Chapter 8
Compact Deep Neural Networks
for Device-Based Image Classification

Zejia Zheng, Zhu Li and Abhishek Nagar

Abstract Convolutional Neural Network (CNN) is efficient in learning hierarchical
features from large image datasets, but its model complexity and large memory foot-
prints prevent it from being deployed to devices without a server back-end support.
Modern CNNs are always trained on GPUs or even GPU clusters with high-speed
computation capability due to the immense size of the network. A device-based deep
learning CNN engine for image classification can be very useful for situations where
server back end is either not available, or its communication link is weak and unre-
liable. Methods on regulating the size of the network, on the other hand, are rarely
studied. In this chapter we present a novel compact architecture that minimizes the
number and complexity of lower level filters in a CNN by separating the color infor-
mation from the original image. A 9-patch histogram extractor is built to exploit the
unused color information. A high-level classifier is then used to learn the features
obtained from the compact CNN that was trained only on grayscale image with lim-
ited number of filters and the 9-patch histogram extracted from the color information
in the image. We apply our compact architecture to Samsung Mobile Image Dataset
for image classification. The proposed solution has a recognition accuracy on par
with the state-of-the-art CNNSs, while achieving significant reduction in model mem-
ory footprint. With these advantages, our system is being deployed to the mobile
devices.
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8.1 Convolutional Neural Network

In recent years commercial and academic datasets for image classification have been
growing at an unprecedented pace. The SUN database for scenery classification
contains 899 categories and 130,519 images [15]. The ImageNet dataset contains
1000 categories and 1.2 million images [6]. In response to this immensely increased
complexity, many researchers have focused on designing even more sophisticated
classifiers to effectively capture all the invariant and discriminative features.

Among a great number of available classifiers, Convolutional Neural Network
(CNN) is reported to have the leading performance on many image classification
tasks. Overfeat, a CNN-based image features extractor and classifier, scored a low
29.8 % error rate in classification and localization task on ImageNet 2013 dataset.
Clarifai, a hierarchical architecture of CNN and deconvolutional neural network,
achieved an 11.19 % error recognition rate on ImageNet 2013 classification task
[16]. CNNs have been reported to have state-of-the-art performance on many other
image recognition and classification tasks, including handwritten digit recognition
[71, house numbers recognition [11], and traffic signs classification [2].

8.1.1 Network Architecture

Convolutional Neural Network is specifically designed to handle computer vision
problems. A typical CNN is presented in Fig.8.1. It has the following features that
differentiate itself from traditional neural networks:

1. Local receptive field. Each neuron in the convolutional layer accepts only a portion
of the entire input image. Thus the learned filters only produce the strongest
response to a local input pattern, thereby reinforcing the local nature of typical
image features.

2. Shared weights. Each neuron in the convolutional layer shares the same set of
filters. This architecture ensures that important local features would be detected
regardless of their position in the visual field.

3. Subsampling for dimension reduction. Convolutional neural network alternates
between the convolutional and pooling layers. Pooling is performed on overlap-
ping or nonoverlapping neighborhoods of the input to reduce the data dimensions
and at the same time find the most prominent features.

Combining those three features together, we have the architecture of a typical
CNN as is presented in Fig. 8.1.
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Fig. 8.1 Architecture of a typical CNN. This figure shows the structure of a typical CNN trained
on CIFAR-10 dataset

Convolutional Layer

The response map in the convolutional layer is computed using the same set of
filters (as is described in the second property of CNN). The convolution operation is
expressed as:

YO = ReLU®B ™ + " k) 5 x')) 8.1)

i

where x is the ith input map and y/ is the jth output map, k" is the convolution
filter corresponding to the ith input map and the jth output map, and r indicates a
local region on the input map where the weights are shared.

Rectifier Linear Unit, also know as ReL.U nonlinearity (i.e., ReLU (x) = max
(0, x)) is used on the obtained feature maps. It is observed that ReLU yields
better performance and faster convergence speed when trained by error back propa-
gation [6].

Pooling Layer

As is discussed in the third property of CNN, the pooling layer serves as a mechanism
for dimension reduction and feature selection. This layer does not do learning by
itself. It takes a small k£ x k block from the final feature map of the previous layer
and output a single value. The most used pooling methods are max-pooling, where the
output is the maximum value of the block, and average pooling, where the output is the
average value of the block. There are other pooling methods with good performance
on certain tasks [3, 8].

Dropout
Dropout is proposed as an element of the training procedure to reduce overfitting

on the training data by preventing coadaptations among neurons [4]. Dropout is per-
formed on each forward passing of a training image, randomly omitting the response
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of a neuron from the network with a probability of 0.5. In this way a hidden unit
cannot rely on other hidden units being present. It has been shown in [4] that dropout
improves the ability of generalization in CNNs on image recognition tasks as well
as voice recognition tasks.

8.1.2 Size of the CNN

Size of a typical CNN is usually huge. The winning system of ImageNet 2013
classification contest was a deep convolutional neural network million parameters.
The ILSVRC 2012 challenge winning CNN system by Krizhevsky has around 60
million parameters [6]. Overfeat, the ILSVRC 2013 challenge winning CNN, has
more than 140 million parameters [12]. Owing to their complexity, these networks
are always trained on a GPU machine or GPU clusters for better performance. Are
all those parameter needed for image classification? Is there a way to train a compact
CNN with the same performance as the state-of-the-art architecture?

8.1.3 Filter suppression and selection

In this subsection, we present a novel way to evaluate the contribution of each filter
in a high performance compact Convolutional Neural Network. The filters in the
first layer of the proposed CNN are selected from a pretrained larger CNN (2 times
larger). The selection is based on ranking the contribution of each filter to the final
performance of the network.

Filter Suppression

Filter suppression is used to evaluate the importance of each filter. The term filter
suppression refers to setting the weight of a specific filter to zero. The performance of
the suppressed network is then evaluated based on the validation dataset. Contribution
of this filter is calculated based on the difference between the error recognition rates
before and after filter suppression:

Contribution = ERR_suppressed — ERR_original (8.2)

where E R R stands for error recognition rate, which is the percentage of error recog-
nition in the validation set.
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Fig. 8.2 Contribution evaluation for three convolutional neural networks trained on CIFAR-10. For
each figure, the x-axis is the index of the filters examined, and the y-axis is the contribution of that
filter to the final recognition rate. The contribution of filters in the first convolutional layer varies
drastically, indicating that there redundant filters in this layer. Contribution of higher level filters
appears to be more uniform compared to the contribution of the filters in the first convolutional
layer. The dead filters (more than 50 %) in Conv1 layer can be removed without affecting the final
performance

Figure 8.2 shows the contribution evaluation result of three CNNs (with three
convolutional layers of the same size ) trained on CIFAR-10 dataset. These CNN’s are
initialized with different parameter (randomly generated) but trained with the same
data. The evaluation reveals two important properties of the filters inside a CNN:

1. A large CNN network, though yields good performance during testing, has a
considerable amount of dead filters in Convl layer. By dead filters we mean
those filters with contribution of 0% to the recognition rate on the validation
dataset. The weight inside those filters can be set to zero without affecting the
overall performance of the network.

2. Filters of higher level layers, i.e., Conv2 layer and Conv3 layer, have more aver-
aged contributions to the final performance compared to the filters in the first
convolutional layer.

Filter Selection

It is possible that the dead filters in the lower layers, though useless when sup-
pressed individually, are actually important for classification when they are com-
bined together in higher layers. To test that hypothesis, all dead filters are removed in
the tested network, including weights that connect the corresponding layerl feature
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Table 8.1 Filter selection result
Convl Conv2 Conv3 Fully Size ERR (%)
Connect

Original Filtersize |5 x5x3 |5x5%x64|5x%x5x64|7x7 x 64240960 18.51
network

19.37
19.66

Num. of 64 64 64 10
filter

Network Filtersize |5 x5x3 |5x5x32|5x5x64|7x7 x64|187360 18.51
without 1937
dead filters 19.37
19.66

Num. of 32 64 64 10
filter

Filter selection result on three randomly initialized networks. The dead filters can be removed
without affecting performance of the original network, making the network more compact. ERR
stands for error recognition rate

map. The recognition rate, as is shown in Table 8.1, remains unchanged compared
to the recognition rate of the original network.

8.2 Compact CNN with Color Descriptor

As is discussed in previous section, CNNs give extraordinary performance on image
recognition tasks at the cost of extremely large networks powered by GPUs. The
large size of CNNs makes it hard to implement such a system onto a mobile device
with limited computational resources. Filter suppression and selection reveals that
a CNN by itself is not fully exploiting the lower level information from the input
images, generating the dead filters as is shown in Table 8.1. Is there a way to main-
tain the performance while keeping the network small? In this section we present
a compact CNN combined with histogram color descriptor. The proposed solution
has a recognition accuracy on par with the state-of-the-art CNNs, while achieving
significant model memory footprint reduction. Due to these benefits, the proposed
solution is being deployed to the mobile devices.

8.2.1 Histogram-based Classification

Color histograms are widely used to compare images despite the simplicity of this
method. It has been proven to have good performance on image indexing with rel-
atively small datasets [13]. Color histograms are trivial to compute and tend to
be robust against small changes to camera viewpoint, which makes them a good
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compact image descriptor for device-based image classification task. It was also
reported in [1] that the performance of a histogram-based classifier was improved
when the higher level classifier was a support vector machine.

However, when applied to large dataset, histogram-based classifiers tend to give
poor performance because of high variances within the same category. It is also
observed that images with different labels may share similar histograms [10].

In this work, we propose a novel architecture that combines the histogram-based
classification method with CNN. The histogram representation of color information
helps the CNN to exploit color information in the original image. This means that
we can cut down the size of the basic feature detectors (i.e., layer 1 of the CNN).
The proposed architecture is introduced in the following section.

8.2.2 Convolutional Neural Networks

We train two CNNs with different number of filters in the first layer: an original ver-
sion and a compact version. The ‘original” network is the exact replicate of the CNN
reported in [5], which gives a final error recognition rate of 13 % using multiview
testing on CIFAR-10. In this work, however, we only use single view testing when
reporting the final result for both the original CNN and compact CNN.

We use the architecture of Krizhevsky et al. [6] to train the original CNN in the
experiments. We then modified layer 1 by changing the filter size (from 5 x 5 x 3 to
5 x 5 x 1) and the number of filters (from 64 to 32) in later experiments. The details
of the experiments are introduced in the next section.

Both the original and the compact CNNs have four convolutional layers. Table 8.2
shows the details of the two networks when trained on cropped images from the
Samsung Mobile Image dataset. Our compact CNN is marked in bold font to show
the difference. There are only 32 filters in the first layer of the compact CNN while
the number is 64 in the original CNN. This cuts down the number of parameters by
50% in layer 3 (i.e., the second convolutional layer). The final compact CNN has
40 % less parameters to tune compared to the original version.

8.2.3 Color Information

A color is represented by a three-dimensional vector corresponding to a point in
the color space. We choose red—green—blue (RGB) as our color space, which is in
bijection with the hue—saturation—value (HSV).

HSV may seem attractive in theory for a classifier purely based on histograms.
HSV color space separates color component from the luminance component, making
the histogram less sensitive to illumination changes. However, this does not seem
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to be important in practice. Minimal improvement on the performance of a support
vector machine was observed when switching from RGB color space to HSV color
space [1].

The benefit of using RGB is that the three channels share the same range (i.e.,
from O to 255), making it easier for normalization.

We experiment with three different configurations of the color histogram:

1. Global histogram, 48 bins.

2. 9-patch histogram, 192 bins. The 9 patches are generated as is shown in Fig. 8.3.
As CIFAR-10 dataset contains only 32 by 32 images, which makes it harder to
extract useful histograms, the number of bins in this setup are 48, 2 x 24, 2 x
24, and 4 x24.

3. 9-patch histogram, 384 bins. Numbers of bins are doubled compared to the pre-
vious setup.

These experiments on histogram configuration are solely carried out on the CIFAR-
10 image dataset. This series of experiment serves as a guideline for our experiment
on Samsung Mobile Image Dataset.

8.2.4 Combined Architecture

Once the CNN is trained for the classification task with the grayscale version of the
training set, we replace the fully connected layer and the softmax layer (i.e., layer 7
and 8 as is shown in Table 8.2) with a new fully connected layer and a new softmax

feature

3n3 33 ° veclor
i oW i . ] B el
5x5 conv wiride £ 5x5 conv stride 2 2 layers of °
32 finors 20x20x32 B4 filters 20,2064 10x10x64 3x3 conv
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Fig. 8.3 Compact CNN with histogram-based color descriptor. We separate color information from
the original image by only feeding the CNN with the grayscale image. Color histogram is combined
with the final feature vector. This figure shows how an image from Samsung Mobile Image Dataset
is classified as is described in Sect.8.3.2. Image size and the number of bins in a histogram are
reduced accordingly when testing on CIFAR-10. There are only 32 filters in layer 1, selected from
the 64 filters in layer 1 of the original network via filter contribution evaluation. The performance
of the Compact architecture, therefore, is similar to the original architecture, with the network size
40 % smaller when testing on CIFAR-10, and 20 % smaller when testing on Samsung Mobile Image
Database
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layer trained on the combined feature vector, using the feature vector from the same
training set.

The combined feature vector is generated by Algorithm 1.

Input: image /, total number of patches k

Output: Combined Feature Vector vec_combined

segment / into {/;,i = 1,2, ..., k};

extract histogram vector hist_vec from {/;};

resize I to CNN input size, feed I into CNN;

extract layer 6 output cnn_layer_6_vec from CNN;

reshape cnn_layer_6_vec to a one dimensional vector cnn_vec;
vec_combined = concatenate(cnn_vec, hist_vec);

return vec_combined

Algorithm 1: EXTRACT NEW FEATURE VECTOR

With the new feature vector extracted from the training set, we train a new layer

7 (fully connected layer) and layer 8 (softmax layer) based on the combined feature
vector extracted from the training set.

8.3 Experiment

The purpose of the work presented is to find a compact architecture by combin-
ing handcrafted feature representation with final feature vector from the CNN. To
make clear comparison with the existing system, we evaluate the performance of the
combined classifier with several different setups:

1.

Cropped images and uncropped images. Training on cropped images (4 corner
patches and 1 center patch) means that we feed patches of image into the network
instead of the original image. When testing, we feed the network with only the
center patch of the image. This allows the network to train with relatively more
samples, but would jeopardize recognition for certain classes in Samsung Mobile
Image Dataset (e.g., upper body and whole body). This experiment is reported in
Sect.8.3.1.

CIFAR-10 dataset and Samsung Mobile Image Dataset. We use the CIFAR-10
dataset to test different configurations of histograms and several data augmenta-
tion methods in Sect.8.3.1. The results on CIFAR-10 serves as a guideline for
us to construct a compact classifier for the Samsung Mobile Image Dataset, a
hierarchical dataset collected at Samsung Research America. The experiment on
this new dataset is reported in Sect. 8.3.2.
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Details about these experiments are reported in the following section. In short, we
found that the proposed compact architecture trained on cropped grayscale image
maintains the high accuracy of the original CNN trained on cropped RGB images.

8.3.1 Extracting Histogram-Based Color Feature

CIFAR-10 has been heavily tested with many classification methods. Krivzhevsky
et al. [6] achieved a 13 % test error rate when using their ILSVRC 2012 winning
CNN architecture (without normalization). By generalizing Hinton’s dropout [4] into
suppression in weight values instead of activation values, Wan et al. [14] reported
an error testing rate of 9.32 %, using their modified Convolutional Neural Network
DropConnect. Lin et al. [9] replaced the ReLU convolutional layer in Krivzhevsky’s
architecture [6] with a convolutional multilayer perceptron. They reported a test error
rate of 8.8%, currently ranking top on the leader board of classification on CIFAR-10
dataset.

Our experiment in this chapter is still based on Krizhevsky’s architecture as is
described in [6]. The goal of this paper is to study the contribution of color informa-
tion to CNN-based image classification, and to seek possible combination between
handcrafted feature vector and CNN extracted feature vector to further exploit the
low level features with limited number of parameters. For these reasons we apply our
modifications to a standard CNN architecture as is provided by Krizhevsky in [6].
We believe that the combined architecture can also be applied to other CNN variants
with few modifications.

Getting Histogram

For device-based image classification, a large histogram vector means heavier load
for computation. Therefore we only extract a global histogram of a small amount
of bins from the original image in our first experiment. The histogram and the final
feature vector from the CNN pass are concatenated together as is described in the
previous section.

In later trials, we move on to more complicated histograms feature vector extrac-
tion configurations instead of just using the global histogram. We extracted histogram
feature vectors of different length from 9 patches of the input image. Suppose we are
to extract a histogram feature vector of length 384, then the number of bins of each
patch would be: 96 bins from the entire image, 48 x 4 bins from the left half, the
right half, the top half and the bottom half, 24 x 4 bins from the upper left corner, the
upper right corner, the lower left corner and the lower right corner. This procedure
is shown in Fig. 8.3. The intention is to precisely reflect the global color information
as well as the local color distribution in the extracted features.
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Table 8.3 Different histogram configuration result on uncropped images using original CNN (on
CIFAR-10)

Input image and hist config. Top-1 error rate (%)
Grayscale 24.79
Grayscale+global hist (48 bins) 24.95

Grayscale+9 patch hist (192 bins) 24.55

Grayscale+9 patch hist (384 bins) 24.10

Training Methods

Although our CNN architecture is similar to Krivzhevsky’s network, we modify
some parts of the training procedures in [6] to suit our needs.

As is shown in Table 8.3, we first explore the configuration of histogram vec-
tor by adjusting the amount of information the histogram vector contains. In each
case, the grayscale CNN, trained on the original architecture remains unchanged.
Although global color histogram does not help to improve classification, the 9-patch
configuration led to significantly improved performance. One important guideline
we observed is that a more detailed histogram (384 bins) gives better classification
result compared to rough color information.

When trained on uncropped RGB images using the original architecture, the per-
formance (recognition rate) is 2 % worse than the original architecture trained on
grayscale images.

When trained with enough images (i.e., after cropping), the CNN trained with
RGB images is more accurate, with an error recognition rate of 16.36 %. However,
the original CNN has 146,368 parameters due to the large number of filters in layer
1 and layer 2. The compact CNN trained on grayscale images has less filters in layer
1 and thus 50 % compared to the original CNN, while the error recognition rate rises
only by 1 %. As aresult, the proposed architecture maintains high performance, while
the size of the architecture is 40 % smaller.

8.3.2 Samsung Mobile Image Dataset

The Samsung Mobile Image Dataset is a large scale collection of mobile phone
photographs collected at Samsung Research America. There are 31 classes, with a
total 82181 images of different sizes and resolutions.

Class names together with sample images of each class are shown in Fig.8.4.
Instead of just training the network to recognize if a person is in the image, the
network is also required to report a general posture (e.g., lying, leaning forward or
backward, etc.). The general food category is also divided into three sub categories:
the class ‘food part 1’ contains breads, desserts and bottled/cupped food; the class
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Fig. 8.4 Sample images for Samsung Mobile Image Dataset. This hierarchical image dataset has
unclear boundaries among categories. The first level category is presented by colored ovals. Second
level categories are presented by the label and a random sample from the training dataset

‘food part 2’ contains meat and other foods on a plate; the class ‘food part 3 consists
of pictures about foods on tables. Details of each class can be found in Table 8.6.
We split the dataset by assigning 10% of the images to the testing set, 10%
to a validation set and 80 % to the training set. After the 384 bins histogram is
extracted, each image is then resized into a 48 x 48 grayscale image and then fed to
the convolution network. The layer configuration and parameters are the same as is
described in Table 8.2. Note that the input image size should be modified accordingly.

Getting Histogram

As the original image contains more detailed information due to the increased image
resolution, a global histogram vector is not sufficient to describe the color information
with high accuracy.

Guided by the result from our first experiment, we extract a color descriptor of
length 384 by concatenating histogram feature vectors from 9 patches of the image
as is described in previous experiment (Table 8.4).

Data Augmentation
As is reported in the previous experiment, cropping images leads to more robust

features learned by the network. But cropping as is done in [6] may lead to confusion

Table 8.4 Cropped image test result (on CIFAR-10)

Architecture (all on cropped | Top-1 error rate (%) Number of parameters
images)

Grayscale (original) 18.10 143168

Grayscale (compact) 18.95 91168

Grayscale (compact) 9 patch | 16.55 95008

hist (384 bins)
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Table 8.5 Samsung mobile image test result

Architecture (all on cropped Top-1 error rates (%) Number of parameters
images)

Grayscale (original) 26.08 230848

Grayscale (compact) 26.06 178848

Grayscale (compact) 9 patch | 22.80 186528

hist (384 bins)

Dense SIFT aggregation 30.61 -

SMIANESNSEIINSYER

NANSSFANESENZ NSNS

Fig.8.5 Compact CNN layer 1 filter. There are only 32 filters in layer 1 of the proposed architecture.
The network learns basic features as edges and corners from the grayscale input. Network trained
on grayscale images from Samsung Mobile Image Dataset

when the network needs to distinguish upper body from whole body (class 9 and 10
in Table 8.6). Therefore we flip the images from the uprightwhole class horizontally
at a 0.5 probability. The images are then resized and zero-padded to fit the input size
of the network (40 x 40).

Experiment Result

The error recognition rates of different configurations are reported in Table 8.5.

The difference between the error recognition rate of the original architecture
(trained on grayscale images) and the compact architecture (trained on grayscale
images) is even smaller when using Samsung Mobile Image Dataset (i.e., less than
0.3%). This result indicates that the 64 filters on the first layer learned redundant
information. The learned filters are visualized in Figs. 8.5 and 8.6.

It can also be seen from the result that color information boosts the performance
of the grayscale CNN (original version and compact version) by as much as 3 % (for
compact CNN) and 4 % (for original CNN). Our proposed architecture is neck and
neck with the original architecture in recognition, while the proposed architecture is
more compact compared to the original version.
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Fig. 8.6 Original CNN trained on RGB images from Samsung Mobile Image Dataset. The network
deploys most of its resources in finding color gradient, compared to the filters learned in CNN trained
on grayscale images

8.4 Conclusions

In this chapter we introduce the convolutional neural network for image classification.
Convolutional neural networks give state-of-the art performance but its application is
limited due to its large memory footprint. We present a novel architecture to minimize
the size of the network. The proposed architecture combines handcrafted global color
information with a convolutional neural network pretrained with thumbnail grayscale
images. The proposed architecture has similar recognition capacity compared to
state-of-the-art CNNS, quite ahead of the traditional dense SIFT aggregation solution,
but with a much smaller network size and complexity that can fit on the mobile
devices. We apply our network to Samsung Mobile Image Dataset, a hierarchically
organized image dataset. The experiment shows that carefully designed histogram
extractor helps to boost the performance of the convolutional neural network. In
future work we are investigating a CNN feature map relearning and top-down CNN
complexity reduction solution that can further compact the network and improve the
accuracy.
Details about the Samsung Mobile Image dataset are included in Table 8.6.
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Table 8.6 Class labels and number of images per class

Z.Zheng et al.

Level 1 Level 2 # of images Top-1 error rate | Top-2 error rate
(%) (%)
Vehicle Bike 3097 2.64 1.56
Motorbike 865 6.41 1.79
Car 2969 21.78 5.37
People Environment 2713 35.08 6.23
Lean-45 1271 26.06 10.43
Lean+45 1277 26.07 10.43
Lying 1005 23.16 11.58
Mugshot 3625 16.45 6.45
Uprightupper 4197 37.01 6.49
Uprightwhole 3336 37.01 6.49
Food Food partl 3291 50.00 25.00
Food part2 2926 20.18 6.02
Food part3 3168 10.94 3.12
Documents Document 3080 6.21 3.73
Pets Cat body 3717 19.13 8.47
Cat head 3521 5.37 3.95
Dog body 3769 22.13 10.36
Dog head 3158 10.39 3.58
Scenery Flower 3577 4.24 2.12
Mountain 2838 49.05 13.74
Skyscraper 2549 49.44 9.20
Opencountry 1829 31.56 13.78
Snow 1955 38.34 9.20
Street 1966 41.82 11.27
Sunset 2350 60.12 8.90
Waterfall 1012 4.82 2.19
Beach 2874 45.26 7.51
Desert 873 2222 8.72
Forest 2667 25.00 5.62
Lobby 2298 11.48 6.56
Nightscene 3050 45.51 9.55
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