Chapter 10
Mobile Image Search: Challenges
and Methods

Xin Yang and K.T. Tim Cheng

Abstract The proliferation of camera-equipped mobile devices with enhanced
mobile computing power and network connectivity results in a rising demand for
mobile image search. Although image search has been studied extensively over the
last few decades, most existing solutions, developed for desktops and server plat-
forms, are not suitable for mobile devices. In this chapter, we provide an overview
of challenging issues unique in mobile search scenarios and present several tech-
niques addressing these challenges. Specifically, we focus the discussion on: (1)
robust, distinctive, and fast feature extraction on mobile devices, (2) compact index-
ing structure for efficient feature matching, and (3) multimodel context-aware data
fusion for improving performance of mobile image search.

10.1 Introduction

Mobile devices such as smartphones and tablets have experienced phenomenal
growth. Their computing power has grown enormously and the connectivity of smart-
phones has also gone through rapid evolution. A wide range of radios including cel-
lular broadband, Wi-Fi, Bluetooth, and NFC available in today’s smartphones enable
users to communicate with other devices, interact with the Internet, and exchange
their data with and running their computing tasks in the clouds. The abundance of
camera-equipped mobile devices and low-latency data networks has led to an increas-
ing demand for mobile image search. A mobile image search system, which has the
ability to identify objects in a picture and use the recognized object as a starting
point for search (often referred to as ‘query-by-image’), can support a wide range
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Fig. 10.1 An example of a search of a famous landmark on mobile devices (Source Google Gog-
gles.)

of mobile applications. For instance, a user can take a picture of a famous landmark
to search for information about it (as shown in Fig. 10.1), a picture of a product’s
barcode or a book cover to search for online stores selling the product/book, a picture
of a movie poster to view reviews or to find tickets at nearby theatres, or a picture
of a restaurant menu in French for translation to English. Such a query-by-image
capability allows users to search for items without typing any text. For its image-
based translation capability, the app recognizes printed text and uses optical character
recognition (OCR) to produce a snippet and then translate it into another language.

Image search has been studied extensively for several decades. To improve scal-
ability, efficiency, and accuracy, the three key performance metrics of image search,
a number of algorithms for image representation and indexing have been developed
[1-3]. Most of the existing solutions are based on and optimized for the laptop,
desktop, and server platforms and the unique challenges and opportunities presented
by a mobile scenario have not been thoroughly analyzed. In the following, we first
present a general pipeline for image search, and then we discuss the main challenges
for image search on mobile devices. Then, we present some existing solutions and
finally conclude the chapter by pointing out some promising directions for mobile
image search.

10.2 Pipeline

A conventional image search pipeline (Fig. 10.2) consists of two phases: (1) offline
database construction and (2) online image search. In the offline phase, feature extrac-
tion is performed for every database image. An indexing structure which encodes
feature descriptors of all database images is constructed. Popular indexing methods
for efficient and scalable image search include locality sensitive hashing (LSH) and
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Fig. 10.2 A general pipeline for image search on mobile devices

bag-of-words (BOW) model. More details about these two methods will be pro-
vided in Sect. 10.4. In the online search phase, features of a captured image are first
extracted, each of which is then used to query the database using an indexing struc-
ture for finding a matching feature in the database. The database image which has
the most matching features with the capture image is considered as candidate targets.
Postverification (using methods such as RANdom SAmple Consensus, RANSAC,
[4]) and PROgressive Sample Consensus (PROSAC) [5] is then conducted among
candidate images to find the most relevant images to the query image.

The performance of feature extraction and indexing algorithms greatly affect the
user experience of mobile image search apps. Ideally, we demand (1) highly robust
and distinctive image features which can provide good search accuracy even for large
databases and meanwhile can be extracted efficiently on mobile devices, and (2) a
compact indexing structure which can be stored on mobile devices in order to avoid
network latency for accessing data on a server. However, each of these goals remains
challenging in mobile scenarios despite advances in image search algorithms as well
as mobile hardware. For example, mobile CPUs are still not fast enough to achieve
real-time performance for compute-intensive image processing operations, such as
feature extraction. Popular feature extraction algorithms (e.g., SIFT [6], which is
widely used for image search) require a large amount of floating point operations,
which is slow to compute on mobile CPUs. In addition, limited memory space of
mobile embedded system (i.e., 1-2 GB, shared by all apps and the OS, for today’s
smartphones and tablets) could be a limiting factor when extracting features for an
image search. This is because feature extraction such as SIFT often requires large sets
of intermediate data to be stored in memory as analysis is performed sequentially. The
total amount of memory usage of each stage grows linearly with the size of the original
image. For moderate- to high-resolution images, this process could easily exhaust
memory resources. Limited storage space of mobile devices also prohibits indexing
structure of a large database from being stored locally on a mobile device. As a
result, most existing systems employ a client—server architecture. That is, sending the
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captured image or processed image data (e.g., image features) to a server (or a cloud)
via Internet and performing feature indexing and post verification on the server side.
The client—server mode may suffer from network latency and thus cannot meet the
efficiency requirement for image search apps which demand real-time performance.
In practice, according to the size of databases, available local storage and computing
resources, and performance requirements, developers need to make decisions for a
number of issues to optimize the user experience (e.g., choosing different algorithms,
offloading different amount and which parts of the workload from the client to the
server side, etc.). In the following, we first elaborate key challenges in mobile image
search. In Sect. 10.4, we present some potential solutions addressing the challenges in
feature extraction and indexing on mobile devices. We also present existing efforts for
fusing multimodel context-aware information for mobile image search. In Sect. 10.5,
we conclude the paper and discuss some future work.

10.3 Challenges

Mobile devices differ from general computing environments in several aspects. The
design of a mobile image search system must take into account the following inherent
limitations of mobile devices:

(a) Lower Processing Power of CPU. The design objectives of modern mobile
application processors are more than just performance. Priority is often given to
other factors such as low power consumption and a small form factor. Although
the performance of mobile CPUs has achieved greater than 30X improvement
within a short period of recent 5 years (e.g., ARM quad-core Cortex A-15in 2014
vs. ARM 11 single-core in 2009), today’s mobile CPU cores are still not powerful
enough to achieve real-time performance for compute-intensive vision tasks such
as sophisticated feature extraction and indexing algorithms. Graphics processing
units (GPUs), which have been built into most application processors, can help
speed up processing via parallel computing [7, 8], but most feature extraction
and indexing algorithms are designed to be executed sequentially and cannot
fully utilize the capability of GPU cores in a mobile application processor.

(b) Less Memory Capacity. Mobile devices have less memory and lower memory
bandwidth than desktop systems. The memory of today’s high-end smartphones,
such as Samsung Galaxy S5, is limited to 2GB of SDRAM and the memory size
of mid- and entry-level phones is even smaller. This level of memory sizes is not
sufficient for performing local image search using a large database. In order to
realize efficient image search, the entire indexing structure of a database needs to
be loaded and reside in main memory. The total amount of memory usage for an
indexing structure usually grows linearly with the number of database images.
For a database of a moderate size (e.g., tens of thousands of images), or a large
size (e.g., millions of images), the indexing structure itself could easily exhaust
memory resources. Several scalable mobile image search systems [9, 10] employ
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the client—server model to handle large databases. That is, sending the captured
image or processed image data (e.g., image features) to a server (or a cloud) via
Internet, performing feature indexing and post verification on the server side, and
then sending the search results and associated information back to the mobile
device. While Wi-Fi is a built-in feature for almost all mobile devices, connection
to high-bandwidth access points is still not available anyplace, neither anytime.
For connection to data networks, today’s mobile devices rely on a combination of
mobile broadband networks including 3G, 3.5G, and 4G. These networks, while
providing acceptable network access speed for most apps, cannot support real-
time responses for apps demanding a large amount of data transfer. Moreover,
advanced mobile broadband networks still have limited availability in areas not
having dense populations.

(c) Small Screen Size. Modern high-end smartphones boast displays which measure
slightly less than seven inches diagonally. However, this size is still much smaller
than that of a common desktop or laptop. Smaller screens greatly limit the amount
of information that can be presented to a user. As a result, it requires a more
effective display of search results and higher search accuracy in order to achieve
satisfactory user experience.

(d) Noisy Query. The search precision for content-based image search still has
significant room for improvement. Particularly in the mobile scenario, a user’s
query photo can be noisy due to clutter, occlusions, and large viewpoint changes.
Therefore, a visual search on a large-scale database with noisy images based on a
noisy query cannot achieve high accuracy. Modern smartphones, equipped with
various sensors (e.g., GPS, accelerometer gyroscope, magnetometer, etc.), can
provide various forms of context information. Mobile search systems can incor-
porate such context information to improve image search’s accuracy, efficiency,
and scalability. However, context information captured by a mobile device’s
sensors is noisy as well. Integrating such noisy context information into vision-
based image search methods that can robustly improve accuracy and efficiency
is not a trivial task at all.

10.4 Methods

In this section, we introduce recent work addressing some of the challenges that face
mobile image search. Specifically, we describe existing solutions for (1) extracting
robust and distinctive features efficiently on mobile devices (Sect. 10.4.1); (2) con-
structing compact indexing structure which can be stored locally on mobile devices
or can facilitate precise and fast matching feature retrieval from a large database in
the cloud (Sect. 10.4.2); and (3) fusing multimodel context information to improve
search accuracy and reduce computational complexity (Sect. 10.4.3).



248 X. Yang and K.T.T. Cheng

10.4.1 Robust, Distinctive, and Fast Feature Extraction
on Mobile Devices

Local features (an example shown in Fig. 10.3a) have been widely used in many
computer vision and pattern recognition apps. In contrast to global feature extraction
which generates a single feature vector for an entire image, local feature extrac-
tion generates a set of high-dimensional feature vectors for an image. Local feature
extraction typically consists of two steps: (1) interest point detection, also referred
to as local feature detection, which selects a set of salient points in an image, and
(2) interest point description, also referred to as local feature description, which
transforms a small image patch around a feature point into a vector representation
suitable for further processing. In comparison with a global feature representation,
local features are more robust to various geometric and photometric transformations,
occlusion, and background clutters and thus more suitable for mobile image search.

Local features’ efficiency, robustness, and distinctiveness significantly affect the
user experience and performance of a mobile image search system. In this section,
we give an overview of mobile interest point detection and description. Due to space
limitation, we only review some most representative methods, which do not represent
a comprehensive survey.

Interest Point Detection

An interest point detector is an operator which attributes a saliency score to each
pixel of an image and then chooses a subset of pixels with local maximum scores. A
good detector should provide points that have the following properties: (1) repeata-
bility (or robustness), i.e., given two images of the same object under different image
conditions, a high percentage of points on the object in both images can be chosen,
(2) distinctiveness, i.e., the neighborhood of a detected point should be sufficiently
informative so that the point can be easily distinguished from other detected points,
(3) efficiency, i.e., the detection in a new image should be sufficiently fast to sup-
port real-time applications, and (4) quantity, i.e., a typical image should contain a

X = | ESPE S

Fig. 10.3 a An exemplar image overlaid with detected local features. b and ¢ are the discretized
and cropped Gaussian second-order partial derivative in the y-direction and the xy-direction, respec-
tively; d and e are SURF box filter approximation for Ly, and Ly, respectively
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sufficient number of detected points to cover a target object, so that it can be recog-
nized using these detected points even under partial occlusion.

There exist a wide variety of interest point detectors. Some lightweight detectors
[11]aim athigh efficiency to target applications which demand real-time performance
and/or mobile hardware platforms with limited computing resources. However, the
performance of these detectors is relatively poor. As a result, it requires postverifica-
tion to exclude false matches in the subsequent matching phase which often incurs a
nontrivial runtime. Therefore, their overall runtime efficiency is not necessary high.
On the other hand, several high-quality feature detectors [6, 12, 13] have been devel-
oped with a primary focus on robustness and distinctiveness. These detectors’ ability
to accurately localize correct targets from a large database makes them suitable for
large-scale image search. However, the computational complexity of these detec-
tors is usually very high, making them inefficient on a mobile device. Some recent
efforts, e.g., [14], adapt these feature detection algorithms with respect to mobile
platforms and optimize their performance and efficiency for mobile image search. In
the following, we review the most representative methods for the lightweight detec-
tor, the high-quality detector, and algorithm adaptation. A thorough survey on local
feature-based detectors can be found in [15].

a. Lightweight Detector: FAST

The FAST (Features from Accelerated Segmented Test) detector, proposed by Rosten
and Drummond [11], is popular due to its highly efficient processing pipeline. The
basic idea of FAST is to compare 16 pixels located on the boundary of a circle (radius
is 3) around a central point, each of which is numbered from 1 to 16 clockwise. If
the intensities of n consecutive pixels are all higher or all lower than that of the
central pixel and n is greater than a predefined minimum threshold, then the central
pixel is labeled as a potential feature point and »n is defined as the response value
for the central pixel. The final set of feature points is determined after applying a
nonmaximum suppression step, which selects a potential point as a feature point if
its response value is the local maximum within a small region. Because the FAST
detector only involves a set of intensity comparisons with few arithmetic operations,
it is highly efficient.

The FAST detector is not invariant to scale changes. To achieve scale invariance,
Rublee et al. [16] employed a scale pyramid to an image and detected FAST feature
points at each level in the pyramid. FAST could produce large responses along edges,
leading to lower repeatability and distinctiveness compared to high-quality detectors
such as SIFT [6] and SURF [12, 13]. To address this limitation, Rublee et al. further
employed a Harris corner measure to order the FAST feature points and discard those
with small responses to the Harris measure.

b. High-Quality Detector: SURF

The SURF (Speeded Up Robust Feature) detector, proposed by Bay et al. [12,
13], is one of the most popular high-quality point detectors in the literature. It is
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scale-invariant and based on the determinant of the Hessian matrix H (X, o):

(10.1)

HX. o) = |:LM(X,U) ny(x,a)}

ny(X’ o) Lyy(Xa o)

where X = (x, y) is a pixel location in an Image /, o is a scale factor, L, (X, o) is
the convolution of the Gaussian second-order derivative in the x direction, similarly
for L,y and L,, (see Fig.10.3b, c).

To speed up the computation, a SURF detector approximates the Gaussian second-
order partial derivatives with a combination of box filter responses (see Fig. 10.3d, e),
computed using the integral image technique [17]. Denoting the approximated deriv-
atives as Dy, Dy, and D,,, the approximate Hessian determinant can be expressed as:

det (Hupprox) = DxxDyy — (0.9D,,)* (10.2)

A SUREF detector computes Hessian determinant values for every image pixel
i over scales using box filters of a successively larger size, yielding a determinant
pyramid for the entire image. Then it applies a 3 x 3 x 3 local maximum extraction
over the determinant pyramid to select interest points’ locations and corresponding
salient scales.

To achieve rotation invariance, SURF relies on gradient histograms to identify a
dominant orientation for each detected point. An image patch around each point is
rotated to its dominant orientation before computing a feature descriptor. Specially,
the dominant orientation of a SURF detector is computed as follows. First, the entire
orientation space is quantized into N histogram bins, each of which represents a
sliding orientation window covering an angle of 7 /3. Then SURF computes gradient
responses of every pixel in a circular neighborhood of an interest point. Based on
the gradient orientation of a pixel, SURF maps it to the corresponding histogram
bins and adds its gradient response to these bins. Finally, the bin with the largest
responses is utilized to calculate the dominant orientations of interest points.

Comparing to FAST, SURF point detection involves much more complex com-
putations and, thus, is much slower than FAST. The runtime limitation of SURF is
further exacerbated when running a SURF detector on a mobile platform. Table 10.1
compares the runtime performance of a FAST detector and a SURF detector running
on a single CPU core in a mobile device (Motorola Xoom1) and a laptop (Thinkpad
T420) respectively. Running a FAST detector takes 170ms on a Motorola Xoom1
(whose application processor consists of dual-core ARM Cortex-A9) and 40 ms on

Table 10.1 Comparison of FAST and SURF detectors on mobile device and PC
Time detector Mobile device (ms) PC (ms) Speedup
FAST detector 170 40 4x
SUREF detector 2156 143 15x
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an i5-based Thinkpad, yielding a 4x speed gap. However, running a SURF detector
on them takes 2156 and 143 ms respectively, indicating a 15x speed gap.

FAST is more efficient, but less robust and distinctive than SURF. As a result,
FAST usually fails to achieve satisfactory performance for mobile image search apps
which still demand sufficiently high search accuracy from a large database and the
ability of handling content with large photometric/geometric changes.

c. Algorithm Adaptation: Accelerating SURF on Mobile Devices

There are several techniques aiming at improving SURF’s efficiency. They include
exploiting coherency between consecutive frames [18], employing graphics process-
ing units (GPUs) for parallel computing, and optimizing various aspects of the imple-
mentation [8]. A solution proposed in [14] analyzes the causes for a SURF detector’s
poor efficiency and large overhead on a mobile platform, and propose a set of tech-
niques to adapt the SURF algorithm to a mobile platform. Specially, two mismatches
between the computations used in the SURF algorithm and common mobile hardware
platforms are identified as the sources for its significant performance degradation:

o Mismatch between SURF’s data access pattern and a mobile platform’s small
cache size. A SURF detector relies on an integral image and accesses it using a
sliding window of successively larger size for different scales. But a 2D array is
stored in a row-based fashion in memory (cache and DRAM), not in a window-
based fashion; pixels in a single sliding window reside in multiple memory rows
(illustrated in Fig. 10.4a). The data cache size of a mobile application processor
(AP), typically 32KB for today’s devices, is too small to cache all memory rows

(a) (b)

Sliding
Sliding Window

Fig. 10.4 Illustration of data locality and access pattern in a the original SURF detector, and b
the tiled SURF. Each color represents data stored in a unique DRAM row. In the original SURF, a
sliding window needs to access multiple DRAM rows, leading to frequent cache misses, while in
tiled SUREF, all required data within a sliding window can be cached
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for pixels involved in one sliding window, leading to cache misses and cache line
replacements and, in turn, incurring expensive memory access.

e Mismatch between a huge amount of data-dependent branches in the SURF algo-
rithm and high pipeline hazard penalty of the mobile platform. To identify a dom-
inant orientation, a SURF detector analyzes a gradient histogram. During this
analysis, every pixel around an interesting point is mapped to corresponding his-
togram bins via a set of branch operations, i.e., “If-then-Else” expressions. The
total number of pixels involved in this analysis is huge and thus the entire process
involves an enormous amount of data-dependent branch operations. However, the
branch predictor and the speculation of out-of-order execution of an ARM-based
mobile CPU core are less sophisticated that of a laptop, desktop, or server proces-
sor. Consequently, it incurs higher pipeline hazard penalties, yielding significant
performance degradation.

To address the problem caused by the mismatch between the data access pattern
of SURF and the small cache size of a mobile CPU, a tiled SURF was proposed in
[14] which divides an image into tiles (illustrated in Fig. 10.4b) and performs point
detection for each tile individually to exploit local spatial coherences and reduce
external memory traffic. To avoid pipeline hazards penalties, two solutions were
proposed in [14] to remove data-dependent branch operations. The first solution is
to use an alternative implementation: instead of using “If-then-Else” expressions,
a lookup table is used to store the correlations between each orientation and the
corresponding histogram bins. This alternative does not change the functionality
and other computations, but trades memory for speed. The second solution is to
replace the original gradient histogram method with a branching-free orientation
operator based on gradient moments (i.e., GMoment) [19]. The gradient-moment-
based method may slightly degrade the robustness of a SURF detector, but can greatly
improve its runtime on mobile platforms.

Tables 10.2 and 10.3 compare the runtime cost and the Phone-to-PC runtime ratio
between the original and adapted SURF, respectively [14]. The Phone-to-PC ratio,
defined in Eq. (10.3), is the runtime of a program running on a mobile CPU divided
by that on a desktop CPU, which reflects the speed gap between them.

Ph 10-PC ratio — runtime on a mobile platform (103)
onetommt O = intime on an x86-based PC '

Table 10.2 Runtime cost comparison on three mobile platforms

Time (ms) Droid Thunderbolt Xooml
U-SURF 1310 525 461
U-SUREF tiling 930 356 243
O-SURF 7700 2495 2156
O-SUREF lookup table 4264 1820 1178
O-SURF GMoment 1516 613 519
O-SUREF tiling + GMoment 1053 404 269
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Table 10.3 Speed ratio comparison on three mobile platforms

Phone-to-PC ratio (x) | Droid Thunderbolt Xooml
U-SURF 20 8 7
U-SUREF tiling 14 7 4
O-SURF 54 17 15
O-SUREF lookup table |18 7 6
0O-SURF GMoment 19

O-SURF tiling 4 13

GMoment

The evaluation experiments were performed on three mobile devices: a Motorola
Droid which features an ARM Cortex-A8 processor, an HTC Thunderbolt which
uses a Scorpion processor, and a Motorola Xoom1 which uses a dual-core ARM
Cortex-A9 processor. The first two rows of Tables 10.2 and 10.3 compare the runtime
cost and the Phone-to-PC ratio of upright SURF (U-SURF) without and with tiling.
As expected, tiling can greatly reduce runtime cost by 29-47 %. It reduces the Phone-
to-PC ratio by 12.5-42.9 % on these three devices. The reduction in Phone-to-PC
ratio indicates that the mismatch between the data access pattern and a small cache
size of a mobile CPU causes more severe runtime degradation on mobile CPUs than
desktop CPUs. So alleviating this problem is critical for performance optimization
when porting algorithms to a mobile CPU. The 3rd—5th rows of Tables 10.2 and 10.3
compare the results of oriented SURF (O-SURF) with branch operations, O-SURF
using a lookup table and using GMoment [19], respectively, which show that using
a lookup table or using the GMoment method can greatly reduce the overall runtime
and the Phone-to-PC ratio on three platforms. The reduction in the Phone-to-PC ratio
further confirms that branch hazard penalty has a much greater runtime impact on a
mobile CPU than on a desktop CPU. Choosing proper implementations or algorithms
to avoid such penalties is critical for a mobile task. The last rows of Tables 10.2 and
10.3 show the results of applying both adaptation ideas to O-SURF: the runtime of
SURF on mobile platforms can be reduced by 6X-8X.

Local Feature Description

Once a set of interest points has been extracted from an image, their content needs to
be encoded in descriptors that are suitable for matching. In the past decade, the most
popular choices for this step are the SIFT and the SURF descriptors. SIFT and SURF
have successfully demonstrated their high robustness and distinctiveness in a variety
of computer vision applications. However, the computational complexity of the SIFT
descriptor is too high for real-time applications with tight runtime constraints. While
SUREF accelerates SIFT by 2X-3X, it is still not sufficiently fast for real-time applica-
tions running on a mobile device. In addition, SIFT and SURF are high-dimensional
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real-value vectors which demand large storage space and high computing power for
matching. The booming development of real-time mobile apps has stimulated signifi-
cant advances in binary descriptors that are more compact, and faster to compute than
SURF-like features while maintaining a satisfactory feature quality. Notable work
includes BRIEF [8] and its variants rBRIEF [16], BRISK [20], FREAK [21], and
LDB [22-24]. In the following, we review three representative descriptors: SURF,
BIREF, and LDB.

a. SURF: Speed Up Robust Features

The SURF descriptor aims to achieve robustness to lighting variations and small
positional shifts by encoding the image information in a localized set of gradient
statistics. Specifically, each image patch is divided into 4 x 4 grid cells. In each
cell, SURF computes a set of summary statistics Y dy, > |dy|, >_d,, and > |d,|,
resulting in a 64-dimensional descriptor. The first-order derivatives d, and d, can be
calculated very efficiently using box filters and integral images.

Motivated by the success of SURF, a further optimized version proposed in [8]
takes advantage of the computational power available in CUDA [25]-enabled graph-
ics cards. This GPUSURF implementation has been reported to perform feature
extraction for a 600 x 480 image at a frame rate up to 20 Hz, thus making feature
extraction an affordable processing step. However, to date, most mobile GPU cores
do not support CUDA. Furthermore, mobile GPU cores, in addition to being much
less powerful than desktop GPU chips, share the same external memory and memory
buses with CPU cores and other heterogeneous cores in the application processor.
Thus porting an implementation from desktop-based GPUs to mobile GPUs remains
a tedious task with unpredictable performance gain [26, 27].

b. BRIEF: Binary Robust Independent Elementary Features

The BRIEF descriptor, proposed in [28], primarily aims at high-computational effi-
ciency for construction and matching, and a small footprint for storage. The basic
idea of BRIEF is to directly generate bit strings by simple binary tests comparing
pixel intensities in an image patch. More specifically, a binary test t is defined and
performed on a patch p of size S x S as

) 1 if I(p, x) < I(p, y)
T x,y) = IO otherwise (10.4)

where I(p, x) is the pixel intensity at location x = (u, v)7. Choosing a set of ny (x, y)-
location pairs uniquely defines the binary test set and consequently leads to an ny
-dimensional bit string that corresponds to the decimal counterpart of

> 27t ) (10.5)

1<i<nq

By construction, the tests of Eq. (10.5) consider only the information at single pixels;
therefore, the resulting BRIEF descriptors are very sensitive to noises. To increase
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Fig. 10.5 Different approaches to choose the test locations. Sampling (X, Y) locations from a

patch of size § x S according to a a uniform distribution (-3, 5), b an isotropic Gaussian distri-
bution (0, ZI—SSZ), ¢ a nonisotropic Gaussian distribution X ~ (0, ZI—SSZ), Y ~ (x, ZI—SSZ), d random
distribution, e from a coarse polar grids. Courtesy of [28]

the stability and repeatability, the authors proposed to smooth pixels of every pixel
pairs using Gaussian or box filters before performing the binary tests.

The spatial arrangement of binary tests greatly affects the performance of the
BRIEF descriptor. In [28], the authors experimented with five sampling geometries
for determining the spatial arrangement, as shown in Fig. 10.5a—e. Experimental
results demonstrate that the tests which are randomly sampled from an isotropic
Gaussian distribution—Gaussian (0, %Sz) where the origin of the coordinate system
is the center of a patch and S is the patch size—give the highest recognition rate.

BRIEF and its enhanced versions of BRIEF [16, 20, 21] are very efficient to
compute, store, and to match (simply computing the Hamming distance between
descriptors via XOR and bit count operations). These runtime advantages make
these binary descriptors attractive for real-time applications and handheld devices.
However, they often utilize overly simplified information, i.e., only intensities of
a subset of pixels within an image patch, and thus have low discriminative ability.
Lack of distinctiveness results in a huge number of false matches when matching
against a large database. Expensive postverification methods (e.g., RANdom SAmple
Consensus (RANSAC) [4]) are usually required to discover and validate matching
consensus, increasing the runtime of the entire process.

c. LDB: Local Difference Binary

LDB (Local Difference Binary), a binary descriptor, achieves similar computational
speed and robustness as BRIEF and other state-of-the-art binary descriptors, yet
offering greater distinctiveness. The better quality of LDB is achieved through three
schemes. First, LDB utilizes average intensity /,,, and first-order gradients, d, and
dy, of grid cells within an image patch. Specifically, the internal patterns of the image
patch is captured through a set of binary tests, each of which compares the I,,¢, d
and d,, of a pair of grid cells (illustrated in Fig. 10.6a, b). The average intensity and
gradients capture both the DC and AC components of a patch, thus they provide a
more complete description than other binary descriptors. Second, LDB employs a
multiple gridding strategy to encode the structure at different spatial granularities
(Fig. 10.6¢). Coarse-level grids can cancel out high-frequency noise while fine-level
grids can capture detailed local patterns, thus enhancing distinctiveness. Third, LDB
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Fig. 10.6 Illustration of LDB extraction. a An image patch is divided into 3 x 3 equal-sized grids.
b Compute the intensity summation (I), gradient in x and y directions (dy and dy) of each patch,
and compare /, dy and d, between every unique pair of grids. ¢ 3-level gridding (with2 x 2,3 x 3,
and 4 x 4 grids) is applied to capture information at different granularities

leverages a modified AdaBoost method [23] to select a set of salient bits. The mod-
ified AdaBoost targets the fundamental goal of idea binary descriptors: minimizing
distance between matches while maximizing them between mismatches, optimizing
the performance of LDB for a given descriptor length. Computing LDB is highly
efficient: relying on integral images, the average intensity, and first-order gradients
of each grid cell can be obtained by only 4-8 add/subtract operations.

Accelerating Feature Extraction via Mobile GPU Cores

Mobile application processor includes embedded graphics processing unit (GPU)
cores and other hardware accelerators in addition to the CPU cores. GPUs allow
for large quantities of instructions to be executed in parallel and efficient for floating
point operations. While originally intended for rendering 2D and 3D graphics, GPUs
have been at the core of a branch of study known as general-purpose computation on
graphics processing units (GPGPU) [29]. GPGPU technology extends the program-
mability of GPUs to enable nongraphics applications with high parallelizability to
run more efficiently than on a CPU. In the context of mobile image search, where
sequential feature extraction algorithms are often used, In order to employ GPGPU,
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feature extraction algorithms need to be broken up into smaller subtasks which can
be executed in parallel. Several efforts have been made to improve the parallelization
of feature extraction. For example, in [30], a number of stages in the SIFT algorithm
are parallelized to run on consumer desktop GPUs, decreasing runtime by a fac-
tor of 10. However, it should be pointed out that mobile GPUs have very different
characteristics compared to desktop GPUs: a mobile GPU has fewer cores, smaller
graphics memory, lower GPU bus bandwidth, sharing the same memory bus with
mobile CPUs, and variant architecture when compared to a desktop GPU. To fully
utilize the mobile GPUs, new feature extraction algorithms must be devised with the
aim to be executed concurrently. It is also necessary to characterize the computing
capability of the target mobile CPU-GPU platform in order to identify the condition
that offloading tasks to GPU cores leads to an optimized performance [7].

10.4.2 Compact Indexing Structure for Fast Matching
on Mobile Devices

To search relevant database images for a captured image, an image search system
matches each feature descriptor in the captured image to database features to find the
query feature’s nearest neighbor (NN). If the similarity between a feature and its NN
being above a predetermined threshold and they comply with a geometric model,
this feature pair is considered a matched pair. The database object which has most
matched features to the captured image is considered as the recognized object.

Fast and accurately retrieving the NN of a local feature from a large database is the
key to efficient and accurate image search, ensuring a satisfactory user experience and
scalability for mobile image search apps. Two popular techniques commonly used
for large-scale NN matching are Locality Sensitive Hashing (LSH) and bag-of-words
(BOW) matching.

LSH: Locality Sensitive Hashing

LSH [31] is widely used for approximate NN search. The key of LSH is a hash
function, which maps similar descriptors into the same bucket of a hash table and
distinct descriptors into different buckets. To find the NN of a query descriptor, we
first retrieve its matching bucket and then check all the descriptors within the matched
bucket using a brute-force search.

For binary features, the hash function can simply be a subset of bits from the
original bit string; descriptors with a common sub-bit-string are casted to the same
table bucket. The size of the subset, i.e., the hash key size, determines the upper
bound of the Hamming distance among descriptors within the same buckets. To
improve the detection rate of NN search based on LSH, two techniques, namely
multitable and multiprobe, are usually used. The multitable technique stores the
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database descriptors in several hash tables, each of which leverages a different hash
function. In the query phase, the query descriptor is hashed into a bucket of every
hash table and all descriptors in each of these buckets are then further checked
for matching. Multitable improves the detection rate of NN search at the cost of
higher memory usage and longer matching time, which is linearly proportional to
the number of hash tables used. Multiprobe examines both the bucket in which the
query descriptor falls and its neighboring buckets. While multiprobe would result in
more matching checks of database descriptors, it actually requires fewer hash tables
than multitable and thus incurs lower memory usage. In addition, it allows a larger
key size and in turn smaller buckets and fewer matches to check per bucket.

Bag-of-Words Matching

Bag-of-Words (BoW) matching [3] is an effective strategy to reduce memory usage
and support fast matching via a scalable indexing scheme such as an inverted file. Typ-
ically, BoW matching quantizes local image descriptors into visual words and then
computes the image similarity by counting the frequency of words co-occurrences.
However, it completely ignores the spatial information which may degrade the accu-
racy. To address this limitation of BoW matching, several approaches have been
proposed to compensate the loss of spatial information. For example, geometric
verification [32], designed for general image-matching applications, verifies local
correspondences by checking their homography consistency. Wu et al. presented
a bundling feature matching scheme [33] for partial-duplicate image detection. In
their approach, sets of local features are bundled into groups by maximally stable
extremal regions (MSER) [34] detected regions, and robust geometric constraints are
then enforced within each group. Spatial pyramid matching [35], which considers
approximate global geometric correspondences, is another scheme to enforce geo-
metric constraints for more accurate BoW matching. This scheme partitions the image
into increasingly finer sub-regions and computes histograms of local features detected
within each sub-region. To compute the similarity between two images, the distance
between histograms at each spatial level is weighted and summed together. These
above-mentioned schemes yield more reliable local-region matches by enforcing
various geometric constraints. However, these schemes are very compute-expensive.
Thus, for real-time mobile image search, the indexing procedure based on these
methods must be conducted on the server side or in the cloud.

10.4.3 Fusing Multimodel Context-Aware Information
Jor Mobile Image Search

At present, the processing power and memory capacity of mobile devices are still too
limited for image search apps solely relying on sophisticated visual feature extraction
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and matching methods. Modern smartphones have equipped a wide range of sen-
sors, e.g., compass, accelerometer, gyroscope, GPS, etc. greatly enrich the devices’
functionalities and provide various forms of context information to facilitate image
search. For instance, Global Position System (GPS) location is important information
for landmark images. In the meanwhile, a growing fraction of images in image data-
bases are tagged with geographical information. As of February 2009, there are more
than 100 million geotagged images on Flickr [36]. By leveraging GPS to identify the
location of a mobile devices and utilizing a compass (or in combination with other
sensors) to determine the direction that the device is heading to, an image search
system could retrieve related images which have similar geotagged and direction
information as the query image.

The problem, however, is that built-in sensors usually lack sufficient accuracy,
thus cannot provide satisfactory performance for search tasks. For instance, since
GPS drift can be as much as 100 meters, in densely built areas or using a noisy and
large-scale database, more false positive images from surrounding locations will be
included. Several studies proposed to combine these vision-based and sensor-based
methods. For example, in [10], authors proposed two modes, parallel and serial, to
integrate location information in a mobile landmark image search system. In parallel
mode, query data from content and location is processed independently, and then
the results are combined together through a linear combination approach. In serial
mode, location information is first applied to narrow down the search space, and then
results will be refined and re-ranked based on visual information. Serial integration
can significantly reduce the search scope for the captured landmark, which in turn
will greatly improve search precision and speed. However, it may also incur the risk
of losing some true positives, i.e., a worse recall, due to the absence of location
tags. Another work fuse visual and GPS information is presented in [37]. In this
work, the authors proposed to combine visual tracking and GPS for outdoor building
visualization. The user can place virtual models on Google Earth and the app can
retrieve and visualize them based on the user’s GPS location.

The trend of integrating more sensors into mobile devices has not stopped yet. For
example, Google has just released a new mobile platform, Tango, which integrates
six Degree-of-Freedom motion sensors, depth sensors, and high-quality cameras.
Amazon has announced their new Fire phone which includes four cameras tucked
into the front corners of the phone, in additional to other motion sensors. Advances
in mobile hardware offer the opportunities to gain richer contextual information
surrounding a mobile device and in turn open a door for new approaches to best
utilizing all available multimodel information.

10.5 Conclusions

The advancement of mobile technology, in terms of hardware computing power,
seamless connectivity to the cloud and fast computer vision algorithms, have raised
image search into the mainstream of mobile apps. Following the widespread popular-
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ity of a handful of killer image search applications already commercially available,
it is believed that mobile image search will expand exponentially in the next few
years. The advent of mobile image search will have a profound and lasting impact
on the way people use their smartphones and tablets. These emerging mobile image
search apps will turn our everyday world into a fully interactive digital experience,
from which we can see, hear, feel and even smell the information in a different way.
This emerging direction will push the industry toward truly ubiquitous computing
and a technologically converged paradigm.

The scalability, accuracy, and efficiency of the underlying techniques (i.e., fea-
ture extraction and indexing) are key factors influencing user experience of mobile
image search apps. New algorithms in computer vision and pattern recognition, such
as lightweight feature extraction, have been developed to provide efficiency, com-
pactness on low-power mobile devices, and meanwhile maintain sufficiently good
accuracy. Several efforts are also made to analyze particular hardware limitations
for executing existing feature extraction and indexing algorithms on mobile devices
and explore adaption techniques to address these limitations. In addition to advances
in the development of lightweight computer vision algorithm, a variety of sensors
have been integrated into modern smartphones, enabling location recognition (e.g.,
via GPS) and device tracking (e.g., via gyroscope, accelerometer, and magnetome-
ter) at little computational cost. However, due to large noise of low-cost sensors
equipped in today’s smartphones, the accuracy of location recognition is usually low
and cannot meet the requirement for apps which demand high accuracy. Fusing visual
information with sensor data is a promising direction to achieve both high accuracy
and efficiency, and we shall see an increasing amount of research work along this
direction in the near future.
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