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Preface

Laptop computers have become smaller and smaller, whilst smart mobile phones
have been made bigger and bigger, becoming an essential part of people’s daily
activities. These sensor-rich devices deal with all kinds of media data, including
texts, images, videos, audio, and geo-data, among others. Collectively, they form an
ecosystem for multimedia acquisition, processing, communication, and presenta-
tion, which provides a lot of opportunities for new multimedia applications.

However, when developing new mobile multimedia applications, an inevitable
issue is the limited capacity a smart phone can provide in terms of computing,
storage, and battery life. Thanks to the great data transmission capacity and the
rapid development of cloud computing technologies, it is natural to think about
migrating majority of the media processing and storage to the cloud. It is this
marriage of the mobile and cloud ecosystems which has provided us with such
tremendous opportunities for new multimedia applications.

In 2010, observing this trend, we organized a workshop on mobile cloud media
computing in conjunction with ACM Multimedia 2010. We have also led the
organization of workshops on mobile vision in conjunction with CVPR and ICCV,
and special issues on similar topics in International Journal of Computer Vision,
and IEEE Trans. on Circuits and Systems for Video Technologies. These experi-
ences are what motivated us to edit this book, which is intended to capture a
snapshot of the state-of-the-art of this emerging field of research.

Although we intended to cover a broader set of topics, we are inevitably con-
strained by the limited time and availability of contributing authors. In the end, we
have only covered a subset of the topics, revealing just the tip of iceberg of this
active research area. In particular, this book includes work on mobile computational
photography, mobile augmented reality, mobile visual search and recognition,
cloud visual computing and mobile applications, and mobile multi-sensor fusion,
with a wide variety of applications covering mobile assistance for the visually
impaired and mobile experience sharing.

This area of research and development is fast evolving, especially considering
that mobile and cloud computing and services have now become the first priority of
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many leading technology companies such as Microsoft, Amazon, Apple, Google,
Facebook, IBM, Alibaba, Baidu, and Tencent. Therefore, it is likely that there have
been many more new technologies, applications, and services developed and built
upon during the publication of this book. Nevertheless, we would like the reader to
use this book as a source of inspiration for new research and development, instead
of just using it as a reference to the “state-of-the-art.”

Last but not least, we would like to thank our families for their support in the
process of putting this book together. Gang Hua especially would like to dedicate
this book to his wife, Yan Gao, and daughter, Kayla Hua. The book would not have
been possible without their support. We hope you enjoy this book, and of course,
we welcome your feedback/suggestions/comments!

Seattle, WA, USA Gang Hua
September 2015 Xian-Sheng Hua
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Part I
Mobile Augmented Reality



Chapter 1
Computer Vision for Mobile Augmented
Reality

Matthew Turk and Victor Fragoso

Abstract Mobile augmented reality (AR) employs computer vision capabilities in
order to properly integrate the real and the virtual, whether that integration involves
the user’s location, object-based interaction, 2D or 3D annotations, or precise align-
ment of image overlays. Real-time vision technologies vital for the AR context
include tracking, object and scene recognition, localization, and scene model con-
struction. For mobile AR, which has limited computational resources compared with
static computing environments, efficient processing is critical, as are consideration of
power consumption (i.e., battery life), processing and memory limitations, lag, and
the processing and display requirements of the foreground application. On the other
hand, additional sensors (such as gyroscopes, accelerometers, and magnetometers)
are typically available in the mobile context, and, unlike many traditional computer
vision applications, user interaction is often available for user feedback and disam-
biguation. In this chapter,wediscuss the use of computer vision formobile augmented
reality and present work on a vision-based AR application (mobile sign detection and
translation), a vision-supplied AR resource (indoor localization and post estimation),
and a low-level correspondence tracking and model estimation approach to increase
accuracy and efficiency of computer vision methods in augmented reality.

1.1 Introduction

Augmented reality (AR) provides a live experience of the physical world with
computer-generated augmentation appropriate to the location and particular task
at hand. The augmentation is often specific textual information (e.g., the name of a
nearby person or the date of a building’s construction), location or geometric infor-
mation (e.g., outlining or marking the destination building or door), or a virtual entity

M. Turk (B)
University of California, Santa Barbara, USA
e-mail: mturk@cs.ucsb.edu

V. Fragoso
West Virginia University, Morgantown, USA
e-mail: victor.fragoso@mail.wvu.edu

© Springer International Publishing Switzerland 2015
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4 M. Turk and V. Fragoso

(e.g., an animated character or an advertisement placed appropriately in the scene).
This information may be delivered by several different modalities or channels, such
as audio (speech or sound directed individually to the user), video (through a display
screen or anotherwayof projecting imagery to the user), haptics (touch-based interac-
tion), or othermeans.WhileARmay include awide range of technologies,modalities
and devices, the most typical AR systems aim to provide visual information through
a transparent (optical see-through) or video see-through display—perhaps delivered
via a smartphone or a head-mounted device.

In order to properly deliver spatial information, an AR system needs to know
the location of the user and device either coarsely or precisely, depending on the
application and the type of augmentation. In Sect. 1.3, we present research in pose
estimation and localization for indoor environments. Many AR systems have used
easily recognizable visualmarkers placed in the scene to aid tracking and localization
(e.g., [25, 49]). However, this limits AR to structured environments, and most recent
work in the field has sought to avoid this restriction. In the most demanding case, the
precise position of the camera sensor is required, along with an accurate geometric
and photometric model of the user’s environment, in order to deliver artifact-free
annotations that appear well integrated with the visual scene. Real-time, artifact-free
mobile augmented realitywith nontrivialmodels for augmentation is still a significant
research challenge. Small errors can easily translate to significant misalignments,
which are especially noticeable over time as a graphical overlay jitters with respect
to the underlying scene. In some AR applications, apparent jitter can be reduced by
using thick lines, temporal filtering, good annotation design, and other mechanisms,
but misalignment remains a limiting factor in most augmented reality systems.

Markerless AR systems rely on low-level tracking and modeling techniques [20]
to build 3D models and compute the camera position and orientation with respect
to a known coordinate system. Typical approaches start with feature detection and
description, then match features from frame to frame, using known geometric con-
straints to build a (often sparse) model comprising 3D locations of keypoints and the
pose of the camera with respect to the model. While these are all areas that have been
long studied in the computer vision field, augmented reality brings a different set
of constraints and demands to the problem, which has led to practical solutions that
are well-matched to the AR context (e.g., [26, 50]). In Sect. 1.4, we present work on
keypoint correspondences and model estimation that aims to improve the accuracy,
speed, and robustness of vision-based tracking and modeling.

To create a model of a full workspace or large area, low-level tracking and model-
ing techniques must handle issues that arise when synthesizing multiple portions of
a scene, when combining rotational motion with more general (rotational + transla-
tional) motion, when closing the loop on a scene (returning to a portion previously
modeled), and other challenging issues. In recent years, much progress has been
made in systems that provide SLAM (simultaneous localization and mapping) capa-
bilities for mobile robots, micro aerial vehicles, and AR applications. While beyond
the scope of this chapter, our work in live tracking andmapping for both rotation-only
and general motion [21] may be helpful in merging models and avoiding undesired
calibration procedures in consumer AR applications.
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Some augmented reality applications focus on objects in the camera’s field of
view than on (or in addition to) general scene geometry, providing information about
objects of interest or giving a user the ability to interact with a virtual representation
of the object. For example, someone playing an augmented game may indicate an
object for the virtual character to go to, or a consumer may select an object to get
additional information (such as vendor and price) that may float above the object
in the AR display. In Sect. 1.2, we describe a system for automatic sign translation,
which augments the scene by replacing the text of a sign by its translation, while
displaying the appropriate sign geometry and background colors.

Given the impressive advances in recent years in mobile computing hardware and
devices and in computer vision algorithms for tracking, modeling, and recognition,
in addition to the rapid maturity of mobile computing ecosystems and a tremendous
consumer demand for mobile devices and applications—not to mention the capti-
vating futuristic portrayals in film and television—the field of mobile augmented
reality has captured the imagination of many and is poised to become a mainstream
technology for entertainment, productivity, learning, and other important areas.How-
ever, much progress is still needed in order to deliver the high-quality experience
that is envisioned. This chapter describes a few efforts toward this goal of improved
vision-based AR technologies to support compelling user experiences.

1.2 Sign Translation

One compelling augmented reality application is the translation of text in natural
scenes (or sign translation) using a mobile device; see Fig. 1.1 for an illustration.
This application, besides being useful when traveling abroad, imposes interesting
and challenging mobile computer vision problems: text detection, visual tracking,
and character recognition, among others. To guarantee a satisfactory user experience,
the application must solve these problems as efficiently and quickly as possible.

With these constraints in mind, we developed TranstlatAR [17], a translation
system that uses the camera and the touchscreen of a mobile device. The system
identifies thewords of interest from the live camera streamandpresents the translation
as anARoverlaywhich seamlessly replaces the original text in the live camera stream,
matching background and foreground colors estimated from the source images. In
the following sections, we describe the translation system as well as an automatic
text detector tailored for this system.

1.2.1 Overview of the System

TranslatAR’s architecture, shown in Fig. 1.2, was designed such that all the expensive
operations run in the background thread,while the systemmaintains interactive frame
rates for tracking and augmentation. In the following sections, we describe several
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Fig. 1.1 Top row TranslatAR in operation. The user detects the text he or she wishes to translate
and taps on it (top left). The system automatically detects the extent of the text, extracts the letters
via OCR, and produces a translation, which is then presented as a live augmented reality (AR)
overlay (top right). Bottom row TranslatAR used in two other situations

components in the system, such as the text detection algorithm, text extraction and
recognition, the translation, the visual tracking, and the translation overlay process.

1.2.2 Text Detection

The goal of the text detection component is to compute an accurate bounding box
enclosing the sign to translate. This computed bounding box is important to initialize
the visual tracker as well as to extract the text via OCR.

The original text detection algorithm implemented in the system required the user
to tap on the text of interest; the user’s input enabled the text detection process to be
efficient given the computational resources of a mobile device. Thus, given a point c
onto which the user tapped, the system first finds the bounding box around the text,
then the exact location and orientation of the text within. This process is illustrated
in Fig. 1.3 and is explained in the following sections.

Bounding box. To find approximate upper and lower text boundaries, first the
image gradients Ix and Iy are computed. A short horizontal line segment sh around
the input point c is then moved vertically upward and downward, respectively, until
the following criterion is met (for δy consecutive scanlines):

max
(x,y)∈sh

|Ix(x, y)| < ε, (1.1)
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Fig. 1.2 Architecture of TranslatAR: Initialization and per-frame operations run in themain thread,
while the rest of the operations are executed in the background

(a) (b)

(c) (d)

Fig. 1.3 Text detection in operation after the user’s tap. First, the vertical extent of the text is
determined (a). Subsequently, using the assumed text height, the horizontal extent is estimated (b).
A constrained and modified Hough transform is used to estimate the baseline and orientation (c),
and finally, the area is expanded to account for ascenders and descenders (d)

that is, until the segment sh does not cross any vertical edges. The example in Fig. 1.3a
shows the final upper and lower location of sh. The same process is applied to
compute the left and right boundaries, sweeping a vertical line segment sv over
Iy. The algorithm uses knowledge obtained in the first step by making the length of
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sv relative to the distance between upper and lower sh (i.e., the estimated text height).
Here, the required width of the “gap” δx is set slightly larger so that the algorithm
does not stop between letters. The result of this process is shown in Fig. 1.3b. Values
for ε, δx, δy, and the lengths of sh and sv were obtained experimentally.

Though fast and simple, this approach is able to detect an approximate bound-
ing box in many conditions. However, it is susceptible to fail for very nonuniform
backgrounds.

Location and orientation refinement. Todetect the exact location andorientation
of the upper and lower “baselines” of the text, the algorithm applies a constrained
and modified Hough transform as follows: First, only pixels within the bounding
box are considered, and only lines that cross the vertical line through c at an angle
of ±15◦ are taken into account. This reduces the computational cost considerably,
ensures that only “reasonable” lines are taken as candidates for baselines, and lever-
ages the assumption/limitation that the user will hold the phone roughly parallel to
the text.

Second, the algorithm optimizes the voting scheme for the task of finding text
baselines as follows: horizontal edges (i.e., in Iy) vote for lines passing through the
respective point (vote with positive weight), while vertical edges (in Ix) vote against
them (vote with negative weight). This is designed so that the ideal line goes along
horizontal edges while cutting few or no vertical edges. The result can be seen in
Fig. 1.3c. Finally, lines aremoved vertically until no edge intersections are detected to
account for ascenders anddescenders (Fig. 1.3d). The resulting quadrilateral regionof
interest is warped into a rectangle, correcting any perspective distortion and showing
the text as if seen orthogonally.

Text extraction, recognition, and translation. The system uses the computed
warped image as described earlier to perform background and foreground color
estimation and to “read” the text via OCR.

We begin describing the color estimation. The algorithm assumes that the let-
ters have a single constant color with a reasonable amount of color contrast to the
background, i.e., that there are two dominant clusters in color space that represent
foreground and background. They are extracted from the subsampled rectified image
using K-Means [1] with k = 2. To differentiate between foreground and background,
the algorithm retrieves a few labeled samples along the left and right borders and
assumes that the background color is the onewith themajority of the collected labels;
this is justified as the detection algorithm automatically includes a small margin.

This approach estimates both colors very accurately and fastwhen the assumptions
are met. It can fail for very nonuniform backgrounds when there are significant
specularities on the letters. However, in such cases, one of the other components
(detection, OCR) is likely to fail, and though improving the user experience, the
color estimation is not crucial to the operation.

The system relies on a standard OCR system for extraction and recognition of
the letters and uses the warped image containing the word of interest for this task.
The system used Tesseract [45], as it is freely available and was easy to integrate. As
bad text detection frequently causes the OCR to return spurious, non-alphanumeric
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characters (such as punctuation marks), the system computes the ratio of alphanu-
meric characters to all characters in the string as a rough indicator of successful
extraction.

The following (optional) step was motivated by preliminary tests with the OCR
which showed that single letters were frequently misrecognized. With a string
returned from the OCR, the system searches through a dictionary of valid words
to identify the nearest neighbor with respect to the Levenshtein distance [32]. The
Levenshtein distance to the found string is computed for each dictionary word within
±2 of the length of the found string, and the word with the smallest distance is taken
as replacement for the original string returned by the OCR. This implementation
clearly does not scale to large dictionaries and is only meant as proof-of-concept
add-on.

With the extracted string, the system uses Google Translate API,1 an existing free
online translation service, to do the actual text-to-text translation. The input language
is detected automatically by Google Translate, and the desired output language can
be selected by the user in our GUI.

1.2.3 Visual Tracking and AR Overlay

Visual tracking enables the system to keep track of the word of interest in the live
video stream and to present the translation in a live AR-style overlay. Fortunately,
several circumstances make tracking in our application easier than in the general
case: (1) it can be assumed that the text is displayed on a near-to-planar surface, (2)
as the region of interest consists of text, it is automatically well-textured and contains
features with high contrast, which is important for tracking, (3) the system is only
required to track over short periods of time (as long as it takes the system to obtain
the translation and the user to read it), (4) the system assumes a “cooperative” user
who will not move the phone jerkily.

The application implemented a tracking system based on ESM [4], in which an
image region is tracked by iteratively minimizing the difference between a reference
frame (the template) and the current frameover awarp transformation. In otherwords,
the tracker computes a warp that aligns the template image onto the current frame.
Though costly for large intra-frame movements and/or large image templates, in our
case (due to the above constraints), it provides sufficiently fast and robust tracking
even for a relatively small template.

Based on the transformation computed by the tracker, a graphical augmentation is
rendered onto the live video screen; first the bounding box is displayed while the text
is being translated, and then, as soon as it becomes available, the translation itself is
seamlessly augmented in the live stream.

1https://developers.google.com/translate/.

https://developers.google.com/translate/
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1.2.4 Implementation Details

The systemwas implemented on the Nokia N900 smartphone, which is based on a TI
OMAP 3430 SoC with a 600MHz ARM Cortex A8 CPU and runs the Linux-based
operating system Maemo. The application was developed in C++, using OpenCV
and libCVD for computer vision tasks (processing frames of size 320 × 240),
GStreamer for frame capture, andQt for theGUI,which consists of a large viewfinder
and a few buttons for configuration (e.g., language selection).

The ESM tracker was implemented from scratch using libCVD. It uses a down-
sampled grayscale version of the warped rectangular text bounding box as a template
and the respective previous frames homography as initial estimate for the 8-degree-
of-freedom alignment. The graphical augmentation was implemented in OpenGLES
2, leveraging the device’s GPU; the translated text is rendered with OpenCV and then
passed to the vertex shader along with the transformation estimated by the tracker,
and finally the fragment shader renders the texture onto the current frame. HTTP
requests to and responses from Google’s online translation service are handled with
the curl library,2 a library for transferring data using various protocols.

1.2.5 Evaluation

Runtime. Table1.1 presents an overview of the execution times of the main system
components on the N900. As the expensive steps are offloaded into a background
thread, the system maintains interactive frame rates for tracking and live feedback
throughout the computation. The application achieved a frame rate of about 26 fps.

Text detection. To evaluate the text localization method [17], we used the ICDAR
2003 detection dataset. This dataset contains 251 images of varying size with at
least one word in each image. Ground truth is provided in the form of a horizontal
bounding box for each word.

As the algorithm was designed to work with video frames of a fixed size, the
images were resized to 320 × 240 pixels. To conduct automated evaluation, the
experiment simulated the required user input: the starting point c. This point was
calculated/simulated as the center of the rectangle provided by the dataset, and it was
adjusted properly to the new dimensions. As the dataset only provides an enclosing
horizontal rectangle, and since the algorithm computes the (more accurate) quadrilat-
eral, we calculated the minimal enclosing horizontal rectangle to be able to compare
against the provided ground truth.

The performance measures proposed by Lucas [35] are based on a matching score
mp between two text area rectangles, which is defined as the area of the intersection
divided by the area of the minimum bounding box containing both rectangles. mp is
1 for two identical rectangles and 0 for nonintersecting pairs.

2Libcurl is available at http://curl.haxx.se/.

http://curl.haxx.se/
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Table 1.1 Average execution times on the Nokia N900 for themain steps of the processing pipeline
in TranslatAR

Component Time (ms)

Initialization upon input

Find text bounding box 71.0

Initialize tracker 5.0

Background thread

Text location refinement 414

Extract colors 10

OCR 630

Render translation texture 10

Per-frame operations

Capture and preprocess frame 21.9

Tracking 8.5

Render AR overlay and display frame 7.7

Total per-frame 38.1

With the expensive steps offloaded into a background thread, the system maintains a frame rate of
about 26 fps

For automatic detectors, there will not be a unique 1:1 matching between detected
andground truth areas, hence the respective bestmp for eachdetected andground truth
area is taken and subsequently averaged to yield precision and recall, respectively.
Different values for precision and recall thus result from detecting too many or too
few areas, but no distinction is made between too large and too small areas. However,
due to themanual “seeding” of the algorithm, there is guaranteed to be a 1:1matching,
and therefore the ICDAR definition of precision and recall both default to the average
mp for our algorithm. For further analysis, we also calculated pixel-wise precision and
recall (e.g., as used by Park and Jung [39]), i.e., the ratio of pixels correctly labeled
as text versus all pixels labeled as text, and the ratio of pixels correctly labeled as
text versus all text pixels.

To optimize the parameters of the algorithm, we used the training part of the
ICDAR set, then evaluated the metrics on the test part. The obtained are pixel-wise
precision and recall of 31 and 68%, respectively, and an average mp = ICDAR
precision of 41%. This falls within the middle range of values published by
Lucas [35], but cannot compete with the best scoring algorithms described by
Lucas [35] and Epshtein et al. [14], which achieve precision and recall values of
60–70%. It should be noted that the described algorithm requires a single point as
input, while the other algorithms are fully automatic, but also that the described
algorithm runs in less than 0.5 s on a mobile device and is hence one to two orders
of magnitude faster than the aforementioned algorithms (see timings in [14, 35]).

A few examples of good and bad detection are shown in Fig. 1.4. The algorithm
is prone to “overshoot” all the way to the borders of the image for nonuniform
backgrounds, but it rarely cuts off letters. Note that the latter error is more fatal in
our application than the former (in which case the OCR still has a chance to ignore
the extra parts).
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Fig. 1.4 Examples of good (top and mid rows) and bad (bottom row) text localization on the
ICDAR 2003 dataset. The blue point in each quadrilateral represents the (simulated) input of the
user. TranslatAR’s algorithm was able to very accurately detect the text at different scales and
under perspective distortion. The failure cases are mostly due to very nonuniform background
and/or lighting effects (first two). For very large letters, the expansion algorithm used to detect the
texts bounding box can stop inside one of the letters (bottom right)

Table 1.2 Reasons of failure of the detection-extraction-translation process on a set of 30 video
clips

Component No. of words % of failures % of all

Detector failed 7 16.3 8.9

Color est. failed 6 14.0 7.6

OCR 26 60.8 32.9

Translation 4 9.3 5.1

Correct result 36 of 79 – 45.6

If one component fails, the later components are not evaluated—e.g., the OCR failed 26 times,
although detector and color estimation delivered a good result

Component test. We used our own set of 30 video clips of various outdoor signs,
each containing several words, to further test the system as a whole and determine
which components cause failures. Here, both providing the user input as well as eval-
uating the result was done manually. The results are listed in Table1.2. As emerges
from the table, the OCR is the most common cause of failure, while the detector
works correctly in 72 out of 79 cases.
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1.2.6 Automatic Text Detection

To enhance the user experience in the mobile AR translation systems, we developed
an automatic text detection algorithm (see Petter et al. [41] for full details). In order
to offer a fast automatic text detector, we focused in finding a single letter. The
algorithmwas designed on the following premise: detecting one letter provides useful
information that is processed with efficient rules to quickly find the reminder of a
word. This approach allows for detecting all the contiguous text regions in an image
quickly. Moreover, the algorithm presented a method that exploits the redundancy
of the information contained in the video stream to remove false alarms; see Fig. 1.5
for an illustration of this automatic text detection algorithm.

The general structure of the algorithm is shown in Fig. 1.6. The algorithm works
on a grayscale image and can be overall described into three main steps: (1) Localize
a first potential letter (zone of interest); (2) Verify that a letter was found; (3) Find
the rest of the word based on the found letter.

Step 1: Finding a Zone of Interest

The aim of this step is to find a zone of interest that may contain a letter. The
approach is based on existing methods [19, 33, 51] because of their efficiency and
good performance. These methods leverage the high rate of edges contained in text

Fig. 1.5 Automatic text detection for TranslatAR. The algorithm scans the input image (a) until
it finds a zone of interest that contains text (b). Subsequently, the algorithm expands the zone of
interest with efficient rules (d), and finally, our method produces the final bounding box (e). Final
bounding box with real examples (right-most column)
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Find the rest of 
the word

Search for a 
zone of interest

Contains a 
letter?

No
Yes

Is all the 
image 

scanned?

No

Done

Yes

Fig. 1.6 Overview of the automatic text detection

Fig. 1.7 Contour
reconstruction process:
Original picture (Left), edge
map produced with Canny
(Middle), reconstruction with
dilatation operator, and a
cross-shaped structuring
element (Right)

areas. Therefore, a potential letter can be found on an edge map by building objects
composed of closed contours that later can be categorized as letter or non-letter. In
the following paragraphs, we explain in more detail the building blocks of this step.

Prior to detecting edges, a Gaussian smoothing filter of size 5 × 5 pixels is
applied to reduce noise that could cause errors in further computation. The Canny
edge detector [8] is used for producing a binary map indicating the presence per-
pixel of every edge. This edge detector is efficient and provides accurate results
which makes it suitable for our purpose.

The original image is sometimes too blurry for edges to be detected. Thus, some
shapes, including letters, could be overlooked by the edge detection and not appear in
the edge map (see Fig. 1.7). To ensure the continuity of the contour, a preprocessing
step is necessary before starting the contour building step. Avoiding this step can
produce an incorrect contour by the algorithm. For reconnecting the edge pixels
together, we use dilation, a binary morphological tool. For our implementation, a
cross-shaped structuring element of pixel size 3 worked the best for filling the holes
in the contours.

The algorithm starts scanning from left to right and top to bottom to find an edge
pixel in the binary map. When an edge pixel is found, the contour of the object
containing this pixel is built with an 8-connectivity connected component algorithm.
The 8-connectivity algorithm [10] is a region-based segmentation algorithm which
checks the 8-pixel neighbors of a pixel and connects this pixel with its similar neigh-
bors. Information about the bounding box containing the computed contour, such as
height, width, position of the centroid, etc., is available as an outcome of this step.
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Step 2: Determining if a Letter Was Found

The main intention of this step is to verify whether or not the zone of interest actually
contains a character. This task is not straightforward, as the words contained on bill-
boards, road signs, or books have different sizes or fonts whichmake learning precise
shapes of letters a challenging task. However, since signs are typically meant to be
easily readable, discriminating text regions from non-text regions with geometric
information should be possible.

A Support Vector Machine (SVM) and a set of image features are adopted to
accomplish the discriminating task. SVMs are widely used in the literature (e.g.,
[28, 52]) and are quite useful for binary categorization tasks. SVMs have a strong
mathematical foundation and provide a simple geometric explanation of their clas-
sification.

In order to select the best features to address this discrimination task, experiments
were conducted for evaluating several combinations of image features. The most
effective features found were the First-Order Moments (FOM)

FOM1 =
∑

x

∑

y

xI(x, y) (1.2)

FOM2 =
∑

x

∑

y

yI(x, y), (1.3)

and Second-Order Moments (SOM) normalized with the number of pixels on the
contour (NB),

SOM1 =
∑

x

∑
y x2I(x, y)

NB
(1.4)

SOM2 =
∑

x

∑
y y2I(x, y)

NB
, (1.5)

where x, y are the coordinates of the pixel in the clipped zone of interest and I(x, y)
denotes the intensity of the pixel.

Step 3: Finding the Rest of the Word

In order to robustly find the rest of the word given the position of the first letter, we
combined two features that provide information about the surrounding characters:
image intensities and the edge map. These features determine when to stop scan-
ning in the surrounding areas, and therefore, to determine the spatial extent of the
bounding box.

Given the first letter of the word or phrase to be detected, the background and
foreground intensities in the grayscale domain can be extracted.Wecan safely assume
in most cases that each word is contained in a homogeneous colored background and
the letters have approximately the same intensity; we can then infer the intensity and
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find the remaining letters. The K-Means algorithm with k = 2 is used to find the two
intensities. In order to know which intensity corresponds to the letter, we create a
second bounding box with the same center as the first bounding box of the zone of
interest. The width and height of the new bounding box are computed as follows:
width2 = width + δw and height2 = height + δh, where δh = δw = 2 pixels (see
Fig. 1.8). The pixels on the perimeter of that new box are likely to be background
elements, and therefore, the closest intensity to the mean of those perimeter pixels is
chosen to be the intensity of the background. Consequently, the remaining intensity
is attributed to the letter.

Edge pixels around the found letter are likely to be part of the rest of the word
because text regions present a high edge density. Useful information to estimate the
position of the remaining letters is extracted from the adjacent edge pixels of the
zone of interest.

In order to speed up the full word bounding box computation, the algorithm scans
the image horizontally with three line segments. A single line segment is positioned
on top, middle, and bottom of the found characters bounding box. Each segment
is then scanned on the left and right side of the zone of interest considering a gap
of size s on every side. The algorithm looks for pixels with intensities similar to
the letters intensity along the segment. Edge pixels that are present in the analyzed
gap are considered simultaneously. In this manner we guarantee that in fact we are
likely to see pixels representing letters on the image. The size of the gap used in
our algorithm is calculated as follows: s = 1.1 × H , where H is the height of the
found letter. The size as a function of the height allows us to consider the breach
that exists between two adjacent characters in a word. However, when such breach
is less than 1.1 × H, the algorithm considers both adjacent words as a single word.
The procedure is applied until no edge pixels are detected or no similar intensity is
found in the analyzed gap of every line segment. As an outcome of this procedure
we obtain the width of the bounding box.

To find the height boundaries, the algorithm scans pixels along horizontal line
segments with lengths equals to the computed bounding box widths described earlier
(see Fig. 1.9a). The algorithm scans these lines following the same pixel criteria of
intensities and edges used earlier. The algorithm moves the lines up and down until
this criteria is fulfilled.

The combination of these two procedures computes a rectangular bounding box
that encloses the letters of a certain text in the analyzed image (see Fig. 1.9b).
Scanning with three horizontal parallel line segments tolerates a certain perspective

Fig. 1.8 Method to find the
intensity of the background.
A second box is created
and the mean of the intensity
of the pixels on the perimeter
of the new box is associated
to the background

Box
New bounding box

Original bounding box
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Fig. 1.9 Left Horizontal and vertical scanning to find letter pixels (intensity or edge pixels). Gaps
of size s are analyzed between the letters during the procedure. Right Considering only information
from edges (left) or intensity (middle) can determine an incorrect bounding box. Combining both
features produces a better bounding box (right). a Scanning lines. b Bounding box computation

distortion of the letters that compose the word. However, the produced bounding box
computed with these procedures may be slightly larger or smaller than the minimum
bounding box due to noise present in the image.

Once a word is found, the search for additional words in the image continues until
every pixel of the image not part of a word bounding box has been scanned.

Filtering False Alarms by Leveraging Temporal Information
from Video Stream

An additional step is applied when the algorithm is used on a video stream, which is
the case in an augmented reality translation system. In order to keep track of stable
text regions and remove false alarms as much as possible, the algorithm leverages the
temporal information that we can obtain from the video stream. We are interested
in tracking these stable text regions. Since the scene does not change much from
frame to frame, assuming that the frames on the video stream are generated at a high
frame rate, the stable regions repeat and the position and area of the true positives
detected bounding boxes does not vary much; therefore, false alarms will behave
more unstably in this sense. The stability of these correct bounding boxes allows the
algorithm to remove a fair amount of false positives.

The algorithm retains the center position and the area of the detected bounding
boxes on the first frame. On subsequent frames, the system redetects the bounding
boxes andmatches themwith the previously seen boxes based on areas and centroids.
For every retained bounding box we increment a counter c if the bounding box
matches a previously seen region, and decremented if it is not seen. A bounding box
is considered to be stable if c > 1.

There are three different cases for matching that occur when comparing two
bounding boxes (see Fig. 1.10):

Fig. 1.10 Considered cases when comparing bounding boxes: Inclusion (left), Intersection (mid-
dle), and Disjunction (right)
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1. One of the bounding boxes contains the other one.
2. The two bounding boxes intersect.
3. The two bounding boxes do not intersect and neither of them contains the other

one.

Cases 1 and 2 are situations where the bounding boxes in question can represent
the same word. In order to know which case correspond to two bounding boxes,
the positions of their upper left and lower right corners are compared. Once two
bounding boxes are considered to be potentially the same word, further aspects are
analyzed in order to determine a match.

To determine a match for the first case 1 the algorithm evaluates the ratio r
between the smallest area and the biggest area. A match is determined if r > 0.7.
For the second case, the algorithm evaluates the absolute value of the displacement
of the centers c1 = (x1, y1) and c2 = (x2, y2), i.e., δx = |x1 − x2| and δy = |y1 − y2|,
as well as the ratio of the areas used in the first case. The method declares a match
considering the following criteria: δx < εx, δy < εy, and r > 0.7, where εx = 0.35 ×
width, εy = 0.35 × height (the height and width correspond to the smallest bounding
box). Subsequently, the algorithm averages the centroids and areas of the matching
bounding boxes in order to keep track of the box on the remaining frames.

Evaluation

We carried out a series of experiments in order to thoroughly evaluate the text detec-
tion algorithm and the integration of this method with TranslatAR.

We created our own dataset to test the algorithm in a more realistic context, i.e.,
low-resolution, mobile camera, and others. This dataset comprises 400 images, each
containing a single word from natural scene which follow the assumptions made for
this project (see Sect. 1.2.6), and 400 non-text images.

In order to evaluate the performance of the proposed method, we evaluated every
outcome manually, and the outcome was labeled as successful if all the letters of the
word were contained in the bounding box. The results of this experiment are reported
in Table1.3.

Table 1.3 Accuracy of the automatic text detector

True positives (%) False positives (%) Precision (%) Recall (%) f-score (%)

87 41 68 87 76

Table 1.4 Distribution of failure for the missed words

1st step (%) 2nd step (%) 3rd step (%)

4.57 81.04 14.39
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Fig. 1.11 Words correctly detected (left) and failures (right)
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The algorithm found the majority of the words; however, it is also susceptible to
a substantial rate of false alarms. By analyzing the failures, both missing words and
false alarms, we concluded that the main problem occurs when verifying the zone of
interest (i.e., the second step, see Sect. “Step 2: Determining if a Letter Was Found”).
The SVM was the most common source of failure for the case of false negatives,
failing to detect words (see Table1.4).

It was also observed that false alarms arise in images with high edge densities,
as the first step declares those regions as zones of interest and therefore the second
step declares them as text regions. Moreover, another observation was that the SVM
with SOM/FOM as features tends to declare any symmetrical non-text region in an
image as text (see Fig. 1.11).

1.2.7 Discussion and Future Work

Recently, new text detection [24, 37, 38] and extraction [5, 29] in natural scenes
algorithms and new powerful mobile devices have become available. Thus, these
algorithms can potentially improve the performance of the text detection and extrac-
tion significantly as long as they run efficiently on a mobile device. As shown in
this section, the OCR (or text extraction system) and the text detection components
are the most challenging and important pieces in this application, as they enable the
computation of a good translation.

1.3 Indoor Localization

The computational capability of mobile phones has been rapidly increasing to the
point where augmented reality has become feasible on such devices. In this section,
we describe an approach to indoor localization and pose estimation in order to support
augmented reality applications in an indoor environment and on a mobile phone
platform.

Estimating an accurate camera pose is crucial for delivering a high-quality aug-
mented reality experience, because the application needs to understand how the
camera is oriented and located with respect to the scene in order to augment virtual
information accurately. In this section, we describe a system [40] that localizes the
device in a familiar environment and determines its position and orientation using
the camera and sensors in the mobile device. Once the 6 degrees-of-freedom (DOF)
pose is determined, 3D virtual objects from a database can be projected onto the
image and displayed for the mobile user.

The application has two main phases: an offline data acquisition and an online
pose estimation. The offline data acquisition phase consists of building a database
by acquiring images at different locations in the environment, while the online pose
estimation computes the position and orientation of the device by matching features
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Fig. 1.12 Indoor localization application overview. The database contains several images taken at
different locations (the green dots) in the indoor environment (blue blob). The arrows are the optical
axes and the angles represent fields of view. The pose (translation T and rotation R) between the
cell phone image (bold blue lines) and a database image is computed by image matching. Then the
3D virtual objects (represented by yellow cubes) are projected onto the mobile device image. Here,
only one virtual object is seen by the mobile device

between the device image and an image from the database; the pose estimation
also uses information from the sensors (accelerometer and magnetometer) for the
computation as we discuss later in this section. In Fig. 1.12 we show an overview of
the application.

The application enables the user both to visualize virtual objects in the camera
image and to localize the user in a familiar environment. We describe in detail the
process of building the database and the pose estimation algorithmused on themobile
phone. We discuss the performance evaluation of the proposed algorithm as well as
its accuracy in terms of re-projection error of the 3D virtual objects onto the cell
phone image.

1.3.1 Building the Environment Database

The first step in the application is to acquire data in advance about the environment;
e.g., to go through a museum and create an image database that will be used sub-
sequently by AR applications in the building. This involves carrying a camera rig
through the space and preprocessing this data on a host computer. For each image, the
acquisition process stores the pose of the camera (its absolute rotation and position)
and its intrinsic parameters. Then the process extracts SURF features [2] in each of
the images and stores their positions in the image as well as their descriptors. The
goal of themobile application is to localize the usermetrically. Therefore, the process
uses a stereo camera for building the image database and to estimate the depth for
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every pixel of each captured image. As a result, the process stores the 3D position
of the features in each image. For a reason to be explained below, the 3D position of
the center of the images are stored as well.

Among all the detected SURF features, the system chooses the most robust ones;
i.e., those that are likely to be detected by mobile camera device and be close to the
new feature in terms of descriptor similarity. In order to do that, the system tracks
each feature over several frames and keeps only the ones that were successfully
tracked over all the frames. The criterion to keep a feature from one frame to the next
one is the following: the feature position must remain close to its previous position
and their descriptor distances are small enough. In practice, the system tracks the
SURF features, while the stereo camera remains still.

1.3.2 Computing a Rotation Matrix from Sensors

Once the database has been collected and processed, the indoor environment is ready
to support location-based AR on the mobile phone. As it is described later, having a
coarse estimate of the pose makes the image retrieval step easier and accelerates the
pose estimation algorithm. For this work, we used the N97 phone from Nokia. The
device has several sensors, such as GPS, an accelerometer, a magnetometer, and a
rotation sensor, that can help the application in estimating the pose.

As the first part of the pose estimation step, a “world” coordinate system is defined.
As a right-handed Cartesian coordinate system, the application used the system
(E, g, N), whereE is the unit vector representing east, g is the unit vector representing
the gravity force, and N is the unit vector representing north. In this section, we
describe how the system obtains the rotation matrix of the camera pose from sensor
measurements.

The accelerometer senses the second derivative of the position. Assuming the
measurements are noise free, it is thus theoretically feasible to obtain the position
by double integrating the accelerometer data. However, experiments showed that
the data produced by this sensor is too noisy to get a reliable estimation of the
position. Figure1.13 shows the results of an experiment comparing the ground truth
2D trajectory and the trajectory estimated with the accelerometer data, while the user
walked holding the phone upright. The graph shows a bird’s-eye view, with an equal
number of points in both curves. An accurate trajectory estimate would overlap the
rectangular ground truth; in contrast, the accelerometer-based position estimate was
wildly off.

Another solution to estimate the position is to use the GPS data which gives the
location of the user with a few meters of error. Depending on the application that can
be adequate. However, if the system is used indoors there is usually no GPS signal
available, so the position cannot be estimated with the cell phone’s GPS sensor.
Therefore, if there is no GPS signal available, the system uses the last computed
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Fig. 1.13 Accelerometer accuracy for trajectory estimation. The 2D position (top-down view) of
a walking user holding the cell phone is estimated using the accelerometer data (blue line) and
compared to ground truth (green line). The accelerator-only estimate is not useful

user location (i.e., the position computed for the previous frame). Moreover, the
application assumes that the user does not walk more than two meters between two
frames, so that the previous estimated position can be reused to estimate a new one.

The accelerometer sensor outputs three channels that represent the acceleration
along the three cell phone axes. Besides measuring acceleration due to the user, the
accelerometer measures the gravity acceleration. Thus if the user is not moving,
the three gravity components projected in the cell phone reference system can be
measured by the sensor. This enabled the system to obtain the tilt of the phone,
that is, two parameters out of three of the cell phone rotation matrix. The same
information can also be obtained from the rotation sensor. This sensor gives three
angles that represent the amount of rotation around the three cell phone axes. These
angles can be used to retrieve the three components of the gravity vector in the cell
phone reference frame. The advantage of using this rotation sensor rather than the
accelerometer is that the outputs of this sensor are not sensitive to user movements.
However, the sensor is less precise than the accelerometer because the angles are
quantized to 15◦.

The last parameter to compute is the amount of rotation around a vertical axis.
To fully determine the rotation, the system needs additional information from the
magnetometer. The 2Dmagnetometer (or digital compass) outputs the angle from the
projection of the North vector onto the cell phone plane and one cell phone axis. This
angle gives the system one parameter, which is enough to compute the full orientation
of the mobile device because the system already has two parameters given by the
accelerometer/rotation sensor. By expressing the components of all three cell phone
axes from the gravity components and the magnetometer angle, the application can
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obtain the full cell phone rotation matrix. In the subsequent paragraphs, we will
describe how the system estimates the camera pose leveraging this rotation matrix
computation.

1.3.3 Localizing the Mobile Device

Once the augmented reality application captures an image, it searches the database
for the most relevant stored image to fully estimate the device’s pose. The database
can contain an arbitrarily large number of images and searching among all the images
is not feasible, since the feature matching process is a time-expensive step on the
mobile device. Fortunately, most of the database images do not need to be searched
because the portion of the environment they represent is not even visible to the user.
We describe how the camera pose can be obtained from the mobile device’s sensors
and use it so that the system can discard images that are not likely to being seen by
the user; for example, images that represent a scene behind the user.

The system uses two criteria to select only the relevant images. First, the system
checks that the database image centers are visible by the mobile phone camera. This
is computed using the stored 3D points representing the database image centers. For
this criterion, the system assumes two premises: (1) the overlapping region (if there
is some) between two images (the database image and the mobile camera image)
is not large enough for estimating the pose accurately when a center is not inside
the cameras field of view; and (2) the user moves smoothly so that user’s location is
continuous. Due to the uncertainty on the estimated phone orientation from sensors,
the system extends the field of view to search for 3D points. The system increases
the number of images to be searched as a function of the uncertainty, i.e., the more
uncertainty the more images to search. Second, the system discards images whose
orientation differ significantly from the camera’s orientation to prevent bad image
matching configurations. Thanks to these assumptions, the image search is restricted
and the search process is more efficient.

For every database image, the system loads in memory its 3D center point and
the absolute pose of the stereo camera that captured the image; this information is
about 36 bytes for each image. The system loads feature descriptors on demand for
each image as well.

Among the images that have been selected to be searched, the system selects
the best matching candidate by using a classic nearest-neighbor feature matching
approach. The SURF features are detected in the cell phone image and the descriptors
are computed at each of these points. Then for every image of the database found
as a result of the search process aforementioned, the features from the cell phone
image are matched to the ones from the database image. For each feature of the cell
phone image, the nearest neighbor in the database image features set is searched.
Subsequently, the system keeps only good matches, that is, matches that have a low
enough distance between each other, and also the ones for which the ratio between
the second best distance and the best distance is high enough; note that this is the
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inverse of the Lowe’s ratio [34]. As an outcome of this method, the system obtains
sets of good matches between the cell phone image and each of the possible database
images. Subsequently, the system selects the image from the database that has the
highest number of good matches with the cell phone image, as it is used to compute
the pose.

Thenearest-neighbor (NN) searchof descriptors for featurematching is performed
using a KD-Tree structure. The system computes and stores a KD-Tree for every
image during the preprocessing step. The NN search is implemented using the best-
bin-first technique [3], a technique which is about 90% as accurate as linear search
but 100 times faster.

Once the selected database image has been matched with the cell phone image,
the system obtains a set of candidate matches, from which incorrect matches need
to be removed. The system estimates first a homography via the least median of
square algorithm [43], and keeps only points that roughly satisfy the planar criterion
checkedvia the estimated homography.The systemuses a high threshold so that depth
changes are allowed. Subsequently, a fundamental matrix is computed exploiting the
matches supporting the previously computed homography within a RANSAC [15]
scheme using the 8-point algorithm [23].

At this point the systemhas a set of putative correctmatches between the cell phone
and the database images, which enable the application to compute the pose. From
these matches, the system then computes a set of 2D-3D matches by associating
the 2D feature detected on the device with the 3D point corresponding to the 2D
feature on the database image. Then, given these 2D-3D matches, the system solves
for the translation and rotation of the device with respect to the world. To explain
this in detail, let ci be 2D point in the cell phone image, Xi be a 3D point in the
database coordinate system, and Kc be the calibration matrix of the cell phone.
The algorithm minimizes the reprojection error over the mobile device’s extrinsic
parameters (rotation matrix R and translation vector T ), i.e.,

minimize
R,T

∑
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2

, (1.6)

where α = (Kc(RXi + T))3 is the third vector entry. This measure is minimized as
the system’s goal is to align the virtual with the real world as accurately as possible.
To this end, the reprojection error (Eq.1.6) is in the form of a least-squares problem
which can be solved via the Levenberg–Marquardt [31] (LM) method. However, to
use the LM solver an initial solution must be computed first. We describe a method
to initialize this solver in the following paragraphs.

The initialization method assumes that the rotation matrix R̂ can be estimated via
sensor measurements. Then the method focuses on finding a good initial transla-
tion vector T . To this end, the method obtains the translation vector by solving the
following problem:
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minimize
T

∑

i

∥∥∥∥Kc(R̂Xi + T) − α

[
ci

1

]∥∥∥∥
2

2

. (1.7)

Equation (1.7) uses the estimated rotation matrix R̂ from the sensor measurements
and the problem ends up being a linear unconstrained least-squares problem, which
can be solved for T efficiently using linear algebra methods.

After solving the problem described in Eq. (1.6) over the rotation matrix R and a
translation vector T , which are the parameters describing how the camera is oriented
and positioned with respect to the scene, the system is now able to display AR
augmentations onto the device’s image.

1.3.4 Evaluation

To evaluate the approach, we built a database of an environment and used planar
objects in the scene for visual assessment. The evaluation consisted in estimating the
camera pose and drawing a quadrangle enclosing planar objects that were recognized
and depicted by the mobile device. In Fig. 1.14 we show an augmentation of planar
objects in the scene and confirm that minimizing the reprojection error finds a good
camera pose estimate that can be useful for an AR application. In Fig. 1.15a, we show
quadrangle augmentations of three different recognized planar objects in the scene.

It is possible to use the estimates in order to localize the user within an envi-
ronment; the translation vector T is the parameter that reveals the location of the
user with respect to the scene. A visualization of these localizations are shown in
Fig. 1.15b. From this experiment, the observed estimated user’s location error was
about 10–15cm.

The implementation was done in Symbian C++ and Open C/C++ on a Nokia
N97 cell phone. It is equipped with a single-core ARM 434MHz processor with

Fig. 1.14 Augmented images with (left) and without (right) the reprojection error minimization.
The green quadrangle is the augmented virtual information onto the real scene
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Fig. 1.15 Left Quadrangle augmentation of planar objects after estimating the mobile camera pose.
Right Localization of the user within an environment by using the camera pose estimates. Green
points are ground truth positions and red points are the estimated ones. One can notice a single
green point alone in the middle of the floor plan. The matching process failed here because the cell
phone image quality was inadequate. a Augmentation of 3 objects. b Estimated users’ position

128Mb of RAM. The most expensive step in this application is the SURF detection
an description algorithm, which takes more than 8s to run on a 640 × 480 image.
This is mostly due to the fact that Symbian only emulates the floating point precision
because it does not natively support it; the used SURF implementation uses floating
point numbers. This could be reduced by using a fixed-precision version of the SURF
algorithm (or using a mobile platform with floating point computation, which are
now common). For comparison, the algorithm runs at 10 fps for 640× 480 images on
a 1.73GHz computer. The second most expensive computation is feature matching,
which took about 1.1 s. The pose estimation took about one third of a second; the pose
refinement algorithms used double precision numbers, which increased execution
times.

1.3.5 Discussion and Future Work

The approach presented in this section was tailored for mobile phones that did not
have powerful computational resources. However, this has changed recently and
now we can find powerful mobile devices containing floating point units, multi-core
and fast processors, and more RAM. Fortunately, algorithms solving for the camera
pose from 2D to 3D correspondences, also known as the perspective-n-point (PnP)
problem, have become more efficient and mobile device friendly, e.g., [27, 30, 46].
As potential future directions, these PnP can be used to directly estimate camera
poses. Moreover, inertial measurements can be leveraged and used in combination
with the aforementioned algorithms to quickly and accurately compute a camera
pose estimate.
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1.4 Keypoint Correspondences and Robust Model
Estimation

In many augmented reality (AR) applications, the accuracy of the camera pose is
a critical component to ensure a high-quality augmentation. This is because it is
necessary to understand how the camera is positioned and oriented with respect to
the world in order to accurately augment virtual objects onto images; see for instance
the indoor localization application described in Sect. 1.3.

A common approach to estimate camera poses is by understanding the relative
motion of the cameras depicting a scene; this process is a crucial part in structure from
motion (SfM) [13]. To get an understanding of all the relative camera motions given
a collection of images, a set of keypoint correspondences between image pairs must
be computed first. Subsequently, different models, such as homographies, essential
matrices, and fundamental matrices, are computed from these correspondences and
are used later to extract valuable camera pose information.

In general, we wish to compute these models as quickly as possible. This is very
important in particular to mobile augmented reality applications because they need
to perform the augmentations as fast as possible. Nevertheless, several nuisances
make this estimation process nontrivial; for instance, a critical nuisance is the pres-
ence of incorrect keypoint correspondences between image pairs. These incorrect
correspondences, the “outliers,” have to be filtered in order to compute accurate
models.

In this section, we present two approaches that speed up the process of robustly
estimating models from contaminated keypoint correspondences with outliers. We
describe two different methods to estimate the correctness of the correspondences
leveraging information from the matching distances using the statistical theory of
extreme values [9, 12].

1.4.1 Computing Keypoint Correspondences

To compute keypoint correspondences between a reference image and a query image,
we first need to detect features or keypoints on both images. Subsequently, for every
keypoint a descriptor is computed, e.g., SIFT [34] or SURF [2]. These descriptors,
which are a representation for every detected keypoint, are used to establish the
keypoint correspondences following the nearest-neighbor (NN) rule: the jth query
keypoint is assigned to the i�th reference keypoint such that

i� = argmin
i

{‖qj − ri‖
}n

i=1 , (1.8)

where ri and qj are the reference and query descriptors, respectively. In other words,
the NN rule computes the least dissimilar reference keypoint given a query keypoint.
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1.4.2 Predicting Correctness for Keypoint Correspondences

Incorrect correspondences, or outliers, occur when the truth reference keypoint is
not the least dissimilar, or when the truth reference keypoint was not detected in
the query image. To detect these outliers produced by the NN rule (see Eq.1.8),
we proposed a predictor based on the statistical theory of extreme values [16]. The
predictor, which is called MRRayleigh, computes a correctness probability which
later is used to label the correspondences as correct or incorrect and to speed up a
robust estimation process.

The main premise of the predictor, which was inspired by the work of Scheirer et
al. [44], is that computing a statistical model for the minimum distances generated
from the incorrect correspondences is possible by exploiting the statistical theory of
extreme values. Thus, checking if a minimum distance used in the NN rule is likely
to be a sample generated from this model or not allows us to estimate the correctness
of the correspondence.

More formally, we consider the descriptor distance dij = ‖qj − ri‖ to be a con-
tinuous random variable following a distribution F. We know that some distances
correspond to correct correspondences and others to incorrect ones. Thus, there are
two underlying random processes generating distances for correct and incorrect cor-
respondences, which we call Fc and Fc̄, respectively. The NNmatching process then
takes a decision by observing several distances samples from these distributions.
Because we are matching 2D features corresponding to actual 3D points, there must
be a single correct answer and thus a single distance corresponding to a correct
match. However, we can also have the case that there is no correct answer at all
because a reference keypoint was not detected in the query image. Therefore, we can
expect that there is at most a distance corresponding to a correct match among all
the distances computed when using the NN matcher for a query qj. In other words,
we have at most a single sample drawn from Fc and many samples from Fc̄.

In order to compute a model that explains the behavior of the minimum distance
that theFc̄ process can generate,we use the distributions suggested from the statistical
theory of extreme values. In Fig. 1.16 we provide an illustration of the densities
involved for this processing. Next, we review themain theorem used in our approach.

Review of the Fisher–Tippet–Gnedenko Theorem

The Fisher–Tippet–Gnedenko Theorem, also known as the block maxima theorem,
provides a family of distributions to model the maximum or minimum values that a
random process can generate:

Theorem 1 Let Xi be a sequence of i.i.d. random variables and let

Mn = max {X1, . . . , Xn}
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(a) (b)

Fig. 1.16 Left The two underlying random processes’ densities involved in the generation of the
distances, correct match distances density (dashed curve) and incorrect match distances density
(continuous curve). Right The minimum distance that the random process for incorrect matches can
generate is a random variable, thus a density describing it can be obtained (continuous curve); the
underlying two random processes: correct (dashed curve) and incorrect (dotted curve) processes.
a Random processes. b The minimum model

denote the maximum. If there exist sequences of normalizing constants an > 0, bn∈R,
and a nondegenerate probability distribution function G, such that

P(a−1
n (Mn − bn) ≤ z) → G(z) as n → ∞ (1.9)

then G(z) is of the same type as one of the three extremal-type distributions: Gumbel,
Fréchet, and Weibull.

In other words, the block maxima theorem states that the rescaled sample maxi-
mum

(
a−1

n (Mn − bn)
)
converges in distribution to a variable having an extremal-type

distribution. We refer the reader to [9, 12] for the proof of this theorem. Although
Theorem1 considers maximum values, we can still use it to model sampled minima
using one of the three extremal-type distributions. To do so, we must first apply a
simple transformation: X ′ = −X ⇒ max

{
X ′} = −min {X}.

To determine exactly which of the three extremal-type distribution to use for mod-
eling the maxima/minima, we need the domain of attraction tests [9, 12]. However,
the generalized extreme value distribution (GEV),

G(z;μ, σ, ξ) =
{
exp

{
− [

1 + ξ
( z−μ

σ

)]− 1
ξ

}
if ξ 
= 0

exp
{− exp

[− z−μ

σ

]}
if ξ = 0

, (1.10)

subsumes the three extremal-type distributions. Thus, we can use the GEV to model
maxima or minima from a random process, avoiding the domain of attraction tests.
The GEV distribution has three parameters: location μ, scale σ , and shape ξ .
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MRRayleigh: The Predictor

To estimate the correctness of a correspondence, we calculate a confidence or belief
given their distances used in the NN matching process. To do so, we proposed the
MRRayleigh predictor [16], shown in Algorithm1.

Algorithm 1 MRRayleigh
Require: {d1:n}, k, and δ ∈ (0, 1)
Ensure: v ∈ {1, 0} and p
1: Dk ← Get the smallest k samples from {d1:n}
2: d� ← minDk
3: σ ← Fit Rayleigh distribution to Dk \ d�

4: p ← P(C = correct|d�, Dk) = 1 − RayleighCDF(d�; σ)

5: if p > δ then
6: Predict correspondence as correct: v = 1
7: else
8: Predict correspondence as incorrect: v = 0
9: end if

This predictor requires the distances {d1:n} obtained by comparing a given query
descriptor q with the set of reference descriptors {ri}n

i=1; k, a number of samples that
define the left tail ofFc̄; and a threshold δ, which is used to decide if a correspondence
is correct or incorrect. Thepredictor computes a correctness confidence or beliefp and
returns v = 1 when the correspondence is likely to be correct, and v = 0 otherwise.

The idea of the predictor is to compute a model for the minimum distance that
the process Fc̄ can generate using the distributions stated in Theorem1, and use it
to verify if the minimum sample used in the NN matcher is a sample that is likely
to be generated from the computed model. To compute this model, the algorithm
selects the k lowest distances, which are samples from the tail of Fc̄ (Step 1). Sub-
sequently, the algorithm fits a Rayleigh distribution, which is a special case of the
Weibull distribution, to the k samples discarding the minimum (Steps 2–3). Next, the
algorithm computes the confidence by evaluating the Rayleigh’s inverse cumulative
distribution function (cdf) at the minimum distance (Step 4). Finally, the algorithm
decides given this confidence and a threshold if the correspondence is likely to be
correct or incorrect (Steps 5–9).

InFig. 1.17,wepresent the prediction performance using twodifferent descriptors,
SIFT and SURF, for computing correspondences on the publicly available affine
covariant features dataset [36]. This dataset contains eight sub-datasets, each with
systematic variations of a single imaging condition: viewpoint, scale, image blur,
illumination, or jpeg compression. Every sub-dataset contains six images: a reference
image and five query images of the same scene varying a single imaging condition.
In addition, every sub-dataset provides five homographies that relate the reference
image with each of the query images in the sub-dataset. These homographies were
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(a) (b)

Fig. 1.17 ROCcurves for correctness correspondence prediction. The experiment comparesLowe’s
ratio [34] (LWR), Brown’s ratio [7] (BR), Meta-Recognition [44] (MRW), and MRRayleigh [16]
(MRR) on the Oxford dataset [36]. MRRayleigh outperforms the other predictors. Left Prediction
performance for SIFT matches. Right Prediction performance for SURF matches. a SIFT matches.
b SURF matches

used to compute the ground truth for correct correspondences for SIFT and SURF
matches. To obtain the receiver operating characteristic (ROC) curves, the threshold
δ was varied from 0 to 1, and k = 0.5%n, where n is the number of reference
features. We can see in Fig. 1.17 that the proposed MRRayleigh (MRR) outperforms
the other methods, Lowe’s ratio [34] (LWR), Brown’s ratio [7] (BR), and Meta-
Recognition [44] which uses Weibull distribution for prediction, regardless of the
descriptor.

1.4.3 Nonuniform Sampling Strategies for Robust Model
Estimation

Because the MRRayleigh algorithm provides a confidence on the correctness of
a NN matching decision, it is possible to create a nonuniform sampling strategy
for robustly estimating a model leveraging the computed confidences. The classical
method to estimate thesemodels robustly in the presence of outliers is RANSAC [15].
This method samples the data uniformly to generate hypotheses or models, which
later are checked against all the data to assess their quality. The hypothesis that
explains most of the data is the solution that this method returns. To speed up
the convergence of this method, nonuniform sampling strategies can be devised
(e.g., [11, 16, 18, 42]).
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SWIGS: A Nonuniform Sampling Strategy from MRRayleigh
Predictions

We describe two approaches leveraging the benefits of extreme value theory (EVT).
The first method, SWIGS [16], uses the confidence computed by MRRayleigh to
compute a nonuniform sampling strategy. The strategy is obtained by computing a
weight for every correspondence, i.e.,

wi = pi∑n
i=1 pi

, (1.11)

where pi is the confidence for the ith correspondence. These weights form a discrete
probability mass function over the correspondences, which is used as the nonuniform
sampling strategy.

To evaluate the performance of SWIGS (the nonuniform sampling strategy), we
presented an experiment onhomography estimation in a densematching scenario [16]
using the affine covariant features dataset [36]. The nonuniform sampling strategy
was combined with MLESAC [48], a variant of RANSAC whose purpose is to
calculate a hypothesis or model that maximizes a likelihood function instead of
maximizing the support of the model.

The experiment comparedSWIGSwith other nonuniform samplingmethods com-
bined with MLESAC: BEEM [22]; a Guided-Sampling [47] with a general distrib-
ution considering all the imaging conditions (GEN); a Guided-Sampling [47] that
considers only the distribution for a specific imaging condition (SPEC); BLOGS [6]
where ml = d−1

1 , and mlr = mlc = d−1
2 as our approach considers a different match-

ing procedure; and a classical random sampling (uniform distribution) for a baseline.
The results of this experiment are shown in Fig. 1.18, where the first two rows

show the results obtained for SIFT, and the rest for SURF matches. The percentage
of correct matches or correspondences are presented in the first and third rows, while
the iterations are in the second and fourth rows. The x-axis indicates the index of
the images contained in the considered sub-datasets (omitting the reference image,
which is index 1); an increasing index represents a larger variation with respect to the
reference image. Each column presents the results for a different sub-dataset: bikes,
boat, graf, trees and wall, from left to right.

We can observe that SWIGS tends to require in general fewer iterations than the
other methods (second and fourth rows) to find models that consider a comparable or
higher percentage of correct matches within the allowed number of iterations (first
and third row). We note that SWIGS, SPEC, and BEEM tend to find models that
consider approximately the same number of matches. The GEN method struggles
more to findmodels that consider a high percentage of correct matches in scenes with
repetitive textures, e.g., wall, and trees sub-datasets; repetitive textures can cause a
considerable overlap between correct and incorrect matching scores distributions.
BLOGS and a random sampling (Uniform) method perform similarly in finding
models that consider a high portion of the correct matches.
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Fig. 1.18 Performance evaluation across several sub-datasets (bikes, boat, graf, trees, wall from
left to right). Of all the 5000 repetitions of the experiment, the first and third rows present the
median of the percentage of correct matches found by the best computed models within the allowed
number of iterations, while the second and fourth rows present the median number of iterations at
which the best model was found. The first and second rows present the results for SIFT, and the
third and fourth for SURF

The experimental results presented in this section demonstrate that SWIGS can
perform similarly or better in finding models that consider a good portion of correct
matches in a dense matching scenario. The experiments also show that SWIGS tends
to require fewer iterations than the other guiding sampling methods without sacrific-
ing the number of correct matches found. Moreover, this confirms that MRRayleigh
confidences tend to identify good matches, and these confidences yield an efficient
and accurate nonuniform sampling strategy.

EVSAC: A Nonuniform Sampling Strategy for Low Inlier Ratio Cases

The second method that leverages extreme value theory (EVT), EVSAC [18], esti-
mates the correctness belief pi differently. The main premise of EVSAC is that
there is a single pair of distributions Fc and Fc̄ when matching two images. In
contrast, MRRayleigh assumes there exist a pair of distributions Fc and Fc̄ for
every query feature, i.e., for every NN search for the query feature. Given this new
assumption, the task is to find the parameters for Fc and Fc̄ as well as the mixture
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parameter ε to compute a model for the minimum distances used by the NNmatcher.
These minimum distances can be considered as samples drawn from a distribution
F = εFc + (1 − ε)Fc̄.

Algorithm 2 EVSAC

Require:
{
di,1:k

}n
i=1

Ensure: {wi}n
i=1 and {pi}n

i=1
1: v ← Predict

({
di,1:k

}n
i=1

)

2: (α, β) ← FitGamma
({

di,(1) such that vi = 1
})

3: (μ, σ, ξ) ← FitGEV
({

di,(2)
})

4: Calculate the empirical cdf using di,j�

5: Find ε by solving (1.12)
6: Calculate posterior weights pi using Eq. (1.13)
7: Calculate weights wi using Eq. (1.14)
8: Use the weights wi for generating hypotheses

EVSAC’s algorithm (shown in Algorithm2) computes these parameters as well
as the new nonuniform sampling strategy. EVSAC requires the k smallest distances{
di,1:k

}n

i=1 for every ith correspondence, and computes the weights wi as well as the
correctness confidence pi. The first step in this algorithm is to label each correspon-
dence as correct or incorrect (Step 1); for this step, EVSAC uses the MRRayleigh
predictor algorithm. Subsequently, the algorithm fits a gamma distribution to the dis-
tances of those correspondences labeled as correct, i.e., vi = 1, in step 2. Then, the
algorithm fits a generalized extreme value distribution (GEV) to the second smallest
distances in step 3.

EVSAC uses the GEV distribution to model the underlying distribution that the
minimum distances from the incorrect correspondences follow; this is because now
we have several minimum distances sampled from a single distribution Fc̄. This
implies that the mixture model explaining the minimum distances in the matching
process becomes F = εFc + (1 − ε)Gc̄, where Gc̄ is the GEV distribution. Theo-
rem1 applies only for modeling the minimum distances sampled from Fc̄ because
we have several samples from this distribution, i.e., we have more incorrect corre-
spondences assuming that there is at most a single correct correspondence. On the
other hand, this Theorem does not apply to Fc because we sample a single sample
at most when we match a query feature; recall that Theorem1 requires a sufficiently
large number of samples taken from the underlying distribution.

After estimating the parameters of the distributions, EVSACestimates themixture
model parameter ε in steps 4 and 5. To do so, EVSACsolves the following constrained
least-squares problem:

minimize
y

1

2
‖Ay − b‖22

subject to 1 Ty = 1

0 � y � u,

(1.12)
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where the symbol � indicates entrywise comparison, and

A =
⎡

⎢⎣
Fc(d1) Gc̄(d1)

...
...

Fc(dn) Gc̄(dn)

⎤

⎥⎦, b =
⎡

⎢⎣
F(d1)

...

F(dn)

⎤

⎥⎦, y =
[
ε

ε′

]
, and u =

[
τ

1

]
.

The matrix A ∈ R
n×2 is formed by evaluating all the n minimum distances on the

cumulative distributions functions. The vector b ∈ R
n is formed by evaluating the

empirical cumulative distribution function on all the minimum distances. EVSAC
imposes the constraint ε ≤ τ , as this improves the quality of the estimation of the
mixing parameter. τ is computed as the ratio of the number of correspondences
labeled as correct and n.

EVSAC computes in step 6 the correctness believes pi = P(C = correct|d) for
every correspondence using the Bayes’ rule:

P(C = correct|d) = εfc(d)

εfc(d) + (1 − ε)gc̄(d)
, (1.13)

where C is a discrete random variable indicating correctness, d is a minimum dis-
tance, and fc and gc̄ are the probability density functions for Fc and Gc̄, respectively.
Subsequently, EVSACcalculates theweightswi for every correspondence as follows:

wi = pivi∑n
i=1 pivi

, (1.14)

where vi is the binary value returned by the predictor in step 1. These weights wi

again describe a probability mass function over the correspondences which is used
as the nonuniform sampling strategy.

We now present an evaluation of the performance of EVSAC to find the para-
meters of our probabilistic framework: ε, and the distribution parameters using the
MRRayleigh predictor [16] only as the predictor in step 1. We compared the esti-
mated parameters against the parameters obtained assuming that we had a perfect
correct match detector.

We first examine the accuracy of the estimation of ε in Table1.5. The estimate of
ε using the upper bound in vector u used in (1.12), ε̂, tends to be closer to the real
value, while the estimate without the upper bound (ε̃) can overshoot sometimes.

Next,we examine the quality of the estimation of the different probability densities
and the posterior used to compute the weights wi. In the first column of Fig. 1.19,
we can observe that EVSAC (continuous curves) is able to approximate with a good
accuracy themixture of densities obtainedwith the ground truth data (dashed curves).
In the second column, we present the posterior probabilities computed from the
estimated model (continuous curves) and the posterior obtained from the ground
truth (dashed curves). This means that EVSAC estimates an accurate posterior that
essentially maximizes the information in the matching distances when computing a
confidence value.
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Table 1.5 Estimation of ε comparison: ε̂ is the estimation with τ set as an upper bound (see
Eq.1.12), and ε̃ is without

Image pairs ε ε̂ ε̃

Oxford-Bark (1–4 SURF) 0.0131 0.0141 0.1870

Oxford-Boat (1–6 SURF) 0.0257 0.0270 0.1429

Oxford-Bark (1–3 SIFT) 0.0479 0.0438 0.1291

Oxford-Trees (1–6 SIFT) 0.1028 0.1119 0.2467

Strecha-Brussel (2–3 SIFT) 0.1855 0.2067 0.2263

Strecha-Brussel (1–2 SURF) 0.2964 0.3115 0.3632

The upper bounded estimate tends to provide more accurate estimations

(a) (b) (c) (d)

Fig. 1.19 Comparison of themixture of densities and posterior probability computed using EVSAC
against the ground truth for a pair of images with SIFT matches (a–b) and SURF matches (c–d).
In both experiments the matching score metric is the Euclidean distance. The density estimations
f̂c and ĝc̄ are close to the densities fc and gc̄ computed with an oracle. In the second column, we
compare the estimated posterior probability p̂ with the posterior p computed with the oracle

To evaluate the nonuniform sampling strategy that EVSAC computes, a homogra-
phy experiment is presented. EVSAC is compared against the following nonuniform
sampling algorithms: Guided-MLESAC [47], BEEM’s prior estimation step [22],
BLOGS’ global search mechanism [6], and PROSAC [11]. All these sampling algo-
rithmswere included in a classical hypothesis-test loop,where the supportwas always
being maximized, and a solution was considered “good” if it satisfied the maximality
constraint, i.e., the constraint that a good hypothesis was generated within a certain
number of iterations (see [11] for more details on this constraint). The homography
was computed using the OpenCV findHomography() function without the RANSAC
option. An inlier (or correct correspondence) was considered if the reprojection error
of the homography was less than 5 pixels. The algorithms were allowed to run until
a maximum number of iterations (hypothesis test loops) calculated adaptively is
reached, and the algorithm convergedwhen 90%of the inliers (correctmatches)were
detected. The found hypothesis was refined afterwards using a nonlinear method.

The results of this experiment are summarized in Table1.6. The affine covariant
features dataset [36] used for the experiment presented very challenging scenarios,
where the inlier ratios ε ranged from 1–10% for SIFT and SURF matches. The
experiments were run 300 times. We present the average number of inliers detected
(I); the average RMS reprojection error (E) in pixels w.r.t.to the error achieved by
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Table 1.6 Homography estimation results for SIFT and SURF matches

The results are sorted by inlier ratio (ε) in ascending order. EVSAC performed well when the inlier
ratio is low, and performed equivalently when the inlier ratio increased
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the ground truth data; the average number of models/hypotheses generated (M); the
average time in milliseconds (T); the average Frobenius norm of the error between
estimated homography and the computed homography with the ground truth (F); and
the percentage of “good” runs where each algorithm converged (R). The results are
sorted in ascending order by the inlier ratio. We can observe that EVSAC tends to
perform overall faster when the inlier ratio is very low (see rows A, B, C, D, and E),
and performs equivalent or faster than BEEM and BLOGS as soon as the inlier ratio
increased (see rows F, G, H ). PROSAC and GMLESAC struggled to converge fast
when the inlier ratio was very low (ε < 11%).

1.4.4 Discussion and Future Work

Wehave presented two different nonuniform sampling strategies that can help in esti-
matingmodels, such as homographies, essential matrices, and fundamental matrices,
robustly in the presence of outliers. The two methods leverage the correctness con-
fidences that the statistical theory of extreme values allows us to compute. These
nonuniform sampling methods can help in speeding up various processes, such as
structure-from-motion and feature-based tracking, for use in mobile applications.
A natural extension of these nonuniform sampling algorithms is to modify them so
that they can work for estimations of camera poses from 2D to 3D correspondences,
which is an important step for augmented reality applications as shown in Sect. 1.3.

1.5 Summary

In this chapter, we have provided insight into some of the problems, constraints,
and opportunities that arise in the domain of computer vision for mobile augmented
reality applications. Mobile AR requires robust, real-time computer vision methods
for tracking, modeling, localization, and other tasks, executing on a mobile device
with a foreground process that may require significant resources, and with additional
sensors that may aid the visual processing. As these devices become even more
ubiquitous, powerful, and integrated into people’s daily lives, the opportunities for
mobile computer vision will continue to grow rapidly.

TheTranslatAR sign translation systemdescribed in Sect. 1.2 provides an example
of a full application using computer vision and augmented reality in amobile environ-
ment. The indoor localization capability of Sect. 1.3 gives insight into a vision-based
resource that may be used by AR or other kinds of mobile applications that require
spatial information (i.e., camera pose). Advances in fast, robust keypoint correspon-
dences and model estimation (Sect. 1.4) indicate how efficient low-level choices,
informed by theory, can provide tracking and modeling that is well suited to the
mobile domain with its limited resources.
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With recent advances in all areas of mobile AR, there is now great enthusiasm for
real-world applications on mobile devices—an increasingly important domain for
the computer vision field.
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Chapter 2
High-Quality Video Denoising
for Motion-Based Exposure Control

Li Zhang, Travis Portz and Hongrui Jiang

Abstract New digital cameras, such as Canon SD1100 and Nikon COOLPIX
S8100, have an autoexposure (AE) function that is based on motion estimation.
The motion estimation helps to set short exposure and high ISO for frames with fast
motion, thereby minimizing most motion blur in recorded videos. This AE function
largely turns video enhancement into a denoising problem. This paper studies the
problem of how to achieve high-quality video denoising in the context of motion-
based exposure control. Unlike previous denoising works which either avoid using
motion estimation, such as BM3D Dabov et al. TIP 16:2007, [1], or assume reliable
motion estimation as input, such as Liu, ECCV, 2010, [2], our method evaluates the
reliability of flow at each pixel and uses the “lifespan” of reliable flow trajectories
as a weight to integrate spatial denoising and temporal denoising. This weighted
combination scheme makes our method robust to optical flow failure over regions
with repetitive texture or uniform color and combines the advantages of both spatial
and temporal denoising. Our method also exploits high-quality frames in a sequence
to effectively enhance noisier frames. In experiments using both synthetic and real
videos, our method outperforms the state-of-the art Dabov et al. TIP 16:2007, Liu,
ECCV, 2010, [1, 2].
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2.1 Introduction

In most automated vision systems and consumer cameras, it is desirable to
automatically determine an appropriate exposure time based on the scene; this func-
tion is known as autoexposure (AE). Traditionally, AE is mainly determined by
environment brightness: bright scenes lead to short exposure time. This control
scheme is simple to implement and has been widely adopted. However, when the
brightness level of a scene remains constant, this scheme does not consider camera
motion or subject motion and therefore often leads to motion blur.

As more computing power is put in digital cameras, new cameras, such as Canon
SD1100 and Nikon COOLPIX S8100, have an AE function that is based on motion
estimation. In a nutshell, the apparent motion estimated from two consecutive frames
is used to guide the exposure time and ISO setting for the next frame, so that blur is
minimized. In the captured video, most frames do not have blur, but those with short
exposure time will be noisy due to the high ISO setting. This AE function largely
turns video enhancement into a denoising problem.

This chapter presents a research work on the problem of how to achieve high-
quality video denoising in the context of motion-based exposure control. This prob-
lem is pertinent as motion deblurring in general is a challenging problem; achieving
high-quality denoising in this context may greatly reduce, although not eliminate,
the need of motion deblurring for video enhancement. This problem is promising as
Fig. 2.1 shows; it is also difficult in its own ways.

• Within a sequence captured using motion-based AE, there are often high-quality
frames, which correspond to the frames with little apparent motion and captured
with relatively long exposure and low ISO.1 Ideally, we would want to use the
high-quality frames to better enhance the noisier frames; at the same time, we
would not want the noisy frames to compromise the high-quality frames during
the denoising process.

• Noisy frames are captured with high ISO and short exposure because of fast motion.
To exploit high-quality frames to enhance noisy frames, we would need robust
motion estimation that can handle large displacement. In our experiments, we com-
monly found displacement of 70 or more, which confound even top-performing
optical flow methods that have been adopted in state-of-the-art video denoising.

In this chapter, we present a high-quality video denoising method in the context
of motion-based exposure control, by combining spatial denoising and temporal
denoising in a novel way. Our combination is based on an intuitive observation.
Specifically, spatial methods like BM3D [1] perform well if the image has abundant
locally similar structure. Its performance starts to degrade when the local structure
is unique. Motion-compensated filtering on the other hand works best when local
patches are unique, because the optical flow can be reliably estimated. Therefore,

1For example, although it is hard to hold a camera perfectly still for a long period, it is also rare
that our hands would continuously shake a camera; shaky intervals are always intermingled with
steady moments.
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Fig. 2.1 The benefit of denoising videos captured with motion-based exposure control. Top: A
panoramic image from which we generate a synthetic video whose viewport (red box) moves along
the red zigzag curve with varying speed. Bottom: If a constant short exposure is applied to each
frame to minimize blur, the captured video has constant low PSNR (dashed red curve), and a state-
of-the-art video denoising [2] improves its PSNR to about 34dB (dashed black curve). If exposure
time is set adaptively based on motion estimation, the input video has higher PSNR (solid red
curve), and our denoising algorithm produces a much higher quality video with a total PSNR of
39 dB (solid black curve). Best viewed electronically in color

our idea is to detect the length of reliable flow trajectories for each pixel and use
the length as a weight to combine the results of BM3D and motion-compensated
filtering.

Unlike previous denoising works which either avoid using motion estimation, such
as BM3D [1], or assume reliable motion estimation as input, such as [2], our method
selectively operates in whichever regime works best. As a result, our algorithm
performs better than both VBM3D [3] and the latest video denoising algorithm [2].

Our flow reliability evaluation is based on a forward—backward consistency
check, which is a widely used technique in stereo and motion estimation. However,
this reliability measure of motion estimation has not been exploited for improving
video denoising performance in the literature, to the best of our knowledge.
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2.2 Related Work

Our work is most related to image and video denoising and enhancement.

Denoising

Image denoising has been studied for several decades. A complete review is beyond
the scope of this paper. We refer the readers to the previous work sections in [1, 4]
for excellent reviews of the literature. An incomplete list of recent works includes [1,
4–9]. In particular, the methods that are based on local self-similarity, such as nonlocal
means [4] and BM3D [1], are particularly notable because of their simple ideas and
impressive results. The nonlocal means and BM3D methods do not perform well
when local image patterns are unique.

Video denoising [2, 3, 10, 11] can address this limitation as the temporal dimen-
sion provides additional redundant data. Liu and Freeman [2] showed that the
spatial regularization in the optical flow can be used to ensure temporal coherence in
removing structured noise. Multi-view denoising [12–14] is another way of address-
ing this limitation, which exploits noisy measurements from multiple viewpoints to
reconstruct a clean image. Zhang et al. [14] observed that 3D depth can be used
as a constraint to find more reliable matches to further improve the performance of
multi-view image denoising.

Our work is most related to [2], in which the authors integrate robust optical flow
into a nonlocal means framework; their work assumes reliable flow as input. Our
work does not assume the flow is reliable. Rather, we evaluate the flow trajectory
reliability for each pixel and use the reliability measure as a weight to combine spatial
denoising and temporal denoising results.

Video Enhancement using Stills

Our work is also related to works that use high-quality digital photos to enhance low-
resolution videos. For example, Bhat et al. [15] and Schubert et al. [16] proposed an
approach to enhance low-resolution videos of a static scene using multi-view stereo to
compute correspondences between low-resolution video and high-resolution images;
Gupta et al. [17] use optical flow to compute correspondences and can therefore
handle dynamic scenes as well. Watanabe et al. [18] propagate high-frequency infor-
mation in high-resolution frames to low-resolution frames using motion compen-
sation. Nagahara et al. [19] take a similar approach but use morphing based on
feature matching instead of motion compensation. In our work, the frame resolution
is the same; what differs is the noise level. We do not assume reliable flow as input;
instead, we use the lifespan of reliable flow trajectory to combine spatial denoising
and temporal denoising.
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2.3 Denoising Algorithm

Our denoising algorithm is based on the following intuition. If an image region has
unique texture patterns, we would prefer to use temporal denoising, because optical
flow can be estimated reliably and spatial denoising usually does not work well. On
the other hand, if an image region has repetitive texture or uniform color, we would
prefer to use spatial denoising because optical flow is unreliable and self-similarity
makes spatial denoising work effectively. We do not judge the flow reliability using a
binary decision. Instead, we softly combine the spatial and temporal denoising result
using our reliability measure as weight. Next we explain our algorithm in detail.

Spatial Denoising

We use the single-image denoising method CBM3D [1] to perform our spatial
denoising:

ÎS(z) = CBM3D(I, z), (2.1)

where I is the input image and z is pixel location. We apply this single denoising
method to each frame using the corresponding frame noise variance as parameter. We
do not use CVBM3D, the video version of CBM3D, because CVMB3D only handles
constant noise variance across the whole video volume, which would compromise the
high-quality frames in the captured video. We choose CBM3D due to its performance,
efficiency, and public availability; other spatial denoising methods, such as nonlocal
means [4], can also be used instead.

Temporal Denoising Along Reliable Flow

Let It be the frame we are currently denoising. We compute the optical flow over
a temporal window of ±H frames, where we use H = 5 as in [2]. The flow may
not be reliable for every pixel and every frame in the temporal window. We use the
forward–backward consistency as a measure of flow reliability. If the flow vector
from a pixel in frame i to a pixel in frame j is denoted vi j , then the flow consistency
error is ‖vi j + v j i‖2. We consider the flow to be consistent if the error is below some
threshold (1 and 3 are used in our synthetic and real experiments, respectively).

For each pixel in frame It , we determine the number of frames of consistent
forward flow up to at most frame t + H , and backward flow down to at most t − H .
If the per pixel flow is not consistent at frame t + 1, we do not consider frame t + 2 for
that pixel. The number of consistent frames in the forward and backward directions
are denoted H f and Hb, respectively. H f and Hb are functions of the pixel under
consideration; however, we omit the function notation for simplicity.

Once we have determined the “lifespan” [t − Hb, t + H f ] of a reliable flow, the
temporal pixel estimate is computed by filtering along the optical flow:

ÎT (z) = 1

Z

t+H f∑

i=t−Hb

W (zi ) · Ii (zi ), (2.2)
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where Z is a normalization factor and W (zi ) is given by:

W (zi ) = (
β2

i + β2
t

)− 3
2 exp

{
−‖P(z) − P(zi )‖2

β2
i + β2

t

}
, (2.3)

where βi = gi · β0 with gi being the gain used to capture frame i and β0 being
proportional to the base noise level of the camera. In Eq. (2.3), we note

• The first term assigns larger weight to pixels from cleaner frames. This weight-
ing scheme facilitates using the high-quality frames to better enhance the noisier
frames; at the same time, it discourages using the noisy frames to compromise the
high-quality frames during the denoising process.

• The exponential term assigns smaller weight to pixels that came from optical flows
with poorer block matches. The distance between two patches is computed using
a weighted SSD as in [2].

In addition to having the exponential term based on the patch distance, we use a
threshold,

τt = m · βt + τ0, (2.4)

to reject pixels with large patch distances. The linear form and parameters for τt were
determined empirically by maximizing the PSNR of a simulated video sequence.
With pixel intensities in the range [0,1], we used m = 0.40 and τ0 = −5.3 · 10−4.

Combining Spatial and Temporal Denoising

To combine the spatial and temporal denoising results, we linearly interpolate using
the number of consecutive frames of flow consistency Hb + H f as the weight:

Î (z) = H f + Hb

2H
ÎT (z) +

(
1 − H f + Hb

2H

)
ÎS(z). (2.5)

When a pixel does not have any consistent flows, we rely purely on the CBM3D
estimate. When a pixel has perfectly consistent flows (within the temporal window),
we rely purely on the temporal estimate.

2.3.1 Efficient Flow for Large Motion

Now we describe how we compute optical flow for denoising in our experiments.
Optical flow is not our technical contribution; we describe it so that our paper is
reproducible.

In real videos, we found that flow vectors can easily be 70 pixels or more. This large
motion easily confounds many top-performing flow algorithms evaluated in [20],
which typically handle flow magnitudes of 10 or fewer pixels. For example, we tried
the flow algorithm [21] used in [2] as input for video denoising. The algorithm does
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Frame 1 Frame 2 Frame 3
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mhtiroglaruO]12[uiL

Fig. 2.2 Optical flow results for three consecutive frames in the mountain scene. Top: The dis-
placement between frames 1 and 2 is large, whereas the displacement between frames 2 and 3 is
small. Middle: Our optical flow outperforms the optical flow in [21] for large displacements. The
left to right motion causes the pixels on the left edge of frame 1 to be invisible in frame 2, which is
why our flow is inaccurate on that edge. Bottom: The optical flow in [21] outperforms our method
for small displacements by producing a smoother flow. Best viewed electronically in color
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not produce correct flow for a typical pair of frames with large motion as shown
in Fig. 2.2. We believe this is because most flow algorithms use derivative-based
continuous optimization which is easily trapped in local minima, even if an image
pyramid is used. To handle large motions in our video, we fall back to a traditional
hierarchical block matching technique to compute our optical flow.

Suppose we are computing the optical flow from frame i to j . We start by con-
structing image pyramids of downsampled versions of Ii and I j with L levels, where
the coarsest level has been downsample by a factor of 2L−1. We then compute a flow
field for the coarsest level by performing block matching between the two downsam-
pled images using search windows of size M × M . The choice of M determines the
size of motion the algorithm can handle. Performing the primary search at the coars-
est level effectively reduces the size of the search space necessary to find matches
for large motions. We use L = 3 and M = 61, allowing us to handle displacements
of up to 120 pixels between consecutive frames.

Next, we upsample the flow field by a factor of two and refine it by searching
within the next coarsest level of the pyramid. If v was a flow vector in the coarsest
level, then 2v is the flow vector in the next level. This upsampling and refinement
step is repeated until we have a flow field that is the same size as our original images.
The refinement step is necessary to obtain better resolution and accuracy in our flow
field than is possible using only the coarsest level. However, the search window used
during refinement can be much smaller than the window used at the coarsest level;
we use a 7 × 7 search window for refinement.

We first compute flow between neighboring frames, then concatenate the flow
to initialize motion estimation between the reference frame t to any other frame i
between [t − H, t + H ], and finally refine the initialization by block matching in the
finest resolution only. We found this simple method works quite well for handling
large motion; an example of the flow result is shown in Fig. 2.2.

2.4 Experimental Results

Our results are best viewed electronically in color. More results, including videos,
are available in the supplementary material.

2.4.1 Synthetic Video

We first test our system on three different synthetic video sequences. Each sequence
is generated by moving a 512 × 512 window around a large panoramic image as
shown in Fig. 2.3. The motion of the windows have speeds ranging from 0 to 750
pixels per second and undergo two changes of direction. Motion-based exposure
control is simulated on the sequences to determine the optimal exposure time T for
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Mountain sceneCity scene

Fig. 2.3 Our synthetic video sequences are generated from panoramic images. A 512 × 512 pixel
window follows the trajectory shown in red. The motion in each sequence has variable speed and
undergoes multiple direction changes. Best viewed electronically in color

each frame. If d is the displacement between the previous two frames and f is the
frame rate, then

T = 1

d · f
. (2.6)

This results in one pixel of motion during the camera’s exposure time. The actual
exposure time is clamped between 1 ms and 1/ f , where we use f = 7.5 frames per
second. Once the exposure time has been set, we set the gain to:

g = Tmax

T
(2.7)

such that the video sequence maintains a constant brightness level. We then add white
Gaussian noise to the current frame with σ = g · σ0 where σ0 is chosen such that
σ = 25 (out of 255) for the shortest exposure time. We also generate videos with
constant short and long exposure times for comparison.

We run the input sequences through CBM3D and Liu and Freeman [2] using
the known σ parameters for each frame. For our algorithm, we use β0 = 0.1 in
Eq. (2.3) (with pixel intensities in the range [0,1]) and specify the gain values for the
individual frames. The value for β0 was found empirically to provide full denoising
power without sacrificing texture preservation.

The per frame PSNRs can be seen in Fig. 2.4 for the city and mountain sequences
and in Fig. 2.1 for the station sequence. Our algorithm provides higher PSNR than the
state-of-the-art algorithms for all of the frames containing significant noise levels.
Our results do have lower PSNR for frames that were very clean to begin with.
However, the difference is imperceptible with our results having a mean square error
of only about 10−3 of an intensity level in the cleaner frames.

The improvements in our results over CBM3D are primarily made in the regions
with unique texture and structure, as can be seen in Figs. 2.5 and 2.6. In these regions,
the optical flow is reliable, thus temporal denoising is effective. The weights between
the temporal and spatial estimates are shown in Fig. 2.7. In smooth regions where
our optical flow is unreliable, our denoising algorithm falls back on CBM3D which
performs well on smooth regions.
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Fig. 2.4 PSNR results for the synthetic video sequences. In frames with significant noise levels,
our algorithm outperforms other state-of-the-art denoising algorithms. Best viewed electronically
in color. a City scene. b Mountain scene
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(a) (b) (c)

(d) (e) (f)
Constant exposure time Noisy input CBM3D

Liu and Freeman Our algorithm Ground truth

Fig. 2.5 A close-up of results from the city sequence. The motion-based AE provides a sharp
but noisy image, shown in (b), as opposed to the blurry image captured with a constant exposure
time, shown in (a). Our denoising algorithm outperforms CBM3D [1] (applied to each individual
frame using corresponding frame noise variance) and Liu and Freeman [2] (using the known noise
variance for each individual frame). More detail is preserved in the tree while the building is still
properly smoothed. Best viewed electronically in color

2.4.2 Real Video

To test our system on a real video sequence, we first needed motion-based exposure
control. We implemented the motion estimation portion of the exposure control
algorithm using a standard hierarchical image registration technique. The remainder
of the exposure control algorithm works just as described for the synthetic video.
Since the image registration only tracks global translational motion, we designed
our real experiment to have primarily translational motion. We set up two cameras
facing out the side window of an automobile. We used one camera, a Canon EOS 7D,
to capture a video sequence with a constant exposure time of 1/30 s and the other
camera, a Point Grey Grasshopper, to capture a video sequence with motion-based
exposure control. As shown in Fig. 2.8, our algorithm preserves detail better than [2],
because optical flow is hard to be estimated reliably in the presence of large motion,
multiple depth layers, and thin structure. Our method measures flow reliability and
is robust to inaccurate flow input.

More results are available in the supplementary material.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.6 A close-up of results from the mountain sequence. CBM3D [1] loses some detail in the
yellow flowers, while [2] over-smooths the grass. Our algorithm performs better at denoising both
the flowers and the grass. Best viewed electronically in color. a Constant exposure time. b Noisy
input. c CBM3D. d Liu and Freeman. e Our algorithm. f Ground truth

Denoised frame Weight map Denoised frame Weight map

Fig. 2.7 Two weight maps from the synthetic sequences. Lighter colors denote pixels that rely more
on temporal denoising than spatial denoising. The darker regions in the weight maps correspond to
smooth regions of the image where optical flow trajectory is less reliable. The horizontal motion in
the video sequences causes the sides of the image to be invisible in neighboring frames, which is
why we see the vertical bands of constant weight. Best viewed electronically in color
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(a) (b) (c)

(d) (e) (f)

Fig. 2.8 Results from the driving sequence. Our results are comparable to CBM3D [1], which
preserves the detail of the tree reasonably well. The tree branches and some of the other fine details
were over-smoothed by Liu and Freeman [2] due to inaccurate flow in the presence of large motion,
multiple depth layers, and thin structure. Best viewed electronically in color. a Constant exposure
time. b Noisy input. c CBM3D. d Liu and Freeman. e Our algorithm. f Full denoised frame

2.5 Conclusion

In this chapter, we have proposed a high-quality video denoising algorithm in the
context of motion-based exposure control. Unlike previous denoising works which
either avoid using motion estimation, such as BM3D [1], or assume reliable motion
estimation as input, such as [2], our method uses the “lifespan” of reliable flow
trajectory as a weight to integrate spatial denoising and temporal denoising. This
weighted combination scheme (1) makes our method robust to optical flow failures
over regions with repetitive texture or uniform color, (2) combines the advantages of
both spatial and temporal denoising, and (3) outperform the state-of-the art. There
are several avenues for future research.

First, we would like to investigate better weighting schemes. In the current formu-
lation, when the lifespan of a reliable flow is zero, the algorithm resorts to CBM3D;
in this case, temporal coherence is not enforced. This differs from [2], which uses
smooth optical flow to obtain temporal consistency in the presence of structural noise.
However, as Figs. 2.5, 2.6, and 2.8 show, this temporal consistency is obtained at the
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expense of sacrificing texture details. Therefore our method is suited for higher qual-
ity cameras with little compression artifact, while [2] is more suited for low-quality
cameras with strong structured noise and compression artifacts. Furthermore, the
lack of temporal consistency in our results is not as noticeable since the motion-
based exposure control only produces noisy frames when there is large motion.
Nevertheless, a better weighting scheme would address this limitation.

Second, although motion-based AE reduces motion blur significantly, it does not
completely eliminate motion blur because exposure is set based on the motion of
previous frames; there is always a delay. It is desirable to use the noisy frames and/or
high-quality frames to enhance motion blur in a video captured with motion-based
AE.

Third, it will be useful to investigate a real-time implementation of this approach so
that denoising can be executed before compression. Our approach has the potential
to be implemented in real time as all components are block based; no complex
optimization, such as conjugate gradient, is involved in the optical flow estimation.
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Chapter 3
Panoramic Video Construction
from Mobile Video Streams

Motaz El Saban and Ayman Kaheel

Abstract Constructing a panoramic video out of multiple incoming live mobile
video streams is a challenging problem with many applications in consumer, edu-
cation, and security domains. This problem involves multiple users live streaming
the same scene from different points of view, using their mobile phones, with the
objective of constructing a panoramic video of the scene. The main challenge in this
problem is the lack of coordination between the streaming users, resulting in too
much, too little, or no overlap between incoming streams. To add to the challenge,
the streaming users are generally free to move, which means that the amounts of
overlap between the different streams are dynamically changing. In this chapter,
we propose a method for automatically coordinating between streaming users, such
that the quality of the resulting panoramic video is enhanced. The method works by
analyzing incoming video streams, and automatically providing active feedback to
the streaming users. We investigate different methods for generating and presenting
the active feedback to the streaming users resulting in an improved panoramic video
output compared to the case where no feedback is utilized.

3.1 Introduction

Today, smartphones are more ubiquitous than ever. The overwhelming majority of
these phones have video capturing, network connection, and different sensors capa-
bilities. The rapid increase in the number of mobile phones and their capabilities has
led to the emergence of many new scenarios and applications. One very common
consumer application is live video streaming, which leads to the continuous rise of
online services addressing this application [1, 2]. These online services allow users
to capture and stream live video to a website where other users/friends can watch
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the video at the same time it is being captured. Considerable research work has been
carried out to build services on top of the mobile live video streaming; such as stitch-
ing in real-time incoming streams [3] and real-time augmentation in the viewfinder
to automatically equip the user with useful information on the scene content while
shooting [4, 5]. In this chapter, we focus on panoramic video construction, the goal
is to produce a panoramic video stream out of the multiple video streams captured
at the same location using mobile devices. The promise of such a stitching service is
hindered by the fact that users, without coordination among themselves, can produce
streams that are either unstitchable or stitchablewith large amount of overlap between
the captured video streams; hence, the benefit out of combining multiple streams is
diminished. The underlying assumption here is that every user is capturing the scene
with little information about other users viewing volumes. In this chapter, we intro-
duce the concept of Active Feedback which utilizes network connection capabilities
of mobile phones for providing hinting information for the capturing users. Themain
objective of the feedback information is to maximize the probability of a success-
ful panoramic video result. The intention here is to provide a per-user feedback to
guide that particular user. Toward that end, the system receives the incoming user
stream along with other streams, analyzes them, generates the feedback, and send the
feedback to the streaming user in real-time to help him improve the live generated
video. It is worth noting here that for the feedback to be useful, there is a real-time
constraint on analyzing the incoming streams. To the best of our knowledge, the
proposed approach for improving panoramic video quality through user interaction
has not been attempted before in the literature. The key technical contributions in
this work are:

• Constructing a real-time feedback system for enhancing panoramic video con-
struction quality.

• Investigating different methods for triggering, computing, and presenting the feed-
back

• Conducting a user study to evaluate different feedback aspects and show the gains
achieved by utilizing interaction

The rest of this chapter is organized as follows. Section3.2 reviews related work.
Section3.3 presents an overview of the proposed active feedback stitching system.
Section3.4 describes details of the proposed implementation of the stitching and
active feedback methods. Section3.5 describes the experimental setup, the datasets
used for evaluation and the results. Finally, Sect. 3.6 draws some conclusions and
proposes directions for future work.

3.2 Related Work

We review related work relevant to this chapter along two main areas: (a) video
stitching and (b) providing feedback for users while shooting videos. In the area of
video stitching, a number of research publications have addressed the problem of



3 Panoramic Video Construction … 63

creating a panoramic image out of a single video [6–8]. The main idea is to stitch
together video frames froma single video feed to generate onewide panoramic image.
In this chapter, we deal with creating a panoramic video out of multiple videos such
as in [9, 10]. Inmost of the previouswork on video stitching, the techniques are based
on image stitching which is a very well researched area [11, 12]. However, there are
main difference between image stitching and video stitching as the latter has unique
features that can be used for the stitching process, such as audio and the temporal
information. Besides, video faces more challenges like moving cameras, lack of
consistency in terms of stitching individual frames or dropping some of them. On
the evaluation side of stitching algorithms, there are twomain types of evaluation used
in the literature: (a) subjective, by using human judges to evaluate the presentation of
example images or videos and (b) objective, by using synthetically distorted images
using known transformation matrices as in [13]. In [13], the authors estimate the
transformation matrices, and compare it with the original one for measuring the
error. The obvious drawback of evaluation using synthetic datasets is that they do
not model in full the real-case scenario when videos are captured.

The second area of related work is on providing feedback to users while they are
shooting a video, such as the interesting work in [6, 14]. However, [6, 14] focused
on generating a panoramic image using videos. The work here focuses on generating
panoramic video using videos. Another interesting work is presented in [15] where
the authors generate a wide video texture output from a single panning video with
minimal user interaction. Though, there are some similarities with this work, the end
goal is the not the same and thework in [15] does not consider any user feedbackwhile
generating the actual stitched output. An alternative form of feedback commonly
available nowadays is in digital cameras offering a panoramic picture mode. These
devices help the shooter in capturing successive pictures to produce a wider scene
by giving suggestions on where to snap the next picture. Nevertheless, the type of
feedback provided in these digital cameras is still quite primitive compared to the
ones explored in the presented work and there is no published work evaluating the
generated feedback.

3.3 System Overview

In Fig. 3.1, the architecture of an end-to-end generic mobile video streaming system
is shown augmented with real-time stitching of incoming video streams and active
feedback information to streamers. The server receives all streamed videos, stitches
them together and provides the output panoramic video. We briefly describe the
utilized video stitching method as the focus of this chapter is not on how to generate
the stitched video output, rather on how to utilize user feedback to generate a better
quality stitching. This concept can be applied to any stitching method such as the
work in [6, 7, 12]. In this work, we propose stitching timely synchronized videos
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Fig. 3.1 System Architecture with the active feedback part colored in red

using a frame-by-frame basis as in [3]1 and briefly summarized in Sect. 3.7.1. For
each time synchronized pair of frames, the stitching algorithm implements the two
main steps, alignment, and compositing. The purpose of alignment is to estimate a
geometric transformationmatrix relating the frame pair. It involves extracting interest
point features from both images, and matching them together.

Various forms of visual features have been used in the literature including points,
edges, regions, and contours [17–19] for tasks such as stitching, category, and
instance recognition. In this work we concentrate on point features, as they are
the most commonly used owing to their general nature. The main stages in a typi-
cal feature-based image matching pipeline are feature detection, feature description,
and feature correspondence. In the feature detection stage, each image is searched
for local features, often called interest points, with the desirable properties to be
invariant under a class of image transforms as well as being distinctive. The feature
description stage involves describing each interest point in terms of the surrounding
patch of pixels, either using a single value or a distribution involving raw, moments,
or gradient components [20–25]. Then, the interest point descriptor is represented
as a feature vector and feature correspondence is established using a distance metric
on that vector.

Most modern day interest-point detectors are able to deal with in-plane image
rotation. The state-of-the-art method to achieve rotational invariance is to estimate
a dominant orientation at each detected interest point. Once the local orientation of
an interest point has been estimated, an oriented patch around the detected point can
be extracted and used to form a feature descriptor. The simplest possible orientation

1Temporal information can be easily integrated to avoid frame-by-frame stitching as proposed in
[9, 16].
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estimate is the average gradient within a region around the interest point. SIFT uses a
better technique, it looks at the histogramof orientations computed around the interest
point. SURF, on the other hand, uses the responses to Haar wavelets for orientation
assignment. A number of fully affine invariant detectors and descriptors have been
proposed in the literature [24, 26–29]; two detectors are considered to be the state
of the art, maximally stable extremal region (MSER) [25] and Affine SIFT (ASIFT)
[30]. MSER works by thresholding the image at all possible gray levels. Regions
whose rate of change of area w.r.t. threshold is minimal are defined as maximally
stable and are returned as detected regions. This results in regions that are invariant
to affine geometric transformations. ASIFT follows a different approach; it simulates
all image views obtainable by varying the two camera axis orientation parameters,
namely, the latitude and the longitude angles. Then, it deals with scale, translation,
and in-plane rotation by using the SIFT method itself. It is worth noting that the full
affine invariant descriptors are considerably more computational expensive than the
rotational invariant descriptors. For the sake of achieving a real-time performance
without much sacrifice to effectiveness we chose Shi-Tomasi’s detector [31] with
a feathering scheme for composition [32], though are more elaborate methods for
interest point extraction and composition such as [33, 34].

On top of this generic video streaming and stitching architecture, we are proposing
the use of a feedback channel that can improve the resulting panoramic video. In
Fig. 3.1, the proposed contributions are colored in red and are composed of two main
parts, the mobile client and the feedback manager.

Mobile client A new mobile component is added to the mobile client and has two
main responsibilities: (a) pool the server frequently, asking for feedback, and (b)
retrieve the feedback signal from the server, and present it to the user. We have
investigated different rates for feedback generation as well as different presentation
schemes.
Feedback Manager The feedback manager component is the main part responsible
for generating the feedback. It receives video streams and other information from
the video stitching component, and generates suitable feedback for each user.

3.4 Active Feedback

Active feedback is the concept of providing in real-time feedback information to
the video shooter in order to improve the quality of the final stitched video. We
investigate the concept of active feedback for improved video panorama along a
number of dimensions: (a) goals for providing feedback, (b) different scenarios for
video shooting, (c) feedback triggers, (d) feedback implementation, and (e) feedback
presentation. For simplicity, we first consider, the base case when only two users are
using the system. Scaling to more than two users is addressed next.



66 M.E. Saban and A. Kaheel

3.4.1 Goals

The goal of Active Feedback is to provide a better viewing experience to the end user
watching the stitched video. More specifically, we define a better viewing experience
as either an increase in the width of the stitched videos by minimizing the amount of
overlap in case of stitchable pairs or a guidance given to users to render the videos
stitchable in case of non-stitchable videos. In the latter case, feedback would be
useful if the streams used to be stitchable at some previous time point.

3.4.2 Video Shooting Scenarios

The most important video shooting cases where feedback could be applied are:

• Two users are shooting two views of the same scene that have an amount of overlap
and the two views are stitchable. We call this case “stitchable”.

• Two users are shooting two views of the same scene that had an amount of overlap
between them and the two videos used to be stitchable. Then one of the users
moved his mobile away from the overlapped area and the videos became non
stitchable. We call this case “used to be stitchable”.

• Two users are shooting two views of the same scene with no overlap between
them. We call this case “never stitched before”.

We note that in the above cases, feedback is not necessarily generated; rather these
are plausible situations for feedback. Generating feedback will depend on triggers
discussed next.

3.4.3 Triggers

There are many possible events that could trigger the feedback manager to create and
send feedback to clients. In our investigation, we have experimented with a number
of trigger variants with each one experimentally evaluated on a collected real-dataset.

OverlapRatio: The amount of overlap between two videos exceeds 30% of one of
the videos. The percentage 30% was experimentally validated to be the minimum
required overlap to perform successful video stitching [3].
IPLocation: One, or more, of the interest point used in stitching previous frames is
about to get out of the overlapped area.
MotionTracking: The videos became not stitchable because one of the users has
moved his camera away.
Initial Condition: If there is no stitching happening and we know that users are
located within proximity.
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In our experiments, we will have two set of triggers evaluated. The first set is a
combination of triggers 1, 3, and 4 referenced as OverlapRatioSet. The other set is
a combination of triggers 2, 3, and 4 and referenced as IPLocationSet.

3.4.4 Implementation

The instantiation of the Active Feedback concept involves two main aspects. The
first aspect involves how the feedback is being generated. The second describes how
the feedback is being delivered from the server to the mobile clients. In all feedback
cases, the feedbackmanager generates feedback signals and instructions at the server
side while the mobile clients pull the server on a regular basis for feedback. We use a
pull mode for communication instead of a push mode as this mode allows the clients
to have more control over the feedback rate according to their own capabilities [35].

Active Feedback Triggers

OverlapRatio: Using the transformation matrix between two videos, we calculate
the amount of overlap between both videos. If the amount of overlap is less than
or equal 30%, we send instructions to the video shooters to increase the overlap.
We perform that by requesting the user on the right to move the camera to the left
and the user on the left to move the camera to the right. It is worth noting that we
could generate feedback to one user only, but for simplicity we issued it for both
users leaving selection of which user to send feedback to for future work. In the
implementation, the clients use the HTTP protocol for retrieving the feedback. We
have implemented an ASP.NET HTTP module as a disk-based approach wouldn’t
be able to handle the reader/writer synchronization problem between the feedback
manager writing the feedback, and the mobile clients reading it.
IPLocation: We keep track of matched interest points in the area of overlap and
caused the generation of the transformation matrix between the two videos. We track
the motion of these interest points using Luca Kanade optical flow [36] and verify
if any of them moved out of the overlap area due to camera movement. In such a
case, we send feedback to the users asking them to move in a direction opposite to
their last motion. It is worth noting that there has been a significant body of work
on optical flow methods with [37] and [38] providing good survey and comparative
evaluation of existing methods. For our purpose, Luca Kanade provided sufficiently
acceptable results.
MotionTracking: we keep track of camera motion using also Luca Kanade optical
flow. If the videos cease to be stitchable, we retrieve the positions of both cameras
right before stitching was unsuccessful and give feedback to users requesting them
to return to the last known stitchable position.
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Fig. 3.2 Feedback method
using arrows pointing to
suggest motion direction

InitialCondition: Initially, if the two videos are not stitchable, we send back a
composite image of the two streamed frames and put them side-by-side as a feedback
for the users. This gives the users a chance to know where other users are located
within proximity.

Feedback Presentation

An important aspect of the active feedback concept is the way the feedback will
be presented to the end user on his device. There are a number of alternatives for
presentation including: (a) suggested movement direction arrows, (b) a feedback
image, and (c) a combination of both. As shown in Fig. 3.2, a set of arrows advise
the user to move left, right, rotate clockwise, or anti-clockwise.2 Use of a feedback
image is also illustrated in Fig. 3.3 where a snapshot of the user’s video and the other
user’s video is shown. In this particular case, the two videos can not be stitched
together.

3.4.5 Scalability

To extend Active Feedback to more than two videos, we estimate a global alignment
to understand the initial position of all videos. The global alignment determines the
order of the videos (right to left in our case as we assume a 1D camera arrangement).
We then run the feedback generation algorithm on the mobiles in pairs and prop-
agate the feedback to other mobiles. For example, consider L mobiles with order

2we assume that the captured scene is at a large enough distance such that in-plane camera motion
would be sufficient. If the assumption is violated, motion parallax problems will arise. Dealing with
these issues are left for future work.
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Fig. 3.3 Feedback method using a feedback image with a snapshot of both users frames

n1, n2, . . . , nL. n1 is being the leftmost mobile and nL is being the rightmost mobile.
We apply the Active Feedback techniques on the pair (n1, n2). If the feedback man-
ager decides that n2 should move a distance tx21 (this is the distance in x axis that
mobile phone number 2 should move with respect to mobile 1). Then, we apply the
Active Feedback techniques on the pair (n2, n3). If the Feedback Manager decides
that n3 should move a distance tx32 , then the total amount of movement for n3 will
be (tx21 + tx32 ). Note that tx could be positive or negative. Clearly, the computational
complexity of the feedback generation process is much lower compared to the video
stitching pipeline itself. Hence, the proposed scalability algorithm could scale up to
themaximumnumber of streams supported by the stitching algorithmwhich presents
the computational bottleneck in this case.

3.5 Experimental Results

The reported experiments aimed at answering three main question categories.3 The
first category is related to the amount of improvement gained by introducing the
Active Feedback concept to the process of live mobile video stitching. More specifi-
cally, wewant to answer the questions: (a) does stitching recall and precision increase
after using feedback, (b) is the video generated wider, (c) which set of triggers is
preferred, and (d) how does feedback affect stitching consistency.

The second category of questions is related to the way the Active Feedback is
presented to the user, specifically how useful are the arrows and the feedback images
with bounding boxes. The last category is related to the evaluation of the quality of

3We provide in the supplementary material with this submission the set of frames that were used in
the human evaluation study to aid in understanding what the human judges were asked to evaluate.
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the feedback itself. Specifically, wewant to investigate a suitable rate for the feedback
generation and how useful is the feedback. In other words, should the user follow it
or not.

3.5.1 Datasets

For the purpose of evaluating the stitching output, a number of authors have proposed
to use synthetically distorted images with known transformation matrices as in [13].
The obvious drawback of evaluation using synthetic datasets is that they do notmodel
in full the real-case scenario when videos are captured. For that reason and due to
the lack of publicly available datasets for evaluating the proposed active feedback
concept, there is a need for collecting our own dataset. In the collected set, special
care has been taken to cover different capturing conditions such as day and night and
textured and structured scenes. Table3.1 gives a description of each video set and its
total number of frames. Fig. 3.4 shows sample images from this dataset.

For each scene, two users were standing in front of the view, holding their mobile
phones, and shooting the videos. The users were instructed to focus on the same
scene (example the small green park in the first video see (a). Nevertheless, we
gave them the freedom to horizontally and/or rotate the mobile phones (in-plane
only) as they deem suitable. For the each scene, we ran the experiment three times,

Table 3.1 Dataset description

Title Description Number of frames

LoungeArea Indoor, close scene, light 396

ParkAtCity1 Daylight, distant scene, slow motion 568

ParkAtCity2 In shade, distant scene 592

NileRoad1 Daylight, slow motion, distant scene 357

NileRoad2 In shade, moving cars and people,
distance scene

647

Fig. 3.4 Sample stitched results from the dataset
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once without using Active Feedback, and twice with Active Feedback but with two
different implementations (OverlapRatioSet vs. IPLocationSet). For the runs that
contain the feedback, we instructed the users to try to follow the feedback as much
as possible. We saved the resulting video files and carried a number of analyses as
detailed next.

3.5.2 Performance Gains by Active Feedback

The goal of these set of experiments is to evaluate the different set of proposed triggers
for active feedback. We compared OverlapRatioSet to IPLocationSet schemes using
the measures: (a) precision, recall and F1 measures of the stitched frames, (b) output
video size (and overlap area), and (d) video stitching consistency.

Percentage of Correctly Stitched Frames

We compared the average percentage of correctly stitched frames versus non-stitched
frames in the whole video dataset using feedback and without using it. The average
percentage was calculated as follows:

R = NS

N
∗ 100% (3.1)

where R is the percentage of the stitched frames, Ns is the number of the stitched
frames and N is the total number of frames.Without using Active Feedback, the ratio
was 49.9%, while with using Active Feedback with RatioOverlapSet the ratio was
65.2 and 69.3% with IPLocationSet.

Stitching Precision and Recall

We estimated the stitching precision, recall, and F1 measures on the data set. The
precision (Pr) is calculated as the ratio of the number of correctly stitched pairs
by the algorithm to the total number of claimed-to-be stitched, while the recall is
calculated as the ratio of correctly stitched pairs to the total number of frames that
can be stitched by a human judge. Finally, F1measure summarizes performance into
a single metric as 2PR

P+R .

Video Output Size and Overlap Area

We have calculated the average width of output videos in both cases where feedback
is utilized and not utilized. While the width of a single video stream is 240 pixels,
the average of the stitched video streams is 339 pixels using Active Feedback with
OverlapRatioSet, 301 pixels using active feedback with OverlapRatioSet and 295
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pixels without using Active Feedback. This means that Active Feedback increases
the width of the final video by 15%. As width in terms of pixels is an absolute
measure, we sought a relative measure to normalize for the initial video size. We
have experimented with the normalized average area of overlap (percentage wise) in
both cases. It was calculated as follows:

O = Op

w1 ∗ h1 ∗ w2 ∗ h2
∗ 100% (3.2)

where O is the overlap percentage, Op is the number of pixels that are in the overlap
area, w1 and h1 and w2 and h2 are the width and the height of the first and second
videos respectively. The smaller the percentage overlap the larger is the resulting
output video. Using Active Feedback the overlap ratio was found to be 58.8 and
72.8% with OverlapRatioSet and IPLocationSet, respectively, while with no active
feedback, it was found to be 73.5%. This indicates a 20% decrease in overlap in the
the output video.

Video Stitching Consistency

Another method for evaluating video output quality is to measure how consistent
video stitching is generated. To elaborate more, Fig. 3.5 shows two graphs. The
horizontal axis is time while the vertical one represents whether the frames are
stitchable or not, with value 1 meaning frames were stitchable at time t while value 0
means frames were not stitchable. In theory, both graphs have the same percentage of
the stitched frames. However, s2 ismore convenient, because the switching frequency
between stitching and non-stitching states is less than s1 and hence less annoying or
confusing to a watching user. Hence, it is important to measure if Active Feedback
decreases video stitching consistency. We propose to use a total variation (TV ) like
measure for a video V having N frames to capture the notion of consistency in a
video using:

TV(V) =
∑N

t=1 |s(t) − s(t − 1)|
N

∗ 100% (3.3)

where s(t) equals 1 it frames at time t were stitchable, and 0 otherwise and N is the
total number of the frames.

Fig. 3.5 Stitching
consistency example. The
vertical axis is a binary
measure of whether stitching
was produced or not for a
given time point
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Table 3.2 Stitching results summary comparing different active feedback methods to the case
where there is no feedback

Pr Re F1 Width Overlap

NoFeedback 0.95 0.49 0.65 295 73.48

OverlapRatioSet 0.97 0.65 0.78 338 58.847

IPLocationSet 0.96 0.69 0.80 301 72.75

The results in Table3.2 summarize the performance of the different suggested
active feedback methods against the case where there is no feedback. A clear differ-
ence is visible across all metrics with the OverlapRatioSet being the best according
to the amount of overlap in the output frames and a very close second in F1 measure.
The improvement in F1 is almost 20% compared to the baseline of no feedback.
It is worth pointing out that a possible explanation to why IPLocationSet is better
than OverlapRatioSet in terms of recall is that IPLocationSet tries to keep all interest
points found in the overlapped area. If there is an interest point on the leftmost part
of both videos, it will always try to include this point. This will definitely increase
the number of stitched frames. As for the stitched output consistency, using Active
Feedback, the average TV is found to be 17 and 14% using OverlapRatioSet and
IPLocationSet respectively, as compared to 15% when Active Feedback is not used.
These results indicate that Active Feedback does not hurt consistency of the stitched
videos. Table3.2 summarizes all results using the metrics discussed in this section.

3.5.3 Feedback Assessment

Weconducted a user study on the quality of the feedback itself.We randomly selected
408 stitched frames with their feedback and showed them to nine judges (eight
males and a female in their 20’s), and asked them to evaluate the feedback that was
automatically generated. We instructed them that the feedback goal is to decrease
output video overlap, but not too much to the case that the overlap is not enough to
stitch the two videos. Then, for every feedback frame, they needed to assess whether
there was a need for feedback or not and in case the feedback was given if it was
right or not.

Out of the whole sample, the users judged that in 40.14% of the frames provided
feedback was valuable (true positive), 37.4% of the frames didn’t have feedback and
that was the right system decision (true negative). These numbers add up to 77.5%
constituting success cases. On the other hand, in 18.8% of the frames, the system has
not provided feedback while the users judged it would have been beneficial (false
negative). Finally, a small percentage (3.6%) of the frames, the system provided
feedback that was not necessary (false positive). We have investigated the reason
behind high percentage (18.8%) of false negatives and found out that this is due to
a single user who judged the false negative at 60%, a value considered as an outlier
with respect to other users. Finally, it is worth noting that given the observed high
inter judge agreement, it was deemed enough to have only nine judges.
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3.5.4 Feedback Presentation

Our final experiment aimed at assessing feedback presentation and rate of generation,
albeit on a small scale. We requested from three users (two males and one female
in their 20’s) who have tested the active feedback concept to evaluate the way the
feedback was conveyed, whether through arrows, images, or a combination of both.
While one of the users reported that the use of arrows was quite intuitive, two of them
were complaining that arrows were sometimes confusing because they did not know
how much they should move. On the other hand combining arrows with a feedback
image was judged as a very useful presentation methodology, since the feedback
images were helpful in understanding what the other user is shooting, and what is
the best way to collaborate with him.

As for evaluating different rates for feedback generation, we have run experiments
with three different rates (1 feedback/ 0.5 s, 1 feedback/ 1 s and 1 feedback/ 3 s). The
users who participated in this experiment judged that a feedback rate of once a second
seems reasonable, while having it every 0.5 s is confusing and every 3 s is too slow.

3.6 Conclusion

In this chapter, we introduced the concept ofActive Feedbackwhich provides guiding
information for capturing users tomaximize the probability of a successful panoramic
video result. The system receives incoming user streams, analyzes them, generates
the feedback, and sends it back to the shooting user in real-time to help him improv-
ing the live generated video. We discussed different cases where feedback can be
provided along with triggers and presentation methods. For all of these aspects, we
have conducted a user study aiming at making an intelligent choice for the design
alternatives. Results show that adding the feedback component enhances the overall
viewing experience measured by a number of different measures such as stitching
precision and recall and output video size. As far as the future work is concerned,
there are a number of areas worth investigating. First, providing feedback in a 3D
manner (in all directions) can open new possibilities and obviously will face extra
challenges such as accurate and fast 3Dmotion estimation. Second, it is worth inves-
tigating in how to maintain a video size that is somehow stable across frames and
does not change abruptly as this was one of the desired behaviors gathered by the
user study. Finally, it would be interesting to devise a scheme that can adaptively
change the feedback rate based on device capabilities and network conditions.
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3.7 Appendix

3.7.1 Leveraging Frame Correlation in Stitching

In this section, we investigate three approaches for enhancing the efficiency of the
video stitching process using time information from video frames with little or no
effect on effectiveness:

• Exploit the area of overlap from previous frame
• Use motion vectors for transformation calculation
• Track interest points (IPs) from previous frames

We started this investigation by a study of the time spent in the various stitching
steps to identify the most time-consuming steps to target during algorithm develop-
ment. Based on conducted experiments, it was found that IP detection and descriptor
computation (for SURF) takes more than 80% of the time in stitching two frames.
Hence, most of the investigated approaches in this paper are aiming at minimizing
the time spent in IP detection and description. In the subsequent discussion, frames
at the current time step will be referenced as frames (n) and frames from the previous
time step will be referenced as frames (n − 1).

Area of Overlap from Previous Frames

The premise in this approach is that knowledge of the area of overlap (in case that
the video stitching algorithm declares frames as stitchable) from frames (n − 1) can
potentially limit the search space for IPs in frames (n). The stitching algorithm per-
forms the same steps as in the case of the first frame pairs but instead of trying to
detect IPs in the new whole frame, they are detected in the area of overlap found in
frames (n − 1) only, plus some buffer region in the frames (n) (best value experimen-
tally determined to be a 20 pixel band). The efficiency of the buffer-based approach
performance is inversely proportional to the size of the overlap area between frames
(n − 1) and (n).

Using Motion Vectors for Speed up

This approach was discussed earlier in [10]. The basic idea in this approach is to use
global motion estimates of IPs between frames (through motion vector estimation)
to avoid recomputation of the new transformation matrix. Some improvements are
applied to the original algorithm in [10] including motion vectors estimation using
SURF descriptors matching. Our conducted experiments have shown that it is better
to use the first frame in computing motion vectors for other frames. Besides, we
introduce another improvement by limiting the number of created descriptors to speed
up the stitching process by generating descriptors one-by-one and matching them
until we get certain number of matches between current frame and first frame. The
found matches are used to calculate motion vectors. Finally, as in [10], the geometric
transformation matrix in frame (n), Rn, is updated using the transformation matrix at
first frame, R1 and global motion estimates, VA and VB, in both pair of video frames
at the current frame: Rn = VAR1(VB)−1
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Using Optical Flow for Tracking IPs

Themain idea behind this approach is to avoid recomputation of the expensive stages
of IP detection and descriptors in the alignment process between incoming frames.
For that purpose, we track IPs from frames n − 1 to find their 2D locations in frames
(n) using Lucas–Kanade optical flow [39]. Once we find the new location of IPs
in frames (n), their descriptors are obtained from frames (n − 1) in order to avoid
recomputation. Tracked IPs are filtered by discarding foreground moving objects,
which leads to a more stable stitching using background IPs. IP filtering is based on
finding the 2D global motion (dx, dy) of all IPs by averaging 2D motion parameters
of all IPs and then removing IPs falling outside the 2σ range from the mean value in
either dx, or dy. It is worth noting that beyond IP filtering process, the estimated global
motion is not used in the stitching process itself in frames (n). Using IP descriptors
from previous frames is not perfect as it neglects illumination and 3D viewpoint
variations and may lead to error accumulation over time. Hence, a criterion is used
to signal when we require to do an image-based stitching for a given frame pair
(without usage of previous frames information). The suggested criterion is based
on the number of IPs that can be successfully matched between the frame pairs of
frames (n).

Data Set and Evaluation Results

Since there are no existing suitable data sets for testing our proposed techniques, we
have resorted to collecting our own dataset using commonly available mobile phones
with video capturing capabilities. Human data collectors were asked to capture time-
stamped videos simultaneously at multiple locations, at different time of the day
and while performing various camera motions to enable a general assessment, for
varying video content, shooting distance, lighting condition, and camera motion. It
is worth noting also that instructions were given to the shooters to try to shoot for
a common object so as to maximize chance of overlap. Videos were captured using
mobile phone cameras with a CIF video resolution (352 × 288) and with an average
frame rate of 11 frames/s.

Upon data collection, a human judge was asked to manually label a sample of
1275 pairs of frames. The human labeler was asked to mark the corresponding video
frames as correctly stitched by the algorithm or not (both alignment and blending);
and whether they could be stitched by a human or not. Although the output of our
system is a stitched video and not frames, we opted to label individual frame pairs to
get an upper bound on stitching errors, since a human canmiss small stitching issues if
watching an output video compared to the case of watching a single video frame. The
evaluation aims at measuring precision/recall values for stitching frame pairs as well
as stitching time for various descriptors and time information usage methodologies.
Note that we are not evaluating the matching capability of the different descriptors
(that has been already extensively studied in [40] among other works). Experiments
were conducted on an Intel CoreTM2 Duo CPU E8400 @ 3.00GHZ, with 4.0 GB
RAM. In the dataset used, the total number of possibly stitched framepairs is 892pairs
leaving a relatively small percentage of non-stitchable pairs, as the experiments have
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shown that a negligible fraction (<5%) of the non-stitchable frames were judged,
erroneously, as stitchable by the algorithm.

From our results SIFT has the best recall compared to all other techniques, but the
required time ismuchmore than all others. Our aim here is to find a good compromise
between accuracy and execution time. Hence, we choose the SURF descriptor as our
baseline for the experiments as it is shows experimentally comparable precision/recall
values as the SIFT with almost 40% of the execution time. From our experimental
results, SURF and optical flow method performed the best achieving 37% relative
execution time reduction compared to our baseline with comparable accuracy. It is
worth noting that we may need to do a pure image-based stitching on some frames,
in case time information is not useful. The image-based stitching is invoked when
the previous frames cannot be stitched or when the current frame inliers number
is less than six (experimentally determined). On average, the image-based stitching
algorithm was performed every 15 frames.

3.8 Appendix

3.8.1 Leveraging Device Sensor Information
in Geometric Alignment

A related problem space to the stitching problem is the simultaneous localization and
mapping (SLAM) [41]. The SLAM problem asks if it is possible for a mobile robot
to be placed at an unknown location in an unknown environment and for the robot
to incrementally build a consistent map of this environment while simultaneously
determining its location within this map. One class of approaches attempts to solve
this problem using mainly visual information (VSLAM) [41–43]. In VSLAM, the
mobile robots are equipped with a 3-cameras stereo vision system and uses feature
descriptors such as SIFT for extracting landmark candidates. The candidates then
are matched between cameras to determine the 3D position. The interesting aspect
in this problem is that the robots are in many cases equipped with accelerometers for
determining the speed of the robot. This inspired our work to leverage accelerometer
and sensor data while performing geometric alignment between video frames.

Calculating Rotational Angles from 3D Accelerometer Information

A 3-D accelerometer is an electromechanical device that can measure the 3D accel-
eration forces ax, ay, az along the x, y, and z axes. For convenience, the three axes
are chosen aligned with the capturing device axes. When the device is steady, these
values correspond to components of gravitational acceleration along the different
axes. Each value theoretically ranges from 0 to 9.80665 m2/sec. The remaining of
the discussion of this section will use mobile phone as an example for the capturing
device.
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Fig. 3.6 Device coordinates front view (right) and side view (left)

The three acceleration values can be embedded in the image header, according to
any information embedding standard, similar to the Information Interchange Model
(IIM) [44]. Alternatively, this information can be stored in a separate metadata file.
Such as metadata information was used in Seon et al. work [45] for instance to guide
search within video archives. The accelerometer returns the ax, ay, az values along
the axes that are shown in Fig. 3.6. In case the device is held upright, ay would have
a value of 9.80665 with ax and az equal to zero.

In other positions, the gravitational force would have components in the x, z
directions as well. In order to calculate the rotation angle in the (x, y) plane and
the rotation angle in the (z, y) plane, denoted by α in Fig. 3.6 (left) and β in Fig. 3.6
(right) respectively,we need to calculate the 3D rotational transformation between the
vector representing the gravitational acceleration (0, |Y |, 0) and the vector generated
by the accelerometer (ax, ay, az). The value of |Y | is theoretically 9.80665, however
because of the imperfections of the 3D accelerometer the value need to be calculated

as |Y | =
√

a2
x + a2

y + a2
z .

The 3D transformation relating the mobile device coordinates and the world coor-
dinates is described using the Eq.3.4.
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3.8.2 Fusion of Feature-Based Descriptors
with Accelerometer Readings

Asmentioned earlier, descriptors such as SIFT and SURF are in-plane rotation invari-
ant, i.e., rotation in the vertical (x, y) plane. This invariance is achieved by estimating
a reproducible orientation for each interest point, and the interest point descrip-
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tor is always represented with respect to this orientation. The exact method of the
point orientation estimation depends of the particular descriptor used. In this paper,
we propose to depend on the angles calculated from the accelerometer readings,
instead of estimating the orientation at each interest point, to provide in-plane and tilt
rotational invariance. The proposed approach proceeds as follows; perform the fea-
ture detection step, then correct globally for both the in-plane and tilt rotational
angles, and thereafter apply the feature description step. In essence, this approach
can be used to augment any state-of-the-art descriptor, however, in this paper, we con-
centrate on SIFT and SURF. It is important to note here that the proposed approach
is designed to compensate for camera rotation; however, it would not provide the
desired invariance in cases where the image contents are rotated. Correcting for the
in-plane rotation angle α calculated from Eq.3.4 would alleviate the need for esti-
mating the orientation values associated with different interest points in both SIFT
and SURF. We correct for the angle α by using the rotational transformation matrix
in Eq.3.5.

(
x

′

y
′ ) =

(
cosθ −sinθ

sinθ cosθ

) (
x
y

)
(3.5)

With respect to the second angle, let us recall that the SIFT and SURF descriptors
are not designed to deal with affine deformations, instead, they are assumed to be
second-order effects that are covered to some degree by the overall robustness of the
descriptor. In addition, Lowe [46] has claimed that the additional complexity of full
affine invariant features often negatively impact their robustness and does not pay
off, except in cases of large viewpoint differences. In our approach, we compensate
for the tilt rotation angle β before applying the SIFT and SURF descriptors. This
will enable the descriptors to respond consistently across affine deformations, such
as (local) perspective foreshortening, without any additional computational cost. We
will show empirically that this method indeed improves the results of the descriptors.

Experimental Setup

We conducted a number of experiments aiming at testing the hypothesis that com-
pensating for in-plane and tilt angles computed from accelerometer readings can
improve matching accuracy as well as processing times of interest point descriptors.
We evaluate the proposed approach when applied to two state-of-the art interest point
descriptors namely SIFT and SURF.

Datasets

Since datasets previously used in the literature for comparing interest point descrip-
tors do not have accelerometer readings associated, we resorted to collecting our own
dataset using mobile phones aiming at a balanced collection between textured and
structured scenes and a variation in both in-plane and out-of plane (tilt) rotations. We
call this dataset “real dataset,” for which sample images are illustrated in Fig. 3.7.

In order to remove any selection bias from our end in the data collection process,
we have also used a set of standard images from the dataset used in [40], then we
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Fig. 3.7 Above samples from the real dataset including structured and textured scenes. Below
samples from the synthetically generated dataset where various amounts of in-plane and out-of-
plane rotation are introduced

have subjected these images to artificial geometric transformations and measured
the matching performance. We have selected a total of 14 images from the images
in [40]. For each selected image we have generated 30 images by introducing ran-
dom in-plane rotations from 0 to 360 degree and tilt rotation (around x-axis) from
−45 to 45 degrees. Figure3.7 shows sample images from this dataset. Results
reported in the remaining of this section are average over all the images corresponding
to a scene.

Evaluation Criteria

We have adopted three main measures for testing the matching capability of the
proposed fusion of interest point-based scheme and accelerometer readings. These
measures are the standard precision and recall, and computation time. It is worth
mentioning that using accelerometer readings for compensating for rotation angle of
the capturing device does not directly change the way interest points are detected or
described in SIFT or SURF. However, by compensating for in-plane and tilt rotation
angles before interest point description, we are able to show that one can expect
a boost in performance as the job of detection and description becomes easier. In
the following, we use SIFT+ to signify the case when SIFT is augmented with the
rotational angles calculated from the accelerometer readings, and likewise, we use
SURF+ to indicate the usage of the augmented SURF.

Recall and (1 − precision)values are used tomeasure the quality of imagedescrip-
tors as previously suggested in descriptors comparisons [40]. These measures are
based on computing the total number of correspondences (ground truth) and the
ones correctly and incorrectly computed.

Another important aspect in our comparisons is the computational time savings.
The time savings come from the fact that we do not have to estimate the orientation
of interest points patches as this is compensated for globally using accelerometer
readings. Furthermore, employing the tilt angle from the accelerometer alleviate the
need for the complex calculations associated with fully affine transforms.
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Fig. 3.8 Experiemental results for the four schemes for the real and synthetic datasets. Left
Computation time, middle: (1 − precison) and right recall

Results and Analysis

The first comparison on real and synthetically generated datasets concerns the com-
putation time and the savings achieved when utilizing accelerometer readings for
compensating for rotational angles. This eliminates the need for any expensive
calculation of rotation angles based on image content and replaces it with few inex-
pensive calculations. The running times of SIFT, SURF, SIFT+, and SURF+ are
shown with in Fig. 3.8 (left) for the synthetic and real datasets, respectively, using a
3GHz Intel CoreTM2 Duo CPU with 4.00 GB of RAM and running a 32-bit operating
system (Windows 7 Enterprise). Results show savings in computation time inmost of
the cases. The savings over SIFT are more pronounced, since SURF is a speeded up
version of SIFT. The computation time comparison shows a larger improvement in
the case of synthetic data. This is in part attributed to the smaller resolution of images
taken by mobile phones (320 × 240) in the real dataset, rendering the compensation
for global rotation angles more expensive than estimating angles on an interest point
level, because of the small number of interest points detected on average.

In the descriptor evaluation, the overlap error threshold is fixed to 50% for the
computation of correspondences. Hence, for each image pair, we have a single pre-
cision/recall value pair rather than a full graph. Figure3.8 (right) shows recall values
for the synthetic and real datasets respectively with an overall improvement notice-
able especially for the case of comparing with SIFT. These results also show that the
relative improvement when using SURF+ compared to SURF alone is considerably
higher than in the case of using SIFT+ compared to SIFT alone. This is because
of the fact that SURF is an approximation of SIFT, and thus less accurate. On the
other hand, precision values do not enjoy the same level of improvement as the recall
values. Figure3.8 (middle) shows that the results with and without the accelerometer
information are very comparable.
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Chapter 4
Intentional Photos from an Unintentional
Photographer: Detecting Snap Points
in Egocentric Video with a Web Photo Prior

Bo Xiong and Kristen Grauman

Abstract Wearable cameras capture a first-person view of the world, and offer a
hands-free way to record daily experiences or special events. Yet, not every frame
is worthy of being captured and stored. We propose to automatically predict “snap
points” in unedited egocentric video—that is, those frames that look like they could
have been intentionally taken photos. We develop a generative model for snap points
that relies on a Web photo prior together with domain-adapted features. Critically,
our approach avoids strong assumptions about the particular content of snap points,
focusing instead on their composition. Using 17 h of egocentric video from both
human and mobile robot camera wearers, we show that the approach accurately
isolates those frames that human judges would believe to be intentionally snapped
photos. In addition, we demonstrate the utility of snap point detection for improving
object detection and keyframe selection in egocentric video.

4.1 Introduction

Photo overload is already well known to most computer users. With cameras on
mobile devices, it is all too easy to snap images and videos spontaneously, yet it
remains much less easy to organize or search through that content later. This is
already the case when the user actively decides which images are worth taking.
What happens when that user’s camera is always on, worn at eye-level, and has
the potential to capture everything he sees throughout the day? With increasingly
portable wearable computing platforms (like Google Glass, Looxcie, etc.), the photo
overload problem is only intensifying.

Of course, not everything observed in an egocentric video stream is worthy of
being captured and stored. Egocentric videos contain substantial motion and are
often boring to watch. Even though the camera follows the wearer’s activity and
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Fig. 4.1 Can you tell which row of photos came from an egocentric camera?

approximate gaze, relatively few moments actually result in snapshots the user would
have intentionally decided to take, where he actively manipulating the camera. Many
frames will be blurry, contain poorly composed shots, and/or simply have uninter-
esting content. This prompts the key question we study in this work: can a vision
system predict “snap points” in unedited egocentric video—that is, those frames
that look like intentionally taken photos?

To get some intuition for the task, consider the images in Fig. 4.1. Can you guess
which row of photos was sampled from a wearable camera, and which was sampled
from photos posted on Flickr? Note that subject matter itself is not always the telling
cue; in fact, there is some overlap in content between the top and the bottom rows.
Nonetheless, we suspect it is easy for the reader to detect that a head-mounted
camera grabbed the shots in the first row, whereas a human photographer purposefully
composed the shots in the second row. These distinctions suggest that it may be
possible to learn the generic properties of an image that indicate it is well composed,
independent of the literal content.

While this anecdotal sample suggests that detecting snap points may be feasible,
there are several challenges. First, egocentric video contains a wide variety of scene
types, activities, and actors. This is certainly true for human camera wearers going
about daily life activities, and it will be increasingly true for mobile robots that freely
explore novel environments. Accordingly, a snap point detector needs to be largely
domain invariant and generalize across varied subject matter. Secondly, an optimal
snap point is likely to differ in subtle ways from its less-good temporal neighbors, i.e.,
two frames may be similar in content but distinct in terms of snap point quality. That
means that cues beyond the standard texture and color favorites may be necessary.
Finally, and most importantly, while it would be convenient to think of the problem
in discriminative terms (e.g., training a snap point versus non-snap point classifier),
it is burdensome to obtain adequate and unbiased labeled data. Namely, we would
need people to manually mark frames that appear intentional, and to do so at a scale
to accommodate arbitrary environments.

We introduce an approach to detect snap points from egocentric video that requires
no human annotations. The main idea is to construct a generative model of what
human-taken photos look like by sampling images posted on the Web. Snapshots that
people upload to share publicly online may vary vastly in their content, yet all share
the key facet that they were intentional snap point moments. This makes them an ideal
source of positive exemplars for our target learning problem. Furthermore, with such
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vs.

Fig. 4.2 Understandably, while effective for human-taken photos (left), today’s best object detectors
break down when applied to egocentric video data (right). Each image displays the person detections
by the DPM [9] object detector

a Web photo prior, we sidestep the issue of gathering negatively labeled instances to
train a discriminative model, which could be susceptible to bias and difficult to scale.
In addition to this prior, our approach incorporates domain adaptation to account for
the distribution mismatch between Web photos and egocentric video frames. Finally,
we designate features suited to capturing the framing effects in snap points.

We propose two applications of snap point prediction. For the first, we show how
snap points can improve object detection reliability for egocentric cameras. It is
striking how today’s best object detectors fail when applied to arbitrary egocentric
data (see Fig. 4.2). Unsurprisingly, their accuracy drops because detectors trained
with human-taken photos (e.g., the Flickr images gathered for the PASCAL VOC
benchmark) do not generalize well to the arbitrary views seen by an ego camera. We
show how snap point prediction can improve the precision of an off-the-shelf detector,
essentially by predicting those frames where the detector is most trustworthy. For
the second application, we use snap points to select keyframes for egocentric video
summaries.

We apply our method to 17.5 h of videos from both human-worn and robot-worn
egocentric cameras. We demonstrate the absolute accuracy of snap point prediction
compared to a number of viable baselines and existing metrics. Furthermore, we show
its potential for object detection and keyframe selection applications. The results are
a promising step toward filtering the imminent deluge of wearable camera video
streams.

4.2 Related Work

We next summarize how our idea relates to existing work in analyzing egocentric
video, predicting high-level image properties, and using Web image priors.

Egocentric video analysis: Egocentric video analysis, pioneered in the 90s
[35, 44], is experiencing a surge of research activity, thanks to today’s portable
devices. The primary focus is on object [29, 38] or activity recognition [6, 8, 24,
29, 37, 39, 43]. Compared with well-posed photographs, egocentric videos contain
more uninformative frames, which are often poorly composed and illuminated [11].
Motion cues [38] in egocentric video are useful to segment foreground objects and
therefore improve object recognition. Gaze information [29] can also improve both
object and activity recognition. No prior work explores snap point detection.
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We consider object detection and keyframe selection as applications of snap points
for unconstrained wearable camera data. In contrast, prior work for detection in ego-
centric video focuses on controlled environments (e.g., a kitchen) and hand-held
objects (e.g., the mixing bowl) [6, 8, 29, 38, 43]. Nearly, all prior keyframe selec-
tion work assumes third-person static cameras (e.g., [31, 32]), where all frames are
already intentionally composed, and the goal is to determine which are the representa-
tive for the entire video. In contrast, snap points aim to discover intentional-looking
frames, not maximize diversity or representativeness. Some video summarization
work tackles dynamic egocentric video [27, 34]. Such methods could exploit snap
points as a filter to limit the frames they consider for summaries. Our main contri-
bution is to detect human-taken photos, not a novel summarization algorithm.

We are not aware of any prior work using purely visual input to automatically
trigger a wearable camera, as we propose. Methods in ubiquitous computing use
manual intervention [35] or external nonvisual sensors [15, 16] (e.g., skin conduc-
tivity or audio) to trigger the camera. Our image-based approach is complementary;
true snap points are likely a superset of those moments where abrupt physiological
or audio changes occur.

Predicting high-level image properties: A series of interesting works predict
properties from images like saliency [33], professional photo quality [20], memora-
bility [18], aesthetics, interestingness [4, 13], or suitability as a candid portrait [10].
These methods train a discriminative model using various image descriptors, and then
apply it to label human-taken photos. In contrast, we develop a generative approach
with (unlabeled) Web photos, and apply it to find human-taken photos. Critically, a
snap point need not be beautiful, memorable, etc., and it could even contain mun-
dane content. Snap points are thus a broader class of photos. This is exactly what
makes them relevant for the proposed object detection application. In contrast, an
excellent aesthetics detector (for example) would fire on a narrower set of photos,
eliminating non-aesthetic photos that could nonetheless be amenable to off-the-shelf
object detectors.

Web image priors: The Web is a compelling resource for data-driven vision
methods. Both the volume of images as well as the accompanying noisy meta-data
open up many possibilities. Most relevant to our work are methods that exploit the
biases of human photographers. This includes work on discovering iconic images
of landmarks [28, 42, 47] (e.g., the Statue of Liberty) or other tourist favorites
[1, 14, 19, 22] by exploiting the fact that people tend to take similar photos of popular
sites. Similarly, the photos users upload when trying to sell a particular object (e.g., a
used car) reveal that object’s canonical viewpoints, which can help select keyframes
to summarize short videos of the same object [21]. Event video summarization [23]
can also benefit from Web image collections of the same event. Our method also
learns about human framing or composition biases, but, critically, in a manner that
transcends the specific content of the scene. That is, rather than learn when a popular
landmark or object is in view, we want to know when a well-composed photo of any
scene is in view. Our Web photo prior represents the photos humans intentionally
take, independent of subject matter.
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Our approach1 uses a nonparametric representation of snap points, as captured
by a large collection of Web photos. At a high level, this relates to work in vision
exploiting big data and neighbor-based learning. This includes person detection [46],
scene parsing with dense correspondences [30], geographic localization [14], action
recognition [5], and pose estimation [40]. Beyond the fact that our task is unique
and novel, all these methods assume labels on the training data, whereas our method
relies on the distribution of photos themselves.

4.3 Approach

Our goal is to detect snap points, which are those frames within a continuous egocen-
tric video that appear as if they were composed with intention, as opposed to merely
observed by the person wearing the camera. In traditional camera-user relationships,
this “trigger” is left entirely to the human user. In the wearable camera-user relation-
ship, however, the beauty of being hands-free and always-on should be that the user
no longer has to interrupt the flow of his activity to snap a photo. Notably, whether
a moment in time is photoworthy is only partially driven by the subject matter in
view. The way the photo is composed is similarly important, as is well understood
by professional photographers and intuitively known by everyday camera users.

We take a nonparametric, data-driven approach to learn what snap points look
like. First, we gather unlabeled Web photos to build the prior (Sect. 4.3.1), and extract
image descriptors that capture cues for composition and intention (Sect. 4.3.2). Then,
we estimate a domain-invariant feature space connecting the Web and ego sources
(Sect. 4.3.3). Finally, given a novel egocentric video frame, we predict how well it
agrees with the prior in the adapted feature space (Sect. 4.3.4). Figure 4.3 shows the
overview of our approach. To illustrate the utility of snap points, we also explore
applications for object detection and keyframe selection (Sect. 4.3.5).

Section 4.4 will discuss how we systematically gather ground truth labels for
snap points using human judgments, which is necessary to evaluate our method, but,
critically, is not used to train it.

4.3.1 Building the Web Photo Prior

Faced with the task of predicting whether a video frame is a snap point or not, an
appealing solution might be to train a discriminative classifier using manually labeled
exemplars. Such an approach has proven successful for learning other high-level
image properties, like aesthetics and interestingness [4, 13], quality [20], canonical
views [21], or memorability [18]. This is thanks in part to the availability of relevant
meta-data for such problems: users on community photo albums manually score

1This chapter expands upon our work as first presented at ECCV 2014 [50].
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Domain adapted
similarity

Snap point
prediction

Web prior: Positive examples only

Data-driven approach to learn what human-taken photos look like

Fig. 4.3 Overview of our approach. Our method takes an unedited egocentric video as input, and
predicts how well it agrees with the Web photo prior in a domain-adapted feature space. We leverage
the fact that Internet photos are “free” positives of intentional photos, and so our method does not
require any explicitly labeled data

images for visual appeal [4, 20], and users uploading ads online manually tag the
object of interest [21].

However, this familiar paradigm is problematic for snap points. Photos that appear
human-taken exhibit vast variations in appearance, since they may have almost arbi-
trary content. This suggests that large-scale annotations would be necessary to cover
the space. Furthermore, snap points must be isolated within ongoing egocentric
video. This means that labeling negatives is tedious—each frame must be viewed
and judged in order to obtain clean labels.

Instead, we devise an approach that leverages unlabeled images to learn snap
points. The idea is to build a prior distribution using a large-scale repository of Web
photos uploaded by human photographers. Such photos are by definition human-
taken, span a variety of contexts, and (by virtue of being chosen for upload) have an
enhanced element of intention. We use these photos as a generative model of snap
points.

We select the Scene UNderstanding (SUN) database as our Web photo source [48],
which originates from Internet search for hundreds of scene category names. Our
choice is motivated by two main factors. First, the diversity of photos is high—
899 categories in all drawn from 70 K WordNet terms—and there are many of them
(130 K). Second, its scope is fairly well matched with wearable camera data. Human-
or robot-worn cameras observe a variety of dailylife scenes and activities, as well
as interactions with other people. SUN covers not just locations, but settings that
satisfy “I am in a place, let’s go to a place” [48], which includes many scene-specific
interactions, such as shopping at a pawnshop, visiting an optician, driving in a car,
etc. See Fig. 4.4.
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Fig. 4.4 Example images from the SUN dataset [48]. It contains a diverse category of scene types
and a wide range of objects

4.3.2 Image Descriptors for Intentional Cues

To represent each image, we designate descriptors to capture intentional composition
effects.

Motion: Non-snap points will often occur when a camera wearer is moving
quickly, or turning his head abruptly. We therefore extract a descriptor to summarize
motion blur, using the blurriness estimate of [2]. We also explored flow-based motion
features, but found their information to be subsumed by blur features computable
from individual frames.

Composition: Snap points also reflect intentional framing effects by the human
photographer. This leads to spatial regularity in the main line structures in the image—
e.g., the horizon in an outdoor photo, buildings in a city scene, the table surface in
a restaurant—which will tend to align with the image axes. Thus, we extract a line
alignment feature: we detect line segments using the method in [25], and then record
a histogram of their orientations with 32 uniformly spaced bins. To capture framing
via the 3D structure layout, we employ the geometric class probability map [17]. We
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Fig. 4.5 Illustration of HOG, blurriness, and line alignment features on a short sequence of ego-
centric video frames. Each frame shows a bar in bottom right indicating how much each descriptor
agrees with the Web prior. Here, each frame with the highest bar in each mini-sequence would
rate highest as a snap point (if using each feature alone). The line alignment feature helps to find
snap points that correspond to the moment when the camera wearer looks straight at the scene.
The blurriness feature helps to find clear frames, and the HOG composition feature helps to find
semantically meaningful frames

also extract GIST [36], HOG [3], self-similarity (SSIM) [41], and dense SIFT [26],
all of which capture alignment of interior textures, beyond the strong line segments.
An accelerometer, when available, could also help gage coarse alignment; however,
these descriptors offer a fine-grained visual measure helpful for subtle snap point
distinctions. See Fig. 4.5.

Feature combination: For all features but line alignment, we use code and default
parameters provided by [48]. We reduce the dimensionality of each feature using
principal component analysis (PCA) to compactly capture 90 % of its total variance.
We then standardize each dimension to (μ = 0, σ = 1) and concatenate the reduced
descriptors to form a single vector feature space X, which we use in what follows.

4.3.3 Adapting from the Web to the Egocentric Domain

While we expect egocentric video snap points to agree with the Web photo prior
along many of these factors, there is also an inherent mismatch between the statistics
of the two domains. Egocentric video is typically captured at low resolution with
modest quality lenses, while online photos (e.g., on Flickr) are often uploaded at
high resolution from high-quality cameras. Egocentric videos often contain frames
that are blurry or badly composed. Figure 4.6 shows some typical egocentric frames
and images from SUN dataset, both from shopping malls. The examples show that
despite some partial overlap in content, there is also a clear domain shift between
the two sources of images.
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Ego   Shopping Mall Sun   Shopping Mall

VS.

Fig. 4.6 Comparison of shopping mall frames from egocentric video and shopping mall images
from SUN dataset

Therefore, we establish a domain-invariant feature space connecting the two
sources. Given unlabeled Web photos and egocentric frames, we first compute a sub-
space for each using PCA. Then, we recover a series of intermediate subspaces that
gradually transit from the “source” Web subspace to the “target” egocentric subspace.
We use the geodesic flow kernel (GFK) algorithm of [12], an unsupervised domain
adaptation method which requires no labeled target data and is kernel-based. The
algorithm computes a geodesic flow kernel which can be used to measure similarity
in feature space. Since we assume no labels on the target domain and use a kernel-
based classifier, this makes GFK a good fit. In contrast, supervised domain adaptation
algorithms, which require labels on the target domain, would not be applicable.

Let xi, xj ∈ X denote image descriptors for a Web image i and egocentric frame
j. The idea is to compute the projections of an input xi on a subspace φ(t), for all
t ∈ [0, 1] along the geodesic path connecting the source and target subspaces in a
Grassmann manifold. Values of t closer to 0 correspond to subspaces closer to the
Web photo prior; values of t closer to 1 correspond to those more similar to egocentric
video frames. The infinite set of projections is achieved implicitly via the geodesic
flow kernel [12] (GFK):

KGFK(xi, xj) = 〈z∞
i , z∞

j 〉 =
∫ 1

0
(φ(t)T xi)

T (φ(t)T xj)dt, (4.1)

where z∞
i and z∞

j denote the infinite-dimensional features concatenating all projec-
tions of xi and xj along the geodesic path.

Intuitively, this representation lets the two slightly mismatched domains (Web
and ego) “meet in the middle” in a common feature space, letting us measure simi-
larity between both kinds of data without being overly influenced by their superficial
resolution/sensor differences.
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4.3.4 Predicting Snap Points

With the Web prior, image features, and similarity measure in hand, we can now
estimate how well a novel egocentric video frame agrees with our prior. We take a
simple data-driven approach. We treat the pool of Web photos as a nonparametric
distribution, and then estimate the likelihood of the novel ego frame under that
distribution based on its nearest neighbors’ distances.

Let W = {xw
1 , . . . , xw

N } denote the N Web photo descriptors, and let xe denote
a novel egocentric video frame’s descriptor. We retrieve the k nearest examples
{xw

n1
, . . . , xw

nk
} ⊂ W , i.e., those k photos that have the highest GFK kernel values

when compared to xe.2 Then we predict the snap point confidence for xe:

S(xe) =
k∑

j=1

KGFK

(
xe, xw

nj

)
, (4.2)

where higher values of S(xe) indicate that the test frame is more likely to be human-
taken. For our dataset of N = 130 K images, similarity search is fairly speedy (0.01 s
per test case in Matlab), and could easily be scaled for much larger N using hashing
or kd-tree techniques.

This model follows in the spirit of prior data-driven methods for alternative tasks,
e.g., [14, 30, 40, 46], the premise being to keep the learning simple and let the
data speak for itself. However, our approach is label-free, as all training examples
are (implicitly) positives, whereas the past methods assume at least weak meta-data
annotations.

While simple, our strategy is very effective in practice. In fact, we explored a
number of more complex alternatives—one-class SVMs, Gaussian mixture models,
nonlinear manifold embeddings—but found them to be similar or inferior to the
neighbor-based approach. The relatively lightweight computation is a virtue given
our eventual goal to make snap point decisions onboard a wearable device.

4.3.5 Leveraging Snap Points for Egocentric Video Analysis

Filtering egocentric video down to a small number of probable snap points has many
potential applications. We are especially interested in how they can bolster object
detection and keyframe selection. We next devise strategies for each task that leverage
the above predictions S(xe).

2We use k = 60 based on preliminary visual inspection, and found that results were similar for
other k values of similar order (k ∈ [30, 120]).
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Run Object Detection Snap Point Detection
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Fig. 4.7 Overview of our approach to improve object detection. We first run a deformable parts
object detector trained with intentional (Flickr) photos. Then we run our snap point detection to
determine whether we want to trust the object detection results. If the frame does not appear to be
a snap point, we will discount the object detector’s outputs

Object Detection

In the object recognition literature, it is already disheartening that how poorly detec-
tors trained on one dataset tend to generalize to another [45]. Unfortunately, things
are only worse if one attempts to apply those same detectors on egocentric video
(recall Fig. 4.2). Why is there such a gap? Precisely because today’s very best object
detectors are learned from human-taken photos, whereas egocentric data on wearable
cameras—or mobile robots—consist of very few frames that match those statistics.
For example, a winning person detector on PASCAL VOC trained with Flickr pho-
tos, like the deformable parts model (DPM) [9], expects to see people in similarly
composed photos, but only a fraction of egocentric video frames will be consistent
and thus detectable.

Our idea is to use snap points to predict those frames where a standard object
detector (trained on human-taken images) will be most trustworthy. This way, we
can improve precision; the detector will avoid being misled by incidental patterns in
non-snap point frames. See Fig. 4.7 for an overview of our approach. We implement
the idea as follows, using the DPM as an off-the-shelf detector.3 We score each test
ego frame by S(xe), and then keep all object detections in those frames scoring above
a threshold τ . We set τ as 30 % of the average distance between the Web prior images
and egocentric snap points. For the remaining frames, we eliminate any detections
(i.e., flatten the DPM confidence to 0) that fall below the confidence threshold in the
standard DPM pipeline [9]. In effect, we turn the object detector “on” only when it
has high chance of success.

3http://www.cs.berkeley.edu/~rbg/latent/.

http://www.cs.berkeley.edu/~rbg/latent/
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Fig. 4.8 Overview of our keyframe selection method. Given an egocentric video, we first identify
temporal event segments [27] and for each such event, we select the frame most confidently scored
as a snap point

Keyframe Selection

As a second application, we use snap points to create keyframe summaries of ego-
centric video. The goal is to take hours of wearable data and automatically generate a
visual storyboard that captures key events. We implement a simple selection strategy.
First, we identify temporal event segments using the color- and time-based grouping
method described in [27], which finds chunks of frames likely to belong to the same
physical location or scene. This is done by performing complete-link agglomerative
clustering on both global appearance and temporal nearness of all frames of egocen-
tric video. Then, for each such event, we select the frame most confidently scored as
a snap point. See Fig. 4.8 for an illustration.

Our intent is to see if snap points, by identifying frames that look intentional,
can help distil the main events in hours of uncontrolled wearable camera data. Our
implementation is a proof of concept to demonstrate snap points’ utility. We are
not claiming a new keyframe selection strategy, a problem studied in depth in prior
work [27, 31, 32, 34].

4.4 Datasets and Collecting Ground Truth Snap Points

Datasets: We use two egocentric datasets. The first is the publicly available UT
Egocentric Dataset (Ego),4 which consists of four videos of 3–5 h each, captured with
a head-mounted camera by four people doing unscripted daily life activities (eating,
working, shopping, driving, etc.). The second is a mobile robot dataset (Robot)
newly collected for this project. We used a wheeled robot to take a 25 min video
both indoors and outdoors on campus (coffee shops, buildings, streets, pedestrians,
etc.). The camera is a FireFly USB 2.0 camera, connected to the robot with a pan-tilt
unit. The camera on the robot moves constantly from left to right, pauses, and then
rotates back in order to cover a wide range of viewpoints. Our robot was able to take
pictures from different viewpoints even when physically located at the same place.

4http://vision.cs.utexas.edu/projects/egocentric_data.

http://vision.cs.utexas.edu/projects/egocentric_data
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Both the human and robot datasets represent incidentally captured video from
always-on, dynamic cameras, and unscripted activity. We found other existing ego
collections less suited to our goals, either due to their focus on a controlled envi-
ronment with limited activity (e.g., making food in a kitchen [8, 29]) or their use of
chest-mounted or fisheye lens cameras [7, 37], which do not share the point of view
of intentional hand-held photos.

Ground truth: Our method requires no labeled data for learning: it needs only to
populate the Web prior with human-taken photos. However, to evaluate our method,
it is necessary to have ground truth human judgments about which ego frames are
snap points. The following describes our crowdsourced annotation strategy to get
reliable ground truth.

We created a “magic camera” scenario to help MTurk annotators understand the
definition of snap points. Their instructions were as follows: Suppose you are creating

a visual diary out of photos. You have a portable camera that you carry all day long, in order to

capture everyday moments of your daily life. For instance, you would like to capture scenes such

as a dining place where you have dinner with friends, a dog you stopped to pet, children you saw

playing in a park, the cashier at the check-out counter, a peaceful street where you took a walk at

sunset, or a small but elegant shop that you visited. Unfortunately, your magic camera can also

trigger itself from time to time to take random pictures, even while you are holding the camera. At

the end of the day, all pictures, both the ones you took intentionally and the ones accidentally taken

by the camera, are mixed together. Your task is to distinguish the pictures that you took
intentionally from the rest of pictures that were accidentally taken by your camera.

In Fig. 4.9, we show the instructions that were used on Amazon Mechanical Turk
to collect annotations. Workers were required to rate each image into one of the
four categories: (a) very confidently intentional, (b) somewhat confident intentional,
(c) somewhat confident accidental, and (d) very confident accidental. Since the task
can be ambiguous and subjective, we issued each image to 5 distinct workers. We
obtained labels for 10,000 frames in the ego data and 2,000 frames in the Robot data,
sampled at random.

We devised a scoring system to obtain reliable fine-grained ground truth. Every
time a frame receives a rating of category (a), (b), (c), or (d) from any of the 5 workers,
it receives 5, 2, −1, −2 points, respectively. Most workers assign category (b) or (c)
to the frames and rarely assign category (a), unless they certainly believe that the
image is taken intentionally. As a result, if a frame receives a rating of category (a),
we reward the frame 5 points. On the other hand, since there are many more negative
frames than positive frames, if a frame receives a rating of category (d), it does not
get penalized as much (−2). This lets us rank all ground truth examples by their true
snap point strength.

To alternatively map these total scores across all 5 annotations to binary ground
truth, we threshold a frame’s total score: strictly more than 10 points is deemed
intentional. This means a frame must receive at least one vote on category (a) in order
to be considered an intentional frame (5 votes on category (b) means all workers had
some doubt if the frame was intentional; it will receive a total of 10 points but not
more than 10 points). If one outlier worker assigns an intentional frame a rating of
category (d), as long as the frame receives at least two ratings of category (a) and
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Fig. 4.9 Instructions used on Amazon Mechanical Turk to collect annotations
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two ratings of category (b) from the other four different workers, the frame will still
be an intentional frame.

Annotators found 14 % of the ego frames and 23 % of the robot frames to be snap
points, respectively. The robot data contain more snap points because the robot we
used to collect data had less motion compared with human. Out of the 10,000 labeled
frames in the ego data, there are 998 frames that all five workers reach consensus on
the category, 1748 frames that four workers reach consensus on, and 3871 frames
that three workers reach consensus. Out of the 2,000 labeled frames in the robot
data, there are 213 frames that all five workers reach consensus on the category,
306 frames that four workers reach consensus on, and 691 frames that three workers
reach consensus on. The total MTurk cost was about $500.

Our dataset and software are available online.5

4.5 Results

We experiment on the two datasets described above, ego and robot, which together
comprise 17.5 h of video. Since no existing methods perform snap point detection,
we define several baselines for comparison:

• Saliency [33]: uses the CRF-based saliency method of [33] to score an image.
This baseline reflects that people tend to compose images with a salient object in
the center. We use the implementation of [4], and use the CRF’s log probability
output as the snap point confidence.

• Blurriness [2]: uses the blur estimates of [2] to score an image. It reflects that
intentionally taken images tend to lack motion blur. Note that blur is also used as
a feature by our method; here we isolate how much it would solve the task if used
on its own, with no Web prior.

• People likelihood: uses a person detector to rank each frame by how likely it is
to contain one or more people. We use the max output of the DPM [9] detector.
The intuition is people tend to take images of their family and friends to capture
meaningful moments, and as a result, many human-taken images contain people.
In fact, this baseline also implicitly captures how well-composed the image is,
since the DPM is biased to trigger when people are clear and unoccluded in a
frame (recall Fig. 4.2).

• Discriminative SVM: uses a RBF kernel SVM trained with the ground truth snap
points/non-snap points in the ego data. We run it with a leave-one-camera-wearer-
out protocol, training on 3 of the ego videos and testing on the 4th. This baseline
lets us analyze the power of the unlabeled Web prior compared to a standard
discriminative method. Note, it requires substantially more training effort than our
approach.

5http://vision.cs.utexas.edu/projects/ego_snappoints.

http://vision.cs.utexas.edu/projects/ego_snappoints
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Fig. 4.10 Snap point detection precision/recall on the four ego videos (top row and bottom left)
and the robot video (bottom right). Numbers in legend denote mAP. Best viewed in color (color
figure online)

4.5.1 Snap Point Accuracy

First, we quantify how accurately our method predicts snap points. Figure 4.10 shows
the precision–recall curves for our method and the three unsupervised baselines
(saliency, blurriness, people likelihood). Table 4.1 shows the accuracy in terms of two
standard rank quality metrics, Spearman’s correlation ρ and Kendall’s τ . While the
precision–recall plots compare predictions against the binarized ground truth, these
metrics compare the full orderings of the confidence-valued predictions against the
raw MTurk annotators’ ground truth scores (cf. Sect. 4.4). They capture that even
for two positive intentional images, one might look better than the other to human
judges. We show results for our method with and without the domain adaptation
(DA) step.

Overall, our method outperforms the baselines. Notably, the same prior succeeds
for both the human-worn and robot-worn cameras. Using both the Web prior and
DA gives best results, indicating the value of establishing a domain-invariant feature
space to connect the Web and ego data.

On ego video 4 (v4), our method is especially strong, about a factor of 2 better
than the nearest competing baseline (Blur). On v2, mAP is very low for all methods,
since v2 has very few true positives (only 3 % of its frames, compared to 14 % on
average for Ego). Still, we see stronger ranking accuracy with our Web prior and DA.
On v3, people likelihood fares much better than it does on all other videos, likely
because v3 happens to contain many frames with nice portraits. On the robot data,
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however, it breaks down, likely because of the increased viewpoint irregularity and
infrequency of people.

While our method is nearly always better than the baselines, on v1 Blur is similar
in ranking metrics and achieves higher precision for higher recall rates. This is likely
due to v1’s emphasis on scenes with one big object, like a bowl or tablet, as the
camera wearer shops and cooks. The SUN Web prior has less close-up object-centric
images; this suggests that we could improve our prior by increasing the coverage of
object-centric photos, e.g., with ImageNet-style photos.

Figure 4.11 shows examples of images among those our method ranks most con-
fidently (top) and least confidently (bottom) as snap points, for both datasets. We
see that its predictions capture the desired effects. Snap points, regardless of their
content, do appear intentional, whereas non-snap points look accidental. Please see
our project webpage for more extensive video results.

Figure 4.12 examines the effectiveness of each feature we employ, were we to take
them individually. We see that each one has something to contribute, though they are
best in combination (Fig. 4.10). HOG on ego is exceptionally strong. This is in spite of
the fact that the exact locations visited by the ego camera wearers are almost certainly
disjoint from those that happen to be in the Web prior. This indicates that the prior
is broad enough to capture the diversity in appearance of everyday environments.

All baselines so far required no labeled images, same as our approach. Next we
compare to a discriminative approach that uses manually labeled frames to train a
snap point classifier. Figure 4.13 shows the results, as a function of the amount of
labeled data. We give the SVM-labeled frames from the held-out ego videos. (We do
not run it for the robot data, since the only available labels are scene-specific; it is not
possible to run the leave-one-camera-wearer-out protocol.) Despite learning without
any explicit labels, our method generally outperforms the discriminative SVM. The
discriminative approach requires thousands of hand-labeled frames to come close to
our method’s accuracy in most cases. This is a good sign: while expanding the Web
prior is nearly free, expanding the labeled data is expensive and tedious. In fact, if
anything, Fig. 4.13 is an optimistic portrayal of the SVM baseline. That is because
both the training and testing data are captured on the very same camera; in general
scenarios, one would not be able to count on this benefit.

The results above are essential to validate our main idea of snap point detection
with a Web prior. Next we provide proof of concept results to illustrate the utility of
snap points for practical applications.

4.5.2 Object Detection Application

Today’s best object detection systems are trained thoroughly on human-taken
images—for example, using labeled data from PASCAL VOC or ImageNet. This
naturally makes them best suited to run on human-taken images at test time. Our
data statistics suggest only 10–15 % of egocentric frames may fit this bill. Thus,
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Fig. 4.11 Frames our method rates as likely (top) or unlikely (bottom) snap points. Our predictions
capture the desired effects: snap points appear intentional while non-snap points look accidental
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Fig. 4.12 Accuracy per feature if used in isolation. Performance is best when using all features
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Fig. 4.13 Comparison to supervised baseline. SVM’s mAP (legend) uses all labeled data

using the method defined in Sect. 4.3.5, we aim to use snap points to boost object
detection precision.

We collected ground truth person and car bounding boxes for the ego data via
DrawMe [49]. Since we could not afford to have all 17.5 h of video labeled, we
sampled the labeled set to cover 50–50 % snap points and non-snap points. We
obtained labels for 1000 and 200 frames for people and cars, respectively (cars are
more rare in the videos).
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Figure 4.14 shows the results, using the PASCAL detection criterion. We see that
snap points improve the precision of the standard DPM detector, since they let us
ignore frames where the detector is not trustworthy. Of course, this comes at the cost
of some recall at the tails. This seems like a good trade-off for detection in video,
particularly, since one could anchor object tracks using these confident predictions,
and then iteratively refine less confident predictions with object tracks, in order to
make up the recall.

Figure 4.15 shows some eliminated person detections of both success and failure
cases. While many false positive detections were eliminated, a few true positive
detections from non-snap points frames were also eliminated. In these cases, where
the detector is robust to the poorly composed frames, our approach can reduce recall.
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Fig. 4.14 Snap points boost precision for an off-the-shelf object detector by focusing on frames
that look human-taken

Fig. 4.15 Examples of person detections that are eliminated by our method. The three frames in
the top row are false detections that are properly eliminated by snap point detection. We also include
three failure cases in the bottom row, where true positive detections on non-snap point frames are
eliminated



106 B. Xiong and K. Grauman

4.5.3 Keyframe Selection Application

Keyframe or “storyboard” summaries are an appealing way to peruse long egocentric
video, to quickly get the gist of what was seen. Such summaries enable noveleak
interfaces to let a user “zoom-in” on time intervals that appear most relevant. As a
final proof of concept result, we apply snap points for keyframe selection, using the
method defined in Sect. 4.3.5.

Figures 4.16 and 4.17 show example results on the ego data, where the average
event length is 30 min, and Fig. 4.18 shows results on the robot data. Keyframe
selection requires subjective evaluation; we have no ground truth for quantitative
evaluation. We present our results alongside a baseline that uses the exact same event
segmentation as [27] (cf. Sect. 4.3.5), but selects each event’s frame at random instead
of prioritizing snap points. We also show the result of an existing keyframe selection
method [32], which selects a sequence of keyframes that maximize diversity.

We see that the snap point-based summaries contain well-composed images for
each event. The baseline, while seeing the same events, often uses haphazard shots
that do not look intentionally taken. The method of Liu et al. [32] maximizes diversity
in the low-level image feature space and often selects semantically uninformative
frames that do not look intentionally taken, suggesting it is not a good fit for keyframe
selection on egocentric video. While our method generally appears to outperform
the baselines, it can make mistakes as well. For example, our method picks a frame
of a shopping mall in the first event of the second video (see the first frame in the
seventh row in Fig. 4.16), when it would be preferable to pick a frame when a friend
was eating as done by the baseline (see the first frame in the ninth row in Fig. 4.16)
since the main event was having lunch with a friend. This suggests that our method
can be improved by reasoning about importance or human attention, so that it could
better select keyframes from important time intervals or when the camera wearer
was paying attention.

4.6 Conclusions and Future Work

An onslaught of lengthy egocentric videos is imminent, making automated methods
for intelligently filtering the data of great interest. Whether for easing the transfer
of existing visual recognition methods to the ego domain, or for helping users filter
content to photoworthy moments, snap point detection is a promising direction. Our
data-driven solution uses purely visual information and requires no manual labeling.
Our results on over 17 h of video show that it outperforms a variety of alternative
approaches.

Ultimately, we envision snap point detection being run online with streaming
egocentric video, thereby saving power and storage for an always-on wearable device.
Currently, a bottleneck is feature extraction. In future work, we will consider ways
to triage feature extraction for snap points, and augment the generative model with
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Fig. 4.16 Example keyframe selections for two 4-h ego videos. Top result is produced by our snap
point method, middle result is the event segmentation baseline, and bottom result is the existing
method of [32]. Our method was able to produce a sequence of informative and well-composed
photos. In the first video, we can see that the camera wearer went to a market, had lunch, took a
walk, and then went back home to play lego. The other two summaries are less informative
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Fig. 4.17 Example keyframe selections for two 4-h ego videos. Top result is produced by our snap
point method, middle result is the event segmentation baseline, and bottom result is the existing
method of [32]. While our method generally appears to outperform the baselines, it can make
mistakes as well. Our method picks a frame of a bunch of books on a bookshelf in the second event
of the second video (see the second frame in the seventh row), when it would be preferable to pick
a frame of groceries as done by the method of [32] (see the second frame in the second last row)
since the main event was groceries shopping
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Fig. 4.18 Example keyframe selections for the robot video. Top result is produced by our snap
point method, middle result is the event segmentation baseline, and bottom result is the existing
method of [32]. We see that our snap point-based method was able to pick a representative frame
for each location that the robot visited. The other two summaries contain blurry or uninformative
frames

user-labeled frames to learn a personalized model of snap points. While we are
especially interested in wearable data, our methods may also be applicable to related
sources, such as bursts of consumer photos or videos captured on mobile phones.
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Chapter 5
Photo Composition Feedback
and Enhancement

Exploiting Spatial Design Categories and the Notan
Dark-Light Principle

Jia Li, Lei Yao and James Z. Wang

Abstract In this chapter, we present techniques to provide composition feedback
and enhancement for photographs. In order to suit mobile applications, we have
designed systems requiring minimal input from the users. The essence of compo-
sition is to create unity in a picture, which includes the balance of visual elements
from many aspects. We hereby explore several fundamental concepts in composi-
tion and develop our new methods accordingly. Albeit much exploited by artists,
these concepts have barely crossed over to multimedia or computer vision research.
First, we have developed a tool to categorize images by spatial design into diagonal,
horizontal, vertical, and centered composition types. Composition in this regard is
known to be well associated with aesthetics and emotional response. For instance,
placing visual elements diagonally creates a sense of movement; and horizontal
placement tends to convey tranquility. This composition analysis tool enables the
retrieval of highly aesthetic exemplar images from the corpus which are similar in
content and composition to the snapshot. Second, the arrangement of dark and light
masses in a picture, referred to as Notan in visual art, is a crucial factor in com-
position. We propose an approach to adjust the tonal values in an image, targeting
directly at achieving an aesthetically more appealing Notan. This method addresses
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composition enhancement from a high level of spatial arrangement, a remarkable
difference from improving relatively low-level characteristics such as contrast and
dynamic ranges.

5.1 Introduction

Cameras on mobile phones are becoming the primary means of photo creation for
common people. Because of the convenience of mobile phones, it is effortless to take
snapshots and sharewith others.As a result, pictures are being created at amuch faster
pace. It is estimated that as many as one trillion photos will be taken in the year of
2015. Software tools that make it easier for average photographers to improve photo
taking will likely have broad acceptance. Understanding visual aesthetics [6] can aid
various applications including summarization of photo collections [19], selection of
high-quality images for display [10], and extraction of aesthetically pleasing images
for retrieval [18]. It can also be used to render feedback to the photographer on the
aesthetics of his/her photographs.

In order tomake image aesthetic quality assessmentmore dynamic and to reachout
to the general public with a practical perspective, we conducted research to develop
new technologies that can provide on-site feedback to the photographers [41]. We
focused on feedback from a high-level composition perspective. Composition is
the art of putting components together with conscious thoughts. In photography, it
concerns the arrangement of various visual elements, such as line, color, texture, tone,
and space. Composition is closely related to the aesthetic qualities of photographs.
Partly because the problem is not well defined, insufficient research efforts have been
placed on photographic compositionwithin technical fields such as image processing
and computer vision. We studied photographic composition from the perspective of
spatial design, i.e., how visual elements are geometrically arranged in a picture.

Providing instant feedback on the composition style can help photographers
reframe the subject leading to an aesthetically composed image. We recognized
that the abstraction of composition can be done by analyzing the arrangement of
the objects in the image. This led us to identify five different forms of composi-
tions, namely, textured images, and diagonally, vertically, horizontally, and center
composed images. In our work, these composition types are recognized by three
classifiers, i.e., the “textured” versus “non-textured” classifier, the diagonal element
detector, and the k-NN classifier for “horizontal”, “vertical”, and “centered” compo-
sition categories. Understanding the composition layout of the query image facilitates
the retrieval of images that are similar in composition and content.

Many other applications have been built around suggesting improvizations to
the image composition [3, 16] through image retargeting, and color harmony [5]
to enhance aesthetics. These applications are more offline in nature. Although they
are able to provide useful feedback, it is not on the spot, and requires considerable
input from the user. On-site professional feedback that we propose can accomplish
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image improvements that are impossible once the photographer moves away from
the photo-taking location.

Building upon our feedback framework, we developed a new method to pro-
vide tonal adjustment function based on exemplar pictures chosen by the user. The
retrieved images provided by the composition feedback serve as candidates for the
exemplar. With a simple click, even on a mobile device a user can pick an exemplar
from a short list of images. Particularly in the current work, we make use of an
important composition or design concept of dark and light arrangement of masses,
sometimes referred to as “Notan” by artists. The Notan is fundamental to a compo-
sition that artists are advised to examine the Notan of a painting before heading out
to paint [27].

In the tonal adjustment, we try to reach a chosen Notan design by transforming
the tonal values. This is in some measure like the dodging and burning operations
performed in the darkroom by analog photographers. In dodging and burning, the
photographer chooses an area to darken or brighten so that details in such areas can
be brought out to enhance the overall composition. In our work, for the considera-
tion of both the limitation of the mobile device and the fact that general users are
not necessarily knowledgeable in photography, the computer system automatically
determines the areas that should be brightened or darkened, as well as the level of
adjustment. The decision is guided by a Notan design, which can be either automati-
cally suggested by the computer or selected by the user from a number of candidates.
The involvement of the user is minimal. While tonal adjustment has been a com-
mon image processing technique, our approach offers a new perspective because it
is based on high-level composition concept of Notan rather than low-level features
such as contrast and dynamic range.

Future generations of digital cameras are expected to have access to the high-speed
mobile network and possess substantial internal computational power, the same way
as today’s smart phones.Camera phones can already sendphotos to a remote server on
the Internet and receive feedback from the server [30]. As a photographer composes,
the photos in a lower resolution are streamed via the network to a cloud server. Our
software system on the server analyzes the photos and sends on-site feedback to the
photographer so that immediate recomposition can be possible.We propose a system
comprising of the modules described below.

Given an input image, the composition analyzer evaluates its composition
properties from different perspectives. For example, visual elements with great com-
positional potential, such as diagonals and curves, are detected. Photographs are cat-
egorized by high-level composition properties. Composition-related qualities, e.g.,
visual balance and simplicity of background, are also evaluated. Images similar in
composition as well as content can be retrieved from a database of photos with high
aesthetic ratings so that the photographer can learn through examples.

In the retrieval module, a ranking scheme is designed to integrate the composition
properties into a content-based retrieval system. In our experiments, we used SIM-
PLIcity, an image retrieval system based on color, texture, and shape features [35].
Images with high aesthetic ratings, as well as similar composition properties and
visual features, are retrieved. An effective way to learn photography as a beginner is
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often through observing master works and imitating. Practicing good composition
in the field helps develop creative sensibility and even unique styling. Especially
for amateur photographers, well-composed photographs can be valuable learning
resources. By retrieving high-quality similarly composed photographs, our approach
can provide users with practical assistance in improving photography composition.

In the enhancement module, tonal adjustment can bemade to achieve better com-
position. We explore the concept of Notan, a crucial factor in composition regarding
the arrangement of dark and light masses in an image. A new tonal transformation
method is developed to achieve the desired Notan design with minimal required user
interactions.

The rest of the chapter is organized as follows. The categorization of spatial
design is presented in Sect. 5.2, with corresponding evaluation results in Sect. 5.3.
We describe our Notan-guided tonal transform in Sect. 5.4. Experiments on the tonal
transform method are provided in Sect. 5.5. We summarize in Sect. 5.6.

5.2 Spatial Design Categorization

After studying many guiding principles in photography, we find that there are several
typical spatial designs. Our goal is to automatically classify major types of spatial
designs. In our work, we consider the following typical composition categories:
horizontal, vertical, centered, diagonal, and textured.

According to long-existing photography principles, lines formed by linear ele-
ments are important because they lead the eye through the image and contribute to
the mood of the photograph. Horizontal, vertical, and diagonal lines are associated
with serenity, strength, and dynamism respectively [11]. We thus include horizontal,
vertical, and diagonal in the composition categories. Photographs with a centered
main subject and a clear background fall into the category called centered. The pho-
tos in the textured category appear like a patch of texture or a relatively homogeneous
pattern, for example, a brick wall.

The five categories of composition are not mutually exclusive. We apply several
classifiers sequentially to an image: textured versus non-textured, diagonal versus
non-diagonal, and finally a possibly overlapping classification of horizontal, vertical,
and centered compositions. For example, an image can be classified as non-textured,
diagonal, and horizontal. We use a method in [35] to classify textured images. It
has been demonstrated that retrieval performance can be improved for both textured
and non-textured images by first classifying them [35]. The last two classifiers are
developed in the current work, with details to be presented later.

A conventional image retrieval system returns images according to visual similar-
ity. However, photographers often need to search for pictures based on composition
rather than visual details. To accommodate this, we integrate composition classifica-
tion with the SIMPLIcity image retrieval system [35]. Furthermore, we provide the
option to rank retrieved images by their aesthetic ratings so that the user can focus
on highly rated photos.
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5.2.1 The Dataset

The spatial composition classification method is tested on a dataset crawled from
photo.net, a photography community where peers can share, rate, and critique
photos. These photographs aremostly general-purpose pictures andhave awide range
of aesthetic quality. Among the crawled photos, a large proportion have frameswhich
can distort the visual content in image processing and impact analysis results. We
remove frames from the original images in a semi-automatic fashion. The images
containing frames are picked manually and a program is used to remove simple
frames with flat tones. Frames embedded with pattern or text usually cannot be
correctly removed. These photos are simply removed from the dataset when we
recheck the cropped images in order to make sure the program has correctly removed
the frames from images. We construct a dataset with 13, 302 unframed pictures.
Those pictures are then rescaled so that the long side of the image has at most 256
pixels.Wemanually labeled 222 photos, amongwhich 50 are horizontally composed,
51 are vertically composed, 50 are centered, and 71 are diagonally composed. Our
classification algorithms are developed and evaluated based on this manually labeled
dataset. The entire dataset are used in system performance evaluation.

5.2.2 Textured Versus Non-textured Classifier

We use the textured versus non-textured classifier in SIMPLIcity to separate textured
images from the rest. The algorithm is motivated by the observation that if pixels
in a textured area are clustered using local features, each cluster of pixels yielded
are scattered across the area due to the homogeneity appearance of texture. For
non-textured images, on the other hand, the clusters tend to be clumped. An image
is divided evenly into 4 × 4 = 16 large blocks. The algorithm thus calculates the
proportion of pixels in each cluster that belong to any of the 16 blocks. If the cluster
of pixels is scattered over the whole image, the proportions over the 16 blocks are
expected to be roughly uniform. For each cluster, the χ2 statistic is computed to
measure the disparity between the proportions and the uniform distribution over the
16 blocks. The average value of theχ2 statistics for all the clusters is then thresholded
to determine whether an image is textured or not.

5.2.3 Diagonal Design Element Detection

Diagonal elements are strong compositional constituents. The diagonal rule in pho-
tography states that a picture appears more dynamic if the objects fall or follow a
diagonal line. Photographers often use diagonal elements as the visual path to draw
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viewers’ eyes through the image.1 The visual path is the path of eye movement when
viewing a photograph [36]. When such a visual path stands out in the picture, it
also has the effect of uniting individual parts in a picture. The power of the diagonal
lines in composition was exploited very early on by artists. For instance, Speed [31]
discussed in great details how Velazquez used the diagonal lines to unite a picture in
his painting “The Surrender of Breda.”

Because of the importance of diagonal visual paths for composition, we create a
spatial composition category for diagonally composed pictures. More specifically,
there are two subcategories, diagonal from upper left to bottom right (\) and from
upper right to bottom left (/). We declare the composition of a photo as diagonal if
diagonal visual paths can be detected.

Detecting the exact diagonal visual paths is challenging. Typically, segmented
regions or edges provided by image processing techniques can only be viewed as
ingredients, aka local patterns, either because of the nature of the picture or the
limitation of the processing algorithms. In contrast, an element refers to a global
pattern, e.g., a broken curve (multiple detectable edges) that is present in a large area
of the image plane.

There has been literature on the general principles regarding visual elements to
be briefly described below. We designed our algorithm for detecting diagonal visual
paths according to these principles. While we present these principles using the
diagonal category as an example, they apply in a similar way to other directional
visual paths.

1. Principle of multiple visual types: Lines are effective design elements in creating
compositions, but perfectly straight lines rarely exist in the natural world. Lines
we perceive in photographs usually belong to one of these types: outlines of forms,
narrow forms, lines of arrangement, and lines of motion or force [8]. We do not
restrict diagonal elements to actual diagonal lines of an image plane. They can
be the boundary of a region, a linear object, or even an imaginary line along
which different objects align. Linear objects, such as pathways, waterways, and
the contour of a building, can all create visual paths in photographs. When placed
diagonally, they are generally perceived as more dynamic and interesting than
other compositions. Figure5.1 shows examples of using diagonal compositions
in photography.

Fig. 5.1 Photographs of diagonal composition

1http://www.digital-photography-school.com/using-diagonal-lines-in-photography.

http://www.digital-photography-school.com/using-diagonal-lines-in-photography


5 Photo Composition Feedback and Enhancement 119

2. Principle of wholes or Gestalt Law: Gestalt psychologists studied early on the
phenomenon of human eyes perceiving visual components as organized patterns
or wholes, known as the Gestalt law of organization. According to the Gestalt
law, the factors that aid in human visual perception of forms include proximity,
similarity, continuity, closure, and symmetry [32].

3. Principle of tolerance: Putting details along diagonals creates more interesting
compositions. Visual elements such as lines and regions slightly off the ideal
diagonal direction can still be perceived as diagonal and are usually more natural
and interesting.2

4. Principle of prominence: A photograph can contain many lines, but dominant
lines are the most important in regard to the effect of the picture [9].3 Visual
elements need sufficient span along the diagonal direction in order to strike a
clear impression.

Following the above principles, we first find diagonal ingredients from low-level
visual cues using both regions obtained by segmentation and connected lines obtained
by edge detection. Then, we apply the Gestalt law to merge the ingredients into
elements, i.e., more global patterns. The prominence of each merged entity is then
assessed. We now describe the algorithms for detecting diagonal visual paths using
segmented regions and edges, respectively.

Diagonal Segment Detection: Image segmentation is often used to simplify the
image representation. It can generate semantically meaningful regions that are easier
for analysis. We describe below our approach to detecting diagonal visual paths
based on segmented regions. We use a recent image segmentation algorithm [14]
because it achieves state-of-the-art accuracy at a speed sufficiently fast for real-time
applications. The algorithm also ensures that the segmented regions are spatially
connected, a desirable trait many algorithms do not possess.

After image segmentation, we find the orientation of each segment, defined as the
orientation of themoment axis of the segment. Themoment axis is the direction along
which the spatial locations of the pixels in the segment have maximum variation. It is
the first principal component direction for the set of pixel coordinates. For instance,
if the segment is an ellipse (possibly tilted), the moment axis is simply the long axis
of the ellipse. The orientation of the moment axis of a segmented region measured
in degrees is computed according to Russ [29].

Next, we apply the Gestalt Law to merge certain segmented regions in order to
form visual elements. Currently, we only deal with a simple case of disconnected
visual path, where the orientations of all the disconnected segments are diagonal.

Let us introduce a few notations before describing the rules for merging. We
denote the normalized column vector of the diagonal direction by vd and that of
its orthogonal direction by vc

d . We denote a segmented region by S, which is a set
of pixel coordinates x = (xh, xv)

t . The projection of a pixel with coordinate x onto
any direction characterized by its normalized vector v is the inner product x · v.

2http://www.picture-thoughts.com/photography/compos-ition/angle/.
3http://www.great-landscape-photography.com/photography-composition.html.

http://www.picture-thoughts.com/photography/compos-ition/angle/
http://www.great-landscape-photography.com/photography-composition.html
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The projection of S onto v, denoted by P(S, v), is a set containing the projected
coordinates of all the pixels in S. That is,P(S, v) = {x · v : x ∈ S}. The length (also
called spread) of the projection |P(S, v)| = maxxi,xj∈S |xi · v − xj · v| is the range
of values in the projected set.

The rules for merging, i.e., similarity, proximity, and continuity, are listed below.
Two segments satisfying all of the rules are merged.

• Similarity: Two segments Si, i = 1, 2, with orientations ei, i = 1, 2, are similar if
the following criteria are satisfied:

1. Let [ϕ̌, ϕ̂] be the range for nearly diagonal orientations. ϕ̌ ≤ ei ≤ ϕ̂, i = 1, 2.
That is, both S1 and S2 are nearly diagonal.

2. The orientations of Si, i = 1, 2, are close:

|e1 − e2| ≤ β ,where β is a predefined threshold.

3. The lengths of P(Si, vd), i = 1, 2, are close:

r = |P(S1, vd)|
|P(S2, vd)| , r1 ≤ r ≤ r2 ,

where r1 < 1 and r2 > 1 are predefined thresholds.

• Proximity: Segments Si, i = 1, 2, are proximate if their projections on the diagonal
direction,P(Si, vd), i = 1, 2, are separated by less than p, and the overlap of their
projections is less than q.

• Continuity: Segments Si, i = 1, 2, are continuous if their projections on the direc-
tion orthogonal to the diagonal, P(Si, vc

d), i = 1, 2, are overlapped.

We select the thresholds according to the following:

1. β = 10◦.
2. r1 = 0.8, r2 = 1.25.
3. The values of p and q are decided adaptively according to the sizes of Si,

i = 1, 2. Let the spread of Si along the diagonal line be λi = |P(Si, vd)|. Then
p = kp min(λ1, λ2) and q = kq min(λ1, λ2), where kp = 0.5 and kq = 0.8.
The value of p determines the maximum gap allowed between two disconnected
segments to continue a visual path. The wider the segments spread over the diag-
onal line, the more continuity they present to the viewer. Therefore, heuristically,
a larger gap is allowed, which is why p increases with the spreads of the segments.
On the other hand, q determines the extent of overlap allowed for the two projec-
tions. By a similar rationale, q also increases with the spreads. If the projections
of the two segments overlap too much, the segments are not merged because the
combined spread of the two differs little from the individual spreads.

4. The angular range [ϕ̌, ϕ̂] for nearly diagonal orientations is determined adaptively
according to the geometry of the rectangle bounding the image.
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Fig. 5.2 Diagonal orientation bounding conditions. a Single stripe. b 1
6 → 1

3 stripes. c Angular
range (color figure online)

As stated in [12], one practical extension of the diagonal rule is to have the objects
fall within two boundary lines parallel to the diagonal. These boundary lines are one-
third of the perpendicular distance from the diagonal to the opposite vertex of the
rectangular photograph. This diagonal stripe area is shown in Fig. 5.2a. A similar
suggestion is made in an online article (see footnote 2), where boundary lines are
drawn using the so-called sixth points on the borders of the image plane. A sixth point
along the horizontal border from the upper left corner locates on the upper border
and is away from the corner by one-sixth of the image width. Similarly, we can find
other sixth (or third) points from any corner and either horizontally or vertically.

Suppose we look for an approximate range for the diagonal direction going from
the upper left corner to the bottom right. The sixth and third points with respect to the
two corners are found. As shown in Fig. 5.2b, these special points are used to create
two stripes marked by lime and blue colors respectively. Let the orientations of the
lime stripe and the blue stripe in Fig. 5.2b be ϕ1 and ϕ2. Thenwe set ϕ̌ = min(ϕ1, ϕ2),
and ϕ̂ = max(ϕ1, ϕ2). A direction v ∈ [ϕ̌, ϕ̂] is claimed nearly diagonal. Similarly,
we can obtain the angular range for the diagonal direction from the upper right corner
to the bottom left. The orientations of the stripes is used, instead of nearly diagonal
bounding lines, because when the width and the height of an image are not equal,
the orientation of a stripe twists toward the elongated side to some extent.

From now on, a “segment” can be a merged entity of several segments originally
provided by the segmentation algorithm. For brevity, we still call the merged entity a
segment. Applying the principle of tolerance, we filter out a segment from diagonal
if its orientation is outside the range [ϕ̌, ϕ̂], the same rule that was applied to the
smaller segments before merging.

After removing non-diagonal segments, at last, we apply the principle of promi-
nence to retain only segments with a significant spread along the diagonal direction.
For segment S, if |P(S, vd)| ≥ kl × l, where l is the length of the diagonal line and
kl = 2

3 is a threshold, the segment is declared a diagonal visual path. It is observed that
a diagonal visual path is often a merged entity of several small and non-prominent
individual segments originally produced by the segmentation algorithm.

Diagonal Edge Detection: According to the principle of multiple visual types,
besides segmented regions, lines and edges can also form visual paths. Moreover,
segmentation can be unreliable sometimes because oversegmentation and under-
segmentation often cause diagonal elements to be missed. We observe that among
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photographs showing diagonal composition, many contain linear diagonal elements.
Those linear diagonal elements usually have salient boundary lines along the diago-
nal direction, which can be found through edge detection. Therefore, we use edges
as another visual cue, and combine the results obtained based on both edges and
segments to increase the sensitivity of detecting diagonal visual paths.

We use the Edison algorithm for edge detection [17]. It has been experimentally
demonstrated that the edge detection can generate cleaner edgemaps thanmany other
methods. We examine all the edges to find those oriented diagonally and significant
enough to be a visual path.

Based on the same set of principles, the whole process of finding diagonal visual
paths based on edges is similar to the detection of diagonal segments. The major
steps are described below. We denote an edge by E, which is a set of coordinates of
pixels located on the edge. As with segments, we use the notation P(E, v) for the
projection of E on a direction v.

1. Remove non-diagonal edges: First, edges outside the diagonal stripe area, as
shown in Fig. 5.2a, are excluded. Second, for every edge E, compute the spread
of the projections sd = |P(E, vd)| and so = |P(E, vc

d)|. Recall that vd is the
diagonal direction and vc

d is its orthogonal direction. Based on the ratio sd/so, we
compute an approximation for the orientation of edge E. Edges well aligned with
the diagonal line yield a large value of sd/so, while edges well off the diagonal
line have a small value. We filter out non-diagonal edges by requiring sd/so ≥ ζ .
The choice of ζ will be discussed later.

2. Merge edges: After removing non-diagonal edges, short edges along the diago-
nal direction are merged into longer edges. The merging criterion is similar to
the proximity rule used for diagonal segments. Two edges are merged if their
projections onto the diagonal line are close to each other but not excessively
overlapped.

3. Examine prominence: For edges formed after the merging step, we check their
spread along the diagonal direction. An edge E is taken as a diagonal visual
element if |P(E, vd)| ≥ ξ , where ξ is a threshold to be described next.

The values of thresholds ζ and ξ are determined by the size of a given image. ζ
is used to filter out edges whose orientations are not quite diagonal, and ξ is used to
select edges that spread widely along the diagonal line.We use the third points on the
borders of the image plane to set bounding conditions. Figure5.2c shows two lines
marking the angular range allowed for a nearly diagonal direction from the upper
left corner to the lower right corner. Both lines in the figure are off the ideal diagonal
direction to some extent. Let ζ1 and ζ2 be their ratios of sd to so, and ξ1 and ξ2 be their
spreads over the diagonal line. The width and height of the image are denoted by w
and h. By basic geometry, we can calculate ζi and ξi, i = 1, 2, using the formulas:

ζ1 = h2 + 3w2

2hw
, ζ2 = 3h2 + w2

2hw
, ξ1 = h2 + 3w2

3
√

h2 + w2
, ξ2 = 3h2 + w2

3
√

h2 + w2
.

The thresholds are then set by ζ = min(ζ1, ζ2) and ξ = min(ξ1, ξ2).
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5.2.4 Horizontal, Vertical, and Centered Compositions

Now we present our method for differentiating the remaining three composition
categories: horizontal, vertical, and centered. Photographs belonging to each of these
categories have distinctive spatial layouts. For instance, a landscape with blue sky at
the top and agrassfield at the bottomconveys a strong impressionof horizontal layout.
Images from a particular category usually have some segments that are characteristic
of that category, e.g., a segment lying laterally right to left for horizontal photographs,
and a homogeneous background for centered photographs.

In order to quantitatively characterize spatial layout, we define the spatial rela-
tional vector (SRV) of a region to specify the geometric relationship between the
region and the rest of the image. The spatial layout of the entire image is then rep-
resented by the set of SRVs of all the segmented regions. The dissimilarity between
spatial layouts of images is computed by the IRM distance [15]. Ideally, we want to
describe the spatial relationship between each semantically meaningful object and
its surrounding space. However, object extraction is inefficient and extremely dif-
ficult for photographs in general domain, regions obtained by image segmentation
algorithms are used instead as a reasonable approximation.

The SRV is proposed to characterize the geometric position and the peripheral
information about a pixel or a region in the image plane. It is defined at both the
pixel level and the region level. When computing the pixel-level SRV, the pixel is
regarded as the reference point, and all the other pixels are divided into eight zones
by their relative positions to the reference point. If the region that contains the pixel is
taken into consideration, SRV is further differentiated into twomodified forms, inner
SRV and outer SRV. The region-level inner (outer) SRV is obtained by averaging
pixel-level inner (outer) SRVs over the region. Details about SRV implementation
are given below. SRV is scale-invariant, and depends on the spatial position and the
shape of the segment.

At a pixelwith coordinates (x, y), four lines passing through it are drawn.As shown
in Fig. 5.3a, the angles between adjacent lines are equal and stride symmetrically over
the vertical, horizontal, 45◦ and 135◦ lines. We call the eight angular areas of the
plane upper, upper-left, left, bottom-left, bottom, bottom-right, right, and upper-left
zones. The SRV of the pixel (x, y) summarizes the angular positions of all the other
pixels with respect to (x, y). Specifically, we calculate the area percentage vi of each

Fig. 5.3 Division of the
image into eight angular
areas with respect to a
reference pixel
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zone, i = 0, . . . , 7, with respect to the whole image and construct the pixel-level
SRV Vx,y by Vx,y = (v0, v1, . . . , v7)t .

The region-level SRV is defined in two forms, called inner SRV, denoted by V ′,
and outer SRV, denoted by V ′′, respectively. At any pixel in a region, we can divide
the image plane into eight zones by the above scheme. As shown in Fig. 5.3b, for each
of the eight zones, some pixels are inside the region and some are outside. Depending
on whether a pixel belongs to the region, the eight zones are further divided into 16
zones. We call those zones within the region as inner pieces and those outside as
outer pieces. Area percentages of the inner (or outer) pieces with respect to the area
inside (or outside) the region form the inner SRV V ′

x,y (or outer SRV V ′′
x,y) for pixel

(x, y).
The region-level SRV is defined as the average of pixel-level SRVs for pixels in

that region. The outer SRV VR
′′ of a region R is VR

′′ = ∑
(x,y)∈R Vx,y

′′/m, where m
is the number of pixels in region R. In practice, to speed up the calculation, we may
subsample the pixels (x, y) in R and computeVR

′′ by averaging over only the sampled
pixels. If a region is too small to occupy at least one sampled pixel according to a
fixed sampling rate, we compute VR

′′ using the pixel at the center of the region.
We use the outer SRV to characterize the spatial relationship of a region with

respect to the rest of the image. Then an imagewithN segmentsRi, i = 1, . . . , N , can
be described by N region-level outer SRVs, V ′′

Ri
, i = 1, . . . , N , together with the area

percentages of Ri, denoted by wi. In summary, an image-level SRV descriptor is a
set of weighted SRVs: {(V ′′

Ri
, wi), i = 1, . . . , N}. We call this descriptor the spatial

layout signature.
We use k-NN to classify the three composition categories: horizontal, vertical, and

centered. Inputs to the k-NN algorithm are the spatial layout signatures of images.
The training dataset includes equal number of manually labeled examples in each
category. In our experiment, the sample size for each category is 30. The distance
between the spatial layout signatures of two images is computed using the IRM
distance. The IRM distance is a weighted average of the distances between any pair
of SRVs, one in each signature. The weights are assigned in a greedy fashion so that
the final weighted average is minimal. Details about IRM are referred to [15, 35].

We conducted our experiments on a single compute node with two quad-core
Intel processors running at 2.66GHz and 24 GB of RAM. For the composition
analysis process, the average time to process a 256 × 256 image is 3 s, including
image segmentation [14], edge detection [17], and the composition classification as
described.

5.2.5 Composition-Sensitive Photo Retrieval

The classic approach taken by many image retrieval systems [7] is to measure the
visual similarity based on low-level features. A large family of visual descriptors
have been proposed in the past to characterize images from the perspectives of color,
texture, shape, interesting points, etc. However, due to the fact that many visual
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descriptors are generated by local feature extraction processes, the overall spatial
composition of the image is usually lost. In semantic content oriented applications,
spatial layout information of an imagemay not be critical. But for photography appli-
cations, the overall spatial composition can be a critical factor affecting how an image
is perceived. For photographers, it is often more interesting to search for photos with
similar composition or design style rather than visual details. As described above, our
algorithms capture strong compositional elements in photos and classify them into
six composition categories, with five main categories named textured, horizontal,
vertical, centered and diagonal, and the diagonal category is further divided into two
categories diagonalulbr (upper left to bottom right) and diagonalurbl (upper right to
bottom left). The composition classification is used in the retrieval system to return
images with similar composition.

We use the SIMPLIcity system to retrieve images with similar visual content, and
then re-rank the top K images by considering their spatial composition and aesthetic
ratings. SIMPLIcity is a semantic-sensitive region-based image retrieval system. IRM
is used to measure visual similarity between images. For a thorough description of
algorithms used in SIMPLIcity, readers are referred to the original publication [35]. In
our system, the rank of an image is determined by three factors: its visual similarity to
the query, the spatial composition categorization, and the aesthetic rating. Since these
factors are of different modality, we use a ranking scheme rather than a complicated
scoring equation.

Given a query, we first retrieve K images through SIMPLIcity, which gives us an
initial ranking. When composition is taken into consideration, images with the same
composition categorization as the query are moved to the top of the ranking list.

The composition classification is nonexclusive in the context of image retrieval.
For instance, a textured image can be classified concurrently into horizontal, vertical,
or centered categories. We code the classification results obtained from the classi-
fiers by a six-dimensional vector c, corresponding to six categories (recall that the
diagonal category has two subcategories diagonalulrb and diagonalurbl). Each dimen-
sion records whether the image belongs to a particular category, with 1 being yes
and 0 no. Note that an image can belong to multiple classes generated by different
classifiers. The image can also be assigned to one or more categories among hori-
zontal, vertical, and centered, if neighbors belonging to the category found by k-NN
reach a substantial number (in our experiments k/3 is used). Nonexclusive classifi-
cation is more robust than exclusive classification in practice because a photograph
may be reasonably assigned to more than one composition category. Nonexclusive
classification can also reduce the negative effect of misclassification into one class.
Figure5.4 shows example pictures that are classified as more than one category.

The compositional similarity between the query image and another image can be
defined as

si =
3∑

k=0

I(cqk = cik and cqk = 1) + 2
5∑

k=4

I(cqk = cik and cqk = 1),
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Fig. 5.4 Photographs classified into multiple categories. Categories are shown with symbols.
a | and \. b − and /. c | and /. d | and /

where cq and ci are categorization vectors for the query image and the other image,
and I is the indicator function returning 1 when the input condition is true, 0 oth-
erwise. The last two dimensions of the categorization vector correspond to the two
diagonal categories. We multiply the matching function by 2 to encourage match-
ing of diagonal categories in practice. Note that the value of si is between 0 and 6,
because one image can at most be classified into five categories, which are textured,
diagonalulbr , diagonalurbl, and two of the other three. Therefore by adding compo-
sition classification results, we divide the K images into 8 groups corresponding to
compositional similarity from 0 to 7. The original ranking based on visual similarity
remains within each group. Although the composition analysis is performed on the
results returned by SIMPLIcity, we can modify the influence of this component in
the retrieval process by adjusting the number of images K returned by SIMPLIcity.
The larger K is, the stronger factor composition is to overall retrieval.

5.3 Evaluation Results on Composition Feedback

The spatial design categorization process was incorporated as a component into our
OSCAR (On-Site Composition and Aesthetics feedback through exemplars) system
[41]. User evaluation was conducted on composition layout classification, similar-
ity and aesthetics quality of retrieved images, and the helpfulness of the feedback
for improving photography. We only present results for the study on composition
classification here. Interested readers are referred to that paper for comprehensive
evaluation results. Professional photographers or enthusiasts would have been ideal
subjects for such studies. However, due to time constraints, we were unable to recruit
professionals. Instead, we recruited around 30 students, most of whomwere graduate
students at Penn State with practical knowledge of digital images and photography.
All photos used in these studies are from photo.net.

A collection of around 1,000 images were randomly picked to form the dataset for
the study on composition. Each participant is provided with a set of 160 randomly
chosen images and is asked to describe the composition layout of each image. At an
online site, the participants can view pages of test images, next to each of which are
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Table 5.1 Distribution of the entropy for the votes of users

[0,0.5] (0.5,1.0] (1.0,1.5] (1.5,2.0] (2.0, 2.5]

h 36.12 29.96 17.18 15.42 1.32

v 12.98 45.67 19.71 20.19 1.44

c 25.36 45.48 13.12 14.87 1.17

ulbr 12.99 44.16 19.48 19.48 3.90

urbl 16.87 43.37 18.07 20.48 1.20

t 10.77 36.92 10.77 36.92 4.62

none 6.59 39.56 17.58 34.07 2.20

For each composition category, the percentage of photos yielding a value of entropy in any bin is
shown. h: horizontal, v: vertical, c: centered, ulbr: diagonal (upper left, bottom right), urbl: diagonal
(upper right, bottom left), t: textured, none: none of the above

seven selection buttons: “Horizontal”, “Vertical”, “Centered”, “Diagonal (upper left,
bottom right)”, “Diagonal (upper right, bottom left)”, “Patterned”, and “None of the
above”. Multiple choices are allowed. We used “Patterned” for the class of photos
with homogeneous texture (or the textured class in our earlier description).We added
the “none of the above” choice to allow more flexibility for the user’s perception. A
total of 924 images were voted each by three or more users.

In order to understand compositional clarity, we examine the variation in users’
votes on composition layout.Wequantify the ambiguity in the choices of composition
layout using entropy. The larger the entropy in the votes, the higher the ambiguity
is in the composition layout of the image. The entropy is calculated by the formula∑

pi log 1/pi, where pi, i = 0, . . . , 6, is the percentage of votes for each category.
The entropy was calculated for all 924 photos and its value was found to range
between 0 and 2.5. We divided the range of entropy into five bins. The photos are
divided into seven groups according to the composition category receiving the most
votes. In each category, we compute the proportion of photos yielding a value of
entropy belonging to any of the five bins. These proportions are reported in Table5.1.
We observe that among the seven categories, horizontal and centered categories
have the strongest consensus among users, while “none of the above” is the most
ambiguous category.

We evaluate our composition classification method in the case of both exclusive
classification and nonexclusive classification. The users’ votes on composition are
used to form the ground truth, with specifics to be explained shortly. We consider
only six categories, i.e., horizontal, vertical, centered, diagonalulbr , diagonalurbl, and
textured for this analysis. The “none of the above” category was excluded for the
following reasons:

• The “none of the above” category is of great ambiguity among users, as shown by
the above analysis.

• Only a very small portion of images is predominantly labeled as “none of the
above.” Among the 924 photos, 17 have three or more votes for “none of the
above.”
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Table 5.2 The confusion matrix for exclusive classification of 494 images into six composition
categories

h v c ulbr urbl t

h 107 0 20 3 8 4

v 1 32 39 3 2 10

c 10 7 132 8 11 12

ulbr 4 0 5 18 0 2

urbl 2 1 13 0 22 1

t 0 2 6 0 0 9

Each row corresponds to a ground truth class. h: horizontal, v: vertical, c: centered, ulbr: diagonal
(upper left, bottom right), urbl: diagonal (upper right, bottom left), t: textured, none: none of the
above

• We notice that these 17 “none of the above” photos vary greatly in visual appear-
ance; and hence it is not meaningful to treat such a category as a compositionally
coherent group. It is difficult to define such a category. A portion of images in this
category shows noisy or complex scenes without clear centers of attention. This
can be a separate category for consideration in future work.

We conducted exclusive classification only on photos of little ambiguity according
to users’ choices of composition. The number of votes a category can receive ranges
from zero to five. To be included in this analysis, a photo has to receive three or more
votes for one category (that is, the ground-truth category) and no more than one vote
for any other category. With this constraint, 494 out of the 924 images were selected.
Table5.2 is the confusion matrix based on this set of photos.

We see that the most confusing category pairs are vertical versus centered and
diagonalurbl versus centered. Figure5.5a shows some examples labeled as vertical

Fig. 5.5 Photo examples mistakenly classified as centered by our algorithm. a Photos labeled as
vertical by users. b Photos labeled diagonalurbl by users
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by users, while classified as centered by our algorithm. We observe that the mis-
classification is mainly caused by the following: (1) vertical images in the training
dataset cannot sufficiently represent this category; (2) users are prone to label images
with vertically elongated objects as vertical, although such images may be classified
as centered in the training data; and (3) the vertical elements fail to be captured by
image segmentation. Figure5.5b gives diagonalurbl examples mistakenly classified
as centered. The failure to detect diagonal elements results mainly from: (1) diag-
onal elements located beyond the diagonal tolerance set by our algorithm; and (2)
imaginary diagonal visual paths, e.g., the direction of an object’s movement.

In nonexclusive classification, the criterion for a photo being assigned to one
category is less strict than in the exclusive case. A photo is labeled as a particular
category if it gets two or more votes on that category. In total there are 849 out of
the 924 photos with at least one category voted twice or more. The results reported
below is based on these 849 photos.

The composition categorization of a photo is represented by a six-dimensional
binary vector, with 1 indicating the presence of a composition type, and 0 the absence.
Let M = (m0, . . . , m5) and U = (u0, . . . , u5) denote the categorization vector gen-
erated by our algorithm and by users respectively. The value m0 is set to 1 if and
only if there are 10 or more nearest neighbors (among 30) labeled as horizontal. The
values of m1 and m2, corresponding to the vertical and centered categories are set
similarly. For the diagonal categories, mi, where i = 3, 4, is set to 1 if any diagonal
element is detected by our algorithm. Finally, m5 is set to 1 if the textured versus
non-textured classifier labels the image as textured. Three ratios are computed to
assess the accuracy of the nonexclusive classification.

• Ratio of partial detection r1: the percentage of photos for which at least one of
the user labeled categories is declared by the algorithm. Based on the 849 photos,
r1 = 80.31%.

• Detection ratio r2: the percentage of photos forwhich all the user labeled categories
are captured by the algorithm. Define M 	 U if mj ≥ uj for any j ∈ [0, 5]. So r2
is the percentage of images for which M 	 U. We have r2 = 66.00%.

• Ratio of perfect match r3: the percentage of photos for which M = U. We have
r3 = 33.11%.

5.4 Notan-Guided Tonal Transform

The tonal value, i.e., the luminance, in a picture is a major factor for the visual
impression conveyed by the picture. In art, the luminance at a location is simply
called the value. Artists have remarked on the prominent role of values even for
color paintings. [31] wrote:

By drawing is here meant the expression of form upon a plane surface. Art probably owes
more to form for its range of expression than to color. Many of the noblest things it is capable
of conveying are expressed by formmore directly than by anything else. And it is interesting



130 J. Li et al.

to notice how some of the world’s greatest artists have been very restricted in their use of
color, preferring to depend on form for their chief appeal.

While recognizing the importance of color, Payne [23] remarked “Perhaps color
might be called a nonessential factor in composition, since unity may be created
without it.” Regarding values, Payne [23] wrote:

Dark and light usually refers to the range of values in the entire design while light and shade
generally denote the lighted and shaded parts of single items. Both light and dark and light
and shade are active factors in composition.

The use of light and shade to create the sense of solidity or relief on a plane surface, a
technique called chiaroscuro, is an invention in theWest. The giants in art, Leonardo
Da Vinci, Raphael, Michelangelo, and Titian, are masters of this technique. The art
of the East has a very different tradition, emphasizing the arrangement of dark and
light in the overall design. Speed [31] called this approach of the East mass drawing.
Again quoting from [31],

The reducing of a complicated appearance to a few simple masses is the first necessity of
the painter. . . . The art of China and Japan appears to have been more influenced by this
view of natural appearances than that of the West has been, until quite lately. . . . Light and
shade, which suggest solidity, are never used, a wide light where there is no shadow pervades
everything, their drawing being done with the brush in masses. (referring to the East art)

Until fairly modern time, Chinese paintings were mostly done in black ink, and
even the colored ones have very limited range in chroma. In Chinese ink painting,
a graceful juxtaposition of dark and light is a preeminent principle for aesthetics,
calledNong-Dan. “Nong” literallymeans high concentration in liquid solution, while
“Dan” means thin concentration. For ink, Nong-Dan refers to the concentration of
black pigment. Hence, “Nong” leads to dark, and “Dan” leads to light. The same
concept is used in Japanese painting and the Japanese imported directly the two
Chinese characters in Kanji. The English translation from Kanji is Notan.

Relatively recently, Notan has been used in the West as a compact word meaning
the overall design in black and white, or a small number of tonal scales. Mass Notan
study focuses on the organization of simplified tonal structure rather than details. For
example, a scene is reduced to an arrangement of major shapes (mass) with different
levels of tonal values. The goal of a mass Notan study is to create a harmonious and
balanced design (or “big picture”). [27] recommends strongly the practice of mass
Notan study as an initial step in painting to secure balanced and pleasing composition.

The essence of Notan is also well recognized in photography. Due to the dif-
ficulty in controlling light, especially in outdoor environments, photographers use
dodging and burning techniques to achieve desired exposures for regions that can-
not be reached by a single shot. Traditionally, dodging and burning are darkroom
techniques applied during the film-to-paper printing process to alter the exposure of
certain areas without affecting the rest of the photo. Specifically, dodging brightens
an area, and burning darkens. Ansel Adams extensively used dodging and burning
techniques in developing many of his famous prints. He mentioned in his book The
Print [2] that most of his prints are not the reproduction of the scenes but instead his
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visualization of the scenes. As Ansel Adams put it, “dodging and burning are steps
to take care of mistakes God made in establishing tonal relationships.”

In the digital era, to realize one’s personal visualization, a photographer can mod-
ify the tonal structure using photo editing software. However, applying dodging and
burning digitally can be time-consuming and requires a considerable level of mastery
in photography, both technically and artistically.

In our work, we aim at developing a system that performs dodging and burning
kind of adjustments on the tonal values of photographs with minimum user involve-
ment. This is motivated by the need to enhance photos on mobile devices and to
reach a broader set of users. The restrictive interface of the mobile device prohibits
extensive manual photo editing. Moreover, an average user may not have sufficient
art understanding and professional patience to improve the composition effectively,
as the process can be much more sophisticated than a mere change of dynamic range
or contrast. Although most people are clear about whether they find a photo aes-
thetically pleasing, it is a different matter when it comes to creating an aesthetically
pleasing picture. This is the gap between an amateur and an artist.

Our system, targeting an average user, makes photo composition editing nearly
automatic. In fact, the only involvement of a user is to input his/her judgment on
whether a picture or a design is appealing or desired. It is a small step to turn the
system fully automatic, butwe feel that it is actually beneficial to inject some personal
taste as allowed by the amount of interaction on the mobile device. Specifically, two
strategies are exploited. First, to enhance a picture, a collection of Notan structures
are created based on the original picture. A user can select a favorite Notan or the
system chooses one closest to the Notan structure of an exemplar picture. This helps
the user pinpoint easily a favored design. Second, in order to make the altered picture
convey such a design, tonal transform is applied. This step is automatic by matching
the tonal value distributions with those of the exemplar picture. The differences
between our system and some existing tonal transform methods will be discussed at
a more technical level in a short moment. In the current work, we assume a given
exemplar picture. As an extension to the work, we can invoke a search engine using
text and/or images to suggest exemplar pictures. A plethora of highly aesthetic online
photo collections exist.

Prior research most relevant to ours includes style transfer and tone reproduction.
As a particular type of style, color transfer studies the problem of applying the color
palette of a target image to a source image, essentially reshaping the color distribution
of the source image to accord with the target at some cost. The histogram matching
algorithm derives a tone-mapping function from the cumulative density functions of
the source and the target. Various techniques have been developed [1, 21, 24–26, 28,
39, 40]. These methods process the color distribution globally and do not consider
spatial information. Pixels of the same color are subject to the same transformation
regardless of whether they are in dark or light regions. Artifacts can be easily brought
in when the source histogram is very different from the target. [37] conducted color
transfer between corresponding regions chosen by the user in the source image and
the target image. [33] formed correspondence between segmented regions in the
source image and the target before color transfer.
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5.4.1 Method Overview

Let us first define a few terminologies. Source image is the image to be altered, while
the exemplar image serves as a good example for the luminance distribution and
possibly the Notan as well. The Notan we intended to obtain for the source image is
source Notan, while the Notan of the exemplar image is called exemplar Notan. The
tonal value or luminance will also be referred to as intensity in the sequel.

The outline of the Notan-guided tonal transform is as follows:

• Identify the source Notan and exemplar Notan.
• PerformNotan-guided region-wise histogrammatching between the source image
and the exemplar image.

• Postprocess the transformed image to remove possible artifacts at region bound-
aries.

The source and exemplar images are subject to segmentation by the algorithm
in [14]. The average luminance of each segment is computed. To obtain the exem-
plar Notan, we first obtain a binarization threshold for the luminance using Otsu’s
method [20] which assumes a bimodal distribution and calculates the optimum
threshold such that the two classes separated by the threshold have minimal intra-
class variance. This threshold decides whether any segmented region in the exem-
plar image is either dark (below threshold) or light (above). The source Notan can
be obtained by different schemes. When the luminance threshold slides from small
to large, more segmented regions in the source image are marked as dark. Because
there are only finitely many segments, there are only finitely many possible Notans
by thresholding at different values. With n segments, there are at most n + 1 Notans.
We can either let the algorithm choose a Notan automatically for the source image
or let the user select his favorite Notan from the candidates. In the fully automatic
setting, we have tested two schemes. We can either use Otsu’s method to decide the
threshold between dark and light (Automatic Scheme 1) or choose the source Notan
with the proportion of dark area closest to that of the exemplar Notan (Automatic
Scheme 2).

The algorithm for Notan-guided region-wise histogram matching will be pre-
sented later. The proposed approach differs from existing work in several ways.
Instead of deriving a global tone-mapping function from two intensity distributions, a
mapping function is obtained for each region in the source image. Themapping func-
tion is parameterized by the generalized logistic function. Although the regions are
subject to different transforms, the parameters in the region-wise mapping functions
are optimized simultaneously to minimize an overall matching criterion between the
source and the exemplar images. The approach does not require a correspondence
established between regions in the two images. Furthermore, as elaborated in the next
subsection, the spatial arrangement of dark and light, as embedded in Notan, plays
an important role in determining the transform. In another word, the tonal transform
is not just for matching two intensity histograms, but also an attempt to reach certain
spatial patterns of dark and light.
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Compared with traditional histogram manipulation algorithms, one advantage of
applying transformation functions in a region-wise fashion is to avoid noisy artifacts
within regions. However, its performance depends on region segmentation to some
extent. If the same object is mistakenly segmented into several regions, different
transformation functions applied on its parts may cause artifacts. In real dodging
and burning practice, a similar situation can be remedied by careful localized motion
of the covering material during the darkroom exposure development or applying
a subtle dodging/burning brush over a large area in digital photo editing software.
We use fuzzy region maps to cope with this problem. Bilateral filter is employed to
generate fuzzy maps for regions. Bilateral filter is well known for its edge-preserving
property. It considers both spatial adjacency and intensity similarity. We use the fast
implementation in [22].

5.4.2 Region-Wise Histogram Matching

The intensity histogram records the proportion of pixels at a series of tonal scales,
but not where the tonal values locate in the image. In this subsection, we describe
the method for region-wise histogram matching between the source and exemplar
images. A certain level of spatial coherence is obtained by the region-wise approach
in comparison to the existing methods of global histogram matching. In the next
subsection, we will revise the histogram matching criterion to take into account
Notan, thereby attempting directly to achieve a favored spatial design.

A sub-histogram is defined as the intensity histogram of a region. The image seg-
mentation algorithm in [14] is used to divide an image into semantically meaningful
regions. The image is converted into the CIELab color space and the luminance
channel is extracted to build the per region sub-histogram. The range of the intensity
values is [0, 1]. In the discussion below, the histogram is in fact a probability density
function. We use the terminology “histogram” loosely here to be consistent with the
often used term “histogram matching.”

Let Hi(x), x ∈ [0, 1] be the sub-histogram for the ith region and n be the number
of regions. Let H(x) be the histogram for the entire image. We parameterize Hi(x)
by a single Gaussian or a two component Gaussian mixture. The main reason to use
a Gaussian mixture instead of the usual histogram obtained by discretization is to
ensure smoothness of H, a necessity for applying an optimization software package
used in the region-wise histogram matching algorithm. Although Hi(x) should have
finite support, we ignore the tail of the Gaussian distribution because the variance of
X is usually small in a single region obtained by similarity-based segmentation. The
two-component option is provided to accommodate intensity distributions of clearly
textured regions. Suppose the number of components for Hi(x) is Ki ∈ {1, 2}. We
have

H(x) =
n∑

i=1

Hi(x) =
n∑

i=1

Ki∑

j=1

pij
1√
2πσij

exp− (x − uij)
2

2σ 2
ij

.
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We use an unsupervised clustering algorithm [4] to estimate Ki and the mean μij

and the variance σij of each component. Similarly, the intensity distribution of the
exemplar image H̃ is also approximated by GMM. Instead of summing over sub-
histograms, a single GMMwith K̃ components is used to represent the entire image.
K̃ is also estimated by the algorithm in [4].

To measure the distance between two distributions with support on [0, 1], we use
the integrated difference between their cumulative density functions [38]:

D(H, H̃) =
∫ 1

0

(∫ λ

0
H(x)dx −

∫ λ

0
H̃(x)dx

)2

dλ. (5.1)

We adopt a special case of the generalized logistic function as the tone-mapping
function. The generalized logistic function is defined as

Y(x) = A + K − A

(1 + Qe−B(x−M))1/v
.

The general expression above provides a high degree of flexibility. We retain only
two parameters b andm to allow changes in curvature and translation of the inflection
point [34].

Y(x) = 1

1 + e−b(x−m)
. (5.2)

The reason for choosing the above function is that it can accomplish different types
of tonal adjustment by setting different parameters, allowing a unified expression for
the transformation functions. Moreover, the logistic curve tends to preserve contrast.
Figure5.6 illustrates some tone-mapping curves generated by (5.2) with different
values of b and m.

Fig. 5.6 Tone-mapping
curves with various
parameters
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Weconstrain the parameter space ofb andm such thatY(x) inEq. (5.2) ismonoton-
ically increasing and the intensity range after transformation is not compressed too
much. The first condition can be met provided b > 0. For the second condition, we
set two thresholds t0 and t1 such that:

Y(0) = 1

1 + ebm
≤ t0, Y(1) = 1

1 + e−b(1−m)
≥ t1. (5.3)

A right (left) translation of the inflection point, i.e., m 
 0.5 (m � 0.5), will darken
(brighten) the region, causing a burning (dodging) effect.

Let the parameters of the transform Y(x) for the ith region be bi and mi.
For the overall image, the tonal transformation is then parameterized by T =
{m1, b1, . . . , mn, bn}. After we apply the transformation functions on individual
regions, the intensity distribution of the modified image becomes

H(y; T) =
n∑

i=1

dXi(y)

dy
Hi(Xi(y); T),

where Xi(y) = Y−1
i (y). (5.4)

We cast region-wise histogram matching as an optimization problem. The objec-
tive function F(T) measures the distance between the intensity distributions of the
transformed source image and the exemplar image. Suppose the source image con-
tains n regionswith average intensitiesμi, i = 1, . . . , n, and the average intensities of
the regions after tone mapping become μ′

i, i = 1, . . . , n. The optimization problem
for the region-wise histogram matching is:

F(T) = min
T

D(H(y; T), H̃(y)),

s.t. (μi − μj)(μ
′
i − μ′

j) ≥ 0,

∀1 ≤ i ≤ n, 1 ≤ j ≤ n. (5.5)

Recall D is the distance defined in (5.1). The optimization is constrained so that the
original order of region intensities is retained (the relative brightness of the regions
will not be reversed). We use the package called CFSQP developed at the University
of Maryland [13] to solve the optimization.

The major problem with the global tone-mapping function is the complete loss of
the spatial information. The approach of transferring color between matched regions
is intuitive but requires correspondence between regions, which is only meaningful
for images very similar in content. For example, Fig. 5.7a shows a pair of images
taken as the source image and the exemplar image. Their intensity distributions are
very different from each other. Figure5.7 compares two global approaches, global
histogram matching and color normalization [28], with the proposed region-wise
approach. When the source image is low-keyed and the exemplar is high-keyed, a
global mapping function tends to remove too many details in the dark areas and
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Fig. 5.7 Comparison between global and region-wise tone mapping. a Left to right the source
image, the exemplar image, the intensity histograms (gray for the source image and blue for the
exemplar).bFirst three images from left to right themodified image by histogrammatching, by color
normalization, and by region-wise adjustment. Last image: the segmented regions. c Tone-mapping
curves. Left histogram matching (blue) and color normalization (red). Right Transformation func-
tions for different regions (red curve for black region; green for gray region; and blue for white
region). d Left to right histograms for the segmented region shown in black, region in gray, region
in white, and the entire image before and after matching. The histograms in gray are for the original
image before matching; red for the modified image; and blue for the exemplar image. Row 1 results
for global histogram matching. Row 2 color normalization. Row 3 region-wise histogram matching
(color figure online)

overexpose the light areas. With region-wise adjustments, however, each transfor-
mation function contributes to the overall histogram matching while its transformed
range is not severely constrained by other regions. For example, the tone-mapping
curve of a dark region can have a higher growth rate than light regions (Fig. 5.7b).
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5.4.3 Notan-Guided Matching

The objective function for region-wise histogrammatching provided in (5.5) ignores
the spatial arrangement of dark and light. We thus introduce a new objective function
dependent on the Notan. Consequently, the revised image tends to yield a Notan
appearance close to the specified source Notan. Let Hdark and Hlight be the intensity
distributions for the dark and light areas of the source image respectively, where
the dark and light areas are decided by the source Notan. Similarly, let H̃dark and
H̃light be the intensity distributions for the dark and light areas of the exemplar image
respectively. The new optimization problem is

Fn(T) = min
T

(
D(Hdark(y; T), H̃dark(y)) + D(Hlight(y; T), H̃light(y))

)
,

s.t. (μi − μj)(μ
′
i − μ′

j) ≥ 0, for any 1 ≤ i ≤ n, 1 ≤ j ≤ n. (5.6)

Comparing optimization (5.6) with (5.5), we see that the new objective function is
the sum of two separate distribution distances, one involving only the dark areas in
the two images and the other only the light areas. However, because of the constraints
to retain the intensity ordering of the regions, the optimization problem cannot be
decoupled into one for the dark areas and one for the light areas.

Figure5.8 illustrates the impact of the chosen source Notan on themodified image
under the same exemplar image and exemplarNotan. Two different Notans are shown
for each source image in Fig. 5.8. The Notans are accompanied by their correspond-
ing modified images. By imposing different Notans, the modified images generated
by optimization (5.6) present quite different dark-light compositions. On a mobile
device, we can potentially show users a few options of source Notans and let them
pick what they find most appealing.

A side benefit of Notan-guided matching is to better keep contrast. When the
proportions of dark and light areas differ substantially between the source image
and the exemplar, matching without Notan often results in over reduced contrast
(an overall whitened or blackened look). The effect of large disparity in dark-light
proportion ismitigatedby theNotan,which enforcesmatching thedark areas and light
areas separately. For example, the exemplar image in Fig. 5.9b has a proportionally
small dark area (rocks) which contrasts with a large light area, while the source image
has a relatively large dark area. In this example, we used the threshold given byOtsu’s
method to generate the source Notan. The modified image obtained by region-wise
histogram matching without Notan (optimization 5.5), shown in Fig. 5.9d, seems to
be overexposedwithmuch reduced contrast. This issue is more serious withmodified
images obtained by global histogram matching in (e) and color normalization in (f).
The result of Notan guided matching in (c) keeps the best contrast.

Considering the stringent interface on amobile device,we explore a scenariowhen
an exemplar image is not available. Interestingly, we may enhance the composition
of an image by just specifying a desired Notan. In Fig. 5.10, the source image itself
serves as the exemplar image. The exemplar Notan is obtained using the threshold
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Fig. 5.8 Modification bydifferentNotan patterns for two example images.Top row in each example:
the source image (left) and the exemplar image (right). Bottom row in each example: two source
Notan patterns and the modified images (on the right of the corresponding Notan). a Example 1. b
Example 2

of Otsu’s method. The source Notan is manually chosen, supposedly more appeal-
ing than the automatically picked Notan. The results demonstrate that the modified
images indeed seem better composed. This self-boosting method may seem surpris-
ing at first glance. To better understand this, note that the exemplar Notan will have a
more contrasted dark and light because of the way the threshold is chosen. It should
also be closer to what the Notan of the source image without modification appears
to be. However, the spatial arrangement of the dark and light is not as pleasant as
what is specified by the manually chosen Notan. What is essentially done by our
algorithm is to make the manually set dark and light areas appear better divided and
hence more obvious to the eye. This is achieved by histogram matching with the
exemplar dark and light areas, which by set up are well contrasted.

This experiment of self-boosting composition enhancement hints that choosing a
source Notan is more important than an exemplar image. Here, we used the source
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Fig. 5.9 Contrast comparison. a Source image. b Exemplar image. c Notan-guided region-wise
histogram matching (optimization 5.6). d Modified image generated by region-wise histogram
matching (optimization 5.5). e Global histogram matching. f Color normalization

Fig. 5.10 Modifying images by choosing a favored Notan without using an exemplar image. Left
to right original image (serving as both source and exemplar), exemplar Notan, source Notan
(manually selected), modified image

image as the exemplar image. We may also generate artificial intensity distributions
for dark and light and plug them into optimization (5.6), thereby bypassing com-
pletely exemplar image and exemplar Notan. This can be interesting to investigate.

As explained in Sect. 5.4.1, we allow a fully automatic setting where the Notan
of the source image is chosen among a set of possible Notans generated by different
thresholds between dark and light. This is motivated by the need of mobile devices
where minimal user interaction is desired. In this setting, we exploit the exemplar
image not only for histogram matching but also for selecting a source Notan. The
underlying assumption is that the exemplar image is well composed in the two tonal
scales of dark and light. The source Notan closest to the exemplar Notan in terms
of dark and light proportions is used. This is no doubt a rather simple similarity
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Fig. 5.11 Comparison of algorithms by modified images and their histograms. a Exemplar image.
b Modified source image by global histogram matching. c Color normalization. d Notan-guided
region-wise histogram matching
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defined for twoNotans. In futurework,we can employ amore sophisticated similarity
measure between twoNotans. For the experimental results in Sect. 5.5, this automatic
setting is employed.

5.5 Experimental Results in the Automatic Setting

In Fig. 5.11, we show results by our Notan-guided region-wise histogram matching
algorithm and comparewith global histogrammatching and color normalization. The
source Notan is automatically chosen (see description in the previous section). Our
new method tends to generate smoother histograms and better controlled dynamic
range. The other methods more often yield burned out areas.

Figure5.12 presents more examples. In the experiments, the number of segments
is set to 3 for simple scenes and6 for complex scenes.Note thatmore segments require
more parameters to be estimated and therefore more computation. We observe that
the global histogrammatching often yields the artifact of abrupt changes in intensity.

Fig. 5.12 Additional experimental results. a The source image. bThe exemplar. cGlobal histogram
matching. d Color normalization. e Notan-guided region-wise histogram matching
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The color normalization method uses a linear mapping function whose growth rate is
determined by the variances of the source and the exemplar distributions. A high (or
low) growth rate can burn out (or flatten) the final image. Our new method controls
better the extreme cases by regulating the transformation parameters.

5.6 Summary

This chapter presented two computerized approaches to provide photographers with
on-site composition feedback and enhancement suggestions. The first approach is
based on spatial design categorization that places a photo into one or more categories
including horizontal, vertical, diagonal, textured, and centered. Such categorization
enables retrieval of exemplar photos with similar composition. The second approach
utilizes the concept of Notan in visual art for tonal adjustment. A user can improve
the aesthetics of a given photo through transforming the dark-light configuration
toward that of a target photo. We view this work as just the beginning of a new
direction under which principles of composition in visual art are used to guide the
development of computational photography techniques.

Acknowledgments This material is based upon work supported by the National Science Founda-
tion under Grant Nos. 0347148 and 0936948.
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Chapter 6
FaceSimile: A Mobile Application for Face
Image Search Based on Interactive Shape
Manipulation

Li Zhang, Brandon M. Smith and Shengqi Zhu

Abstract Current face image retrieval methods achieve impressive results, but lack
efficient ways to refine the search, particularly for geometric face attributes. Users
cannot easily find faces with slightly more furrowed brows or specific leftward pose
shifts, for example. This creates significant problems, especially for mobile users
with small screens, low bandwidth, and awkward keyboard settings. To address this
problem, we propose a new face search technique based on shape manipulation that
is complementary to current search engines. Users drag one or a small number of
contour points, like the bottom of the chin or the corner of an eyebrow, to search
for faces similar in shape to the current face, but with updated geometric attributes
specific to their edits. For example, the user can drag a mouth corner to find faces
with wider smiles, or the tip of the nose to find faces with a specific pose. As part of
our system, we propose (1) a novel confidence score for face alignment results that
automatically constructs a contour-aligned face database with reasonable alignment
accuracy, (2) a simple and straightforward extension of PCA with missing data to
tensor analysis, and (3) a new regularized tensor model to compute shape feature
vectors for each aligned face, all built upon previous work. Despite the powerful
algorithms used in this application, we achieve real-time performance on Apple
devices. To the best of our knowledge, our system demonstrates the first face retrieval
approach based chiefly on shape manipulation. We show compelling results on a
sizeable database of over 10,000 face images captured in uncontrolled environments.
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6.1 Introduction

Retrieving one or several desired face images from a large collection has been recently
studied in several contexts [1–4]. These works can be roughly grouped into two
categories: example based (given a query face image, find similar face images) and
attribute based (given some natural language description, e.g., black hair, find faces
with the desired attributes). While these methods achieve impressive results, they
lack efficient ways to refine the search, particularly for geometric face attributes. For
example, among the search results, there is no efficient way to find a face with a
specific type of grin, or a slightly leftward gaze.

In this chapter, we present a new face search technique based on shape manip-
ulation that is complementary to current search engines. For example, by clicking
on the tip of the nose and dragging it to the left, our goal is to find faces similar in
shape to the current face, but with leftward pose, as shown in Fig. 6.1; by dragging
the corner of the mouth, we hope to find smiling faces, etc. Our approach is particu-
larly well suited for geometric face attributes that (1) cannot be easily expressed in
natural language or otherwise supported by current face search methods, but (2) can
be intuitively specified via a mouse or touchpad interface.

To achieve this goal, we must address the following three challenges:

• Face alignment. Although well studied, accurately identifying facial shape con-
tour features (e.g., eyelid contours, mouth contours) in a large database is still
a challenging problem, especially for face images captured in uncontrolled
environments.

• User input interpretation. The user should be able to find his/her desired faces with
very few shape edits. However, ambiguities exist. For example, when dragging the
corner of the mouth to the right, the user may want to change the pose, but this
could also be interpreted as a desire to widen the mouth.

• Search metric. Transforming user edits into geometric shape features with which
desired faces can be retrieved in the database.

To the best of our knowledge, our system demonstrates the first face retrieval
approach based chiefly on shape manipulation. As part of our system, we propose
three techniques that build upon previous work:

User Edits Database of Aligned Faces Search Results

Fig. 6.1 Illustration of our face search technique based on interactive shape manipulation. In this
example, the user drags the tip of the nose leftward to search for similar faces with leftward pose
in a sizeable database of aligned faces
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• A novel confidence score for face alignment results. This score allows us to auto-
matically reject poor face alignment results in order to construct a sizeable database
of reasonably well-aligned faces.

• A simple algorithm of tensor decomposition in the presence of missing data. This
algorithm is a straightforward generalization of PCA with missing data.

• A new regularized tensor model of aligned face shape. We use this model to (1)
associate a tensor coordinate as shape features to each face, (2) resolve shape
manipulation ambiguities so that a user can specify his/her intended face shape
with few edits, and (3) find the desired faces in the database.

We have implemented our technique on Apple iPads and iPhones. We next review
related work before presenting our system.

6.2 Related Work

Our work is directly inspired by Goldman et al. [5], in which the user can drag
points on a face in one frame of a video to retrieve desired faces from other frames.
Their system tracks a single person’s face in a single video for retrieval purposes,
and does not differentiate facial motion induced by pose or expression. Later in [2],
Kemelmacher-Shlizerman et al.demonstrate a system which, given a photo of person
A, finds a photo of person B with similar expression for a puppetry application. In this
system, the query is the appearance descriptor of the user’s own face. In our system,
a user often only needs to provide a few (1–3) edits to find desired faces. Each
database they use is on the order of 1000 faces of a single person. Our test database
is 10 times larger, and contains many different people. We have only used shape
features for query; including appearance features is complementary and remains
part of our future work.

In computer graphics, creating a desired 3D face model is a central challenge.
Recent solutions [6–8] generate a face from a small number of user edits. Their goal
is different from ours in that they seek to generate a new 3D model from example
models, but we hope to find one or several desired existing images. No new images are
generated in our system. Technically, they work with 3D models, which eliminates
pose as a shape parameter. We work with 2D images, where pose is one parameter
used to model the underlying object shape.

Face alignment is one important component of our system; however, face align-
ment is not our contribution. We implemented Gu and Kanade’s face alignment
method [9] as part of our system. Rather, we propose a novel method of measuring
alignment confidence, which allows us to automatically construct a large database
of reasonably well-aligned faces. This is important because large databases can-
not be easily verified by manual inspection. Human-based computation, e.g., via
Amazon Mechanical Turk, may be suitable for such a task, but is beyond the scope
of this paper. The recent face alignment paper by Liu et al. [10] also points out the
importance of measuring confidence. However, the confidence they use is specific
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to their objective function. Although their method achieves impressive results, they
demonstrate performance on datasets of about 300 examples using congealing. We
need to align tens of thousands of images, which would likely be a very slow process
if we choose to use a congealing-based approach.

Tensor analysis [11] has been successfully used in vision and graphics to model
textures [12, 13], for face image recognition [14], and for 3D face transfer [15]. In
this paper, we use tensor analysis to model 2D face contour shapes.

Our tensor analysis builds upon [14], with the addition of a regularization term
to deal with situations in which the number of tensor coefficients is greater than
the number of user edits. Our regularized tensor analysis differs from the previous
probabilistic tensor analysis of [16] in that our method takes a single data tensor as
input while theirs assumes multiple data tensors as input.

6.2.1 A Brief Review of Tensor Algebra

We provide a brief summary of tensor algebra to define the notations used in sub-
sequent sections of this paper. Tensor analysis generalizes the widely used Principal
component analysis (PCA). Given a data matrix X, PCA decomposes X as

X = UZVT =
∑

m,n

zm,nu:,mvT:,n, (6.1)

where zm,n is an element in Z; u:,m and v:,n are columns of U and V, respectively,
following MATLAB notation. In the case of PCA, Z is diagonal, i.e., zm,n �= 0 only
if m = n. The scalar version of Eq. (6.1) is

xi,j =
∑

m,n

zm,nui,mvj,n. (6.2)

A matrix is a 2D array; tensor analysis more generally operates on a multidimen-
sional array, or a data tensor. For example, a 3D data tensor (cube) is X = [xi,j,k].
The right-hand side of the second “=” in Eq. (6.1) can be generalized for tensors as

X =
∑

l,m,n

zl,m,nu:,l ◦ v:,m ◦ w:,n, (6.3)

where for each (l, m, n)-triple, u:,l ◦ v:,m ◦ w:,n is the outer product of the three column
vectors, the result of which is a data tensor (cube) of the same size as X . A linear
combination of such tensors with zl,m,n as combination weights yields X . Similar
to Eq. (6.2), the scalar version of Eq. (6.3) is

xi,j,k =
∑

l,m,n

zl,m,nui,lvj,mwk,n, (6.4)
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in which, if we fix z:,:,: as well as any two of the three row vectors ui,:, vj,:, and wk,:,
xi,j,k is a linear function of the remaining row vector; that is, Eq. (6.4) is a tri-linear
function.

If the summation in Eq. (6.4) is executed in a particular order, Eq. (6.4) is equiv-
alent to

xi,j,k =
∑

n

(
∑

m

(
∑

l

zl,m,nui,l

)

vj,m

)

wk,n. (6.5)

Each summation in Eq. (6.5) can be viewed as a matrix product, which leads to the
matrix form of tensor product as

X = Z × U × V × W, (6.6)

where Z = [zi,j,k] is the core tensor, which usually has a smaller size than X ;
U, V, and W are the matrices with u, v, and w in Eq. (6.5) as elements. Since the
summation order in Eq. (6.5) can be arbitrarily switched, the tensor product × in
Eq. (6.6) is commutative.

Finally, in Eq. (6.4), if we fix j, k and vary the index i, the column vector x:,j,k can
be viewed as a degenerate cube, evaluated in the following three equivalent ways:

x:,j,k = ∑

l
u:,l

(
∑

m,n
zl,m,nvj,mwk,n

)

= (
Z × vj,: × wk,:

) × U
= U

(
Z × vj,: × wk,:

)
.

(6.7)

6.3 System Overview

Our face retrieval system consists of the following four components.

• Face database construction. We construct a sizable database of aligned faces
that exhibit a wide range of pose and facial expression variation. Unfortunately,
even state-of-the-art alignment methods [9, 10, 17–19] cannot guarantee perfect
results in all cases; we therefore propose a novel confidence score to filter out poor
alignment results based on the face alignment method from [9].

• Tensor model training. From a set of 2D training face shapes of different poses,
expressions, and identities (each shape is represented by a set of points), we form
a 4D data tensor X , with each of the four dimensions indexing point vertex, pose,
expression, and identity. We decompose the tensor as

X = Z × Uvert × Upose × Uexpr × Uiden. (6.8)
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We propose a new and simple iterative algorithm to achieve this decomposition in
the presence of missing data. Note that the dataset for training the model is much
smaller than the database used for searching.

• Tensor coefficient recovery. Using the estimated Z and Uvert, we associate each
aligned face in the database with three coefficient vectors, cpose, cexpr, and ciden
for pose, expression, and identity, respectively. For each search, we also estimate
the three coefficient vectors cpose, cexpr, and ciden for the user-specified query
shape, which we expect to have few known vertices (corresponding to user edits).

• Search by tensor coefficient comparison. The coefficient vectors associated with
each face in the database are compared against the coefficient vectors estimated
for the query face; the closest face images (according to this tensor coefficient
comparison) are retrieved. The user can then edit one of the retrieved faces to
refine the search.

More details are presented in the subsequent sections.

6.4 Technical Details

6.4.1 Tensor Decomposition with Missing Data

In order to obtainZ , Uvert, Upose, Uexpr, and Uiden, we need a training set in which
each subject’s face is photographed under a complete set of known expressions and
poses, along with ground truth shapes. Such a subset of data is difficult to obtain;
even highly structured datasets like Multi-PIE [20] have missing faces. Computing
tensor decomposition in the presence of missing data is unavoidable in practice. We
propose a simple algorithm for this purpose.

We separate a data tensor X into two parts: [Xknown,Xmissing]. For notational
convenience, we interchangeably view X as a multidimensional array or as vector
consisting all elements in X (i.e., X (:) in MATLAB notation). Without loss of
generality, we assume that the vectorized form is arranged such that the missing
elements come after the known elements. Under this arrangement, we seek to estimate
Xmissing, Z , Uvert, Upose, Uexpr, and Uiden by minimizing the following error
function: ∥

∥
∥
∥Z ×Uvert×Upose×Uexpr× Uiden−

[
Xknown

Xmissing

]∥
∥
∥
∥

2

. (6.9)

We iterate between the following steps to minimize Eq. (6.9):

1. Fix Xmissing and optimize Z , Uvert, Upose, Uexpr, and Uiden. This step is the
standard tensor decomposition, as given in [11].

2. Fix all the U’s and optimizeXmissing andZ . This step is a least squared problem
becauseZ × Uvert × Upose × Uexpr × Uiden is linear with respect toZ when
all the U’s are fixed. More specifically, we use
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AZ =
[

Aknown

Amissing

]

Z (6.10)

to represent this linear transformation, and Eq. (6.9) becomes

∥
∥
∥
∥

[
Aknown 0

Amissing −I

][
Z

Xmissing

]

−
[
Xknown

0

]∥
∥
∥
∥

2

. (6.11)

This function can be efficiently minimized using the conjugate gradient method,
assuming both transformations A and AT can be implemented without explicitly
storing the matrix elements. This is indeed the case because AZ represents Z ×
Uvert × Upose × Uexpr × Uiden and ATX represents X × UT

vert × UT
pose ×

UT
expr × UT

iden.

In practice, we initialize Xmissing using subsets of face shapes from Xknown. That
is, for a needed pose i, expression j, and identity k vector x:,i,j,k in Xmissing, we
gather all vectors in Xknown that share pose i and expression j; the mean average of
these vectors is used to initialize x:,i,j,k .

6.4.2 Tensor Coefficient as Facial Feature Vector

In this subsection, we present an algorithm that takes a face shape (partial or complete)
as input and computes three coefficient vectors describing the pose, expression, and
identity of the face. This algorithm is used in two places in our retrieval system. First,
it gives each face shape in the database the three vectors as feature vectors. Second,
it estimates the three feature vectors from a few user constraints and retrieves faces
with similar feature vectors from the database.

Since a user seldom wants to edit every point on the face contour for retrieval, our
algorithm needs to be able to handle partial shapes. From Eq. (6.8), we know that a
face shape vector f can be expressed as

f = Z × Uvert × cTpose × cTexpr × cTiden, (6.12)

where the core tensorZ and the vertex basis matrix Uvert are estimated in Sect. 6.4.1,
and cpose, cexpr, and ciden are the coefficient vectors we seek. We break f into
[fknown, funknown]; our goal is to compute all the c vectors from fknown.

In practice, the dimension of fknown is often much less than the total number of
variables in cpose, cexpr, and ciden, which makes the estimation under-constrained.
To address this issue, we estimate all of the c’s by minimizing a regularized objective
function as follows:
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φ(cpose, cexpr, ciden)

= 1

2σ 2
‖fknown − Z × Uknown

vert × cTpose × cTexpr × cTiden‖2 (6.13)

+ ‖cpose‖2 + ‖cexpr‖2 + ‖ciden‖2,

where Uknown
vert are the rows in Uvert that correspond to fknown, and σ 2 is the variance

of tensor shape fitting noise, estimated as the average of the squared residual errors
after tensor model fitting by minimizing Eq. (6.9).

We minimize Eq. (6.13) using an iterative algorithm. Starting with an initial esti-
mation of cpose, cexpr, and ciden, we iteratively hold two of them fixed and update
the remaining one until the decrease of Eq. (6.13) is less than 10−6 compared to the its
value in the last iteration. This algorithm is used both during runtime for retrieval and
during the face database construction stage; the initialization of the c’s are described
in the following two subsections.

6.4.3 Searching for Faces Using Tensor Coefficients

Using the tensor coefficient vectors cpose, cexpr, and ciden in Sect. 6.4.2, our system
enables a user to search images by shape manipulation. For example, starting with
one face image, the user can drag the tip of the nose to find images with desired
pose; Constraining the locations of multiple points on the face will narrow down the
search results.

In general, computing all the c coefficient vectors from a single user input is under-
constrained even with the regularization term in Eq. (6.13). For example, dragging
the corner of the mouth may result in a smiling face or a rotated face.

To address this ambiguity, our search interface allows the user to specify whether
either pose vector or expression vector or both should be adjusted to satisfy the edit.
Given the user specification, only the corresponding coefficient vector is estimated
when minimizing Eq. (6.13). Once the coefficient vectors cpose, cexpr, and ciden are
known, we use them to construct a face f using Eq. (6.12) and retrieve its 50 nearest
neighbors in the database as results.

6.4.4 Face Alignment Confidence Measure

To support face search by shape manipulation, our system needs automatic face
alignment to establish the shape of each face in the database. We implemented the
robust face alignment method of Gu and Kanade [9] for this purpose. Being among
state-of-the-art methods [9, 10, 17–19], this method indeed produces impressive
results on a wide range of real world images, as we demonstrate in Sect. 6.5.1.
However, natural face images exhibit a wide range of shape, pose, illumination,
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and other appearance variation; occlusions, image noise, and motion blur further
confound the problem. This method does not guarantee accuracy in all situations.

One approach might be to remain agnostic—to simply allow all aligned faces to
exist in the database regardless of their accuracy. However, this reduces the quality
of the query results, and it burdens users with the additional task of recognizing and
ignoring poorly aligned results. Similarly, manually removing poorly aligned faces
from large databases is burdensome if not impractical.

Identifying Poorly Aligned Faces

We instead propose a novel method of measuring alignment confidence, which allows
us to automatically remove poorly aligned faces from the database. In a nutshell, our
method computes a confidence score for each vertex in the aligned shape, filters
the scores along the contour, and finally sums up the filtered scores as the overall
confidence.

More precisely, the alignment confidence score sn for the point n is computed as

sn = exp

{

− ρ2
n

2dn

}

. (6.14)

dn is the average distance from point n to its contour neighbors in the shape model
(the canonical shape we used is approximately 160 pixels tall, from eyebrows to chin,
irrespective of the target face size), ρ2

n is found by the alignment algorithm [9] and
is the observation variance, or noise level, of landmark n at the end of the matching
process. Figure 6.2 shows an illustration of the ρn values for an actual alignment
result.

In Eq. (6.14), the landmark confidence function maps the raw observation vari-
ance to the range [0, 1]. It acts as a robust measure of confidence, with 1 denoting
high confidence, and 0 denoting no confidence; landmark locations with very large

Fig. 6.2 An illustration of Eq. (6.16) for computing the confidence of each alignment. The radius of
each circle is given by ρn as defined in [9]; large circles are supposed to indicate low confidence and
small circles are supposed indicate high confidence. However, in practice they are not perfect due
to spurrious local image features. Eq. (6.15) aims to eliminate imperfections in these per-landmark
confidence measures by taking into account the confidence of nearby points, which will be used in
Eq. (6.16)
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observation variance are clamped to 0. Empirically, we found that if sn is large, the
alignment for point n is often reliable; however, if sn is small, the alignment for
the point n may or may not be reliable, depending on the alignment accuracy of its
neighboring points.

To deal with this phenomenon, we filter the point confidence scores using f (·)
defined as

f (sn) = max{sn, g(sn)}, (6.15)

where g(sn) is a Gaussian filter of the confidence scores along point n’s contour,
centered on point n, with σ = 1.5 in units of neighbor rank, i.e., 1 = nearest neighbor,
2 = second nearest neighbor, etc in one direction.

In Eq. (6.15), the filter aims to eliminate erroneously labeled bad landmark loca-
tions. For example, a landmark might have low confidence because of spurious local
image features despite its contour neighbors exhibiting high confidence. In such a
scenario, the alignment algorithm would significantly reduce the contribution of the
low confidence point so that the contour will be driven by the surrounding high
confidence neighbors. Assuming the contour is correct, the single low confidence
landmark should also be correct, and should have a higher confidence value than it
was originally given.

Finally, the overall alignment confidence for a face shape is computed as

s̄ = 1

N

N∑

n=1

f {sn}, (6.16)

where N is the number of landmarks.
We found that the confidence score is strongly correlated with alignment accuracy

as shown in Sect. 6.5.2. By comparing the confidence score of each alignment result
to a threshold, bad alignment results can be identified and removed from the database.

6.5 Experiments

In this section, we describe in detail the construction of a sizeable and varied database
of aligned faces, we demonstrate experimentally that the alignment confidence score
described in Sect. 6.4.4 is a good predictor of alignment accuracy, and we show that
the tensor model described in Sect. 6.3 allows a user to find his/her desired faces
using only one or a few shape edits.
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6.5.1 Constructing a Database of Aligned Faces

Our system is designed to search for desired face images in a large database. For
experimentation purposes, we constructed a sizeable database of approximately
10,000 aligned faces from the Public Figures (PubFig) dataset [21]. In its entirety,
PubFig contains approximately 50,000 images of 200 celebrities from the internet
captured in uncontrolled environments.

The faces were aligned using our implementation of [9]. We first trained shape
and appearance models using ground truth landmarks provided with the Multi-PIE
dataset [20], and 962 additional ground truth landmarks that we supplied (the original
set of ground truth landmarks does not include faces with both non-frontal pose and
nonneutral facial expression). Approximately, 330 subjects are represented in our
training set, with five different poses (±30, ±15, and 0 degrees relative to frontal)
and six different expressions (neutral, smile, surprise, squint, disgust, and scream),
although approximately half of the possible subject-pose-expression combinations
are missing.

For each face, we first use a face detector [22] to estimate of the size of the face
in each image. We removed all faces with bounding boxes smaller than 120 pixels in
height to ensure the database would contained few low quality images. We ran the
face alignment algorithm on the remaining 21,919 images.

Our system relies on face alignment accuracy to return good query results. There-
fore, we used a relatively high alignment confidence score threshold to remove all but
the most confident 10,000 results from the database. In Fig. 6.3, the results in each
column are representative of results with similar alignment confidence score. The
score is statistically a good indicator of the alignment accuracy. However, we note that
the score is not perfect; outliers do exist. Some good results have uncharacteristically
low scores and vice versa, which is quantitatively characterized in Fig. 6.4.

6.5.2 Alignment Confidence Score Performance

The alignment confidence score given in Sect. 4.4.1 should be correlated with the
alignment error. A low score should predict large alignment error and vice versa.
Here, we give experimental results that confirm this relationship.

We first trained shape and appearance models as in Sect. 5.1, but with subjects
1–20 omitted from the training set. The shape and appearance models were then
used to align the 375 images of subjects 1–20. After alignment, we computed (1)
the normalized root mean squared error (NRMSE) relative to ground truth, and (2)
the alignment confidence score described in Sect. 6.4.4. The NRMSE is given as a
percentage, computed by dividing the root mean squared (RMS) error by the height
of the smallest bounding box that encompasses the ground truth landmarks in each
image. A similar measure is given in [10], but they divide the RMS error by the
pupillary distance; this is not invariant under significant pose change and so we do

http://dx.doi.org/10.1007/978-3-319-24702-1_4
http://dx.doi.org/10.1007/978-3-319-24702-1_5
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Fig. 6.3 Each column shows a selection of alignment results on the PubFig dataset that share
approximately the same alignment confidence score. The scores are ordered from left to right. Each
column shows typical results for the associated score. The score is statistically a good indicator of
alignment accuracy, as we show in Fig. 6.4 Best viewed electronically

not use it. Figure 6.4a shows that the NRMSE decreases significantly as the alignment
confidence score increases.

Although the sets of subjects used for training and testing in the previous exper-
iment were independent, they both came from the same structured database. Simi-
larities exist between these training and testing sets that would not occur naturally.
To avoid making erroneous conclusions that might be due to these similarities, we
performed the experiment again using the same training set, but a different test
set, namely 583 images selected randomly from the PUT face database [23], which
exhibits moderate variation in pose and facial expression.

The ground truth landmarks given in the PUT database do not exactly match
those given in the Multi-PIE database. However, with few exceptions, corresponding
ground truth contours exist. We therefore divide up the PUT contours to obtain a
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Fig. 6.4 Each data point represents one alignment result. The y-axis gives the normalized root
mean squared error (NRMSE) of each result, and the x-axis gives the alignment confidence score,
according to Sect. 6.4.4. A good/bad score threshold can be thought of as a boundary that separates
“bad” results to the left from “good” to the right. The solid red line gives a 95 % error bound for
any given score threshold. That is, for a given score threshold, 95 % of the “good” results have a
NRMSE at or below the red line. The dashed blue line shows the global trend of the best 95 %
NRMSE w.r.t. the score, found by dividing the scores into 0.05-width bins, computing the mean
average NRMSE among points in each bin under the 95 % error bound, and fitting a line to the
averages. We do not show a linear regression fit of all the points in the plot because the tightly
clustered points in the lower right corner heavily dominate, and the resulting fit does not reflect the
global trend. Best viewed electronically

set of landmark points that very closely match the Multi-PIE ground truth. The six
Multi-PIE landmarks not found on any PUT contours (four on the vertical portion of
the nose and one near each ear) were omitted in computing the NRMSE. Figure 6.4b
similarly shows that the NRMSE decreases significantly as the alignment confidence
score increases.

6.5.3 Tensor Model Training

To construct the tensor model, we used 1470 faces (49 identities × 5 poses × 6
expressions) from the Multi-PIE dataset to train the tensor model. Within the tensor
model we used 9 bases to represent the point vertices, 14 bases for identity, 3 for
pose, and 3 for expression. The number of bases was chosen such that 95 % of the
total variance of the original data was retained.

6.5.4 Face Retrieval Performance

In this section, we demonstrate that users only need to edit one or a small number of
face points for our system to find desired faces. Figure 6.5 shows the top user-selected
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Fig. 6.5 Top user-selected results for three queries. The query images are shown in the leftmost
column, with user edits illustrated by yellow arrows. Five selected results are given to the right of
each query image. Each row shows one query. a One edit. Expression is held constant; the nose
tip is dragged left to search for similar faces with slightly leftward pose. b Two edits. Pose is held
constant; the lips are dragged apart to search for smiling faces. c Three edits. Pose is held constant;
the lips are pulled together and the cheeck is pulled outward to search for serious expressions

results for three queries. By using a combination of multiple editing and holding
expression or pose constant, users can refine their search result in an intuitive way.

We also quantitatively evaluate how many edits on a query image are needed
in order to find a target image. To this end, we emulate user edits in our system as
follows. We start by picking up query-target image pairs from the database. Each pair
of images either share a similar pose but have different expressions, or share a similar
expression but have different poses, or are dissimilar in both pose and expression.1

Given a pair of query and target images, our testing system randomly orders the
landmarks, and edits them one after another according to this order. Each edit moves
one landmark from the query to the target image. After each edit, a set of results (top
10) will be retrieved. We calculate the average Euclidean distance between the top
10 results and the desired image. We also calculate the minimum Euclidean distance
between the top results and the target image. If the minimum Euclidean distance is
zero, it indicates the target is among the top results.

1When selecting a query-target image pair with a similar expression but different poses, we first
randomly pick the target image, then remove all the images whose Euclidean distance is among the
nearest one-third. In the remaining images, we select the one whose expression is most similar to the
target image by comparing cpose and use it as the query image. We can select a pair with a similar
pose but different expressions in a similar way. A pair with both dissimilar pose and dissimilar
expressions can be selected randomly.
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Fig. 6.6 The number of edits needed to find desired faces. The x-axis is the number of edits
performed. x = 0 corresponds to the original query shape before any edit is applied; the y-axis shows
the shape difference between the result shapes and the target shape. The solid green line indicates
the minimum Euclidean distance between the target and the returned 10 results, so it represents
the best among the returned results. The dashed blue line indicates the average Euclidean distance.
Here in all the tested cases, with fewer than FIVE edits, the target image can be retrieved. Note that
the max number of edits in the x-axis is 10, which is only a small portion of the total number (68)
of points in the face shape model. In fact, even for 1–2 edits, the decrease in shape difference is
significant, which suggests that very often we can roughly get the desired image within 1–2 edits.
Each curve is computed by averaging over 10 query-target image pairs

Figure 6.6 shows the result, averaged over 10 randomly selected pairs. The x-axis
is the number of edits operated. x = 0 corresponds to the original query shape before
any edit is applied; the y-axis shows the shape difference between the result shapes
and the target shape. The solid green line indicates the minimum Euclidean distance
between the target and the returned 10 results, so it represents the best shape among
the returned results. The dashed blue line indicates the average Euclidean distance.
As the number of edits increases, a more accurate shape will be returned. In all tested
cases, with fewer than five edits, the target image can be retrieved. Note that, the max
number of edits on the x-axis is 10, which is only a small portion of the total number
(68) of points in the face shape model. In fact, even for 1–2 edits, the decrease in
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shape difference is significant, which suggests that very often we can get images
similar to the desired one within 1–2 edits.

6.6 Design and Implementation on Mobiles

We have implemented our technique on iPads and iPhones. Our system on mobile
devices can be roughly divided into three modules: an offline image indexing system,
an online image query server, and a search client.

6.6.1 Image Indexing System

This module is responsible for indexing each face image in the database. There are
three major components in this module:

(1) Feature points extraction and shape alignment. For each face image, this
module first extracts 68 feature points located along face contours. We use the state-
of-the-art face alignment algorithm proposed by Gu and Kanade [9], and remove most
poorly aligned face images using the confidence score mentioned in Sect. 6.4.4. The
2D coordinates of these feature points represent the geometric shape of the underlying
face and are stored compactly in our database.

(2) Thumbnail generation. Based on the coordinates of the aligned feature points
from the above step, we construct a crop region around the face. Once cropping, we
generate thumbnails of each image in the database. This step guarantees the face is
clearly visible in each thumbnail. The thumbnails provide mobile users with a quick
preview and allow them to fine tune their search results using as little bandwidth as
possible.

(3) Multilinear model coefficients extraction. We use a multilinear tensor model
in Sect. 6.4.2 to represent the transformation of identity, expression, and pose of all
face images. This multilinear tensor model is both simple and powerful. Computing
the coefficients of each face shape only requires solving a linear system, yet our
model is flexible enough to accurately model a wide variety of face shapes and is
powerful enough to resolve user edit ambiguities, i.e., whether the expression or the
pose should change.

For demonstration purpose, we constructed a sizable database of approximately
10,000 aligned faces from the Public Figures (PubFig) dataset [21]. These images are
a subset of about 50,000 images consisting of 200 celebrities captured in uncontrolled
environments.

6.6.2 Search Client

The search client is a mobile application that runs on Apple iPad, iPhone, and iPod
devices. There are two coexisting user interfaces in this module.
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Fig. 6.7 User interface for iPhone (left) and iPad (right)

(1) Shape representation interface. This is the main area for shape manipulation.
Both the image and the recovered face shape contour can be overlaid here. The on-
off switches at the bottom of the interface allow users to lock either the pose or
expression component, so that shape ambiguity problem mentioned in Sect. 6.4.2
can be resolved.

(2) Thumbnail preview interface. This is the auxiliary area for shape manipula-
tion. Thumbnails that best represent the desired face image are shown here. These
thumbnails are fetched from the server by using standard HTTP protocols. They are
ranked by both the similarity with the desired shape and the confidence score of
the alignment. If any of the thumbnails are chosen here, the original image will be
fetched and will be displayed in the shape representation interface with its feature
points overlaid.

In order to accommodate different screen sizes, we developed two client applica-
tions, one for large-screen devices like the iPad, and another for small-screen devices
like the iPhone. A screen capture of each of the user interface is displayed in Fig. 6.7.
The iPhone application separates these two interfaces in two tabs to save screen space
while the iPad application displays these two interfaces together as two columns.

6.6.3 User-System Interaction

The interaction between user and our system can be summarized in Fig. 6.8. From
an initial shape, the user first specifies the type of edits, which can be either a pose
change, an expression change, or both. Our system then constructs a search candidate
set from the whole image database based on the edit type. This candidate set limits
the number of results so that consecutive queries can be as efficient as possible while
still maintaining accuracy. Users then drag one or several feature points in the shape
representation interface. Our search client application automatically calculates the
target coefficients and shape based on the trained tensor model. This calculation
can be efficiently implemented by a linear system solver; it can be further sped
up by Apple’s Accelerator Framework. The target face shape is then used to rank
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Fig. 6.8 Summary of our system workflow

the candidate set. A set of ranked thumbnail results are displayed to user. These
thumbnails serve as a guide for further refinement. If necessary, users can repeat the
manipulation process based on any of the candidate result.

6.7 Conclusion and Future Work

In this chapter, we have proposed a new face search technique that aims to address
a common problem in face image search. That is, it’s difficult to refine face search
results based on geometric attributes that are easy to see, but hard to put into words.
To the best of our knowledge, our system is the first face retrieval approach based
chiefly on shape manipulation. This approach is complementary to current search
engines [1–4], and could be used to further refine face search results.

While we have a reasonable confidence measure which helps us to automatically
construct a sizeable database, face alignment still needs improvement to further
enhance the system performance and utility, both in terms of query accuracy and
constructing a database with better face alignments.

Our database is relatively sparse compared to much larger collections [3], which
reduces our ability to lock identity in refining search results. In the future, we hope
to demonstrate our approach on databases containing millions of face images and
videos. To realize this goal, we will need to use a more efficient coefficient search
algorithm than our naive linear search.

Although face image retrieval is a key challenge, we note that our approach gener-
alizes well. As part of our future work, we hope to apply our technique to other more
general types of image collections. Additionally, we hope to incorporate appearance-
based attributes into our system to further improve search results.
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Chapter 7
Exploiting On-Device Image Classification
for Energy Efficiency in Ambient-Aware
Systems
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Jie Liu and Jin Li

Abstract Ambient-aware applications need to know what objects are in the
environment. Although video data contains this information, analyzing it is a chal-
lenge esp. on portable devices that are constrained in energy and storage. A naïve
solution is to sample and streamvideo to the cloud,where advanced algorithms can be
used for analysis. However, this increases communication energy costs, making this
approach impractical. In this article, we show how to reduce energy in such systems
by employing simple on-device computations. In particular, we use a low-complexity
feature-based image classifier to filter out unnecessary frames from video. To lower
the processing energy and sustain a high throughput, we propose a hierarchically
pipelined hardware architecture for the image classifier. Based on synthesis results
from an ASIC in a 45nm SOI process, we demonstrate that the classifier can achieve
minimum-energy operation at a frame rate of 12 fps, while consuming only 3mJ of
energy per frame. Using a prototype system, we estimate about 70% reduction in
communication energy when 5% of frames are interesting in a video stream.
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7.1 Introduction

Portable devices connect to the physical world through sensors. One rich sensing
modality is the visual light field, which is captured by cameras. It provides us infor-
mation about various things and events around us. Thus, perceiving the environment
through a stream of video has the potential to light up a host of new context-aware
applications on portable devices. Figure7.1 illustrates three such examples. First,
an on-board camera can help a flying drone detect the presence of obstacles and
aid in navigation [1]. Second, a dash-mounted camera can provide real-time driver
assistance by identifying traffic signs, pedestrians, lanes, and other automobiles [2,
3]. Third, wearable cameras and smartphones can detect people and objects in front
of them, which can help improve service and productivity [4–8] .

Observe that while extracting actionable information from video, a basic require-
ment is to detect and recognize objects in each frame. Then comes higher level
image understanding such as actions, and events. Fortunately, all three of these are
rich areas of research and the literature provides many algorithmic options to solve
them [9–11]. However, when realizing these techniques in an end-to-end system for
portable devices, there are some new trade-offs that we need to make. We discuss
some of these next.

7.1.1 System-Level Challenges

Figure7.2 shows a block diagram of the various steps involved in realizing an
ambient-aware system. It comprises computations for object detection, recognition,

Fig. 7.1 Video processing can enable a range of ambient-aware applications on portable devices

Fig. 7.2 An end-to-end ambient-aware system involves computations for object detection, recog-
nition, and image understanding. To be useful in a mobile scenario, such systems need to meet strict
constraints in performance and energy
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and image understanding. Information derived from image understanding is used to
drive ambient-aware applications such as the ones described in the previous section.
To be realized on portable devices, such systems need to meet three key constraints.
First, the most applications require ambient-aware systems to respond in real time.
One way to achieve this is to keep some sensor in the system always on. For exam-
ple, a dash-mounted camera has to detect pedestrians as soon as they appear so that
brakes can be applied in time, if necessary. This can be achieved by either keeping
the camera always on or using a continually operating motion detector to trigger the
camera. Second, these systems must have high algorithmic accuracy. This in turn
implies that each step in the sequence to be precise. Third, these systems must be
energy efficient when realized on a portable device. This last constraint arises due to
the need for mobility in several useful ambient-aware applications.

The three system-level constraints mentioned above lead to interesting design
trade-offs. Intuitively, lowering latency hints toward performing all computations
locally on the portable device. However, the associated energy costs for this approach
can be prohibitive. Recent evaluations with face recognition on Google Glass, an
emerging wearable device, validate this behavior. Experiments show that local com-
putations can drain the battery at a speed that is 10× faster than routine use (battery
life is lowered from 377 to 38min) [12, 13]. Similar results have also been observed
for other portable devices such as smartphones, drones, and security cameras [14–16].
Another trade-off is between accuracy and energy: accurate algorithms are desirable
at each stage but are prohibitive on portable devices due to the high energy costs.

Since it is infeasible to support all computations locally on portable devices, there
is an emerging thrust toward realizing hybrid systems. Such systems aim to exploit
the growing connectivity of devices together with the computational capabilities of
the cloud [17, 18]. Although promising, these hybrid systems face issues along a new
dimension—they introduce additional latencies and energy costs due to data commu-
nication. Figure7.3 shows the costs involved in acquiring 3-channel RGB video [at
30 frames-per-second (fps), 2×8b per pixel] and streaming it to the cloud for process-
ing. For the analysis shown, we assume 90mWpower for sensing 1080p/60 fps video
and 240mW forMPEG compression by 10× [19, 20].We also assume that the power
scales with the frame rate and resolution. Further, for communication using theWiFi
802.11 a/g/n protocol, we assume transmission energies of 40 and 10nJ/b at speeds of
54 and 150Mbps, respectively [21]. Under these assumptions, for a portable device
with a Li-ion battery of capacity 500mAh (6660J at 3.7V), the streaming system
model allows operation for only 96min before requiring a recharge. The recharge
time reduces to 78 and 35min for 720p and 1080p HD image resolutions, respec-
tively. Thus, acquiring raw video on the portable device and streaming it to the cloud
for processing is undesirable for continuous operation. Thus, there is a need to dissect
the sequence of computations so that some are performed locally on the device and
some on the cloud. Our proposed system model is guided by this insight. We present
details about it next.
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7.1.2 Design Approach

As an alternative to performing all computations in the cloud, we propose to split the
sequence so that computations are supported in parts on the device and the cloud. In
this section, we present the analysis behind our approach.

Consider the CamVid dataset, which is representative of typical recordings from
a portable device [22]. Specifically, the dataset provides multiple recordings from a
dash-mounted camera on a car; for illustration purposes, we have randomly chosen
one recording, seq05VD, of 3min. There are many objects of interest in the video
recording. Observe from Fig. 7.4 that the frames-of-interest (FoI) (i.e., those that
contain relevant objects) comprise only a small percentage of all frames. On average,
across all objects, only 10% of the frames are interesting at 10 fps. At a lower frame
rate of 1 fps, this number is reduced to about 1%. This result shows that just after the
object detection step, the amount of useful data (determined by FoI) can be reduced
by 90–99%. Processing through the object-recognition step can further lower the
number of informative frames. However, the room for improvement due to this step is
low. Thus, in our end-to-end system, we propose to employ computations for object
detection (used synonymously with image classification) locally on the portable
device, while performing all other computations in the cloud. Through this approach,
we will demonstrate that we can substantially reduce the amount of communication
energy (and thus the end-to-end system energy). To keep the image classification
energy low, we will also show that we need to subtly tweak the algorithmic accuracy
as well as develop a dedicated hardware accelerator.

Our system model is shown in Fig. 7.5. Under the same assumptions as those
used for Fig. 7.3, we observe that using a local data filter for image classification
on the portable device can improve battery lives by up to 5.5× (i.e., battery life
improves from 96min or 1.6h in Fig. 7.3 to 8.8h in our case for VGA frames). These
energy savings come due to a reduction in the communication energy. Observe that in
estimating the gains, we assume that the local filter for image classification reduces
useful data frames by 90% and that it costs an additional 3mJ/frame. Next, we
validate these assumptions and describe the trade-offs that exists between accuracy
and energy consumption of the data filter.

Fig. 7.3 Realizing an end-to-end ambient-aware system through continuous video streaming is
infeasible on portable devices
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7.2 Algorithm Selection for Data Filtering

Recall from Fig. 7.4 that the FoI reduces with frame rate. Also, note from the figure
that once an object is found in a frame, it stays in the camera’s field of view for at least
5–10 subsequent frames, when the video is sampled at 30 fps. We call this behavior
persistence. The value of persistence is shown for the various objects in the CamVid
recording on the secondary Y-axis in Fig. 7.4. This high value of persistence hints at
the fact that we could lower the frame rate by 5–10× and still detect the presence
of interesting objects in the video. Equivalently, we could relax the accuracy of the
image classification algorithm so that it detects at least one out of the 5–10 contiguous
frames in which the object of interest appears. In our system, we propose to exploit
a combination of both of these approaches.

To sustain the battery charge up to a reasonably long duration, we assume a
computational energy budget of approx. 3–20mJ (Fig. 7.5), depending on the image
resolution. Assuming a 50mW budget for VGA (lowest) resolution, this translates
to 17 fps, 100 million operations per second (MOPS) [costing 2mJ/Fr. total, assum-
ing 0.3µW/OP], and less than 10MB of memory accesses [costing 1mJ/Fr. total,
assuming 100pJ/B access energy] per frame. Thus, our energy budget still allows

Fig. 7.4 Results from a typical video dataset show that most object persist in the camera’s field of
view for at least 10 frames. In a recording of approx. 3min, on average, specific objects appear in
≤10% of the frames at 10 fps and in about 1% of the frames at 1 fps

Fig. 7.5 Proposed system model: Perform object detection locally on the device. This approach
can increase battery lives by up to 5.5× (i.e., 96min in Fig. 7.3 to 8.8h in our case for VGA frames)
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Fig. 7.6 We propose to bias a low-energy algorithm B toward having high true positives at the
cost of additional false positives (resulting in an algorithm B*). Gain and loss are annotated for
algorithm B* in comparison with algorithm B

room for relaxing the accuracy of the algorithm. We achieve this by employing the
technique of biased classifiers. We explain this concept next.

Figure7.6, in the middle, shows the energy constraints for implementing the
detection algorithm locally on the portable device. At the left, the figure also shows
two potential algorithm choices that we have for implementing image classification,
namely, A and B. AlgorithmA has high accuracy but also high computational energy.
Algorithm B, on the other hand, has both lower accuracy and energy. On the right,
the figure shows two metrics that represent the accuracy of the algorithms, namely,
true positives and false positives. Observe how for algorithm B one metric is lower
and another higher than algorithm A. True positives are determined by the number
of frames transmitted (FT) (or selected) by the algorithm that are among the FoI—it
is desirable to have these high. False positives are determined by the FT that are not
among the FoI—it is desirable to have these low. Typically, both of these metrics are
related to each other, increasing (decreasing) one also increases (decreases) the other.
But, the change is not symmetric. In other words, increasing the true positives by
x% does not necessarily increase the false positives by the same percentage. In fact,
the change is dependent on the algorithm at hand. We propose to exploit this niche
property of classification algorithms in tweaking the on-device image classifier.

Our proposal is to bias algorithm B such that it leads us to a new algorithm B*,
which has a high true positive rate (potentially close to that provided by algorithm
A) at the cost of a higher false positive rate than algorithm B (and algorithm A).
For ambient-aware applications, having high true positives is important since the
algorithm then does not miss frames that contain objects of interest. The above
process thus implies that algorithmB* transmits a few additional frames (comprising
of the additional false positives) when compared to algorithm A but is able to detect
all of the interesting frames that algorithm A would detect. However, an important
point to note is that this higher false positive rate of B* comes with an energy benefit
over A—recall that the energy requirements of algorithm B (and thus also B*) were
much lower than algorithm A to begin with.

The amount of energy algorithm B* helps us save end-to-end depends on how
simple algorithm B* is in comparison to algorithm A. Consider the computational
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Fig. 7.7 Since algorithm B*
has much lower
computational energy costs,
it provides us higher
end-to-end energy savings
than algorithm A. Figure
adapted from [23]

energy costs for algorithm B* ranging from 5–40mJ/Fr. Figure7.7 shows the end-
to-end energy savings that are achievable with these potential costs. If algorithm
B* costs 40mJ/Fr. for image classification, end-to-end energy savings are achieved
only until the number of frames transmitted (%FT) is ≤40%. Thus, if %FoI is 10%,
there is an additional room of 30% for the increasing false positive rate. However,
if algorithm B* costs only 5mJ/Fr. then end-to-end energy savings are achieved
until 94%, resulting in a room of 84% for the increase in false positive rate. Thus, to
maximize the end-to-end energy savings, it makesmore sense to choose an algorithm
B* that is energy efficient and has a higher false positive rate (like algorithmB*) than
one that has higher energy costs and a lower false positive rate (like algorithm A).
The image classification algorithm that we select for our system is based on this
principle. We present details about it next.

7.3 Low-Energy Algorithm for Image Classification

Recent results have shown that neural network-based algorithms have the poten-
tial to provide state-of-the-art accuracy in image classification as well as in visual
recognition [24]. These algorithms employ dynamic decision models that require
large memories, high-bandwidth communication links, and compute capacities of
up to several GOPS [25–27]. With enormous potential parallelism, such algorithms
provide very high accuracies. However, these algorithms are not suited for imple-
mentation in our case. This is because, as mentioned earlier, our goal is not to select
the algorithm with the highest accuracy but the one with the lowest energy con-
sumption. It is also desirable that the algorithm that we choose be programmable so
that it can detect arbitrary objects of interest. We thus choose an algorithm that not
only performed reasonably well in the ILSVRC competition, but also that which had
a much lower computational complexity [28]. The basic algorithm is illustrated in
Fig. 7.8. It comprises four major computational blocks that we describe next.
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Fig. 7.8 Light-weight algorithm used for image classification on the portable device. At each stage,
our selection is shown circled and the dimensionality of data is shown at the bottom

7.3.1 Interest-Point Detection (IPD)

For each incoming frame, this step helps identify the pixel locations with the most
information. Locations typically lie at key-points such as corners, edges, blobs, and
ridges. In our case, we utilize the Harris–Stephens algorithm that detects pixel loca-
tions on object corners [29]. In this algorithm, a patch of pixels I(x, y) is extracted
around each pixel location (x, y) in a grayscale frame I . This patch is subtracted from
a shifted patch I(x + u, y + v) centered at location (x + u, y + v), and the result is
used to compute the sum-of-squared distances [denoted by S(x, y)] using the follow-
ing formulation:

S(x, y) = ΣuΣvw(u, v)[I(u + x, v + y) − I(u, v)]2, (7.1)

where w(u, v) is a window function (matrix) that contains the set of weights for each
pixel in the frame patch. The weight matrix could comprise a circular window of
Gaussian (isotropic response) or uniform values. In our case, we pick uniform values
since it simplifies implementation. A corner is then characterized by a large variation
of S(x, y) in all directions around the pixel at (x, y). In order to aid the computation
of S(x, y), the algorithm exploits a Taylor series expansion of I(u + x, v + y) as
follows:

I(u + x, v + y) ≈ I(u, v) + Ix(u, v)x + Iy(u, v)y (7.2)

where Ix(u, v) and Iy(u, v) are the partial derivatives of the image patch I at (u, v)
along the x and y directions, respectively. Based on this approximation, we can write
S(x, y) as follows:

S(x, y) ≈ ΣuΣvw(u, v) · [Ix(u, v) · x − Iy(u, v) · y]2 ≈ [x, y] A [x, y]T (7.3)
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where A is a structure tensor that is given by the following:

∣∣∣∣
< I2x > < IxIy >

< IxIy > < I2y >

∣∣∣∣ . (7.4)

In order to conclude that (x, y) is a corner location, we need to compute the eigen-
values of A. But, since the exact computation of the eigenvalues is computationally
expensive, we can compute the following cornermeasureMc′(x, y) that approximates
the characterization function based on the eigenvalues of A:

Mc′(x, y) = det(A) − κ · trace2(A). (7.5)

To be more efficient, we avoid setting the parameter κ and make use of a modified
corner measure Mc(x, y), which amounts to evaluating the harmonic mean of the
eigenvalues as follows:

Mc(x, y) = 2 · det(A)/ [trace(A) + ε] (7.6)

where ε is a small arbitrary positive constant (that is used to avoid division by zero).
After computing a corner measure [Mc(x, y)] at each pixel location (x, y) in the
frame, we need to assess if is largest among all abutting pixels and if it is above a
prespecified threshold; marking it to be a corner if it is. This process is called non-
maximum suppression (NMS). The corners thus detected are invariant to lighting,
translation, and rotation.

7.3.2 Feature Extraction

The feature-extraction step extracts low-level features from pixels around the inter-
est points. Typical classification algorithms use histogram-based feature-extraction
methods such as SIFT, HoG, and GLOH. While appearing quite different, many
of these can be constructed using a common modular framework consisting of
five processing stages, namely G-block, T-Block, S-Block, E-Block, and N-Block
[30, 31]. This approach known as the daisy feature-extraction algorithm, thus allows
us to adapt one computation engine to represent most other feature-extraction meth-
ods depending on tunable algorithmic parameters that can be set at runtime. Figure7.9
shows a block-level diagram of the daisy feature-extraction module. At each stage,
different candidate block algorithms may be swapped in and out to produce new
overall descriptors. In addition, parameters that are internal to the candidate features
can be tuned in order to maximize the performance of the descriptor as a whole. We
next present details about each of the processing stages.

• Presmoothing (G-block): A P × P patch of pixels around each interest point is
smoothed by convolving it with a 2D-Gaussian filter of standard deviation (σs).
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Fig. 7.9 We use the daisy feature-extraction algorithm. It comprises T, S, N, and E processing
blocks

• Transformation (T-block): This block maps the smoothed patch onto a length
k vector with nonnegative elements. There are four subblocks defined for the
transformation, namely, T1, T2, T3, and T4. In our system, we have implemented
only the T1 and T2 blocks, with easy extensibility options for T3 and T4.

– T1: At each pixel location (x, y), we compute gradients along both horizontal
(Δx) and vertical (Δy) directions. We then apportion the magnitude of the gra-
dient vector into k (equals 4 in T1a and 8 in T1b mode) bins split equally along
the radial direction—resulting in an output array of k feature maps, each of size
P × P.

– T2: The gradient vector is quantized in a sine-weighted fashion into 4 (T2a) or 8
(T2b) bins. For T2a, the quantization is done as follows: |Δx| − Δx; |Δx| + Δx;
|Δy| − Δy; |Δy| + Δy. For T2b, the quantization is done by concatenating an
additional length 4 vector usingΔ45, which is the gradient vector rotated through
45◦.

– T3: At each pixel location (x, y), we apply steerable filters using n orientations
and compute the response from quadrature pairs. After this, we quantize the
result in a manner similar to T2a to produce a vector of length k = 4n (T3a)
and T2b to produce a vector of length k = 8n (T3b). It is also possible that
we use filters of second or higher order derivatives and/or broader scales and
orientations in combination with the different quantization functions.

– T4:We compute two isotropic difference of Gaussian (DoG) responses with dif-
ferent centers and scales (effectively reusing the G-block). These two responses
are used to generate a length k = 4 vector by rectifying the positive and negative
parts into separate bins as described in T2.
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Fig. 7.10 Examples of the various spatial summation patterns. Figure reproduced from [35]

• Spatial Pooling (S-block): In this stage, we accumulate weighted vectors from
the previous stage to give N linearly summed vectors of length k. This process is
similar to the histogram approach used other descriptor algorithms in the literature.
We concatenate these N vectors to produce a descriptor of length kN . Figure7.10
shows an overview of the different approaches. We use the following pooling
patterns for the vectors:

– S1: Square grid of pooling centers. The overall footprint of this grid is a para-
meter. The T-block features are spatially pooled by linearly weighting them
according to their distances from the pooling centers.

– S2: This is similar to the spatial histogram used in GLOH [32]. We use a polar
arrangement of summing regions. The radii of the centers, their locations, the
number of rings, and the number of locations per angular segment are all para-
meters that can be adjusted (zero, 4, or 8) to maximize performance.

– S3: We use normalized Gaussian weighting functions to sum input regions over
local pooling centers arranged in a 3 × 3, 4 × 4, or 5 × 5 grid. The sizes and
the positions of these grid samples are tunable parameters.

– S4: This is the same approach as S3 but with a polar arrangement of theGaussian
pooling centers instead of being rectangular. We used 17 or 25 centers with the
ring sizes and locations being tunable parameters.

• Embedding (E-block): This is an optional stage that is mainly used to reduce
the feature vector dimensionality. This comprises multiple substages: principal
component analysis (E1), locality preserving projections (E2) [33], locally dis-
criminative embedding (E3) [34], etc. In our design, we have not implemented the
E-block but provide an option for extensibility.

• Post Normalization (N-block): This block is used to removedescriptor dependency
on image contrast. In the noniterative process, we first normalize the s-block fea-
tures to a unit vector (dividing by the Euclidean norm) and clip all elements that
are above a threshold. In the iterative version of this block, we repeat these steps
until a maximum number of iterations have been reached.
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7.3.3 Feature Representation

This step allows us to aggregate feature vectors from all image patches to produce
a vector of constant dimensionality. Again, there are several algorithmic options for
high-level feature representation including the bag-of-visual words, fisher vectors
(FV), etc. [36]. We choose the FV, which is a statistical representation obtained by
pooling local image features. The FV representation provides high classification per-
formance, thanks to a richer Gaussian mixture model (GMM)-based representation
of the visual vocabulary. Next, we provide a description of the FV representation.

Let I = (x1, x2, . . . , xT ) be a set of T feature descriptors (i.e., the daisy fea-
tures) extracted from an image each of dimensionality D. Let Θ = (μk,Σk, φk, k =
1, 2, . . . , K) be the parameters of a GMMfitting the distribution of the daisy descrip-
tors. The GMMassociates each vector xi to a centroid k in the mixture with a strength
given by the following posterior probability:

qik = exp
[− 1

2 (xi − μk)
TΣ−1

k (xi − μk)
]

ΣK
t=1exp

[− 1
2 (xi − μt)TΣ−1

k (xi − μt)
] . (7.7)

For each centroid k, the mean (ujk) and covariance deviation (vjk) vectors are defined
as follows:

ujk = 1

T
√

πk
ΣT

i=1qik
xji − μjk

σjk
(7.8)

vjk = 1

T
√
2πk

ΣT
i=1qik

[(
xji − μjk

σjk

)2

− 1

]
. (7.9)

where j = 1, 2, . . . , D spans the vector dimensions. The FV of an image I is the
stacking of the vectors uk and then of the vectors vk for each of the K centroids in
the Gaussian mixtures:

FV(I) = [. . . uk . . . vk . . .]T . (7.10)

To get a good classification performance, the FVs need to be normalized. This is
achieved by reassigning each dimension z of an FV to be |z|α sign(z), where α is
a design parameter that is optimized to limit the dynamic range of the normalized
FVs. The FVs are normalized a second time by dividing each dimension by the l2

norm. The normalized FVs thus produced are global feature vectors of size 2KD.

7.3.4 Feature Classification

To keep the computational costs low, we use a simplemargin-based classifier [specif-
ically, a support vector machine (SVM)] to classify the FVs. The classifier thus helps
detect relevant frames based on a model that is learned offline using prelabeled data
during the training phase. In SVMs, a set of vectors (total NSV vectors), called sup-
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port vectors, determine the decision boundary. During online classification, the FV
is used to compute a distance score (DS) as follows:

DS =
NSV∑

i=1

K (FV · svi) αiyi − b, (7.11)

where svi is the ith support vector; b, αi, and yi are training parameters; and the func-
tion K(·) is the kernel function, which is a design parameter. In our implementation,
we choose polynomial kernels (up to order 3), which are defined as follows:

K (FV · svi) = (FV · svi + β)d, (7.12)

where d and β are training parameters. Based on the sign of DS , an FV is assigned
to either the positive (object of interest) or the negative class. To bias the classifier
toward having a high true positive rate at the cost of increased false positive rate, we
modify the decision boundary using the various training parameters.

7.4 Software Implementation of On-Device Image
Classification

We implemented the end-to-end algorithm in C# and parallelized the code using the
task parallel library (TPL) provided by the .NET 4.5 framework [37]. To evaluate the
algorithm, we used the following four image classification datasets: Caltech256 [38],
NORB[39], PASCALVOC[40], andCamVid [22]. For eachof the abovedatasets,we
performed a design-space exploration of the algorithmic parameters to determine the
best-performing values. Table7.1, for instance, summarizes the exploration results
for Caltech256. The highlighted row gave the best accuracy and the algorithmic
parameters were chosen accordingly. Specifically, the image scale factor was set to
2 along with T14-Rect for the daisy features and third-degree polynomial kernel for
the SVM. We also explored other microparameters (not shown in Table7.1) such as
the number of GMM clusters and α scale values for the FVs. After finding the best-
performing parameters, we biased the SVM classifier using data resampling so that
the end-to-end algorithm has a high true positive rate. In the rest of the article, we use
the following two algorithmic performance metrics: (1) coverage, which basically
represents the true positive rate [but alludes to the FoI that are detected (or covered)
by the algorithm], and (2) FT, which represents a combination of the false positives
and true positives.

Figure7.11 shows the FT versus FoI charts for the four datasets. Results are shown
at four different coverage levels: 30–50, 50–70, 70–90, and 90–100%. These cov-
erage levels mean that the respective percentage of interesting frames are selected
or detected by the algorithm. Like previously mentioned, we bias the classifier to
achieve these coverage levels. The error bars shown in the figure represent the vari-
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Table 7.1 Design-space exploration of the algorithmic parameters for Caltech256: The highlighted
row gave the best performance and the algorithmic parameters were picked accordingly

ance across different objects of interest. The dotted line along the diagonal indicates
the ideal value of FT (=FoI) the different coverage levels. Note that some lines cross
over the others in the figure. This is an artifact of our experimental data; we believe
that repeating the experiment for more objects (or different combinations of objects)
and averaging the results would smooth the trends and remove the cross overs.

From Fig. 7.11, we observe that without any on-device classification, FT is always
100%; this represents the streaming system model of Fig. 7.3. Further, with local
image classification, for a coverage of ≥90%, we are able to filter out ∼70%
(FT = 30%) of the frames (averaged over all datasets) at FoI = 5%. This num-
ber improves dramatically at lower coverage levels (i.e., goes down to 73, 83, and
91%at coverage levels of 70–90, 50–70, and 30–50%, respectively). Lower coverage
levels are acceptable since typical datasets have substantial persistence (recall that
persistence was 10% at 10 fps in Fig. 7.4).Thanks to high persistence, the probability
of detecting at least one frame that contains the object of interest is thus high even
at low coverage levels. The large amounts of data filtering that we achieve though
local filtering translates directly into big system-level energy savings that we present
ahead in Sect. “System-Level Energy Benefits Due to SAPPHIRE”.

Although promising from an accuracy perspective, the software implementation
of the algorithm fares poorly when it comes to runtime costs. Table7.2 shows how
the algorithmic complexity varies depending on the frame size, number of interest
points, classifier model size, (these parameters are dataset dependent). Across all
datasets, we find that the mean complexity is quite low: ∼116 MOPS. However, the
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Fig. 7.11 FT, which is ≥FoI at higher coverage values, begins to approach FoI as we relax the
coverage levels of the algorithm

Table 7.2 Software implementation of image classification incurs a large processing delay that is
unacceptable for real-time context-aware applications

Caltech256 NORB PASCAL CamVid

Frame size 640 × 480 96 × 96 640 × 480 720 × 960

MOPS 161 9 81 211

Time/frame (s) 3.5 0.33 1.6 4.5

Table reproduced from [23]

software runtime on both a desktop (Core i7) and mobile CPU (Snapdragon 800)
exceeds 2.5 s/frame on average. This latency comes about because we are unable to
fully exploit the inherent parallelism in the algorithm. Since this latency is unaccept-
able for real-time context-aware applications, we propose to accelerate the image
classification algorithm through hardware specialization. We describe this approach
next.
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7.5 Hardware Implementation of On-Device Image
Classification

In this section, we propose a hardware-specialized engine called SAPPHIRE for
accelerating image classification on portable devices. Figure7.12 shows a block
diagram of the proposed architecture of a local computation platform for image
classification. An ARM-class processor is used to preprocess video frames as they
stream in. The raw frames are then handed off to the SAPPHIRE accelerator, which
performs image classification in an energy-efficient manner. The frames selected by
SAPPHIRE are then compressed by the processor and streamed out over a com-
munication link. Within the accelerator, we exploit several microarchitectural opti-
mizations to achieve significant processing efficiency. A key feature is that it can be
configured to obtain different power and performance points for a given application.
Thus, SAPPHIRE can be easily scaled to cater to both the performance constraints
of the application and the energy constraints of the device. In this section, we pro-
vide details on the hardware optimizations that we use in SAPPHIRE followed by
block-level implementations of the various computing modules that comprise the
accelerator.

7.5.1 Hardware Optimizations

Through SAPPHIRE, we provide two key microarchitectural features: (1) stream
processing support through local data buffering and two-level vector reduction, and
(2) data-level parallelism through hierarchical pipelining. We describe these features
next.

7.5.2 Stream Processing

Our proposed architecture for SAPPHIRE allows for stream processing through
two techniques. First, it allows data to be buffered locally, which obviates the need
for multiple fetches from external memory. Thus, the required external memory

Fig. 7.12 Proposed use of
an accelerator (SAPPHIRE)
for image classification on
portable devices



7 Exploiting On-Device Image Classification for Energy Efficiency … 183

Fig. 7.13 Two-level vector reduction along with local data buffering allows for stream processing
on SAPPHIRE

bandwidth requirements of SAPPHIRE are low. Second, we support a feature called
two-level vector reduction. This is a commonly occurring computational process in
our system wherein vector data is processed in two stages. Figure7.13 illustrates the
concept more generally. In the first level of reduction (i.e., L1), two vectors operands
U and V are processed element-wise using a reduction function f . To achieve this,
we exploit inter-vector data parallelism (we provide more details about parallelism
in Sect. 7.5.3), which enables us to reuse the vector V across all L1 lanes. Thus,
the operation can be iteratively completed within a systolic array. In the second
level of reduction (i.e., L2), each element of the resulting vector W is processed
by another reduction function g. To achieve this, we decompose U and interleave
the element-wise operations. A common example of two-level vector reduction is
the computation of dot-products between two vectors in the first level followed by
multiply-accumulation of the resulting vector in the second level. Thanks to two-level
vector reduction, we can avoid refetching data repeatedly from external memory.
Thus, both memory bandwidth and local storage are significantly lowered.

7.5.3 Data-Level Parallelism

The image classification algorithm provides abundant opportunity for parallel
processing. Since SAPPHIRE operates on a stream of frames, it is throughput lim-
ited. Thus, we also exploit data-level parallelism through pipelining. An interesting
feature of the algorithm is that the pipelined parallelism is not available at one given
level, but rather buried hierarchically across multiple levels of the design. To exploit
this parallelism, we develop a novel three-tiered, hierarchically pipelined architec-
ture shown in Fig. 7.14. The timing diagram for hierarchical pipelining is also shown
in the figure. Next, we provide details about the functional aspects of the system.

Inter-picture pipeline. This is the topmost tier in the pipeline. Here, we exploit
parallelism across successive input video frames. As shown in Fig. 7.14, this stage
comprises two parts, namely feature computation and classification. Feature com-
putation includes IPD, daisy feature extraction, and the FV blocks; classification
comprises just the SVM. As shown in the timing diagram, while global features of a
frame i are being computed, the previous frame i.e., i − 1 is concurrently processed
by the classifier.
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Feature Extraction Classification

IPD Daisy N-Blk FV

G-Blk T-Blk S-Blk
FV-

Comp Q-Comp

Fig. 7.14 Hierarchical pipelining in SAPPHIRE and the timing diagram for pipelining

Inter-patch pipeline. This is the next tier in the pipeline. Here, we exploit par-
allelism within each feature-computation stage of the inter-picture pipeline. In this
tier, image patches around different interest points are processed concurrently. Thus,
this tier comprises the IPD, daisy (G, T, and S blocks only), and the FV modules.
Interest points that are found by the IPD are pushed onto a first-in first-out (FIFO)
memory, which are then utilized by the daisy subblocks to compute the S-block
features. These features are then normalized to produce the full local descriptors at
that interest point. The normalized vectors are consumed by the FV block, which
iteratively updates the global feature memory. The entire process is repeated until
the local memory is empty. It is interesting to note that the stages of computation
in this tier cannot be merged with the previous tier since global FV computations
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require all descriptors (i.e., descriptors at all interest points) to be available before
evaluation. Due to this dependency, these tiers must be independently operated.

Inter-pixel pipeline. This is the innermost tier of the hierarchy and is present
within the G, T, and S blocks of the inter-patch pipeline. It leverages the parallelism
across pixels in a patch by operating them in a pipeline. The three daisy subblocks
(i.e., G, T, and S) together compute the S-Block feature output for each image patch
in the frame.

To maximize throughput, it is important to balance execution cycles across all
tiers of the pipeline. This, however, requires careful analysis since the execution
time of each block significantly differs based on the input data and other algorithmic
parameters. For instance, the delay of the second tier is proportional to the number
of interest points, which varies across different video frames. Thus, in our imple-
mentation, we systematically optimize resource allocation for the various blocks
based on their criticality to the overall throughput. To better understand the various
inter-twined hardware–software trade-offs, we next describe the microarchitectural
details of the computational block in SAPPHIRE.

7.5.4 Microarchitecture of Computational Blocks

In addition to pipelining, the algorithm also allows fine-grained parallel implemen-
tations within the various processing elements of SAPPHIRE. Many blocks involve
a series of two-level vector reduction operations. In our design, we employ arrays
of specialized processing elements that are suitably interconnected to exploit this
computation pattern. We also employ local buffering at various stages of processing.
In this section, we describe the microarchitectural details of the different blocks in
SAPPHIRE.

The IPD Block

Ablock diagram of the hardware architecture for IPD is shown in Fig. 7.15. For every
pixel, we retrieve 4 pixels from the neighborhood using the ordering shown in the
figure. The pixels are fetched from externalmemory (8b/pixel) using an address value
that is generated by the IPD block. Thus, the external memory bandwidth required
for this operation is 4MN × 8b/frame, where M and N are the height and width of the
grayscale frame. For VGA resolution at 30 fps, this bandwidth would be 281Mbps
and for 720p HD resolution at 60 fps, this would be 1.6Gbps. Note that this is modest
since typical DDR3 DRAMs provide a peak bandwidth of up to several 10 s of Gbps.

The four abuttingpixels are thenused to compute the gradients along the horizontal
and vertical directions, which are buffered into a local FIFO memory of size W ×
3 × N × 18b (in a nominal implementationW = 3 and thememory is of size 12.7kB
for VGA and 25.3kB for 720p HD). These gradients are in turn used to evaluate the
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Fig. 7.15 Block diagram of the implemented IPD module: For typical algorithmic parameters,
SAPPHIRE requires an external bandwidth of 70.31Mbps for VGA, 0.46Gbps for 1080p, and
1.85Gbps for 4k image resolutions at 30 fps

corner measure (Mc). The data path comprises one CORDIC-based divider besides
other simple compute elements. The resulting corner measures are put in a local
FIFO of depth R (typically 3). This FIFO is thus of size 9.8kB for VGA and 19.5kB
for 720p HD. The Mc values are then processed by the NMS block, which pushes the
identified interest point locations (both x and y coordinates) onto another local FIFO
of depth D (typically 512). Thus, the FIFO capacity is typically equal to 5.2kB for
VGA and 6.1kB for 720p HD. In conclusion, if all pixels are accessed from external
memory, the total bandwidth requirements for the IPD block are: 70.31Mbps for
VGA, 0.46Gbps for 1080p, and 1.85Gbps for 4k image resolutions at 30 fps.

The Daisy Feature-Extraction Block

The feature-extraction module is highly pipelined to perform stream processing of
pixels. As mentioned above, the entire architecture comprises four processing steps
that are heavily interleaved at the pixel, patch, and frame levels. This allows us to
exploit the inherent parallelism in the application and perform computations with
minimal delay. At a high level, the T-block is a single-processing element that gener-
ates the T-block features sequentially. The patterns for spatial pooling in the S-block
are stored in an on-chip memory along the borders of the 2D array. The spatially
pooled S-Block features are then produced at the output. The number of rows and
columns in the G-Block array and the number of lanes in the S-Block array can be
adjusted to achieve the desired energy and throughput scalability. Next, we provide
more details on each block.

G-Block. Figure7.16 shows a block diagram of the implemented systolic-array
architecture for 2D convolution. Our architecture allows the inputs to be fed only
once allowing maximum data reuse, which minimizes the bandwidth requirements
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Fig. 7.16 Block diagram of the systolic array architecture used for 2D convolution in the G-block

from external memory. Further, the vector reduction process described above allows
us to perform 2D convolution along any direction, with varying stride lengths, and
kernel sizes.The systolic array is primarily used in the G-block.

T patches (of size P × P and centered at locations specified in the IPD output
FIFO) are read out from external memory in block sizes of R pixels. In each iter-
ations, these R pixels are processed in R + 3C cycles to produce R processed 2D
convolution outputs. The processing core comprises a systolic array of 2D process-
ing elements (PEs), which are basically small multiply-accumulate (MAC) units and
internal registers for fast-laning. As shown in Fig. 7.16, R input data vectors and the
kernel elements stored in C columns are processed by the 2D PEs sequentially. At
any given point in time, the systolic array comprises fully and partially convolved
outputs. This aspect is shown in Fig. 7.17. As per the illustration, note in particular
that the elements along the diagonal comprise the desired output that will be avail-
able after CM cycles. In order to accommodate the partially convolved outputs, we
employ a set of 1D PEs (accumulators) along the edge of the 2D array.

The total memory requirements for the block are as follows: RCd× 8b for the I/O
FIFOs of depth d (typically, 16) andPC× 24b to store the partially convolved outputs.
If pixels are refetched after IPD from external memory, then the hardware requires
an external memory bandwidth of TP2× 8b. However, in our implementation, we
avoid going to external memory by adding local buffers between the IPD and feature-
extraction blocks.

T, S, and N Blocks. Figure7.18 shows the block diagram of the T, S, and N
blocks. The data path for the T-block comprises gradient-computation and quan-
tization engines for the T1 (a), T1 (b), T2 (a), and T2 (b) modes of operation. In
the S-block, we have a configurable number of parallel lanes for the spatial-pooling
process. These lanes comprise comparators that read out Np pooling region bound-
aries from a local memory and compare with the current pixel locations. The output
from the S-block is processed by the N-block, which comprises an efficient square-
rooting algorithm and division module (based on CORDIC). The T-block outputs are
buffered in a local memory of size 6(R + 2)× 24b, and the pooling region bound-
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Fig. 7.17 At any given time, the systolic array comprises fully and partially convolved outputs that
are reduced by the 1D PEs in the second level of processing

Fig. 7.18 Block diagram of the T, S, andN processing blocks. SAPPHIRE has low internalmemory
overheads: 207.38kB for VGA, 257.32kB for 1080p, and 331.11kB for 4k image resolutions

aries are stored in a local SRAMmemory of size 3Np× 8b. The power consumption
and performance of the S block can be adjusted by varying the number of lanes
in the array. These are called the parallel S-block lanes and we study their impact
ahead in the experimental results section (Sect. “Microarchitectural Design-Space
Exploration”).

All data precisions are tuned to maximize the output signal-to-noise-ratio (SNR)
for most images. The levels of parallelism in the system, the output precisions,
memory sizes etc., can all be parameterized in the code. In conclusion, assuming
no local data buffering between the IPD and daisy feature-extraction modules, the
total memory requirements of the feature-extraction block (for nominal ranges) are
(assuming 64 × 64 patch size and 100 interest points): 1.2kB (4 × 4 2D array and 25
pooling regions) for a frame resolution ofVGA(128 × 128patch size and100 interest
points) and 3.5kB (8 × 8 2D array and 25 pooling regions) for a frame resolution
of 720p HD. Since, in our implementation, we include local buffering between the
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IPD and feature-extraction modules, they work in a pipelined manner and thus the
external data access bandwidth is completely masked. The total estimated storage
capacity for IPD and feature-extraction is 207.38kB for VGA, 257.32kB for 1080p,
and 331.11kB for 4k image resolutions

The FV Feature-Representation Block

The microarchitecture of the FV representation block is shown in Fig. 7.19. It com-
prises three processing elements, namely, Q-compute, FV-compute, and Q-norm
compute. We exploit parallelism across GMM clusters by ordering the Q and FV
computations in an arrayed fashion. The GMM parameters (i.e., μ, σ , and π ) are

Fig. 7.19 Block diagram of the fisher-vector computation block. It involves three elements: Q
computation, Q-norm computation, and FV computation. The GMM parameters are shared across
Q and FV computations of successive patches. Figure reproduced from [23]
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stored in on-chip streaming memory elements. The daisy feature descriptors come
in from the left and are processed by the Q- and FV-compute elements. After one
round of processing, the global feature memory is updated. This process is repeated
across all GMM clusters—recall that the number of GMM clusters is an algorith-
mic parameter that is fixed during the initial design-space exploration phase. To
maximize throughput, the GMMmodel parameters are shared across successive fea-
ture inputs in the Q- and FV-compute elements. This sharing also saves us memory
bandwidth. The power and performance of the FV block can be adjusted by vary-
ing the number of lanes in the processing element array. We revisit this aspect in
Sect. “Microarchitectural Design-Space Exploration.”

The SVM Feature-Classification Block

Figure7.20 shows the microarchitecture of the SVM block. It comprises two types of
PEs, namely, the dot-product unit (DPU) and the kernel-function unit (KFU). These
units together realize the distance computation. Support vectors, which represent the
trained model, are stored in a streaming memory bank along the borders of the DPU
array. During online classification, the DPUs perform L1 vector reduction between
the feature descriptors and the support vectors to compute the dot products. After this,

Fig. 7.20 Block diagram of the SVM classification block. Multiple (horizontal) processing lanes
allow parallel processing of the FVs
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the dot products are streamed out to theKFU,where the kernel function (representing
the L2 reduction) and the distance score is computed. In our implementation, we only
support linear and polynomial kernels, but provide easy extensibility options for
other kernels. Finally, the distance score is used by the global decision unit (GDU) to
compute the classifier output. Note that all of the previous operations are independent
and can be parallelized. Note also that the execution time of the SVM is proportional
to the number of DPU units (SVM lanes).

Through the various microarchitectural and hardware optimizations (e.g., special-
ized processing elements, parallel stages, and multi-tiered pipelines) mentioned in
this section, SAPPHIRE performs efficient image classification. The ability to scale
performance and energy by adjusting the various design parameters is also a key
attribute of the hardware architecture. We explore this aspect next.

7.6 SAPPHIRE Evaluation

We evaluate the performance and energy consumption of SAPPHIRE in an ASIC
implementation. In this section, we describe about our experimental methodology.
We then present results at various levels of the design hierarchy.

7.6.1 Experimental Methodology

In this section, we describe our methodology and the benchmarks that we used to
evaluate the performance and energy consumption of SAPPHIRE.

Architecture-level evaluation. We implemented SAPPHIRE at the register-
transfer logic (RTL) level using Verilog hardware description language (HDL). We
synthesized it to an ASIC in a 45nm SOI process using Synopsys Design Compiler.
We used Synopsys Power Compiler and Primetime to estimate the power consump-
tion and delay of SAPPHIRE at the gate level, respectively. The microarchitectural-
and circuit-level parameters that we used in our implementation are shown in
Table7.3. Since repeatedly simulating the algorithm at the gate-level was prohibitive
in terms of runtime, we developed a cycle-accurate simulation model for the design.
This model helped us estimate the hardware performance much more efficiently. For
the estimations, we computed the energy consumption of SAPPHIRE as a product
of the cycle count, operating frequency, and total power.

System-level energy modeling. We estimated the energy consumption in the end-
to-end streaming system model (see Fig. 7.3) as follows:

Ebaseline = Esense + Ecompress + Etransmit (7.13)
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Table 7.3 Microarchitectural- and circuit-level parameters used in SAPPHIRE

μArch. params Value

G-Blk rows/cols 3/8

S-Blk lanes 1

FV lanes 2

SVM lanes 4

Peak GOPS 29

(Daisy, FV, SVM) (18.5, 6, 2.5)

Circuit params Value

Feature size 45nm SOI

Area 0.5mm2

Power (lkg+act) 51.8mW

Gate count 150k

Frequency 250MHz

Table reproduced from [23]

where Esense, Ecompress, and Etransmit are the energies for sensing, compression, and
data transmission, respectively.We estimate the energy of the proposed systemmodel
(see Fig. 7.5) as follows:

Eproposed = Esense + ESAPPHIRE + (1 − γ )
(
Ecompress + Etransmit

)
(7.14)

where γ is the defined as the fraction of the filtered frames (i.e., γ = (100 −
FT)/100, where FT is in percentage). To cover a broad spectrum of devices, we
estimate each of these energies by assuming a slightly relaxed choice of compo-
nents (when compared to Figs. 7.3 and 7.5). Specifically, we use the following num-
bers: a less aggressive low-power OmniVision VGA sensor (100.08mW) [41], a
light-weight MPEG encoder (20mW and 5× compression) [42], and low-bandwidth
802.11a/gWiFi transmitter (45nJ/bit at 20Mbps) [43].We also assumed a frame rate
of 10 fps.

Application benchmarks.We used the four benchmarksmentioned earlier to eval-
uate the performance of SAPPHIRE. The first three (Caltech256, NORB, and PAS-
CAL VOC) are static image benchmarks, while CamVid is a labeled video dataset.
Across these benchmarks, we design SAPPHIRE to detect frames that contain one
of 13 objects and filter the rest.

7.6.2 Experimental Results

In this section, we demonstrate the performance and energy savings at the system
level due to SAPPHIRE. We also illustrate the impact of parameter tuning on the
hardware energy.
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System-Level Energy Benefits Due to SAPPHIRE

Like we mentioned before, adding SAPPHIRE saves us communication energy at
the cost of some extra computational energy. The energy required by SAPPHIRE is
shown in comparison to the other components in Fig. 7.21. Observe that SAPPHIRE
achieves a 1.4–3.0× (2.1× on average) improvement in system energy, while captur-
ing over 90% of interesting frames in the datasets; recall that these numbers are what
we used to estimate the battery recharge times in Fig. 7.5. At lower coverage levels,
the energy benefits are much higher. For instance, they reach to about 3.6× and 5.1×
on an average at 70–90 and 50–70% coverages, respectively. It is interesting to note
that at lower coverage levels, the higher system-level energy savings come about even
in the presence of additional communication energy costs. The figure also shows the
energy overhead incurred due to SAPPHIRE as a fraction of the total system energy.

Figure7.22 shows the total energy costs of SAPPHIRE in comparison with the
other system components for the different datasets. Compared to the baseline, we
see that SAPPHIRE only contributes to about 6% of the overall system energy. This
energy disproportionality between identifying interesting data versus completely
transmitting them is key to the applicability of SAPPHIRE. The energy contributions
of SAPPHIRE increase to 28% at lower coverage levels since the overall system
energy is also significantly lowered.

Fig. 7.21 SAPPHIRE costs 6% overhead but lowers system energy by 2.1×. This overhead
increases to 28% at lower coverage levels, but the overall system energy is also reduced

Fig. 7.22 Comparison
between energy costs of
SAPPHIRE and other system
components
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Fig. 7.23 SAPPHIRE saves more energy at lower FoI (typical of appl.). Figure adapted from [23]

Figure7.23 shows howmuch energy savings can be achieved through SAPPHIRE
at different FoI levels. Observe that the energy benefits provided by SAPPHIRE are
bounded by the maximum number of frames that can be filtered out (i.e., FoI). At
higher values of FoI, the savings due to SAPPHIRE are lower. For instance, at≥90%
coverage, the savings reduce from 2.1 to 1.3× as FoI goes from 5 to 70%. However,
as we observed in Fig. 7.4, in most context-aware applications, FoIs are low (≤10%).
Thus, most systems can benefit substantially by employing SAPPHIRE for local data
filtering.

Runtime and Energy Breakdown of SAPPHIRE

Figure7.24, at the top, shows the percentage contributions to power and runtime,
respectively, of the various computational elements in SAPPHIRE. Note that the sum
of all runtimes does not equal 100%since the hardware is pipelined andmore thanone
block may be concurrently active. For these results, we use the microarchitectural
configuration of Table7.3. At the bottom, the figure shows the breakdown in the
normalized energy.Observe that the energy proportions for the various computational
elements depend on the complexity of the dataset. For instance, number of interest
points are high in Caltech256, leading to a higher (∼90%) runtime for daisy feature
extraction. This is in contrast with NORB, where the SVM classifier is active most
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Fig. 7.24 Power, runtime, and energy breakdown of various computational blocks in SAPPHIRE.
Figure adapted from [23]

of the time. Thus, we observe that the microarchitectural parameters of SAPPHIRE
need to be tuned so thatwe can optimize the energy consumption for different datasets
and applications. We explore this aspect next.

Microarchitectural Design-Space Exploration

We perform an exhaustive search of the design space for the energy-optimal microar-
chitectural configuration of SAPPHIRE. Figure7.25a shows a scatter plot of perfor-
mance [i.e., achievable fps] versus the normalized energy consumption per frame
for various architectural configurations. In Fig. 7.25b, the energy per frame is decou-
pled into two components, namely frame processing time (FPT) and power (the
product of these is the energy/frame). The pareto-optimal configurations that min-
imize the energy consumption are also shown in Fig. 7.25a. The configurations are
marked as a tuple comprising the number of parallel lanes in the G-, S-, FV- and
SVM-blocks, and the operating frequency of SAPPHIRE. We see from the figure
that the pareto-optimal configurations are not obtained by scaling just a single para-
meter, but a combination. Also, at lower FPS, the increase is FPT outweighs the
corresponding decrease in power, thereby resulting in higher energy per frame. At
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(a) (b)

Fig. 7.25 Design space exploration showing the minimum-energy configuration of SAPPHIRE for
Caltech256

higher FPS,however, the disproportional increase in power also leads to a higher
frame energy. Thus the minimum-energy configuration occurs at an FPS of ∼12 for
this dataset. Thus, SAPPHIRE allows us to achieve optimal energy configurations
depending on the characteristics of the application data.

7.7 Conclusions

A range of emerging applications require portable devices to be continually ambient
aware. However, this requires devices to be always on, leading to a large amount of
sensed data. Transmitting this data to the cloud for analysis is power inefficient. In this
article, we proposed the design of a hybrid system that employs local computations
for image classification and the cloud for more complex processing. We chose a
light-weight image classification algorithm to keep the energy overheads low. We
showed that even with this light-weight algorithm, we can achieve very high true
positive rates at the cost of some extra false positives. This approach helped us filter
out a substantial number of frames from video data in the device itself. In order to
overcome the high processing latency in software, we also proposed a hardware-
specialized accelerator called SAPPHIRE. This accelerator allowed us to perform
image classification 235× faster than a CPU with a very low (3mJ/frame) energy
cost. Usingmultiple levels of pipelining and other architectural innovations, we were
able to simultaneously achieve high performance and better energy efficiency in the
end-to-end system. Thanks to the resulting communication energy reduction, we
showed that our hybrid system using SAPPHIRE can bring down the overall system
energy costs by 2.1×. Our system thus has the potential to prolong battery lives of
many portable ambient-aware devices.
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Chapter 8
Compact Deep Neural Networks
for Device-Based Image Classification

Zejia Zheng, Zhu Li and Abhishek Nagar

Abstract Convolutional Neural Network (CNN) is efficient in learning hierarchical
features from large image datasets, but its model complexity and large memory foot-
prints prevent it from being deployed to devices without a server back-end support.
Modern CNNs are always trained on GPUs or even GPU clusters with high-speed
computation capability due to the immense size of the network. A device-based deep
learning CNN engine for image classification can be very useful for situations where
server back end is either not available, or its communication link is weak and unre-
liable. Methods on regulating the size of the network, on the other hand, are rarely
studied. In this chapter we present a novel compact architecture that minimizes the
number and complexity of lower level filters in a CNN by separating the color infor-
mation from the original image. A 9-patch histogram extractor is built to exploit the
unused color information. A high-level classifier is then used to learn the features
obtained from the compact CNN that was trained only on grayscale image with lim-
ited number of filters and the 9-patch histogram extracted from the color information
in the image. We apply our compact architecture to Samsung Mobile Image Dataset
for image classification. The proposed solution has a recognition accuracy on par
with the state-of-the-art CNNs, while achieving significant reduction in model mem-
ory footprint. With these advantages, our system is being deployed to the mobile
devices.

Z. Zheng (B)
Michigan State University, 428 South Shaw Lane, Room 3110, East Lansing,
MI 48824, USA
e-mail: zhengzej@msu.edu

Z. Li · A. Nagar
Samsung Research America, 1301 E. Lookout Drive, Richardson, TX 75082, USA
e-mail: zhu1.li@samsung.com

A. Nagar
e-mail: a.nagar@samsung.com

© Springer International Publishing Switzerland 2015
G. Hua and X.-S. Hua (eds.), Mobile Cloud Visual Media Computing,
DOI 10.1007/978-3-319-24702-1_8

201



202 Z. Zheng et al.

8.1 Convolutional Neural Network

In recent years commercial and academic datasets for image classification have been
growing at an unprecedented pace. The SUN database for scenery classification
contains 899 categories and 130,519 images [15]. The ImageNet dataset contains
1000 categories and 1.2 million images [6]. In response to this immensely increased
complexity, many researchers have focused on designing even more sophisticated
classifiers to effectively capture all the invariant and discriminative features.

Among a great number of available classifiers, Convolutional Neural Network
(CNN) is reported to have the leading performance on many image classification
tasks. Overfeat, a CNN-based image features extractor and classifier, scored a low
29.8% error rate in classification and localization task on ImageNet 2013 dataset.
Clarifai, a hierarchical architecture of CNN and deconvolutional neural network,
achieved an 11.19% error recognition rate on ImageNet 2013 classification task
[16]. CNNs have been reported to have state-of-the-art performance on many other
image recognition and classification tasks, including handwritten digit recognition
[7], house numbers recognition [11], and traffic signs classification [2].

8.1.1 Network Architecture

Convolutional Neural Network is specifically designed to handle computer vision
problems. A typical CNN is presented in Fig. 8.1. It has the following features that
differentiate itself from traditional neural networks:

1. Local receptive field. Each neuron in the convolutional layer accepts only a portion
of the entire input image. Thus the learned filters only produce the strongest
response to a local input pattern, thereby reinforcing the local nature of typical
image features.

2. Shared weights. Each neuron in the convolutional layer shares the same set of
filters. This architecture ensures that important local features would be detected
regardless of their position in the visual field.

3. Subsampling for dimension reduction. Convolutional neural network alternates
between the convolutional and pooling layers. Pooling is performed on overlap-
ping or nonoverlapping neighborhoods of the input to reduce the data dimensions
and at the same time find the most prominent features.

Combining those three features together, we have the architecture of a typical
CNN as is presented in Fig. 8.1.
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Fig. 8.1 Architecture of a typical CNN. This figure shows the structure of a typical CNN trained
on CIFAR-10 dataset

Convolutional Layer

The response map in the convolutional layer is computed using the same set of
filters (as is described in the second property of CNN). The convolution operation is
expressed as:

y j (r) = ReLU (b j (r) +
∑

i

ki j (r) ∗ xi(r)) (8.1)

where xi is the i th input map and y j is the j th output map, ki j is the convolution
filter corresponding to the i th input map and the j th output map, and r indicates a
local region on the input map where the weights are shared.

Rectifier Linear Unit, also know as ReLU nonlinearity (i.e., ReLU (x) = max
(0, x)) is used on the obtained feature maps. It is observed that ReLU yields
better performance and faster convergence speed when trained by error back propa-
gation [6].

Pooling Layer

As is discussed in the third property of CNN, the pooling layer serves as amechanism
for dimension reduction and feature selection. This layer does not do learning by
itself. It takes a small k × k block from the final feature map of the previous layer
and output a single value. Themost used poolingmethods aremax-pooling,where the
output is themaximumvalue of the block, and average pooling,where the output is the
average value of the block. There are other pooling methods with good performance
on certain tasks [3, 8].

Dropout

Dropout is proposed as an element of the training procedure to reduce overfitting
on the training data by preventing coadaptations among neurons [4]. Dropout is per-
formed on each forward passing of a training image, randomly omitting the response
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of a neuron from the network with a probability of 0.5. In this way a hidden unit
cannot rely on other hidden units being present. It has been shown in [4] that dropout
improves the ability of generalization in CNNs on image recognition tasks as well
as voice recognition tasks.

8.1.2 Size of the CNN

Size of a typical CNN is usually huge. The winning system of ImageNet 2013
classification contest was a deep convolutional neural network million parameters.
The ILSVRC 2012 challenge winning CNN system by Krizhevsky has around 60
million parameters [6]. Overfeat, the ILSVRC 2013 challenge winning CNN, has
more than 140 million parameters [12]. Owing to their complexity, these networks
are always trained on a GPU machine or GPU clusters for better performance. Are
all those parameter needed for image classification? Is there a way to train a compact
CNN with the same performance as the state-of-the-art architecture?

8.1.3 Filter suppression and selection

In this subsection, we present a novel way to evaluate the contribution of each filter
in a high performance compact Convolutional Neural Network. The filters in the
first layer of the proposed CNN are selected from a pretrained larger CNN (2 times
larger). The selection is based on ranking the contribution of each filter to the final
performance of the network.

Filter Suppression

Filter suppression is used to evaluate the importance of each filter. The term filter
suppression refers to setting the weight of a specific filter to zero. The performance of
the suppressed network is then evaluatedbasedon the validationdataset.Contribution
of this filter is calculated based on the difference between the error recognition rates
before and after filter suppression:

Contribution = E R R_suppressed − E R R_original (8.2)

where E R R stands for error recognition rate, which is the percentage of error recog-
nition in the validation set.
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Fig. 8.2 Contribution evaluation for three convolutional neural networks trained on CIFAR-10. For
each figure, the x-axis is the index of the filters examined, and the y-axis is the contribution of that
filter to the final recognition rate. The contribution of filters in the first convolutional layer varies
drastically, indicating that there redundant filters in this layer. Contribution of higher level filters
appears to be more uniform compared to the contribution of the filters in the first convolutional
layer. The dead filters (more than 50%) in Conv1 layer can be removed without affecting the final
performance

Figure8.2 shows the contribution evaluation result of three CNNs (with three
convolutional layers of the same size ) trained on CIFAR-10 dataset. These CNNs are
initialized with different parameter (randomly generated) but trained with the same
data. The evaluation reveals two important properties of the filters inside a CNN:

1. A large CNN network, though yields good performance during testing, has a
considerable amount of dead filters in Conv1 layer. By dead filters we mean
those filters with contribution of 0% to the recognition rate on the validation
dataset. The weight inside those filters can be set to zero without affecting the
overall performance of the network.

2. Filters of higher level layers, i.e., Conv2 layer and Conv3 layer, have more aver-
aged contributions to the final performance compared to the filters in the first
convolutional layer.

Filter Selection

It is possible that the dead filters in the lower layers, though useless when sup-
pressed individually, are actually important for classification when they are com-
bined together in higher layers. To test that hypothesis, all dead filters are removed in
the tested network, including weights that connect the corresponding layer1 feature
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Table 8.1 Filter selection result

Conv1 Conv2 Conv3 Fully
Connect

Size ERR (%)

Original
network

Filter size 5 × 5 × 3 5 × 5 × 64 5 × 5 × 64 7 × 7 × 64 240960 18.51

19.37

19.66

Num. of
filter

64 64 64 10

Network
without
dead filters

Filter size 5 × 5 × 3 5 × 5 × 32 5 × 5 × 64 7 × 7 × 64 187360 18.51

19.37

19.66

Num. of
filter

32 64 64 10

Filter selection result on three randomly initialized networks. The dead filters can be removed
without affecting performance of the original network, making the network more compact. ERR
stands for error recognition rate

map. The recognition rate, as is shown in Table 8.1, remains unchanged compared
to the recognition rate of the original network.

8.2 Compact CNN with Color Descriptor

As is discussed in previous section, CNNs give extraordinary performance on image
recognition tasks at the cost of extremely large networks powered by GPUs. The
large size of CNNs makes it hard to implement such a system onto a mobile device
with limited computational resources. Filter suppression and selection reveals that
a CNN by itself is not fully exploiting the lower level information from the input
images, generating the dead filters as is shown in Table8.1. Is there a way to main-
tain the performance while keeping the network small? In this section we present
a compact CNN combined with histogram color descriptor. The proposed solution
has a recognition accuracy on par with the state-of-the-art CNNs, while achieving
significant model memory footprint reduction. Due to these benefits, the proposed
solution is being deployed to the mobile devices.

8.2.1 Histogram-based Classification

Color histograms are widely used to compare images despite the simplicity of this
method. It has been proven to have good performance on image indexing with rel-
atively small datasets [13]. Color histograms are trivial to compute and tend to
be robust against small changes to camera viewpoint, which makes them a good
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compact image descriptor for device-based image classification task. It was also
reported in [1] that the performance of a histogram-based classifier was improved
when the higher level classifier was a support vector machine.

However, when applied to large dataset, histogram-based classifiers tend to give
poor performance because of high variances within the same category. It is also
observed that images with different labels may share similar histograms [10].

In this work, we propose a novel architecture that combines the histogram-based
classification method with CNN. The histogram representation of color information
helps the CNN to exploit color information in the original image. This means that
we can cut down the size of the basic feature detectors (i.e., layer 1 of the CNN).
The proposed architecture is introduced in the following section.

8.2.2 Convolutional Neural Networks

We train two CNNs with different number of filters in the first layer: an original ver-
sion and a compact version. The ‘original’ network is the exact replicate of the CNN
reported in [5], which gives a final error recognition rate of 13% using multiview
testing on CIFAR-10. In this work, however, we only use single view testing when
reporting the final result for both the original CNN and compact CNN.

We use the architecture of Krizhevsky et al. [6] to train the original CNN in the
experiments. We then modified layer 1 by changing the filter size (from 5 × 5 × 3 to
5 × 5 × 1) and the number of filters (from 64 to 32) in later experiments. The details
of the experiments are introduced in the next section.

Both the original and the compact CNNs have four convolutional layers. Table8.2
shows the details of the two networks when trained on cropped images from the
Samsung Mobile Image dataset. Our compact CNN is marked in bold font to show
the difference. There are only 32 filters in the first layer of the compact CNN while
the number is 64 in the original CNN. This cuts down the number of parameters by
50% in layer 3 (i.e., the second convolutional layer). The final compact CNN has
40% less parameters to tune compared to the original version.

8.2.3 Color Information

A color is represented by a three-dimensional vector corresponding to a point in
the color space. We choose red–green–blue (RGB) as our color space, which is in
bijection with the hue–saturation–value (HSV).

HSV may seem attractive in theory for a classifier purely based on histograms.
HSV color space separates color component from the luminance component, making
the histogram less sensitive to illumination changes. However, this does not seem
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to be important in practice. Minimal improvement on the performance of a support
vector machine was observed when switching from RGB color space to HSV color
space [1].

The benefit of using RGB is that the three channels share the same range (i.e.,
from 0 to 255), making it easier for normalization.

We experiment with three different configurations of the color histogram:

1. Global histogram, 48 bins.
2. 9-patch histogram, 192 bins. The 9 patches are generated as is shown in Fig. 8.3.

As CIFAR-10 dataset contains only 32 by 32 images, which makes it harder to
extract useful histograms, the number of bins in this setup are 48, 2 × 24, 2 ×
24, and 4 ×24.

3. 9-patch histogram, 384 bins. Numbers of bins are doubled compared to the pre-
vious setup.

These experiments on histogram configuration are solely carried out on the CIFAR-
10 image dataset. This series of experiment serves as a guideline for our experiment
on Samsung Mobile Image Dataset.

8.2.4 Combined Architecture

Once the CNN is trained for the classification task with the grayscale version of the
training set, we replace the fully connected layer and the softmax layer (i.e., layer 7
and 8 as is shown in Table8.2) with a new fully connected layer and a new softmax

Fig. 8.3 Compact CNNwith histogram-based color descriptor.We separate color information from
the original image by only feeding the CNNwith the grayscale image. Color histogram is combined
with the final feature vector. This figure shows how an image from Samsung Mobile Image Dataset
is classified as is described in Sect. 8.3.2. Image size and the number of bins in a histogram are
reduced accordingly when testing on CIFAR-10. There are only 32 filters in layer 1, selected from
the 64 filters in layer 1 of the original network via filter contribution evaluation. The performance
of the Compact architecture, therefore, is similar to the original architecture, with the network size
40% smaller when testing on CIFAR-10, and 20% smaller when testing on SamsungMobile Image
Database



210 Z. Zheng et al.

layer trained on the combined feature vector, using the feature vector from the same
training set.

The combined feature vector is generated by Algorithm 1.

Input: image I , total number of patches k
Output: Combined Feature Vector vec_combined
segment I into {Ii , i = 1, 2, ..., k};
extract histogram vector hist_vec from {Ii };
resize I to CNN input size, feed I into CNN;
extract layer 6 output cnn_layer_6_vec from CNN;
reshape cnn_layer_6_vec to a one dimensional vector cnn_vec;
vec_combined = concatenate(cnn_vec, hist_vec);
return vec_combined

Algorithm 1: extract new feature vector

With the new feature vector extracted from the training set, we train a new layer
7 (fully connected layer) and layer 8 (softmax layer) based on the combined feature
vector extracted from the training set.

8.3 Experiment

The purpose of the work presented is to find a compact architecture by combin-
ing handcrafted feature representation with final feature vector from the CNN. To
make clear comparison with the existing system, we evaluate the performance of the
combined classifier with several different setups:

1. Cropped images and uncropped images. Training on cropped images (4 corner
patches and 1 center patch) means that we feed patches of image into the network
instead of the original image. When testing, we feed the network with only the
center patch of the image. This allows the network to train with relatively more
samples, but would jeopardize recognition for certain classes in SamsungMobile
Image Dataset (e.g., upper body and whole body). This experiment is reported in
Sect. 8.3.1.

2. CIFAR-10 dataset and Samsung Mobile Image Dataset. We use the CIFAR-10
dataset to test different configurations of histograms and several data augmenta-
tion methods in Sect. 8.3.1. The results on CIFAR-10 serves as a guideline for
us to construct a compact classifier for the Samsung Mobile Image Dataset, a
hierarchical dataset collected at Samsung Research America. The experiment on
this new dataset is reported in Sect. 8.3.2.
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Details about these experiments are reported in the following section. In short, we
found that the proposed compact architecture trained on cropped grayscale image
maintains the high accuracy of the original CNN trained on cropped RGB images.

8.3.1 Extracting Histogram-Based Color Feature

CIFAR-10 has been heavily tested with many classification methods. Krivzhevsky
et al. [6] achieved a 13% test error rate when using their ILSVRC 2012 winning
CNN architecture (without normalization). By generalizingHinton’s dropout [4] into
suppression in weight values instead of activation values, Wan et al. [14] reported
an error testing rate of 9.32%, using their modified Convolutional Neural Network
DropConnect. Lin et al. [9] replaced the ReLU convolutional layer in Krivzhevsky’s
architecture [6] with a convolutional multilayer perceptron. They reported a test error
rate of 8.8%, currently ranking top on the leader board of classification on CIFAR-10
dataset.

Our experiment in this chapter is still based on Krizhevsky’s architecture as is
described in [6]. The goal of this paper is to study the contribution of color informa-
tion to CNN-based image classification, and to seek possible combination between
handcrafted feature vector and CNN extracted feature vector to further exploit the
low level features with limited number of parameters. For these reasons we apply our
modifications to a standard CNN architecture as is provided by Krizhevsky in [6].
We believe that the combined architecture can also be applied to other CNN variants
with few modifications.

Getting Histogram

For device-based image classification, a large histogram vector means heavier load
for computation. Therefore we only extract a global histogram of a small amount
of bins from the original image in our first experiment. The histogram and the final
feature vector from the CNN pass are concatenated together as is described in the
previous section.

In later trials, we move on to more complicated histograms feature vector extrac-
tion configurations instead of just using the global histogram.We extracted histogram
feature vectors of different length from 9 patches of the input image. Suppose we are
to extract a histogram feature vector of length 384, then the number of bins of each
patch would be: 96 bins from the entire image, 48 × 4 bins from the left half, the
right half, the top half and the bottom half, 24 × 4 bins from the upper left corner, the
upper right corner, the lower left corner and the lower right corner. This procedure
is shown in Fig. 8.3. The intention is to precisely reflect the global color information
as well as the local color distribution in the extracted features.
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Table 8.3 Different histogram configuration result on uncropped images using original CNN (on
CIFAR-10)

Input image and hist config. Top-1 error rate (%)

Grayscale 24.79

Grayscale+global hist (48 bins) 24.95

Grayscale+9 patch hist (192 bins) 24.55

Grayscale+9 patch hist (384 bins) 24.10

Training Methods

Although our CNN architecture is similar to Krivzhevsky’s network, we modify
some parts of the training procedures in [6] to suit our needs.

As is shown in Table8.3, we first explore the configuration of histogram vec-
tor by adjusting the amount of information the histogram vector contains. In each
case, the grayscale CNN, trained on the original architecture remains unchanged.
Although global color histogram does not help to improve classification, the 9-patch
configuration led to significantly improved performance. One important guideline
we observed is that a more detailed histogram (384 bins) gives better classification
result compared to rough color information.

When trained on uncropped RGB images using the original architecture, the per-
formance (recognition rate) is 2% worse than the original architecture trained on
grayscale images.

When trained with enough images (i.e., after cropping), the CNN trained with
RGB images is more accurate, with an error recognition rate of 16.36%. However,
the original CNN has 146,368 parameters due to the large number of filters in layer
1 and layer 2. The compact CNN trained on grayscale images has less filters in layer
1 and thus 50% compared to the original CNN, while the error recognition rate rises
only by 1%.As a result, the proposed architecturemaintains high performance, while
the size of the architecture is 40% smaller.

8.3.2 Samsung Mobile Image Dataset

The Samsung Mobile Image Dataset is a large scale collection of mobile phone
photographs collected at Samsung Research America. There are 31 classes, with a
total 82181 images of different sizes and resolutions.

Class names together with sample images of each class are shown in Fig. 8.4.
Instead of just training the network to recognize if a person is in the image, the
network is also required to report a general posture (e.g., lying, leaning forward or
backward, etc.). The general food category is also divided into three sub categories:
the class ‘food part 1’ contains breads, desserts and bottled/cupped food; the class
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Fig. 8.4 Sample images for Samsung Mobile Image Dataset. This hierarchical image dataset has
unclear boundaries among categories. The first level category is presented by colored ovals. Second
level categories are presented by the label and a random sample from the training dataset

‘food part 2’ contains meat and other foods on a plate; the class ‘food part 3’ consists
of pictures about foods on tables. Details of each class can be found in Table8.6.

We split the dataset by assigning 10% of the images to the testing set, 10%
to a validation set and 80% to the training set. After the 384 bins histogram is
extracted, each image is then resized into a 48 × 48 grayscale image and then fed to
the convolution network. The layer configuration and parameters are the same as is
described in Table8.2. Note that the input image size should bemodified accordingly.

Getting Histogram

As the original image contains more detailed information due to the increased image
resolution, a global histogramvector is not sufficient to describe the color information
with high accuracy.

Guided by the result from our first experiment, we extract a color descriptor of
length 384 by concatenating histogram feature vectors from 9 patches of the image
as is described in previous experiment (Table8.4).

Data Augmentation

As is reported in the previous experiment, cropping images leads to more robust
features learned by the network. But cropping as is done in [6] may lead to confusion

Table 8.4 Cropped image test result (on CIFAR-10)

Architecture (all on cropped
images)

Top-1 error rate (%) Number of parameters

Grayscale (original) 18.10 143168

Grayscale (compact) 18.95 91168

Grayscale (compact) 9 patch
hist (384 bins)

16.55 95008
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Table 8.5 Samsung mobile image test result

Architecture (all on cropped
images)

Top-1 error rates (%) Number of parameters

Grayscale (original) 26.08 230848

Grayscale (compact) 26.06 178848

Grayscale (compact) 9 patch
hist (384 bins)

22.80 186528

Dense SIFT aggregation 30.61 –

Fig. 8.5 Compact CNN layer 1 filter. There are only 32 filters in layer 1 of the proposed architecture.
The network learns basic features as edges and corners from the grayscale input. Network trained
on grayscale images from Samsung Mobile Image Dataset

when the network needs to distinguish upper body from whole body (class 9 and 10
in Table8.6). Therefore we flip the images from the uprightwhole class horizontally
at a 0.5 probability. The images are then resized and zero-padded to fit the input size
of the network (40 × 40).

Experiment Result

The error recognition rates of different configurations are reported in Table8.5.
The difference between the error recognition rate of the original architecture

(trained on grayscale images) and the compact architecture (trained on grayscale
images) is even smaller when using Samsung Mobile Image Dataset (i.e., less than
0.3%). This result indicates that the 64 filters on the first layer learned redundant
information. The learned filters are visualized in Figs. 8.5 and 8.6.

It can also be seen from the result that color information boosts the performance
of the grayscale CNN (original version and compact version) by as much as 3% (for
compact CNN) and 4% (for original CNN). Our proposed architecture is neck and
neck with the original architecture in recognition, while the proposed architecture is
more compact compared to the original version.
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Fig. 8.6 Original CNN trained on RGB images from SamsungMobile Image Dataset. The network
deploysmost of its resources in finding color gradient, compared to the filters learned inCNN trained
on grayscale images

8.4 Conclusions

In this chapterwe introduce the convolutional neural network for image classification.
Convolutional neural networks give state-of-the art performance but its application is
limited due to its largememory footprint.We present a novel architecture tominimize
the size of the network. The proposed architecture combines handcrafted global color
informationwith a convolutional neural network pretrainedwith thumbnail grayscale
images. The proposed architecture has similar recognition capacity compared to
state-of-the-art CNNs, quite ahead of the traditional dense SIFT aggregation solution,
but with a much smaller network size and complexity that can fit on the mobile
devices. We apply our network to Samsung Mobile Image Dataset, a hierarchically
organized image dataset. The experiment shows that carefully designed histogram
extractor helps to boost the performance of the convolutional neural network. In
future work we are investigating a CNN feature map relearning and top-down CNN
complexity reduction solution that can further compact the network and improve the
accuracy.

Details about the Samsung Mobile Image dataset are included in Table8.6.



216 Z. Zheng et al.

Table 8.6 Class labels and number of images per class

Level 1 Level 2 # of images Top-1 error rate
(%)

Top-2 error rate
(%)

Vehicle Bike 3097 2.64 1.56

Motorbike 865 6.41 1.79

Car 2969 21.78 5.37

People Environment 2713 35.08 6.23

Lean-45 1271 26.06 10.43

Lean+45 1277 26.07 10.43

Lying 1005 23.16 11.58

Mugshot 3625 16.45 6.45

Uprightupper 4197 37.01 6.49

Uprightwhole 3336 37.01 6.49

Food Food part1 3291 50.00 25.00

Food part2 2926 20.18 6.02

Food part3 3168 10.94 3.12

Documents Document 3080 6.21 3.73

Pets Cat body 3717 19.13 8.47

Cat head 3521 5.37 3.95

Dog body 3769 22.13 10.36

Dog head 3158 10.39 3.58

Scenery Flower 3577 4.24 2.12

Mountain 2838 49.05 13.74

Skyscraper 2549 49.44 9.20

Opencountry 1829 31.56 13.78

Snow 1955 38.34 9.20

Street 1966 41.82 11.27

Sunset 2350 60.12 8.90

Waterfall 1012 4.82 2.19

Beach 2874 45.26 7.51

Desert 873 22.22 8.72

Forest 2667 25.00 5.62

Lobby 2298 11.48 6.56

Nightscene 3050 45.51 9.55
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Chapter 9
Assistive Text Reading from Natural Scene
for Blind Persons

Chucai Yi and Yingli Tian

Abstract Text information serves as an understandable and comprehensive
indicator, which plays a significant role in navigation and recognition in our daily
lives. It is very difficult to access this valuable information for blind or visually
impaired persons, in particular, in unfamiliar environments. With the development
of computer vision technology and smart mobile applications, many assistive sys-
tems are developed to help blind or visually impaired persons in their daily lives.
This chapter focuses on the methods of text reading from natural scene as well as
their applications to assist people who are visually impaired. With the research work
on accessibility for the disabled, the assistive text reading technique for the blind
is implemented in mobile platform, such as smart phone, tablet, and other wearable
device. The popularity and interconnection of mobile devices would provide more
low-cost and convenient assistance for blind or visually impaired persons.

9.1 Introduction

With the development of computer vision technology and smart mobile applications,
many assistive systems are developed to help blind or visually impaired persons in
their daily lives. This chapter focuses on the methods of text reading from natural
scene as well as their applications to assist people who are visually impaired. With
the research work on accessibility for the disabled, the assistive text reading tech-
nique for the blind is implemented in mobile platform, such as smart phone, tablet,
and other wearable device. The popularity and interconnection of mobile devices
would providemore low-cost and convenient assistance for blind or visually impaired
persons.
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Of the 314 million visually impaired persons worldwide, 45 million are blind [1].
In the United States, the 2008National Health Interview Survey (NHIS) reported that
an estimated 25.2 million adult Americans (over 8%) are blind or visually impaired
[2]. This number is increasing rapidly as the baby boomer generation ages. With the
help of guide cane and guide dog, visually impaired persons perceive surrounding
environments by hearing, smell, or touch, so that they are able to discern objects by
shape and material, and avoid obstacles in the way-finding process.

However, it is beyond their capabilities to acquire text information from natural
scene. Some office buildings and public facilities do provide blind-assistant signage
in Braille. However, in most cases, text information in natural scene is prepared for
people with normal vision, in the form of printed fonts at a signage board.

Text information serves as an understandable and comprehensive indicator, which
plays a significant role in navigation and recognition in our daily lives. It is very
difficult to access this valuable information for blind or visually impaired persons, in
particular, in unfamiliar environments. However, recent developments in computer
vision, digital cameras, and portable computers make it feasible to develop camera-
based assistive products to help them. These blind-assistant systems usually combine
computer vision technologywith other existing commercial products suchOCR,GPS
systems.

This chapter is organized as follows. Section9.2 introduces the relatedwork on the
requirements of blind users and the available effective methods of scene text extrac-
tion. Section9.3 presents a technical framework of scene text extraction. Section9.4
describes two blind-assistant prototype systems of text recognition respectively for
handheld object recognition and indoor navigation. Section9.5 introduces blind-
assistant system design for accessibility on mobile platform.

9.2 Related Work

A blind-assistant system should be comfortable to wear, portable, efficient, low-
cost, and user-friendly. These basic requirements are closely associated with the sys-
tem design and implementation. Many blind-assistant systems have been developed
[3–8]. In general, a blind-assistant system contains three main components: capture,
process, and feedback. More descriptions of the blind-assistant system interface
design will be presented later in this chapter.

The capture component of a blind-assistant system is to help blind user perceive
surrounding objects. For example, white cane can be considered as a simple capture
component. It perceives surrounding objects by touch, and it is portable and easy
to hold. In computer vision-based blind-assistant systems, the capture component is
usually a camera, which can be attached to a wearable device, so that the blind or
visually impaired persons can conveniently take it everywhere. To clearly capture
surrounding objects in different distances, some systems [9] took multiple cameras
with different viewpoints and focuses. In most cases, the cameras are attached to a
sunglass [10] or a helmet [6, 11]. Many wearable cameras, such as Autographer [12],
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MeCam [13], Looxcie [14], andGoPro [15] have developed for portable photography
or entertainment, but they can also be used in blind assistance. The Google-glass [16]
may also be used as a basic device to capture data in blind assistance.Recently, RGBD
cameras that are able to capture depth information were often used in blind-assistant
navigation [17] or indoor scene indexing [18].

Theprocess component of a blind-assistance system is to extract valuable informa-
tion, which can be provided to blind persons to recognize surrounding objects or find
their ways to destination. The image/video data captured by cameras provides large
amount of information about the surrounding objects in natural scenes, in which text
serves as the most straightforward and informative indicators. Thus in this chapter,
as one of the main tasks of the process component, we will focus on extracting sur-
rounding text information for blind or visually impaired users.Our research group has
developed a series of computer vision-based methods for blind people to recognize
signage [19] and object labels [20], recognize objects, and clothes patterns [21–23],
independently access and navigate unfamiliar environments [9, 24–26]. Tian et al.
developed a proof-of-concept computer vision-based way-finding aid for blind peo-
ple to independently access unfamiliar indoor environments [27]. We also developed
several methods and prototype systems [10, 28] to extract text information from
natural scenes. Scene text extraction is usually divided into two steps: detection and
recognition. Text detection is to find out image regions containing text characters
and strings. Text detection algorithms [29–32] were mostly involved in color unifor-
mity, gradient distribution, and edge density of text regions. Text recognition is to
transform the image-based text information into readable text codes [33–35]. Text
recognition algorithms were mostly based on the design of feature representation
for text character recognition, and the combination of vision-based recognition and
lexicon-based model for word recognition.

The feedback component of a blind-assistant system is to provide the extracted
information in an acceptable way to the blind users. The feedback should satisfy
several requirements of blind or visually impaired persons who are located in an
unfamiliar environment or hold an unfamiliar object. It must be simple, in time, and
understandable. A straightforward way of information feedback is indicative speech,
which transforms the vision-based information into audio-based information so that
the blind or visually impaired persons can hear it. Many systems adopted this scheme
[8, 10, 36]. In addition,many sonar-based systemswere designed to help blind person
avoid obstacles [37–41]. The ultrasound is transmitted and received to measure the
distances and directions of possible obstacles that reflect it, and the blind or visually
impaired persons can obtain real-time notifications. However, these systems cannot
provide vision-based information like text signage. In addition to acoustical feedback,
such as audio and speech, some systems designed haptic feedback based on regular
vibration of a wearable device. The device used for haptic feedback can be a helmet
[11], finger [42], or tongue display unit in the mouth [42–45].
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9.3 Scene Text Extraction

In this section, we describe the technical framework of scene text extraction that
contains two main steps: text detection and text recognition.

9.3.1 Scene Text Detection

To extract text information from camera-based natural scene images, first, we need to
separate the contours or blobs that possibly contain text characters from background
outliers. These possible text characters are defined as candidate characters. In our
framework, two algorithms are developed to detect candidate characters, which are
respectively associated with contours and blobs of text characters.

Candidate Character Detection

A. Contours in Edge Map

Candidate characters normally generate regular and closed contours in the edge map
of scene image. Thus a straightforward method of detecting candidate characters is
to first generate all object contours in a scene image, and then find out the contours
probably generated by scene text characters.

We apply Canny edge detector [46] to acquire the edge map of a natural scene
image. In low-level image processing, a contour is defined as a set of connected edge
pixels. Figure9.1 illustrates the detected contours in a natural scene image. Among
these contours, some geometrical constraints are defined to detect the contours of
candidate characters.

Both Canny edge detection and object contour generation are computationally
efficient. However, without predefined constraints like color uniformity to analyze
the blobs, the contours of candidate characters would be mixed with the contours of
background objects, and it is difficult to distinguish them. A more effective operator
is presented in next section to extract candidate characters.

B. Maximum Stable Extremal Region

In addition to contours in specific geometrical constraints, candidate characters and
their attachment surfaces are usually paintedwith uniform color. Thus, we can extract
these candidate characters in the form of blobs, which include not only the contour
but also torso information.

Maximum stable extremal region (MSER) operator was proposed in [47], which
has been used as a blob detection technique for a long time in computer vision field.
MSER is defined based on an extension of the definitions of image and set. Let image
I be a mapping such that I : D ⊆ Z

2 → S, where D denotes the set of all pixels in
the image, and S is a totally ordered set with reflexive, antisymmetric and transitive
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Fig. 9.1 a Canny edge map of a scene images. b Bounding boxes of object contours in the form
of connected edge pixels, obtained from edge map

Fig. 9.2 a Canny edge map of a scene images. b Bounding boxes of object contours in the form
of connected edge pixels, obtained from edge map

properties. It means each pixel in an image is mapped into a value, and each pair of
pixels can be in comparison with each other through their respective values. In real
applications, this value is defined as pixel gray intensity.

An adjacent relation is defined as A. For two neighboring pixels ai and ai+1,
we have ai Aai+1 if and only if |I (ai+1) − I (ai )| ≤ Threshold, where I (ai ) denotes
the mapped gray intensity at pixel ai . Then, an MSER region Q is defined as a
contiguous subset of D, such that for each p, q ∈ Q, there is a sequences p, a1, a2,
a3, . . ., an , q, where p Aa1, a1 Aa2, . . ., ai Aai+1, . . ., an Aq. Here, A represents the
intensity difference and p, q or ai is in the form of 2-dimensional vector, representing
the x-coordinate and y-coordinate of an image pixel. As shown in Fig. 9.2, MSER
generates connected components of text characters in a scene image, while edge map
only gives the contours of text characters. Further, MSER map filters out the foliage
thoroughly.

Since MSER cannot confirm the intensity polarity of text and attachment surface,
that is, not able to distinguish white-text-in-black-background from black-text-in-
white-background, both text and attachment surface will be extracted as candidate
characters in MSER map. However, attachment surface components can be easily
removed by defining some geometrical properties. Moreover, MSER has several spe-
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cific properties compatible with the requirement of extracting candidate characters
from natural scene image. First, MSER is invariant to affine transformation of image
intensities. Second, MSER extraction is very stable since a region is selected only
if its support is nearly the same over a range of thresholds. Third, MSER is scale-
invariant and is able to extract candidate characters in multiple scales without any
preprocesses of original natural scene image.

MSER extraction is efficient enough to satisfy mobile applications, because its
time complexity in the worst case is O(n)where n represents the number of pixels in
the image. However, in our experiments, MSER blob detection usually takes about
2–3 times the computational time as contour search in edge map.

C. Geometrical Constraints of Candidate Characters

Not all contours in an edge map and not all blobs generated byMSER operator come
from text characters, which also compose that from non-text background outliers.

To remove the non-text background outliers from the set of candidate characters,
we define a group of geometrical constraints. In these constraints, a candidate char-
acters C, in the form of either contour or blob, is described by several geometrical
properties: height(.), width(.), coorX (.), coorY (.), area(.), and numInner(.), which
represent height, width, centroid x-coordinates, centroid y-coordinates, area, and the
number of inner candidate characters respectively.

We define a group of geometrical constraints based on above measurements to
ensure that the preserved candidate characters are real text characters as possible.
Since we will further perform text string layout analysis and text structure modeling
to remove false positive candidate characters, the constraints defined in this step are
not very strict.

height(C) > 15pixels

0.3 ≤ width(C)

height(C)
≤ 1.5

numInner(C) ≤ 4

1

10
· ImageWidth ≤ coorX (C) ≤ 9

10
· ImageWidth

1

10
· ImageHeight ≤ coorY (C) ≤ 9

10
· ImageHeight

(9.1)

The involved geometrical constraints are presented in Eq. (9.1). First of all, the
candidate character component cannot be too small, and otherwise we will treat it as
background noise. It also means that our whole framework of scene text extraction
requires enough resolution of camera-captured scene text image. Second, the aspect
ratio of a character should be located in a reasonable range. Under a threshold of
aspect ratio, we might also remove some special text characters like 1, but it is very
possible to restore this false removal by generating text strings. Third, we define
some constraints related to the number of nested candidate character components as
presented in [48]. Fourth, we observe that many background outliers obtained from
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the above partition methods are located at the boundaries of scene images. Thus, the
candidate character components whose centroids are located at the 1/10 boundary
of the images are not taken in account in further processes.

The constraints in Eq. (9.1) do not depend on any learning models to decide the
parameters as in [29, 49]. Instead, all the involved geometrical constraints are weak
conditions, with the preservation of true text characters in higher priority than the
removal of false positive background outliers. Therefore, only the obvious back-
ground outliers are filtered by the geometrical constraints. The remaining false pos-
itive candidate characters will be handled in the extraction of text string.

Text String Detection

A set of candidate character components is created in the form of contours or blobs
from an input image. Most candidate characters are not true scene text characters
but non-text background objects in uniform color or some portions of an object
under uneven illumination.Geometrical constraints as described in last section cannot
remove them, so we design more discriminative layout characteristics of scene text
from high-level perspective. Text in natural scene mostly appears in the form of
words and phrases instead of single characters. It is because words and phrases are
more informative text information, while single character usually serves as a sign
or symbol. Words and phrases are defined as text strings, and we attempt to find
out possible text strings by combining neighboring candidate characters. Therefore,
in this chapter, we define a text string as a combination of neighboring candidate
characters.

In this section, a method named as adjacent character grouping is presented in
[50] to detect text strings among the extracted candidate characters. Text strings in
natural scene images usually appear in horizontal alignment and each character in a
text string has at least one sibling at adjacent positions. Furthermore, a text character
and its siblings in a text string have similar sizes and proper distances. Therefore,
the idea of adjacent character grouping is removing the candidate characters that do
not have any siblings.

In adjacent character groupingmethod, themain problem is how to decidewhether
two candidate characters C1 and C2 are sibling characters. According to our observa-
tions and statistical analysis of text strings, we define three geometrical constraints
as follows:

(1) Considering the approximate horizontal alignment of text strings in most cases,
the centroid of candidate character C1 should be located between the upper-bound
and lower-bound of the other candidate character C2.
(2) Two adjacent characters should not be too far from each other despite the vari-
ations of width, so the distance between two connected components should not be
greater than T2 times the width of the wider one.
(3) For text strings aligned approximately horizontally, the difference between y-
coordinates of the connected component centroids should not be greater than T3

times the height of the higher one.
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Fig. 9.3 a Sibling group of the connected component r where B comes from the left sibling set
and o comes from the right sibling set; b Merge the sibling groups into an adjacent character group
corresponding to the text string Brolly?; c Two detected adjacent character groups marked in red
and green respectively [50]

In our applications, we set the thresholds T1 = 0.5, T2 = 3, T3 = 0.5. For each
candidate character Ci , a sibling set S(Ci ) is generated, where 1 ≤ i ≤ |C| and |C|
represents the number of candidate characters obtained from image partition.

First, an empty sibling set is initialized as S(Ci ) := φ. We transverse all candidate
characters except Ci itself. If a candidate character Ci

′ satisfies all above constraints
with Ci , we add it into the sibling set as S(Ci ) := S(Ci ) ∪ {Ci

′}. Second, all the
sibling sets compose a set of adjacent groupsΛ = {Ai |Ai := S(Ci )}, where a sibling
set is initialized to be adjacent group A. Third, the set of adjacent groups is iteratively
updated bymerging the overlapping adjacent groups. An adjacent group is a group of
candidate character components that are probably character members of a text string.
As Eq. (9.2), if two adjacent groups Ai and A j in Λ have intersection, they will be
merged into one adjacent group. This merging operation is iteratively repeated until
no overlapping adjacent groups exist.

In the resulting set of adjacent groups, each adjacent group Ai is a set of candidate
characters in approximate horizontal alignment, which will be regarded as a text
string, as shown in Fig. 9.3. Then, a bounding box is generated for each adjacent
group to represent the region of a localized text string in natural scene image.

∀Ai , A j ∈ Λ, if Ai ∩ A j 
= φ,

then Ai := Ai ∪ A j and A j := φ
(9.2)
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9.3.2 Scene Text Recognition

The extraction of candidate character and text string is able to efficiently localizemost
text strings from natural scene image. However, to acquire valuable text information
for blind or visually impaired persons, there are still two problems to be solved.
First, above steps of text character and string extraction are pixel-based processing
and statistic-based parameter setting, and they will bring in many false text strings
from the natural scene image with complex background. Second, for true text strings,
a method or off-the-shelf system is required to recognize the text information in it,
which transforms the image-based text information into readable text codes. To solve
these twoproblems, feature representations related to inner text structure are designed
in two different ways.

Text String Classification

In the first problem of scene text recognition, feature representation is proposed to
model structural insights of text characters and strings. At first, each text string,
localized by above steps in last section, is defined as a sample. It may be a positive
sample, which means this region truly contains text information. It may also be a
negative sample, which means that this region is generated by background outliers,
e.g., some texture similar to text character, such as bricks, window grids and foliage,
and some objects rendered by specific illumination change, as shown in Fig. 9.4. To
distinguish text from non-text outlier, we design text structure-related feature repre-
sentations by using Haar-like block patterns and feature maps. Figure9.5 illustrates
the flowchart of the text string classification process.

To extract structural information from these samples, Haar-like filters are designed
in the form of block patterns, as shown in Fig. 9.6. Each block pattern consists of
white regions and gray regions in specific ratio. It will be resized into the same size
as a sample, and used as a mask. Then specific calculation metrics are defined based
on these block patterns for extracting structural features.

A simple idea of feature extraction is to apply these block patterns directly to
the text string samples, and calculate Haar-like features from intensity values of the

Fig. 9.4 Some examples of text string samples in the form of image patches
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Fig. 9.5 Diagram of the proposed Adaboost learning-based text string classification algorithm

Fig. 9.6 Some examples of Haar-like block patterns to extract text structural features. Features are
obtained by the absolute value of mean pixel values in white regions minus those in black regions

image patches. However, unlike face detection [51], the sole intensity values cannot
completely represent structure of text strings.

To model text structure, we design a set of feature maps for the samples, in
which the physical meaning of each pixel is transformed from intensity value to
some measurements related to text structure. The structure-related measurements
are mostly based on gradient, edge density, and stroke. The involved feature maps
include gradient, stroke width, stroke orientation, and edge density [10].

In feature map of a text string sample, each pixel is transformed from intensity
to some measurements related to text structure. Each pixel reflects text structural
configuration froma local perspective. By tuning the parameters of generating feature
maps under a design scheme, we can obtainmultiple featuremaps. In our framework,
we design 3 gradient maps, 2 stroke width maps, 14 stroke orientation maps, and 1
edge distribution map, to which 6 Haar-like block patterns are applied for calculating
feature values. Each combination of a feature map, a block pattern and a calculation
scheme [28] is developed into a weak classifier in Adaboost learning model. By
using the localized regions in above text detection steps as training samples,Adaboost
learningmodel selects an optimized subset of weak classifiers andweighted combine
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them to effectively classify text from non-text outlier. This classifier is actually an
optimized combination of a subset of weak classifiers.

Scene Text Character Recognition

In the second problem of scene text recognition is to transform image-based text
information into readable text codes. A straightforward way is to apply off-the-shelf
optical character recognition (OCR) software [52–54] to the text strings. However,
most OCR systems are designed for scan documents or hand-written recognition,
and they are not robust to background interference and various text patterns. Thus,
we also propose a feature representation for recognizing total of 62 categories of
scene text characters (STCs), which include 10 digits (0–9) and 26 English letters in
both upper (A–Z) and lower cases (a–z).

The most significant role in STC recognition is to work out a multi-class classifier
to predict the category of a given STC. In our system, Chars74K [55] dataset is
adopted to train this multi-class classifier. Figure9.7 illustrates some examples of
STCs cropped from text strings. We observe that the STCs have irregular patterns
and similar structure to each other.

A feature representation is designed to model the representative structure of each
of the 62 STC categories and the discriminative structure between STC categories.
Each STC sample is mapped into its feature representation in the form of a vec-
tor. Then, it is input into SVM learning model to obtain the multi-class classifier.
Figure9.8 demonstrates the whole process of STC recognition.

First, low-level features are extracted from STC image patches to describe appear-
ance and structure of STCs from all 62 STC categories. Through performance evalu-
ations of 6 state-of-the-art low-level feature descriptors [56], our framework selects

Fig. 9.7 Some examples of STCs cropped from text strings. Most STCs have similar structure to
another counterpart
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Fig. 9.8 Some examples of STCs cropped from text strings. Most STCs have similar structure to
another counterpart

Histogram of oriented gradient [57] descriptor applied to the key points sampled
from STC image patches.

Second, key-point sampling and feature coding/pooling play a significant role.We
made a comparative study of several methods of key-point sampling and schemes
of feature coding/pooling [56]. In dense sampling, soft-assignment coding and max
pooling scheme obtain the best performance. However, the global sampling obtains
even better performance, which uses the whole character patch as a key-point neigh-
borhood window to extract features. In global sampling, key-point detection, coding,
and pooling process are all skipped to largely reduce information loss.

Third, STC recognition depends on SVM-based training and testing over the
STC samples. While the learning process in text string classification is to select the
representative combinations of featuremaps,Haar-like block patterns and calculation
schemes to distinguish text from non-text, the learning process in STC prediction
treats the feature representation vector of an STC sample as a point in feature space,
which describes the STC structure. Thus, we would adopt SVM learning model [58]
to generate hyper-planes in feature space as STC classifier, rather than the Adaboost
algorithm to select optimized combinations of theweak classifiers. In the SVM-based
learning process, we adopt multiple SVM kernels, including Linear Kernel and χ2

Kernel, to evaluate the feature representations of STC structure. In recent work, deep
learning framework demonstrates better performance in scene text recognition. But
the implementation of the multilayer convolutional neutral network depends on GPU
computational units, which are usually not available for wearable mobile devices in
blind-assistant systems.

9.4 Blind-Assistant Applications of Scene Text Extraction

Many blind-assistant reading systems are developed to help visually impaired people
reading object bar code or documents through some wearable devices. A big limita-
tion is that it is very hard for blind users to find the position of the bar code and to
correctly point the bar code reader at the bar code.



9 Assistive Text Reading from Natural Scene for Blind Persons 231

Fig. 9.9 Two examples of text extraction by the prototype system from camera-captured images.
Top amilk box;Bottom amen bathroom signage. a Camera-captured images; b localized text strings
(marked in blue); c text strings cropped from image; d text codes recognized by OCR [10]

To assist blind or visually impaired people to read text from handheld objects,
a camera-based text reading prototype is developed to track the object of interest
within the camera view and extract print text information from the object label. Our
framework of scene text extraction can effectively handle complex background and
multiple text patterns, and obtain text information from both hand-held objects and
nearby signage, as shown in Fig. 9.9. Two corresponding blind-assistant applications
are developed on the basis of scene text extraction.

9.4.1 Reading Text Labels for Hand-Held Object Recognition

In most assistive reading systems, users have to position the object of interest within
the center of the cameras view. To ensure the handheld object be captured within
the camera view, we use a wide-angle camera to accommodate users with only
approximate aim. However, this wide-angle camera will also capture many other
text objects (for example, while shopping at a supermarket). To extract the handheld
object from the camera image, we develop amotion-based scheme to acquire a region
of interest (ROI) of the object by asking the blind user shakes the object for a couple
of seconds. This scheme is based on background subtraction-based motion detection
[27]. Then we perform scene text extraction from only this ROI, including detecting
text strings and recognizing text codes. In the end, the recognized text codes are
output to blind users in audio or speech. To present how our prototype system works,
a flowchart is presented in Fig. 9.10.

A prototype system of scene text extraction is designed and implemented in PC
platform and Mobile platform [27, 59]. This system consists of three main compo-
nents: scene capture, data processing, and audio output. The scene capture component
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Fig. 9.10 Flowchart of prototype system to read text from handheld objects for blind users [10]

collects surrounding scenes or objects and generates high-quality image frames. The
data processing component is used for deploying our proposed framework of scene
text extraction. The audio output component is to inform the blind user of recognized
text codes. This simple hardware configuration proves the portability of the assistive
text reading system. The prototype system has been used to assist blind or visually
impaired people to recognize handheld object as described, as shown in Fig. 9.11.

To evaluate the performance of hand-held object recognition system, following the
Human Subjects Institutional Review Board approval, we recruited 10 blind persons
to collect a dataset of reading text on handheld objects. The blind user wore a camera
attached on sunglasses to capture images of the objects in his/her hand, as illustrated
in Fig. 9.11. The resolution of the captured image is 960 × 720. Therewere 14 testing
objects for each person, including grocery boxes, medicine bottles, books, etc. They

Fig. 9.11 Prototype systemassists blind user read text information fromhandheld objects, including
the detected text strings in cyan and the recognized text codes
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were required to keep head (where the camera is fixed) stationary for a few seconds
and subsequently shake the object for an additional couple of seconds to allow our
system detect the object of interest based on the motion. Then, the user rotated each
object several times to ensure the main text on the object are exposed and captured.
We manually extracted 116 captured images and labeled 312 text regions of object
labels.

In our evaluations, a region is correctly detected if the ratio of the overlapping area
of a detected text region and its ground truth region is no less than 3/4. Experiments
demonstrate that 225 of the 312 ground truth text regions are correctly detected by our
localization algorithm. Some examples of extracted scene text from handheld objects
are illustrated in Fig. 9.12, proving that our proposed framework is suitable for real
applications. To further improve the accuracy of text detection and recognition, the
practical system would restrict the range of possible recognized words by a prior
dictionary of common words that are frequently printed in handheld objects. The
extracted text results are output by audio only if it has close edit distance to some
word in the dictionary.

Currently, the system efficiency mainly depends on the efficiency of scene text
extraction in each image or video frame. However, through the design of parallel
processing for text extraction and device input/output, the efficiency of this assistant
reading system can be further improved. That is, speech output of recognized text
in the current frame and localization of text strings in the next image are performed
simultaneously.

9.4.2 Reading Text Signage for Indoor Navigation

A blind-assistant prototype system is designed for hand-held object recognition in
last section. It can be further extended to indoor navigation, by extracting indicative
information from surrounding text signage in indoor environment. In most cases,
indoor navigation is to guide blind users to a targeted destination such as an office,
a restroom, or an elevator entrance. All of them have doors by a signage with a
room name or a room number. The people with normal vision can refer a floor plan
map to find their ways, but blind or visually impaired people cannot acquire this
information. Thus our proposed prototype system can perceive their current location
and generate a proper path from current location to their destination. The hardware
of this prototype system is similar to the system of handheld object recognition in
last section, including a wearable camera, a process unit, and audio output device.
However, the system implements indoor navigation by adding the door detection.

In indoor environments, doors, and elevators serve as important landmarks and
transition points for way finding. They also provide entrance and exit information.
Thus, an effective door detectionmethod plays an important role in indoor navigation.
We develop the vision-based door detection method [60] to localize doors for blind
users. This method depends on a very general geometric door model, describing the
general and stable features of a door frame edges and corners, as shown in Fig. 9.13.
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Fig. 9.12 a Some results of text detection on the blind user-captured dataset, where localized text
regions are marked in blue. b Two groups of enlarged text regions, binarized text regions, and word
recognition results from top to bottom [10]

Ourmethod can handle complex backgroundobjects and distinguish doors fromother
door-like shapes such as bookshelves. After detecting doors, scene text extraction
is performed within the door region or its immediately neighboring region to obtain
text information related to room names and room numbers, as shown in Fig. 9.14.
Both the localization and navigation processes are based on accurate scene text
extraction. Fortunately, the indoor environment mostly does not contain too much
background interferences, and the text signage has relatively fixed pattern, e.g., room
number contains only digits in print format, and restroom is usuallymarked byMEN,
WOMEN, or RESTROOM. Thus, the proposed scene text extraction will adapt its
parameters to this indoor navigation application.
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Fig. 9.13 a Edges and corners are used for door detection. b Door detection under cluttered
background

Fig. 9.14 Indoor objects (top row) and their associated text information (bottom row): a a bathroom,
b an exit, c a lab room, d an elevator. Text information (bottom row) can be extracted to help blind
or visually impaired persons find their ways [24]

By using the extracted information from text signage, blind or visually impaired
person can better perceive his/her current location and surrounding environment.
Furthermore, most buildings have floor plan maps as tourist guide. A floor plan
map contains room numbers and relative locations of the offices, restrooms, and
elevator entrances. The data of floor planmap can be combinedwith the extracted text
information to figure out blind-assistant navigation prototype in unfamiliar buildings.

A prototype design of floor plan-based way-finding system can be found in [9]. A
floor plan map is first parsed into a graph, in which a room is defined as a node (see
Fig. 9.15). Each pair of nodes is connected, and an available path of way finding is
defined for each connection. For example, in Fig. 9.15c, the yellow line corresponds to
a proper path marked in yellow in Fig. 9.15b from room 632 to room 623. According
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Fig. 9.15 a An example of a floor plan of our building, where the blue shaded region will be
analyzed. b Each room number is regarded as a node, and the path from room 632 to room 623
is marked in yellow. c The abstract graph of the floor plan map, where the yellow line indicates a
connection from node 632 to node 623, corresponding the yellow path in (b)

to the length and the number of turning corners of the path, a cost value is assigned
to its corresponding connection in the graph. In this weighted graph, the current
location of a blind user is regarded as a starting point while his/her destination is
regarded as an ending point. In the navigation process, our system finds out a path
with minimum cost value and then generates the corresponding path to destination
based on the floor plan map.

9.5 Blind-Assistant System Interface Design

The interface design always plays a significant role in the development a blind-
assistant system. A well-developed system should provide safe, comfortable, and
efficient services that are compatible with the daily life of blind or visually impaired
persons. Our research group invited 10 visually impaired persons to survey user
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interface preference [61]. These 10 persons are all well educated, employed (or
retired after employment), and familiar with blind-assistant technology. Through a
questionnaire, we collect their advices and requirements of blind-assistant systems.
The associated problems and solutions of interface design will be presented in this
section according to the threemain components of blind-assistant systemas described
in Sect. 9.2, which are capture, process and feedback.

The capture component of a compute vision-based blind-assistant system is nor-
mally a wearable camera, which is attached to a sunglass, helmet, kneepad, or wrist.
These wearable cameras should satisfy specific requirements of blind or visually
impaired persons. First, they should be easy and comfortable to put on and take
off. Although the wearable devices are light and compatible with human face or
body, almost all the users will choose to take them off if not necessary. Second, they
should be easy to control. Based on our survey about this issue, most blind or visu-
ally impaired persons prefer button control rather than voice recognition, because
the latter one is not reliable in noisy situations. Third, they should be able to capture
relatively high-quality images or videos for information retrieval. Thus the camera
focus should be adaptive to most indoor environments. It is difficult for blind or visu-
ally impaired persons to stand still for waiting for the calibration process because
they cannot know the quality of the image. In addition, our group designed a method
of selecting high-quality frames from blind captured videos [62].

The process component of a blind-assistant system is the process unit of the tech-
nical framework and algorithm implementation. Although it is not directly related to
the user interface design, it is very important to reduce the computational complex-
ity of the technical algorithms and optimize the codes to ensure the efficiency of the
whole system for real-time processing as well as to reduce the power consumption
of the processing unit. For example, the framework should be able to save and search
the historical data of blind-assistant recognition or navigation in specific buildings
or scenes. Since a system belongs to one specific blind user, he/she would be able
to directly obtain previous results when entering the same building or a scene again.
Also the framework should be developed into a query-based system, rather than a
notification-based system. It means that the systemwill not generate continuous noti-
fications but keep sleep until the user wakes it. When the blind or visually impaired
persons did not need the help of the system, the notifications would become useless
noise.

About the feedback component of a blind-assistant system, first, the feedback
should be simple, so that the users are able to obtain the most informative feedback
within the shortest time. For example, in object recognition, it should adopt only two
or three common-use words to describe an object or its main characteristic. Second,
the feedback should be in time, that is, neither too early nor too late, so that the users
are able to make decisions at the reasonable time window. Third, the feedback should
be understandable. For example, it is improper to say a door is located 3m in front
with 10-degree deviation to the right, because the blind or visually impaired persons
cannot measure the distance and orientations in an unfamiliar environment. It would
be much better to navigation them to be close enough to the object and then tell them
use their hands or white canes to touch it. The blind or visually impaired persons
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prefer speech communication with the system rather than the haptic feedback such
as vibration. In addition, the feedback from users should be included in the process
component.

9.6 Conclusions and Discussions

In this chapter, we focus on assistive text reading from natural scenes since text
signage plays an important role in blind-assistant recognition and navigation appli-
cations. However, scene text extraction is still an open research topic to be addressed.
It is a challenging task to extract text information from natural scene images for sev-
eral reasons. First, the frequency of occurrence of text information in natural scene
image is usually very low, and text information is always buried under all kinds
of non-text outliers in cluttered background of natural scenes. Thus background
removal plays a significant role in text detection. Second, even though image regions
containing text characters are detected from complex background, current optical
character recognition (OCR) systems do not work well on the recognition of scene
text, because they are mostly designed for scan documents. More effective feature
representations and more robust models are required to improve the performance of
scene text recognition. Unlike the text in scan documents, scene text usually appears
in multiple colors, fonts, sizes and orientations.

InSect. 9.2,wehave reviewed several computer vision-basedblind-assistant appli-
cations, including the technical framework, user interface design, and prototype sys-
tems.We described a framework of scene text extraction in Sect. 9.3. First edge-based
contour and MSER-based connected components are extracted as candidate charac-
ters while removing large amount of non-text background outliers, and then text
string alignment is applied to filter out the false positive candidate characters. Next,
feature representations are designed to describe text structure, on the basis of gradi-
ent distribution, stroke width and orientation, edge density, and color uniformity, to
remove false text strings. At last, feature representations are designed to recognize
each text character of the text strings, on the basis of HOG descriptor.

The proposed framework of scene text extraction is involved in two blind-assistant
applications in Sect. 9.4, handheld object recognition and indoor navigation. In these
applications, scene text extraction is transplanted into mobile platforms, and com-
bined with other techniques. In a practical blind-assistant system, the user inter-
face design is very important as well as the algorithm framework. In our design,
a blind-assistant system consists of three components, which are capture, process,
and feedback. According to the survey of blind or visually impaired persons who
are familiar with blind-assistant technology, we summarize the requirements of the
three components respectively in Sect. 9.5.

In future, we will further improve the accuracy of scene text extraction algo-
rithm, making it adaptive to more complex environments for more reliable practical
application. Also we will make the algorithms more compatible with mobile appli-
cations. Furthermore, more interactions with blind or visually impaired people will
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be performed to better understand their requirements and design more robust and
user friendly blind-assistant interface.
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Chapter 10
Mobile Image Search: Challenges
and Methods

Xin Yang and K.T. Tim Cheng

Abstract The proliferation of camera-equipped mobile devices with enhanced
mobile computing power and network connectivity results in a rising demand for
mobile image search. Although image search has been studied extensively over the
last few decades, most existing solutions, developed for desktops and server plat-
forms, are not suitable for mobile devices. In this chapter, we provide an overview
of challenging issues unique in mobile search scenarios and present several tech-
niques addressing these challenges. Specifically, we focus the discussion on: (1)
robust, distinctive, and fast feature extraction on mobile devices, (2) compact index-
ing structure for efficient feature matching, and (3) multimodel context-aware data
fusion for improving performance of mobile image search.

10.1 Introduction

Mobile devices such as smartphones and tablets have experienced phenomenal
growth. Their computing power has grown enormously and the connectivity of smart-
phones has also gone through rapid evolution. A wide range of radios including cel-
lular broadband,Wi-Fi, Bluetooth, and NFC available in today’s smartphones enable
users to communicate with other devices, interact with the Internet, and exchange
their data with and running their computing tasks in the clouds. The abundance of
camera-equippedmobile devices and low-latency data networks has led to an increas-
ing demand for mobile image search. A mobile image search system, which has the
ability to identify objects in a picture and use the recognized object as a starting
point for search (often referred to as ‘query-by-image’), can support a wide range
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Fig. 10.1 An example of a search of a famous landmark on mobile devices (Source Google Gog-
gles.)

of mobile applications. For instance, a user can take a picture of a famous landmark
to search for information about it (as shown in Fig. 10.1), a picture of a product’s
barcode or a book cover to search for online stores selling the product/book, a picture
of a movie poster to view reviews or to find tickets at nearby theatres, or a picture
of a restaurant menu in French for translation to English. Such a query-by-image
capability allows users to search for items without typing any text. For its image-
based translation capability, the app recognizes printed text and uses optical character
recognition (OCR) to produce a snippet and then translate it into another language.

Image search has been studied extensively for several decades. To improve scal-
ability, efficiency, and accuracy, the three key performance metrics of image search,
a number of algorithms for image representation and indexing have been developed
[1–3]. Most of the existing solutions are based on and optimized for the laptop,
desktop, and server platforms and the unique challenges and opportunities presented
by a mobile scenario have not been thoroughly analyzed. In the following, we first
present a general pipeline for image search, and then we discuss the main challenges
for image search on mobile devices. Then, we present some existing solutions and
finally conclude the chapter by pointing out some promising directions for mobile
image search.

10.2 Pipeline

A conventional image search pipeline (Fig. 10.2) consists of two phases: (1) offline
database construction and (2) online image search. In the offline phase, feature extrac-
tion is performed for every database image. An indexing structure which encodes
feature descriptors of all database images is constructed. Popular indexing methods
for efficient and scalable image search include locality sensitive hashing (LSH) and
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Fig. 10.2 A general pipeline for image search on mobile devices

bag-of-words (BOW) model. More details about these two methods will be pro-
vided in Sect. 10.4. In the online search phase, features of a captured image are first
extracted, each of which is then used to query the database using an indexing struc-
ture for finding a matching feature in the database. The database image which has
the most matching features with the capture image is considered as candidate targets.
Postverification (using methods such as RANdom SAmple Consensus, RANSAC,
[4]) and PROgressive Sample Consensus (PROSAC) [5] is then conducted among
candidate images to find the most relevant images to the query image.

The performance of feature extraction and indexing algorithms greatly affect the
user experience of mobile image search apps. Ideally, we demand (1) highly robust
and distinctive image features which can provide good search accuracy even for large
databases and meanwhile can be extracted efficiently on mobile devices, and (2) a
compact indexing structure which can be stored on mobile devices in order to avoid
network latency for accessing data on a server. However, each of these goals remains
challenging in mobile scenarios despite advances in image search algorithms as well
as mobile hardware. For example, mobile CPUs are still not fast enough to achieve
real-time performance for compute-intensive image processing operations, such as
feature extraction. Popular feature extraction algorithms (e.g., SIFT [6], which is
widely used for image search) require a large amount of floating point operations,
which is slow to compute on mobile CPUs. In addition, limited memory space of
mobile embedded system (i.e., 1–2GB, shared by all apps and the OS, for today’s
smartphones and tablets) could be a limiting factor when extracting features for an
image search. This is because feature extraction such as SIFT often requires large sets
of intermediate data to be stored inmemory as analysis is performed sequentially. The
total amount ofmemoryusageof each stage grows linearlywith the size of the original
image. For moderate- to high-resolution images, this process could easily exhaust
memory resources. Limited storage space of mobile devices also prohibits indexing
structure of a large database from being stored locally on a mobile device. As a
result, most existing systems employ a client–server architecture. That is, sending the
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captured image or processed image data (e.g., image features) to a server (or a cloud)
via Internet and performing feature indexing and post verification on the server side.
The client–server mode may suffer from network latency and thus cannot meet the
efficiency requirement for image search apps which demand real-time performance.
In practice, according to the size of databases, available local storage and computing
resources, and performance requirements, developers need to make decisions for a
number of issues to optimize the user experience (e.g., choosing different algorithms,
offloading different amount and which parts of the workload from the client to the
server side, etc.). In the following, we first elaborate key challenges in mobile image
search. In Sect. 10.4, we present some potential solutions addressing the challenges in
feature extraction and indexing onmobile devices.We also present existing efforts for
fusing multimodel context-aware information for mobile image search. In Sect. 10.5,
we conclude the paper and discuss some future work.

10.3 Challenges

Mobile devices differ from general computing environments in several aspects. The
design of amobile image search systemmust take into account the following inherent
limitations of mobile devices:

(a) Lower Processing Power of CPU. The design objectives of modern mobile
application processors are more than just performance. Priority is often given to
other factors such as low power consumption and a small form factor. Although
the performance of mobile CPUs has achieved greater than 30X improvement
within a short period of recent 5years (e.g., ARMquad-core CortexA-15 in 2014
vs.ARM11 single-core in 2009), today’smobileCPUcores are still not powerful
enough to achieve real-time performance for compute-intensive vision tasks such
as sophisticated feature extraction and indexing algorithms. Graphics processing
units (GPUs), which have been built into most application processors, can help
speed up processing via parallel computing [7, 8], but most feature extraction
and indexing algorithms are designed to be executed sequentially and cannot
fully utilize the capability of GPU cores in a mobile application processor.

(b) Less Memory Capacity. Mobile devices have less memory and lower memory
bandwidth than desktop systems. Thememory of today’s high-end smartphones,
such as Samsung Galaxy S5, is limited to 2GB of SDRAM and the memory size
of mid- and entry-level phones is even smaller. This level of memory sizes is not
sufficient for performing local image search using a large database. In order to
realize efficient image search, the entire indexing structure of a database needs to
be loaded and reside in main memory. The total amount of memory usage for an
indexing structure usually grows linearly with the number of database images.
For a database of a moderate size (e.g., tens of thousands of images), or a large
size (e.g., millions of images), the indexing structure itself could easily exhaust
memory resources. Several scalablemobile image search systems [9, 10] employ



10 Mobile Image Search: Challenges and Methods 247

the client–server model to handle large databases. That is, sending the captured
image or processed image data (e.g., image features) to a server (or a cloud) via
Internet, performing feature indexing and post verification on the server side, and
then sending the search results and associated information back to the mobile
device.WhileWi-Fi is a built-in feature for almost allmobile devices, connection
to high-bandwidth access points is still not available anyplace, neither anytime.
For connection to data networks, today’smobile devices rely on a combination of
mobile broadband networks including 3G, 3.5G, and 4G. These networks, while
providing acceptable network access speed for most apps, cannot support real-
time responses for apps demanding a large amount of data transfer. Moreover,
advanced mobile broadband networks still have limited availability in areas not
having dense populations.

(c) Small Screen Size.Modern high-end smartphones boast displayswhichmeasure
slightly less than seven inches diagonally. However, this size is still much smaller
than that of a commondesktop or laptop. Smaller screens greatly limit the amount
of information that can be presented to a user. As a result, it requires a more
effective display of search results and higher search accuracy in order to achieve
satisfactory user experience.

(d) Noisy Query. The search precision for content-based image search still has
significant room for improvement. Particularly in the mobile scenario, a user’s
query photo can be noisy due to clutter, occlusions, and large viewpoint changes.
Therefore, a visual search on a large-scale database with noisy images based on a
noisy query cannot achieve high accuracy. Modern smartphones, equipped with
various sensors (e.g., GPS, accelerometer gyroscope, magnetometer, etc.), can
provide various forms of context information. Mobile search systems can incor-
porate such context information to improve image search’s accuracy, efficiency,
and scalability. However, context information captured by a mobile device’s
sensors is noisy as well. Integrating such noisy context information into vision-
based image search methods that can robustly improve accuracy and efficiency
is not a trivial task at all.

10.4 Methods

In this section, we introduce recent work addressing some of the challenges that face
mobile image search. Specifically, we describe existing solutions for (1) extracting
robust and distinctive features efficiently on mobile devices (Sect. 10.4.1); (2) con-
structing compact indexing structure which can be stored locally on mobile devices
or can facilitate precise and fast matching feature retrieval from a large database in
the cloud (Sect. 10.4.2); and (3) fusing multimodel context information to improve
search accuracy and reduce computational complexity (Sect. 10.4.3).
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10.4.1 Robust, Distinctive, and Fast Feature Extraction
on Mobile Devices

Local features (an example shown in Fig. 10.3a) have been widely used in many
computer vision and pattern recognition apps. In contrast to global feature extraction
which generates a single feature vector for an entire image, local feature extrac-
tion generates a set of high-dimensional feature vectors for an image. Local feature
extraction typically consists of two steps: (1) interest point detection, also referred
to as local feature detection, which selects a set of salient points in an image, and
(2) interest point description, also referred to as local feature description, which
transforms a small image patch around a feature point into a vector representation
suitable for further processing. In comparison with a global feature representation,
local features are more robust to various geometric and photometric transformations,
occlusion, and background clutters and thus more suitable for mobile image search.

Local features’ efficiency, robustness, and distinctiveness significantly affect the
user experience and performance of a mobile image search system. In this section,
we give an overview of mobile interest point detection and description. Due to space
limitation, we only review somemost representativemethods, which do not represent
a comprehensive survey.

Interest Point Detection

An interest point detector is an operator which attributes a saliency score to each
pixel of an image and then chooses a subset of pixels with local maximum scores. A
good detector should provide points that have the following properties: (1) repeata-
bility (or robustness), i.e., given two images of the same object under different image
conditions, a high percentage of points on the object in both images can be chosen,
(2) distinctiveness, i.e., the neighborhood of a detected point should be sufficiently
informative so that the point can be easily distinguished from other detected points,
(3) efficiency, i.e., the detection in a new image should be sufficiently fast to sup-
port real-time applications, and (4) quantity, i.e., a typical image should contain a

Fig. 10.3 a An exemplar image overlaid with detected local features. b and c are the discretized
and cropped Gaussian second-order partial derivative in the y-direction and the xy-direction, respec-
tively; d and e are SURF box filter approximation for Lyy and Lxy, respectively
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sufficient number of detected points to cover a target object, so that it can be recog-
nized using these detected points even under partial occlusion.

There exist a wide variety of interest point detectors. Some lightweight detectors
[11] aimat high efficiency to target applicationswhichdemand real-timeperformance
and/or mobile hardware platforms with limited computing resources. However, the
performance of these detectors is relatively poor. As a result, it requires postverifica-
tion to exclude false matches in the subsequent matching phase which often incurs a
nontrivial runtime. Therefore, their overall runtime efficiency is not necessary high.
On the other hand, several high-quality feature detectors [6, 12, 13] have been devel-
oped with a primary focus on robustness and distinctiveness. These detectors’ ability
to accurately localize correct targets from a large database makes them suitable for
large-scale image search. However, the computational complexity of these detec-
tors is usually very high, making them inefficient on a mobile device. Some recent
efforts, e.g., [14], adapt these feature detection algorithms with respect to mobile
platforms and optimize their performance and efficiency for mobile image search. In
the following, we review the most representative methods for the lightweight detec-
tor, the high-quality detector, and algorithm adaptation. A thorough survey on local
feature-based detectors can be found in [15].

a. Lightweight Detector: FAST

The FAST (Features fromAccelerated Segmented Test) detector, proposed byRosten
and Drummond [11], is popular due to its highly efficient processing pipeline. The
basic idea of FAST is to compare 16 pixels located on the boundary of a circle (radius
is 3) around a central point, each of which is numbered from 1 to 16 clockwise. If
the intensities of n consecutive pixels are all higher or all lower than that of the
central pixel and n is greater than a predefined minimum threshold, then the central
pixel is labeled as a potential feature point and n is defined as the response value
for the central pixel. The final set of feature points is determined after applying a
nonmaximum suppression step, which selects a potential point as a feature point if
its response value is the local maximum within a small region. Because the FAST
detector only involves a set of intensity comparisons with few arithmetic operations,
it is highly efficient.

The FAST detector is not invariant to scale changes. To achieve scale invariance,
Rublee et al. [16] employed a scale pyramid to an image and detected FAST feature
points at each level in the pyramid. FAST could produce large responses along edges,
leading to lower repeatability and distinctiveness compared to high-quality detectors
such as SIFT [6] and SURF [12, 13]. To address this limitation, Rublee et al. further
employed a Harris corner measure to order the FAST feature points and discard those
with small responses to the Harris measure.

b. High-Quality Detector: SURF

The SURF (Speeded Up Robust Feature) detector, proposed by Bay et al. [12,
13], is one of the most popular high-quality point detectors in the literature. It is
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scale-invariant and based on the determinant of the Hessian matrix H(X, σ ):

H(X, σ ) =
[

Lxx(X, σ ) Lxy(X, σ )

Lxy(X, σ ) Lyy(X, σ )

]
(10.1)

where X = (x, y) is a pixel location in an Image I, σ is a scale factor, Lxx(X, σ ) is
the convolution of the Gaussian second-order derivative in the x direction, similarly
for Lyy and Lxy (see Fig. 10.3b, c).

To speed up the computation, a SURFdetector approximates theGaussian second-
order partial derivatives with a combination of box filter responses (see Fig. 10.3d, e),
computed using the integral image technique [17]. Denoting the approximated deriv-
atives as Dxx, Dxy and Dyy, the approximate Hessian determinant can be expressed as:

det
(
Happrox

) = DxxDyy − (0.9Dxy)
2 (10.2)

A SURF detector computes Hessian determinant values for every image pixel
i over scales using box filters of a successively larger size, yielding a determinant
pyramid for the entire image. Then it applies a 3 × 3 × 3 local maximum extraction
over the determinant pyramid to select interest points’ locations and corresponding
salient scales.

To achieve rotation invariance, SURF relies on gradient histograms to identify a
dominant orientation for each detected point. An image patch around each point is
rotated to its dominant orientation before computing a feature descriptor. Specially,
the dominant orientation of a SURF detector is computed as follows. First, the entire
orientation space is quantized into N histogram bins, each of which represents a
sliding orientationwindow covering an angle ofπ /3. Then SURF computes gradient
responses of every pixel in a circular neighborhood of an interest point. Based on
the gradient orientation of a pixel, SURF maps it to the corresponding histogram
bins and adds its gradient response to these bins. Finally, the bin with the largest
responses is utilized to calculate the dominant orientations of interest points.

Comparing to FAST, SURF point detection involves much more complex com-
putations and, thus, is much slower than FAST. The runtime limitation of SURF is
further exacerbated when running a SURF detector on a mobile platform. Table10.1
compares the runtime performance of a FAST detector and a SURF detector running
on a single CPU core in a mobile device (Motorola Xoom1) and a laptop (Thinkpad
T420) respectively. Running a FAST detector takes 170ms on a Motorola Xoom1
(whose application processor consists of dual-core ARM Cortex-A9) and 40ms on

Table 10.1 Comparison of FAST and SURF detectors on mobile device and PC

Time detector Mobile device (ms) PC (ms) Speedup

FAST detector 170 40 4x

SURF detector 2156 143 15x
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an i5-based Thinkpad, yielding a 4x speed gap. However, running a SURF detector
on them takes 2156 and 143ms respectively, indicating a 15x speed gap.

FAST is more efficient, but less robust and distinctive than SURF. As a result,
FAST usually fails to achieve satisfactory performance for mobile image search apps
which still demand sufficiently high search accuracy from a large database and the
ability of handling content with large photometric/geometric changes.

c. Algorithm Adaptation: Accelerating SURF on Mobile Devices

There are several techniques aiming at improving SURF’s efficiency. They include
exploiting coherency between consecutive frames [18], employing graphics process-
ing units (GPUs) for parallel computing, and optimizing various aspects of the imple-
mentation [8]. A solution proposed in [14] analyzes the causes for a SURF detector’s
poor efficiency and large overhead on a mobile platform, and propose a set of tech-
niques to adapt the SURF algorithm to a mobile platform. Specially, twomismatches
between the computations used in the SURFalgorithmand commonmobile hardware
platforms are identified as the sources for its significant performance degradation:

• Mismatch between SURF’s data access pattern and a mobile platform’s small
cache size. A SURF detector relies on an integral image and accesses it using a
sliding window of successively larger size for different scales. But a 2D array is
stored in a row-based fashion in memory (cache and DRAM), not in a window-
based fashion; pixels in a single sliding window reside in multiple memory rows
(illustrated in Fig. 10.4a). The data cache size of a mobile application processor
(AP), typically 32KB for today’s devices, is too small to cache all memory rows

Fig. 10.4 Illustration of data locality and access pattern in a the original SURF detector, and b
the tiled SURF. Each color represents data stored in a unique DRAM row. In the original SURF, a
sliding window needs to access multiple DRAM rows, leading to frequent cache misses, while in
tiled SURF, all required data within a sliding window can be cached
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for pixels involved in one sliding window, leading to cache misses and cache line
replacements and, in turn, incurring expensive memory access.

• Mismatch between a huge amount of data-dependent branches in the SURF algo-
rithm and high pipeline hazard penalty of the mobile platform. To identify a dom-
inant orientation, a SURF detector analyzes a gradient histogram. During this
analysis, every pixel around an interesting point is mapped to corresponding his-
togram bins via a set of branch operations, i.e., “If-then-Else” expressions. The
total number of pixels involved in this analysis is huge and thus the entire process
involves an enormous amount of data-dependent branch operations. However, the
branch predictor and the speculation of out-of-order execution of an ARM-based
mobile CPU core are less sophisticated that of a laptop, desktop, or server proces-
sor. Consequently, it incurs higher pipeline hazard penalties, yielding significant
performance degradation.

To address the problem caused by the mismatch between the data access pattern
of SURF and the small cache size of a mobile CPU, a tiled SURF was proposed in
[14] which divides an image into tiles (illustrated in Fig. 10.4b) and performs point
detection for each tile individually to exploit local spatial coherences and reduce
external memory traffic. To avoid pipeline hazards penalties, two solutions were
proposed in [14] to remove data-dependent branch operations. The first solution is
to use an alternative implementation: instead of using “If-then-Else” expressions,
a lookup table is used to store the correlations between each orientation and the
corresponding histogram bins. This alternative does not change the functionality
and other computations, but trades memory for speed. The second solution is to
replace the original gradient histogram method with a branching-free orientation
operator based on gradient moments (i.e., GMoment) [19]. The gradient-moment-
basedmethodmay slightly degrade the robustness of a SURFdetector, but can greatly
improve its runtime on mobile platforms.

Tables10.2 and 10.3 compare the runtime cost and the Phone-to-PC runtime ratio
between the original and adapted SURF, respectively [14]. The Phone-to-PC ratio,
defined in Eq. (10.3), is the runtime of a program running on a mobile CPU divided
by that on a desktop CPU, which reflects the speed gap between them.

Phone-to-PC ratio = runtime on a mobile platform

runtime on an x86-based PC
(10.3)

Table 10.2 Runtime cost comparison on three mobile platforms

Time (ms) Droid Thunderbolt Xoom1

U-SURF 1310 525 461

U-SURF tiling 930 356 243

O-SURF 7700 2495 2156

O-SURF lookup table 4264 1820 1178

O-SURF GMoment 1516 613 519

O-SURF tiling + GMoment 1053 404 269
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Table 10.3 Speed ratio comparison on three mobile platforms

Phone-to-PC ratio (x) Droid Thunderbolt Xoom1

U-SURF 20 8 7

U-SURF tiling 14 7 4

O-SURF 54 17 15

O-SURF lookup table 18 7 6

O-SURF GMoment 19 8 7

O-SURF tiling +
GMoment

13 7 3

The evaluation experiments were performed on three mobile devices: a Motorola
Droid which features an ARM Cortex-A8 processor, an HTC Thunderbolt which
uses a Scorpion processor, and a Motorola Xoom1 which uses a dual-core ARM
Cortex-A9 processor. The first two rows of Tables10.2 and 10.3 compare the runtime
cost and the Phone-to-PC ratio of upright SURF (U-SURF) without and with tiling.
As expected, tiling can greatly reduce runtime cost by 29–47%. It reduces the Phone-
to-PC ratio by 12.5–42.9% on these three devices. The reduction in Phone-to-PC
ratio indicates that the mismatch between the data access pattern and a small cache
size of a mobile CPU causes more severe runtime degradation on mobile CPUs than
desktop CPUs. So alleviating this problem is critical for performance optimization
when porting algorithms to a mobile CPU. The 3rd–5th rows of Tables10.2 and 10.3
compare the results of oriented SURF (O-SURF) with branch operations, O-SURF
using a lookup table and using GMoment [19], respectively, which show that using
a lookup table or using the GMoment method can greatly reduce the overall runtime
and the Phone-to-PC ratio on three platforms. The reduction in the Phone-to-PC ratio
further confirms that branch hazard penalty has a much greater runtime impact on a
mobile CPU than on a desktop CPU. Choosing proper implementations or algorithms
to avoid such penalties is critical for a mobile task. The last rows of Tables10.2 and
10.3 show the results of applying both adaptation ideas to O-SURF: the runtime of
SURF on mobile platforms can be reduced by 6X–8X.

Local Feature Description

Once a set of interest points has been extracted from an image, their content needs to
be encoded in descriptors that are suitable for matching. In the past decade, the most
popular choices for this step are the SIFT and the SURF descriptors. SIFT and SURF
have successfully demonstrated their high robustness and distinctiveness in a variety
of computer vision applications. However, the computational complexity of the SIFT
descriptor is too high for real-time applications with tight runtime constraints. While
SURF accelerates SIFT by 2X–3X, it is still not sufficiently fast for real-time applica-
tions running on a mobile device. In addition, SIFT and SURF are high-dimensional
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real-value vectors which demand large storage space and high computing power for
matching. The booming development of real-timemobile apps has stimulated signifi-
cant advances in binary descriptors that aremore compact, and faster to compute than
SURF-like features while maintaining a satisfactory feature quality. Notable work
includes BRIEF [8] and its variants rBRIEF [16], BRISK [20], FREAK [21], and
LDB [22–24]. In the following, we review three representative descriptors: SURF,
BIREF, and LDB.

a. SURF: Speed Up Robust Features

The SURF descriptor aims to achieve robustness to lighting variations and small
positional shifts by encoding the image information in a localized set of gradient
statistics. Specifically, each image patch is divided into 4 × 4 grid cells. In each
cell, SURF computes a set of summary statistics

∑
dx,

∑ |dx|, ∑
dy, and

∑ |dy|,
resulting in a 64-dimensional descriptor. The first-order derivatives dx and dy can be
calculated very efficiently using box filters and integral images.

Motivated by the success of SURF, a further optimized version proposed in [8]
takes advantage of the computational power available in CUDA [25]-enabled graph-
ics cards. This GPUSURF implementation has been reported to perform feature
extraction for a 600 × 480 image at a frame rate up to 20Hz, thus making feature
extraction an affordable processing step. However, to date, most mobile GPU cores
do not support CUDA. Furthermore, mobile GPU cores, in addition to being much
less powerful than desktop GPU chips, share the same external memory and memory
buses with CPU cores and other heterogeneous cores in the application processor.
Thus porting an implementation from desktop-based GPUs to mobile GPUs remains
a tedious task with unpredictable performance gain [26, 27].

b. BRIEF: Binary Robust Independent Elementary Features

The BRIEF descriptor, proposed in [28], primarily aims at high-computational effi-
ciency for construction and matching, and a small footprint for storage. The basic
idea of BRIEF is to directly generate bit strings by simple binary tests comparing
pixel intensities in an image patch. More specifically, a binary test τ is defined and
performed on a patch p of size S × S as

τ(p; x, y) =
{
1 if I(p, x) < I(p, y)
0 otherwise

(10.4)

where I(p, x) is the pixel intensity at location x = (u, v)T . Choosing a set of nd(x, y)-
location pairs uniquely defines the binary test set and consequently leads to an nd

-dimensional bit string that corresponds to the decimal counterpart of

∑

1≤i≤nd

2i−1τ(p; xi, yi) (10.5)

By construction, the tests of Eq. (10.5) consider only the information at single pixels;
therefore, the resulting BRIEF descriptors are very sensitive to noises. To increase
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Fig. 10.5 Different approaches to choose the test locations. Sampling (X, Y) locations from a
patch of size S × S according to a a uniform distribution (− s

2 , s
2 ), b an isotropic Gaussian distri-

bution (0, 1
25S2), c a nonisotropic Gaussian distribution X ∼ (0, 1

25S2), Y ∼ (xi,
1
25S2), d random

distribution, e from a coarse polar grids. Courtesy of [28]

the stability and repeatability, the authors proposed to smooth pixels of every pixel
pairs using Gaussian or box filters before performing the binary tests.

The spatial arrangement of binary tests greatly affects the performance of the
BRIEF descriptor. In [28], the authors experimented with five sampling geometries
for determining the spatial arrangement, as shown in Fig. 10.5a–e. Experimental
results demonstrate that the tests which are randomly sampled from an isotropic
Gaussian distribution—Gaussian (0, 1

25S
2)where the origin of the coordinate system

is the center of a patch and S is the patch size—give the highest recognition rate.
BRIEF and its enhanced versions of BRIEF [16, 20, 21] are very efficient to

compute, store, and to match (simply computing the Hamming distance between
descriptors via XOR and bit count operations). These runtime advantages make
these binary descriptors attractive for real-time applications and handheld devices.
However, they often utilize overly simplified information, i.e., only intensities of
a subset of pixels within an image patch, and thus have low discriminative ability.
Lack of distinctiveness results in a huge number of false matches when matching
against a large database. Expensive postverificationmethods (e.g., RANdomSAmple
Consensus (RANSAC) [4]) are usually required to discover and validate matching
consensus, increasing the runtime of the entire process.

c. LDB: Local Difference Binary

LDB (Local Difference Binary), a binary descriptor, achieves similar computational
speed and robustness as BRIEF and other state-of-the-art binary descriptors, yet
offering greater distinctiveness. The better quality of LDB is achieved through three
schemes. First, LDB utilizes average intensity Iavg and first-order gradients, dx and
dy, of grid cells within an image patch. Specifically, the internal patterns of the image
patch is captured through a set of binary tests, each of which compares the Iavg, dx

and dy of a pair of grid cells (illustrated in Fig. 10.6a, b). The average intensity and
gradients capture both the DC and AC components of a patch, thus they provide a
more complete description than other binary descriptors. Second, LDB employs a
multiple gridding strategy to encode the structure at different spatial granularities
(Fig. 10.6c). Coarse-level grids can cancel out high-frequency noise while fine-level
grids can capture detailed local patterns, thus enhancing distinctiveness. Third, LDB
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Fig. 10.6 Illustration of LDB extraction. a An image patch is divided into 3 × 3 equal-sized grids.
b Compute the intensity summation (I), gradient in x and y directions (dx and dy) of each patch,
and compare I , dx and dy between every unique pair of grids. c 3-level gridding (with 2 × 2, 3 × 3,
and 4 × 4 grids) is applied to capture information at different granularities

leverages a modified AdaBoost method [23] to select a set of salient bits. The mod-
ified AdaBoost targets the fundamental goal of idea binary descriptors: minimizing
distance between matches while maximizing them between mismatches, optimizing
the performance of LDB for a given descriptor length. Computing LDB is highly
efficient: relying on integral images, the average intensity, and first-order gradients
of each grid cell can be obtained by only 4–8 add/subtract operations.

Accelerating Feature Extraction via Mobile GPU Cores

Mobile application processor includes embedded graphics processing unit (GPU)
cores and other hardware accelerators in addition to the CPU cores. GPUs allow
for large quantities of instructions to be executed in parallel and efficient for floating
point operations. While originally intended for rendering 2D and 3D graphics, GPUs
have been at the core of a branch of study known as general-purpose computation on
graphics processing units (GPGPU) [29]. GPGPU technology extends the program-
mability of GPUs to enable nongraphics applications with high parallelizability to
run more efficiently than on a CPU. In the context of mobile image search, where
sequential feature extraction algorithms are often used, In order to employ GPGPU,
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feature extraction algorithms need to be broken up into smaller subtasks which can
be executed in parallel. Several efforts have been made to improve the parallelization
of feature extraction. For example, in [30], a number of stages in the SIFT algorithm
are parallelized to run on consumer desktop GPUs, decreasing runtime by a fac-
tor of 10. However, it should be pointed out that mobile GPUs have very different
characteristics compared to desktop GPUs: a mobile GPU has fewer cores, smaller
graphics memory, lower GPU bus bandwidth, sharing the same memory bus with
mobile CPUs, and variant architecture when compared to a desktop GPU. To fully
utilize the mobile GPUs, new feature extraction algorithms must be devised with the
aim to be executed concurrently. It is also necessary to characterize the computing
capability of the target mobile CPU-GPU platform in order to identify the condition
that offloading tasks to GPU cores leads to an optimized performance [7].

10.4.2 Compact Indexing Structure for Fast Matching
on Mobile Devices

To search relevant database images for a captured image, an image search system
matches each feature descriptor in the captured image to database features to find the
query feature’s nearest neighbor (NN). If the similarity between a feature and its NN
being above a predetermined threshold and they comply with a geometric model,
this feature pair is considered a matched pair. The database object which has most
matched features to the captured image is considered as the recognized object.

Fast and accurately retrieving the NN of a local feature from a large database is the
key to efficient and accurate image search, ensuring a satisfactory user experience and
scalability for mobile image search apps. Two popular techniques commonly used
for large-scale NNmatching are Locality Sensitive Hashing (LSH) and bag-of-words
(BOW) matching.

LSH: Locality Sensitive Hashing

LSH [31] is widely used for approximate NN search. The key of LSH is a hash
function, which maps similar descriptors into the same bucket of a hash table and
distinct descriptors into different buckets. To find the NN of a query descriptor, we
first retrieve itsmatching bucket and then check all the descriptorswithin thematched
bucket using a brute-force search.

For binary features, the hash function can simply be a subset of bits from the
original bit string; descriptors with a common sub-bit-string are casted to the same
table bucket. The size of the subset, i.e., the hash key size, determines the upper
bound of the Hamming distance among descriptors within the same buckets. To
improve the detection rate of NN search based on LSH, two techniques, namely
multitable and multiprobe, are usually used. The multitable technique stores the
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database descriptors in several hash tables, each of which leverages a different hash
function. In the query phase, the query descriptor is hashed into a bucket of every
hash table and all descriptors in each of these buckets are then further checked
for matching. Multitable improves the detection rate of NN search at the cost of
higher memory usage and longer matching time, which is linearly proportional to
the number of hash tables used. Multiprobe examines both the bucket in which the
query descriptor falls and its neighboring buckets. While multiprobe would result in
more matching checks of database descriptors, it actually requires fewer hash tables
than multitable and thus incurs lower memory usage. In addition, it allows a larger
key size and in turn smaller buckets and fewer matches to check per bucket.

Bag-of-Words Matching

Bag-of-Words (BoW) matching [3] is an effective strategy to reduce memory usage
and support fastmatching via a scalable indexing scheme such as an invertedfile. Typ-
ically, BoW matching quantizes local image descriptors into visual words and then
computes the image similarity by counting the frequency of words co-occurrences.
However, it completely ignores the spatial information which may degrade the accu-
racy. To address this limitation of BoW matching, several approaches have been
proposed to compensate the loss of spatial information. For example, geometric
verification [32], designed for general image-matching applications, verifies local
correspondences by checking their homography consistency. Wu et al. presented
a bundling feature matching scheme [33] for partial-duplicate image detection. In
their approach, sets of local features are bundled into groups by maximally stable
extremal regions (MSER) [34] detected regions, and robust geometric constraints are
then enforced within each group. Spatial pyramid matching [35], which considers
approximate global geometric correspondences, is another scheme to enforce geo-
metric constraints formore accurateBoWmatching.This schemepartitions the image
into increasinglyfiner sub-regions and computes histogramsof local features detected
within each sub-region. To compute the similarity between two images, the distance
between histograms at each spatial level is weighted and summed together. These
above-mentioned schemes yield more reliable local-region matches by enforcing
various geometric constraints. However, these schemes are very compute-expensive.
Thus, for real-time mobile image search, the indexing procedure based on these
methods must be conducted on the server side or in the cloud.

10.4.3 Fusing Multimodel Context-Aware Information
for Mobile Image Search

At present, the processing power and memory capacity of mobile devices are still too
limited for image search apps solely relying on sophisticated visual feature extraction
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and matching methods. Modern smartphones have equipped a wide range of sen-
sors, e.g., compass, accelerometer, gyroscope, GPS, etc. greatly enrich the devices’
functionalities and provide various forms of context information to facilitate image
search. For instance, Global Position System (GPS) location is important information
for landmark images. In the meanwhile, a growing fraction of images in image data-
bases are tagged with geographical information. As of February 2009, there are more
than 100 million geotagged images on Flickr [36]. By leveraging GPS to identify the
location of a mobile devices and utilizing a compass (or in combination with other
sensors) to determine the direction that the device is heading to, an image search
system could retrieve related images which have similar geotagged and direction
information as the query image.

The problem, however, is that built-in sensors usually lack sufficient accuracy,
thus cannot provide satisfactory performance for search tasks. For instance, since
GPS drift can be as much as 100 meters, in densely built areas or using a noisy and
large-scale database, more false positive images from surrounding locations will be
included. Several studies proposed to combine these vision-based and sensor-based
methods. For example, in [10], authors proposed two modes, parallel and serial, to
integrate location information in a mobile landmark image search system. In parallel
mode, query data from content and location is processed independently, and then
the results are combined together through a linear combination approach. In serial
mode, location information is first applied to narrow down the search space, and then
results will be refined and re-ranked based on visual information. Serial integration
can significantly reduce the search scope for the captured landmark, which in turn
will greatly improve search precision and speed. However, it may also incur the risk
of losing some true positives, i.e., a worse recall, due to the absence of location
tags. Another work fuse visual and GPS information is presented in [37]. In this
work, the authors proposed to combine visual tracking and GPS for outdoor building
visualization. The user can place virtual models on Google Earth and the app can
retrieve and visualize them based on the user’s GPS location.

The trend of integrating more sensors into mobile devices has not stopped yet. For
example, Google has just released a new mobile platform, Tango, which integrates
six Degree-of-Freedom motion sensors, depth sensors, and high-quality cameras.
Amazon has announced their new Fire phone which includes four cameras tucked
into the front corners of the phone, in additional to other motion sensors. Advances
in mobile hardware offer the opportunities to gain richer contextual information
surrounding a mobile device and in turn open a door for new approaches to best
utilizing all available multimodel information.

10.5 Conclusions

The advancement of mobile technology, in terms of hardware computing power,
seamless connectivity to the cloud and fast computer vision algorithms, have raised
image search into themainstream ofmobile apps. Following the widespread popular-
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ity of a handful of killer image search applications already commercially available,
it is believed that mobile image search will expand exponentially in the next few
years. The advent of mobile image search will have a profound and lasting impact
on the way people use their smartphones and tablets. These emerging mobile image
search apps will turn our everyday world into a fully interactive digital experience,
from which we can see, hear, feel and even smell the information in a different way.
This emerging direction will push the industry toward truly ubiquitous computing
and a technologically converged paradigm.

The scalability, accuracy, and efficiency of the underlying techniques (i.e., fea-
ture extraction and indexing) are key factors influencing user experience of mobile
image search apps. New algorithms in computer vision and pattern recognition, such
as lightweight feature extraction, have been developed to provide efficiency, com-
pactness on low-power mobile devices, and meanwhile maintain sufficiently good
accuracy. Several efforts are also made to analyze particular hardware limitations
for executing existing feature extraction and indexing algorithms on mobile devices
and explore adaption techniques to address these limitations. In addition to advances
in the development of lightweight computer vision algorithm, a variety of sensors
have been integrated into modern smartphones, enabling location recognition (e.g.,
via GPS) and device tracking (e.g., via gyroscope, accelerometer, and magnetome-
ter) at little computational cost. However, due to large noise of low-cost sensors
equipped in today’s smartphones, the accuracy of location recognition is usually low
and cannotmeet the requirement for appswhich demand high accuracy. Fusing visual
information with sensor data is a promising direction to achieve both high accuracy
and efficiency, and we shall see an increasing amount of research work along this
direction in the near future.
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Abstract We are witnessing a proliferation of massive visual data. Unfortunately,
scaling existing computer vision algorithms to large datasets leaves researchers
repeatedly solving the same algorithmic, logistical, and infrastructural problems.
Our goal is to democratize computer vision; one should not have to be a computer
vision, big data, and distributed computing expert to have access to state-of-the-art
distributed computer vision algorithms. We present CloudCV, a comprehensive sys-
tem to provide access to state-of-the-art distributed computer vision algorithms as a
cloud service through a web interface and APIs.
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11.1 Introduction

A recent World Economic Form report [1] and a New York Times article [2] declared
data to be a new class of economic asset, like currency or gold. Visual content is
arguably the fastest growing data on the web. Photo-sharing web sites like Flickr
and Facebook now host more than 6 and 90 billion photos (respectively). Every day,
users share 200 million more images on Facebook. Every minute, users upload 72
hours or 3 days worth of video to Youtube. Besides consumer data, diverse scientific
communities (Civil and Aerospace Engineering, Computational Biology, Bioinfor-
matics, Astrophysics, etc.) are also beginning to generate massive archives of visual
content [3–5], without necessarily having access to the expertise, infrastructure, and
tools to analyze them.

This data revolution presents both an opportunity and a challenge. Extracting value
from this asset will require converting meaningless data into perceptual understand-
ing and knowledge. This is challenging but has the potential to fundamentally change
the way we live—from self-driving cars bringing mobility to the visually impaired, to
in-home robots caring for the elderly and physically impaired, to augmented reality
with Google-Glass-like wearable computing units.

11.1.1 Challenges

In order to convert this raw visual data into knowledge and intelligence, we need to
address a number of key challenges:

• Scalability. The key challenge for image analysis algorithms in the world of big
data is scalability. In order to fully exploit the latest hardware trends, we must
address the challenge of developing fully distributed computer vision algorithms.
Unfortunately, scaling existing computer vision algorithms to large datasets leaves
researchers repeatedly solving the same infrastructural problems: building and
maintaining a cluster of machines, designing multithreaded primitives for each
algorithm and distributing jobs, precomputing and caching features, etc.
Consider, for instance the recent state-of-the-art image categorization system by
the Google/Stanford team [6]. The system achieved an impressive 70 % relative
improvement over the previous best known algorithm for the task of recognizing
20,000 object categories in the Imagenet dataset [7]. To achieve this feat, the
system required a sophisticated engineering effort in exploiting model parallelism
and had to be trained on a cluster with 2,000 machines (32,000 cores) for one week.
While this is a commendable effort, lack of such an infrastructural support and
intimate familiarity with parallelism in computer vision algorithms leaves most
research groups marginalized, computer vision experts and nonexperts alike.
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• Provably Correct Parallel/Distributed Implementations. Designing and
implementing efficient and provably correct parallel computer vision algorithms is
extremely challenging. Some tasks like extracting statistics from image collections
are embarrassingly parallel, i.e., can be parallelized simply by distributing the
images to different machines. This is where framework such as MapReduce have
demonstrated success. Unfortunately, most tasks in computer vision and machine
learning such as training a face detector are not embarrassingly parallel—there
are data and computational dependencies between images and various steps in the
algorithm. Moreover, for each such parallel algorithm, researchers must repeat-
edly solve the same low-level problems: formulating parallelizable components in
computer vision algorithms, designing multithreaded primitives, writing custom
hardware wrappers, implementing mechanisms to avoid race conditions, dead-
locks, etc.

• Reusability. Computer vision researchers have developed vision algorithms that
solve specific tasks but software developers building end-to-end system find it
extremely difficult to integrate these algorithms into the system due to different
software stacks, dependencies, and different data format. Additionally, hardware
designers have developed various dedicated computer vision processing platforms
to overcome the problem of intensive computation. However, these solutions have
created another problem: heterogeneous hardware platforms have made it time-
consuming and difficult to port computer vision systems from one hardware plat-
form to another.

11.1.2 CloudCV: Overview

In order to overcome these challenges, we are building CloudCV, a comprehen-
sive system that will provide access to state-of-the-art distributed computer vision
algorithms on the cloud (Fig. 11.1).

CloudCV today consists of a group of virtual machines running on Amazon Web
Services capable of running large number of tasks in a distributed and parallel setting.
Popular datasets used are already cached on these servers to facilitate researchers
trying to run popular computer vision algorithms on these datasets. Users can access
these services through a web interface which allows user to upload a few images
from either Dropbox or local system and obtain results real time. For larger datasets,
the system enables to embed CloudCV services into a bigger end-to-end system
by utilizing Python and MATLAB APIs. Since the APIs are fairly easy to install
through standard package managers, the researchers can now quickly run image
analysis algorithms on huge datasets in a distributed fashion without worrying about
infrastructure, efficiency, algorithms, and technical know-how. At the back end, on
recieving the list of images and the algorithm that needs to be executed, the server
distributes these jobs to worker nodes that process the data in parallel and commu-
nicate the results to the user in real time. Therefore, the user does not need to wait
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Fig. 11.1 Overview of CloudCV

for the processing to finish on the entire dataset and can monitor the progress of the
job due to real-time updates.

11.1.3 Application

CloudCV will benefit three different audiences in different ways:

• Computer vision researchers: who do not have resources to or do not want to
reinvent a large-scale distributed computer vision system. For such users, CloudCV
can serve as a unified data and code repository, providing cached version of all
relevant data representations and features. We envision a system where a program
running on CloudCV simply “calls” for a feature; if it is cached, the features are
immediately loaded from distributed storage (HDFS [8]); if it is not cached, then
the feature extraction code is run seamlessly in the background and the results are
cached for future use. Eventually, CloudCV becomes the ultimate repository for
“standing on the shoulders of giants”.

• Scientists who are not computer vision experts: but have large image collections
that need to be analyzed. Consider a biologist who needs to automate the process of
cell counting in microscopy images. Today such researchers must find computer
vision collaborators and then invest in the logistical infrastructure required to
run large-scale experiments. CloudCV can eliminate both these constraints, by
providing access to state-of-the-art computer vision algorithms and compute time
on the cloud.

• Nonscientists: who simply want to learn about computer vision by demonstra-
tion. There is a tremendous demand from industry professionals and developers
for learning about computer vision. Massive Open Online Classes (MOOCs) like
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Udacity and Coursera have demonstrated success. CloudCV can build on this suc-
cess by being an important teaching tool for learning computer vision by building
simple apps on the cloud. Imagine a student writing four lines of code in CloudCV
development environment to run a face detector on a stream of images captured
from his laptop webcam.

11.2 Related Efforts

Before describing the architecture and capabilities of CloudCV, let us first put it in
context of related efforts in this direction. Open-source computer vision software
can be broadly categorized into three types:

• General-Purpose Libraries: There are a number of general-purpose computer
vision libraries available in different programming languages:

– C/C++: OpenCV [9], IVT [10], VXL [11]
– Python: OpenCV (via wrappers), PyVision [12]
– .NET: AForge.NET [13].

The most comprehensive effort among these is OpenCV, which is a library aimed
at real-time computer vision. It contains more than 2500 algorithms and has been
downloaded 5 million times by 47 K people [9]. The library has C, C++, Java,
and Python interfaces and runs on Windows, GNU/Linux, Mac, iOS, and Android
operating systems.

• Narrow-Focus Libraries: A number of toolboxes provide specialized implemen-
tations for specific tasks, e.g., Camera Calibration Toolbox [14], Structure from
Motion toolboxes [15–17], Visual Features Library [18], and deep learning frame-
works such as Caffe [19], Theano [20, 21], Torch [22], etc.

• Specific Algorithm Implementations: released by authors on their respective web
sites. Popular examples include object detection [23], articulated body pose esti-
mation [24], graph cuts for image segmentation [25], etc.

Unfortunately, all three source code distribution mechanisms suffer from at least
one of these limitations:

1. Lack of Parallelism: Most of the existing libraries have a fairly limited or no
support for parallelism. OpenCV and VLFeat, for instance have multithreading
support, allowing programs to utilize multiple cores on a single machine. Unfor-
tunately, modern datasets are so large that no single machine may be able to
hold all the data. This makes it necessary to distribute jobs (with computational
and data dependencies) on a cluster of machines. CloudCV will have full sup-
port for three levels of parallelism: (i) single machine with multiple cores; (ii)
multiple machines in a cluster with distributed storage; and (iii) “cloudbursting”
or dynamic allocation of computing resources via a professional elastic cloud
computing service (Amazon EC2 [26]).
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2. Burden on the User not the Provider: Today, computer vision libraries place
infrastructural responsiblities squarely on the user of these systems, not the
provider. The user must download the said library, resolve dependencies, compile
code, arrange for computing resources, parse bugs, and faulty outputs. CloudCV
will release the user of such burdens—the user uploads the data (or points to a
cached database in the repository) and simply specifies what computation needs
to be performed.

Finally, we stress that CloudCV is not another computer vision toolbox. Our focus is
not on reimplementing algorithms, rather we build on the success of comprehensive
efforts of OpenCV, Caffe, and others. Our core contribution will be to provide fully
distributed implementations on the cloud and make them available as a service.

Efforts Closest to the Goal of CloudCV: There are multiple online services which
provide specific algorithms such as face, concept, celebrity [27] or provide audio and
video understanding [28], personalized object detectors [29]. Unlike these services,
CloudCV is an open-source architecture that aims to provide the capability to run a
user’s own version of CloudCV on cloud services such as Amazon Web Services,
Microsoft Azure, etc.

11.3 CloudCV Back-End Infrasructure

In this section, we describe in detail all the components that form the back-end
architecture of CloudCV.

The back-end system shown in Fig. 11.2 mainly consists of a web server that
is responsible for listening to incoming job requests and sending real-time updates
to the user. A job scheduler takes these incoming jobs and distributes them across
number of worker nodes. The system uses a number of open-source frameworks to
ensure an efficient design that can scale to a production system.

11.3.1 Web Servers

The back end consists of two servers that are constantly listening for incoming
requests. We use a Python-based web framework which handles Hypertext Transfer
Protocol (HTTP) requests made by the web interface or the APIs. These requests con-
tain details about the job such as list of images, which executable to run, executable
parameters, user information, etc. One drawback to HTTP requests is that it allows
only a single request–response pair, i.e., for a given request the server can only return
one response after which the connection breaks and the server cannot communicate
with the client unless client sends a request. This leads to serious limitations because
a persistent real-time connection cannot be established for the server to send updates
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Fig. 11.2 Users can access CloudCV using a web interface, Python, or MATLAB API. The back
end consists of web servers which communicates with the client in real time through HTTP and
WebSockets. The job schedule at the master node distributes incoming jobs across multiple computer
servers (worker nodes)

to the user. To solve this problem, we use the WebSocket protocol (Socket.IO) on
top of another server (Node.js).

Django

CloudCV uses Django [30] which is a high-level Python HTTP web framework
that is based on the Model View Controller (MVC) pattern. MVC defines a way of
developing software so that the code for defining and accessing data (the model) is
separate from request routing logic (the controller), which in turn is separate from
the user interface (the view).

A key advantage of such an approach is that components are loosely coupled and
serve single key purpose. The components can be changed independently without
affecting the other pieces. For example, a developer can change the URL for a given
part of the application without affecting the underlying implementation. A designer
can change a page’s HTML code without having to touch the Python code that renders
it. A database administrator can rename a database table and specify the change in a
single place, rather than having to search and replace through a dozen files.
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Scaling up to serve thousands of web request is a crucial requirement. Django
adopts a “share nothing” philosophy in which each part of the web stack is broken
down into single components so that inexpensive servers can be added or removed
with minimum fuss.

In the overall CloudCV back-end architecture, Django is responsible for serving
the web pages, translating requests into jobs and calling the job scheduler to process
these jobs. The output of the algorithm that the job is running is pipelined to a message
queue system. The receiver of the message queue system sends the output back to
the user. In CloudCV, the message queue system is Redis and the receiver is Node.js;
both of these are explained in the next two sections.

Node.js

Node.js [31] is an event-driven web framework that excels in real-time applications
such as push updates and chat applications.

CloudCV uses Node.js for real-time communication with the user so that all
updates related to a particular job can be communicated to the user.

Unlike traditional frameworks that use the stateless request–response paradigm
such as Django, Node.js can establish a two-way communication with the client so
that server can send updates to the client without the need for the client to query the
server to check for updates. This is in contrast to the typical web response paradigm,
where the client always initiates communication. Real-time communication with the
client is important because completing a job that contains large amounts of data
will take some time and delaying communication with the client until the end of job
makes for a poor user experience and having the client query the server periodically
is wasteful.

The de facto standard for building real-time applications, Node.js applications is
via Socket.IO [32]. It is an event-based bidirectional communication layer which
abstracts many low-level details and transports, including AJAX long polling and
WebSockets, into a single cross-browser compatible API. Whenever an event is
triggered inside Node.js server, an event callback mechanism can send a response to
the client.

Redis

One of the use cases of real-time communication with the user is the ability to send
algorithm output to the user during execution. To make this possible, there needs
to be a system in place that can pipeline the algorithm output to the Node.js server,
which is responsible for communicating the output back to client.

In case of CloudCV, this system is Redis [33], a high-performance in-memory
key-value data store. Since the data is stored in RAM (in-memory), looking up keys
and returning a value are very fast.
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Fig. 11.3 Flow describing the execution of a job starting from the user connecting to the CloudCV
system to the back end sending results to the user during execution of the job in real time

Redis can also act as a message queue between two processes—worker process
executing a particular algorithm and the Node.js server. Whenever a text output is
generated by the executable, the worker process sends the output string through
Redis. Node.js triggers an event whenever it receives the message from the message
queue. The message consists of the output string, and the socket id of the client to
which this output needs to be sent. Consequently, the event handler sends the output
string to the user associated with that particular socket id.

Figure 11.3 describes the process of executing a job in detail. The flow is as
follows:

1. At the start of a job, the user establishes a two-way socket connection with the
server. Each user is recognized by the unique socket id associated with this con-
nection.

2. The details about the job such as list of images to process, name of the functionality
that needs to be executed and its associated parameters are sent to the server using
HTTP request.

3. The server saves the image in the database and sends a response back to the user.
4. The server then distributes the job to worker nodes by serializing all the data. An

idle worker node pops the job from the queue, fetches the image from the network
file server, and starts executing the functionality associated with the job.

5. Whenever the executable generates an output, the worker node informs the master
node by sending the generated output through a message queue.
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6. Upon receiving the message, the master node sends the output to the client. This is
made possible by the event-driven framework of Node.js (as explained in previous
sections).

11.3.2 Distributed Processing and Job Scheduler

Celery

Celery [34] is an asynchronous task queue based on distributed message passing. The
execution units, called tasks, are executed concurrently on a single or more worker
servers using their multiprocessing architecture. Tasks can execute asynchronously
(in the background) or synchronously (wait until ready).

CloudCV infrastructure contains heterogenous group of virtual machines that act
as worker nodes, also called “consumers”. The master node (“producer”) on receiving
a job request converts the request into a task by serializing the input data using format
such as JSON [35] and sends it to a “broker”. The job of the broker is to receive a task
from the producer and send it to a consumer. Broker consists of two components: an
exchange and queues. Based on certain bindings or rules, exchange sends each task to
a particular queue. For instance, GPU-optimized tasks (such as image classification
Sect. 11.4.1 are sent to “Classification Queue” which are then processed by worker
nodes that have GPUs. On the other hand, image stitching tasks that utilize multiple
CPUs are sent to CPU-only machines via “Image Stitching Queue”. A queue is
simply a buffer that stores the messages (Fig. 11.4).

This protocol is known as AMQP Protocol [36] and Celery abstracts away details
of the protocol efficiently, allowing the system to scale.

GraphLab

GraphLab [37] is a high-level abstraction for distributed computing that efficiently
and intuitively expresses data and computational dependencies with a sparse data
graph. Unlike other abstractions such as MapReduce, computation in GraphLab is
expressed as a vertex program, which is executed in parallel on each vertex (poten-
tially on different machines), while maintaining data consistency between machines
and appropriate locking.

We implemented a parallel image stitching algorithm by creating GraphLab wrap-
pers for the image stitching pipeline in OpenCV [9], a widely used open-source
computer vision library. The implementation is open source and is available in the
GraphLab’s computer vision toolkit [38].
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Fig. 11.4 Celery flow chart

11.3.3 Caffe—Deep Learning Framework

Caffe [19] is a deep learning framework initially developed by the Berkeley Vision
group and now an open-source project with multiple contributors. In performance
tests, it consistently ranks as of the fastest Convolution Neural Network (CNN)
implementations available online. Caffe is widely used in academic research projects,
industrial applications pertaining to vision, speech, etc. A number of state-of-the-art
models implemented in Caffe are publicly available for download.

CloudCV uses Caffe at the back end to provide services such as classification,
feature extraction, and object detection. CloudCV also allows adding a new category
to a pretrained CNN model without retraining the entire model and is described in
detail in Sect. 11.4.3.

11.3.4 Front-End Platforms

CloudCV computer vision algorithms are accessible via three front-end platforms:
(1) Web interface, (2) Python APIs, and (3) MATLAB APIs.
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Web Interface

Modern web browsers offer tremendous capabilities in terms of accessing online
content, multimedia, etc. We built a web interface available at http://cloudcv.org so
that users can access CloudCV from any device via any operating system without
having to install any additional software.

As illustrated in the screen capture in Fig. 11.5, users can test CloudCV services
by trying them out on a few images uploaded through local system or upload images
from third-party cloud storage such as Dropbox (shown in Fig. 11.6).

(c) Result Visualization

(b) Terminal updates(a) Upload interface

Fig. 11.5 a shows the upload section. User can upload images either from his/her dropbox or local
disk, b shows the terminal which receives real-time progress updates from the server, and c shows
the visualization interface for a given job. Note in this case the task was classification and the result
displays category and corresponding confidence for a given image

http://cloudcv.org
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(a) Upload interface (b) Terminal updates

Fig. 11.6 The web interface allows user to upload images and save features or models files inside
his/her Dropbox account. a Shows the upload interface where a user can select one or multiple
images and b shows the save interface where the user can save all the data generated for the given
job inside Dropbox. In this example, the user was trying to save features extracted in the form of
Mat files inside Dropbox account

We are also working on providing user authentication such that users can have
access to all the trained models, training images, and job history. This will enable
the user to seamlessly transfer data across multiple data sources.

Python API

To enable building end-to-end applications on top of CloudCV, we make our services
accessible via a Python API.

Python has seen significant growth in terms of libraries developed for scientific
computation because of its holistic language design. It also offers interactive terminal
and user interface which makes data analysis, visualization, and debugging easier.
Loading necessary packages: To use the CloudCV Python API, a user only needs
to import the PCloudCV class.

from pcloudcv import PCloudCV
import utility.job as uj
import json
import os

At this point, the pcloudcv object may be used to access the various functionalities
provided in CloudCV. These functionalities are detailed in Sect. 11.4.
Setting the configuration path: When used in the above manner, the user needs
to provide details about the job (executable name, parameter settings, etc.) for each
such API call. In order to reduce this burden, our API includes a configuration file
that stores all such necessary job information. The contents of this configuration file
are shown below.
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1 {
2 "exec": "classify",
3 "maxim": 500,
4 "config": [
5 {
6 "name": "ImageStitch",
7 "path": "dropbox:/1/",
8 "output": "/home/dexter/Pictures/

test_download",
9 "params": {

10 "warp": "plane"
11 }
12 },
13 {
14 "name": "classify",
15 "path": "local: /home/dexter/

Pictures/test_download/3",
16 "output": "/home/dexter/Pictures/

test_download",
17 "params": {
18 }
19 },
20 {
21 "name": "features",
22 "path": "local: /home/dexter/

Pictures/test_download/3",
23 "output": "/home/dexter/Pictures/

test_download",
24 "params": {
25 "name": "decaf",
26 "verbose": "2",
27 }
28 }
29 ]
30 }

The user may simply provide the full path to the configuration file.

#full path of the config.json file
config_path = os.path.join(os.getcwd(), "config.json")
dict = {"exec": "classify"}

Creating PCloudCV object: To run a job, the user simply needs to create a
PCloudCV object. The constructor takes the path to the configuration file, a dictionary
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that contains optional settings for input directory, output directory, and executable,
and a boolean parameter that tells the API whether the user wishes to login to his/her
account using third-party authorization—Google accounts or Dropbox. If the boolean
parameter is false, then the job request is treated as anonymous.

p = PCloudCV(config_path , dict , True)
p.start()

MATLAB API

MATLAB is a popular high-level language and interactive environment that offers
high-performance numerical computation, data analysis, visualization capabilities,
and application development tools. MATLAB has become a popular language in
academia, especially for computer vision researchers, because it provides easy access
to thousands of low-level building block functions and algorithms written by experts
in addition to those specifically written by computer vision researchers. Therefore,
CloudCV includes a MATLAB API, as shown in the screenshot Fig. 11.7.

Fig. 11.7 MATLAB API Screenshot: Users can access CloudCV services within MATLAB. These
APIs run in background such that while the user is waiting for a response, the user can run other
tasks and the API call is non-blocking. The figure shows the screenshort of the MATLAB API
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11.4 CloudCV Functionalities

We now describe the functionalities and algorithms currently implemented in
CloudCV.

11.4.1 Classification

“Image Classification” refers to predicting the class labels of objects present in an
image. This finds myriad applications in visual computing. Knowing what object
is visible to the camera is an immense capability in mobile applications. CloudCV
image classification tackles this problem in the cloud. The classification API can be
invoked to get a list of top five objects present in the image with the corresponding
confidence scores.

CloudCV classification implementation uses the “caffenet” model (bvlc_referenc-
e_caffenet in Caffe) shown in Fig. 11.8 which is based on AlexNet [39] architecture.
The AlexNet architecture consists of five convolutional layers and three fully con-
nected layers. The last fully connected layer (also known as fc8 layer) has 1000
nodes, each node corresponding to one ImageNet category.

11.4.2 Feature Extraction

It has been shown [40, 41] that features extracted from the activation of a deep
convolutional network trained in a fully supervised fashion on an image classification
task (with a fixed but large set of categories) can be utilized for novel generic tasks
that may differ significantly from the original task of image classification. These
features are popularly called DeCAF features. A computer vision researcher who
just needs DeCAF features on his dataset, is currently forced to set up the entire deep
learning framework, which may or may not be relevant to them otherwise. CloudCV

Fig. 11.8 Caffenet model architecture
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alleviates this overhead by providing APIs that can be used to extract DeCAF features
on the cloud and then download them as a “mat” file for further use.

CloudCV feature extraction implementation uses the same architecture as
Fig. 11.8. The DeCAF features are the activations in the second-last fully connected
layer (also known as fc7 layer), which consists of 4096 nodes. The caffenet model
uses the fc7 activations computed from 10 sub-images—4 corner regions, the cen-
ter region, and their horizontal reflections. Therefore, the output is a matrix of size
10,4096.

11.4.3 Train a New Category

The classification task described above is limited to a predefined set of 1000 ImageNet
categories. In a number of situations, a user may need a classification model with
categories other than ImageNet but may not have sufficient data or resources to train
a new model from scratch. CloudCV contains a “Train a New Category” capability
that can be used to efficiently add new categories to the existing caffenet model with
1000 ImageNet categories (Figs. 11.9, 11.10, and 11.11).

The new model is generated by appending additional nodes in the last fully con-
nected layer (fc8 layer) of the existing caffenet model. Each new node added cor-
responds to a new category. The weights and biases for these additional nodes are
computed using Linear Discriminant Analysis (LDA), which is equivalent to learning
a Gaussian Naive Bayes classifier with equal covariance matrices for all categories.
All other weights and biases are kept same as the existing caffenet model.

Fig. 11.9 Classification pipeline
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Fig. 11.10 Feature extraction pipeline

Fig. 11.11 Train a new category pipeline

The LDA weight vector (wk) and bias (bk) for a new category k are computed as:

wk = Σ−1μk

bk = log πk − 1

2
μT

k Σ−1μk (11.1)

where, πk is the prior probability of kth category, Σ is the covariance matrix of
fc7 (second-last fully connected layer in caffenet model) feature vectors, and μk

is the mean vector of fc7 feature vectors of the given training images for the new
category. The prior distribution is assumed to be uniform for this demo, thus the prior
probabilityπk is just the reciprocal of number of categories. Notice that the covariance
matrix Σ can be computed offline using all images in the ImageNet training dataset,
and its inverse can be cached. This is the most computationally expensive step in
calculating the new parameters (weights and biases), but is done once offline. The
mean vector μk is computed from the training images for the new category in real
time. Thus, a new category can be added to the network instantaneously!
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We have also experimented with fine-tuning the softmax layer, and the entire
network from this LDA initialization, however, that is useful only when significant
training data is available for the new category.

11.4.4 VIP: Finding Important People in Group Images

When multiple people are present in a photograph, there is usually a story behind the
situation that brought them together: a concert, a wedding, a presidential swearing-
in ceremony (Fig. 11.12), or just a gathering of a group of friends. In this story, not
everyone plays an equal part. Some person(s) are the main character(s) and play a
more central role.

Consider the picture in Fig. 11.13a. Here, the important characters are the couple
who appear to be the British Queen and the Lord Mayor. Notice that their identities
and social status play a role in establishing their positions as the key characters in
that image. However, it is clear that even someone unfamiliar with the oddities and
eccentricities of the British Monarchy, who simply views this as a picture of an
elderly woman and a gentleman in costume receiving attention from a crowd, would
consider those two to be central characters in that scene.

Figure 11.13b shows an example with people who do not appear to be celebrities.
We can see that two people in foreground are clearly the focus of attention, and two
others in the background are not. Figure 11.13c shows a common group photograph,
where everyone is nearly equally important. It is clear that even without recognizing
the identities of people, we as humans have a remarkable ability to understand social
roles and identify important players.

Goal. The goal of CloudCV VIP is to automatically predict the importance of indi-
viduals in group photographs. In order to keep our approach general and applicable
to any input image, we focus purely on visual cues available in the image, and do not

Fig. 11.12 VIP: Predict the importance of individuals in group photographs (without assuming
knowledge about their identities)
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Fig. 11.13 Who are the most important individuals in these pictures? a the couple (the British
Queen and the Lord Mayor); b the person giving the award and the person receiving it play the
main role; c everyone seems to be nearly equally important. Humans have a remarkable ability
to understand social roles and identify important players, even without knowing identities of the
people in the images

assume identification of the individuals. Thus, we do not use social prominence cues.
For example, in Fig. 11.13a, we want an algorithm that identifies the elderly woman
and the gentleman as the two most important people that image without utilizing the
knowledge that the elderly woman is the British Queen.

A number of applications can benefit from knowing the importance of people.
Algorithms for im2text (generating sentences that describe an image) can be made
more humanlike if they describe only the important people in the image and ignore
unimportant ones. Photo cropping algorithms can do “smart-cropping” of images
of people by keeping only the important people. Social networking sites and image
search applications can benefit from improving the ranking of photos where the
queried person is important. Intelligent social robots can benefit from identifying
important people in any scenario.

Who is Important? In defining importance, we can consider the perspective of three
parties (which may disagree):

• the photographer, who presumably intended to capture some subset of people,
and perhaps had no choice but to capture others;

• the subjects, who presumably arranged themselves following social interpersonal
rules; and

• neutral third-party human observers, who may be unfamiliar with the subjects
of the photo and the photographer’s intent, but may still agree on the (relative)
importance of people.

Navigating this landscape of perspectives involves many complex social relation-
ships: the social status of each person in the image (an award winner, a speaker, the
President), and the social biases of the photographer and the viewer (e.g., gender or
racial biases); many of these cannot be easily mined from the photo itself. At its core,
the question itself is subjective: if the British Queen “photo-bombs” while you are
taking a picture of your friend, is she still the most important person in that photo?

In CloudCV VIP, to establish a quantitative protocol, we rely on the wisdom of
the crowd to estimate the “ground-truth” importance of a person in an image. Our
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Fig. 11.14 VIP pipeline

relative importance models are trained using real-valued importance scores obtained
using Amazon Mechanical Turk.

Pipeline. The basic flow of CloudCV VIP is shown in Fig. 11.14. First, face detection
is performed using third-party face detectors. In our published work [42], we used
Sky Biometry’s API [43] for face detection. CloudCV VIP uses OpenCV [44] to avoid
network latency. For every pair of detected faces, features are extracted that describe
the relative configuration of these faces. These features are fed to our pretrained
regressors to derive a relative importance score for this pair. Finally, the faces are
sorted in descending order of importance. The models and features are described in
detail in Mathialagan et al. [42]. In order to be fast during test time, CloudCV VIP
does not use DPM-based pose features.

11.4.5 Gigapixel Image Stitching

The goal of Image Stitching is to create a composite panorama from a collection of
images. The standard pipeline [45] for Image Stitching, consists of four main steps:

1. Feature Extraction: distinctive points (or keypoints) are identified in each image
and a feature descriptor [46, 47] is computed for each keypoint.

2. Image/Feature Matching: features are matched between pairs of images to esti-
mate relative camera transformations.

3. Global Refinement: of camera transformation parameters across all images.
4. Seam Blending: seams are estimated between pairs of images and blending is

performed.
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Consider a data graph G = (V , E) where each vertex corresponds to a image and
two vertices are connected by an edge if the two images overlap in content, i.e., cap-
ture a part of the scene from two viewpoints. In the context of this graph, different
steps of the stitching pipeline have vastly different levels of parallelism. Step 1 (fea-
ture extraction) is vertex parallel since features extraction at each vertex/image may
be run completely independently. Step 2 (image/feature matching) and step 4 (seam
blending) are edge parallel since these computations may be performed completely
independently at each edge in this graph. Together these steps are data parallel,
where parallelism is achieved simply by splitting the data onto different machines
with no need for coordination.

Step 3 (global refinement) is the most sophisticated step since it is not embarrass-
ingly parallel. This global refinement of camera parameters, involves minimizing a
nonlinear error function (called reprojection error) that necessarily depends on all
images [48], and ultimately slows the entire pipeline down.

We formulate this optimization as a “message-passing” operation on the data
graph—each vertex simply gathers some quantities from its neighbors and makes
local updates to its camera parameters. Thus, different image can be processed on
different machines as long as they communicate their camera parameters to their
neighbors.

Thus, while this pipeline may not be data parallel, it is graph parallel show
in Fig. 11.15b, meaning that data and computational dependencies are captured by a
sparse undirected graph and all computation can be written as vertex programs. It is
clear that thinking about visual sensing algorithms as vertex programs is a powerful
abstraction.

The CloudCV image stitching functionality can be accessed through the web
interface, a screenshot of which is shown in Fig. 11.16.

(a)

(b)

Fig. 11.15 Gigapixel image stitching. a Data graph and panorama. b Stitching pipeline
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Fig. 11.16 Image stitching web interface. a Sample images and upload interface. b Result for the
sample images

11.5 Future Work

11.5.1 Deep Learning GPU Training System—DIGITS

Convolutional Neural Networks (CNNs) have attracted significant interest from
researchers in industry and academia, which has resulted in multiple software plat-
forms for configuring and training CNNs. Most notable software platforms are Caffe,
Theano, Torch7, and CUDA-Convnet2.

Recently, NVIDIATM released DIGITS [49], an interactive Deep Learning GPU
Training System, which provides access to the rich set of functionalities provided
by Caffe [19] through an intuitive browser-based graphical user interface. DIGITS
complements Caffe functionality by introducing an extensive set of visualizations
commonly used by data scientists and researchers. Moreover since DIGITS runs as
a web service, this facilitates seamless collaboration between large teams enabling
data, trained CNNs model and results in sharing.

DIGITS Overview

A typical workflow of DIGITS can be summarized as follows:

• Data Source: First the user has to upload the database to be used for training and
validation to DIGITS. Currently, the database of image have to be stored on the
same local machine hosting DIGITS.
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• Network Architecture: Two options are supported for network architecture:

– to use a standard network architecture such as AlexNet [50],
– create a customized CNN where user can define each layer and associated

parameters.

DIGITS also provides a tool to visualize the CNN architecture for visual inspection
of the network topology.

• Training and Visualization: Users can train the newly defined network and track
its progress real time. The learning rate and accuracy of the model can be seen from
real-time graph visualizations as training progresses. The user can abort training
anytime if he suspects there is bug in the network configuration. Moreover similar
to Caffe, DIGITS save multiple snapshots of the CNN as training progress giving
the user the option to use specific snapshots to generate feature extraction.

Integrating DIGITS with CloudCV

CloudCV classification functionality uses Caffe as the software platform to train and
configure CNN. One of the main objectives of CloudCV is to enable nonexperts
the ability to use computer vision algorithms as a service through a rich set of API.
In future work we will integrate CloudCV functionalities with DIGITS intuitive
graphical user interface to provide an end-to-end system that can train a model,
classify, or extract features from these trained model, visualize results, etc. Future
work includes:

• Integrating the DIGITS codebase with CloudCV.
• Currently, DIGITS only support creating training data on the host machine. We

plan to further extend data sources to include cloud storage such as Dropbox and
Amazon S3.

• Integerating DIGITS with Scikit-learn [51]—a rich machine-learning Python
library—to train different classifiers (Support Vector Machine, etc.) on features
extracted from intermediate layers of a CNN. Users will be able to tune the para-
meters of the classifier and see improvement in real time.

• Extending Visualizations provided by DIGITS to include side-by-side plots to
visualize performance of different classifiers on a specific dataset.

• Supporting for a user workspace, where each registered user can have a private
workspace. User data like job history, previous datasets, pretrained models, pre-
vious outputs will be saved.
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Chapter 12
Cloud-Based Mobile Experience Sharing
Through Automatic Multimedia Blogging

Hongzhi Li and Xian-Sheng Hua

Abstract The rapid developments of smart mobile devices, wireless networks, and
cloud computing have extendedmobile phoneswithmuchmore functionalities rather
than only being used as voice communication tools. With an increasing trend, more
and more people are using camera phones to record and share their daily experiences
due to its mobility and realtiming. Camera phones are true multimedia devices capa-
ble of managing acquisition, processing, transmission, and presentation of multiple
modal data, such as image, video, audio, and text information, as well as rich contex-
tual information like location, direction, and velocity from the equipped sensors. All
these provide sufficient information and channel to effectively share peoples experi-
ences. However, due to the complexity and structureless of the raw multimedia and
contextual data, experience sharing is still a nontrivial task. There is still lack of
efficient tools that supports mobile, rapid, and realtime experience sharing. In this
paper, we will propose a mobile + cloud system enabling rapid and near-realtime
experience sharing through automatic blogging and microblogging, which are based
onmultimodalmedia content analyses and syntheses. An experimental system shows
the effectiveness and efficiency of the proposed scheme.

12.1 Introduction

Smart mobile devices such as camera phones typically will be carried by people most
of the time. These devices are true multimedia devices that acquire, process, trans-
mit and present text, image, video, and audio data using both media input (camera
and other sensors) and output (screen and speaker) channels. However, due to the
limitations in computation, storage, display, and camera, multimedia applications
and systems have not been adequately supported on mobile devices. Recently, the
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rapid development on cloud computing, high-resolution camera/display, 3G/Wi-Fi
net networks, informative sensors, (such as GPS, gravity sensor, and compass), and
more powerful CPU, largely mitigated these limitations. In particular, the support
of cloud computing platform has become an essential factor especially for scalable
and connected mobile multimedia technologies, applications and systems, due to its
powerful support on computation, storage and networking.

With all these developments, more and more people are using camera phones to
record and share personal experiences with friends and relatives. However, archiving
and sharing multimedia experience data is a nontrivial task, and there is still no such
a tool that can support these functionalities, especially in an efficient, mobile, and
realtime manner. In this paper, we will propose such a system, Melog, standing
for mobile/multimedia experience blogging, which leverages both the advantages of
mobile devices and cloud computing platforms. We use near-realtime blogging and
microblogging as the exemplary forms for experience archiving and sharing, which
can be automatically generated based on analyzing the multimedia and contextual
data captured from the mobile devices and mined from the Internet.

Travel blog is one of the most popular and convenient ways to share travel expe-
riences with others. In general, people have to take advantage of PC to share records
captured by mobile phones, cameras, and camcorders. It generally takes a long time
to organize those records and difficult to be accomplished in realtime, therefore,
we are unlikely able to share travel experiences with others during the trip. Though
microblog, such as Twitter, is more flexible and has better mobility and realtiming
in experience sharing, it is still difficult to compose multimedia microblog content
effectively on mobile devices. Fortunately, more and more mobile devices have been
equipped with sensors like GPS and compass, and with the help of 3G andWi-Fi net-
work accessing and mobile-cloud computing, it is possible to share travel experience
automatically during the trip, even in realtime or near-realtime.

12.1.1 Related Work

We next review existing efforts on mobile multimedia blogging, which can be cat-
egorized into three paradigms: manual photo blogging, text-free automatic photo
blogging, and text-rich automatic photo blogging.

Manualmobile blogging approaches commonly provide an interface on themobile
devices for inputting and/or selecting the content for the travel blog, then themanually
created blog can be pushed into the blog web site. An example of the first paradigm
is Nokia Life Blog [7], which allows users to select photos taken by camera phones
and input text to create a travel blog, and then can be published on the Web via SMS,
MMS, or email.

Although this kind of approachesmake it possible to share travel experiences near-
realtime through mobile devices directly, they are difficult to be used in practice due
to inputting text onmobile devices is tedious, especially when people want to publish
a group of photos.
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Alternatively, the second paradigm, text-free automatic blogging, releases users
from text inputting, instead, it organizes photos by space-time order and displays pho-
tos on a map without using additional text. For example, space-time travel blogging
[1] displays photos on the map and shows their taken location, which are obtained
from aGPS sensor. GeoLife [11] analyzes GPS data and shows photos taken during a
trip on a map by time order. It provides a social networking service based on location
as well.

Space-time travel blogging and GeoLife focus on how to use photos sequences
with time and location information to share experience with others on a map. They
failed to provide more information about the trip, especially lacking of text descrip-
tion when manual text inputs are not available. Besides, it cannot reflect users affec-
tions to photos, spots or the entire trip, and the blog style is monotonous.

The most closely related work to Melog is Travelog [5], which falls into the third
paradigm, text-rich automatic blogging. It provides a relatively friendly interface to
help users create a travel blog in an automatic (or semi-automatic) manner. Users are
able to publish a travel blog by choosing a photo from the camera phone while related
text information, such as, annotation, weather, and related links, can be automatically
mined from the Internet, users profile and SnapToTell service [6]. However, the
quality of the text information highly depends on the performance of the automatic
annotation algorithmand theSnapToTell services,which are actually still challenging
problems. Moreover, users still needs to manually select photos to he share, and the
style and content of the travel blogs are fixed and in lack of flexibility.

To summarize, the first paradigm needs too much manual effort, and the blog
presentation and content in the second paradigm are not rich and flexible enough. The
quality of the blog content by the third paradigm highly depends on some challenging
technologies thus not stable as well as photo selection still needs much human effort
in this paradigm.

12.1.2 Our Approach

The work presented in this paper provides an automatic and intelligent application
to generate and publish travel blog and microblog almost in realtime. The main idea
of our approach is to summarize the trip intelligently without disturbing users other
operations and share the experience in almost realtime during the trip. What the user
needs to do is just using camera phones to capture photos, videos, and audios, while
the Melog system will take care almost all the things (though interactions are also
allowed). The main advantages of Melog system are:

• Easy to use: Almost fully automatic and very few manual input is required.
• Fast to share: Sharing travel experience with friends almost in realtime.
• Convenient to recall: Travel experiences are well organized and easy to recall.
• Less interruptive to travel: Almost no need to take consideration how to share the
experience.
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The rest of this paper is organized as follows. Section12.2 provides an overview
of system architecture. The method of automatic travel blog generation and pre-
sentation will be introduced in Sect. 12.3. The microblog generation scheme is pre-
sented in Sect. 12.4. Section12.5 introduces the database organization. Section12.6
gives experiment details and evaluation results, followed by concluding remarks in
Sect. 12.7.

12.2 Melog System Architecture

First, we define a place as a spot of interest (SOI) where people tend to take photos.
It may be a sightseeing spot, a building, or any objects or scenes that people are
interested in taking photos for. We build in one or more sample photos for each SOI
in the system, which are some representative photos taken in the SOI. Then, we
define knowledge as a property set of a subject, where a subject could be a SOI or
a sample photo associated with the SOI. Knowledge describes the key features of a
subject. SOIs and sample photos contain some knowledge to descript their property
and content, which will be used in the process of blog generation.

Figure12.1 illustrates the system architecture of our system which contains two
components: the client application on mobile devices and the service in the cloud.
Photos, videos, and audios are captured on the mobile client, and then those mul-
timedia travel records will be uploaded to a platform in the cloud with sensor data
captured by the devices (say, GPS data).

During a trip, microblog generation and publishing can be either triggered in three
modes: fully automatically (FA), semi-automatically (SA), or manually (M). Users
location information will be recorded automatically and sent to the location analysis
platform in the cloud to analyze the users moving status. When location analysis
platform finds that the user is leaving a SOI spot and has taken some photos there,
a microblog about this spot will be generated and published into users microblog
or blog website automatically in the FA model. While in SA model, the user will
be asked to review the content, edit the content if necessary, and decide whether to

Fig. 12.1 Melog system architecture
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publish. In M mode, the user can manually trigger a blog or microblog generation
and publishing process.

When finished the trip, the user can choose to generate a complete travel blog
about this trip using our system. After the travel blog is generated, a blog preview
and modification tool can be executed in the mobile client to allow people edit the
travel blog when necessary. Moreover, there is an affection evaluation system in
our application. Users can set up some affection variables and style predilections to
generate travel blogs that can reflect the users affection about the trip and are with
preferred presentation styles.

12.2.1 Services in the Cloud

Several services are deployed in the cloud to support data transmission, storage,
analysis, processing, and presentation. The complex computing will be executed in
the cloud and the result will be sent to the mobile client.

There are three services running on the cloud side. First, there is a file service
to support the file uploading and storage. Second, a users location capturing and
analyzing service is built to record and analyze users location and moving status.
At third, a blog generation service is running to create and publish travel blogs and
microblogs.

12.2.2 Application on Mobile Client

The application in mobile client supports collecting travel records, preview, and edit
the travel blogs. Users can also configure the system parameters in mobile client to
decide, such as, whether to generate and publish the microblog during the trip, style
of the blog, and affection of the travel blog, etc. The user interface of Melog is shown
in Fig. 12.2.

The mobile application will monitor users photo folder on the client. When a new
photo is taken, the mobile application will obtain the location information from GPS
sensor and thenupload itwith its supported information (such as location information,
taken time, owner id, session id) to the file service on the cloud server. There is a
separate thread recording the users location at short intervals in mobile client. Those
records will be uploaded to the cloud at the same intervals. When user finishes his
trip, he can use the application in mobile client to preview and modify the complete
travel blog generated by the cloud service.
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Fig. 12.2 User interface of melog

12.3 Travel Blog Generation

In this section, we will introduce the method of generating the travel blog after a trip,
while microblog generation, which involves users moving status analysis, will be
detailed in Sect. 12.4. Travel blog generation service is running on the cloud, which
can be divided into four steps. First, we will select representative photos from all of
photos taken in the trip. Using location information and the content of photos, we can
retrieve knowledge from our knowledge database. With the knowledge and photos
location information, we get a rough organization of the travel blog data or called
paragraph metadata set. Then according to the content of article structure template,
we organize related information into blog metadata. After we get the blog metadata,
blogging text will be generated based on the natural language generation module.
Finally, we will use the presentation template, blog metadata and text to create a
complete travel blog.

12.3.1 Photo Selection and Knowledge Retrieval

In this section, we introduce how to select the representative photos and determine
the spots of interests which are visited by users during the trip, and how to retrieve
knowledge from the knowledge database.

Photo Clustering with Location Information

It is reasonable to assume that a user will take more photos in a spot the user is
interested in. We can get a rough structure about the users trip through clustering
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photos with its location information. In general, a photo cluster center should be
near a SOI and in the ideal case, one cluster center corresponds to one SOI. But
in practice, user may photograph a spot near another spot or take photos between
two spots. Therefore, we choose fuzzy c-means clustering algorithm [2] to cluster
photos. Using this algorithm, we can get a group of coefficients which represent the
possibility of the photo belongs to each cluster.

Mapping Spots of Interest to Clusters

Detecting visited SOIs from the photo clusters is the key process of travel blog
generation. This step finds candidate visited SOIs by computing the physical distance
between a SOI and a photo cluster, which is obtained from the associated GPS data.
The main idea is to choose the nearest SOI for each the photo cluster based on GPS
distance. First, set an interval [α, β] and an ideal number of chosen SOI γ for each
cluster. The SOIs which the distance from the cluster center is less than a will be
chosen immediately. If the number of selected SOIs n is less than γ , we will choose
at most (γ − n) the nearest SOIs from those whose distance from the cluster center
is less than β. After assigning SOIs to each cluster, we get all of selected SOIs as
candidate SOIs. We can expect that those candidate SOIs have a great possibility
that the user has visited them during the trip, but it cannot be absolutely determined
now. We will double check them using the method introduced in the next.

Photo Selection Using Sample Photos

This step refines the visited SOI list obtained from last step through comparing photos
in the matched cluster with the sample photos of the SOI. If at least one pair of photos
(one from the cluster and one from sample photo set of the SOI) matches well, we
can determine the SOI is visited by the user. Otherwise, it can be inferred that the
user did not visit this SOI or just walked through it but without taking any photos.
In current implementation, this type of SOIs will be ignored in blog generation.1

12.3.2 Paragraph Metadata and Blog Metadata

Paragraph Metadata (PM) contains the necessary data (such as photos, knowledge,
and some other properties) to create a single paragraph of the travel blog. After
photos are selected for each candidate SOI, paragraph metadata can be created based
on the information of those SOIs. It consists of selected photos and knowledge from

1Alternatively we may also detect the fact of visited without taking photos through GPS traces, and
may also be reflected in the text part of the blog.
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a single SOI. We also compute several properties for each PM, such as average time
of the selected photos and the weight of paragraph.

Blog Metadata (BM) consists of the properties of the travel blog and a list of PM.
An article structure template is defined to control the structure of the travel blog,
such as the maximal number of photos in each paragraph, the maximal number of
paragraph and the order of paragraphs, etc. BM can be created by the paragraph
metadata set with an article structure template.

12.3.3 Blogging Text Generation

The text in travel blog is used to introduce the visited spot, the content of photos
and the users experience. We developed a knowledge-and affection-based nature
language generation system to generate text for each blog paragraph. In general,
as mentioned in [9], natural language generation (NLG) system has three stages
including six tasks. Based on this stages division, we come up with a method to
realize the affective NLG system.

12.3.4 Blog Presentation

When the blog content is ready, a presentation template is used to represent the
travel blog. Presentation template is a standard html file with some custom tags
which defines the style of a travel blog. The presentation template can be chosen
from database according to the type of travel blogs and users affection variable, and
then the custom tags will be replaced with the real data to generate the travel blog.

Photo Collage

Photo collage is used to show a group of photos in order to make the blog more
interesting and lively. Several photo collage methods can be adopted in our Melog
system.

Simple photo collage rules are applied when the number of photos is small (say,
less than four). We can also use existing approaches like Picture Collage [10] and
Auto Collage [4] to show multiple photos in one synthesized picture.

Link to Photosynth

In some case, user may like to capture a large number of photos around the same
place. A 3D scene can be reconstructed by a group of photos using Photosynth
[8] [12].
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We can detect the number and content of photos taken in the same place. If the
number and quality of photos are satisfied to create a new Photosynth, we will create
one in Bing Map [3] and add a link Browse more in Photosynth in travel blog.

12.4 Micro-Blog Generation

In this section,wewill introduce anothermethod to share travel experience in realtime
by creating and publishing the microblog.

Comparing with the method of travel blog generation, microblog generation
process is more like to create a one paragraph travel blog with a single photo. The
key point of microblog generation is to understand the users moving state and detect
when the user have visited a spot that is, the user is leaving for a new spot and thus
a microblog for the just-visited spot will be published automatically (FA mode) or
semi-automatically (SA model).

12.4.1 Understand the Users Moving State

Figure12.3 shows an example of a users travel route during he arrived at and left a
spot. Every red point in the figure stands for the location information obtained from
the GPS sensor by a certain time interval. A location sequence L is defined to denote
the location points in the trip. The first location point is L(0) and the current location
point is denoted by L(i). The location points will be added into L with the users
moving. We compute a weight for each new location point by

W (i) =
i−1∑

j=0

1

σ
√
2π

e
−dis(i, j)

2σ2 ∗ t ime(i, j) (12.1)

Fig. 12.3 A Sample travel route
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where dis(i,j) is the distance between location point i and j; σ is the coefficient;
time(i,j) = 1 if the time interval between i and j is less than 5min, otherwise,
time(i,j) = 0.

The change of W can reflect users moving state. If W begin to increase a relative
great value, it means the user is stopped or walks slowly. Then, if W holds a relative
great value for some time, it means the user stays at a place. When W begins to
decrease, it means the user left the place or changed the moving state from slowly
moving or stop to walking as usual.When it is detected thatW begins to increase, and
then hold on a relative great value, finally decreases to the average value, we mark
this process as M, which means the user visited a spot during the time of M. If some
photos are captured during M, we also find the SOI near the center of the location
points recorded at M and Melog system is configured in the FA or SA model, the
microblog will be created using the microblog generation service.

12.4.2 Create and Publish the Micro-Blog

Microblog generation is similar with the travel blog generation. We can regard
microblog as a one paragraph and one photo travel blog. The same method is used
to create paragraph metadata and blog metadata. The number of words in microblog
will be limited by NLG system. After the microblog was generated, it will be pub-
lished into the users microblog website through the APIs provided by the microblog
website.

12.5 Database Organization

We organize SOI information, knowledge, and sample photos, etc. into a database.
Since most of operation of Melog is based on the database, the performance, and
quality of travel blog generation highly depends on the database. The database can be
constructed manually but only one time (though could be updated when necessary),
and can be used by all users.

Alternatively, we can also use automatic or semi-automatic method to build the
database by mining the data from Flickr, search engine and other webpages. SOIs
and sample photos can be built by clustering images with location information from
Flickr, and then, some general introduction about those SOIs and sample photos will
be generated throughwebpage analyzing technology. Finally, the special information
about each SOI can be added manually. On the other hand, the database can also be
built manually by leveraging grassroots users on the Internet given an appropriate
manual or semi-automatic tool.
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12.6 Experiment and Evaluations

In this section, we conducted extensive experiments to evaluate the proposed scheme,
including both subjective andobjective evaluations.Wefirst evaluate the performance
of the SOI selection and the photo selection, and then investigated the performance
ofMelog system. At last, we have a comparison betweenMelog system and Travelog
system [5]. We invited eight users to evaluate our Melog system. They were asked
to use our Melog application and service to record and share the travel experiences
of their real trips. In the experiment, each user takes about 70 photos on the average
and 10 places (each contains multiple SOIs) are visited. We build the ground truth of
candidate SOI selection and candidate photo selection for each scenic spot by hand
to evaluate the performance of SOI and photo selection.

12.6.1 Evaluate the Spot of Interest Selection

According to the travel records of participants, the Ground truth is built for each
group of data. We mark up the spot as correct if the user visited it, and others are
wrong. The average precision and average recall are computed. The result of average
precision is 12 and the result of average recall is 0.858. The miss selected SOI is
caused by the strict strategy we used in photo retrieval process, since we have to
guarantee the accuracy of photo selection first. Therefore, some SOIs did not get any
photos in photo retrieval process and they were ignored.

12.6.2 Evaluation of Photo Selection and Text Generation

Photo selection is very important to the travel experience sharing. We evaluate the
performance of image selection by checking whether the selected photos match
with the text, since the text is generated based on the knowledge from the SOI and
sample photos. If the text and photo are well matched, it means the photo is currently
selected. A web application is built to collect the evaluations from participants. The
web application will choose one photo with its text from the generated travel blog
and ask the participants if the text is well described the photo. The answers from
participants will be stored in our database. We got the average accuracy of photo-text
matching is 0.927. It means the most of photos are correctly selected and the text is
also well generated. An example of part of the travel blog is shown in Fig. 12.4.

2As both location information and photo content are used to select SOIs in our system, the selected
SOIs are accurate and could hardly be imprecise, though it is possible that there will be slight
inaccuracies in practical application because of the proximity of two spots.
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Fig. 12.4 An example of
part of the travel blog

12.6.3 Evaluation of the Entire Melog System

We invited the eight participants (as the users of the Melog system) to evaluate the
Melog system during their trip. They were asked following questions to evaluate the
performance of Melog system and the quality of generated blog.

Q1: Is it convenient to generate a travel blog using this application?
Q2: Are photos in travel blog selected reasonable?
Q3: Is the text in travel blog natural?
Q4: Does the blog well summarize your trip?
And then, we invited the other 30 participants (as the readers of the travel blogs)

to evaluate the travel blogs generated in our experiment as blog visitors, where the
following questions were asked.

Q5: Is the travel blog interesting and good looking?
Q6: Is the text in travel blog natural?
Q7: Does the micro-blog help you understand more about your friends trip?
Users were asked to give a score ranging from 1 (the worst) to 5 (the best) to

each of these questions. Figure12.5 shows the average scores of this evaluation,
which shows quite encouraging results. We also found the satisfaction degree of the
text in travel blog (corresponds to question Q3 and Q6) is relatively lower than the
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Fig. 12.5 Evaluation result of melog system

evaluation of other aspects. In fact, affective natural language generation is still a
changing problem.Wewill find a better way to generate the affective text in our future
work. In general, users are actually very satisfied with our application according to
the evaluation.

12.6.4 Comparison

As afore mentioned, Travelog [5] is the most relevant effort to Melog. Therefore,
some users are invited to evaluate the operation and the generated travel blog of these
two systems. Participants were asked to score the following questions about the two
applications:

Q8: The content of blog is rich and well organized.
Q9: The travel blog is pleasant to the read in terms of the presentation style.
Q10: The process of travel blog generation is fast and convenient.
As the result shown in Fig. 12.6, it can be seen that the performance of Melog is

obviously better than those of the Travelog system.
In addition, the estimated time of creating and publishing a travel blog by Melog

system is about 15 s (begin at the user wants to generate a travel blog and end with
the travel blog is published, including the time of downloading the preview data
and confirming), while the time of Travelog is 66.5 s (mentioned in [5]) without
considering the time of selecting photos and typing the title of travel blog. Moreover,
the time for microblog creating and publishing in Melog can be ignored as it is
running at the background as an automatic service.
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Fig. 12.6 Evaluation result
of the comparison between
MeLog and travelog.

12.7 Conclusions

In this paper, we have proposed a new mobile multimedia application to help users
record and share travel experiences by analyzing the GPS data and photos captured
in the trip. We provided an easy and widely accepted method, automatic blogging,
to share travel experience with others. We focus on how to reduce users input, cre-
ate the travel blog intelligently and share the travel experience in realtime. With
this application, user can focus on enjoying the happiness of travel itself without
many interruptions. Recording, sharing, and recalling travel experiences become
more natural and easier. In the future work, we will use more methods to share the
travel experience such as organize the travel photos into a video with some presen-
tation methods. New types of travel blog organization approaches, such as image
classification based ones, will also be used in the future system.
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Chapter 13
Automatic Visual Pattern Discovery
via Cohesive Subgraph Mining

Gangqiang Zhao and Junsong Yuan

Abstract One category of videos usually contains the same thematic pattern, e.g.,
the spin action in skating videos. The discovery of the thematic pattern is essential
to understand and summarize the video contents. This article addresses two critical
issues in mining thematic video patterns: (1) automatic discovery of thematic pat-
terns without any training or supervision information, and (2) accurate localization
of the occurrences of all thematic patterns in videos. The major contributions are
twofold. First, we formulate the thematic video pattern discovery as a cohesive sub-
graph selection problembyfinding a subset of visualwords that are spatio-temporally
collocated. Then spatio-temporal branch-and-bound search can locate all instances
accurately. Second, a novel method is proposed to efficiently find the cohesive sub-
graph of maximum overall mutual information scores. Our experimental results on
challenging commercial and action videos show that our approach can discover dif-
ferent types of thematic patterns despite variations in scale, view-point, color, and
lighting conditions, or partial occlusions. Our approach is also robust to the videos
with cluttered and dynamic backgrounds.

13.1 Introduction

One category of videos usually shares the same thematic pattern. Such a thematic
pattern can be the visual object that is frequently highlighted in the video, e.g., the
product logo in a commercial video, or a specific event that appears commonly, e.g.,
spin action in skating videos. It is of great interests to discover thematic patterns
in videos as they are essential to the understanding and summarization of the video
contents.
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Even though tremendous progress has been made for the frequent pattern mining
over a decade [6], there are three major challenges for mining thematic visual pattern
in videos. First, visual patterns generally exhibit large variabilities in their visual
appearances. Different instances of the same thematic pattern may vary significantly
due to viewpoint and illumination changes, scale changes, partial occlusion, not to
mention the large variations of videos events. Second, visual patterns have complex
structures. Different visual items (image patches) can be correlated due to temporal
and spatial dependency and co-occurrences. Finally, it is challenging to locate the
thematic pattern accurately in the cluttered and dynamic video scenes. Therefore, it
is difficult and time consuming, even for human beings, to find the thematic patterns
in videos accurately.

To deal with the above challenges, some recent approaches have been proposed to
discover common objects in images [3, 14, 21, 27, 30]. Despite a moderate success,
these image-based methods cannot be extended to video data directly. For example,
to represent the images using the transaction data, Russell et al. have proposed to
segment the image multiple times [21]. However, it is very difficult, if not impos-
sible, to segment the video sequences multiple times due to the high computational
cost. Besides, the thematic video object may be small and hidden in the cluttered
background, while existing object discovery approaches usually assume the object
dominates the whole image [27]. Furthermore, for thematic event, it is important
to take its spatiotemporal characteristics into consideration, while previous image-
based methods only deal with spatial patterns [34].

We propose a novel thematic video pattern discovery method that addresses the
challenges mentioned above. A video sequence is characterized by a number of key
frames and each frame is composed of a collection of local visual features. After clus-
tering the features into visual words, we measure the pairwise relationship between
two words using the mutual information criterion and represent the relationship of
all words as an affinity graph. The thematic pattern becomes a cohesive subgraph
which has the maximum overall mutual information score and this subgraph can be
obtained efficiently by the proposed mining approach. In addition, to identify the
thematic pattern, we perform an efficient bounding box search to locate all of the
instances of the thematic pattern.

The benefits of our method are threefold. First, our method is a pure data-driven
approach and can discover the thematic video patterns automatically by mining the
cohesive subgraph. Second, by applying the branch-and-bound search, our method
can accurately locate all instances of the thematic patterns in cluttered and dynamic
video scenes. Last but not least, by incorporating an affinity graph to describe the
spatial or spatiotemporal contextual relationships of visual features, the proposed
cohesive subgraph mining is robust to local feature errors, e.g., quantization errors
of visual words or the miss detection of local feature. The experimental results
on challenging commercial videos and action datasets show that our approach can
discover the thematic pattern despite its variations due to scale, view-point, color,
and lighting condition changes. It can also accurately locate the thematic patterns in
the cluttered and dynamic video scenes.
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A preliminary version of this article was published in [33]. The current version
describedhere differs from the former in severalways, including: the detailed descrip-
tion of the cohesive subgraph mining algorithm; further analysis and discussion of
the whole approach; as well as the introduction of more related works about visual
pattern discovery.

13.2 Related Work

Most existing commonpattern discoverymethods fall into one of the three categories:
frequent pattern mining-based methods, topic model-based methods, and subgraph
matching-basedmethods. Frequent patternmining-basedmethods first translate each
image into a collection of “visual words” and then discover the common pattern
through frequently co-occurring words mining [22, 28, 30]. To represent each image
using the transaction data, [30] considers the spatial K-nearest neighbors (K-NN) of
each local features as a transaction record.However, it is difficult to select the sizeKof
the nearest neighborhood as there is no a priori knowledge about the thematic pattern
scale. Reference [22] proposes both a priori-based and pattern-growth approaches
for mining spatial co-orientation image patterns, which refer to the spatial objects
that occur frequently and collocate with the same orientation among each other.
However, this method only deals with the spatial relations of image patterns. The
frequent pattern mining algorithms are summarized in [6].

Topic model-based methods discover the common pattern through topic discov-
ery [4, 21, 24]. To represent the images using the transaction data, [21] segments
the image multiple times. However, even though each image is segmented multiple
times, the common object is often not well segmented due to multiple objects or the
cluttered background. After obtaining a pool of segments from all images, object
topics are discovered using Latent Dirichlet Allocation model (LDA) [1] and the
most supportive topic is selected as the common topic. The segments corresponding
to the common topic are selected as the common objects.

Traditional subgraph matching methods characterize an image as a graph or a
tree composed of visual features. Then, the common pattern is discovered by graph
or tree matching [7, 27]. However, the existing approaches require the training step
and have high computational cost. Different with subgraph matching methods, we
characterize all key frames using an affinity graph of all visual features and find the
thematic pattern by cohesive subgraph mining. Our method is a pure data-driven
approach and can discover the thematic video patterns without any training step.
Recently, [28] employs the subgraph (max clique) mining technology as the top-
down graph-based approach for frequent pattern mining. However, this subgraph
mining algorithm is designed specifically for the proposed pattern graph.

Besides discovering common patterns from images, there is also recent work
in discovering common patterns from video sequences [13]. This method needs
supervision information about the common patterns and user labeling to initialize
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the search, thus it is not fully unsupervised. In addition, the visual pattern discovery
can be combined with co-segmentation algorithms [8, 20, 26, 32]. Other related
works can also be found in a recent survey of visual pattern discovery [25].

13.3 Thematic Pattern Discovery

To discover the thematic patterns from videos, visual features are extracted from
key frames and clustered into visual words first. Then, we build an affinity graph
to capture the pairwise relationships of the visual words in all key frames. Next,
the cohesive subgraph corresponding to the thematic pattern is discovered by the
proposed mining method. Finally, instances of the thematic pattern are located using
the branch-and-bound method. Figure13.1 illustrates the main steps of our method.
The following subsections describe details about these steps.

13.3.1 Preliminaries

Our method first extracts a set of local visual features from the key frames, e.g., the
SIFT features [15] or spatial-temporal interest point (STIP) features [10]. Each visual

Fig. 13.1 Illustration of themain steps in ourmethod. First, the pairwise relation between the visual
words in all key frames is characterized by an affinity graph (a), where the red arrows indicate the
positive affinity value between twowords, while the green-dashed lines indicate the negative affinity
value. The thematic pattern corresponds to the cohesive subgraph which has the maximum overall
affinity score. b Represents the discovered cohesive subgraph. Using the branch-and-bound search,
the thematic pattern is located and highlighted by the red bounding box in (c)
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feature in key frame Im is described as a feature vector φm(u) = [u, d], where the 3D
vector u is its spatial location and temporal order, and the high-dimensional vector
d encodes the visual appearance of this feature. Then, a key frame Im is represented
by a set of visual features Im = {φm(u1), . . . , φm(up)}. Clustering algorithms, such
as k-means, group the features in {Im}M

m=1 according to the similarity between their
appearance vectors, yielding N visual words � = {W1, W2, . . . , WN }. The features
clustered towordWi are named as instances ofwordWi.Wedenote this representation
as the following induced feature-word set:

Definition 1 (Induced Feature-word Set)
The induced feature-word set is defined as {Φmi}M

m=1
N
i=1, where Φmi = {φmi} repre-

sents all instances of word Wi in key frame Im, and φmi is one of these features.

The relation of all visual words can be represented by an affinity graph, where
each edge represents the relation between two words, as shown in Fig. 13.1a. As is
customary, we represent the affinity graph with the corresponding affinity matrix A.
Given two words Wi and Wj, the affinity relationship between them is intuitively
defined as following.

Definition 2 (Pairwise Affinity)
The affinity value Ai,j describes the chance of two words Wi and Wj belonging to
the same thematic pattern. While Ai,j ≥ 0 implies that the two words have a high
probability of being in the same thematic pattern, and Ai,j ≤ 0 otherwise.

The estimation of the pairwise affinity will be discussed in Sect. 13.3.2. The affin-
ity of all wordpairs are concatenated as a N × N symmetric matrix A.

13.3.2 Pairwise Affinity Measurement

Given the visual words representation, we can estimate the affinity Ai,j between each
wordpair P = {Wi, Wj}. Existing works demonstrate that word co-occurrence is
an important criterion for common pattern discovery [5, 21]. However, due to the
inherent complexity of a visual pattern, visual words that co-occur frequently do
not always suggest an accurate and meaningful affinity relationship. Even if a word-
pair appears frequently, it is not clear whether such co-occurrences are statistically
significant or just by chance. Therefore, inspired by the work [30], we employ the
point-wise mutual information criterion to estimate the affinity relationship of two
words:

S(P) = log

(
Pr(P)

Pr(Wi) × Pr(Wj)

)
, (13.1)

where Pr(P) is the joint probability of wordpair P and Pr(Wi) is the individual
probability of word Wi. This quantity can take on both negative and positive values
and is zero if Wi and Wj are independent. Its value is positive if Wi and Wj are
positively correlated, while it is negative if they are negatively correlated.
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To estimate the probability Pr(P) and Pr(Wi), simply checking their occurrence
frequency is far from sufficient. Even in the same key frame, one instance of a visual
word may belong to the thematic pattern while the other instance of the same visual
word may belong to the background. This situation is very common especially for
some frequent visualwords. Therefore, we first employ the stop listmethod to discard
the most frequent visual words that occur in almost all key frames, as these visual
words often have limited discriminative power [21].

Ideally, two words corresponding to the same pattern need to not only co-occur
in different key frames, but also maintain a consistent spatial relationship. But in
practice, it is difficult to catch this kind of consistency because (1) the appearance
variations and (2) the enormous computational cost involved in exploring the huge
solution space, given the variations in location, scale, and the number of thematic
patterns. So we assume the features belong to the same thematic pattern should be
close in the same key frame. We count the number of effective occurrence ofP as:

N (P) = |{m : Dmin(φmi, φmj) < ΛD}|, (13.2)

where Dmin(φmi, φmj) represents the minimal distance between instances of Wi and
Wj in key frame Im, andΛD is a threshold. For spatiotemporal features,Dmin(φmi, φmj)

should also consider the temporal information. The number of effective occurrence
of each word N (Wi) is also obtained as:

N (Wi) = |{m : ∃j, Dmin(φmi, φmj) < ΛD}|. (13.3)

Instances of Wi and Wj that satisfy Dmin(φmi, φmj) < ΛD, will be added to Φ̂mi and
Φ̂mj, respectively. The set Φ̂mi ⊆ Φmi represents the visual features of key frame Im

which contribute to the estimation ofN (Wi).
Based on the point-wise mutual information criterion, the wordpair affinity value

is:

Ai,j = log

(
N (P)/M

N (Wi)/M × N (Wj)/M

)
. (13.4)

If Wi and Wj do not have any effective co-occurrence, Ai,j is set a negative value τ .

13.3.3 Thematic Pattern Discovery by Cohesive Subgraph
Mining

In order to discover thematic patterns from videos, we consider the integrity and
uniqueness of the visual pattern’s representation. In other words, the thematic pattern
is composed of a specific group of words. Therefore, following this intuition, we
represent the thematic pattern as the cohesive subgraph and denote this subgraph
using its vertices set Ω , where elements of Ω are the words belong to the same
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thematic pattern. We define the affinity potential function of the subgraph Ω as
f (Ω) = ∑

Wi,Wj∈Ω Ai,j and the solution to the following optimization problem gives
the maximum cohesive subgraph:

Ω∗ = arg max
Ω⊆�

f (Ω), (13.5)

i.e., the subgraph that has the largest affinity potential is the maximum cohesive
subgraph. As each thematic pattern is presented by a subgraph, we can discover
them one by one. After one pattern is discovered, the features belong to this pattern
will be removed and another pattern can be found.

When obtaining the affinity matrix A for all wordpairs, the subset optimization
problem in Eq.13.5 is converted to a binary optimization problem. Given, a subgraph
Ω , letx = {xi}N

i=1 with xi ∈ {−1, 1} represents its indicator vector.When xi = 1,word
Wi belongs to subgraphΩ , and vice versa. As the indicator vector x and the subgraph
Ω correspond to each other, Eq.13.5 can be rewritten as:

x∗ = argmax
x

f (x) = 1

4
(1 + x)T A(1 + x),

s.t. xi ∈ {1, 1}, i = 1, . . . , N, (13.6)

where f (x) = 1
4 (1 + x)T A(1 + x) is the objective function. Equation13.6 is a binary

quadratic programming (BQP) problem. Since A may not be the positive definite
matrix, the objective function f (x) can be nonconvex, thus it is a NP problem.
Section13.4 describes the proposed solution of this problem.

13.3.4 Thematic Pattern Localization

After obtaining the cohesive subgraph Ω∗, we can locate the thematic patterns in
videos via the occurrences of their corresponding visual features. The instance of
thematic pattern is located by assigning each pixel a corresponding confidence score.
For a pixel u, if its corresponding feature is assigned to one word in the cohesive
subgraph Ω∗, we set its confidence score a positive value. Otherwise, we set it a
negative value. This is reasonable as these pixels have low chances to be part of a
thematic pattern. In other words, we assign the confidence score to each pixel u in
key frame Im as:

C(m, u) =
{
1 if φm(u) ∈ Φ̂mi ∧ Wi ∈ Ω∗
ν else

, (13.7)

where ν is a predefined small negative value. After obtaining the confidence score
C(m, u), we locate the instances of thematic pattern using a bounding box. To speed
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up the localization process for 2D thematic patterns, we apply the branch-and-bound
search proposed in [9]. To locate the 3D thematic patterns (e.g., actions), the 3D
branch-and-bound search solution is employed [31].

13.4 Cohesive Subgraph Mining Algorithm

To solve the proposed BQP problem in Eq.13.6, we first reformulate it as the con-
tinuous optimization problem and then obtain the solution based on the fixed point
iteration procedure and the perturbation technique.

To solve Eq.13.6, we observe that a binary constraint xi ∈ {−1, 1} is always
equivalent to an equilibrium constraint, i.e.,−1 ≤ xi ≤ 1, (1 + xi)(1 − xi) = 0. Fur-
thermore, this equilibrium constraint is implied by the nonlinear complementarity
problem (NCP) functionψ(1 + xi, 1 − xi) = 0 [2]. In the implementation, we select
the popular Fischer–Burmeister function ψ(a, b) = √

a2 + b2 − (a + b) and obtain
the differentiable constraint functions:

ψ(1 + xi, 1 − xi) =
√
2 + 2x2i − 2 = 0. (13.8)

To simplify the representation,wedenote theFischer–Burmeister function ofEq. 13.8
asψ(xi). By combining Eqs. 13.6 and 13.8, we reformulate the original BQP problem
as the following continuous optimization problem:

x∗ = argmax
x

f (x),

s.t. ψ(xi) = 0, i = 1, . . . , N, (13.9)

xT x = N,

whose global maximizer offers an exact solution of Eq.13.6. We see that ψ(xi) has
incorporated the constraint xT x = N and it is kept here on purpose. Figure13.2 shows
the feasible regions of two constraints.

Fig. 13.2 Illustration of the feasible regions of Eq.13.9 in two dimension space. The first constrain
compels the solution lies in the four corners of the square while the second constrain relaxes the
feasible region to a circle of radius one
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To deal with theψ(xi) constraint, we introduce the quadratic penalty
∑N

i=1 ψ2(xi)

into the objective function:

x∗ = arg max
x

F(x, β) = f (x) − β

2

N∑

i=1

ψ2(xi),

s.t. xT x = N, (13.10)

where β > 0 is a penalty parameter. To solve the optimization problem of Eq.13.10
with a specific penalty parameter β, we look at its Lagrangian:L (x, β, λ) = f (x) −
β

2

∑N
i=1 ψ2(xi) − λ(xT x − N). By taking the derivative and setting ∂L (x,β,λ)

∂x = 0, we
obtain:

1

2
A(1 + x) − β

N∑

i=1

ψ(xi)ψ
′(xi) = 2λx,

xT x = N .

(13.11)

Solving Eq.13.11 explicitly is difficult. Therefore, as suggested by [29], we employ
a fixed point iteration procedure to obtain the solution x. By adding the − β

2

∑N
i=1

ψ2(xi) into objective function, it can not only incorporate the constraint but also
obtain a concave objective function when the penalty parameter β is large enough,
as presented in the following lemma.

Lemma 1 By adding the − β

2

∑N
i=1 ψ2(xi) into objective function, we can obtain a

concave objective function F(x, β) when the penalty parameter β is large enough:

F(x, β) = f (x) − β

2

N∑

i=1

ψ2(xi), (13.12)

where f (x) = 1
4 (1 + x)T A(1 + x) and ψ(xi) =

√
2 + 2x2i − 2.

The appendix section shows the proof of Lemma 1. This advantage greatly con-
tributes to the searching for an optimal solution or a favorable suboptimal solution
of Eq.13.6 via a sequence of maximization with an increasing penalty parameter.

To explore the neighborhood of the solution for different β, we also perturb the
matrix A by a small quantity and hope that this change could lead to a better solution.
The perturbation of matrix A is obtained by adding an N × N perturbation matrix
P, where entries of the matrix P (0 ≤ Pij ≤ 1) are randomly generated based on the
values of the x vector. The proposed subgraph mining algorithm is summarized in
Alg 1. The maximum cohesive subgraph is obtained according to the best solution
found after all iterations.
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Algorithm 1 Cohesive sub-graph mining
input : Matrix A, number of iterations K, penalty parameter β0, perturbation threshold δ .
output: the maximum cohesive sub-graph Ω∗

construct random solution x1
xbest = x, At = A
for k = 1 to K do

A = At , β = β0
k, x = xbest2

/*find the solution xa with original matrix A */
xa = arg maxx f (x)− β

2 ∑N
i=1 ψ2(xi)

if f (xa)> f (xbest) then
xbest = xa3

end4
/* obtain the perturbation matrix P */5
for i = 1 to N do

produce a small random value δ while |δ | ≤ δ6

set ith row and ith column of P as (xai)2δ
end7
A = A+P8

/*find the solution xb with perturbed matrix A */
xb = arg maxx f (xa)− β

2 ∑N
i=1 ψ2(xai)

if f (xb)> f (xbest) then
xbest = xb9

end10

end11
obtain sub-graph Ω∗ based on xbest12

13.5 Evaluation

To evaluate our approach, we test it on challenging commercial videos and action
video collections for thematic pattern discovery. In addition, we compare the pro-
posed approach with the state-of-the-art methods [18, 21].

13.5.1 Video Dataset

In the first experiment, we discover thematic objects from twenty video sequences
downloaded from YouTube.com. We test our method on the video sequences one by
one. Each video sequence is one advertisement, where the length of videos range
from 7 to 41s. In the second experiment, we apply our method to five action video
collections to discover the thematic actions. Two of them (i.e., Hand Clap and Hand
Wave ) come from MSR action dataset [31] and the other two (i.e., Jumping Jack
and Golf Swing) come from UCF action dataset [19]. The last one (Figure Skating
Spin) is downloaded directly from YouTube.com. We test our method on the video
collections one by one. In each video collection, around half of the videos contain
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the thematic actions. It is possible that one video sequence contains multiple types
of actions and some video sequences do not contain any actions.

13.5.2 Experimental Setting

Several parameters should be set first. The distance threshold ΛD is set according to
the size of each key frame, i.e., we set ΛD = 0.33W , where W denotes the width of
the video frame. If two visual words do not have any co-occurrence in the datasets,
their affinity value is set to be −3, i.e., τ = −3. For the cohesive subgraph mining
algorithm, the number of iterations is set to be 20, i.e.,K = 20 , the penalty parameter
is set to be 1.1, i.e., β0 = 1.1, and the perturbation threshold is set to be a very small
number, i.e., δ = 0.01. All these parameters are fixed in our experiments. All the
experiments are performed on aXeon 2.67GHz PC and our approach is implemented
in Matlab.

To quantify the performance of the proposed approach, we manually labeled the
ground truth bounding boxes of the instances of thematic patterns in each dataset.
For commercial videos, the bounding boxes locate the 2D subimages in each key
frame. For action video collections, the bounding boxes are 3D subvolumes which
define the spatial and temporal range of actions. The discovered bounding boxes are
decided by the the branch-and-bound search method [9, 31]. Let DR and GT be the
discovered bounding boxes and the bounding boxes of ground truth, respectively. The

performance is measured by two criteria: precision = |GT∩DR|
|DR| and recall = |GT∩DR|

|GT | .
By combining precision and recall, we use a single F-measure as the metric for per-
formance evaluation [27]. F-measure = 2× recall × precision

recall + precision is the weighted harmonic
mean of precision and recall. To calculate the F-measure value for one video, the
F-measure value is first calculated for each key frame and then the average value of
all key frames is used to evaluate the whole video. The F-measure value for action
video collections is also obtained similarly.

13.5.3 Thematic Object Discovery from Videos

Many commercial videos contain the thematic objects, e.g., the Starbucks logo in
a commercial video of Starbucks coffee. Such a thematic object usually appears
frequently, and the discovery of it is essential for understanding and summarizing
the video contents. The employed videos are 24 frames per second and we sample
key frames from each video at two frames per second, and discover the instances of
thematic objects from these extracted key frames. For each video sequence, we only
discover the first thematic object, i.e., the thematic object corresponding to the max-
imum cohesive subgraph. To locate instances of thematic object in each key frame,
the confidence score of nonthematic pixels is set to −0.0001, i.e., ν = −0.0001.
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Table 13.1 Numbers of key frames and thematic object instances in each video sequence

Seq. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FNo. 40 46 14 59 24 60 27 28 19 59 82 31 59 59 40 33 32 49 57 59

INo. 18 22 13 16 21 13 15 19 18 21 33 22 30 9 35 15 17 21 15 17

Fig. 13.3 Sample results of thematic object discovery. For each dataset, we only discover the first
thematic object, i.e., the thematic object corresponding to the maximum cohesive subgraph. The
first column of each row shows the thematic pattern. Each of the top four rows shows the result
of thematic object discovery from a single commercial video. The last row shows the result of
thematic object discovery from collections of commercial videos. The discovered thematic objects
are located by the red bounding boxes, and the frames without bounding boxes contain non thematic
objects

In our visual words representation, SIFT local features are extracted from each key
frame. For each sequence, the local features are quantized into 1000 visual words by
the k-means clustering. The number of visual words is selected experimentally. The
top 10% frequent visual words that occur in almost all key frames are discarded in
the experiments. Table13.1 summarizes the information of twenty video sequences.
For each sequence, the number of key frames (FNo.) and the ground truth number of
thematic object instances (INo.) are shown in the first and second rows, respectively.

Figure13.3 show some sample results of thematic object discovery. In the video
sequences, the thematic objects are subject to variations introduced by partial occlu-
sions, scale, viewpoint, and lighting condition changes. It is possible that one video
sequence contains multiple thematic objects and some frames do not contain any
thematic objects. We also count the number of correctly detected instances of the-
matic object CNo. and the number of falsely detected instances of thematic object
WNo. for each sequence. Their ratios to the ground truth number of thematic object
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Table 13.2 The performance comparison when using different numbers of visual words

Number of
Words

400 800 1000 1200 1600

F-measure 0.36 0.60 0.63 0.59 0.53

instances are calculated asCorrectRatio = CNo.
INo.

andFalseRatio = WNo.
INo.

. Figure13.5a
illustrates the Correct Ratio and False Ratio of all 20 videos and the average Correct
Ratio of twenty videos is about 94% while the average False Ratio is about 3%.

Table13.2 illustrates the performance comparison when the number of visual
words varies. The average F-measure value of all twenty sequences is shown. It can
be found that the best performance is obtained when the features are clustered into
1000 visual words Moreover, our method is also able to find thematic objects from
video collections, as shown in the last row of Fig. 13.3. These results show that the
proposed approach performs well for discovering identical thematic objects from
video sequences.

13.5.4 Thematic Action Discovery from Video Collections

Discovering actions in the video space is much more complicated than discovering
objects in the image space. In this experiment, we discover the thematic action from
five different action video collections. For each video collection, we only discover the
first thematic action, i.e., the thematic action corresponding to themaximumcohesive
subgraph. In our visual words representation, spatial-temporal interest points (STIPs)
are extracted from each video sequences [10]. For each video collections, the local
features are quantized into 300 visual words by the k-means clustering. The top 10%
frequent visual words that occur in almost all videos are discarded in the experiments.

The numbers of video sequences in five collections are 29, 32, 18, 23, and 20,
respectively. The numbers of video sequences which contain the thematic actions
are 19, 18, 10, 14, and 12, respectively. Figure13.4 shows some sample results of
thematic action discovery. In the video sequences, the actions are subject to the
intra-pattern variations of actions, such as scale and speed variations, and dynamic
and cluttered backgrounds and even partial occlusions. Figure13.5c illustrates the
Correct Ratio and False Ratio of all five video collections and the average Correct
Ratio of five video collections is about 90% while the average False Ratio is about
9%. Figure13.5d illustrates the F-measure of all 5 video collections. These mining
results show that the proposed approach performs well for mining thematic actions
from video collections.
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Fig. 13.4 Sample results of thematic action discovery. From top to bottom, the actions are Hand
Clap, HandWave, Jumping Jack, Golf Swing, and Figure Skating Spin, respectively. The discovered
thematic actions are located by the red bounding boxes, and the videos without bounding boxes
contain non thematic actions. The cohesive STIP features are also shown, and most of them are
inside the bounding box

13.5.5 Comparison with Other Approaches

We compare our thematic pattern discovery method with two other methods: (1)
topic discovery approach and (2) dominant set mining approach. The topic discovery
approach [21] is the state-of-the-art approach for object categorization and object
discovery. To discover thematic actions from action video collections, we employ
the LDA model [21] directly and select the most supportive topic as the thematic
action topic. In the second method, we use the dominant set mining approach as
described in [18]. As this method only provides the probability of each word that
belongs to the dominant set, we have to set a probability threshold to decide whether
one word is selected or not. Therefore, we select the same number of words as the
proposed method,

As shown in Fig. 13.5b, our proposed approach outperforms both topic discovery
approach and dominant set mining approach in terms of the F-measure for the-
matic object discovery, with an average score of 0.63 (Proposed) compared to 0.47
(Dominant set mining) and 0.32 (Topic discovery), respectively. The topic discov-
ery approach does not consider the spatial relationship of the visual features and its
results highly depend on the performance of the key frame segmentation. Due to
multiple objects and the cluttered background per key frame, performing a reliable
segmentation is not a trivial task. In this case, topic discovery approach only obtains
a very coarse discovery of the thematic object, which is far from being satisfactory.
The dominant set mining can obtain good results in several video datasets. However,
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Fig. 13.5 The performance evaluation of the proposed approach: a shows the Correct Ratio and
False Ratio for each video; b shows the performance comparison of our approach (Proposed),
topic discovery approach (Topic discovery) [21] and dominant set mining approach (Dominant set
mining); c shows the Correct Ratio and False Ratio for each action video collection; d shows the
performance comparison of three approaches for action video collections

in the thematic pattern mining applications, there is no a priori knowledge about the
size of dominant set. On the contrary, the proposedmethod can achieve a much better
result. The same conclusion can be drawn for thematic action discovery, as shown in
Fig. 13.5d. These comparisons clearly demonstrate the advantages of the proposed
thematic pattern mining technique.

13.6 Conclusion

Thematic pattern discovery in videos is a challenging problem due to the possibly
large visual pattern variations and the prohibitive computational cost to explore the
candidate set without a priori knowledge. By representing the affinity relations of all
words as a graph, we formulate the thematic pattern discovery problem as a novel
cohesive subgraph mining problem and obtain its solution by solving the binary
quadratic programming problem.Our approach has the ability to identify the thematic
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pattern and accurately locate its instances in the cluttered and dynamic video scenes.
Experiments on challenge commercial videos and action video collections show that
ourmethod is efficient, robust, and accurate. Future work can be carried out to test the
cohesive subgraph mining algorithm on other applications, such as video clustering
and categorization. In addition, our method can be extended to consider more cues
like the video saliency [16], object shape [11] and the weakly supervised information
about the visual patterns [12, 13, 23].

13.7 Appendix

In Sect. 13.4 of the paper, we give the Lemma 1.

Lemma 1 By adding the − β

2

∑N
i=1 ψ2(xi) into objective function, we can obtain a

concave objective function F(x, β) when the penalty parameter β is large enough:

F(x, β) = f (x) − β

2

N∑

i=1

ψ2(xi), (13.13)

where f (x) = 1
4 (1 + x)T A(1 + x) and ψ(xi) =

√
2 + 2x2i − 2.

Proof To prove F(x, β) is a concave function, we transform it as:

−F(x, β) = −f (x) + β

2

N∑

i=1

ψ2(xi). (13.14)

Now, we prove−F(x, β) is a convex function when the parameter β is large enough.

First, we observe that −f (x) is a twice continuously differentiable function, and
its definition domain [−1, 1]N is a compact set. Second, consider the first and second
order differential of penalty term ψ2(xi):

(ψ2(xi))
′ = 4xi

⎛

⎝1 − 2√(
2 + 2x2i

)

⎞

⎠ , (13.15)

and

(ψ2(xi))
′′ = 4

⎛

⎝1 − 4√(
2 + 2x2i

)3

⎞

⎠ . (13.16)

We can conclude that for all xi /∈ [−
√
2

1
3 − 1,

√
2

1
3 − 1], (ψ2(xi))

′′ > 0 and this

implies ψ2(xi) is strictly convex for all xi /∈ [−
√
2

1
3 − 1,

√
2

1
3 − 1].
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Denote
∑N

i=1 ψ2(xi) as Ψ (x), then its Hessian matrix ∇2
xxΨ (x) is:

⎡

⎢⎣
(ψ2(x1))

′′ · · · 0
...

. . .
...

0 · · · (ψ2(xN ))
′′

⎤

⎥⎦ . (13.17)

Now, it is easy to see that the minimum eigenvalue λmin of∇2
xxΨ (x) is greater than

ε for all xi /∈ [−
√
2

1
3 − 1,

√
2

1
3 − 1], i = 1, . . . , N , where ε = λmin − δ and δ > 0 is

an arbitrary small value.
Based on these two observations and the following lemma, −F(x, β) is a convex

function when the parameter β is large enough. Consequently, F(x, β) is a concave
function when the parameter β is large enough.

Lemma 2 Suppose that f : V → R is a twice continuously differentiable function
with V ⊆ R

n being a compact set and Ψ : X → R is a twice continuously differen-
tiable function such that the minimum eigenvalue of its Hessian matrix ∇2

xxΨ (x) is
greater than ε for all x ∈ X, where X ⊂ V . Then, there exists a constant β̂ such that,
when β > β̂, f (x) + βΨ is a strictly convex function on X.

Proof Its proof can be found in Theorem2.5 of [17].
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Chapter 14
Absolute Scale Estimation of 3D Monocular
Vision on Smart Devices

Christopher Ham, Simon Lucey and Surya Singh

Abstract This paper presents a novel solution to themetric, scaled reconstruction of
objects using any smart device equipped with a camera and an inertial measurement
unit (IMU). We propose a batch, vision centric approach which only uses the IMU
to estimate the metric scale of a scene reconstructed by any algorithm with Structure
from Motion like (SfM) output. IMUs have a rich history of being combined with
monocular vision for robotic navigation and odometry applications. These IMUs
require sophisticated and quite expensive hardware rigs to perform well. IMUs in
smart devices, however, are chosen for enhancing interactivity—a task which is more
forgiving to noise in the measurements. We anticipate, however, that the ubiquity of
these “noisy” IMUs makes them increasingly useful in modern computer vision
algorithms. Indeed, we show in this work how an IMU from a smart device can help
a face tracker to measure pupil distance, and an SfM algorithm to measure the metric
size of objects. We also identify motions that produce better results and, using a high
frame rate camera, gain insight to how the performance of our method is affected by
the quality of the tracking output.

14.1 Introduction

Obtaining a metric, scaled reconstruction of the 3D world is a problem that has
largely been ignored by the computer vision community when using monocular
or multiple uncalibrated cameras. This ignorance is well founded, Structure from
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Motion (SfM) [5] dictates that a 3D object/scene can be reconstructed up to an
ambiguity in scale. The vision world, however, is changing. Smart devices (phones,
tablets, etc.) are low cost, ubiquitous and packaged with more than just a monocular
camera for sensing the world. Even digital cameras are being bundled with a plethora
of sensors such asGPS (global positioning system), light intensity and IMUs (intertial
measurement units).

The idea of combiningmeasurements of an IMU and amonocular camera tomake
metric sense of the world has been well explored by the robotics community [7, 8,
11, 14, 15, 21]. Traditionally, however, the community has focused on odometry and
navigationwhich requires accurate and as a consequence expensive IMUswhile using
vision largely in a periphery manner. IMUs on modern smart devices, in contrast,
are used primarily to obtain coarse measurement of the forces being applied to the
device for the purposes of enhancing user interaction. As a consequence costs can
be reduced by selecting noisy, less accurate sensors. In isolation they are largely
unsuitable for making metric sense of the world.

In this paper we explore an offline vision centric strategy for obtaining metric
reconstructions of the outside world using noisy IMUs commonly found in smart
devices. Specifically, we put forward a strategy for estimating everything about the
world using vision except scale. We rely only on the IMU for the scale estimate. The
strength of our strategy lies in the realisation that when the entire subject remains
in the frame, scale does not change over time. Assuming that IMU noise is largely
uncorrelated and there is sufficient motion during the collection of the video, we
hypothesise that such an approach should converge eventually towards an accurate
scale estimate even in the presence of significant amounts of IMU noise.

Applications in Vision: By enabling existing vision algorithms (operating on IMU-
enabled digital cameras such as smart devices) to make metric measurements of
the world, they can be improved and new applications are discovered. Figure14.1
demonstrates how the lack of metric scale not only introduces ambiguities in SfM
style applications, but in other common tasks in vision such as object detection.
For example, a standard object detection algorithm could be employed to detect a
toy dinosaur in a visual scene. However, what if the task is not only to detect the
type of toy, but to disambiguate between two similar toys that differ only in scale?
Unless the shot contains both toys (see right-most image in Fig. 14.1) or some other
reference object, there would be no simple way visually to separate them. Similarly,
a pedestrian detection algorithm could know that a doll is not a person. In biometric
applications, an extremely useful biometric trait for separating people is the scale of
the head (e.g. pupil distance), which goes largely unused by current facial recognition
algorithms. Alternatively, a 3D scan of an object using a smart device could be 3D
printed to precise dimensions using our approach combined with SfM algorithms.

Contributions: In this paper, we make the following contributions.

• We propose an elegant batch-style objective for recovering scale with a noisy
IMU and monocular vision. A strength of our approach is that it can be seamlessly
integrated with any existing vision algorithm that is able to obtain accurate SfM
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Fig. 14.1 Scale ambiguities can introduce detection ambiguities. These two toys are similar in
shape but vary greatly in size. How could a toy detector know the difference if they are not in the
same shot or share a common reference?

style camera motion matrices, and the 3D structure of the object of interest up to
an ambiguity in scale and reference frame (Sect. 14.3.2).

• A strategy for automatically aligning video and IMU input on a smart device.
Most1 smart devices do not synchronise the IMU and video. A strength of our
alignment strategy, which takes advantage of gravity rather than removing it, is
that it is independent of device and operating system (Sect. 14.3.3).

• We provide insight to exactly how high frame rate devices are able to help our
algorithm. The performance of our algorithm is highly dependent on the quality
of the tracking algorithm estimating the camera poses. A more highly densely
sampled vision signal appears to have negligible direct effect on our algorithm.
We show that the performance boost our method enjoys from high frame rate
devices is purely a result of better tracking.

We demonstrate the utility of our approach for obtainingmetric scale across a number
of visual tasks such as obtaining ametric reconstruction of a checkerboard, estimating
pupil distance, and obtaining a metric 3D reconstruction of an object. This is the first
work of its kind, to our knowledge, to get such accurate (in all our experiments, we
achieved scale estimates within 1–2% of ground truth) scaled metric reconstructions
using a canonical smart device’s monocular camera and IMU.

1We tested our proposed approach on both iOS andAndroid smart devices, neither ofwhich provided
global timestamps for the video input.
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14.2 Related Work

Non-IMU Methods: There are ways to obtain a metric understanding of the world
using monocular vision on a smart device that do not require an IMU. They all pivot
on the idea of obtaining a metric measurement of something already observed by
the vision algorithm and propagating the corresponding scale. There are a number
of apps [9, 16] which achieve this using vision. However, they all require some kind
of external reference in order to estimate the metric scale factor of the vision, such
as credit cards or knowing the height of the camera from the ground (assuming the
ground is flat).
Online IMU Methods: Our paper in many ways overlaps with existing robotics
literature for combining monocular camera and IMU inputs. It differs in that many
of these algorithms are focussed on navigation and odometry, and so the algorithms
must execute in real time.

Works by Jones et al. [7], Nützi et al. [14], Weiss et al. [21] and Li et al. [11] all
show how the camera motion of any visual SLAM (simultaneous localisation and
mapping) algorithm can be fused with accelerometer and gyroscope measurements
using a Kalman Filter. The IMU measurements (at 100Hz or more) are integrated to
estimate motion and errors are corrected each time the SLAM is updated (20Hz).

Weiss et al. [21] take the idea a step further by automatically detecting failures
in the SLAM output and use only the IMU until the SLAM algorithm recovers. The
objectives of Weiss’ work are similar to ours in that their implementation is modular
to any SLAM algorithm that provides position and orientation, and they assess the
quality of the scale estimate in their results.

Li et al. [11] account for rolling shutter distortion that occurs in low-quality
cameras. Unlike the above-mentioned methods they do apply their approach to a
smart device. However, they still focus mainly on navigation and the odometry.
SLAM feature tracking, and sensor fusion are all tightly integrated and non-modular.

Martenelli [12] presents a rigorous observability analysis of the fundamentals of
the fusion of vision and IMU data. He explores many different cases and determines
what is observable in each case. Of particular interest to this paper, he presents a
solution for finding tracked feature point locations, the starting velocity, the gravity
vector and the accelerometer bias if the number of tracks features is at least 2 and
the number of camera frames is at least 5. The locations of the feature points should
be at the correct absolute scale.

For visual–inertial odometry, the robotics community approaches the use of vision
with trepidation [3, 14, 21]. Indeed, even the state-of-the-art large-scale SLAM
algorithms [13, 21] still suffer from sudden failures, whereas IMUs will continue to
function under almost any circumstance.Vision and IMUsboth suffer fromadifferent
kind of drift, IMUs drift due to biases in the measurements, and vision drifts due to
the piecewise reconstruction of the scene (hallways, rooms and streets, for example).
With emphasis on being real time a common paradigm is to rely primarily on the
IMU, and attempt to correct for its drift when vision is available.
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In contrast, our work relies purely on vision to reconstruct the camera motions
and scene up to scale while the IMU is used only to recover scale. This is possible
because we focus on applications where neither odometry nor being real time is
necessary. We are more interested in being able to reconstruct objects that can fit
in the camera’s field of view and need not be reconstructed in a piecewise fashion.
Consequently the vision suffers from negligible, if any, drift in scale (an important
assumption that our method requires for good performance). Also, by processing
sequences in batch we can discard frames in which the vision tracking has failed.

Batch IMU Methods: Batch methods are advantageous, as they do not require close
integration with the vision algorithm when computing scale. They can oftentimes
give more accurate estimates of scale, as they attempt to solve the problem using all
the data at the same time (i.e. in batch) unlike online methods. Offline methods have
a further advantage in that they allow a “plug and play” strategy for incorporating
various object-centric vision algorithms (e.g. face trackers, checkerboard trackers,
etc.) with little to no modification.

Jung and Taylor [8] present an offline method to fuse IMU and camera data in
batch using spline approximations, with only a handful of camera frames being used
to estimate the camera trajectory. Like previous online works, the focus of this work
was on recovering odometry. We believe that one of the core motivations for the use
of splines was to reduce computational requirements. Splines allow the data to be
broken up into “epochs”, reducing the dimensionality of the final problem, however
this also reduces the resolution. This causes problems if the camera is moving too
quickly.

Skoglund et al. [15] propose another offlinemethod that enhances an SfMproblem
by including IMU data in the objective. The camera and IMU are high quality and
secured to a custom rig. The IMU motion is first integrated so that its trajectory can
be compared with that of the camera’s. Unlike with smart devices, the high sampling
rate and quality of sensors allows this to be done without introducing too many
compounding errors. An estimation of scale is obtained but is not the central focus
of the work.

Tanskanen et al. [19] demonstrate a pipeline for real-timemetric 3D reconstruction
where the scale estimation is broken into multiple batch problems. However, they
never discuss the accuracy of the metric scale estimation. Finite segments of large
motions are detected heuristically and estimates for the displacementmeasured by the
IMU and by the camera are compared. An estimation of the scene scale is obtained
by executing a batch least squares which minimises the difference between these
two displacement estimates. This is accurate enough to help increase the robustness
of the 3D reconstruction but the accuracy of the dimensions of the final model is
unclear.
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14.3 Recovery of Scale

Using SfM (Structure from Motion) algorithms, or algorithms tailored for specific
objects (such as checkerboards, faces, cars) we can determine the relative 3D camera
pose and scene accurately up to scale. This section describes a batch, vision centric
approach which, other than the camera, only uses a smart device’s IMU to estimate
the metric scale. All that is required from the vision algorithm is the position of the
centre of the camera, and its orientation in the scene.

14.3.1 In One Dimension

The scale factor from vision units to real units is time invariant and sowith the correct
assumptions about noise, an estimation of its value should converge to the correct
answer with more and more data. Let us consider the trivial one-dimensional case

argmin
s

η{sHV ∇2pV − DHI aI } (14.1)

s.t. s > 0,

wherepV is the position vector containing samples across time of the camera in vision
units. aI is the metric acceleration measured by the IMU.∇2 is the discrete temporal
double derivative operator. HV and HI are low-pass convolutional matrices for the
visual and inertial accelerations, respectively. They have the same cut-off frequency
and are each designed for their respective sampling rates. They are applied before
D downsamples the IMU signal to the same sampling rate as the vision. Scale by
definition must be greater than zero, we include this here to remain general to the
method used to solve the problem. η{} is some penalty function; the choice of η{}
depends on the noise of the sensor data. This could commonly be the �2-norm2,
however we remain agnostic to entertain other noise assumptions. Downsampling is
necessary since IMUs and cameras on smart devices typically record data at 100 and
30Hz, respectively. Applying a low pass before downsampling reduces the effects
of aliasing.

The approach here allows us to bemodularwith theway cameramotion is obtained
and allows us to compare accelerations rather than positions. This idea differs from
work such as [10, 19] which incorporates the scale estimation into an SfM algorithm
by comparing the position of the camera with the position integrated from IMU data
(prone to drift and compounding errors).

Equation14.1 makes the following assumptions: (i) measurement noise is unbi-
ased and Gaussian (in the case that η{} is �2-norm2), (ii) the IMU only measures
acceleration from motion, not gravity, (iii) the IMU and camera samples are tem-
porally aligned and have equal spacing. In reality, this is not the case. First, IMUs
(typically found in smart devices) have a measurement bias that is variant to tem-
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perature [1]. Second, acceleration due to gravity is omnipresent. However, most
smart device APIs provide a “linear acceleration” which has gravity removed. Third,
smart device APIs provide a global timestamp for IMU data but timestamps on video
frames are relative to the beginning of the video, and so we cannot trivially obtain
their alignment. These timestamps do reveal, however, that the spacing between sam-
ples in all cases is uniform with little variance. Section14.3.4 describes the method
used to temporally align the data (Figs. 14.2, 14.3, 14.4 and 14.5).

These facts allow us to modify our assumptions: (i) when used over a period
of 1–2min IMU noise is Gaussian and has a constant bias, (ii) the “linear acceler-
ation” provided by device APIs is sufficiently accurate, (iii) the IMU and camera
measurements have been temporally aligned and have equal spacing.

For simplicity, we let the acceleration of the vision algorithm, aV = ∇2pV . Given
the modified assumptions, we introduce a bias factor into the objective

argmin
s,b

η{sHV aV − DHI (aI − 1b)}. (14.2)

Note that we also omit the s > 0 constraint from Eq.14.1 as it unnecessarily compli-
cates the objective. If a solution to s is found that violates this constraint the solution
can be immediately discounted.

Fig. 14.2 The smart device
is oscillating in one axis.
Orange solid line scaled
vision acceleration. Grey
dashed line IMU
acceleration

Fig. 14.3 The smart device
is oscillating primarily along
the Z-axis of the device in a
3D world. Orange solid line
scaled vision acceleration.
Grey dashed line IMU
acceleration
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Fig. 14.4 The objective in
3D space can be thought of
as separating the three
components of acceleration
observed by the
accelerometer. Visualised
here in the local reference
frame. Scale: motion
observed by vision (grey).
Bias: locally almost-constant
offset in IMU internals
(green). Gravity: globally
constant offset (orange)

Fig. 14.5 The top graph
shows the residual of the
least-squares optimisation
problem as a function of the
delay of the camera signal
from the IMU signal. The
golden section search finds
that a delay of 12ms
minimises the residual. The
bottom graph shows the
actual error of the scale
estimation given the same
delays

14.3.2 In Three Dimensions

In the following subsection, we consider the case where the smart device is moving
and rotating in 3D space.Most SfMalgorithmswill return the position and orientation
of the camera in scene coordinates, and IMUmeasurements are in local, body-centric
coordinates. To compare them we need to orient the acceleration measured by the
camera with that of the IMU. We define the acceleration matrix such that each row
is the (x, y, z) acceleration for each video frame

AV =
⎛

⎜⎝
a1

x a1
y a1

z
...

...
...

aF
x aF

y aF
z

⎞

⎟⎠ =
⎛

⎜⎝
aᵀ
1
...

aᵀ
F

⎞

⎟⎠ . (14.3)
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Then we rotate the vectors in each row to obtain the body-centric acceleration
measured by the vision algorithm and apply the low-pass filter

ÂV = HV

⎛

⎜⎝
aᵀ
1 R1

V
...

aᵀ
F RF

V

⎞

⎟⎠ (14.4)

where F is the number of video frames, R f
V is the orientation of the camera in scene

coordinates at the f th video frame.
Similarly to AV , we form an N × 3 matrix of IMU accelerations, ÂI , where N is

the number of IMU measurements. We apply the low-pass filter and downsample to
match the vision signal

ÂI = HI AI (14.5)

We also need to ensure that IMU measurements are spatially aligned with the
camera coordinate frame. Since the camera and IMU are on the same circuit board,
this is an orthogonal transformation, RI , that is determined by the API used by the
smart device [2, 6]. We use the rotation to find the IMU acceleration in local camera
coordinates.

This leads to the following objective, noting that antialiasing and downsampling
have no effect on constant bias

argmin
s,b

η{s · ÂV + 1 ⊗ bᵀ − DÂI RI }. (14.6)

14.3.3 The Omnipotency of Gravity

The final component of acceleration measured by the accelerometer is gravity. In
previous sections, it has been assumed that this component can be ignored using
the “linear acceleration” IMU measurement available on most smart device plat-
forms. Often, this measurement comes from a real-time Kalman filter that depends
on gyroscopic and magnetometer sensors.

In this sectionwe show how the objective can bemodified to solve for acceleration
due to gravity.By removing the blackbox that is the smart device’s filtering algorithm,
the performance of our algorithm no longer depends on the filter’s quality. The new
objective can be thought of as separating the three components measureable by the
accelerometer: actual motion, internal bias and gravity.

We assume the magnitude of gravity to be constant and 9.81ms−2, and we wish
to solve for its direction in visual scene coordinates. We introduce a 3D vector, g,
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and constrain its magnitude, leaving it two degrees of freedom. In order to include it
in the objective it must by oriented to the smart device’s local reference frame.

Ĝ =
⎛

⎜⎝
gᵀR1

V
...

gᵀRF
V

⎞

⎟⎠ (14.7)

argmin
s,b,g

η{sÂV + 1 ⊗ bᵀ + Ĝ − DÂI RI }

subject to ‖g‖ = 9.81ms−2 (14.8)

where g is linear in Ĝ.

14.3.4 Temporal Alignment

Temporal alignment is important for accurate results. Equations14.2 and 14.6 assume
that the camera and IMU measurements are temporally aligned. This subsection
describes amethod, that is greatly assisted by gravity, to determine the delay between
the signals and thus align them for processing.

When collecting data on the smart device, video recording is started before IMU
measurements. The time fromwhen the camera is requested to the time that recording
starts can vary significantly and can take up to three seconds on some devices. IMU
measurements start much more quickly; in practice the delay between the first video
frame and the first IMU measurement keeps below 100ms.

In order to evaluate the residual for a given delay, we allow the downsampling
matrix, D, to be formed so that it linearly interpolates the input vectors, shifted
smoothly by delay, d.

r(d) = inf
s,b,g

η{s · ÂV + 1 ⊗ bᵀ + Ĝ − D(d)ÂI RI }
subject to ‖g‖ = 9.81ms−2 (14.9)

We bind the possible delay to between 0 and 100ms and make the assumption
that the residual of the objective is strictly unimodal in this range. The optimum
delay is found by minimising r(d) using the golden section search. The solution to
the problem returns the optimum values for scale, bias and gravity at this delay. In
practice,we found that including gravity in the solution is very helpful in conditioning
the problem due to the magnitude and slow speed of its signal (see Sect. 14.3.3).
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14.3.5 High Frame Rate Cameras

At the time of writing, devices are emerging that are capable of high frame rates at
relatively high resolutions. The iPhone 6 can capture video at 240 fps at a resolution
of 1280 × 720 pixels, for example.

In the latest version of the iOSAPI the highest sampling rate available for the IMU
is 100Hz. This leads to an unusual situation where the vision must be temporally
downsampled in order to match the rate of the IMU. The delay must be negative
since the delay of the IMU is the lead of the vision.

argmin
s,b,g

η{sD(−d)ÂV + 1 ⊗ bᵀ + D(−d)Ĝ − ÂI RI }

subject to ‖g‖ = 9.81ms−2 (14.10)

14.3.6 Solving the Objective

The optimisation problem described in Eq.14.8 remains general to the choice of
objective function and constrains the gravity vector. This section describes how an
alternating direction method of multipliers (ADMM) [4] can be used to solve the
problem for different objective functions.

Frobenius and Least Squares Norm

If the objective function is the Frobenius norm, η{X} = ‖X‖2F , we can simplify
the problem by vectorising the input and turning it into a constrained least-squares
problem. We vectorise the axes such that the first third of the vector is x , the second
third is y and the final third is z.

The scale and bias components are straight forward linear extractions from
Eq.14.8. The gravity component is less trivial and requires some rearranging. Equa-
tion14.11 shows how the x , y and z components of the visual rotations are stacked
into one (3F × 3) matrix, Rg , such that Rgg = vec(Ĝ).

R f
V = [

r f
x , r f

y , r f
z

]

Rg = [
r1x , . . . , rF

x , r1y, . . . , rF
y , r1z , . . . , rF

z

]ᵀ
(14.11)
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We define the vectorised problem as

M =
[
vec(ÂV ), 1 ⊗ I, Rg

]
(14.12)

x = [
s; b; g

]
(14.13)

v = vec(DÂI RI ) (14.14)

argmin
x

‖Mx − v‖22
subject to ‖x‖ ∈ C (14.15)

where the set C is the set where the magnitude of the gravity component of x is
9.81ms−2.

This can be formed as a constrained ADMM

argmin
x

‖Mx − v‖22 + f (z)

subject to x − z = 0 (14.16)

where f is the indicator function for C.
We form the scaled augmented Lagrangian

Lρ(x, z, y) = ‖Mx − v‖22 + f (z) + ρ

2 ‖x − z + y‖22. (14.17)

The updates for the scaled ADMM problem are

xk+1 := argmin
x

‖Mx − vk‖22 + ρ

2 ‖x − zk + yk‖22
zk+1 := ΠC(xk+1 + yk)

yk+1 := yk + xk+1 + zk+1

where ΠC is a Euclidean projection of the input onto the set, C. Here, the gravity
component is scaled so that its magnitude is 9.81ms−2.

The solution converges once the update delta of the scale component of x is below
a desired percentage (often 0.01%).

L2,1 Norm

In the context of this paper, the L2,1norm (η{X} = ‖X‖2,1 =
n∑

f =1
‖X f ‖2) is used

to penalise the unsquared magnitude of the 3D error between the measured IMU
acceleration and the acceleration estimated from vision at each frame. This makes
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it less prone to outliers than the Frobenius norm which penalises the square of the
magnitude.

We break up the vision and IMU acceleration matrices into their vectors per frame

ÂV =
[
â1

V , . . . , âF
V

]ᵀ
(14.18)

DÂI RI =
[
â1

I , . . . , âF
I

]ᵀ
. (14.19)

This allows us to the pose the optimisation problem in the following way:

argmin
s,b,g

F∑

f =1

‖sâ f
V + b + (RF

V )ᵀg − â f
I ‖2,1

subject to ‖g‖ = 9.81ms−2 (14.20)

Wecondense the above problem so thatwe are solving forx as definedbyEq.14.13

M f =
[
â f

V , I3, (RF
V )ᵀ

]
(14.21)

s.t. M f x = sâ f
V + b + (RF

V )ᵀg.

From this we express the problem in a way that is ready to be solved as an ADMM

argmin
x

F∑

f =1

‖v f ‖2,1 + f (z)

subject to x − z = 0 (14.22)

v f − M f x + â f
I = 0.

We form the scaled augmented Lagrangian

Lρ(x, z, V, y, U) = f (z) + ρ

2 ‖x − z + y‖22

+
F∑

f =1

‖v f ‖2,1 + ρ

2 ‖v f − M f x + â f
I + u f ‖22 (14.23)

where V = [
v1, . . . , vF

]ᵀ
and U = [

u1, . . . , uF
]ᵀ

.
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The updates for the ADMM problem are

xk+1 := argmin
x

ρ

2 ‖x − zk + yk‖22 +
F∑

f =1

ρ

2 ‖v f
k − M f x + â f

I + u f
k ‖22

zk+1 := ΠC(xk+1 + yk)

Vk+1 := argmin
V

F∑

f =1

‖v f ‖2,1 + ρ

2 ‖v f − M f xk+1 + â f
I + u f

k ‖22

yk+1 := yk + xk+1 + zk+1

u f
k+1 := u f

k + v f
k+1 − M f xk+1 + â f

I

The V-update can be solved using the L2,1 proximal operator [18]

Let q f
k = M f xk+1 − â f

I − u f
k (14.24)

v f
k+1 : = max

(
1 − (ρ‖q f

k ‖2)−1, 0
)

q f
k (14.25)

14.3.7 Using Echolocation

For certain applications, it may be known that there is a large planar surface in the
scene. For example, the table that a scanned object is sitting on, or a person scanning
their face with the front camera could be facing a wall. With some prior on the
orientation of the plane and an assumption of the speed of sound, echolocation can
be used to collect an additional source of measurements for estimating the scale of
the vision.

To obtain data required for echolocation, the phone’s speaker emits chirps while
recording the sequence. By default on iOS, the audio is recorded at the same time as
the video and is properly synchronised.

Timing

In order to estimate the echolocation distance, we need to be able to accurately
measure the time taken for the chirp to reach the microphone after being emitted.
First, we need to be able to detect and timestamp chirp events in the audio signal.
This is done using a correlation filter and noting the time at which peaks occur in
the signal (see Fig. 14.8). Chirps are a popular choice in echolocation applications
because they provide a temporal accuracy similar to impulses, but require less instan-
taneous power [17]—volume in this context—in order to cover the same distance
(see Fig. 14.6).
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Fig. 14.6 A chirp is similar
to an impulse, in that it
contains all frequencies of
equal magnitude; except that
the phase changes linearly
with respect to the
frequencies

Fig. 14.7 The speaker and
microphone are typically at
different ends of the phone,
with the microphone next to
the camera. The red arrows
show the different paths a
chirp takes from the speaker
to the microphone

Wall

tdirect

techo

Additionally, we are able to take advantage of the arrangement of hardware on
an iPhone, which is also typical of many other smart devices. The speaker is at the
bottom end of the phone and there is a microphone positioned very closely to the
rear camera sensor (see Fig. 14.7). When a chirp is emitted near enough to a surface,
Fig. 14.8 shows how the microphone will detect two instances of the chirp. The first
as it comes directly from the speaker to the microphone, and the second as it echos
from the nearby surface. If we know distance between the speaker and microphone
we can find the exact emission time. The timestamp of the second chirp provides the
exact detection time.

We can include the echolocation distance estimates, dmic, in the optimisation
problem to help improve the accuracy of the scale estimation. In this case we assume
that the normal of the table’s surface, n̂, is aligned with gravity and facing up
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Fig. 14.8 The raw audio
data is correlated with the
expected chirp signal. This
filtered response is processed
to find times of the direct and
echo events, tdirect and techo

argmin
s,b,g,e

η{sÂV + 1 ⊗ bᵀ + Ĝ − DÂI RI } + λ
2‖sP · n̂ + e − dmic‖22

subject to ‖g‖ = 9.81ms−2 (14.26)

9.81n̂ + g = 0 (14.27)

where e is the offset of the plane from the vision’s origin.
Note that n̂ is kept separate from g to keep the problem from becoming nonlinear

in s and g. The constraint for the plane normal and gravity is naturally accommodated
for when forming the ADMM for this problem.

14.4 Experiments

In the following experiments, sensor data is collected from an iPhone 6 using a
custom built application. Unless otherwise specified, the application records video
at 240 frames per second while logging IMU data at 100Hz to a file and the device is
twisted along its Z-axis at the beginning to help properly estimate gravity. These files
are then processed in batch as described in the experiments. For all the experiments
the camera’s intrinsic calibration matrix has been determined beforehand.

The choice of η{} depends on the assumptions of the noise in the data. In many
cases we obtained good empirical performance with least squares (Sect. “Frobenius
and Least Squares Norm”). However, we also entertained the use of the L2,1 norm,
being less sensitive to outliers, to investigate the validity of the Gaussian noise
assumption.
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We obtain camera motion in three different ways: (i) track a checkerboard of
unknown size, (ii) use pose estimation of a face-tracking algorithm, (iii) use the
output of an SfM algorithm.

14.4.1 Checkerboard Experiments

On an iPad, we assess the accuracy of the scale estimation described in Sect. 14.3.2
and the types of trajectories that produce the best results.Using a chessboard allows us
to be agnostic fromobjects andobtaining thepose estimation fromchessboard corners
is well researched. We used OpenCV’s findChessboardCorners function, solve for
an initial camera pose with solvePnP function, and refine the pose estimation using
a batch optimisation which also applies a smoothness reward to the translation of the
camera in world coordinates. The refinement helps reduces noise that is amplified
when applying a second-order differential to obtain the camera acceleration.

Motions

The trajectories in these experiments were chosen in order to test the trajectories
that work best, the frequencies that help the most, and the required amplitude of the
motions. They can be placed into the three following categories (shown in Fig. 14.9):

(a) Orbit Around: The camera remains the same distance to the centroid of the
object while orbiting around,

(b) In and Out: The camera moves linearly towards and away from the object,
(c) Side Ways: The camera moves linearly and parallel to the object’s plane,

We recorded multiple sequences with different oscillatory motions to find which
ones perform best. We identify three main components that define a motion.
Trajectory: The shape of the trajectory that the camera follows (see above).

Fig. 14.9 The above diagrams show the different categories of trajectories. The accuracies of
different combinations of these trajectories are assessed. In each case, the camera is always looking
at the subject. a Orbit Around. b In and Out. c Side Ways
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Displacement: The end-to-end distance the camera moves along the trajectory.
Speed: The effective frequency of the actual motion. In some sequences the camera
is held still at each end of the trajectory. This is necessary for the fastest motions,
without it the low-pass filter will remove a lot of the motion data.

In testing, we observed that In and Out trajectories were consistently accurate for
a large range of displacements and speeds. For fast and accurate scale estimation the
object should be kept in view at all times for good tracking and the phone should
undergo high accelerations in order to keep the signal-to-noise ratio of the IMU
measurements high. This is the easiest to acheive with In and Out motions since the
device always remains in between the user and the object. For Side Ways and Orbit
trajectories the device needs to be rotated to keep the object in its view. This is a
challenging task without a lot of practice.

Since In and Out trajectories produce more consistent results, we focus on varia-
tions of displacement and speed with this trajectory in the experiments in this paper.
In order to gain a good insight about the quality of different motions we look at
the final error of sequences after 15 s of motion (Fig. 14.10), and at how quickly the
errors converge to less than 2 and 1% with respect to the number of seconds of data
used (Fig. 14.11).

In and Out trajectories with at least 40cm of displacement result in the most
accurate scale estimations and converge within 2% with less than 6s of data. When
the displacement is too small, slower speeds do not induce enough acceleration and
higher speeds that do are filtered out by the low-pass filter (see Sect. “Low Pass”
for more details). The Orbit Y and Side Ways Y motions provide no useful scale
estimations. In these trajectories, it is much easier to induce motion blur caused by
rotational shaking of the device, reducing the tracking accuracy. While the Orbit X

Fig. 14.10 Different motions were tested for accuracy. A motion is defined by three variables:
trajectory (see Fig. 14.9), displacement of the camera during the trajectory, and speed (low≈ 0.3Hz,
medium ≈ 0.5Hz, fast ≈ 0.7Hz, max is as fast as the person is able to cover the displacement). A
star indicates that the camera was held still for a short time at the extreme of each oscillation
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Fig. 14.11 The speed of convergence of motions is also an important factor. The time taken for
each sequence to converge within 2 and 1% is shown in grey and orange, respectively. The accuracy
converges most quickly when the phone is moved as quickly as possible. In and Out motions with
at least 40cm of displacement converge to within 2% with just 6 s of data

Fig. 14.12 The error of best
sequence from Fig. 14.10 is
plotted as function of the
number of seconds of data
used from the recording. We
note that more data helps
improve the accuracy. We
avoid compounding errors by
not integrating the IMU
signal

motion shows low error after 15 s, it converges within 2% much more slowly than
the other In and Out motions.

Figure14.12 shows the error of the best sequence from the motions experiments
as a function of the number of seconds of data used. We show that, overall, the
accuracy only continues to increase with more data. By comparing accelerations
instead of displacement, our method remains insensitive to bias in the accelerometer
measurements which would otherwise lead to unstable compounding errors.

Low Pass

When downsampling either the IMU or the vision acceleration to match the lowest
sampling rate, we first apply a low-pass filter that is much lower than the Nyquist of
the new sampling rate. We do this because the double differentiation operator is a
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Fig. 14.13 The errors of the same sequences from Fig. 14.10 versus the low-pass cut-off frequency.
We observe that 1.2–1.7Hz returns consistent results before the noise from differentiating the vision
signal begins to dominate. The horizontal thin solid blue line marks ±2%

type of high-pass filter and greatly amplifies noise in the original vision signal. This
means that a low-pass filter of the same cut-off frequency must be applied to both
the IMU acceleration and vision acceleration signals.

Figure14.13 demonstrates this in practice. The signed errors of the motion
sequences are plotted as a function of the low-pass frequency chosen. We find that
1.2–1.7Hz provides consistent results. With the cut-off frequency too high, noise
from the double differentiation causes the scale to be underestimated.

L2,1 Norm

We investigate how the use of the L2,1 norm affects the performance of the same
checkerboard sequences. Figure14.14 reveals very little change from Fig. 14.10. If
the Gaussian noise assumption on the residuals (IMU vs. vision acceleration) is
incorrect we would expect to see a notable difference.

14.4.2 Face Experiments

A fast, in-house face tracker was used to track 49 facial keypoints and outputs an
estimation of the face’s 3D structure. The initial camera poses are generated using
OpenCV’s solvePnP(). The camera poses are refined using a batch optimisation
which rewards smoothness of the camera trajectory. The 3D face structure is also
refined by making use of the same face model used in the tracker.

Figure14.15 visualises the accuracy of the interpupillary distance (IPD) at snap-
shots through the sequence. In this sequence, the device is twisted through 90◦ to
help with gravity estimation and then moved In and Out at max speed while pausing
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Fig. 14.14 The same sequences from Fig. 14.10 are processed using the L2,1 norm objective. Very
little difference suggests that the Gaussian noise assumption of the signals is sufficient

Fig. 14.15 Thewhite ruler in each frame showsour algorithm’s estimation of interpupillary distance
given the data up to that point in time. The estimation converges once the phone undergoes translation
after 3 s. True pupil distance is 64.0mm; final estimated pupil distance is 64.1mm (0.16% error).
a 0.0 s, 0.0mm. b 1.0 s, 421.9mm. c 2.0 s, 154.3mm. d 3.0 s, −0.0mm. e 4.0 s, 66.0mm. f 5.0 s,
63.1mm. g 6.0 s, 62.8mm. h 7.0 s, 64.1mm
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at each extreme of the oscillation. We see that at 7 s the error of the IPD is only
0.1mm.

14.4.3 High Frame Rate

All of the sequences recorded for this paper have been recorded at a high frame rate
of 240Hz. The high frame rate allows the camera to be accelerated much faster,
which provides a higher signal-to-noise ratio from the IMU data. This is critical for
obtaining the accurate results in such little time demonstrated in this work—most
smart device IMUs are low cost and much less precise than those typically used in
robotics applications.

Figure14.16 shows the error of two sequences as function of the downsampled
frame rate. The new framerates come from either sampling every nth frame of video
before tracking or sampling every nth camera pose estimate after tracking. The new
effective frame rate becomes 240/n. The most important and interesting observation
is that the accuracy of the scale estimate changes very little if the tracker does not track
frame to frame, or if the camera poses are downsampled after tracking. Intuitively,
one would expect that highly sampled camera poses are helpful when calculating the
camera acceleration with finite differences. Instead, this shows that the performance
of our algorithm is dependent simply on the quality of the tracking. The high frame
rate leads to higher quality tracking in two ways. First, the frame exposure time is

Fig. 14.16 We observe that the performance of our algorithm is far more dependent on the pose
estimation of the tracker than the sampling rate itself. The best checkerboard sequence from
Sect. “Motions” (orange) is tracked at different rates. The face sequence from Sect. 14.4.2 is either
tracked at a different rate (grey solid) or the final camera poses are sampled at a different rate (grey
dashed). Since the face-tracking algorithm relies on frame-to-frame tracking, it begins to perform
poorly below 120Hz when the tracking frame rate is lowered
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much shorter, reducing motion blur. Second, the frame-to-frame deltas are much
smaller and easier to track.

14.4.4 Structure from Motion

For this experiment the camera poses were obtained using VideoTrace [20], an inter-
active structure frommotion and modelling package. The cube is modelled in Video-
Trace so that its dimensions are in vision coordinates. Our algorithm estimates the
absolute scale of the sequence and we compare the dimensions of the scaled cube
with its real dimensions.

Figure14.17 shows the labelled dimensions of the cube in vision units and scaled
metric units. The estimated size of the cube is 56.5mm; its true size is 57.5mm. The
error in the final estimate is 1mm or 1.74%.

14.4.5 Echolocation

Most devices do not yet have a high-speed camera on board, and so time spent record-
ing a sequence cannot be reduced simply by moving the device more quickly. This
section investigates how echolocation using the onboard speaker and microphone
can be used to greatly help the scale estimation.

The sequences in this experiment were recorded using an Android device at a
resolution of 1280 × 720 and frame rate of 30 frames per second. This camera is
more prone to motion blur and so the device needs to be moved more slowly to keep
the tracking performance high. Figure14.18 shows how the inclusion of echolocation

Fig. 14.17 The VideoTrace
package is used to create a
3D model of a 57.5mm cube.
After resizing the model the
estimated dimensions are
56.5mm (1mm error)
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(a) (b)

(c) (d)

Fig. 14.18 At 30 frames per second, it is not possible to shorten the convergence time by moving
the camera faster. These plots show how echolocation can be used to greatly reduce the amount of
data required for good performance. a Person 1—In and Out. b Person 2—In and Out. c Person
3—In and Out. d Person 4—In and Out

data can significantly improve the accuracy of the scale estimation. At this frame
rate, it would ordinarily require one minute of data for acceptable results. Here, each
sequence converges to less than 2mm error within 15s.

14.5 Conclusion

This paper has presented a batch technique for obtaining the metric scale of the SfM-
like output from a vision algorithm using only the IMU on a smart device with less
than 2% error. We have made three main contributions that make this possible. First,
we realised that by comparing the acceleration of the camera in vision units with the
acceleration of the IMU (which we know to be metric), we can find the optimum
scale factor to minimise their difference. Second, we have described a method to
align sensor measurements which do not have a common timestamp origin (typical
on smart device platforms) that uses acceleration from gravity to help condition the
alignment. Finally, we showed how high frame rate devices can significantly improve
the scale estimation and used this to demonstrate the importance of good tracking
for our algorithm.
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