
of 2-dimensional regular expressions, producing more structured programs. As
regular expressions do not use labels, the result is a programming languages set-
ting without “go-to” statements (neither control, nor interaction can use go-to
labels). As a side effect of lacking “go-to” labels on the interaction part, one gets
a setting with name-free processes.

Both published versions of Agapia (v0.1 [15] and v0.2 [37]) have semantics de-
fined in terms of rectangular words. They use horizontal, vertical, and diagonal
compositions and their iterated versions. The v0.2 version allows to define re-
cursive programs. A recent compiler, developed by Paduraru [35] and producing
either MPI or OpenMP executables, has shown good execution time for pro-
grams specified in Agapia high-level setting compared with programs directly
written in MPI or OpenMP.

In a recent study regarding process synchronization [20], the authors have
introduced temporal pointers. We claim that arbitrary shape scenarios provide
a good formalism to deal with spatial and temporal pointers. One example is
presented in Fig. 10. If we want a synchronization by temporal pointers between
C and Y (to be run at the some time interval) and to have both B and Y
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running on the same process (to coordinate their memory allocations), then one
can use a simple composition as in Fig. 10(b). Using rectangular scenarios, one
may use a scenario as in Fig. 10(a), which preserve the functionality, but not the
spatio-temporal constraints induced by the pointers.

The scenario in Fig. 10(a) uses particular cells, interpreted as simple wiring

constants: 0 = , = , = , � = , � = , + = ; for
instance, the 1st row is AB0�0 . They represent empty cell, vertical identity,
horizontal identity, space-to-time converter (speaker), time-to-space converter
(recorder), and cross identity, respectively. They can be used to migrate a process
(as from C to Y ), or to delay a communication (as from B to X).

(a) (b)

Fig. 10. Rectangular vs. arbitrary shape scenarios in the rv-IS model

Interactive Computation. Interactive computation [50] is an important compo-
nent of the software-intensive infrastructures of our society. Classical models for
process interaction include, among many other models, process algebra models
[8], Petri nets [38], dataflow networks [11], etc. In these models, process synchro-
nization is a key feature. For instance, in process algebra models, synchronization
is achieved by handshake communications, while in Petri nets and dataflow mod-
els, explicit transitions and dataflow nodes are respectively used. These models
treats interaction as a primary feature, considering sequential computation to be
either derived from communication or implicitly included in the dataflow node
behaviour. A more recent proposal falling into this class is the ORC program-
ming language [33], based on name-free processes and structured interaction.

Our rv-IS interaction model is based on scenarios and 2-dimensional traces.
Traces represent running scenarios modulo graph-isomorphism and projected on
classes and states. In this interpretation one focuses on data stored in or flowing
through the cells of the interactive system. A notion of trace-based refinement
for (structured) interactive systems has been recently presented in [14].

11 Related Work

Tiling. Tiling [21] is an old and popular subject. We include a few pointers to
the literature below, trying to classify the type of problems studied.
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Tiling, Infinite Behaviour. An interesting tiling problem was proposed by Wang
in 1961: “Given a set of tiles, is there a tiling of the whole 2-dimensional plane?”
Wang has conjectured that only regular periodic tilings are possible, but this is
not true: the smallest set for which an aperiodic tiling does exist consists in 11
tiles and it uses 4 colors [23].

Cellular Automata. Cellular automata studies are also focusing on infinite be-
haviours. They were introduced in 1940s and studied, among others, in con-
nection with self-reproducing systems [49], trying to get a new perspective on
natural sciences [51], or looking for applications on adaptive systems [32].

2-Dimensional Languages, Classical Results. The study of 2-dimensional lan-
guages started in 1960s, mostly related to “picture languages”. In 1990s a ro-
bust class7 of regular 2-dimensional languages, over rectangular words, has been
identified; good surveys from that period are [18], [31]. Over rectangular words,
regular 2-dimensional languages and SATS languages are equivalent.

Finite, Compositional Tiling. Tiling can be used to describe large scale dis-
tributed systems. To break down the complexity, the following problem needs
to be solved: “Find all finite tiling configurations having a fixed label on each
west/north/east/south border”. This is an abstract formulation of the basic fact
that we are interested in input-output running scenarios of distributed systems,
corresponding to tiling configurations, which start from initial states (on north),
initial interaction classes (on west) and, in a finite number of steps, reach final
states (on south) and final interaction classes (on east). This is the problem
we have addressed in this paper; some additional references are included in the
“space-time duality” paragraph.

Self-assembling Tiling with Unique Outcome. A more recent model using tiles is
the Winfrees abstract Tile Assembly Model (see [36], for a survey). The prob-
lem of interest here is: “Find a set of tiles such that any tiling yields the same
specified final configuration.” Coming from practical considerations, the aim is
to design self-assembling systems for quick and error-free production of complex
substances.

Self-assembling in Computing. We finish with a brief comment on the use of the
“self-assembling” term in our computing setting. According to some conventions,
a (chemical) self-assembling system is an assembling systemwith the following dis-
tinctive features related to the order, the interactions, and the used building blocks :
(1) usually, the resulting configurations have higher order; (2) they use “weak in-
teractions” for coordination; and (3) larger or heterogeneous building blocks may
be used. Properties (1) and (3) are clearly related to scenario composition and 2-
dimensional regular expressions. Property (2) is more related to physical systems,

7 One particularly interesting equivalent characterization of regular 2-dimensional lan-
guages use (existential) monadic second order logic over 2 successors [19]. The role
of 2nd order variables is similar to that played by the variables used in our recursive
specifications.
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but a similar one may be considered in our computing setting by distinguishing
computing activities (on the same machine) and coordinating activities. In short,
there are strong enough reasons to use the “self-assembling” term for constructing
scenarios/languages in our distributed computing formalism.

Kleene Algebra: From 1 to 2 Dimensions. Sequential computation is a
well-established research domain. A witness of its maturity is the rich collection
of algebraic theories based on regular expressions and the associated regular alge-
bra, see, e.g., [25], [40], [12], [29], [43], [26], [9], [10]. Recent extensions of regular
algebra to network algebra [44] shows deep connections with classical mathe-
matics, especially via the “trace monoidal category” structure [24], [41]. Kleene
algebra with tests [27] has been recently applied to real networks modelling [1].

The approach presented in this paper is in line with other attempts to formally
describe distributed, interactive programs. An early paper on 2-dimensional con-
nectors is [34] focusing on VLSI design. Two formalisms for parallel and/or dis-
tributed computation, directly based on regular expressions, are regular expres-
sions for Petri nets [17] and for timed automata [2]. Other related formalisms
include the tile logic specification model [16], the BIP rigorous approach to
component-based system design [7], or the concurrent Kleene algebra [22].

Space-Time Duality. Our work on this subject started fifteen years ago with
the exploration of space-time duality and its role in organizing the space of
interactive computation; see Chapter 12 (Section 12.5) in [44]. Till now, we have
advanced a few steps in this direction:

1. A 2-dimensional version of finite automata has been presented in [45], [46].
(It was called “finite interactive system” and is equivalent with SATS, but
it was used only over rectangular 2-dimensional words.)

2. A space-time invariant8 model extending flowcharts was shown in [46], [47].
3. A space-time invariant extension of (structured) while programs was pre-

sented in [15].
4. An enriched version of 3. supporting recursion was presented in [37].
5. Space-time invariant (2-dimensional) regular expressions are presented in

[4], [5], [6].
6. Verification methods lifting Floyd and Hoare logics to 2-dimensions have

been described, too.
7. A notion of trace-based refinement, for this space-time invariant model, was

introduced in [13], [14].
8. Finally, a space-time invariant extended model, including spatial and tem-

poral pointers9, has been recently discovered [20], [35].

8 The expression “space-time invariant” is a shortened version of “invariant with
respect to a formally defined space-time duality transformation” (see, e.g., [47]).

9 To be similar with spatial pointers, temporal pointers need the capacity to refer to
both past and future moments in time. The former is captured by recording the
past information, while the latter by speculation (guess the forthcoming value and
continue the running; keep only the branch(s) with a consistent guess).
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12 Conclusions

In this paper we have described a roadmap to extend finite automata, regular
expressions, and Klenee algebra in 2 dimensions. The paper has been focused
more on defining the concepts and presenting examples and basic properties,
rather then on technical details. As a last, more personal, conclusion we think
that the topics is very interesting, with high potential of applications, but it
needs a collective effort to be properly done.
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Connections between Relation Algebras

and Cylindric Algebras

Ian Hodkinson

Department of Computing, Imperial College London

Abstract. We give an informal description of a recursive representability-
preserving reduction of relation algebras to cylindric algebras.

1 Introduction

Relation algebras form one of the principal algebraic approaches to binary rela-
tions. Introduced by Tarski in 1941 [9], their history actually goes back much
further, to work of Peirce, Schröder, De Morgan, and even Boole. One of the key
algebraic approaches to relations of higher arity is cylindric algebras, introduced
by Tarski and his students Louise Chin and Frederick Thompson in the late
1940s.

Finding connections between relation algebras and cylindric algebras has been
a prickly problem for a long time. There are a number of reasons why the problem
might be of interest.

1. Algebraic logic generally seems to comprise a large number of formally dif-
ferent kinds of algebra — relation algebras, cylindric algebras, diagonal-free
algebras, substitution algebras, polyadic (equality) algebras, and so on. Once
one has proved a result for one kind of algebra, one is under some scientific
obligation to try to prove it again for others.
Sometimes, doing this involves substantial technical innovation. But often,
it can seem like merely copying out the old proof with minor modifications
to take account of the different type of algebra. The core argument, often
combinatorial in nature, remains the same. This leads in the direction of
off-putting repetitive papers, allegations of ‘salami slicing’, and unpleasant
subjective debates about how incremental a paper is.
In both cases, it would be valuable to have some reasonably general ‘trans-
fer theorems’ allowing direct export of results from one kind of algebra to
another. Indeed, such theorems might be more illuminating than just refor-
mulating the same argument in slightly different terms.

2. A case in point is the ‘negative’ result that there is no algorithm to decide
whether a finite relation algebra is representable [1, 2]. The proof was compli-
cated. Redoing it for cylindric algebras is even more complicated. A ‘transfer
result’ would be very helpful here. It would snatch a ‘positive’ result from
the jaws of negativity. (It is not my fault that problems are undecidable, but
as one distinguished logician on the RAMiCS programme committee once
told me, ‘People get fed up with negative results.’)

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 27–42, 2015.
DOI: 10.1007/978-3-319-24704-5_2
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3. The question of connections between algebras of different arities (and per-
haps varying in other features too) is of interest in its own right. It has a
distinguished history, including work of Monk [8] and Maddux [5–7]. It raises
intricate technical challenges.

4. Unlike first-order logic, algebraic logic is rather picky about arities. Usually
there is a separate class of algebras for each arity (though some such as Craig
have defined algebras comprising relations of multiple arities). So it would
be nice to shed light on this separation and perhaps show it is less strict
than appears.

5. Both relation algebras and cylindric algebras are listed on http://ramics

2015.di.uminho.pt as in the scope of RAMiCS — so why not study their
connections?

In this short note, we will attempt to give a gentle introduction to some work
in this area. As a case study, we will focus on the problem mentioned in point
2 above: it is known to be undecidable whether a finite relation algebra is rep-
resentable; can we use this result to show the same for finite n-dimensional
cylindric algebras, for each finite n ≥ 3?1

The obvious approach is to find a recursive reduction of the first problem to the
second. That is, we find a recursive function f that, given a finite relation algebra
A, returns a finite n-dimensional cylindric algebra f(A) that is representable
when and only when A is representable.2 It would then of course follow that no
algorithm could decide representability of n-dimensional cylindric algebras. For
such an algorithm could be coupled with f to provide an algorithm to decide
representability of finite relation algebras, something that [1] assures us does not
exist.

In section 3 below, we will recall briefly some earlier work on connections
between relation algebras and cylindric algebras, and discuss the prospects for
using it to construct such an f . Then, in section 4, we explain informally a
simplified form of the construction of f from [3].

Since the full proofs are already in print, in this short note we will give only
informal descriptions, not proofs. For clarity, we will make some simplifying
assumptions. So: we will mostly restrict attention to the case of finite simple
algebras. We will refrain from considering other algebras such as polyadic alge-
bras and diagonal-free algebras. We will consider cylindric algebras only of finite
dimensions n ≥ 3. (The case n < 3 is easy — representability is decidable in this
case — and infinite-dimensional cylindric algebras take us in some sense outside
the realm of finite algebras.)

1 We caution the reader that just because it appears ‘harder’ to represent cylindric
algebras than relation algebras, it doesn’t follow that the question of deciding whether
a finite cylindric algebra is representable is harder than the corresponding question
for relation algebras.

2 In passing, we mention a converse problem: is there a recursive function g that, given
a finite n-dimensional cylindric algebra C, returns a finite relation algebra g(C) that
is representable iff C is representable?
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2 Definitions

We recall the necessary basics. We adopt the standard convention that denotes
the domain of an algebra A by A.

2.1 Relation Algebras

A relation algebra is an algebra

A = (A,+,−, 0, 1, 1,,˘, ;),
where (A,+,−, 0, 1) is a boolean algebra, called the boolean reduct ofA, (A, ; , 1,)
is a monoid, ˘ is a unary function on A, and A satisfies the Peircean law: (a ; b) ·
c 
= 0 ⇐⇒ (ă ; c) · b 
= 0 ⇐⇒ (c ; b̆) · a 
= 0, for all a, b, c ∈ A, where
a · b = −(−a+−b) (we will not use these properties in detail here).

We say that A is simple if 1 ;a ; 1 = 1 for each non-zero a ∈ A, and finite if
A is finite. Mostly we will consider only finite simple relation algebras here. We
warn the reader that for arbitrary relation algebras, some definitions and results
below need to be modified, or may even fail.

Representations. A (square) representation of A is a one-one map h : A →
℘(U2), for some ‘base’ set U , such that for all a, b ∈ A,
1. h(a+ b) = h(a) ∪ h(b)
2. h(−a) = U2 \ h(a)
3. h(0) = ∅
4. h(1) = U2

5. h(1
,
) = {(x, x) : x ∈ U}

6. h(ă) = {(x, y) ∈ U2 : (y, x) ∈ h(a)}
7. h(a ; b) = {(x, y) ∈ U2 : ∃z((x, z) ∈ h(a) ∧ (z, y) ∈ h(b))}.
So h represents each a ∈ A as a binary relation on U , and the algebraic oper-
ations correspond via h to ‘concrete’ operations on binary relations. Not every
finite simple relation algebra is representable (i.e., has a representation). By
[2, theorem 18.13], it is undecidable whether a finite simple relation algebra is
representable.

Atoms, Atomic Relation Algebras. We can define a standard ‘boolean’ partial
ordering ≤ on A by a ≤ b iff a+ b = b. An atom of A is a ≤-minimal non-zero
element of A. We write AtA for the set of atoms of A. We say that A is atomic if
every non-zero element of A lies ≤-above an atom. Every finite relation algebra
is atomic.

Atom structures and Complex Algebras. By standard duality, an atomic rela-
tion algebra has an associated atom structure: a relational structure AtA =
(AtA, R1

, , R˘ , R;), where R1
, = {a ∈ AtA : a ≤ 1

,}, R˘ = {(a, b) ∈ (AtA)2 :
b ≤ ă}, and R; = {(a, b, c) ∈ (AtA)3 : c ≤ a ; b}.
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If A is finite, it is completely determined by AtA up to isomorphism. Indeed,
given any structure S = (S,R1

, , R˘ , R;) of the signature of relation algebra atom
structures, we can define its complex algebra CmS:

CmS = (℘(S),∪, \, ∅, S, R1
, ,˘, ;),

where, for a, b ⊆ S, ă = {s ∈ S : ∃t ∈ a(R˘(t, s))} and a ; b = {s ∈ S : ∃t ∈
a∃u ∈ b(R;(t, u, s))}. Given suitable conditions on S, this algebra CmS will be
a relation algebra, and S ∼= AtCmS. For finite relation algebras A, we have
A ∼= CmAtA.

The atom structure of a finite relation algebra A is a good way to handle A,
since it is exponentially smaller. We can define particular finite relation algebras
by specifying their atom structures.

Networks. Another important concept to do with atoms and atom structures is
that of network.

Given a finite simple relation algebra A, an A-network (over N1) is a pair
N = (N1, N2), where N1 is a set of ‘nodes’, and N2 : N1 × N1 → AtA is a
‘labelling function’ satisfying, for all x, y, z ∈ N1,

1. N2(x, x) ≤ 1
,
,

2. N2(x, y) = N2(y, x)̆ (we note that in relation algebras, ˘ takes atoms to
atoms),

3. N2(x, y) ≤ N2(x, z) ;N2(z, y).

Frequently we drop the indices 1, 2, deducing them by context.

Networks Arise from Parts of representations. The key observation here is that
if h : A → ℘(U2) is a representation of the (finite simple) relation algebra A,
then for each u, v ∈ U there is a unique atom a ∈ A such that (u, v) ∈ h(a) (it
is an exercise to show that this atom exists and is unique). Writing this atom
as λ(u, v), so that λ : U2 → AtA is a function, it can be checked that for each
X ⊆ U , the pair

(X,λ � X2) (1)

is an A-network. The ‘whole’ network N = (U, λ) satisfies an additional ‘satu-
ration’ condition

4. for each x, y ∈ N and atoms a, b ∈ A, if N(x, y) ≤ a ; b, then there exists
z ∈ N with N(x, z) = a and N(z, y) = b.

Conversely, any ‘saturated’ A-network N satisfying condition 4 can be viewed
as a representation h of A via h(a) = {(x, y) ∈ N : N(x, y) ≤ a}, for each a ∈ A.
Or almost. This h need not respect 1

,
, since N ′(x, y) ≤ 1

,
does not imply x = y.

We say that h is a loose representation of A. To get a pukka representation, we
need to factor out by the equivalence relation h(1

,
) on N .

We end with some notation that will be useful. For A-networks N = (N1, N2)
and M = (M1,M2), and any objects i1, . . . , ik, we write

N =i1,...,ik M
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if N1 \ {i1, . . . , ik} = M1 \ {i1, . . . , ik} = I, say, and N(i, j) = M(i, j) for all
i, j ∈ I. That is, M and N agree off of {i1, . . . , ik}.

2.2 Cylindric Algebras

Just as relation algebras ‘algebraise’ binary relations, so cylindric algebras al-
gebraise relations of higher arities. From now on, fix some finite dimension (or
arity) n ≥ 3. An n-dimensional cylindric algebra is an algebra

C = (C,+,−, 0, 1, dij , ci : i, j < n),
where (C,+,−, 0, 1) is a boolean algebra as before, the dij are constants, and
the ci are unary functions on C, satisfying certain equations not needed here.
The algebra C is said to be finite if C is finite, and simple if c0c1 · · · cn−1a = 1
for each non-zero a ∈ C.

A (square) representation of C is a map h : C → ℘(Un), for some base set U ,
respecting the boolean operations as before, and with

1. h(dij) = {(x0, . . . , xn−1) ∈ Un : xi = xj}
2. h(cia) =

{
(x0, . . . , xn−1) ∈ Un : ∃(y0, . . . , yn−1) ∈ h(a)(xj = yj for each

j ∈ n \ {i})}
for each i, j < n (we identify n with {0, 1, . . . , n − 1}) and each a ∈ C. So this
time, each element of the algebra is ‘represented’ as an n-ary relation on U . The
elements of C are like first-order formulas written with variables x0, . . . , xn−1;
dij is like xi = xj , and cia is like ∃xia. Again, not every n-dimensional finite
simple cylindric algebra (n ≥ 3) is representable.

Atoms and atomic cylindric algebras are defined as for relation algebras. The
atom structure of an atomic n-dimensional cylindric algebra C as above is the
structure

At C = (At C, Rdij , Rci : i, j < n),

where Rdij = {a ∈ At C : a ≤ dij} and Rci = {(a, b) ∈ (At C)2 : b ≤ cia}. A
structure S = (S,Rdij , Rci : i, j < n) in this signature is called a n-dimensional
cylindric-type atom structure. Again, we can form its complex algebra:

CmS = (℘(S),∪, \, ∅, S, Rdij , ci : i, j < n),

where ciX = {y ∈ S : Rci(x, y) for some x ∈ X}, for each i < n and X ⊆ S.
Under favourable conditions, CmS will be an n-dimensional cylindric algebra,
and again we have S ∼= AtCmS, and C ∼= CmAt C for each finite cylindric
algebra C.

One can also define networks for cylindric algebras, analogously to the relation
algebra case.

3 Earlier Work

Now let us review some earlier work connecting relation algebras and cylindric
algebras. We confine ourselves to the most relevant topics. For a far more thor-
ough survey, see [7].



32 I. Hodkinson

3.1 Monk

In [8], Monk gave a method of turning an arbitrary relation algebra A into a
3-dimensional cylindric algebra C, preserving representability both ways — that
is, A is representable iff C is representable.

[8, p.63] states that the idea is due to Lyndon. [8, p.81] adds that ‘This de-
scription occurs in a letter from Lyndon to Thompson dated May, 1949. . . in
this letter he restricts himself to the case of proper relation algebras.’ For our
purposes, we can take a proper relation algebra to be a representable one; so by
extending the construction to arbitrary relation algebras, Monk made a consid-
erable advance. [8, p.81] also states that reference to the embedding has occurred
in several places. The earliest of them is [4].

The construction is important, but rather complicated, and I’m reluctant to
summarise it for fear of misrepresentation. However, a related idea is to regard
the elements of a relation algebra A as binary relation symbols, consider the
set of all first-order formulas using these symbols and written with only the
variables x0, x1, x2, and quotient it out by a certain equivalence relation (actu-
ally a congruence) suggested by the relation algebra operations. For example,
∃x2(a(x0, x2) ∧ b(x2, x1)) (where a, b ∈ A) would be equivalent to (a ; b)(x0, x1).
If done properly, the congruence classes form a 3-dimensional cylindric algebra
that is representable just when A is representable. For more on this, and much
else, see [10].

For finite relation algebras, Monk’s construction is recursive, and it follows by
Turing reduction that representability of finite 3-dimensional cylindric algebras
is undecidable.

Monk does not give any construction in dimensions higher than 3. For this,
we need to pass to work of Maddux.

3.2 Maddux: Cylindric Bases

In a number of publications, including notably [5, 6] and the survey [7], Maddux
gave a new way of constructing cylindric algebras of any dimension from atomic
relation algebras, using sets of networks called cylindric bases. We will continue
to simplify things by restricting consideration to finite simple relation algebras.
For these, in dimension 3, Maddux’s construction reproduces Monk’s construc-
tion up to isomorphism. We will go into some detail about it, since we need it
later.

Idea. Let us try to motivate the idea of cylindric basis. Suppose we are given
a representation h : A → ℘(U2) of a (finite simple) relation algebra A. Recall
from formula (1) in section 2.1 that a subset of the base set U can be viewed as
an A-network. We can make this a little tighter by considering maps instead of
subsets.

Definition 1. Let N = (N1, N2) be an A-network, and h : A→ ℘(U2) a repre-
sentation of A with base U .
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1. A partial map f : N1 → U is said to be a partial embedding of N into h if
(f(x), f(y)) ∈ h(N2(x, y)) for all x, y ∈ dom(f).

2. We say that f is a total embedding, or just an embedding, if dom(f) = N1.
3. We also say that N embeds homogeneously into h if every partial embedding

of N into h extends to a total one.

Recall that n ≥ 3 is our fixed finite dimension. For any n-tuple (u0, . . . ,
un−1) ∈ Un, we can form an A-network

N(u0,...,un−1) = (n, ν)

whose set of nodes is n = {0, 1, . . . , n−1}, where for each i, j < n, the label ν(i, j)
is the unique atom a ofA with (ui, uj) ∈ h(a) — that is, ν(i, j) = λ(ui, uj) in our
earlier notation. Manifestly, the map (i �→ ui)i<n is an embedding ofN(u0,...,un−1)

into h. In model-theoretic terms, N(u0,...,un−1) describes the atomic type of the
tuple (u0, . . . , un−1) in the representation.

Let Nn(A) denote the set of all A-networks whose set of nodes is n. Each
network N ∈ Nn(A) defines a (possibly empty) n-ary relation on U , namely

{(u0, . . . , un−1) ∈ Un : N(u0,...,un−1) = N}.

This is the set of n-tuples onto which we can embed N . See figure 1 in the case
n = 3.

3-dimensional network

base set U of representation of A

embedding into representation

Fig. 1. Network embedding into representation

In view of this, can we make an atomic n-dimensional cylindric algebra whose
atoms are networks in Nn(A), whose arbitrary elements are subsets of Nn(A),
and which in the above case is representable over the base set U?

Well, we would need to know exactly which networks embed into h, so that
they arise as some N(u0,...,un−1). This might depend on the choice of the repre-
sentation h — and when A is not representable, there is no such h! Remember
that our reduction map f should deliver a cylindric algebra f(A) given any fi-
nite simple relation algebra A, representable or not. So we will need to ‘guess’ a
suitable set — B, say — of networks to use.
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But this is only the start of it. We also have to take account of the cylindric
algebra operations.

The constants dij are easy to handle. In a representation of the cylindric
algebra, we must interpret dij as {(u0, . . . , un−1) ∈ Un : ui = uj}. But this is
just {(u0, . . . , un−1) ∈ Un : N(u0,...,un−1)(i, j) ≤ 1

,}. So we could let

dij = {N ∈ B : N(i, j) ≤ 1
,},

for each i, j < n.
The ‘cylindrifiers’ ci are a little harder. Plainly, if (u0, . . . , un−1), (v0, . . . , vn) ∈

Un, i < n, and uj = vj for each j ∈ n \ {i}, then N(u0,...,un−1) =i N(v0,...,vn−1).
For any relation r in our putative cylindric algebra that holds on (u0, . . . , un−1),
the relation cir must hold on (v0, . . . , vn−1). So we could let

ciN = {M ∈ B :M =i N},

for each N ∈ B. The generalisation to sets of networks is easy.
Notice that these definitions are dependent on B but independent of any

representation of A — they make sense even if A is not representable.
But for a correct representation of our hoped-for cylindric algebra, for every

sequence (u0, . . . , un−1) ∈ Un with N(u0,...,un−1
) = N , and every M ∈ B with

M =i N , there must be a sequence (v0, . . . , vn) ∈ Un with uj = vj for each
j ∈ n \ {i}, and N(v0,...,vn−1) = M . This boils down to saying that each N ∈ B
embeds homogeneously into h.

This does turn out to be the case when n = 3 and B = N3(A). But for higher
dimensions, it is problematic, as we will now see.

Cylindric Bases. Let us be a little more formal. An n-dimensional cylindrical
basis of a finite simple relation algebra A is a non-empty subset B ⊆ Nn(A)
satisfying3

1. For each N ∈ B, i, j < n, k ∈ n \ {i, j}, and atoms a, b ∈ AtA, if N(i, j) ≤
a ; b, then there exists N ′ ∈ B with N ′ =k N , N ′(i, k) = a, and N ′(k, j) = b.

2. If N,M ∈ B, i, j < n, and N =ij M , then there is P ∈ B with N =i P =j

M .

We will not use the details of this definition, but we do point the reader’s at-
tention to the similarity of clause 1 to our earlier saturation condition for A-
networks. The salient facts about cylindric bases are as follows.

1. We can view an n-dimensional cylindric basisB as an n-dimensional cylindric-
type atom structure

B = (B,Rdij , Rci : i, j < n),

3 The definition we give here is not the same as Maddux’s definition in (e.g.,) [6,
definition 4], but it is equivalent to it for finite simple relation algebras. See, e.g., [2,
lemma 12.36].



Connections between Relation Algebras and Cylindric Algebras 35

where Rdij = {N ∈ B : N(i, j) ≤ 1
,} and Rci = {(N,M) ∈ B2 : N =i M}

— that is, Rci is just =i. This is as suggested above. We write B for the
basis and B for the corresponding atom structure. The definition of cylindric
basis ensures that CmB is always an n-dimensional cylindric algebra, with
atom structure isomorphic to B. The map B �→ CmB is recursive.

2. In dimension 3:
– Every finite simple relation algebraA has a 3-dimensional cylindric basis.
The set N3(A) is one such, and it’s the only one, actually.

– For B = N3(A), the complex algebra CmB is a 3-dimensional cylindric
algebra isomorphic to what Monk’s construction gives.

– CmB is representable iff A is representable as a relation algebra.
Here is the gist of the proof. For ⇐, we can read off a representation
of CmB from any representation of A, because the relation algebra op-
erations are strong enough to ensure that all networks in N3(A) embed
homogeneously into any representation of A.
More formally, if h : A → ℘(U2) is a representation of A, then define a
representation h∗ : ℘(B)→ ℘(U3) of CmB by

h∗(X) = {(u0, u1, u2) ∈ U3 : N(u0,u1,u2) ∈ X)}
for each X ⊆ B, using the notation N(u0,...,un−1) introduced above.
For ⇒, A is a subalgebra of the (neat) relation algebra reduct of CmB
obtained by restricting to its ‘2-dimensional elements’. Taking relation
algebra reducts preserves representability. For more details, see [7, §4].

3. However, for dimensions n > 3:
– Nn(A) may not be an n-dimensional cylindric basis.
– For n ≥ 5, not every atomic relation algebra A has any n-dimensional
cylindric basis at all.

– Even when A does have an n-dimensional cylindric basis, say B, it may
be that A is representable but CmB is not (though it will be an n-
dimensional cylindric algebra). The ‘reason’ is that not every network
in B need embed (at all, or homogeneously) into a representation of A.
Examples can be found in [6, pp. 960–961] and [7, p. 389].

– It is true that if A has a cylindric basis B and CmB is representable,
then A is representable, as again it is a subalgebra of the relation algebra
reduct of CmB. But for a reduction, this is not enough.

So, while excellent in dimension 3 and very important in general, cylindric bases
do not suit our purposes in higher dimensions than 3.

4 Reduction in Arbitrary Dimensions

Recall that we wish to find a recursive construction of an n-dimensional cylindric
algebra from an arbitrary finite simple relation algebra, and the construction
should preserve representability both ways.

The constructions of Monk and Maddux do not achieve this aim in higher
dimensions, but they do in dimension 3. We can learn from this.
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An n-dimensional cylindric basis uses ‘n-dimensional’ networks with base
set n. All pairs (i, j) of nodes i, j < n are ‘labelled’ with atoms. In dimen-
sions higher than 3, this can cause a mismatch between the kind of networks
that exist in the basis and those that embed (homogeneously) into a representa-
tion of A. But in dimension 3, there is no mismatch at all, because the relation
algebra operations ‘control’ exactly which 3-dimensional networks embed in a
representation (namely, all of them do), and moreover they ensure that every
network embeds homogeneously as well.

So, let us try to devise a new kind of ‘n-dimensional network’ — one based on
the 3-dimensional networks that work so well, without adding any extra higher-
dimensional structure from the relation algebra point of view. One can have all
sorts of ideas about how to do this (believe me), but they often fail, because
potentially fatal higher-dimensional information is smuggled in.

4.1 Motivation from Representations

It can help to think in terms of representations. Given a representation h : A→
℘(U2) of A, an n-tuple (u0, . . . , un−1) of elements of U ‘sees’ what the represen-
tation says about its points — that is, the collection of atoms λ(ui, uj) associated
with pairs of points from the tuple. This gives it information on the mutual re-
lationships of up to n points of the representation. This is dangerous, for the
above-mentioned reasons. The challenge we face is to limit this information to
groups of at most three points, while still having all of u0, . . . , un−1 around.

So we consider a new kind of structure. Let V be a set. Suppose that for each
subset S ⊆ V of cardinality exactly n − 3, we have a representation hS : A →
℘((V \ S)2) of A on the base V \ S. Here, S is a sort of ‘black hole’, carrying
no information inside it. There need be no correlation whatever between the hS ,
as S varies.

Extending our earlier notation, for u, v ∈ V \ S we write λS(u, v) for the
unique atom a ∈ AtA such that (u, v) ∈ hS(a).

Now, given an n-tuple (u0, . . . , un−1) of elements of V , the only information
from A that (u0, . . . , un−1) can ‘see’ is the collection of atoms〈

λS(ui, uj) : S ⊆ {u0, . . . , un−1}, |S| = n− 3, i, j < n, ui, uj /∈ S
〉
. (2)

Crucially, only 3-dimensional information (from at most three points) about any
one representation hS is now visible to (u0, . . . , un−1). This is because at most
three points of u0, . . . , un−1 can lie outside each S in (2). Moreover, the cylin-
dric algebra operations cannot be used to garner higher-dimensional information
about hS . For that would involve ‘moving’ a point ui ∈ S to a point outside S,
using a ci. But then, S is no longer a subset of the points in the resulting n-tuple,
so (see (2)) no information about hS is available to it at all.

4.2 Holograms

So we wish to devise a new kind of n-dimensional network embodying the in-
formation in (2) above. The network will become an atom of our final cylindric
algebra that will ‘hold’ on (u0, . . . , un−1).
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But the definition of the new network cannot use any representation, since A
may not have a representation!

So we simply throw in any 3-dimensional networks, subject only to identity
constraints. We call our new-style network a hologram, since it incorporates many
different 3-dimensional ‘views’.

Definition 2. Let ∼ be an equivalence relation on n. Write H(∼) for the set
of all subsets X ⊆ n such that n \X is the union of exactly (n − 3) ∼-classes.
Quite possibly, H(∼) = ∅.

For a finite simple relation algebra A, an (n-dimensional) hologram (over A)
is a family

η = (∼, NX : X ∈ H(∼)),
where ∼ is an equivalence relation on n, each NX is an A-network whose set of
nodes is X, and for each X ∈ H(∼) and i, j ∈ X, if i ∼ j then NX(i, j) ≤ 1

,
.

Example 1. In terms of the sketch in section 4.1 with V and the hS and λS , a
hologram η = (∼, NX : X ∈ H(∼)) will ‘hold’ on (u0, . . . , un−1) ∈ V n as per (2)
iff:

H1 For each i, j < n we have ui = uj iff i ∼ j.
H2 For each X ∈ H(∼), if S = {uk : k ∈ n \X}, then NX(i, j) = λS(ui, uj) for

each i, j ∈ X . That is, the map (i �→ ui : i ∈ X) is an embedding of NX into
hS .

Note that if X ∈ H(∼), the set n\X is the union of exactly n−3 ∼-classes, and
so no element of X is ∼-equivalent to any element of n \X . So by H1, the set
S in H2 has size n− 3 and ui /∈ S for each i ∈ X . Hence, H2 makes sense. Also
note that for i, j ∈ X we have i ∼ j ⇒ ui = uj ⇒ NX(i, j) = λS(ui, uj) ≤ 1

,
,

which is consistent with definition 2.

4.3 Atom Structure from Holograms

Let M be the set of all (n-dimensional) holograms. We wish to form an n-
dimensional cylindric-type atom structure M = (M,Rdij , Rci : i, j < n). From
H1 above, it is clear that we should define

Rdij = {(∼, NX : X ∈ H(∼)) ∈M : i ∼ j}.
But what about Rci? For inspiration, we consider again the picture in sec-

tion 4.1. Suppose we have two tuples (u0, . . . , un−1) and (v0, . . . , vn−1) in V n,
with uj = vj for all j ∈ n \ {i}. What is the connection between the holograms
(∼, NX : X ∈ H(∼)) and (∼′, N ′

X : X ∈ H(∼′)) that ‘hold’ in the sense of
example 1 on (u0, . . . , un−1) and (v0, . . . , vn−1), respectively?

Well, we certainly have j ∼ k iff j ∼′ k for all j, k ∈ n \ {i}. To see this, note
that uj = vj and uk = vk, so by H1, j ∼ k iff uj = uk iff vj = vk iff j ∼′ k. We
say for short that ∼ and ∼′ agree off of i. We cannot say any more about ∼,∼′

than that, since we do not know whether ui = vi.
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Fig. 2. Equivalence relations ∼,∼′ on 5

What about the NX and N ′
X′? The only sets S of n − 3 points (the ‘black

holes’) whose representations hS carry information common to both (u0, . . . ,
un−1) and (v0, . . . , vn−1) are those S that remain unchanged by moving ui.
These ‘stable sets’ are the subsets of {uj : j ∈ n \ {i}} of size n− 3. (They may
or may not contain ui, vi.)

Now a set X ∈ H(∼) corresponds to the black hole S = {uj : j ∈ n\X}. This
is a stable set just when it is equal to {uj : j ∈ n\(X∪{i})}. And since |S| = n−3,
this is exactly when n \ (X ∪{i}) already contains n− 3 pairwise ∼-inequivalent
elements. A set X ′ ∈ H(∼′) corresponds to this same black hole S just when
X ∪ {i} = X ′ ∪ {i}. For all such X,X ′, we will require NX(j, k) = N ′

X′(j, k)
for every j, k ∈ (X ∩X ′) \ {i}. Since plainly X \ {i} = X ′ \ {i}, this is exactly
when NX =i N

′
X′ . Note here that we do not require that i ∈ X ∪X ′ — see the

definition of =i1,...,ik in section 2.1.
We should therefore demand that NX =i N

′
X′ whenever the above conditions

are met.
Well, this all looks very messy, but we are forced into it by our idea, and the

notions involved are elementary. Perhaps an example will help.

Example 2. In the notation above, suppose n = 5, the ∼-classes are {0}, {1},
{2, 3}, {4}, and the ∼′-classes are {0, 1}, {2, 3}, {4}. See figure 2. Intuitively, u0
is different from all other uj, while v0 = v1. We can see that ∼ and ∼′ agree off
of 0. We have n− 3 = 2, and

– H(∼) = {{0, 1}, {0, 2, 3}, {0, 4}, {1, 2, 3}, {1, 4}, {2, 3, 4}},
– H(∼′) =

{{0, 1}, {2, 3}, {4}}.
Let i = 0.

– The sets X ∈ H(∼) such that n \ (X ∪ {i}) contains (n − 3) = 2 pairwise
∼-inequivalent elements are {0, 1}, {0, 2, 3}, {0, 4}.

– All sets X ′ ∈ H(∼′) are such that n \ (X ′ ∪ {i}) contains (n − 3) ∼′-
inequivalent elements. For example, for X ′ = {2, 3}, we have n\ (X ′∪{i}) =
n \ {0, 2, 3} = {1, 4}, and plainly 1 
∼′ 4.

Of these, the sets X ∈ H(∼) and X ′ ∈ H(∼′) such that X ∪ {0} = X ′ ∪ {0}, so
they have the same complement in n and correspond to the same ‘black hole’,
are
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– X = X ′ = {0, 1},
– X = {0, 2, 3} and X ′ = {2, 3},
– X = {0, 4} and X ′ = {4}.

So for any holograms η = (∼, NX : X ∈ H(∼)) and η′ = (∼′, N ′
X′ : X ′ ∈ H(∼′))

with ∼,∼′ as above, we have Rc0(η, η
′) iff N{0,1} =0 N

′
{0,1}, N{0,2,3} =0 N

′
{2,3},

and N{0,4} =0 N
′
{4}.

The conclusion of this discussion is the following definition.

Definition 3. Let A be a finite simple relation algebra.

1. Let η = (∼, NX : X ∈ H(∼)) and η′ = (∼′, N ′
X : X ∈ H(∼′)) be n-

dimensional holograms over A. For each i, j < n, define
– Rdij (η) iff i ∼ j,
– Rci(η, η

′) iff
(a) ∼ and ∼′ agree off of i,
(b) for each X ∈ H(∼) and X ′ ∈ H(∼′), if X ∪ {i} = X ′ ∪ {i} = I,

say, and n \ I contains n− 3 pairwise ∼-inequivalent elements, then
NX =i N

′
X′ .

This defines a unary relation Rdij and a binary relation Rci on the set M
of holograms.

2. LetM(A) be the n-dimensional cylindric-type atom structure (M,Rdij , Rci :
i, j < n).

3. Define Cn(A) = CmM(A).

4.4 Reduction Function; Undecidability of Representability

Definition 4. Fix a finite non-representable n-dimensional cylindric algebra
C×. Define a function f from finite simple relation algebras to n-dimensional
cylindric algebras, by

f(A) =
{
Cn(A), if this is an n-dimensional cylindric algebra,

C×, otherwise.

Is the function f a reduction as desired? It is recursive, since Cn(A) is finite and
recursively constructible from A, and there is an algorithm to decide whether a
finite algebra is an n-dimensional cylindric algebra or not. Plainly, f(A) is always
an n-dimensional cylindric algebra — the use of C× avoids having to verify that
Cn(A) is always a cylindric algebra. Now it can be shown that

A is representable iff Cn(A) is representable. (3)

We will discuss the proof below. So consider the cases.

1. Suppose that A is representable. Then Cn(A) is representable, and it follows
that Cn(A) is an n-dimensional cylindric algebra. The definition of f yields
f(A) = Cn(A), and this is representable.
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2. Suppose that A is not representable. There are two possibilities. If f(A) =
Cn(A), then by (3), f(A) is not representable. If f(A) = C× then by choice
of C× it is not representable.

So indeed, modulo (3), f is our desired reduction. Since it is undecidable whether
a finite simple relation algebra is representable [2, theorem 18.13], we deduce by
Turing reduction that

Theorem 1. For each finite n ≥ 3, there is no algorithm to decide whether a
finite n-dimensional cylindric algebra is representable.

For further applications, see [3].

4.5 Co-representability of A and Cn(A)

How can we prove (3)? For a full proof, see [3]. We will sketch some of the ideas.
Suppose that Cn(A) is representable. It can be shown that a representation

of it over the base set V must be of the form described in section 4.1, with the
caveat that the representations hS may be loose (see section 2.1). But if A has
loose representations, it is representable.

Conversely, assume that A is representable. We need to construct a represen-
tation of Cn(A). The key is to construct a V as in section 4.1 in which the hS
are ‘random’ (and loose).

To see why we need randomness, suppose that (u0, . . . , un−1) is an n-tuple in
V on which the atom η = (∼, NX : X ∈ H(∼)) of Cn(A) ‘holds’ in the sense of
example 1. Suppose that Rci(η, η

′), where η′ = (∼′, N ′
X : X ∈ H(∼′)). Then,

to be a good representation, there must be some tuple (v0, . . . , vn−1) ∈ V n on
which η′ holds, and with vj = uj for each j ∈ n\{i}. So there must be a suitable
point vi ∈ V .

Why should there be such a point? What are the constraints?
Well, for η′ to hold on (v0, . . . , vn−1) given that η holds on (u0, . . . , un−1), we

require firstly that vi = vj iff i ∼′ j, for each j ∈ n \ {i}. The case where i ∼′ j
for some such j is easily handled, as it can be shown that η′ already holds on
(u0, . . . , ui−1, uj, ui+1, . . . , un−1). So assume that i 
∼′ j for every j ∈ n \ {i}.
This means that vi has to be a ‘new’ element of V not in the set

O = {uj : j ∈ n \ {i}} = {vj : j ∈ n \ {i}}

of ‘old’ elements.
Plainly, |O| < n. The worst case is when |O| = n− 1, so let us examine that

case. Consider a ‘black hole’ S ⊆ O of size n − 3. Bear in mind that there are(
n−1
n−3

)
of these — O(n2). Choose j, k ∈ n \ {i} such that

O \ S = {uj, uk}.

Note that uj = vj and uk = vk. Let X
′ = {i, j, k}. Then X ′ ∈ H(∼′). For the

hologram η′ to hold on (v0, . . . , vn−1), the map (i �→ vi, j �→ vj , k �→ vk) must
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be an embedding of N ′
X′ into hS ; and we require the analogous property for

every S.
Can we find such a vi? Well, let X = {l < n : ul /∈ S}. Then j, k ∈ X ∈ H(∼).

We have X ∪ {i} = X ′ ∪ {i}, and n \ (X ∪ {i}) contains n − 3 pairwise ∼-
inequivalent elements, because {ul : l ∈ n \ (X ∪ {i})} = S and |S| = n − 3.
Since Rci(η, η

′), it follows that NX =i N
′
X′ .

Since η holds on (u0, . . . , un−1), the map

(j �→ uj , k �→ uk) (4)

is a partial embedding of NX into hS . But NX =i N
′
X′ . So the map

(j �→ vj , k �→ vk), (5)

being the exact same map as (4) since uj = vj and uk = vk, is also a partial
embedding of N ′

X′ into hS .
Now hS is a (loose) representation of A over V \ S. By basic properties of

relation algebra representations, every A-network with at most 3 nodes embeds
homogeneously into every loose representation. So the partial embedding (5) of
N ′

X′ into hS extends to i, and we can indeed find a point vi ∈ V \ S such that
the map (i �→ vi, j �→ vj , k �→ vk) is an embedding of N ′

X′ into hS .
It all looks so rosy. But remember: we have found a point vi for this particu-

lar S. Sure, for each S ⊆ O of size n− 3, we can find a suitable vi ∈ V \S in this
way: that is, ∀S∃vi. But of course we have to find a single point vi that works
for every S ⊆ O of size n− 3. We need ∃vi∀S.

And that’s not all. We have not yet considered the S ⊆ {v0, . . . , vn−1} with
|S| = n − 3 and vi ∈ S. We must choose vi additionally so that for each of
these S, if X ′ = {l ∈ n \ {i} : vl /∈ S} ∈ H(∼′), then the map (j �→ vj : j ∈ X ′)
embeds N ′

X′ into hS .
This seems a tall order. But if the hS are in a sense ‘randomly chosen’, it

is possible to find such a vi. Similar arguments can be found in random graph
theory and 0–1 laws for logics.

Actually, the mention of probability is just to give the flavour. We do not
really use probability. What we actually do is to build the hS in a kind of forcing
construction using an infinite game. This ensures that we get the points vi that
we need. To do it, it is important that the hS are loose representations of A. For
full details, see [3, proposition 4.7].
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Abstract. Game logic is a modal logic the modalities of which model
the interaction of two players, Angel and Demon. It is known that game
logic is not adequately interpreted through relation based Kripke models.
The basic mechanism behind neighborhood models, which are used in-
stead, is given through effectivity functions. We give a brief introduction
to effectivity functions based on sets, indicate some of their coalgebraic
properties, and move on to a definition of stochastic effectivity functions
over general measurable spaces. An interpretation of game logics in terms
of these effectivity functions is sketched, and their relationship to prob-
abilistic Kripke models and to the interpretation of the PDL fragment is
indicated.

Modal Logics and Games. The formulas of a modal logics are given through the
grammar

ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉ϕ.
Here p is an atomic proposition, and a is a modality, which usually models
actions. Thus 〈a〉ϕ holds in a world w ∈ W iff we can make a transition by
executing action a ∈ A into a world w′ in which formula ϕ holds. This indicates
the usual interpretation of the logic: we associate with each action a a relation
Ra ⊆ W ×W and define w |= 〈a〉ϕ iff w′ |= ϕ for some w′ ∈ Ra(w) := {w′′ |
〈w,w′′〉 ∈ Ra}; the Boolean connectives are interpreted as usual, and each atomic
proposition p is associated with a set V (p) ⊆ W such that w |= π iff w ∈ V (p).
Collect these data into a relation based Kripke model

(
W, (Ra)a∈A, V

)
.

If the modalities carry a structure of their own, one would expect that this is
reflected in the interpreting relations. This is the case, e.g., with Propositional
Dynamic Logic (PDL) or with Game Logic (GL), which are intended to model
simple programs, and two person games, respectively. We assume for the latter
that we have two adversaries, Angel and Demon, playing against each other,
taking turns. The grammar for games is given through

g ::= γ | g1 ∩ g1 | g1 ∪ g2 | g1; g2 | g∗ | gd | g× | ϕ?

with γ ∈ Γ a primitive game [6]. Here g1∪g2 denotes the nondeterministic choice
between games g1 and g2, g1; g2 is the sequential play of g1 and g2 in that order,
and g∗ is iteration of game g a finite number of times (including zero). The game
ϕ? tests whether or not formula ϕ holds, where ϕ is a formula from the logic.
ϕ? serves as a guard: (ϕ?; g1) ∪ (¬ϕ?; g2) tests whether ϕ holds, if it does g1 is
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played, otherwise, g2 is. This describes the moves of Angel. The moves of player
Demon are given by g1 ∩ g2, where Demon chooses between games g1 and g2;
this is demonic choice (in contrast to angelic choice g1 ∪ g2). With g×, Demon
decides to play game g a finite number of times (including not at all), and gd

indicates that Angel and Demon change places.
The informal meaning of 〈g〉ϕ is that formula ϕ holds after game g is played.

Let us just indicate informally by 〈g〉ϕ that Angel has a strategy in game g which
makes sure that playing g results in a state which satisfies formula ϕ. We assume
the game to be determined : if one player does not have a winning strategy, then
the other one has. Thus if Angle does not have a ϕ-strategy, then Demon has
a ¬ϕ-strategy, and vice versa. This means that we can derive the way Demon
plays the game from the way Angel does, and vice versa. Thus we may express
demonic choice g1 ∩ g2 through (gd1 ∪ gd2)d, and demonic iteration g× through

angelic iteration
(
(gd)∗

)d
); clearly, gdd should be the same as g. In contrast to

Banach-Mazur games, we do not describe formally what a strategy is.

Neighborhood Models. Game logics are usually interpreted through neighborhood
models, which associate with each primitive game γ ∈ Γ and each world w ∈ W
a set Nγ(w) of subsets of W , A ∈ Nγ(w) indicating that Angel has a strategy
for achieving a state in A upon playing γ in state w. Thus Nγ(w) is an upper
closed subset of the power set P (W ) of W , hence A ∈ Nγ(w) and A ⊆ B
implies B ∈ Nγ(w); the elements of Nγ(w) are perceived as neighborhoods of w
under γ. These models are more general than Kripke models: given a relation
R ⊆ W × W , w �→ {A ⊆ W | R(w) ⊆ A} yields for each w ∈ W an upper
closed set. Associating with Nγ a monotone map N+

γ : P (W )→ P (W ) through
N+

γ (A) := {w ∈W | w ∈ Nγ(w)}, we may perform a syntax directed translation

from games to maps P (W ) → P (W ), e.g., N+
g1;g2 := N+

g1 ◦ N+
g2 , or N

+
gd(A) :=

W \N+
g (W \A). In this way, each game g gets associated with such a monotone

map N+
g . We interpret the modal formula 〈g〉ϕ by defining [[〈g〉ϕ]] := N+

g ([[ϕ]]),
where, as usual, w ∈ [[ϕ]] iff w |= ϕ.

A coalgebraic point of view notices that the assignment V : W �→ {V ⊆
P (W ) | V is upper closed} is the functorial part of a monad, and that each Nγ

is a Kleisli morphism for this monad, hence a coalgebra for V. Composition of
games is interpreted through Kleisli composition in the V-monad; the actions of
Demon may be obtained through demonization (the demonization of f : W →
V(W ) is given by ∂f : w �→ {A |W \A 
∈ f(w)}). The transformation Nγ �→ N+

γ

is given by a natural transformation of the functors P → V.
Neighborhood models are strictly more general than Kripke models, which

turn out to be not adequate for interpreting general game logics. This is the
reason why: The interpretation of games through Kripke models is disjunctive,
which means that 〈g1; (g2 ∪ g3)〉ϕ is semantically equivalent to 〈g1; g2 ∪ g1; g3〉ϕ
for all games g1, g2, g3. This, however, is evidently not desirable: Angle’s decision
after playing g1 whether to play g2 or g3 should not be equivalent to decide
whether to play g1; g2 or g1; g3. Neighborhood models in their greater generality
do not display this equivalence [7].
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A Stochastic Interpretation of Game Logic. We modify first the modal formulas
〈g〉ϕ to the conditional modal formulas 〈g〉rϕ, indicating now that formula ϕ
should hold after playing g with a probability not smaller than r ∈ [0, 1]. It
replaces also sets of worlds by sets of probability distributions over these worlds.
Playing game g in state w, Ng(w) is an upper closed set, the elements of which
are now probability distributions over W , A ∈ Ng(w) indicating that Angel has
a strategy for achieving a distribution of new states taken from A. So this sounds
like simply replacing the set of states by the set of distributions over the states.
But things are not that straightforward, unfortunately. The reason is that we
need this new kind of neighborhood models be adaptable to the requirements
provided by the algebraic structure of the games, in particular it should support
the composition of games, and it should be closed under demonization.

This leads to the definition of stochastic effectivity functions, which model a
particular kind of stochastic nondeterminism [4,2]. One first notes that the set of
worlds W should carry a measurable structure, so that measures can be defined
on it. The set P (W ) of all probabilities on W then carries also a measurable
structure, which is given in a fairly natural way by evaluating probabilities at
events [3]. So an effectivity function P on world W should map W to the upper
closed measurable subsets of P (W ). This looks like an easy combination of two
monads — the probability functor P is a well known monadic functor, and the
upper closed functor is also monadic. Unfortunately, this does not work out well,
because the composition of two monads is usually not a monad, bad luck.

The following technical construction helps to bypass this difficulty. Assume
we have a measurable subset H ⊆ P (W ) × [0, 1], which may be thought of as
a combination of measures with their numerical evaluations, e.g., H = {〈μ, q〉 |
μ(A) ≥ q} for some measurable set A of worlds, then Hq := {μ | 〈μ, q〉 ∈ H}
cuts H at q (imagine a set in the plane and look at its horizontal cuts). It
can be shown that Hq is a measurable set of probabilities. We want the set
{〈w, q〉 ∈ W × [0, 1] | Hq ∈ P (w)} be a measurable subset of W × [0, 1] for all
such H ; if this is the case, we call the effectivity function t-measurable.

Just to get the idea, assume that K is a stochastic transition kernel on
W , hence K(w) is a probability on W for each w ∈ W , then w �→ {A ⊆
P (W ) measurable | K(w) ∈ A} is such a t-measurable effectivity function (this
is comparable to moving from a point to the ultrafilter generated by it). An-
other example comes from finite transition systems. Let the world W be finite
and R a transition system on W with R(w) 
= ∅ for all w ∈ W , define the set
of all weighted transitions from w through κ(w) := {∑w′∈R(w) αw′ · δw′ | αw′ ≥
0 rational,

∑
w′∈R(w) αw′ = 1}, then P (w) := {A ⊆ P (W ) measurable | κ(w) ⊆

A} defines a t-measurable effectivity function on W . Also, if the effectivity func-
tion P is t-measurable, then A ∈ ∂P (w) iff the complement of A is not in P (w)
defines a t-measurable effectivity function, the demonization of P .

As a whole, t-measurable effectivity functions have some fairly interesting
algebraic properties [2], and they may be used for defining the semantics of game
logics. This will be sketched now. The basic technical approach is to associate
with each game g a set transformer, depending on a threshold value r, specifically,
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to define for A ⊆ W the set Σ(g |A, r) of states for which Angel has a strategy
to achieve a member of A after playing g with a probability not smaller than
r as the next state. For example, Σ(γ |A, r) is defined for the primitive game
γ ∈ Γ as

{
w ∈ W | {μ | μ(A) ≥ r} ∈ Nγ(w)

}
, so we look at all worlds for

which Angel can achieve a distribution which evaluates A not smaller than r.
Similarly, we define Σ(gd |A, r) as W \ Σ(g |W \ A, r), thus Demon can reach
a state in A with probability greater than r iff Angel cannot reach a state in
W \A with probability greater than r. Finally — and here t-measurability kicks
in — we define for the composition γ; g with the primitive game γ ∈ Γ and
game g the transformation Σ(γ; g |A, r) := {w ∈ W | Qg(A, r) ∈ Nγ(w)},
where Qg(A, r) :=

{
μ ∈ P (W ) | ∫ 1

0 μ
(
Σ(g |A, s)) ds ≥ r}. For an explanation,

assume that Σ(g |A, r) is already defined for each r as the set of states for
which Angel has a strategy to achieve a state in A through playing g with
probability not smaller than r. Given a distribution μ over the states, the integral∫ 1

0
μ
(
Σ(g |A, s)) ds is the expected value for entering a state in A through

playing g for μ. The set Qg(A, q) collects all distributions, the expected value of
which is not smaller than q. We collect all states such that Angel has this set
in its portfolio when playing γ in this state. Selecting this set from the portfolio
means that, when playing γ and subsequently g, a state in A may be reached
with probability not smaller than q.

These are just some salient points in the definition of the transformation.
Other cases have to be defined, depending on the games’ syntax, in particular,
Σ(g∗ |A, r) has to be determined; the details are outlined in [3, Section 4.9.4].
We have

Theorem: If the measurable space W is complete, then Σ(g | ·, r) transforms
measurable sets into measurable sets. �

The reason why we need a complete measurable space here is that Σ(g∗ |A, r)
involves some unpleasant uncountable Boolean operations, under which, how-
ever, this class of spaces is closed.

With this in mind, we can define an interpretation for modal formulas in-
ductively through [[〈g〉rϕ]] := Σ(g | [[ϕ]], r), starting from some assignment of
primitive propositions to measurable sets. It follows that each validity set is
measurable, provided W is complete.

As in the set-valued case above, we have this property.

Proposition: If the interpretation is Kripke generated, then it is disjunctive. �

Suppose that we consider only Angel’s moves and forget about Demon. Then
we have the PDL-fragment of game logic, which is somewhat easier to inter-
pret. It turns out that the interpretation suggested here generalizes the known
interpretations from [5,1].

Proposition: A Kripke generated interpretation coincides on the PDL fragment
with the one defined through Kleisli composition in the Giry monad. �

Thus the composition of programs can be described in an equivalent way
through the convolution of Markov transition kernels.



Towards a Probabilistic Interpretation of Game Logic 47

Now, What? Well, it is interesting to investigate expressivity, i.e., the rela-
tionship of logical equivalence, bisimilarity and behavioral equivalence for these
models. These properties have to be defined for stochastic effectivity functions
(partial suggestions have been proposed in [4,2]). It would also be interesting to
know whether simpler models of stochastic nondeterminism can be used for an
interpretation, which would have to support the composition of games; a monad
would be nice.
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Abstract. Gabbay and Ciancia (2011) presented a nominal extension of
Kleene algebra as a framework for trace semantics with statically scoped
allocation of resources, along with a semantics consisting of nominal lan-
guages. They also provided an axiomatization that captures the behavior
of the scoping operator and its interaction with the Kleene algebra op-
erators and proved soundness over nominal languages. In this paper, we
show that the axioms proposed by Gabbay and Ciancia are not complete
over the semantic interpretation they propose. We then identify a slightly
wider class of language models over which they are sound and complete.

1 Introduction

Nominal sets are a convenient framework for handling name generation and
binding. They were introduced by Gabbay and Pitts [5] as a mathematical model
of name binding and α-conversion.

Nominal extensions of classical automata theory have been explored quite
recently [1], motivated by the increasing need for tools for languages over in-
finite alphabets. These play a role in various areas, including XML document
processing, cryptography, and verification. An XML document can be seen as a
tree with labels from the (infinite) set of all unicode strings that can appear as
attribute values. In cryptography, infinite alphabets are used as nonces, names
used only once in cryptographic communications to prevent replay attacks. In
software verification, infinite alphabets are used for references, objects, pointers,
and function parameters.

In this paper, we focus on axiomatizations of regular languages and how these
can be lifted in the presence of a binding operator and an infinite alphabet of
names. This work builds on the recent work of Gabbay and Ciancia [8], who pre-
sented a nominal extension of Kleene algebra as a framework for trace semantics
with statically scoped allocation of resources, along with a semantics consisting
of nominal languages. Gabbay and Ciancia also provided an axiomatization that
captures the behavior of the scoping operator and its interaction with the usual
Kleene algebra operators. They proved soundness of their axiomatization over
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nominal languages, but left open the question of completeness. In this paper we
address this problem.

Intuitively, the challenge behind showing completeness is twofold. On one
hand, one needs to find the appropriate (language) model, or in other words, the
free model. On the other hand, there is a need to find an appropriate normal
form for a given expression. Normal forms are a vehicle to completeness: two
expressions are equivalent if they can be reduced to the same normal form,
and the axioms are complete if they enable us to derive normal forms for all
expressions.

Our approach is modular. We show that under the right definition of a lan-
guage model, one can prove completeness by first transforming each expression
to another expression for which only the usual Kleene algebra axioms are needed.
The steps of the transformation make use of the usual axioms of Kleene algebra
along with axioms proposed by Gabbay and Ciancia for the scoping operator.

We also show that the axioms are not complete for the language model pro-
posed by Gabbay and Ciancia. We explain exactly what the problem is with their
original language model, which contains what they called non-maximal planes.
This technical difference will be clear later in the paper. We also show that the
axioms are not complete for summation models in which the scoping operator is
interpreted as a summation operator over a fixed set.

In devising the proof of completeness, we have developed a novel technique
that might be useful in other completeness proofs. More precisely, we have made
use of the well known fact that the Boolean algebra generated by finitely many
regular sets consists of regular sets and is atomic. Hence, expressions can be
written as sums of atoms. This is crucial in obtaining the normal form. To our
knowledge this has not been used before in completeness proofs.

The paper is organized as follows. In §2 we recall basic material on Kleene
algebra (KA), nominal sets, and the nominal extension of KA (NKA) of Gabbay
and Ciancia. In §3 we discuss the possible language models, starting with the
original one proposed in [8] and then introducing two new ones: our own alter-
native language model and the summation models. We give a precise description
of the difference between the two language models. In §4 we present our main
result on completeness. The completeness proof is given in four steps: exposing
bound variables, scope configuration, canonical choice of bound variables, and
semilattice identities. In §5 we present concluding remarks and directions for
future work.

2 Background

In this section we review basic background material on Kleene algebra (KA),
nominal sets, and the nominal extension of KA (NKA) of Gabbay and Ciancia
[8]. For a more thorough introduction, the reader is referred to [7,12] for nominal
sets, to [14] for Kleene (co)algebra, and to [8] for NKA.
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2.1 Kleene Algebra (KA)

Kleene algebra is the algebra of regular expressions. Regular expressions are
normally interpreted as regular sets of strings, but there are other useful inter-
pretations: binary relation models used in programming language semantics, the
(min,+) algebra used in shortest path algorithms, models consisting of convex
sets used in computational geometry, and many others.

A Kleene algebra is any structure (K,+, ·,∗ , 0, 1) where K is a set, + and · are
binary operations on K, ∗ is a unary operation on K, and 0 and 1 are constants,
satisfying the following axioms:

x+ (y + z) = (x+ y) + z x(yz) = (xy)z x+ y = y + x

1x = x1 = x x+ 0 = x+ x = x x0 = 0x = 0

x(y + z) = xy + xz (x+ y)z = xz + yz 1 + xx∗ ≤ x∗
y + xz ≤ z ⇒ x∗y ≤ z y + zx ≤ z ⇒ yx∗ ≤ z 1 + x∗x ≤ x∗

where we define x ≤ y iff x + y = y. The axioms above not involving ∗ are
succinctly stated by saying that the structure is an idempotent semiring under
+, ·, 0, and 1, the term idempotent referring to the axiom x+x = x. Due to this
axiom, the ordering relation ≤ is a partial order. The axioms for ∗ together say
that x∗y is the ≤-least z such that y+xz ≤ z and yx∗ is the ≤-least z such that
y + zx ≤ z.

2.2 Group Action

A group action of a group G on a set X is a map G × X → X , written as
juxtaposition, such that π(ρx) = (πρ)x and 1x = x. For x ∈ X and A ⊆ X ,
define the subgroups

fixx = {π ∈ G | πx = x} FixA =
⋂
x∈A

fixx = {π ∈ G | ∀x ∈ A πx = x}.

Note that fixA = {π ∈ G | πA = A}, thus FixA and fixA are different: they are
the subgroups of G that fix A pointwise and setwise, respectively.

A G-set is a set X equipped with a group action G × X → X . A function
f : X → Y between G-sets is called equivariant if f ◦ π = π ◦ f for all π ∈ G.

2.3 Nominal Sets

Let A be a countably infinite set of atoms and let G be the group of all finite
permutations of A (permutations generated by transpositions (a b)). The group
G acts on A in the obvious way, making A into a G-set. If X is another G-set,
we say that A ⊆ A supports x ∈ X if FixA ⊆ fixx. An element x ∈ X has finite
support if there is a finite set A ⊆ A that supports x. A nominal set is a G-set
X such that every element of X has finite support.
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It can be shown that if A,B ⊆ A and A∪B 
= A, then Fix(A∩B) is the least
subgroup of G containing both FixA and FixB. Thus if A and B are finite and
support x, then so does A ∩ B. It follows that if x is finitely supported, there
is a smallest set that supports it, which we call suppx. Moreover, one can show
that A supports x iff πA supports πx. In particular, suppπx = π suppx. Also,
for x ∈ X , Fix suppx ⊆ fixx ⊆ fix suppx. Both inclusions can be strict.

We write a#x and say a is fresh for x if a 
∈ suppx.

2.4 Syntax of Nominal KA

NKA expressions over an alphabet Σ of primitive letters are

e ::= a ∈ Σ | e+ e | ee | e∗ | 0 | 1 | νa.e.

The scope of the binding νa in νa.e is e. The precedence of the binding oper-
ator νa is lower than product but higher than sum; thus in products, scopes
extend as far to the right as possible. For example, νa.ab νb.ba should be read
as νa.(ab νb.(ba)) and not (νa.ab)(νb.ba). The set of NKA expressions over Σ is
denoted ExpΣ .

A ν-string is an expression with no occurrence of +, ∗, or 0, and no occurrence
of 1 except to denote the null string, in which case we use ε instead:

x ::= a ∈ Σ | xx | ε | νa.x.

The set of ν-strings over Σ is denoted Σν .
The free variables FV(e) of an expression or ν-string e are defined inductively

as usual. We write e[a/x] for the result of substituting a for variable x in e.
The nominal axioms proposed by Gabbay and Ciancia [8] are:

νa.(d+ e) = νa.d+ νa.e a#e⇒ νb.e = νa.(a b)e

νa.νb.e = νb.νa.e a#e⇒ (νa.d)e = νa.de (1)

a#e⇒ νa.e = e a#e⇒ e(νa.d) = νa.ed.

3 Models

3.1 Nominal KA

A nominal Kleene algebra (NKA) over atoms A is a structure (K,+, ·,∗ , 0, 1, ν)
with binding operation ν : A×K → K such that K is a nominal set over atoms
A, the KA operations and ν are equivariant in the sense that

π(x+ y) = πx+ πy π(xy) = (πx)(πy) π0 = 0

π(x∗) = (πx)∗ π(νa.e) = ν(πa).(πe) π1 = 1

for all π ∈ G (that is, the action of every π ∈ G is an automorphism of K), and
all the KA and nominal axioms are satisfied.
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3.2 Nominal Language Model

Now we describe a nominal language interpretation NL : ExpA → P(A∗) for each
expression e that interprets expressions over A as certain subsets of A∗. This is
the language model of [8]. The definition is slightly nonstandard, as care must
be taken when defining product to avoid capture.

First we give an intermediate interpretation I : ExpA → P(Aν) of expressions
as sets of ν-strings over A. The regular operators +, ·, ∗, 0, and 1 have their
usual set-theoretic interpretations, and

I(νa.e) = {νa.x | x ∈ I(e)} I(a) = {a}.

We maintain the scoping of ν-subexpressions in the ν-strings. Examples:

I(νa.a) = {νa.a}
I(νa.νb.(a + b)) = {νa.νb.a, νa.νb.b}

I(νa.(νb.ab)(a + b)) = {νa.(νb.ab)a, νa.(νb.ab)b}
I(νa.(ab)∗) = {νa.ε, νa.ab, νa.abab, νa.ababab, . . .}
I((νa.ab)∗) = {ε, νa.ab, (νa.ab)(νa.ab), (νa.ab)(νa.ab)(νa.ab), . . .}.

Now we describe the map NL : Aν → P(A∗) on ν-strings. Given a ν-string x,
first α-convert so that all bindings in x are distinct and different from all free
variables in x, then delete all binding operators νa to obtain a string x′ ∈ A

∗. For
example, (νa.ab)(νa.ab)(νa.ab)′ = abcbdb. Here we have α-converted to obtain
(νa.ab)(νc.cb)(νd.db), then deleted the binding operators to obtain abcbdb. The
choice of variables in the α-conversion does not matter as long as they are distinct
and different from the free variables.

Now we define for each ν-string x and expression e

NL(x) = {πx′ | π ∈ Fix FV(x)} NL(e) =
⋃

x∈I(e)

NL(x).

The set NL(x) is the plane x′

�

FV(x) in the notation of [8]. Thus we let the bound
variables range simultaneously over all possible values in A they could take on,
as long as they remain distinct and different from the free variables, and we
accumulate all strings obtained in this way. For example,

NL((νa.ab)(νa.ab)(νa.ab)) = {abcbdb | a, c, d ∈ A distinct and different from b}.
As mentioned, the fresh variables used in the α-conversion does not matter, thus

NL(x) = {πy | π ∈ Fix FV(x)} (2)

for any y ∈ NL(x).
For x, y ∈ Aν , write x ≡ y if x and y are equivalent modulo the nominal

axioms (1). The following lemma says that the nominal axioms alone are sound
and complete for equivalence between ν-strings in the nominal language model.



56 D. Kozen, K. Mamouras, and A. Silva

Lemma 1. For x, y ∈ Aν , x ≡ y if and only if NL(x) = NL(y).

Proof. Soundness (the left-to-right implication) holds because each nominal ax-
iom preserves NL, as is not difficult to check. For completeness (the right-to-left
implication), suppose NL(x) = NL(y). We must have FV(x) = FV(y), because if
a ∈ FV(x)− FV(y), then NL(y) would contain a string with no occurrence of a,
whereas all strings in NL(x) contain an occurrence of a. Now α-convert x and
y so that all bound variables are distinct and different from the free variables,
and move the bound variables to the front, so that x = νA.x′ and y = νB.y′

for some x′, y′ ∈ A∗. By (2), y′ = πx′ for some π ∈ Fix FV(x) = Fix FV(y), so
x = πy, and πy ≡ y by α-conversion. ��
Lemma 2. For any x ∈ A∗ and A,B ⊆ FV(x),

A ⊆ B ⇔ NL(νA.x) ⊆ NL(νB.x)

(in the notation of [8], A ⊆ B ⇔ x
�
B′ ⊆ x

�

A′ , where A′ = FV(x) − A and
B′ = FV(x)−B).
Proof. If A ⊆ B, then FixA′ ⊆ FixB′, therefore

NL(νA.x) = {πx | π ∈ FixA′} ⊆ {πx | π ∈ FixB′} = NL(νB.x).

Conversely, if a ∈ A − B, then x[b/a] ∈ NL(νA.x) − NL(νB.x), where b is any
element of A− FV(x). ��
Lemma 3. Let y ∈ NL(e) and A ⊆ FV(y) maximal such that NL(νA.y) ⊆ NL(e)
(in the notation of [8], this is y

�

A′ ∝ NL(e), where A′ = FV(y) − A). Then
νA.y ∈ I(e), and νA.y is the unique ν-string up to nominal equivalence for
which this is true.

Remark 1. This is the essential content of [8, Theorem 3.16]. This is impor-
tant for us because it says that the set NL(e) uniquely determines the maximal
elements of I(e) up to nominal equivalence (Lemma 4 below).

Proof. Let x1, . . . , xn ∈ I(e) be all ν-strings such that y ∈ NL(xi). There are
only finitely many of these. Then

NL(νA.y) ⊆ NL(x1) ∪ · · · ∪NL(xn) ⊆ NL(e).

Using the nominal axioms (1), we can move the quantification in each xi to the
front of the string and α-convert so that the quantifier-free part is y. This is
possible because y ∈ NL(xi). Thus we can assume without loss of generality
that each xi = νAi.y for some Ai ⊆ FV(y).

Let z ∈ NL(νA.y) such that (FV(z)− FV(νA.y)) ∩ FV(νAi.y) = ∅, 1 ≤ i ≤ n.
Since

NL(νA.y) ⊆ NL(x1) ∪ · · · ∪ NL(xn) = NL(νA1.y) ∪ · · · ∪ NL(νAn.y),

we must have z ∈ NL(νAi.y) for some i. But then FV(νA.y),FV(νAi.y) ⊆ FV(z)
and FV(νAi.y) ⊆ FV(νA.y) by choice of z, therefore A ⊆ Ai. Since A was
maximal, A = Ai. ��

Let Î(e) = {x ∈ I(e) | NL(x) is maximal in NL(e)}.
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Lemma 4. NL(e1) = NL(e2) if and only if Î(e1) = Î(e2) modulo the nominal
axioms (1).

Proof. Suppose NL(e1) = NL(e2). By Lemma 3, each y ∈ NL(e1) is contained
in a unique maximal NL(νA.y), and νA.y ∈ Î(e1). As NL(e1) = NL(e2), these
planes are also contained in NL(e2). Similarly, the maximal planes of NL(e2) are
contained in NL(e1). Since the two sets contain the same set of maximal planes,
they must be equal, therefore Î(e1) = Î(e2) modulo the nominal axioms.

For the reverse implication, note that

NL(e) =
⋃

x∈I(e)

NL(x) =
⋃

x∈Î(e)

NL(x)

by the fact that every plane of e is contained in a maximal one. Then

NL(e1) =
⋃

x∈Î(e1)

NL(x) =
⋃

x∈Î(e2)

NL(x) = NL(e2).

��

3.3 Alternative Nominal Language Model

Let Σ and A be countably infinite disjoint sets. Letters a, b, c, . . . range over A,
x, y, z, . . . over Σ, and u, v, w, . . . over (Σ ∪ A)∗. Quantification is only over Σ.

A language is a subset A ⊆ (Σ ∪A)∗ such that πA = A for all π ∈ G. The set
of languages is denoted L.

The operations of nominal KA are defined on L as follows:

A+B = A ∪B AB = {uv | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩ A = ∅} 0 = ∅
A∗ =

⋃
n

An νx.A = {w[a/x] | w ∈ A, a ∈ A− FV(w)}, x ∈ Σ 1 = {ε}.

Lemma 5. The set L is closed under the operations of nominal KA.

Proof. For sum, π(
⋃

nAn) =
⋃

n πAn =
⋃

nAn. For product,

π(AB) = {π(uv) | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩ A = ∅}
= {(πu)(πv) | u ∈ A, v ∈ B, FV(πu) ∩ FV(πv) ∩ πA = ∅}
= {uv | u ∈ πA, v ∈ πB, FV(u) ∩ FV(v) ∩ A = ∅}
= (πA)(πB) = AB.

The case of A∗ follows from the previous two cases. The cases of 0 and 1 are
trivial. Finally, for νx.A, we have

π(νx.A) = {π(w[a/x]) | w ∈ A, a ∈ A− FV(w)}
= {(πw)[πa/x] | w ∈ A, a ∈ A− FV(w)}
= {w[a/x] | π−1w ∈ A, π−1a ∈ A− FV(π−1w)}
= {w[a/x] | w ∈ πA, a ∈ πA− πFV(π−1w)}
= {w[a/x] | w ∈ A, a ∈ A− FV(w)} = νx.A.

��



58 D. Kozen, K. Mamouras, and A. Silva

We can interpret nominal KA expressions as languages in L. The interpre-
tation map AL : ExpΣ → L is the unique homomorphism with respect to the
above language operations such that AL(x) = {x}. Note that in this context,
atoms a ∈ A do not appear in expressions or ν-strings.

Theorem 1. The nominal axioms (1) hold in this model.

The proof is long but not conceptually difficult.
We can also define I : ExpΣ → Σν and Î : ExpΣ → Σν exactly as in §3.2 for

the nominal language model, with the modification that expressions are over Σ
and not A.

Lemma 6. AL(e) =
⋃

w∈I(e) AL(w).

Proof. This can be proved by a straightforward induction on the structure of e.
We argue the case of products and binders explicitly.

AL(e1e2) = {uv | u ∈ AL(e1), v ∈ AL(e2), FV(u) ∩ FV(v) ∩ A = ∅}
= {uv | u ∈

⋃
p∈I(e1)

AL(p), v ∈
⋃

q∈I(e2)

AL(q), FV(u) ∩ FV(v) ∩A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

{uv | u ∈ AL(p), v ∈ AL(q), FV(u) ∩ FV(v) ∩ A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

AL(pq) =
⋃

r∈I(e1e2)

AL(r).

AL(νx.e) = νx.AL(e)

= {w[a/x] | w ∈ AL(e), a ∈ A− FV(w)}
= {w[a/x] | w ∈

⋃
p∈I(e)

AL(p), a ∈ A− FV(w)}

=
⋃

p∈I(e)

{w[a/x] | w ∈ AL(p), a ∈ A− FV(w)}

=
⋃

p∈I(e)

νx.AL(p) =
⋃

p∈I(e)

AL(νx.p) =
⋃

w∈I(νx.e)

AL(w).

��

Lemma 7. Every plane AL(νA.w) in AL(e) is maximal; that is, I(e) = Î(e).

Proof. Replace each x ∈ A in w with a distinct element of A to get w′. Then
AL(νA.w) = {πw′ | π ∈ G}. This is maximal, as all finite permutations of A are
allowed. ��
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Lemma 7 characterizes the key difference between the nominal language model
of [8] described in §3.2 and the alternative nominal language model of this sec-
tion. It explains why the axioms are complete for the alternative model but not
for the model of §3.2. In the model of §3.2, there are non-maximal planes, and
these are “hidden” by the maximal planes, whereas this cannot happen in the
alternative model, as all planes are maximal.

3.4 Summation Models

There are several other interesting models in which ν is interpreted as some
form of summation operator: a summation model over the free KA, a summa-
tion model over languages, a summation model over an arbitrary KA, and an
evaluation model. The axioms are sound over these models, but incomplete for
other reasons.

4 Completeness

In this section we prove our main theorem:

Theorem 2. The axioms of nominal Kleene algebra are sound and complete for
the equational theory of nominal Kleene algebras and for the equational theory
of the alternative language interpretation of §3.3.

We thus show that if two nominal KA expressions e1 and e2 are equivalent in
the alternative language interpretation of §3.3 in the sense thatAL(e1) = AL(e2),
then e1 and e2 are provably equivalent in the axiomatization of Gabbay and
Ciancia [8]. This says that the alternative language model of §3.3 is the free
nominal KA. This is not true of Gabbay and Ciancia’s language model presented
in §3.2, as the inequality a ≤ νa.a holds in the language model of §3.2 but not
in the summation models. Neither is it true of the summation models of §3.4, as
νa.aa ≤ νa.νb.ab holds in the summation models but not in the language model.
However, it is true of Gabbay and Ciancia’s language model if one restricts to
closed terms, as the closed terms of the language models of §3.2 and §3.3 are the
same.

We show that every expression can be put into a particular canonical form that
will allow us to apply the KA axioms to prove equivalence. This construction will
consist of several steps: exposing bound variables, scope configuration, canonical
choice of bound variables, and determining semilattice identities. Each step will
involve a construction that is justified by the axioms.

For the purposes of exposition, we write (
a
e )
a
instead of νa.e so that it is

easier to see the scope boundaries. In this notation, the nominal axioms take the
following form:
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νa.(d+ e) = νa.d+ νa.e (
a
d+ e )

a
= (

a
d )

a
+ (

a
e )
a

(3)

νa.νb.e = νb.νa.e (
a
(
b
e )

b
)
a
= (

b
(
a
e )
a
)
b

(4)

a#e⇒ νa.e = e a#e⇒ (
a
e )
a
= e (5)

a#e⇒ νb.e = νa.(a b)e a#e⇒ (
b
e )

b
= (

a
(a b)e )

a
(6)

a#e⇒ (νa.d)e = νa.de a#e⇒ (
a
d )

a
e = (

a
de )

a
(7)

a#e⇒ e(νa.d) = νa.ed a#e⇒ e (
a
d )

a
= (

a
ed )

a
. (8)

We remark that writing scope boundaries of ν-expressions as letters (
a
and )

a
is

merely a notational convenience. Although it appears to allow us to violate the
invariant that starred expressions and ν-expressions are mutually well-nested, in
reality this is not an issue, as all our transformations are justified by the axioms,
which maintain this invariant.

4.1 Exposing Bound Variables

A ν∗-string is a string of

– letters a,
– well-nested scope delimiters (

a
and )

a
, and

– starred expressions e∗ whose bodies e are (inductively) sums of ν∗-strings.

We say that the bound variables of a ν∗-string are exposed if

(i) the first and last occurrence of each bound variable occur at the top level in
the scope of their binding operator,1 and

(ii) the bound variables of all ν∗-strings in the bodies of starred subexpressions
are (inductively) exposed.

A typical ν∗-string is (
a
(
b
abb(ab (

a
ab )

a
+b (

b
ba )

b
)∗ba )

b
)
a
. The bound variables

are exposed in this expression because the first and last occurrences of a and b
occur at the top level. Inside the starred subexpression, the bound variables in
the two ν∗-strings are exposed because there are no starred subexpressions.

Lemma 8. Every expression can be written as a sum of ν∗-strings whose bound
variables are exposed.

Proof. It is straightforward to see how to use the nominal axiom (3) in the left-
to-right direction and the distributivity and 0 and 1 laws of Kleene algebra to
write every expression as a sum of ν∗-strings.
1 “Top level” means not inside a starred subexpression. Inside a starred expression e∗,
“top level” means not inside a starred subexpression of e.
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Exposing the bound variables is a little more difficult. It may appear at first
glance that one can simply unwind e∗ as 1+e+ee∗e and then unwind the starred
subexpressions of e inductively, but this is not enough. For example,

(a+ b)∗ = 1 + a+ b + (a+ b)(a+ b)∗(a+ b)
= 1 + a+ b + a(a+ b)∗a+ a(a+ b)∗b+ b(a+ b)∗a+ b(a+ b)∗b,

and the subexpression a(a+ b)∗a does not satisfy (i). The following more com-
plicated expression is needed:

(a+ b)∗ = 1 + a+ b + aa∗a+ bb∗b+ ab+ ba (9)

+ aa∗ab+ aa∗ba∗a+ baa∗a+ abb∗b+ bb∗ab∗b+ bb∗ba (10)

+ aa∗abb∗b+ aa∗b(a+ b)∗ab∗b+ aa∗b(a+ b)∗ba∗a (11)

+ bb∗a(a+ b)∗ab∗b+ bb∗a(a+ b)∗ba∗a+ bb∗baa∗a (12)

Line (9) covers strings containing no a’s or no b’s or one of each. Line (10) covers
strings containing one a and two or more or more b’s or one b and two or more
or more a’s. Lines (11) and (12) cover strings containing at least two a’s and at
least two b’s.

For the general construction, we first argue the case of (a1 + · · ·+ an)∗. Write
down all strings containing either zero, one, or two occurrences of each letter.
For each such string, insert a starred subexpression in each gap between adjacent
letters. The body of the starred expression inserted into a gap will be the sum
of all letters a such that the gap falls between two occurrences of a.

For example, the second term of (11) is obtained from the string abab. There
are three gaps, into which we insert the indicated starred expressions:

a b a b
↑ ↑ ↑
a∗ (a+ b)∗ b∗

In the first gap we inserted a∗ because the gap falls between two occurrences of
a but not between two occurrences of b. In the second gap we inserted (a+ b)∗

because the gap falls between two occurrences of a and two occurrences of b.
This construction covers all strings whose first and last occurrences of each

letter occur in the order specified by the original string before the insertion.
If a letter occurs twice before the insertion, then after the insertion those two
occurrences are the first and last, and they occur at the top level. If a letter occurs
once before the insertion, then that is the only occurrence after the insertion,
and it is at the top level. If a letter does not occur at all before the insertion,
then it does not occur after.

For the general case e∗, we first perform the construction inductively on all
starred subexpressions of e, writing e∗ = (e1 + · · · + en)∗ where each top-level
ν∗-string ei satisfies (i) and (ii). Now take the sum constructed above for (a1 +
· · · + an)∗ and substitute ei for ai in all terms. This gives an expression of the
desired form. ��
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4.2 Scope Configuration

For this part of the construction, we first α-convert using (6) to make all bound
variables distinct and different from any free variable. This is called the Baren-
dregt variable convention.

Now we transform each ν∗-string to ensure that every top-level left delimiter
(
a
occurs immediately to the left of a free occurrence of a that it binds:

· · ·(
a
a · · ·(

b
b · · ·(

c
c · · · )

c
· · · )

b
· · · )

a
· · · (13)

That occurrence is at the top level due to the preprocessing step of §4.1. We do
this without changing the order of any occurrences of variables in the string, but
we may change the order of quantification.

Starting at the left end of the string, scan right, looking for top-level left
delimiters. For all top-level left delimiters that we see, push them to the right as
long as we do not encounter a variable bound by any of them. Stop when such
a variable is encountered. For example,

· · · (
a
· · · (

b
· · · (

c
· · · b · · ·)

c
· · · )

b
· · · )

a
· · · ⇒ · · ·(

a
(
b
(
c
b · · ·)

c
· · · )

b
· · · )

a
· · ·

Here we are using the nominal axiom (8) in the right-to-left direction to skip
over letters and starred expressions. If such a variable is encountered, it will be
at the top level because of the preprocessing step of §4.1.

In this example, we must keep the (
b
to the left of that occurrence of b, but

we wish to move the (
a
and (

c
past the b. The c can be moved in using (8), but

to move the a in, we must exchange the order of quantification of a and b. To
do this, we push the corresponding right delimiter of b up to the right delimiter
of a using the nominal axiom (7) in the left-to-right direction.

· · ·(
a
(
b
(
c
b · · ·)

c
· · · )

b
· · · )

a
· · · ⇒ · · · (

a
(
b
(
c
b · · ·)

c
· · ·)

b
)
a
· · ·

This is always possible, as there is no free occurrence of b to the right of the )
b

due to the Barendregt variable convention. Now we can exchange the order of
quantification using the nominal axiom (4).

· · · (
a
(
b
(
c
b · · ·)

c
· · · )

b
)
a
· · · ⇒ · · ·(

b
(
a
(
c
b · · ·)

c
· · · )

a
)
b
· · ·

This allows us to move the a and c in past the (
b
and continue.

· · · (
b
(
a
(
c
b · · ·)

c
· · · )

a
)
b
· · · ⇒ · · ·(

b
b (
a
(
c
· · · )

c
· · · )

a
)
b
· · ·

When looking for the first occurrence of a free variable bound to a left delim-
iter, perhaps no free occurrence is encountered before seeing a right delimiter.
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In this case there is no free occurrence of the variable in the scope of the binding,
so we can just forget the binding altogether.

· · ·(
a
(
b
(
c
)
c
· · · b · · ·)

b
· · · )

a
· · · ⇒ · · · (

a
(
b
· · · b · · · )

b
· · · )

a
· · ·

This uses the nominal axiom (5).
If there exists a free occurrence of a inside a scope (

a
· · · )

a
, then the leftmost

one occurs at the top level due to the construction of §4.1. Thus, when we are
done, any remaining left delimiters (

a
in the string occur immediately to the left

of a free occurrence of a that is bound to that delimiter, as illustrated in (13).
Now we finish up the construction by moving the right delimiters to the left

as far as possible without exchanging order of quantification. Because of the
preprocessing step of §4.1, the rightmost occurrence of any variable quantified
at the top level occurs at the top level. Thus every right delimiter )

a
occurs

either immediately to the right of an occurrence of a bound to that delimiter or
immediately to the right of another right delimiter )

b
with smaller scope.

At this point we have transformed the expression so that every ν∗-string
satisfies the following properties:

(i) every ν-subformula is of the form νa.ae; that is, the leftmost symbol of every
scope is a variable bound by that scope; and

(ii) the rightmost boundary of every scope is as far to the left as possible, subject
to (i).

The position of the scope delimiters is canonical, because scopes are as small
as possible: the left delimiters are as far to the right as they can possibly be,
and the right delimiters are as far to the left as they can possibly be given the
positions of the left delimiters. It follows that if two expressions are equivalent,
then they generate the same ν-strings up to renaming of bound variables.

4.3 Canonical Choice of Bound Variables

Now we would like to transform the expression so that the bound variables are
chosen in a canonical way. This will ensure that if two expressions are equiva-
lent, then they generate the same ν-strings, not just up to renaming of bound
variables, but absolutely. This part of the construction will thus relax the Baren-
dregt variable convention, so that variables can be bound more than once and
can occur both bound and free in a string.

Choose a set of variables disjoint from the free variables of the expression and
order them in some arbitrary but fixed order a0, a1, . . . . Moving through the
expression from left to right, maintain a stack of variable names corresponding
to the scopes we are currently in. When a left scope delimiter (

a
is encountered,

and we are inside the scope of n ν-formulas, the variables a0, . . . , an−1 will be
on the stack. We rename the bound variable a to an using the nominal axiom
(6) for α-conversion and push an onto the stack. When a right scope delimiter is
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encountered, we pop the stack. This construction guarantees that every ν-string
generated by the expression satisfies:

– For every symbol in the string, if the symbol occurs in the scope of n nested ν-
expressions, then those expressions bind variables a0, . . . , an−1 in that order
from outermost to innermost scope.

It follows that two semantically equivalent expressions so transformed generate
exactly the same set of ν-strings.

4.4 Determining Semilattice Identities

After transforming e1 and e2 by the above construction, we know that if e1
and e2 are equivalent, then they generate the same sets of ν-strings; that is,
I(e1) = I(e2). Now we wish to show that any two such expressions can be
proved equivalent using the KA and nominal axioms in conjunction with the
following congruence rule for ν-formulas:

e1 = e2
νa.e1 = νa.e2

. (14)

In order to do this, there is one more issue that must be resolved. Let us first
assume for simplicity that e1 and e2 are of ν-depth one; that is, they only contain
bindings of one variable a. There may be several subexpressions in e1 and e2 of
the form νa.d, but all with the same variable a. We will relax this restriction
later.

Any substring of the form νa.x of a ν-string generated by e1 or e2 must be
generated by a subexpression of the form νa.d. However, there may be several
different subexpressions of this form, and the string νa.x could be generated
by more than one of them. In general, the sets of ν-strings generated by the
ν-subexpressions could satisfy various semilattice identities, and we may have to
know these identities in order to prove equivalence.

For example, consider the two expressions c1 + c2 and d1 + d2 + d3, where

c1 = νa.a(aa)∗ c2 = νa.aa(aa)∗

d1 = νa.a(aaa)∗ d2 = νa.aa(aaa)∗ d3 = νa.aaa(aaa)∗
(15)

(ci generates strings with i mod 2 a’s and di generates strings with i mod 3 a’s).
Both c1+c2 and d1+d2+d3 generate all nonempty strings of a’s, but in different
ways. If c1 + c2 occurs in e1 and d1 + d2 + d3 occurs in e2, we would have to
know that they are equivalent to prove the equivalence of e1 and e2.

To determine all semilattice identities such as c1 + c2 = d1 + d2 + d3 that
hold among the ν-subexpressions, we express every ν-subexpression in e1 or e2
as a sum of atoms of the Boolean algebra on sets of ν-strings generated by these
ν-subexpressions. In the example above, the atoms of the generated Boolean
algebra are bi = νa.a

i(a6)∗, 1 ≤ i ≤ 6 (bi generates strings with i mod 6 a’s).
Rewriting the expressions (15) as sums of atoms, we would obtain

c1 = b1 + b3 + b5 c2 = b2 + b4 + b6 d1 = b1 + b4 d2 = b2 + b5 d3 = b3 + b6.
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The equivalences are provable in pure KA plus the nominal axiom (3). Then
c1 + c2 and d1 + d2 + d3 become

c1 + c2 = (b1 + b3 + b5) + (b2 + b4 + b6)

d1 + d2 + d3 = (b1 + b4) + (b2 + b5) + (b3 + b6),

which are clearly equivalent.
Now we observe that any ν-string νa.x generated by e1 or e2 is generated

by exactly one atom. Moreover, if νa.f is an atom and νa.x ∈ I(νa.f), and if
νa.x is generated by νa.f in the context u(νa.x)v ∈ I(νa.e1), then for any other
νa.y ∈ I(νa.f), we have u(νa.y)v ∈ I(νa.e1) as well. This says that we may
treat νa.f as atomic. In fact, once we have determined the atoms, if we like
we may replace each atom νa.f by a single letter aνa.f in e1 and e2, and the
resulting expressions are equivalent, therefore provable. Then a proof of the two
expressions with the letters aνa.f can be transformed back to a proof with the
atoms νa.f by simply substituting νa.f for aνa.f . However, note that it is not
necessary to do the actual substitution; we can carry out the same proof on the
original expressions with the νa.f .

For expressions of ν-depth greater than one, we simply perform the above
construction inductively, innermost scopes first. We use the KA axioms and the
semilattice identities on depth-n ν-subexpressions to determine the semilattice
identities on depth-(n−1) ν-subexpressions, then use the nominal axiom (3) and
the rule (14) to prepare these semilattice identities for use on the next level.

This completes the proof of Theorem 2.

5 Conclusion

We have presented results on completeness and incompleteness of nominal Kleene
algebra as introduced by Gabbay and Ciancia [8]. There are various directions
for future work.

The normalization procedure presented in this paper yields a decision proce-
dure that, although effective, is likely to be prohibitively expensive in practice
due to combinatorial explosions in the preprocessing step of §4.1 and in the
intersection of regular expressions in §4.4. In a companion paper [10], we have
explored the coalgebraic theory of nominal Kleene algebra with the aim of de-
veloping a more efficient coalgebraic decision procedure, which would be of par-
ticular interest for the applications mentioned in the introduction. Coalgebraic
decision procedures have been devised for the related systems KAT and NetKAT
[2,4,13] and have proven quite successful in applications, and we suspect that a
similar approach may bear fruit here.

Another interesting direction would be to follow recent work by Joanna
Ochremiak [11] involving nominal sets over atoms equipped with both relational
and algebraic structure. This is an extension of the original work of Gabbay and
Pitts in which atoms can only be compared for equality.

The proof we have provided is concrete and does not explore the rich cate-
gorical structure of nominal sets. It would be interesting to rephrase the proof
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in more abstract terms, which would also be more amenable to generalizations
such as those mentioned above.
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Abstract. Multirelations have been used for modelling games, proto-
cols and computations. They have also been used for modelling contact,
closure and topology. We bring together these two lines of research using
relation algebras and more general algebras. In particular, we look at
various properties of multirelations that have been used in the two lines
of research, show how these properties are connected and study by which
multirelational operations they are preserved. We find that many results
do not require a restriction to up-closed multirelations; this includes con-
nections between various kinds of reflexive-transitive closure.

1 Introduction

A multirelation is a relation between a set and a powerset. The powerset struc-
ture facilitates the modelling of two-player games or interaction between agents
in a computation; see [5,17,19], for example. Already before these applications
multirelations were used by G. Aumann to model contact and, thereby, to give
beginners a more suggestive access to topology than traditional approaches do;
see [1]. Properties of multirelations have been rediscovered over time, but, in our
opinion, a systematic investigation is missing. The aim of the present paper is
to start this research. Its methods are algebraic, in particular relation-algebraic.

The starting point is a relation-algebraic representation of multirelations and
multirelational operations (Sections 2 and 3). Properties of these operations are
proved using relation algebras and captured as axioms of more general structures
based on lattices and semirings (Section 4). A key decision is to not specialise to
up-closed multirelations at the outset, but to treat being up-closed as one among
many properties a multirelation might have. This makes it possible to generalise
results, for example, about closure operations (Section 5). Other properties are
taken from the literature and compared systematically (Section 6). A particular
question is whether they are preserved by multirelational operations (Section 7).
Positive results are shown algebraically using Isabelle and automated theorem
provers. Counterexamples are produced by a Haskell program. Moreover prop-
erties of topological contacts are derived from logical specifications (Section 8).

c© Springer International Publishing Switzerland 2015
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The contributions of the paper are (1) new algebraic structures, which capture
(not only up-closed) multirelations, (2) a comparison of three reflexive-transitive
closure operations in these algebras, (3) a study of relationships between prop-
erties of multirelations and (4) a study of preservation of these properties by
multirelational operations. Overall, this paper brings together the topological
and computational lines of research on multirelations. The companion paper [7]
investigates how properties from these two lines of research translate to pred-
icate transformers. It uses relation algebras to express the correspondence of
multirelations and predicate transformers, which turns out to be similar to the
correspondence between contact relations and closure operations.

2 Relation-Algebraic Prerequisites

In this section we present the facts on relations and heterogeneous relation alge-
bras that are needed in the remainder of this paper. For more details on relations
and relation algebras, see [25], for example.

We write R : A↔ B if R is a (typed binary) relation with source A and target
B, that is, of type A↔ B. If the sets A and B are finite, we may consider R as
a Boolean matrix. Since this interpretation is well suited for many purposes, we
will use matrix notation and write Rx,y instead of (x, y) ∈ R or xR y.

We assume the reader to be familiar with the basic operations on relations,
namely Rc (converse), R (complement), R∪S (union), R∩S (intersection), RS
(composition), the predicates indicating R ⊆ S (inclusion) and R = S (equality)
and the special relations O (empty relation), T (universal relation) and I (identity
relation). Converse has higher precedence than composition, which has higher
precedence than union and intersection. The set of all relations of type A↔ B
with the operations , ∪, ∩, the ordering ⊆ and the constants O and T forms a
complete Boolean lattice. Further well-known rules are, for example, (Rc)c = R,
Rc = R

c
, and that R ⊆ S implies Rc ⊆ Sc as well as RP ⊆ SP and QR ⊆ QS,

for all P , Q, R and S.
The theoretical framework for these rules and many others is that of a (het-

erogeneous) relation algebra; see [27] for details. As constants and operations of
this algebraic structure we have those of concrete (that is, set-theoretic) rela-
tions. The axioms of a relation algebra are those of a complete Boolean lattice
for the Boolean part, the associativity and neutrality of identity relations for
composition, the equivalence of QR ⊆ S, QcS ⊆ R and SRc ⊆ Q, for all rela-
tions Q, R and S – called the Schröder equivalences – and that R 
= O implies
TRT = T, for all relations R.

Residuals are the greatest solutions of certain inclusions. The left residual of
S over R, in symbols S/R, is the greatest relation X such that XR ⊆ S. So, we
have the Galois connection XR ⊆ S if and only if X ⊆ S/R, for all relations X .
Similarly, the right residual of S over R, in symbols R \S, is the greatest relation
X such that RX ⊆ S. This implies that RX ⊆ S if and only if X ⊆ R \S,
for all relations X . We will also need relations which are left and right residuals
simultaneously. The symmetric quotient R÷S of two relations R and S is defined
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as the greatest relationX such thatRX ⊆ S andXSc ⊆ Rc. In terms of the basic

operations we have S/R = SRc, R \S = RcS and R÷S = (R \S)∩ (Rc/Sc), for
all relations R and S.

Besides empty relations, universal relations and identity relations, we need
further basic relations which specify fundamental set-theoretic constructions.
Assume A to be a set and let 2A denote its powerset. Then the membership
relation E : A↔ 2A is the relation-level equivalent to the set-theoretic predicate
‘∈’. Hence, we have Ex,Y if and only if x ∈ Y , for all x ∈ A and Y ∈ 2A. With
the help of E we can introduce two relations on 2A via S := E \E : 2A ↔ 2A and
C := E÷E : 2A ↔ 2A. A little component-wise calculation shows SX,Y if and
only if X ⊆ Y and CX,Y if and only if Y = X, for all X ∈ 2A and Y ∈ 2A, where
X is the complement of the set X relative to its superset A. Therefore, we call
S a subset relation and C a set complement relation.

3 Fundamentals of Multirelations

In this section we recall basic definitions, operations and properties of multire-
lations and express them in terms of relations. The presentation follows [15].

A multirelation (as introduced in [19,23]) is a relation of type A↔ 2B in the
sense of Section 2. It maps an element of A to a set of subsets of B. Union,
intersection and complement apply to multirelations as to relations. Particular
multirelations are empty relations O : A ↔ 2B, universal relations T : A ↔ 2B

and membership relations E : A ↔ 2A. The composition of the multirelations
Q : A↔ 2B and R : B ↔ 2C is the multirelation Q ;R : A↔ 2C , given by

(Q ;R)x,Z ⇐⇒ ∃Y ∈ 2B : Qx,Y ∧ ∀y ∈ Y : Ry,Z ,

for all x ∈ A and Z ∈ 2C . The dual of a multirelation R : A ↔ 2B is the
multirelation Rd : A↔ 2B given by

Rd
x,Y ⇐⇒ ¬Rx,Y ,

for all x ∈ A and Y ∈ 2B, where Y is the complement of Y relative to its superset
B. Dual has higher precedence than composition, which has higher precedence
than union and intersection. A multirelation R : A↔ 2B is up-closed if

Rx,Y ∧ Y ⊆ Z =⇒ Rx,Z

for all x ∈ A and Y, Z ∈ 2B. This means that if an element of A is related to a
set Y , it also has to be related to all supersets of Y . By A u↔ 2B we denote the
set of all up-closed multirelations of type A↔ 2B.

The following result expresses multirelational composition, the dual and the
property of being up-closed in terms of relation-algebraic operations and con-
stants, namely right residual, membership relations, set complement relations C
and subset relations S. It is proved in [15, Theorems 2, 4 and 6]; see also [16,25].
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Theorem 1. Let Q : A↔ 2B and R : B ↔ 2C be multirelations. Then we have
Q ;R = Q(E \R) and Qd = QC = QC. Furthermore, Q is up-closed if and only
if Q = QS.

A multirelation R : A ↔ 2A models a two-player game as shown in [19]. The
set A describes the possible states of the game. For each state x ∈ A the set of
subsets Ys = {Y ∈ 2A | Rx,Y } to which x is related gives the options of the first
player. The first player chooses one of these subsets, a set Y ∈ Ys. This set Y
gives the options of the second player, who chooses one of its elements y ∈ Y ,
which is the next state of the game. If the first player cannot make a choice
because Ys is empty, the second player wins. If the second player cannot make a
choice because Y is empty, the first player wins. Multirelations can also be used
to describe the interaction of two agents in a computation (see [5,10,17]), certain
kinds of contact (see [1,4]) and concurrency (see [21]).

Being relations, the multirelations of type A↔ 2B form a bounded distribu-
tive lattice under the operations of union and intersection. The structure becomes
more diversified once we take composition into account. First, familiar laws of
relation algebras – that composition distributes over union and has the empty
relation as a zero – no longer hold from both sides, but just from one side. Sec-
ond, other laws of relation algebras – that composition is associative and has
the identity relation as a neutral element – hold for up-closed multirelations, but
need to be weakened in the general case as shown in [11]. On the other hand,
composition remains ⊆-isotone. These and related properties are summarised in
the following result.

Theorem 2. For all multirelations P , Q and R we have

(1) O ;R = O (2) E ;R = R (3) T ;R = T (4) R ⊆ R ;E,

where in (4) equality holds if and only if R is up-closed, and also

(5) (P ∪Q) ;R = P ;R ∪Q ;R, (6) (P ∩Q) ;R ⊆ P ;R ∩Q ;R,

where in (6) equality holds if P and Q are up-closed, and also

(7) (P ;Q) ;R ⊆ P ; (Q ;R),

where in (7) equality holds if Q is up-closed, and finally

(8) P ;Q ∪ P ;R ⊆ P ; (Q ∪R) (9) P ; (Q ∩R) ⊆ P ;Q ∩ P ;R.

Proof. All properties are proved in [15, Theorems 3 and 7] except (4) and (7) for
general multirelations. A proof of (4) is R ⊆ RS = R(E \E) = R ;E. To prove (7)
we use that E(E \Q)(E \R) ⊆ Q(E \R) implies (E \Q)(E \R) ⊆ E \ (Q(E \R))
by the Galois connection. Hence, we get the result as follows:

(P ;Q) ;R = (P ;Q)(E \R) = P (E \Q)(E \R)
⊆ P (E \ (Q(E \R))) = P (E \ (Q ;R)) = P ; (Q ;R) ��
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The dual operation reverses the lattice order and distributes over composition
of up-closed multirelations. Again this needs to be weakened in the general case.
These and further properties are summarised in the following result.

Theorem 3. For all multirelations Q and R we have

(1) Od = T (2) Ed = E (3) Td = O (4) Rdd = R,

and also

(5) (Q ∪R)d = Qd ∩Rd (7) (Q ;R)d ⊆ Qd ;Rd

(6) (Q ∩R)d = Qd ∪Rd (8) (Q ;R)d = (Q ;E)d ;Rd,

where in (7) equality holds if Q is up-closed.

Proof. All properties are proved in [15, Theorems 5 and 7] except (7) and (8)
for general multirelations. A proof of (7) and (8) is as follows:

(Q ;R)
d
= Q ;RC = Q(E \R)C = QS(E÷R)C = QS(E÷R)C = QS(E÷R)C
= QS(E÷E)(E÷R)C = QSCc(E÷R)C = QSC(E÷R)C
= QSScC(E÷R)C = QSCS(E÷R)C = QSC(E \R)C = (QS)

d
(E \R)C

= (QS)
d
(E \ (RC)) = (Q(E \E))d(E \Rd) = (Q ;E)

d
;Rd ⊆ Qd ;Rd

This calculation uses QSSc = QS. The inclusion ‘⊆’ follows by applying a
Schröder equivalence to QSS ⊆ QS and the inclusion ‘⊇’ follows from I ⊆ S.
See the proof of [15, Theorem 7.3] for an explanation of the other steps. ��

4 Algebraic Structures for Investigating Multirelations

In this section we capture the properties of multirelations shown in Section 2 by
five algebraic structures, which are introduced in the following.

A bounded join-semilattice is an algebraic structure (S,+, 0) satisfying for all
x, y, z ∈ S the associativity, commutativity, idempotence and neutrality axioms:

x+ (y + z) = (x+ y) + z x+ y = y + x x+ x = x 0 + x = x

The semilattice order, defined by x ≤ y if and only if x+ y = y, for all x, y ∈ S,
has the least element 0 and the least upper bound operation ‘+’. The operation
‘+’ is ≤-isotone.

Next, a bounded distributive lattice (S,+,�, 0, ) adds to a bounded join-
semilattice a dual bounded meet-semilattice (S,�, ) as well as distribution
and absorption axioms, such that for all x, y, z ∈ S the following equations hold:

x� (y � z) = (x� y)� z x+ (y � z) = (x+ y)� (x+ z)
x� y = y � x x� (y + z) = (x� y) + (x� z)
x� x = x x+ (x� y) = x
 � x = x x� (x+ y) = x
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The semilattice order has the alternative characterisation that x ≤ y if and only
if x�y = x, for all x, y ∈ S, the greatest element  and the greatest lower bound
operation ‘�’. The operation ‘�’ is ≤-isotone.

A pre-left semiring (S,+, ·, 0, 1) expands a bounded join-semilattice (S,+, 0)
with a binary operation ‘·’ and a constant 1 with the following axioms for all
x, y, z ∈ S:

x = 1 · x (x · y) + (x · z) ≤ x · (y + z)
x ≤ x · 1 (x · z) + (y · z) = (x+ y) · z

(x · y) · z ≤ x · (y · z) 0 = 0 · x
Note the inequalities in the left column. The operation ‘·’ is ≤-isotone. We often
abbreviate a product x · y via juxtaposition to xy.

An idempotent left semiring (see [18]) is a pre-left semiring (S,+, ·, 0, 1) whose
reduct (S, ·, 1) is a monoid, which is enforced by adding the axioms

x = x · 1 (x · y) · z = x · (y · z),

for all x, y, z ∈ S. Idempotent semirings are rings in which the operation ‘+’ is
idempotent instead of having an inverse. Idempotent left semirings are idempo-
tent semirings in which the operation ‘·’ is ≤-isotone instead of distributing over
the operation ‘+’ from the left and having the right zero 0. Pre-left semirings
further weaken idempotent left semirings by requiring only one inequality of the
associativity and right-neutral properties. This is because multirelations do not
satisfy the other inequalities in general.

Finally, combining the lattice and semiring operations, an M0-algebra is an
algebraic structure (S,+, ·,�, 0, 1, ) such that the reduct (S,+,�, 0, ) is a
bounded distributive lattice and the reduct (S,+, ·, 0, 1) is a pre-left semiring.

The algebraic results we will derive in the following sections apply to multire-
lations because of the following instances. The multirelations over a set A form
a bounded distributive lattice (A ↔ 2A,∪,∩,O,T). By Theorem 2 these mul-
tirelations also form an M0-algebra (A ↔ 2A,∪, ;,∩,O,E,T) and the subset of
up-closed multirelations forms an idempotent left semiring (A u↔ 2A,∪, ;,O,E).
We refer to [22,29] for further algebraic structures underlying up-closed multire-
lations and to [16] for placing them in a categorical setting. See also [21], where
another kind of multirelational composition ‘·’ is introduced that gives rise to
an M0-algebra. As shown in [12], this operation is not associative for general
multirelations, but satisfies (P ·Q) · R ⊆ P · (Q · R) and P = P · 1 for all P , Q
and R, where 1 = I÷E is the singleton multirelation.

5 Reflexive-Transitive Closures of Multirelations

As proved in [11], multirelational composition has a left residual. If we define it
by R//Q := R/(E \Q), for all multirelations R and Q, then we get

P ;Q ⊆ R ⇐⇒ P (E \Q) ⊆ R ⇐⇒ P ⊆ R/(E \Q) ⇐⇒ P ⊆ R//Q,
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for all multirelations P , Q and R. In this section we use left residuals and an ap-
propriate algebraic structure to relate three different representations of reflexive-
transitive closures of multirelations.

A residuated pre-left semiring (S,+, ·, /, 0, 1) expands a pre-left semiring
(S,+, ·, 0, 1) with a binary operation ‘/’ satisfying the Galois connection

xy ≤ z ⇐⇒ x ≤ z/y,
for all x, y, z ∈ S. It follows that the operation ‘/’ is ≤-isotone in its first ar-
gument and ≤-antitone in its second argument. Moreover, we obtain the two
properties (x/y)y ≤ x and x/1 ≤ x, for all x, y ∈ S. As a consequence we get
the following instance. The multirelations over a set A form a residuated pre-left
semiring (A↔ 2A,∪, ;, //,O,E).

The ≤-isotone functions f , g and h of the following result capture left recur-
sion, right recursion and symmetric recursion, respectively. The ≤-least prefix-
point μf of the function f is axiomatised using its unfold and induction proper-
ties, that is, f(μf) ≤ μf and that f(x) ≤ x implies μf ≤ x, for all x ∈ S. Similar
axioms are assumed for μg and μh. It is known that left and right recursion
coincide for relations, but in general they do not for multirelations.

Theorem 4. Let S be a residuated pre-left semiring and let y ∈ S. Depending
on y, let f , g and h be functions on S defined by

f(x) = 1 + x · y g(x) = 1 + y · x h(x) = 1 + y + x · x,
for all x ∈ S. Assume that μf , μg and μh exist. Then we have μf ≤ μg = μh.
Proof. We first show μf ≤ μg. Semi-associativity of composition, the Galois
property of the left residual and the prefixpoint property of μg imply

(y · (μg/y)) · y ≤ y · ((μg/y) · y) ≤ y · μg ≤ 1 + y · μg ≤ μg.
Hence, we get y · (μg/y) ≤ μg/y. Moreover, 1 ≤ 1 + y · μg ≤ μg holds, whence
semi-neutrality of composition gives

1 · y = y ≤ y · 1 ≤ 1 + y · μg ≤ μg.
So, 1 ≤ μg/y and, together, we have

g(μg/y) = 1 + y · (μg/y) ≤ μg/y.
From this we obtain μg ≤ μg/y by the least prefixpoint property of μg. Hence

f(μg) = 1 + μg · y ≤ μg
and, therefore, μf ≤ μg follows by the least prefixpoint property of μf .

We next show μg ≤ μh. This part does not use residuals. From the least
prefixpoint property of μh we get y ≤ 1 + y + μh · μh = h(μh) ≤ μh; hence

g(μh) = 1 + y · μh ≤ 1 + y + μh · μh = h(μh) ≤ μh
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by the prefixpoint property of μh. Therefore, we arrive at μg ≤ μh by the least
prefixpoint property of μg.

We finally show μh ≤ μg following the argument of [6, Satz 10.1.5], which is
for homogeneous relations. Semi-associativity of composition, a property of the
left residual and the unfold property of μg imply:

g(μg/μg) · μg = (1 + y · (μg/μg)) · μg = 1 · μg + (y · (μg/μg)) · μg
≤ μg + y · ((μg/μg) · μg) ≤ μg + 1 + y · μg = μg + g(μg) = μg

As a consequence we obtain g(μg/μg) ≤ μg/μg and this leads to μg ≤ μg/μg
by the least prefixpoint property of μg, whence μg · μg ≤ μg. With 1 ≤ μg and
y ≤ μg shown above, it follows that

h(μg) = 1 + y + μg · μg ≤ μg.
Therefore we have μh ≤ μg by the least prefixpoint property of μh. ��
For up-closed multirelations the equality μg = μh is shown in [28]. Further-
more, for finitary up-closed multirelations

⋃
n∈N g

n(O) ⊆ μh is shown in [13]
and

⋃
n∈N g

n(O) = μg is shown in [11].
We proved Theorem 4 also in Isabelle/HOL using its integrated automated

theorem provers and SMT solvers, which are described in [8,20]. The same holds
for the theorems we will present in the next two sections, that is, Theorem 5 to
Theorem 8. We therefore omit their proofs, which are given in the Isabelle theory
files available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

6 Properties of Multirelations

A number of properties of multirelations were used in previous work for modelling
games, protocols, computations, contact, closure and topology, see [1,5,17,19,23],
for example. Algebraic definitions of these and other properties are summarised
in Figure 1. Its second column states the property in terms of relations and the
third column gives the corresponding definition in M0-algebras. The distributiv-
ity properties universally quantify over the multirelations P , Q and the elements
y, z of the M0-algebra, respectively.

For up-closed multirelations several of the properties listed in Figure 1 are
dual to each other, that is, can be obtained by applying the multirelational
dual operation. This does not hold for general multirelations: for example, the
conjunction of reflexive and transitive implies up-closed, but the conjunction of
their duals co-reflexive and dense does not imply up-closed, which is self-dual.

In this section we investigate the connections between the properties in Figure
1 using the algebraic structure of multirelations. While many results can be
derived in M0-algebras, additional axioms are needed to prove some others,
leading to the following new algebraic structure. An M1-algebra is an M0-algebra
(S,+, ·,�, 0, 1, ) satisfying the axioms

 =  x x(yz) = (x(y1))z xz � yz = (x1 � y1)z,

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/
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R or x is . . . if and only if algebraically

total R ;T = T x� = �
co-total R ;O = O x0 = 0
transitive R ;R ⊆ R xx ≤ x
dense R ⊆ R ;R x ≤ xx
reflexive E ⊆ R 1 ≤ x
co-reflexive R ⊆ E x ≤ 1
idempotent R ;R = R xx = x
up-closed R ;E = R x1 = x
∪-distributive R ; (P ∪Q) = R ;P ∪R ;Q x(y + z) = xy + xz
∩-distributive R ; (P ∩Q) = R ;P ∩R ;Q x(y � z) = xy � xz
a contact R ;R ∪ E = R xx+ 1 = x
a kernel R ;R ∩ E = R ;E xx� 1 = x1
a test R ;T ∩ E = R x�� 1 = x
a co-test R ;O ∪ E = R x0 + 1 = x
a vector R ;T = R x� = x

Fig. 1. Fundamental properties

for all x, y, z ∈ S. An equivalent structure is obtained if just ‘≤’ is assumed
instead of equality in each axiom. If all elements are up-closed, that is, x1 = x
holds for all x ∈ S, the last two axioms collapse to associativity of the opera-
tion ‘·’ and right-distributivity of ‘·’ over the operation ‘�’. This shows how to
obtain weaker axioms which hold for all multirelations. The following theorem
summarises our results about relationships between the properties in Figure 1.

Theorem 5. The implications shown in Figure 2 drawn as continuous (dashed)
arrows hold in M0-algebras (M1-algebras). Furthermore, arrows originating in
the same point indicate that the property is equivalent to the conjunction of the
targets.

Moreover, in all M1-algebras S the vector property x =  is equivalent to its
dual x0 = 0 for all x ∈ S.

7 Closure Properties of Multirelational Operations

It is known that up-closed multirelations are closed under the multirelational
operations we have introduced in Section 3. In this section we systematically
investigate the closure properties for certain classes of multirelations, which are
given by the properties presented in Figure 1. For dealing with the dual operation
we need additional axioms, which lead to the expansions of M0-algebras we will
introduce in this section.

First, an M2-algebra (S,+, ·,�, d, 0, 1, ) is an M0-algebra (S,+, ·,�, 0, 1, )
expanded with a unary dual operation ‘d’ satisfying the axioms

(xy)
d
= (x1)

d
yd (x + y)

d
= xd � yd xdd = x 1d = 1,
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idempotent

densetransitive totalco-total

reflexiveco-reflexive

contact

up-closed

kernel ∪-distributive∩-distributive

∪-distributive contact∩-distributive kernel

test co-test

vector

up-closed

Fig. 2. Relationships between the fundamental properties

for all x, y ∈ S. Note again how distributivity of the operation ‘d’ over the
operation ‘·’, which holds for up-closed multirelations, is weakened by replacing
x with x1. The above axioms imply the additional axioms of M1-algebras. Thus,
we obtain the following result.

Theorem 6. All M2-algebras are M1-algebras.

For reasoning about up-closed multirelations we use that the operation ‘d’ dis-
tributes over the operation ‘·’. As a further expansion of M0-algebras, therefore,
anM3-algebra (S,+, ·,�, d, 0, 1, ) is an M0-algebra (S,+, ·,�, 0, 1, ) expanded
with a unary dual operation ‘d’ satisfying the axioms

(xy)
d
= xdyd (x+ y)

d
= xd � yd xdd = x 1d = 1,

for all x, y ∈ S. These axioms imply the axioms of M2-algebras. Moreover, we
obtain that the operation ‘·’ is associative with right-neutral element 1, that is,
the idempotent left semiring structure.

Theorem 7. All M3-algebras are M2-algebras and idempotent left semirings.

The algebraic results obtained so far apply to multirelations due to the following
instances. By Theorem 3, the multirelations over a set A form an M2-algebra
(A↔ 2A,∪, ;,∩, d,O,E,T) and the up-closed multirelations over A form an M3-
algebra (A u↔ 2A,∪, ;,∩, d,O,E,T). The next theorem summarises the closure
properties of multirelations.

Theorem 8. Figure 3 shows which properties in Figure 1 hold for the multirela-
tional constants and with respect to which operations these properties are closed.
There an entry � (�) means that the property is closed under the respective oper-
ation in M2-algebras (M3-algebras). All � entries except those for the operation
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O E T ∪ ∩ ; d

total − � � � � � �
co-total � � − � � � �

transitive � � � − � − �
dense � � � � − − �

reflexive − � � � � � �
co-reflexive � � − � � � �
idempotent � � � − − − �
up-closed � � � � � � �

∪-distributive � � � � − � �
∩-distributive � � � − � � �

a contact − � � − � − �
a kernel � � − � − − �

a ∪-distributive contact − � � − − − �
a ∩-distributive kernel � � − − − − �

a test � � − � � � �
a co-test − � � � � � �
a vector � − � � � � �

Fig. 3. Closure properties of multirelations

‘d’ follow in M1-algebras; most of these follow already in M0-algebras. An entry
�/� (�/�) means that if x satisfies the property then xd satisfies the property
below/above in M2-algebras (M3-algebras). An entry − means that the property
is not closed under the respective operation even for up-closed multirelations.

To give an example, the dual of a co-total multirelation is total and the dual of
an up-closed total multirelation is co-total. Another consequence of the closure
properties are sub-algebras. For example, the set of co-total multirelations forms
a pre-left semiring and so does the set of co-reflexive multirelations.

It is unknown if any of the findings � can be strengthened to � in the rows for
∪-/∩-distributive in Figure 3. Moreover, it is unknown if the finding � can be
strengthened to � in the row for ∩-distributive. Counterexamples for the other
claims are shown in Figures 4, 5 and 6 as Boolean matrices (where a grey square
denotes a 1-entry and a white square denotes a 0-entry). Most counterexamples
have been found using a Haskell program which performs an exhaustive search.
For ∪- and ∩-distributivity of up-closed multirelations we use the alternative
characterisation provided by Aumann contacts given in Section 8.

Note that M2-algebras are not complete for multirelations. The counterexam-
ple generator Nitpick, which is described in [9], finds a counterexample showing
that x �yz ≤ (x �y)z does not follow in M2-algebras. However, this property
holds for multirelations since

P ;T ∩Q ;R = PT ∩Q(E \R) = (PT ∩Q)(E \R) = (P ;T ∩Q) ;R.

This calculation uses that P ;T = PT as shown in [15], so intersection with this
vector can be imported into the first argument of a composition.
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property operation argument 1 argument 2 result

total ∩ 1
2

∅ 2 1 1
2 ∅ 2 1 1
2 ∅ 2 1 1
2

total ; 1
2

transitive ∪ 1
2

transitive ; 1
2

dense ∩ 1
2

dense ; 1
2

idempotent ∪ 1
2

idempotent ∩ 1
2

idempotent ; 1
2

∪-distributive ∩ 1
2

∩-distributive ∪ 1
2

contact ∪ 1
2

contact ; 1
2

kernel ∩ 1
2

kernel ; 1
2

∪-distributive contact ∪ 1
2

∪-distributive contact ; 1
2

∩-distributive kernel ∩ 1
2

∩-distributive kernel ; 1
2

Fig. 4. Counterexamples generated by a Haskell program

property operation argument 1 argument 2 result

∪-distributive contact ∩ 1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∩-distributive kernel ∪ 1
2
3

Fig. 5. Manually generated counterexamples

property R Rd property not satisfied

total 1
2

∅ 2 1 1
2 ∅ 2 1 1
2

co-total

dense 1
2 transitive

idempotent 1
2 idempotent

∪-distributive 1
2 ∩-distributive

Fig. 6. Counterexamples for the operation ‘d’ generated by a Haskell program
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Neither are M3-algebras complete for up-closed multirelations. Nitpick shows
that x �xd0 = 0 does not follow in M3-algebras, although it holds for up-closed
multirelations. To see this, note that it is an axiom of ‘algebras of monotonic
Boolean transformers’ of [22] or consider the following proof. Let R be an up-
closed multirelation. Then we have R(E \E) = R ;E = R. By a Schröder equiva-
lence we get RcR ⊆ EcE ⊆ TE. Hence, TRcRC ⊆ TEC = TE. Another Schröder
equivalence gives RCEcT ⊆ RT. So, the desired result is shown by

R ;T ∩Rd ;O = RT ∩Rd(E \O) = RT ∩RCEcT ⊆ RT ∩RT = O.

8 Aumann Contacts and Multirelational Properties

In [1,2,3,4] G. Aumann investigated certain laws for modelling the notion of a
contact in topology. Translated into the language of multirelations, he considered
for a multirelation R : A↔ 2A the following five axioms:

(K0) ¬∃x ∈ A : Rx,∅
(K1) ∀x ∈ A : Rx,{x}
(K2) ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ Y ⊆ Z ⇒ Rx,Z

(K3) ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ Y : Ry,Z)⇒ Rx,Z

(K4) ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y∪Z ⇔ Rx,Y ∨Rx,Z

Aumann called multirelations satisfying the formulas (K1) to (K3) ‘contact re-
lations’ and multirelations satisfying the formulas (K0) to (K4) ‘topological con-
tact relations’. In this section we give multirelation-algebraic characterisations
of these logical formulas. See [26] for the relation-algebraic treatment of a corre-
spondence between contact relations and closure operations. Axioms (K0), (K2)
and (K4) generalise to multirelations of type A↔ 2B in a straight-forward way.
The following result gives the property corresponding to K0.

Theorem 9. A multirelation satisfies (K0) if and only if it is co-total.

Proof. Axiom (K0) applied to a multirelation R : A↔ 2B elaborates as follows:

¬∃x ∈ A : Rx,∅ ⇐⇒ ∀x ∈ A : ¬Rx,∅
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ X 
= ∅
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ ∃y ∈ B : y ∈ X
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ ∃y ∈ B : Tx,y ∧ Ey,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ (TE)x,X
⇐⇒ R ⊆ TE
⇐⇒ TR ⊆ TE

⇐⇒ RTE
c ⊆ O

⇐⇒ R(E \O) ⊆ O
⇐⇒ R ;O ⊆ O

Hence, the characterisation in Figure 1 shows the claim. ��
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The forward implication of this theorem is stated in [24], where such multirela-
tions are called ‘total’. We call the above property ‘co-total’ to keep the standard
use of ‘total‘ known from relations and functions. Namely,

R ;T = R(E \T) = REcT = REcO = RO = RT

implies that the multirelation-algebraic property R ;T = T is equivalent to the
relation-algebraic property of totality RT = T. In [23] multirelations R satisfying
the property R ;T = T are called ‘proper’. Next, we investigate axiom (K1) and
relate it to a property in Figure 1.

Theorem 10. Every reflexive multirelation satisfies (K1). An up-closed mul-
tirelation satisfies (K1) if and only if it is reflexive.

Proof. Axiom (K1) applied to a multirelation R : A↔ 2A elaborates as follows:

∀x ∈ A : Rx,{x} ⇐⇒ ∀x ∈ A : ∀X ∈ 2A : {x} = X ⇒ Rx,X

⇐= ∀x ∈ A : ∀X ∈ 2A : {x} ⊆ X ⇒ Rx,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2A : x ∈ X ⇒ Rx,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2A : Ex,X ⇒ Rx,X

⇐⇒ E ⊆ R
Again Figure 1 shows the first claim. If R is up-closed, then the reverse impli-
cation holds since Rx,{x} and {x} ⊆ X imply Rx,X . ��
Axiom (K2) is the logical characterisation of R being an up-closed multirelation.
The relation-algebraic characterisation R = RS is shown in [15, Theorem 6] and
the multirelation-algebraic characterisation R ;E = R in [15, Theorem 7.1]. With
respect to axiom (K3), we have the following correspondence.

Theorem 11. A multirelation satisfies (K3) if and only if it is transitive.

Proof. Axiom (K3) applied to a multirelation R : A↔ 2A elaborates as follows:

∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ Y : Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ A : y ∈ Y ⇒ Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ A : Ey,Y ⇒ Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (E \R)Y,Z ⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Z ∈ 2A : (∃Y ∈ 2A : Rx,Y ∧ (E \R)Y,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Z ∈ 2A : (R(E \R))x,Z ⇒ Rx,Z

⇐⇒ R(E \R) ⊆ R
⇐⇒ R ;R ⊆ R

Again Figure 1 shows the claim. ��
Taken together, the axioms (K1) to (K3) of Aumann are equivalent to mul-
tirelations being reflexive, up-closed and transitive (or even idempotent, since
reflexive implies dense). Finally, we investigate axiom (K4). Here we obtain the
following results.
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Theorem 12. Multirelations satisfying (K4) are ∪-distributive. An up-closed
multirelation satisfies (K4) if and only if it is ∪-distributive.
Proof. Let R : A↔ 2B be a multirelation such that axiom (K4) holds. Because
of inclusion (8) of Theorem 2 we only have to show R ; (P ∪Q) ⊆ R ;P ∪ R ;Q
for all multirelations P : B ↔ 2C and Q : B ↔ 2C to verify the first claim. To
this end let x ∈ A and X ∈ 2C such that (R ; (P ∪Q))x,X . Then there exists

W ∈ 2B such that Rx,W and for all y ∈ W also Py,X or Qy,X . We define two
sets Y, Z ∈ 2B as subsets of W as follows:

Y := {y ∈ W | Py,X} Z := {y ∈W | Qy,X}
Then we get W = Y ∪ Z. Hence, we have Rx,Y or Rx,Z by the assumption that
(K4) holds. In the first case this shows (R ;P )x,X , since Py,X for all y ∈ Y , and
in the second case (R ;Q)x,X .

To prove the second claim, assume that R is up-closed and ∪-distributive
and let x ∈ A and Y, Z ∈ 2B be given. First, suppose Rx,Y ∪Z . We define the
up-closed multirelations P : A↔ 2B and Q : A↔ 2B as follows:

P := {(x,X) ∈ R | x ∈ X ∩ Y } Q := {(x,X) ∈ R | x ∈ X ∩ Z}
Then we have Py,Y ∪Z for all y ∈ Y and also Qy,Y∪Z for all y ∈ Z. This leads to
(P ∪Q)y,Y ∪Z for all y ∈ Y ∪Z, which gives (R ; (P ∪Q))x,Y ∪Z . By the assump-

tion (R ;P )x,Y ∪Z or (R ;Q)x,Y ∪Z holds. In the first case there exists W ∈ 2B

such that Rx,W and Py,Y ∪Z for all y ∈ W . The definition of P implies that
y ∈ Y for all y ∈ W , thus W ⊆ Y . Since R is up-closed, this shows Rx,Y . In
the second case, Rx,Z follows analogously using the definition of Q. Altogether,
Rx,Y ∪Z implies Rx,Y or Rx,Z . To prove the converse implication, suppose Rx,Y

or Rx,Z. In both cases we then get Rx,Y ∪Z since R is up-closed. ��
Extended to arbitrary non-empty unions, axiom (K4) is called ‘additive’ in [23],
which also states that additive up-closed multirelations are ∪-distributive.

Finally we consider the dual property of axiom (K4), that is, the following
logical formula for a given multirelation R : A↔ 2B:

(K ′
4) ∀x ∈ A : ∀Y, Z ∈ 2B : Rx,Y ∧Rx,Z ⇔ Rx,Y ∩Z

Extended to arbitrary non-empty unions, this is called ‘multiplicative’ in [24],
which also states that multiplicative up-closed multirelations are ∩-distributive.
Similarly to the proof of Theorem 12 the following result can be shown.

Theorem 13. Multirelations satisfying (K ′
4) are ∩-distributive. An up-closed

multirelation satisfies (K ′
4) if and only if it is ∩-distributive.

9 Conclusion

In this paper we investigated multirelations using relation algebras and more
general algebraic structures. In particular, we considered various properties of
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multirelations that have been used in applications and we studied transitive
closures, closure properties and Aumann contacts.

In Figure 1 we also mentioned vectors and tests and we will close with some re-
marks concerning these notions. Relational tests are used to represent sets. Such
a test is a relation p : A↔ A with p ⊆ I and represents the set {x ∈ A | px,x}. A
straight-forward generalisation to multirelations would take multirelations which
are contained in the membership relation E : A ↔ 2A as tests. But there are
too many such multirelations, most of which are not up-closed. This would lead
to problems, as tests are frequently used in combination with multirelational
composition to restrict a computation to a set of starting states. As a solution,
[14] defines multirelational tests as intersections of multirelational vectors in the
sense of Figure 1 with membership relations. Hence, a multirelation R : A↔ 2A

is a test if R = R ;T ∩ E, as stated in Figure 1. Using this definition it can be
shown that P : A ↔ 2A is a multirelational test if and only if there exists a
relational test p : A↔ A such that P = pE. Furthermore, as for relational tests,
composition and intersection of tests coincide, that is, for multirelational tests
P and Q we have P ;Q = P ∩Q.

Acknowledgement. We thank Hitoshi Furusawa and Georg Struth for pointing
out related work and the anonymous referees for their helpful comments.
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Abstract. Multirelations are studied as a semantic domain for com-
puting systems involving two dual kinds of nondeterminism. This paper
presents relational formalisations of Kleisli, Parikh and Peleg’s composi-
tions and liftings of multirelations.

1 Introduction

A multirelation is a binary relation between a set and the powerset of a set.
Applications of multirelations include reasoning about games with cooperation
[11,16] and reasoning about computing systems with alternation [2,7,12,13] or
dual angelic and demonic nondeterminism [1].

This paper studies three kinds of compositions of multirelations. Given mul-
tirelations R ⊆ X × ℘(Y ) and S ⊆ Y × ℘(Z), the compositions, respectively
called Kleisli, Parikh and Peleg’s composition, are defined by

(a,A) ∈ R ◦ S ↔ ∃B. (a,B) ∈ R ∧A =
⋃
S(B),

(a,A) ∈ R " S ↔ ∃B. (a,B) ∈ R ∧ ( ∀b ∈ B. (b, A) ∈ S ),
(a,A) ∈ R ∗ S ↔ ∃B. (a,B) ∈ R ∧ ( ∃f. (∀b ∈ B. (b, f(b)) ∈ S) ∧ A =

⋃
f(B) ),

where S(B) = {C ∈ ℘(Z) | ∃b ∈ B. (b, C) ∈ S}. Kleisli’s composition is inspired
by the definition of the Kleisli category for a monad (triple) [8]. Parikh’s compo-
sition has been proposed for the semantics of game logic [11]. Peleg’s composition
has been introduced in the context of concurrent dynamic logic [12,13]. It has
been discussed further by Goldblatt [7] as well as Furusawa and Struth [5,6].

Although multirelations are just relations of a particular type pattern, the
three notions of composition introduced are different from the usual composi-
tion of binary relations. The main contribution of this paper is the study of
liftings on multirelations that translate Kleisli, Parikh and Peleg’s nonstandard
compositions on multirelations to a standard relational composition on lifted
binary relations. This approach seems crucial for studying algebras of multirela-
tions in the setting of enriched category theory. More precisely, for multirelations

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 84–100, 2015.
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R ⊆ X × ℘(Y ) and S ⊆ Y × ℘(Z) we wish to lift S to a relation λ(S) of type
℘(Y ) × ℘(Z) to be able to translate Kleisli, Parikh and Peleg’s definition back
to relational composition. We call such a relation λ(S) a lifting of S and, in
particular, liftings S◦, S�, S∗ ⊆ ℘(Y )× ℘(Z) for the three kinds of compositions
◦, ", ∗ are defined by

(B,A) ∈ S◦ ↔ A =
⋃
S(B),

(B,A) ∈ S� ↔ ∀b ∈ B. (b, A) ∈ S,
(B,A) ∈ S∗ ↔ ∃f. (∀b ∈ B. (b, f(b)) ∈ S) ∧ A =

⋃
f(B).

We call them Kleisli, Parikh and Peleg lifting, respectively.
Martin and Curtis [9] have established categorical foundations of up-closed

multirelations with Parikh’s composition. They have collated essential definitions
and laws of up-closed multirelations with this composition, and placed them
in allegories subject to certain conditions. The relational definition of Parikh’s
composition has been given by them through the Parikh lifting.

Beyond their work, we add the relational definition for the other two compo-
sitions and study some of their properties by relational reasoning. In particular,
Peleg’s composition is studied in detail. It is known that Peleg’s composition
need not be associative [5]. However, when restricting our attention to the class
of union-closed multirelations, this composition becomes associative and then
the class forms a category with this composition. Therefore, this work is an at-
tempt to establish categorical foundations of union-closed multirelations with
Peleg’s composition.

2 Preliminaries

In this article we denote by I a singleton set. A (binary) relation α from set
X to set Y , written α : X ⇁ Y , is a subset α ⊆ X × Y . The empty relation
0XY : X ⇁ Y and the universal relation ∇XY : X ⇁ Y are defined by 0XY = ∅
and ∇XY = X × Y , respectively. The converse of relation α : X ⇁ Y is denoted
by α�. The identity relation {(x, x) | x ∈ X} over X is denoted by idX . For
relation α : X ⇁ Y , the partial identity {(x, x) | ∃y. (x, y) ∈ α} is denoted by
$α% and it is called domain relation of α. The standard composition of relations
(which includes functions) will be denoted by juxtaposition. For example, the
composite of relation α : X ⇁ Y followed by β : Y ⇁ Z is denoted by αβ,
and of course the composition of functions f : X → Y and g : Y → Z by
fg. In addition, the traditional notation f(x) is written xf as a composite of
functions x : I → X and f : X → Y . Note that for a relation α : X ⇁ Y ,
α is univalent iff α�α & idY , and it is total iff idX & αα�. So, α is a partial
function (pfn, for short) iff α�α & idY , and a (total) function (tfn, for short) iff
α�α & idY and idX & αα�. Moreover, a singleton set I satisfies 0II 
= idI = ∇II

and ∇XI∇IX = ∇XX for all sets X . A tfn x : I → X is called I-point of X
and is denoted by x ∈̇X . It is easy to see that xx� = x∇XI = idI . For a relation
ρ : I ⇁ X and an I-point x : I → X , we write x ∈̇ ρ instead of x & ρ.
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Some proofs refer the axiom of subobjects (Sub) and the Dedekind formula
(DF), i.e.

(Sub) ∀ρ : I ⇁ X ∃j : S → X. ( ρ = ∇ISj ) ∧ ( jj� = idS ),
(DF) αβ � γ & α(β � α�γ).

In fact, the subset S ⊆ X and tfn j : S → X from (Sub) are S = {x | (∗, x) ∈ ρ}
and j = {(x, x) | (∗, x) ∈ ρ}. Note that (DF) is equivalent to

(DF∗) αβ � γ & (α � γβ�)(β � α�γ).
Also note that the equation ∇ZY (∇Y Xα� idY ) = ∇ZXα follows from (DF). See
[14] for more details on basic properties of relations.

2.1 Subidentities and Domain Relations

First, we list some basic properties of subidentities.

Proposition 1. Let α : X ⇁ Y be relation and v, v′ & idY .

(a) α � ∇XY v = αv.

(b) v & v′ ↔ ∇Y Y v & ∇Y Y v
′.

(c) v = v′ ↔ ∇Y Y v = ∇Y Y v
′. ��

The domain relation $α% & idX of a relation α : X ⇁ Y can be defined
explicitly as

$α% = αα� � idX = ∇XY α
� � idX .

Proposition 2. Let α, α′ : X ⇁ Y and β : Y ⇁ Z be relations.

(a) α = $α%α.
(b) $αβ% & $α% and $αβ% = $α$β%%.
(c) $α � α′% = αα′ � � idX .

(d) If β is total, then $αβ% = $α%.
(e) If v & idX , then $vα% = v$α%.
(f) ∇XX$α% = ∇XY α

�. ��
The following properties of partial functions are essential for this paper.

Proposition 3. Let α, β : X ⇁ Y be relations.

(a) If β is a pfn satisfying α & β and $α% = $β%, then α = β.

(b) If β is a pfn satisfying α & β, then α = $α%β.
(c) If β is a pfn and v & idY , then βv = $βv%β.
(d) f = fv iff $f �% & v for each pfn f : X ⇁ Y and v & idY . ��
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2.2 Residual Composition

Let α : X ⇁ Y and β : Y ⇁ Z be relations. The left residual composition α� β
of α followed by β is a relation such that δ & α � β iff δβ� & α. The right
residual composition α� β of α followed by β is a relation such that δ & α� β
iff α�δ & β. These residual compositions satisfy α� β = (β� � α�)� and

(x, z) ∈ α� β ↔ ∀y ∈ Y. ( (x, y) ∈ α← (y, z) ∈ β ),
(x, z) ∈ α� β ↔ ∀y ∈ Y. ( (x, y) ∈ α→ (y, z) ∈ β ).

Proposition 4. Let α, α′ : X ⇁ Y , β, β′ : Y ⇁ Z and γ : Z →W be relations.

(a) α′ & α ∧ β & β′ implies α � β & α′ � β′ and α & α′ ∧ β′ & β implies
α� β & α′ � β′.

(b) αβ � γ = α� (β � γ) and α� βγ = (α� β)� γ.
(c) (α � α′)� β = (α � β) � (α′ � β) and α� (β � β′) = (α� β) � (α� β′).
(d) α� (β � β′) = (α � β) � (α � β′) and (α � α′)� β = (α� β) � (α′ � β).
(e) α : tfn implies α� β = αβ and β� : tfn implies α� β = αβ.
(f) α(β � γ) & αβ � γ and (α� β)γ & α� βγ.
(g) α : tfn implies α(β � γ) = αβ � γ and γ� : tfn implies (α� β)γ = α� βγ.
(h) (α� β)� γ = α� (β � γ). ��

2.3 Power Functor ℘

The powerset ℘(Y ) of a set Y and the membership relation (Y : ℘(Y ) ⇁ Y
satisfy the following laws.

(M1) ((Y � (�
Y ) � ((Y � (�

Y ) & id℘(Y ),

(M2) ∀α : X ⇁ Y. ( $α@% = idX ),

where α@ = (α� (�
Y ) � (α� (�

Y ). Note that

(α@)�α@ = (((Y � α�) � ((Y � α�))((α � (�
Y ) � (α� (�

Y ))

& ((Y � α�)(α � (�
Y ) � ((Y � α�)(α � (�

Y )

& ((Y � (�
Y ) � ((Y � (�

Y )
& id℘(Y ).

The conditions (M1) and (M2) for membership relations assert that the relation
α@ is a tfn. The tfn α@ is a unique tfn such that α@(Y = α, namely (a,B) ∈ α@
iff B = {b | (a, b) ∈ α}.

The order relation ΞY : ℘(Y ) ⇁ ℘(Y ) is defined by ΞY = (Y � (�
Y . In fact

ΞY = ((Y �(�
Y )

� and (A,B) ∈ ΞY iff A ⊆ B. Define a tfn ℘(α) : ℘(X)→ ℘(Y )
by ℘(α) = ((Xα)

@. Then ℘(α) is a unique tfn such that the following diagram
commutes.

℘(X)
℘(α) ��

�X

�

℘(Y )

�Y

�
X α

� Y
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Namely (A,B) ∈ ℘(α) iff B = {b | ∃a ∈ A. (a, b) ∈ α}. A tfn 1X : X → ℘(X) is
defined by 1X = id@X and is called the singleton map on X . In fact, (x,A) ∈ 1X
iff A = {x}.

For each set X , ℘(idX)(X = (X idX = id℘(X)(X holds. This shows that
℘ preserves the identities. Also, for relations α : X ⇁ Y and β : Y ⇁ Z
℘(αβ)(Z = (Xαβ = ℘(α)(Y β = ℘(α)℘(β)(Z . This shows that ℘ preserves
composition. It follows that ℘ is a functor from the category Rel, which has sets
as objects and relations as morphisms, to the category Set, which has sets as
objects and (total) functions as morphisms.

The isomorphism

Set(X,℘(Y )) ( f �→ f (Y ∈ Rel(X,Y )
is called the power adjunction together with its inverse

Rel(X,Y ) ( α �→ α@ ∈ Set(X,℘(Y )).

Proposition 5. Let f, f ′ : Y ⇁ ℘(Z) be pfns. Then $f% = $f ′% and f(Z =
f ′(Z implies f = f ′.

Proof. Assume $f% = $f ′% and f(Z = f ′(Z . By the axiom of subobjects (Sub)
there exists a tfn j : S → Y such that $f% = j�j and jj� = idS . Then both of
jf and jf ′ are tfns. (For idS = jj�jj� = j$f%j� & jff �j�.) As jf(Z = jf ′(Z

is trivial, by the power adjunction we have jf = jf ′ and so f = $f%f = j�jf =
j�jf ′ = $f ′%f ′ = f ′. ��

2.4 Power Subidentities

For all subidentities v & idY define a subidentity ûv & id℘(Y ) by

ûv = (∇℘(Y )Y v � (�
Y ) � id℘(Y ).

The subidentity ûv is called the power subidentity of v. Note that (A,A) ∈ ûv iff
∀a ∈ A. (a, a) ∈ v.
Proposition 6. Let v, v′ & idY .

(a) ûvûv′ = ûvv′ .
(b) v & v′ implies ûv & ûv′ .
(c) ûv℘(v) = ûv.
(d) ∇Z℘(Y )ûv = ∇ZY v � (�

Y for all objects Z.
(e) ûidY = id℘(Y ) and û0Y Y = (0@IY )

�0@IY .

Proof. (a) follows from

ûvûv′ = ûv � ûv′

= (∇v � (�
Y ) � (∇v′ � (�

Y ) � id℘(Y ) { ∇ = ∇℘(Y )Y }
= ((∇v � ∇v′)� (�

Y ) � id℘(Y ) { 4 (c) }
= (∇vv′ � (�

Y ) � id℘(Y ) { ∇v � ∇v′ = ∇vv′ }
= ûvv′ .
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(b) is a corollary of (a).
(c) First, $ûv℘(v)% = $ûv% is trivial, since ℘(v) is total. Also, by

ûv(Y = ûv(Y � (∇℘(Y )Y v � (�
Y )(Y

& ûv(Y � ∇℘(Y )Y v
= ûv(Y v { 1 (a) }
& ûv(Y , { v & idY }

ûv(Y = ûv(Y v. So we have ûv℘(v)(Y = ûv(Y v = ûv(Y . Since both of
ûv℘(v) and ûv are pfns, ûv℘(v) = ûv holds by 5.

(d) Since ∇ZY (∇Y Xα � idY ) = ∇ZXα, we have

∇Z℘(Y )ûv = ∇Z℘(Y )((∇℘(Y )Y v � ε�Y ) � id℘(Y ))

= ∇Z℘(Y )(∇℘(Y )I(∇IY v � ε�Y ) � id℘(Y )) { ∇℘(Y )I : tfn }
= ∇ZI(∇IY v � ε�Y )
= ∇ZI∇IY v � ε�Y { ∇ZI : tfn }
= ∇ZY v � ε�Y . { ∇ZI∇IY = ∇ZY }

(e) The equation (e1) ûidY = id℘(Y ) follows from

ûidY = (∇℘(Y )Y � (�
Y ) � id℘(Y )

= ∇℘(Y )℘(Y ) � id℘(Y ) { ∇ & ∇� α }
= id℘(Y ).

Also, the equation (e2) û0Y Y = (0@IY )
�0@IY follows from

û0Y Y = (∇℘(Y )Y 0Y Y � (�
Y ) � id℘(Y )

= (∇℘(Y )I0IY � (�
Y ) � id℘(Y )

= ∇℘(Y )I(0IY � (�
Y ) � id℘(Y ) { ∇℘(Y )I : tfn }

= ∇℘(Y )I0
@
IY � id℘(Y ) { 0IY � (�

Y = 0@IY }
= (0@IY )

�0@IY . { 0@IY : tfn, (DF) } ��

3 Compositions and Liftings

The multirelational compositions can be understood as ”nonstandard” composi-
tions in the setting of categories of relations that deviate from the standard compo-
sition of relations. This section introduces suitable notions of lifting that translate
multirelational compositions into the standard relational one. Consider how to de-
fine a multirelational composition for α : X ⇁ ℘(Y ) and β : Y ⇁ ℘(Z). If one
can construct a relation λ(β) : ℘(Y )⇁ ℘(Z) from β, then a possible composite

X
α � ℘(Y )

λ(β) � ℘(Z)

is obtained. We call λ(β) a lifting of β. Liftings enable us to use our knowledge
about relations. The complexity of reasoning in particular about Peleg’s second-
order definition can thus be encapsulated in the lifting and standard relational
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composition can be used in calculations. For example, it is sufficient to show
λ(βλ(γ)) = λ(β)λ(γ) for associativity of a multirelational composition • since
α • (β • γ) = αλ(βλ(γ)), (α • β) • γ = (αλ(β))λ(γ) and the composition of
relations is associative.

3.1 Kleisli Lifting

A relation β◦ = ℘(β(Z) is called the Kleisli lifting for β. By definition, the
Kleisli lifting is always a tfn. This lifting is used to give a relational definition of
the Peleg lifting in Section 3.3.

Proposition 7. Let β : Y ⇁ ℘(Z) and γ : Z ⇁ ℘(W ) be relations.

(a) (βγ◦)◦ = β◦γ◦.
(b) (1Y )◦ = id℘(Y ).

(c) (0@Y Z)◦ = 0@℘(Y )Z .

(d) If β is a pfn, then $β%1Y β◦ = β.

Proof. (a) follows from

(βγ◦)◦ = ℘(βγ◦(W )
= ℘(β℘(γ(W )(W )
= ℘(β(Zγ(W ) { ℘(α)(Y = (Xα }
= ℘(β(Z)℘(γ(W ) { ℘ : functor }
= β◦γ◦.

(b) follows from (1Y )◦1Y = ℘(1Y (Y ) = ℘(idY ) = id℘(Y ) since 1Y (Y = idY .

(c) follows from (0@Y Z)◦ = ℘(0@Y Z(Z) = ℘(0Y Z) = ((Y 0Y Z)
@ = (0℘(Y )Z)

@.
(d) Since $$β%1Y β◦% = $$β%% = $β% and

$β%1Y β◦(Z = $β%1Y (Y β(Z

= $β%β(Z { 1Y (Y = idY }
= β(Z , { $β%β = β }

$β%1Y β◦ = β holds by Proposition 5. ��
Case (a) of the last proposition ensures that Kleisli’s composition α ◦ β of a
α : X ⇁ ℘(Y ) followed by β : Y ⇁ ℘(Z), which is defined by α ◦ β = αβ◦, is
associative in general.

3.2 Parikh Lifting

A relation β� = (Y � β is called the Parikh lifting for β. This lifting and the
composition for this lifting have been studied by Martin and Curtis [9]. However,
they have concentrated on up-closed multirelations α : X ⇁ ℘(Y ) such that
αΞY = α. The following properties are satisfied by multirelations in general.
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Proposition 8. Let β : Y ⇁ ℘(Z) and γ : Z ⇁ ℘(W ) be relations.

(a) β�γ� & (βγ�)�.
(b) γ� = ΞZγ

�@ �.
(c) (βγ�)� & (βΞZ)�γ�.
(d) 1YΞY = (�

Y and 1Y & (�
Y .

(e) (�
Y β� = β.

(f) ((�
Z)� = ΞZ .

Proof. (a) follows from

β�γ� = ((Y � β)γ�
& (Y � βγ� { (α� β)γ & α� βγ }
= (βγ�)�.

(b) follows from

γ� = (Z � γ
= (Z � (�

Zγ
�@ � { γ� = γ�@(Z }

= ((Z � (�
Z)γ

�@ � { γ�@ : tfn }
= ΞZγ

�@ �. { (Z � (�
Z = ΞZ }

(c) follows from

(βγ�)� = (Y � βγ�
= (Y � βΞZγ

�@ � { (b) γ� = ΞZγ
�@ � }

= ((Y � βΞZ)γ
�@ � { γ�@ : tfn }

= (βΞZ)�γ�@ �

& (βΞZ)�ΞZγ
�@ � { id℘(Z) & ΞZ }

= (βΞZ)�γ�. { (b) γ� = ΞZγ
�@ � }

(d) 1YΞY = (�
Y follows from

1YΞY = 1Y ((Y � (�
Y )

= 1Y (Y � (�
Y

= idY � (�
Y { 1Y (Y = idY }

= (�
Y . { idY : tfn }

So, 1Y & (�
Y by id℘(Y ) & ΞY .

(e) follows from

β = idY � β { idY : tfn }
= 1Y (Y � β
= 1Y ((Y � β) { 1Y : tfn }
& (�

Y ((Y � β) { (d) 1Y & (�
Y }

& β.
(f) is immediate from the definitions of the Parikh lifting and ΞZ . ��



92 H. Furusawa et al.

It is known that Parikh’s composition α " β of α : X ⇁ ℘(Y ) followed by
β : Y ⇁ ℘(Z), which is defined by α " β = αβ�, need not be associative [15].
So the converse inclusion of (a) need not hold. It is associative for up-closed
multirelations, and in fact, (a) and (c) imply this. Also, (e) and (f) imply that the
converse of the membership relations serve as the units of Parikh’s composition
of up-closed multirelations. Equation (b) implies that α " β = αβ�@ � if α is
up-closed.

3.3 Peleg Lifting

Before giving a relational definition of the Peleg lifting, we introduce some no-
tation and show a property.

For a relation α : X ⇁ Y the expressions f &p α and f &c α denote the
conditions

( f & α ) ∧ ( f : pfn ) and ( f & α ) ∧ ( f : pfn ) ∧ ( $f% = $α% ).
From now on, some proofs refer to the point axiom (PA) and to a variant of the
(relational) axiom of choice (AC∗), i.e.

(PA) �x ∈̇Xx = ∇IX ,
(AC∗) ∀α : X ⇁ Y. [( f &p α )→ ∃f ′. ( f & f ′ &c α )],

in addition to (Sub) and (DF). Note that (PA) is equivalent to idX = �x∈X x
�x.

Also note that (AC∗) implies the (relational) axiom of choice

(AC) ∀α : X ⇁ Y. [( idX & αα� )→ ∃f : X → Y. ( f & α )].
Proposition 9. For all relations α : X ⇁ Y , the identity α = �fcαf holds.

Proof. The inclusion �fcαf & α is clear. It remains to show the converse
inclusion. Using the point axiom (PA) we have

α = (�x∈Xx
�x)α(�y∈Y y

�y) = �x∈X �y∈Y x
�xαy�y.

Each relation x�xαy�y is a pfn and x�xαy�y & x�y � α. By the axiom of choice
(AC∗), there is a pfn f : X ⇁ Y such that x�xαy�y & f &c α. Hence we have
x�xαy�y & �fcαf , which proves the converse inclusion α & �fcαf . ��

We now give a relational definition of Peleg lifting for multirelations.

Definition 1. The Peleg lifting β∗ : ℘(Y ) ⇁ ℘(Z) of a relation β : Y ⇁ ℘(Z)
is defined by β∗ = �fcβû�β�f◦, where f◦ = ℘(f(Z) (the Kleisli lifting). �

Proposition 10. Let β, β′ : Y ⇁ ℘(Z) be relations and v & idY .

(a) If β & β′, then β∗ & β′∗.
(b) If β is pfn, then β∗ = û�β�β◦.
(c) If β is pfn, then so is β∗.



Relational Formalisations of Compositions and Liftings of Multirelations 93

(d) β∗ = �fcβf∗.
(e) $β∗% = û�β�.
(f) (vβ)∗ = ûvβ∗.

Proof. (a) Assume β & β′ and f &c β. By the axiom of choice (AC∗) there
exists a pfn f ′ such that f & f ′ &c β

′. Then f = $f%f ′ by 3 (b) and hence

û�β�f◦ = û�β�℘(f(Z)
= û�β�℘($f%f ′(Z) { f = $f%f ′ }
= û�β�℘(f ′(Z) { $f ′% = $β%, 6 (g) }
& û�β′�℘(f ′(Z) { β & β′ }
= û�β′�f ′◦,

which proves the statement.
(b) Let β be a pfn and f &c β. Then f = β is immediate from 3 (a). Hence the

statement is obvious by the definition of Peleg lifting.
(c) is a corollary of (b).
(d) follows from

β∗ = �fcβ û�β�f◦
= �fcβ û�f�f◦ { $f% = $β% }
= �fcβf∗ . { (b) }

(e) follows from

$β∗% = $�fcβû�β�f◦%
= �fcβ$û�β�f◦%
= �fcβ û�β�$f◦% { 2 (e) }
= �fcβ û�β� { f◦ = ℘(f(Y ) : tfn }
= û�β�.

(f) With

ûvû�β�f◦ = û�β�ûvf◦ = û�β�ûv℘(f(Z) = û�β�ûv℘(vf(Z) = û�vβ�(vf)◦,

we have

ûvβ∗ = �fcβ ûvû�β�f◦ = �fcβû�vβ�(vf)◦ & �gcvβ û�vβ�g◦ = (vβ)∗

and
(vβ)∗ = $(vβ)∗%(vβ)∗ { α = $α%α }

= û�vβ�(vβ)∗ { (e) }
& ûvβ∗. { vβ & β, (a) } ��

The following proposition indicates that the singleton map serves as the unit
of Peleg’s composition.

Proposition 11. Let β : Y ⇁ ℘(Z) be a relation and v & idY .

(a) 1Y ûv = v1Y .
(b) 1Y β∗ = β.
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(c) (v1Y )∗ = ûv.
(d) (1Y )∗ = id℘(Y ).

Proof. (a) follows from

1Y ûv = 1Y ((∇℘(Y )Y v � (�
Y ) � id℘(Y ))

= (1Y∇℘(Y )Y v � (�
Y ) � 1Y { 1Y = id@Y : tfn }

= (∇Y Y v � (�
Y ) � 1Y

= ((∇Y Y v � (�
Y )1

�
Y � idY )1Y { (DF) }

= ((∇Y Y v � (�
Y 1

�
Y ) � idY )1Y { 1Y : tfn }

= ((∇Y Y v � id�Y ) � idY )1Y { 1Y (Y = idY }
= (∇Y Y v � idY )1Y { id�

Y = idY }
= v1Y .

(b) By 5, $f%1Y f◦ = f holds since it is clear that $$f%1Y f◦% = $f% and
$f%1Y f◦(Z = $f%1Y (Y f(Z = $f%f(Z = f(Z . So, we have

1Y β∗ = �fcβ1Y û�f�f◦
= �fcβ$f%1Y f◦ { (a) 1Y ûv = v1Y }
= �fcβf
= β. { 9 }

(c) follows from
(v1Y )∗ = ûv℘(v1Y (Y ) { $v1Y % = v }

= ûv℘(v) { 1Y = id@
Y }

= ûv. { 6 (b) }
(d) is a corollary of (c). ��

It is known that Peleg’s composition need not be associative [5]. In the rest of
this paper, we examine associativity more closely. The following properties are
used for it.

Proposition 12. Let f : Y ⇁ ℘(Z) be a pfn.

(a) (v1Y )∗β∗ = (vβ)∗.
(b) v & $f% implies (vf)∗ = ûvf◦ = ûvf∗.

Proof. (a) follows from

(v1Y )∗β∗ = ûvβ∗ { 11 (c) }
= �fcβ ûvû�β�f◦
= �fcβ û�β�ûv(vf)◦ { 6 (c) }
= �fcβ ûv�β�f◦
= (vβ)∗.

(b) Assume v & $f%. Then
(vf)∗ = û�vf�(vf)◦ { 10 (b) }

= ûv(vf)◦ { $vf% = v$f% = v }
= ûvf◦ { 6 (g) ûv℘(v) = ûv }
= ûvû�f�f◦ { ûv & û�f� }
= ûvf∗. ��
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Proposition 13. Let f : Y ⇁ ℘(Z) and g : Z ⇁ ℘(W ) be pfns and γ : Z ⇁
℘(W ) a relation.

(a) fγ∗ = �gcγ$fû�γ�%fg◦.
(b) f∗γ∗ = �gcγ$f∗û�γ�%f◦g◦.
(c) f∗g∗ = $f∗û�g�%f◦g◦.
(d) (fg∗)∗ = û�fû�g��f◦g◦.

Proof. (a) follows from fγ∗ = �gcγfû�γ�g◦ = �gcγ$fû�γ�%fg◦ by 3 (c).
(b) follows from

f∗γ∗ = �gcγf∗û�γ�g◦
= �gcγ$f∗û�γ�%f∗g◦ { 3 (c) fv = $fv%f }
= �gcγ$f∗û�γ�%û�f�f◦g◦
= �gcγ$f∗û�γ�%f◦g◦. { $f∗û�γ�% & $f∗% = û�f� }

(c) is a particular case of (b) when γ is a pfn.
(d) follows from

(fg∗)∗ = ($fû�g�%fg◦)∗ { (a) }
= û�fû�g��(fg◦)◦ { 12 (a) }
= û�fû�g��f◦g◦. { 7 (a) } ��

Proposition 14. Let f : Y ⇁ ℘(Z) be a pfn and v & idZ . Then the identity
$f∗ûv% = û�fûv� holds.

Proof. Set ∇ = ∇℘(Y )℘(Z) for short.

(1) ∇ûv℘(f(Z)
� = (∇ûv � f �)� (�

Y :

∇ûv℘(f(Z)
� = (∇v � (�

Z)℘(f(Z)
� { 6 (d) }

= ∇v � (�
Z℘(f(Z)

� { 4 (e) }
= ∇v � (�

Zf
�(�

Y { ℘ }
= (∇v � (�

Z)� f �(�
Y { 4 (b) }

= ∇ûv � f �(�
Y { 6 (d) }

= (∇ûv � f �)� (�
Y . { 4 (b) }

(2) ∇ûvf � = ∇f � � (∇ûv � f �) :
∇ûvf � & ∇f � � (∇ûvf �f � f �) { α & αβ � β� }

& ∇f � � (∇ûv � f �) { f : pfn }
& (∇ � (∇ûv � f �)f)f � { (DF) }
& ∇ûvf �. { (α� β)β� & α }

By (1) and (2),

$f∗ûv% = û�f� � $℘(f(Z)ûv%
= û�f� � ∇ûv℘(f(Z)

� � id℘(Y )

= (∇f � � (�
Y ) � ((∇ûv � f �)� (�

Y ) � id℘(Y ) { (1) }
= ((∇f � � (∇ûv � f �))� (�

Y ) � id℘(Y ) { 4 (c) }
= (∇ûvf � � (�

Y ) � id℘(Y ) { (2) }
= û�fûv�

holds. This completes the proof. ��
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This is the first property needed to show associativity of Peleg’s composition.

Proposition 15. If f : Y ⇁ ℘(Z) and g : Z ⇁ ℘(W ) are pfns, then f∗g∗ =
(fg∗)∗.

Proof. It follows from

f∗g∗ = $f∗û�g�%f◦g◦ { 13 (a) }
= û�fû�g��f◦g◦ { 14 $f∗v̂% = û�fv̂� }
= (fg∗)∗. { 13 (b) } ��

Thus, for α : X ⇁ ℘(Y ), the associativity (α ∗ f) ∗ g = α ∗ (f ∗ g) holds if
f : Y ⇁ ℘(Z) and g : Z ⇁ ℘(W ) are pfns.

Corollary 1. For relations β : Y ⇁ ℘(Z) and γ : Z ⇁ ℘(W ) the inclusion
β∗γ∗ & (βγ∗)∗ holds.

Proof. It follows from

β∗γ∗ = (�fcβf∗)(�gcγg∗) { 10 (d) }
= �fcβ �gcγ f∗g∗
= �fcβ �gcγ (fg∗)∗ { 15 }
& (βγ∗)∗. { f & β, g & γ } ��

So, we have the inclusion (α ∗ β) ∗ γ & α ∗ (β ∗ γ).
The condition for associativity may be relaxed slightly from 15.

Proposition 16. For a relation β : Y ⇁ ℘(Z) and a pfn g : Z ⇁ ℘(W ) the
identity β∗g∗ = (βg∗)∗ holds.

Proof. As β∗g∗ & (βg∗)∗ by Corollary 1, we need to show the converse inclusion
(βg∗)∗ & β∗g∗. Since (βg∗)∗ = �hcβg∗h∗, it suffices to see that h∗ & β∗g∗ for
each pfn h &c βg∗. Assume that h &c βg∗. By the axiom of choice (AC∗) there
is a pfn f : Y ⇁ ℘(Z) such that f & β � hg�∗ and $f% = $β � hg�∗%. Then the
following holds.
(1) $f% = $h% :

$f% = $β � hg�∗%
= βg∗h� � idY { $α � β% = αβ� � id }
= $βg∗ � h%
= $h%. { h & βg∗ }

(2) h & fg∗ :

h = $h%h
& ff �h { (1) $h% = $f% & ff � }
& fg∗h�h { f & hg�∗ }
& fg∗, { h : pfn }
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(3) h∗ & β∗g∗ :
h∗ & (fg∗)∗ { (2) h & fg∗ }

= f∗g∗ { 15 }
& β∗g∗. { f & β }

This completes the proof. ��
Thus, the associativity (α ∗ β) ∗ g = α ∗ (β ∗ g) holds if g : Z ⇁ ℘(W ) is pfn.

4 Associativity of Peleg’s Composition

Finally we show a more general associative law for Peleg’s composition. The
following notion has been suggested by Tsumagari [15].

Definition 2. A relation γ : Z ⇁ ℘(W ) is called union-closed if $ρ%(ρ(W )@ & γ
for all relations ρ : Z ⇁ ℘(W ) such that ρ & γ. ��
Note that γ : Z ⇁ ℘(W ) is union-closed iff for each a ∈ Z

B 
= ∅ and B ⊆ {B | (a,B) ∈ γ} imply (a,
⋃
B) ∈ γ.

For example, every pfn is union-closed, since the identity $ρ%(ρ(W )@ = ρ
holds for all pfns ρ : Z ⇁ ℘(W ) by $$ρ%(ρ(W )@% = $ρ% and

$ρ%(ρ(W )@(W = $ρ%(ρ(W )@(W = $ρ%ρ(W = ρ(W .

Proposition 17. If a relation γ : Z ⇁ ℘(W ) is union-closed, then for all
relations ρ : Z ⇁ ℘(W ) with ρ & γ there exists a pfn g : Z ⇁ ℘(W ) such
that g &c γ and $ρ%g(W = ρ(W .

Proof. As $ρ%(ρ(W )@ is a pfn, by the axiom of choice (AC∗) there exists a pfn
g such that $ρ%(ρ(W )@ & g and g &c γ. Hence

$ρ%g(W = $ρ%(ρ(W )@(W { $ρ%g = $ρ%(ρ(W )@ }
= $ρ%ρ(W

= ρ(W . { $ρ%ρ = ρ } ��
For tfns f : X → Y , h : X → X , and relations α : X ⇁ Y , β : Y ⇁ Z, the

following interchange law holds:

[( f & α ) ∧ (h & fβ )]↔ [(h & αβ ) ∧ ( f & hβ� � α )].

This interchange law is needed for the proof of the next proposition; and so is
the strict point axiom (PA∗), i.e.

(PA∗) ∀ρ : I ⇁ X. ( ρ = �x ∈̇ ρx ).

Note that (PA∗) implies (PA).
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Proposition 18. Let γ : Z ⇁ ℘(W ) be a relation, and f : Y ⇁ ℘(Z) and h :
Y ⇁ ℘(W ) pfns. If γ is union-closed, h & fγ∗ and $h% = $f%, then h∗ & f∗γ∗.
Proof. For an I-point A : I → ℘(X), set uA = $(A (X)�%. Let B : I → ℘(Y ) be
an I-point (tfn) such that uB & $h%.
(1) ∀y & B(Y ∃gy. ( gy &c γ ) ∧ ( yh = yfgy ◦ ) :
Assume y & B(Y . Then y

�y = $y�% & $(B(Y )
�% = uB & $h% = $f%. This means

that yh and yf are I-points (atoms). Thus

h & fγ∗ → yh & yfγ∗
→ yh & �gcγyfg◦ { g∗ & g◦ }
→ ∃gy. ( gy &c γ ) ∧ ( yh & yfgy ◦ ) { yh : atom }
→ yh = yfgy ◦. { yh, yfgy ◦ : tfn }

(2) ∀z & Bf◦(Z . μz = z(f(Z)
� �B(Y 
= 0IY :

z = z �Bf◦(Z { z & Bf◦(Z }
= z �B(Y f(Z

& (z(f(Z)
� �B(Y )f(Z { (DF) }

= μzf(Z .

So, since z 
= 0IZ , μZ 
= 0IY .
(3) ∃gB. ( gB &c γ ) ∧ (∀z & Bf◦(Z . zgB(W = �yμzzgy(W ) :

Set ρB = �yB�Y
uyfgy. It is trivial that ρB & γ and $ρB% = �yB�Y

uyf$γ%.
ρB = �yB�Y

�zyf�Z
z�zgy { uuf = �zyf�Z

z�z }
= �zBf◦�Z

�yμz z
�zgy. { interchange law }

Hence zρB = �yμzzgy for all z & Bf◦(Z . On the other hand, by 17 we have

∃gB. gB &c γ ∧ ρB(W = $ρB%gB(W .

Hence for all z & Bf◦(Z

zgB(W = z$ρB%gB(W { z�z & $ρB% }
= zρB(W { ρB(W = $ρB%gB(W }
= �yμzzgy(W . { zρB = �yμzzgy }

(4) Bh◦ = Bf◦gB ◦ :

Bh◦(W = B(Y h(W { h◦ = ℘(h(W ) }
= �yB�Y

yh(W { (PA∗) }
= �yB�Y

yfgy ◦(W { (1) }
= �yB�Y

yf(Zgy(W

= �yB�Y
�zyf�Z

zgy(W { (PA∗) }
= �zBf◦�Z

�yμz zgy(W { interchange law }
= �zBf◦�Z

zgB(W { (3) }
= Bf◦(ZgB(W { (PA∗) }
= Bf◦gB ◦(W .
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Hence Bh◦ = Bf◦gB ◦, since both sides of the last identity are tfns.
(5) h∗ & f∗γ∗ :

h∗ = $h∗%h◦
=
⊔

uB�h�B
�Bh◦ { $h∗% =

⊔
uB�h�B

�B }
=
⊔

uB�h�B
�Bf◦gB ◦ { (4) }

& ⊔gcγ

⊔
uB�h�B

�Bf◦g◦
=
⊔

gcγ
$h∗%f◦g◦ { $h∗% =

⊔
uB�h�B

�B }
=
⊔

gcγ
$f∗$γ∗%%f◦g◦ { $h∗% = $f∗$γ∗%% }

= f∗γ∗. { 13 (b) } ��
Assume that h &c βγ∗ for relations β : Y ⇁ ℘(Z) and γ : Z ⇁ ℘(W ). By (AC∗),
there is a pfn f : Y ⇁ ℘(Z) such that f & β � hγ�∗ and $f% = $β � hγ�∗%. Then,
by similar calculation as for (1) and (2) in the proof of 16, we have $h% = $f%
and h & fγ∗. Thus, by 18, h∗ & β∗γ∗ whenever γ is union-closed. Moreover, this
implies (βγ∗)∗ = �hcβγ∗h∗ & �fcβf∗γ∗ = (�fcβf∗)γ∗ = β∗γ∗. Therefore,
together with Corollary 1, we have β∗γ∗ = (βγ∗)∗ if γ is union-closed.

5 Conclusion

We have studied three kinds of composition through suitable liftings using rela-
tional calculi. We have introduced relational definitions of the Kleisli and Peleg
lifting. Then, we have shown that Kleisli’s composition is associative, and that
the singleton map serves the unit of Peleg’s composition. We have also shown
some basic properties of Parikh’s composition without restriction to up-closed
multirelations, in contrast to Martin and Curtis [9]. It is known that Peleg’s
composition need not be associative [5]. Introducing the notion of union-closed
multirelations, we have shown that Peleg’s composition becomes associative if
the third argument is union-closed. It is obvious that the singleton map is union-
closed. Thus, the set of union-closed multirelations forms a category together
with Peleg’s composition.

The main contribution of this work is the translation from complex non-
standard reasoning to well known tools, namely

– reasoning with a complex higher-order set-theoretic definition or a non-
associative operation of sequential composition can be replaced by standard
relational reasoning, and

– categories of multirelations can be defined and standard category-theoretic
tools apply.

This paper has provided all notions and discussions in relational style. How-
ever, we mentioned neither allegories [3] nor Dedekind categories [10], which are
categorical frameworks suitable for relations, because of the use of the strict
point axiom (PA∗) which makes a Dedekind category (equivalently, a locally
complete division allegory) isomorphic to some full subcategory of the category
Rel of sets and relations [4].



100 H. Furusawa et al.

Acknowledgement. The presentation of this article has benefitted from the
comments of reviewers. The authors acknowledge support by the Royal Society
and JSPS KAKENHI grant number 25330016 for this research. They are grateful
to Koki Nishizawa and Toshinori Takai for enlightening discussions. The fourth
author would like to thank Ichiro Hasuo and members of his group at the Uni-
versity of Tokyo for their generous support.

References

1. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer (1998)

2. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

3. Freyd, P., Scedrov, A.: Categories, allegories. North-Holland, Amsterdam (1990)
4. Furusawa, H., Kawahara, Y.: Point axioms and related conditions in Dedekind

categories. J. Log. Algebr. Meth. Program 84(3), 359–376 (2015)
5. Furusawa, H., Struth, G.: Concurrent Dynamic Algebra. ACM Transactions on

Computational Logic (in Press)
6. Furusawa, H., Struth, G.: Taming Multirelations. CoRR abs/1501.05147 (2015)
7. Goldblatt, R.: Parallel Action: Concurrent Dynamic Logic with Independent

Modalities. Studia Logica 51(3/4), 551–578 (1992)
8. Mac Lane, S.: Categories for the working mathematician. Springer (1971)
9. Martin, C.E., Curtis, S.A.: The algebra of multirelations. Mathematical Structures

in Computer Science 23(3), 635–674 (2013)
10. Olivier, J.-P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories
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Abstract. If I��S � denotes the set of (multiplicative) idempotent elements of
a commutative semiring S , then a matrix over S is idempotent with respect to
the Hadamard product iff all its coefficients are in I��S �. Since the collection
of idempotent matrices can be seen as an embedded structure of binary relations
inside the category of matrices over S , we are interested in the relationship be-
tween the two structures. In particular, we are interested under which properties
the idempotent matrices form a (distributive) allegory.

1 Introduction

Matrices or arrays have been used for centuries in order to solve simultaneous equa-
tions. In 1858 Arthur Cayley [4] started to see matrices themselves as mathematical
objects by defining operations such as addition and multiplication for matrices and in-
vestigating their basic properties. On the other hand, matrices have also been used for
representing certain algebraic structures. For example, it is well known that linear maps
between (finite dimensional) vector spaces can be represented by matrices with coef-
ficients from the underlying field. A generalization of this is to replace the field by a
ring or even a commutative semiring. Another example with a long tradition is the ma-
trix representation of (finite) binary relations [2,18,19]. In fact, it was shown in [21,22]
that any suitable category of relations can be represented by matrices. In particular, set-
theoretic relations are Boolean matrices, and its generalization to fuzzy resp. L-fuzzy
relations leads to matrices with coefficients from the unit interval �0 . . .1� of the real
numbers or the lattice L, respectively. It is worth noting that the truth values as well as
the unit interval and distributive lattices in general are (commutative and idempotent)
semirings. This indicates that matrices over semirings generalize both linear algebra and
categories of relations. Because of this common generalization the two theories share a
number of similar properties. Furthermore, a matrix over a semiring is idempotent with

Æ The author gratefully acknowledges support from the CAPES Foundation, Ministry of Educ-
tion of Brazil, Brasilia - DF. Zip Code 70.040-020.

ÆÆ The author gratefully acknowledges support from the Natural Sciences and Engineering Re-
search Council of Canada.

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 101–118, 2015.
DOI: 10.1007/978-3-319-24704-5_7



102 D. Killingbeck, M.S. Teixeira, and M. Winter

respect to the Hadamard product iff all its coefficients are idempotent. This indicates
that relations can be identified as the idempotent matrices among all matrices over the
semiring.

Relations can be used to model and verify qualitative properties of a problem at
hand. For example, relations are widely used to reason about graphs and their prop-
erties such as bipartiteness or the existence of Hamiltonian cycles or kernels. On the
other hand, linear algebra can be used to represent quantitative properties of the prob-
lem. For example, a matrix may describe the probability of a failure of each connection
in an interconnected network. A theory that is capable of handling both aspects, i.e.,
both kinds of matrices, would be very useful for reasoning and software development
in this context. However, the operations of a semiring do not necessarily allow to de-
fine the basic relation-algebraic operations such as relational composition and join on
idempotent matrices. In this paper we are interested in semirings so that the collection
of idempotent matrices actually forms a distributive allegory. In addition, we will study
some basic properties of the operations involved.

The remainder of the paper is organized as follows. In Section 2 we recall some basic
definitions and properties from semirings, lattices and allegories. In order to define the
join and composition of relations we introduce sup-semirings in Section 3. We provide
two different but equivalent approaches to these structures. Furthermore, we investigate
some basic properties of sup-semirings and matrices over sup-semirings. In particular,
we study the relationship between relational sums and biproducts with respect to the
linear operations.

2 Mathematical Preliminaries

In this section we want to recall some basic definitions and properties of semirings,
lattices and allegories. For more details we refer to [3,6,7,9].

Definition 1. A structure �S ,�, �, 0, 1� is called a semiring iff

1. �S ,�, 0� is a commutative monoid, i.e., we have
(a) x � �y� z� 	 �x � y� � z for all x, y, z 
 S , (Associativity)
(b) x � 0 	 0� x 	 x for all x 
 S , (Identity Law)
(c) x � y 	 y � x for all x, y 
 S . (Commutativity)

2. �S , �, 1� is a monoid, i.e., we have
(a) x � �y � z� 	 �x � y� � z for all x, y, z 
 S , (Associativity)
(b) x � 1 	 1 � x 	 x for all x 
 S . (Identity Law)

3. Multiplication left- and right-distributes over addition, i.e., we have
(a) x � �y� z� 	 �x � y� � �x � z� for all x, y, z 
 S , (Left Distributivity)
(b) �x � y� � z 	 �x � z� � �y � z� for all x, y, z 
 S . (Right Distributivity)

4. Zero is an annihilator for multiplication, i.e., we have
(a) x � 0 	 0 � x 	 0 for all x 
 S . (Annihilator Law)

A semiring is called commutative if � is commutative, i.e., id we have x � y 	 y � x for
all x, y 
 S .
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We assume that�binds tighter than�, and we will use associativity and commutativity
of the operations without mentioning. Furthermore, we will use the abbreviation x2 for
x � x. An element x 
 D is called (multiplicative) idempotent iff x2 	 x. We will denote
the set of all (multiplicative) idempotent elements of S by I��S � (or I�S � for short).

Lattices and semilattices are defined as usual. Such a structure is called bounded if
it has a least and a greatest element. Notice that a lattice is a commutative semiring
in which addition and multiplication are both idempotent. This can be generalized for
commutative semirings as follows.

Lemma 1. Let �S ,�, �, 0, 1� be a commutative semiring. Then �I�S �, �, 0, 1� is a semi-
lattice with least element 0 and greatest element 1.

Proof. First of all, I�S � is closed under � because the commutativity of � immediately
implies �x � y� � �x � y� 	 x2 � y2 	 x � y for all x, y 
 I�S �. The order in I�S � is given
by x � y iff x � y 	 x so that x � 1 	 x and 0 � x 	 0 for all x shows that 0 and 1 are
the smallest resp. greatest element in I�S �. �

A common approach to relations is based on allegories. These categories generalize
the category of binary relations between sets. We will write R : A � B to indicate that
a morphism R of a category R has source A and target B and we will use R�A, B� for
the collection of all such morphisms. Composition is denoted by ;, which has to be read
from left to right. The identity morphism on A is written as IA.

Definition 2. An allegory R is a category satisfying the following:

1. For all objects A and B the class R�A, B� is a semilattice. Meet and the induced
ordering are denoted by �,�, respectively. The elements in R�A, B� are called re-
lations.

2. There is a monotone operation � (called converse) such that for all relations Q :
A � B and S : B � C the following holds:

�Q; S �� 	 S �; Q� and �Q��� 	 Q.

3. For all relations Q : A � B and R, S : B � C we have Q; �R� S � � Q; R�Q; S .
4. For all relations Q : A � B and R : B � C and S : A � C the modular law

Q; R� S � Q; �R� Q�; S � holds.

If R�A, B� are distributive lattices with join  and least element �AB and we have

5. Q;�BC 	 �AC for all relations Q : A � B,
6. Q; �R S � 	 Q; R Q; S for all relations Q : A � B and R, S : B � C,

then R is called a distributive allegory.

In linear algebra as well as in the theory of relations biproducts are essential in order
to combine matrices in an abstract manner [12,15,19,20]. Different (but isomorphic)
versions of biproducts can even lead to different algorithms computing certain aspects
of matrices [12]. They are also essential in representing abstract categories by categories
of matrices [21,22].
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In a category with a zero object, i.e., an object that is initial and terminal, a biproduct
of two objects A and B is an object that is simultaneously a product and a coproduct
of A and B. If every hom-set of the category is a commutative monoid, then biproducts
can be defined equationally as follows.

Definition 3. Let C be a category with a zero object so that every hom-set C�A, B� has
� and �AB forming a commutative monoid. Furthermore, assume that composition of
morphisms is bilinear, i.e., we have f ; �g� h� 	 f ; g� f ; h and �g� h�; k 	 g; k� h; k
for all f : A � B and g, h : B � C and k : C � D. Then an object A�B together with
morphisms π : A� B � A and ρ : A � B � B and ι : A � A� B and κ : B � A � B
is called a biproduct of A and B iff

ι; π 	 IA, κ; ρ 	 IB, ι; ρ 	 �AB, κ; π 	 �BA, π; ι� ρ; κ 	 IA�B.

Notice that a relational sum [19,20] is a biproduct with respect to  where π 	 ι�
and ρ 	 κ�.

2.1 Matrices over Semirings

In linear algebra matrices with coefficients from a field correspond to linear maps be-
tween the corresponding vector spaces. In a more general approach the field is replaced
by a semiring. This leads to semiring modules and linear maps. In either case we ob-
tain a commutative monoid structure on the set of matrices with equal size induced by
the addition of the semiring. We denote this operation also by �, i.e., if M 	 �ai j�mn

denotes a matrix of size m � n with coefficients ai j from S , then we define

�ai j�mn � �bi j�mn 	 �ai j � bi j�mn

and we have

�M � N� � P 	 M � �N � P�, M � N 	 N � M, M � � 	 �� M 	 M,

where � 	 �0�mn is the matrix with 0’s everywhere. Furthermore, if two finite matrices
are of appropriate size, i.e., M 	 �ai j�mn and N 	 �b jk�np, then matrix multiplication
can be defined as usual by

�ai j�mn�b jk�np 	 �
n�

j�1

ai j � b jk�mp.

Matrix multiplication together with the identity matrix forms a category. Furthermore,
we have M� 	 � 	 �M and matrix multiplication is bilinear, i.e., we have

M�N � P� 	 MN � MP, �N � P�Q 	 NQ � PQ.

Last but not least, we may also define the converse (or transpose) of a matrix and the
Hadamard product of matrices of equal size by

�ai j��mn 	 �a ji�nm, �ai j�mn � �bi j�mn 	 �ai j � bi j�mn.

Converse distributes over � and we have �M � N�� 	 N� � M�. Similar to the sum of
matrices, the Hadamard product inherits its properties directly from the multiplication
of S . If S is a commutative semiring, then so are the matrices of size m�n with respect
to the matrix sum, the Hadamard product, � and � 	 �1�mn.
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The idempotent matrices (with respect to �) are the matrices where every coefficient
is from I�S �. Therefore, these matrices form a semilattice with least element � and
greatest element �. The following example provides a justification for calling idempo-
tent matrices relations.

Example 1. Consider the matrices over the field of real numbers R. The idempotent
matrices are exactly those matrices that only contain 0’s and 1’s. If we interpret 0 as
false and 1 as true, these matrices can be seen as binary relations. For example, consider
the following labeled graph and the following two 4� 4 matrices:

1
π

��
21��

1
2		��

��
��
�

3

e�2

��

�
2
�� 4

�
���

0 π 0 0
1 0 1

2 0
e�2 0 0

�
2

0 0 0 0

�
���

�
��

0 1 0 0
1 0 1 0
1 0 0 1
0 0 0 0

�
��

Both matrices can be seen as matrices on the set �1, 2, 3, 4�. Each row (column) refers
to the element given by the row (column) index. An entry in the matrix represents the
connection between the elements in the graph. For example, the π in Row 1 and Column
2 of the first matrix indicates that there is an edge labeled π from 1 to 2 in the graph. A
0 indicates that there is no edge between the corresponding nodes, e.g., the 0 in Row 3
and Column 2 indicates that there is no edge from 3 to 2. The second matrix is idempo-
tent, and, hence, represents a relation on the set �1, 2, 3, 4�. This relation represents the
corresponding unlabeled graph, i.e., the 1 in Row 1 and Column 2 indicates that there
is an edge between 1 and 2 and the 0 in Row 3 and Column 2 indicates that there is no
edge from 3 to 2. The Hadamard product for relations computes the meet of relations.
In this example, relations actually form a Boolean algebra. However, notice that the join
of matrices is not induced by any semiring operation or property. If we denote by the
maximum operation on the set �0, 1�, we do have �xy�� x�y 	 x�y for x, y 
 �0, 1�
so that we can define x y 	 �x� y� � x � y because of the additive group structure of
R. This is not available for arbitrary semirings.

The first matrix is a matrix representation of the labeled graph. The second matrix
represents the graph without labels as a relation, i.e., we may obtain the second matrix
from the first by only considering connections and ignoring labels. With other words,
the qualitative information given by the labels is replaced by the simple (quantitative)
connectivity information.

3 Sup-Semirings

In this section we want to investigate the relationship between arbitrary and idempotent
elements of a semiring. In addition, we are interested under which circumstances the
idempotent elements form a distributive lattice.

3.1 Flattening

We are interested in relating arbitrary matrices to their corresponding relation similarly
to the example in the previous section. Our approach first uses a flattening operation on
the semiring mapping arbitrary elements to idempotent elements.
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Definition 4. Let �S ,�, �, 0, 1� be a commutative semiring. An operation �.�� is called
a flattening operation iff

1. x� � x� 	 x� for all x 
 S ,
2. x � z 	 x iff x� � z 	 x� for all z 
 I�S �.

The right-hand side of (2) in the definition above is equivalent to x� � z since x�, z 

I�S � and I�S � is a semilattice. Therefore, by definition the operation �.�� assigns to an
x 
 S the smallest idempotent element z so that x � z 	 x, i.e., the smallest idempotent
element that keeps x multiplicatively invariant.

Lemma 2. Let �.�� be a flattening operation. Then we have:

1. x� 	 x iff x 
 I�S �.
2. x� 	 x�.

Proof. 1. If x� 	 x, then we have x � x 	 x� � x� 	 x� 	 x, i.e., x 
 I�S �. Conversely,
from x � x 	 x we get x� � x 	 x�. Similarly, x� � x� 	 x� implies x � x� 	 x since
x� 
 I�S �. We conclude x� 	 x� � x 	 x � x� 	 x.

2. This follows immediately from (1) since x� 
 I�S �. �
In a lot of examples the set of idempotent elements only consists of 0 and 1 (see also

Lemma 4(3)). In this case we can use the canonical flattening operation.

Lemma 3. If I�S � 	 �0, 1�, then the canonical flattening operation

x� :	
�

1 iff x � 0,
0 iff x 	 0,

is the only flattening operation.

Proof. First we show that the canonical flattening operation is a flattening operation.
The first property is obviously satisfied. Now suppose z 
 I�S � 	 �0, 1� and compute

x � z 	 x �� z 	 1 or �z 	 0 and x 	 0�
�� x� � z 	 x�,

verifying the second property. From (2) of the definition of a flattening operation we
obtain by using z 	 0 that x 	 0 iff x� 	 0 for every flattening operation. Since
I�S � 	 �0, 1� this shows that there is only one flattening operation. �
Example 2. In this example we want to consider the Bayesian, possibilistic or Viterbi
semiring S 	 ��0, 1�,max, �, 0, 1� [7,9]. This semiring can be used to model proba-
bilities in networks. Notice that this semiring is isomorphic to the tropical semiring
�R	 � ���,min,�,�, 0� via the negative logarithm function. Furthermore, we have
I�S � 	 �0, 1� so that we can use the canonical flattening operation on S . Let us as-
sume we want to investigate the hypercube network in which every connection has
a non-failure rate of 90%, i.e., with a probability of 90% a communication between
two adjacent nodes in the network is successful. This situation can be modeled using
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matrices over the possibilistic semiring. For example, the 3-dimensional hypercube is
represented by the following matrices:

7 8

3

����
4

����

5 6

1

����
2

����

�
�����������

0 9
10

9
10 0 9

10 0 0 0
9
10 0 0 9

10 0 9
10 0 0

9
10 0 0 9

10 0 0 9
10 0

0 9
10

9
10 0 0 0 0 9

10
9
10 0 0 0 0 9

10
9
10 0

0 9
10 0 0 9

10 0 0 9
10

0 0 9
10 0 9

10 0 0 9
10

0 0 0 9
10 0 9

10
9
10 0

�
�����������

�
��������

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

�
��������

As in the previous example the idempotent matrix represents the basic structure of the
network ignoring all probabilities, i.e., the second matrix can be obtained from the first
by applying the flattening operation �.�� to each of its elements. In Example 4 we will
investigate this example even further.

It is worth mentioning that there is a relationship between flattening operations and
(dual) discriminator algebras. Recall that a term t resp. d in an algebra is discriminator
resp. dual discriminator term if the following is satisfied for all x, y, u:

t�x, y, u� 	
�

u iff x 	 y
x otherwise

d�x, y, u� 	
�

x iff x 	 y
u otherwise

(discriminator) (dual discriminator)

Note that a dual discriminator can always be obtained from a discriminator but not
necessarily vice versa [8]. The canonical flattening operation can easily be defined using
the dual discriminator, i.e., x� 	 d�x, 0, 1�. Using a discriminator one can define a so-
called switching term s�x, y, u, v� 	 t�t�x, y, u�, t�x, y, v�, v� that satisfies

s�x, y, u, v� 	
�

u iff x 	 y
v otherwise

If I�S � is a finite linear order, then the switching term can be used to define a flattening
operation. We want to illustrate this by an example. Suppose I�D� is the linear ordering
0 � a � b � c � 1 and s is a switching term for D. Then we define

x� 	 s�x � 0, x, 0, s�x � a, x, a, s�x � b, x, b, s�x � c, x, c, 1����.
Suppose x 
 D so that the smallest idempotent element z with x � z 	 x is b, i.e.,
we should obtain x� 	 b. Notice that for every idempotent element b � y we have
x 	 x � b 	 x � b � y 	 x � y. This implies

x� 	 s�x � 0, x, 0, s�x � a, x, a, s�x � b, x, b, s�x � c, x, c, 1����
	 s�x � 0, x, 0, s�x � a, x, a, s�x � b, x, b, c��� b � c

	 s�x � 0, x, 0, s�x � a, x, a, b�� b � b

	 s�x � 0, x, 0, b� x � a � x

	 b. x � 0
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A similar definition can be used for semirings with if-then-else [10]. However, a gen-
eral definition without requiring any additional properties seems not obvious. Further
investigation into this relationship is left for future work.

3.2 Distributivity

We are now interested under which conditions I�S � is a distributive lattice. The join
operation on I�S �, if it exists, is denoted by �. Notice that � can only be applied to
elements from I�S � in contrast to the additional operation  of a sup-semiring (see
Section 3.3) which can be applied to all elements and coincides with � on I�S �.
Lemma 4. Suppose �S ,�, �, 0, 1� is a commutative semiring.

1. If S is a ring, i.e., a semiring with additive inverses, then I�S � is a distributive
lattice with x � y 	 x � y� x � y.

2. If � satisfies the absorption law x � x � y 	 x for all x, y 
 S , then I�S � is a
distributive lattice with x � y 	 x� y.

3. If S is multiplicative cancelative, i.e., x � y 	 x � z implies y 	 z for every x � 0,
then I�S � 	 �0, 1� is the Boolean algebra with two elements.

Proof. 1. Suppose x, y 
 I�S �. Then we have

�x � y�2 	 �x � y� x � y�2

	 x2 � x � y� x2 � y� x � y� y2 � x � y2

� x2 � y� x � y2 � x2 � y2 distributivity

	 x � x � y� x � y � x � y � y� x � y

� x � y � x � y � x � y x, y idempotent

	 x � y� x � y

	 x � y,

i.e., x � y 
 I�S �. The operation � is commutative because � and � are. Further-
more, associativity of � follows from

�x � y� � z 	 �x � y� x � y� � z� �x � y� x � y� � z

	 x� y � z� x � y� x � z� y � z� x � y � z distributivity

	 x� y � z� y � z� x � y� x � z� x � y � z

	 x� �y � z� y � z� � x � �y� z� y � z� distributivity

	 x� �y � z�.
The two absorption laws are shown by the computation

x � x � y 	 x � x � y � x2 � y

	 x � x � y � x � y x idempotent

	 x,

x � �x � y� 	 x � �x � y � x � y�
	 x2 � x � y � x2 � y distributivity
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	 x � x � y� x � y x idempotent

	 x.

Finally, distributivity follows from

x � �y � z� 	 x � �y � z� y � z�
	 x � y� x � z� x � y � z distributivity

	 x � y� x � z� x � y � x � z x idempotent

	 x � y� x � z.

2. If � satisfies the first absorption law, then only the second absorption law remains
to be shown. We have

x � �x � y� 	 x2 � x � y distributivity

	 x � x � y x idempotent

	 x. assumption

3. Assume that 0 � x 
 I�S �. Then x � x 	 x 	 x � 1 so that x 	 1 follows since x is
cancelable. �

The second case of the previous lemma is not an unusual situation. For example, the
possibilitic semiring, and, hence, the tropical as well as the arctic semiring [7,9], satisfy
the absorption law.

3.3 Sup-Semirings

In this section we want to investigate an alternative approach to the combination of
a join operation on idempotent elements and a flattening operation. Instead, we are
assuming another operation that is defined on the semiring.

Definition 5. A structure �D,�, �,, 0, 1� is called a sup-semiring iff

1. �D,�, �, 0, 1� is a commutative semiring.
2. �D,� is a commutative semigroup, i.e., we have

(a) x  �y z� 	 �x  y�  z for all x, y, z 
 D, (Associativity)
(b) x  y 	 y  x for all x, y 
 D, (Commutativity)

3. �x  y� � �x  y� 	 x  y for all x, y 
 D, (Relative Idempotency)
4. x � �x  y� 	 x for all x, y 
 D, (Absorption)
5. if x � x 	 x, then x  �x � y� 	 x for all x, y 
 D, (Relative Absorption)
6. if x � x 	 x and y � y 	 y and z � z 	 z, then x � �y  z� 	 x � y  x � z for all

x, y, z 
 D. (Relative Distributivity)

In the next lemma we have summarized some basic properties of sup-semirings.

Lemma 5. 1. The following two conditions are equivalent:
(a) x � y 	 x and y idempotent,
(b) x  y 	 y.
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2. x is idempotent iff x x 	 x.
3. x  z 	 z and y z 	 z implies z � �x  y� 	 x  y.
4. x  0 	 x  x.
5. 0 0 	 0 and x 1 	 1.
6. x  y 	 �x  0�  �y  0�.

Proof. 1. Assume x � y 	 x and y2 	 y. Then we have

y 	 y y � x rel. absorption

	 x  y.

Conversely, assume x  y 	 y. Then we compute

x 	 x � �x  y� absorption

	 x � y,

y 	 y � �x  y� absorption

	 y � y.

2. This is a special case of (1) for x 	 y.
3. The assumptions immediately imply z �x  y� 	 z so that we obtain

x  y 	 �x  y� � �z �x  y�� absorption

	 �x  y� � z.

4. From �x0�2 	 x0 by relative idempotency and x��x0� 	 x by absorption we
obtain x�x0� 	 x0 using (1). From (3) we conclude �x0���xx� 	 xx.
On the other hand, we have �x  x�2 	 x  x by relative idempotency. From
absorption we obtain x � �x  x� 	 x and, hence, x  �x  x� 	 x  x by (1). In
addition, 0 � �x x� 	 0 implies 0 �x x� 	 x x by using (1) again. From (3)
we get �x x� � �x 0� 	 x 0, i.e., together we have x x 	 �x 0� � �x x� 	
�x  x� � �x  0� 	 x  0.

5. From 0�0 	 0 we obtain 00 	 0 by (2). Since 1�1 	 1 we get 1 	 1�1� x� 	
x  1 using relative absorption.

6. x  y is idempotent by rel. idempotency. We obtain

x  y 	 �x  y�  0 by (2) and (4)

	 �x  y�  �0  0� by (5)

	 �x  0�  �y  0�. associativity and commutativity �
A sup-semiring induces a flattening operation if we define x� 	 x  0.

Theorem 1. Let �D,�, �,, 0, 1� be a sup-semiring. Then the idempotent elements,
i.e., the structure �I�D�, �,, 0, 1�, form a distributive lattice. Furthermore, x� 	 x 0
is a flattening operation for �D,�, �, 0, 1�.
Proof. First we want to show that I�D� is a distributive lattice. This follows immedi-
ately from axioms absorption, rel. absorption and rel. distributivity. It remains to show
that x� is aflattening operation. First of all, by rel. idempotency x� 
 I�D�. Furthermore,
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assume z 
 I�D� with x � z 	 x. Then Lemma 5(1) implies x  z 	 z. We conclude
�x  x� � z 	 x  x from Lemma 5(3), and, hence, x� � z 	 x� because x� 	 x  x
by Lemma 5(4). Conversely, assume z 
 I�D� with x� � z 	 x�. Then Lemma 5(1)
implies x�  z 	 z. Since z 
 I�S � we have z� 	 z by Lemma 5(2&4). We obtain
x z 	 x� z� 	 x� z 	 z by applying Lemma 5(6). Using Lemma 5(1) again verifies
x � z 	 x. �

In the rest of the paper we will use the abbreviation x� 	 x  0 for every sup-
semring. On the other hand, any sup-semiring is generated by a flattening operation if
the idempotent elements form a distributive lattice.

Theorem 2. Let �S ,�, �, 0, 1� be a commutative semiring with a flattening op-
eration. Furthermore, assume that �I�S �,�, �, 0, 1� is a distributive lattice. Then
�S ,�, �,, 0, 1�with x  y 	 x� � y� is a sup-semiring.

Proof. First of all, we have x  y 
 I�S � by definition. This immediately implies rel.
idempotency. Consider the computation

x� � �x  y� 	 x� � �x� � y��
	 x�. I�S � lattice

Since x  y 
 I�S � and �.�� is a flattening operation we conclude x � �x  y� 	 x. Now
suppose x2 	 x, i.e., x 
 I�S �. Then from �x � y� � x 	 x2 � y 	 x � y and the fact that
�.�� is a flattening operation we obtain �x � y�� � x 	 �x � y��. This implies

x 	 x � �x  x � y� absorption

	 x � �x� � �x � y���
	 x � x� � x � �x � y�� I�S � distributive lattice

	 x� � �x � y�� see above

	 x  x � y.

Finally, rel. distributivity follows from the distributivity of I�S �. �
Two of the axioms of a sup-semiring are implications. One of them, the rel. distribu-

tivity, can be replaced by an equation.

Lemma 6. In the context of the other axioms in Def. 5 rel. distributivity is equivalent
to

(*) x� � �y z� 	 x� � y�  x� � z�.

Proof. First we show that (*) is valid. Since x� is idempotent by rel. idempotency we
get

x� � �y z� 	 x� � �y�  z�� Lemma 5(6)

	 x� � y�  x� � z�. rel. distributivity

Now, assume that all other axioms and (*) are valid. If x, y and z are idempotent, then
x� 	 x, y� 	 y and z� 	 z by Lemma 5(2&4). This immediately implies rel. distributiv-
ity. �
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The axiom of rel. absorption cannot be replaced by an equation as the following
lemma shows.

Lemma 7. The theory of sup-semirings is not equational, i.e., the class of sup-semirings
does not form a variety.

Proof. We show that the class of sup-semirings is not a variety, and, hence, not definable
by equations, by showing that the class is not closed under forming quotients. Consider
the semiring �N,�, �, 0, 1�. This semiring is multiplicative cancellative so that I�N� 	
�0, 1� follows from Lemma 4(3). The operations

x  y :	
�

0, iff x 	 y 	 0,
1, otherwise.

makes N into a sup-semiring. Let� be the equivalence relation that has the three equiv-
alence classes �0� 	 �0�, �1� 	 �1� and �n� 	 �n 
 N � n � 1�. It is easy to see that �
is a congruence and that the induced operations on the equivalence classes are

� �0� �1� �n�
�0� �0� �1� �n�
�1� �1� �n� �n�
�n� �n� �n� �n�

� �0� �1� �n�
�0� �0� �0� �0�
�1� �0� �1� �n�
�n� �0� �n� �n�

 �0� �1� �n�
�0� �0� �1� �1�
�1� �1� �1� �1�
�n� �1� �1� �1�

Now, �n� is idempotent but �n�  �n� � �0� 	 �n�  �0� 	 �1� � �n�, i.e., rel. absorption
is not true. �

In Lemma 4(1) we have shown that the join operation on idempotent elements is
given by x � y 	 x � y � x � y if the semiring has additive inverses, i.e., is a ring. The
next lemma (for n 	 2) shows that there is a similar relationship between  and � in
every sup-semiring if we require x � y 	 0 in addition.

Lemma 8. Let �D,�, �,, 0, 1� be a sup-semiring and n � 2. If xi is idempotent for

i 
 �1, . . . , n� and xi � x j 	 0 for all i � j, then
n	

i�1
xi 	

n

i�1

xi.

Proof. We show this by induction on n. For n 	 2 we have to show that x � y 	 x  y
for all idempotent elements x, y with x � y 	 0. First verify that x � y is idempotent by
computing

�x � y� � �x � y� 	 �x � y� � x � �x � y� � y distributivity

	 x2 � y � x� x � y� y2 distributivity

	 x � y. assumptions

This implies

x � y 	 x � �x  y� � y � �x  y� absorption

	 �x � y� � �x  y� distributivity

	 �x � y� � x �x � y� � y rel. distributivity

	 �x2 � y � x�  �x � y� y2� distributivity

	 x  y. assumptions
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For the induction step we first compute�
n�

i�1

xi


� xn	1 	

n�
i�1

xi � xn	1 rel. distributivity and xi idempotent

	 0. xi � xn	1 	 0

This implies

n	1�
i�1

xi 	
�

n�
i�1

xi


� xn	1

	
�

n�
i�1

xi


� xn	1 induction hypothesis

	
�

n�
i�1

xi


 xn	1 case n 	 2 and property above

	
n	1�
i�1

xi. �

3.4 Matrices over Sup-Semirings

As discussed in Section 2.1 the matrices over a semiring form a category. Furthermore,
the collection of idempotent matrices with respect to the Hadamard product forms a
semilattice. The additional operation  of a sup-semiring gives rise to two new op-
erations on matrices. In order to define these operations we first have to define  for
an arbitrary finite number of parameters. Since  does not have a neutral element this
needs clarification if the number of arguments of



is zero or one. Notice that this

clarification was not necessary for Lemma 8 since



has at least two arguments in the
property mentioned there. We define

0�
i�1

xi 	 0, and
n	1�
i�1

xi 	
�

n�
i�1

xi


 xn	1 for n � 0.

Notice that the definition above implies
1


i�1
xi 	 x1  0 	 x�1. The main reason for this

definition is that it generalizes Lemma 5(6) to
n


i�1
xi 	

n

i�1

x�i for arbitrary n � 0. Now,

we define

�ai j�mn  �bi j�mn 	 �ai j  bi j�mn, �ai j�mn; �b jk�np 	 �
n�

j�1

ai j � b jk�mp.

Notice that �a�; �b� 	 �a � b  0� 	 ��a � b��� 	 �a� � �b�  �0� 	 ��a� � �b��� for
1 � 1 matrices due to our definition regarding



. With these operations the collection
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of relations forms a distributive allegory. Within this substructure all regular definitions
for and properties of relations can be used. For example, if Q is a relation, then Q is
said to be univalent iff Q�; Q � I. However, notice that the composition ; is not even
associative if we consider all matrices. Similarly, the identity matrix is the identity for ;
and relations but not if we consider all matrices. The following example demonstrates
these properties.

Example 3. Consider the set A 	 �0, 1, 2, 3� and the operations:

� 0 1 2 3
0 0 1 2 3
1 1 1 1 1
2 2 1 2 2
3 3 1 2 3

� 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 0

 0 1 2 3
0 0 1 2 1
1 1 1 1 1
2 2 1 2 1
3 1 1 1 1

This structure is a sup-semiring and we have

�2 � 3�� 	 0� 	 0 � 2 	 2 � 1 	 2� � 3�.

This immediately implies ��2�; �3��; �1� 	 ��2 � 3���; �1� 	 �0�; �1� 	 �0 � 1� 	 �0� and
�2�; ��3�; �1�� 	 �2�; ��3 � 1��� 	 �2�; �3�� 	 �2 � 1� 	 �2�, i.e., composition of matrices
is not associative. Furthermore, we have�

3 0
0 0

�
;

�
1 0
0 1

�
	
�

3 � 1 0 � 0 3 � 0 0 � 1
0 � 1 0 � 0 0 � 0 0 � 1

�
	
�

1 0
0 0

�
.

The previous example indicates that composing a matrix with the identity performs
a flattening to each entry of the matrix. The following lemma verifies this property in
general.

Lemma 9. Suppose Q is a matrix over a sup-semiring. Then we have Q; I 	 I; Q 	 Q�

where Q� 	 Q �0�.

Proof. We only show Q; I 	 Q�. The second equation follows analogously. From the
computation

�Q; I�ik 	
n�

j�1

Qi j � I jk 	 Qik � 1 0 definition I matrix

	 Qik  0 	 Q�
ik

we immediately conclude Q; I 	 Q�. �

Lemma 8 shows that � and  coincide for idempotent and disjoint elements, i.e., if
x, y are idempotent and x�y 	 0. A similar result can be shown for matrix multiplication
and the composition operation ;.

Theorem 3. Suppose Q,R are relations. If Q is univalent, then QR 	 Q; R.
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Proof. Since all coefficients from Q and R are idempotent, and, hence, elements of the
distributive lattice I�D�, we obtain for j1 � j2

�Qi j1 � R j1k� � �Qi j2 � R j2k� 	 Q�j1i � Qi j2 � R j1k � R j2k

�
��

i

Q�j1i � Qi j2


� R j1k � R j2k

	 �Q�; Q� j1 j2 � R j1k � R j2k

	 0 j1 � j2.

From Lemma 8 we immediately get �QR�ik 	
	

j
Qi j�R jk 	



j

Qi j�R jk 	 �Q; R�ik. �

In [5] the notion of the “shape” of matrices over the complex numbers using relations
was introduced. For an arbitrary complex matrix A and a relation R, we say that A has
shape R iff A � R 	 A. Since the component-wise flattening operation is a flattening
operation on the semiring of matrices this is equivalent to A��R 	 A�. The latter equation
only uses relations so that it is equivalent to A� � R. Following [5] we call a matrix A
diagonal if it has shape I, i.e., A� � I. This notion led to define a univalent relation Q as
a relation so that Q
Q is diagonal where Q
 is the conjugate transposed matrix. Notice
I�C� 	 �0, 1� so that Q
 	 Q� for (complex) relations. However, this generalization is
based on the fact that adding non-zero idempotent elements does not result in 0, which
might not be the case in an arbitrary sup-semiring. In fact, this might not even be the
case in an arbitrary field. Suppose F2 is the field with two elements together with the
obvious definition of . Then we have

��� 	
�

1 1
1 1

� �
1 1
1 1

�
	
�

1 � 1� 1 � 1 1 � 1� 1 � 1
1 � 1� 1 � 1 1 � 1� 1 � 1

�
	
�

0 0
0 0

�

which is of shape I but not a univalent relation in the original sense since��;� 	 � � I.
On the other hand, also the notion of a scalar relation was generalized. A scalar relation
α is a relation so that α � I and �;α 	 α;�. The generalization to arbitrary matrices
defines a matrix A to be a scalar iff A is diagonal and �A 	 A�. If α is a scalar relation,
then we have�α 	 �;α 	 α;� 	 α� because of Theorem 3 and the fact that α and α�

are univalent. Most of Proposition 2 of [5] now carries over in the more general setting
of sup-semirings. Instead of providing an explicit proof we refer to [5] and leave the
obvious generalization of the proofs provided there to the reader.

Lemma 10. Suppose D,D1,D2 are diagonal, Q,R are relations and A, B,C, E are ar-
bitrary matrices. Then we have

1. D � A� 	 DA � I,
2. D 	 D�,
3. D 	 D� � I,
4. A � D 	 A� � D,
5. �A� � B�C 	 A� � BC and E��A � B� 	 �A � EB,
6. A�B� � C� 	 �A � �B��C,
7. D1D2 is diagonal,
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8. D1 � D2 	 D1D2,
9. if D is a scalar, then DA 	 AD for all A,

10. �A� � I is a scalar,
11. �A � B�� 	 �AB� � I�� and ��A � B� 	 ��A�B � I�.

Property (p) of Proposition 2 in [5] is a generalization of the well-known Dedekind
rule. Unfortunately, this property cannot be shown in the context of arbitrary sup-
semirings because it refers to the order structure of the real numbers.

3.5 Biproducts

In this section we want to investigate the relationship between biproducts with respect
to � and linear composition on the one hand and relational sums, i.e., biproducts with
respect to  and ;, on the other hand. This relationship seems important if we consider
an abstract theory for matrices over sup-semirings and aim for a pseudo-representation
theorem similar to the one shown for relational categories in [21,22]. Since an abstract
theory for these matrices will be based on axioms for the linear operations as well as
the relational operations it seems important under which circumstances biproduct with
respect to both structures coincide. Only in such a case a simultaneous representation
of both structures seems possible.

Notice that we prove the following theorem without referring to matrices. We only
use the abstract properties that have been shown before so that the theorem remains true
if we move from matrices to an axiomatic theory providing the properties used in the
theorem follow from the axioms.

Theorem 4. Suppose A � B together with ι : A � A � B and κ : B � A � B is
a relational sum of A and B. Then A � B together with ι�, κ�, ι, κ is a biproduct with
respect to � and linear composition.

Proof. By definition both injections ι and κ are injective and univalent. From Theorem
3 we immediately obtain

ιι� 	 ι; ι� 	 IA, κκ
� 	 κ; κ� 	 IB, ικ

� 	 ι; κ� 	 �AB.

Furthermore, from ι�; ι � κ�; κ � ι�; �ι � ι; κ�; κ� 	 �A	B A	B we conclude

ι�ι� κ�κ 	 ι�; ι� κ�; κ ι, κ injective

	 ι�; ι κ�; κ Lemma 8

	 IA	B,

i.e., that ι, κ, ι�, κ� forms a biproduct. �
Since ι, κ give rise to a biproduct with respect to the linear operations the construc-

tions ι�A � κ�B and Cι � Dκ resp. ι�Eι � κ�Fκ allows us to abstractly combine ma-
trices into larger ones. In particular, if the morphisms A to F are relations, then we
can show analogously to the proof of Theorem 4 that ι�A � κ�B 	 ι�; A  κ�; B and
Cι� Dκ 	 C; ι D; κ and ι�Eι� κ�Fκ 	 ι�; E; ι κ�; F; κ, i.e., linear and relational
“stacking” of matrices coincide [11,12]. We want to illustrate this in the following ex-
ample.
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Example 4. We want to investigate the hypercube example (Example 2) in more detail.
In particular, we want to define the n-dimensional hypercube with success rate 9

10 re-
cursively. If � 9

10 � denotes the scalar induced by the fraction 9
10 , i.e., the diagonal matrix

with 9
10 on the diagonal, then we define H0 :	 �11 and

Hn	1 :	 ι��Hnι� � 9
10
�κ� � κ��� 9

10
�ι� Hnκ�,

i.e., the 1-dimensional hypercube is just a single node (no edges) and the
n � 1-dimensional hypercube is obtained by two copies of the n-dimensional hyper-
cube and connecting corresponding nodes by a 9

10 -edge. This matrix can be used for a
quantitative analysis of the problem at hand. For example, by applying the operation
A  � A � AA multiple times we obtain the matrix connecting two nodes with a rate α
if there is a way of sending information from the start to the end node with success rate
α. Furthermore, by applying the flattening operation to Hn we obtain the underlying
unlabeled graph. Notice that we immediately get

H�
n	1 	 ι�; �H�

n; ι κ�  κ�; �ι� H�
n; κ�,

i.e., a recursive and relational definition of the hypercube. This can now be used to
investigate qualitative properties such as Hamiltonian cycles. In fact, it is not hard to
show that the definition C2 	 H�

2 provides a Hamiltonian cycle for the 2-dimensional
hypercube. Using the recursive definition

Cn	1 	 ι�; ��Cn � e�; ι e; e�; κ�  κ�; �e�; e; ι �Cn � e��; κ�

for n � 2 with e an atom included in Cn, i.e., one edge, we obtain Hamiltonian cycles
for hypercube of higher dimension. We omit the corresponding proofs because of lack
of space.

4 Conclusion and Outlook

In this paper we started the investigation of matrices over semirings and the embedded
structure of relations based on multiplicative idempotent elements. Several basic prop-
erties of such matrices over sup-semirings were investigated. A natural next step is to
propose axioms for such a category of matrices. One goal of this endeavor could be
a pseudo-representation theorem similar to that of [21,22]. A first step towards such a
theorem has already been done by relating relational sums and biproducts with respect
to the linear operations abstractly.

Last but not least, we would like to mention that the research for this paper and prob-
ably future work highly benefitted from a computer system for handling matrices with
arbitrary coefficients specified by the user. This system was started by the third author,
further developed by the first and the second author. It allows to specify categories of
coefficients and operations on them that are then lifted to operations on matrices.
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Completeness via Canonicity for Distributive

Substructural Logics: A Coalgebraic Perspective

Fredrik Dahlqvist and David Pym

University College London

Abstract. We prove strong completeness of a range of substructural
logics with respect to their relational semantics by completeness-via-
canonicity. Specifically, we use the topological theory of canonical (in)
equations in distributive lattice expansions to show that distributive sub-
structural logics are strongly complete with respect to their relational
semantics. By formalizing the problem in the language of coalgebraic log-
ics, we develop a modular theory which covers a wide variety of different
logics under a single framework, and lends itself to further extensions.

1 Introduction

This work lies at the intersection of resource semantics/modelling, substructural
logics, and the theory of canonical extensions and canonicity. These three areas
respectively correspond to the semantic, proof-theoretic, and algebraic sides of
the problem we tackle: to give a systematic, modular account of the relation
between resource semantics and logical structure. We do not delve into the proof
theory of substructural logics, but rather deal with the algebraic formulations
of many such substructural proof systems ([29] summarizes the correspondence
between classes of residuated lattices and substructural logics). A version of this
work that includes detailed proofs can be found as a UCL Research Note [12].

Resource Semantics and Modelling. Resource interpretations of substruc-
tural logics — see, for example, [18,30,31,15,7] — are well-known and exemplified
in the context of program verification and semantics by Ishtiaq and O’Hearn’s
pointer logic [23] and Reynolds’ separation logic [32], each of which amounts to
a model of a specific theory in Boolean BI. Resource semantics and modelling
with resources has become an active field of investigation in itself (see, for ex-
ample, [8]). Certain requirements, discussed below, seem natural (and useful in
practice) in order to model naturally arising examples of resource.

1. We need to be able to compare at least some resources. Indeed, in a com-
pletely discrete model of resource (i.e., where no two resources are compara-
ble) it is impossible to model key concepts such as ‘having enough resources’.
On the other hand, there is no reason to assume that any two resources be
comparable (e.g., heaps). This suggests at least a preorder structure on mod-
els. In fact, we take the view that comparing two resources is fundamental,
and in particular, if two resources cannot be distinguished in this way then
they can be identified. We thus add antisymmetry and work with posets.

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 119–135, 2015.
DOI: 10.1007/978-3-319-24704-5_8
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2. We need to be able to combine (some) resources to form new resources (e.g.,
union of heaps with disjoint domains [23]). We denote the combination oper-
ation by ∗. An equivalent, but often more useful, point of view is to be able
to specify how resources can be ‘split up’ into pairs of constituent resources.
Moreover, since comparing resources is more important than establishing
their equality, it makes sense to be able to list for a given resource r, the
pairs (s1, s2) of resources which combine to form a resource s1 ∗ s2 ≤ r.

3. All reasonable examples of resources possess ‘unit’ resources with respect
to the combination operation ∗; that is, special resources that leave other
resources unchanged under the combination operation.

4. The last requirement is crucial, but slightly less intuitive. In the most well-
behaved examples of resource models (e.g., N), if we are given a resource r
and a ‘part’ s of r, there exists a resource s′ that ‘completes’ s to make r; that
is, we can find a resource s′ such that s ∗ s′ = r. More generally, given two
resources r, s, we want to be able to find the the best s′ such that s∗s′ ≤ r. In
a model of resource without this feature, it is impossible to provide an answer
to legitimate questions such as ‘how much additional resource is needed to
make statement φ hold?’. Mathematically, this requirement says that the
resource composition is a residuated mapping in both its arguments.

The literature on resource modelling, and on separation logic in particular,
is vast, but two publications ([6] and [4]) are strongly related to this work.
Both show completeness of ‘resource logics’ by using Sahlqvist formulas, which
amounts to using completeness-via-canonicity ([3,24]).

Completeness-via-canonicity and Substructural Logics. The logical side
of resource modelling is the world of substructural logics, such as BI, and of their
algebraic formulations; that is, residuated lattices, residuated monoids, and re-
lated structures. The past decade has seen a fair amount of research into proving
the completeness of relational semantics for these logics (for BI, for example,
[31,15]), using, among other approaches, techniques from the duality theory of
lattices. In [13], Dunn et al. prove completeness of the full Lambek calculus and
several other well-known substructural logics with respect to a special type of
Kripke semantics by using duality theory. This type of Kripke semantics, which
is two-sorted in the non-distributive case, was studied in detail by Gerhke in
[16]. The same techniques have been applied to prove Kripke completeness of
fragments of linear logic in [5]. Finally, the work of Suzuki [33] explores in much
detail completeness-via-canonicity for substructural logics. Our work follows in
the same vein but with with some important differences. Firstly, we use a dual
adjunction rather than a dual equivalence to connect syntax and semantics. This
is akin to working with Kripke frames rather than descriptive general frames in
modal logics: the models are simpler and more intuitive, but the tightness of the
fit between syntax and semantics is not as strong. Secondly, we use the topologi-
cal approach to canonicity of [17,21,34] because we feel it is the most flexible and
modular approach to building canonical (in)equations. Thirdly, we only consider
distributive structures. This is to some extent a matter a taste. Our choice is
driven by the desire to keep the theory relatively simple (the non-distributive
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case is more involved), by the fact that from a resource modelling perspective
the non-distributive case does not seem to occur ‘in the wild’, and finally because
we place ourselves in the framework of coalgebraic logic, where the category of
distributive lattices forms a particularly nice ‘base category’.

The Coalgebraic Perspective. Coalgebraic methods bring many advantages
to the study of completeness-via-canonicity. First, it greatly clarifies the connec-
tion between canonicity as an algebraic method and the existence of ‘canonical
models’; that is, strong completeness. Second, it provides a generic framework
in which to prove completeness-via-canonicity for a vast range of logics ([11]).
Third, it is intrinsically modular; that is, it provides theorems about complicated
logics by combining results for simpler ones ([9,10]).

2 Substructural Logics: A Coalgebraic Perspective

We use the ‘abstract’ version of coalgebraic logic developed in, for example, [27],
[28] and [25]; that is, we require the following basic situation:

C

F

��
L




⊥ Dop

G

��

T op

��
(1)

The left hand-side of the diagram is the syntactic side, and the right-hand side
the semantic one. The category C represents a choice of ‘reasoning kernel’; that
is, of logical operations which we consider to be fundamental, whilst L is a syntax
constructing functor which builds terms over the reasoning kernel. Objects in
D are the carriers of models and T specifies the coalgebras on these carriers in
which the operations defined by L are interpreted. The functors F and G relate
the syntax and the semantics, and F is left adjoint to G. We will denote such
an adjunction by F � G : C → D . Note, as mentioned in the introduction, that
we only need a dual adjunction, not a full duality.

2.1 Syntax

Reasoning Kernels. There are three choices for the category C which are
particularly suited to our purpose, the category DL of distributive lattices, the
category BDL of bounded distributive lattices, and the category BA of boolean
algebras. The choice of DL as our most basic category was justified in the in-
troduction, but we should also mention an important technical advantage of
DL,BDL and BA from the perspective of coalgebraic logic: each category is
locally finite; that is, finitely generated objects are finite. This is a very de-
sirable technical property for the presentation of endofunctors on this category
and for coalgebraic strong completeness theorems. We denote by F � U the usual
free-forgetful adjunction between DL (resp. BDL, resp. BA) and Set.

True and False. The choice of including (or not)  and ⊥ to the logic is clearly
provided by the choice of reasoning kernel.
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Algebras. Recall that an algebra for an endofunctor L : C → C is an object A of
C together with a morphism α : LA→ A. We refer to endofunctors L : C → C
as syntax constructors.

Intuitionistic Implication. We do not consider the intuitionistic implication
as a fundamental operation; in particular, the category of Heyting algebras does
not form a reasoning kernel. This choice is motivated by the fact that the se-
mantics of intuitionistic logic can be given in terms of Kripke frames, that the
intuitionistic implication is not usually part of the basic language of substruc-
tural logics, and that the categoryHA of Heyting algebras is not as well-behaved
as our choices of reasoning kernels. We therefore add the implication as an ad-
ditional (modal) operation on (bounded) distributive lattices via the syntax
constructor:

LHey : DL→ DL,

{
A �→ F{a→ b | a, b ∈ UA}/ ≡
LRLf : LHeyA→ LHeyB, [a]≡ �→ [f(a)]≡,

where ≡ is the fully invariant equivalence relation in DL generated by the fol-
lowing Heyting Distribution Laws for finite subsets X of A:

HDL1. a→ ∧
X =

∧
[a→ X ]

HDL2.
∨
X → a =

∧
[X → a].

where we use the notation
∧
[a → X ] :=

∧
x∈X a → x and the convention that∧ ∅ =  and

∨ ∅ = ⊥ when the objects of the reasoning kernel are bounded.
The language defined by LHey for a set V of propositional variables is the free
LHey-algebra over FV ; that is, the language of intuitionistic propositional logic
quotiented by the axioms of distributive lattices and HDL1-2. Note that an
LHey-algebra is not a Heyting algebra, the axioms HDL1-2 only capture some of
the Heyting algebra structure. Instead, an LHey-algebra is simply a distributive
lattice with a binary map satisfying the distribution laws above (which happen
to be valid in HAs). The remaining features of HAs will be captured in a second
stage via canonical frame conditions. The reason for proceeding in this step-by-
step way will become clear in the sequel and is similar in spirit to the approach
of [1]. The main difference is that in [1], the axioms of Heyting algebras are
separated into rank 1 and non-rank 1 axioms, leading to the notion of weak
Heyting algebras which obey the axioms HDL1-2 and also a → a =  . In this
work, we want to build a minimal ‘pre-Heyting’ logic with a strongly complete
semantics and well-behaved (viz. smooth, see Section ) operations, and LHey-
algebras perform this role.

Resource Operations. The operations on resources specified in the introduc-
tion; that is, a combination operation and its left and right residuals, are intro-
duced via the following syntax constructor:

LRL : C → C ,

{
LRLA = F{I, a ∗ b, a\b, a/b | a, b ∈ UA}/ ≡
LRLf : LRLA→ LRLB, [a]≡ �→ [f(a)]≡ ,

where ≡ is the fully invariant equivalence relation in C generated by following
the Distribution Laws for finite subsets X of A:
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DL1.
∨
X ∗ a = ∨[X ∗ a]

DL2. a ∗∨X =
∨
[a ∗X ]

DL3. a\∧X =
∧
[a\X ]

DL4.
∨
X\a = ∧[X\a]

DL5.
∧
X/a =

∧
[X/a]

DL6. a/
∨
X =

∧
[a/X ].

The language defined by LRL is the free LRL-algebra over FV , which is the lan-
guage of the distributive full Lambek calculus (or residuated lattices) quotiented
under the axioms of C and DL1-6. An LRL-algebra is simply an object of C en-
dowed with a nullary operation I and binary operations ∗, \ and / satisfying the
distribution laws above. Again, note that an LRL-algebra is not a distributive
residuated lattice. Only some features of this structure have been captured by
the axioms above. But several are still missing, and will be added subsequently as
canonical frame conditions. Both LHey-algebras and LRL-algebras are examples
of Distributive Lattice Expansions, or DLEs; that is, distributive lattices endowed
with a collection of maps of finite arities. When C = BA, LRL-algebras are an
example Boolean Algebra Expansions, or BAEs.

Modularity. The syntax developed above is completely modular. For example,
if we wish to study boolean BI, it is natural to consider LRL : BA→ BA as our
syntax constructor. If we wish to study intuitionistic BI, then we should consider

LHey + LRL : BDL→ BDL, where (LHey + LRL)A = LHeyA+ LRLA,

where the coproduct is taken in BDL, and is thus a ‘free product’ generating
precisely the expected language. Finally, we may wish to add modal operators to
the language (see the ‘relevant modal logic’ in [33]), for example ♦. In this case,
we can in the same way add the syntax constructor for modal logic, namely,

L♦ : C → C , A �→ F{♦a | a ∈ UA}/{♦(
∨
X) =

∨
[♦X ]}

2.2 Coalgebraic Semantics

Semantic Domain. As we mentioned in the introduction, it is reasonable to
assume that a model of resources should be a poset, and thus taking D = Pos is
intuitively justified. This is a particularly attractive choice of ‘semantic domain’
given that the category Pos is related to DL by the dual adjunction Pf � U :
DL→ Posop, where Pf is the functor sending a distributive lattice to its poset
of prime filters, and DL-morphisms to their inverse images, and U is the functor
sending a poset to the distributive lattice of its up-sets and monotone maps
to their inverse images. In the case in which a distributive lattice is a boolean
algebra, it is well-known that prime filters are maximal (i.e., ultrafilters) and the
partial order on the set of ultrafilter is thus discrete; that is, ultrafilters are only
related to themselves. Thus the dual adjunction Pf � U becomes the well-known
adjunction Uf � Pc : BA→ Setop.

Coalgebras. Recall that a coalgebra for an endofunctor T : D → D , is an
object W of D together with a morphism γ :W → TW . The endofunctors that
we will consider are built from products and ‘powersets’ and will be referred to
as model constructors. Note that Pos has products, which are simply the Set
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products with the obvious partial order on pairs of elements. The ‘powerset’
functor which we will consider is the convex powerset functor: Pc : Pos→ Pos,
sending a poset to its set of convex subsets, where a subset U of a poset (X,≤)
is convex if x, z ∈ U and x ≤ y ≤ z implies y ∈ U . The set PcX is given a poset
structure via the Egli-Milner order (see [2]).

Coalgebras for the Intuitionistic Implication. We define the following
mod-el constructor, which will interpret →:

THey : Pos→ Pos,

{
THeyW = Pc(W

op ×W )

THeyf : THeyW → THeyW
′, U �→ (f × f)[U ].

where W op is the poset whose carrier is W and whose order is dual to that of
W .

Coalgebras for the Resource Operations. We define the following model
constructor, which is used to interpret I, ∗, \ and /:

TRL : D → D ,

{
TRLW = �× Pc(W ×W )× Pc(W

op ×W )× Pc(W ×W op)

TRLf : TRLW → TRLW
′, U �→ (Id� × (f × f)3)[U ].

The intuition is that the first component of the structure map of a TRL-coalgebra
(to the (po)set �) separates states into units and non-units. The second compo-
nent sends each ‘state’ w ∈ W to the pairs of states which it ‘contains’, the next
two components are used to interpret \ and /, respectively, and turn out to be
very closely related to the second component. Note that if D = Pos, the struc-
ture map of coalgebras are monotone, intuitively this means bigger resources can
be split up in more ways.

The Semantic Transformations. In the abstract flavour of coalgebraic logic,
the semantics is provided by a natural transformation δ : LG → GT op called
the semantic transformation. We show below how this defines an interpretation
map, but we first define our two semantic transformations. As already noted
above, a C -morphism δHey

W : LHeyGW → GTHeyW is equivalent to a function
over the set of generators {U → V | U, V ∈ UGW} satisfying the distributivity
laws HDL1-2, and similarly for δRL

W : LRLGW → GTRLW and the distributivity
laws DL1-6. We now define

δHey
W (U → V ) = {(x, y) ∈ THeyW | x ∈ U ⇒ y ∈ V }

and similarly (by using the usual projections maps πi, 1 ≤ i ≤ 4)

δRL
W (I) = {t ∈ TRLW | π1(t) = 0 ∈ �}

δRL
W (u ∗ v) = {t ∈ TRLW | ∃(x, y) ∈ π2(t), x ∈ u, y ∈ v}
δRL
W (u\w) = {t ∈ TRLW | ∀(x, y) ∈ π3(t), x ∈ u⇒ y ∈ w}
δRL
W (w/v) = {t ∈ TRLW | ∀(x, y) ∈ π4(t), x ∈ v ⇒ y ∈ w}.
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Proposition 1. The natural transformations δHey and δRL are well-defined, in
particular each map δHey

W satisfies the distributivity laws HDL1-2, and each map
δRL
W satisfies the distributivity laws the distributivity laws DL1-6.

The semantic transformations are thus well-defined. We now show how the inter-
pretation map arises from the semantic transformation. Recall that, for a given
syntax constructor L : C → C , the language of L is the free L-algebra over
FV . This is equivalent to saying that it is the initial L(−) + FV -algebra. We
use initiality to define the interpretation map by putting an L(−) + FV -algebra
structure on the ‘predicates’ of a T -coalgebra γ : W → TW ; that is, on the
carrier set GW . By definition of the coproduct, this means defining a morphism
LGW → GW and a morphism FV → GW . By adjointness it is easy to see that
the latter is simply a valuation v : V → UGW . For the former we simply use
the semantic transformation and G applied to the coalgebra. The interpretation
map �−�W is thus given by the catamorphism:

Lμ(L(−) + FV ) + FV

��

L�−�W+IdFV ��������� LGW + FV

δW+IdFV

��
GTW + FV

Gγ+v

��
μ(L(−) + FV )

�−�W

������������ GW

Modularity. Model constructors and semantic transformations can be assem-
bled in a way that is dual to the the syntax constructors. For example, if we wish
to interpret both the intuitionistic implication and the resource operations, we
use a coalgebra of type γ1 × γ2 : W → THeyW × TRLW . The overall semantics
is then inherited from that of the constituents via the following diagram:

(LHey+LRL)μ(LHey+LRL(−)+FV )+FV

��

LHey + LRL�−�W + IdFV

�������� LHeyGW+LRLGW+FV

δHey
W +δRL

W +IdFV

��
GTHeyW+GTRLW+FV

G(γ1×γ2)◦(Gπ1+Gπ2)+v

��
μ(LHey+LRL(−)+FV )

�−�W

���������������� GW

3 Canonicity

3.1 Canonical Extension of Distributive Lattices

We now briefly present the salient facts about canonical extensions. For more
details the reader is referred to [19] for BAs, [26,24] for BAOs, and [20,21] for
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DLEs. The main rationale for studying canonical extensions is to embed a lattice-
based structure, typically a language quotiented by some axioms, into a similar
structure which is more ‘set-like’; that is, whose elements can be viewed as parts
of a set, or of a set with some additional structure. In this way, we can establish
a connection between the syntax and the semantics; that is, build models from
formulas. But what does being ‘set-like’ mean? Two criteria emerge as being
fundamental: completeness and being generated from below (i.e., by joins) by
something akin to ‘elements’. Canonical extensions satisfy these two conditions.
For a distributive lattice A, the idea behind the construction of its canonical
extension Aσ is to build a completion of A which is not ‘too big’ and not ‘too
different’ from A. Technically, we want A to be dense and compact in Aσ.

Density. To build a completion of A it is natural to formally add to A all
meets, all joins, all meets of all joins, all joins of all meets, etc.. In the case of
the canonical extension we require that this procedure stops after two iterations
(i.e., we want aΔ1-completion; see [22]). Intuitively, this prevents the completion
from becoming ‘too big’. Based on this intuition we introduce the following
terminology: given a sub-lattice A of a complete distributive lattice C, we define
the meets in C of elements of A as the closed elements of C and denote this set
by K(A) (or simply K when there is no ambiguity); dually, we define the joins
in C of elements of A as the open elements of C and denote this set by O(A).
Finally, we say that A is dense in C if C = O(K(A)) = K(O(A)).

Compactness. The canonical extension Aσ is also required not to be too dif-
ferent from A in the sense that facts about arbitrary meets and joins of elements
of A in Aσ must already be ‘witnessed’ by finite meets and joins in A. Formally,
if A is a sub-lattice of C, A is compact in C if, for every X,Y ⊆ A such that∧
X ≤ ∨Y , there exist finite subsets X0 ⊆ X,Y0 ⊆ Y such that

∧
X0 ≤

∨
Y0.

An equivalent definition is that A is compact in C if for every closed element
p ∈ K(A) and open element u ∈ O(A) such that p ≤ u, there exists an element
a ∈ A such that p ≤ a ≤ u. The canonical extension Aσ of a distributive lattice
A is the complete distributive lattice such that A is dense and compact in Aσ.
We can summarize what we need to know about Aσ in the following theorem:

Theorem 1 ([20,17,21]). The canonical extension Aσ of a distributive lattice
A can be concretely represented as the lattice Aσ * UPfA; in particular, it is
completely distributive.

Note that this theorem requires the Prime Ideal Theorem for distributive lattices
which is a non-constructive principle, albeit one that is strictly weaker than the
axiom of choice. Note also that since the canonical extension of a BA is complete
and completely distributive, it is also atomic (see [19] Ch. 14); that is, it is a
complete atomic boolean algebra. It is concretely represented by Aσ = PcUfA,
in which case it is not simply ‘set-like’, but an actual algebra of subsets.
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3.2 Canonical Extension of Distributive Lattice Expansions

We now sketch the theory canonical extensions for Distributive Lattice Expan-
sions (DLE) — for the details, see [20,21]. Each map f : UAn → UA can be
extended to a map (UAσ)n → UAσ in two canonical ways:

fσ(x) =
∨
{
∧
f [d, u] | Kn ( d ≤ x ≤ u ∈ On}

fπ(x) =
∧
{
∨
f [d, u] | Kn ( d ≤ x ≤ u ∈ On},

where f [d, u] = {f(a) | a ∈ An, d ≤ a ≤ u}. Note that since A is compact in
Aσ the intervals [d, u] are never empty, which justifies these definitions. For a
signature Σ, the canonical extension of a Σ-DLE (A, (fs : UAar(n) → UA)s∈Σ)
is defined to be the Σ-DLE (Aσ, (fσs : U(Aσ)ar(n) → UAσ)s∈Σ), and similarly for
BAEs. We summarize some important facts about canonical extensions of maps
in the following proposition, proofs can be found in, for example, [17,21,34]:

Proposition 2. Let A be a distributive lattice, and f : UAn → UA.

1. fσ � An = fπ � An = f .
2. fσ ≤ fπ under pointwise ordering.
3. If f is monotone in each argument, then fσ � (K ∪O)n = fπ � (K ∪O)n.
We call a monotone map f : UAn → UA smooth in its ith argument (1 ≤ i ≤ n)
if, for every x1, . . . , xi−1, xi+1, . . . , xn ∈ K ∪O,

fσ(x1, . . . , xi−1, xi, xi+1, . . . , xn) = f
π(x1, . . . , xi−1, xi, xi+1, . . . , xn),

for every xi ∈ Aσ. A map f : UAn → UA is called smooth if it is smooth in each
of its arguments.

In order to study effectively the canonical extension of maps, we need to define
six topologies on Aσ. First, we define σ↑ = {↑ p | p ∈ K}, σ↓ = {↓ u | u ∈ O}
and σ = σ↑ ∪ σ↓; that is, the join of σ↑ and σ↓ in the lattice of topologies
on Aσ. It is easy to check that the sets above do define topologies and that
σ = {↑ p ∩ ↓ u | K ( p ≤ u ∈ O}. The next set of topologies is well-known to
domain theorists: a Scott open in Aσ is a subset U ⊆ Aσ such that (1) U is an
upset and (2) for any up-directed set D such that

∨
D ∈ U , D ∩ U 
= ∅. The

collection of Scott opens forms a topology called the Scott topology, which we
denote γ↑. The dual topology will be denoted by γ↓, and their join by γ. It is
not too hard to show (see [17,34]) that γ↑ ⊆ σ↑, γ↓ ⊆ σ↓, and γ ⊆ σ. We denote
the product of topologies by ×, and the n-fold product of a topology τ by τn.
The following result shows why these topologies are important: they essentially
characterize the canonical extensions of maps:

Proposition 3 ([17]). For any DL A and any map f : UAn → UA,

1. fσ is the largest (σn, γ↑)-continuous extension of f ,
2. fπ is the smallest (σn, γ↓)-continuous extension of f
3. f is smooth iff it has a unique (σn, γ)-continuous extension.
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From this important result, it is not hard to get the following key theorem,
sometimes known as Principle of Matching Topologies, which underlies the basic
‘algorithm’ for canonicity:

Theorem 2 (Principle of Matching Topologies,[17,34]). Let A be a dis-
tributive lattice, and f : UAn → UA and gi : UA

mi → UA, 1 ≤ i ≤ n be arbitrary
maps. Assume that there exist topologies τi on A, 1 ≤ i ≤ n such that each gσi
is (σmi , τi)-continuous, then

1. if fσ is (τ1×. . .×τn, γ↑)-continuous, then fσ(gσ1 , . . . , gσn) ≤ (f(g1, . . . , gn))
σ,

2. if fσ is (τ1× . . .×τn, γ↓)-continuous, then fσ(gσ1 , . . . , gσn) ≥ (f(g1, . . . , gn))
σ

3. if fσ is (τ1× . . .× τn, γ)-continuous, then fσ(gσ1 , . . . , gσn) = (f(g1, . . . , gn))
σ.

The last piece of information we need to effectively use the Principle of Matching
Topologies is to determine when maps are continuous for a certain topology,
based on the distributivity laws they satisfy. For our purpose the following results
will be sufficient:

Proposition 4 ([20,17,21,34]). Let A be a distributive lattice, and let f :
UAn → UA be a map. For every (n − 1)-tuple (ai)1≤i≤n−1, we denote by
fka : A→ A the map defined by x �→ f(a1, . . . , ak−1, x, ak, . . . , an−1).

1. If fka preserves binary joins, then (fσ)ka preserve all non-empty joins and is
(σ↓, σ↓)-continuous.

2. If fka preserves binary meets, then (fσ)ka preserve all non-empty meets and
is (σ↑, σ↑)-continuous.

3. If fka anti-preserves binary joins (i.e., turns them into meets), then (fσ)ka
anti-preserve all non-empty joins and is (σ↓, σ↑)-continuous.

4. If fka anti-preserves binary meets (i.e., turns them into joins), then (fσ)ka
anti-preserve all non-empty meets and is (σ↑, σ↓)-continuous.

5. In each case f is is smooth in its kth argument.

3.3 Canonical (in)equations

To say anything about the canonicity of equations, we need to compare interpre-
tations in A with interpretations in Aσ. It is natural to try to use the extension
(·)σ to mediate between these interpretations, but (·)σ is defined on maps, not
on terms. Moreover, not every valuation on Aσ originates from valuation on A.
We would therefore like to recast the problem in such a way that (1) terms are
viewed as maps, and (2) we do not need to worry about valuations.

Term Functions. The solution is to adopt the language of term functions (as
first suggested in [24]). Given a signature Σ, let T(V ) denote the language of
Σ-DLEs (or Σ-BAEs) over a set V of propositional variables. We view each
term t ∈ T(V ) as defining, for each Σ-DLE A, a map tA : An → A. This
allows us to consider its canonical extension (tA)σ, and also allows us to reason
without having to worry about specifying valuations. Formally, given a signature
Σ and a set V a propositional variables, we inductively define the term function
associated with an element t built from variables x1, . . . , xn ∈ V as follows:
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– xAi = πni : An → A, 1 ≤ i ≤ n;
– (f(t1, . . . , tm))A = fA ◦ 〈tA1 , . . . , tAm〉.

where πi is the usual projection on the ith component, fA is the interpretation
of the symbol f in A and 〈tA1 , . . . , tAm〉 is usual the product of m maps. Note that
in this definition we work in Set, and the building blocks of term functions are
thus the variables in V (interpreted as projections) and all operation symbols,
including ∨,∧ and possibly ¬.
Proposition 5. Let s, t be terms in the language defined by a signature Σ and
A be a Σ-DLE,

A |= s = t iff sA = tA .

Canonical (in)equations. An equation s = t where s, t ∈ T(V ) is called canonical
if A |= s = t implies Aσ |= s = t, and similarly for inequations. Following [24],
we say that t ∈ T(V ) is stable if (tA)σ = tA

σ

, that t is expanding if (tA)σ ≤ tAσ

,
and that t is contracting if (tA)σ ≥ tAσ

, for any A. The inequality between maps
is taken pointwise. The following proposition illustrates the usefulness of these
notions:

Proposition 6 ([24]). If s, t ∈ T(V ) are stable then the equation s = t is
canonical. Similarly, let s, t ∈ T(V ) such that s is contracting and t is expanding,
then the inequality s ≤ t is canonical.

4 Completeness via-canonicity

4.1 Axiomatizing HAs and Distributive Residuated Lattices

So far we have only captured part of the structure of Heyting algebras and dis-
tributive residuated lattices, namely we have enforced the distribution properties
of →, ∗, \ and / by our definition of the syntax constructors LHey and LRL. In
order to capture the rest of the structures we now add frame conditions to the
coalgebraic models. To do this we need to find axioms which, when added to
HDL1-2 and DL1-6 axiomatize HAs and distributive residuated lattices respec-
tively. Due to the constraints that these axioms must be canonical, we choose
the following Heyting Frame Conditions:

HFC1. a→ a =  ,
HFC2. a ∧ (a→ b) = a ∧ b
HFC3. (a→ b) ∧ b = b
and, for distributive lattices, the Frame Conditions:

FC1. a ∗ I = a, I ∗ a = a,
FC2. I ≤ a\a, I ≤ a/a,
FC3. a ∗ (b\c) ≤ (a ∗ b)\c,

FC4. (c/b) ∗ a ≤ c/(a ∗ b),
FC5. (a/b) ∗ b ≤ a, and
FC6. b ∗ (b\a) ≤ a,

Proposition 7. The axioms HDL1-2 and HFC1-3 axiomatize Heyting algebras,
and similarly, the axioms DL1-6 and FC1-6 axiomatize distributive residuated
lattices.

We now show one of the crucial steps.



130 F. Dahlqvist and D. Pym

Proposition 8. The axioms HFC1-3 and FC1-6 are canonical.

Proof. The proof is an application of Theorem 2 and Proposition 6.

FC1: Since ∗ preserves binary joins in each argument, it is smooth by Prop. 4,
and it follows that it is (σ2, γ)-continuous. Since πσ1 and Iσ are trivially (σ, σ)-
continuous, it follows from Theorem 2 that (∗ ◦ 〈π1, I〉)σ = ∗σ ◦ 〈π1, 1〉σ. Each
side of the equation is thus stable and the result follows from Prop. 6.

FC2: I is stable and thus contracting, and (\ ◦ 〈π1, π1〉)σ = \σ ◦ 〈π1, π1〉σ, since
πσ1 is (σ, σ)−continuous and \σ is smooth. The RHS of the inequality is thus
stable, and a fortiori expanding, and the inequality is thus canonical.

FC3-4: Since ∗σ preserve joins in each argument, it preserves up-directed ones,
and is thus ((γ↑)2, γ↑)-continuous. Since \σ is smooth it is in particular (σ2, γ↑)-
continuous. Since πσ1 is (σ, γ↑)-continuous, we get that ∗σ ◦ 〈πσ1 , \σ ◦ 〈πσ2 , πσ3 〉〉
is (σ3, γ↑)-continuous and thus contracting. For the RHS, note that since \σ
preserves meets in its first argument, it must in particular preserve down-directed
ones, thus \σ is (γ↓, γ↓)-continuous in its first argument. Similarly, since \σ
anti-preserve joins in its second argument, it must in particular anti-preserve
up-directed ones, and is thus (γ↑, γ↓)-continuous in its second argument. This
means that \σ is (γ2, γ↓)-continuous. We thus have that the full term is (σ3, γ↓)
continuous, and thus expanding. The inequation is therefore canonical.

FC5-6: The LHS is contracting by the same reasoning as above, and the RHS is
stable and thus expanding.

4.2 Strong Completeness Results

The Jónsson-Tarski Theorem. We first establish the strong completeness
of the logics defined by our syntax constructors LHey and LRL with respect
to their THey- and TRL-coalgebraic models. The proof is an application of the
coalgebraic Jónsson-Tarksi theorem. Recall from Theorem 1 and Diagram (1),
that the canonical extension of an object A in any of our reasoning kernels C is
given by GFA. This justifies the following:

Theorem 3 (Coalgebraic Jónsson-Tarksi theorem, [28]). Assuming the
basic situation of Diagram (1) and a semantic transformation δ : LG→ GT , if

its adjoint transpose δ̂ : TF → FL has a right-inverse δ̂−1 : FL → TF , then
for every L-algebra α : LA → A, the embedding ηA : A → GFA of A into its
canonical extension can be lifted to the following L-algebra embedding:

LA
α ��

LηA

��

A

ηA

��
LGFA

δFA

�� GTFA
Gδ̂−1

A

�� GFLA
GFα

�� GFA

(2)

We call the coalgebra δ̂−1 ◦ Fα : FA → TFA a canonical model of (the L-
algebra) A. If A is the free L-algebra over FV we recover the usual notion of
canonical model. The ‘truth lemma’ follows from the definition of η.
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We now prove the existence of canonical models for the logics defined by LHey

and LRL. The result generalizes lemma 5.1 of [14], which builds canonical models
for countable DLs with a unary operator, and lemma 4.26 of [3], which builds
canonical models for countable BAs with n-ary operators. We essentially show
how to build canonical models for arbitrary DLs with n-ary expansions all of
whose arguments either (1) preserve joins or anti-preserve meets, or (2) preserve
meets or anti-preserve joins.

Theorem 4. The logic defined by LHey (resp. LRL) is sound and strongly com-
plete with respect to the class of all THey- (resp. TRL-) coalgebras.

Proof (Sketch). The proof follows a Prime Ideal Theorem argument. To interpret
∗ on PfA for some A inDL we define γ∗A : PfA→ Pc(PfA×PfA), F �→ {(F1, F2) |
a ∈ F1, b ∈ F2 ⇒ a ∗ b ∈ F}. It is easy to check that if ∃F1, F2 s.th. (F1, F2) ∈
γA(F ) and a ∈ F1, b ∈ F2, then a ∗ b ∈ F and F |= a ∗ b. The converse is harder:
given a ∗ b ∈ F , we must build prime filters F1, F2 s.th. a ∈ F1, b ∈ F2 and
c ∗ d /∈ F ⇒ c /∈ F1 or d /∈ F2. We consider the set P(a, b) of pairs of filter-ideal
pairs ((F1, I1), (F2, I2)) s.th.

1. ↑ a ⊆ F1 ⊆ {c | ∀d ∈ F2, c ∗ d ∈ F}
2. ↑ b ⊆ F2 ⊆ {d | ∀c ∈ F1, c ∗ d ∈ F}

3. I1 = {c | ∃d ∈ F2 s.th. c ∗ d /∈ F}
4. I2 = {d | ∃c ∈ F1 s.th. c ∗ d /∈ F}

It can be shown that P(a, b) is not-empty, forms a poset, has the property that
I1, I2 are ideals such that F1 ∩ I1 = F2 ∩ I2 = ∅, and is closed under union of
chains. Zorn’s lemma then yields a maximum element which provides the desired

prime filters. The same technique can be applied to define γ
\
A, γ

/
A interpreting

\, /, and it is easy to check that 〈0, γ∗A, γ\A, γ/A〉 is a right inverse of δ̂DL
A .

The Jónsson-Tarski Embedding and Canonical Extensions. We now ap-
ply the theory of canonicity to show that HAs and distributive residuated lattices
are strongly complete with respect to the (proper) classes of THey- and TRL-
coalgebras validating HFC1-3 and FC1-6 respectively. We need one important
technical result, which shows that the Jónsson-Tarski embedding of Theorem 3
is the canonical extension defined in Section 3.2.

Proposition 9. The structure map of the Jónsson-Tarski extension of an LHey-
or LRL-algebra is equal to the canonical extension of its structure map (in the
sense of Section 3.2).

Proof (Sketch). Recall Diagram (2) and that a DL-morphism α : LRLA → A
is equivalent to being given a constant and binary operations α∗, α\, α/ on UA
satisfying DL1-DL6. Similarly, UPfα◦UγA ◦ δRL

PfA is equivalent to a constant and
three binary operations UPfα ◦ UγA ◦ δ∗,UPfα ◦ UγA ◦ δ\,UPfα ◦ UγA ◦ δ/ on
Aσ. By commutativity of (2), the latter are extensions of the former. It is not
hard to show that if an extension of a map on UA preserves or anti-preserves all
non-empty meets or joins, then it is smooth and thus unique by Proposition 6.
Direct calculation shows that δ∗, δ\ and δ/ all have such preservation properties
in each argument. Moreover, UPfα and UγA being inverse images preserve any
meet or join. We thus get that UPfα ◦ UγA ◦ δ∗ is smooth and thus equal to ασ

as desired, and similarly for the other operations.
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Strong Completeness. We are now ready to state our main result.

Theorem 5 (Strong completeness theorem). Intuitionistic logic is strongly
complete with respect to the class of THey-coalgebras validating HFC1-3. The
Distributive Full Lambek Calculus is strongly complete with respect to the class
of TRL-coalgebras validating FC1-6.

Proof (Sketch). We treat the case of the distributive full Lambek calculus; in-
tuitionistic logic is treated similarly. Let Φ, Ψ be sets of LRL-formulas such that
FC1-6+Φ � Ψ . We need to find a model in which FC1-6 are valid, and which
satisfies all formulas of Φ and no formula of Ψ at a certain point. Consider the
Lindenbaum-Tarski LRL-algebra L defined by FC1-6. These axioms are clearly
valid in L, and since they are canonical by Prop. 8, they are also valid in Lσ,
which by Prop. 9 is just its coalgebraic Jónsson-Tarski extension. It follows that
FC1-6 are valid on the model PfL → TRLPfL. To find the desired point, note
that the filter generated by Φ in L is proper and does not intersect the ideal 〈Ψ〉
generated by Ψ , or else our staring assumption would be contradicted. We can
thus find PfL ( pΦ ⊇ Φ s.th. pΦ ∩ 〈Ψ〉 = ∅, and pΦ |= Φ, pΦ 
|= Ψ follows.

Describing THey-coalgebras Validating the Heyting Frame Conditions.
Let us examine what THey-coalgebras validating HFC1-3 look like. For every
γ : W → THeyW in this class, every w ∈ W and every valuation, w |= a → a.
By considering a formula satisfied at a single point in the model is easy to see
that (x, y) ∈ γ(w) ⇒ x = y; that is, the structure map of the coalgebra only
really defines a binary relation to interpret →. Thus THey-coalgebras validating
HFC1 are equivalent to Pc-coalgebras where w |= a → b iff ∀x ∈ γ(w), x |=
a⇒ x |= b. The distributivity laws of→ together with HFC2-3 encode the well-
known residuation property of → with respect to ∧. Combined with HFC1 and
the associated reformulation in terms of Pc-coalgebra, the residuation property
states that:

w |= a ∧ b ⇒ w |= c iff w |= b ⇒ (∀x ∈ γ(w) (x |= a ⇒ x |= c)).
Assuming the left-hand side, for the right-hand side to hold it is necessary that
if w |= b , then ∀x ∈ γ(w), x |= b; that is, successor states satisfy the so-called
‘persistency’ condition. It also follows that x ∈ γ(x); that is, the relation is
reflexive. Finally, from HFC3 we get that a ∧ b ≤ c iff b ≤ a → c iff b ≤ a →
(c∧(a→ c)). By unravelling the interpretation of this last inequality, we get that
the relation interpreting → must also be transitive. Thus we have recovered the
traditional Kripke semantics of intuitionistic logic via a pre-order and persistent
valuations by using the theory of canonicity for distributive lattices.

Describing TRL-coalgebras Validating FC1-6. Axiom FC1 means that at
every w in a TRL-coalgebra, amongst all the pairs of states into which w can be
‘separated’ there must exist a unit state i, viz. π1(γ(i)) = 0, such that (w, i) ∈
π2(γ(w)). Similarly, there must exist a unit state i′ such that (i′, w) ∈ π2(γ(w)).
This condition can be found in this form in, for example, [6]. The other axioms
are simply designed to capture the residuation condition in such a way that
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canonicity can be used, so a model in which FC2-6 are valid is simply a model
in which the residuation conditions hold. By considering models with only three
points it is easy to see that these conditions imply that

(y, z) ∈ π1(γ(x)) iff (x, z) ∈ π2(γ(y)) iff (y, x) ∈ π3(γ(z)),

that is, the last three components of a TRL-coalgebra’s structure map are de-
termined by any one of them. If we choose the second as defining the last
two, a TRL-coalgebra validating FC1-6, really is a coalgebra for the functor
T ′
RL : D → D , T ′

RLW = � × Pc(W × W ) in which the interpretation of the
operators is given by:

1. w |= a ∗ b iff ∃(x, y) ∈ γ(w) s.t. x |= a and y |= b
2. w |= a/b iff ∀(x, y) s.th (w, y) ∈ γ(x) if y |= b then x |= a
3. w |= b\a iff ∀(x, y) s.th (y, w) ∈ γ(x) if y |= b then x |= a.

Modularity. The coalgebraic setting allows us to combine completeness-via-
cano-nicity results from simple logics to get results for more complicated logics.
It can be shown that the coalgebraic Jónsson-Tarski theorem is modular in the
sense that if logics defined by syntax constructors L1 and L2 and interpreted
in T1- and T2-coalgebras respectively via semantic transformations δ1 and δ2
whose adjoint transposes have right-inverses, then the logic defined by (L1+L2)
is strongly complete w.r.t. (T1 × T2)-coalgebras.
Theorem 6 (Strong completeness of intuitionistic BI). Intuitionistic BI
is strongly complete w.r.t. the class of THey × TRL-coalgebra satisfying HFC1-3
and FC1-6.

Additional Frame Conditions. We can consider more axioms to restrict fur-
ther the classes of models we might be interested in. The following (in)equations
can all easily be verified to be canonical and each corresponds to admitting
a structural rule to the full distributive Lambek calculus: (1) Commutativity:
a ∗ b = b ∗ a; (2) Increasing idempotence: a ≤ a ∗ a (defines relevant logic); and
(3) Integrality: a ≤ I (defines affine logic). More generally, we have presented a
general methodology to get completeness results for axioms that could capture
the behaviour of certain sub-classes of resources (e.g., heaps in separation logic).

5 Conclusion and Future Work

We have shown how distributive substructural logics can be formalized and given
a semantics in the framework of coalgebraic logic, and highlighted the modularity
of this approach. By choosing a syntax whose operators explicitly follow distri-
bution rules, we can use the elegant topological theory of canonicity for DLs,
and in particular the notion of smoothness and of topology matching, to build
a set of canonical (in)equation capturing intuitionistic logic and the distributive
full Lambek calculus. The coalgebraic approach makes the connection between
algebraic canonicity and canonical models explicit, categorical and generalizable.
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The modularity provided by our approach is twofold. Firstly, we have a generic
method for building canonical (in)equations by using the Principle of Matching
Topologies. Getting completeness results with respect to simple Kripke mod-
els for variations of the distributive full Lambek calculus (e.g., distributive affine
logic) becomes very straightforward. Secondly, adding more operators to the fun-
damental language simply amounts to taking a coproduct of syntax constructors
(e.g., LRL + LHey to define intuitionistic BI) and interpreting it with a product
of model constructors (e.g., TRL×THey). This seems particularly suited to logics
which build on BI such as the bi-intuitionistic boolean BI of [4].

The operators ∗, \, /, and → all satisfy simple distribution laws, but our ap-
proach can also accommodate operators with more complicated distribution laws
and non-relational semantics. For example, the theory presented in this work
could be extended to cover a graded version of ∗, say ∗k, whose interpretation
would be ‘there are at least k ways to separate a resource such that...’, the se-
mantics would be given by coalgebras of the type �× B(−×−) where B is the
‘bag’ or multiset functor. Similarly, a graded version→k of the intuitionistic im-
plication whose meaning would be ‘... implies ... apart from at most k exceptions’
and interpreted by B(−×−)-coalgebras could also be covered by our approach.
Crucially, such operators do satisfy (more complicated) distribution laws which
lead to generalizations of the results in Section 3.2, and the possibility of build-
ing canonical (in)equations. The coalgebraic infrastructure then allows the rest
of the theory to stay essentially unchanged.
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Abstract. Allegories abstract useful features of the enriched category of sets
and binary relations. N-ary relations can be easily defined in any allegory with
relational products as binary relations between appropriate product objects.
Unfortunately, in many applications (especially those related to databases) such
an indirect way of thinking about N-ary relations is somewhat awkward. In this
paper we develop a formalism for allegorical generalisations of N-ary relations
particularly well suited for database applications.

Keywords: Allegories, Relations, Databases.

1 Introduction

Allegories [9] can be thought of as a categorical generalisation of relation algebras
([13],[10]). Thus arrows in an allegory are like binary relations, but using allegories in
various applications instead of actual binary relations allows the same formalism to be
much more widely applicable — for instance, when the relations are locale-valued or
fuzzy.

Recently a new database modeling formalism based on allegories was proposed [16],
[17]. For database applications it is important to have the possibility of representing n-
ary relations for arbitrary finite n. This requires the existence of relational products
([9], [8], cf. [3], [11]) in an allegory. Relational products generalise Cartesian prod-
ucts.

If required relational products exist in a given allegory then one can represent an
n-ary relation, for n� 2, as a binary relation between product objects. The main problem
is that this representation is non-canonical — it is necessary to divide the “legs” of an n-
ary relation between source and target of the representing binary relation and there are
many ways to do it. In particular, different partitions of legs may be required to make
some operations in allegory legal, like joins and intersections with particular arrows.

In this paper we develop a formalism for allegorical generalisations of N-ary rela-
tions which is particularly well suited for database applications, and which seems not to
have some of the disadvantages mentioned above. The formalism was partially inspired
by [5], [4].
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DOI: 10.1007/978-3-319-24704-5_9
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2 Preliminaries

The reader should be familiar with basic category theory, (see e.g., [2] for an introduc-
tion). In the preliminaries (partially taken from [15]) we recall some basic definitions to
fix the clean but idiosyncratic notation we use. We also provide introductory material
on allegories which are not widely known and for which [9] is the basic textbook.

For simplicity, in what follows we do not distinguish between sets and classes.

2.1 Categories and Graphs

A graph G consists of a set of vertices Obj�G �, a set of arrows Arr�G �, and a pair of
maps

��
���,
�	
��� : Arr�G � �	 Obj�G �, called source and target, respectively. We denote by

ArrG �A,B� the set of arrows with source A and target B, where A,B 
 Obj�G �.
A category C is a graph with associative arrow composition f ;g 
 ArrC �

��
f ,�	g � de-

fined whenever
�	
f ���g (note the diagrammatic order), and identity map id : Obj�C � 	

Arr�C � such that id�
��
f �; f � f ; id�

�	
f � � f for all f 
 Arr�C �. We write idA :� id�A�.

We will often omit the semicolon composition operator abbreviating f g :� f ;g.
Diagrams will be frequently used to declare composability of arrows, e.g.,

�
f �� �

g ��

h
�� � : �

�	
f ���g ���

�	
f �

��
h ����	g �

�	
h �,

but unlike in [9], the diagrams are not considered commutative by default.
A categorical n-ary product is a family of arrows �πi�i��1,...,n� with a common source

such that for any other family of arrows � fi�i��1,...,n� with a common source and such
that

�	
fi �

�	πi for all i 
 �1, . . . ,n� there exists a unique arrow h such that fi � hπi for all
i 
 �1, . . . ,n�.

2.2 Allegories

An allegory [9] A is a category enriched with intersection and reciprocation operators:

�� � : ArrA �A,B��ArrA �A,B� 	 ArrA �A,B�,

���� : ArrA �A,B� 	 ArrA �B,A�,

for all A,B 
 Obj�A �, which are required to satisfy the following conditions: Intersec-
tions make each homset a meet semi-lattice (see e.g. [7]), where we denote the associ-
ated partial order by�, i.e., R� S : R�S� R, for all R,S 
ArrA �

��R ,�	R �. In addition,
�� � and ���� are to satisfy

R�� � R, (1a)

�RS�� � S�R�, (1b)

�R�S�� � R��S�, (1c)

R�S�T�� RS�RT (1d)

RS�T � �R�TS��S (1e)



138 B. Zieliński

for all R,S,T 
 Arr�A � such that the above formulas are well defined. Applying the
reciprocation to both sides of the Equations (1d) (right semi-distributivity) and (1e)
(right modular identity), using the identities (1a)-(1c) and redefining symbols yields
easily the following right versions:

�S�T�R� SR�TR, (1f) RS�T � R�S�R�T �. (1g)

Allegories generalise the allegory R of sets (objects) and binary relations (arrows).
Because of it we may refer to arrows in any allegory as “relations”. In R we write aRb
iff �a,b� 
 R. The identity in R is id : A �	 ��a,a��a 
 A�, intersection is the set inter-
section, i.e., R�S :� R�S, reciprocation is defined by aR�b : bRa and composition
of relations R,S 
 Arr�R� such that �	R �

��
S is defined by:

a�RS�c : �b 

�	
R . aRb�bSc. (2)

Another example which will feature in this paper is the allegory R�Λ � of Λ -valued
relations, where Λ is an arbitrary locale (i.e., a complete, distributive lattice in which
infima distribute over arbitrary — that is also infinite — suprema). In R�Λ � objects are
sets and ArrR�Λ��A,B� is the set of functions R : A�B	Λ . The allegorical operations
are defined as follows:

idA�a,a
�� :�

�
� if a� a�

� if a� a�
, R��b,a� :� R�a,b�,

�R�S��a,b� :� R�a,b��S�a,b�, �R;T ��a,c� :�
�
b�B

R�a,b��T�b,c�. (3)

Note that we denote the top and bottom elements of a locale Λ by� and�, respectively.
We distinguish the following classes of arrows in an allegory:

– If id��R � RR� then R is called total.
– If R�R� id�	R then R is called functional.
– If R is functional and total it is called a map. The set of all maps in an allegory A

is denoted by Map�A �.
– If RR�

� id��R then R is called injective.
– If id�	R � R�R then R is called surjective.

If R 
 Arr�A � is an isomorphism in an allegory A then both R and R� are maps and
R�1 � R�. Note that idA for all A 
 Obj�A � is a map and the composition of maps is a
map. Thus maps in A form a subcategory of A . For any A,B 
 Obj�A � we denote by
�A,B the top element of ArrA �A,B�, if it exists. In R we have �AB :� A�B. We will
make use of the following results (cf. [9]):

Lemma 1. R�S�T � � RS�RT for all �
R �� �

S ��
T

�� � such that R is functional.

Similarly, �S�T �R� SR�TR for all �
S ��
T

�� �
R �� � such that R� is functional.
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Lemma 2. ([14]) Suppose that
� S

����
��

�
R ��������

T
�� � and that relation S is functional.

Then RS�T � �R�TS��S.

Lemma 3. Suppose that
� S

����
��

�
R ��������

T
�� � and that S is total. Then RS� T implies

that R� T S�.

Definition 1. ([9]) An object 1 in allegory A is called a unit whenever id1 � �11 and
for any A 
Obj�A � there exists some uA 
ArrA �A,1� which is total. An allegory where
a unit exists is called unitary.

Lemma 4. For any A 
 Obj�A � an arrow uA is a map. Moreover uA ��A1.

Lemma 5. For any A,B 
 Obj�A � we have uA;�uB�
� ��AB.

3 Relational Products

3.1 Basic Definitions

The following is a standard definition of a relational binary product in an allegory. It
is well known [9] that the relational binary product is the categorical product in the
subcategory of maps. Note that the definition assumes the existence of the top relation
between components of the product.

Definition 2. ([9]) Let A be an allegory. A pair of arrows � C
π1�� π2 �� � (called

projection arrows) is called a relational product if and only if it satisfies the following
conditions:

π�
1 π1 � id�	π1

, π�
2 π2 � id�	π2

, (4a)

π1π�
1 �π2π�

2 � idC, (4b)

π�
1 π2 ���	π1

�	π2
(4c)

We will often name the common source of πi’s as �	π1�
�	π2 and abuse the language by

refering to it as “the product”, even though it is determined only up to an isomorphism,
and the projection arrows might not be determined uniquely by the common source.
In order to distinguish projections of different relational products we will use πA	B

1
and πA	B

2 to denote the projections with A�B as the common source. Also, whenever
A� B, we will assume that A�B� B�A, πA	B

1 � πB	A
2 and πA	B

2 � πB	A
1 .

Note that in R (as well as in R�Λ �) the relational product is isomorphic with the
cartesian product. Another special case is given by the following observation.

Lemma 6. Suppose that A is a unitary allegory. Then for any A 
 Obj�A � the pair

A A
idA�� uA �� 1

is a relational product.
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The unit in a unitary allegory can be viewed as a 0-ary relational product. To get
n-ary products for n � 2 one can iterate binary ones. Sometimes, a direct algebraic
characterization of n-ary relational products becomes handy.

Definition 3. (cf. [8]) A finite family of arrows �πi�i�I �Arr�A �with a common source
C, that is, such that��πi �C for all i 
 I, is called an n-ary relational product if and only
if it satisfies the following conditions:

�i 
 I . π�
i πi � id�	πi

, (5a)�
i

πiπ�
i � idC, (5b)

�k 
 I .

� �
i�I
�k�

πiπ�
i

�
πk ����πk

�	πk
(5c)

It is also easy to see that binary relational products are 2-ary relational products and
vice versa. It was proven in [15] (cf. [8]) in a slightly more general setting that n-ary
relational products are categorical products in the subcategory of maps. In particular,
we have

Lemma 7. ([15, Theorem 18]) if �πi�i�I is an n-ary relational product with a common

source C and � A
fi �� �	πi �i�I is a family of maps then the unique map A

f �� C
such that f πi � fi for all i 
 I is given by the formula

f �
�
i�I

fiπ�
i . (6)

Another result which we will use in what follows is the following:

Lemma 8. (cf. [15, Lemma 17]) Let � C
πi �� � �i�I be an n-ary relational product.

For any � � J � I and a family of total arrows � A
Ri �� �	πi �i�J the arrow RJ :��

i�J Riπ�
i is also total.

Note that [15, Lemma 17] actually assumes that Ri’s are maps and πi’s form a weak
n-ary relational product. It is, however, easy to check that if πi’s form a (strong) n-ary
relational product then the proof works when Ri’s are merely assumed to be total.

4 Generalisation of Sharpness

First, let us recall the notion of sharpness of relational product. Suppose that �πi�i�I is
an n-ary relational product, where I � �1, . . . ,n�. Let �Ri�i�I and �Si�i�I be two families
of arrows such that Ri’s have a common source, Si’s have a common source, and

�	
Si �

�	Ri �
�	πi , for all i 
 I, i.e.,
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�

�

R1

��������������� ...

Rn ��		
			

			
			

		 �

π1

��

πn

��

�

S1

��													...

Sn�����
���

���
���

�

�

(7)

Ideally, we would like the factorisation through the relational product to commute with
the composition of Ri’s with S�i ’s, that is, we would like the product to satisfy the sharp-
ness condition: ��

i�I

Riπ�
i

���
j�I

π jS
�
j

�
�

�
i�I

RiS
�
i . (8)

Unfortunately sharpness condition is not satisfied in general allegories for general Ri’s
and Si’s (cf. [8]).

The sharpness condition does not seem sufficient to prove the results in the next
subsection. Therefore here we will introduce a more general condition:

Definition 4. Let �πi�i�I be a n-ary relational product and let �Ri�i�I and �Si�i�I be
families of arrows as in Diagram (7). We say that �πi�i�I satisfies the generalised sharp-
ness condition for families �Ri�i�I and �Si�i�I iff, for all non-empty I1, I2 � I we have��

i�I1

Riπ�
i

���
j�I2

π jS
�
j

�
�

� �
i�I1�I2

RiS
�
i

�
.

Here (as elsewhere) an intersection of an empty family of arrows is a top arrow (as it is
the infimum of an empty family).

Note that in general��
i�I1

Riπ�
i

���
j�I2

π jS
�
j

�
�

� �
i�I1�I2

RiS
�
i

�
(9)

Indeed, the inequality obviously holds when I1� I2��. If I1� I2 �� then for any k 


I1�I2 we have
��

i�I1
Riπ�

i

���
j�I2

π jS�j

�
�RkS�k , and thus

��
i�I1

Riπ�
i

���
j�I2

π jS�j

�
�

�
k�I1�I2

RkS�k . Hence, only the inequality in the other direction is non-trivial.
It is obvious that the generalised sharpness condition cannot be satisfied for arbitrary

families �Ri�i�I and �Si�i�I of arrows (e.g., take disjoint I1 and I2 and consider Ri’s and
Si’s to be bottom arrows in a distributive allegory). However, as the following result
shows, it is not unreasonable to assume the generalised sharpness for total arrows:

Proposition 1. In R�Λ �, for any locale Λ , the generalised sharpness condition is sat-
isfied for arbitrary families of total arrows.
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Proof. First recall that in R�Λ � the common source of πi’s is isomorphic with
�

i�I
�	πi

and πi’s can be given explicitly as πi��xm�m�I ,x� �

�
� if xi � x

� if xi � x
. Then one easily

checks that
��

i�I1
Riπ�

i

�
�x,�yn�n�I� �

�
i�I1

Ri�x,yi� and
��

i�I2
Siπ�

i

�
�z,�yn�n�I� ��

i�I2
Si�z,yi�. Noting now that in R�Λ � the totality of an arrow R is equivalent with	

y��	R R�x,y� � � for all x 
��R we have (for brevity we write �yn� instead of �yn�n�I):

���
i�I1

Riπ�
i

���
j�I2

π jS
�
j

��
�x,z�

�
�

�yn�
�

i�I
�	πi

���
j�I1

R jπ�
j

�
�x,�yn���

��
k�I2

Skπ�
k

�
�z,�yn��

�

�
�

�yn�
�

i�I
�	πi

�

j�I1

R j�x,y j��


k�I2

Sk�z,yk�

�

�



i�I1
I2

� �
yi�
�	πi

Ri�x,yi�

�
�



j�I2
I1

� �
y j�
�	π j

S j�z,y j�

�

�



k�I1�I2

� �
yk�
�	πk

�Rk�x,yk��Sk�z,yk��

�

� ����



k�I1�I2

� �
yk�
�	πk

�
Rk�x,yk��Sk�z,yk�

��

�



k�I1�I2

�RkS�k ��x,z�.

Unfortunately, the author does not know if the sharpness condition for total arrows
implies generalised sharpness for total arrows.

4.1 Iterating and De-Iterating Relational Products

The notions of iterating and de-iterating relational products are best explained by Fig-
ures 1 and 2. It is well known that iterating n-ary relational products gives relational
products (see e.g., [8] or, in slightly more general context, [15]). Here we prove that
iteration preserves the generalised sharpness of total arrows:

Lemma 9. Suppose that � C
πi �� � �i�I is an �I�-ary relational product, let k 
 I and

let � �	πk
ρ j �� � � j�J be a �J�-ary relational product. Suppose that πi’s and ρi’s satisfy

the generalised sharpness condition for total arrows. Then �πkρ j� j�J��πi�i�I
�k� is an
(�I���J� 1)-ary relational product also satisfying the generalised sharpness condition
for total arrows.
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�
π1

��









 πn

����
���

��

�
ρ1

�����
���

� ρm

��


 � � � �

� � � � �

Fig. 1. Iterating relational products. Is �π1ρi�1�i�m ��π j�2� j�n an �m� n� 1	-ary relational
product if πi’s and ρi’s are, respectively, n-ary and m-ary relational products?

Proof. Without loss of generality we may assume that I�J ��. Let I1, I2 � I!�k� and
J1,J2 � J be such that I1� J1 and I2� J2 are both non-empty. Let

� A
Ri �� 
�πi �i�I
�k��� A

R j �� 
�ρ j � j�J , � B
Sm �� 
�πm �m�I
�k��� B

Sn �� 
�ρn �n�J

be two families of total arrows. Then��
i�I1

Riπ�
i �

�
j�J1

R jρ�
j π�

k

�� �
m�I2

πmS�m�
�
n�J2

πkρnS�n

�

�By Lemma 1�

�

��
i�I1

Riπ�
i �
��

j�J1

R jρ�
j

�
π�

k

�� �
m�I2

πmS�m�πk

�
n�J2

ρnS�n

�

�By the generalised sharpness of πi’s for total arrows

as by Lemma 8
�
j�J1

R jρ�
j and

�
j�J2

S jρ�
j are total�

�
�

i�I1�I2

RiS
�
i �

��
j�J1

R jρ�
j

���
n�J2

ρnS�n

�

�By the generalised sharpness of ρi’s for total arrows�

�
�

i�I1�I2

RiS
�
i �

�
j�J1�J2

R jS
�
j

�
�

i��I1�J1��I2�J2

RiS
�
i .

Lemma 10. Let � A
πi �� � �i�I be an �I�-ary relational product. Furthermore, let J �

I and let � B
ρ j �� �	π j � j�J be a �J�-ary relational product. Define πJ :�

�
j�J π jρ�

j .

Then if πi’s and ρi’s satisfy the generalised sharpness condition for maps, it follows
that �πJ���πi�i�I
J is an ��I� �J��1�-ary relational product which also satisfies the
generalised sharpness condition for maps.
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�
η

������
����

����
�� πn

�����
����

����
��

πm

��

π1

��

�
ρ1

�����
���

� ρm

����
���

�� � � � �

� � � � �

Fig. 2. De-iterating relational products: Assuming that πi’s and ρ j’s are relational products and η
is the unique map such that πi � ηρi, for all 1 im, is �η,πm�1, . . . ,πn� a relational product?

Proof. First we check the conditions of the Definition 3. It suffices to check Equa-
tion (5a) for πJ as π�

i πi � id�	πi
for all i 
 I!J by assumption. By the generalised sharp-

ness of πi’s for maps we have that (as ρi’s are maps)

π�
J πJ �

��
i�J

ρiπ�
i

���
j�J

π jρ�
j

�
�

�
i�J

ρiρ�
i � idB,

where the last equality follows from Equation (5b) for ρi’s.
From the generalised sharpness of ρi’s for maps it follows that

πJπ�
J �

��
i�J

πiρ�
i

���
j�J

ρ jπ�
j

�
�

�
i�J

πiπ�
i . (10)

Thus, Equation (5b) follows:
�

i�I
J

πiπ�
i �πJπ�

J �
�

i�I
J

πiπ�
i �

�
j�J

π jπ�
j �

�
i�I

πiπ�
i � idA.

Finally, to verify Equation (5c), we need to consider two cases. First, let k 
 I!J. Then� �
i�I
J
�k�

πiπ�
i �πJπ�

J

�
πk �

� �
i�I
J
�k�

πiπ�
i �

�
j�J

π jπ�
j

�
πk �

� �
i�I
�k�

πiπ�
i

�
πk ��A�	πk

by the virtue of Equation (10). On the other hand,� �
i�I
J

πiπ�
i

�
πJ �

� �
i�I
J

πiπ�
i

���
j�J

π jρ�
j

�
��AB

using the generalised sharpness of πi’s for maps.
Now we will prove that �πJ���πi�i�I
J satisfies the sharpness condition for maps.

Let I1, I2 � �I!J���J� be non-empty, and let

� C
fi �� �	πi �i�I
J �� C

fJ �� B �, � D
gi �� �	πi �i�I
J �� D

gJ �� B �

be two families of maps. There are four cases to consider:

1. J " I1 and J " I2. Then
��

i�I1
fiπ�

i

���
j�I2

π jg�j

�
�

�
i�I1�I2

fig�i follows easily

from �πi�i�I satisfying the generalised sharpness condition for maps.
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2. J 
 I1 and J " I2. Then

��
i�I1

fiπ�
i

���
j�I2

π jg
�
j

�
�

� �
i�I1
�J�

fiπ�
i � fJ

�
j�J

ρ jπ�
j

���
k�I2

πkg�k

�

�

� �
i�I1
�J�

fiπ�
i �

�
j�J

fJρ jπ�
j

���
k�I2

πkg�k

�
�

�
i�I1�I2

fig
�
i .

Here we used Lemma 1 in the second equality, and we invoked the generalised
sharpness for maps ( fJρi’s are maps by Lemma 7) satisfied by πi’s, as well as the
fact that J is disjoint from I1 and I2.

3. J " I1 and J 
 I2. Proven similarly as the previous one.
4. J 
 I1 and J 
 I2. Then��

i�I1

fiπ�
i

���
j�I2

π jg
�
j

�

�

� �
i�I1
�J�

fiπ�
i � fJ

�
j�J

ρ jπ�
j

�� �
k�I2
�J�

πkg�k �
��

n�J

πnρ�
n

�
g�J

�

�By Lemma 1�

�

� �
i�I1
�J�

fiπ�
i �

�
j�J

fJρ jπ�
j

�� �
k�I2
�J�

πkg�k �
��

n�J

πnρ�
n g�J
��

�By the generalised sharpness of πi’s for maps�

�
�

i��I1
J��I2
J

fig
�
i �

�
j�J

fJρ jρ�
j g�J

�By Lemma 1 and Equation 5b�

�
�

i�I1�I2

fig
�
i .

5 Relational Schemas and n-ary Relations in Allegories

5.1 Moving Legs Around

If an allegory has relational products then n-ary relations, for n� 2, can be represented
as arrows (binary relations) between products. The main problem here is that this rep-
resentation is non-canonical — we need to divide the n “legs” of the relation into two
groups. Moreover, different representations of the same, in some sense, n-ary relation
are required for some relational operations, such as joins or intersections with particu-
lar arrows, to be applicable. For instance, let R be a ternary relation with legs typed as
A, B and C and let S : A	 D and T : E 	 B be binary relations. In order for S to be
composable (joinable) with R the latter should be represented as R : B�C	 A. On the
other hand, joinability of T with R seems to require representation R : B	 A�C. Note
that one of the representation change operations is built into any allegory — it is the
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C

A

αA�B,C
A,B�C �R

��� � � � � � � � � � � � � �
A�B

πA�B
1��

R

����������

πA�B
2 ���

��
��

��
� B�C

πB�C
2

����������

πB�C
1����

��
��
��

B

Fig. 3. Diagram of construction of αA	B,C
A,B	C �R	

A

S

���
��

��
��

�

A�B

πA�B
1

����������

πA�B
2 ���

��
��

��
�

αA,B�C
A�B,C �S

���  � � � ! � " � � � # � $B�C

πB�C
1����

��
��
��

πB�C
2 �� C

B

Fig. 4. Diagram of construction of αA,B	C
A	B,C �S	

reciprocation, which allows to flip the legs of a binary relation. We still need, however,
an operation which allows to move a leg of the n-ary relation from a source of repre-
sentation to the target and vice-versa. In this subsection we will write those operations
explicitly, and we will prove that they are one-another’s inverses.

First we define the leg moving operations:

Definition 5. Let A be an allegory, let A,B,C 
 Obj�A � and suppose that binary
relational products A� B and B�C exist in A . Then we define the pair of maps

ArrA �A�B,C�

αA�B,C
A,B�C ��

ArrA �A,B�C�
αA,B�C

A�B,C

�� with the formulas

αA	B,C
A,B	C �R� :� �πA	B

1 ��;
�
R;�πB	C

2 ���πA	B
2 ;�πB	C

1 ��
�
, (11a)

αA,B	C
A	B,C �S� :�

�
πA	B

1 ;S�πA	B
2 ;�πB	C

1 ��
�
;πB	C

2 . (11b)

The definition is best understood by looking at the Diagrams 3 and 4. Note that
αA,B	C

A	B,C �S� �
�
αC	B,A

C,B	A �S
��
��

. The meaning of the α maps is explained by noting that in

R, for all a 
 A, b 
 B and c 
C we have aαA	B,C
A,B	C �R��b,c�  �a,b�Rc.

Lemma 11. (cf. [12, Proposition 6.1]) Assume that A, B, C are objects in some allegory
A such that αA	B,C

A,B	C and αA,B	C
A	B,C are well defined. Then

αA	B,C
A,B	C �

�
αA,B	C

A	B,C

��1
.
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Proof. We will prove that αA	B,C
A,B	C #αA,B	C

A	B,C � id. We leave the similar checking of the
other identity to the reader. Let S 
 ArrA �A,B�C�. Then

αA	B,C
A,B	C

�
αA,B	C

A	B,C �S�
�

�By Equation (11a)�

� �πA	B
1 ��

�
αA,B	C

A	B,C �S��π
B	C
2 ���πA	B

2 �πB	C
1 ��

�
�By Equation (11b)�

� �πA	B
1 ��

�
�πA	B

1 S�πA	B
2 �πB	C

1 ���πB	C
2 �πB	C

2 ���πA	B
2 �πB	C

1 ��
�

�Because πB	C
2 is total�

� �πA	B
1 ��

�
�πA	B

1 S�πA	B
2 �πB	C

1 ����πA	B
2 �πB	C

1 ��
�

�By idempotency of ��

� �πA	B
1 ��

�
πA	B

1 S�πA	B
2 �πB	C

1 ��
�

�By Lemma 2�

� S��πA	B
1 ��πA	B

2 �πB	C
1 ��

�By Lemma 3 and Equation 4c as πB	C
1 is total�

� S.

Let us denote for brevity λ :� πA	B
1 S�πA	B

2 �πB	C
1 ��. Then we have

αA	B,C
A,B	C

�
αA,B	C

A	B,C �S�
�

�By (11a), (11b) and the definition of λ�

� �πA	B
1 ��

�
λ πB	C

2 �πB	C
2 ���πA	B

2 �πB	C
1 ��

�
�By Equation (1g)�

� �πA	B
1 ��λ

�
πB	C

2 �πB	C
2 ���λ �πA	B

2 �πB	C
1 ��

�
�By monotonicity of all operations as λ �

� πB	C
1 �πA	B

2 ���

� �πA	B
1 ��λ

�
πB	C

2 �πB	C
2 ���πB	C

1 �πA	B
2 ��πA	B

2 �πB	C
1 ��

�
�By Equation (4a)�

� �πA	B
1 ��λ

�
πB	C

2 �πB	C
2 ���πB	C

1 �πB	C
1 ��

�
�By Equation 4b and the definition of λ�

� �πA	B
1 ��

�
πA	B

1 S�πA	B
2 �πB	C

1 ��
�

�By Lemma 2�

� S��πA	B
1 ��πA	B

2 �πB	C
1 ��
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�By Lemma 3 and Equation 4c as πB	C
1 is total�

� S.

5.2 Relational Schemas and Canonical Presentation of n-ary Relations

In relational algebra á la Codd [6] “legs” (columns) of an n-ary relation are not really
ordered (although they are in most practical implementations), i.e., they are not identi-
fied by position. Instead, they are identified by name. A set of column names of a given
relation together with the assignement of a type to a column is called a schema of this
relation. A given relation schema may have many instances, i.e., relations with a given
column names and types. Here we will mimic those ideas.

Definition 6. Let T be a fixed set of basic types (e.g., integer, varchar, etc.). A
relation schema �X ,α� over T consists of a finite set X of column names together with
a mapping α : X 	 T assigning types to column names.

Definition 7. A category S �T� of relation schemas over T has as objects relation
schemas over T. Morphisms f : �X ,α� 	 �Y,β � between relation schemas are injec-
tive maps f : X 	 Y between sets such that β # f � α .

Note that S �T� is a subcategory of a slice category Set$T.
The following definition attempts to give an almost canonical, natural representa-

tion of an n-ary relation as an arrow in an allegory with some additional structure (cf.
vectorization of binary relations, see e.g., [12, Section 6]).

Definition 8. Let �X ,α� be a relation schema over T. Let A be a unitary allegory such
that there exists a mapping ��� : T	 Obj�A � interpreting basic types as objects in A .

Let 1 be a unit in A . A pair �R,�
�	
R

πi �� �α�i�� �i�X � is called an instance of �X ,α�
iff��R � 1 and �πi�i�X is an �X �-ary relational product.

Note that this representation is not completely canonical as it depends on the choice
of relational product. This is not a great problem as in many allegories (e.g., R or
R�Λ �) there exists a canonical choice of products. Also note that now the set of column
names is a part of the definition of an instance. In particular, any bijection f : �X ,α� 	
�Y,β � gives rise to the renaming transformation f̂ of instances (which corresponds to
the renaming operation in the Codd’s relational algebra):

f̂ ��R,� �	R
πi �� �α�i�� �i�X�� :� �R,� �	R

ρ j �� �β � j�� � j�Y �, (12)

where ρ j :� π f�1� j, j 
 Y .
Assume for simplicity that T� Obj�A � and that ��� : T	Obj�A � is given by iden-

tity. Suppose that A A�B
π1�� π2 �� B is a relational product of A and B. Observe

that any arrow R 
 ArrA �A,B� gives rise to an instance �αA,B
1,A	B�R�,�πi�i��1,2�� of a

schema ��1,2�,�1 �	 A,2 �	 B��, where we utilize Lemma 6. Moreover, by Lemma 11,
this assignement is invertible (see also [12, Proposition 6.1]), and thus we loose no
information when we change into this representation.
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5.3 Joins and Intersections of n-ary Relations in Allegories

One can intersect only the instances of the same schemas with common product compo-
nents. Let �R,�πi�i�X � and �S,�πi�i�X� be instances of the same relation schema �X ,α�.
Then

�R,�πi�i�X ���S,�πi�i�X� :� �R�S,�πi�i�X�. (13)

This explicit dependence on products might be troublesome. Note however, that rela-
tional products of a given collection of objects in an allegory are categorical products
in the subcategory of maps, and thus are unique up to an isomorphism (c.f. [8]).

Suppose now that �X ,α� and �Y,β � are relation schemas over T such that X �Y is
non-empty and α


X�Y� β


X�Y . Moreover, let

� A
ρA

i �� �α�i�� �i�X
Y , � B
ρB

j �� �α� j�� � j�X�Y , � C
ρC

k �� �β �k�� �k�Y 
X ,

be relational products that satisfy the generalised sharpness property for maps. Consider
instances �R,�πi�i�X� of �X ,α� and �S,�σi�i�Y � of �Y,β � such that πi’s and σi’s satisfy
the generalised sharpness condition for maps. Define

πA	B
1 :�

�
i�X
Y

πi�ρA
i �

�, πA	B
2 :�

�
i�X�Y

πi�ρB
i �

�,

πB	C
1 :�

�
i�X�Y

σi�ρB
i �

�, πB	C
2 :�

�
i�Y 
X

σi�ρC
i �

�,

Then it follows from Lemma 10 that �πA	B
1 ,πA	B

2 � and �πB	C
1 ,πB	C

2 � are relational

products. Finally, assume that A D
μ1�� μ2 �� �	S is also a relational product. Then

we define a natural join of �R,�πi�i�X� and �S,�σi�i�Y � as an instance �R� S,�νi�i�X�Y �
of a schema �X�Y,γ� where

γ�i� :�

�
α�i� if i 
 X

β �i� if i 
 Y
, νi :�

�
μ1ρA

i if i 
 X!Y

μ2σi if i 
 Y
,

R� S :� αA,B	C
1,A	�B	C

�
α1,A	B

A,B �R��uBS��πB	C
1 ���

�
: 1	 D.

It is easy to verify that in R this definition corresponds to the usual definition of a
natural join of two relations in Codd’s relational algebra [6].

6 Conclusion

In the paper we have presented a new approach, partially inspired by [5], [4] to n-ary
relations in allegories, which can be useful for database modeling, e.g., extending the
approach of [16] and [17]. Considering n-ary relations in the (almost) general allegori-
cal framework allows us to transparently use Codd’s relational algebra operations with
various generalised relation-like constructs, particularly with fuzzy (locale-valued) re-
lations. This can be important for assigning semantics to some fuzzy extensions of
relational query languages, for instance PREDICTION JOIN construct of DMX [1].
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The most important results of the paper are Lemma 10 and Lemma 11 as well as the
introduction of the condition of generalised sharpness for total maps. These are crucial
for the new approach to n-ary relations to work as expected.

In the future work we would like to examine the properties of relational operations on
n-ary relations in allegories defined in the previous section. In particular, we would like
to check how many of Codd’s axioms can be transported to general allegorical setting.

Finally, we would like to check if it is possible to develop results similar to the ones
in this paper while working with weakened definitions of relational products, such as
those in [14], [15].

Acknowledgements. I would like to thank prof. Paweł Maślanka for helpful discus-
sions. I would also like to thank the anonymous reviewers for their suggestions.
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Abstract. In formal concept analysis, complete lattices of “concepts”
are represented by entity-attribute relations called “contexts”. Using the
dependently-typed programming language Agda, we build on a previous
formalisation of the category of contexts to obtain a fully verified abstract
implementation of the duality between contexts and complete lattices in
the abstract setting of locally ordered categories with converse, residuals,
symmetric quotients, and direct powers.

1 Introduction

Locally-ordered categories with converse (OCCs) were identified in [Kah04] as a
common substrate between the allegories of Freyd and Scedrov [FS90] and typed
Kleene algebras [Koz98] and variants. This common substrate is important since
in OCCs, a large variety of relation-algebraic specification and reasoning patterns
is already possible. The distinguishing feature of OCC-based formalisation is:

“No binary meets (intersections, ⊓), no binary joins (unions, ⊔).”

For the “contexts” of Wille’s “formal concept analysis” [Wil05], Moshier proposes
a relational homomorphism concept [Mos13, Jip12] in conventional mathematical
style. We showed in [Kah14b] that enriching OCCs with power operators and
power orders following [BdM97] implies that also left- and right-residuals become
available, and that this extended setting is sufficient to formalise the category
of contexts with their relational homomorphisms.

Moshier goes on to prove that this category is dual to that of complete semi-
lattices with meet-preserving homomorphisms [Mos13, Jip12]; the current paper
shows that this can still be formalised without binary joins and meets, even
though it may not be immediately obvious how to deal in particular with an-
tisymmetry in this setting. The conventional relation-algebraic characterisation
of a relation E as a partial order has:

Reflexivity: Id ⊑ E Transitivity: E � E ⊑ E Antisymmetry: E ⊓ E ˘ ⊑ Id

In addition to left- and right-residuals, we do require also symmetric quotients.
These have originally been introduced by Berghammer, Schmidt, and Zierer
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of Canada, NSERC.
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[BSZ86, BSZ89] as the intersection of two residuals in the context of heteroge-
neous relation algebras (see also [SS93, Sect. 4.4]). We first proposed a meet-free
definition for symmetric quotients that also does not rely on separate residuals
in [FK98]; this has then been set into the context of ordered semigroupoids with
converse in the Agda formalisation “RATH-Agda” of relation-algebraic theories
[Kah11, Kah14c], but has so far not yet been applied in such a meet-free context.

As first demonstrated by Schmidt et al. [BSZ86, BSZ89, SS93], symmetric
quotients can be used for specifying set membership. The resulting concept of
direct power is slightly stronger than that of the power operators based on power
transpose, where antisymmetry of the power order requires tabular allegories
according to Bird and de Moor [BdM97, p. 106].

We use the meet-free definition of symmetric quotients to achieve a meet-free
formulation of antisymmetry and of other order-theoretic constructions that are
normally defined using meets. Using this in the construction of the categorical
duality between contexts and complete semilattices requires some non-trivial
proofs, but overall results in a satisfying formalisation.

Developments of “familiar theory” in “familiar, but reduced” axiom systems
easily fall into the trap of inadvertantly using derived laws that are not derivable
anymore from the reduced axiom system. Since our development is quite large,
only a mechanically checkable formalisation can plausibly convince the reader
that we did not “cheat”, or overlook anything. We choose Agda [Nor07] for our
formalisation, which accepts as input an easily recognisable variant of the cal-
culational proofs that would otherwise be written in LATEX. By also presenting
our mathematical development in this Agda notation, we strive to demonstrate
that mechanised developments (in Agda) can be readable and writable, making
the “cost” of switching to mechanically checked proofs tolerable and well-spent,
even for the development of new mathematics, since the use of a proof-checking
environment significantly increases the confidence of both the developer and the
reader. The source files of our full development [KAh15], are available on-line
at: http://relmics.mcmaster.ca/RATH-Agda/#AContext

Overview: We provide a quick introduction to most of the Agda notation we use
in this paper in Sect. 2, via a presentation of the definition of OCCs in Agda
notation. In the context of the meet-free definition of symmetric quotients in
Sect. 3, we use our proofs of example properties of symmetric quotients to explain
how calculational proofs are presented to Agda. These tools are used for meet-free
definitions and theorems about orders (Sect. 4), set membership (Sect. 5), and
complete semilattices (Sect. 6). After a short review of our previous development
of abstract contexts in Sect. 7, we briefly present the main ingredients of the proof
of the categoric duality between contexts and complete semilattices in Sect. 8.

2 OCCs in Agda Notation

Agda [Nor07] is a dependently-typed programming language that is also a proof
checker in a variant of Martin-Löf type theory. A number of its design choices

http://relmics.mcmaster.ca/RATH-Agda/#AContext
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(on top of the dependent type theory) make it a convenient vehicle not only for
verified functional programming, but also for mechanisation of mathematics in
a rather natural way:
– Identifiers can be almost arbitrary white-space-free strings in Unicode encod-

ing. (As a consequence, most lexemes need to be separated by white space.)
– Mixfix syntax: Operator names include underscores for argument positions.
– Implicit arguments allow information that can be inferred from the context to

be omitted, an important ingredient of “mathematically natural syntax”.
– The module system allows nesting, parameters, qualified and unqualified im-

port and re-export with or without renaming and/or instantiation, allowing
natural theory structuring and modularisation.

– Data constructors and record field labels can be overloaded.
– The interactive front-end supports type-directed editing and also automates

some aspects of proof construction.
An ordered category with converse (OCC) consists of the following, using Agda
notation throughout:
– A type Obj of objects, which should be considered as abstracting from sets,
– For any two objects A B ∶ Obj, a type Mor A B of morphisms from A to B, which

should be considered as abstracting from relations between A and B, together
with an equivalence relation _≈_ that serves as morphism equality (since as
usual in type-theoretic formalisations of category theory, we use the setoid
appproach for homsets), and an inclusion relation _⊑_ on Mor A B forming a
partial order with respect to _≈_.

– A binary composition operator _�_ ∶ Mor A B → Mor B C → Mor A C for any
A B C ∶ Obj, where application of the infix operator “_�_” to two arguments R ∶
Mor A B and S ∶ Mor B C is written “R � S”; note that we use forward composition
A R�B S�C. Composition is associative, �-assoc ∶ (Q � R) � S ≈ Q � R � S,
and associates to the right, which is why we did not need to add parentheses
on the right-hand side. Composition also preserves equality and inclusion, as
witnessed by the following proof term constructors:

�-cong1 ∶ R1 ≈ R2 → R1 � S ≈ R2 � S �-monotone1 ∶ R1 ⊑ R2 → R1 � S ⊑ R2 � S
�-cong2 ∶ S1 ≈ S2 → R � S1 ≈ R � S2 �-monotone2 ∶ S1 ⊑ S2 → R � S1 ⊑ R � S2

(We will also use variants like �-cong221 where the subscript digit sequence
indicates the term position of the respective rule application.) Note that the
function type constructor → also serves as logical implication between types
that are considered as formulae (where the elements are considered as proofs).

– For each object A ∶ Obj a morphism Id {A} ∶ Mor A A satisfying leftId ∶ Id � R ≈ R
and rightId ∶ Q � Id ≈ Q. If R ∶ Mor A B, then we could have made the
implicit argument to Id, indicated by the braces {. . . }, explicit by writing
Id {A} � R ≈ R, but this is normally omitted, just like in mathematics.

– For any A B ∶ Obj, a converse operator _˘ ∶ Mor A B→ Mor B A satisfying:

˘-cong ∶ R ≈ S → R ˘ ≈ S ˘ -- preservation of equality
˘˘ ∶ (R ˘) ˘ ≈ R -- involution
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�-˘ ∶ (R � S) ˘ ≈ S ˘ � R ˘ -- contravariance
˘-monotone ∶ R ⊑ S → R ˘ ⊑ S ˘ -- preservation of inclusion

For the �-contravariance �-˘ of converse we also use the following abbreviations:

�˘-˘ ∶ (S � R ˘) ˘ ≈ R � S ˘
˘�-˘ ∶ (S ˘ � R ) ˘ ≈ R ˘ � S
˘�˘-˘ ∶ (S ˘ � R ˘) ˘ ≈ R � S

The names of most of these properties are intended to evoke the left-hand
sides of their (conclusion) equality; the hyphen “-” is used in this context for
“pauses of breath” similar to the way that pauses of breath in natural language
indirectly indicate syntactic structure. For the time being, we feel that this
is more readable that using parentheses-like Unicode codepoints in identifiers
(parentheses themselves cannot be used).

Frequently we will in addition assume existence of residuals of composition;
for derived laws for residuals in OCCs, see [Kah04, Kah11, Kah14c]. For any
A B C ∶ Obj and morphisms S ∶ Mor A C and Q ∶ Mor A B and R ∶ Mor B C:
– The left residual S / R ∶ Mor A B is defined by:
/-cancel-outer ∶ (S / R) � R ⊑ S
/-universal ∶ ∀ {X ∶ Mor A B} → X � R ⊑ S→ X ⊑ S / R

– The right residual Q / S ∶ Mor B C is defined by:
/-cancel-outer ∶ Q � (Q / S) ⊑ S
/-universal ∶ ∀ {Y ∶ Mor B C} → Q � Y ⊑ S → Y ⊑ Q / S

3 Symmetric Quotients in OCCs without Meets

For the symmetric quotient of Q and S, we use the notation Q // S of [Kah14c],
instead of the notation “syq(Q,S)” previously used by Schmidt et al..

In an OCC (which does not need to have residual operators), the symmetric
quotient Q // S ∶ B↔ C of two relations Q ∶ A↔ B and S ∶ A↔ C is defined by

Y ⊑ Q // S iff Q � Y ⊑ S and Y � S ˘ ⊑ Q ˘ for all Y ∶ B ↔ C.
The Agda formulation requires names for all axioms; for pragmatic reasons we
split the “iff” into two directions, and split the “implies . . . and . . . ” into two con-
juncts; we give the resulting pieces three easily recognisable names, and for now
omit the introduction of the bound variables and their types for the three laws:

_//_ ∶ {A B C ∶ Obj} → Mor A B→ Mor A C→ Mor B C
//-cancel-left ∶ Q � (Q // S) ⊑ S
//-cancel-right ∶ (Q // S) � S ˘ ⊑ Q ˘
//-universal ∶ Q � R ⊑ S → R � S ˘ ⊑ Q ˘→ R ⊑ Q // S

Agda directly supports literate programming in that Agda source files may be
LATEX source files with Agda code embedded in {code} environments. The type-
setting in this paper was produced via pre-processing using lhs2TeX [Löh12]. The
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following is the full body of the Agda record definition for symmetric quotient
operators — like the remaining “code blocks” in this paper, it is an only slightly
typographically-enhanced rendering of the Agda source code. Since lhs2TeX han-
dles vertical alignment automatically, Agda source code turns out easier to write
than LATEX source of similar mathematics; the fact that writing Agda requires
more type information than customary in much mathematical writing can be
regarded as a weakness, but we prefer to see it as a strength, since it relieves
the reader to a certain degree from performing type inference and guessing the
scopes of bound variables which are all too often left unclear.

This full version of the symmetric quotient operator definition includes also a
congruence law — symmetric quotient operators are neither monotone nor anti-
tone in any argument, so //-cong appears to not be consequence of the other laws.
(For the one-sided residuals _/_ and _/_, their definition implies monotonicity
in the “upper” argument and antitonicity in the “lower” argument, and these in
turn imply congruence via antisymmetry of _⊑_.)

infix 9 _//_ -- operator precedence level
field
_//_ ∶ {A B C ∶ Obj} → Mor A B→ Mor A C→ Mor B C
//-cong ∶ {A B C ∶ Obj} {Q1 Q2 ∶ Mor A B} {S1 S2 ∶ Mor A C}

→ Q1 ≈ Q2 → S1 ≈ S2 → Q1 // S1 ≈ Q2 // S2
//-cancel-left ∶ {A B C ∶ Obj} {Q ∶ Mor A B} {S ∶ Mor A C}

→ Q � (Q // S) ⊑ S
//-cancel-right ∶ {A B C ∶ Obj} {Q ∶ Mor A B} {S ∶ Mor A C}

→ (Q // S) � S ˘ ⊑ Q ˘
//-universal ∶ {A B C ∶ Obj} {Q ∶ Mor A B} {S ∶ Mor A C} {R ∶ Mor B C}

→ Q � R ⊑ S → R � S ˘ ⊑ Q ˘→ R ⊑ Q // S

When there is no loss of clarity, we shall elide such variable introductions, as in
the display at the beginning of this section.

In a division allegory, where right-residual _/_ and left-residual _/_ op-
erators are both available, as well as binary meet _⊓_, we have the theorem
that a symmetric quotient operator as defined above satisfies the conventional
symmetric quotient definition:

//≈/⊓/ ∶ ∀ {Q S} → Q // S ≈ Q / S ⊓ Q ˘ / S ˘

Even though we do not assume the existence of all binary meets in OCCs, sym-
metric quotients still are meets. But since all symmetric quotients are difunc-
tional, and in most OCCs, most morphisms are not difunctional, demanding
existence of all symmetric quotients is still quite remote from demanding exis-
tence of all meets. Basic reasoning about symmetric quotients typically bifurcates
into branches through the two-premise rule //-universal. As a simple example, we
show one side of the proof that converse of symmetric quotients just swaps the
arguments. The following Agda source block contains first the statement of this
theorem, named “//-˘-⊑”, with typed universally quantified variables A, B, C, Q,
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S, and then the proof term proving this theorem, constructed using the two-
premise rule //-universal applied to proofs of the inclusions S � (Q // S) ˘ ⊑ Q
and (Q // S) ˘ � Q ˘ ⊑ S presented as calculational proofs where each “reason”
(enclosed in ⟨. . . ⟩) is a full proof term for the respective equality or inclusion.
The first equality steps in both calculations are “backwards”, as signalled by the
“˘” preceding the ⟨. . . ⟩. We chose to not clutter this paper with explicit intro-
ductions of all proof term elements used in the calculational proofs presented;
most of the few unintroduced ones should be reasonably clear from the context,
and all are defined in the sources [KAh15].

//-˘-⊑ ∶ {A B C ∶ Obj} {Q ∶ Mor A B} {S ∶ Mor A C} → (Q // S) ˘ ⊑ S // Q
//-˘-⊑ {A} {B} {C} {Q} {S} = //-universal
(⊑-begin

S � (Q // S) ˘
≈˘⟨ �˘-˘ ⟩
((Q // S) � S ˘) ˘
⊑⟨ ˘-monotone //-cancel-right ⟩
Q ˘ ˘
≈⟨ ˘˘ ⟩
Q�)

(⊑-begin
(Q // S) ˘ � Q ˘
≈˘⟨ �-˘ ⟩
(Q � (Q // S)) ˘
⊑⟨ ˘-monotone //-cancel-left ⟩
S ˘�)

The following inclusion will occasionally be useful:

//-cancel-inner ∶ ∀ {A B C Z} {Q ∶ Mor A B} {S ∶ Mor A C} {P ∶ Mor Z A}
→ Q // S ⊑ (P � Q) // (P � S)

//-cancel-inner { } { } { } { } {Q} {S} {P} = //-universal
(�-assoc ⟨≈⊑⟩ �-monotone2 //-cancel-left)
(⊑-begin
(Q // S) � (P � S) ˘
≈⟨ �-cong2 �-˘ ⟩
(Q // S) � S ˘ � P ˘
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 //-cancel-right ⟩
Q ˘ � P ˘
≈˘⟨ �-˘ ⟩
(P � Q) ˘�)

The converse inclusion would frequently be nice to have, but unfortunately it
holds in general only for univalent and surjective P. Similarly stringent are the
laws for “multiplication from the outside”, shown without proofs:



Mechanised Relation-Algebraic Order Theory in OCCs without Meets 157

//-in-left ∶ {A B C D ∶ Obj} {Q ∶ Mor C B} {S ∶ Mor C D} {F ∶ Mor A B}
→ isMapping F→ F � (Q // S) ≈ (Q � F ˘) // S

//-in-right ∶ {A B C D ∶ Obj} {Q ∶ Mor A B} {S ∶ Mor A C} {F ∶ Mor C D}
→ isBijective F→ (Q // S) � F ≈ Q // (S � F)

We have been able to re-prove in our formalisation [KAh15] all common laws
about symmetric quotients where the statement does not involve meet (or join),
in particular those collected in [FK98].

A new general theorem that finds uses where the assumptions of the rules
above do not hold will be used for showing “antisymmetry” of suborders later:

retract// ∶ {A B C1 C2 ∶ Obj}
{F1 G1 ∶ Mor B C1} {F2 G2 ∶ Mor B C2} {H1 H2 ∶ Mor A B}

→ F1 ⊑ G1 -- premise F1⊑G1

→ F2 ⊑ G2 -- premise F2⊑G2

→ H1 � G2 � F2 ˘ ⊑ H2 -- premise H1�G2�F2˘⊑H2

→ F1 � G1 ˘ � H2 ˘ ⊑ H1 ˘ -- premise F1�G1˘�H2˘⊑H1˘
→ F1 � (G1 // G2) � F2 ˘ ⊑ H1 // H2 -- conclusion

retract// {A} {B} {C1} {C2} {F1} {G1} {F2} {G2} {H1} {H2}

F1⊑G1 F2⊑G2 H1�G2�F2˘⊑H2 F1�G1˘�H2˘⊑H1˘ = //-universal
(⊑-begin
H1 � F1 � (G1 // G2) � F2 ˘
⊑⟨ �-monotone21 F1⊑G1 ⟩

H1 � G1 � (G1 // G2) � F2 ˘
⊑⟨ �-monotone2 (�-assocL ⟨≈⊑⟩ �-monotone1 //-cancel-left) ⟩
H1 � G2 � F2 ˘
⊑⟨ H1�G2�F2˘⊑H2 ⟩

H2�) (⊑-begin
(F1 � (G1 // G2) � F2 ˘) � H2 ˘
⊑⟨ �-monotone1 (�-monotone22 (˘-monotone F2⊑G2)) ⟩

(F1 � (G1 // G2) � G2 ˘) � H2 ˘
⊑⟨ �-monotone12 //-cancel-right ⟨⊑≈⟩ �-assoc ⟩
F1 � G1 ˘ � H2 ˘
⊑⟨ F1�G1˘�H2˘⊑H1˘ ⟩
H1 ˘�)

C1

�
�
���F1 G1

A H1 H2� B
�
�
���

F2 G2

C2

4 Orders in OCCs with Symmetric Quotients and
Residuals

Preorders pose no problem in OCCs, and the “minorants” (lower bounds, lbd) and
“majorants” (upper bounds, ubd) operators of [SS93, Sect. 3.3] are formulated
using residual operators and have their properties shown as usual — following
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Gunther Schmidt, we use the letter E for order relations, due to the fact that its
shape is close to “⊑”:

record IsPreorder {A ∶ Obj} (E ∶ Mor A A) ∶ Set k2 where
field refl ∶ Id ⊑ E -- reflexivity

trans ∶ E � E ⊑ E -- transitivity
ubd lbd ∶ {I ∶ Obj} → Mor I A→ Mor I A
ubd Q = Q ˘ / E
lbd Q = Q ˘ / E ˘

In allegories, and in the relation algebra setting of [SS93], the operators for
greatest and least elements are usually defined using meets (expansions for lub
and glb are shown in comments):

gre Q = Q ⊓ ubd Q
lea Q = Q ⊓ lbd Q
lub Q = lea (ubd Q) -- ≈ ubd R ⊓ lbd (ubd R)
glb Q = gre (lbd Q) -- ≈ lbd R ⊓ ubd (lbd R)

From this, a presentation using symmetric quotients is then normally proven —
we use that presentation as our definition instead:

gre lea lub glb ∶ {I ∶ Obj} → Mor I A→ Mor I A
gre Q = (E � Q ˘) // E
lea Q = (E ˘ � Q ˘) // E ˘
lub Q = ubd Q ˘ // E ˘ -- ≈ (E ˘ / Q) // E ˘
glb Q = lbd Q ˘ // E -- ≈ (E / Q) // E

For orders, we need to add a condition for antisymmetry. The conventional con-
dition, E ⊓ E ˘ ⊑ Id, uses the binary meet operator _⊓_ that is not available in
OCCs. However, it turns out that the condition E // E ⊑ Id is, for preorders
E, equivalent to E ⊓ E ˘ ⊑ Id in division allegories, and therefore for con-
crete relations. We use this condition as our third order axiom; the equality
antisym≈ ∶ E // E ≈ Id can then be derived.

record IsOrder {A ∶ Obj} (E ∶ Mor A A) ∶ Set k2 where
field refl ∶ Id ⊑ E -- reflexivity

trans ∶ E � E ⊑ E -- transitivity
antisym ∶ E // E ⊑ Id -- antisymmetry

Interestingly, some properties become easier to prove using symmetric quotients
than using meets, for example:

lub-mapping ∶ {I ∶ Obj} {R ∶ Mor I A} → isMapping R→ lub R ≈ R
lub-mapping {I} {R} R-map = ≈-begin

lub R
≈⟨⟩

ubd R ˘ // E ˘



Mechanised Relation-Algebraic Order Theory in OCCs without Meets 159

≈⟨ //-cong1 (˘-cong (ubd-mapping R-map) ⟨≈≈⟩ �-˘) ⟩
(E ˘ � R ˘) // E ˘
≈˘⟨ //-in-left R-map ⟩
R � (E ˘ // E ˘)
≈⟨ �-cong2 ˘-antisym≈ ⟨≈≈⟩ rightId ⟩
R�

One example for a property that becomes harder with symmetric quotients is the
fact that least upper bounds are the greatest lower bounds of all upper bounds:

lub-≈-glb-ubd ∶ {I ∶ Obj} {Q ∶ Mor I A} → lub Q ≈ glb (ubd Q)
lub-≈-glb-ubd {I} {Q} = ≈-begin

lub Q
≈⟨⟩

ubd Q ˘ // E ˘
≈⟨ ⊑-antisym
(//-universal
(⊑-begin

(E / ubd Q) � (ubd Q ˘ // E ˘)
⊑⟨ �-monotone2 ˘//˘-⊑-/ ⟩
(E / ubd Q) � (ubd Q / E)

⊑⟨ /-cancel-middle ⟨⊑≈⟩ order-/ ⟩
E�)

(⊑-begin
(ubd Q ˘ // E ˘) � E ˘

⊑⟨ �-monotone1 //-⊑-/ ⟩
(ubd Q ˘ / E ˘) � E ˘

≈⟨ lbd-downclosed ⟩
ubd Q ˘ / E ˘

≈˘⟨ /-˘ ⟩
(E / ubd Q) ˘�))

(//-universal
(⊑-begin

ubd Q ˘ � ((E / ubd Q) // E)
⊑⟨ �-monotone2 (//-⊑-/ ⟨⊑≈˘⟩ /-˘ ⟨⊑≈⟩ ˘-cong //-≈) ⟩

ubd Q ˘ � ((E / E) / ubd Q) ˘
⊑⟨ �-˘ ⟨≈˘⊑⟩ ˘-monotone (/-cancel-outer ⟨⊑≈⟩ order-/) ⟩

E ˘�)
((⊑-begin

((E / ubd Q) // E) � (E ˘) ˘
⊑⟨ �-monotone //-⊑-/ (⊑-reflexive ˘˘) ⟩
((E / ubd Q) / E) � E

≈⟨ �-cong1 /S○S/○/S ⟨≈≈⟩ ubd-upclosed ⟩
ubd Q�) ⟨⊑≈˘⟩ ˘˘))

⟩
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(E / ubd Q) // E
≈˘⟨ //-cong1 lbd-ubd-˘ ⟩

lbd (ubd Q) ˘ // E
≈⟨⟩

glb (ubd Q)�
We will need a suborder construction “theorem”: If F0 is an injective mapping
into A, where E ∶ Mor A A is an order, then F0 � E � F0 ˘ is an order again.

Proof. The preorder preservation follows easily; preservation of antisymmetry is
surprisingly hard, and requires use of retract// from Sect. 3, which is prepared by
the last two calculation steps.

antisym = ⊑-begin
(F0 � E � F0 ˘) // (F0 � E � F0 ˘)
≈⟨ //-cong �-assocL �-assocL ⟩
((F0 � E) � F0 ˘) // ((F0 � E) � F0 ˘)
≈⟨ //-in-left F-isM ⟨≈˘≈˘⟩ �-cong2 (//-M-in-right F-isM) ⟩
F0 � ((F0 � E) // (F0 � E)) � F0 ˘
⊑⟨ retract// rightSupId rightSupId
(⊑-begin
(E � F0 ˘) � (F0 � E) � F0 ˘
⊑⟨ �-assoc ⟨≈⊑⟩ �-monotone2 (�-121assoc22 ⟨≈⊑⟩ proj1 F-unival) ⟩
E � E � F0 ˘
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 trans ⟩
E � F0 ˘�)

(⊑-begin
F0 � (F0 � E) ˘ � (E � F0 ˘) ˘
≈⟨ �-cong2 (�-cong �-˘ �˘-˘ ⟨≈≈⟩ �-assoc) ⟩
F0 � E ˘ � F0 ˘ � F0 � E ˘
⊑⟨ �-monotone22 (�-assocL ⟨≈⊑⟩ proj1 F-unival) ⟩
F0 � E ˘ � E ˘
⊑⟨ �-monotone2 ˘-trans ⟩
F0 � E ˘
≈˘⟨ �˘-˘ ⟩
(E � F0 ˘) ˘�)

⟩

(E � F0 ˘) // (E � F0 ˘)
≈⟨ //-in-left F-isM ⟨≈˘≈˘⟩ �-cong2 (//-M-in-right F-isM) ⟩
F0 � (E // E) � F0 ˘
⊑⟨ �-cong2 (�-cong1 antisym≈ ⟨≈≈⟩ leftId) ⟨≈⊑⟩ isInjective-to-I F-inj ⟩
Id�
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5 Direct Powers and Polarities

The approach of Schmidt et al. to formalise set membership using symmetric
quotients [BSZ86, BSZ89, SS93] carries over to our setting with only one modi-
fication: In OCCs, totality of R is defined as Id ⊑ R � R ˘.

record DirectPower ∶ Set (i ⊍ j ⊍ k2) where
field P ∶ Obj→ Obj -- power object constructor

∈ ∶ {A ∶ Obj} → Mor A (P A) -- membership “relation”
∈-extensional ∶ ∈ // ∈ ⊑ Id -- sets defined by extension
∈-comprehensive ∶ ∀ {Q} → isTotal (Q // ∈) -- all possible sets

Ω ∶ {A ∶ Obj} → Mor (P A) (P A) -- the set inclusion “relation”
Ω = ∈ / ∈

Λ0 ∶ {I A ∶ Obj} → Mor I A→ Mor I (P A) -- “power transpose”
Λ0 R = R ˘ // ∈
Λ ∶ {I A ∶ Obj} → Mor I A→Mapping I (P A) -- power transpose mapping
Λ R = record {mor = Λ0 R;prf = . . . }

The membership ∈ together with the “power transpose” Λ produce a power op-
erator PowerOp of the type the development in [Kah14b] is based on. A key
ingredient of the mathematical treatment of concept lattices are the polarities
_↓ and _↑, set-theoretically

S ↑ (A) = “the S-successors of all of A” = {s ∣ ∀e ∶ e ∈ A ∶ eS s} = Λ(∈ /S)(A)

and likewise S ↓ (B) = “the S-predecessors of all of B”. These two operations
constitute an antitone Galois connection, as already proved in [Kah14b].

module {A B ∶ Obj} where
_↑ ∶ Mor A B →Mapping (P A) (P B)
_↓ ∶ Mor A B →Mapping (P B) (P A)
Galois-↓-↑ ∶ {R ∶ Mor A B} → Ω � (R ↓0) ˘ ≈ R ↑0 � Ω ˘

In [Kah14b], the polarities are defined using Λ and right-residuals; they now
satisfy useful properties involving symmetric quotients, for example (where, as
before, the subscript “0” indicates the underlying morphism of a mapping):

S ↓0 ≈ Λ0 (∈ / S ˘) ≈ (S / ∈ ˘) // ∈
S ↑0 ≈ Λ0 (∈ / S) ≈ (S ˘ / ∈ ˘) // ∈
S ↓↑0 ≈ S ↓0 � S ↑0 ≈ (S ˘ / (∈ / S ˘)) // ∈
S ↑↓0 ≈ S ↑0 � S ↓0 ≈ (S / (∈ / S)) // ∈

S ↑0 � (S ↓0) ˘ ≈ (S ˘ / ∈ ˘) // (S / ∈ ˘)

6 Complete Semilattices

A (lower) complete semilattice is a partial order E where each subset of the
carrier has a lower bound, that is, glb R is total for every R. We call such a
structure “abstract complete semilattice” (ACSL) to emphasise that this is not
set-based, but rather set in an abstract OCC setting:
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record ACSL ∶ Set (i ⊍ j ⊍ k2) where
field Carrier ∶ Obj

≼ ∶ Mor Carrier Carrier
≼-isOrder ∶ IsOrder ≼

open IsOrder ≼-isOrder -- to make in particular glb available
field glb-total ∶ {I ∶ Obj} (R ∶ Mor I Carrier) → isTotal (glb R)

A homomorphism of such semilattices consisting of an order relation ≼ and an
operation glb providing arbitrary meets is a mapping preserving this structure;
order preservation is “monotone”, preservation of arbitrary meets is “continuous”.
Although we will show below how to derive monotonicity from continuity, we still
keep monotonicity as a constituent since applications depending on the compu-
tational content of the proofs may want to supply more efficient implementations
of the monotonicity proof than the one we derive from continuity.

record ACSLHom (A B ∶ ACSL) ∶ Set (i ⊍ j ⊍ k1 ⊍ k2) where
field map ∶ Mapping A.Carrier B.Carrier
map0 ∶ Mor A.Carrier B.Carrier
map0 = Mapping.mor map
field monotone ∶ A.≼ � map0 ⊑ map0 � B.≼

continuous ∶ {I ∶ Obj} {S ∶ Mor I A.Carrier}
→ A.glb S � map0 ≈ B.glb (S � map0)

For the purpose of proving monotonicity from continuity, we first show a lemma
that corresponds to the fact that for set-based orders, the greatest lower bound of
the image of the “up-set” of any element exists and is the image of that element.

glb-≼�continuous ∶ B.glb (A.≼ � map0) ≈ map0
glb-≼�continuous = ≈-begin

B.glb (A.≼ � map0)
≈˘⟨ continuous ⟩
A.glb A.≼ � map0
≈⟨ �-cong1 A.glb-order ⟨≈≈⟩ leftId ⟩
map0�

The proof of monotonicity from continuity only needs totality of map; it does
not even need completeness (totality of glb). The proof below essentially proves
monotonicity in the shape map0 ˘ � A.≼ � map0 ⊑ B.≼ by replacing the first map0
with B.glb (A.≼ � map0) using the lemma above, and then using the glb definition
in B. The step using B.order-/ at the end of the calculation corresponds to using
an “indirect inclusion” argument.

monotone′ = ⊑-begin
A.≼ � map0
⊑⟨ proj1 (mappingTotal map) ⟨⊑≈⟩ �-assoc ⟩
map0 � map0 ˘ � A.≼ � map0
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≈⟨ �-cong21 (˘-cong glb-≼�continuous ⟨≈˘≈⟩ (//-˘ ⟨≈≈⟩ //-cong2 ˘/˘-˘)) ⟩
map0 � (B.≼ // (B.≼ / (A.≼ � map0))) � A.≼ � map0
⊑⟨ �-monotone2 (/-universal (⊑-begin

B.≼ � (B.≼ // (B.≼ / (A.≼ � map0))) � A.≼ � map0
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 //-cancel-left ⟩
(B.≼ / (A.≼ � map0)) � A.≼ � map0
⊑⟨ /-cancel-outer ⟩
B.≼�)) ⟩

map0 � (B.≼ / B.≼)
≈⟨ �-cong2 B.order-/ ⟩
map0 � B.≼�

Producing a category INF of complete semilattices of type ACSL with meet-
preserving ACSLHom homomorphisms is straight-forward: Morphism equality is
equality of the underlying maps, and monotonicity and meet preservation hold
by simple standard proofs for identities and composition.

7 Review: Contexts and Context Homomorphisms

We now briefly review the essentials of the formalisation previously presented
in [Kah14b] of Moshier’s category of formal contexts with relational homomor-
phisms. That formalisation was set in the context of OCCs with power operators
and left- and right-residuals, where polarities are defined using residuals and Λ.
An “abstract” context is merely a typed “relation”:

record AContext ∶ Set (i ⊍ j) where
field ent ∶ Obj -- “entities”

att ∶ Obj -- “attributes”
inc ∶ Mor ent att -- “incidence”

Instantiating this for the OCC of sets and relations, a concrete context A consists
of two sets A.ent and A.att and a relation A.inc ∶ A.ent↔ A.att. In this set-based
variant of such contexts, a “concept” in the sense of formal concept analysis is
either a subset of A.ent that is closed under A.inc ↑ � A.inc ↓, or a subset of A.att
that is closed under A.inc ↓ � A.inc ↑, where these two views are isomorphic to
each other. For each context, the induced concept lattice is complete.

Given two contexts A and B, a “context homomorphism” between them is ex-
pected to be a homomorphism of the induced concept lattices. Moshier proposes
[Mos13, Jip12] to represent such a homomorphism by a relation R ∶ A.ent↔ B.att
between the source of the first and the target of the second. For composition of
these to be compatible with the concept lattice view and well-defined, Moshier
identifies a pair of compatibility conditions that each morphism needs to satisfy,
formalised in the srcCompat and trgCompat conditions:

record AContextHom (A B ∶ AContext) ∶ Set (i ⊍ j ⊍ k1 ⊍ k2) where
field mor ∶ Mor A.ent B.att
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srcCompat ∶ mor ↓ �1 A.inc ↑ �1 A.inc ↓ ≈1 mor ↓
trgCompat ∶ B.inc ↓ �1 B.inc ↑ �1 mor ↓ ≈1 mor ↓

These can be taken to express that there is no distinction between the three
natural paths from the bottom center P B.att to the top center P A.ent in the
following diagram:

P A.att
A.inc ↓� P A.ent �.............

mor ↓
P B.att

P A.ent

A.inc ↑

�

�.............
mor ↓

P B.att

mor ↓

�
................. B.inc ↓� P B.ent

B.inc ↑

�

The mechanised proof that these homomorphisms together with AContexts as
objects give rise to a category CXT was presented in [Kah14b] and is available
in [Kah14a, KAh15].

8 Duality between Contexts and Complete Semilattices

For showing the categorical duality between abstract contexts and abstract com-
plete semilattices, we follow the general approach outlined by Moshier [Mos13],
but return to assume the setting of OCCs with left- and right-residuals, sym-
metric quotients, and direct powers. This provides a derived power operator for
instantiating the development of [Kah14b] summarised in the previous section.

From CXT to INF op: Every context A determines a complete lattice CentA,
with carrier denoted A.↑↓-image, which is defined as the sub-lattice of P A.ent re-
stricted to the A.inc↑↓-closed subsets of A.ent. (We use A.Γ ∶ A.↑↓-image→ P A.ent
as the subobject injection.) Since the meet in this lattice is just the intersection,
while the join is derived, it is more natural to view CentA as just a complete
meet semilattice.

Due to the co-continuity of polarities, the mapping R ↦ B.inc ↑ � R.mor ↓, for
a context homomorphism R from context A to B, is infimum preserving, and
so an INF -arrow, that is, a meet-preserving homomorphism of complete lower
semilattices. However, B.inc ↑ � R.mor ↓ is a lattice homomorphism from P B.ent
to P A.ent, so the resulting functor is contravariant, Cent ∶ CXT → INF op.

For the formalisation, Cent presented two main challenges: Restriction of the
power order Ω to the suborder defined by the range of A.inc ↑↓ required the non-
trivial subOrder construction shown at the end of Sect. 4. For well-definedness, it
was then necessary to show that “arbitrary intersections of closed sets are closed
again”. We proved this in the more general setting of Sect. 4, by assuming an ar-
bitrary closure operator C, that is, a mapping C that is a monotone (E � C ⊑ C � E,
which implies C-monotone˘ ∶ C ˘ � E ˘ ⊑ E ˘ � C ˘), idempotent, and contained in
the order E. Closure of arbitrary meets of closed elements then can be formalised
as the statement Q � C ≈ Q → glb Q � C ⊑ glb Q, and proved using the fact that
glb Q is defined as the symmetric quotient lbd Q ˘ // E:
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glb-closed-⊑ ∶ {I ∶ Obj} {Q ∶ Mor I A} → Q � C ≈ Q → glb Q � C ⊑ glb Q
glb-closed-⊑ {I} {Q} Q�C≈Q = ˘//-universal (⊑-begin

lbd Q ˘ � (lbd Q ˘ // E) � C
⊑⟨ �-assocL ⟨≈⊑⟩ �-monotone1 //-cancel-left ⟩

E � C
⊑⟨ �-monotone2 C⊑E ⟨⊑⊑⟩ trans ⟩

E�) (�-assoc ⟨≈⊑⟩ /-universal ((⊑-begin
Q ˘ � (lbd Q ˘ // E) � (C � E ˘)

⊑⟨ �-cong1 (˘-cong Q�C≈Q ⟨≈˘≈⟩ �-˘) ⟨≈⊑⟩ �-monotone21 ˘//-⊑-/ ⟩
(C ˘ � Q ˘) � ((Q ˘ / E ˘) / E ˘) � (C � E ˘)

⊑⟨ �-22assoc121 ⟨≈⊑⟩ �-monotone21 /-outer-� ⟩
C ˘ � ((Q ˘ � (Q ˘ / E ˘)) / E ˘) � (C � E ˘)

⊑⟨ �-monotone21 (/-monotone /-cancel-outer ⟨⊑≈⟩ order˘-/) ⟩
C ˘ � E ˘ � (C � E ˘)

⊑⟨ �-monotone1&21 C-monotone˘ ⟩
E ˘ � C ˘ � (C � E ˘)

⊑⟨ �-monotone2 (�-assocL ⟨≈⊑⟩ proj1 C.unival) ⟩
E ˘ � E ˘

⊑⟨ ˘-trans ⟩
E ˘�)))

The opposite inclusion, glb-closed-⊒, follows from the additional assumption that
glb Q is total due to the fact that then the left-hand side of glb-closed-⊑ is total
and the right-hand side univalent. We conjecture that without that additional
assumption, glb-closed-⊒ can still be shown in allegories, but not in OCCs.

The full definition of the mapping underlying the image ACSL homomorphism
of R ∶ AContextHom A B also involves the subobject injections A.Γ and B.Γ
(where due to the partiality of A.Γ ˘, the totality proof invokes the fact that the
images of R.mor ↓0 are A.inc↑↓-closed due to source compatibility):

Φ0 ∶ Mor B.↑↓-image A.↑↓-image
Φ0 = B.Γ � B.inc ↑0 � R.mor ↓0 � A.Γ ˘

From INF op to CXT : For the opposite direction, every INF object is a lattice,
and as such endowed with an ordering relation. Following Moshier, who calls this
the “standard polarity”, we use this to define the object mapping:

fromACSL ∶ ACSL → AContext
fromACSL A = record {ent = A.Carrier; att = A.Carrier; inc = A.≼}

Since we are constructing a contravariant functor from INF op to CXT , given
an INF map Φ ∶ A → B, the image in CXT needs to be a relation from
B.Carrier to A.Carrier, which is the type of Φ ˘. For turning this into a con-
text homomorphism satisfying the compatibility conditions, the natural choice
is ≼B � Φ0 ˘. For showing the compatibility conditions, we use the fact that for
every B ∶ ACSL with carrier B0, there is a Galois connection between arbitrary
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join B.lub (∈ ˘) ∶ P B0 → B0 and the downset operator Λ (B.≼ ˘) ∶ B0 → P B0. We
show one proof of source compatibility, where we extensively use the residual-
and symmetric-quotient-based definitions for the polarities ↓0 and ↑↓0.

fromACSLHom ∶ {A B ∶ ACSL}
→ ACSLHom A B → AContextHom (fromACSL B) (fromACSL A)

fromACSLHom {A} {B} Φ = record
{mor = ≼B � Φ0 ˘ -- Φ0 is the underlying mapping of Φ
; srcCompat = ≈-begin

(≼B � Φ0 ˘) ↓0 � ≼B ↑↓0
≈⟨ �-cong2 ↑↓≈// ⟩
(≼B � Φ0 ˘) ↓0 � ((≼B / (∈ / ≼B)) // ∈)

≈⟨ //-in-left (Mapping.prf ((≼B � Φ0 ˘) ↓)) ⟩
((≼B / (∈ / ≼B)) � (≼B � Φ0 ˘) ↓0 ˘) // ∈

≈⟨ //-cong1 (/-inner-� (Mapping.prf ((≼B � Φ0 ˘) ↓))) ⟩
(≼B / ((≼B � Φ0 ˘) ↓0 � (∈ / ≼B))) // ∈

≈⟨ //-cong1 (/-cong2 ↓�∈/) ⟩
(≼B / (((≼B � Φ0 ˘) / ∈ ˘) / ≼B)) // ∈

≈˘⟨ //-cong1 (/-cong2 (/-cong1 (/-flip (Mapping.prf Φ)))) ⟩
(≼B / ((≼B / (∈ ˘ � Φ0)) / ≼B)) // ∈

≈⟨ //-cong1 S/○/S○S/ ⟩
(≼B / (∈ ˘ � Φ0)) // ∈

≈⟨ //-cong1 (/-flip (Mapping.prf Φ)) ⟩
((≼B � Φ0 ˘) / ∈ ˘) // ∈

≈˘⟨ ↓≈// ⟩
(≼B � Φ0 ˘) ↓0�

; trgCompat = . . .
}

The resulting “mountains of residuals” can be less readable than translating these
polarities into Λ and the order operators lbd, lub, etc., but in our experience, such
residual-based proofs are far easier to find using a systematic approach, whereas
the multitude of order operators re-awakens the problem frequently cited about
relation-algebraic proofs that there are “too many choices”.

Equivalence: With functors in opposite directions, proving equivalence of the
categories requires exhibiting natural isomorphisms between the functor compo-
sitions and the respective identity functors.

On the context side, this natural isomorphism needs to provide, for each
A ∶ AContext, a pair of context isomorphisms between fromACSL (Cent A) and
A. The carrier of the former is a sub-lattice of P A.ent, so an adapted element
relation is a natural choice for the context incidence of the “backwards” direction
(S below). The “forward” direction (R below) needs to relate subsets of A.ent with
A.att; although one might be tempted to move to the A.att side via A.inc, using
A.Γ � ∈ ˘ � A.inc, but it is important to do this at the lattice level via A.inc ↑0:

R ∶ Mor A.↑↓-image A.att S ∶ Mor A.ent A.↑↓-image
R = A.Γ � A.inc ↑0 � ∈ ˘ S = ∈ � A.Γ ˘
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On the ACSL side, for A ∶ ACSL, with A′ = fromACSL A, the carrier of CentA′ is
the sub-lattice of A′.↑↓-closed subsets of the carrier of A. The mappings under-
lying the ACSL homomorphisms between CentA′ and A in INF op are:

L0 ∶ Mor A.Carrier A′.↑↓-image R0 ∶ Mor A′.↑↓-image A.Carrier
L0 = A.downset0 � A′.Γ ˘ R0 = A.lub (A′.Γ � ∈ ˘)

We have shown that these satisfy all the properties required of natural iso-
morphisms [KAh15], and therewith provide a mechanised confirmation of the
categoric duality of CXT and INF .

9 Conclusion

At the time of writing, although all components of the natural isomorphisms for
the duality between CXT and INF have been checked by Agda [KAh15], we
have not yet been able to typecheck the record that assembled all these com-
ponents into a single duality proof within the RAM available on our machines.
Many of the component proofs probably still can be made shorter and more
readable, and we hope that this will also allow us to also check the full duality
proof record.

We also do not yet have an actual implementation of residuals and direct
powers for an OCC where morphisms are data structures — once this is com-
pleted, we can actually “run” the functors we defined, and use our mathematical
definitions to perform conversions.

Another interesting question to explore is whether there are (interesting) mod-
els of OCCs with residuals, symmetric quotients, and direct powers, but without
all binary meets.

Nevertheless, the formalisation we presented is a nontrivial development in
calculational mathematics, even without the aspect of mechanisation. Although
the version of Moshier’s draft [Mos13] we had access to provided some guidance
for the essential definitions, it frequently contained only little indication of possi-
ble routes to verify its results. In addition, our self-imposed restriction to OCCs
with only residuals, symmetric quotients and direct powers meant that we had
to re-prove quite a few basic properties from scratch. Manually producing proofs
in such a setting that feels almost completely natural to relation-algebraists
always bears the danger that laws that “suddenly are not available” are used
without noticing. Especially for this kind of setting, a proof checker is invalu-
able, and although calculational Agda proofs in such theories as supported by
the RATH-Agda libraries [Kah14c] are perhaps not yet as readable as proofs
produced directly in LATEX; we feel that they are already “more writable”: While
in LATEX, one would spend a lot of time getting all occurrences of braces and
& right just for obtaining the desired layout, this time is spent with Agda on
getting the mathematically relevant syntax, typing, and logical correctness of the
proofs right.
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Abstract. This paper introduces the metaphorism pattern of relational
specification and addresses how specification following this pattern can
be refined into recursive programs.

Metaphorisms express input-output relationships which preserve rel-
evant information while at the same time some intended optimization
takes place. Text processing, sorting, representation changers, etc., are
examples of metaphorisms.

The kind of metaphorism refinement proposed in this paper is a strat-
egy known as change of virtual data structure. It gives sufficient condi-
tions for such implementations to be calculated using relation algebra
and illustrates the strategy with the derivation of quicksort as example.

Keywords: Programming from specifications, Algebra of programming.

Politicians and diapers should be changed often
and for the same reason.

(attributed to Mark Twain)

1 Introduction

The witty quote by 19th century author Mark Twain that provided inspiration
for the title of this paper embodies a metaphor which the reader will surely
appreciate. But, what do metaphors of this kind have to do with computer
programming?

Programming theory has been structured around concepts such as syntax, se-
mantics, generative grammar and so on, which have been imported from Chom-
skian linguistics. The basis is that syntax provides the shape of information
and that semantics express information contents in a syntax-driven way (e.g.
meaning of the whole dependent on the meaning of the parts).

Cognitive linguistics breaks with such a generative tradition in its belief that
semantics are conveyed in a different way, just by juxtaposing concepts in the
form of metaphors which let meanings permeate each other by an innate capac-
ity of our brain to function metaphor-wise. Thus we are led to the metaphors
we live by, quoting the classic textbook by Lakoff and Johnson [8]. If in a public
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discussion one of the opponents is said to have counterattacked with a win-
ning argument, the underlying metaphor is argument is war ; metaphor time is
money underlies everyday phrases such as wasting time, investing time and so
on; Twain’s quote lives in the metaphor politics is dirt, the same that would
enable one to say that somebody might need to clean his/her reputation, for
instance.

In his Philosophy of Rhetoric [14], Richards finds three kernel ingredients in a
metaphor, namely a tenor (e.g. politicians), a vehicle (e.g. diapers) and a shared
attribute (e.g. ... left for the reader to guess). The flow of meaning is from vehicle
to tenor, through the (as a rule left unspecified) common attribute.

In [11] the author sketched a brief characterization of this construction in the
form of a “cospan”

T

f ��%
%%

%%
%%

% V

g
  &&
&&
&&
&&

A

(1)

where f :T→ A and g :V→ A are functions extracting a common attribute (A)
from both tenor (T) and vehicle (V). The cognitive, æsthetic, or witty power of
a metaphor is obtained by hiding A, thereby establishing a composite, binary

relationship1 T V
f ◦·g�� between tenor and vehicle — the “T is V” metaphor

— which leaves A implicit.
It turns out that, in the field of program specification, many problem state-

ments are metaphorical in the same (formal) sense: they are characterized as
input-output relationships in which the preservation of some kernel information
is kept implicit, possibly subject to some form of optimization.

An example of this is text formatting, a relationship between formatted and
unformatted text whose metaphor consists in preserving the sequence of words
of both, while the output text is optimized wrt. some visual criteria.2 Other
examples could have been given:

– Change of base of numeric representation — the number represented in the
source is the same represented by the result, cf. the ‘representation changers’
of [5].

– Conversion of finite lists into balanced search trees — the information pre-
served is the set of elements of the source list; the optimization is the invari-
ant induced on the output tree, making it adequate for searching, etc.

1 Given a binary relation R, writing b R a (≡ “b is related to a by R”) means the same
as a R◦ b, where R◦ is said to be the converse of R. So R◦ corresponds to passive
voice, check e.g. John loves Mary compared to Mary is loved by John : (loves)◦ =
(is loved by).

2 It is the privilege of those who don’t work with wysiwyg text processors to feel the
rewarding (if not æsthetic) contrast between the window where source text is edited
and that showing the corresponding, nice-looking PDF output.
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– Source code refactoring — the meaning of the source program is preserved,
the target code being better styled wrt. coding conventions and best prac-
tices.

– Sorting — the bag (multiset) of elements of the source list is preserved, the
optimization consisting in obtaining an ordered output.

T

T

f ��%
%%

%%
%%

%

R

!!&&&&&&&&
V

g
  &&
&&
&&
&&

M

""%%%%%%%%
f ◦·g��

A

The optimization implicit in all these examples can
be expressed by reducing the vagueness of relation f ◦ ·g
in (1) according to some criterion telling which outputs
are better than others. This can be achieved by adding
such criteria in the form of a relation R which “shrinks”
f ◦ · g,

M = (f ◦ · g) � R (2)

using the “shrinking” operator of [9] for reducing non-determinism, see the dia-
gram above. By unfolding the meaning of this relational operator, the relation-
ship established by M (2) is the following:

t M v ≡ (f t = g v) ∧ 〈∀ t ′ : f t ′ = g v : t R t ′〉
In words: for each input v , choose among all outputs t ′ with the same (hidden)
attribute of v those which are better than any other with respect to R, if any.

We will refer to construction (2) as a metaphorism wherever V and T are
inductive types and functions f and g are recursive on such types. Ametaphorism
M = (f ◦ · g) � R therefore involves two functions and an optimization criterion.
In the text formatting metaphorism, for instance,

[String ]

concat·(map words) ��





String

words�����
��
��
��

Format��

[String ]

arrow Format relates a string (source text) to a list of strings (output text
lines) such that the original sequence of words is preserved when white space is
discarded. Formatting consists in (re)introducing white space evenly through-
out the output text lines. For economy of presentation, the diagram omits the
optimization part,

Format = (map words◦ · concat◦ · words) � R (3)

where R : [String ] → [String ] should capture the formatting criterion on lines
of text, e.g. even spaced lines better than ill-spaced ones, etc. Metaphorism (3)
also relies on a well-known property of relational converse, (R · S )◦ = S ◦ ·R◦.

Formally, nothing impedes f and g from being the same attribute function,
in which case types V and T are also the same. Although less interesting from
the strict (cognitive) metaphorical perspective, metaphorisms of this instance
of (2) are very common in programming — take sorting as example, where V
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and T are inhabited by finite sequences of the same type. Interestingly, some
sorting algorithms actually involve another data-type, but this is hidden and
kept implicit in the whole algorithmic process. Quicksort, for instance, unfolds
recursively in a binary fashion which makes its use of the run-time heap look
like a binary search tree — a pattern found in any divide & conquer algorithm.
Because such a tree is not visible from outside, some authors refer to it as a
virtual data structure [15].

Contribution. This paper addresses a generic process of implementing metapho-
risms in a way that introduces divide & conquer strategies and the implicit vir-
tual data structures. Conditions for the semantics of (2) to be preserved along
the calculation process are discussed. Altogether, the reasoning shows how the
“outer metaphor” of the specification (2) disappears and is replaced by a more
implicit but more interesting “inner metaphor” which is at the heart of the im-
plementation. We will restrict to a special case of (2) which is described in the
next section and will use quicksort as running example.

Related Work. This paper follows the line of research of reference [9] in inves-
tigating relational specification patterns which involve the “shrinking” combi-
nator for controling vagueness and non-determinism. It also relates to previous
work on representation changers [5] and on the relational algebra of program-
ming, in general [1, 10]. Our calculation of sufficient conditions for implementing
metaphorisms via change of virtual data-structure, illustrated with quicksort,
can be regarded as a generalization and expansion of the derivation of the same
algorithm in [1], where it is given in a rather brief and terse style.

Paper Structure. The remainder of this paper is structured as follows. Sections
2 and 4 identify the class of metaphorisms addressed in the paper. Sect. 3 dis-
cusses implementation strategies for such metaphorisms. Sect. 5 finds generic
conditions for these to be implemented by change of recursive pattern (virtual
data-structure), an example of which is given in Sect. 6. Finally, Sect. 7 con-
cludes. Some background on relation algebra and proofs of auxiliary results are
given in appendices A and B, respectively.

2 Shrunken Equivalence Relations as Metaphorisms

Wherever f = g in (2) we get M = (f ◦ · f )�R, a “shrunken” equivalence relation
because f ◦ · f is an equivalence, known as the kernel of f , ker f = f ◦ · f :

M = (ker f ) � R (4)

So y M x means not only that f y = f x (this is the information to be preserved),
but also that y is “best” among all other y ′ such that f y ′ = f x holds, as
expressed by the meaning of the shrinking combinator [9, 13], see property (37)
in the appendix: S �R is the largest sub-relationX of S such that, for all b′, b ∈ B,
if there exists some a ∈ A such that b′Xa ∧ bSa holds, then b′Rb holds.
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Example: take V = T = [A ] parametric on type A and f = bag , the function
that extracts the bag of elements of a finite list. The equivalence relation is
Perm = ker bag , that is y Perm x means that y is a permutation of x . What
about R? If sorting is the intended optimization, one might want to specify that
y R x holds wherever y has less “out-of-order” entries than x , something like
e.g. (in Haskell concrete syntax)

y R x = oo y 
 oo x where
oo s = length [n | n ← [0 . . length s ], n + 1< length s , s !! n > s !! (n + 1)]

where oo is the function that counts “out-of-order” entries.
For the calculational theory of [1, 9] to be applicable to metaphorism (4), one

needs to express either ker f or R (or both) as relational (un)folds, also referred
to as ana/catamorphisms in the literature [1]. This makes perfect sense since,
in many situations, T will be an inductive (initial, tree-like) data-type and f a
fold which recursively extracts information from T using some function k for
this. The popular notation f = (|k |) will be used to express (relational) folds, see
Appendix A for the basic properties of such a combinator.

It turns out that, if f is surjective, then the equivalence relation ker f will be
a fold too, this time relational

ker f = (|ker f · in|) (5)

where T FT
in�� is the initial algebra of type T, for some functor F. (The

proof of (5) is given in Appendix B.) So

ker f · in = ker f · in · F (ker f ) (6)

holds, by fold-cancellation (28). In the case of lists, FX = 1 + A × X and
in = [nil , cons], where nil x = [ ] is the constant function which yields the empty
list and cons (a, s) = a : s adds a to the front of s . For f = bag , the fold which
extracts the multiset of elements of a given list, ker f = Perm and we have the
following property of the list permutation equivalence relation:

Perm · in = Perm · in · (FPerm) (7)

The useful part of (7) is

Perm · cons = Perm · cons · (id× Perm) (8)

where we use notation R×S to express the (Kronecker) product of two relations:
(b, d) (R×S ) (a, c) holds iff both b R a and d S c hold. Thus (8) is the same as

y Perm (a : x) = 〈∃ z : z Perm x : y Perm (a : z)〉
which means that permuting a sequence with at least one element is the same
as adding it to the front of a permutation of the tail and permuting again.

The usefulness of (5, 6) is that the inductive definition of an equivalence
relation ker f generated by a surjective fold f is such that the recursive branch
F (ker f ) in the unfolding of ker f can be removed if convenient.
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Another meaning of (6) is that ker f is a congruence for the initial algebra in,
cf. the following theorem.

Theorem 1. Let R be a congruence for an algebra h : FA → A of functor F,
that is

h · (F R) ⊆ R · h (9)

holds and R is an equivalence relation. Then this is the same as stating:

R · h = R · h · (F R) (10)

(Proof: see Appendix B.) �

3 Calculating Metaphorisms

Given a metaphorism M (4) such that f = (|k |), it can immediately be shown
that

M = (ker (|k |)) � R = ((|k |)◦ � R) · (|k |) (11)

by this law of shrinking: (S · f ) �R = (S �R) · f [9]. Thus we have two main ways
of calculating metaphorisms:

– either we shrink ker (|k |) as a whole — a relational fold (5), as we have seen,
or

– we shrink (|k |)◦ and then fuse the outcome with (|k |) (11).
There is still a third way, known as changing the virtual data structure [15]. Given
any surjective function f :A→ B , its image img f = f · f ◦ — the converse-dual
of ker f = f ◦ · f — is such that img f = id, where function id x = x is the
identity function, i.e. the equality relation on its type. So img f : B → B can
be pasted anywhere it typechecks, i.e. where type B is present. Suppose another
(|h|) :W→ T is given which is surjective. Then

M = (ker (|k |)) � R
= (img (|h|) · ker (|k |)) � R
= (|h|) · (N � R′) where N = (|h|)◦ · ker (|k |)

(12)

for some R′ to be calculated. Using type diagrams, the strategy starts from

W
(|h|)

##''
''
''
''

T

T T

(|k |) ��%
%%

%%
%%

%id=img (|h|)
��

R

!!&&&&&&&&

(|h|)◦
$$((((((((

T

(|k |)  &&
&&
&&
&&

M

""%%%%%%%%
ker (|k |)��

A

(13)
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and then shifts the “ictus” of algorithmic control from type T to type W:

W
(|h|)

##''
''
''
''

(|k |)·(|h|)

%%)
))

))
))

))
))

))
))

))

T T

(|k |)  &&
&&
&&
&&

N=(|h|)◦·ker (|k |)
&&��������������������

A

(14)

In this way, the starting, “outer” metaphor involving only T disappears and
gives place to an “inner” metaphor between inductive types W and T, moving
the optimization inside in the form of a relation R′, which needs to be calculated:

W

(|h|)

''

W
R′

((********

(|k |)·(|h|)

))+
++

++
++

++
++

++
++

++
+

T T

M

""((((((((((((((((((

(|k |)  &&
&&
&&
&&

N

**����������������������

A

(15)

W is the (virtual) data type chosen to command the divide & conquer algo-
rithmic control. It is usually a binary or n-ary tree structure and is regarded as
virtual because, as mentioned above, it is doomed to disappear once the two-step
composition process is fused into a single step.

In summary, finding a generic divide & conquer version of metaphorism M =
(ker (|k |)) � R relying on virtual type W as representation of the original type T
amounts to finding a function that implements the divide step, (N � R′) where
N = (|h|)◦ · ker (|k |) and (|h|) is an abstraction function. Finding R′ is the hard
part of the exercise, as we shall soon see.

4 Special Case of Shrinking

R in (2,4) is in general a metric indicating which structures are better than
others, usually in the form of a preorder R =
h where h is the metric attribute
to be compared and 
h abbreviates h◦ · (
) · h, that is: y 
h x ≡ (h y) 
 (h x ).
For instance, trees can be compared by measuring their depth; programs under
refactoring compared by counting LoC, and so on.

However, R can also take the form R = Ψ · in (4), where  is the “topmost“
relation of its type (32) — b  a is true for every a and b — and Ψ ⊆ id is a
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partial identity specifying some form of selection.3 This indicates that only the
outputs satisfying Ψ are regarded as good enough.

In case R = Ψ ·  , (4) reduces to M = Ψ · ker f , since ker f is an equivalence
relation and therefore entire (i.e. totally defined) and the following result holds

R � (Ψ ·  ) = Ψ · R ⇐ R is entire (16)

(Proof in Appendix B.) It is this special case of (4) which will concern us in the
sequel, leaving the full generality of (4) for future work.

5 Shrinking Metaphorisms into Hylomorphisms

Consider metaphorisms of formM = Ψ ·ker (|k |) which, as we have seen above, are
special cases of (4). Suppose (|h|) :W→ T is an abstraction function (surjective)
which ensures that every inhabitant of T can be represented by one or more
inhabitants of W, as in diagrams (13) to (15). Below we record the calculation
implicit in such diagrams:

M = Ψ · ker (|k |)
≡ { img (|h|) = id because (|h|) is surjective }

M = img (|h|) · Ψ · ker (|k |)
≡ { inline image }

M = (|h|) · (|h|)◦ · Ψ · ker (|k |)
≡ { hint: assume Φ such that (|h|) · Φ = Ψ · (|h|) ; converses; Ψ◦ = Ψ }

M = (|h|) · Φ · (|h|)◦ · ker (|k |)︸ ︷︷ ︸
N

The goals are, therefore: (a) to find Φ such that

(|h|) · Φ = Ψ · (|h|) (17)

holds, and (b) to convert Φ · (|h|)◦ · ker (|k |) into the converse of a fold, which
we denote as usual by [(g)], for some g.4 Then the original metaphorism will be
converted into a so-called hylomorphism [1] (|h|) · [(g)] with a “change of data-
structure”.

As W and T are inductive types, the two partial identities (coreflexives) will
take the shape (say) Φ = (|inW ·Ω|) and Ψ = (|inT ·Θ|), where inW and inT are the
initial algebras of types W and T, respectively.

3 We use uppercase Greek letters (e.g. Ψ , Φ, ...) to denote partial identities, also
known as coreflexives, monotypes or tests [2, 3, 7]. Every partial identity Ψ is such
that Ψ ⊆ id and is in one-to-one correspondence with some predicate q . As in [9]
we write Ψ = q? wherever we want to indicate that q is the predicate captured by
Ψ . Thus Ψ = q? has the pointwise meaning b Ψ a ≡ b = a ∧ q a.

4 Converses of folds are usually termed unfolds or anamorphisms. Notation [(R)] means
(|R◦|)◦.
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Calculation of (17) proceeds by fusion (27), aiming to reduce both (|h|) ·Φ and
Ψ · (|h|) to some fold (|R|) over W. On the one side,

Ψ · (|h|) = (|R|)⇐ Ψ · h = R · (F Ψ) (18)

On the other side:

(|h|) · Φ = (|R|)
≡ { inline Φ = (|inW ·Ω|) }

(|h|) · (|inW ·Ω|) = (|R|)
⇐ { fusion (27) }

(|h|) · inW ·Ω = R · F (|h|)
≡ { cancellation of (|h|) (28) }

h · F (|h|) ·Ω = R · F (|h|)
≡ { assume Λ such that F (|h|) ·Ω = Λ · F (|h|) }

h · Λ · F (|h|) = R · F (|h|)
⇐ { Leibniz }

h · Λ = R

Replacing this in Ψ · h = R · FΨ , the side condition of (18), we get: Ψ · h =
h · Λ · (F Ψ). Let us summarize both calculations in the form of a theorem.

Theorem 2. Let (|h|) :W→ T be an abstraction of inductive type T by W, and
Ψ = (|inT · Θ|) and Φ = (|inW · Ω|) be partial identities representing inductive
predicates over such types.

For (|h|) · Φ = Ψ · (|h|) (17) to hold, search for the existence of Λ : FT → FT
such that

Ψ · h = h · Λ · FΨ (19)

F (|h|) ·Ω = Λ · F (|h|) (20)

hold, where F is the base functor of W, that is, inW : FW→W.
�

Note that condition (20) establishesΩ as weakest precondition for F (|h|) to ensure
Λ on its output, cf. (35) in Appendix A. Likewise, (19) establishes Λ as weakest
precondition for h to maintain invariant Ψ .

Searching for the Anamorphism. Thus far, the starting metaphor ker (|k |) has
been left aside. Going back to

M = (|h|) · Φ · (|h|)◦ · ker (|k |)︸ ︷︷ ︸
N
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our aim is to convert N = Φ · (|h|)◦ · ker (|k |) into [(R)] for some R. Below we shall
need the extra condition that ker (|k |) is a congruence for h, that is,

h · F ker (|k |) ⊆ ker (|k |) · h (21)

holds, equivalent to

ker (|k |) · h = ker (|k |) · h · (F ker (|k |)) (22)

by Theorem 1. Another alternative to state (21) is

(|k |) · h 
 F (|k |) (23)

meaning that (|k |) · h should be less injective (39) than F (|k |), see Appendix B.
We shall also need the assumption:

F (ker (|k |)) · Λ = Λ · F (ker (|k |)) (24)

We calculate:

Φ · (|h|)◦ · ker (|k |) = [(R)]

≡ { converses }
ker (|k |) · (|h|) · Φ = (|R◦|)

≡ { (|h|) · Φ = Ψ · (|h|) (17), Theorem 2 }
ker (|k |) · Ψ · (|h|) = (|R◦|)

⇐ { fusion (27) }
ker (|k |) · Ψ · h = R◦ · F (ker (|k |) · Ψ)

⇐ { (19); functor F; Leibniz }
ker (|k |) · h · Λ = R◦ · F ker (|k |)

≡ { (22) }
ker (|k |) · h · (F ker (|k |)) · Λ = R◦ · F ker (|k |)

⇐ { (24) ; Leibniz ; converses }
R = Λ · h◦ · ker (|k |)

�

In summary, note how the original metaphorism Ψ · ker (|k |) gets converted into
a hylomorphism whose divide step is another metaphorism:

R = Λ · ((|k |) · h)◦ · (|k |) (25)

That is, the “outer” metaphor which we started from (involving only T) disap-
pears and gives place to an “inner” metaphor between inductive types W and
T, whereby the optimization is internalized.

This “inner” metaphor is more interesting, as we can see by looking at an
example of this reasoning.
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6 Example: Quicksort

This section shows how the derivation of quicksort as given in e.g. [1] corre-
sponds to the implementation strategy for metaphorisms given above, under the
following instantiations:

– T is the usual finite list datatype with constructors (say) nil and cons, that
is, inT = [nil , cons].

– W is the binary tree data type whose base is F f = id + id × (f × f ) and
whose initial algebra is (say) inW = [empty , fork].

– (|k |) = bag , the function which converts a list into the bag (multiset) of its
elements.

– ker bag = Perm, the list permutation relationship (the metaphor we start
from).

– (|h|) = flatten, for h = [nil , inord ] where inord (a, (x , y)) = x ++ [a ] ++ y;
that is, flatten is the binary tree into finite list surjection.

– Ψ filters ordered lists, Ψ = (|[nil , cons] · (id + Θ)|) where Θ = mn? for
mn (x , xs) = 〈∀ x ′ : x ′ εT xs : x ′ � x 〉, where εT denotes list membership;
that is, predicate mn (x , xs) ensures that list x : xs is such that x is at most
the minimum of xs, if it exists.

As seen in Sect. 5, we have to search for some partial identity Λ = id+ Υ : id+
id × (T × T) → id + id × (T × T) which, following (19), should be the weakest
precondition for [nil , inord ] to preserve ordered lists (Ψ):

Ψ · [nil , inord ] = [nil , inord ] · (id+ Υ ) · (id+ id× (Ψ × Ψ))
≡ { coproducts; Ψ · nil = nil, since the empty list is trivially ordered }
Ψ · inord = inord · Υ · (id× (Ψ × Ψ))

Let ord and wpl be the predicates represented by partial identities Ψ and Υ ,
respectively, that is Ψ = ord? and Υ = wpl?. Unfolding inord we get the following
pointwise calculation of weakest pre-condition wpl :

ord (x ++ [a ] ++ y)

≡ { pointwise definition of ordered lists }
(ord x ) ∧ (ord y) ∧ 〈∀ b : b εT x : b 
 a〉 ∧ 〈∀ b : b εT y : a 
 b〉︸ ︷︷ ︸

wpl (a,(x ,y))

From this we get the following relational definition of the divide step (25) of
the implementation,

R : [A ]→ 1 +A× ([A ]× [A ])
R = (id+ wpl?) · (bag · [nil , inord ])◦ · bag (26)
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which we unfold as follows, by letting R◦ = [R◦
1 , R

◦
2] and using the converse of

(26):

[R◦
1 , R

◦
2] = bag◦ · (bag · [nil , inord ]) · (id+ wpl?)

≡ { bag◦ · bag = Perm; Perm.nil = nil; converses }{
R1 = nil◦

R2 = wpl? · inord◦ · Perm

In summary, y R x has the following meaning: either x = [ ] and R yields the
unique inhabitant of singleton type 1 (cf. R1) or x is non-empty and R splits a
permutation of x into two halves y and z separated by a “pivot” a, cf.

(a, (y, z )) R2 x = wpl (a (y, z )) ∧ (y ++ [a ] ++ z ) Perm x

where wpl was calculated above. Pivot a can be taken from any position in the
list. In the standard version, a is the head of x . There is, still, a check-list of
proofs to discharge.

Ensuring Bi-ordered (virtual) Intermediate Trees. We start from the instantia-
tion of (20) for this exercise,

Fflatten · (id+ wp′?) = (id+ wpl?) · Fflatten

where the goal is to find another weakest precondition wp′ which is basically wpl
“passed along” Fflatten from lists to trees:

(id× (flatten × flatten)) · wp′? = wpl? · (id× (flatten × flatten))

≡ { (35) }
wp′ = wp(id× (flatten × flatten),wpl )

≡ { go pointwise }
wp′ (a, (t1, t2)) = wpl (a, (flatten t1,flatten t2))

≡ { definition of wpl }

wp′ (a, (t1, t2)) =
{ 〈∀ b : b εT (flatten t1) : b 
 a〉
〈∀ b : b εT (flatten t2) : a 
 b〉

≡ { define εW = εT · flatten }
wp′ (a, (t1, t2)) = 〈∀ b : b εW t1 : b 
 a〉 ∧ 〈∀ b : b εW t2 : a 
 b〉)

Recall that Ω = id+wp′?. In words, wp′ in Φ = (|inW ·Ω|) = (|inW · (id+wp′?)|)
ensures that the first part of the implementation, controlled by the divide step
coalgebra R calculated above (26) yields trees which are bi-ordered. Trees with
this property are known as binary search trees [6].
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Preserving the Metaphor. Next we consider side condition (23), which instanti-
ates to:

bag · [nil , inord ] 
 id+ id× (bag × bag)

⇐ { coproducts; (40) }
bag · nil+ bag · inord 
 id+ id× (bag × bag)

≡ { (41) ; any f 
 id [12] ; let bag ′ = bag · inord }
bag ′ 
 id× (bag × bag)

≡ { bag ′ loses more information than id× (bag × bag) }
true

In the last step we can easily observe that, while from (a, (bag x , bag y)) we can
obtain bag ′ (a, (x , y)), the converse is false: bag ′ merges the multisets of x and
y too quickly. Thus bag ′ is less injective than id× (bag × bag).

Downto the Multiset Level. Finally, we have to check (24), for Λ = id + Υ =
id+ wpl?:

FPerm · Λ = Λ · FPerm
≡ { Perm = ker bag ; F (R◦) = (FR)◦ }

ker (F bag) · Λ = Λ · ker (F bag)
≡ { FR = id+ id× (R × R) ; kernel of the sum (42); Λ = id+ wpl? }

ker (id× (bag × bag)) · wpl? = wpl? · ker (id× (bag × bag))

⇐ { (36), assuming that condition q exists }
wpl = wp(id× (bag × bag), q)

Thus we have to find post-condition q ensured by id× (bag × bag) with wpl as
weakest-precondition. We proceed as before:

wpl (a, (x , y)) = q (a, (bag x , bag y))

≡ { unfold wpl }

q (a, (bag x , bag y)) =

{ 〈∀ b : b εT x : b 
 a〉
〈∀ b : b εT y : a 
 b〉

≡ { assume εB such that εT = εB · bag }

q (a, (bag x , bag y)) =

{ 〈∀ b : b εB (bag x ) : b 
 a〉
〈∀ b : b εB (bag y) : a 
 b〉

⇐ { substitution }

q (a, (b1, b2)) =

{ 〈∀ b : b εB b1 : b 
 a〉
〈∀ b : b εB b2 : a 
 b〉

�
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Finally, multiset membership εB = ∈·support can be obtained by taking multiset
supports, whereby we land in standard set membership (∈). Thus we have a
chain of memberships, from sets, to multisets, to finite lists and finally to binary
(search) trees.

Note how this last proof of the check-list goes down to the very essence of
sorting as a metaphorism: the attribute of a finite list which any sorting function
is bound to preserve is the multiset (bag) of its elements.

7 Conclusions and Future Work

This paper identifies a pattern of relational specification, termed metaphorism,
in which some kernel information of the input is preserved at the same time some
form of optimization takes place towards the output. Text processing, sorting
and representation changers are given as examples of metaphorisms. It then
addresses the problem of refining metaphorisms into recursive programs.

The kind of metaphorism refinement proposed is known as changing the virtual
data structure, whereby divide & conquer strategies can be introduced. The
paper gives sufficient conditions for such implementations to be calculated in
general, and gives the derivation of quicksort as example. This derivation can be
regarded as a generalization of the reasoning about the same algorithm given in
[1].

Altogether, the paper shows how such divide & conquer refinement strategies
consist of replacing the “outer metaphor” of the starting specification (metapho-
rism) by a more implicit but more interesting “inner metaphor”, which is at the
heart of the implementation. In the quicksort example, the “outer metaphor”
relates lists which permute each other, while the “inner metaphor” relates lists
with binary search trees.

This research can be framed into the area of investigating how to manage
or refine specification vagueness (non-determinism) by means of the “shrinking”
combinator proposed in references [9, 13]. The pattern of shrinking addressed in
the current paper is, however, far too restrictive: what is expected in general is
shrinking over preorders which measure progress with respect to some other at-
tribute, e.g. reducing the number of “out-of-order” entries in sorting, as presented
in the introduction. Note how such metaphorisms expose the variant/invariant
duality essential to program correctness and termination proofs, in their own
way: there are two main attributes in the game, one is to be preserved (the
essence of the metaphor, cf. invariant) while the other is to be mini(maxi)mized
(the essence of the optimization, cf. variant).

This paper is intended as starting point for future work in exploiting the
metaphorism concept in program derivation. Candidate case studies in program
refactoring or text processing already pose significant challenges when compared
to the sorting example given in the current paper. Comparative work is also
welcome, in particular checking what benefits can be expected from regarding
representation changers [5] from the metaphorism perspective, or (back to sort-
ing) checking how the ideas of this paper combine with the work on parametric
permutation functions by Henglein [4].
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From the linguistics perspective, metaphorisms are formal metaphors and
not exactly cognitive metaphors. But computer science is full of these as well,
as its terminology (e.g. “stack”, “pipe”, “memory”, “driver”) amply shows. If a
picture is worth a thousand words, perhaps a good metaphor is worth a thousand
axioms?
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A Background — Basic Definitions and Results of
Relation Algebra

Relational Folds: this paper relies on basic properties of relational folds over

a type T defined by initial algebra T FT
in�� on functor F, namely fusion

S · (|R|) = (|Q |) ⇐ S · R = Q · FS (27)

and cancellation,

(|R|) · in = R · F (|R|) (28)

both stemming from universal property:

X = (|R|) ≡ X · in = R · FX (29)

Shunting rules for function f , where R, S are arbitrary binary relations:

f ·R ⊆ S ≡ R ⊆ f ◦ · S (30)

R · f ◦ ⊆ S ≡ R ⊆ S · f (31)

Top relation — the topmost relation of its type can be defined by

!◦ · ! =  (32)

where ! : A → 1 is the constant function which maps every argument to the
unique element of singleton type 1.

Pre/post restrictions where Φ and Ψ are partial identities:

R · Φ = R ∩  · Φ (33)

Ψ · R = R ∩ Ψ ·  (34)

Weakest Pre-conditions: let p? and q? be the partial identities for predicates
p and q, respectively, and wp(f , q) denote the weakest precondition for function
f to ensure post-condition q, that is: wp(f , q) x = q (f x ). Then the following
properties hold (proofs in Appendix B):

f · p? = q? · f ≡ p = wp(f , q) (35)

ker f · p? = p? · ker f ⇐ p = wp(f , q) (36)

“Shrinking” — let B A
X ,S�� and B B

R�� be binary relations in universal
property [9]:

X ⊆ S �R ≡ X ⊆ S ∧ X · S◦ ⊆ R (37)

Coproducts: coproduct notation C A+ B
[R ,S ]�� denotes the junction of re-

lations C A
R�� and C B

S�� (coproduct). Direct sum R+S is the same
as [i1 ·R , i2 · S ], where i1 and i2 are the injections associated to datatype sums.
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Injectivity Preorder: the kernel of a relation R,

ker R
def
= R◦ · R (38)

measures the injectivity of R. As in [12] we capture this by introducing a preorder
on relations which compares their injectivity

R 
 S ≡ ker S ⊆ ker R (39)

and satisfies, among many others, the following properties:

[R , S ] 
 R + S (40)

R + S 
 P +Q ≡ R 
 P ∧ S 
 Q (41)

Moreover:

ker (R + S ) = ker R + ker S (42)

ker (R × S ) = ker R × ker S (43)

B Proofs of Auxiliary Results

Proof of (5), where f = (|k |):
ker f = (|ker f · in|)

≡ { inline definition f = (|k |) ; ker f = f ◦ · f }
(|k |)◦ · (|k |) = (|(|k |)◦ · (|k |) · in|)

⇐ { fusion (27) }
(|k |)◦ · k = (|k |)◦ · (|k |) · in · F (|k |)◦

≡ { cancellation (28) }
(|k |)◦ · k = (|k |)◦ · k · F (|k |) · F (|k |)◦

⇐ { factor (|k |)◦ · k out (Leibniz) ; functor F }
id = F ((|k |) · (|k |)◦)

≡ { f = (|k |) ; img f = f · f ◦ = id assuming f surjective }
id = F id
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≡ { functor F: F id = id }
true

�
Proof of Theorem 1:

R · h = R · h · (F R)

≡ { R · h ⊆ R · h · (F R) holds by id ⊆ F R, since id ⊆ R }
R · h · (F R) ⊆ R · h

≡ { the lower R can be cancelled, since R is an equivalence (see below) }
h · (F R) ⊆ R · h

�
The last step can be justified by assuming the function kR which maps every
object to its equivalence class, as dictated by R. Then R = ker kR and, for any
suitably typed relations X and Y :

R · X ⊆ R ·Y
≡ { inline R = ker kR }

ker kR ·X ⊆ ker kR · Y
≡ { ker kR = k◦

R · kR ; shunting (30) }
kR · k◦R · kR · X ⊆ kR ·Y

≡ { f · f ◦ · f = f (difunctionality) }
kR · X ⊆ kR · Y

≡ { shunting (30) ; R = ker kR }
X ⊆ R ·Y

�
Proof of (16):

X ⊆ R � (Φ ·  )
≡ { (37) }
X ⊆ R ∧X ·R◦ ⊆ Φ ·  

≡ { (32) ; shunting (31) ; converses }
X ⊆ R ∧X · (! · R)◦ ⊆ Φ · !◦

≡ { assume R entire }
X ⊆ R ∧X · !◦ ⊆ Φ · !◦
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≡ { shunting (31) ; (32) }
X ⊆ R ∧X ⊆ Φ ·  

≡ { (34) }
X ⊆ Φ ·R

�

Proof that (23) is equivalent to (21), where g abbreviates (|k |):

h · F (ker g) ⊆ ker g · h
≡ { F (R◦) = (FR)◦; shunting (30) ; kernel (38) }

ker (F g) ⊆ h◦ · g◦ · g · h
≡ { kernel (38) ; injectivity preorder (39) }

g · h 
 F g

�

Proof of (35): abbreviating wp(f , q) by w , p = wp(f , q) is the same as p? = w?
= f ◦ · q? · f ∩ id = dom (q? · f ), where domR denotes the domain of definition
of relation R.
Step (⇒): f · p? = q? · f is stronger than f · p? ⊆ q? · f which immediately
grants p? ⊆ w?. So we only have to ensure w? ⊆ p?:

w? ⊆ p?

≡ { w? = f ◦ · q? · f ∩ id }
f ◦ · q? · f ∩ id ⊆ p?

≡ { f · p? = q? · f assumed }
f ◦ · f · p? ∩ id ⊆ p?

≡ { trivia }
(f ◦ · f ∩ id) · p? ⊆ p?

⇐ { monotonicity }
f ◦ · f ∩ id ⊆ id

≡ { R ∩ S ⊆ S }
true

�
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Step (⇐): p? ⊆ w? is equivalent to f · p? ⊆ q? · f . We are left with:

q? · f ⊆ f · p? ⇐ p? = w?

≡ { substitution }
q? · f ⊆ f · w?

≡ { R · domR = R }
(q? · f ) · dom (q? · f ) ⊆ f · w?

≡ { w? = dom (q? · f ) }
q? · f · w? ⊆ f · w?

⇐ { q? ⊆ id; monotonicity }
true

�

Proof of (36):

ker f · p?
= { kernel (38) ; (35) since p = wp(f , q) is assumed }

f ◦ · q? · f
= { converses ; partial identities }

(q? · f )◦ · f
= { again (35) ; converses ; kernel (38) }

p? · ker f
�
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Abstract. In earlier work, we had presented a definition of software
fault as being any feature of a program that admits a substitution that
would make the program more-correct. This definition requires, in turn,
that we define the concept of relative correctness, i.e., what it means
for a program to be more-correct than another with respect to a given
specification. In this paper we broaden our earlier definition to encom-
pass non-deterministic programs, or non-deterministic representations of
programs; also, we study the mathematical properties of the new defini-
tion, most notably its relation to the refinement ordering, as well as its
algebraic properties with respect to the refinement lattice.

Keywords: Absolute correctness, relative correctness, refinement order-
ing, refinement lattice, faults, fault removal.

1 Introduction

1.1 What Is a Program Fault?

Our work stems from trying to define what is a software fault; usually we char-
acterize a fault at some location in a program as a feature of the program that
differs from what we believe it should be at that location. But this characteriza-
tion presumes that we know with great precision and great certainty what the
program ought to be doing at every location throughout its source code. Needless
to say, such a presumption is unrealistic, since it is difficult in general to have a
precise, complete, vetted specification of the overall software product, much less
a specification of every small part thereof. Also, it is very common to find cases
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where the same faulty behavior of the program can be traced back to more than
one possible feature, involving more than one location in the source code. In [9]
we had defined a fault in a software product as any feature (be it a lexical token,
a statement, a condition, a contiguous block, a set of non-contiguous statements,
etc.) that admits a substitute that would make the program strictly more-correct,
in a sense to be defined. Such a definition, once we decide what it means to be
more-correct, has the advantage that it does not depend on a detailed knowledge
of the design of the software product, and that it characterizes faults without
making any assumption about whether other parts of the program are, or are
not, correct. It is worth noting that this definition of a fault, like any definition
we could think of, is based on an implicit level of granularity of the program; this
level of granularity corresponds to the degree of precision with which we want
to isolate faults. At one extreme in the scale of granularity, we could consider
lexical tokens; at the opposite extreme, we could consider the whole program
as a monolith; most programmers think of faults at the granularity level of an
assignment statement or equivalent syntactic units.

1.2 Deterministic and Non-deterministic Programs

In [2] we briefly discuss the properties of relative correctness, and its impli-
cations for software engineering processes, such as software testing, software
repair, software faultiness analysis and in [3] we discuss the implication of rel-
ative correctness for software design. In all of our discussions in [2, 9, 3], we
consider deterministic programs. In this paper we wish to lift the hypothesis of
determinacy, and define relative correctness in the broader context of possibly
non-deterministic programs. One may want to ask: why do we need to define rel-
ative correctness for non-deterministic programs if most programming languages
of interest are deterministic? There are several reasons why we may want to do
so:

– We may want to apply the concept of relative correctness, not only to fin-
ished software products, but also to partially defined intermediate designs
(as appear in a stepwise refinement process).

– Non-determinacy is a convenient tool to model deterministic programs whose
detailed behavior is difficult to capture, unknown, or irrelevant to a particular
analysis.

– We may want to reason about the relative correctness of programs without
having to compute their functions is all their minute details.

As an illustration, we consider the space S defined by the following declarations:

a: array [1..N] of itemtype; x: itemtype;

low, high: 0..N+1; found: boolean;
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where itemtype is some data type that represents an ordered set, and we con-
sider the following specification R and program P:

R = {(s, s′)|found ′ ⇔ (∃i : 1 ≤ i ≤ N : x = a[i])}, (1)

P: {low=2; high=N; found=false;

while (low<=high)

{indextype m=(low+high)/2;

if (x<a[m]) {high=m-1;}

else if (x>a[m]) {low=m+1;}

else {found=true; low=m+1; high=m-1;}}}.

We would like to think of the statement low=2 as a fault, and that replacing
this statement by low=1 would produce a more-correct program; but to prove
these claims using the original definition of relative correctness, we would have
to compute the function of this program, i.e. determine the final values of all
the program variables as a function of the initial values. But computing the
final values of variables low and high is at the same time very difficult (as they
depend on the position of x with respect to the array cells) and rather irrelevant
(as they play an auxiliary role with respect to the function of the program).
The interest of non-deterministic relations is that they enable us to focus on
relevant functional aspects of a program, at the exclusion of complex and/or
uninteresting details.

In section 2 we introduce some relational definitions and notations, which
we use in section 3 to introduce a definition of relative correctness for non-
deterministic programs; and in sections 4 and 5 we explore the properties of
relative correctness, most notably its relation to the refinement ordering (section
4) and its relation to the refinement lattice (section 5). Finally, in section 6 we
summarize our findings, compare them to related work, and sketch directions
for future research. All propositions of the article were additionally proved with
the theorem prover Prover9 [8].

2 Mathematics for Program Analysis

2.1 Relational Notations

In this section, we introduce some elements of relational mathematics that we
use in the remainder of the paper to carry out our discussions. We assume
the reader familiar with relational algebra [11, 12]. Dealing with programs, we
represent sets using a programming-like notation, by introducing variable names
and associated data type (sets of values). For example, if we represent set S by
the variable declarations

x : X ; y : Y ; z : Z,

then S is the Cartesian product X × Y × Z. Elements of S are denoted in
lower case s, and are triplets of elements of X , Y , and Z. Given an element
s of S, we represent its X-component by x(s), its Y -component by y(s), and
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its Z-component by z(s). When no risk of ambiguity exists, we may write x to
represent x(s), and x′ to represent x(s′), letting the references to s and s′ be
implicit.

A relation on S is a subset of the Cartesian product S×S; given a pair (s, s′)
in R, we say that s′ is an image of s by R. Special relations on S include the
universal relation L = S × S, the identity relation I = {(s, s′)|s′ = s}, and the
empty relation φ = {}. Operations on relations (say, R and R′) include the set
theoretic operations of union (R∪R′), intersection (R ∩R′), difference (R \R′)
and complement (R). They also include the relational product, denoted by R◦R′

(or RR′, for short) and defined by

RR′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}.
The power of relation R is denoted by Rn, for a natural number n, and defined
by R0 = I, and for n > 0, Rn = R ◦ Rn−1. The reflexive transitive closure of
relation R is denoted by R∗ and defined by R∗ = {(s, s′)|∃n ≥ 0 : (s, s′) ∈ Rn}.
The converse of relation R is the relation denoted by �R and defined by

�R = {(s, s′)|(s′, s) ∈ R}.
Finally, the domain of a relation R is defined as the set dom(R) = {s|∃s′ :

(s, s′) ∈ R}, and the range of relation R is defined as the domain of �R.
A relation R is said to be reflexive if and only if I ⊆ R, antisymmetric if and

only if R ∩ �R ⊆ I, asymmetric if and only if R ∩ �R = φ, and transitive if and
only if RR ⊆ R. A relation is said to be a partial ordering if and only if it is
reflexive, antisymmetric, and transitive. Also, a relation R is said to be total if
and only if I ⊆ R �R, and is said to be deterministic (or: a function) if and only

if �RR ⊆ I. In this paper we use a property to the effect that two functions f
and f ′ are identical if and only if f ⊆ f ′ and f ′L ⊆ fL. A relation R is said to
be a vector if and only if RL = R; a vector on space S is a relation of the form
R = A × S, for some subset A of S; we use vectors to represent subsets of S,
and we may by abuse of notation write s ∈ R to mean s ∈ A; in particular, we
use the product RL as a relational representation of the domain of R.

The following laws will be used in the forthcoming proofs. The first one is a
special case of the Dedekind rule [11, 12].

PQ ∩R ⊆ P (Q ∩ �PR) (2)

(PL ∩Q)R = PL ∩QR (3)

2.2 A Refinement Calculus

Throughout this paper, we interpret relations as program specifications or as
programs and we may use the same symbol to refer to a program and to the
relation that the program defines on its space. Given two relations R and R′, we
say that R′ refines R (abbrev: R′ , R) if and only if RL ∩R′L ∩ (R ∪R′) = R.
We find that this condition is equivalent to RL ⊆ R′L ∧ RL∩R′ ⊆ R.We also
find that the refinement relation is a partial ordering and that it has lattice-like
properties, in the following sense [1]:
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– Any two relations R and R′ have a greatest lower bound, which we denote
by R � R′ and to which we refer as the meet of R and R′. Also, we find:
R �R′ = RL ∩R′L ∩ (R ∪R′).

– Given two relations R and R′, we define the join of R and R′ (denoted by
R �R′) as:

(RL ∩R′) ∪ (R′L ∩R) ∪ (R ∩R′).

– Two relations R and R′ admit a least upper bound if and only if they satisfy
the condition RL∩R′L = (R∩R′)L, which we call the consistency condition.

– The least upper bound of two relations that satisfy the consistency condition
is their join. In other words, the join of two relations always exists, but it
equals their least upper bound only if they meet the consistency condition.

Let R and P be two relations on space S; we say that P (interpreted as a
possibly non-deterministic program) is correct with respect to R (interpreted as
a specification) if and only if P refines R. We have a proposition (due to [10]) to
the effect that if P is deterministic, then P is correct with respect to R if and
only if (R ∩ P )L = RL.

3 Relative Correctness of Non-deterministic Programs

3.1 Background

In this section, we briefly summarize our main findings with regards to determin-
istic programs, so as to convey our expectations with respect to non-deterministic
programs. All our discussions about correctness, relative correctness, and faults
refer to a relational specification, which we usually denote by R. We denote
candidate programs by P and P ′, and for the sake of convenience we make no
distinction between a program (as a syntactic representation) and the function
or relation that the program defines on its space. Given a program P and a spec-
ification R, we find that the domain of R ∩ P represents the set of initial states
for which P delivers an output that is considered correct with respect to R; we
refer to this set as the competence domain of P with respect to R. A (determin-
istic) program P ′ is said to be more-correct than a (deterministic) program P
with respect to specification R if and only if it has a larger competence domain;
we denote this by P ′ ,R P . Then we define a fault f in a program P as any
feature of the program that admits a substitute that would make the program
strictly more-correct (i.e. yield a strictly larger competence domain). Among the
most salient properties we have found for the property of relative correctness,
we cite:

– Relative correctness is reflexive and transitive but not antisymmetric. Re-
flexivity and transitivity stem from the reflexivity and transitivity of set
inclusion, as it applies to competence domains. Relative correctness is not
antisymmetric because programs may have the same competence domain and
still be distinct, due to the non-determinacy of specifications. This property
holds for non-deterministic programs (and the non-deterministic version of
relative correctness), as we see in proposition 3.3.
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– Relative correctness culminates in absolute correctness. A correct program
with respect to specification R is more-correct with respect to R than any
candidate program. Indeed, since we find (section 2.2) that a correct P sat-
isfies the condition dom(R ∩ P ) = dom(R), then a correct program has a
maximal competence domain. This property holds for non-deterministic pro-
grams (and the non-deterministic version of relative correctness), as we see
in proposition 4.2.

– Relative correctness logically implies enhanced reliability. We find that if a
program is more-correct than another, then it is necessarily more reliable.
Indeed, if we measure reliability by the probability of successful execution
modulo some probability distribution θ of input states, then the probabil-
ity of successful execution of a program P modulo probability distribution
θ is the integral (or for discrete models, the sum) of θ over the compe-
tence domain of P ; clearly, the larger the competence domain the higher
the probability. We do not prove that this property survives the transition
to non-deterministic programs, though we suspect that it does, modulo an
angelic interpretation of competence domain (whereby a non-deterministic
program is considered to behave correctly as soon as it provides at least one
correct outcome with respect to R).

– Relative Correctness and Refinement. One of the most interesting properties
we have found about relative correctness is its relationship to refinement.
In [9], we find that a program P ′ refines a program P if and only if P ′ is
more-correct than P with respect to any specification. Formally,

P ′ , P ⇔ (∀R : P ′ ,R P ).

This property does not hold for non-deterministic programs (and the non-
deterministic version of relative correctness), but we have an interesting sub-
stitute in proposition 4.3.

3.2 Definitions

The purpose of this section is to define the concept of relative correctness for
arbitrary programs, that are not necessarily deterministic.

In seeking to generalize the property of relative correctness to non-deter-
ministic programs, we consider two requirements: first, the formula for non-
deterministic programs must be equivalent to the formula we already have for
deterministic programs when the programs are deterministic; second, we wish to
preserve the properties we have listed above, most notably the relation between
relative correctness and refinement. We submit the following definition.

Definition 3.1. Let R, P and P ′ be relations on space S. We say that P ′ is
more-correct than P with respect to R (abbrev: P ′ ,R P ) if and only if:

(R ∩ P )L ⊆ (R ∩ P ′)L ∧ (R ∩ P )L ∩R ∩ P ′ ⊆ P.
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Interpretation: P ′ is more-correct than P with respect to R if and only if it has
a (n equal or) larger competence domain, and for the elements in the competence
domain of P , program P ′ has (the same or) fewer images that violate R than
P does. Even though a more appropriate name for this relation is at-least-as-
correct-as, we use the shorter version more-correct-than. As an illustration, we
consider the set S = {0, 1, 2, 3, 4, 5, 6, 7} and we let R, P and P ′ be defined by
the following Boolean matrices:

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1

�
�����������

R

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0

�
�����������

P

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0

�
�����������

P ′

From these definitions, we compute:

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

�
�����������

(R ∩ P )L

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

�
�����������

R ∩ P ′

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

�
�����������

(R ∩ P ′)L

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

�
�����������

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

�
�����������

(R ∩ P )L ∩R ∩ P ′

We leave it to the reader to check that the two clauses of Definition 3.1 are
satisfied. Program P ′ is more-correct than program P with respect to R because
it has a larger competence domain ({1, 2, 3, 4, 5, 6} vs {2, 3, 4, 5}) and because on
the competence domain of P , program P ′ generates no incorrect output unless
P also generates it.

As a second illustration, we consider the binary search program introduced
above, and we capture an abstraction of its semantics by the following relation:

Q = {(s, s′)|a′ = a ∧ x′ = x ∧ (found ′ ⇒ (∃i : 2 ≤ i ≤ N : x = a[i]))}.
We let P ′ be the program obtained from P by replacing low=2 by low=1, and
we find as corresponding abstraction:

Q′ = {(s, s′)|a′ = a ∧ x′ = x ∧ (found ′ ⇒ (∃i : 1 ≤ i ≤ N : x = a[i]))}.
If we knew that array a is sorted, the implications in Q and Q′ could be strength-
ened to equivalences. We find that Q′ is more-correct than Q with respect to R
(see (1)). The first clause stems from
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R ∩Q′ = {(s, s′)|a′ = a ∧ x′ = x ∧ (found ′ ⇔ (∃i : 1 ≤ i ≤ N : x = a[i]))},

whence (R ∩ Q′)L = L. For the second clause, it suffices to show R ∩ Q′ ⊆ Q,
which follows from the definitions of Q, Q′ and R.

3.3 Properties

The first property we want to check about this definition is that it generalizes
the definition given in [9], which provides that a deterministic program P ′ is
more-correct than a deterministic program P with respect to a specification R
if and only if (R ∩ P )L ⊆ (R ∩ P ′)L. We have the following proposition.

Proposition 3.2. Let R, P and P ′ be relations on S. If P ′ is deterministic
then the conditions (R∩P )L ⊆ (R∩P ′)L and P ′ ,R P are logically equivalent.

Proof. The condition P ′ ,R P clearly implies (R ∩ P )L ⊆ (R ∩ P ′)L, hence
we focus our attention on the reverse implication. We let P ′ be a function, we
assume that P and P ′ satisfy the condition (R ∩ P )L ⊆ (R ∩ P ′)L, and we aim
to prove the condition (R ∩ P )L ∩R ∩ P ′ ⊆ P . We proceed as follows:

(R ∩ P )L ∩R ∩ P ′ ⊆ P
⇐ {Since (R ∩ P )L ⊆ (R ∩ P ′)L}

(R ∩ P ′)L ∩R ∩ P ′ ⊆ P
⇐ {Boolean algebra}

(R ∩ P ′)L ∩ P ′ ⊆ R
⇐ {By (2)}

(R ∩ P ′)(L ∩	(R ∩ P ′)P ′) ⊆ R
⇐ {Boolean algebra}

(R ∩ P ′)	(R ∩ P ′)P ′ ⊆ R
⇐ {Boolean algebra, monotonicity}
R
P ′P ′ ⊆ R

⇐ {P ′ is deterministic, hence 
P ′P ′ ⊆ I}
R ⊆ R,

which is a tautology. qed

As we see, this proof assumes that P ′ is deterministic but imposes no con-
dition on P : indeed the second clause in the definition of relative correctness
imposes a condition restricting the possible incorrect behavior of P ′ on the com-
petence domain of P , where P ′ is known to behave correctly (since it has a
larger competence domain than P ). Because P ′ is deterministic, it assigns only
one image to any element of the competence domain of P , which is known to be
a correct image; hence there is no scope for P ′ to associate an incorrect image.
So that if P ′ satisfies the first clause of the definition of relative correctness
and is deterministic, then it necessarily satisfies the second clause, regardless of
relation P .
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Proposition 3.3. The relative correctness relation with respect to a given spec-
ification is reflexive and transitive.

Proof. Reflexivity is trivial. To prove transitivity, we consider relations R, P ,
P ′ and P ′′, and we assume that P ′ is more-correct than P with respect to R,
and that P ′′ is more-correct than P ′ with respect to R. The condition (R ∩
P )L ⊆ (R∩P ′′)L stems readily from the hypothesis. We focus on the condition
(R ∩ P )L ∩R ∩ P ′′ ⊆ P , which we prove as follows:

(R ∩ P )L ∩R ∩ P ′′ ⊆ P
⇔ {Hypothesis P ′ ,R P , whence (R ∩ P )L ⊆ (R ∩ P ′)L,

and Boolean algebra}
(R ∩ P )L ∩ (R ∩ P ′)L ∩R ∩ P ′′ ⊆ P

⇔ {Hypothesis P ′′ ,R P
′, whence (R ∩ P ′)L ∩R ∩ P ′′ ⊆ P ′,

and Boolean algebra}
(R ∩ P )L ∩ (R ∩ P ′)L ∩R ∩ P ′′ ∩ P ′ ⊆ P

⇐ {Boolean algebra}
(R ∩ P )L ∩R ∩ P ′ ⊆ P,

which holds, by hypothesis. qed

Since ,R is reflexive and transitive, it is a preorder; we use this preorder to
define an equivalence relation, as follows:

Definition 3.4. Two relations P and P ′ are said to be equally correct with
respect to specification R (abbrev: P ≡R P

′) if and only if P ,R P
′ and P ′ ,R P .

For deterministic relations P and P ′, equal correctness simply means having the
same competence domain; the following proposition characterizes equal correct-
ness for arbitrary (not necessarily deterministic) relations.

Proposition 3.5. Let R, P and P ′ be arbitrary relations on space S. Then

(P ≡R P
′)⇔ (R ∩ P )L = (R ∩ P ′)L ∧ (R ∩ P )L∩R ∩ P = (R ∩ P ′)L ∩R ∩ P ′.

Proof. From P ≡R P
′ we infer readily that P and P ′ have the same competence

domain with respect to R. Also, from (R ∩ P )L ∩R ∩ P ′ ⊆ P and (R ∩ P )L =
(R ∩ P ′)L we infer:

(R ∩ P ′)L ∩R ∩ P ′ ⊆ (R ∩ P )L ∩R ∩ P.
By interchanging P and P ′ and combining the two results, we find:

(R ∩ P ′)L ∩R ∩ P ′ = (R ∩ P )L ∩R ∩ P.
The converse implication is trivial, if we replace equality by inclusion, and note
that an intersection is a subset of its terms. qed

Proposition 3.5 characterizes equivalence classes of relation ≡R as being rela-
tions that share a common competence domain and a common set of incorrect
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outputs with respect to specification R. The following proposition singles out a
representative element of each class, and shows that it is the least refined element
of the class.

Proposition 3.6. Let R and P be relations on space S. Then

ρR(P ) = (R ∩ P )L ∩ (R ∪ P )

is in the same equivalence class of ≡R as P and the domain of ρRP is equal to
the competence domain of P , i.e. ρR(P )L = (R ∩ P )L. Furthermore, ρR(P ) is
the least refined element of its equivalence class.

Proof. We check that P and ρR(P ) are equally correct.
P ≡R ρR(P )

⇔ {Proposition 3.5}
(R ∩ P )L = (R ∩ (R ∩ P )L ∩ (R ∪ P ))L
∧ (R ∩ P )L∩R ∩P = (R ∩ (R ∩ P )L∩ (R ∪ P ))L∩R ∩ (R ∩ P )L∩ (R ∪ P )

⇔ {Boolean algebra, (3), monotonicity}
(R ∩ P )L = (R ∩ P )L ∧ (R ∩ P )L ∩R ∩ P = (R ∩ P )L ∩R ∩ P

which is a tautology. The equality ρR(P )L = (R∩P )L follows from (3), Boolean
algebra and monotonicity. As for proving that ρR(P ) is the least refined element
of its class, we let P ′ be an element in the equivalence class of P , and we show
that P ′ refines ρR(P ).
P ′ ≡R P

⇔ {Proposition 3.5}
(R ∩ P ′)L = (R ∩ P )L ∧ (R ∩ P ′)L ∩R ∩ P ′ = (R ∩ P )L ∩R ∩ P

⇒ {Boolean algebra}
(R ∩ P ′)L = (R ∩ P )L ∧ (R ∩ P ′)L ∩R ∩ P ′ ⊆ P

⇔ {Shunting}
(R ∩ P ′)L = (R ∩ P )L ∧ (R ∩ P ′)L ∩ P ′ ⊆ R ∪ P

⇔ {P and P ′ have the same competence domain}
(R ∩ P ′)L = (R ∩ P )L ∧ (R ∩ P )L ∩ P ′ ⊆ R ∪ P

⇒ {Boolean algebra, monotonicity}
(R ∩ P )L ⊆ P ′L ∧ (R ∩ P )L ∩ P ′ ⊆ (R ∩ P )L ∩ (R ∪ P )

⇔ {Substitution of ρR(P ), and ρR(P )L = (R ∩ P )L}
ρR(P )L ⊆ P ′L ∧ ρR(P )L ∩ P ′ ⊆ ρR(P )

⇔ {Definition of refinement}
P ′ , ρR(P ). qed

It stems from this proposition that if P and P ′ are equally correct with respect
to some specification R, then ρR(P ) and ρR(P

′) are identical. Figure 1 shows an
example of a specification R, two equally correct programs with respect to R,
P and P ′, and the least refined relation of their shared equivalence class. The
reader may check that P and P ′ are both refinements of ρR(P ) (=ρR(P

′)).
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1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
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R
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������

0 0 1 1 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 1 1 0 0

�
������

P

�
������

0 0 1 0 1 0
1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1
0 0 0 1 1 0
1 0 0 1 0 0

�
������

P ′

�
������

0 0 0 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 0 0

�
������

ρR(P ) = ρR(P
′)

Fig. 1. Equal Correctness of Non-Deterministic Programs: P ′ ≡R P

4 Relative Correctness and Refinement

Because refinement plays a central role in the definition of (absolute) correct-
ness, it is legitimate to explore the relationship between refinement and relative
correctness; this is the subject of this section.

Proposition 4.1. Let R, P and P ′ be relations on set S. Then P ′ is more-
correct than P with respect to R if and only if ρR(P

′) refines ρR(P ), i.e.

P ′ ,R P ⇔ ρR(P
′) , ρR(P ).

Proof. We proceed by equivalences:
ρR(P

′) , ρR(P )
⇔ {Formula of refinement}
ρR(P )L ⊆ ρR(P ′)L ∧ ρR(P )L ∩ ρR(P ′) ⊆ ρR(P )

⇔ {Substitution of ρR(P ), and ρR(P )L = (R ∩ P )L}
(R ∩ P )L ⊆ (R ∩ P ′)L
∧ (R ∩ P )L ∩ (R ∩ P ′)L ∩ (R ∪ P ′) ⊆ (R ∩ P )L ∩ (R ∪ P )

⇔ {A ⊆ B ⇔ A ∩B = A}
(R ∩ P )L ⊆ (R ∩ P ′)L ∧ (R ∩ P )L ∩ (R ∪ P ′) ⊆ (R ∩ P )L ∩ (R ∪ P )

⇔ {A ∩B ⊆ A ∩ C ⇔ A ∩B ⊆ C}
(R ∩ P )L ⊆ (R ∩ P ′)L ∧ (R ∩ P )L ∩ (R ∪ P ′) ⊆ R ∪ P

⇔ {Shunting, Boolean algebra}
(R ∩ P )L ⊆ (R ∩ P ′)L ∧ (R ∩ P )L ∩ P ′ ∩R ⊆ P

⇔ {Definition of ,R}
P ′ ,R P . qed

The following proposition casts absolute correctness as the culmination of
relative correctness, in the sense that a correct program is more-correct than (or
as correct as) any candidate program.

Proposition 4.2. Let R and P ′ be relations on set S. Then P ′ is correct with
respect to R if and only if P ′ is more-correct with respect to R than any relation
P on S, i.e.

P ′ , R⇔ (∀P : P ′ ,R P ).
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Proof. Proof of⇒: Assume that P ′ refines R, i.e. RL ⊆ P ′L and RL∩P ′ ⊆ R,
and let P be an arbitrary relation on S. We must show that P ′ is more-correct
than P with respect to R, i.e. that

(R ∩ P )L ⊆ (R ∩ P ′)L ∧ (R ∩ P )L ∩R ∩ P ′ ⊆ P.
We write:

(R ∩ P ′)L
⊇ {Hypothesis RL ∩ P ′ ⊆ R, monotonicity}

(RL ∩ P ′ ∩ P ′)L
= {Boolean algebra, (3)}
RL ∩ P ′L

= {Hypothesis RL ⊆ P ′L, Boolean algebra}
RL

⊇ {Boolean algebra, monotonicity}
(R ∩ P )L.

On the other hand,
(R ∩ P )L ∩R ∩ P ′

⊆ {Boolean algebra, monotonicity}
RL ∩R ∩ P ′

⊆ {Hypothesis RL ∩ P ′ ⊆ R, Boolean algebra}
R ∩R

⊆ {Since R ∩R = φ}
P .

Proof of ⇐: We assume that P ′ is more-correct than any relation P on S with
respect to specification R, and we write this property for P = R. This yields:

(R ∩R)L ⊆ (R ∩ P ′)L ∧ (R ∩R)L ∩R ∩ P ′ ⊆ R
⇔ {Boolean algebra, shunting}
RL ⊆ (R ∩ P ′)L ∧ RL ∩ P ′ ⊆ R ∪R

⇒ {Boolean algebra, monotonicity}
RL ⊆ P ′L ∧ RL ∩ P ′ ⊆ R

⇔ {Definition of ,}
P ′ , P . qed

In [9], we find that for deterministic relations P and P ′, P ′ refines P if and
only if P ′ is more-correct than P with respect to any specification. This property
can be interpreted as follows: if P ′ refines P , then whatever P does, P ′ can do
as well or better; in particular, P ′ is more-correct than P with respect to any
specification R. In other words, the only way for P ′ to be more-correct than P
with respect to any specification R is for P ′ to merely refine P . When P and P ′

are not necessarily deterministic, we find that the condition (∀R : P ′ ,R P ) is
too strong a sufficient condition for P ′ , P , and too strong a necessary condition.
We have the following proposition.

Proposition 4.3. Let P and P ′ be relations on set S. P ′ refines P if and only
if P ′ is more-correct than P with respect to P , i.e. P ′ , P ⇔ P ′ ,P P .
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Proof. Proof of ⇒: This follows from Proposition 4.2 (renaming the bound
variable) and elimination of the quantifier:

P ′ , P ⇔ (∀Q : P ′ ,P Q)⇒ P ′ ,P P.

Proof of⇐: From P ′ ,P P , we infer (P∩P )L ⊆ (P∩P ′)L and (P∩P )L∩P∩P ′ ⊆
P , which imply PL ⊆ P ′L and PL ∩ P ′ ⊆ P by Boolean algebra, monotonicity
and shunting. qed

In other words, according to this proposition, P ′ does not have to be more-
correct than P with respect to any specification; it suffices that it be more-correct
than P with respect to a single specification, namely P itself. The interpretation
of this proposition is quite straightforward: The property of P ′ to be more-
correct than P with respect to P can be interpreted to mean that P ′ beats P
at its own game; this sounds like a good characterization of refinement. The
following example disproves that P ′ , P implies (∀R : P ′ ,R P ). We take:

S = {0, 1}, R = {(0, 1)}, P = {(0, 0), (0, 1)}, P ′ = {(0, 0)}.

Indeed, P ′ clearly refines P . Yet P ′ is not more-correct than P with respect
to R, as we can check by observing that: R ∩ P = {(0, 1)}, hence (R ∩ P )L =
{(0, 0), (0, 1)} and R ∩ P ′ = φ, hence (R ∩ P ′)L = φ. While P ′ , P does not
imply that P ′ is more-correct than P for any relation R, it does imply than P ′

is more-correct than P with respect to a single relation, namely P .
Hence while in [9] we have found that for deterministic relations P and P ′,

P ′ , P is equivalent to (∀R : P ′ ,R P ), Proposition 4.3 provides that for
relations P and P ′ that are not necessarily deterministic, P ′ , P is equivalent
to P ′ ,P P . This means in particular that for deterministic P and P ′, P ′ ,P P
implies (∀R : P ′ ,R P ). This is an intriguing property, but one that we can
understand intuitively: if we take two arbitrary programs P and P ′, then P ′

could conceivably be more-correct than P with respect to some specification,
and less-correct with respect to other specifications; but if P ′ is more-correct
than P with respect to P itself, then P ′ clearly dominates P , i.e. there is nothing
P could do that P ′ could not; this conveys the same idea of subsumption that
we associate with refinement.

To conclude this section, we consider the following question: Is it possible
that if P ′ is more-correct than P with respect to some relation R, then it is
more-correct than P with respect to any relation that R refines? Intuitively, it
sounds like it should since refinement reflects the strength of a specification; the
following example shows that this is not the case. We consider:

S = {0, 1, 2}, P = {(0, 0)}, P ′ = {(0, 2)}, R = {(0, 1)}, Q = {(0, 0), (0, 1)}.

We do have R , Q, and we do have P ′ ,R P since (R ∩ P )L = φ ⊆ (R ∩ P ′)L
and (R∩P )L∩R∩P ′ = φ ⊆ P . Yet, P ′ is not more-correct than P with respect
to Q, since (Q ∩ P )L = {(0, 0), (0, 1), (0, 2)} whereas (Q ∩ P ′)L = φ.
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5 Relative Correctness and Refinement Lattice

In section 2.2 we have introduced some lattice-like operators including the least
upper bound and the greatest lower bound of two specifications; we have found
that when two specifications R and Q satisfy the consistency condition RL ∩
QL = (R ∩ Q)L then they admit a least upper bound. In this section we first
raise the question whether P ′ ,R P and P ′ ,Q P logically imply P ′ ,R�Q P ,
where R � Q is the least upper bound (modulo the refinement ordering) of R
and Q. The following proposition gives a nuanced answer to this question.

Proposition 5.1. Let P and P ′ be two programs (relations) on space S and let
R and Q be two specifications on S. If P ′ is deterministic, and if it is more-
correct than P with respect to R and with respect to Q then it is more-correct
than P with respect to R �Q, i.e.


P ′P ′ ⊆ I ∧ P ′ ,R P ∧ P ′ ,Q P ⇒ P ′ ,R�Q P.

Proof. We introduce a lemma that will be useful for our proof:

�PP ⊆ I ∧ Q ⊆ P ⇒ (R ∩ P )L ∩Q = R ∩Q.

Assume �PP ⊆ I and Q ⊆ P .
(R ∩ P )L ∩Q = R ∩Q

⇔ {(R ∩ P )L ∩Q ⊆ Q, Q ⊆ P hence R ∩Q ⊆ (R ∩ P )L,
R ∩Q ⊆ Q}

(R ∩ P )L ∩Q ⊆ R
⇐ {By (2)}

(R ∩ P )(L ∩�(R ∩ P )Q) ⊆ R
⇐ {Hypothesis Q ⊆ P , Boolean algebra, monotonicity}

(R ∩ P )�(R ∩ P )P ⊆ R
⇐ {Boolean algebra, monotonicity of converse and product}
R�PP ⊆ R

⇐ {Monotonicity of product}�PP ⊆ I
⇐ {Hypothesis �PP ⊆ I}

true.
Using this lemma, we now show the main theorem. Assume 
P ′P ′ ⊆ I, P ′ ,R P
and P ′ ,Q P .
P ′ ,R�Q P

⇔ {Hypothesis 
P ′P ′ ⊆ I, Proposition 3.2}
((R �Q) ∩ P )L ⊆ ((R �Q) ∩ P ′)L

⇔ {Definition of �}
(((QL ∩R) ∪ (RL ∩Q) ∪ (R ∩Q)) ∩ P )L
⊆ (((QL ∩R) ∪ (RL ∩Q) ∪ (R ∩Q)) ∩ P ′)L

⇔ {Boolean algebra, distributing L over ∪, (3)}
(QL ∩ (R ∩ P )L) ∪ (RL ∩ (Q ∩ P )L) ∪ (R ∩Q ∩ P )L
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⊆ (QL ∩ (R ∩ P ′)L) ∪ (RL ∩ (Q ∩ P ′)L) ∪ (R ∩Q ∩ P ′)L
⇐ {Boolean algebra, hypotheses P ′ ,Q P and P ′ ,R P}

(R ∩Q ∩ P )L ⊆ (R ∩Q ∩ P ′)L
⇐ {For any relations A and B, (A ∩B)L ⊆ AL ∩BL}

(R ∩ P )L ∩ (Q ∩ P )L ⊆ (R ∩Q ∩ P ′)L
⇐ {Boolean algebra, hypotheses P ′ ,Q P and P ′ ,R P}

(R ∩ P ′)L ∩ (Q ∩ P ′)L ⊆ (R ∩Q ∩ P ′)L
⇔ {By (3)}

((R ∩ P ′)L ∩Q ∩ P ′)L ⊆ (R ∩Q ∩ P ′)L
⇔ {Lemma, using P ′, R ∩ P ′, Q for P,Q,R,

and hypothesis 
P ′P ′ ⊆ I}
(R ∩Q ∩ P ′)L ⊆ (R ∩Q ∩ P ′)L

⇔ {Tautology}
true. qed

This result holds regardless of whether R and Q satisfy the consistency condi-
tion: if they do, then this result pertains for their least upper bound; if not, then
the result pertains for their join, which is not their least upper bound. To prove
that the condition of determinacy of P ′ is a necessary condition in proposition
5.1, we consider the following (counter) example on set S = {0, 1, 2} where P ′ is
not deterministic, and we prove that then P ′ can be more-correct than P with
respect to two specifications without being more-correct with respect to their
join:

P = {(0, 0), (0, 1), (0, 2)}, P ′ = {(0, 1), (0, 2)},
R = {(0, 0), (0, 2)}, Q = {(0, 0), (0, 1)}.

Indeed, we find (R∩P )L = (R∩P ′)L = {(0, 0), (0, 1), (0, 2)} and (R∩P )L∩R∩
P ′ = {(0, 1)}, which is a subset of P , hence P ′ ,R P . On the other hand, we find
(Q∩P )L = (Q∩P ′)L = {(0, 0), (0, 1), (0, 2)} and (Q∩P )L∩Q∩P ′ = {(0, 2)},
which is a subset of P , hence P ′ ,Q P . And yet, R � Q = {(0, 0)}, whence
(P ∩ (R � Q))L = {(0, 0), (0, 1), (0, 2)} 
⊆ φ = (P ′ ∩ (R � Q))L; therefore P ′ is
not more-correct than P with respect to R �Q.

Whereas proposition 5.1 elucidates how relative correctness distributes over
the join, the following proposition explores the same property for the meet.

Proposition 5.2. If P ′ is more-correct than P with respect to R and with re-
spect to Q, then it is more-correct than P with respect to R �Q.
Proof.
P ′ ,R�Q P

⇔ {Definition of relative correctness}
((R �Q) ∩ P )L ⊆ ((R �Q) ∩ P ′)L ∧ ((R �Q) ∩ P )L ∩ (R �Q) ∩ P ′ ⊆ P

⇔ {Definition of meet}
(RL ∩QL ∩ (R ∪Q) ∩ P )L ⊆ (RL ∩QL ∩ (R ∪Q) ∩ P ′)L
∧ (RL ∩QL ∩ (R ∪Q) ∩ P )L ∩RL ∩QL ∩ (R ∪Q) ∩ P ′ ⊆ P

⇔ {Distribution, De Morgan}
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(QL ∩R ∩ P )L ∪ (RL ∩Q ∩ P )L ⊆ (QL ∩R ∩ P ′)L ∪ (RL ∩Q ∩ P ′)L
∧ (RL ∩QL ∩ (R ∪Q) ∩ P )L ∩ (RL ∪QL ∪ (R ∩Q)) ∩ P ′ ⊆ P

⇐ {By (3), Boolean algebra}
(QL∩ (R∩P )L)∪ (RL∩ (Q∩P )L) ⊆ (QL∩ (R∩P ′)L)∪ (RL∩ (Q∩P ′)L)
∧ (RL ∩QL ∩ (R ∪Q) ∩ P )L ∩R ∩Q ∩ P ′ ⊆ P

⇐ {Boolean algebra, monotonicity}
(R ∩ P )L ⊆ (R ∩ P ′)L ∧ (Q ∩ P )L ⊆ (Q ∩ P ′)L
∧ (R ∩ P )L ∩R ∩ P ′ ⊆ P ∧ (Q ∩ P )L ∩Q ∩ P ′ ⊆ P

⇐ {Definition of relative correctness}
P ′ ,R P ∧ P ′ ,Q P . qed

6 Concluding Remarks

6.1 Summary

In [9] we have introduced the concept of relative correctness as it applies to
deterministic programs, and have used it to define the concept of a fault in a
programwith respect to a specification. In this paper, we generalize the definition
of relative correctness to non-deterministic programs, on the grounds that very
often, even when we are dealing with deterministic programs, we may want to
reason about relative correctness without having to compute the functions of
candidate programs in all their minute details. To this effect, we introduce a
definition, investigate its properties, and explore its relation to refinement as
well as its algebraic properties with respect to lattice operations.

6.2 Prospects

One of the broadest venues of research that this paper opens pertains to the
approximation of deterministic programs by non-deterministic relations. If we
approximate program P by relation Π and program P ′ by relation Π ′, what
relation must hold between P and Π , and between P ′ and Π ′, in order for a
conclusion we draw on Π and Π ′ to carry over to P and P ′. Interestingly, such
a relation must necessarily involve R, the specification against which we define
relative correctness. As an example, let P and P ′ be two programs on some space
S defined by two variables, say x and y, and let R be the following specification
on S:

R = {(s, s′)|y′ = f(y)},
for some function f . Clearly, we can reason about the relative correctness of P
and P ′ by considering abstractions thereof, say Π and Π ′, that focus exclusively
on variable y. We want to generalize this argument by characterizing the relation
that must hold between P , P ′, Π , Π ′ and R so that we can analyze Π and Π ′

and infer conclusions about the relative correctness of P and P ′ with respect to
R. This is currently under investigation.
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6.3 Related Work

Several authors have introduced and studied concepts that are similar to relative
correctness, and some refer to them by this exact name [7, 4, 6, 13, 14, 5]. In [7]
Logozzo discusses a framework for ensuring that some semantic properties are
preserved by program transformation in the context of software maintenance. In
[4] Lahiri et al. present a technique for verifying the relative correctness of a pro-
gram with respect to a previous version, where they represent specifications by
means of executable assertions placed throughout the program, and they define
relative correctness by means of inclusion relations between sets of successful
traces and unsuccessful traces. Logozzo and Ball [6] take a similar approach
to Lahiri et al. in the sense that they represent specifications by a network of
executable assertions placed throughout the program, and they define relative
correctness in terms of successful traces and unsuccessful traces of candidate
programs; Logozzo and Ball distinguish between two categories of program fail-
ures, namely contract violations when functional requirements are violated and
run-time errors, when operational requirements are violated. In [13], Nguyen et
al. present an automated repair method based on symbolic execution, constraint
solving, and program synthesis; they call their method SemFix, on the grounds
that it performs program repair by means of semantic analysis. In [14], Weimer
et al. discuss an automated program repair method that takes as input a faulty
program, along with a set of positive tests (i.e. test data on which the program
is known to perform correctly) and a set of negative tests (i.e. test data on which
the program is known to fail) and returns a set of possible patches. In [5] Le
Goues et al. survey existing technology in automated program repair and identify
open research challenges; among the criteria for automated repair methods, they
cite applicability (extent of real-world relevance), scalability (ability to operate
effectively and efficiently for products of realistic size), generality (scope of ap-
plication domain, types of faults repaired), and credibility (extent of confidence
in the soundness of the repair tool).

Our work differs significantly from all these works in many ways:

– First, we use relational specifications that address the functional properties
of the program as a whole, and have no cognizance of intermediate assertions
that are expected to hold throughout the program; also, our relational spec-
ifications do not necessarily correspond to an abstraction of the assertions
used in trace-based program analysis, because the initial and final assertions
could be checking some local properties, whereas our specifications capture
global input/ output properties.

– Second, our definition of relative correctness involves competence domains
(for deterministic specifications) and the sets of states that candidate pro-
grams produce in violation of the specification (for non-deterministic pro-
grams).

– Third we conduct a detailed analysis of the relations between relative cor-
rectness and the property of refinement.

– Finally, we study how the property of relative correctness can be decomposed
using lattice operators on the reference specification.
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Encoding and Decoding in Refinement Algebra

Kim Solin

The University of Queensland, Brisbane, Australia

Abstract. Refinement algebras are axiomatic algebras for reasoning
about programs in a total-correctness framework. We extend demonic
and angelic refinement algebra with operators for encoding and decod-
ing. Encoding gives one the least data refinement of a program with
respect to a given data-refinement abstraction. Decoding gives one the
greatest program that can be data refined into the decoded program with
respect to a given abstraction statement. The resulting algebra is applied
to reasoning about action systems.

1 Introduction: On Refinement Algebra

The axiomatic algebraisation of program refinement was initiated a decade ago
by Joakim von Wright [22]. From a programming-theoretic perspective, the key
difference between Kleene algebra and refinement algebra is that refinement al-
gebras are algebras for total correctness, whereas Kleene algebra only captures
partial correctness [12]. Reasoning in total correctness means that it is possible
to reason about non-termination. In his seminal paper, von Wright started from
Kleene algebra and proposed axioms for the demonic refinement algebra. He
then applied this structure to reasoning about correctness rules, program trans-
formation, basic data refinement and more. The author of this paper took von
Wright’s work further by extending the basic algebra to an algebra for both de-
monic and angelic nondeterminism [20], by adding enabledness and termination
operators and reasoning about action systems [21], by deriving the while-loop
normal form theorem in the algebra [19], and together with Larissa Meinicke by
reasoning about probabilistic programs in a refinement algebra [16]. Meinicke
and Ian Hayes added an explicit operator for probabilistic choice to the total-
correctness algebra [15]. Viorel Preoteasa has also proposed an algebra similar
to, but more abstract than, refinement algebra that is also a total-correctness
algebra [18]. The advantage of these algebras is that one gets a simple and
perspicuous way of reasoning that easily lends itself to mechanisation and au-
tomation [2, 11]. In addition to having provided an interesting reasoning tool for
total-correctness program refinement, the advantage of the algebraic approach
has also been given credence in a number of applications of related structures
(see for instance [1, 5–7, 9, 10, 12–14] with references).

So one has basic proof of concept. The ensuing research around the refine-
ment algebras can now take at least one of the following forms. One can use
the algebras at hand for reasoning about larger case studies, thereby collecting

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 209–224, 2015.
DOI: 10.1007/978-3-319-24704-5_13
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data for further validating the claim that the algebraic approach makes reason-
ing simple, and, also, for empirically determining when and when not to use the
algebraic methods; this is preferably supported by mechanisation. Then one can
try to prove various more elaborate metamathematical results regarding the alge-
bras, such as decidability, complexity, and completeness with respect to different
models. And, thirdly, one can continue the incorporation of more of the tradi-
tional refinement calculus into the abstract-algebraic framework, proving that
even more advanced concepts of program refinement are amenable to algebraic
treatment. It is this last-mentioned research alternative that is our concern in
this paper. In the paper we shall incorporate fully the data-refinement encoding
and decoding operators of Back and von Wright’s paper [4] into the abstract-
algebraic framework. The approach in that paper is already quite algebraic in
flavour, but not fully axiomatic, so some work must be done to put this piece of
theory on a proper axiomatic basis.

The encoding of a program with an abstraction statement gives us the least
data refinement of the program with respect to that abstraction statement. It
is this operator that we shall consider axiomatically in an abstract algebra in
this paper. We shall also consider its dual: decoding. The decoding of a program
with an abstraction statement yields the greatest program that data refines
into the decoded program with respect to the abstraction statement. One can
view the least and the greatest data refinement as a refinement of a program
that only changes the data representation: encoding into a more concrete data
representation, decoding into a more abstract representation. This means that
one can separate the data refinement from the algorithmic refinement, which
makes the refinement process more modularised. This will be described in more
detail in the main part of the paper.

Concretely speaking, the contributions of this paper are:

– determining the appropriate axiomatic algebra that is needed for handling
encoding and decoding (it turns out to be demonic and angelic refinement
algebra, DARA), and, in this algebra, characterising various programming-
theoretic conditions and constructs that are essential for encoding and de-
coding,

– axiomatising encoding and decoding on the basis of, and in line with, Back
and von Wright [4], axiomatically investigating the basic properties of those
operators, and

– applying the axiomatisation to structural reasoning about action systems, a
classical application area for refinement algebra.

The paper is structured as follows. The first section comprises the necessary
background theory: the basic algebra, various algebraic characterisations and
extensions to the basic algebra. The second section is the main part of the paper,
and concerns the axiomatisation of the encoding operator. The third, and last,
part deals with the decoding operator. To conclude, some thoughts about the
results of the paper are presented together with ideas for future research.
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2 Background Theory

The challenge when having decided to reason axiomatically about something is
to choose which operators and axioms one actually needs. In order to be able to
reason about encoding, decoding, and data refinement, we need to ensure that
we have the possibility to capture both angelic and demonic nondeterminism.
So we need the full power of demonic and angelic refinement algebra [20]. This
algebra has monotone predicate transformers as a model. In this section, we
outline the basic theory of this algebra, as well as its extension with guards and
assertions, and with enabledness and termination operators. We also consider
abstract characterisations of healthiness conditions and program inversion, and
the addition of a special element, chaos. The reader already familiar with this
algebra might prefer to move directly on to Section 3, perhaps stopping briefly
at the sections about abstract characterisations, program inversion, and chaos.

2.1 Demonic and Angelic Refinement Algebra

Definition 1. A demonic and angelic refinement algebra (DARA) with carrier
set R is an algebra

(R,�,�, ; , ∗,ω , φ, †,⊥, , 1)
that satisfies the following axioms and rules for x, y, z ∈ R: 1

x � (y � z) = (x � y) � z x � (y � z) = (x � y) � z (1)

x � y = y � x x � y = y � x (2)

x �  = x x � ⊥ = x (3)

x � x = x x � x = x (4)

x � (y � z) = (x � y) � (x � z) x � (y � z) = (x � y) � (x � z) (5)

x(yz) = (xy)z (6)

1x = x = x1 (7)

 x =  ⊥x = ⊥ (8)

x(y � z) & xy � xz x(y � z) , xy � xz (9)

(x � y)z = xz � yz (x � y)z = xz � yz (10)

x∗ = xx∗ � 1 xφ = xxφ � 1 (11)

x & yx � z ⇒ x & y∗z yx � z & x ⇒ yφz & x (12)

xω = xxω � 1 x† = xx† � 1 (13)

yx � z & x ⇒ yωz & x x & yx � z ⇒ x & y†z (14)

where the partial order & is defined by x & y ⇔df x � y = x.
1 The precedence of the operators is given by prec(�) = prec(�) < prec(; ) < prec(∗) =
prec(ω) = prec(φ) = prec(†) understood in the natural way, and x; y is written xy
when there is no risk for confusion.
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The absorption laws x � (y � x) = x and x � (y � x) = x follow from the
axioms, and it is easily seen that ⊥ is the least element and  the greatest. The
complete lattice of monotone predicate transformers form a total-correctness
programming-theoretic model for the algebra. The axioms and rules all have
natural interpretations from this perspective. Below, we only give the intuition
for the basic constants and operators. It is easily seen that the left and the right
hand side column form duals: so for every equality derived in the algebra, there
is a dual equality that can be derived with the dual axioms. For the details of
the model, for a richer explanation of the intuition behind the axioms and rules,
and for more about the duality, refer to [20].

The intuition behind the basic components is given by the following. The con-
stant 1 is the immediately terminating program that accomplishes nothing, it
just leaves the state as it was. The constant ⊥ is the always aborting program,
and the constant  is the miraculous program, a program that can achieve any-
thing. The binary choice operators, � and �, are demonic and angelic choice,
respectively. A demonic choice between two options is done nondeterministically
by the system, whereas an angelic choice is done by the user. The operator ; is
simply sequential composition. There are four different iteration operators. Con-
sidering first the terminating ones, weak iteration ∗ iterates a program a finite
number of times, nondeterministically chosen by the system, whereas angelic
weak iteration φ does the same but determined by the user. The strong iter-
ation ω is determined by the system, that can choose to iterate the statement
infinitely, in which case it simply aborts. So here demonic nontermination equals
abort. The dual angelic strong iteration †, is determined by the user and if the
user manages to go on forever a miracle occurs; angelic nontermination equals
magic.

2.2 Abstract Characterisations of Healthiness Conditions

Since the angelic and demonic refinement algebra is general enough to incorpo-
rate both kinds of nondeterminism it is often very useful to enforce the exclusion
of either one of them, or even both. To do this we can use the following condi-
tions. Given any x in the carrier set R, if for all y, z ∈ R
– x(y � z) = xy � xz then x is conjunctive, if
– x(y � z) = xy � xz then x is disjunctive, and if
– x is both conjunctive and disjunctive then it is functional.

A conjunctive element has demonic nondeterminism, but not angelic, and dually.
A functional element has no nondeterminism at all. An element x is strict if
x⊥ = ⊥ and terminating of x =  . If an element is strict and disjunctive it is
universally disjunctive, and if it is terminating and conjunctive it is universally
conjunctive.

These characterisations, which can be given purely in terms of the algebra’s
operators, are usually enough for one to reason with sufficient power. However,
when it comes to encoding and decoding, we will need the following characteri-
sation to ensure the validity of some of the axioms with respect to the predicate-
transformer model. Let R be the carrier set of a DARA, and let �C and �C
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denote the infimum and supremum of C ⊆ R with respect to the partial order &,
respectively. We say that an element x is sensu stricto universally conjunctive
and disjunctive, respectively, if for an arbitrary index set I,

– x; (�i ∈ I yi) =�i ∈ I(x; yi), and
– x; (�i ∈ I yi) =�i ∈ I(x; yi),

respectively. A universally conjunctive element is thus terminating (take I =
∅), and, likewise, a universally disjunctive element is strict. If I is finite, this
definition reduces to the one in terms of the algebra’s operators above.

2.3 Guards and Assertions

Guards are programs that skip if some predicate holds and otherwise establish
a miracle. They are key when reasoning about programming constructs. Alge-
braically, they take the following form [20]. An element g of a DARA is a guard
if

– g is functional,
– g has a functional complement ḡ satisfying gḡ = ḡg =  and g � ḡ = 1, and
– for any g′ also satisfying the first two conditions it holds that gg′ = g �
g′ and ḡg′ = ḡ � g′.

Assertions are programs that skip if some predicate holds and otherwise abort.
Like guards, they are essential in programming theory. They are characterised
dually to guards. An element p of a DARA is an assertion if

– p is functional,
– p has a functional complement p̄ satisfying pp̄ = p̄p = ⊥ and p � p̄ = 1, and
– for any p′ also satisfying the first two conditions it holds that pp′ = p �
p′ and p̄p′ = p̄ � p′.

One can show that both the set of guards and the set of assertions form
Boolean algebras. Moreover, guards and assertions are each other’s duals. For
any guard g, the dual assertion g◦ is given by ḡ⊥ � 1; and for any assertion p,
the dual guard p◦ is given by p̄ � 1.

2.4 Enabledness and Termination

A program is enabled when it is feasible, that is, when it is possible to execute
without having to resort to magic. The enabledness operator ε determines those
states from which a program is enabled. It is axiomatised as follows for any x in
the carrier set:

– εx is a guard, and
– εx = x⊥ � 1.
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A program terminates when it does not go on indefinitely, and the termination
operator τ determines those states from which the program terminates. It is
axiomatised as follows for any x in the carrier set:

– τx is an assertion, and
– τx = x � 1.

It can be shown that these definitions give us all the basic properties of en-
abledness and termination [21], which are very closely related to the operators
of Kleene algebra with domain [6]. We will make use of the basic properties that
εxx = x and τxx = x.

2.5 Program Inversion

The basic idea of program inversion is that given a program x, one finds an
inverse program x̆ such that x̆ returns to the state that x started from. So,
in effect, one has x; x̆ = x̆;x = 1. Now, this only holds when the program is
deterministic and if each final state can only be reached from a unique initial
state. If one wants to reason about nondeterministic programs and programs that
can reach some final state from several different initial states, then one needs to
generalise the notion of program inversion. Following Back and von Wright [4],
one can do this generalisation as follows: assuming universal disjunctivity, the
program x̆ is the inverse of x iff

xx̆ & 1 & x̆x.

A slightly different notion of program inversion, which is related to conjunctivity
of programs, has figured in the abstract-algebraic setting earlier [22, 21].

2.6 Chaos

Chaos, in symbols C, is the least terminating program. Starting from a given
state, chaos takes you to any state. In contrast to magic, it is always feasible, and
it does not abort. It was called havoc by von Wright [22], and was axiomatised
as follows:

C =  (15)

x =  ⇒ C & x (16)

The first condition says that C terminates, and the second that it is the least
such program. It could also be expressed using the termination operator, since it
can be shown that x =  ⇔ τx = 1 [21]. von Wright notes that the existence
of C does not follow from the axioms of a demonic refinement algebra, and
that, therefore, assuming that this element exists, will restrict the number of
models [22]. For the remainder of this paper, it will be assumed that C exists.
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2.7 Recapitulation

In sum, we have a demonic and angelic refinement algebra, extended with guards
and assertions, and with operators for enabledeness and termination. Moreover,
we have postulated that there is an element C, and it has been shown how to
express different healthiness conditions and program inversion abstractly. On this
basis, we can now move on to the main contribution of the paper: the axiomatic
consideration of encoding and decoding.

3 Encoding Axiomatically

This section contains the main contribution of this paper. We axiomatise the
encoding operator, investigate its basic properties in the context of DARA, and
apply it to reasoning about action systems.

3.1 Axioms and Intuition

Data refinement means replacing some data representation of a program with
another data representation that is more advantageous in some respect (such as
being easier to implement, more efficient, or more secure) while preserving the
intended functionality of the program. On an abstract level, data refinement can
be understood as a commutativity property

dx & yd,
where x is the program refined into y, and d is the abstraction statement that
connects the two data representations. Data refinement was considered abstract-
algebraically already in von Wright’s seminal paper [22], and we shall here con-
tinue that work. The concern in this paper is the least data refinement of a
program x with respect to an abstraction statement d. If one can single out the
least data refinement of a program, this can be viewed as a refinement step that
only changes the data representation. So in that sense, one can separate the pure
data refinement from the ensuing algorithmic refinement. This separation makes
the division of the refinement steps clearer and, hopefully, easier to handle. For
more detail, see Back and von Wright [4].

For the remainder of this paper, we introduce the following abbreviation [4]:

x &d y ⇔ dx & yd. (17)

Again following Back and von Wright [4], we denote the least data refinement of
x with respect to d by

x ↓ d
and postulate the following two axioms in addition to the axioms of DARA:

x &d (x ↓ d), (18)

x &d y ⇒ (x ↓ d) & y. (19)
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It can be shown axiomatically (the proof in [4] can easily be replayed in DARA)
that these axioms are equivalent to

x ↓ d & y ⇔ x &d y. (20)

The binary operator ↓ is called encoding. It is easily seen that the above ax-
ioms are valid in the predicate-transformer model. We shall now turn to the
basic properties of the encoding operator in the context of DARA extended with
guards, assertions, enabledness and termination.

3.2 Basic Properties

Many of the basic properties can be given analogous proofs to those in the
predicate-transformer model. In this section, we list all the basic properties of the
encoding operator, but only write out the axiomatic proofs that are significantly
different from the model-theoretic proofs. To begin with, it is easily seen that
encoding is monotone in its first argument. It is not, however, monotone (or
antitone) in its second argument. This can easily be justified along the lines
of [4].

We next consider what Back and von Wright call structure-preserving encod-
ings, that is refinements x ↓ d & y such that x and y have the same overall
structure. The first two theorems can be proved analogously to the proofs in the
model [4].

Theorem 1. Let d be an element in the carrier set of a DARA extended with
the operators of the previous sections. Then

⊥ ↓ d = ⊥, if d is strict, (21)

1 ↓ d & 1, and (22)

 ↓ d =  , if d is strict and terminating, (23)

all hold true.

Theorem 2. Let x, y and d be elements in the carrier set of a DARA extended
with the operators of the previous sections. Then

xy ↓ d = (x ↓ d)(y ↓ d), (24)

(x � y) ↓ d & (x ↓ d) � (y ↓ d), and (25)

(x � y) ↓ d & (x ↓ d) � (y ↓ d), (26)

all hold true.

For the next theorem, we will make use of Greg Nelson’s pairing property.
Nelson’s property says that total correctness can be described as weak correct-
ness plus an extra termination assumption [17]. Weak correctness can be seen as
a form of partial correctness in a total-correctness conceptual framework. It was
proved algebraically by Solin in [21], and has the following abstract form (g1 is
the precondition guard, x the program, g2 the postcondition guard):

g1xḡ2 =  ⇔ (xg2 & g1x ∧ τ(g1x) = 1). (27)
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We will also use the already mentioned fact that x =  ⇔ τx = 1 [21]. In
a sense, the following theorem says that least structure-preserving data refine-
ment of guards and assertions reduces to proving correctness-like criteria for the
abstraction statement.

Theorem 3. Let p1, p2 be assertions, let g1, g2 be guards, and let d be an element
in the carrier set of a DARA extended with the operators of the previous sections.
Then

g1 ↓ d & g2 ⇔ g2dḡ1 =  , if d is universally conjunctive (28)

g1 ↓ d & g2 ⇔ g◦2dḡ1
◦ = ⊥, if d is universally disjunctive, and (29)

p1 ↓ d & p2 ⇔ p̄2dp1 = ⊥ (30)

all hold true.

Proof. For the first statement, first note that by the assumption that d is uni-
versally conjunctive and basic guard properties, one has, for any guard g,

gd = g = gḡg =  g =  .
The first statement is then proved by

g1 ↓ d & g2
⇔ {(17, 20)}
dg1 & g2d

⇔ {above observation}
dg1 & g2d ∧ g2d =  

⇔ {Nelson’s property (27)}
g2dḡ1 =  .

The second one is immediate from duality. The third one follows from mutual
implication as follows. First note that by (17) and (20), p1 ↓ d & p2 ⇔ dp1 & p2d.
Then we show that dp1 & p2d⇔ p̄2dp1 = ⊥. For the first direction (left to right),
note that by the assumption and basic assertion properties, one has

p̄2dp1 & p̄2p2d = ⊥d = ⊥.
Since ⊥ is the least element the first direction follows. For the other direction
(right to left), derive

dp1
= {axiom for 1, basic assertion property}

(p2 � p̄2)dp1
= {distributivity axiom}
p2dp1 � p̄2dp1

= {assumption, ⊥ least element}
p2dp1

& {for any assertion p, p & 1}
p2d.

This proves the theorem. �
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The next theorem concerns the abstraction statement in the second argument
of the encoding operator.

Theorem 4. Let x be an element in the carrier set of a DARA extended with
the operators of the previous sections. Then

x ↓ (y � z) & (x ↓ y) � (x ↓ z) (31)

x ↓ ⊥ = ⊥, (32)

x ↓ 1 = x, and (33)

x ↓  = C (34)

all hold true.

Proof. The three first statements can be proved analogously to the proofs in [4].
We focus here on the fourth part, which involves C, and which has not been
given a fully axiomatic proof. The proof is by mutual refinement:

x ↓  & C
⇔ {(17, 20)}
 x & C 

⇔ {DARA axioms}
 = C 

⇔ {C axiom}
true, and

C & x ↓  
⇐ {C axiom}

(x ↓  ) =  
⇔ {DARA axioms}
 x & (x ↓  ) 

⇔ {(17)}
x &� (x ↓  )

⇔ {encoding axiom}
true.

This proves the statement. �

The following theorem can be proved along the lines of the proof in the model.

Theorem 5. Let x, d1 and d2 be elements in the carrier set of a DARA extended
with the operators of the previous sections. Then

x ↓ d1d2 & (x ↓ d2) ↓ d1
holds true.

It is an important theorem as motivated by the following. Suppose that we have
x ↓ d1 & x1 and x1 ↓ d2 & x2, then one can show directly from the definitions,



Encoding and Decoding in Refinement Algebra 219

using (20), that x ↓ d2d1 & x2. But from the same assumptions one can also
show, using plain monotonicity reasoning, that (x ↓ d1) ↓ d2 & x. So using
Theorem 5, one can therefore separate the reasoning from the two assumptions
into two encoding steps:

x ↓ d2d1 & x2
⇐ {Theorem 5}

(x ↓ d1) ↓ d2 & x2
⇐ {assumption}

(x ↓ d1) ↓ d2 & x1 ↓ d2
⇐ {monotonicity}
x ↓ d1 & x1

⇐ {assumption}
true

This makes the data-refinement process more structured.2

3.3 Forward and Backward Data Refinement

Forward data refinement can be seen as an encoding with a universally disjunc-
tive (sensu stricto) abstraction, whereas backwards data refinement can be seen
as an encoding with universally conjunctive (sensu stricto) abstraction.

The next two theorems can be proved analogously to the model-theoretic
proofs [4]. For forward data refinement, encoding has an explicit characterisation.

Theorem 6. Let x and d be elements in the carrier set of a DARA extended
with the operators of the previous sections. Let d be universally disjunctive (sensu
stricto). Then

x ↓ d = dxd̆

holds true.

In connection to universally disjunctive abstraction statements, Theorem 5 can
be strengthened to an equality.

Theorem 7. Let x, d1 and d2 be elements in the carrier set of a DARA extended
with the operators of the previous sections. Let either of d1 and d2 be universally
disjunctive (sensu stricto). Then

x ↓ d1d2 = (x ↓ d2) ↓ d1
holds true.

2 I am grateful to Larissa Meinicke for help with clarifying the surprisingly foggy
explanation of this in Back and von Wright’s paper [4].
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For backward data refinement we have not been able to prove any interesting
properties on the abstraction level that DARA provides.3

3.4 Iteration Operators

We now consider the iteration operators in connection to the encoding oper-
ator. In order to capture the relationship between encoding and the iteration
operators, we need to postulate the following four conditional axioms (the same
technique was used in [20] when introducing a negation operator).

Assume that d is an element of the carrier set of a DARA that is universally
disjunctive sensu stricto, then

x∗ ↓ d & (x ↓ d)∗, and (35)

xω ↓ d & (x ↓ d)ω. (36)

Assume that d is an element of the carrier set of a DARA that is universally
conjunctive sensu stricto, then

xφ ↓ d & (x ↓ d)φ, and (37)

x† ↓ d & (x ↓ d)†. (38)

The assumption that d is universally conjunctive and disjunctive sensu stricto,
respectively, allows one to prove the validity of the axioms with respect to the
predicate-transformer model along the lines of Back and von Wright [4]. The
validity proofs make use of the Fusion Theorem, so the conditions are essential,
since they imply continuity and co-continuity, respectively. It might be possi-
ble to do abstract-algebraic characterisations of continuity and co-continuity in
terms of the algebra’s operators along the lines of Meinicke and Solin [16] and
from those conditions prove the above axioms as theorems; this is, however,
outside the scope of the current paper.4

3.5 Enabledness and Termination

We now consider some basic properties of enabledness and termination in con-
nection to encoding. These properties are new, and were not considered in the
model. The next theorems concern a basic transformation rule, and structure-
preserving data refinements of enabledness and termination, respectively.

3 Back and von Wright [4] are able to strengthen the properties of Theorems 1, 2
and 3, but the concepts and the conditions they use are not readily expressible in
DARA with the current extensions. For the conditions to be expressible, one would
have to introduce a subalgebra of demonic and angelic relational updates; a research
topic well worth pursuing. One can conjecture that this subalgebra would be a certain
type of axiomatic relational algebra.

4 Note that the axioms for ∗ and † are not independent of the other axioms introduced
so far, but can be derived by applying the appropriate induction axiom.
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Theorem 8. Let x and y be elements in the carrier set of a DARA extended
with the operators of the previous sections. Then

x ↓ εx & y ⇔ x & yεx and (39)

x ↓ τx & y ⇔ x & yτx (40)

hold true.

Proof. The proof is immediate from (17) and (20) and basic properties of en-
abledness and termination. �

Theorem 9. Let x, y and d be elements in the carrier set of a DARA extended
with the operators of the previous sections. Then

εx ↓ d & εy ⇔ dεx & (εy)d and (41)

τx ↓ d & τy ⇔ dτx & (τy)d (42)

hold true. Moreover, if d = y, then

εx ↓ y & εy ⇔ yεx & y and (43)

τx ↓ y & τy ⇔ yτx & y (44)

hold true.

Proof. The proof of the first claim is immediate from (20) and basic properties
of enabledness and termination. The second claim is immediate from the first. �

3.6 An Application

Action systems are a formalism for reasoning about concurrent programs [3]. On
an abstract level, an action system can be viewed as a possibly nonterminating
iteration of a set of atomic actions x1, x2, . . . , xn, that terminates when none of
the actions are enabled. There are also initialising and finalising actions, y and z,
respectively. In refinement algebra, an action system can be formulated as [21]:

y; dox1[] . . . []xn od; z =df y(x1 � · · · � xn)ωεx1 . . . εxnz.

Refinement algebra has earlier proved applicable to structural reasoning about
action systems [22, 21, 16, 19, 20, 11]. We shall next consider a structural prop-
erty of action systems in connection to the encoding operator, which has not
earlier been studied in the literature. It is enough to consider an action system
with two actions, x and y, and one can simply ignore the initialisation and the
finalisation. Consider then the following, with d universally disjunctive sensu
stricto:
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(x � y)ωεx εy ↓ d
& {encoding property (24)}

((x � y)ω ↓ d)(εx εy ↓ d)
& {encoding property (36)}

((x � y) ↓ d)ω(εx εy ↓ d)
& {encoding property (25)}

((x ↓ d) � (y ↓ d))ω(εx εy ↓ d)
& {encoding property (24)}

((x ↓ d) � (y ↓ d))ω(εx ↓ d)(εy ↓ d).
The result easily generalises to action systems with any number of actions. It
shows that if one wants to reason about the least data refinement of an action
system, it is possible to reason only about the individual actions. Note that
depending on the abstraction statement d, the ending enabledness statements
can be refined further using Theorems 3 and 9. Note also that results of this kind
can be derived even more directly when the explicit characterisation of encoding
is used (forward data refinement). As usual, the abstract-algebraic framework
makes the derivation much more perspicuous than if the result had been derived
in the model.

4 Decoding Axiomatically

In this section the decoding is briefly considered axiomatically. Encoding is the
least data refinement of a program x under the abstraction statement d. Decod-
ing is the greatest program that can be data refined into y under the abstraction
statement d. So the encoding is the least solution to the equation dx & ξd,
whereas decoding is the greatest solution to the equation dξ & yd, when ξ rep-
resents the unknown. Unlike encoding, decoding does not always exist and must
be axiomatised conditionally with the condition of universal disjunctivity sensu
stricto [4]. It takes the following form: if d is universally disjunctive sensu stricto,
then

x ↑ d &d x, (45)

y &d x⇒ y & (x ↑ d). (46)

It can again be shown axiomatically that these axioms are equivalent to

x & y ↑ d⇔ x &d y. (47)

And it is easy to see that decoding is monotone in the first argument.
The following theorem, which connects encoding and decoding, is immediate

from (20) and (47).

Theorem 10. Let x and d be elements in the carrier set of a DARA extended
with the operators of the previous sections. Let d be universally disjunctive. Then

x & (x ↓ d) ↑ d and (48)

x & (x ↑ d) ↓ d (49)

hold true.
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A number of structure-preserving refinements can be proved for decoding.
Moreover, decoding can also be given an explicit characterisation like the one
for forward data refinement (x ↑ d = d̆xd). For reason of space, the report of
these properties is limited to the following highly interesting theorem, which
follows axiomatically from the previous theorems together with basic properties
of program inversion.

Theorem 11. Let x, y and d be elements in the carrier set of a DARA extended
with the operators of the previous sections. Let d be universally disjunctive. Then
all the following,

x ↓ d & y, x & y ↑ d, (50)

dxd̆ & y, x & d̆yd, (51)

dx & yd, xd̆ & d̆y, (52)

are equivalent.

5 Conclusion and Future Work

The contributions of this paper, listed in the Introduction, show that refinement
algebra has reached a considerable level of maturity: the foundational work done
in the earlier papers lets one approach the rather advanced theory of encoding
and decoding abstract-algebraically. Nevertheless, some work still remains to be
done when it comes to algebraisation of the refinement calculus; in particular,
it would be pivotal to axiomatise the relational updates. Even more important
would be to do larger case studies using refinement algebra, in order to prop-
erly evaluate its applicability and also in order to collect heuristic techniques
that can be used in practice. For the case studies, making use of the available
mechanisations (such as [2, 11]) would be of high importance.

Considering encoding and decoding in the elegant and very abstract frame-
work of Walter Guttmann is likely to yield important insights into the operators’
place in overall sequential program algebra [7]. It would also be interesting to
consider the operators in connection to Preoteasa’s work [18]. From a concur-
rent perspective, the operators could be considered in connection to concurrent
Kleene algebra and in connection to rely/guarantee Kleene algebra [9, 1]. For
the possibility to guarantee total correctness in concurrency, the addition of the
operators to Ian Hayes’s total-correctness algebra for rely/guarantee reasoning
would be a very interesting route to take [8].

Acknowledgements. For helpful discussions on data refinement, I am grateful
to Larissa Meinicke, Ian Hayes and Robert Colvin at The University of Queens-
land, and to Cliff Jones and Nisansala Yatapanage at Newcastle University.
Anonymous referees helped improve the presentation. The work was supported
by The Australian Research Council, Grant DP130102901.



224 K. Solin

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Algebraic principles for rely-guarantee
style concurrency verification tools. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 78–93. Springer, Heidelberg (2014)

2. Armstrong, A., Gomes, V.B.F., Struth, G.: Kleene algebra with tests and demonic
refinement algebras. Archive of Formal Proofs (2014)

3. Back, R.-J., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
Trans. Program. Lang. Syst. 10(4), 513–554 (1988)

4. Back, R.-J., von Wright, J.: Encoding, decoding and data refinement. Formal Asp.
Comput. 12(5), 313–349 (2000)

5. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)
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Abstract. In the process of incorporating subtyping in relation alge-
bra, an algorithm was found to derive the subtyping relation from the
program to be checked. By using domain analysis rather than type infer-
ence, this algorithm offers an attractive visualization of the type deriva-
tion process. This visualization can be used as a graphical proof that the
type system has assigned types correctly. An implementation is linked to
in this paper, written in Haskell. The algorithm has been tried and tested
in Ampersand, a language that uses relation algebra for the purpose of
designing information systems.

1 Introduction

In building information systems, the challenge is to translate business policy into
a running system that can support that policy. According to the Business Rules
Method [1], a business policy is best described by a set of agreements called
business rules. In our view, creating an information system should only involve
writing down these agreements in a formal language, a compiler should do the
rest. Ampersand is a project in which such a compiler was developed [2]. It
uses a variant of heterogeneous relation algebra [3] as formal language for three
reasons: relation algebra is suited for symbolic manipulation, relation algebra is
close to natural language, and relation algebra is easily implemented through
SQL.

Specialization and overloading are used frequently in business rules, and Am-
persand supports this. For this purpose, a slight modification of the heteroge-
neous relation algebra was implemented, and a new type system was developed.
Van der Woude et al. describes this slightly modified algebra in [4]. In line with
the typing rules of that paper, this paper describes a type system for Ampersand.

The type system has two purposes that are common for type systems. First,
the type system should assign one type to every term in the script. This means
that tools which use the script as input, have access to the type information,
and can use it for its analysis. This way, a type system helps improve the output
of such tools. Second, the type system should give feedback to the user. This
includes alerting the user to type errors or warnings, and can even be feedback
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in the form of type derivations. This way, a type system helps the user to improve
her code.

While type systems have been around for quite a while, we tried out a novel
approach to typing. Our type system differs from conventional systems in two
important ways:

– Even though type inference is quite common since the Hindley–Milner type
system [5], rules for subtyping (aka generalization or specialization) are typ-
ically made explicit. This paper will show that type rules for subtyping can
be derived too. This enabled a very uniform and appealing syntax in the
Ampersand language, in which relations, domains and subdomains can be
declared implicitly.

– Typically, type systems construct tree-shaped proofs in a type deduction sys-
tem. Our system, however, uses a directed graph rather than a tree to derive
types. This allows us to use simple and intuitive algorithms for doing type
derivation. It also means that the type checker can explain its calculations
by drawing the relevant portion of the graph.

The result appeals to our desire for simplicity and elegance. In order to vali-
date this result beyond the usual toy examples, we have implemented the type
system in the Ampersand compiler and tried it in practice. Soon, we found that
the lack of distinction between rules and declarations led to unexpected results in
scripts with errors. For practical reasons, it is imperative that erroneous scripts
yield error messages that make sense to their authors. So we were forced to in-
troduce the distinction between declarations (of relations), statements to specify
generalization, and rules in Ampersand, which now has a more conventional type
checker.

Still, the elegant properties remain. We present the type system in the hope
that the reader finds joy in its elegance, finds another use for it, or finds the
lessons learned from our attempt instructive.

2 Related Work

There is a large body of work on type systems. The rationale behind a good type
system is to verify programs mechanically in order to prevent erroneous runs.
Within the category of syntactically correct programs, a type system should dis-
tinguish those programs that can be interpreted semantically from those without
such an interpretation. On top of that, a type system may forbid or warn against
input that is unexpected.

The type system proposed in this article was designed to cater for subtyping
in Ampersand. Already in the 90’s it was recognized that subtyping increases
the expressive power of a type system as well as the power of its mechanical ver-
ification [6–9]. However, this comes at a price. Subtyping can have performance
penalties or it may incur problems with the decidability of type inference, for
instance [10, 11]. All type systems we have studied assume there is, or define, an
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explicit subtype definition. The type system proposed in this paper derives the
subtyping from the same program it analyses.

Undecidability of a type system does not mean it cannot be used in practice.
Dynamically typed languages work around this issue by checking type correct-
ness on run time, keeping track of type information at runtime. When some of
that type information is calculated statically, the result is called hybrid type
checking [12]. Our work takes the orthogonal approach: we derive type informa-
tion, and refuse input for which this derivation failed. The user always has the
option to add type information himself, in case the derivation was not powerful
enough.

Ampersand is based on a variant of heterogeneous relation algebra described
in [4]. Outside of the Ampersand project, we do not know of any type checker
for this algebra. However, in the area of machine learning, the work of [13] seems
to be working in the same setting. This work does not describe a type checker,
but the notion of subclass coincides with ours, and applies to relations in the
same way. In addition, the work - like ours - tries to derive subclass informa-
tion without requiring additional input. Except for this work, and the scope of
Ampersand, we could not find a setting in which the same variant of heteroge-
neous relation algebra would apply. Besides a shared notion of subsets in relation
algebra, there are only differences: assigning a type to an entity for ‘question an-
swering’, as solved in [13], at best gives a heuristic to perform dynamic type
checking. Ampersand is designed for static type checking only.

3 Problem Definition

This paper focuses on the problem to assign to every term in Ampersand pre-
cisely one type, which is formulated in Equation 2. Ampersand interprets each
concept1 as a set and each relation as a set of pairs. Instances of a concept are
called atoms and are elements in those sets. Ampersand lets its user model re-
lations in combination with concepts. If, for example, the user defines a relation
account〈Person,IBAN〉, she wants to be sure that the relation is populated with
instances of those concepts, i.e. the relation contains pairs of persons and IBAN-
numbers only. So, if 〈Peter, NL99BANK0123456789〉 is a pair within this relation,
the type system must ensure that:

– Peter is an instance of Person and any concept that is more general (e.g.
LegalEntity).

– NL99BANK0123456789 is an instance of IBAN and any concept that is more
general (e.g. Accountnumber).

The type system aims to:

– maintain the algebraic properties of homogeneous relation algebra (i.e. the
axioms of Tarski).

– ensure that calculations with relational terms maintain type correctness.

1 The notions concept, atom, relation, term, and rule are defined formally in section 4.
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These first two requirements have been elaborated and published [4]. This study
by van der Woude and Joosten analyses how heterogeneous relation algebra fails
to maintain all of Tarski’s axioms. It blames the complement operator and solves
that problem by using the binary minus operator instead. That result is used in
Equation 18 of the current paper. In everyday use, this means that one of Tarski’s
axioms is restricted in a way that does not inhibit practical applications.

Ampersand poses requirements to the type system. Some of these were trivial
to implement, and have been omitted from the details in the paper. Others will
be treated in the sections hereafter:

– By typing a term, we restrict the values it may have at run time. This can
improve run time performance in many cases. In Ampersand, every term gets
exactly one type. This requirement is called soundness, and is formalized at
the end of this section in Equation 2.

– In order to make it easier to reuse names, the type system must allow over-
loading.
For example, a user is free to declare both

account〈Person,IBAN〉 and
account〈Purchase,IBAN〉

in the same script. This introduces two different relations, just because
Person and Purchase are distinct concepts. Upon each use of a declaration,
the type system must allow omission of the type in cases where no confusion
can arise. In this paper, overloading of relations will not be discussed.

– In order to facilitate collaborative development and code reuse, the type
system must cope with specialization.
For example, if an apartment is a home, Ampersand allows the user to state:
Apartment - Home. This means that every instance of Apartment is an
instance of Home as well. The consequence is that all relations that work
with Home are applicable to Apartment as well. In this interpretation, the
word generalization has the same meaning and may be used as a synonym.
Specialization can be helpful for reusing code that was written for Home.
Allowing specialization will be an emergent property of our type system

– The type system must allow intuitive explanation of results to users. We
aimed to achieve this by using a graph as visualization of our type system.

Relation algebra uses binary relations. In Ampersand, each relation r has a
type T(r) = 〈A,B〉, which is a tuple of concepts. As a shorthand for ‘r with
type 〈A,B〉’, we write r〈A,B〉. A relation contains a set of pairs, the elements of
which are called atoms. Each pair 〈a, b〉 has a source atom a and a target atom
b. To distinguish between a relation and the set of pairs it contains, we use a
function I(·). We will also use I(·) to indicate the set of atoms in concepts and
types. This is defined formally in Definition 2.

Every atom is an element of a concept, which is called the type of that atom.
Formally, the typing of two atoms a and b in a relation r〈A,B〉 is described by:

〈a, b〉 ∈ I(r〈A,B〉)⇒ a ∈ I(A) ∧ b ∈ I(B) (1)
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The function I(·) is not available to the type system, so to ensure Property 1,
the type system will reason with type terms rather than atoms. For each term
t there are the type-terms dom(t) and cod(t)2. For each concept C, there is
the type-term pop(C). The set of all source atoms in a relation r is indicated by
dom(r) (pronounced: domain of r) and the set of all target atoms in that relation
is indicated by cod(r) (codomain of r). The set of all atoms that are an instance
of concept C can be indicated by pop(C) (population of C). Note that I(C)
(the interpretation of the concept C) is equal to I(pop(C)) (the interpretation
of the concept C interpreted as a type-term). Similar equalities will be used to
established the soundness of our algorithm.

The problem for the type system to solve is to assign to every term t precisely
one type T(t) such that:

T(t) = 〈A,B〉 ⇒ I(dom(t)) ⊆ I(pop(A)) ∧ I(cod(t)) ⊆ I(pop(B)) (2)

This equation specifies soundness. The task of the type algorithm is to ensure
that every term t has precisely one type T(t) and to decide whether a script can
satisfy Property 2 at runtime.

4 Definitions

In order to describe the type system, we need definitions of the notions atom,
concept, relation, term, and rule.

Since we describe a type system, it is not necessary for the reader to know what
an Ampersand script does. Nevertheless, it might help with the intuitions, so we
give those here: A script contains a set of rules. A rule is the equality between
two terms, built from relations. Rules can be thought of as invariants throughout
the execution of a program. Based on the relations used in them, Ampersand will
generate a database and some interfaces. The phase in which Ampersand takes a
script, and turns it into a database, is what we will refer to as compile time. The
phase in which a (possibly different) user interacts with the database, is what
we will refer to as runtime. The database can then be used to calculate which
atom-pairs are in the relations, from which Ampersand can decide whether all
rules are satisfied. If not, the last change is reverted, returning the database to a
‘safe’ state. The changes to the database are not specified at compile time, but
given by the database user at runtime. This means that Ampersand scripts do
not have a notion of execution, and that atoms are only a runtime concept.

Atoms are values that have no internal structure, meant to represent data
elements in a database. From a business perspective, atoms are used to repre-
sent concrete items of the world, such as Peter, 1, or the king of France. By
convention throughout the remainder of this paper, variables a, b, and c are used
to represent atoms. The set of all atoms is called A. Each atom is an instance of
a concept.

2 Later, we will also introduce inter(s, t) as a type-term.
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Concepts are names we use to classify atoms in a meaningful way. For example,
you might choose to classify Peter as a person, and 074238991 as a telephone
number. We will use variables A, B, C, D to represent concepts. Let us call the
set of all concepts in an Ampersand script C. The expression a ∈ A means that
atom a is an instance of concept A. In the syntax of Ampersand, concepts form
a separate syntactic category, allowing a parser to recognize them as concepts.
The declaration of A - B (pronounce: A is a B) in an Ampersand script states
that any instance of A is an instance of B as well. We call this specialization,
but it is also known as generalization or subtyping. Specialization is needed to
allow statements such as: “An orange is a fruit that ....”.

Relations are used to represent sets of facts (i.e. statements that are true in a
business context), to be stored and maintained as data in a computer. As data
changes over time, so do the contents of these relations. In this paper relations
are represented by variables r, s, and d. We represent the declaration of a relation
r in an Ampersand script by r〈A,B〉, in which A is the source concept and B
the target concept. The relation IA represents the identity relation of concept A.
The relation VA×B represents the universal relation over concepts A and B. The
set of all identifiers that represent relations in an Ampersand script, is called D.
It is defined by:

r ∈ D iff r〈A,B〉 occurs in the Ampersand script. (3)

The meaning of relations in Ampersand is defined by an interpretation function
I. It maps each relation to a set of facts. The declaration of r〈A,B〉 implies r ∈ D,
and A,B ∈ C. Furthermore, it is a runtime requirement that the pairs in r are
contained in its type:

〈a, b〉 ∈ I(r)⇒ a ∈ I(pop(A)) ∧ b ∈ I(pop(B)) (4)

Terms are used to combine relations using operators. The set of terms is called
T. It is defined by:

Definition 1 (terms)
The set of terms, T, is the smallest set that satisfies, for r, s ∈ T, d ∈ D and
A,B ∈ C.

d ∈ T (every relation is a term) (5)

(r ∩ s) ∈ T (intersection) (6)

(r − s) ∈ T (difference) (7)

(r; s) ∈ T (composition) (8)

r� ∈ T (converse) (9)

IA ∈ T (identity) (10)

VA×B ∈ T (full set) (11)

Throughout the remainder of this paper, terms are represented by variables r,
s, d, and t.
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The meaning of terms in Ampersand is an extension of interpretation function
I. Let A and B be finite sets of atoms, then I maps all terms to the set of facts
for which that term stands.

Definition 2 (interpretation of terms)
For every A,B ∈ C and r, s ∈ T

I(r ∩ s) = {〈a, b〉| 〈a, b〉 ∈ I(r) and 〈a, b〉 ∈ I(s)} (12)

I(r − s) = {〈a, b〉| 〈a, b〉 ∈ I(r) and 〈a, b〉 /∈ I(s)} (13)

I(r; s) = {〈a, c〉| for some b, 〈a, b〉 ∈ I(r) and 〈b, c〉 ∈ I(s)} (14)

I(r�) = {〈b, a〉| 〈a, b〉 ∈ I(r)} (15)

I(IA) = {〈a, a〉| a ∈ A} (16)

I(VA×B) = {〈a, b〉| a ∈ A, b ∈ B} (17)

In fact, Ampersand has even more operators: the complement (prefix unary
−), Kleene closure operators (postfix + and ∗), left- and right residuals (infix
\ and /), relational addition (infix †), and product (infix ×). These do not
introduce new concepts, just more terms. We have constrained this exposition
to the operators mentioned above, which is sufficient for explaining the type
system.

To solve the problems with the complement operator in heterogeneous relation
algebra [4], Ampersand uses a binary difference operator as in Equation 7. It is
used to define a complement as a unary prefix operator − for relations of which
the type is known.

T(r) = 〈A,B〉 ⇒ −r = VA×B − r (18)

After approval of the script by the type system, every term has a unique type.
Since scripts with type errors cannot be executed, ordinary users of Ampersand
never get to see any behavior of the complement other than they can predict
with Tarski’s axioms.

After defining concepts, relations and terms, let us now define rules. Rules are
used to impose constraints on the data in relations.

A rule is a pair of terms r, s ∈ T. We indicate the set of all rules in an
Ampersand script by R. To indicate that a pair of terms (r, s) is in R, we will
write:

RULE r = s

The rule RULE r = s imposes the following restriction on the data in Am-
persand:

I(r) = I(s)

For a user, this means that a rule restricts the possible populations in the
database to those that satisfy the rule.

Note that a declaration r〈A,B〉 in Ampersand can be represented by the fol-
lowing rule:

RULE r = r ∩ VA×B
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5 Domain Analysis

The core idea of the proposed type algorithm is an analysis of domains. A domain
is a set of atoms. We introduce type-terms to represent such sets; our algorithm
will act on type-terms. There are four functions that yield type-terms: dom(·),
cod(·), inter(·, ·) and pop(·), with the following interpretation.

Definition 3 (Interpretation of type-terms)
For every a, b ∈ A and r, s ∈ T

I(dom(r)) = {a | 〈a, b〉 ∈ I(r)} (19)

I(cod(r)) = {b | 〈a, b〉 ∈ I(r)} (20)

I(inter(r, s)) = I(cod(r)) ∩ I(dom(s)) (21)

I(pop(A)) = I(A) (22)

Note that we use the word type-term to indicate the intermediate structures
used by the type system. The word type is used for a pair of concepts.

Since I(cod(r)) = I(dom(r�)), we can treat cod(r) as a shorthand notation
for dom(r�). Similarly, I(pop(A)) = I(A), so we can treat pop(·) as a shorthand
notation, too. In fact, we could have avoided introducing cod(·) and pop(·), and
rely solely on dom(·). However, the use of cod(·) and pop(·) makes it easier for
the reader to keep track of the terms involved in these type terms. We will treat
inter(s, t) as is, without creating a shorthand: the obvious shorthand dom(s∩t�)
contains a term that is not necessarily well typed.

Listing 1.1. A type correct Ampersand script

3 RELATION r[A*C]

4 RELATION s[A*B]

5 RELATION t[B*C]

6 RULE r = s;t

Listing 1.1 introduces three relations, r[A*C], s[A*B], and t[B*C] and one rule:
“r = s;t”. This rule has four terms: “r”, “s;t”, “s”, and “t”. Domain analysis
can be used to derive the type of expressions. For example, in the context of
listing 1.1, we can derive:

I(dom(s; t))
⊆

I(dom(s))
=

I(dom(sA∗B))
⊆

I(pop(A))

I(cod(s; t))
⊆

I(cod(t))
=

I(cod(tB∗C))
⊆

I(pop(C))

Together these two calculations prove that term s; t has type 〈A,C〉.
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The domain analysis introduces a relation sub between type terms. The in-
tention is that sub is the counterpart of the subset relation ⊆. It translates
the observation that I(dom(s; t)) ⊆ I(dom(t)) to type terms by stating that
dom(s; t) sub dom(t). By constructing the sub relation consistently for all op-
erators in every term in listing 1.1, the algorithm from section 6 constructs a
type-graph. The result is shown in figure 1. Every vertex (ellipse) in this graph
represents a set of type-terms: in this particular example, the type system has
distinguished 10 distinct sets. Type-terms that are proven to represent the same
set of atoms are printed inside the same ellipse. A directed path from a vertex
containing type-term t1 to a vertex containing type-term t2, indicates that atoms
in I(t1) are also in I(t2). Each derivation such as the two above can be seen as
a path in a type graph. In fact, the type graph even shows shorter derivations,
when possible.

Fig. 1. Type graph for Listing 1.1

The type graph can be interpreted as a collection of derivations, that can
be used to prove that an expression has a certain type. Because the graph itself
contains all proofs that all terms have precisely one type, there is no need to write
down all calculations. The graph itself can serve as a compact representation of
all the necessary calculations.

Let a second example illustrate how mistakes are analyzed. Consider a script
with a type error in Listing 1.2. The type graph of this script is represented in
Figure 2. One of the errors is a mismatch between cod(s) and dom(t) (on line 6
position 11). Because Ampersand treats concepts A and B as sets with an empty
intersection, this is treated as an error. We have highlighted that error in red
dashed arrows in Figure 2. Another error is for example that the domain of r
(on line 6 position 6) is sub of A and also of B. In general, every term that leads
to more than one pop-vertex is erroneous, as well as the terms that lead to no
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Listing 1.2. A type incorrect Ampersand script

3 RELATION r[A*C]

4 RELATION s[B*A]

5 RELATION t[B*C]

6 RULE r = s;t

Fig. 2. Type graph for Listing 1.2

pop-vertex. In the Ampersand type system, a single erroneous term is sufficient
reason to reject the entire script. As a consequence, every term in a type-correct
script has precisely one type.

6 Algorithm

This section explains the algorithm of the proposed type system. A toy version
of the domain analysis can be found online3. It is meant to communicate the
idea and play with it in GHCi.

The algorithm for type checking is an algorithm on type graphs, for which we
introduce a set of vertices N and a set of edges sub〈N,N〉. Each vertex v represents
a set of atoms. The relation sub represents edges in the type graph. So v sub v′

represents an edge from vertex v to vertex v′, which means that the set of atoms
v is a subset of v′.

3 http://cs.ru.nl/~B.Joosten/ampTypes/

http://cs.ru.nl/~B.Joosten/ampTypes/


Type Checking by Domain Analysis in Ampersand 235

For each term in the script, edges are computed using the following rules.

dom(VA×B) sub pop(A) ∧ cod(VA×B) sub pop(B) (23)

dom(r〈A,B〉) sub pop(A) ∧ cod(r〈A,B〉) sub pop(B) (24)

dom(IA) sub pop(A) ∧ cod(IA) sub pop(A) (25)

dom(r ∩ s) sub dom(r) ∧ dom(r ∩ s) sub dom(s) (26)

cod(r ∩ s) sub cod(r) ∧ cod(r ∩ s) sub cod(s) (27)

dom(r − s) sub dom(r) ∧ cod(r − s) sub cod(r) (28)

dom(r; s) sub dom(r) ∧ cod(r; s) sub cod(s) (29)

dom(r�) sub cod(r) ∧ cod(r�) sub dom(r) (30)

dom(r) sub cod(r�) ∧ cod(r) sub dom(r�) (31)

Note that we cannot state that pop(A) sub dom(VA×B), because B can be empty.
In that case, I(dom(VA×B)) is a proper subset of I(pop(A)). The composition
term r; s needs a set of atoms beside the domain and codomain. The reason is
that the interpretation I(r; s) contains an existential quantifier, for which we
require a type. For that purpose we introduce inter(r, s) and the following rule:

inter(r, s) sub cod(r) ∧ inter(r, s) sub dom(s) (32)

In addition, we add edges for every rule RULE r = s:

dom(r) sub dom(s)∧ cod(r) sub cod(s)∧ dom(s) sub dom(r)∧ cod(s) sub cod(r)
(33)

Recall that RULE r = s implies I(r) = I(s). Using Definition 2, the reader
should now be able to verify that Equations 23 to 33 all satisfy:

n1 sub n2 ⇒ I(n1) ⊆ I(n2) (34)

This means that an arrow connecting domains n1 and n2 in Figures 1 and 2 may
be read as a subset relation that has been recognized (by the type algorithm)
between these domains. In fact, Equations 23 through 33 describe the edges
between vertices for all possible terms. As the compiler traverses the parse tree
recursively, it visits all terms in the script and collects relevant edges on the way.

The type system must establish that each term gets precisely one type. It does
so by taking all pop(·) vertices it encounters when traversing the graph from the
term that is to be typed. For this, we introduce the relation of pre-types P : T×C

using sub∗ as the reflexive transitive closure of sub:

P = {〈x,C〉 | x sub∗ pop(C)} (35)

The relation P is total for terms: for every domain or subdomain x, there is a
term pop(C) such that 〈x,C〉 ∈ P . This holds because we require every declara-
tion to be declared with a type. So according to Equations 23 to 25, P is total
for those. The only terms we can construct according to Definition 1 are terms
that are smaller than the declarations they are made of. So for every term x:

(∃C∈C 〈dom(x), C〉 ∈ P ) ∧ (∃C∈C 〈cod(x), C〉 ∈ P ) (36)
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Using this property, we could easily make a type system that is complete in
the sense that it assigns a type to every term, by picking any such concept
arbitrarily. However, the fact that there is a choice often indicates a mistake of
an Ampersand user. So, instead of choosing an arbitrary concept, the compiler
emits an error message forcing the user to make that choice.

If one of these vertices is smallest with respect to sub∗, it is used as the type
for that term. If not, a type error is shown to the user. In other words, the typing
function is governed by these rules:

T(t) = 〈A,B〉 ⇒ 〈dom(t), A〉 ∈ P ∧ 〈cod(t), B〉 ∈ P (37)

T(t) = 〈A,B〉 ∧ 〈dom(t), A′〉 ∈ P ⇒ 〈pop(A), A′〉 ∈ P (38)

T(t) = 〈A,B〉 ∧ 〈cod(t), B′〉 ∈ P ⇒ 〈pop(B), B′〉 ∈ P (39)

In this manner, type checking involves computing a Kleene closure over the
relation sub. The compiler uses the Warshall algorithm for computing the closure,
giving it polynomial (O(n3) with n the number of type-terms) complexity.

7 Fulfillment of Requirements

In the previous sections, we have explained and illustrated how the type system
works. The soundness of the type system is specified by Equation 2. Equations 35
and 37 yield:

T(t) = 〈A,B〉 ⇒ dom(t) sub∗ pop(A) ∧ cod(t) sub∗ pop(B)

Together with Equation 34, and transitivity of ⊆, this yields:

T(t) = 〈A,B〉 ⇒ I(dom(t)) ⊆ I(pop(A)) ∧ I(cod(t)) ⊆ I(pop(B))

So we have established soundness, i.e. our type system satisfies Equation 2.
For sound scripts, P (Equation 35) is total. Since P associates one or more

concepts to the domain or codomain of every term, P is a total relation. We have
chosen to implement the algorithm by choosing the smallest concept instead of
an arbitrary one. In the Example from Listing 1.2, the concepts P associates
to inter(s, t) are A and B: choosing an arbitrary one would be unsound. If the
smallest concept is not unique, as in our example, the type algorithm emits an
error message that forces the user to make a choice. By resolving such errors de-
tected by Ampersand, the user can more easily be alerted to unintended scripts.
In an Ampersand script without type errors, each term gets a unique type in a
way that may be more predictable for the user.

The type graph can be used for a visual check: If for every vertex v there
is a path to precisely one smallest pop(·) vertex, the script has no errors. This
is precisely what was illustrated in figures 1 and 2. A reviewer of this paper
suggested highlighting the relevant paths in the graph for each type and type
error, which we think would be a great tool to assist Ampersand users.
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The user has syntax to specialize concepts, e.g. A - B as defined in Section 4.
The type system can already handle such statements, if we assume them to be
syntax sugar for rules. The statement, A - B can be expressed as:

RULE IA = IB ∩ IA (40)

By Equation 33 the type algorithm calculates the right edges in the type graph,
from which a pre-order of concepts is constructed.

The user is given control over intersection of concepts by insisting that every
set must have a type. If the type algorithm computes an intersection set between
two concepts, but that vertex is not associated a pop(·) of some concept, it is
forbidden. This gives the user full control, because he can always add a statement
of the same form as Equation 40 to make the type system accept what he wanted.

The type graph can be interpreted in term of good old sets, and it is easy to
see that it represents type calculations as was done with figure 1. In our teaching
practice, this has shown to appeal to the intuition of students, making it easy
to explain.

The static typing is enabled by this type system because it reasons solely
with concepts and not with atoms. For this reason, the implementation in the
Ampersand compiler aborts after emitting type errors, or it proceeds if there are
no mistakes.

8 Discussion

The authors appreciate domain analysis for visualizing the type system, as illus-
trated in figures 1 and 2. For large scripts, the type graph loses value because the
user loses overview. But in smaller, yet complicated scripts, it gives an insightful
outlook both on the correctness of the script as of its incorrectness.

In some cases, the type system might reject a script in which a user has cor-
rectly represented a desirable situation. For example, this script will be rejected:

DECLARE r〈A,B〉
DECLARE s〈C,D〉

RULE IE = IB ∩ IC

RULE r; s = VA×D

In this script, the first two lines declare the relations r and s. The third line
introduces a concept E, for which the type system will know that it is smaller
than B and C. The inter(r, s) vertex arising in the last rule is known to be
a subset of both B and C. Even though this means that it must be a subset
of IE , the type system does not discover this automatically. At this point, the
Ampersand user is required to be more specific, and change the last line to:

RULE r; IE ; s = VA×D

This introduces inter(IE , s) and inter(r, (IE ; s)) as terms, which are both typed
as pop(E). For the Ampersand user, adding such terms should feel like type
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casting. We point out to users that type errors can often be resolved by adding
type information to the script. The user should add type information to “help”
the type system. This appears to be easy to explain and quite intuitive for users.

As indicated earlier, Ampersand has more operators, including the comple-
ment (unary −), product4 (×), and union (∪). These can be implemented by
using the previously introduced difference, intersection, and full relation, given
that the · placeholders can be replaced by the correct concepts:

−r = V·×· − r
(r ∪ s) = −(−r ∩ −s)
r × s = r;V·×·; s

These definitions require a type for the full relation V·×· to be given. The user
may specify this type, but we do not require this. Separate heuristics try to infer
the type, but require the user to specify the type if the type system cannot.

The type system allows the use of both V and I without type. As an exam-
ple, consider a script with the relation r〈A,A〉. The union of r and I would be
expressible in terms of the ambiguous V:

(r ∪ I) = V− ((V− r) ∩ (V− I))

In this case, the different occurrences of V may still refer to different relations.
They are separated by their position in the script. After applying a heuristic to
guess the type of each V, the type system obtains an expression to which it can
apply the methods discussed in this paper:

(r ∪ IA) = VA×A − ((VA×A − r) ∩ (VA×A − IA))

For this heuristic, the type of any surrounding declared relation(s) is used.
Note that (r∪ IA) and (r∪ IB) may be terms with a very different interpreta-

tion. So, it is necessary to disambiguate the type of every expression in a script.
In the above, the type system picks (r ∪ IA) as the intended meaning of (r ∪ I).
In each case with multiple choices, the type system produces an error, alerting
the user about the ambiguity.

So far, experience with the type algorithm shows that the amount of type
information needed in an Ampersand script is reasonable in the eyes of users.
In most cases where the type of a term can obviously be deduced by a user, the
type system infers that type. There are limitations, of course. The constraint
that every term should get a type is restrictive in the sense that some scripts
will not be admissible. This often is desired behavior, as is the case in Listing 1.2.
In such cases, the Ampersand compiler produces an error message (type error)
to help the user identify and fix the mistake.

4 The definition below is the one currently implemented in ampersand, even though
the name ‘product’ and the symbol × might suggest another operator. We are open
to suggestions for a better name.
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A unique property of this type system is that the order of subtypes emerges
from the script itself. In practice, however, this makes debugging an Amper-
sand script difficult, even when the user is presented with the partial order on
concepts. Suppose for example that the user specifies:

RULE r ∩ VB×A = r

RULE r; r ∩ IA = IA

The first line in this script says that r is of type 〈B,A〉 (or, to be precise, of
a type 〈B′, A′〉 with B′ - B and A′ - A). The last line can be thought of as
type incorrect: the user may have intended IA ⊆ r�; r. Given the current script,
however, we can derive (and our algorithm derives):

I(A) = I(dom(A))

= I(dom(r; r ∩ A))
⊆ I(dom(r))

= I(dom(r ∩VB×A))

⊆ I(dom(VB×A))

⊆ I(B)

This implies that A - B, so no error message is produced. To make matters
worse, even when IB ∩ IA = IB is added to intentionally imply B - A, a type
error does occur, saying that A = B could be derived. At no point is the user
alerted to the fact that r; r contains an error at the ;. This shows that when
errors are produced, they may not point to the problem. In a practical setting in
industry, this leads to unacceptably confusing errors for users. Suppose, for ex-
ample, that the user makes the mistake of omitting a converse operator ((·)�).
The consequence is that the compiler checks whether the type Person corre-
sponds to Account (which is in the eyes of the user obviously not the case). The
type checker finds an interpretation in which Person - Account. The resulting
error messages, if any, will be unintelligble in the eyes of the user. As a result,
the type algorithm proposed here was not adopted in the Ampersand compiler.

9 Conclusion

This paper shows that domain analysis can be used as a mechanism for type
checking. The type algorithm presented is unconventional: it does not work with
proof trees. This results in an attractive type graph, which is useful for explain-
ing the type-correctness or type-incorrectness of a script. The type graph is a
comprehensive representation of all proofs that are needed to show that every
term has precisely one type. Because of this, the diagram has demonstrated to
be quite convincing in debates among Ampersand professionals in practice. The
approach is not only simple, but it allows compilers with advanced features such
as specialization and overloading with hardly any extra effort. The simplicity
of the approach is illustrated by the Haskell code corresponding to this article,
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which contains the complete algorithm in under 200 lines of Haskell code, and can
be found at: http://cs.ru.nl/~B.Joosten/ampTypes/ The simplicity is also
valued in the Ampersand project, because this yields code that is maintainable
because of its simplicity.

This type algorithm adds a new feature to type checking: it uses information
from the very rules it is checking to enhance the concept pre-order.

Acknowledgements. We thank the reviewers for their comments. A special
thanks to the reviewer who tried our code on the examples in this paper.
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Abstract. In this paper we develop an approach to interactive verifica-
tion of programmable logic controllers which often serve as controllers in
safety critical systems and hence need thorough verification. As a verifi-
cation tool we use the KIV system, whereas the formalization is done in
modal Kleene algebra. We first prove a bunch of theorems from modal
Kleene algebra in KIV, subsequently translate the desired properties of
a program for a programmable logic controller in modal Kleene algebra,
and finally prove these encoded properties interactively with KIV.

1 Introduction

1.1 Overview

Programmable Logic Controllers (PLCs) are widely used in automation systems
as robots or machine tools like lathes, drill presses or milling machines. In par-
ticular, robots can become a safety threat to humans, so correctness of PLC
programs is highly desired. Also in other safety critical scenarios, as e.g. con-
trol of nuclear power plants or airplanes, PLC programs have to work correctly.
Failure of such a program can lead to economical or human damages for which
reason verification of PLC programs is necessary both for financial and an ethical
reasons.

Our approach is based on two concepts: Modal Kleene algebra (MKA) and
interactive theorem proving with KIV (see [4]). MKA is known as an algebraic
framework for temporal logics like LTL, CTL and CTL∗ (see e.g. [13,19]) and has
already a long history in the context of automated reasoning and verification
as in [10,15,16]. The KIV system has shown its ability and power for formal
verification in [9,20,23] and on many other occasions. In our work we combine
the algebraic elegance of MKA with the interactive proving strategy of KIV.
This avoids the problems one has to face with automated theorem provers, and
allows to use the full expressiveness of MKA. Whereas automated reasoning in
semirings and Kleene algebra has already a long tradition (see again [12,16,15]),
interactive verification using Kleene algebra is a rather new and rising area
(as e.g. in [8]) with promising prospects. The reader should not expect new
theoretical results but rather a preliminary demonstration of first steps towards
interactive verification of PLC programs.

© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 241–256, 2015.
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The paper is organized as follows: In Section 2 we give a short introduction
to programming PLCs. Section 3 provides a summary about Kleene algebra and
its connections to temporal logic. The KIV system is introduced in Section 4. In
Section 5 we show how to formalize PLC programs in MKA abstractly, and give
two exemplary case studies in Section 6. A summary and an outlook on future
work is the content of Section 7.

1.2 Related Work

There are some other approaches to PLC verification. [22] and [21] use model
checking with NuSMV (see [5]) where the latter publication demonstrates how
the state space obtained in the first paper can be reduced. Data flow analysis is
a technique which is used in [17] also in the context of PLC verification. In [11]
simulation of PLC programs serves as an auxiliary tool for testing.

In contrast to all these approaches, our concept has the potential to avoid
the problem of state explosion which often occurs during the work with a model
checker. This problem can be circumvented by a clever human proof strategy.
Moreover, unsuccessful searching for a proof can lead the user not only to errors
in the implementation but also to a correct solution.

2 A Short Introduction to Programmable Logic
Controllers

2.1 Basics

Programmable logic controllers, or PLCs for short, are a common tool in industry
for controlling machines or electrical devices of all kinds. A PLC has a set of
inputs and outputs which may be of Boolean or numerical type. The inputs
may stem from measuring results from sensors or Boolean values from switches
activated by an operator or user whereas the outputs may go to actuators or
signal devices for process monitoring. Moreover, a PLC has the capability to store
values in internal variables. The type of a variable (input, output or internal) is
specified in a separated variable table and can in general not be inferred from
the bare program.

PLCs offer the possibility of performing the safety critical computations in a
special part with doubly checked computation. Signals which are crucial for the
safe operation of a plant like messages from a photoelectric sensor, a limit switch
or an emergency stop are processed in a separate part of the hardware. Every
computation is executed twice and the results are compared; if they differ the
whole plant stops. In this part the instruction set is reduced to some Boolean
functions, so we will concentrate here also on a subset of Boolean functions.

Most PLCs work in a cyclic way: in step n the inputs and the internal vari-
ables are read, and subsequently the outputs and the internal variables for the
following step n + 1 are computed. Typical cycle times are in the dimension
of 20 - 250 milliseconds. PLC programs can be executed in a synchronous and
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asynchronous way; in the first case an error occurs if the computation time
exceeds a given cycle time, in the second case the computation of the outputs and
internal variables is delayed till termination. Both concepts have their obvious
advantages and drawbacks.

2.2 Programming Programmable Logic Controllers

The standard for PLCs is the norm IEC 61131 [2]. It defines five kinds of pro-
gramming languages for PLCs:

1. Instruction List (IL), a kind of an assembly language with an operator stack
and push and pop operations,

2. Ladder Diagram (LD) which reflects the origins of PLCs from electrical
engineering since it resembles circuit diagrams,

3. Sequential Function Chart (SFC), a graphical method in the spirit of state
diagrams,

4. Structured Text (ST) with a C-like syntax, and
5. Function Block Diagram (FBD), the most popular variant with an appear-

ance of logic circuits.

Most PLC manufactures offer the possibility of mixing two or more languages
in one PLC program. The standards also offer concepts known from traditional
and object-oriented programming like modularization and encapsulation, but we
consider here only the basic concepts.

2.3 A Function Block Diagram Crash Course

Each of the five languages has its advantages, but due to its widespread use we
concentrate on FBD in the sequel. Our overview reclines on the syntax of Step7
as in [7] but can easily be transferred to other implementations. Furthermore, we
do not describe the full extent of the language but restrict ourselves to negation,
AND- and OR-gates as well as flip-flops.

In FBD, one can write Boolean functions in clearly arranged diagrams. There
are predefined Boolean functions which are represented as rectangles with inputs
at the left side and outputs at the right side as in Figure 1. The output of these
elementary gates can serve as inputs to other elementary gates or can be for-
warded to an output signal to the environment or stored in an internal variable.
A program can consist of several connected components of elementary gates, and
in each connected component the elementary gates are evaluated according to
topological order. Moreover, the connected components are evaluated in order
from top to bottom (this is done by the layout manager of the programming
environment). So the evaluation order of the program from Figure 3 is NEG1,
OR1, OR2, AND1, OR3, AND2, OR4 and finally AND3. For the naming of this example
we refer the reader to Section 5.

An AND-gate is symbolized by a rectangle containing an ampersand on its
top; similarly an OR-gate is represented by a rectangle that contains the symbol
>=1. Negation of a variable or result is denoted by a small circle on the associated
line. So the FBD from Figure 1 stands for the function
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(IN1 ∧ ¬IN2) ∨ IN5 ∨ M10,

and the result is forwarded to the output OUT4. There are also other logic func-
tions like NAND and EXOR which we skip for brevity.

IN1

IN2

& M10

IN5
>=1

OUT4

Fig. 1. AND, OR and Negation in FBD

In addition to these traditional Boolean functions PLC in general and FBD
in particular provide dynamic Boolean functions whose results depend on the
run of the input signals. As an example for this group we consider flip-flops.

Flip-flops have two inputs, one set input and one reset input, and one output.
If a flip-flop receives a true signal on its set input the output is set to true.
The output remains on true until the reset input receives a true signal which
causes the output to switch to false. Depending on the behavior of the flip-flop
receiving true signals at the same time both on the set and the reset input there
are set dominant and reset dominant flip-flops: in this situation, a set dominant
flip-flop sets it output to true whilst a reset dominant flip-flop sets it to false.
For short, set dominant flip-flops are also called RS-flip-flops and reset dominant
ones SR-flip-flops. By default, the initial output value of a flip-flop equals false.

The symbol for a flip-flop in FBD is a rectangle denoting its type (RS or SR)
with two inputs, S for the set and R for the reset input. The output bears the
letter Q and its recent value is stored in an internal variable written over the
respective gate. So the flip-flop on the left side of Figure 2 is a reset dominant
flip-flop with IN1 and IN2 on its set and reset input, resp., whose output is stored
in the internal variable M0.1 and written to the output OUT4.

3 Kleene Algebra and Temporal Logic

In this section we first recapitulate, in Subsection 3.1, some basics about semir-
ings and modal Kleene algebra before sketching the connections between modal
Kleene algebra and linear temporal logic in Subsection 3.2. A more detailed
overview of Subsection 3.1 offer e.g. [13,14], for Subsection 3.2 see also [19].

3.1 Modal Kleene Algebra

A central concept in algebraic system description are idempotent semirings:
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S

R

IN1

IN2

M0.1

SR

OUT4
Q

Fig. 2. A Reset Dominant Flip-flop

Definition 1. An idempotent semiring is a structure S = (M,+, 0, ·, 1) where
(M,+, 0) and (M, ·, 1) are monoids and + is commutative and idempotent. More-
over, · distributes both from the left and the right over + and 0 is a left and right
annihilator of ·.

Given an idempotent semiring S = (M,+, 0, ·, 1) we define the natural order
≤⊆ M ×M by x ≤ y :⇔ x + y = y. As suggested by its name, ≤ is an order
with least element 0.

The operations + and · are called addition and multiplication and model usu-
ally choice and composition, resp. A well-known instantiation of an idempotent
semiring corresponding to this interpretation is the semiring (RelM ,∪, ∅, ; , idM )
of the set of endorelations RelM over a set M with set union as addition (whose
neutral element equals ∅) and relational composition ; as multiplication (with
the identity relation idM over M as neutral element).

Because of the associativity of addition and multiplication we are free to omit
parentheses. Another convention we use is that multiplication binds stronger
than addition. In order to increase readability we agree also on the possibility
to omit the multiplication sign · if wanted; so x(y + z) stands for x · (y + z).

This concept of a semiring suffices for modeling choice and composition but
lacks the possibility of reasoning about subsets ofM . To this effect, we introduce
the concept of tests:

Definition 2. Given an idempotent semiring S = (M,+, 0, ·, 1) an element p ∈
M is called a test iff an element ¬p (the complement of p) exists with the
properties p+ ¬p = 1 and p · ¬p = 0 = ¬p · p.

For an idempotent semiring S we write test(S) for the set of all tests of S.
Usually, tests are denoted by p, q, r and s, and indexed and primed derivatives
thereof. Later we deviate from this convention for good reasons. On test(S), infi-
mum and multiplication coincide; in particular, multiplication of tests is idempo-
tent and commutative. In every semiring 0 and 1 are tests, and they are the least
and greatest element in test(S). An often used abbreviation for p, q ∈ test(S)
is p→ q instead of ¬p+ q. The operator → has a weaker binding than +.

Using tests, we can also model analoga of image and preimage of a relation
by the so called diamond and box operators:
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Definition 3. A modal semiring is a structure S = (M,+, 0, ·, 1, |·〉, 〈·|) where
S′ = (M,+, 0, ·, 1) is an idempotent semiring and |·〉 and 〈·| are functions of the
type (M → test(S′)) → test(S′) with the properties |x〉p ≤ q ⇔ ¬qxp ≤ 0 ⇔
〈x|p ≤ ¬q, |xy〉p = |x〉|y〉p and 〈xy|p = 〈y|〈x|p for all x ∈M and p, q ∈ S′.

From an abstract point of view, |x〉p models all states from where a transition
via x into p is possible whereas |x]p corresponds to all states from which a
transition along x leads inevitably into p. A symmetric interpretation holds for
the backward operators.

The operators |·〉 and 〈·| are called the forward and backward diamond, resp.
From these operators we can derive the forward and backward box operators |·]
and [·| by the dualization |x]p := ¬|x〉¬p and [x|p := ¬〈x|¬p.

The diamond operators are distributive and hence isotone in both arguments.
Moreover, we have 〈x|0 = 0 = 〈0|p for arbitrary x ∈M and p ∈ test(S′) and the
analogous properties for the backward diamond. The box operators are antitone
in the first and isotone in the second argument. By dualization of the diamond
properties we obtain |x]1 = 1, |0]q = 1 and |1]q = q for every test q and the
symmetric properties for the backward diamond.

Till now we are not able to model iteration in terms of semirings. This gap is
filled by the Kleene star, introduced in [18] as follows:

Definition 4. A Kleene algebra K is a structure K = (M,+, 0, ·, 1, ∗) where
(M,+, 0, ·, 1) is an idempotent semiring and ∗ : M → M is a unary operation
in postfix notation with the following properties:

1 + xx∗ ≤ x∗ x+ yz ≤ z ⇒ y∗x ≤ z
1 + x∗x ≤ x∗ x+ yz ≤ y ⇒ xz∗ ≤ y

As a unary operator, the Kleene star binds stronger than multiplication and
addition.

Well-known properties of the Kleene star are its strictness (x∗ = 0⇔ x = 0)
and its isotony. Moreover, for all n ∈ IN it fulfills the inequality xn ≤ x∗ where
xn is defined recursively in the standard way by x0 = 1 and xn+1 = x · xn. For
further properties see [13] or [14].

Finally, we call a structure (M,+, 0, ·, 1, |·〉, 〈·|, ∗) a modal Kleene algebra, or
MKA for short, if (M,+, 0, ·, 1, |·〉, 〈·|) is a modal semiring and (M,+, 0, ·, 1, ∗) is
a Kleene algebra.

3.2 Modal Kleene Algebra and Linear Temporal Logic in a Nutshell

In this subsection we give a short overview of the results from [19] which are
relevant for our paper. Our notation differs slightly from the one used there but
the semantic remains the same.

Linear temporal logic, or LTL for short, allows reasoning about the temporal
behavior of logic variables in traces of a transition system. A trace s = s0s1s2 . . .
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consists of a sequence of states s0, s1, s2, . . . of a transition system. For a trace
s = s0s1s2 . . . we define the trace si by si = sisi+1si+2 . . . . Furthermore, we
have a set Π = {π1, π2, . . . , πm} of propositional variables which can be true or
false in a state. To reason about the behavior of these variables along traces
we use the set Ψ of LTL formulae, generated by the following (not minimal but
expressive) grammar:

Ψ ::= ⊥ | Π | ¬Ψ ; | Ψ → Ψ | �Ψ | ♦Ψ | ◦ Ψ | Ψ UΨ

For a formula π ∈ Π we say that π is valid in a trace s = s0s1s2 . . . iff π
holds in s0. Then the validity of an LTL formula with respect to s is defined as
follows:

– ⊥ is valid wrt. s ⇔ false
– ¬ψ is valid wrt. s ⇔ ψ is not valid wrt. s
– ψ1 → ψ2 is valid wrt. s ⇔ validity of ψ1 wrt. s implies validity of ψ2 wrt. s
– �ψ ⇔ ψ is valid wrt. s in all states of s
– ♦ψ ⇔ ψ is valid wrt. s in some state of s
– ◦ψ ⇔ ψ is valid wrt. s1

– ψ1 Uψ2 ⇔ ∃ i ≥ 0 : ψ2 is valid wrt. si and ψ1 is valid wrt. all sj with j < i

We use the usual abbreviations ¬ψ for ψ → ⊥, ψ1 ∧ψ2 for ¬(ψ1 → ¬ψ2) and
ψ1 ∨ψ2 for ¬ψ1 → ψ2. A formula is said to be valid if it is valid with respect to
all traces.

This can be extended to a set valued interpretation which maps each formula
ψ to to a set of traces 〚ψ〛 with respect to which ψ is valid. These sets can be
modeled by tests, and a general element a is going to be used for the transition
relation which transforms a trace s into its successor s1. Then we can define
inductively:

〚⊥〛 = 0
〚¬ψ〛 = ¬〚ψ〛
〚ψ1 → ψ2〛 = ¬〚ψ1〛+〚ψ2〛
〚ψ1 ∧ ψ2〛 = 〚ψ1〛·〚ψ2〛
〚ψ1 ∨ ψ2〛 = 〚ψ1〛+〚ψ2〛
〚�ψ〛 = |a∗]〚ψ〛
〚♦ψ〛 = |a∗〉〚ψ〛
〚◦ψ〛 = 〚|a〉ψ〛
〚ψ1 Uψ2〛 = |(〚ψ1〛·a)∗〉〚ψ2〛

Note the twofold meaning of negation in the second line: the first negation is
a logical operator, the second one a semiring’s complement operator.

The relation a that transforms a trace s into its successor s1 is a left total
function. In the context of MKA, this leads to the property |a〉p = |a]p for all
tests p.

Now an LTL formula is valid iff its associated semiring term evaluates to 1.
So for example, we have
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〚� (ψ → ψ)〛 =
|a∗]〚(ψ → ψ)〛 =
|a∗](¬〚ψ〛+〚ψ〛) =
|a∗]1 =
1

due to the above rules and the properties of the complement and the forward
box which shows the validity of the LTL formula � (ψ → ψ) for every transition
system. In Section 5 we describe how to obtain a concrete description of a for
reasoning about FBD programs.

4 The KIV System

The KIV system from [4], developed mainly in Karlsruhe and Ulm and currently
administrated in Augsburg is a tool for interactive proving and verification which
was already successfully employed in verification of practical applications as e.g.
in [9,20,23]. Our approach is to prove first a sufficient amount of theorems from
the area of semirings andMKA, then to model PLC programs in MKA and finally
to formalize and prove interactively desired properties of given PLC programs
using the theorems from the first step.

KIV comes along as a plug-in for Eclipse and is easy to install. The data is
organized in modules consisting of so called specification and associated sequents
parts with a self-explanatory and easily understandable syntax. A specification
part contains the sorts, constants, functions, predicates, variables and axioms
used by the associated sequents part which contains the theorems to be proved.
It is possible to enrich already existing specifications by additional axioms in
a way similar to the inheritance concept of object-oriented programming. The
theorems under consideration are entered in the associated sequents file and can
be proved interactively.

In the basic settings the user has to insert all lemmata from other sequents
as well as axioms from specifications and instanciate all quantifiers by hand.
However, KIV offers a lot of automatically applicable heuristics which ease its use
significantly. The use of rewrite lemmata allows even a kind of local automated
reasoning.

The choice of an interactive prover instead of an automated prover like Prover9
(see [6]) was motivated by unsatisfactory experiences with automated provers.
Given too many axioms they get lost in an inflated search space. The specification
of the transition function of an FBD program even of moderate size generates an
amount of axioms which swamps automated theorem provers. In contrast, using
an interactive theorem prover one can select suitable lemmata for a prove step.
Another advantage is that potential bugs can be discovered and fixed better:
using an interactive theorem prover one can detect where the verification fails
and change the program accordingly whereas the counterexamples produced by
automated theorem provers are hardly readable and comprehensible for humans.

In some provers like Coq and Isabelle (see [3,1]), a lot of theorems from MKA
are already implemented. However, we decided to use KIV because we need a
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lot of additional lemmata which we had to prove in either case, so the additional
work was not overboarding.

5 Modeling Function Block Diagrams in Modal Kleene
Algebra

The overarching idea of our approach for modeling FBD programs in MKA
consists of four steps: first, we assign each elementary gate an MKA element.
Second, we model each input and output signal as well as intermediate computa-
tion results and internal variables as tests by assigning to each such signal, result
or variable x two tests x 0 and x 1 indicating a value of true or false, resp.
Already existing names remain untouched. Of course, this modeling implies also
x 0 = ¬x 1. In the third step we define the behavior of each elementary gate
with respect to its inputs and outputs and other signals by formulae from MKA.
Finally, all the elementary gates are put together in a big product corresponding
to the behavior of the overall program. Our running example illustrating this
idea is the program from Figure 3.

In the first step we are free to choose the names of the elementary gates but
it is useful to give meaningful names. Such names are written in gray at the
bottom of each elementary gate in Figure 3 and are used throughout the further
course. These descriptions are not part of the FBD syntax but serve only for
better understanding.

As signals in our running example we have the inputs IN1, IN2 and IN3

and the outputs OUT1, OUT2 and OUT3 whereas intermediate computation results
arise at OR1, OR2, OR3, OR4 and AND2. We use the convention to denote gates
by uppercase letters, the corresponding semiring element by lowercase letters
and tests corresponding to the output of a gate by the gate’s name in lowercase
letters followed by 0 and 1. Hence we have e.g. the constant tests in1 0, in1 1,
out3 0, out3 1, or3 0, or3 1 and the equations in2 0 = ¬in2 1 and and2 0 =
¬and2 1.

The behavior of an elementary gate with respect to its inputs and outputs
depends of course of its type. We model this as follows:

• For an AND-gate ANDK with inputs in1, . . . , inn we have the equations in1 1 ·
· · · · inn 1 ≤ |andk〉andk 1 and in1 0+ · · ·+ inn 0 ≤ |andk〉andk 0.

• For an OR-gate ORK with inputs in1, . . . , inn we have the equations in1 1+
· · ·+ inn 1 ≤ |ork〉ork 1 and in1 0 · · · · · inn 0 ≤ |ork〉ork 0.

• For a set dominant flip-flop RSK with set input s, reset input r and output
q whose value is stored in the internal variable m we have the following
characterizations:

- s 1+ m 1 · r 0 ≤ |rsk〉q 1

- s 1+ m 1 · r 0 ≤ |rsk〉m 1

- s 0 · r 1+ m 0 · s 0 ≤ |rsk〉q 0

- s 0 · r 1+ m 0 · s 0 ≤ |rsk〉m 0
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In the third and fourth equation one could factor out s 0 but it turned out
to be more convenient to use the form given above. Reset dominant flip-flops
are treated symmetrically.

• To handle the case of the negation of a signal x we simply swap x 0 and x 1.
In general, we do not introduce a new gate and hence a new element of M
for a negation, except the case if a negated signal is directly forwarded as
in the topmost component of Figure 3. These considerations lead e.g. to the
formulae in1 0 ≤ |neg1〉out1 1 or in1 0+ in2 0 ≤ |OR2〉or2 1.

These requirements are not enough for an adequate description of an FBD
program since we do not take into account the fact that a gate does not overwrite
signals from other gates. To this purpose we order the elementary gates according
to their evaluation order. In our running example this would lead to the sequence
OR 1, OR 2, AND 1, OR 3, AND 2, OR 4, AND 3. Given this sequence for an FBD
program we have to ensure that all signals produced before a gate GAT and used
by another gate after GAT remain unchanged by GAT. The same holds for signals
which are used as final output or are stored in an internal variable. So for each
such gate GAT and every such signal x we introduce the formulae x 0 ≤ |gat〉x 0

and x 1 ≤ |gat〉x 1. In the FBD program from Figure 1 this would lead e.g. to
the formulae in1 1 ≤ |or1〉in1 1 (because in1 is used e.g. by AND2) or out2 0 ≤
|or4〉out2 0 (because out4 is used as a final output).

The last step of our construction puts all gates together in a big product
consisting of the sequence of the previous step. This product plays the role of the
transition relation a from Subsection 3.2. In our example we get as description
of the overall system the term

neg1 · or1 · or2 · and1 · or3 · and2 · or4 · and3.

6 Case Studies

6.1 A 3-Bit Incrementer

As already suggested by its caption, the example from Figure 3 implements the
increment function modulo 8 on three bits in little endian representation. The
modeling of this FBD program was already shown in Section 5, and we adopt
the naming from there. As an abbreviation we introduce the constant inc, given
by

inc = neg1 · or1 · or2 · and1 · or3 · and2 · or4 · and3.
A possible approach to verification of this program is to prove its behavior on
the eight inputs in1 b1 ·in2 b2 ·in3 b3 with b1, b2, b3 ∈ {0, 1}. This leads e.g.
to proof obligations like

|inc∗]( in1 0 · in2 0 · in3 1→ |inc〉(out1 1 · out2 0 · out3 1)) = 1
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Fig. 3. A 3-bit Incrementer
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or

|inc∗]( in1 1 · in2 1 · in3 0→ |inc〉(out1 0 · out2 0 · out3 1)) = 1.

It turned out that these formulae are very tedious to prove (and there are
eight of them!) so we switched to another approach which verifies the behavior
of the single output bits. This can be expressed by the following proof obligations:

|inc∗](in1 0→ |inc〉out1 1) = 1
|inc∗](in1 1→ |inc〉out1 0) = 1
|inc∗](in1 0 · in2 0+ in1 1 · in2 1→ |inc〉out2 0) = 1
|inc∗](in1 1 · in2 0+ in1 0 · in2 1→ |inc〉out2 1) = 1
|inc∗](in3 0 · (in1 0 + in1 1 · in2 0) + in1 1 · in2 1 · in3 1→
|inc〉out3 0) = 1
|inc∗](in1 1 · in2 1 · in3 0 + in3 1 · (in2 0 + in1 0 · in2 1))→
|inc〉out3 1) = 1

These statements were proved in two steps:

• In a first step we showed that the second argument of each forward diamond
(e.g. in1 0→ |inc〉out1 1 or in2 0 + in1 0 ·in2 1 + in1 1 ·in2 1 ·in3 1→
|inc〉out3 0) evaluates to 1. This was done in principle by backward track-
ing of preconditions of the output variables, e.g. or1 0 is a precondition of
out2 0, and in1 0 · in2 0 is a precondition of or1 0 (the fact that or1 0 is
a precondition of out2 0 is captured by the axiom or1 0 ≤ |and1〉out2 0).

• A lemma from MKA provides that |x]1 = 1 holds for arbitrary x which
completes the proof.

6.2 Mutual Exclusion

A frequent task in PLC programming is mutual exclusion of resources. For ex-
ample, a door on a safety fence should not be open while a potentially dangerous
machine in the interior is running. The FBD from Figure 4 shows a solution of
such a task: if out1 and out2 are initially set to false it will never happen that
both out1 and out2 become true at the same time. An intuitive explanation
for this property is that if out2 becomes true the reset input of the flip-flop
SR1 becomes also true, and due to reset dominance out1 is immediately set to
false. A symmetric argument holds for the case if out1 becomes true. Note
that in this implementation out1 and out2 are no output signals but internal
variables which have to be processed before having an effect to the environment.

Similarly to above we model the behavior of this FBD by the expression
cycle, given by

cycle = or1 · sr1 · or2 · sr2
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where the characterizations of the right hand terms were given in Section 5.
Now the desired behavior can be described by the following MKA expressions:

out1 0 · out2 0→ |cycle∗](out1 1→ out2 0) = 1
out1 0 · out2 0→ |cycle∗](out2 1→ out1 0) = 1

Of course these two formulations can be merged into one but in this form the
formalization is both easier to read and to prove. The proofs of these claims were
harder to do than the ones of the seemingly more complicated expressions from
the previous subsection due to the deeper nesting of implications. The rough
idea of the proof of the first claim is as follows:

• First we showed that out1 0 · out2 0 + out1 0 · out2 1 + out1 1 · out2 0 is
an invariant of cycle.

• Due to a lemma from MKA out1 0 · out2 0 + out1 0 · out2 1 + out1 1 ·
out2 0 is an invariant of cycle∗, too.

• Finally, also a theorem of MKA states the implication

p ≤ q ∧ qx¬q = 0 ∧ q ≤ r ⇒ p→ |x]r = 1

for all tests p, q, r and arbitrary x which shows the claim due to out1 0 ·
out2 0 ≤ out1 0 · out2 0 + out1 0 · out2 1 + out1 1 · out2 0 and out1 0 ·
out2 0 + out1 0 · out2 1 + out1 1 · out2 0 ≤ out1 1→ out2 0 (note that
qx¬q = 0 means that q is an invariant of x).

To show te second claim we only have to show the additional inequality
out1 0 · out2 0 + out1 0 · out2 1 + out1 1 · out2 0 ≤ out2 1→ out1 0.
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7 Conclusion and Outlook

7.1 Experimental Results and Experiences

Before doing the proofs from Section 6 we did a lot of proofs from the area of
MKA and its underlying structures like idempotent semirings, Kleene algebras
and modal semirings. These proofs were built up from scratch, i.e. assuming only
the axioms of the respective structures.

According to our experiences, interactive proving is a more powerful tool for
verification than automated reasoning. Despite its undisputed power automated
reasoning often demands human interaction in the form of choosing an appropri-
ate axiom and lemma set or modifying parameters of the search space. We did
the same formalizations as in Section 6 in Prover9 (see [6]) with a disappointing
result: it was not possible to prove a single statement, even selection of lemmata
and axioms did not help much. In contrast, verification of the same formalization
with KIV became after some time of familiarization a pleasant and comfortable
task.

7.2 Future Work

This paper presented only the first step towards interactive verification of PLC
programs. There are several lines of further research we plan to investigate. A
first idea is automated generation of the specification and sequents files on the
base of a given PLC program (the examples presented here were built by hand).
Another direction of research is to expand our approach to other languages for
programming PLCs besides FBD. Basically, this can be achieved by a suitable
generator for KIV files which does not take FBD programs as input but PLC
programs in another language. Moreover, it is consequent to tackle other Boolean
functions but the ones considered here (especially flank evaluators seem to be a
challenging task) and numerical functions. The second intention may be be eased
by the fact that KIV offers already an implementation of the naturals. As usual
in programming, PLC programs contain a lot of frequently used constructions
like the mutual exclusion gadget from Figure 4. Here it can help shorten proofs
if predefined properties of such structures as additional lemmata are already at
the user’s disposal.

The crucial test for our approach is the verification of real world instances. A
typical robot cell with one robot has about 32 up to 64 safety-critical signals and
two up to four doors with about four signals each. The associated PLC program
consists of 50 op to 100 gates which are in general no primitive gates as in our
examples but more complex ones with predefined behavior whose correctness
is guaranteed by the producer. Their behavior needs to be modeled in MKA
analogously to Section 5 which will not pose any problems. After doing so, our
approach is expected to work without difficulty, eased by the fact that each
signal is processed only in a small fraction of all gates. In such cases with a large
number of gates and signals it would be interesting to investigate the influence
the state explosion if one uses an approach based on model checking. This will
show whether the considerations from Subsection 1.2 are correct.
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Abstract. Using Dedekind categories as an algebraic structure for
(binary) set-theoretic relations without complements, we present purely
algebraic definitions of “to be bipartite” and “to possess no odd cycles”
and prove that both notions coincide. This generalises D. König’s well-
known theorem from undirected graphs to abstract relations, and, hence,
to models such as L-relations that are different from set-theoretic rela-
tions. One direction of this generalisation is shown by specifying a bipar-
tition for the relation in question in form of a pair of disjoint relational
vectors. For set-theoretic relations this immediately leads to relational
programs for computing bipartitions. We also discuss how the algebraic
proofs can be mechanised using theorem proving tools.

1 Introduction

The modern axiomatic investigation of the calculus of (binary) relations started
with the seminal paper [18] of A. Tarski. For many years this calculus has been
widely used by mathematicians, computer scientists and engineers as a concep-
tual and methodological base for investigating fundamental notions and problem
solving. A lot of examples and references to relevant literature can be found, for
instance, in the textbooks [16,17] and the proceedings of the international con-
ferences RAMiCS.

Relation algebra, the axiomatic algebraic structure underlying the calculus of
relations, has been applied to many concrete examples, particularly to graph-
theoretic problems. This is mainly due to the fact that a directed graph can
be seen as a binary relation on the vertex set. Other kinds of graphs can also
be modeled easily using relation algebra as, e.g., demonstrated in [16]. These
investigations have been accompanied by tool support. The latter concerns the
mechanisation of relation algebra and the execution of relational programs in
tools like RelView (see [1,25]) as well as theorem proving in the context of
relation algebra (see [3,4,6,9]).

In this paper we continue this line of research. Primarily, we prove some re-
sults concerning the bipartition of graphs with purely relation-algebraic means,
that is, without any reference to the fact that relations are sets of pairs over
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certain carrier sets. We even avoid the use of complements which, algebraically,
means that we do not work with relation algebra in the sense of [18,19] (ho-
mogeneous approach) or [16,17] (heterogeneous approach), but with the more
general algebraic structure of a Dedekind category. This algebraic structure has
been introduced in [12] and is, for example, used in [8] to investigate crispness of
L-relations and in [21] to model processes. L-relations generalise fuzzy relations
by replacing the unit interval [0, 1] ⊆ R as the domain of membership by an ar-
bitrary lattice L. In the well-known matrix model of relations fuzzy relations are
matrices with entries from the unit interval [0, 1] ⊆ R, whereas L-relations are
matrices with entries from a suitable lattice L. Since L-relations form a Dedekind
category, our results also apply to this generalisation of set-theoretic relations.

Considering abstract relations asmorphisms of a Dedekind category,we present
purely algebraic definitions of “to be bipartite” and “to possess no odd cycles”. For
set-theoretic relations these notions coincide with the corresponding notions from
graph theory. Then we algebraically prove for all relations that they are bipartite
if and only if they do not possess odd cycles. This generalises D. König’s well-
known theorem (published in [10]) from undirected graphs to Dedekind categories.
One direction of this generalisation is shown by specifying for the input relations
bipartitions in form of pairs of disjoint relational vectors. This is done by means of
algebraic expressions. When using RelView, in case of symmetric set-theoretic
relations (i.e., undirected graphs) these are based on the algebraic construction of
a splitting, that generalises projections of set-theoretic equivalence relations and
in RelView is not available as a pre-defined operation. But splittings easily can
be computed by means of a simple relational program.

Algebraic calculations concerning relations are extremely formal. This not
only minimises the danger of making errors within proofs, but also allows the
use of theorem provers and proof assistant tools. We have used the automated
theorem prover Prover9 (see [24]) and the proof assistant tool Coq (see [23]) to
check our results and we also report on our experience in respect thereof.

2 Relation-Algebraic Preliminaries

In the following we recall the algebraic preliminaries we will need in this paper.
For more details on relation algebra see e.g., [16,17], and for more details on
Dedekind categories see e.g., [8,21]. Especially the proofs concerning all unproven
basic facts of this section can be found there.

We assume the reader is familiar with the basic operations on set-theoretic
relations, viz. RT (transposition), R (complement), R ∪ S (union), R ∩ S (in-
tersection), R;S (composition), the predicates R ⊆ S (inclusion) and R = S
(equality), and the special relations O (empty relation), L (universal relation)
and I (identity relation). Restricted to relations of the same type, the Boolean
operations , ∪ and ∩, the ordering ⊆ and the constants O and L lead to a
complete Boolean lattice. Some further well-known properties of set-theoretic

relations are RT = R
T
, (R∪S)T = RT ∪ST, (R∩S)T = RT ∩ST, (RT)T = R,
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(R;S)T = ST;RT, that from R ⊆ S it follows RT ⊆ ST and that also union,
intersection and composition are monotonic in both arguments.

The theoretical framework for these rules (and much others) to hold is that of
a (heterogeneous) relation algebra. This algebraic structure is a specific category
with typed relations R : X↔Y as morphisms, where the object X is the source
and the object Y is the target of R. Most of the complement-free relation-
algebraic rules already hold in a Dedekind category. This algebraic structure
generalises relation algebra by using left residuals S/R instead of complements.
Hence, the constants and operations of a Dedekind category are those of set-
theoretic relations, except complementation, and additionally left residual. As
usual, we overload the symbols O, L and I, i.e., avoid the binding of types to
them. The axioms of a Dedekind category are

(a) the axioms of a complete distributive lattice for all relations of the same type
under union, intersection, the ordering, empty and universal relation,

(b) the associativity of composition and that identity relations are neutral ele-
ments w.r.t. composition,

(c) the monotonicity of transposition and (RT)T = R and (R;S)
T
= ST;RT, for

all R : X↔Y and S : Y ↔Z,
(d) the modular law saying that Q;R ∩ S ⊆ Q; (R ∩ QT;S), for all Q : X↔Y ,

R : Y ↔Z and S : X↔Z,
(e) that Q;R ⊆ S if and only if Q ⊆ S/R, for all Q : X↔Y , R : Y ↔Z and

S : X↔Z.
From the modular law we obtain the dual modular law Q;R∩S ⊆ (Q∩S;RT);R,
for all Q : X↔Y , R : Y ↔Z and S : X↔Z. In the following we always will
assume that expressions and formulas are well-typed and in the proofs we will
mention only the modular laws and the “non-obvious” consequences of the ax-
ioms. Well-known rules like those presented above remain unmentioned. During
the entire paper residuals will not be applied.

The basic operations and constants mentioned above can be used for defin-
ing specific classes of relations in a purely algebraic way. In the following we
introduce the classes which will be used in the remainder of this paper.

A relation R is univalent if RT;R ⊆ I, and total if R; L = L, which is equivalent
to I ⊆ R;RT. A mapping is a univalent and total relation. Relation R is injective
if RT is univalent and surjective if RT is total.

A relation R is homogeneous if R∪RT is defined, i.e., source and target coin-
cide. Let R be homogeneous. Then R is reflexive if I ⊆ R, irreflexive if R∩ I = O,
symmetric if R = RT, antisymmetric if R ∩RT ⊆ I, and transitive if R;R ⊆ R.
A symmetric and transitive relation is a partial equivalence relation; reflexive
partial equivalence relations are equivalence relations. Finally, a reflexive, an-
tisymmetric and transitive relation R is a partial order relation; if additional
R ∪RT = L holds, then it is a linear order relation.

Assuming R as homogeneous set-theoretic relation, the least transitive rela-
tion containing R is its transitive closure R+ and the least reflexive and transitive
relation containing R is its reflexive-transitive closure R∗. In [11] K.C. Ng and
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A. Tarski added the Kleene star as an additional operation to (abstract) rela-
tion algebras to denote the reflexive-transitive closure R∗. We do the same for
Dedekind categories and specify the Kleene star as an additional operation for
such structures by the following two laws (known from Kleene algebra) to hold
for all relations Q, R, and S:

I ∪R;R∗ = R∗ R;Q ∪ S ⊆ Q⇒ R∗;S ⊆ Q

Equivalently, for all relations Q, R and S we could demand I ∪R∗;R = R∗ and
that Q;R ∪ S ⊆ Q implies S;R∗ ⊆ Q. The Kleene plus for the transitive closure
is then reduced to the Kleene star by R+ = R;R∗ (or, equivalently, R+ = R∗;R),
for all relations R. With these specifications well-known properties can be proved
by purely algebraic means. In this paper we will need

I ⊆ R∗ R∗;R∗ ⊆ R∗ R∗ = I ∪R+

(R∗)T = (RT)∗ R+;R+ ⊆ R+ R∗ = (R;R)∗ ∪R; (R;R)∗
R; (R;R)∗ = (R;R)∗;R

and that R+ = R if R is transitive, for all relations R, as well as that the
operations R �→ R+ and R �→ R∗ are extensive, monotonic and idempotent, i.e.,
closure operators in the order-theoretic sense. Our introduction of the Kleene
star via additional axioms means no restriction. Since in Dedekind categories the
set [X↔X] of relations of type X↔X forms a complete lattice, for R : X↔X
we could alternatively define R∗ =

⋂{S ∈ [X↔X] | I ⊆ S ∧S;S ⊆ S ∧R ⊆ S},
which equals R∗ = μ(fR), where μ(fR) is the least fixed point of the monotonic
function fR : [X↔X]→ [X↔X] with fR(S) = I ∪ S;S ∪R.

The algebraic approach offers different ways for describing sets. We use only
vectors , i.e., relations v with v = v; L. Usually vectors are denoted by lower-case
letters. For v : X↔Y being a set-theoretic relation the condition v = v; L means
that v can be written in the form v = Z × Y with a subset Z of X . Then we
say that v describes the subset Z of X . For this application the target of a set-
theoretic vector is irrelevant and, therefore, we always will use the singleton set
11. A vector is a point if it is injective and surjective. In the set-theoretic case
this means that the point v : X↔11 describes a singleton subset {x} of X and
then we say that it describes the element x of X . In the well-known Boolean
matrix model of relations a vector is a row-constant matrix and a point is a
matrix where exactly one row consists of ones only.

For vectors v and w and a relation R, also R; v, v ∪w and v ∩ w are vectors.
In case of set-theoretic relations and R : X↔Y the vector R; L describes the
subset {x ∈ X | ∃ y ∈ Y : xR y} of X , i.e., the domain of R. In the following
lemma basic properties of disjoint vectors are collected.

Lemma 2.1. Let v and w be vectors with v ∩ w = O. Then we have:

(1) vT;w = O and wT; v = O.
(2) v; vT ∪ w;wT is transitive.
(3) (v;wT ∪ w; vT); (v;wT ∪ w; vT) ⊆ v; vT ∪ w;wT.
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Proof. (1) Using the modular law, that v is a vector and v ∩ w = O. the first
equation is shown as follows and the second equation is shown analogously:

vT;w = vT;w ∩ L ⊆ vT; (w ∩ (vT)T; L) = vT; (w ∩ v) = O

(2) The following calculation shows that v; vT ∪ w;wT is transitive:

(v; vT ∪w;wT); (v; vT ∪w;wT)
= v; vT; v; vT ∪ v; vT;w;wT ∪ w;wT; v; vT ∪w;wT;w;wT

= v; vT; v; vT ∪ w;wT;w;wT by (1)
⊆ v; L; vT ∪ w; L;wT

= v; vT ∪ w;wT v, w vectors

(3) Similar to (2) we obtain the claim as follows:

(v;wT ∪ w; vT); (v;wT ∪w; vT)
= v;wT; v;wT ∪ v;wT;w; vT ∪ w; vT; v;wT ∪ w; vT;w; vT
= v;wT;w; vT ∪ w; vT; v;wT by (1)
⊆ v; L; vT ∪ w; L;wT

= v; vT ∪ w;wT v, w vectors �

3 Bipartite Relations do not Possess Odd Cycles

We assume the reader is familiar with the fundamental facts of graph theory;
otherwise we refer to the textbook [5], for example. In graph theory a graph G
is called bipartite if its vertex set X can be divided into two disjoint sets V and
W such that each edge of G only connects vertices from different sets. Then the
pair (V,W ) is called a bipartition of G.

In this paper we investigate bipartitions of arbitrary homogeneous relations
with algebraic means. If such a relation R : X↔X is the adjacency relation of
a directed graph G = (X,R) (that is, R is a set-theoretic relation and consists
of the directed edges of G) and the set-theoretic vectors v : X↔11 and w :
X↔11 describe the subsets V and W of X in the sense of Section 2, then
R ⊆ v;wT ∪ w; vT specifies that edges of G either start in V and end in W or
start in W and end in V . Hence, the pair (V,W ) is a bipartition of G if and only
if v ∩ w = O, v ∪ w = L and R ⊆ v;wT ∪ w; vT. Generalising this to abstract
relations, we define:

Definition 3.1. Given a relation R and vectors v and w we say that the pair
(v, w) is a bipartition of R if v ∩ w = O and R ⊆ v;wT ∪ w; vT. If there exists
a bipartition, then R is called bipartite.

Since in our algebraic proofs only the properties v∩w = O and R ⊆ v;wT∪w; vT
will play a role, we have dropped the demand v ∪w = L that, in graph-theoretic
terminology means that V ∪ W = X . Note, however, that if R, v and w are
elements of a relation algebra (or set-theoretic relations), i.e., complements may
be formed, then v ∩ w = O and R ⊆ v;wT ∪ w; vT imply

R ⊆ v;wT ∪ w; vT ⊆ v; vT ∪ v; vT
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such that (v, v) is a bipartition of R if (v, w) is a bipartition of R. We start with
a theorem that, assuming v ∩ w = O, provides an equivalent description of the
second demand R ⊆ v;wT ∪ w; vT of a bipartition.

Theorem 3.1. Let R be a relation and assume v and w to be vectors such that
v∩w = O. Then we have R ⊆ v;wT∪w; vT if and only if R; v ⊆ w and R;w ⊆ v
and R ⊆ (v ∪ w); (v ∪ w)T.
Proof. “⇒”: Using Lemma 2.1(1) and that w is a vector we obtain

R; v ⊆ (v;wT ∪ w; vT); v = v;wT; v ∪ w; vT; v = w; vT; v ⊆ w; L = w.

The inclusion R;w ⊆ v follows analogously. Finally, we have

R ⊆ v;wT ∪ w; vT ⊆ v; vT ∪ v;wT ∪ w; vT ∪w;wT = (v ∪w); (v ∪ w)T.
“⇐”: First of all, we have as auxiliary result

R ∩ v; vT = v; vT ∩R ⊆ (v ∩R; (vT)T); vT = (v ∩R; v); vT ⊆ (v ∩ w); vT = O,

where we use in the second step the dual modular law. By a similar computation
we obtain R ∩w;wT = O. We conclude

R = R ∩ (v ∪w); (v ∪ w)T
= R ∩ (v; vT ∪ v;wT ∪ w; vT ∪ w;wT)

= (R ∩ v; vT) ∪ (R ∩ w;wT) ∪ (R ∩ (v;wT ∪ w; vT))
= R ∩ (v;wT ∪ w; vT),

using R ⊆ (v ∪w); (v ∪ w)T in the first step and the auxiliary results in the last
step, and, hence, get the desired result R ⊆ v;wT ∪ w; vT. ��
Now, assume again R : X↔X to be the adjacency relation of a directed graph
G = (X,R) and the set-theoretic vectors v : X↔11 and w : X↔11 to describe
subsets V and W of its vertex set X . If we suppose besides v ∩ w = O also
v ∪ w = L, then we get w = v, such that W is the complement V of V relative
to X . From w = v we obtain that R ⊆ (v ∪ w); (v ∪w)T is true, R; v ⊆ w is
equivalent to R; v ⊆ v and R;w ⊆ v is equivalent to R; v ⊆ v The inclusion
R; v ⊆ v specifies V as independent set (or stable set) of G in the sense that no
pair of vertices from V is connected by a directed edge (cf. [16]) and R; v ⊆ v
does the same for V . Under this point of view, hence, Theorem 3.1 relation-
algebraically describes that the pair (V, V ) is a bipartition of G if and only if V
and V are independent sets of G.

By means of Lemma 2.1 and Theorem 3.1 we are in the position to prove the
first main result of the paper.

Theorem 3.2. Let R be a relation. If there exists a bipartition (v, w) of R, then
we have R; (R;R)∗ ∩ I = O.
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Proof. Using the modular law in the first step, we immediately obtain

v;wT ∩ I ⊆ v; (wT ∩ vT; I) = v; (v ∩ w)T = O,

and w; vT ∩ I = O follows similarly. Now, we calculate as given below:

R; (R;R)∗ ∩ I ⊆ R; ((v;wT ∪w; vT); (v;wT ∪w; vT))∗ ∩ I assumption
⊆ R; (v; vT ∪ w;wT)∗ ∩ I Lemma 2.1(3)
= R; (I ∪ (v; vT ∪ w;wT)+) ∩ I property closures
= R; (I ∪ v; vT ∪ w;wT) ∩ I Lemma 2.1(2)
= (R ∪R; v; vT ∪R;w;wT) ∩ I
⊆ (R ∪ w; vT ∪ v;wT) ∩ I Theorem 3.1 “⇒”
= (w; vT ∪ v;wT) ∩ I assumption
= (w; vT ∩ I) ∪ (v;wT ∩ I)
= O aux. results �

So, for bipartite relations we have R; (R;R)∗ ∩ I = O. If again R : X↔X is a
set-theoretic relation and the adjacency relation of a directed graph G = (X,R),
then for all vertices x, y ∈ X we have x (R; (R;R)∗) y if and only if there is a
(directed) path from x to y with odd length. As a consequence, the property
R; (R;R)∗ ∩ I = O holds if and only if in G there is no (directed) cycle with odd
length. Summing up, Theorem 3.2 is the first direction of the generalisation of
D. König’s theorem from undirected graphs to Dedekind categories: All bipartite
relations do not posses odd cycles.

4 Relations without Odd Cycles are Bipartite

In this section we show the remaining direction of the generalisation of D. König’s
theorem from undirected graphs to Dedekind categories, viz. that all relations
without odd cycles are bipartite.

In graph theory the notion “bipartite” usually is studied for undirected graphs
only – despite of the fact that directed bipartite graphs have a lot of applications,
for instance, in game theory, as signature diagrams of algebraic specifications or
as static parts of Petri nets. An undirected graph is of the form G = (X,E),
where each undirected edge e from the edge set E is a subset of X such that
|e| = 2. Undirected graphs and irreflexive and symmetric relation are essentially
the same, since xR y if and only if {x, y} ∈ E, for all x, y ∈ E, defines an
irreflexive and symmetric relation R : X↔X and this correspondence between
undirected graphs over a vertex set and irreflexive and symmetric relations on
the same set is even one-to-one. But for all relations R, from R; (R;R)∗∩I = O we
get irreflexivity R∩I = O, such that we may neglect irreflexivity as pre-condition
for the theorem we want to prove.

The next theorem shows that for a relationR and its symmetric closure R∪RT

the sets of their bipartitions coincide. As a consequence it suffices to prove that
all symmetric relations R with R; (R;R)∗ ∩ I = O are bipartite to get that all
relations without odd cycles are bipartite.
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Theorem 4.1. Let R be a relation and v, w be vectors. Then R ⊆ v;wT ∪w; vT
is equivalent to R ∪RT ⊆ v;wT ∪ w; vT.
Proof. “⇒”: If R ⊆ v;wT ∪ w; vT, then R ∪RT ⊆ v;wT ∪w; vT follows from

RT ⊆ (v;wT ∪ w; vT)T = (v;wT)T ∪ (w; vT)T = w; vT ∪ v;wT.

“⇐”: A proof of this direction is trivial. �

The Theorem 4.2 given below is the key of our proof that all symmetric relations
without odd cycles are bipartite. We prepare its proof by the following fact.

Lemma 4.1. Let R be a relation such that R∗ is symmetric. Then for all rela-
tions U , from R; (R;R)∗;U ∩ U = O it follows (R;R)∗;U ∩R; (R;R)∗;U = O.

Proof. Let E abbreviate the reflexive-transitive closure (R;R)∗. Then we have

E;U ⊆ (E ∪R;E);U = R∗;U = (R∗)T;U

using the property R∗ = (R;R)∗ ∪R; (R;R)∗ of reflexive transitive closures and
that the relation R∗ is symmetric, and

(R;E)T;U ∩E;U ⊆ (R;E)T; (U ∩R;E;E;U) modular law

= (R;E)T; (R;E;U ∩ U) property refl.-trans. closure
= O assumption.

With these auxiliary results we get

E;U = E;U ∩ (R∗)T;U first auxiliary result

= E;U ∩ (E ∪R;E)T;U property refl.-trans. closure

= (E;U ∩ ET;U) ∪ (E;U ∩ (R;E)T;U)
= E;U ∩ ET;U second auxiliary result

such that E;U ⊆ ET;U . Now, we are able to conclude the proof as follows:

E;U ∩R;E;U ⊆ ET;U ∩R;E;U as E;U ⊆ ET;U
⊆ ET; (U ∩ E;R;E;U) modular law
= ET; (U ∩R;E;E;U) property refl.-trans. closure
= ET; (U ∩R;E;U) property refl.-trans. closure
= O assumption �

Because of I ⊆ (R;R)∗, for all relations R with symmetric R∗ and all relations U
the properties R; (R;R)∗;U∩U = O and (R;R)∗;U ∩R; (R;R)∗;U = O even are
equivalent. For the proof of the following Theorem 4.2, however, we only need
the direction stated in the lemma.

Theorem 4.2. Let R be a relation and R∗ be symmetric. If u is a vector such
that R; (R;R)∗;u ∩ u = O and R ⊆ R∗;u;uT;R∗ and we define v := (R;R)∗;u
and w := R; v = R; (R;R)∗;u, then v as well as w are vectors, v ∩ w = O and
R ⊆ v;wT ∪ w; vT. I.e., the pair (v, w) is a bipartition of R.
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Proof. That v and w are vectors is obvious. From Lemma 4.1, R∗ = (R∗)T and
R; (R;R)∗;u ∩ u = O we get (R;R)∗;u ∩R; (R;R)∗;u = O such that

v ∩ w = (R;R)∗;u ∩R; (R;R)∗;u = O

by the definition of v and w. To prove R ⊆ v;wT ∪ w; vT we use direction “⇐”
of Theorem 3.1 and have to verify three conditions. For the first verification

R; v = R; (R;R)∗;u = w

we use the definition of v and w. Also the second verification

R;w = R;R; (R;R)∗;u = (R;R)+;u ⊆ (R;R)∗;u = v

follows from the definition of v and w. For the third verification we start with

v ∪ w = (R;R)∗;u ∪R; (R;R)∗;u = ((R;R)∗ ∪R; (R;R)∗);u = R∗;u,

using the definition of v and w once more, which, in combination with the as-
sumptions R ⊆ R∗;u;uT;R∗ and R∗ = (R∗)T, implies

R ⊆ R∗;u;uT;R∗ = (R∗;u); (R∗;u)T = (v ∪ w); (v ∪ w)T. �

In graph-theoretic terminology this theorem reads as follows: Let a (directed or
undirected) graph G be given such that for each pair x, y ∈ X of vertices x is
reachable from y if and only if y is reachable from x. Furthermore, let U be a
subset of the vertex set X of G such that (1) no pair of vertices of U is connected
via a path of odd length and (2) for each edge of G its vertices are reachable
from vertices of U . If we define V as the set of vertices which can be reached
from a vertex of U via a path of even length and W as the set of vertices which
can be reached from a vertex of U via a path of odd length, then V and W are
disjoint and for each edge of G one vertex is in V and the other one is in W .

It is remarkable that also the converse of Theorem 4.2 is valid such that, in
general, we have the following characterisation of bipartite relations.

Theorem 4.3. Let R be a relation and R∗ be symmetric. Then there exists a
vector u such that R; (R;R)∗;u ∩ u = O and R ⊆ R∗;u;uT;R∗ if and only if
there exists a bipartition (v, w) of R.

Namely, if the pair (v, w) is a bipartition of R, then R; (R;R)∗; v ∩ v = O
and R ⊆ R∗; v; vT;R∗, such that v can be taken as u. Since, however, in the
remainder of the paper only the direction expressed by Theorem 4.2 is applied,
we have shifted the proof of these facts into the appendix. Instead, we present
now an immediate consequence of Theorem 4.2. It shows how to get for strongly
connected relations (that is, relations R with R∗ = L) without odd cycles a
bipartition.

Corollary 4.1. Let R be a relation such that R∗ = L and R; (R;R)∗ ∩ I = O
and let p be a homogeneous point. If we define v := (R;R)∗; p and w := R; v =
R; (R;R)∗; p, then v and w are vectors such that v∩w = O and R ⊆ v;wT∪w; vT.
I.e., the pair (v, w) is a bipartition of R. Furthermore, v ∪ w = L.
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Proof. To prove that the pair (v, w) is a bipartition of R, we verify the pre-
conditions of Theorem 4.2 for u being the point p. From R∗ = L we get that R∗

is symmetric. As a point, p is also a vector, Next, we verify

R; (R;R)∗; p ∩ p = R; (R;R)∗; p ∩ I; p = (R; (R;R)∗ ∩ I); p = O

using that p is injective and R; (R;R)∗ ∩ I = O. The last pre-condition

R ⊆ L = LL = L; p; pT; L = R∗; p; pT;R∗

holds because p is surjective. The additionally stated property is shown by the
calculation

v ∪w = (R;R)∗; p ∪R; (R;R)∗; p = ((R;R)∗ ∪R; (R;R)∗); p = R∗; p = L; p = L

that uses the definition of v and w and the surjectivity of the point p. �
Note that in case of three non-homogeneous universal relations it may happen
that L; L ⊂ L as demonstrated in [20]. However, if at least one of the universal
relations on the left-hand side is homogeneous, then L; L = L follows from the
fact that I ⊆ L.

In order to show that all symmetric relations without odd cycles in an arbi-
trary Dedekind category are bipartite we are going to generalise the previous
corollary. We use Theorem 4.2 again and prove the existence of a vector u with
the required properties by algebraic means. Before we start we want to pro-
vide the idea behind this generalisation using regular graph/set theory. For an
undirected graph G without odd cycles, let R : X↔X be the corresponding
symmetric relation such that R; (R;R)∗∩ I = O. Then R∗ is an equivalence rela-
tion so that we may consider the set of equivalence classes of R∗, i.e., the set of
connected components of G. We select from each connected component a single
vertex and combine all these vertices to a subset U of X . If u := U × 11 is the
vector that describes U as subset of X , then each vertex of G is reachable from
a vertex of some connected component, such that R ⊆ R∗;u;uT;R∗ follows. The
remaining assumption R; (R;R)∗;u ∩ u = O is a consequence of the absence of
odd cycles. In order to verify this, assume there are x, y ∈ U which are connected
via a path of odd length. Then this implies x = y since x and y have to be in
the same connected component and U contains from each connected component
precisely one vertex. This is a contradiction to the absence of odd cycles.

The proof outlined above is based on set-theoretic arguments, i.e., refers to a
relation as a set of pairs. In the following we want to show these results in context
of abstract Dedekind categories. In doing so, a specific non-homogeneous relation
will play a decisive role. This is the reason for using heterogeneous relations, i.e,
a categorical approach to relations, instead of classical relation algebras in the
sense of [18,19] that model homogeneous relations only.

Since we do not assume sets to be finite or countable, the selection of the
single vertices from the connected components corresponds to an application
of the Axiom of Choice. We use the following relation-algebraic variant of this
axiom of set theory. E.g., it can be found as property AC4 in [15], with D(R)
as notation for the domain of a relation R instead of our vector description R; L.
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Axiom 4.1. (Relational Axiom of Choice) For all relations R there exists a
univalent relation F such that F ⊆ R and F ; L = R; L.

For all symmetric set-theoretic relations R : X↔X there exists the projection
(or canonical epimorphism) π : X → X/R∗ that maps an element of X to its
equivalence classes w.r.t. the equivalence relation R∗ in the set of all equivalence
classes X/R∗ of R∗. If we regard π as a relation of type X↔X/R∗, that relates
x ∈ X and Y ∈ 2X if and only if Y is the equivalence class [x]R∗ , then it fulfills
the following properties: π;πT = R∗ and πT;π = I. I.e., the relation π is a
splitting of the equivalence relation R∗ in the following sense.

Definition 4.1. A relation S is called a splitting of a partial equivalence rela-
tion P if S;ST = P and ST;S = I.

This definition stems from [2]. Also in [7,20] the notion of a splitting for partial
equivalence relations is introduced, thereby, compared with the above definition,
changing source and target. The reason of our typing is that we want to keep pro-
jections as models of splittings. So, each set-theoretic partial equivalence relation
possesses a splitting. When relations are considered as morphisms of Dedekind
categories, then the above equations specify splittings up to isomorphism. How-
ever, it may happen that a partial equivalence relation P of a Dedekind category
does not has a splitting. Nevertheless, then a splitting of P exists in a Dedekind
category that extends the given one, as shown in [7,20]. Hence, we have:

Lemma 4.2. Assume Axiom 4.1 to be true. Then for all relations R such that
R∗ is symmetric there exists a splitting S of R∗ and a mapping F with F ⊆ ST.

Proof. Since R∗ is symmetric, it is a partial equivalence relation. From [7,20] it
follows that R∗ possesses a splitting S, possibly in an extension of the Dedekind
category under consideration. Axiom 4.1 implies that there exists a univalent
relation F such that F ⊆ ST and F ; L = ST; L. Next, I ⊆ ST;S shows that S is
surjective. From this we get totality of ST, which in turn yields F ; L = ST; L = L.
Thus, F is also total. ��
After these preparations we are able to prove the existence of the vector u
with purely algebraic means. In case of an undirected graph G without odd
cycles and R : X↔X as its corresponding relation and the projection relation
π : X↔X/R∗ as splitting S, the mapping F of Theorem 4.4 is a choice function
for the set of sets X/R∗ in the usual mathematical sense.

Theorem 4.4. Assume Axiom 4.1 to be true. Furthermore, let R be a relation
with symmetric R∗ and R; (R;R)∗ ∩ I = O, S be a splitting of R∗ and F be a
mapping such that F ⊆ ST. With L homogeneous, FT; L is a vector and we have

R; (R;R)∗;FT; L ∩ FT; L = O and R ⊆ R∗;FT; L; (FT; L)
T
;R∗.

Proof. Since L; L = L if one of the universal relations on the left-hand side of the
equation is homogeneous, FT; L is a vector. To prove its first property we start
with an auxiliary result using that S is a splitting, F ⊆ ST and F is total:

F ;R; (R;R)∗;FT ⊆ F ;R∗;FT = F ;S;ST;FT ⊆ ST;S;ST;S = I; I ⊆ F ;FT
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Now, the claim can be shown as follows:

R; (R;R)∗;FT; L ∩ FT; L ⊆ FT; (L ∩ F ;R; (R;R)∗;FT; L) modular law
= FT;F ;R; (R;R)∗;FT; L
= FT; (F ;R; (R;R)∗;FT ∩ F ;FT); L aux. result
= FT;F ; (R; (R;R)∗ ∩ I);FT; L F univalent
= O assumption

The following verification of the remaining property concludes the proof:

R ⊆ S; I;ST R ⊆ R∗, S splitting of R∗

⊆ S;F ;FT;F ;FT;ST F total
⊆ S;ST;FT;F ;S;ST as F ⊆ ST

= R∗;FT;F ;R∗ S splitting
⊆ R∗;FT; L;F ;R∗

= R∗;FT; L; (FT; L)
T
;R∗ L homogeneous �

Due to Theorem 4.4, the definition v := (R;R)∗;FT; L and w := R; v leads
to a bipartition (v, w) of the relation R. If R is symmetric, then R∗ is also
symmetric. Under the assumption of the relational Axiom of Choice, by Theorem
4.1 to 4.4 we, therefore, have completed the proof of the second direction of
the generalisation of D. König’s theorem from undirected graphs to Dedekind
categories: All relations without odd cycles are bipartite. As already mentioned
in Section 3, if complements may be formed, then from the bipartion (v, w) we
get the specific bipartition (v, v) depending on one vector only.

5 An Example from Fuzzy Relations

In the following, we present an example using L-relations. This example demon-
strates Theorem 4.2 and 4.3 and provides a situation in which Lemma 4.2 and
Theorem 4.4 cannot be applied. The set of L-relations for a complete distribu-
tive lattice (L,∨,∧, 0, 1) with component-wise defined meet and join also forms
a complete distributive lattice. Together with regular converse and sup-meet
composition, i.e., (Q;R)(x, z) =

∨
y∈LQ(x, y) ∧ R(y, z), we obtain a Dedekind

category as already mentioned in the introduction.
We consider the persons Alan, Betty, Chris, Dave, Eve, Frank, Gwen, i.e., the

set P = {A,B,C,D,E, F,G}, and certain relationship among them. As far as
this example is concerned, a relationship between two persons has two aspects.
First, a person might like another persons house or apartment and, second, a
person might like the car of the another person. Both aspects are rated by either
“no” (n), “somewhat” (s), or “yes” (y). The two criteria and the three level scale
for each lead to the lattice L9 the order of which is depicted below:

yy

ys
,,

sy
--

yn
,,

ss
,,--

ny
--

sn
..//

ns
..//

nn
0011
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Now, the relationship among the persons from P is given as a L9 fuzzy relation R
on P , i.e., as a function from P ×P to L9. In the next two pictures we visualise
this relation by the 7 × 7 matrix on the left, where we assume that a person
corresponds to a row/column in order they are listed in P , e.g., the entry ys
in the first row and sixth column indicates that Alan definitely likes Frank’s
apartment but likes his car only somewhat.

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

nn ns yn ns nn ys nn
ns nn ny nn yy nn ss
yn ns nn ny nn ns nn
ns nn ns nn ss nn yy
nn ss nn yy nn ns nn
ys nn ns nn ns nn ny
nn yy nn ss nn ny nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
R; (R;R)∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

nn ns ys ns nn ys nn
ns nn ny nn yy nn yy
yn ny nn ny nn ny nn
ns nn ny nn yy nn yy
nn yy nn yy nn ny nn
ys nn ny nn ny nn ny
nn yy nn yy nn ny nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note, that R is not symmetric because Gwen likes both Dave’s house and car
only somewhat but Dave definitely likes both Gwen’s apartment and car. On
the other hand, the relation R∗ is symmetric but different from the universal
relation, i.e., the graph is not strongly connected. The relation also does not
admit odd cycles which can be seen from the fact that the diagonal of the
matrix R; (R;R)∗ above only contains the smallest element nn of the lattice L9.
Finally, we consider the three 7× 1 vectors u, v and w that are presented below:

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

yn
yn
ny
nn
nn
nn
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ys
yn
ny
yn
ny
nn
ny

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

nn
ny
yn
ny
yn
yy
yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The vector u satisfies the assumptions of Theorem 4.2 and produces the bipar-
tition given by (v, w). Note, that v is not the complement of w. However, if we
change the first entry in u from yn to yy, then w remains unchanged and v be-
comes the complement of w. In either case, if we project to the first resp. second
aspect of the relationships, then we obtain bipartitions for each of them. For
instance, if we only consider the entries in (v, w) that have a non-zero first com-
ponent (not equal to n), then we obtain the two sets {A,B,D} and {C,E, F,G},
a bipartition with respect to liking each others home.

Since L9 is not a Boolean lattice, the set of partial identities on a set, i.e., L9

fuzzy relations smaller or equal than the identity, do not form a Boolean lattice
either. It is shown in [22] that this implies that Axiom 4.1 is not valid, i.e., we
cannot apply Lemma 4.2 and Theorem 4.4.

6 Relational Programs for Computing Bipartitions

Given a set-theoretic relation R : X↔X on a finite set X with symmetric R∗

and R; (R;R)∗∩I = O, in this section we This brings it down to 18 pages. present
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relational programs that allow to compute from R a vector v such that the pair
(v, v) is a bipartition of R.

As v := (R;R)∗;FT; L solves the task if F is a mapping contained in the
transpose of a splitting S of R∗, we start with the following relational program
splitting for computing a splitting of a partial equivalence relation P :

splitting(P )
{P = PT ∧ P ;P ⊆ P }
v := point(P ; L);
while P ; v 
= P ; L do
v := v ∪ point(P ; v ∩ P ; L) od

{ v = v; L ∧ P ∩ v; vT ⊆ I ∧ v; L ⊆ P ; L ∧ P ; v = P ; L }
return P ; inj(v)T

Here point selects a point from a non-empty vector. The call inj(v) of the return-
clause of splitting computes the embedding mapping generated by v : X↔11. If v
describes the subset Y of X , then inj(v) : Y ↔X is nothing else than the identity
function id : Y → X , regarded as injective mapping in the sense of Section 2.
In [2] the following relation-algebraic axiomatisation of embedding mappings is
given, that specifies inj(v) for all vectors v 
= O up to isomorphism:

inj(v) is a mapping inj(v) is injective inj(v)
T
; L = v

Furthermore, it is shown that for each vector v 
= O and each splitting S of the
partial equivalence relation I ∩ v; vT the transpose ST fulfills these axioms. As a
consequence of the results of [7,20] we, therefore, get that embedding mappings
exist, even in case of abstract relations. In the programming language of Rel-
View point and inj are available as pre-defined operations.

That the body of the relational program splitting is correct w.r.t. the an-
notated pre- and post-condition is shown in [2] by combining relation-algebraic
calculations and the well-known invariant-based verification technique for while-
programs. In [2] it is also verified that the post-condition of the body indeed

implies that the relation P ; inj(v)
T
is a splitting of P .

Next, we modify the relational program splitting in such a way that it only
yields the embedding mapping as result:

mapping(P )
{P = PT ∧ P ;P ⊆ P }
v := point(P ; L);
while P ; v 
= P ; L do
v := v ∪ point(P ; v ∩ P ; L) od

{ v = v; L ∧ P ∩ v; vT ⊆ I ∧ v; L ⊆ P ; L ∧ P ; v = P ; L }
return inj(v)

Because of the axiomatisation of embedding mappings the result of the relational
program mapping is a mapping. For an equivalence relation P this mapping is
even contained in the transpose of the splitting P ; inj(v)

T
computed by the

program splitting, as reflexivity and symmetry of P imply
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inj(v) = inj(v); I ⊆ inj(v);PT = (P ; inj(v)T)
T
.

So, mapping(R∗) is a candidate for F and this leads to the following relational
program bipartition for computing the vector v of a bipartition (v, v) of R:

bipartition(R)
{R = RT ∧R; (R;R)∗ ∩ I = O }
v := (R;R)∗;mapping(R∗)T; L
{R ⊆ v; vT ∪ v; vT }
return v

Note, that now the program splitting is superfluous. We started our development
with splitting for pedagogical reasons only.

7 Application of Theorem Provers and Proof Assistants

In particular, in the context of software and program verification the application
of tools for theorem proving becomes more and more important. In this section,
we show how automated theorem prover as well as proof assistants can be used
for the verification of the already presented proofs of the Sections 2 to 4.

The formality of algebraic proofs and their primary use of rewriting is a van-
tage point for the use of tools for theorem proving as, for example, demonstrated
in [6,9]. Based on this, in [3,4] the theorem prover Prover9 is used for the au-
tomated verification of the proof obligations occurring in the assertion-based
verification of relational programs. Prover9 is an automated theorem prover for
first-order equational logic. and, coupled with Mace4, a tool for searching models
and counterexamples. Its handling is very straightforward because of its quite
natural syntax. For more details we refer to [24].

However, Prover9 does not provide the opportunity of typing. So, we restricted
us to homogeneous relations with one type only. For the encoding of the axioma-
tisation of Dedekind categories presented in Section 2 we had to consider that
completeness is not a first-order property. To overcome this difficulty we, there-
fore, additionally weakened Axiom (a) of a Dedekind category by demanding
only that relations form a distributive lattice with greatest element L and least
element O, i.e., a bounded distributive lattice. This requires O;R = O, for all
R, as additional axiom, since in Dedekind categories O;R = O follows from
completeness and distributivity. By these adaptations we precisely obtained the
axioms of a division allegory with a singleton set of objects; see [7]. With this
new axiomatisation and a few additionally added auxiliary facts Prover9 found
proofs of the three statements of Lemma 2.1 in 142.62, 5.06, and 0.32 seconds,
respectively. However, the tool was not able to verify Theorem 3.1 without any
user interaction. Even if we transformed the equivalence in two implications a
proof of only one of them was found by the tool. We encoded all presented lem-
mata and theorems and obtained similar negative results. These restrictions of
automated theorem proving and the necessity of interactions became so serious
that the change to a proof assistant was virtual essential.
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The idea behind proof assistants is to check proofs mechanically, by the usage
of so-called tactics. Two popular tools in this area are Isabelle/HOL and Coq.
We have decided on Coq because of an already existing library (see [14]) which
provides a large number of algebraic structures and, in particular, Dedekind
categories. Furthermore, the library includes tactics to automate specific proofs
about relation algebra and Kleene algebra (see [13]).

In general, the library is divided into several modules. For the derivation
of our proofs we imported the modules monoid, kleene, normalisation, and
kat tac. By the import of the former two modules we provided the operations
and axioms which are necessary for defining the desired algebraic structure,
in our case a Dedeking category. The exact hierarchy and dependencies of the
possible structures are managed in the module level. The latter two modules
include the specific tactics ra for relation algebra and ka for Kleene algebra,
respectively. For example, the tactic ka can be used to prove automatically
properties like R; (R;R)∗ ∪ (R;R)∗ = R∗ since it proves all universally true
equations about Kleene algebra. Besides proving many auxiliary results, in this
way we reproduced all presented proofs with Coq.

The Prover9 input files for the mentioned lemma and theorem as well as the
proof scripts for all Coq proofs can be found in the web (see [26]).

8 Concluding Remarks

Abstracting set-theoretic relations to morphisms of a Dedekind category, we have
shown that D. König’s well-known characterisation of bipartite graphs via the
absence of odd cycles also holds in this general algebraic setting. For one direc-
tion we had to assume the relational Axiom of Choice to hold; for set-theoretic
relations this direction immediately led to relational programs for computing
bipartitions. Without using the relational Axiom of Choice we have proved this
direction for strongly-connected relations and without it we also have proved the
characterisation of bipartite relations of Theorem 4.3. We also have reported on
our experience with automated theorem provers and proof assistants.

In [22] it is shown that in the context of Dedekind categories the relational
Axiom of Choice implies the existence of complements such that all morphism
sets are Boolean lattices. Strictly speaking, thus, we have shown one direction
of the generalisation of D. König’s theorem for heterogeneous relation algebras
only – but without using complements. The example of Section 5 demonstrates
that bipartitions also may exist in the non-Boolean case. For the future we plan
to weaken Axiom 4.1 in such a way that Lemma 4.2 and Theorem 4.4 remain
valid, but from the weakening the existence of complements does not follow.

Acknowledgement. We thank the unknown referees for carefully reading the
paper and their valuable remarks. We also thank D. Pous for his support con-
cerning the use of Coq.
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4. Berghammer, R., Höfner, P., Stucke, I.: Automated verification of relational while-
programs. In: Wid�lak, W. (ed.) Molecular Biology - Not Only for Bioinformatics.
LNCS, vol. 8248, pp. 309–326. Springer, Heidelberg (2013)

5. Diestel, R.: Graph theory, 3rd edn. Springer (2005)
6. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic

methods in Isabelle/HOL. In: de Swart, H. (ed.) Relational and Algebraic Methods
in Computer Science. LNCS, vol. 6663, pp. 52–67. Springer, Heidelberg (2011)

7. Freyd, P., Scedrov, A.: Categories, allegories. North-Holland (1990)
8. Furusawa, H., Kawahara, Y., Winter, M.: Dedekind categories with cutoff opera-

tors. Fuzzy Sets and Systems 173, 1–24 (2011)
9. Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando, A.,

Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
50–66. Springer, Heidelberg (2008)
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Appendix

Let R be a relation, R∗ be symmetric and assume that the pair (v, w) is a
bipartition of R. As mentioned in the paper after Theorem 4.3, we are able to
prove R; (R;R)∗; v∩v = O as well as R ⊆ R∗; v; vT;R∗, such that v can be taken
as vector u. A proof of the first property R; (R;R)∗; v ∩ v = O looks as follows:

R; (R;R)∗; v ∩ v ⊆ (v;wT ∪ w; vT); v ∩ v see proof Theorem 3.2
= (v;wT; v ∪ w; vT; v) ∩ v
= w; vT; v ∩ v Lemma 2.1(1)
⊆ w; L ∩ v
= w ∩ v w vector
= O (v, w) bipartition

In the following proof of the second property R ⊆ R∗; v; vT;R∗ we use Rs as
abbreviation of the symmetric closure R ∪RT of R. First of all, we compute

R = R; I ∩R ⊆ R; (I ∩RT;R) ⊆ R;RT;R

as auxiliary result, using the modular law. From R ⊆ v;wT∪w; vT and the proof
of Theorem 4.1 we get RT ⊆ v;wT ∪ w; vT, such that Theorem 3.1 “⇒” yields

RT ⊆ (v ∪ w); (v ∪ w)T

as second auxiliary result. Finally, similar to R;w ⊆ v in Theorem 3.1 “⇒” we
can calculate

RT;w ⊆ (v;wT ∪ w; vT)T;w = w; vT;w ∪ v;wT;w = v;wT;w ⊆ v; L = v,

so that we conclude
Rs;w ⊆ v

as third auxiliary result. Now, we obtain the desided result as follows:

R ⊆ R;RT;R first auxiliary result
⊆ Rs;RT;Rs

= Rs; (v ∪ w); (v ∪ w)T;Rs second auxiliary result

= (Rs; v ∪Rs;w); (Rs; v ∪Rs;w)
T

Rs symmetric

⊆ (Rs; v ∪ v); (Rs; v ∪ v)T third auxiliary result
= (I ∪Rs); v; vT; (I ∪Rs) Rs symmetric
⊆ R∗; v; vT;R∗ Rs ⊆ R∗ as R∗ is symmetric

http://coq.infia.fr
http://www.prover9.org
http://www.informatik.uni-kiel.de/~progsys/relview/
http://media.informatik.uni-kiel.de/Ramics2015/
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Abstract. We present different approaches of using a special purpose
computer algebra system and theorem provers in software verification. To
this end, we first develop a purely algebraic while-program for computing
a vertex coloring of an undirected (loop-free) graph. For showing its
correctness, we then combine the well-known assertion-based verification
method with relation-algebraic calculations. Based on this, we show how
automatically to test loop-invariants by means of the RelView tool and
also compare the usage of three different theorem provers in respect to
the verification of the proof obligations: the automated theorem prover
Prover9 and the two proof assistants Coq and Isabelle/HOL. As a result,
we illustrate that algebraic abstraction yields verification tasks that can
easily be verified with off-the-shelf theorem provers, but also reveal some
shortcomings and difficulties with theorem provers that are nowadays
available.

1 Introduction

Provably correct programs can be obtained in different ways. Formal program
verification is one of them. It means to prove with mathematical rigor that a
given program meets a given formal specification of the problem. In case of
imperative programs the use of pre- and post-conditions as specifications and
intermediate assertions for the verification is a widely accepted and frequently
used technique. Besides proof rules for the control structures of the program-
ming language used it requires formal specifications for the data types on which
the programs are applied. Experience has shown that algebraic/axiomatic spec-
ifications or modeling by algebraic structures are most suitable for that. In the
present paper we consider a graph-theoretic problem and use relation algebra for
modeling undirected graphs, single vertices, sets of vertices as well as functions
which assign values to vertices.

In the present paper we consider a graph-theoretic problem and use relation
algebra for modeling undirected graphs. The axiomatization of relation-algebraic
calculus started with [26]. The calculus is widely used and many examples in the
context of program verification can be found in the literature, e.g., [2,3,4,6,7].
For the use of relation algebra in graph theory we refer again to [24,25].

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 275–292, 2015.
DOI: 10.1007/978-3-319-24704-5_17



276 R. Berghammer, P. Höfner, and I. Stucke

Relation-algebraic proofs are precise and hence allow formal first-order rea-
soning, often even equational reasoning. This is a vantage point for the use of
theorem provers as, for instance, demonstrated in [15,17,18]. Based on these pos-
itive experiences, in [8,9] the automated theorem prover Prover9 [20] is used for
the automated verification of proof obligations appearing in the assertion-based
verification of relational programs. This paper is a continuation of as well as a
step further in this work. We consider a well-known graph theoretical problem,
viz. vertex coloring. However, we do not restrict ourselves to the verification of
the proof obligations via an automated theorem prover. We aim to gain more
experience with tool support in formal verification of relational programs. There-
fore, we also investigate the use of two different proof assistants tools, viz. Coq
[11] and Isabelle/HOL [21], and of a specific purpose computer algebra system
for relation algebra, viz. RelView [5,30]. The paper illustrates that algebraic
abstraction yields verification tasks that can be verified with off-the-shelf theo-
rem provers, but also reveals some shortcomings and difficulties with tools that
are nowadays available.

One aim of the paper is to provide a guideline on how to get started with
different tools with different approaches and possibilities when computations and
mechanical proofs in relation algebra are desired or required. For that reason we
restrict ourselves to a single and not too difficult problem. By this the general
approach is easily visible and is not hidden by complex technical details. All
input files and proof scripts can be found in the web [32].

2 Relation-Algebraic Preliminaries

To model undirected graphs, single vertices, sets of vertices and colorings, we will
use binary relations and manipulate and calculate with such objects in a purely
algebraic manner. Therefore, we recall the fundamentals of relation algebra based
on the homogeneous approach of [26], its developments in [13,19,27] and the
generalization to heterogeneous relation algebra in [24,25].

Set-theoretic relations form the standard model of relation algebras. We as-
sume the reader to be familiar with the basic operations on them, viz. RT (trans-
position), R (complementation), R∪S (union), R∩S (intersection), RS (com-
position), the predicates R ⊆ S (inclusion) and R = S (equality), and the special
relations O (empty relation), L (universal relation), and I (identity relation). The
three Boolean operations , ∪ and ∩, the order ⊆ and the two constants O and
L form Boolean lattices. Well-known properties of set-theoretic relations are RT

= R T, (R∪S)T = RT∪ST, (R∩S)T = RT∩ST, (RT)T = R, (RS)
T
= STRT, and

the monotonicity of the transposition operation. Furthermore, union, intersec-
tion and composition are monotonic in both arguments.

The theoretical framework for these rules (and many others) to hold is that
of a (heterogeneous) relation algebra with typed relations as elements. Typing
means that each relation has a source and a target and we write R : X↔Y
to express that X is the source and Y is the target of R. We call X↔Y the
type of R. As constants and operations of a relation algebra we have those of
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set-theoretic relations, where we (as usual) overload the symbols O, L and I, i.e.,
avoid the binding of types to them. The axioms of a relation algebra are

(1) the axioms of a Boolean lattice for all relations of the same type under the
Boolean operations, the order, empty relation and universal relation,

(2) the associativity of composition and that identity relations are neutral ele-
ments w.r.t. composition,

(3) that QR ⊆ S, QTS ⊆ R and S RT⊆ Q are equivalent, for all relations Q,
R, S (with appropriate types),

(4) that R 
= O is equivalent to LRL = L, for all relations R and all universal
relations (with appropriate types).

We do not require the Boolean lattice to be complete, as in [26]. In [24] the
equivalences of (3) are called the Schröder equivalences and direction ‘⇒’ of (4)
is called the Tarski rule. Our variant of the Tarski rule is motivated by the fact
that it avoids the degenerated case of a Boolean lattice with one element only.
In the relation-algebraic proofs of this paper we will mention only applications
of the Schröder equivalences, the Tarski rule and ‘non-obvious’ consequences of
the axioms. Furthermore, we will assume that complementation and transpo-
sition bind stronger than composition, composition binds stronger than union
and intersection, and that all expressions and formulas are well-typed. Since
types are helpful for the understanding, they frequently are presented in the
text surrounding the corresponding formulae.

In this paper we make use of the following classes of relations. A relation R is
univalent if RTR ⊆ I and total if RL = L. As usual, a univalent and total relation
is a function. A relation R is injective if RT is univalent and surjective if RT is
total. Finally, a relationR is irreflexive if R ⊆ I and symmetric ifR = RT. In case
of set-theoretic relations the equivalence of these relation-algebraic specifications
and the common logical specifications can easily be derived.

Relation algebra provides different ways to model subsets and single elements
of sets. In the present paper we use vectors, a special class of relations introduced
in [24], and usually denoted by lower-case letters. A relation v is a vector if
v = vL. For a set-theoretic relation v : X↔Y the condition v = vL means that
v is (as set of pairs) of the specific form V × Y , with a subset V of X , i.e., for
all x ∈ X and y ∈ Y we have (x, y) ∈ v if and only if x ∈ V . We may consider
v as relational model of the subset V of its source X . For modeling an element
x ∈ X we identify the singleton set {x} with the only element x it contains.
This leads to a specific class of vectors. A point p is an injective and surjective
vector. In the set-theoretic case and if the point p : X↔Y is of the specific form
p = P × Y with P ⊆ X , then injectivity of p means that P contains at most
one element and surjectivity of p means that P contains at least one element.
Next, we prove properties of points which are consequences of our variant of the
Tarski rule.

Lemma 2.1. If p is a point, then we have p 
= O, and if p and q are points,
then we have pqT 
= O.
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Proof. Using the Tarski rule and that the point p is a surjective vector, we get

p 
= O ⇐⇒ LpL = L ⇐⇒ Lp = L ⇐⇒ L = L ,

that is, the first claim, and using the Tarski rule twice, surjectivity of p and
non-emptiness of points (i.e., the first claim), the second claim follows from

pqT 
= O ⇐⇒ LpqTL = L ⇐⇒ LqTL = L ⇐⇒ qT 
= O ⇐⇒ q 
= O. �

In the context of algorithms the choice of an element from a non-empty set is
frequently used. In the same way the choice of a point from a non-empty vector is
fundamental for relational programming. Therefore, we assume a corresponding
operation point to be at hand – as in the programming language ofRelView; see
[30] – such that point(v) is a point and point(v) ⊆ v, for all non-empty vectors v.
Note that point is a (deterministic) operation in the usual mathematical sense,
such that each call point(v) yields the same point in v. However, the above
requirements allow different realizations. The specific implementation of point
in RelView uses the fact that RelView deals only with relations on finite
sets, which are linearly ordered by an internal enumeration. A call point(v) then
chooses that point which describes the least element of the set described by v.

3 A Relational Program for Vertex Coloring

Graph coloring in general and vertex coloring in particular is one of the most im-
portant and most studied concepts in graph theory. It leads to many interesting
applications in mathematics and computer science, e.g., in the construction of
timetables. In this section we develop a relational program to compute a vertex
coloring of a given undirected graph, i.e., a labeling of the vertices with colors
such that two adjacent vertices are labeled with different colors.

Assume G to be an undirected (loop-free) graph with vertex set X . We model
G by the adjacency relation E : X↔X such that for all x, y ∈ X it holds
(x, y) ∈ E if and only if x and y are adjacent. Since G is assumed to be undirected
(and loop-free), E is symmetric and irreflexive. E is the input of the relational
program we want to develop and to prove as correct. Since we tent to a while-
program and the use of the inductive assertion method, this leads to

Pre(E) :⇐⇒ E = ET∧E ⊆ I (Pre)

as pre-condition. The output of our relational program should be a vertex color-
ing of G. Usually natural numbers are taken as colors and, thus, a vertex coloring
of G would be a function C : X → N such that C(x) = C(y) implies (x, y) /∈ E,
for all x, y ∈ X . Functions are specific relations and so vertex colorings are re-
lations as well. We want to stay as abstract as possible and do not want to use
natural numbers as colors, but elements of an abstract set F of colors. As a con-
sequence, a vertex coloring of G is a relation C : X↔F that is univalent, total,
and for all x, y ∈ X if there exists f ∈ F such that (x, f) ∈ C and (y, f) ∈ C this
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implies (x, y) ∈ E . It is easy to show that the third requirement is equivalent
to CCT⊆ E . This yields

Post(C,E) :⇐⇒ CTC ⊆ I ∧CL = L ∧ CCT⊆ E (Post)

as post-condition. We call the formula CCT ⊆ E of Post(C,E) the coloring
property of C w.r.t. E.

To develop a relational while-program with input E and output C which is
correct w.r.t. the pre-condition Pre(E) and the post-condition Post(C,E), it
seems to be reasonable to follow a greedy approach. Using a loop, the program
assigns to each vertex an available color that is not already used for one of
its neighbors. Such an approach means that we work with partial colorings .
Formally, that means we use

Inv(C,E) :⇐⇒ CTC ⊆ I ∧CCT⊆ E (Inv)

as loop-invariant, and want to extend C in each run through the loop by coloring
an uncolored vertex with an allowed color in the above described manner until
C is total. Summing up, we have

{Pre(E) } . . . ; { Inv(C,E) } while CL 
= L do . . .od {Post(C,E) }
as program outline. Because of the definition of the loop-invariant and the post-
condition we immediately obtain the implication

Inv(C,E) ∧CL = L =⇒ Post(C,E) (PO1)

to be valid. Hence, by (PO1) we have the first proof obligation of program
verification, viz. that the loop-invariant in conjunction with the exit-condition
of the loop implies the post-condition. It remains to develop an initialization that
establishes the loop-invariant and a loop-body that maintains the loop-invariant
as long as CL 
= L holds. Obviously, we have:

Lemma 3.1. The empty relation O : X↔F is univalent and fulfills the coloring
property w.r.t. E.

As an immediate consequence of this lemma we get that the implication

Pre(E) =⇒ Inv(O, E) (PO2)

is valid. If we, guided by this fact, change the above program outline by con-
cretizing the initialization to C := O, then (PO2) is the second proof obligation
of program verification and says for the new program outline that the loop-
invariant is established by the initialization if the pre-condition holds.

To develop a loop-body, we use the fact that the vector CL models the domain
of the univalent relation C : X↔F , i.e., the set of vertices of G which are
already colored. If CL 
= L, then the call point(CL ) selects a point, say p, with
p ⊆ CL that models an uncolored vertex, say x ∈ X . Guided by the above
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mentioned greedy approach, we now consider the vector Ep. A little component-
wise reflection shows that it models the set of neighbors of x and that the derived
vector CTEp models the image of the set of neighbors of x under the univalent
relation C, that is, the set of colors already assigned to a neighbor of x. As a
consequence, the complemented vector CTEp models the set of colors that are
allowed to be assigned to x without contradicting the coloring property w.r.t. E.
If we define a point q as q := point(CTEp ), then q models one of these colors,
say f ∈ F , and the union C∪pqT extends the relation C by additionally assigning
f to x. This yields the following complete program outline:

C := O;
while CL 
= L do

let p = point(CL );

let q = point(CTEp );
C := C ∪ pqT od

(VC)

To improve readability of (VC), we use two let-clauses for assigning the above
mentioned points p and q.

We have already verified two out of the three proof obligations needed to
prove partial correctness of the relational program (VC) w.r.t. the above pre-
and post-condition specification. It remains to verify the third proof obligation

Inv(C,E) ∧ CL 
= L =⇒ Inv(C ∪ pqT, E) (PO3’)

for partial correctness, where p and q are defined as in the relational program
(VC). In case programs do not change the input and the precondition Pre re-
mains unchanged, the pre-condition can be added to the loop-invariant. For the
relational program (VC) this is the case and hence it suffices to show

Pre(E) ∧ Inv(C,E) ∧ CL 
= L =⇒ Inv(C ∪ pqT, E) (PO3)

We prove (PO3) in two steps. First, we show that enlarging a univalent relation
by the product of two points as done in line 5 of the relational program (VC)
yields again a univalent relation.

Lemma 3.2. Let C, p and q be relations such that C is univalent, p and q are
points, CL 
= L, and p ⊆ CL . Then C ∪ pqT is univalent.

Proof. Because of the equation

(C ∪ pqT)T(C ∪ pqT) = CTC ∪ qpTC ∪ CTpqT∪ qpTpqT

it suffices to show the following four inclusions:

(1) CTC ⊆ I (2) qpTC ⊆ I (3) CTpqT⊆ I (4) qpTpqT⊆ I

Inclusion (1) holds as C is univalent. Since qpTC = (CTpqT)
T
and I = IT, inclusion

(2) is equivalent to inclusion (3) and, thus, it suffices to show that one of them
holds. To prove inclusion (3), we calculate

p ⊆ CL ⇐⇒ CL ⊆ p ⇐⇒ CTp ⊆ O ,
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where we apply one of the Schröder equivalences in the second step. So, we have
CTp = O and this implies CTpqT = O ⊆ I. Using the vector property and the
injectivity of the point q, inclusion (4) is shown by

qpTpqT⊆ qLqT= qqT⊆ I . �

The following lemma states the second fact we have to prove for verifying proof
obligation (PO3). We show that the enlargement maintains the coloring property.

Lemma 3.3. Let E, C, p and q be relations such that E is symmetric and ir-
reflexive, p and q are points, C fulfills the coloring property w.r.t. E, CTEp 
= L,
and q ⊆ CTEp . Then C ∪ pqT fulfills the coloring property w.r.t. E.

Proof. We follow exactly the proof of Lemma 3.2 and start with

(C ∪ pqT) (C ∪ pqT)T= CCT∪ pqTCT∪ CqpT∪ pqTqpT,

such that it suffices to show the following four inclusions:

(1) CCT⊆ E (2) pqTCT⊆ E (3) CqpT⊆ E (4) pqTqpT⊆ E

Inclusion (1) holds since it is assumed that C fulfills the coloring property. Be-

cause of pqTCT = (CqpT)
T
and E = E

T
the inclusions (2) and (3) are again

equivalent. To prove inclusion (3), we calculate

q ⊆ CTEp ⇐⇒ CTEp ⊆ q ⇐⇒ Cq ⊆ Ep
⇐⇒ Ep ⊆ Cq ⇐⇒ CqpT⊆ E ,

where we apply the Schröder equivalences in the second and the fourth step.
Using the vector property and the injectivity of the point q and the irreflexivity
of E, inclusion (4) is shown by

pqTqpT⊆ pLpT= ppT⊆ I ⊆ E . �

Combining the Lemmata 3.2 and 3.3, we immediately obtain (PO3) and, thus,
altogether the partial correctness of the relational program (VC) w.r.t. the pre-
condition Pre(E) and the post-condition Post(C,E). Note that only for the
maintenance of the coloring property the pre-condition is required.

We are not only interested in partial correctness, but also in total correctness.
Therefore, it remains to prove the proof obligation

Pre(E) =⇒ the relational program (VC) yields a defined value . (PO4)

To verify (PO4), we have to verify two facts: first, we have to prove that the loop
of the relational program (VC) terminates, and, secondly, that the partial opera-
tion point is only applied to non-empty vectors (i.e., yields a defined value). The
following lemma shows that the relation C is strictly enlarged in each execution
of the loop-body.
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Lemma 3.4. Let C, p and q be relations such that p and q are points, CL 
= L,
and p ⊆ CL . Then C ⊆ C ∪ pqT and C 
= C ∪ pqT.
Proof. Inclusion C ⊆ C ∪ pqT is trivial. Next, we show pqT⊆ C by

Cq ⊆ CL ⇐⇒ CTCL ⊆ q Schröder equivalences

=⇒ CTp ⊆ q as p ⊆ CL
⇐⇒ pTC ⊆ qT
⇐⇒ pqT⊆ C Schröder equivalences .

Using pqT⊆ C , the second claim C 
= C∪pqTnow can be shown by contradiction:
C = C ∪ pqTwould imply pqT⊆ C, such that pqT⊆ C ∩ C = O follows. But the
latter fact contradicts Lemma 2.1. ��
From this lemma we obtain that the loop of the relational program (VC) ter-
minates if E : X↔X is a relation on a finite set X , i.e., if the graph G is
finite. However, to verify (PO4) we also have to ensure that the partial opera-
tion point is only applied to non-empty vectors. In case of the call point(CL )
non-emptiness of CL follows from the loop-condition. However, since we do not
assume specific properties for the set F of colors, in case of the call point(CTEp )

it may happen that CTEp is empty, viz. if there are too few colors and each
color is already assigned to a neighbor of the vertex modeled by the point p.
This situation can not appear if there are enough colors. Obviously |X | colors
suffice. So, we have the following result:

Theorem 3.1 If E is a relation on a finite set X and F consists of at least |X |
colors, then the relational program (VC) is totally correct w.r.t. the pre-condition
Pre(E) and the post-condition Post(C,E).

The assumptions of this theorem and its proof confirm again the experience
we have made so far with the assertion-based verification of relational programs:
algebra is an ideal base to verify the proof obligations for partial correctness, but
for showing total correctness non-algebraic arguments are necessary, typically.
Usually, they concern the sizes of the carrier sets of the relations in question.

In the following sections we demonstrate how the presented proofs can be
automated, or at least supported by the tools mentioned in the introduction.

4 Invariant Testing Using RelView

Relation algebra has a fixed and small set of constants and operations which
(in the case of finite carrier sets) can be implemented very efficiently. At the
University of Kiel we have developed RelView, a special purpose computer
algebra system for relation algebra. It uses BDDs for implementing relations
and makes full use of a graphical user interface. Details can be found in [5,30].

Translating the relational program (VC) into the programming language of
RelView yields the following code:
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color(E)

DECL C, p, q

BEG C = O(E);

WHILE -eq(C*L(C),L(C)) DO

ASSERT(Inv, incl(C^*C,I(C)) & incl(C*C^,-E));

p = point(-(C*L(C)));

q = point(-(C^*E*p));

C = C | p*q^ OD

RETURN C

END.

In this RelView-program the symbols -, ^, |, & and * denote the operations
for complementation, transposition, union, intersection and composition, respec-
tively. Furthermore, eq and incl are base-operations for testing the equality and
inclusion of relations, respectively. All tests yield relations on a specific singleton
set 1 as result, where L : 1↔1 models ‘true’ and O : 1↔1 models ‘false’. A call
of the base-operation O generates an empty relation, with the same type as the
argument. The operations L and I perform the same for the universal relation
and the identity relation, respectively. Due to the initialization of the variable
C in color by the empty relation of the same type as the input E, hence, the
vertex set X of the graph G is taken as set F of colors, implicitly. As a con-
sequence, there are enough colors and the RelView-program color is totally
correct w.r.t. the pre-condition Pre(E) and the post-condition Post(C,E).

Within the RelView-program color we also use the ASSERT-statement for
testing the loop-invariant. If the second part of ASSERT (a relation-algebraic for-
mula formulated as RelView-expression) is true, then the statement is without
effect, otherwise the execution stops and RelView allows to inspect the val-
ues of the variables via the debug window. Combining the specification of the
loop-invariant in the program via ASSERT with RelView’s feature for generating
relations randomly (also with specific properties like, in our case, symmetry and
irreflexivity) has the general advantage that no invariant-tests have to be done
by hand (which takes time and is vulnerable to mistakes) and a lot of tests can
be done in a very short time. Consequently, one gets a good feeling if a loop-
invariant was chosen correctly. Because of the specific modeling of truth-values
in RelView, furthermore, on the two relations L : 1↔1 and O : 1↔1 the
Boolean operations , ∪ and ∩ precisely correspond to the logical connectives
¬, ∨ and ∧, respectively. This allows to formulate all Boolean combinations over
inclusions of relations as RelView-expressions and to test them via ASSERT.
Experience has shown that this suffices for most practical applications. It also
has shown that stepwise execution and visualization via RelView are frequently
helpful if invariants are not correct, e.g., too weak.

5 Verification of Proof Obligations Using Prover9

Along the lines of [8,9] we now show how the correctness proof of the relational
program (VC) can be supported by an automated theorem prover, i.e., we au-
tomate the proofs of Section 3 as far as possible. Intending a user-optimized
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approach we choose Prover9 as verification tool. This choice is based on an eval-
uation that shows that Prover9 performs best for automated reasoning in the
context of relation algebra; see [9] for details. A further reason for the choice of
Prover9 is the positive experience made in [8,9] in the automated verification of
relational programs with this tool.

Prover9 [20] is a resolution- and paramodulation-based automated theorem
prover for first-order and equational logic. However, it does not include a type
system. Of course, types can be realized using predicates. Since this is a bit
cumbersome, we have decided to restrict our experiments to homogenous relation
algebra in the sense of [13,26,27], with untyped relations. This algebraic structure
axiomatizes the algebra of relations on one set (the universe) and its axioms are
obtained from those of Section 2 if all demands concerning types are removed.
A consequence of our decision is that the sets of vertices and colors coincide, as
in case of the RelView-program color of Section 4.

For each result of Section 3 we want to prove, we create one input file. Each
file consists of three parts, where the first two parts of each file coincide. The first
part contains the language options, in particular the list of operations of relation
algebra. We use the symbols ^, ’, \/, /\ and * for transposition, complement,
union, intersection and composition, respectively, with the binding strengths of
Section 2. The second part is a list of assumptions and contains the axioms of
homogeneous relation algebra, some auxiliary facts which turned out to be well
suited for proving relation-algebraic results, and predicates for defining proper-
ties of relations. The constants L, O, I and the inclusion of relations are implicitly
defined via the axioms, in symbols L, O, I and <=. The encoding of the axioma-
tization in Prover9 is straightforward. For example, the distributivity laws can
be formulated as follows:

x /\ (y \/ z) = (x /\ y) \/ (x /\ z).

x \/ (y /\ z) = (x \/ y) /\ (x \/ z).

To give another example in the notation of Prover9 the Schröder equivalences
look as follows:

x*y <= z <-> x^*z’ <= y’.

x*y <= z <-> z’*y^ <= x’.

Although Prover9 accepts capital letters as variable names, such as Q, R and S,
we use the small letters x, y and z for variables, since variables which are denoted
by these letters are automatically assumed as universally quantified. The set of
auxiliary facts only lists statements which are already proven by Prover9 (e.g., in
[16,17]). The predicates to specify, for instance, univalent relations or relations
with the coloring property can be encoded as follows:

univalent(x) <-> x^*x <= I.

coloringProperty(x,z) <-> x*x^ <= z’.

The goal to be proven by Prover9 is specified in the third part of the file. As
mentioned, we apply algebra only for proving facts, where arguments concerning
sizes of sets etc. are not necessary. This means that, besides the auxiliary lemma
about points of Section 2, we apply Prover9 only for proving the lemmata of
Section 3. Doing so, we use the variables p and q for the general points p and
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q of Lemma 2.1 as well as for the specifically selected points p := point(CL )

and q := point(CTEp ) of Section 3 and the (again automatically universally
quantified) variables x for the relation C and z for the relation E, respectively.
Then, e.g., the statement of Lemma 3.3 can be encoded as follows:

all p all q (symmetric(z) & irreflexive(z) & point(p) & point(q) &

coloringProperty(x,z) & (x^*z)*p != L & q <= ((x^*z)*p)’

-> coloringProperty(x \/ p*q^,z)).

Prover9 has no problems to derive a proof of Lemma 2.1 and requires only
a couple of milliseconds. For the input files for the Lemmata 3.1, 3.2 and 3.4
Prover9 generates output files containing their proofs instantaneously as well.
However, in case of Lemma 3.3 Prover9 is not able to find a proof in an ap-
propriate time (we stopped the execution after one hour). Guided by our ex-
perience gained by previous case studies we know that in such a situation the
unfolding of definitions, the subdivision of the entire task into appropriate sub-
tasks and the removal of laws may help, since these steps reduce the size of
the search space, frequently even dramatically. In the present case replacing
coloringProperty(x\/ p*q^,z) by its definition is not sufficient. Also the re-
moval of formulae seems not to be helpful. If, however, the proof of Lemma 3.3 is
divided into, first, showing that its conclusion is equivalent to the conjunction of
the inclusions (1) to (4) of its proof and, secondly, that from its assumptions this
conjunction follows, then for each of these tasks Prover9 needs again no time.

If Prover9 fails to find a proof, besides the unfolding of definitions, the manual
change of the goal and the removal of axioms or auxiliary facts, one can use
that the tool allows a weighting of formulae to specify on them an order of
significance in view of the present problem. Because of our experiments with
different weightings, in the case of Lemma 3.3 we believe that also a weighting
of formulae does not lead to a proof in an appropriate time.

Summing up, Prover9 was able to prove the desired results and requires in
one case a small user interaction only. As all automatic theorem provers, if the
goals are appropriately formulated, then no interaction is needed and, hence, no
deeper knowledge about (relation-)algebraic reasoning is required from the user.

6 Verification of Proof Obligations Using Coq

Now we change the paradigm from ‘automated’ to ‘user-controlled’ and demon-
strate how to verify Lemma 2.1 and the lemmata of Section 3 by use of the proof
assistant Coq. More information about this tool can be found in [11,29].

Since the functionality of Coq is based on the predicative calculus of induc-
tive constructions, each object has a type. Thus, heterogeneous relation algebra
can be modeled, and it has already been done within a relation-algebra library,
presented in [22] and available via the web (see [23]). This library does not only
include a model for heterogeneous relation algebra but also for a large number
of other algebraic structures. For this purpose, sets of operations and laws are
provided, mainly in the modules lattice (for lattice theory), monoid (for pre-
ordered monoids) and kat (for Kleene algebra with tests). The dependencies of
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the structures w.r.t. the operations and laws are managed in the module level,
i.e., one can choose which kind of structure should be used by providing the
required operations and laws.

Since we want to derive the proofs of Lemma 2.1 and those of Section 3,
we assume a heterogeneous relation algebra, where the constants, operations,
predicates and laws are defined in the mentioned modules. At the moment, the
Axioms (3) and (4), i.e., the Schröder equivalences and the Tarski rule, are not
formulated in the library of [22], yet.

The Schröder equivalences can be derived via the two so-called modular laws
of a Dedekind category, that is, via the law named capdotx and its dual law
capxdot, which are defined in the module monoid.v. One of the Schröder equiv-
alences can be encoded as follows:

Lemma schroe1 ‘{laws} ‘{BL+STR+CNV<<l} n m p(Q:X n m)(R:X m p)(S:X n p):

Q*R <== S <-> Q‘*!S <== !R.

With ‘{laws} and ‘{BL+STR+CNV<<l}, respectively, we provide the operations
and axioms of relation algebra. The symbols ‘, !, +, ^ and * are used for trans-
position, complement, union, intersection and composition, respectively.

The missing Tarski rule has to be added since it is necessary for the proofs
of Lemma 2.1 and (implicitly) of Lemma 3.4. In contrast to the Schröder equiv-
alences, the Tarski rule is not a consequence of the given laws, i.e., we have to
provide it as an additional axiom. In Section 2, we specify the Tarski rule by the
equivalence of R 
= O and LRL = L for all relations R and universal relations
with appropriate types. Of course, constants are typed objects in Coq, too. But,
if Coq can infer the type from the context, then it is not necessary to specify
it. In such a case the universal relation, empty relation and identity relation are
denoted with top, 0 and 1, respectively. In case of non-inferable types we have
to specify them by, for instance, top’ X Y for the universal relation L : X↔Y .
We have a universal quantification over the three occurring universal relations
in the Tarski rule. For its formulation within Coq, besides the type of R we
have to specify the types of the two universal relations of the left-hand side of
LRL = L only. The type of O in R 
= O and the type of the right-hand side of
LRL = L then can be inferred from the context. Considering this typing and
using a Coq-definition, the Tarski rule can be encoded as follows:

Definition Tarski_rule ‘{laws} : Prop :=

(forall a b c d (R:X b c),(top’ a b)*R*(top’ c d) == top <-> ~(R == 0)).

Note that we omit the assumption ‘{BL+STR+CNV<<l} about the level, because
such definitions can be written without having a structure satisfying any law.
We assume the definition Tarski_rule in each lemma whose relation-algebraic
proof uses the Tarski rule. As already mentioned, this concerns Lemma 2.1 of
Section 2 and Lemma 3.4 of Section 3.

As in the previous section, we define predicates specifying, e.g., relations as
points or relations with the coloring property. In Coq, this can be done as follows:

Definition coloringProperty ‘{laws} {n} {m}: X n m -> X m m -> Prop :=

fun x y => x*x‘<== !y.

Definition point ‘{laws} {n} {m}: X n m -> Prop :=

fun p => vector p /\ p*p‘ <== 1 /\ (forall a, top’ a m == top*p).
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Here vector is yet another predicate for describing vectors. Such predicates
improve the readability of the encoding.

Using the defined predicates and the definition specifying the Tarski rule, the
first statement of Lemma 2.1 can be encoded as follows:

Lemma lemma_2_1_1 ‘{laws} ‘{BL+STR+CNV<<l} m n:

tarski_rule -> forall (p:X m n), point p -> ~(p == 0).

Its second statement and the lemmata of Section 3 can be formulated in a similar
way. For example, the Coq-version of Lemma 3.3 is given below; it looks rather
similar to the version in Prover9 with typed relations though (note that the
conjunction symbol /\ of Coq corresponds to the symbol & in Prover9):

Lemma lem3_3 ‘{laws} ‘{BL+STR+CNV<<l} v f (C:X v f)(E p:X v v)(q:X f v):

symmetric E /\ irreflexive E /\ point p /\ point q /\

coloringProperty C E /\ ~(C‘*E*p == top) /\ q <== !(C‘*E*p)

-> coloringProperty (C + p*q‘) E.

Usually, the development of proofs in Coq is done via various tactics. The
proofs of the mentioned lemmata, apart from Lemma 3.4, can be managed with
only a few basic tactics, such as intro for introducing new variables or hy-
potheses, unfold for unfolding upcoming predicates in the goal as well as in the
hypotheses and rewrite for replacing terms. More interesting are the tactics
defined in the module normalisation.v of the library described in [22]. This
module includes three specific tactics called ra, ra_simpl and ra_normalise

which can be used to automate parts of the proofs, for instance in case of uni-
versally quantified inclusions and equalities. The proof of Lemma 3.4 has to be
handled in a different way since the occurring negated equality. For this pur-
pose, we slightly change the proof presented in Section 3 and import a module
for classical propositional logic, viz. the module Coq.Logic.Classical Prop, to
provide the required De Morgan’s laws. The advantage of this approach is that
we are able to prove the lemma with the already mentioned tactics, i.e., we avoid
to deal with contradiction in Coq.

In summary, Coq offers a type system and allows to model heterogeneous
relation algebra in a very natural way. Amongst others, the library we have
used offers a typed model for heterogeneous relations, a large number of already
proven algebraic theorems and very helpful tactics for reasoning about relation
algebra.

7 Verification of Proof Obligations Using Isabelle/HOL

In this section we discuss the verification of the relational program (VC) by
means of Isabelle/HOL, a proof assistant that additionally offers support for
automated theorem proving via the Sledgehammer tool. For more details on
Isabelle/HOL, see e.g., [21].

Similar to Coq, libraries can be included in Isabelle/HOL. The development
of such libraries usually takes a long time and deep insights in the theorem
prover at hand. Luckily, as in the case of Coq, relation algebra has already be
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formalized in Isabelle/HOL and is available via the web (see [1]). However, the
library of [1] formalizes homogeneous relation algebra only. A consequence of its
use with regard to the verification of the relational program (VC) is again that
the sets of vertices and colors coincide.

The formalization [1] of homogeneous relation algebra follows the lines of
[19,26]. Besides the basic constants, operations and predicates and the axioms
it includes a number of further important relation-algebraic concepts such as
subidentities, vectors and points, as well as various notions associated to func-
tions – together with numerous proven facts. For example, all facts about relation
algebra listed in Section 2 have been proven. As a consequence, it seems to be
an ideal basis for the verification of relational programs such as (VC). However,
the current implementation does not contain the Tarski-rule (similar to Coq),
so we added this rule to the set of assumptions of a lemma when necessary.

The provided libraries are included by a simple imports-statement; encoding
of the lemmata is easy and straightforward. For example, Lemma 3.3 is encoded
as follows, where � indicates transposition and the symbol - is used for both
negation and complement:

lemma assumes "symmetric e" and "irreflexive e"

and "is_point p" and "is point q"

and "coloringProperty x e" and "q ≤ -(x� ; e ; p)"

shows "coloringProperty (x + p;q�) e"

It might be confusing that we use different symbols for the same operation (e.g.,
T, ^, ‘ and � for transposition). However, since we use different tools we decided
to stick to the notation of these frameworks. Since the GUI of Isabelle/HOL
allows non-ascii symbols, transposition can be encoded as �.

The used predicates are basically identical to the ones of Prover9 and Coq.
For example, coloringProperty is defined as follows:

definition coloringProperty

where "coloringProperty x e ≡ x ; x� ≤ -e"

A straightforward approach would be the use of the Isabelle/Isar tool (see
[28]), which basically replays the proofs given in Section 3. The advantage of this
approach is that it provides a proof certificate and verifies the manual proofs.
Moreover the generated proofs are easy to read. However, this strategy does not
provide (much) automation and hence requires expert knowledge in relation-
algebraic reasoning.

As mentioned in Section 5, automated reasoning within the relation-algebraic
setting is successful if the proof-goals are appropriately formulated. In contrast
to Coq, Isabelle/HOL offers support for (first-order) automated theorem provers
via the integrated tool Sledgehammer (see [12] for more details), thus, allows to
combine the ‘automated’ and ‘user-controlled’ paradigm. The Sledgehammer
tool takes the given goal and proven facts available, feeds them to automated
theorem provers, such as E and Z3, and awaits their output. In case one of the
provers is successful in finding a proof, the proof is included in the Isabelle-
file; in case all theorem provers fail, the GUI continues to assist in a manual
proof derivation. That means that Isabelle/HOL provides both proof-assistance



Tool-Based Verification of a Relational Vertex Coloring Program 289

and proof-automation and it seems to be the perfect combination of interac-
tion and automation. In fact, a proof of Lemma 3.3 becomes ‘nearly’ automatic:
after a first manual step using Isabelle’s unfolding and simplification mecha-
nisms (simp add: unfold_defs distrib_left distrib_right, safe) we end
up with the four subgoals (1) to (4) presented in the proof of Lemma 3.3. This
command unfolds automatically all predicates (unfold_defs) and uses the built-
in simplifier, which is manually extended by the two distributivity axioms of
relation algebra (distrib_left distrib_right).

The derived subgoals can now all be proven automatically by Sledgehammer
using not only the axioms of relation algebra, but also the facts provided by the
theories of relation algebra of [1]. The fact "x;y ≤ z ⇔ y ≤ -(x�;-z)",
for example, which was proven in the framework of [1], is automatically cho-
sen to prove the second subgoal (p;q�;x�≤ -e) (in the proof pqTCT ⊆ E ).
All other lemmata presented in the paper, except Lemma 3.4, can be proven
in an identical way: first derive subgoals using the inbuilt simplifier, and then
use Sledgehammer and the provided automated theorem provers to prove these
subgoals automatically. Lemma 3.4 could not be proven by this strategy. In fact,
we could only reply the proof by contradiction given in Section 3 – real proof
automation was not possible.

8 Assessment and Concluding Remarks

In this paper we have developed a relational program for calculating a vertex
coloring of an undirected graph, which is modeled by the adjacency relation. A
relation-algebraic approach was chosen since case studies have shown that such
an approach is not only very suitable for prototyping and testing programs by
systems like RelView, but also for proof automation. The program verification
was performed by classical reasoning about pre- and post-conditions, and loop-
invariants. The proofs of the proof obligations were executed with the help of
Prover9, Coq and Isabelle/HOL, which are prominent tools to support verifica-
tion tasks. This repetition of mechanized proofs and the comparison with the
original mathematical proofs allow us to compare these mentioned tools. As one
might expect each and every tool has its pros and cons.

Prover9 does not include a type system such that the typing of relations in
heterogeneous relation algebra would have to be realized by predicates. Such
predicates make the encoding more complicated and decrease the readability.
In our example types could be avoided, but if, e.g., incidence relations are used
to model undirected graphs or hypergraphs, then types are mandatory. All but
one theorems of Section 3 were proved full automatically by Prover9 in nearly
no time. Unfortunately, in spite of weighting the significant rules such that they
should be applied first, Prover9 was still not able to find a proof for Lemma 3.3
in an appropriate time frame. At the end, we decided not to change the weights
of the assumptions but to split the goal into subgoals. Indeed, this approach
requires a kind of interaction by the user, but it yields to uniform assumptions
for all theorems of Section 3 as well as to short proving times. These results are
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not only based on the investigations presented in this paper but additionally
coincide with those discussed in [8,9,14]. Since Prover9 is fully automatic it
can be used as a black box and without having a deep understanding of its
functionality. From a user’s point of view a big advantage of Prover9 is that the
encoding of the axiomatization of homogenous relation algebra, the definition
of predicates and the formulation of theorems which have to be proved is very
straightforward and also comprehensible for non-experts.

The proof assistant Coq is the very opposite of Prover9. It is completely user-
controlled, i.e., a purely interactive theorem prover. Coq has a sophisticated
type system with type inference, which is comparable with those of functional
programming languages such as Haskell, ML and OCaml. For performing our
proofs we used an already existing library for relation algebra. In this case the
library implements homogenous as well as heterogeneous relation algebra. Due
to this we were able to reproduce all proofs of Section 3 without any restric-
tions on types. The used library does also include tactics, that is, strategies for
proof-finding and proof execution. They support relation-algebraic reasoning.
Some of them implemented decision procedures for subsets of relation algebra,
which we might use in future experiments. Furthermore, the library comes with
a large number of algebraic structures related to relation algebras, e.g., Dedekind
categories, Kleene algebras and Kleene algebras with tests. For this reason, the
library can also be used in the context of reasoning about such structures as
well. We refer to [10] for an application concerning Dedekind categories. The
usage of Coq requires a lot of knowledge about the internals of the tool, such as
the available tactics and the hierarchy and dependencies of the modules. Besides
this, in our case the user needs expertise about relation-algebraic reasoning and
the used library for relation algebra to be able to derive the proofs step by step.
So, from a user’s point of view Coq is far more complicated than Prover9; it is
suitable for advanced users only.

For the proof verification with Isabelle/HOL we were also able to build on
already existing theories. Since a library for heterogeneous relation algebra does
not exist yet, we used a library that implements homogenous relation algebra.
Using this library we again have to avoid typed relations, although Isabelle/HOL
provides a type system similar to that of Coq. Concerning proof paradigms, Is-
abelle/HOL bridges the gap between interactive and automated reasoning via
the Sledgehammer tool. Our experiments have shown that our strategy, i.e., first
using the inbuilt simplifier for deriving subgoals and then Sledgehammer to prove
these subgoals automatically, was successful with all theorems of Section 3 except
Lemma 3.3, again. For the latter one, we have to derive new subgoals with two
manual steps. However, more intrinsic proofs (here a proof by contradiction)
requires again expert knowledge in relation-algebraic reasoning. Isabelle/HOL
does not offer tactics nor decision procedures, yet, for relation-algebraic rea-
soning specifically. With regard to usage, Isabelle/HOL is powerful enough to
support non-expert users with many (standard) tasks in case the problems in
question are not very complex. But in case of more complex problems it requires
experience and is then, like Coq, suitable for advanced users only.
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As future work we plan to exhaust the capabilities of Prover9 w.r.t. the dif-
ferent options, e.g., the weighting of the given assumptions, to hopefully achieve
best proving times for relation-algebraic theorems. Concerning Coq, we plan to
explore the full power of the tactics and to investigate whether they are support-
ive in verification tasks. For Isabelle/HOL, we want to consider the implementa-
tion of tactics which are specific for relation-algebraic reasoning. Furthermore,
an extension of the used library to heterogeneous relation algebra is desirable.
We assume that by all this many verification tasks concerning programs on rela-
tions or related objects can be automated to a large extent – this can, however,
only be verified by further and more complicated case studies. Finally, we plan
to investigate in the future how tools for generating loop invariants (as Why3,
see [31]) are applicable for our purposes.
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12. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

13. Chin, L.H., Tarski, A.: Distributive and modular laws in the arithmetic of relation
algebras. Univ. of California Publ. Math. (new series) 1, 341–384 (1951)
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Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and
Kleene Algebra in Computer Science – Ph.D. Programme at RelMiCS10/AKA05.
Technical Report 2008-04, Institut für Informatik, Universität Augsburg, 48–52
(2008)

15. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and alge-
braic methods in Isabelle/HOL (Invited tutorial). In: de Swart, H. (ed.) RAMICS
2011. LNCS, vol. 6663, pp. 52–67. Springer, Heidelberg (2011)
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Abstract. In this paper we present a query language for lattice-based (or L-
fuzzy) databases. These databases store L-fuzzy sets in their attributes instead of
(crisp) values in order to handle imprecise or incomplete information. A seman-
tics for the language is defined using the abstract notion of an arrow category.

1 Introduction

Nowadays relational databases can be found almost everywhere starting with the con-
tact list on a cell phone to a customer database of a big company. The common language
to maintain a relational database and to retrieve information is the Structured Query
Language (SQL). Even though relational databases can handle all kind of information,
including missing information by using so-called null values, they are not very well
suited to deal with imprecise data. For example, if a database of persons has a field for
the height of a person, then any new entry is required to provide the height in centime-
ters or inches (or null if the height is unknown). If it is only known that Joe is tall, then
we have only two alternatives. Either we use null because we do not know his height or
we pick a random value that we consider to be tall. Both approaches do not reflect the
information about Joe correctly. The first approach does not provide any information
about Joe’s height, i.e., the information that Joe is tall is dropped. The second approach
provides information that is most likely wrong. In order to handle imprecise informa-
tion such as tall, fuzzy relational databases and the query language Fuzzy Structured
Query Language (FSQL) have been developed [5–7]. In such a database every field is
allowed to store a fuzzy set instead of a single value. Fuzzy sets were introduced by
Zadeh [22], and they constitute a generalization of regular sets. A fuzzy set is a set in
which each element has a degree of membership from the unit interval �0 . . .1� of the
real numbers up to which the element is part of the set. An element with degree 0 is
definitely not in the set and an element with degree 1 is definitely in the set. Formally, a
fuzzy subset B of A is represented by a characteristic function χB : A � �0 . . .1�. Fuzzy
sets are used to provide a mathematical interpretation of common language expressions,
also called linguistic entities or labels, such as tall. For example, tall can be interpreted
by the following fuzzy set:
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χtall�x� �

���
��

0 iff x � 160cm,
x� 160

20 iff 160cm 	 x � 180cm,
1 iff 180cm 	 x

The result of a FSQL query is a list of entries of the database. Each entry comes with the
degree up to which it satisfies the conditions of the query. The language FSQL adds to
the regular SQL statements operations that are specific to fuzzy sets. For example, each
comparison operations such as�,� and	 are available in the form of a possibility F�,
F�, F	 and a necessity operation NF�, NF�, NF	 (see also Section 3) computing
the degree of the possibility resp. the necessity that the two fuzzy sets are in the corre-
sponding relationship. In addition, the language also allows to specify thresholds, i.e.,
minimal degrees up to which the property must be true, and to use t-norms/t-conorms
instead of min and max for computing the logical connective and and or. Linguistic
labels are preceded by the symbol $ and their characteristic function is stored in a meta
database. A typical example for a FSQL select statement is:

SELECT Name, Height, Age FROM Persons
WHERE Height F= $Tall AND

Age NF	 $Old THOLD 0.5

In this paper we are going to introduce L-fuzzy databases and the query language L-
fuzzy Structured Query Language (LFSQL). L-fuzzy sets were introduced by Goguen
[8], and they generalize fuzzy sets even further. An L-fuzzy set is a set in which each
element has a degree of membership from an arbitrary bounded lattice L, i.e., an ordered
structure with a meet and a join operation and a least element 0 and a greatest element
1. As before an element with degree 0 is definitely not in the set and an element with
degree 1 is definitely in the set. Formally, an L-fuzzy subset B of A is a characteristic
function χB : A � L. The unit interval forms a lattice, i.e., fuzzy sets are �0 . . .1�-fuzzy
sets. However, the unit interval is linearly ordered, i.e., for each pair x, y 
 �0 . . .1� of
elements we have either x � y or y � x. This property implies that we are always able
to tell for any two elements a and b which is more in a given fuzzy set B by comparing
χB�a� and χB�b�. This might not be suitable to model certain situations. For example,
we want to consider buying a TV and model the screen size of TV’s as an L-fuzzy
set. The degree of membership of a given screen size in the set of good sizes indicates
how well-suited we consider this particular screen size. A screen size of 60in might
be good because of the viewers experience but not so good because of the price of the
corresponding TV. On the other hand, a screen size of 40in might be good because of
the price but not so good in terms of the viewers experience. For these reasons both
screen sizes should be in the L-fuzzy set of good sizes up to a certain degree. However,
it seems hard, or even impossible or unwanted, to decide which screen size is better, i.e.,
we do not want that χgood�40in� � χgood�60in� or vice versa. In this example we want
to choose a lattice L that is not linearly ordered as the domain of membership values.

In addition to the syntax of LFSQL we present a formal semantics of the language
in terms of abstract arrow categories. Arrow categories provide a suitable categori-
cal/algebraic theory for L-fuzzy relations, and hence a general framework to interpret
LFSQL. This semantics can be used in multiple ways. It was already used in an imple-
mentation of a prototype of LFSQL in the functional programming language Haskell
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[1, 3]. This prototype is based on a concrete implementation of the arrow category of
sets and (finite) L-fuzzy relations. The execution of a LFSQL statement uses a Haskell
function that implements the semantics exactly as defined in Section 3.3. Furthermore,
the semantics serves as the foundation for future investigation on dependencies, normal
forms and data mining based on L-fuzzy databases.

The remainder of this paper is organized as follows. In Section 2 we recall the theory
of arrow categories. Section 3 defines and discusses L-fuzzy databases and the language
LFSQL. In addition, we define the semantics of LFSQL in terms of arrow categories
[17, 20, 21]. A conclusion and future work is presented in Section 4.

2 Arrow Categories

In this section we want to recall the mathematical structures that we will be using in
order to define the semantics of LFSQL. These structures include lattices, categories
and arrow categories. For further details we refer to [2, 4, 20].

We will use the notation R : A � B to indicate that a morphism R of a category R
has source A and target B. The collection of all morphisms with source A and target B
is denoted by R�A, B�. Composition is denoted by ; and has to be read from left to right,
i.e., R; S means R first, and then S . The identity morphism on A is written as IA.

A lattice L is called a complete Heyting algebra iff L is complete and the first infinite
distributivity law x �

�
M �

�
y�M

�x � y� holds for all x 
 L and M � L. Therefore, a

complete Heyting algebra is distributive and has relative pseudo complements, i.e., for
each pair x, y 
 L there is an element x � y so that z � x � y is equivalent to x�z � y.

Dedekind categories [11, 12] have been shown to be a suitable categorical/algebraic
framework to describe binary relations.

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R�A, B� is a complete Heyting algebra.
Meet, join, the induced ordering, the least and the greatest element are denoted
by �,,�,�AB,�AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q : A � B
to Q� : B � A such that for all relations Q : A � B and R : B � C the following
holds: �Q; R�� � R�; Q� and �Q��� � Q.

3. For all relations Q : A � B,R : B � C and S : A � C the modular law
�Q; R� � S � Q; �R � �Q�; S �� holds.

4. For all relations R : B � C and S : A � C there is a relation S �R : A � B
(called the left residual of S and R) such that for all X : A � B the following
holds: X; R � S �� X � S �R.

Notice that the axiom provided above are not independent. For example, the ex-
istence of residuals follows from the fact that each collection R�A, B� is a complete
Heyting algebra.
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The left residual also implies the existence of a right residual characterized by

Q; Y � S �� Y � Q�S .

In fact, we have Q�S � �S ��Q���. Both residuals are monotone in one argument
and antitone in the other. If S � S �, R�

� R and Q�
� Q, then S �R � S ��R� and

Q�S � Q��S �.
The category Rel of binary relations between sets with the usual definition of the

operations forms a Dedekind category. In addition, the collection of L-fuzzy relations,
i.e., relations R given by their L-valued characteristic function R : A� B � L, between
sets form a Dedekind category. Notice that Rel is actually a special case of L-fuzzy
relations where L is the Boolean algebra of truth values. We will call relations in Rel
regular relations in order to distinguish them from L-fuzzy relations.

We will often use a matrix representation in order to visualize finite examples in L-
fuzzy or regular relations. For example, if R : A � B � D6 with A � �r, s, t, u� and
B � �0, 1, 2, 3, 4� is a D6-fuzzy relation, then one such relation R can be visualized by
the matrix

R :�

�
���

1 a b 1 0
c d 0 0 1
0 1 c a b
1 0 a c d

	
ÆÆ
 D6 :�

1

c

����
d

))))

a

����
b

2222 ����

0

����
2222

By assuming the order in which the elements are presented in A and B the matrix should
be read as follows. The b in the third row of the matrix indicates that the third element
of A, the element t, is in relation R to the fifth element of B, the element 4, by a degree b.
Notice that D6 is isomorphic to the product �0, 1���0,m, 1� of the two linear orderings
0 � 1 and 0 � m � 1. Therefore, D6 can be used to model two aspects of membership
similar to the TV example in the introduction. The first aspect is a yes-no and the second
aspect a yes-no-maybe relationship. For example, c � �1,m� represents the fact that c
is definitely in the set with respect to the first aspect and maybe with respect to second
aspect.

Before we introduce arrow categories we want to recall some important concepts and
constructions within Dedekind categories. For more details on these constructions we
refer to [13–16].

An order relation E : A � A is a relation that is reflexive, transitive, and antisymmet-
ric, i.e., it satisfies IA � E, E; E � E, and E�E� � IA. For a given relation X : B � A
it is possible to compute the upper bounds or lower bounds for each row of X, i.e., of
the set of elements related to one b 
 B, by using a residual

ubdE�X� � X��E and lbdE�X� � X��E�.

Another important class of relations is given by maps. A map is a relation Q : A � B
that is univalent (or partial function), i.e., Q�; Q � IB, and total, i.e., IA � Q; Q�.

In the category Rel the empty set and singleton sets play an important role. The
empty set is a zero object, i.e., initial and terminal, in Rel. This can be characterized
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by the fact that the smallest relation on the empty set is equal to the greatest relation.
Therefore, we call an object 0 of a Dedekind category a zero object iff �00 � �00.
Singleton sets in Rel are terminal objects in the subcategory of maps. In Rel itself they
can be characterized as so-called units. A unit 1 is an object of a Dedekind category for
which I1 � �11 and �A1 is total for all objects A.

A relation v : 1 � A is called a vector. These relations represent a subset of A in an
abstract manner. Similarly, a map p : 1 � A represents an element of A. Such a relation
is called a point.

The abstract version of a cartesian product is given by a relational product.

Definition 2. The relational product of two objects A and B is an object A�B together
with two relations π : A � B � A and ρ : A � B � B so that the following equations
hold

π�; π � IA, ρ
�; ρ � IB, π

�; ρ � �AB, π; π
� � ρ; ρ� � IA�B.

Another important construction is based on forming the disjoint union of sets.

Definition 3. Let A and B be objects of a Dedekind category. An object A� B together
with two relations ι : A � A � B and κ : B � A � B is called a relational sum of A
and B iff

ι; ι� � IA, κ; κ
� � IB, ι; κ

� � �AB, ι
�; ι κ�; κ � IA�B.

Last but not least, the abstract version of subsets and/or the set of equivalence classes
is given by splittings.

Definition 4. Let A be an object of a Dedekind category and Ξ : A � A a partial
equivalence relation, i.e., Ξ is symmetric Ξ� � Ξ and idempotent Ξ;Ξ � Ξ. An object
B together with a relation R : B � A is called a splitting of Ξ iff R; R� � IA and
R�; R � Ξ.

In a Dedekind category one can identify the underlying lattice L of membership
values by the scalar relations on an object.

Definition 5. A relation α : A � A is called a scalar on A iff α � IA and �AA;α �
α;�AA.

The notion of scalars was introduced by Furusawa and Kawahara [10] and is equiv-
alent to the notion of ideals, i.e., relations R : A � B that satisfy �AA; R;�BB � R,
which were introduced by Jónsson and Tarski [9].

Notice that Rel has only two scalars �AA and IA. This shows again that Rel seen
as a category of fuzzy relations is based on the Boolean algebra of the truth values.
In addition, these two scalars are available in every Dedekind category indicating that
Rel is embedded in every Dedekind category of L-fuzzy relations. We call an L-fuzzy
relation R crisp iff R�x, y� 
 �0, 1� � L for all x and y.

The next definition introduces arrow categories, i.e., the basic theory for L-fuzzy
relations. Arrow categories add two operations to Dedekind categories. The relation
R� is the smallest crisp relation that contains R, and R� is the greatest crisp relation
included in R [17, 20, 21].
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Definition 6. An arrow categoryA is a Dedekind category with �AB � �AB for all A,
B and two operations � and � satisfying:

1. R�, R� : A � B for all R : A � B.
2. ��,� � forms a Galois correspondence, i.e., Q�

� R iff Q � R� for all Q,R : A � B.

3. �R�; S ��
�
� R��; S � for all R : B � A and S : B � C.

4. �Q � R��
�
� Q� � R� for all Q,R : A � B.

5. If αA � �AA is a non-zero scalar then α�A � IA.

A relation that satisfies R� � R, or equivalently R� � R, is called crisp. Notice that
the complete Heyting algebra of scalar relations on each object are isomorphic.

If α is scalar, then the relation �α�R�� is called the α-cut of R. If we identify the
scalar α with its corresponding element in L, then the α-cut for L-fuzzy relations can be
characterized by

�α�R���x, y� � 1 �� α � R�x, y�.

In fuzzy theory t-norms and t-conorms are essential for defining new operations for
fuzzy sets or relations. In [8] a generalization of these operations for arbitrary complete
lattices was introduced, called complete lattice-ordered semigroups. Given such an op-
eration � : L � L � L we may define a new meet or composition based operation on
L-fuzzy relations Q,R : A � B and S : B � C by

�Q�� R��x, y� � Q�x, y� � R�x, y� and �Q;� S ��x, z� �
�
y�B

Q�x, y� � S �y, z�.

In an abstract arrow category we require � to be defined on the complete Heyting al-
gebra of scalar elements. As shown in [19, 20] the corresponding operations on relations
are defined as follows.

Definition 7. Let Q,R be relations, � 
 ��, ; � such that Q � R is defined, and � the
operation of a complete lattice-ordered semigroup on the set of scalar relations. Then
we define

Q�� R :�
�

α,β scalars

�α � β�; ��α�Q�� � �β�R���.

We distinguish two kinds of commutative complete lattice-ordered semigroup op-
erations corresponding to either t-norms or t-conorms. If the neutral element of the
semigroup is equal to 1 (greatest element of the lattice) we call the operation a t-norm
like operation. t-norm like operations will be used together with � and ; to form new
operations on relations. If the neutral element of the semigroup is equal to 0 (smallest
element of the lattice) we call the operation a t-conorm like operation. These operations
will only be used together with �.

Notice that we also have residuals based on semigroup operations. They are defined
as the left (resp. right) adjoint of ;�. For more details on these constructions we refer
to [20].
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3 L-Fuzzy Databases and LFSQL

In this section we are going to define L-fuzzy databases and the language LFSQL.
The language can be used to create and update tables using a CREATE, INSERT and
DELETE statement and to retrieve information using a SELECT statement.

3.1 L-Fuzzy Databases

Similar to a regular database, a table (or relation) in a L-fuzzy database has objects (or
rows or tuples) and attributes (or columns). Each attribute, and, hence, each column,
has a set of possible values, the so-called domain, assigned to it. Each domain provides
some comparison operations. Unordered domains provide at least equality. Ordered
domains will also provide an order � and its corresponding strict order 	 with x � y
iff x 	 y or x � y. Finally, some domains may also provide one or more approximate
equalities �. This binary comparison operation returns a degree of membership from L
indicating up to which degree two given elements are consider to be equal. For example,
if we consider temperatures, we might consider two degree values as almost equal (high
degree) if the differ by less than 0.1	 and almost different (low degree) if they differ by
more than 2	. An approximate equality is required to be reflexive, i.e., x � x � 1 and
symmetric, i.e., x � y � y � x but not transitive [20].

An entry in a table at a row and column is an L-fuzzy subset of the domain of the
row. Notice that a single (crisp) value x is modeled by a fuzzy set that has degree 1 for
x and 0 otherwise.

In addition to tables, an L-fuzzy database uses a meta-database in which the lattice L,
any t-norm (resp. t-conorm) like operation on L, and the extend of the linguistic labels
are stored. The extent of a linguistic label is an L-fuzzy set. The meta-database may
also contain some pre-implemented characteristic functions, i.e., functions from certain
domains into L. These functions can later be used to define L-fuzzy subsets explicitly.
They can be parametric and depend heavily on the lattice L. For example, if L is the unit
interval and A a linear ordered set, then the meta-database should include functions that
generate triangular or trapezoidal fuzzy subsets B of A, i.e., the portion of the graph of
the membership function that is not equal to 0 takes the form of a triangle or a trapezoid
if visualized graphically.

Lingustic Labels and L-Fuzzy Sets: Besides L-fuzzy subsets that are stored in the
meta-database we may define them either explicitly or by modifying already existing
sets. Any of those sets can be used in statements where L-fuzzy subsets are required, or
they can be stored in the meta-database under a new name.

An L-fuzzy subset B of a domain D can be defined explicitly by the syntactic notation
�l1�d1, . . . , ln�dn�. This defines B as the set with the following characteristic function:

χB�x� �

�����
����

l1 iff x � d1,
...
...

ln iff x � dn.
0 otherwise
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Alternatively, an L-fuzzy set can be defined by using one of the pre-implemented func-
tions stored in the meta-database. If f is the name of such a function, then # f defines
the L-fuzzy set with characteristic function f .

There are two ways of obtaining new sets from previously defined sets. The first
method is only available for ordered domains. We may compute the lower or upper
bounds as already introduced in the previous section, i.e., lbd�m� (resp. ubd�m�) is the
set of lower bound (resp. upper bounds) of m with respect to the order of the domain.
Notice that we are using these constructions in the context of L-fuzzy set and relations
so that the set of lower or upper bounds is itself an L-fuzzy set. Both constructions can
be based on a t-norm like operation already stored in the meta-database, i.e., we might
write lbd��,m�.

The second method uses an approximate equality � defined on the domain. This
relation can be used to intensify or weaken the notion given by the set m. We use
extremely��,m� and very��,m� as intensifying and more or less��,m� and
roughly��,m� as weakening modifiers. These sets satisfy the following chain of in-
clusions

extremely��,m� � very��,m� � m � more or less��,m� � roughly��,m�.

As before, both operations, the residual and the composition, can be based on a t-
norm like operation defined on L.

3.2 LFSQL

The language LFSQL is inspired by SQL resp. FSQL [5–7]. In this paper we will define
and investigate the CREATE, the INSERT, the DELETE and a basic SELECT state-
ment. But first we study different comparison operations for L-fuzzy sets induced by a
binary comparator on elements.

L-Fuzzy Comparators: A binary comparator C such as �, � or 	 compares two
elements of a given set A, i.e., is a binary relation C : A � A. If we want to compare
L-fuzzy sets using C we have to lift the comparison from elements to sets. This can be
done in at least two ways. Given a binary comparator C we will follow the notation in
[7] and denote the possibility (fuzzy) comparison based on C by FC and the necessity
(fuzzy) comparison based on C by NFC. We want to motivate both constructions by
using regular sets instead of fuzzy sets. Assume that the age of John is modeled by
the set �19, 20, 21�, i.e., John could be 19 or 20 or 21. Furthermore, assume that we
consider any age 20 and below as young, i.e., the set Young is �0, 1, . . . , 19, 20�. If
we want to know whether John is young, we have to compare John’s age with the set
Young. A possibility comparison would ask the following question: Is it possible for
John to have an age that is considered as Young? In our example this is true since John
could be 19 (or 20) which is in the set Young. On the other hand, a necessity comparison
would ask the question: Are all ages that John could possibly have considered as Young?
This time the answer is no because John could be 21 which is not in the set Young.
Notice that a necessity comparator need not to be symmetric even if the underlying
binary comparator C is. In [5] it is mentioned that possibility comparators are more
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general than necessity comparators, i.e., a necessity comparison retrieves less tuples
than a possibility comparison. We will show in the next section that this is true if all
fuzzy sets are total. In FSQL all fuzzy sets are trapezoidal and, hence, normalized. The
latter is equivalent to total in the case that L � �0 . . .1�.

The CREATE Statement: The CREATE statement creates a new (empty) table based
on the attributes provided. With every attribute the user has to specify the domain used
for this attribute. Notice that an empty table has no row. The general form of the create
statement is

CREATE TABLE R�A1 : D1, . . . , An : Dn�;

where R is a new name for the table, A1, . . . , An are attribute names and D1, . . . ,Dn are
domains. Syntactic conditions for this statement are that the table name R must be new
and that all domains are defined. The attributes A1, . . . , An are local to the table. With
R.Ai we refer to the column of R corresponding to the attribute Ai. If Ai is unique in the
context given, we may drop the prefix R.

The INSERT Statement: The INSERT statement adds a new row to an already exist-
ing table. The syntax is

INSERT INTO R VALUES �m1, . . . ,mn�;

where R is the name of a table already defined with attributes A1, . . . , An and corre-
sponding domains D1, . . . ,Dn and m1, . . . ,mn are L-fuzzy subsets of D1, . . . ,Dn, re-
spectively. The L-fuzzy sets can be defined within the statement as introduced above or
refer to an already defined set in the meta-database using a linguistic label.

The WHERE Clause: A basic comparison in the language is of the form S LFC S �

where S , S � are either references to attributes of the form R.A or an L-fuzzy set and
LFC is an L-fuzzy comparator of the form FC or NFC for a binary comparison C.
As before an L-fuzzy set can be defined within the comparison or refer to the meta-
database. Comparisons are only considered syntactically correct if the domain used by
S and S � and of C are equal. A comparison always returns the degree up to which the
statement is true.

Multiple comparisons can be combined by logical connectives. A logical connec-
tive is either the keyword AND or OR refereing to the meet and join operation of L.
Alternatively, each version can be based on a t-norm like or t-conorm like operation,
respectively. The result of such an expression is an element of L that is obtained by ap-
plying the logical connectives to the elements returned by the individual comparisons.

In addition, any comparison Com, either basic or combined, can optionally be equip-
ped by a threshold, i.e., it can have the form Com THOLD l, where l is an element
from L. This statement returns the degree of Com if it is greater than or equal to l, 0
otherwise.

A WHERE clause consists of the keyword WHERE followed by a comparison. Some
examples are:

WHERE R.Age F� $Young THOLD l AND R.Height NF	 $Tall

WHERE �R.Age F� S .Age OR��� R.Height F� $S hort� THOLD l
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The DELETE Statement: The DELETE statement deletes tuples from a table. It has
the form

DELETE FROM R WHERE wh; ,

where R is the name of a table already defined and wh is a WHERE clause. This state-
ment deletes all tuples from R for which the degree returned by the WHERE clause wh
is not zero.

The SELECT Statement: A basic SELECT statement returns a new table created
from a number of given tables. From each table one row is selected in order to create a
row of the result. Each column of this new row takes its value from the corresponding
column in one of the old tables. From this new table only the rows that satisfies the
conditions of the WHERE clause in the SELECT statement (degree not equal to 0) are
kept. A basic SELECT statement has the form

SELECT S 1, . . . , S m FROM R1, . . . ,Rn WHERE wh; ,

where S 1, . . . , S m are selections of attributes from the tables R1, . . . ,Rn. A SELECT
statement is syntactically correct if the selections uniquely identify the table from which
the attribute is selected. Notice that the tables need not to be table names. They can be
tables recursively generated by nested SELECT statements.

Example: In this example, we will use the lattice D6 from Section 2. Recall that D6

can be used to model two aspects of membership. As outlined in the introduction we
will rate features of TV’s such as screen size with respect to the price (yes-no) and the
viewer experience (yes-no-maybe) using D6. Some information about TV’s is known
(or precise) which we indicate by a crisp value in the table as an abbreviation for the
corresponding crisp D6-fuzzy set. Some other information about certain TV’s is un-
known or imprecise. Notice that in the eaxmple we also use a weakening modifier on
the crisp set given by the value 60. In the following we have listed the two D6 fuzzy
sets $Big and $Small of screen sizes contained in the meta-database, the table of TVs
(left-side) and a SELECT statement and its resulting table (right-side):

$Big � �0�30in, 0�32in, 0�39in, a�40in, c�42in, b�50in, b�55in, b�58in, d�60in�

$Small � �a�30in, a�32in, a�39in, a�40in, c�42in, b�50in, 0�55in, 0�58in, 0�60in�

Brand Screen Weight
Suni $Big 75
LB 50in roughly(60)
SIMSANG $Small 60

Brand Screen Weight
Suni $Big 75
LB 50in roughly(60)

SELECT Brand, Screen, Weight FROM TVs

WHERE Size NF� 40in THOLD b AND Weight F� roughly(60);

The first TV satisfies the size condition because all values in $Big are included in the
elements greater or equal 40in (with degree 1). The last TV does not satisfy this condi-
tion because its screen size can be 30in with degree a which is not included in the set
or equal 40in (with degree 1), i.e., its screen size is not necessarily big.
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A Note on Inner Joins: Joins are used to combine two table into one within a SELECT
statement. A basic join clause has the form

R1 INNER JOIN R2 ON R1.Ai � R2.B j,

where R1 and R2 are tables and Ai and B j are attributes of R1 and R2, respectively, with
the same domain. This clause is equivalent to a SELECT statement. If R1 has attributes
A1, . . . , Am and R2 has attributes B1, . . . , Bn, then the statement

SELECT R1.A1, . . . ,R1.Ai
1,R1.Ai�1, . . . ,R1.Am,

R2.B1, . . . ,R2.B j
1,R2.B j�1, . . . ,R2.Bn

FROM R1,R2 WHERE R1.Ai F� R2.B j; ,

computes the inner join above.

3.3 Semantics of LFSQL

In this section we want to provide a semantics of LFSQL in an arrow category A.
We will require that all injections, projections, and splittings used are crisp relations.
This does not constitute a major restriction since crisp versions of these relational con-
struction do exist in most cases [18, 20]. In order to provide an adequate semantics, in
particular, in order to model domains, the lattice L and the meta-database, we require
the following items:

1. A is an arrow category with (crisp) relational products, sums, splittings, a zero
object and a unit.

2. The complete Heyting algebra of scalar elements of A is isomorphic to L. In par-
ticular, for every l 
 L we have a scalar I�l� inA.

3. For every domain D we have an object I�D� ofA, and for every element d 
 D we
have a crisp point I�d� : 1 � I�D�. In addition, we have:

(a) If D is ordered, then we have a crisp order relation I��� : I�D� � I�D� so that
d � d� iff I�d�; I���; I�d��� � �11.

(b) If D has an approximate equality �, then we have a relation I��� : I�D� �
I�D� so that d1 � d2 � l iff I�d1�; I���; I�d2�

� � I�l�.

Notice that the isomorphism between L and the scalar element of A implies that for
every t-norm � (resp. t-conorm) like operation in the meta-database there is a corre-
sponding operation on the scalars. In the remainder of this section we will identify both
operations.

If n is a natural number we will write I�n� for the object 1 � � � � � 1���
n
times

. Notice that

I�0� � 0 and that I�m �n� is isomorphic to I�m�� I�n� because products distribute over
sums. We will identify these objects.
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Semantics of L-Fuzzy Sets: If m is an L-fuzzy subset of D in LFSQL, then the seman-
tics of m is a vector �m� : 1 � I�D�. We model the part of the meta-database storing
L-fuzzy sets by a function σs that maps a name $m of an L-fuzzy subset of the domain
D to a relation σs�$m� : 1 � I�D�. Given such a function we define the semantics of
basic L-fuzzy sets by:

�$m��σs� � σs�$m�,

��l1�d1, . . . , ln�dn���σs� �
n�

i�1

�I�li�; I�di��,

�# f ��σs� �
�
d�D

�I� f �d��; I�d��.

Relation algebraically intensifying modifiers are computed using residuals, and
weakening modifiers are computed using composition [20]. Therefore, we define

�extremely��,m���σs� � ��m��σs��I�����I���,

�very��,m���σs� � �m��σs��I���,

�more or less��,m���σs� � �m��σs�; I���,

�roughly��,m���σs� � �m��σs�; I���; I���,

If a t-norm like operation is used, then the residual resp. the composition based on that
operation is used instead.

Semantics of Tables and Databases: If a table R has r rows and attributes A1, . . . , An

with domains D1, . . . ,Dn, then the semantics of a table is a relation �R� : I�r� �
I�D1� � � � � � I�Dn�. Notice that n-ary sums are obtained by iterating binary sums. We
will denote the injection from I�Di� into I�D1� � � � � � I�Dn� by ιi. This interpretation,
and the target object of it in particular, needs some explanation. Let us first consider the
non-fuzzy case. If R is a table in a regular (non-fuzzy) database, then R can be seen as
a finite set of tuples, i.e., as a finite subset of D1 � � � � � Dn. Relation algebraically this
can be modeled by either a point �R� : 1 � P�I�D1� � � � � � I�Dn��, where P�X� is an
abstract version of a power set construction, or a vector �R� : 1 � I�D1�� � � �� I�Dn�
or a function �R� : I�r� � I�D1� � � � � � I�Dn� since we deal with finite sets. If
the attributes store sets (fuzzy or non-fuzzy ones), then the target object within the
last option becomes P�I�D1�� � � � � � P�I�Dn��. It is well-known that this object is
isomorphic to P�I�D1� � � � � � I�Dn�� [15, 16]. Last but not least, having a function of
the form �R� : I�r� � P�I�D1� � � � � � I�Dn�� is equivalent to having a relation of the
form �R� : I�r� � I�D1� � � � � � I�Dn�.

With the interpretation above, projecting to an attribute Ai in a table R becomes the
converse of an injection, i.e., we have �R.Ai� � �R�; ι�i .

The semantics of a database is given by a function σt that maps table names to
the semantic of the table, i.e., with the conventions above we have σt�R� : I�r� �
I�D1� � � � � � I�Dn�. As usual, we denote by σt�Q�R� the update of σt at R by the
relation Q.
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Semantics of L-Fuzzy Comparators: It is well-known that comparators as described
in the previous section can be computed using composition (possibility) and the residual
(necessity). We want to illustrate this again by the previous example. If we denote the
vectors John.Age by J and Young by Y, then we have:

John.Age F� Young

� J; Y�

�
� 0 1 ��� 18 19 20 21 22 ���

0 0 � � � 0 1 1 1 0 � � �
�
;
� 0 1 ��� 18 19 20 21 22 ���

1 1 � � � 1 1 1 0 0 � � �
��

� �1�

John.Age NF� Young

� �Y�J��

�

�
� � 0 1 ��� 18 19 20 21 22 ���

1 1 � � � 1 1 1 0 0 � � �
�
�
� 0 1 ��� 18 19 20 21 22 ���

0 0 � � � 0 1 1 1 0 � � �
�	

�

� �0�

As already shown in [20] the operations generalize to the L-fuzzy case as expected. The
composition (possibility) operation will compute the least upper bound of all values
obtained as the degree of an element belonging to both sets, i.e., we have

v; w� �
�
x�A

�v�x� � w�x��.

The residual (necessity) operation computes the greatest lower bound of all values ob-
tained as the maximal degree of which an element belongs to the first set implies that it
belongs also to the second set, i.e., we have

w�v �
�

x�A

�v�x� � w�x��.

If the underlying binary comparison is not �, then the corresponding relation has to be
added in the composition resp. in the residual (see below).

We now define the semantics of a comparison S LFC S �. Recall that LFC is either a
possibility or a necessity comparator based on C and that S , S � are either selections of
the form R.Ai or an L-fuzzy sets. We define the semantics �S ��σs, σt� : I�r� � I�Di�
of a selection S by

�R.Ai��σs, σt� � �R.Ai��σt� � σt�R�; ι�i ,

�m��σs, σt� � �In�1; �m��σs�.

Based on this definition the semantics �S LFC S ���σs, σt� : I�r� � I�r� of a compari-
son S LFC S � is defined by

�S FC S ���σs, σt� � �S ��σs, σt�; I�C�; �S ��σs, σt�
� � IIr�,

�S NFC S ���σs, σt� � ���S ���σs, σt�; I�C�����S ��σs, σt��
�
� IIr�.
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Notice that the semantics of a comparison is a partial identity, i.e., a relation smaller or
equal that IIr�.

In addition, from X � ��R; C���Q�� we obtain X�; Q � R; C�, and, hence, X �

Q; Q�; X � Q; C; R� if Q is total. This verifies ��R; C���Q�� � Q; C; R�, i.e., that
possibility comparisons are more general than necessity comparisons as mentioned in
Section 3.

Semantics of the WHERE Clause: Combining the semantics of individual compar-
isons by AND or OR is simply based on � and , respectively. If a t-norm like or a
t-conorm like operation � is used for AND resp. OR, we use ��. Notice that even in
the case of OR we use �� (and not �). The usage of the basic relation algebraic op-
eration � in Definition 7 just guarantees a component-wise application of �. In fact, if
we restrict  to scalar relations and use it as a t-conorm like operation, then we obtain
�� �  [20].

Finally, a threshold is modeled by an α-cut, i.e.,

�Com THOLD l��σs, σt� � �I�l���Com��σs, σt��
�.

Since partial identities are closed under meets, joins (including the t-norm and/or
t-conorm based versions) and α-cuts, the semantics of a WHERE clause is also a partial
identity.

Semantics of Statements: The semantics of an L-fuzzy database is given by a function
σt that maps table names to the semantics of the table as described in the previous
section. As usual we denote by σt�Q�R� the update of σt at table name R by the relation
Q.

The semantics of the create statement modifies σt by adding a new (empty) relation:

�CREATE TABLE R�A1 : D1, . . . , An : Dn�; ��σt� � σt��0ID1������IDn��R�.

If �m1, . . . ,mn� are L-fuzzy sets we can define the semantics of the tuple given by

those sets by ��m1, . . . ,mn���σs� �
n�

i�1
�mi��σs�; ιi. With this notion we obtain from the

following diagram the semantics �R�m1, . . . ,mn���σs, σt� of the table in which the tuple
�m1, . . . ,mn� has been added to R, i.e., we have �R�m1, . . . ,mn���σs, σt� � ι

�;σt�R� 
κ�; ��m1, . . . ,mn���σs�.

r
σtR�

���
����

����
����

����

ι

��
r � 1

�Rm1,...,mn��σs,σt��� I�D1� � � � � � I�Dn�

1

κ

��

�m1,...,mn��σs�

���������������������
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Based on these definitions the semantics of an INSERT statement is as follows:

�INSERT INTO R VALUES �m1, . . . ,mn�; ��σs, σt�

� σt��R�m1, . . . ,mn���σs, σt��R�.

In the semantics of the DELETE statement we have to filter the rows that satisfy the
condition imposed by the WHERE clause. This can be done by using the splitting of
its semantics �wh��σs, σt�

�. In order to see that the object of this splitting is again the
interpretation of a natural number define A � �i 
 �1, . . . , r� � ιi; X; ι�i � �11� where
X is an abbreviation for �wh��σs, σt�

�. Now we want to show that the object I��A��,
i.e., the interpretation of the cardinality of A, together with the relation S �

�
i�A
ι�i ; ιi :

I��A�� � I�r� is a splitting of X. The property S ; S � � II�A�� follows immediately from
the properties of relational sums. In order to show that S �; S � X we first notice that
ιi; X; ι�i is crisp since ιi and X are crisp, and hence either equal to �11 or �11 because all
relations with source and target 1 are scalars. Furthermore, for i � j we have ιi; X; ι�j �
ιi; ι�j � �11. We conclude

X � �
n�

i�1

ι�i ; ιi�; X; �
n�

i�1

ι�i ; ιi� �
n�

i, j�1

ι�i ; ιi; X; ι�j ; ι j

�
n�

i�1

ι�i ; ιi; X; ι�i ; ιi see above

�
�
i�A

ι�i ; ιi ιi; X; ι�i �

�
�11 iff i � A
�11 � I1 iff i 
 A

�
�

i, j�A

ι�i ; ιi; ι
�
j ; ι j relational sums

� �
�
i�A

ι�i ; ιi�; �
�
j�A

ι�j ; ι j� � S ; S �.

Now, we define

�DELETE FROM R WHERE wh; ��σs, σt� � σt�S ;σt�R��R�.

In order to provide the semantics of a SELECT statement of the form

SELECT S 1, . . . , S m FROM R1, . . . ,Rn WHERE wh;

we first have to generate the new table that consists of the attributes S 1, . . . , S n from the
tables R1, . . . ,Rm. Suppose that S j1 , . . . , S jki

are the selections that are associated with
table Ri. If we denote the semantics of the table Ri reduced to the attributes S j1 , . . . , S jki

by Qi, then we have

Qi �
ki�

l�1

�Ri.S jl��σs, σt�; ιl : I�ri� � I�D j1� � � � � � I�D jki
�.
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With this abbreviation we obtain the semantics of the intermediate table as

Q �
n�

i�1

πi; Qi; ιi : I�
n�

i�1

ri� �
n�

i�1

I�D j1� � � � � � I�D ji1
�.

The semantics of the SELECT statement filters the rows that satisfy the WHERE clause

from this intermediate table similar to the DELETE statement. If S : I�r�� � I�
n�

i�1
ri�

splits the relation �wh��σs, σt�
�, then we define the semantics of the SELECT state-

ment by

�SELECT S 1, . . . , S m FROM R1, . . . ,Rn WHERE wh; ��σs, σt� � S ; Q.

4 Conclusion and Future Work

In this paper we have introduced L-fuzzy databases and the query language LFSQL.
An abstract semantics in terms of arrow categories was also provided. A prototype
implementation using the programming language Haskell that is based on the formal
semantics has been developed. Further details on the language and its implementation
can be found in [1, 3].

There are multiple ways to extend the work presented in this paper. We want to
outline three of them. The language can be extended to include more features that
are useful in practical applications. For example, FSQL has a special function CDEG
that applies to attributes and computes the compatibility degree of conditions involving
these attributes. This value can also be added to the list of selections in a SELECT state-
ment. The semantics of this component is immediate since the compatibility degree is
already available in the semantics of the WHERE clause. Further extensions include
fuzzy quantifiers, joins, additional comparisons and ORDER, HAVING and GROUP
clauses.

Another option is a thorough investigation of functional dependencies based on the
semantics provided here. The fuzzy case allows for several generalizations of the notion
of a functional dependency. Each of them can be investigated including correct and
complete set of axioms for them.

Last but not least, several methods of data mining could be explored in the context
of L-fuzzy databases.
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Abstract. Automatic text categorization is still a very important re-
search topic. Typical applications include assisting end-users in archiv-
ing existing documents, or helping them in browsing existing corpus of
documents in a hierarchical way. Text categorization is usually composed
of two main steps: keyword extraction and classification. In this paper, a
corpus of documents is represented by a binary relation linking each doc-
ument to the words it contains. From this relation, the Hyper Rectangle
Algorithm extracts the list of the most representative words in a hierar-
chical way. A hyper-Rectangle associated to an element of the range of a
binary relation is the union of all non-enlargeable rectangles containing
it. The extracted keywords are fed into the random forest classifier in
order to predict the category of each document. The method has been
validated on the popular Reuters 21578 news articles database. Results
are very promising and show the effectiveness of the Hyper Rectangular
method in extracting relevant keywords.

Keywords: Hyper Rectangular Coverage, Text categorization, Random
forests.

1 Introduction

With the exponential increase of Internet content, automatic text classification
has become a very active research area. Automatic text classification has many
applications including news articles classification, structuring of large online
corpora, spam emails filtering, webpage classification, anomaly detection and
authentication.

In this paper, a corpus is initially represented by a binary relation R linking
each document (i.e. objects) to the words it contains (i.e. attributes). Naturally,
words are associated to several concepts with respect to some context represented
here by the binary relation R. As for example, in the working environment the
word “good” may be associated to the concept of students, instructor, or ad-
ministrators. In this paper, we assimilated a real concept to a non-enlargeable
rectangle in a relation (i.e. maximal rectangle or formal concept). Therefore, a
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word w is represented by the union HR(w) of the set of non-enlargeable rect-
angles involving it. The relation HR(w) is called hyper-rectangle associated to
word w. The weight of a word w is calculated by a metric applied on the hyper-
rectangle associated to w. Very often, few hyper-rectangles may cover the entire
domain. A multilevel browsing tree of words is derived from each corpus. Dif-
ferent coverage levels of the relation R are obtained from most generic levels to
most specific ones. The last level matches with a rectangular coverage of rela-
tion R (i.e. union of non-enlargeable rectangles covering relation R). Therefore,
most relevant representative keywords may be found using the hyper rectangular
segmentation method.

The remainder of this paper is structured as follows: Section 2 presents existing
methods related to text classification. Section 3 describes the hyper rectangle
keyword extraction method. Section 4 describes the classification method used
to predict the text categories. Section 5 presents experiments we conducted and
section 6 concludes this article and presents some future work perspectives.

2 Related Work

Several studies related to text categorization exist in the literature. In this section
we give an overview of the recent approaches and advances in this field.

Jiang et al. proposed a text categorization method based on a modified K-
nearest-neighbor algorithm which is combined with a constrained one pass clus-
tering algorithm [13]. The proposed algorithm is also incremental and scalable,
but the validation has only been done on a proprietary Chinese database and
may need some further validation on public databases in order to be compa-
rable with other approaches. Uğuz et al. proposed an information gain feature
selection method for reducing the number of features. Subsequently, genetic al-
gorithm and principal component analysis are applied for feature selection. The
authors then apply a k-nearest neighbor and decision trees algorithm to classify
the documents [19]. The method is efficient but can be improved by the intro-
duction of some more powerful classifiers or ensemble of classifiers. Yang et al.
also proposed a feature selection method in which the importance of each word is
comprehensively measured both in inter-category and intra-category [20]. Azam
et al. [2] compared term frequency and document frequency based feature selec-
tion metrics, they concluded that term frequency metrics are useful especially
for small feature sets. Yoshikawa et al. proposed a kernel-based discriminative
algorithm for the classification of bag-of-words data [21]. The algorithm achieves
87% on the WebKB database, 94% on the Reuters-21578 database and 60% on
the 20 Newsgroups database. Jia et al. proposed a feature voting scheme for text
classification [12]. The algorithm achieves 84.6% on the WebKB-4 database and
95.75% on the Reuters-R8 database. Lee et al. proposed an enhanced support
vector machine classification framework that uses an Euclidean distance function
which is reported to have low impact on the implementation of kernel function
and soft margin parameter C [15]. Kurian et al. showed that feature reduction
leads generally to an improved performance and that Latent Semantic Indexing
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is generally preferred over Principal Component Analysis [14]. Cardoso-Cachopo
et al. also showed that the combination of several classifiers generally leads to
an improved performance over a single classifier [7]. Li et al. proposed an im-
proved version of the back propagation neural network algorithm in order to
prevent it from being trapped into a local minimum [17]. A comparative study
by Aphinyanaphongs et al. [1] concluded that the optimal classifier depends on
the corpora and that there is no global optimal classifier.

To sum up, we can say that existing methods focus either on feature selection
approaches or classification approaches. Each developed method needs to be
adapted to a specific database in order to reach optimal results. In this study,
we propose a feature selection approach based on formal concept analysis which
extracts keywords in a hierarchical ordering of importance.

3 Hyper Rectangle Feature Extraction

In this section, first we briefly introduce Relation Algebra and Formal Con-
cept Analysis. For more in-depth introduction about theoretical foundations one
may refer to [18,8]. Second, we present the hyper rectangular feature extraction
method.

A corpus of documents can be represented by a binary relation R as a subset of
the Cartesian product of the set of documents by the set of words. The cardinality
of a relation is defined by the number of pairs it contains. The domain of R is
the list of documents (or objects) and the codomain of R is the list of words (or
attributes). A relation can be characterized by its cardinality r, the cardinality
of its domain d and the cardinality of its codomain c.

Formal Concept Analysis (FCA) [9] is a mathematical theory of data analysis
using formal contexts and concept lattices. It was introduced by Rudolf Wille
in 1984, and builds on applied lattice and order theory that were developed by
Birkhoff et al. [3].

Definition 1. A formal context (or an extraction context) is a triplet K =
(X,Y,R), where X represents a finite set of objects, Y a finite set of attributes
(or properties) and R is a binary (incidence) relation (i.e., as a subset of the
Cartesian product of the set of documents and the set of words). Each couple
(x, a) ∈ R expresses that the object x ∈ X has the attribute a ∈ Y .

Definition 2. The image of x by the relation R is defined as x.R = {a ∈
Y |(x, a) ∈ R}.

The image of a set X by the relation R is defined as X.R =
⋃

x∈X{a ∈
Y |(x, a) ∈ R}
Definition 3. The relative product or composition of two binary relations R
and R′ is R ◦R′ = {(e, e′)|∃t|((e, t) ∈ R) and ((t, e′) ∈ R′)}.
Definition 4. The converse of the relation R is R−1 = {(e, e′)|(e′, e) ∈ R}.
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Definition 5. The identity relation denoted I(A) is a binary relation on a set A
(i.e., it is a subset of the Cartesian productA×A), such that ∀a ∈ A, a.I(A) = {a}.
Definition 6. The cardinality of R is defined by: Card(R) = the number of
pairs (e, e′) ∈ R.

Definition 7. Let R be a binary relation defined between X and Y : A rectangle
of R is a Cartesian product of two non empty sets A ⊆ X and B ⊆ Y and
A×B ⊆ R, where A is the domain (also called objects), and B is the range (also
called attributes) of the rectangle. The rectangular closure of a binary relation
is: R∗ = X.R×R.Y .
A Rectangle A × B ⊆ R is called non enlargeable if: A × B ⊆ A′ × B′ ⊆ R ⇒
(A = A′) ∧ (B = B′). In terms of formal concept analysis, a non enlargeable
rectangle is called a formal concept.

Definition 8. Let K = (X,Y,R) be a formal context. If A and B are non-
empty sets, such that A ⊆ X and B ⊆ Y . The pair (A,B) is a formal concept if
and only if A×B is a non-enlargeable rectangle [10].

Definition 9. Let (X,Y,R) be a formal context and a ∈ Y an arbitrary at-
tribute. Let v be a vector such that v = a.R−1 × S, where S is the universal
set. The hyper rectangle denoted by Ha(R) is a sub-relation of R such that
Ha(R) = R∩ (v ◦ L).
Where L is the universal relation (L = S × S).
Ha(R) may be expressed differently as: Ha(R) = I(a.R−1) ◦ R.

The hyper rectangle associated to an element a is the union of all non-
enlargeable rectangles containing a. In formal concept analysis, a non-enlargeable
rectangle is also called a concept. Therefore a hyper rectangle is also called hyper
concept.

Definition 10. The weight of the hyper rectangle Ha(R) denoted W (Ha(R)) is
defined by a generalization of a metric introduced in [11]:

W (Ha(R)) = r
d∗c ∗ (r − (d+ c)).

Wherein r is the cardinality of Ha(R) (i.e. the number of pairs in the binary
relation Ha(R)), d is the cardinality of its domain, and c is the cardinality of its
codomain.

The quantity r
d∗c provides a measure of the density of the hyper rectangle,

whether the quantity (r − (d+ c)) is a measure of the economy of information.
The idea behind this metric is that, in the case of a concept having d objects

and c attributes, there are r = d ∗ c links (because every object is linked to
every attribute). However, instead of storing the whole d ∗ c links, one can store
d+ c links (d links between the concept and the objects and c links between the
concept and the attributes). Therefore, the quantity r − (d + c) represents the
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Fig. 1. Illustrating economy of information in terms of number of links. (a) Without
considering the concept. (b) After considering a concept.

economy of information or storage space. Figure 1 illustrates this notion for a
concept of 4 objects and 3 attributes.

A concept has a density of 1 but a hyper concept has a lower density. The
economy of information corresponding to a hyper concept can be approximated
by multiplying the quantity r − (d+ c) by the density r

d∗c .
In this proposed metric, generally higher weights reflect more generic words.

Definition 11. The Optimal Hyper Rectangle denoted maxHa(R) is the hyper
rectangle which has the maximum weight. That isWa(Ha(R)) ≥Wb(Hb(R))∀b 
=
a, b ∈ Cod(R).

Figure 2 shows the computation of hyper rectangles associated with each
attribute of an illustrative relation of eight documents and eight words. It shows
as well the corresponding weight of each hyper rectangle. Notice that the sixth
word has the maximum weight.

Definition 12. The Remaining Binary Relation is the relation R minus the
optimal Hyper Rectangle: Rm(R) = R−maxHa(R). The remaining relation is
useful for splitting a relation into a hierarchy of hyper rectangles.

Figure 3 illustrates the computation of the remaining relation of the example
shown in figure 2.
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Fig. 2. Computing Hyper Rectangles associated with each attribute and their corre-
sponding weight.
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Fig. 3. Computing the remaining relation.

The remaining binary relation undergoes the same splitting process. That
is, it will be split into the maximum hyper concept and the remaining binary
relation. This process is repeated in an iterative way until the coverage of the
full original relation. The process is subsequently run on each obtained hyper
concept in an iterative way in order to construct a browsing tree. The following
subsections describe this process in a more detailed way.

3.1 Hyper Rectangle Keyword Extraction Algorithm

The hyper rectangle keyword extraction algorithm is shown in Algorithm 1.
The algorithm takes as input a binary relation R which represents a list of
documents. The lines of the binary relation correspond to documents (or objects)
and columns to words (or attributes). Pair (o, a) belongs to R if and only if
document o contains word a.

If m is the number of objects and n the number of attributes. The complexity
of this algorithm is O((mn)3).

Figure 4 illustrates a part of a hyper rectangles tree associated with a small
set of documents. Each depth (or level) in the browsing tree will therefore have
a certain number of keywords associated with it.

Figure 5 illustrates the steps of the keyword extraction algorithm on an illus-
trative example. Note that the hyper rectangles keyword extraction algorithm is
run on each document category as it will be shown in the next section.
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Algorithm 1. Hyper Rectangles Keywords Extraction
– Input: Binary relation R representing a set of preprocessed files.
– Parameter: max_tree_depth maximum level of the hyper rectangles tree.
– Output: List of keywords.

1: procedure ComputeHyperRectangleKeywords(R, list_of_keywords)
2: list_of_keywords ← {}
3: relations_queue ← empty_queue
4: relations_queue.Enqueue(R)
5: while relations_queue �= empty_queue do
6: par_relation ← relations_queue.Dequeue() 	 parent relation
7: current_relation ← par_relation
8: do
9: Split current_relation into maxHa and Rm

10: best_attribute ← attribute(maxHa)
11: list_of_keywords.Add(best_attribute)
12: child_relations(par_relation).Add(maxHa)
13: current_relation ← Rm

14: while current_relation is not empty
15: if tree_depth(par_relation) < max_tree_depth then
16: for all r in child_relations(par_relation) do
17: relations_queue.Enqueue(e)
18: end for
19: end if
20: end while
21: return list_of_keywords
22: end procedure

Fig. 4. Hyper Rectangles Tree.
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Fig. 5. Running the hyper concept keyword extraction algorithm of a small illustrative
relation.

4 Classification

For a given depth d of the hyper rectangles tree and for each category i of docu-
ments in a corpus A, a set of keywords Sd(i) is obtained using the hyper rectan-
gular keyword extraction algorithm. The union Sd of those sets is the total set of
keywords which will be used in order to detect the category of unseen documents.

Sd =
⋃

i∈A Sd(i).
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The size of Sd increases with the considered depth d of the hyper rectangles
tree. Note also that there might be some intersections between the sets corre-
sponding to different categories.

In order to be fed to a classifier, each document o in A is represented as
a binary feature vector v in which each feature represents whether or not the
document o contains the word w (for all words w ∈ Sd).

Several classification algorithms exist. Some classifiers are known to be effi-
cient but very sensitive to outliers. Some other classifiers are less sensitive to
outliers but their performance is very weak. In this study, we used the random
forest classifier which is a strong classifier and not very sensitive to outliers [4].

Random forests is an ensemble learning method for classification that operates
by constructing a multitude of decision trees at training time and outputting the
class that is the mode of the classes output by individual trees. Each decision
tree is constructed as follows:

– If the number of cases in the training set is N , sample n cases such as n < N
at random but with replacement from the original data. This sample will be
the training set for growing the tree.

– If there are M input variables, a number m < M is specified such that at
each node, m variables are selected at random from M and the best split on
these m variables is used to split the node. Value m is held constant during
the forest growing.

– Each tree is grown to the largest extent possible. There is no pruning.

The random forest classification algorithm outputs for each feature vector the
most probable category to which it belongs.

5 Experiments

5.1 Database Description

In this paper, we used the Reuters-21578 dataset which is a widely used dataset
for text categorization [16]. In order to ensure reproducibility of the results, we
used the same experimental setup introduced by Ana Cardoso-Cachopo [5,6].
This database contains 7674 news articles ranging into 8 different categories.
5485 articles are used in the training set and the remaining 2189 articles are
used in the test set.

5.2 Results

The keywords extracted from each category in the training set are used as fea-
tures and fed to a random forest classifier with 1000 random trees. Figure 6
illustrates the correct classification rates for increasing depth of the hyper rect-
angles tree.
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Fig. 6. Classification results for varying hyper rectangles tree depth.

5.3 Discussion

The correct classification rates reaches its maximum 95.61% at depth 5 and then
slowly drops because of the large increase of the number of irrelevant keywords
introduced at the deep levels of the hyper rectangles tree. Those keywords are
not useful for classification because they are not enough generic to represent any
document category.

Depth 5 of the hyper rectangules tree is therefore used in the subsequent
results of this paper.

Figure 7 illustrates the number of keywords obtained for each depth of the
hyper rectangles tree. Generally speaking, the number of keywords becomes sta-
ble after a certain depth of the hyper rectangles tree (when reaching the total
number of words). This specific depth greatly depends on the size of the corpus.

It is interesting to note that the accuracy depends on the number of training
examples. Table 1 shows the accuracy for each document category. It is clear that
the categories with high number of training examples are correctly classified with
high accuracy.

Finally, our method achieves comparable results with state-of-the-art methods
in terms of text categorization as illustrated in table 2.
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Table 1. Classification performance for each separate document category

Category # occurences Accuracy Precision Recall F-Measure
acq 2292 97.53% 94.09% 98.42% 97.97%
crude 374 99.54% 98.26% 93.39% 96.37%
earn 3923 98.77% 98.44% 99.08% 98.92%
grain 51 99.91% 100.00% 80.00% 88.85%
interest 271 98.58% 87.88% 71.60% 82.96%
money-fx 293 98.13% 81.08% 68.97% 81.00%
ship 144 99.41% 92.59% 69.44% 81.77%
trade 326 99.36% 87.65% 94.67% 96.96%
All 7674 95.61 % 92.50% 84.45% 90.60%
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Fig. 7. Classification results for varying hyper rectangles tree depth.
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Table 2. Classification accuracy compared with state-of-the-art methods

Method Accuracy
Our Method 95.61 %
Yoshikawa et al. [21] 94 %
Jia et al. [12] 96.12 %
Kurian et al. [14] 92.37 %
Cardoso-Cachopo et al. [7] 96.98 %
Lee et al. [15] 94.97 %

6 Conclusion

We have proposed a new method for document categorization based on keyword
extraction using the hyper rectangular method. Keywords are then fed into a
random forest classification algorithm. Categorization results suggest that this
method successfully extracts relevant keywords that can be used to determine
the category of documents successfully.

Comparison shows that our conceptual approach can lead to accurate results
which are comparable with state-of-the-art methods in document categorization.

Future work includes testing other ways of computing the weight metric which
reflect in a better way the notion of “gain of information”. Other weighting meth-
ods based on entropy metrics should also be tested and compared. Moreover,
our method needs to be further validated on larger datasets such as the News-
20 corpus as well as other datasets from other languages. We are also working
on the expansion of the hyper concept method from binary to fuzzy relations.
Finally, other classifiers need to be tested and combined in order to improve the
performance.
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Abstract. An optimization problem, which arises in various applica-
tions as that of minimizing the span seminorm, is considered in the frame-
work of tropical mathematics. The problem is to minimize a nonlinear
function defined on vectors over an idempotent semifield, and calculated
by means of multiplicative conjugate transposition. We find the minimum
of the function, and give a partial solution which explicitly represents a
subset of solution vectors. We characterize all solutions by a system of si-
multaneous equation and inequality, and exploit this characterization to
investigate properties of the solutions. A matrix sparsification technique
is developed to extend the partial solution to a wider solution subset, and
then to a complete solution described as a family of subsets. We offer
a backtracking procedure that generates all members of the family, and
derive an explicit representation for the complete solution. Numerical
examples and graphical illustrations of the results are presented.

Keywords: Tropical algebra, Idempotent semifield, Optimization prob-
lem, Span seminorm, Sparse matrix, Backtracking, Complete solution.

1 Introduction

Tropical (idempotent) mathematics focuses on the theory and applications of
semirings with idempotent addition, and had its origin in the seminal works pub-
lished in the 1960s by Pandit [Pan61], Cuninghame-Green [CG62], Giffler [Gif63],
Hoffman [Hof63], Vorob’ev [Vor63], Romanovskĭı [Rom64], Korbut [Kor65], and
Peteanu [Pet67]. An extensive study of tropical mathematics was motivated by
real-world problems in various areas of operations research and computer sci-
ence, including path analysis in graphs and networks [Pan61, Pet67], machine
scheduling [CG62, Gif63], production planning and control [Vor63, Rom64]. The
significant progress achieved in the field over the past few decades is reported in
several research monographs, such as ones by Kolokoltsov and Maslov [KM97],
Golan [Gol03], Heidergott et al. [HOvdW06], Gondran and Minoux [GM08],
Butkovič [But10], as well as in a wide range of contributed papers.

Since the early studies [Gif63, Hof63, Rom64, Pet67], optimization problems
that can be examined in the framework of tropical mathematics have formed a
notable research domain in the field. These problems are formulated to minimize

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 326–343, 2015.
DOI: 10.1007/978-3-319-24704-5_20
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or maximize functions defined on vectors over idempotent semifields (semirings
with multiplicative inverses), and may involve constraints in the form of tropical
linear equations and inequalities. The objective functions can be both linear and
nonlinear in the tropical mathematics setting.

The span (range) vector seminorm, which is defined as the maximum devi-
ation between components of a vector, presents one of the objective functions
encountered in practice. Specifically, this seminorm can serve as the optimiza-
tion criterion for just-in-time scheduling (see, e.g., T’kindt and Billaut [TB06]),
and finds applications in real-world problems that involve time synchronization
in manufacturing, transportation networks, and parallel data processing.

In the context of tropical mathematics, the span seminorm has been put
by Cuninghame-Green [CG79], and Cuninghame-Green and Butkovič [CGB04].
The seminorm was used by Butkovič and Tam [BT09] and Tam [Tam10] in a
tropical optimization problem drawn from machine scheduling. A manufacturing
system was considered, in which machines start and finish under some precedence
constraints to make components for final products. The problem was to find the
starting time for each machine to provide the completion times that are spread
over a shortest time interval. A solution was given within a combined framework
that involves two reciprocally dual idempotent semifields. A similar problem in
the general setting of tropical mathematics was examined by Krivulin in [Kri13],
where a direct, explicit solution was suggested. However, the results obtained
present partial solutions, rather than a complete solution to the problems.

Consider the tropical optimization problem formulated in [Kri13] as an ex-
tension of the problem of minimizing the span seminorm, and represent it in a
slightly different form to

minimize q−x(Ax)−p,

where p and q are given vectors, A is a given matrix, x is the unknown vector,
the minus in the superscript indicates conjugate transposition of vectors, and
the matrix-vector multiplications are thought of in the sense of tropical algebra.

The purpose of this paper is to extend the partial solution of the problem,
which is obtained in [Kri13] in the form of an explicit representation of a subset
of solution vectors, to a complete solution describing all vectors that solve the
problem. We combine the approach developed in [Kri04, Kri09, Kri12, Kri13,
Kri14, Kri15b, Kri15a] to reduce the problem to a system of simultaneous equa-
tion and inequality, with a new matrix sparsification technique to obtain all
solutions to the system in a direct, compact vector form.

We start with a brief overview of basic definitions, notation, and preliminary
results of tropical mathematics in Section 2 to provide a general framework for
the solutions in the later sections. Specifically, a lemma that offers two equivalent
representations for a vector set is presented, which is of independent interest.
In Section 3, we formulate the minimization problem to be solved, find the
minimum in the problem, and give a partial solution in the form of an explicit
representation of a subset of solution vectors. We characterize all solutions to
the problem by a system of simultaneous equation and inequality, and exploit
this characterization to investigate properties of the solutions.
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In Section 4, we develop a matrix sparsification technique, which consists in
dropping entries below a prescribed threshold in the matrix A without affecting
the solution of the problem. By combining this technique with the above char-
acterization, the partial solution obtained in Section 3 is extended to a wider
solution subset, which includes the partial solution as a particular case.

Section 5 focuses on the derivation of a complete solution to the problem. We
describe all solutions of the problem as a family of subsets of solution vectors,
and propose a backtracking procedure that allows one to generate all members
in the family. The section concludes with our main result, which offers an explicit
representation for the complete solution in a compact vector form.

Numerical examples and graphical illustrations are also included in the text
to provide additional insights into the results obtained.

2 Preliminary Results

In this section, we give a brief overview of the main definitions, notation, and
preliminary results used in the subsequent solution to the tropical optimization
problem under study. Concise introductions to and thorough discussion of trop-
ical mathematics are presented in various forms in a range of works, including
[KM97, Gol03, HOvdW06, ABG07, Lit07, GM08, SS09, But10]. In the overview
below, we mainly follow the results in [Kri09, Kri14, Kri15a, Kri15b], which offer
a unified framework to obtain explicit solutions in a compact form. For further
details, one can consult the publications listed before.

2.1 Idempotent Semifield

Let � be a nonempty set that is closed under two associative and commutative
operations, addition ⊕ and multiplication ⊗, which have their neutral elements,
zero � and identity �. Addition is idempotent to yield x ⊕ x = x for all x ∈ �.
Multiplication is invertible, which implies that each nonzero x ∈ � has an inverse
x−1 to satisfy the equality x⊗x−1 = �. Moreover, multiplication distributes over
addition, and has � as the absorbing element. Under these conditions, the system
〈�, �, �,⊕,⊗〉 is commonly referred to as the idempotent semifield.

The idempotent addition produces a partial order, by which x ≤ y if and only
if x ⊕ y = y. With respect to this order, the inequality x ⊕ y ≤ z is equivalent
to two inequalities x ≤ z and y ≤ z. Moreover, addition and multiplication are
isotone in each argument, whereas the multiplicative inversion is antitone.

The partial order is assumed to extend to a consistent total order over �.
The power notation with integer exponents is used for iterated multiplication

to define x0 = �, xp = x ⊗ xp−1, x−p = (x−1)p for any nonzero x and positive
integer p. Moreover, the equation xp = a is assumed to have a solution x = a1/p

for all a, which extends this notation to rational exponents, and thereby makes
the semifield algebraically closed (radicable).

In what follows, the multiplication sign ⊗ is dropped for simplicity. The re-
lation symbols and the minimization problems are thought of in terms of the
above order, which is induced by idempotent addition.
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As examples of the general semifield under consideration, one can take

�max,+ = 〈� ∪ {−∞},−∞, 0,max,+〉, �min,+ = 〈� ∪ {+∞},+∞, 0,min,+〉,
�max,× = 〈�+ ∪ {0}, 0, 1,max,×〉, �min,× = 〈�+ ∪ {+∞},+∞, 1,min,×〉,

where � is the set of real numbers and �+ = {x ∈ �|x > 0}.
Specifically, the semifield �max,+ has addition ⊕ given by the maximum, and

multiplication ⊗ by the ordinary addition, with the null � = −∞ and identity
� = 0. Each x ∈ � has its inverse x−1 equal to −x in standard notation. The
power xy is defined for any x, y ∈ � and coincides with the arithmetic product
xy. The order induced by addition corresponds to the natural linear order on �.

2.2 Matrix and Vector Algebra

We now consider matrices over � and denote the set of matrices with m rows
and n columns by �m×n. A matrix with all entries equal to � is called the zero
matrix. A matrix is row- (column-) regular, if it has no zero rows (columns).

For any matrices A = (aij), B = (bij), and C = (cij) of appropriate size,
and a scalar x, matrix addition, matrix and scalar multiplication are routinely
defined entry-wise by the formulae

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj , {xA}ij = xaij .

For any matrix A ∈ �
m×n, its transpose is the matrix AT ∈ �

n×m.
For a nonzero matrix A = (aij) ∈ �

m×n, the multiplicative conjugate trans-
pose is the matrix A− = (a−ij) ∈ �

n×m with the elements a−ij = a−1
ji if aji 
= �,

and a−ij = � otherwise.

Consider square matrices in the set �n×n. A matrix is diagonal if it has all
off-diagonal entries equal to �. A diagonal matrix whose diagonal entries are all
equal to � is the identity matrix represented by I.

Suppose that a matrix A is row-regular. Clearly, the inequality AA− ≥ I is
then valid. Moreover, if the row-regular matrix A has exactly one nonzero entry
in every row, then the inequality A−A ≤ I holds as well.

The matrices with only one column (row) are routinely referred to as the
column (row) vectors. Unless otherwise indicated, the vectors are considered
below as column vectors. The set of column vectors of order n is denoted by �n.

A vector that has all components equal to � is the zero vector denoted 0. If
a vector has no zero components, it is called regular.

For any vectors a = (ai) and b = (bi) of the same order, and a scalar x,
addition and scalar multiplication are performed component-wise by the rules

{a⊕ b}i = ai ⊕ bi, {xa}i = xai.

In the context of �2
max,+, these vector operations are illustrated in the Carte-

sian coordinate system on the plane in Fig. 1.
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Fig. 1. Addition (left), scalar multiplication (middle), and a linear span (right) of
vectors in �2

max,+.

The left picture shows that, in terms of �2
max,+, vector addition uses a rectan-

gle rule. The sum of two vectors is the upper right vertex of the rectangle formed
by the lines that are drawn through the end points of the vectors parallel to the
coordinate axes. Scalar multiplication is given in the middle by the shift of the
end point of a vector along the line at 45◦ to the axes.

Let x be a regular vector and A be a square matrix of the same order. It
is clear that the vector Ax is regular only when the matrix A is row-regular.
Similarly, the row vector xTA is regular provided that A is column-regular.

For any nonzero vector x = (xi) ∈ �n, the multiplicative conjugate transpose
is the row vector x− = (x−i ), where x

−
i = x−1

i if xi 
= �, and x−i = � otherwise.
The following properties of the conjugate transposition are easy to verify.

For any nonzero vectors x and y, the equality (xy−)− = yx− is valid. When
the vectors x and y are regular and have the same size, the component-wise
inequality x ≤ y implies that x− ≥ y− and vice versa.

For any nonzero column vector x, the equality x−x = � holds. Moreover, if
the vector x is regular, then the matrix inequality xx− ≥ I is valid as well.

2.3 Linear Dependence

A vector b ∈ �m is linearly dependent on vectors a1, . . . ,an ∈ �
m if there exist

scalars x1, . . . , xn ∈ � such that the vector b can be represented by a linear
combination of these vectors as b = x1a1⊕ · · · ⊕ xnan. Specifically, the vector b
is collinear with a vector a if b = xa for some scalar x.

To describe a formal criterion for a vector b to be linearly dependent on vectors
a1, . . . ,an, we take the latter vectors to form the matrix A = (a1, . . . ,an), and
then introduce a function that maps the pair (A, b) to the scalar

δ(A, b) = (A(b−A)−)−b.

The following result was obtained in [Kri04] (see also [Kri09, Kri12]).
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Lemma 1. A vector b is linearly dependent on vectors a1, . . . ,an if and only if
the condition δ(A, b) = � holds, where A = (a1, . . . ,an).

The set of all linear combinations of vectors a1, . . . ,an ∈ �
m form a linear

span of the vectors, which is closed under vector addition and scalar multipli-
cation. A linear span of two vectors in �

2
max,+ is displayed in Fig. 1 (right) as a

strip between two thick hatched lines drawn at 45◦ to the axes.
A system of vectors a1, . . . ,an is linearly dependent if at least one vector in

the system is linearly dependent on others, and linearly independent otherwise.
Two systems of vectors are considered equivalent if each vector of one system

is a linear combination of vectors of the other system. Equivalent systems of
vectors obviously have a common linear span.

Let a1, . . . ,an be a system that may include linearly dependent vectors. To
construct an equivalent linearly independent system, we use a procedure that
sequentially reduces the system until it becomes linearly independent. The pro-
cedure applies the criterion provided by Lemma 1 to examine the vectors one by
one to remove a vector if it is linearly dependent on others, or to leave the vector
in the system otherwise. It is not difficult to see that the procedure results in a
linearly independent system that is equivalent to the original one.

2.4 Representation Lemma

We apply properties of the conjugate transposition to obtain a useful result that
offers an equivalent representation for a set of vectors x ∈ �

n, which is defined
by boundaries given by a double inequality with vectors g,h ∈ �n.

Lemma 2. Let g be a vector and h a regular vector such that g ≤ h. Then, the
following statements are equivalent:

1. The vector x satisfies the double inequality

αg ≤ x ≤ αh, α > �. (1)

2. The vector x is given by the equality

x = (I ⊕ gh−)u, u > 0. (2)

Proof. We verify that both representations follow from each other. First, suppose
that a vector x satisfies double inequality (1). Left multiplication of the right
inequality at (1) by gh− yields gh−x ≤ αgh−h = αg. Considering the left
inequality, we see that x ≥ αg ≥ gh−x, and hence write x = x⊕ gh−x. With
u = x, we obtain x = u⊕ gh−u = (I ⊕ gh−)u, which gives (2).

Now assume that x is a vector given by (2). Take a scalar α = h−u and
write x = (I ⊕ gh−)u ≥ gh−u = αg, which provides the left inequality in
(1). Furthermore, it follows from the inequalities h ≥ g and hh− ≥ I that
x = (I ⊕ gh−)u ≤ (hh−⊕ gh−)u = (h⊕ g)h−u = hh−u = αh, and therefore,
the right inequality is valid as well. ��
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Fig. 2 offers a graphical illustration in terms of �2
max,+ for the representation

lemma. An example set defined by inequality (1) is depicted on the left. The
rectangle formed by horizontal and vertical lines drawn through the end points
of the vectors g = (g1, g2)

T and h = (h1, h2)
T shows the boundaries of the set

given by (1) with α = 0. The whole set is then represented as the strip area
between thick hatched lines, which is covered when the rectangle shifts at 45◦

to the axes in response to the variation of α.
According to representation (2), the same area is shown on the right as the

linear span of the columns in the matrix I ⊕ gh−, where gh− = (h−1
1 g, h−1

2 g).
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Fig. 2. An example set defined in �2
max,+ by conditions (1) (left) and (2) (right).

3 Tropical Optimization Problem

We start this section with the formulation of a general tropical optimization
problem, which arises in constrained approximation in the sense of the span
seminorm, and finds applications in optimal scheduling in just-in-time manufac-
turing [Kri13]. Below, we find the minimum value, and offer a partial solution
of the problem. Then, we reduce the problem to the solution of simultaneous
equation and inequality, and investigate properties of the solution set.

Given a matrix A ∈ �
m×n and vectors p ∈ �

m, q ∈ �
n, the problem is to

find regular vectors x ∈ �n that

minimize q−x(Ax)−p. (3)

First, we note that substitution of αx, where α 
= �, for the vector x does not
affect the objective function, and thus all solutions of (3) are scale-invariant.

A partial solution to the problem formulated in a slightly different form was
given in [Kri13]. We include the proof of this result into the next lemma for the
sake of completeness, and to provide a starting point for further examination.

Lemma 3. Let A be a row-regular matrix, p be nonzero and q regular vectors.
Then, the minimum value in problem (3) is equal to

Δ = (Aq)−p, (4)
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and all regular vectors x that produce this minimum are defined by the system

q−x = α, Ax ≥ αΔ−1p, α > �. (5)

Specifically, the minimum is attained at any vector x = αq, where α > �.

Proof. To obtain the minimum value of the objective function in problem (3), we
derive a lower bound for the function, and then show that this bound is strict.

Suppose that x is a regular solution of the problem. Since xx− ≥ I, we have
(q−x)−1x = (q−xx−)− ≤ q. Next, left multiplication by the matrix A gives
the inequality (q−x)−1Ax ≤ Aq, where both sides are regular vectors. Finally,
conjugate transposition followed by right multiplication by the vector p yields
the lower bound q−x(Ax)−p ≥ (Aq)−p = Δ > �.

With x = q, the objective function becomes q−x(Ax)−p = (Aq)−p = Δ,
and therefore, Δ is the minimum value of the problem.

Considering that all solutions are scale-invariant, we see that not only the
vector q, but also any vector x = αq with nonzero α solves the problem.

Furthermore, all vectors x that yield the minimum must satisfy the equation

q−x(Ax)−p = Δ.

To examine the equation, we put α = q−x > �, and rewrite it in an equivalent
form as the system

q−x = α, (Ax)−p = α−1Δ.

It is easy to see from the first equation that each solution x satisfies the
condition x ≤ αq. Indeed, after left multiplication of this equation by the vector
q, which is regular and hence qq− ≥ I, we immediately obtain x ≤ qq−x = αq.

Furthermore, the second equation can be written as two opposite inequalities
(Ax)−p ≤ α−1Δ and (Ax)−p ≥ α−1Δ. However, the condition x ≤ αq leads to
(Ax)−p ≥ α−1(Aq)−p = α−1Δ, which makes the second inequality superfluous.

Consider the first inequality (Ax)−p ≤ α−1Δ, and verify that it is equivalent
to Ax ≥ αΔ−1p. Left multiplication of the former inequality by the regular
vector αΔ−1Ax yields αΔ−1p ≤ αΔ−1Ax(Ax)−p ≤ Ax. At the same time,
left multiplication of the latter inequality by α−1Δ(Ax)− gives the former one.

As a result, the system under investigation reduces to the form of (5). ��
The following statement is an important consequence of Lemma 3.

Corollary 4. Let A be a row-regular matrix, p be nonzero and q regular vectors.
Then, the set of regular solutions of problem (3) is closed under addition.

Proof. Suppose vectors x and y are regular solutions of problem (3) such that
the vector x satisfies system (5), whereas y solves the system

q−y = β, Ax ≥ βΔ−1p, β > �.

Furthermore, we immediately verify that q−(x ⊕ y) = q−x ⊕ q−y = α ⊕ β
and A(x⊕y) = Ax⊕Ay ≥ (α⊕β)Δ−1p, which shows that the sum x⊕y also
obeys system (5), where α is replaced by α⊕ β. ��
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Note that an application of Lemma 2 provides problem (3) with another
representation of the solution x = αq in the form

x = (I ⊕ qq−)u, u > 0.

However, this representation is not sufficiently different from that offered by
Lemma 3. Indeed, considering that the vector q is regular, we immediately obtain
x = (I ⊕ qq−)u = qq−u = αq, where we take α = q−u.

4 Extended Solution via Matrix Sparsification

To extend the partial solution obtained in the previous section, we first sug-
gest an entry-wise thresholding (dropping) procedure to sparsify the matrix in
the problem. Then, we apply the sparsified matrix to find new solutions, and
illustrate the result with an example, followed by a graphical representation.

4.1 Matrix Sparsification

As the first step to derive an extended solution of problem (3), we use a proce-
dure that sets each entry of the matrix A to � if it is below a threshold value
determined by both this matrix and the vectors p and q, and leaves the en-
try unchanged otherwise. The next result introduces the sparsified matrix, and
shows that the sparsification does not affect the solution of the problem.

Lemma 5. Let A = (aij) be a row-regular matrix, p = (pi) be a nonzero vector,
q = (qj) be a regular vector, and Δ = (Aq)−p. Define the sparsified matrix

Â = (âij) with the entries

âij =

{
aij , if aij ≥ Δ−1piq

−1
j ;

�, otherwise.
(6)

Then, replacing the matrix A by Â in problem (3) does not change the solu-
tions of the problem.

Proof. We first verify that the sparsification retains the minimum value given by
Lemma 3 in the form Δ = (Aq)−p. We define indices k and s by the conditions

k = arg max
1≤i≤m

(ai1q1 ⊕ · · · ⊕ ainqn)−1pi, s = arg max
1≤j≤n

akjqj ,

and then represent Δ by using the scalar equality

Δ =
m⊕
i=1

(ai1q1 ⊕ · · · ⊕ ainqn)−1pi = (ak1q1 ⊕ · · · ⊕ aknqn)−1pk = (aksqs)
−1pk.

The regularity of A and q guarantees that ai1q1 ⊕ · · · ⊕ ainqn > � for all i.
Since p is nonzero, we see that Δ > � as well as that aks > � and pk > �.
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Let us examine an arbitrary row i in the matrix A. The above equality for
Δ yields the inequality Δ ≥ (ai1q1 ⊕ · · · ⊕ ainqn)−1pi, which is equivalent to
the inequality ai1q1 ⊕ · · · ⊕ ainqn ≥ Δ−1pi. Because the order defined by the
relation ≤ is assumed total, the last inequality is valid if and only if the condition
aijqj ≥ Δ−1pi holds for some j.

Thus, we conclude that each row i of A has at least one entry aij to satisfy
the inequality

aij ≥ Δ−1piq
−1
j . (7)

Now consider row k in the matrix A to verify the inequality akj ≤ Δ−1pkq
−1
j

for all j. Indeed, provided that akj = �, the inequality is trivially true. If akj > �,
then we have (akjqj)

−1pk ≥ (ak1q1 ⊕ · · · ⊕ aknqn)−1pk = Δ, which gives the
desired inequality. Since Δ = (aksqs)

−1pk, we see that row k has entries which
turns inequality (7) into an equality, but no entries for which (7) becomes strict.

Suppose that inequality (7) fails for some i and j. Provided that pi > �, we
write aij < Δ

−1piq
−1
j ≤ (ai1q1 ⊕ · · · ⊕ ainqn)q−1

j , which gives the inequality
aijqj < ai1q1 ⊕ · · · ⊕ ainqn. The last inequality means that decreasing aijqj
through lowering of aij down to � does not affect the value of ai1q1⊕· · ·⊕ainqn,
and hence the value of Δ ≥ (ai1q1 ⊕ · · · ⊕ ainqn)−1pi. Note that if pi = �, then
Δ does not depend at all on the entries in row i, including, certainly, aij .

We now verify that all entries aij that do not satisfy inequality (7) can be
set to � without affecting not only the minimum value Δ, but also the regular
solutions of problem (3). First, note that all vectors x = (xj) providing the
minimum in the problem are determined by the equation q−x(Ax)−p = Δ.

We represent this equation in the scalar form

(q−1
1 x1 ⊕ · · · ⊕ q−1

n xn)

m⊕
i=1

(ai1x1 ⊕ · · · ⊕ ainxn)−1pi = Δ,

which yields that ai1x1 ⊕ · · · ⊕ ainxn ≥ Δ−1(q−1
1 x1 ⊕ · · · ⊕ q−1

n xn)pi for all i.
Assume the matrix A to have an entry, say aij , that satisfies the condition

aij < Δ
−1piq

−1
j , and thereby violates inequality (7). Provided that pi = �, the

condition leads to the equality aij = �. Suppose that pi > �, and write

aijxj < Δ
−1piq

−1
j xj ≤ Δ−1(q−1

1 x1 ⊕ · · · ⊕ q−1
n xn)pi ≤ ai1x1 ⊕ · · · ⊕ ainxn.

This inequality implies that, for each solution of the above equation, the term
aijxj does not contribute to the value of the entire sum ai1x1 ⊕ · · · ⊕ ainxn
involved in the calculation of the left-hand side of the equation. Therefore, we
can set aij to � without altering the solutions of this equation.

It remains to see that setting the entries aij , which do not satisfy inequality

(7), to � is equivalent to the replacement of the matrix A by the matrix Â. ��
The matrix obtained after the sparsification procedure for problem (3) is

referred to below as the sparsified matrix of the problem.
Note that the sparsification of the matrixA according to definition (6) is actu-

ally determined by the threshold matrix Δ−1pq−, which contains the threshold
values for corresponding entries of A.
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Let Â be the sparsified matrix for A, based on the threshold matrix Δ−1pq−.
Then, it follows directly from (6) that the inequality Â− ≤ Δqp− is valid.

4.2 Extended Solution Set

We now assume problem (3) already has a sparsified matrix. Under this assump-
tion, we use the characterization of solutions given by Lemma 3 to improve the
partial solution provided by this lemma by further extending the solution set.

Theorem 6. Let A be a row-regular sparsified matrix of problem (3) with a
nonzero vector p and a regular vector q.

Then, the minimum value in the problem is equal to Δ = (Aq)−p, and at-
tained at any vector x given by the conditions

αΔ−1A−p ≤ x ≤ αq, α > �; (8)

or, equivalently, by the conditions

x = (I ⊕Δ−1A−pq−)u, u > 0. (9)

Proof. It follows from Lemma 3 and Lemma 5 that the minimum value, given
by Δ = (Aq)−p, and the regular solutions do not change after sparsification.

Considering that, by Lemma 3, all regular solutions are defined by system (5),
we need to show that each vector x, which satisfies (8), also solves (5).

Note that the set of vectors given by inequality (8) is not empty. Indeed, as
the matrix A is sparsified, the inequality A− ≤ Δqp− holds. Consequently, we
obtain Δ−1A−p ≤ Δ−1Δqp−p = q, which results in αΔ−1A−p ≤ αq.

By using properties of conjugate transposition, we have (Aqq−)− = q(Aq)−

and qq− ≥ I. Then, we write q−A− ≥ q−(Aqq−)− = q−q(Aq)− = (Aq)−.
After left multiplication of (8) by q−, we obtain

α = αΔ−1(Aq)−p ≤ αΔ−1q−A−p ≤ q−x ≤ αq−q = α,

and thus arrive at the first equality at (5).
In addition, it follows from the row regularity of A and the left inequality in

(8) that Ax ≥ αΔ−1AA−p ≥ αΔ−1p, which gives the second inequality at (5).
Finally, application of Lemma 2 provides the representation of the solution in

the form of (9), which completes the proof. ��
Example 7. As an illustration, we examine problem (3), where m = n = 2, in
the framework of the semifield �max,+ with the matrix and vectors given by

A =

(
2 0
4 1

)
, p =

(
5
2

)
, q =

(
1
2

)
.

We start with the evaluation of the minimum value by calculating

Aq =

(
3
5

)
, Δ = (Aq)−p = 2.
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Next, we find the threshold and sparsified matrices. With � = −∞, we write

Δ−1pq− =

(
2 1
−1 −2

)
, Â =

(
2 �
4 1

)
, Δ−1Â−pq− =

(
0 −1
−2 −3

)
.

The solution given by (8) is represented as follows:

αx′ ≤ x ≤ αx′′, x′ = Δ−1Â−p =

(
1

−1
)
, x′′ = q =

(
1
2

)
, α ∈ �.

By applying (9), we obtain the solution in the alternative form

x = Bu, B = I ⊕Δ−1Â−pq− =

(
0 −1
−2 0

)
, u ∈ �

2.

A graphical illustration of the solution is given in Fig. 3, which shows both
the known partial solution by Lemma 3 (left), and the new extended solution
provided by Theorem 6 (middle). In the left picture, the solution is depicted as
a thick line drawn through the end point of the vector q at 45◦ to the axes.

The extended solution in the middle is represented by a strip between two
hatched thick lines, which includes the previous solution as the upper boundary.
Due to (8), this strip is drawn as the area covered when the vertical segment
between the ends of the vectors x′ and x′′ shifts at 45◦ to the axes. Solution (9)
is depicted as the linear span of columns in the matrix B = (b1, b2).
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Fig. 3. Partial (left), extended (middle), and complete (right) solutions.

5 Complete Solution

We are now in a position to derive a complete solution to the problem. We start
with the description of all solutions as a family of sets, each defined by a matrix
obtained from the sparsified matrix of the problem. We discuss a backtracking
procedure that generates all members in the family of solutions. Finally, we
combine these solutions to provide a direct representation of a complete solution
that describes, in a compact closed form, all solutions to the problem.
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5.1 Derivation of All Solutions

The next result offers a simple way to describe all solutions to problem (3).

Theorem 8. Let A be a row-regular sparsified matrix for problem (3) with a
nonzero vector p and a regular vector q, and A be the set of matrices obtained
from A by fixing one nonzero entry in each row and setting the other ones to �.

Then, the minimum value in (3) is equal to Δ = (Aq)−p, and all regular
solutions x are given by the conditions

αΔ−1A−
1 p ≤ x ≤ αq, α > �, A1 ∈ A; (10)

or, equivalently, by the conditions

x = (I ⊕Δ−1A−
1 pq

−)u, u > 0, A1 ∈ A. (11)

Proof. It follows from Lemma 3 that all solutions of problem (3) are defined by
system (5). Therefore, to prove the theorem, we need to show that each solution
of system (5) is a solution of (10) with some matrix A1 ∈ A, and vice versa.

Consider any matrix A1 ∈ A, and note that it is row-regular. Moreover, the
inequalities A1 ≤ A and A−

1 ≤ A− hold. In the same way as in Theorem 6, we
see that since A−

1 ≤ A− ≤ Δqp−, the double inequality at (10) has solutions.
Let x be a solution to system (5). First, we take the inequality Ax ≥ αΔ−1p,

and examine every corresponding scalar inequality to determine the maximal
summand on the left-hand side. Clearly, there is a matrix A1 ∈ A with nonzero
entries that are located in each row to match these maximal summands. With
this matrix, the inequality can be replaced by A1x ≥ αΔ−1p without loss of
solution. At the same time, the matrix A1 has exactly one nonzero entry in each
row, and thus obeys the inequality A−

1 A1 ≤ I. After right multiplication by x,
we obtain x ≥ A−

1 A1x ≥ αΔ−1A−
1 p, which gives the left inequality in (10).

The right inequality in (10) directly follows from the equality q−x = α at (5).
Next, we suppose that the vector x satisfies (10) with some matrix A1 ∈ A,

and verify that x also solves system (5). By using the same arguments as in
Theorem 6, we have q−A−

1 ≥ (A1q)
− ≥ (Aq)−, and then obtain the equality

at (5). Considering that AA−
1 ≥ I, we take the left inequality at (10) to write

Ax ≥ αΔ−1AA−
1 p ≥ αΔ−1p, which yields the inequality at (5).

An application of Lemma 2 completes the proof. ��
Note that the solution sets defined by different matrices from the set A in

Theorem 8 can have nonempty intersection, as shown in the next example.

Example 9. Suppose that the matrix in Example 7 is replaced by its sparsified
matrix, and consider the problem with

A =

(
2 �
4 1

)
, p =

(
5
2

)
, q =

(
1
2

)
.

Since the sparsification of the matrix does not change the minimum in the
problem, we still have Δ = (Aq)−p = 2.
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Consider the set A, which is formed of the matrices obtained from A by
keeping only one nonzero entry in each row. This set consists of two matrices

A1 =

(
2 �
4 �

)
, A2 =

(
2 �
� 1

)
.

Let us write the solutions defined by these matrices in the form of (11). First,
we calculate the matrices

Δ−1A−
1 pq

− =

(
0 −1
� �

)
, Δ−1A−

2 pq
− =

(
0 −1
−2 −3

)
.

Using the first matrix yields the solution

x = B1u, B1 = I ⊕Δ−1A−
1 pq

− =

(
0 −1
� 0

)
, u ∈ �

2.

The second solution coincides with that obtained in Example 7 in the form

x = B2u, B2 = I ⊕Δ−1A−
2 pq

− =

(
0 −1
−2 0

)
, u ∈ �

2.

The first solution is displayed in Fig. 3 (right) as the half-plane below the
thick hatched line. Clearly, this area completely covers the strip region in Fig. 3
(middle), offered by the second solution.

5.2 Backtracking Procedure for Generating Solutions

Consider a backtracking search procedure that finds all solutions to problem (3)
with the sparsified matrix A in an economical way. To generate all matrices in
A, the procedure examines each row in the matrix A to fix one nonzero entry
in the row and to set the other entries to zeros. After selecting a nonzero entry
in the current row, the subsequent rows are modified to reduce the number of
remaining alternatives. Then, a nonzero entry in the next row of the modified
matrix is fixed if any exists, and the procedure continues repeatedly.

Suppose that every row of the modified matrix has exactly one nonzero entry.
This matrix is considered as a solution matrix A1 ∈ A, and stored in a solution
list. Furthermore, if the modified matrix has zero rows, it does not provide a
solution. In either case, the procedure returns to roll back all last modifications,
and to fix the next nonzero entry in the current row if there is any, or goes
back to the previous row otherwise. The procedure is completed when no more
nonzero entries in the first row of the matrix A can be selected.

To describe the technique used to reduce search, suppose that the procedure,
which has fixed one nonzero entry in each of the rows 1, . . . , i − 1, currently
selects a nonzero entry in row i of the modified matrix Ã, say the entry ãij in
column j, whereas the other entries in the row are set to zero.

Any solution vector x must satisfy the inequality Ãx ≥ αΔ−1p in system (5).
Specifically, the scalar inequality for row i, where only the entry ãij is nonzero,
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reads ãijxj ≥ αΔ−1pi, or, equivalently, xj ≥ αΔ−1ã−1
ij pi. If pi > �, then the

inequality determines a lower bound for xj in the solution under construction.
Assuming pi > �, consider the entries of column j in rows k = i + 1, . . . , n.

Provided that the condition ãkj ≥ ãijp
−1
i pk is satisfied for row k, we write

ãkjxj ≥ αãijp−1
i pkΔ

−1ã−1
ij pi ≥ αΔ−1pk, which means that the inequality at (5)

for this row is valid regardless of xl for l 
= j. In this case, further examination of
nonzero entries ãkl in row k cannot impose new constraints on the element xl in
the vector x, and thus is not needed. These entries can be set to zeros without
affecting the inequality, which may decrease the number of search alternatives.

Example 10. As a simple illustration of the technique, we return to Example 9,
where the initial sparsified matrix and its further sparsifications are given by

A =

(
2 �
4 1

)
, A1 =

(
2 �
4 �

)
, A2 =

(
2 �
� 1

)
.

The procedure first fixes the entry a11 = 2. Since a21 = 4 is greater than
a11p

−1
1 p2 = −1, the procedure sets a22 to �, which immediately excludes the

matrix A2 from further consideration, and hence reduces the analysis to A1.

5.3 Representation of Complete Solution in Closed Form

A complete solution to problem (3) can be expressed in a closed form as follows.

Theorem 11. Let A be a row-regular sparsified matrix for problem (3) with a
nonzero vector p and a regular vector q, and A be the set of matrices obtained
from A by fixing one nonzero entry in each row and setting the other ones to �.

Let B be the matrix, which is formed by putting together all columns of the
matrices B1 = I ⊕ Δ−1A−

1 pq
− for every A1 ∈ A, and B0 be a matrix whose

columns comprise a maximal linear independent system of the columns in B.
Then, the minimum value in (3) is equal to Δ = (Aq)−p, and all regular

solutions are given by
x = B0v, v > 0.

Proof. Suppose that the set A consists of k elements, which can be enumerated
as A1, . . . ,Ak. For each Ai ∈ A, we define the matrix Bi = I ⊕Δ−1A−

i pq
−.

First, note that by Theorem 8, the set of vectors x that solve problem (3) is
the union of subsets, each of which corresponds to one index i = 1, . . . , k, and
contains the vectors given by x = Biui, where ui > 0 is a vector.

We now verify that all solutions to the problem can also be represented as

x = B1u1 ⊕ · · · ⊕Bkuk, u1, . . . ,uk > 0. (12)

Indeed, any solution provided by Theorem 8 can be written in the form of (12).
At the same time, since the solution set is closed under addition by Corollary 4,
any vector x given by representation (12) solves the problem. Therefore, this
representation describes all solutions to the problem.
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With the matrix B = (B1, . . . ,Bk) and the vector u = (uT
1 , . . . ,u

T
k )

T , we
rewrite (12) in the form

x = Bu, u > 0,

which specifies each solution to be a linear combination of columns in B.
Clearly, elimination of a column that linearly depends on some others leaves

the linear span of the columns unchanged. By eliminating all dependent columns,
we reduce the matrix B to a matrix B0 to express any solution to the problem
by a linear combination of columns in B0 as x = B0v, where v > 0 is a vector,
and thus complete the proof. ��
Example 12. We again consider results of Example 9 to examine the matrices

B1 =

(
0 −1
� 0

)
, B2 =

(
0 −1

−2 0

)
.

We take the dissimilar columns from B1 and B2, and denote them by

b1 =

(
0
�

)
, b2 =

(−1
0

)
, b3 =

(
0

−2
)
.

Next, we put these columns together to form the matrix

B =
(
b1 b2 b3

)
=

(
0 −1 0
� 0 −2

)
.

Furthermore, we examine the matrix B1 = (b1, b2) to calculate δ(B1, b3), and
then to apply Lemma 1. Since we have

(b−3 B1)
− = B1(b

−
3 B1)

− =

(
0

−2
)
, δ(B1, b3) = (B1(b

−
3 B1)

−)−b3 = 0 = �,

the column b3 is linearly dependent on the others, and thus can be removed.
Considering that the columns b1 and b2 are obviously not collinear, none of

them can be further eliminated. With B0 = B1, a complete solution to the
problem is given by x = B0v, where v > 0, and depicted in Fig. 3 (right).

6 Conclusions

In many tropical optimization problems encountered in real-world applications,
it is not too difficult to obtain a particular solution in an explicit form, whereas
finding all solutions may be a hard problem. This paper was concerned with
a multidimensional optimization problem that arises in various applications as
the problem of minimizing the span seminorm, and is formulated to minimize
a nonlinear function defined on vectors over an idempotent semifield by a given
matrix. To obtain a complete solution of the problem, we first characterized all
solutions by a system of simultaneous vector equation and inequality, and then
developed a new matrix sparsification technique. This technique was applied to
the description of all solutions to the problem in an explicit compact vector form.

The extension of the characterization of solutions and sparsification technique
proposed in the paper to other tropical optimization problems may be of partic-
ular interest and present important directions for future work.
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[But10] Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer
Monographs in Mathematics. Springer, London (2010)

[CG62] Cuninghame-Green, R.A.: Describing industrial processes with inter-
ference and approximating their steady-state behaviour. Oper. Res.
Quart. 13, 95–100 (1962)

[CGB04] Cuninghame-Green, R.A., Butkovič, P.: Bases in max-algebra. Linear
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Abstract. We use an algebra of preference strict-orders to give a formal
derivation of the standard Block-Nested Loop (BNL) algorithm for com-
puting the best or maximal objects w.r.t. such an order. This derivation
is presented in terms of antichains, i.e., sets of mutually incomparable
objects. We define an approximation relation between antichains that
reflects the steps taken by the BNL algorithm. This induces a semilat-
tice and the operator computing the maximal objects of a subset can be
viewed as a closure operator in an associated pre-ordered set and hence
yields a characterisation of antichains in terms of a Galois connection.

Keywords: Preference relations, Maximal objects, Block-nested loop
algorithm, Lattice theory, Galois connections.

1 Introduction

The motivation for this work arose in the area of preference databases (see [7]).
Classical databases had supported only queries with so-called hard constraints,
by which the objects sought in the database are clearly and sharply characterised.
Hence, if there are no exact matches the empty result set is returned, which is
often very frustrating for users. As a remedy, over the last decades queries with
soft constraints have been studied. These constraints arise from a formalisation
of the user’s preferences in the form of partial strict-orders.

For instance, a person wanting to have a vacation may prefer inexpensive ho-
tels closer to the beach over expensive ones further off. This could be formalised
as the following preference relation ≺ between tuples s, t:

s ≺ t ⇔df (t.prize < s.prize ∧ t.dist ≤ s.dist) ∨
(t.prize ≤ s.prize ∧ t.dist < s.dist)

A query with such a preference order may then return the set of “best” or max-
imal objects found in the search space. As usual in partial orders, the maximal
objects are pairwise incomparable, i.e., form an antichain.

If the search space has two dimensions, like in the above example, it can be
depicted in a 2D rectangular coordinate system. The maxima then are the end
points of a stair-case like shape, a.k.a. the “skyline” [1], see Fig. 1.

In earlier papers [8, 7] we have developed an algebraic calculus for reasoning
about the set a # p of maximal objects in a set p w.r.t. a preference relation a,
independent of the special application area of databases. In the present paper

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 344–361, 2015.
DOI: 10.1007/978-3-319-24704-5_21
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Fig. 1. A skyline diagram

we extend these results by a number of additional ones. As a test case we give
a derivation of the standard Block-Nested Loop (BNL) algorithm (e.g. [1]) for
computing the maximal objects. To the best of our knowledge this is the first
calculational treatment of that algorithm. A closer analysis exhibits that there
is an approximation order between antichains underlying that algorithm which
even induces a semilattice structure. While, w.r.t. the inclusion order, the max-
ima operator a # p is antitone (i.e., monotonically decreasing) in a, it is neither
isotone (i.e., monotonically increasing) nor antitone in p. Fortunately, isotony
can be recovered by passing to the approximation order. Last, the maxima op-
erator can be viewed as a closure operator in an associated preordered set and
hence yields a characterisation of antichains in terms of a Galois connection.

The paper is structured as follows. In Sect. 2 we recapitulate basic notions
about preorders and orders as well as the algebraic notions in terms of semirings
that underlie our calculus. Sect. 3 presents basic results about the algebraic
representation of the maxima operator. Next to new properties concerning the
relation between what we call normality of a strict-order and its noetherity, we
show a couple of auxiliary results for the following sections. Sect. 4 provides
various characterisations of antichains and properties concerning the maxima
of a union of sets. In Sect. 5 we give the announced calculational derivation of
the BNL algorithm. Sect. 6 presents an approximation order between antichains
and shows that it induces a semilattice as well as some results on isotony and
suprema preservation of the maxima operator. The BNL algorithm is shown to
construct an ascending chain of antichains w.r.t. that order. In Sect. 7 we then
prove that a modified version of the approximation order exhibits the maxima
operator as a closure operator in a preordered set and hence as an adjoint in a
Galois connection. Since both closures and Galois connections are usually only
dealt with in partial orders, we provide the necessary results on the preorder
case, partially in an Appendix. The paper finishes with a brief conclusion and
outlook in Sect. 8.
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2 Preliminaries

2.1 Preorders and Partial Orders

A preorder is a pair (A,≤), where A is a set and ≤ is a reflexive and transitive
binary relation on A. The relation ∼ defined by x ∼ y ⇔df x ≤ y ∧ y ≤ x is an
equivalence relation, called the equivalence induced by ≤. If ≤ is also antisym-
metric then (A,≤) is called an order ; in this case ∼ coincides with equality.

A useful tool for working with preorders are the rules of indirect inequality:

x ≤ y ⇔ (∀ z : z ≤ x ⇒ z ≤ y) , x ≤ y ⇔ (∀ z : y ≤ z ⇒ x ≤ z) .

The direction (⇒) needs transitivity of ≤, whereas (⇐) needs reflexivity. By
combining these, we obtain the rule of indirect equivalence:

x ∼ y ⇔ (∀ z : z ≤ x ⇔ z ≤ y) ⇔ (∀ z : x ≤ z ⇔ y ≤ z) .

2.2 Algebraic Notions

Throughout we assume an idempotent semiring (S,+, 0, ·, 1). This means that
+ and · are associative operators on set S, with neutral elements 0 and 1, resp.;
moreover, + is assumed to be commutative and idempotent, i.e., to satisfy a+a =
a for all a ∈ S. Finally, · is assumed to distribute through + in both arguments
and to preserve 0, i.e., 0 · a = 0 = a · 0.

Because of the properties of + one can define a partial order ≤ on S by
a ≤ b ⇔df a + b = b. It is called the natural order or subsumption order . It
induces an upper semilattice in which + is the binary supremum operator. If
that semilattice is even a complete lattice and · distributes through arbitrary
suprema then S is called a quantale.

A prominent example of an idempotent semiring, that is even a quantale, is
provided by the set of all binary relations over a set M , with union as + and
relational composition as ·. The roles of 0 and 1 are played by the empty relation ∅
and the identity relation I. The natural order coincides with relational inclusion.
Partial identity relations IN =df {(x, x) |x ∈ N} ⊆ I, a.k.a. coreflexives or
monotypes , can be used to encode subsets N ⊆M as relations.

Inspired by that, we model preference relations between database tuples ab-
stractly by general semiring elements a ∈ S and sets of database tuples by tests
p ≤ 1, analogous to the above partial identity relations. Tests p are required to
have a complement ¬p relative to 1, uniquely characterised by the conditions
p+ ¬p = 1 and p · ¬p = 0 = ¬p · p.

The set of all tests of S is denoted by test(S); it forms a Boolean algebra
with + as supremum and · as infimum, least element 0 and greatest element 1.
Between tests the order ≤ is the abstract counterpart of set inclusion. We define
the difference operator for p, q ∈ test(S) as p − q =df p · ¬q and assume that
it associates to the left. We also note that it is right-commutative, i.e., satisfies
p− q − r = p− r − q.
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An element p ∈ test(S) is called atomic if p 
= 0 and ∀ q ∈ test(S) : q ≤ p ⇒
q = 0 ∨ q = p. While general tests stand for sets of database tuples, atomic
tests correspond to single database tuples. Because of that we will frequently
use set-theoretic terminology when talking about them, such as “all objects in
p” and the like. Finally, we note that an atom x in a Boolean algebra satisfies
x ≤ p+ q ⇒ x ≤ p ∨ x ≤ q. In particular,

x 
≤ p ⇒ x ≤ ¬p . (1)

Tests are used to define the central operators of a modal semiring, namely
box and diamond which can be defined in a forward and backward form. In
the present note we will only use the forward diamond |a〉 : test(S) → test(S),
which can be axiomatised by

|a〉q ≤ p ⇔ ¬p · a · q ≤ 0 , |a · b〉q = |a〉|b〉q =df |a〉(|b〉q) .

Informally, the test |a〉q represents all database tuples that are a-related to (or
dominated by) some tuple in the set represented by q. Hence |a〉 can be viewed as
an algebraic form of the inverse image operator on binary relations. In particular,
the domain of element a can be defined as the inverse image of the largest test
1 as �a =df |a〉1.

A corresponding forward box operator |a] is defined as the De Morgan dual of
|a〉 by |a]q =df ¬|a〉¬q. It is an algebraic counterpart of Dijkstra’s wlp operator
and can be used to define an algebraic version of Hoare triples.

Diamond and box satisfy many useful laws (e.g. [3]). The most important ones
for diamond are additivity (and hence isotony) in both arguments:

|a+ b〉p = |a〉p+ |b〉p , |a〉(p+ q) = |a〉p+ |a〉q .

In fact, |a〉 preserves arbitrary suprema; if S is a quantale then | 〉 preserves
abitrary suprema in both arguments.

If the underlying semiring is a Kleene algebra, i.e., has an operation ∗ for finite
iteration with the standard axioms (e.g. [6]), we have the unfold and induction
rules for the diamond of a starred element:

|a∗〉p = p+ |a〉|a∗〉p , (star-dia-unfold)

p ≤ q ∧ |a〉q ≤ q ⇒ |a∗〉p ≤ q . (star-dia-induct)

3 Strict-Orders and Maxima

Definition 3.1. An element a is called d-transitive (“d” standing for “dia-
mond”) if all tests p satisfy |a〉|a〉p ≤ |a〉p. By the second diamond axiom this
is equivalent to |a · a〉p ≤ |a〉p. It is, however, more liberal than stipulating
a · a ≤ a; for the case of relations both formulations coincide. An element a is
called d-irreflexive if for all atomic tests x we have x · |a〉x ≤ 0. A d-transitive
and d-irreflexive element is called a strict-order .
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Corollary 3.2. For d-transitive a and test p, |a〉|a+ 1〉p = |a〉p = |a+ 1〉|a〉p.
Proof. We only show the first equation; the second one is symmetric. By dis-
tributivity of diamond, |1〉 being the identity, the assumption and the definition
of ≤ we have |a〉|a+ 1〉p = |a〉|a〉p+ |a〉|1〉p = |a〉|a〉p+ |a〉p = |a〉p. ��

In a Kleene algebra, for any d-transitive element a and test p,

|a∗〉p = |a+ 1〉p = |a〉p+ |1〉p = |a〉p+ p . (2)

Definition 3.3. The best or maximal objects w.r.t. an element a and a test p
are represented by the test

a # p =df p− |a〉p .

This can be understood as follows. The expression |a〉p, the inverse image
of p under preference element a, denotes the set of objects that are dominated
by some object in p. Hence p − |a〉p consists of the non-dominated and hence
maximal objects in p.

The following lemma collects useful properties of the maximality operator;
proofs can be found in [7].

Lemma 3.4. The following holds for arbitrary elements a, b and test p:

1. a # 0 = 0.
2. a # 1 = ¬�a.
3. �b ≤ �a ⇔ a # 1 ≤ b # 1.
4. a # p ≤ p.
5. a # (a # p) = a # p.
6. (a+ b) # p = (a # p) · (b # p).
7. b ≤ a ⇒ a # p ≤ b # p, i.e., # is antitone in its first argument.
8. 1 ≤ a ⇒ a # p = 0.

So far, we have not required any special properties of the elements a that
represent, e.g., preference relations. Instead of d-transitivity or d-irreflexivity we
need an assumption that such elements admit “enough” maximal objects. This
is expressed by requiring every non-maximal object to be dominated by some
maximal one. In a setting with finitely many objects, such as a database, and a
preference relation on them this property is always satisfied. We will treat the
case of infinite sets in Theorem 3.9 and Cor. 3.11 where we establish a connection
between the notions of normality and being noetherian.

Definition 3.5. An element a is called normal [7] if ∀ p : |a〉p ≤ |a〉(a # p),
meaning that every object dominated by some object of p is also dominated by
a maximal object of p. By a # p ≤ p and isotony of diamond this is equivalent to

∀ p : |a〉p = |a〉(a # p) . (3)

One of the most important applications of normality is the following law.
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Theorem 3.6. Let a be normal. Then a # (p+ q) = a # (a # p+ a # q).

This theorem paves the way for a distributed computation of maxima, as for
disjoint p and q the calculations a # p and a # q are independent. Early examples
are found in [2, 10], further ones again in [1]. For a proof of the theorem see [7];
it generalises from + to arbitrary existing suprema in test(S).

Next we present the announced connection between noetherity and the exis-
tence of maximal elements which will be used in Sect. 6.

Definition 3.7. An object a is called noetherian if, for all tests p,

a # p ≤ 0⇒ p ≤ 0 .

This definition can be understood as follows. By contraposition and leastness
of 0 it is equivalent to

p 
= 0⇒ a # p 
= 0 ,

which means that every non-empty p contains at least one maximal object (which
is the dual of the usual well-foundedness condition). In the relational case it is
therefore also equivalent to the absence of infinitely ascending chains. For details
see [4]. The following properties are straightforward by Boolean algebra.

Corollary 3.8. Assume an element a.

1. For arbitrary test p we have a # p ≤ 0 iff p ≤ |a〉p.
2. a is Noetherian iff for all tests p we have p ≤ |a〉p⇒ p ≤ 0.

Theorem 3.9. Let a ∈ S be noetherian and let a∗ be its reflexive and transitive
closure. Then for any q ∈ test(S) we have q ≤ |a∗〉(a#q). Informally, this means
that any point in the set abstractly represented by q is dominated w.r.t. a∗ by
some point in a # q.

Proof. q ≤ |a∗〉(a # q)
⇔ {[ Boolean algebra ]}
q − |a∗〉(a # q) ≤ 0

⇐ {[ noetherity of a and Corollary 3.8.2 ]}
q − |a∗〉(a # q) ≤ |a〉(q − |a∗〉(a # q))

⇔ {[ Boolean algebra ]}
q ≤ |a∗〉(a # q) + |a〉(q − |a∗〉(a # q))

⇔ {[ (star-dia-unfold) and distributivity ]}
q ≤ a # q + |a〉|a∗〉(a # q) + |a〉(q − |a∗〉(a # q))

⇔ {[ Boolean algebra and distributivity ]}
q − a # q ≤ |a〉(|a∗〉(a # q) + (q − |a∗〉(a # q))

⇔ {[ Boolean algebra ]}
q · |a〉q ≤ |a〉(|a∗〉(a # q) + q)

⇐ {[ lattice algebra ]}
|a〉q ≤ |a〉(|a∗〉(a # q) + q)
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⇐ {[ isotony of diamond ]}
q ≤ |a∗〉(a # q) + q

⇔ {[ lattice algebra ]}
TRUE .

��
Corollary 3.10. If a is noetherian and d-transitive then for all tests p, q we
have

q ≤ |a+ 1〉(a # q) ,
p ≤ |a+ 1〉q ⇔ a # p ≤ |a+ 1〉q .

Proof. The first claim follows from Th. 3.9 and (2).
For the second claim, (⇒) follows from a # p ≤ p. For (⇐) we have, by the

first claim, the assumption with isotony of diamond and finally d-transitivity of
a and hence of a+ 1 that p ≤ |a+ 1〉(a # p) ≤ |a+ 1〉|a+ 1〉q ≤ |a+ 1〉q. ��

This allows a much shorter proof of the following property from [7].

Corollary 3.11. A noetherian and d-transitive element is normal.

Proof. For arbitrary test q we obtain by Cor. 3.10, isotony of diamond and
Cor. 3.2 that q ≤ |a+1〉(a#q) ⇒ |a〉q ≤ |a〉|a+1〉(a#q) ⇔ |a〉q ≤ |a〉(a#q). ��

In [7] it is also proved that every normal element is noetherian and d-transitive.
We conclude with a further property of d-transitive elements.

Lemma 3.12. If a is d-transitive then for all p we have a # (|a+ 1〉p) = a # p.
Proof. a # (|a+ 1〉p)

= {[ definition of a # ]}
|a+ 1〉p− |a〉|a+ 1〉p

= {[ Cor. 3.2 ]}
(|a〉p+ p)− |a〉p

= {[ right distributivity of − ]}
(|a〉p− |a〉p) + (p− |a〉p)

= {[ Boolean algebra ]}
p− |a〉p

= {[ definition of a # ]}
a # p .

��

4 Antichains

An antichain is a set M of objects of a partially ordered set such that any two
objects of M are incomparable. Equivalently, M is an antichain if it coincides
with its set of maximal elements, characterised algebraically as follows.
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Definition 4.1. Given a semiring object a, a test p is an a-antichain if p = a#p,
i.e., if p is a fixed point of the operator a #. The set of all a-antichains is denoted
by AC(a). By Lm. 3.4.1, 0 ∈ AC(a) for every a. When a is clear from the context
we will just write “antichain” instead of “a-antichain”.

Lemma 4.2. p is an antichain ⇔ p ≤ ¬|a〉p ⇔ p · |a〉p ≤ 0. In particular, if a
is d-irreflexive then every atomic test is an antichain.

Proof. By the definition of #, order theory, definition of −, · coinciding with
infimum on tests, reflexivity of ≤ and Boolean algebra,

p = a # p ⇔ p = p− |a〉p ⇔ p ≤ p− |a〉p ⇔
p ≤ p ∧ p ≤ ¬|a〉p ⇔ p ≤ ¬|a〉p ⇔ p · |a〉p ≤ 0 .

��
Corollary 4.3. AC(a) is downward closed, i.e., p ∈ AC(a) ∧ q ≤ p ⇒ q ∈
AC(a).

Proof. By isotony we have q · |a〉q ≤ p · |a〉p ≤ 0. ��
Lemma 4.4. Consider tests p, q. Then p + q is an antichain iff p and q are
antichains and p · |a〉q ≤ 0 ∧ q · |a〉p ≤ 0.

Proof. p+ q antichain

⇔ {[ by Lm. 4.2 ]}
(p+ q) · |a〉(p+ q) ≤ 0

⇔ {[ distributivity ]}
p · |a〉p ≤ 0 ∧ p · |a〉q ≤ 0 ∧ q · |a〉p ≤ 0 ∧ q · |a〉q ≤ 0

⇔ {[ by Lm. 4.2 ]}
p, q antichains ∧ p · |a〉q ≤ 0 ∧ q · |a〉p ≤ 0 .

��
Lemma 4.5. For p, q ∈ AC(a) we have a # (p+ q) = (p− |a〉q) + (q − |a〉p).
Proof. a # (p+ q)

= {[ definition of # ]}
(p+ q)− |a〉(p+ q)

= {[ distributivity ]}
(p+ q)− (|a〉p+ |a〉q)

= {[ De Morgan ]}
(p+ q)− |a〉p− |a〉q

= {[ distributivity and right-commutativity of − ]}
(p− |a〉p− |a〉q) + (q − |a〉q − |a〉p)

= {[ p, q antichains and Lm. 4.2 ]}
(p− |a〉q) + (q − |a〉p) .

��
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5 Deriving the BNL Algorithm

We now give an algebraic, calculational derivation of the BNL algorithm in [1]
for computing the maximal objects of a set. For this, we assume that the test
algebra of the underlying semiring is finite and hence atomic, i.e., every test is
the sum of the atoms below it.

Consider a test r that represents all available tuples in a database and let a
be a fixed strict-order representing a preference relation. The task is to compute
a # r, i.e., a test representing the set of all a-maximal objects in r.

A common technique for deriving an algorithmic solution of a specification is
to make a constant of the specification into a parameter and then calculate an
inductive or recursive version of the generalised specification.

Here we make r into a parameter called u. So for test u we define the function
ma(u) that computes the maxima of u w.r.t. preference a as

ma(u) =df a # u .

The aim is now to develop a recursive version of the function ma by induction
on the size of the parameter u. By the assumptions of finiteness and atomicity
the size |u| of u can be defined as the cardinality of the set of atoms below u.

Base Case |u| = 0. Then u = 0 and we have ma(0) = 0− |a〉0 = 0.

Inductive Case. Choose an atomic test x ≤ u and set v =df u − x. By the
definitions, Th. 3.6, d-irreflexivity of a, atomicity of x, and the definition of ma:

ma(u)= a # (x+ v)= a # (a # x+ a # v)= a # (x+ a # v)= a # (x +ma(v)) .

Now we observe that a # v is an antichain and define an auxiliary function

inc(x, p) =df a # (x+ p) ,

where x is an atomic test and p an antichain. Then we can continue the above
derivation to obtain ma(u) = inc(x,ma(v)).

Altogether, we have derived the recursion

ma(u) = if u = 0 then 0
else choose atom x ≤ u in

inc(x,ma(u− x)) .

Our original task is now solved using the call ma(r). We will transform this
recursion into a simpler one in Sect. 6.

Next we derive a recursive version of the function inc(x, p). The parameter p
is frequently called the (working) window . It contains candidates for objects of
the overall maxima set and is incrementally adapted as the single tuples x are
inspected in turn.

Base Case |p| = 0 and hence p = 0: we have inc(x, 0) = a # (x+0) = a # x = x.

Inductive Case: choose an atomic test y ≤ p and set q =df p− y.
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Subcase 1: x ≤ |a〉y, i.e., x is dominated by y. Therefore x cannot be maximal in
r and can be discarded. Let us show this formally. First, by isotony of diamond,
x ≤ |a〉p, since y ≤ p, and hence x − |a〉p ≤ 0 by Boolean algebra. Moreover,
again by isotony of diamond, d-transitivity of a and p being an antichain,

p · |a〉x ≤ p · |a〉|a〉p ≤ p · |a〉p ≤ 0 .

By Boolean algebra therefore p ≤ ¬|a〉x and hence p − |a〉x = p. Now Lm. 4.5
with q specialised to x shows inc(x, p) = p.

Subcase 2: x 
≤ |a〉y. Then x is not dominated by y and cannot be discarded
immediately. Rather, two subcases arise. If x dominates y then y can be discarded
from the window p. Otherwise y still remains a candidate for a maximal object,
while x needs to be compared with the remainder q of the window p. Again, we
do the formal calculations.

First, since x is an atomic test, (1) implies x ≤ ¬|a〉y and x− |a〉y = x.
Subcase 2.1: y ≤ |a〉x and hence y − |a〉x = 0. By Lm. 4.5, distributivity,
Boolean algebra and Lm. 4.5 again we obtain

inc(x, p) = a # (x + y + q) = (x− |a〉(y + q)) + ((y + q)− |a〉x)
= (x− |a〉y − |a〉q) + (y − |a〉x) + (q − |a〉x)
= (x− |a〉q) + (q − |a〉x) = inc(x, q) .

Subcase 2.2: y 
≤ |a〉x, hence y ≤ ¬|a〉x and therefore y · |a〉x ≤ 0 and y−|a〉x =
y by atomicity of y. Since y ∈ p and p is an antichain, we know that also
y · |a〉q ≤ 0, hence y · |a〉(x + q) ≤ 0. Moreover, since we are in a case where
x · |a〉y = 0, we know that also (x+ q) · |a〉y ≤ 0. Now

inc(x, p)

= {[ by Lm. 4.5 ]}
(x− |a〉p) + (p− |a〉x)

= {[ above decomposition p = y + q, additivity of diamond
and Boolean algebra ]}

(x− |a〉y − |a〉q) + (y − |a〉x) + (q − |a〉x)
= {[ by x− |a〉y = x and y − |a〉x = y, as remarked above ]}

(x− |a〉q) + y + (q − |a〉x)
= {[ rearrangement and Lm. 4.5, since q ≤ p by Cor. 4.3

is an antichain and x · q ≤ x · p ≤ 0 ]}
y + inc(x, q) .

With this, the recursive version of inc is complete:

inc(x, p) = if p = 0 then x
else choose atom y ≤ p in

if x ≤ |a〉y then p
else if y ≤ |a〉x then inc(x, p− y)

else y + inc(x, p− y) .
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We show the algorithm at work in our example from Fig. 1 in Sect. 1. The test r
represents the set of hotels (with abbreviated names) {GW,WH,OH,A,WW, SSp,
RC,H, SH}. The strict-order a is the relation ≺. We show the values of p, x and
y, all in set notation, during the evaluation of the recursion for inc(x, p) with
initial values x = {SSp} and p = {GW,H,WH,WW}.

step 1 2 3 4 5

p {GW,H,WH,WW} {GW,H,WH} {H,WH} {WH} ∅
y {WW} {GW} {H} {WH} –
partial result {WW} {GW} ∅ {WH} x

In the first step we choose y = {WW}. Then x 
⊆ |≺〉y and y 
⊆ |≺〉x. Therefore y
is preserved as a partial result and the recursion continues with the remainder of
the window. The second and fourth steps are analogous. In step 3 y is dominated
by x and hence discarded. Altogether, {GW, SSp,WH,WW} is returned.

6 The Lattice Structure of Antichains

In this section we will exhibit a lattice structure on the set of antichains w.r.t.
a strict-order. To this end we first define an approximation relation.

Definition 6.1. Test p is improved by test q, in symbols p & q, if q results from
removing some objects of p that are dominated by q-objects and possibly adding
others that are not dominated by p-objects. Formally,

p & q ⇔df p− |a〉q ≤ q ∧ q · |a〉p ≤ 0 .

By Boolean algebra and distributivity we equivalently have

p & q ⇔ p ≤ |a+ 1〉q ∧ q · |a〉p ≤ 0 .

Lemma 6.2.

1. ∀ p ∈ test(S) : 0 & p.
2. & is reflexive precisely on AC(a), i.e., p & p ⇔ p ∈ AC(a).
3. & is antisymmetric.
4. If a is d-transitive, then for antichains the second conjunct in the definition

of & is implied by the first one, i.e., for p, q ∈ AC(a), p & q ⇔ p ≤ |a+1〉q.
5. If a is d-transitive then & is transitive and hence a partial order on AC(a).
6. If a is normal then p & a # p.
Proof.

1. Immediate from the definition and Lm. 4.2.
2. p & q ∧ q & p

⇔ {[ definition ]}
p− |a〉q ≤ q ∧ q · |a〉p ≤ 0 ∧ q − |a〉p ≤ p ∧ p · |a〉q ≤ 0

⇔ {[ commutativity of ∧ and Boolean algebra ]}
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p− |a〉q ≤ q ∧ p ≤ ¬|a〉q ∧ q − |a〉p ≤ p ∧ q ≤ ¬|a〉p
⇔ {[ since p ≤ ¬|a〉q ∧ q ≤ ¬|a〉p imply

p− |a〉q = p and q − |a〉p = q ]}
p ≤ q ∧ q ≤ p

⇒ {[ antisymmetry of ≤ ]}
p = q .

3. Assume p ≤ |a + 1〉q, which is equivalent to p ≤ |a〉q + q. Then by isotony
and distributivity of diamond, d-transitivity of a and Lm. 4.2,

q · |a〉p ≤ q · (|a〉|a〉q + |a〉q) = q · |a〉q = 0 .

4. By Part 4, isotony, d-transitivity of a and hence of a+1, distributivity, and
Part 4 again:

p & q ∧ q & s⇔ p ≤ |a+ 1〉q ∧ q ≤ |a+ 1〉s
⇒ p ≤ |a+ 1〉|a+ 1〉s⇒ p ≤ |a+ 1〉s⇔ p & s .

5. By definition of &, normality of a (3), definition of a # and Boolean algebra,

p & a # p⇔ p− |a〉(a # p) ≤ a # p ∧ (a # p) · |a〉p ≤ 0⇔ p− |a〉p ≤
a # p ∧ (a # p) · |a〉p ≤ 0⇔TRUE .

��
We show now that the order & holds, in particular, between p and inc(x, p).

Therefore the BNL algorithm produces a &-ascending chain of antichains. It
ends with the &-largest antichain a # r, where r is again the set of all tuples
under consideration.

Theorem 6.3. Assume a to be a noetherian strict-order.

1. The operator a # transforms all ≤-suprema existing in test(S) into &-suprema
in AC(a).

2. The operator a # is isotone w.r.t. ≤ and &, i.e.,
∀ p, q ∈ test(S) : p ≤ q ⇒ a # p & a # q .

3. AC(a) is an upper semilattice with p�q = a#(p+q) and hence inc(x, p) = p�x
and 0 � p = p.

4. If (S,≤) is a quantale then AC(a) is a complete lattice with�A = a#(ΣA),
where Σ is the supremum operator on (S,≤).

5. For atomic test x with x · p = 0 and p ∈ AC(a) we have p & inc(x, p).
6. The operator a # preserves � on AC(a).
7. The operator a # is also isotone w.r.t. & and & on arbitrary tests, i.e.,

∀ p, q ∈ test(S) : p & q ⇒ a # p & a # q .
Proof. We recall the following characterisation of the supremum s of a subset X
of a partially ordered set M (provided it exists):

∀ y ∈M : s ≤ y ⇔ (∀x ∈ X : x ≤ y) . (∗)
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1. Let T ⊆ test(S) have ≤-supremum z. Then

∀ q ∈ a # T : q & y
⇔ {[ definition of & ]}
∀ q ∈ a # T : q ≤ |a+ 1〉y

⇔ {[ definition of a # T ]}
∀ p ∈ T : a # p ≤ |a+ 1〉y

⇔ {[ by Cor. 3.10 ]}
∀ p ∈ T : p ≤ |a+ 1〉y

⇔ {[ definition of z ]}
z ≤ |a+ 1〉y

⇔ {[ by Cor. 3.10 ]}
a # z ≤ |a+ 1〉y

⇔ {[ definition of & ]}
a # z & y .

Hence, by (∗), a# z is the &-supremum of the image set a#T of T under a #.
2. Immediate from Part 1.
3. Immediate from Part 1.
4. Immediate from Part 1.
5. By d-irreflexivity of a we have x ∈ AC(a). Hence Part 3 entails p & x � p =
a # (x+ p) = inc(x, p).

6. For p, q ∈ AC(a), by Part 3, idempotence of # (Lm. 3.4.5), Th. 3.6, Part 3,

a # (p � q)= a # (a # (p+ q))= a # (p+ q)= a # (a # p+ a # q)= a # p � a # q .
7. For p, q ∈ test(S), by definition of &, Part 2 and Lm. 3.12

p & q ⇔ p ≤ |a+ 1〉q ⇒ a # p & a # (|a+ 1〉q) ⇔ a # p & a # q . �

It should be noted that noetherity is essential for these results. As a coun-
terexample to ≤-isotony of a #, consider the semiring of binary relations on the
set N of natural numbers. Take a to be the usual strict-order on N so that a+1
is the standard order on N. Choose as p and q the tests encoding {0} and N.
Then p ≤ q, but a # p = p 
& ∅ = a # q, since p 
≤ ∅ = |a+ 1〉∅.

We conclude with an application of the algebra for bringing the function ma
from Sect. 5 into tail-recursive form, as a preparation for transliterating it into
loop form (see e.g. [9] for details of that). The essential observation is that � as
a supremum operator is associative and has the &-least element 0 as its neutral
element. We define an auxiliary function mat(p, u) =df p � ma(u) with an
additional parameter p that will accumulate the end result during the recursion.
By neutrality of 0 we can solve the original task as ma(u) = mat(0, u). Now we
calculate a recursive version of mat based on the one for ma. In the termination
case u = 0 we obtain mat(p, 0) = p � 0 = p. In the recursive case for u 
= 0 we
get by the definitions, Th. 6.3.3, associativity of � and the definitions again

mat(p, u) = p � inc(x,ma(u− x)) = p � (x �ma(u − x)) =
(p � x) �ma(u − x) = mat(p � x, u − x) ,

which is a tail-recursive call.
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7 Maxima as a Closure Operator

7.1 Closure Operators

We recall the definition of a closure operator.

Definition 7.1. A closure operator on a partially ordered set (L,≤) is a total
function f : L → L with the following properties:

– x ≤ f(x) (extensivity)
– x ≤ y ⇒ f(x) ≤ f(y) (isotony)
– f(f(x)) = f(x) (idempotence)

Consider now a noetherian strict-order a. By Lm.6.2.6, Thm. 6.3.7 and Lm.
3.4.5 a # satisfies all three of these properties w.r.t. &. Unfortunately, however,
& is not even a preorder on test(S), since by Lm. 6.2.2 reflexivity holds exactly
on AC(a). To remedy this, we define another comparison relation on test(S).

Definition 7.2. For a given a we set p -a q ⇔df a # p & a # q.
Lemma 7.3. - is a preorder, but not a partial order. We have p - q ∧ q -
p ⇔ a # p = a # q. Finally, p ≤ q ⇒ p - q.
Proof. Reflexivity and transitivity are immediate from reflexivity and transitiv-
ity of &. The second claim follows from the antisymmetry of &; it also shows that
in general ≺a is not antisymmetric. The final claim is immediate from Th. 6.3.2
and the definitions. ��

With this definition we can now actually view a # as a closure operator if we
carry over that notion to the case of preorders.

Definition 7.4. Consider a preorder (L,≤) with induced equivalence relation
∼. An endofunction H : L → L on a is called weakly idempotent if H(H(x)) ∼
H(x) for all x ∈ L. We call H a kernel operator if it is isotone, weakly idempo-
tent and contractive; by the latter property we mean H(x) ≤ x for all x ∈ L.
Symmetrically, we call H a closure operator if it is isotone, weakly idempotent
and extensive; by the latter property we mean x ≤ H(x) for all x ∈ L.

In each case, the image set H(A) coincides with the sets of weak fixed points
of H , i.e., with the set {x ∈ A |H(x) ∼ x}. Now we have the following result.

Lemma 7.5. a # is a closure operator w.r.t. -.
Proof. Since we already know that a # is idempotent, it suffices to show exten-
sivity and isotony w.r.t. -.
Extensivity: by the definition of -, idempotence of a # (Lm. 3.4.5) and reflexivity
of & we have p - a # p ⇔ a # p & a # (a # p) ⇔ a # p & a # p ⇔ TRUE.
Isotony: by the definition of -, idempotence of a # (Lm. 3.4.5) and the definition
of - again we obtain

p - q ⇔ a # p & a # q ⇔ a # (a # p) & a # (a # q) ⇔ a # p - a # q .
��
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7.2 A Galois Connection for the Maxima Operator

Since we have established the maxima operator as a closure operator, we can use
a well-known result concerning Galois connections, again adapted to the case of
preorders rather than partial orders.

Definition 7.6. Consider two preorders (A,≤A) and (B,≤B) and total func-
tions F : A → B and G : B → A. Then the pair (F,G) is called a Galois
connection (GC) between A and B iff

∀x ∈ A : ∀ y ∈ B : F (x) ≤B y ⇔ x ≤A G(y) .

Then F is called the lower , G the upper adjoint of the GC.

Details of the theory of Galois connections for the preorder case can be found
in the Appendix. The following Lm. is well known (e.g. [5]) for the case of partial
orders; we adapt it to preorders.

Lemma 7.7. Every closure operator H : L → L induces the following Galois
connection between L and H(L):

H(x) ≤ y ⇔ x ≤ ι(y) ,

where ι is the embedding of H(L) into L, i.e., ι(y) = y for y ∈ H(L).

Proof. (⇒) By extensivity of H and the assumption, x ≤ f(x) ≤ y = ι(y).
(⇐) First, by weak idempotence of H we have H(y) ∼ y for all y ∈ H(L). Now,
by isotony of H we obtain x ≤ ι(y) ⇒ H(x) ≤ H(ι(y)) = H(y) ∼ y. ��

Hence for p ∈ test(S) and q ∈ AC(a) we have the Galois connection

a # p - q ⇔ p - ι(q) .

As a lower adjoint therefore the a # operator preserves all existing --suprema
(see Th. 9.7 in the Appendix). This nicely rounds off the small collection of
preservation results in Th. 6.3.

8 Conclusion

We have presented an algebraic account of an approximation relation between
antichains that induces a semilattice and renders the maxima operator isotone
in several ways. Moreover, the maxima operator has been shown to be a closure
operator in an associated preordered set and hence satisfies a Galois connection.
We have shown the calculus at work in the non-trivial example of the BNL
algorithm. Therefore we are convinced that the theory developed here will be
useful for many further calculational derivations involving the maxima operator
and antichains.
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9 Appendix: Galois Connections between Preorders

We investigate in how far the standard properties of Galois connections between
partial orders hold for general preorders as well. For a good summary of the
standard case see e.g. [5].

9.1 Definition and Basic Properties

Consider two preorders (A,≤A) and (B,≤B) and total functions F : A → B and
G : B → A. Then the pair (F,G) is called a Galois connection (GC) between
A and B iff

∀x ∈ A : ∀ y ∈ B : F (x) ≤B y ⇔ x ≤A G(y) .
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Then F is called the lower , G the upper adjoint of the GC.
In the sequel we shall suppress the indices of the preorders involved in a Galois

connection.
The functions in a GC are quasi-inverses of each other:

Lemma 9.1 (Quasi-Inverses (QI)). Assume that F : A → B and G : B →
A form a GC between A and B. Then

∀x ∈ A : x ≤ G(F (x)) , ∀ y ∈ B : F (G(y)) ≤ y .
Proof. By the GC and reflexivity x ≤ G(F (x)) ⇔ F (x) ≤ F (x) ⇔ TRUE. ��

From (QI) we obtain

Corollary 9.2 (Isotony). The adjoints of a GC are isotone.

Proof. By transitivity, since QI entails z ≤ G(F (z)), and GC:

x ≤ z⇒x ≤ G(F (z))⇔F (x) ≤ F (z) .
��

On the other hand, isotony and (QI) imply that we have a GC:

Lemma 9.3 (O. Ore). (F,G) form a GC iff F and G are isotone and quasi-
inverses of each other.

Proof. We only need to show the if-part. By isotony of G, and (QI):

F (x) ≤ y⇒G(F (x)) ≤ G(y)⇒x ≤ G(y) .
Symmetrically one shows x ≤ F (y) ⇒ F (x) ≤ y. ��

For the following results we lift the equivalence ∼ induced by the preorder ≤
pointwise to functions by setting

F1 ∼ F2 ⇔df ∀x : F1(x) ∼ F2(x) .
Then the rule of indirect equivalence immediately entails the following unique-
ness property.

Lemma 9.4 (Determination). Let (Fi, Gi) (i = 1, 2) be GCs between A and
B. Then each adjoint determines the other one uniquely up to ∼, i.e.,

F1 ∼ F2 ⇔ G1 ∼ G2 .

Now we deal with iterated application of the adjoints.

Corollary 9.5. F ◦G ◦ F ∼ F and G ◦ F ◦G ∼ G.
Proof. From (QI) we know x ≤ G(F (x)). Isotony implies F (x) ≤ F (G(F (x))).
On the other hand, (QI) gives us F (G(F (x))) ≤ F (x), so that the claim follows
by definition of ∼.

The claim on orders is immediate from that. ��
Corollary 9.6. Under the assumptions of Cor. 9.5, F ◦G and G◦F are weakly
idempotent and hence a closure and a kernel operator, respectively.
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9.2 Galois Connections and Extremal Elements

Consider an arbitrary preorder (M,≤). The sets of lower and upper bounds of
a subset X ⊆M are given by

y ∈ lwbX ⇔df ∀x ∈ X : x ≤ y , z ∈ upbX ⇔df ∀x ∈ X : z ≤ x .
A quick calculation shows that upbX ⊇ Y ⇔ X ⊆ lwbY . So (upb, lwb) is a
GC between (P(M), ⊇ ) and (P(M), ⊆ ).

Based on these we can define the sets of least and greatest objects of X as

lstX =df X ∩ lwbX , gstX =df X ∩ upbX .

Finally, the sets of infima and suprema of X are given as

infX =df gst lwbX , supX =df lst upbX .

Note that any of these sets may be empty. All objects in a set lstX or gstX are
∼-equivalent.
Theorem 9.7. Let (F,G) form a GC. Then

1. F preserves all existing suprema, i.e., F (supX) ⊆ supF (X) for all X ⊆ A.
2. G preserves all existing infima, i.e., G(inf Y ) ⊆ inf F (Y ) for all Y ⊆ B.
Proof. We only show 1. First,

TRUE

⇔ {[ supX ⊆ upbX (definition of sup) ]}
∀x ∈ X : ∀ s ∈ supX : x ≤ s

⇒ {[ isotony ]}
∀x ∈ X : ∀ s ∈ supX : F (x) ≤ F (s)

⇒ {[ the definitions ]}
F (supX) ⊆ upbF (x) .

Second,

∀ y ∈ upbF (X) : ∀x ∈ X : F (x) ≤ y
⇔ {[ GC ]}
∀ y ∈ upbF (X) : ∀x ∈ X : x ≤ G(y)

⇔ {[ definition ]}
∀ y ∈ upbF (X) : G(y) ∈ upbX

⇔ {[ definition of sup ]}
∀ y ∈ upbF (X) : ∀ s ∈ supX : s ≤ G(y)

⇔ {[ GC ]}
∀ y ∈ upbF (X) : ∀ s ∈ supX : F (s) ≤ y

⇔ {[ definitions ]}
F (supX) ⊆ lwb upbF (X) .

Now the claim is immediate from the definitions. ��
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Abstract. Database preferences allow defining strict orders on the tu-
ples of a data set and selecting the optimal elements w.r.t. this order.
In our prior work we have shown that in common implementations of
preferences a small set of preference operators and operands is sufficient
to express arbitrary strict orders. We have suggested preference decom-
position algorithms to prove this expressiveness. In the present paper we
define the induced preference on the power set of the original data set
and transfer our decomposition results to this setting. We modify the
algorithms of our prior work to reduce the term length and complexity
of the resulting decompositions. This optimization turns out to be very
efficient especially for power set preferences.
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1 Introduction

Database preferences realise soft constraints in queries for relational databases.
They allow selecting highly relevant tuples that are optimal compromises for
the user. A popular subclass are Pareto preferences, which induce strict orders
having Pareto optimal tuples as their maxima. This concept was introduced as
Skyline operator [1] to the database community. This operator is typically used
to find optimal objects w.r.t. goals that tend to conflict. As an example, consider
Figure 1 where we search for the best cars in a data set when optimizing the
dimensions of horse power and fuel consumption simultaneously.

In the present work we consider sets of tuples with a given preference on these
tuples. For the application, we are interested to construct a preference on sets
starting from the given strict order (i.e., preference). For example, assume that
a user wants to rent a car and has the choice between two car rentals offering
different choices of cars. The car fleets of these rental agencies are depicted in
Figure 1. The user prefers powerful cars with low fuel consumption, hence the
cars with id’s 6, 8 and 7 are optimal for her. But none of the fleets contains all
these maxima. Assume further that both rental agencies do not accept reserva-
tions for an individual car; they just guarantee that one of the cars is available.
The question arises, which car rental is superior for the user? Obviously none of
these fleets is strictly better; some arrows point from fleet A to fleet B, some in
the converse direction.

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 362–379, 2015.
DOI: 10.1007/978-3-319-24704-5_22
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Fig. 1. Left: Pareto optima of cars with low fuel consumption (i.e., high (mpg) value)
and high horsepower (hp). Right: Comparison of two car fleets with cars from the left
diagram. Arrows point from worse to better objects in the sense of the Pareto optima.

To study this in detail, we have to consider preferences on sets, i.e., the exten-
sion of a preference to the power set of the domain. In the terminology of [2] this
is called a power construction. Corresponding to the definitions in [2,13] there
are three different possibilities of power constructions for strict orders, which
have been used there in contexts other than preferences. In [2] different variants
of programming semantics are discussed, where power constructions play an im-
portant role throughout. In [13], the focus lies on modelling non-deterministic
computations. One of the power constructions for strict orders has already been
used in the context of database preferences in [12].

In [10] we have presented a decomposition approach for database preferences.
We have shown that every strict order can be expressed with a quite restricted
set of simple operators and operands which are available in common frame-
works for database preferences. We especially consider the Skyline feature in the
commercial database Exasol Exasolution [4] or our rPref package [9]. In the con-
cluding remarks in [10] we have noticed that these decompositions can produce
quite lengthy terms which can be minimized with known transformation laws.
In the present paper we optimize these decomposition algorithms by introducing
equivalence classes of equally good tuples.

We compare the unoptimized and the optimized versions of our algorithms
on power set preferences. It turns out that this optimization leads to shorter
preference terms especially on the power set preferences. The implementation of
our algorithms and the comparative study is available in an R script [8].

The remainder of the paper is structured as follows: in Section 2 we reca-
pitulate the formal foundations from prior work and formally introduce power
set preferences. In Section 3 we present the optimized decomposition algorithms.
These are applied to power set preferences in Section 4. We end with a conclusion
and an outlook.
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2 Preference Background

In the following we briefly recapitulate prior work in formalizing database pref-
erences. An algebraic calculus for database preference has been developed in
[7,6,5]. It allows a point-free derivation of transformation laws for preferences
which can be applied to optimization of preference queries or correctness proofs
for preference-related algorithms. We keep the same notation as in [6] and assume
a concrete relational instance.

2.1 Relation Algebra and Fundamental Definitions

For a domain D we define a concrete relation algebra of binary homogeneous
relations on D2 = D ×D. We define the following special relations: The empty
relation 0 =df ∅, the identity 1 =df {(t, t) | t ∈ D} and the universal relation
 =df D

2.
The fundamental operations for relations u, v are the relational union u+ v,

the composition u · v, the intersection u � v and the inclusion order u ≤ v. We
use the following conventions regarding literals in formulas:

– a, b, c, d are binary homogeneous relations.
– p, q, r, s are subidentities, i.e., p ≤ 1, each representing a set Mp ⊆ D which

is related to p via p = {(t, t) ≤ 1 | t ∈Mp}. They are also called tests.
– x, y, z are subidentities which are non-zero and atomic w.r.t. +, also called

atomic tests. They represent singletons, i.e., x = {(t, t)} for some t ∈ D.

According to the database scenario, which is our field of application, a test is a
data set or a set of tuples, i.e., a (partial) table of a database. An atomic test
is a tuple and models a single row of a database table. Hence we use the term
test synonymously with data set, and atomic tests represent tuples. For tests,
composition and intersection coincide, i.e., we have p · q = p � q.

An element t ∈ D from the data set is modelled as x = {(t, t)} ⊂ D2 which
allows the left/right restrictions x · a and a · x for a relation a by the usual rela-
tional composition. For sake of readability we introduce the following shorthand
notations:

– Selection of a tuple x = {(t, t′)} from a data set p is defined as (with a slight
abuse of ∈, as x is formally a subset of p)

x ∈ p ⇔df x ≤ p ∧ x is atomic .

– To express that x is a-related to y we define

xa y ⇔df (t, t′) ∈ a where x = {(t, t)} ∧ y = {(t′, t′)} .
Based on the above conventions we define the following operations:

– The converse relation a−1 =df {(t′, t) ∈  | (t, t′) ∈ a},
– the general complement a =df {(t, t′) ∈  | (t, t′) /∈ a},
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– the complement of tests ¬p =df {(t, t) ∈ 1 | (t, t) /∈ p},
– the difference of tests p− q =df p · ¬q,
– the (inverse) image of a relation a w.r.t. a test p:

〈a|p =df {(t, t) ∈ 1 | ∃t′ ∈ D : (t′, t) ∈ (p · a)} (image),

|a〉p =df {(t, t) ∈ 1 | ∃t′ ∈ D : (t, t′) ∈ (a · p)} (inverse image).

Powers are given by a0 =df 1 and ai =df a · ai−1. We will also need the
Hasse diagram of a relation, i.e., the transitive reduction. For a transitive and
irreflexive relation a this is given by a � a2, cf. [11].

Because the focus of this work lies on the algorithmic approach to preference
decomposition we think that such a concrete definition of a relation algebra is
more appropriate than an abstract axiomatisation of the relational operations.
An abstract relation algebra uses algebraic axiomatisations of tests, diamonds,
etc., and has been used in the context of preferences in [6].

2.2 The Preference Framework

We recapitulate the definitions of preferences and related operations from [10].

Definition 2.1 (Preferences with SV). A relation a is a preference if and
only if it is irreflexive and transitive, i.e., a strict partial order. In relation algebra,
this formally corresponds to a � 1 = 0 and a2 ≤ a.

Every preference a will be associated with an SV-relation sa. This has to be
an equivalence relation on the domain of a, where the equivalence classes contain
“equally good” objects (SV is short for “substitutable values”). It must fulfil the
compatibility conditions sa · a ≤ a and a · sa ≤ a.

A preference a is a layered preference, also known as strict weak order, if and
only if additionally negative transitivity (a)2 ≤ a holds. ��

Compatibility for an SV relation implies sa � a = 0, which is shown in [5],
Corollary 5.2. For a layered preference a the relation sa = a+ a−1 (equivalently
a + sa = a−1) is a possible SV-relation, and this is the most intuitive way
to define which tuples are equivalent w.r.t. a preference. There are alternative
candidates, e.g., sa = 1 is a valid SV-relation for any preference. In general, i.e.,
for non-layered preferences, the construction sa = a+ a−1 does not fulfill the
compatibility conditions. A counterexample can be found in [5], Example 5.6.

If a tuple x is a-related to y, formally (xa y) we say that y is better than x
w.r.t. to the preference a. The compatibility conditions in Definition 2.1 ensure
for a tuple y better than x that all tuples from the SV-equivalence class of y are
better than those equivalent to x. By convention, the empty preference 0 has the
SV-relation s0 =df  , i.e., all tuples are equivalent. This satisfies s0 = 0 + 0−1.

Definition 2.2 (Preference selection). In the scope of database preferences
the maximum operator # selecting the a-maximal elements on r is defined by

a # r =df r − |a〉r,
which is also known as preference selection on the data set r w.r.t. preference a.
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We now recapitulate the definitions of the two most important complex pref-
erence operators, Pareto composition and prioritisation on a single domain, as
given in [10]. These operators are widely used in the context of database pref-
erences and hence they are important building blocks for our decomposition
approach. In contrast, + is typically not used as a complex preference operator,
as + does not preserve the strict order property in general.

Definition 2.3 (Prioritisation and Pareto on single domain). Let a, b be
preferences with associated SV-relations sa, sb. The prioritisation with SV on a
single domain is given by, where � binds tighter than +,

a& b =df a+ sa � b ,
whereas the Pareto composition on a single domain with SV is defined as

a⊗ b =df (a+ sa) � b+ a � (b+ sb) .

We say that a % b with % ∈ {&,⊗} is SV-preserving, if sa�b = sa � sb is fulfilled.

Unless otherwise specified, we will assume that the SV-relation of a layered
preference is set to the SV-preserving relation.

The intuition behind the prioritisation is the lexicographic order: a& b means
“better in a or {equal in a and better in b}”. The Pareto composition is used
to compose equal important wishes, a ⊗ b means “equal or better in {a or b}
and strictly better in one of them”. Both operators are associative and ⊗ is even
commutative. They both preserve preferences, i.e., for preferences a, b the object
a % b for % ∈ {&,⊗} is a preference again. The & operator even preserves layered
preferences, which is shown in [10], Corollary 2.6.

Furthermore, 0 is a neutral element for both operators (note that s0 =  ),
i.e., we have

0⊗ a = a⊗ 0 = a, a& 0 = 0 & a = a .

To compare preference relations we introduce a concept of equivalence of
preferences w.r.t. a given data set.

Definition 2.4 (r-equivalence). Let a, b be preferences and r a data set. We
say that a and b are r-equivalent, if and only if r · a · r = r · b · r.
This is equivalent to (xa y) ⇔ (x b y) for all tuples x, y ∈ r. Intuitively, r-
equivalence of a and b means that the Hasse diagrams of a and b on the data set
r are identical.

An important role is played by the Boolean preference constructor, recapit-
ulated subsequently. This constructor is supported in the most common imple-
mentations of database preferences [4,9].

Definition 2.5 (Boolean preference). Let ρ : D → {true, false} be a predi-
cate which can be evaluated over all elements in D. Then is true(ρ) is a Boolean
preference defined by

is true(ρ) =df ρ
−1(false)× ρ−1(true)

We define sis true(ρ) =df (ρ−1(false)× ρ−1(false)) + (ρ−1(true)× ρ−1(true)). ��
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Note that this definition fulfills sis true(ρ) = is true(ρ) + is true(ρ)−1.
In the Exasolution [4] implementation of preferences we can simply write the

logical condition ρ in the PREFERRING clause of the database query. For example,
select * from mtcars preferring mpg=15 (equivalent to psel(mtcars, true(mpg==15))

in rPref) selects those cars with an mpg value of 15 if such tuples exist. If not,
then all cars are returned.

In [10] we have defined tuple and set preferences as sub-constructors of Boolean
preferences. In the following we give an explicit definition of tuple and set pref-
erences in a point-free algebraic fashion.

Definition 2.6 (Set/tuple preference). For a set of tuples p ≤ 1 we define
the set preference

t(p) =df ¬p ·  · p .
If |p| = 1, i.e., p is a singe tuple, we also say that is true(p) is a tuple preference.
The associated SV-relation is given by st(p) =df p ·  · p+ ¬p ·  · ¬p.
With t(x) we can express that the tuple x is preferred over all other tuples in
(1 − x). Using t(·) and the {&,⊗} operators, we can construct arbitrary strict
orders, as we will summarize in the following section.

2.3 Preference Decomposition

For a data set r, every preference a can be transformed into a preference term b
which is r-equivalent to a and consists of set preferences and the {&,⊗} opera-
tors. We call this transformation preference decomposition. The set of necessary
operands and operators can be limited in two different ways detailed below. In
both cases all strict orders can be decomposed.

1. The resulting preference consists only of a ⊗-composition of set preferences,
shown in [10], Theorem 4.1. For example, the “N-shaped” preference a on
the data set r = x1 + ...+ x4, depicted in Figure 2(1), has the r-equivalent
decomposition

((t(x1)⊗ t(x2)) & t(x3))⊗ (t(x2) & t(x4)) .

Roughly speaking, parallel nodes in the diagram of the preference are ⊗-
composed and serial connections result in &-chains.

2. Alternatively we can construct a term of tuple preferences connected by both
of the operators {&,⊗}, shown in [10], Theorem 4.4. The above preference
decomposes into

t(x1)⊗ t(x2)⊗ t(x1 + x2 + x3)⊗ t(x2 + x4) .

Here the better-than-relations of the preference are encoded in the inclusion
order of the involved sets, e.g., (xa y) is realized by a preference t(p)⊗ t(q)
with y ∈ p ≤ q, x ∈ q and x /∈ p.
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2.4 Power Set Preferences

In the following we define the power construction for preferences on a given data
set. According to [2,13] there are three natural extensions of a strict order to the
power set of the domain which we will recapitulate in the following definition.
We will assume a finite data set in the following, as we need finiteness to show
that the power construction yields a preference.

Definition 2.7 (Power set preference). Let a be a preference on a finite
data set r. We introduce preferences πai for i ∈ {0, 1, 2} on the power set P(r) =
{p | p ≤ r} by defining for all u, v ∈ P(r):

u πa0 v ⇔df v 
= 0 ∧ ∀y ∈ v : ∃x ∈ u : xa y

u πa1 v ⇔df u 
= 0 ∧ ∀x ∈ u : ∃y ∈ v : xa y
u πa2 v ⇔df u (πa0 � πa1 ) v

Intuitively π0 means that a set v is better than a non-empty set u, formally
u πa0 v, if every tuple in v dominates some tuple in u. For u πa1 v we require that
every tuple in v is dominated by some tuple in u. Finally for u πa2 v both of these
conditions have to be fulfilled, formally resulting in the intersection of πa0 and πa1 .
In Figure 2 we show (partial) graphs of all power set preferences πai (i ∈ {0, 1, 2})
for the “N-shaped” preference a in Figure 2(1). The power set preference πa1 has
already been used in the context of database preferences in [12], Definition 3.1.

1 2

3 4

1) a

1,2 2 · · ·

1,3 2,3 3 1,2,4 4 1,4 2,4 · · ·

2) Partial graph of πa
0

1 1,3 1,4 1,3,4 2 1,2 2,3 1,2,3,4 · · ·

3,4 4 · · ·

3) Partial graph of πa
1

1 2 1,2 1,3 1,4 2,3 1,3,4 1,2,3,4 · · ·

3 4 3,4

4) Graph of πa
2 with all edges and without some unconnected nodes

Fig. 2. Preference a and a partial diagram of its induced power set preferences πa
j for

j ∈ {0, 1, 2}. A circled i is short for xi and a circled i1, ..., ik short for xi1 + ...+ xik .
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Note that, without the second conjunct excluding empty sets in πa1 and πa2 ,
Definition 2.7 would lead to a relation not being irreflexive (and hence not a
preference). Formally, for u πa3 v ⇔ ∀y ∈ v : ∃x ∈ v : xa y, we get 0 πa3 0.

However, in the following we will exclude the empty set from the considered
domain as it is not interesting for our application. For a data set r we define

r̂ =df P(r)\{0} = {p | p ≤ r ∧ p 
= 0} ,

which will be the domain of power set preferences throughout the remainder of
the paper.

Subsequently we introduce a quantifier-free representation of the predicates
u πai v, following the idea of [2], Theorem 2.31.

Corollary 2.8. Let a be a preference on a data set r. For all u, v ∈ r̂ we have

u πa0 v ⇔df v ≤ 〈a|u ,
u πa1 v ⇔df u ≤ |a〉v .

Proof. Immediately from the definition of r̂, |a〉(·) and 〈a|(·). ��

Lemma 2.9. Definition 2.7 is well-formed, i.e., πai are indeed preferences.

Proof. We will show this just for πa1 . For π
a
0 analogous arguments hold and for

πa2 = πa0 � πa1 we exploit that preferences are preserved under intersection. We
have to show that πa1 is irreflexive and transitive. For u, v, w ∈ r̂ we have, using
Corollary 2.8, the isotony of the diamond and the transitivity of a,

u πa1 v ∧ v πa1 w ⇒ u ≤ |a〉(|a〉w) ≤ |a2〉w ≤ |a〉w ⇒ u πa1 w ,

showing the transitivity of πa1 . Next, we show irreflexivity by contradiction, i.e.,
we assume u πa1 u for u ∈ r̂. We calculate:

u πa1 u

⇔ {[ Corollary 2.8 ]}
u ≤ |a〉u

⇔ {[ shunting (p · q ≤ s⇔ p ≤ ¬q + s with p = u, q = ¬|a〉u, s = 0) ]}
u− |a〉u ≤ 0

⇔ {[ definition of # ]}
a # u = 0

As u ∈ r̂ we have u 
= 0, hence this implies that the maxima set of a non-empty
set w.r.t. a preference (strict order) a is empty. By the assumption of a finite r
in Definition 2.7, we also have that u ≤ r is finite. Thus an empty maxima set
a # u is a contradiction. Hence we have shown the irreflexivity of πa1 . ��
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Now we know that the preference property is preserved under extending the
preference to its power set. But for a layered preference a the power set preference
πa2 is not a layered preference in general. For example, let r = x1+x2 and (x1 a x2)
the only better-than-relation in a. By the definition of πa2 we have (x1 π

a
2 x2).

The set p = x1 + x2 is incomparable to both x1 and x2, i.e., formally (x1 πa2 p)
and (p πa2 x2). Hence π

a
2 is not a layered preference, as negative transitivity is

violated.
Note that on P(r) the empty set 0 is incomparable to all sets in r̂ w.r.t. πai

for all i ∈ {0, 1, 2}. On r̂, the power set preferences πa0 and πa1 preserve layered
preferences, as we show subsequently.

Lemma 2.10. Let a be a layered preference and r a data set. Then, the prefer-
ences r̂ · πa0 · r̂ and r̂ · πa1 · r̂ are layered preferences.

Proof. Let a be negative transitive, i.e., (a)2 ≤ a. We have to show that the
preferences r̂ · πai · r̂ are also negative transitive. We show this for b = r̂ · πa1 · r̂
and u, v, w ∈ r̂:

u b v ∧ v bw ⇔ ¬(u (r̂ · πa1 · r̂) v) ∧ ¬(v (r̂ · πa1 · r̂)w)
⇔ {[ u, v, w ∈ r̂, definition of π1a and moving negation inside ]}
u = 0 ∨ ∃x ∈ u : ∀y ∈ v : xa y ∧ v = 0 ∨ ∃x′ ∈ v : ∀y′ ∈ w : x′ a y′

⇔ {[ u, v ∈ r̂, hence u 
= 0 and v 
= 0 ]}
∃x ∈ u : ∀y ∈ v : xa y ∧ ∃x′ ∈ v : ∀y′ ∈ w : x′ a y′

⇒ {[ specialization y = x′, reorganization of quantifiers ]}
∃x ∈ u : ∃x′ ∈ v : ∀y′ ∈ w : xa x′ ∧ x′ a y′

⇔ {[ definition of (·)2 ]}
∃x ∈ u : ∀y′ ∈ w : x (a)2 y′

⇒ {[ logic and negative transitivity of a ]}
u = 0 ∨ ∃x ∈ u : ∀y′ ∈ w : xa y′

⇔ {[ moving negation outside, definition of π1a and u,w ∈ r̂ ]}
¬(u (r̂ · πa1 · r̂)w) ⇔ u bw

For r̂ · πa0 · r̂ an analogous argument holds. Thus for i ∈ {0, 1}, the preference
r̂ · πai · r̂ is negatively transitive and hence a layered preference. ��

3 Optimized Decomposition Algorithms

The decomposition algorithms from [10] allow expressing any preference (strict
order) with Boolean preferences and the {&,⊗} operators, as exemplified in
Section 2.3.
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The obvious problem of that approach, which we have discussed in the outlook
of [10], is that these algorithms generate much redundancy. For example the
empty preference 0 on a data set r = x1+ ...+xn is inflated to t(x1)⊗ ...⊗ t(xn)
with both constructions. Especially, layered preferences with many tuples per
layer result in lengthy terms as we see in the following example.

Example 3.1. Let b = t(x1+x2) on r = x1+ ...+x5. We apply the decomposition
into {&,⊗} and tuple preferences from [10]. This results in the r-equivalent
preference

(t(x1) & (t(x3)⊗ t(x4)⊗ t(x5)))⊗ (t(x2) & (t(x3)⊗ t(x4)⊗ t(x5))) .

Considering the Hasse diagram of b, given in Figure 3, we see that x1 is equivalent
to x2 in the sense that their sets of a-predecessors and a-successors are identical,
and the same holds for x3, x4 and x5. Our idea is to identify all nodes which
are equivalent in this sense and then to apply our decomposition algorithms to
these simpler graphs. We exemplify this idea in Figure 3.

1 2 1;2

→
3 4 5 3;4;5

Fig. 3. Preference b (left) and its simplified graph (right). A circled i1; ...; ik is short
for the equivalence class [[xi1 ]] = ... = [[xik ]].

3.1 Elimination of Equivalent Nodes

In the following we give a formal definition of the elimination of equivalent nodes.
The induced preference on the quotient set is called the minimized preference.

Definition 3.2 (Minimized preference). Let a be a preference and r a data
set. We define an equivalence relation ∼a,r where all tuples having the same
predecessors and successors are in one equivalence class. Formally we define for
all u, v ∈ r:

u ∼a,r v ⇔df r · |a〉u = r · |a〉v ∧ r · 〈a|u = r · 〈a|v .
Let rmin =df r/∼a,r be the quotient set of ∼a,r. For u, v ∈ r we define the

minimized preference amin on the equivalence classes [[u]], [[v]] ∈ rmin by

[[u]] amin [[v]] ⇔df u a v .

Further we define samin = ∼a,r as the SV-relation of this preference.
All other relational operations are lifted to the set of equivalence classes in the

canonical way, especially we define 0min =df 0 and 1min =df 1/∼a,r. Relational
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composition with some other relation b on the original data set r (and not the
quotient set) is canonically defined for [[u]] ∈ rmin, v ∈ r by

[[u]] (amin · b) v ⇔df ∃w ∈ 1 : [[u]] amin [[w]] ∧ w b v ,

and symmetrically we define b · amin. This means that w and its associated
equivalence class [[w]] establishes the connection between common relations and
relations on equivalence classes w.r.t. ∼a,r.

The set preference having an equivalence class as argument, formally t([[x]]),
is defined on the original domain r. The equivalence class [[x]] ≤ r is considered
as the set of all tuples equivalent to x w.r.t. ∼a,r. ��

This construction is very similar to constructing minimal automata by iden-
tifying equivalent states, cf. [3].

The definition of ∼a,r is directly connected to the compatibility conditions for
SV-relations in Definition 2.1. This implies that ∼a,r is the maximal SV-relation
for a.

Lemma 3.3. Definition 3.2 is well-formed, i.e., amin is indeed a preference.

Proof. First we show that for tuples x, y ∈ [[u]] with u ∈ rmin, i.e., tuples in
the same equivalence class, ¬(x (a+ a−1) y) holds. This means that there are no
better-than-relations within an equivalence class. We show this by contradiction.
Assume that (x (a + a−1) y) holds. W.l.o.g. we presume (xa y). This implies
x ∈ |a〉y by definition and y /∈ |a〉y by irreflexivity of a. This is a contradiction
to x, y ∈ [[u]] by the definition of [[u]]. With this, the definition of amin and the
property that a is a preference we can simply verify that amin is also a preference.
By definition it is clear that amin · ∼a,r = ∼a,r · amin = amin holds, hence ∼a,r is
a valid SV-relation for amin. ��

3.2 Minimized Decomposition

We apply the elimination of equivalent nodes to the decomposition algorithms.

Definition 3.4. Let a be a preference and r ≤ 1 a finite data set. We define a ⊗-
composition of set preferences where each set is upward closed w.r.t. amin+1min,
using the definitions for rmin, amin and 1min from Definition 3.2, by

Dec Min1(a, r) =df

⊗
[[x]]∈ rmin

t(r · 〈amin + 1min|[[x]]) .

We define Dec Min2(a, r) as given in Algorithm 1.

Algorithm 1 is a decomposition into set preferences and {&,⊗} where each
set corresponds to the equivalence class of a node in the preference graph, i.e.,
a tuple of the data set, or, in the case of minimized preferences, a subset of the
data set.
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Algorithm 1. Preference decomposition into set preferences and {&,⊗}
using the definitions for rmin and amin from Definition 3.2
Input: Preference to decompose a, data set r
Output: r-equivalent decomposition bres

1: function Dec Min2(a, r)
2: ah ← rmin · (amin � (amin)2) · rmin // Hasse diagram of amin on rmin

3: b[rmin] ← 0 // initialization of array b of preferences
4: m ← (amin 	 rmin) // start traversing with eq. classes of maxima
5: while m �= 0min do
6: for all [[y]] ∈ m do // pref. for y, collect and ⊗-compose successors,

7: b[[[y]]] ←
(⊗

[[x]]∈〈ah|[[y]] b[[[x]]]
)
& t([[y]]) // and add pref. on [[y]]

8: end for
9: b[〈ah|m] ← 0 // delete preferences of m-successors
10: m ← (amin 	 |ah〉m)) // find a-maximal predecessors of m
11: end while
12: bres ← ⊗

[[x]]∈rmin
b[[[x]]] ; return bres // ⊗-compose final preference

13: end function

The indices of the array b[·] in Algorithm 1 are the equivalence classes rmin.
The values of b[·] are preferences. The assignment b[m] ← c for a non-empty
set m ⊆ rmin is used as a shorthand notation for simultaneous assignments
b[[[x]]]← c for all [[x]] ∈ m. We also assume that in all assignments the neutrality
of 0 is used, implying that b[[[x]]]← 0%c is executed as b[[[x]]]← c for % ∈ {&,⊗}.

Subsequently we will show the correctness of these decomposition algorithms.
Both are canonical transformations of the algorithms presented and proven to
be correct in [10], where the domain changes from r to the quotient set r/ ∼a,r.
We will use the correctness proofs of that paper in the following arguments.

Theorem 3.5. Let a be a preference and r a data set. Then both Dec Min1(a, r)
and Dec Min2(a, r) are r-equivalent to a.

Proof. In Lemma 3.3 we have shown that amin is indeed a preference. Hence the
correctness of the decomposition algorithms in [10] implies that amin is rmin-
equivalent to Dec Min1(a, r) and Dec Min2(a, r). Additionally this implies
that Dec Min1(a, r) and Dec Min2(a, r) are also well-defined preferences on
rmin. Immediately by Definition 3.2 we get that

r · b · r = r · bmin · r for b ∈ {a,Dec Min1(a, r),Dec Min2(a, r)}
holds, i.e., the minimized preference is r-equivalent to non-minimized one. Fi-
nally we calculate, using the rmin-equivalence of a and Dec Mini(a, r),

r · a · r = r · amin · r = r · rmin · amin · rmin · r
= r · rmin ·Dec Mini(a, r) · rmin · r = r ·Dec Mini(a, r) · r ,

for i ∈ {1, 2}. For the composition of the subidentities rmin and r we apply
Definition 3.2. The above calculation shows the claim. ��
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As a first example of these algorithms we apply the optimized decompositions
to the simple layered preference from Example 3.1.

Example 3.6. Let b = t(x1 + x2) on r = x1 + ...+ x5, as illustrated in Figure 3.
For the optimized decompositions we get:

Dec Min1(b, r) = t([[x1]])⊗ t([[x1]] + [[x3]]) = t(x1 + x2)⊗ t(r) ,

Dec Min2(b, r) = t([[x1]]) & t([[x3]]) = t(x1 + x2) & t(x1 + x2 + x3) .

The final term for Dec Min2(b, r) is much shorter than the decomposition from
Example 3.1.

4 Minimized Decomposition of Power Set Preferences

In the following we consider the decomposition of the minimized power set pref-
erences (πai )min for a given preference a on the data set r. Throughout we will
use r̂ as domain for the power set preferences and their Hasse diagrams.

4.1 Examples

Example 4.1. Reconsider the N-shaped preference a from Figure 2(1). We ap-
ply the elimination of equivalent nodes from Definition 3.2 to the power set
preferences πai for i ∈ {0, 1, 2}.

Consider πa1 and its minimized variant (πa1 )min, illustrated in Figure 4. The
diagram of (πa1 )min is isomorphic to the original preference a. For the equivalence
classes of ∼πa

1 ,r
we get:

[[x1]] = {x1 + y | y ≤ x3 + x4}
[[x2]] = {x2 + y | y ≤ x1 + x3 + x4}
[[x3]] = {x3}
[[x4]] = {x3, x3 + x4}

1 1,3 1,4 1,3,4 2 1,2 2,3 · · · [[1]] [[2]]

→
3 3,4 · · · [[3]] [[4]]

Fig. 4. Partial diagram of Preference πa
1 (left) and diagram of (πa

i )min for i ∈ {0, 1}
(right), where a circled [[i]] is short for [[xi]].

By definition of πa1 , only the existence of dominating elements (here x1 and
x2) in a set v is of interest to determine if (u πa1 v) holds. For example, x1
is dominating x3 w.r.t. a. Hence all sets v with x1 ∈ v are better than x3.
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Consequently, sets like x1, x1 + x4 and x1 + x3 belong to the same equivalence
class w.r.t. ∼πa

1 ,r
.

According to decomposition methods from Definition 3.4 and Algorithm 1 we
get for the decomposed preference terms

Dec Min1(π
a
1 , r) = t([[x1]])⊗ t([[x2]])⊗ t([[x1]] + [[x2]] + [[x3]])⊗ t([[x1]] + [[x4]]) ,

Dec Min2(π
a
1 , r) = ((t([[x1]])⊗ t([[x2]])) & t([[x3]]))⊗ (t([[x2]]) & t([[x4]])) .

Next we consider the power set preference πa0 . The Hasse diagram of (πa0 )min

has the same structure as that of (πa1 )min but the evaluation of the equivalence
classes w.r.t. ∼πa

0 ,r
yields a different result:

[[x1]] = {x1, x1 + x2}
[[x2]] = {x2}
[[x3]] = {x3 + y | y ≤ x1 + x2 + x3}
[[x4]] = {x4 + y | y ≤ x1 + x2}

The equivalence relation for πa0 is isomorphic to that of πa1 and the isomor-
phism is given by the mapping φ : r → r with

φ(x1) = x4, φ(x4) = x1, φ(x2) = x3, φ(x3) = x2 .

Formally it holds that ∼πa
1 ,r

= ∼πa
0 ,φ(r)

. But note that this isomorphism does not
change the better-than-relations, the graph of πa0 is still the same as in Figure 4
(right). Only the existence of dominated tuples in a set is relevant to determine
better sets w.r.t. πa0 . For example, we can add any tuple to x3 and this set is
still worse than x2, formally (u πa0 x2) holds if x3 ∈ u.

Finally we consider πa2 = πa0 �πa1 . Now for u πa2 v with u, v ∈ r̂ we require that
all tuples in u are dominated by tuples in v, and simultaneously the tuples in v
have to dominate those of u.

[[1]] [[2]] [[1, 2]] [[1, 3]]

[[3]] [[4]] [[3, 4]]

Fig. 5. Diagram of preference (πa
2 )min. A circled [[i1, ..., ik]] is short for [[xi1 + ...+ xik ]].

This changes the Hasse diagram of πa2 , depicted in Figure 5, compared to that
of πa0 and πa1 (Figure 4). Each equivalences class in rmin − [[x1 + x3]] forms an
equivalence class of its own w.r.t. ∼πa

2 ,r
. Their better-than-relations are identi-

cal to the non-minimized variant depicted in Figure 2(4). The class [[x1 + x3]],
collecting the incomparable tuples w.r.t. πa2 , can be formally characterized by

u ∈ [[x1 + x3]] ⇔ u � (x1 + x2) 
= 0 ∧ u � (x3 + x4) 
= 0 .
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This formalizes that all sets containing dominated as well as dominating nodes
are incomparable to all other sets w.r.t. πa2 .

In the example above the Hasse diagrams of πai for i = 0 and i = 1 are
isomorphic to that of a. This is not always the case as we will show in the
following example.

1 3

2 4

1) b

[[1]] [[1, 3]] [[3]]

[[2]] [[2, 4]] [[4]]

2) (πb
1)min

Fig. 6. Preference b and its minimized induced power set preference (πb
1)min.

Example 4.2. Consider the preference b = (t(x1) & t(x2)) ⊗ (t(x3) & t(x4)) on
r = x1 + ... + x4 and its minimized power set preference (πb1)min, depicted in
Figure 6. For the preference πb1 we get the following decompositions:

Dec Min1(π
b
1, r) = t([[x1]])⊗ t([[x1 + x3]])⊗ t([[x3]])⊗ t([[x1]] + [[x2]]) ⊗

t([[x1 + x3]] + [[x2]])⊗ t([[x1 + x3]] + [[x2 + x4]]) ⊗
t([[x1 + x3]] + [[x4]])⊗ t([[x3]] + [[x4]])

Dec Min2(π
b
1, r) = (t([[x1]]) & t([[x2]]))⊗ (t([[x3]]) & t([[x3 + x4]])) ⊗

(t([[x1 + x3]]) & (t([[x2]])⊗ t([[x2 + x4]])⊗ t([[x4]])))

The resulting terms in this example may still look quite complex. Still, the
minimization is an advantage in many cases as we will underline in the quanti-
tative comparison in the next section.

4.2 Quantitative Comparison of the Decomposition Approaches

In the following we compare the complexity of the generated terms by counting
operands and operators. For a preference a, we define |a|t to be the number of
t(·)-operands in a and |a|⊗ the number of ⊗-operators in a. For example consider
a = t(x1)⊗ (t(x2) & t(x3))⊗ t(x4). We get |a|t = 4 and |a|⊗ = 2.

The number of ⊗-operators is the main factor for the computational complex-
ity of the preference evaluation, i.e., the determination of the maxima a # r for a
given data set r. As discussed in [10], the costs to evaluate a ⊗-chain a1⊗ ...⊗an
of layered preferences ai quickly increases with the length n. The & operator
preserves layered preferences whereas ⊗ does not.

Next to the preference a from Figure 2 and b from Figure 6 we consider c, d, e
as depicted in Figure 7. The preference c is similar to the N-shaped preference
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1 2

3 4

5

1) c

1

2

3

4

2) d

1 2

3

4 5

3) e

Fig. 7. Hasse diagrams of preferences c, d, e used in the experiments.

a, but contains an additional tuple x5 which is worse than all other tuples. Like
a and b the preference c is also not a layered preference. The preferences d and e
are layered preferences. We have chosen these examples, as they contain typical
sub-graphs of larger preferences. They allow us to study the principal effects, e.g.,
term complexity depending on the number of tuples, for some typical parallel
and serial constructions of preferences.

Table 1. Quantitative comparison of different preference decompositions of power set
preferences. We abbreviate (·)P = Decomp Pareto(·, r), (·)T = Decomp Tuple(·, r),
(·)M1 = Dec Min1(·, r), (·)M2 = Dec Min2(·, r) and r4 = x1 + ...+ x4, r5 = r4 + x5.

Pref. r |(·)P |t |(·)P |⊗ |(·)T |t |(·)T |⊗ |(·)M1|t |(·)M1|⊗ |(·)M2|t |(·)M2|⊗
πa
1 r4 15 14 31 27 4 3 5 2

πa
2 r4 15 14 18 14 7 6 10 6

πb
1 r4 15 14 23 19 6 5 8 4

πb
2 r4 15 14 15 11 7 6 7 3

πc
1 r5 31 30 119 111 5 4 6 2

πc
2 r5 31 30 53 45 12 11 21 14

πd
1 r4 15 14 75 63 4 3 4 0

πd
2 r4 15 14 21 17 6 5 7 4

πe
1 r5 31 30 303 287 3 2 3 0

πe
2 r5 31 30 54 44 6 5 7 3

In Table 1 we summarize the term complexity for each decomposition method,
each preference (a, ..., e from Figures 2, 6 and 7) and the power set preferences

π
(·)
i for i = 1 and i = 2. We omitted i = 0 as this is very similar to i = 1

and hence the complexity is nearly the same. For the preferences a, b, d, e it
is even exactly the same, because their Hasse diagrams are symmetric, cf. the
isomorphism shown in Example 4.1. All results have been retrieved with the help
of the R script [8] available on the web.

4.3 Discussion of the Results

For the non-minimized Pareto decompositions (·)P in Table 1 we get in all cases
|(·)P |t = 2i − 1 and |(·)P |⊗ = 2i − 2 for the data set ri, i ∈ {4, 5} having
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the cardinality |ri| = i. These values for | · |t and | · |⊗ follow directly from
the construction of the Pareto decomposition. The data set has the cardinality
|r̂i| = 2i−1 for i ∈ {4, 5}, and for every tuple from the data set one t(·) operand
is generated and then all operands are ⊗-composed.

For the preferences πd1 and πe1 we get |(·)M2|⊗ = 0. This means that the
minimized decomposition into {&,⊗} and set preferences does not contain any⊗
operator. Hence πd1 and πe1 are &-chains of set preferences. This is what we expect
from Lemma 2.10, i.e., the power construction preserves layered preferences,
which can be expressed as &-chains of set preferences, as shown in Lemma 3.8
in [10].

For all the other quantitative results we have no such “obvious” explanation.
We consider this quantitative summary as an empirical result, giving some evi-
dence that the minimization according to the ∼(·),r equivalence relation is quite
useful when decomposing power set preferences.

5 Conclusion and Outlook

In the present paper we have worked on the problem, mentioned in the out-
look of [10], that the preference decompositions from that paper generate quite
lengthy terms containing much redundancy.

This paper can be considered as a first step to find minimal decompositions,
i.e., the search for a minimal complex preference term for a given strict order.
Again we have restricted ourselves to the simple case of Boolean preferences,
as they have pleasant theoretical properties. For future research it would be
interesting to obtain preference terms like “high mpg value ⊗ high hp value”
(as sketched in the example from the introduction) from a given strict order.
Currently, this looks like a NP-hard combinatorial problem to us.

Moreover we have considered the power construction of preferences, where
the term complexity of the Boolean decompositions can be reduced. The mini-
mized decomposition also helped us to see some interesting theoretic properties
of power set preferences. For example, in some cases the diagram of a preference
is isomorphic to its power set extension. With the presented results we have
lifted the expressiveness result from [10] to the power construction.

Power set preferences occur naturally when a user has to decide between given
sets of alternatives where she searches for Pareto optima of the elements in the
sets. This concept has already been applied in the context of database prefer-
ences, cf. [12]. With our approach we offer a way for a compact description of
power set preferences in common preference query languages [9,4], only requiring
set preferences and the {&,⊗} operators. For the decomposition Dec Min1, set
preferences and just the ⊗ operator are sufficient to express arbitrary power set
preferences.

For future research we are also interested in making more general statements
about the term complexity of (minimized) decompositions. For example, a short
formula to get the results from Table 1 would be a nice theoretical result. Cur-
rently, these numbers have been obtained experimentally by an R script. Based
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on such a formula, one could search for upper limits of the term complexity
and more general connections between properties of preferences and their term
complexity.

Acknowledgement. I am grateful to Bernhard Möller and the anonymous
referees for their helpful remarks.
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11. Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. EATCS Monographs on Theoretical Computer Science (1993)

12. Wang, Q., Balke, W.T., Kießling, W., Huhn, A.: P-news: Deeply personalized
news dissemination for mpeg-7 based digital libraries. In: Heery, R., Lyon, L.
(eds.) ECDL 2004. LNCS, vol. 3232, pp. 256–268. Springer, Heidelberg (2004).
http://dx.doi.org/10.1007/978-3-540-30230-8_24

13. Winskel, G.: On powerdomains and modality. Theor. Comput. Sci. 36, 127–137
(1985)

http://tinyurl.com/pxco8d4
http://www.sciencedirect.com/science/article/pii/S2352220815000188
http://www.p-roocks.de/powerset-prefs-ramics.r
http://www.p-roocks.de/rpref
http://dx.doi.org/10.1007/978-3-319-19797-5_4
http://dx.doi.org/10.1007/978-3-540-30230-8_24


Roughness by Residuals

Algebraic Description of Rough Sets
and an Algorithm for Finding Core Relations

Martin E. Müller
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Abstract. Rough set theory (RST) focuses on forming posets of equiva-
lence relations to describe sets with increasing accuracy. The connection
between modal logics and RST is well known and has been extensively
studied in their relation algebraic (RA) formalisation. RST has also been
interpreted as a variant of intuitionistic or multi-valued logics and has
even been studied in the context of logic programming.

This paper presents a detailed formalisation of RST in RA by way of
residuals, motivates its generalisation and shows how results can be used
to prove many RST properties in a simple algebraic manner (as opposed
to many tedious and error-prone set-theoretic proofs). A further abstrac-
tion to an entirely point-free representation shows the correspondence to
Kleene algebras with domain.

Finally, we show how an RA-perspective on RST allows to derive
an abstract algorithm for finding reducts from a mere analysis of the
properties of the RA-construction rather than by a data-driven approach.

1 Introduction

Rough set theory (RST) as introduced by [9] is a method developed for relational
data analysis. Originally it was presented as a purely set-theoretic approach by
abstracting from feature based information systems to systems of equivalence
relations. It has been studied in many different contexts; to name just a few
there are (modal) logics, e.g. [3,7,8,20], logic programming, e.g. [5], fuzzy set
theory, e.g. [2] and formal concept analysis, e.g. [19,18].

In this paper, we first give a short set-theoretic introduction to RST. We then
characterise RST in terms of residuals (section 3) using characteristic functions
of sets. Section 4 briefly sketches how to further generalise the characterisation
and reveals common properties to Kleene algebra with domain operators. In
section 5 the formalism from section 3 is used to derive an efficient description
of so-called core relations. This description turns out to be a concise specification
of a common core discovery algorithm, [14].

2 Rough Set Theory by Set Theory

Notation. U denotes the domain of discourse. Sets are denoted by lowercase let-
ters r, s, t, relations by uppercase letters P,Q,R and object variables are x, y, z.

c© Springer International Publishing Switzerland 2015
W. Kahl et al. (Eds.): RAMiCS 2015, LNCS 9348, pp. 380–394, 2015.
DOI: 10.1007/978-3-319-24704-5_23
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Functions are written f, g, h; the characteristic function of a set s is ṡ : U → 2
and the kernel relation induced by f : s → t is indicated by

∼
f : s ⇁ s. Sets of

relations are typeset in boldface letters P,Q,R. Complements, converse, duality

and composition are written s or R, R
N
, Rd = R

N
and P �Q . The quotient or

partition induced by an equivalence R on a set s is written s/R and [x]R is the
R-equivalence class of x. When clear from context, we drop stacked operators
(i.e.

∼
s for

∼
ṡ, s/f for s/

∼
f , etc).

(Pre-) images are denoted by P·s and s·P ; if s = {x} is a singleton, we
may write x·P and P·x. The universal and null relation are   (s,t) = s × t and
⊥⊥(s,t) = ∅ and 1 denotes the identity (we implicitly assume type consistency). To
indicate the interpretation of a subidenty as a set we also write s1 = 1 ∩ (s× s).

2.1 Information Systems

An information system consists of a domain set U with a set F of total functions:

I = 〈U ,F〉 where F = {fi : U → Vi : i ∈ n} (1)

and F, Vi, and U are finite. Such systems are usually represented as tables
with a row for each element x ∈ U and a column for each feature f ∈ F
and the value f(x) in the x-row and f -column. An example for an informa-
tion system containing knowledge about geometric figures over the domain U =

is shown in figure 1.1 Readers familiar with formal con-
cept analysis will recognise 〈U ,F, I〉 as a formal context with all f ∈ F being
attributes and I : U ⇁ F with xIf :⇐⇒ f(x) = 1; see, e.g., [4,12,13].

2.2 Rough Set Data Analysis: Objects and Definability

RST explores the knowledge encoded in kernel relations, [9,11,6]. Let R be the
set of kernel relations induced by F. The indiscernability relation generated by
R is defined as ≈

R :=
⋂
R∈R

R. (2)

Trivially,
≈
R ⊆ R for all R ∈ R and [x]≈

R
⊆ [x]R for any x ∈ U and R ∈ R. Finally,

〈R,⊆〉 forms a complete lattice on all equivalences on U with least upper bound

operation P �R = (P ∪R)∗, ≈
R being the smallest element and

⊔
R the largest.

Hence, the knowledge base 〈
U ,
{≈
P : P ⊆ R

}〉
(3)

contains all information available to group elements of U into sets defined in
terms of unions and intersections of equivalence classes (e.g. in terms of feature
value assignments in CNF-formulae).

1 We assume all feature value sets Vi to be pairwise disjoint (by renaming).
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Fig. 1. An information system, two kernel relations and their indiscernability relation.

The lower R-approximation of s is defined as the union of all R-classes that
are contained in s; the corresponding upper approximation is the union of all
classes containing at least one element of s:

[[R]]s := {x ∈ U : [x]R ⊆ s} (4)

〈|R|〉s := {x ∈ U : [x]R ∩ s 
= ∅} . (5)

Both approximation operators are isotone in their set arguments, but [[ ]] is an-
titone in its relation argument:

P ⊆ R =⇒ 〈|P |〉s ⊆ 〈|R|〉s but P ⊆ R =⇒ [[R]]s ⊆ [[P ]]s. (6)

The proof is deferred to section 4. A set s ⊆ U is roughly R-definable, if [[R]]s 
= ∅
or 〈|R|〉s 
= U . If [[R]]s = 〈|R|〉s we also have [[R]]s = 〈|R|〉s = s and s is called
(exactly) R-definable (for a proof, see equations (17,18) and section 4). As already
suggested by notation, upper and lower approximations are dual operations in
the usual sense of modal logics:

[[R]]s = 〈|R|〉s. (7)

For a proof, see 4. In most cases we will examine sets of relations; for better read-

ability we write [[R]] instead of [[
≈
R]].A classification s = {si : i ∈ n} is a collection

of classes si ⊆ U . Usually, one assumes a classification to be a partitioning U/ ∼
f

induced by a classifier f : U → n. Rough set approximations can be lifted to
arbitrary classifications by building approximations of the classes:

[[R]]s := {[[R]]s : s ∈ s} and 〈|R|〉s := {〈|R|〉s : s ∈ s} . (8)

Hence, [[R]]s can be interpreted as a special case of s = {s} or [[R]](U/∼
s) =

[[R]] {s, s} with ∼
s being the kernel relation induced by the characteristic function

of s.2 With rough set theory being a set based approach we will stick to the
arbitrary classification based view for the remainder of this section. Given two
sets P,R of equivalences, one wants to evaluate their expressiveness against

2 To be precise, [[R]]s =
⋃ {s′ ∈ [[R]]U/∼

s : s′ ∩ s �= ∅}.
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each other and/or with respect to a given classification s. A relation R is (s-)
dispensable in R, if [[R− {R}]]s = [[R]]s. Then, R does not contribute to the
knowledge in R. Otherwise it is called indispensable. R is (s-) irreducible, iff it
does not contain any s-dispensable relation. Finally, P is called a (s-)reduct of
R, iff P ⊆ R and P is s-irreducible. Reducts are not unique, hence we denote the
set of all s-reducts of R by Reds(R); their intersection Cors(R) :=

⋂
Reds(R) is

called the core and its elements are called essential.3 To compare the descriptive
power of equivalences P to that of another set of equivalences R, we define the
P-positive set of R against s to be the union set of all P-lower approximations

of
≈
R classes:

[[P � R]]s :=
⋃
s∈s

[[P � R]]s :=
⋃
s∈s

⋃
t∈s/

≈
R

[[P]]t . (9)

[[� ]] is well defined for arbitrary classifications, partitions and single sets s = {s}
but the result of [[P � R]]s is always a flat set. If the P-positive set of R includes
the Q-positive set of R (w.r.t. s), then P obviously contains more R-knowledge
(w.r.t. s) than Q. We say that P (R-) refines Q (on s) and write

P
R2s Q :⇐⇒ [[P � R]]s ⊇ [[Q � R]]s. (10)

In most cases, properties of relation sets are compared with respect to the entire
set of objects in the universe such that s = {U} = U/  . We then simply drop

the arguments and say that P
R2 Q iff [[P � R]]U ⊇ [[Q � R]]U . If we assume

s = {s, s} = U/ṡ, the following equivalence shows that “more knowledge” as
expressed by 2 simply means bigger regions of lower approximations for both s
and its complement s:

P
∼
s2 R

(a)⇐⇒ [[R]]s ⊆ [[P]]s
(b)⇐⇒ [[R]]s ⊆ [[P]]s. (11)

Proof (Equation 11). By definition ( 2 to [[�]]; U/
∼
s = {s, s}), isotony, and

[[R]]s ⊆ s ⊆ 〈|R|〉s we show validity of (11a):

P
∼
s2 R⇐⇒

⋃
c∈{s,s}

[[P]]c ⊇
⋃

c∈{s,s}
[[R]]c

⇐⇒ [[R]]s ∪ [[R]]s ⊆ [[P]]s ∪ [[P]]s

(∗)
=⇒ [[R]]s ∪ [[R]]s ∪ s ⊆ [[P]]s ∪ [[P]]s ∪ s
(a)⇐⇒ [[R]]s ∪ s ⊆ [[P]]s ∪ s

Adding s instead of s in line (∗), we obtain (11b). Then,

[[R]]s ⊆ [[P]]s =⇒ [[R �
∼
s]]s ⊆ [[P �

∼
s]]s =⇒ P

∼
s2s R

and the same for s which proves the reverse direction for (∗).
3 The definitions of dispensability and all following concepts are given on simple sets
s in RST literature.
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2.3 Relation Algebra

We assume the reader to be familiar with (concrete) relation algebra, [17], and
only briefly repeat the definition of residuals. For relations P,Q and T with
matching (co-)domains, the right and left residuals are defined as follows:

P�Q := P
N�Q or R ⊆ P�Q⇐⇒ P �R ⊆ Q

Q�P := Q�PN or R ⊆ Q�P ⇐⇒ R�P ⊆ Q
(12)

with R being the biggest solution of the respective inequalities. Sets s ⊆ U
can be represented relationally as a blocks s × s ⊆ U × U , as a subidentities
s1 = 1 ∩ (s × s), or characteristic functions ṡ : U → 2. In the homogenous
setting, we require M = U . Note that ṡ is a heterogenous representation which
requires a domain operation for translation into the homogenous representation.

Elements are singleton sets: x ∈ s⇐⇒ {x} ⊆ s, i.e. &x has a singleton domain
{x}, s× s = s1 = {〈x, x〉} and {x} = ṡ·1.

3 A Relation Algebraic Approach to Rough Sets

We first consider characteristic functions for a proper algebraisation.

3.1 Basic Constructions

For any set s, let s. be an arbitrary but fixed element of s. Let there be a partition

U/ ∼
f = s = {si : i ∈ n}. We then call

{
si. : i ∈ n

}
a representation system of f

and we can reconstruct arbitrary f ∈ F from
∼
f by only knowing f(si. ) and

∼
f :

f(x) = f(si. )⇐⇒ x
∼
fsi. ⇐⇒ x·&si = U ⇐⇒ &x

N�&s =   . (13)

Using s. , one can reconstruct s from
∼
s with a trick (see footnote 2) exploiting the

fact s =
⋃ {s′ ∈ U/∼

s : s. ∈ s′}.

3.2 Residuals of Characteristic Functions

We first give an equivalent residual based description of lower approximations:

[[R]]s
(a)
== R�ṡ ·1 (b)

== R�∼
s ·s.

(c)
== (R�∼

s ·U) ∩ s. (14)

Based on the fact that x ∈ [[R]]s implies [x]R ⊆ s the proof idea is as follows:

xRy → y ∈ s FOL⇐⇒ ¬(xRy ∧ yṡ1) �⇐⇒ xRN�ṡ1 �⇐⇒ xR�ṡ1. (15)

A more detailed version can be found in the appendix. Also, the desired duality
of [[ ]] and 〈| |〉 in equation (7) can be expressed using the complementation of
characteristic functions:

〈|R|〉s := R�s ·0 = R�s ·0 = R�s ·1 = R�s ·1 = [[R]]s, (16)
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Fig. 2. Lower approximations by residuals and characteristic functions

i.e. 〈|R|〉s = R�ṡ ·0. Next, we note that R � ṡ = R�ṡ for any equivalence R.

In particular, we have
∼
s � ṡ =

∼
s�ṡ =

∼
s�ṡ which gives s = [s. ]∼s =

∼
s�ṡ ·1,

i.e. image choice determines the preimage to be s or its complement. The fact
that [[R]]s = s⇐⇒ 〈|R|〉s = s (R-definability of s) can be shown by

R�ṡ = ṡ =⇒ R�ṡ ⊆ ṡ ∧ ṡ ⊆ R�ṡ (17)

R�ṡ = ṡ =⇒ R�ṡ ⊆ ṡ ∧ R�ṡ ⊆ ṡ (18)

which, together, means R�ṡ = ṡ, then R�ṡ = ṡ by Schröder, then R�ṡ = R�ṡ
by complementation and therefore R�ṡ = ṡ⇐⇒ ṡ = R�ṡ . An even nicer proof
is given in section 4

3.3 Classifications, Positive Regions, Implication

Restricting classifications to quotients in (8) and using the residual based repre-
sentation in (14), [[R]]c can be characterised as follows:

[[R]]c =
{ ≈
R�ċi ·1 : ci ∈ U/Q

}
=
{ ≈
R�f ·i : {i} ∈ n

}
(19)

Similarly, the definition of positive regions can be rewritten as

[[R � Q]]U =
⋃
i∈n

≈
R�Q ·c.i =

≈
R�Q ·U . (20)

In other words, the R-positive region with respect to Q coincides with the pre-
image set of the right residual; and it does so for arbitrary equivalences Q and
subsets s ⊆ U :

[[R � Q]]s = (
≈
R�Q ·U) ∩ s. (21)

Equations (20) and (21) follow immediately from the proof of equation (14) by
generalising s = {s, s} to c = U/Q. Another conclusion for more data-driven
applications is that the positive region under a classification is the same as the
lower approximation of the entire data set (i.e. we still know which data points
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can be correctly classified but we forget into which class it has been classified).
From this, we can conclude for any c = U/Q

P
R2c Q

(10)⇐⇒ [[P � R]]c ⊇ [[Q � R]]c
(20)⇐⇒ ≈

Q�≈
R ⊆ ≈

P�≈
R (22)

which shows the irrelevance of Q for the comparison of P to Q under R and
finally leads to a point-free characterisation. From equation (22) we can also
derive4

≈
Q�≈

R ⊆ ≈
P�≈

R ⇐⇒ ≈
P� ≈

R ⊆ ≈
Q� ≈

R
!⇐⇒ ≈

P ⊆ ≈
Q. (23)

Also, if Q ⊆ P, it follows that
≈
P ⊆ ≈

Q, which expresses the fact that loss of
knowledge results in loss of information (or “predictive power”):

Q ⊆ P =⇒ P
R2c Q⇐⇒ [[Q � R]]c ⊆ [[P � R]]c (24)

for arbitrary equivalences
≈
R and Q with c = U/Q.

Finally, once we have found an algebraic definition of positive regions, we can
reversely define [[ ]] as a simplified version of [[ � ]]:

[[R]]s
(14a)
==

≈
R�ṡ ·1 (14c)

==
≈
R�∼
ṡ ·U ∩ s (20)

== [[R �
∼
ṡ]]s. (25)

Then it is clear why refinement is also referred to as implication:

P 2 Q
Def⇐⇒ ∀x ∈ U : x ∈ [[P � Q]]U (26)

(20)⇐⇒ ∀x ∈ U : x ∈ ≈
P�≈

Q ·U (27)

⇐⇒ ∀x, y ∈ U : y
≈
Px −→ y

≈
Qx. (28)

For a proof, see appendix. This way we have reformulated the idea of “logic
implication” trough the intuitive meaning of residuals rather than by a long-
winded set theoretic treatment as in [10]. As an example, see figure 3.

Finally,
R2 forms a preorder on R for any equivalence R on U : Reflexivity is

trivial and P 2 Q 2 R implies P 2 R by transitivity of ⊆ in equation (22).
Sadly, 2 does not form a poset since it is not antisymmetric:

P 2 Q ∧Q 2 P 
=⇒ P = Q (29)

(just consider P = {1} and Q = { ∼{x} : x ∈ U} which does imply
≈
P =

≈
Q, but

P 
= Q). Hence, reducts are not unique and dispensability of relations is always
relative to the set of equivalences under consideration which again demonstrates
the conciseness of the relation algebraic formalisation of RST.

4 The equivalence marked “!” only holds for
≈
R �= ��. However,

≈
R = �� only if all

features in F are constant which we can safely assume to be not the case.
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Fig. 3. Refinement, inclusion, implication

4 Pointfree Rough Sets

We now treat relations R and sets s in a unified way by assuming all sets to be
represented by subidentities. Let U := ℘(U × U) and setU := {s ∈ U : s ⊆ 1U}.
Using this notation we can finally prove equation (6) pointfree:

Proof. Let s ∈ setU and P ⊆ R ⊂ U are sets of equivalences. Then R :=
≈
R ⊆

≈
P =: P .

1. P ⊆ R =⇒ [[P]]s ⊆ [[R]]s .

By isotony,
≈
R�s− ⊆ ≈

P�s− . By definition of residuals,
≈
R�s ⊆ ≈

P�s , and by
complementation and definition of [[ ]] through � one obtains [[P]]s ⊆ [[R]]s.

2. P ⊆ R =⇒ 〈|R|〉s ⊆ 〈|P|〉s.
Again, P ⊆ R implies

≈
R �s ⊆ ≈

P�s . By definition of � and symmetry of

indiscernibility relations,
≈
R�s− ⊆ ≈

P�s− . This is equivalent to [[R]]s ⊆ [[P]]s
and, by equation (7), 〈|R|〉s ⊆ 〈|P|〉s.

In a next step, we interpret subidentities as restrictions or conditions to be
satisfied when classified by equivalences. [1] introduce domain operators to reason
over specifications of state transitions and tests in Kleenealgebra (KAD). RST
is a very simple instance: Sets R of equivalences are the “actions” we perform
to approximate classes, and membership correspond to the tests. To lift set
complementation to subidentities, one defines for s ∈ setU a complementation
operator s− := s ∩ 1 . As a result, 〈U,∪, � , ∅, 1 , ∗, −, setU〉 is a Kleene algebra
with tests setU. To define the binary approximation operator [[·]] : U×setU → setU
we make use of a domain operator 〈R| : U→ setU:

〈R| := min {X ∈ setU : R ⊆ X �R } (30)

Then, by domain laws, by R being an equivalence and by s ∈ setU,

〈R| s = 〈R�s | = 〈R�s− |=〈|R|〉s. (31)

Building the complement of 〈 | relative to C ∈ U, we have

−〈R| = max
{
X ∈ setU : X �R ⊆ C} = C �RN . (32)
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Hence,
[R| t := −〈R| t− = t−�R = R�t = [[R]]t. (33)

Whereas the above proof of equation (6a) demonstrates the isotony P ⊆ R =⇒
[[P]]s ⊆ [[R]]s, antitony with respect to

≈
R and

≈
P directly follows from he fact

that R ⊆ P =⇒ [P | s ⊆ [R| s. Also, by a single application of the Schröder rule
and contraposition,

〈R| s ⊆ t⇐⇒ 〈R| t− ⊆ s− ⇐⇒ s ⊆ 〈R| t− ⇐⇒ s ⊆ [R| t (34)

we have shown the Galois-connection (GC) between [ | /[[ ]] and 〈 | /〈| |〉. From
this observation many (tedious) proofs become obsolete since it implies that,
e.g. [[R]]s = 〈|R|〉s (proving equation (7)) or 〈|R|〉s = s ⇐⇒ [[R]]s = s (replacing
equations (17,18)).5

5 Dispensability and Irreducibility

Having reformulated all basic RST operations in RA, it is straightforward to
formalise advanced concepts.

5.1 Redundancy and Reducts

Using the reflexivity of 2, relative redundancy of equivalences can be redefined
as follows: R is Q-redundant in R on s iff

R
Q

2s R− {R} ∧ R − {R}
Q

2s R. (35)

Equivalently, for R = P∪̇ {R} (i.e. R /∈ P),

≈
R�Q ·s =

≈
P�Q ·s or

≈
R�≈

P =
≈
P�≈

R . (36)

Hence,
Q ∈ Reds/Q(R) :⇐⇒
(a) Q ⊆ R |: Reduction

(b) ∧ Q
Q

2s R |: ≈
Q =

≈
R

(c) ∧ ∀P ⊂ Q : Q
Q

2s P ∧ P 

Q

2s Q |: Irreducibility

(37)

From (a) it follows that
≈
R ⊆ ≈

Q, (b) translates to
≈
Q ⊆ ≈

R by equations (22-24)

such that, together,
≈
Q =

≈
R. Then, in particular, for P = Q − {R}, part (c)

means that Q can be a Q-reduct of R on s only if (note the implication):

∀P ⊂ Q : Q
Q

2s P ∧ P 

Q

2s Q
=⇒ ¬∃R ∈ Q : [[Q]]s/Q = [[Q− {R}]]s/Q
⇐⇒ ∀R ∈ Q : [[Q � Q]]s ⊃ [[Q− {R} � Q]]s

(38)

5 Had we started with the GC stated above, [[R]]u ⊆ u ⊆ 〈|R|〉u and [[1 ]]u = u = 〈|1 |〉u,
and setting s = t = u immediately delivers the desired result.
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where the last inequation shows that (c) can be rewritten as a strict implication:

Q is irreducible, iff for any P ⊂ Q, Q
Q4s P. Reformulating equation (37 a-c)

algebraically, we have

Q ⊂ R ,
≈
R�Q =

≈
Q�Q and ∀P ⊂ Q :

≈
P�Q ⊂ ≈

Q�Q . (39)

This characterisation of irreducibility is composed of one equation and two strict
inequalities which has two big advantages: First, with a suitable {R} ⊆ Q ∩
P, we can disprove Q being a reduct by showing that R is dispensable. Vice

versa, R is essential if (i.e.
≈
R-indispensable) if it is indispensable in all reducts.

Second, instead of checking all x ∈ U (as the definition in equation (37) would
demand), it suffices to inspect only a (suitable) set of representatives of U/Q
to efficiently identify essential relations and then (non-deterministically) build
possible reducts by adding relations.6

5.2 Identification of Essential Relations

Algebraically, essential relations can be characterised very concisely:

R ∈ Q is essential
w.r.t. Q on s,

⇐⇒ (Q− {R})�Q ⊂ Q�Q . (40)

But in real life, a proof of the strict inclusion in equation (40) requires a look
into the data. We start by translating the residual notation back to a pointwise
perspective using positive regions: Assume that P ⊂ Q ⊆ R and P = R− {R}.
R is essential, if

∀P ⊆ R : [[P � Q]]s ⊂ [[P ∪ {R} � Q]]s, (41)

which is a necessary precondition for R being an element of all reducts (its
removal implies loss of discernibility (equation 37 (c)). Pointwise speaking, there
are at least two different objects that can be distinguished by R only:

R is essential ⇐⇒ ∃x, y ∈ s : ∀P ∈ P : xRy ∧ xPy (42)

⇐⇒ ∃x, y ∈ s : x(≈
P−R)y. (43)

In terms of relation matrices, (P )x,y = 1 for all P ∈ P and (R)x,y = 0.
This gives rise to defining a simple exhaustive test procedure that happens to

coincide with what in RST is known as analysis by discernibility matrices : We
define

ΔQ : U × U → ℘(R′) with ΔQ(x, y) =
{
R′ ∈ R′ : xRy

}
(44)

6 “Efficiency” crucially depends on: The effort of finding r, the fact whether r contains
the “right” representatives, the existence of a non-empty core P and the relative size
of the core to all reducts—with the worst case being an empty core and two reducts
Q and R−Q.
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Fig. 4. ΔQ for core relation identification

where the R′ denotes the name of R and find that

R is essential ⇐⇒ ∃x, y ∈ s : ΔQ(x, y) = {R′} . (45)

which requires |Q|(12n2) tests (with n = |s|). Since one hardly wants to identify
every single object {x} ∈ s/1 but only classes c ∈ s/Q, the problem above can be
reduced to comparing pairs of elements from different classes; in the best case by
comparing only two representatives c. and c.

′ for every pair of classes—and, in the
ideal case, comparing the same pair of representatives for every relation. Then,
the efficiency gain increases polynomially in the increasing coarseness Q on s,
reducing the number of tests to a maximum of |Q|(12m2) where m = |s/Q| < n.

Suppose rP := {c. : c ∈ c} ⊆ s being a “suitable” representation of
c = {[x]Q : x ∈ s} (the indexing r is required because the existence of a globally
suitable representation is yet unclear). Then, we can reformulate indispensability
of R as

∀P ∈ Q : ∃c. ∈ rP : [c. ]≈Q
⊆ c ∧ c. /∈ [[P]]c ⇐⇒ (42). (46)

Hence, given a suitable representation system r ⊆ s, we can efficiently deduce
that R is essential on s by testing wether it is indispensable on r:
First, recall that Q = P∪̇ {R}. Suppose

∀P ∈ Q : ∃c. ∈ rP : [c. ]≈Q
⊆ c ∧ c. /∈ [[P]]c

is true. Then,

[c. ]≈Q
⊆ c [[ ]]

=⇒ c. ∈ [[Q]]c

≈⇐⇒ c. ∈ [[P ∪ {R}]]c ≈⇐⇒ c. ∈ [[
≈
P ∩R]]c (47)

�⇐⇒ c. ∈ [[Q � Q]]c
⊆⇐⇒ c. ∈ [[Q � Q]]s
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c. /∈ [[P]]c
[[ ]]⇐⇒ [c. ]≈P


⊆ c
[ ]⇐⇒ ∃y : c.

≈
Py /∈ c ≈⇐⇒ ∃y : ∀P ∈ P : c.Py /∈ c (48)

�⇐⇒ c. /∈ [[P � Q]]c
⊆⇐⇒ c. /∈ [[P � Q]]s

Note that c. depends on P whereas c = [c. ]Q ∈ s/Q does not. With y /∈ c, we
know y ∈ c′ = [c.

′]Q. Assuming a “suitable” r, we can choose y = c.
′:

(48)
y=c.

′
⇐⇒ ∀P ∈ P : c.Pc.

′. (49)

But since (a) [c. ]≈Q
⊆ c, (b) c∩ c′ = ∅, (c) R ∈ Q−P and (d) for all P ∈ P, c.Pc.

′,

it follows that R is the only relation in Q that discerns x = c. and y = c.
′. Hence,

it follows that

∃x, y ∈ s : ∀P ∈ P : xRy ∧ xPy ⇐⇒ R is essential . (50)

As a result, if some R is a core relation, we can find rP for every P 
= R to
show that xRy and xPy for x, y ∈ rP . Formally, this is not a problem because
we can assume “.” to always pick the “right” element by a perfect guess. For
an implementation, non-determinism cannot be resolved that easily. A working
algorithm therefore would have to make use of a suitable heuristically guided
search/selection procedure. But even then, it is unclear whether there is a single
r = rP for all P . Actually, the proof above implies that rP are not unique in

general: From c.
≈
Pc.

′ as in (40) follows that [c. ]≈P
= [c.

′]≈
P
such that one might choose

any two elements x ∈ [c. ]≈P
∩ c and y ∈ [c.

′]≈
P
∩ c′.

Fig. 5. Checking for core relations by representation systems
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5.3 Finding Core Relations

Supposing a perfect choice of c. ,

R is indispensable
in Q w.r.t. Q on s,

iff c. /∈ [[P]]c 
⊆ [c. ]≈Q
⊆ [[Q]]c ⊆ [c. ]Q. (51)

Hence, the following “algorithm” for finding essential relations could be con-
structed along these lines:

1. Compute r := {c. : c ∈ ([[R � Q]]s)/Q} (if not done yet).
2. For every x, y ∈ r, compute (d)x,y =

{
R′ : R ∈ R ∧ xRy}

(where R′ denotes the mere name of R rather than R itself).
3. Corc(R) := {R : ∃x, y : (d)x,y = {R′}}
4. For every P ∈ ℘(R− Corc(R)) in order of cardinality:

Q := P ∪ Corc(R)s is a Q-reduct of R w.r.t. s, iff:

Q
Q

2s R and Q is not a superset of any other reduct.

This method, derived from our algebraic analysis, exactly corresponds to Skow-
ron’s approach in [14] for finding Q-reducts of R on s by discernibility matrices.

6 Conclusion

The main contribution of this paper is an algebraic formalisation of rough set
theory using residual operations and characteristic relations. The emphasis on
residuals results from the connection between RST operators to modal opera-
tors and weakest/strongest pre-/ postconditions. However, the formalisation in
section 3 is still not point-free as it heavily depends on set representations as
characteristic functions and their preimages. The reason for this approach is
related ongoing work: Equation (25) shows that RST works on arbitrary parti-
tions just as well as on simple sets; i.e. RST can handle information systems with
any kind of total functions. Formal concept analysis (FCA), on the other hand,
describes sets of domain elements by attributes ; i.e. binary features that create
only partitions {s, s}. Any information system can be transformed into such an
attribute system (“formal context”) and by using methods similar to those pre-
sented in section 3 one can simulate FCA through RST (and vice versa). With
formal contexts being heterogenous relations, domain and codomain operations
(extent and intent) are not symmetric as they are in RST which motivates an
analysis of KAD in this context. Section 4 demonstrates how this approach can
be used to drastically simplify both RST and FCA formalisations.

A second contribution is the algebraic formalisation of core relations in sec-
tion 5. It is shown how the specification of an algorithm to discover core relations
naturally evolves from its mere description.

All results presented in this article are part of ongoing work: The basic ap-
proach presented in section 4 requires a complete entirely point-free formalisa-
tion of RST. In a next step, FCA should be treated within KAD. The residual
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based representation of approximation operators offers connections to dilation
and erosion operators in mathematical morphology (e.g. [15]). Finally, we want
to examine modal logics as another interlink: modal and multivalued logics for
RST have been studied extensively and [16] present a bi-intuitionistic logic that
which appears a very promising approach towards generalisation or specialisation
of theories by reasoning about hypotheses.
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Proofs

Proof (Equation 14).

[[R]]s == {x : [x]R ⊆ s} == {x : ∀y : xRy → yṡ1}
== {x : ¬∃y : ¬(¬xRy ∨ yṡ1)} == {x : ¬∃y : xRy ∧ yṡ1}
==
{
x : ∃y : xRy ∧ yṡ1} ==

{
x : xR�ṡ1} ==

{
x : xR�ṡ1

}
(a)
== R�ṡ ·1 == R�ṡ ·1 == R�ṡ ·1 == R·[s. ]∼s == R�∼

s ·s.
(b)
== R�∼

ṡ ·s. .

By (a) and since [[R]]s ∩ s = ∅ and [[R]]s ⊆ s,

[[R]]s == s ∩ [[R]]s = s ∩ ([[R]]s ∪ [[R]]s)

== s ∩ (R�ṡ ·1 ∪ R�ṡ ·0) = s ∩ (R�∼
ṡ ·s ∪ R�∼

s ·s)
(c)
== (R�∼

s ·U) ∩ s.

Proof (Equation 26).

∀x : x ∈ P�Q ·U ⇐⇒ ∀x, z : xP�Qz
⇐⇒ ∀x, z : xP �Qz
⇐⇒ ∀x, z : ¬∃y : (xPy ∧ yQz)
⇐⇒ ∀x, y, z : (xPy ∨ yQz)
⇐⇒ xPy −→ yQz

⇐⇒ ∀y : [y]P ⊆ [y]Q.
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