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Various groups of beneficial bacteria synthesize a large number of “biomolecules” 
that allow plants to survive under adverse environmental/abiotic and biotic condi-
tions. Such bacteria govern phytohormone-mediated immune response, manage to 
regulate hormones, produce biosurfactants which are involved in several impor-
tant functions for bacteria themselves as well as for the plants and their ecosystem. 
Thus, bacterial hormones and biosurfactants are identified as effector molecules in 
plant–microbe interactions, pathogenesis and phytostimulation which can be ben-
eficial either for the bacteria or for the crops so as to warrant sustainability.

The organization of the book is from practice to theory and from basic to 
applied aspects of bacterial phytohormones and biosurfactants. Some specific bac-
terial genera, Azospirillum and emergence of Methylobacterium, in particular, and 
their potential to support plant growth and development have been documented. To 
begin with, techniques for isolation and purification of “classical five” microbial 
phytohormones, namely, auxins, gibberellins, cytokinins, ethylene and abscisic 
acid are covered here, stressing the need to join the practical with the theoretical 
thus make the contents alive. Other than these modulators, importance of jasmonic 
acid and salicylic acid produced by bacteria or plants have also been emphasized. 
Microorganisms contain over 30 growth-promoting compounds from the cyto-
kinin group and also produce about 100 GAs and other groups of hormones, which 
are extremely important for plants from seed germination stage to fruit ripening 
processes.

A scientific linkage and evidence to show bacterial hormones and their impact 
to act as biofertilizers is also provided. This book provides in-depth insights into 
bacterial traits required for rhizosphere competence, root colonization and/or 
endophytic phytohormone secretion which act as a sink of IAA, thus protecting 
the plants from different environmental stresses.

Some of the chapters emphasized the concepts related to drought and salt toler-
ance through Abscissic acid and other microbial hormone regulations that provide 
valuable insight into evolution of microbial interactions with plants under hostile 
environments. Such suitable strains (consortia) and their application in promot-
ing the growth of healthy and disease-free crops that are eco-friendly in nature. 

Preface



Prefacevi

Biofilm formation and biosurfactant activity of plant-associated bacteria play 
essential role in bacterial motility, signaling and biocontrol of disease-causing 
pathogens, their mechanism at both physiological and genetic level is suitably 
evidenced with the need of green chemicals to study and application of bacteria-
mediated biosurfactants has become imperative. Efforts have been made to stress 
the bioremediation potential of rhamnolipids to eliminate a wide range of pollut-
ants and to promote a sustainable development of our society. The contents lay 
stress upon microbial world that synthesizes and secretes phytohormones and bio-
surfactants and emits many volatiles that lead to sustainable agriculture ecosystem.

This book will be useful not only for students, teachers and researchers but also 
for those interested in biotechnology, microbiology, physiology of plant growth 
and development, phytoprotection, agronomy and environmental sciences.

I wish to acknowledge all the subject experts, who were instrumental and coop-
erative to spare their valuable contributions to make this book a success. Thanks 
are due to my research team members, especially to Mohit and Shrivardhan, 
who generously assisted the compilation and completion of this task. The credit 
also goes to my family members, especially to my wife, Dr. Mrs. Sadhana 
Maheshwari. I extend my sincere thanks to Dr. Mrs. Valeria and her colleagues for 
their valuable support to facilitate the completion of this volume.

Uttarakhand, India Dinesh K. Maheshwari
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Techniques to Study Microbial 
Phytohormones

Keyur Patel, Dweipayan Goswami, Pinakin Dhandhukia and Janki Thakker
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Abstract Soil is replete with microscopic life such as bacteria, fungi, actinomycetes, 
protozoa and algae. Microscopic life tends to reside in the rhizosphere of the soil and 
interact with plants. A microbial–plant interaction occurs due to the microbial ability 
to produce phytohormones regarded as the “classical five,” which are auxin, gibberel-
lin, cytokinins, ethylene and abscisic acid. In addition to these modulators, jasmonic 
and salicylic acid are also documented as bacterial hormones contributing to a sus-
tainable agro system. Auxins, gibberellins and cytokinins are known to be produced 
by Azospirillum species. Auxin production in fungus such as Pistolithus tinctorius 
leads to promotion of plant growth and different bacterial species show effect on root 
length by increasing the surface area and induction of gall and tumor formations. 
Gibberellins are tetracyclic diterpenoid acids that are involved in a number of devel-
opmental, reproduction and floral formation in plants, while plant growth promotion 
and induction of tumor and gall formation are done by cytokinins. Pseudomonas sola-
nacearum, Mycobacterium hiemalis and largely spore forming bacteria have shown to 
form ethylene in culture. Abscisic acid (ABA) is a stress-related signaling molecule 
reported in all kingdoms of life such as plant-associated bacteria, plant pathogenic 
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fungi, certain cyanobacteria, algae, lichens, protozoa and sponges. Salicylic acid 
is synthesized by the fungus P. patulum and it is an effective therapeutic agent for 
plants. SA plays a role in plant response during biotic and abiotic stress. It also regu-
lates physiological and biochemical processes during the plant lifespan. Jasmonic 
acid is a signaling molecule involved in plant defense reported to be produced by 
fungus Lasiodiplodia theobromae. However, despite the significant research pursued 
in this area, there are limited reports suggesting strategies that focus on the produc-
tion, extraction and detection of microbial phytohormones. Here, the present review 
focuses on the techniques used for isolation and purification of these phytohormones.

Keywords Abscisic acid · Auxin · Cytokinin · Ethylene · Gibberellin · Micr
obial–plant interaction · Phytohormones · Rhizosphere

1  Introduction

Along with water and air, soil is a major part of the natural environment and vital 
to the existence of life on the globe. Soil composition is an important feature of 
nutrient management. Soil minerals and organic matter hold and store nutrients 
while soil water makes it available to plants. Air trapped in between soil particles 
plays an integral role, where many of the microorganisms live and require air to 
undergo the biological processes that release additional nutrients into the soil. 
Meanwhile, the basic components of soil are minerals, organic matter, water and 
air. The basic component ratio found in typical soil is approximately 9:1:5:5 of 
mineral, organic matter, water and air respectively (Hillel 2003). As a matter of 
fact, soil is very complex. The composition of soil can fluctuate on a day-to-day 
basis and depends on numerous factors such as water supply, cultivation practice 
and soil type (Rowell 2014).

The soil blankets are abundant replete sources for microscopic life includ-
ing bacteria, fungi, actinomycetes, protozoa and algae (Glick 2012). These are 
classified as beneficial to plant and pathogenic to plants (Zamioudis et al. 2013) 
(Fig. 1). Beneficial microbes are subsequently divided into the following groups: 
(A) General plant growth promoters that stimulate plant growth through a variety 
of mechanisms. For example, approximately 90 % of land plants live in symbiosis 
with arbuscular mycorrhizal fungi (AMF). Since exudates of fungal hyphae solu-
bilize more phosphorus (P) than root exudates, AMF can enhance plant establish-
ment and increase water and nutrient uptake. (B) Microbial fertilizers are known 
for specific nutrients like nitrogen (N), Phosphorus (P) and ferric ion (Fe3+). For 
example, ability to fix N is widespread in both bacteria and archaea (Dekas et al. 
2009). (C) Microbial plant growth regulators secrete hormones or hormone-like 
substances which stimulate plant growth (Table 1).

Hormones and hormone-like substances regulating developmental processes 
in plants are known as phytohormones. Phytohormone pathways and cross-talk 
between them play a key role in process coordination and cellular responses 
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(Moller and Chua 1999; Santner et al. 2009). In vitro many rhizospheric bacte-
ria have the capability to produce hormones such as auxins, gibberellins, cyto-
kinins, ethylene and abscisic acid (Zahir et al. 2003). Azospirillum is well known 
for its ability to produce phytohormones such as gibberellins (Janzen et al. 1992), 
cytokinins (Tien et al. 1979) and auxins (Reynders and Vlassak 1979; Mascarua-
Ezparza et al. 1988; Omay et al. 1993). Ethylene and abscisic acid producing bac-
teria are known as stress controllers. Jasmonic acid is produced by pathogenic 
fungus Lasiodiplodia theobromae (Dhandhukia and Thakkar 2008; Tsukada et al. 
2010) and salicylic acid is synthesized by P. patulum (Yalpani et al. 2001).

Plant–microbe interactions in the rhizosphere play a pivotal role in nutri-
ent transformation, mobilization and solubilization from a limited nutrient pool 
in the world of sustainable agro systems (Hayat et al. 2010). In 2025, the world 
population is expected to increase by 7–8.3 billion. Therefore, the production of 
half of the human’s calorie intake cereals, especially wheat, rice and maize has to 
be increased. According to Lu et al. (2015), an unsustainable approach to using 
chemicals creates a number of worries such as water contamination leading to 
eutrophication and health risks for humans. Moreover, it results in soil degradation 
and loss of biodiversity. Currently, plant growth is increased by bacterial mole-
cules that act as hormones and as nutrients to plants in the sustainable agro system 
(Lugtenberg et al. 2013; Nadeem et al. 2014). In this chapter we aim to focus on 
the production, extraction and detection strategies of phytohormones along with 
the mode of action contributed by them in the sustainable agro system.

Fig. 1  An overview of mode of action of microorganism and interaction with plants, beneficial 
organisms and pathogenic organisms (Kilian et al. 2000)
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2  Bacterial Phytohormones

A secondary metabolite synthesized by bacteria becomes important in biotechnol-
ogy. For example, one group of secondary metabolites regarded as “classical five” 
is plant growth promoting hormones being secreted in minute quantity by bacterial 
species.

Classical five phytohormones produced by bacteria are auxins, gibberel-
lins, cytokinins, ethylene and abscisic acid. Jasmonic acid is produced by fungus 
Lasiodiplodia theobromae and salicylic acid is synthesized by the fungus P. patu-
lum. According to Takahashi (1986), other than these, phytohormones produced by 
microbial origin are helminthosporol and related compound cis-sativendiol from 
Helminthosporium sativum; Sclerin, sclerotinin A, B from Sclerotinia sp.; mal-
formins A1, A2, B1, B2, C from Aspergillus sp.; cotylenol and cotylinin A–F from 
Clodosporium sp.; radiclonic acid from penicillium sp., synergist to gibberellins 
from Pestalotia cremeraecola (Fig. 2). Other than higher plants they are not only 
synthesized by bacteria, but have also been secreted by mosses (Nuray et al. 2002) 
and fungi (Unyayar et al. 1996; Yürekli et al. 1999). To control plant growth and 
development, phytohormone—“A signal molecule” acts as a chemical messenger. 
Instead of their plant response, hormones also regulate expression of the intrinsic 
genetic potential of plants as a principal agent (Elmerich et al. 2007).

Bacterial phytohormones are necessary to be produced, excreted out and trans-
ferred in plant cells during plant–bacterial interaction. To understand the mecha-
nism, one should understand the techniques for its isolation, from which source its 
nature, exophyte or endophyte, its purification and detection as well as its cross-
talk during interaction with the plants will easily be available.

2.1  Auxins

The phytohormone auxin (“Auxeins” in Greek, means “to grow”) regulates a plant 
growth and its developmental process. As reviewed by Moore (1979), the discov-
ery of auxins was the outcome of the phototropism and geotropism experiments 
done in the nineteenth century. The Dutch botanist F. Went in 1926 discovered 
auxin and described a bioassay for its detection by “Avena coleoptile curvature 

Fig. 2  Structural chemistry of plant growth promoters of bacterial origin (Source http://www.ch
emspider.com/)

http://www.chemspider.com/
http://www.chemspider.com/
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test.” The biochemists Kögl, Haagen-Smit and Erxleben got an active substance 
indole-3-acetic acid (IAA) from urine in 1934, which was found to be similar to 
auxin. Finally in 1935, K.V. Thimann isolated IAA from cultures of the fungus 
Rhizopus suinus.

2.1.1  Indole 3-Acetic Acid (IAA) and Auxins

All auxins have an aromatic skeleton with weak organic acid. IAA, indole-3-bu-
tyric acid (IBA) and 4-chloroindole-3-acetic acid (4-CI-IAA) are most of the nat-
urally occurring auxins having an aromatic indole ring (Fig. 3a) (Wightman and 
Lighty 1982). It has been reported that bacteria synthesize IAA, the most abun-
dant and basic molecule of auxin. Most of the study is concentrated on auxins, 
especially IAA in bacterial plant hormone production. IAA producing bacteria 
may be either pathogenic (harmful) or growth promoting (beneficial) to the plant 
(Dobbelaere et al. 2003). These bacteria can interfere in plant development by dis-
turbing the auxin balance in plant during plant–bacterial interactions. For example, 
IAA producing Agrobacterium spp. (Jameson 2000) and Pseudomonas savas-
tanoi pv. Savastanoi (Comai and Kosuge 1980) cause tumors and galls in olive 
and oleander plants. Many studies suggest that IAA, produced by Azospirillum, 
is involved in making morphological and physiological changes in the inoculated 
plant roots (Tien et al. 1979; Kapulnik et al. 1985; Harari et al. 1988); while the 
general effect of beneficial bacteria is either direct, i.e. through plant growth pro-
motion, or indirect, i.e. through improving plant nutrition by solubilizing mecha-
nisms and making it available to the plants during plant–bacterial interaction. 
Deepa et al. (2010) showed that strains of Enterobacter aerogens and Enterobacter 
cloacae  produced IAA and showed growth promotion in cowpea (Vigna unguic-
ulata L.), whereas Kocuria turfanensis strain 2M4 was also found to produce 
IAA and showed growth promoting ability in groundnut (Arachis hypogaea L.) 
in saline soil (Goswami et al. 2014). In some cases, bacterial auxins are found in 
conjugated form and they are involved in storage, transport and protection from 

Fig. 3  Structural chemistry of microbial phytohormones. Stoichiometry of auxins (a), gibberel-
lins (b), cytokinins (c) and jasmonates (d). (Source http://www.chemspider.com)

http://www.chemspider.com
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enzymatic degradation. Pseudomonas savastanoi pv. Savastanoi has a character-
ized bacterial indole-3-acetic acid-lysine synthetase gene involved in IAA con-
jugation. The gene product is involved in the conversion of IAA into IAA-lysine 
(Glass and Kosuge 1986).

2.1.2  Sources of Microbial IAA

For plant growth promotion, symbiotic association and pathogenesis, widespread 
soil and plant-associated bacteria are capable to produce IAA. Previously, bacte-
rial auxin production was known for mainly being associated with the patho-
genesis. Then it became clear that not only pathogenic bacteria but plant growth 
promoting bacteria (PGPR) also synthesize IAA (Table 1). Genes responsible for 
synthesis of IAA are widely distributed and are responsible for metabolic path-
ways that differ from one bacterium to another. It has been seen that Pseudomonas 
syringae induce tumor and gall formation and Azospirillum spp. promote plant 
growth by production of cytokinin and gibberellin. In the presence of nitrate, 
Azospirillum produces a compound that mimics the effect of IAA in several plant 
tests (Zimmer et al. 1988).

2.1.3  Production and Detection of IAA and Related Indole Compounds

Indole is generated via indole pyruvic acid by reductive deamination of trypto-
phan. During the deamination reaction in which tryptophanase catalyzes the amine 
(–NH2) group, the tryptophan molecule is removed and the final products of the 
reaction are indole, pyruvic acid, ammonium (NH4

+) and energy. Pyridoxal phos-
phate is required as a coenzyme (Fig. 4).

To detect the production of IAA from the culture, the major requirement is that 
the medium contains an adequate amount of tryptophan and a pinch of sodium 
chloride as per Difco (1998) to culture an organism prior to performing indole 
test (Mac Faddin 1976). For an alternate method of IAA production, casein pep-
tone, sodium chloride and tryptone are also used as medium (Mac Faddin 1976). 
Simultaneously, determining other characteristics such as motility and the ability 
to produce hydrogen sulfide as a by-product of metabolism of the bacterium, the 
sulfide indole motility (SIM) medium is a multi-test agar used to test for indole 
production (Mac Faddin 1976). Another multi-test agar is motility-indole ornithine 

Fig. 4  Indole biosynthesis from precursor tryptophan in microorganisms
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(MIO) medium. In addition to testing for indole production, it is used to test for 
motility and ornithine decarboxylase, causing an increase in pH in the tube. This is 
indicated by the purple-gray color throughout the tube when a microbe is grown in 
a medium containing tryptophan and produces an indole, which demonstrates that 
an organism has the capacity to degrade the tryptophan. Detection of indole, a by-
product of tryptophan metabolism, relies on the chemical reaction between indole 
ring and a reagent used in the test (Hiroya et al. 2004).

2.1.4  Detection of IAA with Biochemical Assay

For the detection of IAA or related indole compounds, two methods are 
used: Indole spot test and biochemical chromogenic reagent method. For 
the indole spot test, place several drops of indole spot reagent (DMACA–
dimethylaminocinnamaldehyde, HCl and deionized water) on a piece of filter 
paper. With the help of a wire loop or wooden applicator stick, a portion of an 
18–25 h old colony has to be rubbed onto the reagent saturated area of the fil-
ter paper; a positive reaction is denoted by the change in color from blue to blue 
green, or red-violet in the case of Providencia alcalifaciens, within 10 s (Miller 
and Wright 1982). In biochemical chromogenic reagent method, several rea-
gents are used. To test for indole production, 4–5 drops of Kovac’s reagent (iso 
amyl alcohol, DMAB-dimethylaminobenzaldehyde, HCl(conc.) are added to the 
tube containing incubated culture in tryptophan broth. A positive test indicates 
cherry red color in the reagent at top of the medium (Isenberg and Sundheim 
1958). Eherlich’s reagent is alternatively used to Kovac’s reagent. It also contains 
DMAB-dimethyl amino benzaldehyde which reacts to indole and produces a red 
color. This formulation is more sensitive but it requires flammable solvents or 
additional toxics.

2.1.5  Detection of IAA by Capillary Electrophoresis

Along with other methods, capillary electrophoresis (CE) is a commonly used ana-
lytical technique for separation of solutes and analysis from the biological system. 
Capillary electrophoresis is a simple technique having high resolving power, low 
solvent content and has been an active technique in the research area of separa-
tion science (Jiang et al. 2006). Neutrally and negatively charged sample matrix 
is pumped out from the capillary by the reversed potential under reversed elec-
troosmotic flow (EOF). An electrophoretic speed of cationic analytes lower than 
the magnitude of EOF for a capillary filled with running buffer will migrate to 
the detector (Kim et al. 2009). Simply, migration flows extend because anions are 
migrating in the opposite direction to the electroosmotic flow (EOF). Auxins, gib-
berellins and abscisic acid have carboxylic group which exist as anions at high pH 
level. Capillary electrophoresis was performed by Chen et al. (2011) on a self-
made CE system with a high voltage supplier, a coaxial sheath liquid and HPLC 
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pump to supply constant flow rate of sheath liquid. Another laboratorial syringe 
pump is also used to condition amino coated capillary with background electrolyte 
(BGE) and drive out bubbles from the capillary. They are used to rinse capillary 
with 1 M NaOH solution for 4 h followed by water until the pH value of the out-
let maintained 7.0 for cleaning and activate inner surface of capillary for effective 
attachment of silica skeletons. This step is followed by further flushing with 1 M 
HCl, water and methanol for 3, 1 and 1 h, respectively and then capillary was dried 
with nitrogen at 160 °C for 5 h prior to use. Afterwards, 3-aminopropyltriethox-
ysilane dissolved in dry toluene was filled in a capillary and both the ends of the 
capillary were sealed with silicone rubber. After filling, the reaction was performed 
at 105 °C for 24 h, followed by rinsing the capillary with toluene and analytical 
grade acetonitrile (ACN, containing 20 % water and 5 % formic acid) to remove 
the residual components. After connecting to CE system, 100 cm of capillary was 
conditioned with background electrolytes of 30 mM ammonium formate contain-
ing 10 % (v/v) acetonitrile with a low voltage of 15 kV for 30 min. ACN-a sheath 
liquid used with the flow rate of 5 µl min−1. Jiang et al. (2006) separated plant 
hormones from the biofertilizer by using an uncoated fused silica capillary column 
with a total length of 43.5 cm with a maintained temperature at 25 °C and applied 
voltage −25 kV constantly. The sample loaded by pressure injection at 50 mbar 
for 5 s was detected after extraction at wavelength of 200 nm under UV detection.

2.1.6  Qualitative Detection of IAA by TLC and Paper 
Chromatography

Thin layer chromatography is a simple technique to detect IAA by using various 
solvent systems. For the procedure, a sample preparation is done by acidification 
of supernatant after centrifugation of bacterial culture broth from pH 2.5–3.0 using 
1 N HCl and extracted twice by ethyl acetate. After air drying of ethyl acetate, 
the extract is dissolved in methanol (Mohite 2013; Patil 2011; Swain and Ray 
2007; Goswami et al. 2014). These extracts are spotted and allowed to develop 
using mobile phase isopropanol: ammonia: water (16:3:1 (v/v/v)) (Goswami et al. 
2014) for IAA detection for Kocuria sp. 2m4, ethyl acetate: chloroform: formic 
acid (55:35:10 (v/v/v)) or benzene: n-butanol: acetic acid (70:25:5 (v/v/v)) for 
Azotobacter and fluorescent Pseudomonas, Propanol: Water (8:2) was used as sol-
vent system for IAA detection from the rhizospheric isolates (Mohite 2013); ben-
zene: n-Butanol: acetic acid (70:25:5 (v/v/v)) used for detection of indole acetic 
acid by Azotobacter sp. (Patil 2011).

2.1.7  Quantitative Determination of Auxins by HPLC

For rapid separation and detection of phytohormones, TLC was the first technique 
used. Nowadays, HPLC is used with various types of detectors for separation. 
The types of HPLC depends on the phase of chromatography; phase-dependent 
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chromatography and reverse phase HPLC (RP-HPLC) is also used for IAA 
quantification. The analyte preparation is performed by taking directly bacte-
rial culture supernatant or bacterial spiked broth filtrate for RP–HPLC analysis. 
Reversed phase HPLC (RP–HPLC or RPC) has a nonpolar stationary phase that 
is used in normal phase HPLC and an aqueous, moderately polar mobile phase. 
It is based on the principle of hydrophobic interaction because of repulsive forces 
between a polar eluent, the relatively nonpolar analyte and the nonpolar station-
ary phase (Bansal 2010). This HPLC system is composed of binary pump, fluori-
metric detector, auto sampler and a computer. Chromatographic separation of an 
analyte is performed at ambient temperature in several columns used for analyte 
separation. These columns or stationary phase are the core of the chromatographic 
system. These are commercially available in different lengths, bore size and pack-
ing materials. The combination of length and packing material of column is cor-
related with the appropriate mobile phase used to assist in separation of sample 
compound. A variety of column dimensions are available, including preparative, 
normal-bore, micro- and mini-bore and capillary columns used for HPLC anal-
ysis. The mobile phase eluents ratio, flow rate and total run time is maintained 
with the injection volume and fluorimetric detector set at excitation and emission 
wavelengths of 280 and 350 nm, respectively, for indole compounds. Szkop and 
Bielawski (2013) performed by using bacterial culture filtrate and using C8 col-
umn (Symmetry 4.6 × 150 mm, 5 μm, Waters) fitted with a C8 guard column 
(symmetry 3.9 × 20 mm, 5 μm, waters) using gradient elution at ambient tem-
perature. They used mobile phase with eluent A: eluent B at 80:20 %, changing to 
50:50 %, 0:100 % and 80:20 % in 25, 31 and 33 min, respectively. Where eluent 
A consisted of acetic acid: water (2.5:97.5 % (v/v), pH 3.8 adjusted by addition 
of 1 mol L−1 KOH and eluent B consisted of acetonitrile: water (80:20 % (v/v)). 
Here, they preferred a gradient elution method (in which two or more solvent sys-
tems used for mobile phase differ significantly in polarity and the ratio of solvents 
is varied in a programmed way either continuously or in a series of steps, after 
elution is initiated). Instead of isocratic elution method (A separation that having 
single solvent or solvent mixture of constant ratio), the gradient method ensures a 
more stable separation, with improved peak shapes and a shorter cycle time.

2.1.8  Detection by HPTLC Method

During spectrophotometric analysis of indolic derivatives from tryptophan, 
Salkowski reagent is used which reacts with the indolic derivatives and develops 
color (Glickmann and Dessaux 1995). It is simple but highly inaccurate, because 
instead of binding with IAA it gives nonspecific color reaction with all the indolic 
derivatives produced by the bacteria. Although, HPLC is sensitive, it requires high 
purity of the sample and it makes the process very tedious. Moreover, HPLC is 
time-consuming for detection and calibration. Thus, Goswami et al. (2015) used 
the HPTLC technique for detection and quantification of IAA from several PGPRs 
by using a mobile phase of 50 % isopropanol, 30 % n-butanol, 15 % ammonia, 
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and 5 % water. First, they determined an ability for IAA production of different 
strains (Pseudomonas aeruginosa OG, K. turfanensis 2M4, Kocuria flava 2M7, 
Bacillus subtilis H6 and Bacillus licheniformis A2) using Salkowski reagent based 
on spectrophotometric method described by Brick et al. (1991). On the other hand, 
they extracted indolic derivatives from the bacterial strains grown in a nutrient 
broth supplemented with 1 mg ml−1 tryptone. The culture supernatant was acid-
ified by 1 N HCl and extracted thrice using equal volume of ethyl acetate. The 
fraction was air dried and redissolved it into one-tenth volume of methanol for 
HPTLC analysis. A quantitative densitometric analysis was performed under deu-
terium source lamp at 256 nm as indolic derivatives show fluorescence on silica 
TLC plate 60F254 and quantification was determined by plotting a peak area under 
the curve. This method can detect IAA in the range of 100–1000 ng per TLC spot, 
which suggests that this method is highly sensitive and detects IAA even in low 
concentrations.

2.1.9  Detection of Microbial Phytohormones by Chromatographic/
Mass Spectroscopy

For the final analysis of IAA, a range of instrumental techniques is used such as 
HPLC coupled to UV or fluorimetric detection (Crozier et al. 1980) and gas chro-
matography (GC), which are common chromatographic analytical techniques used 
for quantitative analysis of phytohormones. According to Ljung et al. (2001) GC 
combined with mass spectroscopy detects and quantifies smaller range 0.1 mg 
fresh weight of sample. Plant hormones need to be derived to increase their vol-
atility and improve their thermal stability, most frequently done by methylation 
(Schneider et al. 1985) or trimethylsilylation (Edlund et al. 1995) prior to gas 
chromatographic separation. Such derivatization protocol extends considerably 
analytical protocols. HPLC is more suitable for most plant hormones without deri-
vatization when using a UV detector. The main drawback of using a UV detec-
tor is its lower sensitive detection (Nicander et al. 1993). Therefore, HPLC along 
with mass spectroscopy (MS) is widely used for quantification of IAA and espe-
cially when high throughput is required. HPLC-MS mass detection based on an 
ion trap (Ma et al. 2008; Prinsen et al. 1998) or triple quadruple is highly sensi-
tive and selective. The analyte bound via chemical interaction with the solid phase 
to the column and remaining interfering substances are removed from the column 
by washing it with suitable solvent and the analyte is then eluted by strong sol-
vent during solid phase extraction methods which have often replaced the HPLC 
method. The retention mechanism in solid phase extraction (SPE) is based on van 
der Waal forces, dipole–dipole forces, hydrogen bonding and ionic interactions 
during the process. For the eluted sample, peak height or peak area is important 
for quantification. The peak height or peak area versus concentration of sample is 
plotted for determination of concentration of a sample. For well-resolved peaks, 
peak height and area is proportional to the concentration.
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2.1.10  Detection by FTIR Analysis

An infrared spectrum observed with absorption peaks of a sample represents the 
frequency of vibration between the bonds of the atoms; two atoms do not get the 
exact same infrared spectrum. It is just like the fingerprint of an atom and there-
fore IR spectroscopy is used for the qualitative analysis of every different kind of 
material. According to Åmand and Tullin, FTIR instrument having Michelson-type 
interferometer instead of the monochromator and the slits has a beam of radia-
tion that is further split into two by beam splitter. A path difference between the 
beams is introduced by allowing them to recombine and can be monitored using 
an appropriate detector. FTIR spectroscopy is preferred over infrared spectroscopy 
because of nondestructive, precise enough, rapid, sensitive and greater optical 
throughput (Griffiths and De Haseth 2007). Goswami et al. (2014) detected IAA 
from bacterial isolates by dried extract mixed with potassium bromide and analy-
sis recorded at the transmission mode from frequency of 400–4000 cm−1 using 
Thermo Scientific Nicolet FTIR 6700. The spectral analysis generated correlates 
with the chemical bonds, molecular structure and vibration. Here, FTIR analysis 
does not provide the quantification but can give the structure analysis. Kamnev 
et al. (2001) showed that metal ions interact with IAA, which significantly modi-
fies the characteristic FTIR spectra of IAA. Thus, FTIR is used to detect the 
interaction of other molecules with IAA while the purity of the IAA can also be 
determined.

2.2  Gibberellins

Gibberellin was recognized by the Japanese scientist, Eiichi Kurosawa (1926), 
while studying bakanae disease in rice plant. It was first isolated by Teijiro 
Yabuta and Sumuki form fungal strains and later the name Gibberellin was given 
by Yabuta in 1935. Gibberellins known as gibberellic acid (GA) has 136 differ-
ent chemical structures from higher plants, 28 GAs from fungi and only 4 GAs 
from bacteria characterized as gibberellins (MacMillan 2001). Gibberellins are a 
type of microbial phytohormone having tetra carbocyclic diterpernes that regu-
late and influence the growth, developmental process (Zhang et al. 2007), flow-
ering (Cleland and Zeevaart 1970), stem elongation (Suge and Rappaport 1968), 
seed germination (Ogawa et al. 2003) and enzyme induction (Rogers and Rogers 
1999). This class of gibberellin is extremely large and some of these hormones 
have a similar structure. All these hormones have fluorine compounds with a struc-
ture of gibbane (Fig. 3b). The biosynthesis of gibberellins begins with cyclization 
of an intermediate geranylgeranyl diphosphate (GGPP), which is synthesized via 
isopentenyl diphosphate (IPP) either coming from mevalonic acid or via the plas-
tid deoxylulose 5-phosphate pathway (Litchtenthaler 1999; Sponsel 2001). This 
cyclization of GGPP yields copalyl diphosphate (CPP) by enzyme copalyl diphos-
phate synthase and ent-kaurene (Ent-K) by ent-kaurene synthase (KS) enzyme  
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(Sun and Kamiya 1994). Finaly, ent-K is converted into true gibberellins by sev-
eral oxidation reactions. GA is a crystalline solid melt at 221–223 °C. GA having 
pK value of 4.0 and it is a monobasic acid. It is partially soluble in water and ethyl 
acetate and highly soluble in methanol, ethanol, acetone and alkali reaction with 
dilute mineral acid at 20 °C converting into allogibberic acid followed by heating 
with acid at 100 °C forming gibberic acid (West 1960).

2.2.1  Gibberellins Producing Microorganisms

About 20 different types of gibberellins are produced by Gibberella fujikuori, of 
which GA3 is most abundant. As shown in Table 1, Azospirillum spp. is known to 
produce gibberellins and reverse dwarfism in maize and rice (Cassán et al. 2001) 
and promote shoot elongation, growth and root hair density (Fulchieri et al. 1993). 
Srivastava (2003) observed different strains of F. moniliforme isolated from dif-
ferent geographical locations showed a range of 0.66–600 mg production of gib-
berellin per gm dry mycelium weight. Acinetobacter calcoaceticus produced 
gibberellin were able to grow cucumber, Chinese cabbage and crown daisy (Kang 
et al. 2009). Also, Acinetobacter, Agrobacterium, Arthrobacter, Azotobacter, 
Bacillus, Bradyrhizobium japonicum, Clostridium, Flavobacterium, Micrococcus, 
Pseudomonas, Rhizobium and Xanthomonas are known to produce gibberellins in 
the rhizosphere (Rademacher 1994; Frankenberger and Arshad 1995; Gutiérrez-
Manero et al. 2001; Tsavkelova et al. 2006). Acinetobacter sp., Aerobacter sp., 
Aeromonas sp., Agrobacterium sp., Arthrobacter sp., Bacillus sp., Brevibacterim 
sp., Chromobacterium sp., Clostridium sp., Flavobacterium, Nocardia sp., 
Pseudomonas sp. and Streptomyces sp. are bacteria that produce gibberellin 
molecule and gibberellin-like substances. Species of Alternaria, Aspargillus, 
Cephalosporium, Cladosporium, Cylindrocarpon, Fusarium, Mycelium, 
Neurospora, Penicillium, Rhizopus, Sphaceloma, Trichoderma and Verticillium are 
fungi known to produce gibberellins or gibberellin-like substances (Frankenberger 
and Arshad 1995). R. japonicum, R. leguminosarum and R. Meliloti are known to 
produce GA3 and GA9 (Katznelson and Cole 1965).

2.2.2  Production and Extraction of Gibberellin

For isolation of gibberellic acid producing microorganisms, it should be cultured 
in a specific medium from where an organism can increase its biomass that leads 
to the production of gibberellic acid or gibberellic acid-like substances. For the 
culture of organisms, cultured a suspension in nutrient agar for bacterial growth 
and yeast extract mannitol agar for fungal growth for 28 °C at 240 rpm and a total 
of 73 isolates were cultured. For the maximum growth of GA3, fungus G. fujik-
uroi was incubated at 72 h, pH 8 and 30 °C in dark on a rotary shaker (Karakoç 
and Aksöz 2006). For isolation of rhizobacteria a cell suspension was grown in 
glucose nitrogen-free mineral medium and nutrient agar medium and incubated at 
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30 °C (Lwin et al. 2012). Pandya and Desai (2014) isolated 59 bacterial isolates on 
nutrient agar plate supplemented with clotrimazole and incubated at 30 °C for 24 h 
for production of GA3.

2.2.3  Spectrophotometric Assay for Detection of Gibberellins

For the gibberellin bioassay, Pandya and Desai (2014) incubated bacterial iso-
lates in a nutrient broth and then centrifuged 48 h old culture at 10,000 rpm for 
10–15 min and culture supernatant pH is adjusted to 2.5 using 4 N HCl. Then the 
culture supernatants were extracted using liquid–liquid (ethyl acetate/NaHCO3) 
extraction method. According to the method of Uthandi et al. (2010), F. fujikuroi 
culture broth of Czapek-Dox was filtered through pre-weighed filter paper and fil-
trate was set to pH 2.5 with the help of 10 % HCl. Acidified filtrate is extracted 
with ethyl acetate (1:3 filtrate to solvent ratio) and collected for estimation of GAs. 
In these biological assays gibberellic acid is converted into gibberellenic acid 
which absorbs light at 254 nm wavelength. 25 ml of supernatant and 2 ml of Zn 
acetate reacted for a while, then 2 ml of potassium ferrocyanide is added and after 
centrifugation at 10,000 rpm, in 5 ml supernatant equal volume of 30 %, HCl was 
added and incubated at 20 °C for approximately 1 min. Absorbance was taken at 
254 nm in spectrophotometer (Vikram et al. 2007).

2.2.4  Titrimetric Method to Determine Gibberellins

Gibberellic acid from Fusarium species was determined by acid–base titration 
method (Sanchez-Marroquin 1963), in which, gibberellic acid was titrated with 
0.1 or 0.25 N NaOH solution using phenolphthalein as an indicator and measured 
in 10−3 of a gram equivalent (milliequivalent) of gibberellic acid.

2.2.5  Qualitative Estimation by TLC and Paper Chromatography

Gibberellin and related substances were extracted and dissolved in 5 ml ethanol 
and separated by ascending chromatographic technique using isopropanol: 25 % 
ammonium hydroxide: water (10:1:1 v/v) and spot detection done by spraying 3 % 
H2SO4 in methanol containing 50 mg FeCl3; after heating at 80 °C for 10 min, 
plates generate greenish spots under UV light (Rangaswamy 2012). According to 
Bird and Pugh (1958), 19 × 46 cm of Schleicher and Schuell No. 598 or Muktells, 
Cremer-Tiselius electrophoretic filter paper was used to detect gibberellin A and 
gibberellic acid. Samples were spotted near one end of a sheet and its opposite end 
was serrated to permit solvent (10 volume of thiophene-free benzene, 2.5 volume 
of glacial acetic acid and 5 volume of deionized water on descending chromato-
gram) to drip off more freely to allow maximum flow.
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2.2.6  Qualitative Determination of Gibberellins by HPLC

Polar charges of the gibberellins, i.e. esterification of carboxyl group are done 
for GC analysis. Here, gibberellins are privatized as 4-bromophenacyl esters and 
p-nitro benzyl esters (Morris and Zaerr 1978; Heftmann et al. 1978) for identi-
fication by high performance liquid chromatography (HPLC). Barendse and Van 
De werken (1980) used ionic separation technique and gradient elution for separa-
tion of different gibberellins from plant extracts. For analysis of seven different 
gibberellins from strains of Fusarium, Bhalla et al. (2010) developed the isocratic 
HPLC system. According to Bhalla et al. (2010) the isocratic system is a better 
method for detecting small concentrations, because in gradient system the base-
line is disturbed during grading of mobile phase. Sample is doubled filtered and 
dissolved in 80 % MeOH and injected into the reverse phase C18 HPLC column, 
where gradient of anhydrous MeOH: aqueous acetic acid with the gradient inter-
val of 10 min having flow rate of 1 ml min−1 was used. They collected several 
fractions and aliquots assayed for radioactivity by liquid scintillation counting 
(Dobert et al. 1992). After centrifugation (21,040 g for 5 min) of fermentation 
broth, pH of the supernatant was adjusted to 2 with 1 M HCl and supernatant was 
extracted with ethyl acetate. Washing of organic phase was done with 5 ml of 
brine (Saline water) and then dried using 1 g of Na2SO4 and evaporated. Residue 
was redissolved in 1 ml of methanol and passed through octadecylsilane column 
(4.6 mm × 150 mm), where methanol: water (3:1) at flow rate 0.5 ml min−1 was 
fixed. Mass and UV detector were used simultaneously for detection of the com-
ponent of gibberellins produced by Fusarium verticilliodes MTCC 156 (Sharma 
et al. 2004). While Bhalla et al. (2010) used LiChrospher on RP-18 packed stain-
less steel column (250 × 4 mm i.d.) and acetonitrile: acidic water (0.01 % H3PO4) 
in the ratio of 60:40 with flow rate of 0.6 ml min−1. Detection of gibberellin pro-
duced by Fusarium strains was done by photo diode-array detector.

2.3  Cytokinins

Cytokinins, a class of phytohormones play an important role in cell division or 
cytokinesis in plant roots and shoots and, hence, are named as “Cytokinins.” 
Gottlied Haberlandt discovered in 1913 that a compound found in phloem can 
stimulate cell division in potato parenchyma. In 1941, Johannes Van Overbeek dis-
covered that the milky endosperm from coconut has a similar mode of action as 
mentioned earlier by Haberlandt. Later in 1955, Carlos Miller, a student of Folke 
Skoog’s laboratory identified kinetin from herring sperm. During 1961–1963, nat-
urally occurring most active of the cytokinins, zeatin was first isolated from Zea 
mays. Numerous cytokinins have been isolated from tRNA of all organisms hav-
ing a function of influencing tRNA structure, providing recognition site, affecting 
the translation efficiency and accuracy and a regulatory role. Distribution of modi-
fied at position 37 of tRNA structure was hypermodified, hydrophobic isopentenyl 
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adenosine-“cytokinin” among organisms seems to show inter-kingdom differences 
(Bartz et al. 1970; Greene 1980; Sprinzl et al. 2005). Cytokinin has both naturally 
occurring compounds and their synthetic analogues. Kinetin was ascended in orig-
inal isolates by structural rearrangements, so it is not accepted in naturally occur-
ring cytokinin (Hecht 1980). Cytokinin is mainly divided into two groups (Fig. 3c) 
based on chemical structure: one is isoprenoid cytokinins which have an isopre-
noid side chain at the position of N6. Examples of isoprenoid cytokinins are zeatin, 
isopentyl and dihydrozeatin forms. Another type of cytokinin is aromatic cyto-
kinins, which possess a side chain of aromatic (Benzyl or furfuryl) origin. Many 
natural cytokinin-like compounds that are structurally related to kinetin, such as 
trans˗zeatin, 4-hydroxy-3-methyltrans-2-butenylaminopurine, dihydrozeatin, have 
been identified in free bases, as glucosides, ribosides, or nucleotides (Entsch et al. 
1980). Synthetic substituted purines, such as 4-alkylaminopteridines and 6-ben-
zyloxypurines that are less structurally similar to N6-substituted adenine possess 
cytokinin activity. Some of these are reported to be more active than kinetin or 
benzyladenine (BA). Nowadays, topolin––an aromatic naturally occurring cyto-
kinin is a widely accepted derivative of BA. A few reports mention cytokinin, zea-
tin and 1, 3-diphenylurea as naturally physiologically active substances found in 
tissue cultures. Zeatin and 9R-zeatin biosynthesis by B. japonicum cultures was 
reported by Sturtevant and Taller (1989).

2.3.1  Diversity of Microbial Cytokinin Producers

The potential of producing cytokinins is widespread among organisms associ-
ated with soil and plants. These bacteria are responsible for plant growth, sym-
biosis and pathogenesis. Such types of organisms mentioned in Table 1 are known 
to produce several phytohormones and one of them is cytokinins. Several PGPR, 
such as Azospirillum, Azotobacter, Pseudomonas and Bacillus, produce several 
auxins, gibberellins as well as cytokinins (Dobbelaere et al. 2003). Actinomycete 
and Streptomyces flavous isolated from the rhizosphere have been reported in the 
production of cytokinin (Coppola and Giannattasio 1968). As shown in Table 1, 
Erwinia herbicola is reported by Lichter et al. (1995) as a cytokinin producing 
bacteria. A variety of bacterial strains such as A. tumefacians, P. syringeae, P. fluo-
rescens and P. putida were screened as cytokinin producing microorganisms.

2.3.2  Production and Detection of Cytokinin

The production of cytokinin produced by C. fascians is demonstrated by Thimann 
and Sachs (1966). They grew C. fascians in a defined purine-free medium. The 
fungal strain Rhizopogon ochraceorubens grown on agar containing modified 
Hagem’s medium and incubated for 2 weeks at room temperature produced cyto-
kinin (Crafts and Miller 1974). Corynebacterium aurimucosum was isolated from 
infected fruit of Prunus salicina and grown on the simple nutrient agar medium 
was reported to produce zeatin (Patel et al. 2012).
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2.3.3  Detection of Cytokinin by HPLC

Reverse phase column under acidic condition is used for separation of cytokinin-
like compounds because it has relatively hydrophobic sugar conjugates and bases 
of cytokinin (Tarkowski et al. 2009). The analysis and separation of cytokinin has 
been done by C18 or C8 columns. Acetic acid or formic acid and their ammonium 
salts are added to the solvent methanol/acetonitrile for better separation (Ge et al. 
2005). As cytokinin exhibits strong UV absorbance between 200 and 300 nm, UV 
detection is suitable for detection of cytokinin. Narrow bore LC coupled with MS 
is a relative method for detection of cytokinin used, in which mass spectroscopy 
coupled with liquid chromatography overcome the low detectability of the cyto-
kinins. Different ionization techniques were used for mass analysis in combina-
tion with RP–HPLC including thermospray, electrospray, atmospheric pressure 
chemical ionization and fast atom bombardment (Novák et al. 2003). Novák et al. 
(2003), performed LC–MS by dissolving sample in mobile phase and filtered with 
microfilter and 25 µl of sample was injected on RP column (150 mm × 2.1 mm, 
5 m). Solvent A consisted of 15 mM formic acid adjusted to pH 4 by ammonium 
hydroxide. Solvent B consisted of methanol.

2.3.4  Detection by Immunoaffinity Chromatography

Cytokinin was isolated from the purified sample of P. polymyxa cultivated on a 
medium and the filtrate was treated with methanol. Then cytokinin was isolated 
from the purified samples by immunoaffinity chromatography using Pab prepared 
against zeatin riboside and iPR having column temperature of 30–35 °C. The elu-
ate was evaporated in vacuum to less than 300 µl and diluted by PBS and every 
sample passed through column a second time and new elute was evaporated in 
vacuum (Timmusk et al. 1999).

2.3.5  Detection of Cytokinin by GC–MS

To detect cytokinin by gas chromatography, glass packed column was used 
although fused-silica capillary column was used by Tarkowski et al. (2009). 
Doumas et al. (1989) identified two bacterial cytokinin-like compounds GC–
MS using a combination of appropriate fraction from different extractions, dried 
and redissolved it in 40 mM phosphate buffer. After purification with HPLC 
grade putative premethylated derivatized cytokinin dissolved in dichloromethane 
and introduced in GC by on-column injection (30 m 0.32 mm fused silica cap-
illary column coated with DB-5). Temperature has to be increased from 50 to 
200 °C to remove the bulk of the solvent and premethylated cytokinin was eluted 
directly into mass spectrometer by increasing temperature from 200 to 300 °C. 
Premethylated samples were analyzed by Kamboj et al. (1998) using capillary col-
umn coupled directly to the ion source with an inference temperature of 275 °C 



18 K. Patel et al.

and helium (He) as carrier gas, inlet pressure at 0.08 MPa. After injecting a sample 
they maintained GC oven at 60 °C for 1 min with splitter closed and increased to 
230 °C.

2.3.6  Cytokinin Detection by Capillary Electrophoresis

Capillary electrophoresis was used for detection of cytokinin-like compounds and 
it is a suitable method for detection because of high speed, resolving power and 
fewer requirements of sample and buffer. Different modes of capillary electro-
phoresis are used for detection such as capillary zone electrophoresis (CZE) and 
micellar electrokinetic chromatography (MEKC). To obtain good separation, elec-
trolyte composition is extremely important in each mode of CE. Relatively high 
concentration of nonvolatile buffer results in significant loss of electrospray effi-
ciency and produces ion source contamination, therefore volatile buffer system 
(ammonium formate) is used for cytokinin detection in CZE-MS (Ge et al. 2006). 
Small aliquots of sample are a significant challenge in CE, although UV and MS 
detector have been used for detection of cytokinin (Pacáková et al. 1997).

2.4  Jasmonic Acid

Jasmonates belong to a family of oxylipins, an oxygenated fatty acid possessing 
one or more oxygen atoms other than those in the carboxyl group. It is widely 
found in aerobic organisms including plants, animals and fungi. Basically, these 
types of oxylipins are not stored in the tissue but are produced on demand. 
Jasmonates arise from the several enzymatic oxygenation reactions of C18 and 
C16 tri-unsaturated fatty acids (Wasternack and Kombrink 2009) and can also 
be produced by fungus like Lasiodiplodia theobromae (Demole et al. 1962; 
Miersch et al. 1991; Dhandhukia and Thakkar 2007). JA production is observed 
in Escherichia coli RC424 and RC-7 strains and also in yeast extract used in cul-
ture media for bacterial growth. As shown in (Fig. 3d), jasmonic acid (JA), methyl 
jasmonate (MeJA) and jasmonoyl-isoleucine (JA-Ile) are best known jasmonates. 
Jasmonic acids and most of its derivatives have a cyclopentanone ring structure 
possessing a saturated bond instead of carbon–carbon double bond in the ring 
structure of cyclopentenone (Acosta and Farmer 2010).

2.4.1  Producers of Microbial Jasmonates

Jasmonic acids are naturally occurring fatty acids and are identified in a wide vari-
ety of plant species, although a few fungi also produce jasmonic acid. The first 
identified jasmonate was from the fungal cell culture of Lasiodiplodia theobromae 
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contributing as plant growth regulator (Dhandhukia and Thakkar 2007). Other than 
this, B. rhodina has been found to produce jasmonic acid and its derivatives.

2.4.2  Production and Extraction of Jasmonic Acid

Lasiodiplodia theobromae was grown on potato dextrose agar plate and incubated 
at 30º C for 48 h. Agar plug was cut and used for inoculation on various medium 
for media optimization on static condition. After 7 days of growth in static condi-
tion, mycelia were separated from the broth by filtration. The filtrate was acidi-
fied with 6 mol L−1 HCl to pH 3 and 25 ml of broth used for extraction using 
equal volume of ethyl acetate (Dhandhukia and Thakkar 2008). Buttarello et al. 
(2014) mentioned bioproduction of Lasiodiplodia theobromae in M2 medium. 
After production, mycelium was removed by vacuum filtration and subjected for 
fermentation extraction test by adjusting a pH 3.0, then extracted by liquid–liquid 
partition using ethyl acetate as solvent extractor. The same method was performed 
by Leite et al. (2014) for production and extraction of jasmonic acid produced by 
Botryosphaeria rhodina from the precursor linolenic acid.

2.4.3  Identification and Detection of Jasmonates by HPTLC

After 7 days of growth in static condition, mycelia of Lasiodiplodia theobro-
mae were separated from the broth by filtration. The filtrate was acidified with 
6 mol L−1 HCl to pH 3 and 25 ml of broth used for extraction using equal volume 
of ethyl acetate (Dhandhukia and Thakkar 2008). Buttarello et al. ( 2014) men-
tioned bioproduction of Lasiodiplodia theobromae in M2 medium. After produc-
tion, mycelium was removed by vacuum filtration and subjected for fermentation 
extraction test by adjusting a pH 3.0, then extracted by liquid–liquid partition 
using ethyl acetate as solvent extractor. After the treatment of ethyl acetate, extract 
was concentrated 100 times for measurement of jasmonates by high performance 
thin layer chromatography (HPTLC). Concentrated extract was then loaded on 
silica gel 60 F254 aluminum foils using linomate-5 spray on applicator under flow 
of N2. Bands were regenerated using solvent system isopropanol: ammonia: water 
(10:1:1 v/v) (Ueda and Miyamoto 1994).

2.4.4  Identification and Quantification of Jasmonates  
by Liquid Chromatography

Ultra high pressure liquid chromatography/time-of-flight mass spectropho-
tometry (UHPLC/TOFMS) was performed by (Glauser et al. 2010) using a 
micromass LCT premier time-of-flight mass spectrophotometer with an electro-
spray. Sample was fractionated in C18 UPLC column (50 × 1.0 mm i.d. 1.7 µm) 
and gradient of solvent A (0.1 % formic acid–water) and solvent B (0.1 % 
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formic acid-acetonitrile) with flow rate of 0.3 ml min−1. To detect jasmonates 
from sample extracts of B. rhodina HPLC was done (Supelcosil C18 column 
(25 cm × 4.6 mm) and solvent system: MeOH: acetic acid (60: 40)) coupled with 
diode-array detector was used (dos Santos et al. 2014). As preferred by Tsukada 
et al. (2010), jasmonates were purified and detected by HPLC using preparative 
TLC, using solvent system n-hexane: ethyl acetate: acetic acid (60:40:1 (v/v/v)); 
then the resultant residue was purified by HPLC (TSK gel ODS80Ts, TOSOH, 
20 mm i.d. × 250 mm) in methanol (80 %) with flow rate of 5.0 ml min−1. 
Forchetti et al. (2007) used to separate and identify on preparative HPLC sys-
tem with C18 reverse phase column (µBond pack, 300 × 3.9 mm) coupled with 
UV-visible spectrometry system with diode arrangement. Elution was performed 
at 2 ml min−1 with gradient of 73 % (v/v) methanol in 1 % (v/v) acetic acid.

3  Conclusion

In the journey of bacterial phytohormones in the era of sustainable agro systems, 
several basic techniques as well as latest upgraded techniques are being used for 
detection and identification of phytohormones. From basic techniques such as 
TLC and spectrophotometry for simple detection to complex techniques such as 
HPTLC, GC–MS and LC–MS were used for spontaneous qualitative and quanti-
tative detection of phytohormones. HPTLC, first for a while used for qualitative 
and quantitative detection for IAA and capillary electrophoresis also contributed in 
the field of bacterial phytohormone analysis. Despite advancements in the devel-
opment of new techniques to detect microbially produced phytohormones, there 
is a still a huge scope in developing new techniques that provide better sensitiv-
ity, accuracy, robustness and save time. Despite several known protocols to detect 
several phytohormones, all these protocols are quite less laborious new, simple 
and quick protocols are needed in order to categorize the rhizobacterial strains as 
PGPR.
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Abstract Several processes mediated by soil microorganisms play an important 
role in nutrient cycling. One such process is biological nitrogen fixation (BNF) by 
representatives of various bacterial phylogenetic groups, which are called diazo-
trophs. Most studies of the Azospirillum-plant association have been conducted 
on cereals and grasses. Currently, 17 species of Azospirillum have been described. 
However, a great diversity of these bacteria continues to be revealed, and little is 
known of the potential applications of the many species that have been described. 
The Azospirillum-plant association begins with the adsorption and adherence 
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process of these bacteria in roots. Involved in these processes is the recognition of 
bacterial polysaccharides by the host plant, a step that is necessary in successfully 
forming a positive relationship between roots and Azospirillum. The presence of 
Azospirillum in the rhizosphere can minimize the susceptibility to diseases caused 
by plant pathogens. Furthermore, the ability to produce phytohormones, mainly 
auxins (indole-3-acetic acid) and other molecules from secondary metabolism has 
been suggested to underlie the growth response to inoculation by Azospirillum 
species. These positive aspects of Azospirillum colonization in the roots are also 
responsible for the alleviation of plant stress. For all of the above-mentioned rea-
sons, Azospirillum are also widely used as commercial inoculants, resulting in a 
significant economic impact in crop yields in many countries. In fact, solid and 
liquid formulations containing Azospirillum are marketed in various countries, 
such as Brazil, Argentina, Mexico, Italy, France, Belgium, Africa, Germany, 
Pakistan, Uruguay, India and the USA. In addition, new formulations containing 
Azospirillum, such as polymeric inoculants (alginate, agar, chitosan and gum), are 
already used for the improvement of many crops. This chapter summarizes the 
positive effects of Azospirillum-plant interactions and their biological importance 
for the improvement of agriculture worldwide.

Keywords Azospirillum · Biological nitrogen fixation · Biocontrol ·  
Phytohormones · IAA

1  Introduction

Brazil has a long tradition of research with nitrogen-fixing species, and the atten-
tion to nitrogen-fixing Azospirillum species increased after their rediscovery by 
Dobereiner and Dias in the year 1976. Azospirillum is one of the best-studied 
plant growth-promoting rhizobacteria (PGPR) that are normally associated with 
grasses, rice, wheat and sugarcane (Bashan and De-Bashan 2010; Babalola and 
Glick 2012; Duca et al. 2014; Glick 2014). Presently, 17 species of Azospirillum 
have been described (in order of discovery): A. lipoferum, A. brasilense, A. 
amazonense, A. halopraeferens, A. irakense, A. largimobile, A. doebereinerae, 
A. oryzae, A. melinis, A. canadense, A. zeae, A. rugosum, A. picis, A. thiophi-
lum, A. formosense, A. fermentarium, A. humicireducens and A. himalayense 
(http://www.bacterio.net/azospirillum.html). Of these, A. brasilense and A. 
lipoferum are the most studied and well described.

Azospirillum strains are marketed in various countries, such as Brazil, 
Argentina, Mexico, Italy, France, Australia, Pakistan, Germany, the USA, Africa, 
Belgium, India and Uruguay (Hungria et al. 2010; Reis et al. 2011; Mehnaz 2015), 
mainly as microbial formulations with other microorganisms. The major visual 
effects of inoculation with Azospirillum are changes in root morphology that 
results in an increase in root elongation, the number of lateral and adventitious 
roots and the lengthening and branching of root hairs (Bashan and Levanony 1985; 

http://www.bacterio.net/azospirillum.html
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Okon 1985; Baldani and Döbereiner 1986; Okon et al. 1988, 1991; Okon and 
Labandera-Gonzalez 1994; Cohen et al. 2015). These effects on root morphology 
permit the roots to take up more water and mineral nutrients, which leads to an 
increase in plant growth (Fibach-Paldi et al. 2012). Moreover, Azospirillum might 
help plants survive under stressful situations due to the induction of changes in 
cell wall elasticity, osmotic adjustments and the release of beneficial substances 
(Richardson et al. 2009; Groppa et al. 2012).

Several PGPR inoculants currently commercialized seem to promote growth 
through at least one mechanism: suppression of plant disease (bioprotectants), 
improvement of nutrient acquisition (biofertilizers), or phytohormone produc-
tion (biostimulants) (Tenuta 2003; Mitter et al. 2013). Understanding the interac-
tion between the consortium of microbial inoculants and plant systems will enable 
growers to harness more benefits from microbial inoculants for improving plant 
growth and yield (Raja et al. 2006; Sivasakthivelan and Saranraj 2013). The use 
of microorganisms with the aim of improving nutrient availability for plants is an 
important practice and proved necessary for agriculture (Babalola 2010; Figueiredo 
et al. 2010; Araujo et al. 2011; Rodrigues et al. 2013a, b; Bashan et al. 2014).

2  Azospirillum: Involvement of Polysaccharides  
in Attachment

Azospirillum sp. is a Gram-negative diazotrophic rhizobacteria associated with 
plant roots (mainly grasses). Species of Azospirillum exhibit chemotaxis toward 
a variety of root exudates like amino acids, organic acids, sugars and aromatic 
compounds (Okon et al. 1980; Rodriguez-Navarro et al. 2007). Chemotaxis is a 
widespread function in motile soil bacteria, because it affords cells with the ability 
to sense and navigate toward the most favorable niches for growth and represents 
an important attribute for plant-microbe association (Carreño-López et al. 2009; 
Alexandre 2010). The chemotactic response of Azospirillum species toward root 
exudates represents the first stage in Azospirillum colonization of root plants and 
is followed by attachment (Schelud’ko et al. 2009; Wisniewski-Dyé et al. 2013). 
Although attachment is already known, the precise mechanism that rules the 
attachment process remains unexplained due to its great complexity (Jofré et al. 
2009; Richardson et al. 2009).

The attachment of Azospirillum sp. to plant roots is necessary for the formation 
of an active association and seems to occur in two distinct and consecutive phases 
(Belyakov et al. 2012; Fibach-Paldi et al. 2012); (i) adsorption and (ii) anchoring 
phases. In the adsorption phase, a weak binding occurs between the bacteria and 
the root cells mediated by the polar flagellum (Rodriguez-Navarro et al. 2007). 
Azospirillum produces one longer polar flagellum and several shorter peritrichous 
flagella (Fibach-Paldi et al. 2012). The Azospirillum polar flagellum is an impor-
tant component of cell motility and is divided into a basal body, hook and filament 
(Lerner et al. 2010; Belyakov et al. 2012). The filament is composed of numerous 
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identical flagellin molecules, a protein with the C- and N-terminal conserved and a 
variable middle region (Belyakov et al. 2012). The variability of middle region of 
the flagellin is related to their antigenic and adhesive properties and the flagellin 
glycosylation mediates the symbiosis with eukaryotic organisms (Iwashkiw et al. 
2013; Merino and Tomás 2014). In cooperation with the flagellin protein, cap-
sular polysaccharides (CPS) are also involved in the adsorption phase of attach-
ment of the Azospirillum to the root surface (Lerner et al. 2010). It is reported that 
Azospirillum secretes CPS, and this polysaccharide seems to mediate the adhesion 
of bacteria to surfaces (Dutta and Podile 2010). CPS is a type of external polysac-
charide bound to the outer membrane by a covalent bond (Wisniewski-Dyé et al. 
2013). In the CPS of the A. brasilense Sp7, a glycosylated lectin with a molecular 
mass of 36 kDa was identified with specificity to L-fucose and D-galactose (Sigida 
et al. 2013). Lectins are sugar-binding proteins that can specifically and reversibly 
recognize and bind to carbohydrates present on the plant root surface. An outer 
membrane lectin of 67-kDa and produced by A. brasilense Sp7 could be involved 
in adhesion processes (Mora et al. 2008).

Azospirillum strains produce various lectin types, and are possibly involved in 
Azospirillum cell adhesion to the root surface (Aleńkina et al. 2014a). The diver-
sity and complexity of these lectins, probably due to the high pleiotropic capac-
ity of Azospirillum, ensures their adaptation to different host plants (Mora et al. 
2008). Lectins produced by A. brasilense induce several signaling systems in 
wheat roots as part of the recognition in the initial stages of development of plant-
bacteria association following the ligand-receptor interaction principle (Fig. 1). 
However, specific receptors present in the Azospirillum cell surface can bind to 

Fig. 1  The steps of attachment of Azospirillum sp. to plant roots (the scanning electron micro-
graphs (SEM) are roots colonized by A. brasilense and arrows indicate zones with granular-like 
material; SEM from Guerrero-Molina et al. (2012))
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the lectins present in the plant root surface (Scheludko et al. 2009). The binding of 
lectin WGA (wheat germ agglutinin) to cell receptors of A. brasilense Sp245 alters 
bacterial cell metabolism and acts as a signal molecule in the Azospirillum-plant 
association (Aleńkina et al. 2014b).

The second phase of attachment of Azospirillum sp. to the plant root surface 
is mediated by exopolysaccharides (EPS), a polysaccharide weakly associated 
with the outer cell membrane or totally released into the extracellular medium 
(Wisniewski-Dyé et al. 2013). In the anchoring phase, the second stage of the 
attachment process, the Azospirillum becomes irreversible and firmly attached to 
the root surface and other bacteria that are also entrapped, forming clusters at the 
attachment site (Winik et al. 2009; Guerrero-Molina et al. 2012). The EPS medi-
ates anchoring due to their involvement in the cell-to-cell aggregation phenom-
enon and its special interaction with bacterial envelope components (Mora et al. 
2008). The EPS composition seems to be an important determinant for aggrega-
tion ability in Azospirillum strains (Fibach-Paldi et al. 2012). This observation 
is sustained by the fact that in the aggregation phase, the dominant sugar in the 
EPS structure of A. brasilense is L-arabinose (Bahat‐Samet et al. 2004; Mora et al. 
2008).

Together with CPS and EPS, the lipopolysaccharides (LPS) of Azospirillum 
contribute to the bacteria-plant association due to their responsibility in the immu-
nospecificity of the bacterial cell and thus are involved in direct interactions with 
plants (Molinaro et al. 2009; Fedonenko et al. 2013; Sigida et al. 2013). LPS is a 
glycoconjugate present in the cell-surface of Azospirillum strains and exhibits a 
lipid moiety (lipid A), which anchors the molecule in the membrane, and a chain 
of oligosaccharides covalently linked to lipid A (Sigida et al. 2013; Shelud’ko 
et al. 2014). The polysaccharide portion includes a central oligosaccharide 
(core) and an O-polysaccharide moiety (OPS) (Fedonenko et al. 2011). The CPS 
and LPS show marked structural differences, and this is related to the involve-
ment of these structures in different stages of the Azospirillum-plant association 
(Smol’kina et al. 2010; Fedonenko et al. 2011; Shelud’ko et al. 2014).

The OPS structure present in Azospirillum LPS is responsible for serologi-
cal cross-reactions and the basis for the classification into a certain serogroup 
(Fedonenko et al. 2013). Azospirillum strains are divided into three serogroups 
(Shelud’ko et al. 2014). Azospirillum from serogroup I possess a linear homopol-
ymeric D-rhamnan OPS (Boyko et al. 2012), while a heteropolysaccharide OPS 
occurs in serogroup II (Konnova et al. 2008) that is precipitated with LPS antibod-
ies of A. brasilense Sp7 (Sigida et al. 2014). In serogroup III, OPS is composed of 
a main chain with an oligosaccharide motif formed by three L-rhamnose residues 
linked with a side chain formed by a D-glucose homopolysaccharide (Fedonenko 
et al. 2011). The differences in OPS structures are related with host recognition 
(Fedonenko et al. 2013). In fact, Azospirillum strains of serogroup I are usually 
encountered in association with wheat, while strains of serogroup II and III have 
an association with other gramineous plant (Sigida et al. 2014).

Azospirillum cells attached to plant roots exhibit a rounded and swollen format, 
similar to a cyst, and are metabolically active in the rhizosphere (Hou et al. 2014). 
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After Azospirillum cells attachment, the swarming occurs, a process by which a 
bacterial group rapidly advances on surfaces until specific sites and colonize in a 
coordinated manner (Verstraeten et al. 2008). In fact, swarming enables the rapid 
colonization of host tissues and formation of microcolonies which occurs simulta-
neously with biofilm formation (Bogino et al. 2013). Biofilm is a bacterial aggre-
gate associated with a surface, typically enclosed in an extracellular matrix, and 
probably composed of microbial EPS (Kadouri et al. 2003; Monds and O’Toole 
2009). Azospirillum brasilense is reported as a biofilm producer (Guerrero-Molina 
et al. 2012), and this feature helps Azospirillum cells anchor and colonize the root 
surface (Winik et al. 2009). Overall, swarming and biofilm formation across the 
roots is important for long-term colonization.

3  Azospirillum in the Biological Control of Pathogens

Azospirillum brasilense have been suggested as plant-growth promoting bacteria 
(Bashan and Holguin 1998). The bacteria of the genus Azospirillum inhabit the 
plant’s rhizosphere and sometimes develop an endophytic relationship with the 
host plant. However, in most cases, their relationship is associative, with a partial 
supply of nitrogen fixed by the microbial process, known as atmospheric nitrogen 
biological fixation, and a chemical reaction catalyzed by a dehydrogenase enzyme 
(Hungria et al. 2010). The success of the relationship also depends on the abil-
ity of the bacteria to colonize the host plant rhizosphere, although no consistent 
results demonstrate specificity in the bacteria-host plant relationship.

Even though the genus Azospirillum is not considered directly related to bio-
logical control, some reports in the literature show results of moderate biological 
control in some diseases, such as galls caused by Agrobacterium tumefaciens and 
leaf and vascular diseases caused by bacteria. In addition, research has also shown 
the genus to inhibit the growth of non-pathogenic microorganisms in the rhizo-
sphere of plants (Somers et al. 2005). The mechanism of action responsible for 
the benefits found in the growth of plants has also been studied in every bacterial 
genus of interest, which discusses, among other things, the participation of dif-
ferent microbial molecules involved in such mechanisms (Kloepper et al. 2004). 
The presence of A. brasilense can change plant physiology, especially the produc-
tion of several phytohormones, such as auxin, gibberellin, cytokinin and ethylene 
(Dobbelaere et al. 1999).

Some chemical compounds produced by bacteria (when in contact with the 
plants), such as those of the genus Azospirillum, can interfere with plant metabo-
lism and the active frequency of the plant defense. The plant defense system is 
controlled by different metabolic pathways that are triggered by various chemi-
cal factors associated with the presence of chemical and biological inducers 
(Kuc 1983). The bacterial effect, when present in the plants rhizosphere, can be 
observed in two specific routes of metabolic defense in plants. These routes 
include jasmonic and salicylic acid, of which the latter is most often associated 
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with chemical inducer agents or pathogens (Romeiro 2000). With regard to bac-
teria that promote plant growth, the induced systemic resistance promotion (ISR) 
is more associated within their mechanism of action, which reinforces the posi-
tive effects of these bacteria in promoting growth or biological control of path-
ogens (Mariano and Kloepper 2000). The ISR, when involved in the action of 
non-pathogenic microorganisms in the rhizosphere, does not involve the salicylic 
acid signaling pathway or induction of proteins related to pathogenesis because 
it is activated in this resistance-signaling pathway of jasmonic acid and ethylene 
(Hoffland et al. 1995; Pieterse et al. 1998). When plant beneficial bacteria colonize 
the root system, the constituent molecules of the bacterial cell, or those synthe-
sized by it, elicit a biochemical signal. This signal is translocated to distant sites, 
which activates genes that code for the synthesis of dynamic resistance compo-
nents and thus induces the expression of a systemic resistance (Romeiro 2000).

Romero et al. (2003) demonstrated that the activity of phytohormones in two 
strains of Azospirillum sp. promoted growth in tomatoes and modified the plant 
susceptibility to bacterial diseases. The success of this interaction depends on the 
plant genotype as well as the pathogen characteristics. In a review of root dis-
eases in cassava, it was determined that the inoculation of A. brasilense reduced 
the incidence rates of disease/infection compared to the non-inoculated controls. 
This species can restrict the proliferation of other non-pathogenic bacteria in the 
rhizosphere and bacteria, such as Pseudomonas syringae pv. tomato (Bashan and 
De-Bashan 2002), which probably occurs due to competition or the resistance 
induction phenomenon in the host. Biological control reports provided by A. bra-
silense are related to growth inhibition of Agrobacterium tumefaciens and phy-
topathogenic fungi. This inhibitory activity may be related to compounds detected 
in the supernatant of Azospirillum sp. during growth (Fig. 2); however, the mode 
of action is not well defined (Somers et al. 2005). According to these authors, the 

Fig. 2  Determination of the antimicrobial activity of supernatant extracts (10 μL) isolated from 
A. brasilense Sp245 cultures grown in MMAB supplemented with 0.5 mM tyrosine, (1) 0.5 mM 
phenylalanine, (2) 0.5 mM tryptophan, (3) 0.5 mM phenylpyruvate, (4) 0.5 mM prephenate, (5) 
or 0.5 mM chorismate (6) by the paper disk method (Somers et al. 2005)



36 A.C. Rodrigues et al.

antimicrobial compound produced by Azospirillum sp. was identified as phenyl 
acetic acid of the auxins group. This molecule has been used as a defense mecha-
nism in bacterial competition in its ecological niche. The presence of hormones 
can alter both plant growth and influence the metabolism and survival of microor-
ganisms in the environment.

Microbial iron chelators known as siderophores are produced by A. brasilense 
and showed antifungal activity in vitro against Colletotrichum acutatum M11 
strain. Siderophores are molecules that sequester iron from the environment; thus, 
this essential metal for microbial growth can be crucial in causing deficiency in 
the growth of certain microbial species. A reduction of anthracnose symptoms in 
strawberries previously inoculated with A. brasilense was also observed. These 
results suggest the use of bacteria for disease control strategies in the strawberry 
tree (Tortora et al. 2011). Some chemical compounds (not yet identified) produced 
by A. brasilense sp245 promoted, under controlled conditions, the reduction of 
mycelial growth of Rhizoctonia solani (Russo et al. 2008; Vettori et al. 2010). In 
another study, chemical inhibitors of fungal growth were also characterized as vol-
atile, and after extracting the growth supernatant of A. brasilense, these substances 
reduced the growth of Fusarium graminearum (after addition to the fungal growth 
medium culture) (Abdulkareem et al. 2014).

With regard to the benefits provided by Azospirillum sp. for the biological con-
trol of diseases, at this stage, it is still not clear which mechanism of action is criti-
cal for the success of this activity. The production of hormones, siderophores and 
the ability to fix atmospheric nitrogen guarantee benefits and increased compe-
tence of A. brasilense in colonization and its ability to remain in the rhizosphere 
of plants. This can promote plant growth and reduce the presence of pathogenic 
microorganisms in the surrounding soil. Furthermore, the presence of these bacte-
ria in the rhizosphere confers several benefits for plant growth and nutrition, which 
indirectly increases the resilience capacity.

4  Mechanisms by Which Azospirillum Affects Plant 
Growth: Hormones and Metabolites

Plant-microbe interactions are affected by many different regulatory signals, and 
the root exudates stand out among them (Spaepen et al. 2009). The root exudates 
play a key role in the plant-microbe interaction, stimulating the bacterial chemo-
taxis and mediating the root colonization and the selection of microorganisms 
driven by the host (Mitter et al. 2013). Therefore, root exudates play an important 
role in developing microbial communities in the different compartments of plants 
(Fibach-Paldi et al. 2012). As compensation to root exudates secreted by plants, 
the microorganism plant association may improve plant growth and health by syn-
thesis of vitamins, antibiotics, enzymes and phytohormones (Cohen et al. 2015). 
Phytohormones are organic substances that at a very low concentration stimulate 
a physiological response. Currently, in addition to the five classic plant hormones 
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(auxins, cytokinins, gibberellins, abscisic acid and ethylene), other phytohormones 
have been identified, such as jasmonate, brassinosteroid, nitric oxide and strigolac-
tone (Shan et al. 2012).

Azospirillum strains have been reported to increase plant growth through the 
action of carbohydrates, polyamines, amino acids, peptides, lectins and enzymes 
that are released in the extracellular medium (Cassán et al. 2009a; Richardson 
et al. 2009; Bashan and De-Bashan 2010). However, many authors report that 
Azospirillum species are able to enhance plant growth due to the self-production 
of hormone and by inducing synthesis of these compounds in the plant tissues 
(Chamam et al. 2013; Duca et al. 2014; Cohen et al. 2015). In general, the phy-
tohormones works in complex networks that include responses in cross talk and 
feedback, and therefore, it is difficult to establish the specific role of a given hor-
mone in the plant response (Glick 2014). Azospirillum species are able to produce 
and secrete phytohormones, mainly auxins, gibberellins (GAs), cytokinins (CK) 
and nitric oxide, which act as signals and effectors for plant growth promotion 
(Spaepen et al. 2008; Bashan and De-Bashan 2010; Couillerot et al. 2013; Duca 
et al. 2014).

Several studies have reported the presence of auxins in the supernatant of 
Azospirillum cultures (Cassán et al. 2014; and references therein). Quantitatively, 
indole-3-acetic acid (IAA) seems to be the most important auxin produced by 
Azospirillum (Glick 2014; Mehnaz 2015); however, some reports suggest that 
indole-3-butyric acid (IBA) is also largely produced (Couillerot et al. 2013). In 
accordance with Duca et al. (2014), IBA probably serves as an important source 
and reserve of IAA in Azospirillum strains. Azospirillum sp. produce IAA during 
all growth stages (Malhotra and Srivastava 2009) and four pathways exist for IAA 
biosynthesis (Duca et al. 2014): three tryptophan-dependent pathways [indole-
3-pyruvic acid (IPA), indole-3-acetamide (IAM) and tryptamine (TAM) pathways] 
and one tryptophan-independent pathway (Fig. 3). The IPA pathway is of major 
significance in Azospirillum and provides 90 % of the IAA synthesized (Glick 
2014).

Fig. 3  Indole-3-acetic acid (IAA) pathways identified in Azospirillum species: the indole-
3-acetamide (IAM), indole-3-pyruvic acid (IPA) and tryptamine (TAM) pathway (tryptophan-
dependent pathways) and a tryptophan-independent pathway starting with anthranilate (Cassán 
et al. 2014; Duca et al. 2014)
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In the plant-Azospirillum interaction, IAA can also be a reciprocal signal-
ing molecule that maintains the symbiotic relationship (Malhotra and Srivastava 
2009) and has probably been shaped by co-evolutionary processes between the 
bacteria and their host plant (Berg 2009; Walker et al. 2011, 2012; Drogue et al. 
2012). In fact, some evidence indicates that phytohormone synthesis in A. brasi-
lense is strain-specific (Di Salvo et al. 2014). These authors studied the Sp7, Cd, 
Az39, 40 and 42 strains of A. brasilense and reported that the 42M strain displayed 
higher levels of IAA production than the other strains. Many authors have reported 
the positive effects of auxin synthesized by Azospirillum in plants (Malhotra and 
Srivastava 2009; Glick 2014 and references therein). IAA regulates the plant cell 
cycle, tropism, apical dominance and senescence (Mehnaz 2015). In addition, 
under environmental fluctuations and nutrient limitations, specifically nitrogen, car-
bon and phosphorus, the IAA levels are increased (Malhotra and Srivastava 2009).

IAA produced by A. brasilense alters the root morphology and proliferation 
in wheat seedlings (Dobbelaere et al. 2001), and is responsible for increases in 
root and shoot systems. In fact, the inoculation of sugarcane with Azospirillum 
sp. results in significant increases in root dry weight (upper 70 %; Moutia et al. 
2010), and wheat inoculated with A. brasilense exhibit increases in shoot growth 
(Spaepen et al. 2008). In addition, IAA affects photosynthesis, the biosynthesis of 
metabolites and other phytohormones, such as CK and GAs (Ilyas and Bano 2010; 
Mehnaz 2015). Tien et al. (1979) documented the first report of CK production in 
A. brasilense in 1979; however, little is currently known about the CK produced 
by Azospirillum (Cássan et al. 2014). In plants, CK regulate cell division, and have 
been associated with shoot and root morphogenesis (Spaepen et al. 2009). Zeatin, 
the major CK type, has been reported in A. brasilense and A. lipoferum (Molina-
Favero et al. 2007; Esquivel-Cote et al. 2010).

GAs are one class of phytohormones produced and secreted by Azospirillum 
(Mehnaz 2015). GAs are complex compounds composed of terpenes that share 
a common GA ring (Yamaguchi 2008). Currently, several GA types have been 
identified; of these, GA1, GA3, GA4 and GA7 are the types that show functions of 
phytohormones, and therefore, regulate different aspects of plant growth (Cassán 
et al. 2014). Azospirillum species, specifically A. brasilense and A. lipoferum, 
are known to produce GA1 and GA3 and GA3 is the major type of GA identi-
fied (Bottini et al. 1989; Jansen et al. 1992; Piccoli and Bottini 1996; Lucangeli 
and Bottini 1997; Ilyas and Bano 2010). Manivannan and Tholkappian (2013) 
recorded a production of GA up to 3.3 μg (per 25 mL−1 broth) in 20 different 
Azospirillum strains isolated from the tomato rhizosphere.

Although it has been known for a long time that Azospirillum synthesizes and 
metabolizes GAs (Bottini et al. 1989), their mechanism of production is poorly 
known (Mehnaz 2015). Lucangeli and Bottini (1997) were the first to describe 
the capacity of Azospirillum sp. that produce GAs in plants. GAs promote cell 
division and the elongation of primary roots, and play an important role in lat-
eral root development (Bottini et al. 2004). In maize, GAs promote shoot elonga-
tion and growth and increase root hair abundance (Fulchieri et al. 1993). In rice 
inoculated with A. lipoferum, GA improves nitrogen uptake and increases the dry 
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mass, height and yield (Bottini et al. 2004). In maize plants treated with an inhibi-
tor of GA biosynthesis, results show that GAs produced by Azospirillum positively 
affects plant growth (Lucangeli and Bottini 1997). A study in maize treated with 
prohexadione (GA biosynthesis inhibitor) by foliar spraying and inoculated with 
A. lipoferum reported an increase in root growth (Cohen et al. 2009).

Data from studies with GA-deficient plants with the dwarf phenotype show 
that GAs of A. brasilense and A. lipoferum were responsible for reversal of dwarf-
ism in maize and rice (Cassán et al. 2001). Another important role of GA is the 
interruption of dormancy during seed germination because its hydrolytic enzymes, 
α-amylase and protease, are induced in seeds of grasses and cereals, and this 
facilitates endosperm mobilization (Mehnaz 2015). The seeds of soybean and 
wheat exhibit an increase in germination when treated with A. brasilense, and this 
response seems related to the high GA production of A. brasilense (Bacilio et al. 
2003; Cassán et al. 2009b). Furthermore, environmental factors can modify the 
GA production by Azospirillum (Cassán et al. 2014). In this sense, Piccoli et al. 
(1999) showed that the availability of O2 and the osmotic potential reduces the 
GA3 production in A. lipoferum (~50 %), and this response was considered a com-
pensatory mechanism that seems to be activated in water stressed situations.

GAs and abscisic acid (ABA), produced by Azospirillum strains, seem to con-
tribute to water stress alleviation in plants (Cohen et al. 2009, 2015) and in plant 
defense mechanisms (Vacheron et al. 2013). ABA is a phytohormone induced in 
response to environmental stress, such as water or salt stress (Bauer et al. 2013). 
The inoculation of maize plants with A. lipoferum enhances ABA levels and plant 
tolerance to drought (Cohen et al. 2009). Likewise, the synthesis of ABA by 
Azospirillum species increases when sodium chloride (commonly used to mimic 
salt stress) is added to the culture medium (Cohen et al. 2008; Dodd et al. 2010; 
Cohen et al. 2015). Ilyas and Bano (2010) report that Azospirillum strains isolated 
from water stressed conditions exhibited higher production of ABA. Moreover, 
Arabidopsis seedlings doubled ABA levels when inoculated with A. brasilense 
sp245 (Cohen et al. 2008). These results reinforce idea of a protective role for 
ABA synthesized by Azospirillum (Fig. 4).

Plant tolerance to environmental stress mediated by Azospirillum may involve 
ABA or compatible solutes like proline, polyamines and trehalose (Richardson 
et al. 2009; Cohen et al. 2015). Azospirillum sp. are known to produce polyam-
ines and amino acids in culture media (Cassán et al. 2009a; Bashan and De-Bashan 
2010). Spermine, spermidine, putrescine and cadaverine are organic polymers 
generically named polyamines and are related to root growth and stress mitigation 
in plants (Gupta et al. 2013). In rice seedlings inoculated with A. brasilense, at least 
in part, cadaverine production induces root growth and mitigates osmotic stress in 
rice (Cassán et al. 2009a). Maize plants treated with A. brasilense modified to over-
produce trehalose were more resistant to drought and improved biomass produc-
tion more than plants treated with a wild type of A. brasilense (Rodríguez-Salazar 
et al. 2009). In addition, in their hosts, Azospirillum sp. induce the biosynthesis of 
phenylacetic acid, bacteriocins and siderophores, which are secondary metabolites 
with antimicrobial activity (Walker et al. 2011; Vacheron et al. 2013).
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The inoculation of Azospirillum modifies the content of secondary metabolites 
in the host plant, and in accordance with Walker et al. (2011), these alterations are 
more intense than that in primary metabolism. Alterations in the secondary metab-
olite profile were reported in rice plants in response to Azospirillum inoculation, 
and the major metabolites affected were flavonoids and hydroxycinnamic deriva-
tives (Chamam et al. 2013). In maize inoculated with Azospirillum, variations in 
benzoxazinoids were registered, which are molecules related to plant resistance 
against pathogens in both roots and shoots (Walker et al. 2012). These molecules 
are elicited in the host plants when inoculated with Azospirillum and are responsi-
ble for disease resistance. Overall, considering the beneficial interactions between 
plants and Azospirillum, their use as an inoculant represents an environmentally 
friendly strategy for agriculture worldwide.

5  Azospirillum: Inoculants and New Products

Plant biostimulants include both substances and microorganisms that enhance 
plant growth, and the global market is estimated at over 2 million dollars by 
2018; however, the definition is still evolving, mostly due to its large scope. Both 
the American and the European definitions include several potential effects, but 

Fig. 4  The positive effects of Azospirillum in plant roots. The plants provide nutrients while 
Azospirillum can promote phytohormone synthesis and positive alterations in secondary metabo-
lites. IAA Indole-3-acetic acid. ABA Abscisic acid
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specify that these products may not establish nutritional guarantees, although they 
may increase fertilizer efficiency (Calvo et al. 2014). This broad class of products 
is especially important for agricultural systems in which external inputs are lim-
ited, due to philosophical, ecological, or economic reasons (Bhardwaj et al. 2014).

Bacteria-based inoculants used as plant biostimulants are usually classified as 
PGPR and include several different mechanisms ranging from BNF to plant pro-
tection from pathogens (Maheshwari 2010; Bhattacharyya and Jha 2012; Ahemad 
and Kibret 2014; Nadeem et al. 2014). One of the major groups of bacteria-based 
inoculants is collectively known as biofertilizers, and these bacteria improve the 
nutrient status of the crops through BNF, increasing nutrient availability and/or 
root growth promotion, and they usually work through a combination of benefits 
that are hard to experimentally differentiate (Perez-Montano et al. 2014). One of 
the most widely studied genera of biofertilizers is Azospirillum (Laslo et al. 2012; 
Almaghrabi et al. 2013; Reddy and Saravanan 2013; Nadeem et al. 2014; Perez-
Montano et al. 2014).

Inoculants based on Azospirillum have already been commercialized in Mexico, 
France, India and Brazil (Hungria et al. 2010; Sivasakthivelan and Saranraj 
2013; Trujillo-Roldán et al. 2013) and have been promoted and studied since at 
least the 1970s, and thorough review published in 1994 (Okon and Labandera-
Gonzalez 1994). The authors indicated a 60–70 % success rate using Azospirillum 
inoculants with a typical gain of 5–30 % for several of the most important cereal 
crops. However, wide variations in their effects are still routinely found in field 
experiments (Hungria et al. 2010; Lana et al. 2012; Turan et al. 2012; Castañeda-
Saucedo et al. 2013; Romero et al. 2014).

These variations happen due to a wide range of reasons, from inoculant produc-
tion through storage, field use and the several ecological and environmental effects 
known to affect the results. A major point that should be considered by both inoc-
ulant producers and researchers is that the end-user is mostly interested in the 
product effect on the crop, not on the bacteria being used to achieve that end, its 
physiology or ecology. Because these effects largely depend on the strain used and 
its population on the product when applied, these aspects should probably be the 
main research focus in this field (Sivasakthivelan and Saranraj 2013). Strain selec-
tion should be based on a multitier approach, similar to that conducted with rhizo-
bial legumes or the crop breeding industry (Araújo et al. 2012). Usually, a large 
(preferably very large) initial population is studied under some kind of environ-
ment in which potential gains are maximal and stresses reducing those gains are 
minimal. This is followed by selection cycles with lower strain numbers, but each 
time more representative of real agricultural usage and ending with field experi-
ments with several cultivars and environmental conditions.

For Azospirillum, the first step might be selection under laboratory controlled 
pure-culture conditions. That Azospirillum species fix nitrogen under these con-
ditions is likely why a large part of the older literature attributes to it, at least in 
part, the field effects of BNF (Dart 1986; Kennedy et al. 1997), although most 
field studies indicate that its contribution to crop nitrogen status is relatively 
small (Lana et al. 2012). The next step is generally conducted under some kind of 
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protected environment such as a greenhouse. There are a large number of papers 
on this condition, which frequently aim to extend the usage of Azospirillum strains 
to new plant species, to investigate possible mechanisms through which the bac-
teria affect the plant, or to study a complex mixture of beneficial microorganisms 
(Viera and Fernandez 2006; Bhattacharjee et al. 2008; Bashan and De-Bashan 
2010; Hayat et al. 2010; Jha et al. 2013).

After the protected environment studies, field experiments are most commonly 
conducted with the major cereals due to their relevance, and their variable results 
were already mentioned earlier in this section. A large component of this variation 
may be due to several different mechanisms proposed for Azospirillum effects not 
being adequately adjusted in the experimental design and/or in the results and dis-
cussion, leading to an apparent lack of response to the inoculation (Naiman et al. 
2009; Pedraza et al. 2009; Hungria et al. 2010; Mostafa and Abo-Baker 2010; 
Yadegari et al. 2010; Trivedi and Bhatt 2011; Lana et al. 2012; Moghadam et al. 
2012; Ferreira et al. 2013; Jha et al. 2013; Perez-Montano et al. 2014). This prob-
lem has been mentioned since the 1990s (Okon and Labandera-Gonzalez 1994), 
and a suggestion given by these authors in their review was a market regulation on 
inoculant producers.

Under Brazilian law, no commercial inoculant may be used in agricultural 
fields if not recommended by the Agriculture Ministry (Brasil 2011), which cur-
rently recommends A. brasilense strains (Table 1) for use in the three major cereal 
crops of Brazil (wheat, corn and rice). These strains may only be recommended 
after field trials at several different locations and agricultural years. This legal 
demand induces a much stronger confidence in the inoculant than may be seen 
otherwise. One point that should also increase the confidence of the crop grower, 
with regard to Azospirillum inoculant usage, is that most cereal producers also 
grow soybean and that inoculant usage is widespread and continues to this date 
(Alves et al. 2003; Phillips 2004).

The very strong adoption of rhizobial inoculants in Brazil for soybean, and to 
a lesser extent for other legume crops (Zilli et al. 2011), indicates that as long as 
consistent results can be obtained from Azospirillum inoculants under field con-
ditions, we can expect future growth of this biological technique. Another point 
in which the Azospirillum inoculants industry may emulate the rhizobia-based 

Table 1  Recommended 
strains for some cereals 
designed for use in 
commercial inoculant 
production in Brazil  
(Brasil 2011)

Plant species Bacterial species Strain

Triticum spp. Azospirillum brasilense Ab-V1

Zea mays A. brasilense Ab-V4

Zea mays and Triticum spp. A. brasilense Ab-V5

Zea mays and Triticum spp. A. brasilense Ab-V6

Zea mays A. brasilense Ab-V7

Triticum spp. A. brasilense Ab-V8

Oryza sativa A. brasilense Ab-V5

O. sativa A. brasilense Ab-V6
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industry is in the constant pursuit of new technologies for the inoculant, including 
application forms and liquid formulations, which have caused increased inoculant 
usage in Brazil in the recent years (Albareda et al. 2008; Vieira Neto et al. 2008; 
Zilli et al. 2010; França et al. 2013). It must be mentioned that there is already the 
literature on these aspects including shelf life of the product and the use of com-
mercial products (Sivasakthivelan and Saranraj 2013; Trujillo-Roldán et al. 2013).

An additional problem that must be dealt with is the inoculant’s adaptation to 
field conditions and practices, such as genetically modified organisms (GMO), 
herbicide usage and seed coating with pesticides, which are major causes of con-
cern for the rhizobial inoculant industry (Austin et al. 2006; Bunemann et al. 
2006; Gaind et al. 2007; Jacques et al. 2010; Zobiole et al. 2011), but have not 
been well evaluated up to now.

6  Concluding Remarks

Most studies of the Azospirillum-plant association have been conducted on cere-
als and grasses, while only a few other plant families have been investigated. 
Recent progress on the understanding of their diversity, colonization ability, action 
mechanisms, formulation and application of these biological systems should 
facilitate their development as reliable components in the management of sustain-
able agricultural. Naturally, the mode of root colonization by Azospirillum may 
vary, depending on the bacterial strain, plant species, environmental conditions 
and other unidentified factors. Furthermore, the principal mechanism by which 
Azospirillum enhances plant growth is undetermined. However, several possible 
modes of action have been proposed.

In this regard, efforts have been made by researchers to clearly define and 
develop commercial inoculants using these organisms with special emphasis on 
formulations and polymeric carriers. Furthermore, combinations of beneficial bac-
terial strains that interact synergistically are currently being devised, and numer-
ous recent studies show a promising trend in the field of inoculation technology. 
The future challenge is to identify management conditions that can contribute to 
the optimization of several mechanisms of the plant-microorganism interrelation-
ship and that may participate in the association and affect plant growth, including 
N2 fixation, hormonal effects, general improvement in root growth and major bio-
control activities.
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Abstract Methylobacterium spp. includes a group of stringently aerobic, Gram-
negative, pink-pigmented, facultatively methylotrophs (PPFM) belonging to 
α-proteobacteria and are capable of growing on one-carbon compounds, such as 
formate, formaldehyde, methanol and methylamine or sometimes on multi-carbon 
compounds like diethyl ether and trimethyl amines. Significance of these bacte-
ria for plant-growth promotion by the possible mechanisms include production of 
phytohormones, IAA, cytokinins, ACC-deaminase and perform nitrogen metabo-
lism by means of bacterial urease, establish efficient nitrogen (N2)-fixing sym-
bioses by nodulating legume roots; production of exopolysaccharides (EPS) and 
Poly-β-hydroxybutyrate (PHB) accumulation and abiotic stress endurance. These 
organisms induce systemic resistance by production of siderophores and proteins 
like phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3-glucanase and 
phenolic compounds. On the other hand, they also promote the biodegradation 
of polycyclic aromatic hydrocarbon (PAH). In spite of their plant-growth promo-
tional traits, commercialization of the Methylobacterium strains as bioinoculant 
have been hindered constantly.
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1  Introduction

The omnipresent occurrence of Methylobacterium on plant surfaces makes them 
a model for the study of plant-microbe interaction, and motivating approach for 
realizing the particular traits that these bacteria having on plant-growth promot-
ing attribute. They utilize the gaseous methanol that is emitted by the plants 
through the stomata as carbon and energy sources, and promote the growth of 
their host through release of different metabolites. Methylobacterium strains 
have been localized as endosymbionts within cells in the buds. One spe-
cies, Methylobacterium podarium is thought to be part of the natural human foot 
microflora. Methylobacterium have even been found living inside the human 
mouth. Actually, the members of PPFM are ubiquitous in nature and found in 
a variety of habitats including phyllosphere, rhizosphere, root nodules, dust, 
freshwater, drinking water, lake sediments, etc. (Corpe and Rheem 1989). Their 
association with more than 70 plant species makes them potential agents for plant-
growth promotion and biocontrol against diseases (Holland and Polacco 1994).

The Methylotrophs are defined as those growing on C1 compounds like meth-
anol, formaldehyde, formate and methylamine. Based on their utilization pattern, 
they are obligate methylotrophs, not able to grow on multi-carbon compounds 
but if grown on methanol or methylamine but not on methane they are strictly 
aerobic Gram-negative and classified under two genera, e.g. Methylophilus and 
Methylobacillus. In case if they utilize methane then they are called methano-
trophs. Methanotrophs are Gram-negative bacteria and classified under five genera: 
Methylomonas, Methylobacter, Methylococcus, Methylosinus and Methylocystis. 
All methanotroph forms extensive intracellular membranes and resting cells, 
either as cysts or exospores. The intracellular membranes are hypothesizing to 
be concerned in methane oxidation. On the other hand, Methylotrophs growing 
on C1 compounds and multi-carbon compounds, such as trimethylamine, dime-
thyl ether, dimethyl carbonate are called facultative methylotroph. A number of 
Gram-positive and Gram-negative bacterial genera include Bacillus, Acetobacter, 
Mycobacterium, Arthrobacter, Hyphomicrobium, Methylobacterium and Nocardia. 
Further, most of the Methylobacterium species contain property of pigmenta-
tion (pink) which is extremely slow and nodulates Crotolaria podocarpa. These 
are capable of growing on one-carbon compounds, such as formate, formalde-
hyde, methanol and methylamine. Significance of these bacteria as plant-growth 
promotion by the possible mechanisms include production of phytohormones, 
such as indole-3-acetic acid (IAA), cytokinins, nitrogen metabolism, nitrogen 
(N2)-fixing, contains 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
secretes EPS, accumulates PHB and survives in abiotic stress. These beneficial soil 
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bacteria can confer immunity against a wide range of foliar diseases by activat-
ing plant defenses, thereby reducing plant susceptibility to pathogen attack (van 
Loon et al. 1998). For many years, it was considered that beneficial microorgan-
isms could increase plant yield when inoculated in crops; however, it is increas-
ingly appreciated that classic and novel microbial signals may also directly 
participate in plant morphogenesis. Plant depends on bacteria for the removal of 
metabolic waste products generated during its growth (Holland 1997). Methanol, a 
waste product of plants, is a fitting example of this kind of relationship, degraded 
by PPFMs into simpler compounds, such as ammonium, which eventually return 
to the plant. Recently, different species of PPFM are reported to be able to ben-
efit plant development using a wide range of mechanisms, including synthesizing 
compounds to promote plant growth and increasing the uptake of nutrients and 
acting as biocontrol agents by suppressing plant pathogens in the rhizosphere. 
Several species of Methylobacter namely Methylobacterium oryzae, M. funariae, 
Methylobacterium organophilum, Methylobacterium nodulans, Methylobacterium 
populi, Methylobacterium extorquens etc. are reported for plant-growth promotion.

2  Alliance of Methylobacterium with Plants

Methylobacterium are root-nodulating symbionts (Jaftha et al. 2002), endophytic 
(Van Aken et al. 2004) and epiphytic (Omer et al. 2004) on plant surfaces.

It has been considered that plant-Methylobacterium association is primeval and 
permanent (Fedorov et al. 2011), and that plant-associated Methylobacterium is a 
co-evolved phytosymbiont (Kutschera 2007) because of symbiotic interaction. In 
fact, more than 80 % of viable bacteria isolated from leaf surfaces are members of 
the genus Methylobacterium (Tani et al. 2012).

2.1  Fate of C1 Compounds via Serine Cycle

Numerous studies have established that C1 metabolism plays the key role in the 
root colonization of Methylobacterium (Sy et al. 2005). Enzymes involved in 
methylotrophy of this microorganism have been identified and characterized in 
a metaproteomic study (Vorholt 2002). In this pathway, methanol is oxidized by 
methanol dehydrogenase (MDH) in the periplasmic space of the cell to produce 
formaldehyde (HCHO), which is then relocated into cytoplasm where part of the 
formaldehyde is oxidized to carbon dioxide (CO2) for energy generation, and rest 
is assimilated via the serine cycle (Fig. 1). The metabolism is characterized into 
three parts: Part 1 indicates bacterium which oxidizes methanol to formaldehyde 
is condensed with a tetrahydromethanopterin and further oxidized to formate. 
Formate reacts with tetrahydropterin and formyltetrahydrofolate is further con-
verted to methylenetetrahydrofolate. 
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On the other hand, Part 2 involved metabolism during the serine cycle is used 
for the assimilation of formaldehyde plus bicarbonate and Part 3 contain Acetyl-
CoA assimilation and conversion to glyoxylate proceeds via the ethylmalonyl-
CoA pathway.  The ethylmalonyl-CoA pathway, in connection with the serine 
cycle, represents an elegant solution of methanol assimilation, where methanol 
and carbon dioxide contribute nearly equal to cell carbon:

Fig. 1  C1 metabolism of the methylotroph Methylobacterium extorquens AM1. Enzymes: 1 
serine hydroxymethyl transferase; 2 serine-glyoxylate aminotransferase; 3 hydroxypyruvate 
reductase; 4 glycerate kinase; 5 enolase; 6 phosphoenolpyruvate carboxylase; 7 malate dehydro-
genase; 8 malate-CoA ligase (malate thiokinase); 9, l-malyl-CoA/b-methylmalyl-CoA lyase; 10 
β-ketothiolase; 11 acetoacetyl-CoA reductase; 12 crotonase; 13 crotonyl-CoA carboxylase reduc-
tase; 14 ethylmalonyl-CoA/methylmalonyl-CoA epimerase; 15 ethylmalonyl-CoA mutase; 16 
methylsuccinyl-CoA dehydrogenase; 17 mesaconyl-CoA hydratase; 18 propionyl-CoA carboxy-
lase; 19 methylmalonyl-CoA mutase; 20 methanol dehydrogenase. PHB polyhydroxybutyrate, Q 
quinone (Figure adapted from Smejkalova et al. 2010)
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The assimilation of acetate through the ethylmalonyl-CoA pathway can be 
expressed by the following equation:

Methylobacterium nodulans is the causal organism of nodulation of the Crotalaria 
podocarpa (Jourand et al. 2004), possesses an mxa gene cluster for coding MDH.

3  Mechanism for Plant-Growth Promotion

Methylobacterium spp. are ubiquitous in nature and colonize probably all land 
plants influencing the growth promotion by fixing atmospheric nitrogen, solubiliz-
ing insoluble phosphates, secreting hormones and producing antimicrobial com-
pounds to combat phytopathogens. Induced systemic resistance (ISR), antibiosis, 
competition for nutrients, parasitism and production of metabolites (hydrogen cya-
nide, siderophores and enzymes) suppressive to deleterious rhizobacteria are some 
of the biocontrol mechanism that induce plant growth (Jha et al. 2010).

3.1  Phosphate Solubilization

Long back, Goldstein (2003) proposed direct oxidation of glucose to gluconic acid 
(GA) as a major mechanism for mineral phosphate solubilization (MPS) in Gram-
negative bacteria. As a result of acidification of the surrounding medium, soluble 
orthophosphate ions (H2PO4

−1 and HPO4
−2) can be readily released. Nowadays, it 

is widely accepted that a large number of microbes produce a range of low-molec-
ular weight organic acids, such as acetate, lactate, oxalate, tartarate, succinate, 
citrate, gluconate, ketogluconate, glycolate, etc., which are considered to solubi-
lize insoluble mineral phosphates. It could be assumed that any gene involved in 
organic acid synthesis might have an effect on this character (Ahemad and Khan 
2010). In Methylobacterium, by screening genomic libraries of mineral phosphate 
solubilization (MPS) bacteria for gluconic acid production traps Pyrroloquinoline 
quinine (PQQ) (Pyrroloquinoline quinine)  biosynthesis genes which act as a pros-
thetic group of bacterial quinoprotein dehydrogenase.  PQQ belongs to the family 
of quinone cofactors that has been recognized as the third class of redox cofac-
tors following pyridine nucleotide and flavin-dependent cofactors (Liu et al. 1992). 

4C1 (HCHO)+ 5CO2 + 8NAD(P)H+ 8H+
+ 8ATP+ 1Coenzyme

→ 1C3(glycerate−2−phosphate)+ 1C4(oxaloacetate)

+ 1C2(acetyl−CoA)+ 8NAD(P)+ + 2 [H]+ 8ADP+ 7 Pi.

3 acetyl−CoA+ 2CO2 + 2NADPH+ 2H+
+ ATP

→ malate+ succinyl− CoA+ 2CoA+ 2[H]+ 2NADP+

+ ADP + Pi (Smejkalova et al. 2010)
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It is a prosthetic group required by several bacterial dehydrogenases, including 
methanol dehydrogenase (MDH) of Gram-negative methylotrophs and some glu-
cose dehydrogenases. PQQ is derived from two amino acids, tyrosine and glu-
tamic acid (Houck et al. 1991) but the pathway for its biosynthesis is unknown. 
Sequence analysis of this gene (Liu et al.1992) suggested its probable involvement 
in the synthesis of the enzyme PQQ synthase, which directs the synthesis of PQQ, 
a cofactor necessary for the formation of the holoenzyme glucose dehydrogenase 
(GDH)-PQQ. This enzyme catalyzes the formation of gluconic acid from glucose 
by the direct oxidation pathway (Goldstein 2003).

In M. extorquens AM1, the genes for PQQ synthesis are found in two clusters, 
pqqAB (C/D) E and pqqFG. These gene designations standardize the nomencla-
ture with that of Klebsiella pneumoniae. These genes in Methylobacterium strains 
were formerly called pqqDGCBA. In M. extorquens AM1, pqqC and pqqD are not 
separate genes. Instead, they are fused into a single gene, pqqCD.

3.2  Plant Hormone Production

Plant-growth promotion by Methylobacterium include synthesis of the major 
plant hormones IAA and cytokinin, besides breakdown of plant produced eth-
ylene by production of ACC deaminase as stated by (Saraf et al. 2010). In 
the Methylobacterium, genes that encode enzymes related to auxin biosyn-
thesis, such as amine oxidase, aldehyde dehydrogenase, cyanide hydratase, 
N-acyltransferase, nitrile hydratase, amidase have been reported (Kwak et al. 
2014). Methylobacterium is able to produce IAA (Ivanova et al. 2001), suggesting 
that its inoculation can increase IAA accumulation in plants that leads to induce 
plant growth and development (Madhaiyan et al. 2006a).

Cytokinins can be produced by bacteria by at least two pathways. De novo 
synthesis involves the direct isopentenylation of AMP catalyzed by dimethyl 
alkyltransferase (DMAT), which was first characterized in Agrobacterium tume-
faciens (Golberg et al. 1984) while the second pathway of bacterial cytokinin pro-
duction involves turnover of modified tRNA which also operate in higher plants. 
The origin of cytokinins resulting from tRNA degradation involves isopentenyla-
tion of adenine by isopentenyl tRNA transferase, the product of the miaA gene. 
In Methylobacteria, this modified adenine is subsequently methylated or hydroxy-
lated. It is hypothesized that upon turnover of tRNA the modified adenine residue 
is released as a free cytokinin. Methylobacteria prefer the second pathway for the 
production of cytokinins. Actually, tRNA is the source of low-level trans-zeatin 
(active and ubiquitous form of the naturally occurring cytokinins) production. 
Infact, M. extorquens produces the cytokinin trans-zeatin at low levels in pure cul-
ture and excrete it into the culture medium (Koenig et al. 2002). Earlier, Ivanova 
et al. (2000) reported the presence and expression of genes controlling the syn-
thesis and secretion of cytokinins by the PPFM Methylobacterium mesophilicum 
VKM B-2143.
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3.3  Nitrogen Fixation

The biological reduction of nitrogen to ammonia (NH3) can be performed only 
by some prokaryotes with the presence of the nitrogenase enzyme (Menna et al. 
2006). M. nodulans was originally isolated from Crotalaria podocarpa (Sy 
et al. 2001) and it was the few nodulating Methylobacterium species reported so 
far (Kwak et al. 2014). M. nodulans ORS2060 was reported to contain the nifH 
gene (involved in nitrogen fixation) and to induce N2-fixing nodules on the 11 
leguminous plants (Jourand et al. 2004). Kumar et al. (2009) reported that the 
ultimate aim of establishing endophytic interaction between diazotrophic bacte-
ria and nonlegumes is to fix N2 which later transferred the fixed N2 to the plants. 
Azorhizobium caulinodans and Methylobacterium species were capable of N2-
fixing in a free-living condition. It was anticipated that the intercellular coloniza-
tion of rice might provide a niche for N2 fixation. They isolated Methylobacterium 
sp. NPFM-SB3 from Sesbania rostrata stem nodules possess nitrogenase activity 
and nodA genes.

3.4  1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase 
Production

Rhizobacterial enzyme, ACC deaminase (EC 4.1.99.4), which regulates ethylene 
production by metabolizing ACC (an intermediate precursor of ethylene biosyn-
thesis in higher plants) into α-ketobutyrate and NH3 (Shaharoona et al. 2007). 
The microbial enzyme ACC deaminase cleaves ACC irreversibly, this being the 
immediate precursor of ethylene in plants (Saraf et al. 2010). This enzyme facil-
itates plant growth as a consequence of the fact that it sequesters and cleaves 
plant produced ACC, thereby lowering the level of ethylene in the plant. In turn, 
decreased ethylene levels allow the plant to be more resistant to a wide variety of 
environmental stresses, all of which induce the plant to increase its endogenous 
level of ethylene; stress ethylene exacerbates the effects of various environmen-
tal stresses. ACC deaminase activity is quantified by monitoring the production of 
either NH3 or α-ketobutyrate, the products of ACC hydrolysis. However, at pre-
sent, monitoring the amount of α-ketobutyrate is more widely used by researchers. 
The presence of ACC deaminase was also verified by Fourier Transform Infrared 
(FTIR) spectra. FTIR spectra clearly shows the peak at 1683 cm−1 which exhib-
its the presence of ketonic group (–C=O). Whereas, 3452 cm−1 peak shows the 
presence of amino group (–NH2) (Jha et al. 2012). Methylobacterium also carry 
the acdS gene that encodes ACC deaminase enzyme converts ACC into NH3 and 
α-ketobutyrate. An analysis of the genomes of Methylobacterium species, such as 
M. oryzae, M. nodulans and M. radiotolerans, contain this ACC deaminase gene 
(Kwak et al. 2014) and that M. nodulans and M. radiotolerans are able to use ACC 
as a nitrogen source by the actions of ACC deaminase, reducing ethylene levels 
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(Fedorov et al. 2013) and consequently the stress ethylene response in the host 
plant. More recently, Joe et al. (2014) reported that the ACC deaminase-positive 
M. oryzae CBMB20 with Azospirillum brasilense CW903 strain reduced ethylene 
levels in plants.

3.5  Exoploysaccharides (EPS) Production

EPS play vital roles in a variety of processes among bacteria, such as formation of 
biofilm (Bhaskar and Bhosle 2005), protection of bacterial cell from desiccation 
(Pal et al. 1999), maintaining primary cellular functions and antibacterial activ-
ity against predators, gelling ability, pollutant degradation kinetics (Fusconi and 
Godinho 2002), bioremediation activity and plasma substituting capacity (Allison 
1998). Breuer and Babel (1999) reported the production of EPS in M. rhodesiu-
num under ammonium limitation conditions. The high amount of PHB accumu-
lation also observed in Methylobacterium strains (Alvarez et al. 1996) in some 
psychrophilic and psychrotrophic crude oil-utilizing marine bacteria, accumulate 
lipid storage compounds in the cytoplasm under nitrogen limiting conditions when 
the C:N ratio becomes high. Woo et al. (2012) had compared the growth pattern, 
floc yield, EPS production and PHB accumulation, resistance to osmotic and acid 
stress in Methylobacterium strains CBMB20, CBMB27, CBMB35 and CBMB110.

4  Biocontrol Potentials

In recent decades, interaction studies have reflected that endophytic microor-
ganisms may enhance plant protection against pathogen attacks. Biocontrol of 
pathogens can be achieved by several mechanisms viz: ISR, siderophore pro-
duction, lytic enzyme production, etc. Ardanov et al. (2012) studied the abil-
ity of Methylobacterium sp. IMBG290 to induce resistance in potato (Solanum 
tuberosum L.) cultivars against Pectobacterium atrosepticum, Phytophthora 
infestans and Pseudomonas syringae pv. Tomato DC3000, as well as M. 
extorquens DSM13060 in pine (Pinus sylvestris L.) against Gremmeniella abi-
etina. In earlier studies, Madhaiyan et al. (2006b) observed that seed treatment 
with Methylobacterium sp. induced significant protection against Aspergillus 
niger and Sclerotium rolfsii in groundnut. Further, the biocontrol potential of 
Methylobacterium spp. against several fungal pathogens, such as Fusarium udum, 
Fusarium oxysporum, Pythium aphanidermatum and Sclerotium rolfsii was evalu-
ated in vitro by Poorniammal et al. (2009).
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4.1  Induced Systemic Resistance (ISR)

The state of enhanced defensive capacity of plant’s innate immunity elicited by 
specific mechanism through Methylobacterium against biotic challenges is defined 
as ISR. Madhaiyan et al. (2004) reported that the treatment with Methylobacterium 
sp. strain PPFM-Os-07 increased activities of various defense-related enzymes 
like chitinase, Phenylalanine ammonia lyase, β-1,3-glucanase, peroxidase and 
PR-proteins, which accumulated in paddy with the onset of ISR. This enhanced 
state of resistance is effective against a broad range of pathogens and parasites (van 
Loon 2000). The two most clearly defined forms of induced resistance are: (1) SAR 
and (2) ISR, which can be differentiated on the basis of the nature of the elicitor. 
SAR is induced either upon infection by an avirulent pathogen or upon restricted 
infection by a virulent pathogen and depends on the synthesis of salicylic acid (SA) 
by the host. It is effective against pathogens that are restricted by SA-dependent 
basal resistance responses. On the other hand, ISR is triggered by selected strains 
of nonpathogenic rhizobacteria and does not require SA but does depend on the 
responsiveness of the plant to jasmonic acid (JA) and ethylene. Due to this reason, 
tolerance to abiotic stresses occurred in plants (Mantelin and Touraine 2004).

4.2  Siderophores Production

The genus Methylobacterium, as a member of PPFM, has ubiquitous occur-
rence in the environment and plays an important role in iron acquisition. Lacava 
et al. (2008) concluded that Methylobacterium spp. have no ability of producing 
catechol-type siderophores, but are capable to produce hydroxamate-type sidero-
phores. In their study, in vitro growth of Xylella fastidiosa subsp. is stimulated 
by the presence of a supernatant siderophore of endophytic M. mesophilicum. 
Silva Stenico et al. (2005) also reported that a strain of M. extorquens isolated 
from Citrus sinensis was able to produce hydroxamate type of siderophore but 
negative for catechol type. Recently, Vaidehi and Sekar (2012) reported that 
Methylobacterium phyllosphaerae MB-5 and CBMB-27 contained hydroxamate 
type of siderophore during iron limitation.

4.3  Quorum Sensing

Quorum sensing (QS) systems use N-acyl-homoserine lactones (AHLs) as signaling 
molecules, commonly found in Gram-negative bacteria that live in association with 
plants (White and Winans 2007). QS system allows bacteria to function as multicel-
lular organisms, because the extracellular concentration of autoinducer increases 
with bacteria population growth, after attaining a determinate number. This molecule 



62 C.K. Jha et al.

disseminate back into the bacteria and regulate the transcription of different genes that 
may be related with the secretion of virulence factors, biofilm formation, sporulation, 
exchange of DNA and others (Zhu and Sun 2008). Although, several studies demon-
strate the importance of the association between Methylobacterium plants (Dourado 
et al. 2012) and that members of the Methylobacterium genus produces AHL (Pomini 
et al. 2009). Recently, Dourado et al. (2013) reported the role of plant exudates and 
AHL on the expression of bacterial genes that are involved in bacterium plant-inter-
action. It was observed that AHL induces all analyzed genes mxaF, acdS, crtI and 
sss evade plant-microbe interactions. The gene sodium solute symporter (sss) is a 
transport gene responsible for the symport transport of solute with the sodium (Scier 
1998). Genes crtI and acdS genes are associated with the stress response (Sandmann 
2009) and plant metabolism (Hardoim et al. 2008). Phytoene dehydrogenase gene 
(crtI) codifies an enzyme that catalyzes the denaturation reaction resulting in the lyco-
pene synthesis that protects the cell against oxidative damages and the acdS gene 
responsible for the degradation of ACC by ACC deaminase enzyme. Enhanced pro-
duction of AHL corresponding to biofilms formation cannot be ruled out.

5  Applications

Methylobacterium spp. exhibited a vast range of biotechnological applications 
in the field of agriculture and industry. Recently, it was established as a potential 
bioinoculant for the sustainable agriculture.

5.1  Poly-β-Hydroxybutyrate (PHB) Accumulation

Poly-β-hydroxybutyrate (PHB) is an intracellular storage compound, which 
provides a reserve of carbon and energy in several microorganisms. It has been 
argued that methanol would appear as an alternative substrate for PHB production 
because of several advantages including low price and its complete water miscibil-
ity. Lopez-Cortes et al. (2008) suggested the presence of bright cytoplasmic inclu-
sions as preliminary step for qualitative PHB determination. Methylobacterium sp. 
shows well-defined brightly refractile cytoplasmatic inclusions under phase con-
trast microscopy suggesting PHB accumulation. Zahra et al. (2009) reported the 
production of PHB using methanol by Methylobacterium extorquens DSMZ 1340.

5.2  Nitogen-Fixing Biofertilizers

Methylobacterium play a vital role by mediating nutrient transformation from 
the soil to plants. Rekadwad (2014) reported a thermophilic M. organophilum 
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(N2)-fixing species isolated from hotspring originated mud is able to fix dinitro-
gen at elevated temperature. During last decade, a first report appeared in the year 
2001 by a group of scientists about the symbiotic association of M. nodulans to 
that of Crotolaria podocarpa. This root-nodulating bacterium fixes nitrogen in 
symbiosis with legumes (Sy et al. 2001)

5.3  Seed Germination and Plant-Growth Promotion

The seed resident Methylobacterium is a contributing factor to vigor and seed 
viability. The cytokinins produced by these PPFMs are responsible for their stim-
ulatory effect on germination (Freyermuth et al. 1996). Role of some other com-
pounds to contribute for the enhancement of germination and growth of plants 
cannot be ruled out. Anitha (2010) reported that increase in maize seeds germina-
tion increased by 86 % to those seeds treated with 0.5 mg/l of benzyl adenine and 
0.5 mg/l of zeatin (Holland and Polacco 1992). Wei et al. (2014) reported that ger-
mination energy and the germination rate decreased with increasing phenanthrene 
concentrations in wheat. Since date back in 1995, Holland and Polacco granted 
a patent. They coated seeds with at least one PPFM to improve seed germina-
tion, affirming that PPFM can be used to produce cytokinin. Verginer et al. (2010) 
observed that M. extorquens DSM 21961 increase the production of two furanoid 
compounds, 2,5-dimethyl-4-hydroxy-2H-furanone (DMHF) and 2,5-dimethyl-
4-methoxy-2H-furanone in vitro, which are responsible for strawberry flavor.

5.4  Induced Pathogenesis

Methylobacteria induces systemic resistance against diseases due to siderophores 
and enzymes like phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3-
glucanase and phenolic compounds. Methylobacterium induce defense programs, 
such as SAR and ISR, thus reducing phytotoxic microbial communities. Further, 
bacteria also elicit induced systemic tolerance (IST) to abiotic stress. Proposed 
signal molecules for PGP by Methylobacterium include synthesis of IAA and 
cytokinin besides breakdown of plant-produced ethylene by bacterial production 
of ACC deaminase. Although low-molecular weight plant volatiles, such as terpe-
nes, jasmonates and green leaf components have been identified as potential signal 
molecules for plants and organisms of other trophic levels (Farag and Pare 2002). 
Additional signals from microbes have been found to play a role in plant morpho-
genetic processes, including the N-acyl-l-homoserine lactones (AHLs) and vola-
tile organic compounds (VOCs).
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5.5  Plant-Growth Promotion

Methylobacteria a significant organism used for plant-growth promotion by pro-
ducing promising mechanisms which include production of phytohormones, 
establish efficient (N2)-fixing symbioses by nodulating legume roots, ACC 
deaminase-production, exopolysaccharides (EPS) Production, PHB (Poly-β-
hydroxybutyrate) accumulation and abiotic stress endurance. In addition, certain 
isolated Methylobacterium strains which produce vitamin B12 suggested stimu-
lating plant development. Methylotrophic bacteria are being associated with plant 
nitrogen metabolism through bacterial urease production (Holland and Polacco 
1994). However, the overall nature of their relationship with plants is as yet poorly 
understood, and the biological significance of these bacterial species is still under 
infancy and yet to be fully explored (Abanda-Nkpwatt et al. 2006).

5.6  Bioremediation

Methylobacterium sp. contributes to the bioremediation process via multi-
ple modes of action, because these microorganisms can degrade and mineralize 
organic xenobiotic compounds allowing them to serve directly as contaminant 
degraders. The synergistic action of both Methylobacterium and the plants lead 
to increased availability of hydrophobic compounds, affecting their degradation. 
Ventorino et al. (2014) reported the biodegradation of polycyclic aromatic hydro-
carbon (PAH) by M. populi VP2, a plant growth promoters. Methylobacterium is 
capable of the metabolism of monochlorinated, dichlorinated and aliphatic sub-
strate. Jing et al. (2008) reported that Methylobacterium sp. HJ1 is able to degrade 
the herbicide 2,2-dichloropropionic acid by removal of the halogen and subse-
quent metabolism of the product for energy. d,l-2-chloropropionate also supported 
good growth of the organism, but 3-chloropropionate, monochloroacetate and 
dichloroacetate were not utilized. Cell-free extracts of the 2,2-dichloropropionate-
grown bacteria converted 2,2-dichloropropionate into pyruvate with the release of 
two chloride ions for each molecule of pyruvate formed.

5.7  A Model Gene Expression System for Recombinant 
Protein

Research suggests that the Methylobacterium is proved as a model organism or 
an interesting candidate for overexpression of recombinant proteins. Marx and 
Lidstrom (2001) developed a series of new expression vectors for M. extorquens 
AM1 enabling efficient expression of reporter genes. One of the expression vectors, 
pCM110, is a 5.8 kb IncP-derived plasmid possessing the strong M. extorquens 
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native promoter of methanol dehydrogenase (MDH) (PmxaF). When compared to 
a similar vector containing only the lacZ promoter (PlaC), PmxaF led to a 50-fold 
increase in the expression of the reporter gene xylE (Marx and Lidstrom 2001). 
Belanger et al. (2004) observed the usefulness of two distinct vectors (pRK310 and 
pCM110) and promoters (PlaC and PmxaF) for heterologous expression in a high 
cell density for fed-batch fermentation process using M. extorquens ATCC 55366.

6  Concluding Remarks

Microbes being an integral component of any soil ecosystem provide life to the 
soil. Methylotrophs are a polyphyletic group of microorganisms capable of utiliz-
ing C1 compounds as electron donor and of the most abundant bacteria, which 
is able to grow on methanol as well as on multi-carbon compounds as sole car-
bon and energy source. Continued research with colonization and biofilm forma-
tion by these bacterial genera also holds potential for developing biofertilizer and 
biocontrol agents that may be self-perpetuating within the colonizing host plants. 
Focusing research in these areas may also be aimed to establish Methylobacterium 
sp. as promising plant-growth promoter and a model bioremediator.
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Abstract This review addresses the ability of some soil bacteria to promote plant 
growth due to production of substances of phytohormonal nature. We discuss pos-
sible mechanisms of the action of individual hormones (auxins, cytokinins, absci-
sic acid, gibberellins, jasmonic acid and salicylic acid) produced either by plants 
or bacteria on plant growth and development, their supply with mineral nutrients 
and water and defense responses against phytopathogens.

Keywords Plant growth-promoting bacteria · Rhizosphere · Plant hormones ·  
Auxins · Cytokinins · Abscisic acid · Gibberellins · Jasmonic acid · Salicylic 
acid

1  Introduction

Promotion of plant growth by a range of bacteria attracts ever increasing atten-
tion of researchers. The interest to these bacteria is due, first of all, to possibility 
of increasing plant yield, which allows recommending their application as fertiliz-
ers (Vessey 2003) (Table 1). Beneficial effects on plant growth have been shown 
for numerous bacterial species and strains isolated from rhizosphere and plant leaf 
surface (Kishore et al. 2005; Avis et al. 2008). Promotion of plant growth has also 
been detected under the influence of endophytic bacteria capable of colonizing 
tissues and residing within plant hosts (Weyens et al. 2009). Representatives of 
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many species of genera Azospirillum, Bacillus, Enterobacter, Gluconacetobacter, 
Paenibacillus and Pseudomonas belong to plant growth-promoting bacteria 
(PGPB) (Maheshwari 2010). Since PGPB are mostly isolated from natural plant 
habitats, their application is an attractive alternative to chemical fertilizers ena-
bling reduction of environment contamination (Cakmakci et al. 2007). However, 
efficacy of the action of plant growth-promoting bacteria depends on plant species, 
conditions of their growth and other factors (Marulanda et al. 2009), increasing 
the workload of their testing and developing recommendations for their applica-
tion. Volume of work increases in geometrical progression due to frequent appli-
cation of mixtures of several bacterial species and strains (Zaidi and Khan 2005; 
Pandey and Maheshwari 2007). Clearer understandings of the nature of PGPB 
action might reduce labor inputs in the development of effective technologies of 
their application and selection of bacterial combinations of several PGPB species 
and strains.

Stimulation of plant growth by bacteria is attributed to three of their main prop-
erties: (1) production of plant hormones (Dodd et al. 2010); (2) bacteria-related 
increases in availability of mineral nutrients for plants (Ohkama-Ohtsu and Wasaki 
2010) (availability of water may be added to this category, from our point of 
view); (3) increased resistance to pathogens (Van Loon 2007). These properties 
may be apparent in different PGPB species or combined in the same species, how-
ever, each of them is mostly considered separately (Kannan and Sureendar 2009). 
Meanwhile, study of interaction of these properties of PGPB may contribute to 
better understanding the nature of their action on plants. In the present review, we 
made an attempt to reveal the role of plant hormones produced by microorganisms 
for the control of not only plant growth, but the availability of mineral nutrients 
and water as well as plant protection against pathogens. Since, beneficial effect of 
PGPB is not limited to production of plant hormones, some other mechanisms of 
plant growth promotion by PGPB will be mentioned in the present review.

Table 1  Effect of pre-sowing treatments of wheat seeds with Bacillus subtilis IB-22 bacterial 
suspensions (colony forming units per ml) on wheat yield

Means ± SE are shown. Yield components measured: grain weight, number of spike-bearing till-
ers (n = 50) and numbers of surviving plants per bed (1.4 m2 per bed, n = 10)
An asterisk (*) indicates significant difference between plants grown from seeds, pretreated and 
untreated with bacteria (*P < 0.05, **P < 0.01 and Student’s t test)

Parameters Bacteria concentration, CFU/seed

0 105 106 107

Yield (ton ha–1) 3.9 ± 0.5 4.5 ± 0.4* 5.6 ± 0.7* 4.8 ± 0.5*

Grain weight (g plant–1) 2.9 ± 0.1 3.5 ± 0.1** 4.1 ± 0.2** 3.9 ± 0.3**

Number of spike-bearing  
tillers

2.4 ± 0.1 3.1 ± 0.1** 3.4 ± 0.2** 3.0 ± 0.2**

Survived plants per bed 185 ± 8 239 ± 11 256 ± 9 231 ± 10
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2  Production of Plant Hormones by Plant  
Growth-Promoting Bacteria

Capacity to produce plant hormones is discovered in many plant growth-pro-
moting bacteria. Thus, auxins have been discovered in the culture media of 
Azospirillum, Pseudomonas and others (Spaepen et al. 2007), cytokinins—in that 
of Azotobacter vinelandii (Azcon and Barea 1975), Pantoea agglomerans (Omer 
et al. 2004) and Bacillus subtilis (Arkhipova et al. 2005, 2007) (Fig. 1), gibber-
ellins—in Proteus mirabilis, P. vulgaris, Klebsiella pneumoniae (Karadeniz et al. 
2006), abscisic acid (ABA)—in Azospirillum brasilense (Cohen et al. 2009), 
jasmonic acid—in Bacillus pumilus (Forchetti et al. 2007) and Achromobacter 
xylosoxidans (endophytic bacteria of sunflower), salicylic acid—in Pseudomonas 
aeruginosa—(De Meyer et al. 1999) and all those substances belong to the main 
groups of plant hormones. It is well-known that plant hormones influence plant 

Fig. 1  Growth (expressed 
as optical density of culture 
media, OD) and accumulation 
of cytokinins (zeatin + its 
riboside and nucleotide) in 
culture media of cytokinin-
nonproducing strain (a) and 
cytokinin-producing strain 
(b). Data are means ±SE of 
nine replicates
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growth and resistance (Bari and Jones 2009; Shakirova et al. 2010). Therefore, 
it is not surprising that growth-promoting action of bacteria is attributed to their 
capacity to synthesize plant hormones. However, production of plant hormones 
in vitro does not mean by itself that PGPB synthesize them under natural envi-
ronment and that uptake of microbe-mediated hormones by plants may influence 
hormone level. This explains the importance of reports on the changes in hor-
mone content in plants as influenced by PGPB (Zaidi and Khann 2005). One more 
approach capable of confirming the importance of plant hormone production by 
PGPB is the use of mutant organisms (bacteria or plants) that lost sensitivity to 
hormones (López-Bucio et al. 2007). The results of application of this approach 
are considered below. Alongside with the production of hormones, capacity to 
destroy hormones was detected in some PGPB. Thus, there appeared ever growing 
number of reports on PGPB producing ACC deaminase, which catalyzes decay of 
1-aminocyclopropane-1-carboxylate (ACC—precursor of gaseous hormone ethyl-
ene) (Shaharoona et al. 2006). Since, ethylene is frequently considered as growth 
inhibitor, the decline in its production by plants due to decay of its precursor by 
bacteria, may promote plant growth.

It is of interest that production of plant hormones is characteristic not only 
of PGPB, but of pathogenic microorganisms, too (Pertry et al. 2009). This par-
adox may be explained by the difference in the level of plant hormone produc-
tion between pathogenic and growth-promoting microorganisms. The former are 
believed to produce more plant hormones than the latter (Persello-Carteaux et al. 
2003). It is likely that plant hormones produced by PGPB optimize plant hormonal 
status, while it is disordered by plant hormones produced by pathogenic microor-
ganisms. Consequences for plants of any changes in hormonal status are discussed 
below.

3  Effects of Phytohormones on Plant Growth

It is postulated that growth promotion is explained by synthesis of plant hormones 
of PGPB which is based on an oversimplified assumption that all hormones stimu-
late plant growth. This assumption is not correct, since hormones are capable of 
inducing opposite effects depending on the type of hormone and its concentration. 
Let’s consider separately the effects of each group of hormones on plants.

3.1  Auxins

The ability of some bacteria to accumulate auxins in culture media after addition 
of auxin precursors (tryptophan) was detected by means of Salkowski reagent 
for indolic substances (Khalid et al. 2004). This comparatively simple approach 
allowed to discover the capacity to synthesize auxins in many microorganisms 



73Role of Bacterial Phytohormones in Plant Growth …

(Persello-Carteaux et al. 2003; Jog et al. 2014). It is necessary to mention that 
specificity of this reaction was not high (Glickmann and Dessaux 1995), and it is 
not well recognized for assay of auxins in plants themselves. Still, application of 
other methods confirmed that inoculation of auxin producing bacteria into rhizos-
phere increases content of these hormones in plants (Ali et al. 2009). Involvement 
of auxins in activation of plant growth by PGPB has been confirmed in experi-
ments on plants with genetically disturbed auxin transport. Auxin producing bacte-
ria failed to stimulate the growth of these plants (Choudhary et al. 2009).

Production of auxins by PGPB is usually associated with activation of root 
growth (Spaepen et al. 2007). Study of cell-type specific developmental markers 
and employing genetic and pharmacological approaches demonstrated the cru-
cial role of auxin signaling and transport in rhizobacteria-stimulated changes in 
the root system architecture of Arabidopsis (Zamioudis et al. 2013). In this case, 
it is important to remember that root growth is a complicated process consisting 
of their elongation and branching, which are differently regulated by hormones 
(Casson and Lindsey 2003; Wittenmayer et al. 2005). Auxin-induced increase in 
cell expansion is one of their best known properties (Rayle and Cleland 1980). 
Apparent paradox is in that exogenous auxins frequently inhibit root elongation 
(Teale et al. 2005). This property of auxins is well-known to molecular genet-
ics and used for screening auxin-insensitive mutants (e.g. Stepanova et al. 2007). 
Nevertheless, stimulation of root elongation by auxin producing bacteria (Khalid 
et al. 2004) is not surprising. For some plant species, low concentrations of aux-
ins have been shown to increase the rate of root elongation (Silva and Davies 
2007). Thus, auxin producing bacteria resemble this regularity. PGPB are likely 
to produce auxins in the optimal range of concentration stimulating root elonga-
tion (Vacheron et al. 2013). It is important that high level of auxin production is a 
characteristic of bacteria that disturb root growth (Persello-Carteaux et al. 2003). 
Bacteria capable of inactivating auxins partially decreased growth inhibiting 
action of other microorganisms with excessively high level of auxin production 
during their co-inoculation (Leveau and Lindow 2005).

Stimulation of root branching by auxins is well-known and not controver-
sial (Casson and Lindsey 2003), making it easy to explain increased branching 
induced by auxin producing bacteria, although it is more difficult to register this 
effect of PGPB than changes in root elongation. One more property of auxins is 
important for explaining plant growth promotion by auxin producing bacteria. It is 
in auxin-induced stimulation of root hair formation, playing important role in ion 
uptake (Wittenmayer et al. 2005).

Auxins are capable of influencing growth of not only roots, but shoots too 
(Rayle and Cleland 1980). This may explain the fact that auxin producing bacteria 
increased growth of both roots and shoots (Ali et al. 2009). In this case, the effect of 
bacteria inoculation on shoot growth may also be achieved through increased uptake 
of mineral nutrients due to faster root growth. This mechanism is discussed below. 
Here, it is important to emphasize that effect of microbe auxins on shoot growth is 
infrequently discussed, which is likely to be due to poorer knowledge on the trans-
port of this hormone form roots to shoots compared to that of ABA and cytokinins.
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3.2  Cytokinins

Production of cytokinins was discovered in fewer species and strains of PGPB in 
comparison to that of auxins (Veselov et al. 1998; Dodd et al. 2010). This is likely 
due to difficulties in cytokinin assay than natural occurrence of cytokinin-produc-
ing bacteria. Inoculation of plant rhizosphere with cytokinin-producing bacteria 
resulted in increased accumulation of biomass of either shoots or roots (Arkhipova 
et al. 2005, 2006). Elevated cytokinin concentration was detected in plants treated 
with cytokinin-producing bacteria confirming their effect on plant hormonal sta-
tus. Simulation of plant growth under the influence of cytokinin-producing bac-
teria should not appear surprising since cytokinins have been discovered as 
substances necessary for plant cell division in vitro (Miller et al. 1956). Plant 
treatment with cytokinin-producing bacteria led to greater increase in biomass of 
shoots than of roots resulting in reduced ratio of root-to-shoot mass (Arkhipova 
et al. 2005) (Fig. 2). Such a reaction (allocation to shoot growth) is the character-
istic of cytokinins, manifested either in plants treated with exogenous cytokinins 
or in transgenic plants with increased capacity to synthesize these hormones (Van 
Loven et al. 1993). According to available literature data, cytokinins inhibit both 
root elongation and their branching (Werner et al. 2003). Nevertheless, the data on 
weak development of root system in mutant plants with disturbances in cytokinin 
signaling (Argyros et al. 2008) serve as an evidence of necessity of cytokinins for 
normal root growth and development. Still, roots of plants treated with cytokinin-
producing bacteria were shorter than in control plants (Arkhipova et al. 2005). The 
absence of clear inhibitory action of cytokinins produced by these bacteria may 
be due to their presence in a complex with polysaccharides (Veselov et al. 1998), 
gradual diffusion of cytokinins from this complex preventing their inhibitory 
action. As in the case of auxins, the study of hormone producing microorganisms 
enables better understanding the nature of cytokinin action on root growth.
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Fig. 2  Time course of fresh weight of roots and shoots, after inoculating the root environment of 
12-days-old lettuce plants with Bacillus subtilis suspension culture (cytokinin-producing strain)
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3.3  Abscisic Acid

Synthesis of this hormone was discovered in some PGPB (Dodd et al. 2010). It 
is not as easy to couple production of ABA by PGPB with promotion of plant 
growth as in case of cytokinins or auxins, since most of the researchers still con-
sider this hormone to be a growth inhibitor. Nevertheless, this assumption is being 
changed. It turned out that mutant plants with decreased capacity to synthesize 
ABA were small in size, suggesting the necessity of ABA for their normal growth 
and development (Dodd et al. 2010). Although the mechanism of direct effect of 
ABA on plant growth is still unclear, there is no doubt that this hormone maintains 
cell extension due to normalization of water relation in plants (Fricke et al. 2004; 
Kudoyarova et al. 2011). ABA induces stomatal closure resulting in a decline 
in water evaporation from leaf surface and enabling plant water economy under 
drought (Bari and Jones 2009). Alongside with this effect, one more mechanism 
of ABA action on plant water relations has been revealed recently. It is in the acti-
vation of membrane water channels (Maurel et al. 2008). Their increased activity 
reduces hydraulic resistance and facilitates water flow from roots to shoots. We 
shall return to this mechanism of ABA action. Since expression of numerous genes 
implicated in stress response is ABA-dependent (Yoshida et al. 2014), microorgan-
isms producing this hormone are likely to increase plant stress tolerance (Spaepen 
2015). Bacterial strains mediating root ABA concentrations and growth by metab-
olizing ABA were isolated from the rhizosphere of rice (Oryza sativa) (Belimov 
et al. 2014).

3.4  Gibberellins

Discovery of this group of plant hormones is linked to the study of pathogen fun-
gus Gibberella fujikuroi. Infection of rice with this pathogen resulted in exces-
sive stem elongation due to the action of gibberellins produced by the fungus 
(Robert-Seilaniantz et al. 2007). It was shown that plants themselves are capable 
of synthesizing gibberellins. Modern concept suggests that growth promotion by 
gibberellins is due to gibberellins-induced degradation of DELLA transcription 
factor known to repress expression of some genes necessary for maintaining plant 
growth (Achard et al. 2003). Some PGPB have been shown to synthesize gibber-
ellins (Karadeniz et al. 2006; Kang et al. 2014), and this may also explain how 
PGPB promote plant growth. The best documented case for the role of gibberellins 
produced by microbes in plant growth promotion is the reversion of the dwarf phe-
notype of plants by inoculation with gibberellins-producing Azospirillum strains 
(Spaenen 2015).
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3.5  Ethylene

This gaseous hormone plays important role in the control of plant growth. As 
in the case of ABA, most researchers consider ethylene to be a growth inhibitor 
(Achard et al. 2003). This is an over simplified assumption, since under certain 
conditions (flooding and shading) ethylene contributes to maintaining stem elon-
gation (Pierik et al. 2007). However, growth inhibiting action of ethylene appears 
more frequently. Mutants missing sensitivity to ethylene were characterized by 
longer roots compared to wild-type plants. Inhibition of root elongation by eth-
ylene has been shown due to stabilization of DELLA-factor. Nevertheless, some 
reviews emphasize dual action of ethylene and compare it with mythic two-faced 
Janus (Pierik et al. 2007). Thus, unlike high concentrations of ethylene, its low 
concentrations activate plant growth (that of root,—first of all). Growth stimula-
tion of the root in seedling stage by the ethylene precursor ACC was dose-depend-
ent and affected by Herbaspirillum frisingense inoculation (Straub et al. 2013). 
Ethylene production has been detected in a range of bacteria (Dodd et al. 2010). 
However, bacteria, producing ACC deaminase, which catalyzes the decay of ethyl-
ene precursor, are more frequently discussed (Belimov et al. 2009). Decay of ACC 
in soil by this kind of bacteria facilitates its diffusion from roots to rhizosphere 
decreasing production of ethylene in plants and contributing to root elongation. It 
is important that unlike synthetic inhibitors, enabling complete block of ethylene 
action, ACC deaminase producing bacteria do not exclude its action on plants, but 
decline concentration of ethylene to the level enabling stimulation of root growth. 
Ethylene is also involved in plant resistance to pathogens (Wang et al. 2002). 
This aspect of action of ACC deaminase producing bacteria is discussed below. 
Contrary to the wild-type plants in which Bacillus megaterium stimulated growth 
rates, PGPR caused growth inhibition in ABA-deficient mutant plants (Porcel et al. 
2014). Over-accumulation of ethylene detected in ABA-deficient mutant plants 
indicated that maintenance of normal plant endogenous ABA content may be 
essential for the growth-promoting action of B. megaterium by keeping low levels 
of ethylene production.

3.6  Jasmonic Acid and Salicylic Acids

According to the modern classification these substances belong to plant hormones 
(Shakirova et al. 2010). Their main role in plants is in triggering defense responses 
enabling plant resistance to pathogens. A range of PGPB has been shown to syn-
thesize these compounds (Dodd et al. 2010). Since their effects on plant growth 
are poorly studied, detailed consideration of these regulators is in the section dedi-
cated to the effects of PGPB on plant defense responses.

In summary, all the above details about the control of plant growth due to 
microbe-mediated microbe-born hormones indicate the following points. Unlike 
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pathogenic microorganisms or transgenic plants that synthesize excessive amounts 
of plant hormones and lead to disorder in plant growth and development, PGPBs 
are characterized by the capacity to optimize plant hormonal system resulting in 
plant growth promotion. Information concerning exact plant hormones synthesized 
by certain PGPB may be important for choosing compositions of several strains. 
Thus, it may be possible to recommend combination of cytokinin-producing bac-
teria preferentially stimulating shoot growth with those producing auxin or con-
suming ethylene precursor and in this way activate/facilitate root growth.

4  Role of Plant Hormones Produced by PGPB in the 
Supply of Plants with Water and Mineral Nutrients

Certain abiotic factor such as water and nutrient deficiency are known to decrease 
the content of growth stimulating hormones in plants, first of all, cytokinins (Hare 
et al. 1997). Thus, it may be expected that plant sensitivity to the treatment of 
PGPB increases under these conditions. Microorganisms adapted to exist under 
drought and selected under corresponding conditions have been shown to supply 
plants with hormones (Cohen et al. 2009; Marulanda et al. 2009). Activation of 
plant growth is beneficial for microorganisms, since it increases root exudation 
and supply of microorganisms with nutrients (Bais et al. 2006). It is important to 
find out, if activation of growth of stressed plants is beneficial for plants them-
selves. Triggering plant protective responses is believed to imply inhibition and 
not activation of growth (Achard et al. 2003). From this point of view, the decline 
in the content of growth stimulating hormones and accumulation of growth inhibi-
tors in plants may be considered as an adaptive stress response. Nevertheless, 
analysis of modern cultivars capable of high crop yields under stress show that 
they combine high-resistance with comparatively high-growth rate under drought 
(Collins et al. 2008). Importance of root growth and development under water 
deficit is obvious and has never been doubted. The matter of debate is the shoot 
growth under these conditions. It is obvious that inhibition of leaf growth results 
in formation of smaller leaves contributing to reduced water evaporation from the 
leaf surface and economic water usage (Bacon 1999). Nevertheless, the decline in 
leaf area influences detrimentally photosynthesis and plant productivity. To over-
come this contradiction, it is important to define clearly the terms. If survival of 
plants under stressful environment is meant, which is ecological definition of 
resistance, then inhibition of growth may really contribute to resistance. However, 
when the matter concerns plant productivity under stressful environment, mech-
anisms maintaining plant growth are likely to increase stress resistance. It is 
from this agronomical point of view that the action of PGPB on plants will be 
discussed.

Since the function of water and ion uptake is fulfilled by plant roots, there 
is no doubt that activation of their growth by PGPB contributes to increase the 
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availability of water and mineral nutrients for plants, which is particularly impor-
tant under their deficit. Auxin production detected in a range of bacteria is of inter-
est from this point of view. It is not likely to be just a coincidence that capacity to 
synthesis auxins were discovered in bacteria capable of activating the uptake of 
mineral nutrients by plants (Cakmakci et al. 2007). However, the suggestion that 
effect of these bacteria is limited to activation of root growth and root hair forma-
tion is not correct. Low solubility of soil phosphates decreasing their availability 
for plants is a serious agrochemical problem, which may be solved due to appli-
cation of PGPB. Solubilization of phosphate-containing inorganic compounds by 
microorganisms is due to excretion of metabolites that acidify soil solution. An 
important role in this process is played by the chelating substances: accumula-
tion of citric, gluconic acids, etc. (Whitelaw et al. 1999; Vessey 2003). Similar 
mechanisms of phosphate solubilization is seen in certain fungus, viz., species of 
Fomitopsis is able to solubilize tri-calcium phosphate, aluminum phosphate and 
hydroxyapatite. The ability to solubilize under in vitro condition is enhanced in 
the presence of salinity (Kang et al. 2002).

It is also important to bear in mind that one of the known properties of aux-
ins is in the activation of membrane ATPases (Hager 2003) and manifestation of 
this property in root epidermis contributes to acidification of soil solution result-
ing in the increase of solubility of phosphates (Hinsinger et al. 2003). Thus, the 
role of auxins produced by PGPB may be not only in stimulating root growth, 
but also in activating the release of hydrogen ions into the soil solution. It was 
also possible to link stimulation of root growth by PGPB to microbe-borne ACC 
deaminase, enabling a decline in ethylene syntheses from its precursor, where 
decay was catalyzed by the enzymes of this class (Belimov et al. 2009). Since, as 
mentioned above, it is root growth that contributes to adaptation of water deficit, 
the increase in plant productivity exerted by inoculation of these microorganisms 
under drought is not surprising.

Although production of abscisic acid (ABA) by PGPB was not frequently 
detected, the role of this hormone in the control of stress response should attract 
attention of microbiologists in the search of ABA producing bacteria. To screen 
for such microorganisms, it may be useful to use a selective media with increased 
concentration of osmotically active substances stimulating ABA synthesis (Dodd 
et al. 2010). Inoculation of ABA producing PGPB has been shown to optimize 
water relations in plants under drought (Cohen et al. 2009), which is likely to con-
tribute in maintaining their productivity. The effect of ABA on water relations is 
due to either ABA-induced stomatal closure (Bari and Jones 2009), or promotion 
of water uptake by ABA-activated water channels (Maurel et al. 2008). Moreover, 
beneficial effect of ABA under conditions of water and ions deficit may be 
explained by the effect of this hormone on root-to-shoot mass ratio (Chapin 1990). 
Thus, ABA was shown to induce allocation to root growth, which allows attribut-
ing relative activation of root growth under water and ions deficit to accumulation 
of this hormone.

The role of cytokinins produced by PGPB in the control of root capacity for 
water uptake may seem less beneficial as compared to that of auxins. Although 
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root mass accumulation increased under inoculation of these bacteria, a reduc-
tion of root length was detected in some cases (Arkhipova et al. 2005). Moreover, 
increased content of cytokinins may influence the uptake of mineral nutrients det-
rimentally, since cytokinins inhibit activity of nitrate and phosphate transporters 
(Liu et al. 2009; Maheshwari 2012). Nevertheless, growth promotion by cytokinin-
producing bacteria was manifested not only under favorable environment, but 
under conditions of water and ions deficit (Arkhipova et al. 2007; Arkhipova and 
Anokhina 2009). It is likely that detrimental consequences of cytokinin produc-
tion were overcompensated by other properties of PGPB. At any case, in the con-
text of revision of plant resistance concepts (Collins et al. 2008), stimulation of 
leaf growth by cytokinins (Werner et al. 2003) is likely to contribute to plant yield 
either under favorable or stressful environment.

One more aspect of cytokinin action may be important for the supply of plants 
with water and mineral nutrients due to PGPB with special reference to the influ-
ence of cytokinins on development of mycorrhiza and nitrogen-fixation. Thus, it 
is known that cytokinins are necessary for symbiotic relations between nitrogen-
fixing nodule bacteria and plants (Lee et al. 2007; Frugier et al. 2008), which is 
due to stimulation of cell division by cytokinins. Activation of mycorrhiza devel-
opment and formation of nitrogen-fixing nodules was detected in plants treated 
with PGPB (Barriuso et al. 2008; Nadeem et al. 2014). Since it is obvious that 
development of mycorrhiza activates uptake of water and mineral nutrients, while 
formation of nodules supplies plants with consumable nitrogen, capacity of PGPB 
to influence plant growth is likely to be due to their beneficial effect on these pro-
cesses related to some extent to their ability to synthesize hormones.

Summarizing all details produced in this section, we may emphasize that pro-
duction of plant hormones by PGPB influences root absorbing activity of minerals. 
This effect is due to either activation of root growth or other processes delinked 
directly with root growth: acidification of soil solution with root exudates, increase 
in root hydraulic conductivity and stimulation of formation of mycorrhiza and 
nitrogen-fixing nodules.

5  Effect of PGPB on Plant Defense Responses to Pathogens

The last but not least mechanism of the effect of PGPB on plants is due to their 
ability to protect plants against pathogen attacks (Bari and Jones 2009). These 
effects are partially due to competition of PGPB with plant pathogens leading to 
secretion of antibiotic substances and hydrolytic enzymes that disturb structure 
and function of pathogen cells (Melent’ev and Galimzyanova 1999; Melent’ev 
et al. 2001). Moreover, some PGPB are capable of activating some defense 
responses of plants themselves (Van Loon 2007). Plants are known to respond to 
infections by a range of defense reactions. Some of them are aimed on the forma-
tion of barriers on the pathway of pathogen, inside the plant. One of the examples 
of such reactions is hypersensitivity, when penetration of biotrophic pathogens, 
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parasitizing on plant tissue, results in programmed cell death and formation of lig-
nified barrier of dead cells (Van Loon 2007). Another example is the closure of 
stomature, through which pathogens penetrate inside leaves (Bari and Jones 2009). 
Production of reactive oxygen species at the site of pathogen penetration and syn-
thesis of protective proteins (proteases and their inhibitors, chitinases and other 
hydrolases capable of inhibiting development of infection) also belong to defense 
mechanisms (Aktuganov et al. 2007, 2008). PGPB have been shown to activate 
these plant defense responses (Bordiec et al. 2011).

The effects of PGPB on plants and not on pathogen itself were most evident in 
experiments, where inoculation of PGPB into rhizosphere decreased the extent of 
damage to plants by leaf pathogens (Van Loon 2007). However, it is still unclear 
how PGPB activate plant defense responses, enabling plant resistance to patho-
gens. In principle, PGPB produce regulators that are potentially capable to affect 
the processes enabling plant resistance to pathogens. Thus, implication of salicylic 
and jasmonic acids in induction of pathogen-related (PR) proteins is well known. 
The difficulty is in establishing the relation between production of either salicylic 
or jasmonic acids by PGPB and plant defense responses. Thus, PGPB increased 
resistance to pathogens in mutant plants that lost sensitivity to these regulators 
(Dodd et al. 2010). Nevertheless, insight into the transcriptional changes induced 
by specific rhizobacteria in Arabidopsis showed their association with the salicylic 
acid-dependent resistance response (Van de Mortel et al. 2012). It is necessary to 
consider the existence of different specific mechanisms of plant defense against 
the attacks of either biotrophic or necrotrophic pathogens (the latter parasitize on 
dead plant tissues) that are triggered by different regulators (Bari and Jones 2009). 
Thus, salicylic acid has been shown to induce defense response aimed against the 
attacks of biotrophic microorganisms, while jasmonic acid and ethylene—against 
necrotrophs. Moreover, an antagonism was detected between the cascades of 
reactions triggered by salicylic and jasmonic acids (Riviere et al. 2008; Bari and 
Jones 2009). Salicylic acid inhibited defense reaction induced by jasmonic acid 
and vice versa (Spoel et al. 2007, 2008). These complicated interactions should be 
considered when attempts are made to decipher protective function of regulators 
produced by PGPB. Bacteria producing salicylic acid should not be expected to 
protect against necrotrophic pathogens, while producers of jasmonic acid are not 
likely to defend plants against biotrophs.

From our point of view, following protective functions of other microbe-borne 
hormones may be important. Thus, production of ABA may contribute to stoma-
tal closure under penetration of leaf pathogens (Bari and Jones 2009). However, 
ABA inhibits lignification and other responses induced by salicylic acid. Still 
some reports provide evidences on involvement of ABA in triggering accumula-
tion of jasmonic acid (Fan et al. 2009). Possibility to protect plants against path-
ogen infection with the help of PGPB, producing enzymes that destroy ethylene 
precursor, seems unlikely at first glance, since ethylene is known to induce plant 
resistance (Pierik et al. 2007). Ethylene has been involved in the induction of pro-
grammed cell death during hypersensitive response (Lin et al. 2009). Nevertheless, 
the role of this hormone is controversial and insensitivity to ethylene increased 
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plant immunity against some infections (Lund et al. 1998). Thus, it is not surpris-
ing that bacteria producing ACC deaminase, which destroys ethylene precursor, 
protected plants against some diseases (Wang et al. 2000).

It is important to emphasize that high auxin concentration may contribute to 
inhibition of plant defense responses (Spaepen et al. 2007). This explains high 
level of auxin production by some pathogenic microorganisms. As mentioned 
above, PGPB also produce auxins, although the level of their synthesis is lower 
than in pathogenic microorganisms and auxins produced by PGPB are not likely 
to affect detrimentally plant defense responses. At last, implication of PGPB-
produced cytokinins in their protective action on plants is not excluded. For 
instance, cytokinins have been shown to induce synthesis of salicylic and jasmonic 
acid (Sano et al. 1996) and to activate lignification (Guo et al. 2005).

Thus, plant hormones produced by PGPB may participate not only in their 
direct effect on plant growth, but in the increase in availability of mineral nutrients 
and water as well as protection of plants against pathogen attack. Deeper under-
standing of the nature of the action of microbe-born plant hormones may contrib-
ute to the increase in efficacy of biotechnology of their application focused on the 
increase in plant resistance and crop yield.

6  Conclusion

Thus, phytohormones produced by microorganisms may exert beneficial effects 
on plants by influencing their growth, ability for the uptake of water and min-
eral nutrients, and by increasing their pathogen tolerance and resistance to abiotic 
stresses. However, further study of the effect of hormone production by microor-
ganisms and their effect on plants is necessary to enable stable and reproducible 
effect that may be used in agriculture for increasing crop yield.
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Abstract Plant growth-promoting rhizobacteria (PGPRs) synthesizes and exports 
phytohormones which are called plant growth regulators (PGRs). These PGRs 
may play regulatory role in plant growth and development. PGRs are organic 
substances that influence physiological processes of plants at extremely low 
concentrations. Among five classes of well-known PGRs, namely auxins, gib-
berellins, cytokinins, ethylene and abscisic acid, the most common, best charac-
terized and physiologically active auxin in plants is indole-3-acetic acid (IAA) 
that stimulate both rapid (e.g. increases in cell elongation) and long-term (e.g. 
cell division and differentiation) responses in plants. Some bacteria also release 
indole-3-butyric acid (IBA), Trptophan and tryptophol, or indole-3-ethanol (TOL) 
that can indirectly contribute to plant growth promotion. On the other hand, cyto-
kinins are usually present in small amounts, but enhance cell division leading to 
root hair formation and root development. Microorganisms have been found to 
contain over 30 growth-promoting compounds of the cytokinin group and about 
90 % of microorganisms found in the rhizosphere are capable of releasing cyto-
kinins when cultured in vitro. Soil bacteria also produce gibberellins (GAs) and 
over 100 GAs are known. The most widely recognized gibberellin is GA3 (gib-
berellic acid), and the most active GA in plants is GA1, which is primarily respon-
sible for stem elongation. In addition, abscisic acid (ABA) has been detected by 
radioimmunoassay in supernatants of bacterial cultures held responsible for sto-
matal closure. Its presence in the rhizosphere could be extremely important for 
crop survival under a water-stressed soil environment, such as is found in arid and 
semiarid climates. Ethylene is a potent plant growth regulator that affects many 
aspects of plant growth, development and senescence. In addition to its recognition 
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as a ripening hormone, ethylene promotes formation of adventurous root and root 
hair, stimulates germination and breaks dormancy of seeds. Soil bacteria promote 
plant growth especially seed germination by lowering the levels of ethylene in 
plants/seed rhizosphere. The enzyme 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase, hydrolyzes ACC, the immediate biosynthesis precursor of ethylene in 
plants. The products of this hydrolysis, ammonia and α-ketobutyrate, can be used 
by the bacterium as a source of nitrogen and carbon for growth. Soil bacterium 
acts as a sink for ACC and thus lowers ethylene level in plants, preventing some 
of the potentially deleterious consequences of high ethylene concentrations. Soil 
bacteria along PGPRs also play an important role in production of phosphatases, 
β-glucanase, dehydrogenase, antibiotic, solubilization of mineral nutrients, stabili-
zation of soil aggregates, improving in soil organic matter and soil structure. PGRs 
producing soil bacteria help in reduction of/supplementing the need for chemical 
fertilizers N and P for sustainable crop productivity.

Keywords Soil bacteria · Phytohormones · IAA · Ethylene · ACC deaminase ·  
Cytokinin · Gibberellins · ABA

1  Introduction

The soil supports large and energetic microbial population capable of exert-
ing beneficial effects on plant growth. The importance of microbial popula-
tion for maintenance of root health, nutrient uptake, tolerance of environmental 
stress and crop responses has been recognized and well-documented. The rhizo-
sphere bacteria exert on beneficial effects ranging from direct mechanisms to an 
indirect effects and play an important role in growth of plants are termed plant 
growth-promoting rhizobacteria (PGPRs). Indirect effects are related to produc-
tion of metabolites, such as antibiotics, siderophores, or hydrogen cyanide (HCN) 
that decreases the growth of phytopathogens and other deleterious microorgan-
isms. Direct effects are dependent on production of plant growth regulators, or 
improvement in plant nutrient uptake (Kloepper 1993; Glick 1995) and synthesis 
of phytohormones (Glick 1995) like IAA (indole acetic acid), auxin, gibberellins, 
cytokinins and ethylene (Zhang et al. 1997; Cattelan et al. 1999). The effect of 
phytohormones is direct, as they stimulate root growth, providing more sites for 
infection and nodulation (Garcìa et al. 2004). Significant increases in growth and 
yield of agronomically important crops in response to inoculation with phytohor-
mones yielding PGPRs have been reported (Chen et al. 1994; Amara and Dahdoh 
1997; Biswas et al. 2000; Hilali et al. 2001; Asghar et al. 2002). Several species of 
bacteria like Agrobacterium, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, 
Bacillus, Burkholderia, Caulobacter, Chromobacterium, Enterobacter, Erwinia, 
Flavobacterium, Klebsiella, Micrococcus Pseudomonas and Serratia have been 
reported to serve as PGPRs and improve the plant growth (Hayat et al. 2010; 
Bhattacharyya and Jha 2012; Ahemad and Kibret 2014).
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PGPR produces and distributes phytohormones which may play regulatory role 
in plant growth and development. These regulators are organic substances that 
stimulate physiological processes of plants at very low concentrations (Dobbelaere 
et al. 2003). There are five different classes of known phytohormones, namely 
auxins, abscisic acid, cytokinins, ethylene and gibberellins (Zahir et al. 2004). 
Auxin is the most dominant phytohormone among all and indole-3-acetic acid 
(IAA) is physiologically the most active auxin in plant. The hormone is identi-
fied to regulate both rapid and long-term responses in crop plants e.g. stimulate 
cell elongation, cell differentiation and division (Hagen 1990), apical domination, 
tropistic responses, flowering, fruit ripening and senescence. Regulating these pro-
cesses by auxin is believed to involve auxin-induced changes in gene expression 
(Guilfoyle et al. 1998). In this regard, the use of PGPRs has found a potential role 
in developing sustainable systems in crop production (Shoebitz et al. 2009; Sturz 
and Nowak 2000). We previously reviewed the beneficial soil bacteria along with 
the detail mechanisms and their role in sustainable crop production (Hayat et al. 
2010, 2012). The particular mechanisms of phytohormones-mediated enhance-
ment of plant growth includes: (i) the ability to produce ACC deaminase to reduce 
the level of ethylene in the root of the developing plants thereby increasing the 
root length and growth; (ii) ability to produce hormones like auxin, abscisic acid 
(ABA), gibberellic acid and cytokinins; (iii) antagonism against phytopathogenic 
microorganisms by producing siderophores, ß-1-3-glucanase, chitinases, antibiot-
ics, fluorescent pigments and cyanide; (iv) enhanced resistance to drought and oxi-
dative stress and production of water soluble B group vitamins niacin, pantothenic 
acid, thiamine, riboflavine and biotin. Phytohormones producing PGPRs can play 
an essential role in helping plants establish and grow in nutrient-deficient condi-
tions. Their application can favor a reduction of agro-chemical use and support 
eco-friendly crop production. Trials with rhizosphere-associated PGP species indi-
cated yield increases in wheat, rice, maize, sugar cane, sugar beet, legumes, can-
ola, vegetables and conifer species (Hayat et al. 2010, 2012). In this way, PGPRs 
are becoming attractive alternates for bioinoculants and utilized as an additive to 
chemical fertilizers for improving crop yield in an integrated nutrient management 
system (Maheshwari 2013). Integrated nutrient management system help to min-
imize chemical input and to enhance nutrient use efficacy by combining chemi-
cal and biological sources of plant nutrients in an efficient and environmentally 
prudent manner (Adesmoye and Kloepper 2009) and also helps to minimize the 
use of chemical pesticides and fertilizers (Dilantha et al. 2006). In order to suc-
cessfully utilize PGPRs in agriculture as bioinoculants, it is essential to identify 
their metabolic, phenotypic and genotypic diversities and their capability for the 
production of different ranges of antimicrobial metabolites. Conventionally, phe-
notypic identification methods play an important role but identifying at molecular 
level becomes much authenticated and reliable. Since the discovery of PCR and 
DNA sequencing, comparison of the gene sequences of bacterial species have 
showed that the 16S rRNA gene is highly conserved within a species and among 
species of the same genus, and hence can be used for identification of bacteria at 
species level (Olsen and Woese 1993). To understand genotypic and phenotypic 
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diversities of PGPRs and their potential role in plant growth promotion, it is essen-
tial to understand their role in the rhizosphere and their interaction with plants, 
also application as inoculant (Rameshkumar et al. 2012; Maheshwari et al. 2014).

2  Phytohormones Production by PGPRs

Plant growth regulators (PGRs) are organic substances present in extremely 
small concentrations that affect biochemical, morphological and physiological 
processes of plants. PGRs act as signal molecules working as chemical messen-
gers and significantly participate in plants as growth regulators (De Salamone 
et al. 2005; Martínez et al. 2010). Five majors PGRs, viz, auxins, abscisic acid 
(ABA), cytokinins, 1-Aminocyclopropane-1-carboxylate (ACC) deaminase and 
gibberellins are usually called phytohormones that have advantageous effects on 
plant growth and are endogenous in origin of plants (Arshad and Frankenberger 
1993). Polyamines and Brassinosteroids are also PGRs produced naturally by tis-
sues. Some synthetic compounds also trigger many physiological responses when 
they are artificially applied to plant tissues (Galston and Sawhney 1990; Salisbury 
and Ross 1992). Many bacterial and fungal species synthesize phytohormones and 
synthesizing ability is broadly distributed among plant- and soil-associated bacte-
ria. Several studies confirmed that the PGPRs can improve plant growth through 
auxins production (indole acetic acid), ethylene, gibberellins and cytokinins 
(Bottini et al. 2004; Spaepen et al. 2008).

2.1  Indole-3-Acetic Acid (IAA) Production

Indole-3-acetic acid (IAA) is the most common, well-studied and naturally occur-
ring auxin having the ability to control many aspects of plant growth. Some of 
them include the vascular tissues differentiation, growth elongation, apical domi-
nance, initiation of lateral root, fruit setting and ripening. Plants produce active 
IAA produced by de novo synthesis from tryptophan which passes either through 
oxidative deamination (through indole-3-pyruvic acid formation) or decarboxy-
lation (through tryptamine formulation by using indole-3-acetic acid aldehyde 
as an intermediate) (Ahemad and Khan 2011) and by releasing IAA from conju-
gates (Dilfuza 2012). There are different pathways involved in the synthesis of 
IAA by microbes (Fig. 1) (i) IAA formation via indole-3-pyruvic acid and indole-
3-acetic acid aldehyde is present in most of rhizobacteria like Agrobacterium, 
Azospirillum, Bradyrhizobium, Rhizobium, Enterobactor, Erwinia herbicola, 
Pseudomonas, Klebsiella, etc.; (ii) Conversion of tryptophan into indole-3-ace-
tic aldehyde and produce tryptamine, e.g. Azospirilla and Pseudomonads; 
(iii) Biosynthesis of IAA via indole-3-acetamide formation is reported by 
Azospirillum, A. tumefaciensm, E. herbicola, Rhizobium spp., Bradyrhizobium 
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sp. and Saprophytic Pseudomonads, etc.; (iv) In plant, biosynthesis of IAA via 
indole-3-acetonitrile is present, in the Cyanobacteria and Alcaligenes faeca-
lis (v) Tryptophan independent pathway, mostly present in Cyanobacteria and 
Azospirilla. However, information of IAA using this pathway is non-significant 
and its mechanism is unknown. It is well-documented that more than 80 % bacte-
ria isolated from rhizospheric soil of different crops have the capability to produce 
and release auxin (Loper and Schroth 1986). Among the auxin-producing PGPRs 
species, Azospirillum is the most studied IAA-producers (Dobbelaere et al. 1999). 
Other IAA-producing bacteria belong to genera Aeromonas, Azotobacter, Bacillus, 
Burkholderia, Enterobacter, Pseudomonas and Rhizobium (Swain et al. 2007; 
Ahmad et al. 2008; Hariprasad and Niranjana 2009; Shoebitz et al. 2009). The 
formation of different amount of IAA by bacterial strain could be varied because 
of participation of different biosynthetic pathway, regulatory sequences, genes 
location and availability of enzymes to convert active, free IAA to fixed form 
and could also be affected by environmental conditions (Patten and Glick 1996; 
Ahemad and Khan 2011). Regulation of these different physiological processes by 
auxin is believed to involve auxin-induced changes in gene expression (Guilfoyle 
et al. 1998). In addition to IAA, P. polymyxa and Azospirilla also release other 
compounds in the rhizosphere that could indirectly contribute to plant growth 
promotion.

2.2  Aminocyclopropane-1-Carboxylate (ACC) Deaminase 
Production

Ethylene is an important metabolite in regulating normal plant growth and devel-
opmental processes (Khalid et al. 2006; Ahemad and Kibret 2014). Ethylene has 
been recognized as a growth regulator and a good stress hormone (Saleem et al. 
2007; Ahemad and Kibret 2014). Its production is due to various environmental 

Fig. 1  Biosynthetic pathway of IAA synthesis in bacteria
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factors such as salinity, high temperature and drought, physical impendence, 
wounding, water logging, metal stress and during disease development (Arteca 
and Arteca 2007; Belimov et al. 2009; Bhattacharyya and Jha 2012; Ahemad and 
Kibret 2014). Low level of ethylene has a positive effect but higher levels inhibit 
normal plant growth. PGPRs with enzyme, ACC deaminase, support growth and 
development by declining level of ethylene, prompting salt tolerance and decreas-
ing drought stress in plants (Ahemad and Kibret 2014). Presently, bacterial strains 
containing ACC deaminase enzymes belong to wide range of genera such as 
Acinotobacter, Achromobacter, Enterobacter, Pseudomonas, Azospirillum, Agr
obacterium, Burkholderia spp., Alcaligenes, Serratia, Ralstonia, Rhizobium, etc. 
(Pandey et al. 2005; Shaharoona et al. 2007a, b; Zahir et al. 2009; Kang et al. 
2010; Ahemad and Kibret 2014). Such rhizobacteria utilize ethylene precur-
sor ACC and transform it into NH3 and 2-oxobutanoate (Arshad et al. 2007). 
Numerous forms of stress, such as effects of phytopathogenic microorganisms 
(bacteria, fungi and viruses) and resistance to stress from flooding, extreme tem-
peratures, polyaromatic hydrocarbons, heavy metals, high salt concentration, 
insect predation, radiation, high light intensity, draft and wounding (Lugtenberg 
and Kamilova 2009; Glick 2012) are overcome due to ACC containing rhizobac-
teria in plants. ACC deaminase containing PGPRs application show good effects 
on plant growth and development proving to be good candidates for biofertilizer 
preparation (Shaharoona et al. 2006).

Ethylene is an effective PGR synthesized by many species of bacteria 
(Primrose 1979), and serve as a ripening hormone, promotes adventitious roots 
and root hair formation, induces germination, breaks seed dormancy, enhance 
plant growth, development and delay senescence. However, higher ethylene con-
centration after germination proved to be toxic and inhibited root elongation as 
well as symbiotic N2 fixation in leguminous plants. One of the mechanisms of 
growth promotion by PGPRs is by lowering the ethylene level in plants, which 
is accredited to the activity of the enzyme 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase, which hydrolyzes ACC, the immediate biosynthesis precursor 
of ethylene in plants. The product of this hydrolysis, ammonia and α-ketobutyrate, 
can be utilized by the microbes as nitrogen and carbon source for growth. 
Therefore, the microorganisms act as a pool for ACC-deaminase and result in low-
ering of ethylene level in plants, thus preventing some of the precluding deleteri-
ous effects of high ethylene concentrations (Glick et al. 1998). PGPR with ACC 
deaminase activity is attributed to an improved plant growth and yield and thus, 
are potential candidate for biofertilizer formulation (Shaharoona et al. 2006).

2.3  Cytokinin Production

Cytokinins are good PGRs that control cytokinesis in tissues of crop plants (Skoog 
et al. 1965). Over 100 years ago, numerous scientists discovered the presence of 
substances that were capable to prompt cell division in cultured or damaged plant 
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tissue (El-Showk et al. 2013). Letham (1963) stated that zeatin was isolated from 
Zea mays. According to him, it was the first natural cytokinin with pure crystalline 
structure. Chemical synthesis proved the structure of zeatin to be (E)-4-(hydroxy-
3-methyl-but-2-enyl) aminopurine. The most observable effect of cytokinin on 
plant is stimulation of shoot and root growth and enhancement in cell division 
(Hayat et al. 2010) and they have been involved in many other important devel-
opmental processes in plants, including seed germination, organ formation, shoot 
meristem formation and maintenance, and leaf senescence (Mok and Mok 2001). 
Above 30 different growth-promoting cytokinins compounds have been found in 
plants, plant-associated microorganisms and in in vitro conditions most of micro-
organisms are capable of releasing cytokinins with different proportions (Hayat 
et al. 2012). For biosynthesis of cytokinins two pathways have been proposed. 
Direct pathway, involving development of dimethylallyl pyrophosphate (DMAPP) 
and N6-isopentenyladenosine monophosphate (i6 AMP) from AMP, followed by 
formation zeatin-type compounds from hydroxylation of the side-chain and indi-
rect pathway, in which cytokinins are released by turnover of tRNA containing 
cis-zeatin. Cytokinins play significant role during development processes, from 
germination of seed to plant senescence and regulate different physiological and 
morphological processes throughout the plant life, including respiration and pho-
tosynthesis (Arshad and Frankenberger 1993). The variable effects suggest that 
cytokinins might have different mechanisms of action depending on the type of 
tissues, or the impacts of primary and secondary effects caused by the variation 
in physiological states of the target cells (Salisbury and Ross 1992). Cytokinins 
phytohormones are usually present in small amounts in biological samples 
(Vessey 2003) and enhance cell division, root development and root hair forma-
tion (Frankenberger and Arshad 1995). Cytokinins are involved in processes such 
as photosynthesis or chloroplast differentiation. They are also known to induce the 
opening of stomata, to suppress auxin-induced apical dominance, and to inhibit 
senescence of plants organs, especially in leaves (Crozier et al. 2001). Plants and 
plant-associated microorganisms have been found to contain over 30 growth-
promoting compounds of the cytokinin group. Nieto and Frankenberger (1991) 
studied the effect of the cytokinin precursor’s adenine (ADE) and isopentyl alco-
hol (IA), and the cytokinin-producing bacteria Azotobacter chroococcum on the 
morphology and growth of maize under in vitro, greenhouse and field conditions, 
resultant, found improvement in plant growth.

2.4  Gibberellins Production

Gibberellins (GAs) are other important natural plant growth regulators in higher 
plants. They are usually derived from gibberellic acid and control seed dormancy, 
stem proliferation, expansion of leaves and flowering (Javid et al. 2011). GAs 
were discovered in 1938 and isolated from Ibberella fujikuroi, a pathogenic fun-
gus of rice (Miransari and smith 2014). In root nodule symbiosis, GAs plays a 
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significant role. There are more than 80 different gibberellins, but among all GA3 
is the most commonly used form and GA1 is the most active in plants, which is 
primarily responsible for stem elongation (Davies 1995). Several pathways are 
involved for the biosynthesis of gibberellins from geranyl diphosphate. DELLA 
proteins are involved in the regulation of gibberellins, C-terminal GRAS domain is 
the core part of structure of DELLA protein (eventually degraded by E3 ubiquitin 
ligase SCF (GID2/SLY1). Regulation of gibberellins is conducted by this protein 
(Miransari and Smith 2014). The accumulation of DELLAs in seeds becomes a 
cause to express the genes involved in the production of F-box proteins. The gib-
berellins receptor has recently been identified in rice. Gibberellin insensitive 
dawrf1 (GID1) protein interacts with DELLA proteins followed by their degra-
dation in nucleus and binding with biologically active gibberellins (Willige et al. 
2007). Role of gibberellins in plant growth and development is quite evident. The 
growth of stem is highly dependent on the production of gibberellins. Their low 
levels in plant metabolism results in shorter height as compared to natural height. 
In reality shorter and thicker stems are preferred as they can resist stress condi-
tions and give better support; therefore, in grain production extensive use of gib-
berellin synthesis inhibitors is preferably chosen. On the other hand, they are 
considered beneficial for seed germination at breaking seed dormancy thereby 
positively considered for seeds that show resistance for germination. PGPR also 
produced gibberellic acid (GA) and gibberellins (GAs). Dobbelaere et al. (2003) 
reviewed that over 89 GAs are known to date and are numbered GA1 through 
GA89 in approximate order of their discovery. The most widely recognized gib-
berellin is GA3 (gibberellic acid), the most active GA in plants is GA1, which 
is primarily responsible for stem elongation. GAs also affects reproductive pro-
cesses in a wide range of plants (Crozier et al. 2001). PGPRs like Azospirillum and 
Pseudomonas spp. produce cytokinins and gibberellins (gibberellic acid), in addi-
tion to IAA. Different genera of soil bacteria released variety of phytohormones 
and when inoculated, crops responded positively (Table 1).

3  Approaches to Develop PGPRs

Screening of PGPRs includes traditional as well as modern approaches. Modern 
approaches of screening these organisms from rhizospheric and non-rhizospheric 
soils are considered to be potent to improve the results of studying their effects on 
plant in lab. Soil and crop cultural practices, inoculant formulation and delivery 
are considered for rhizosphere management (Bowen and Rovira 1999; McSpadden 
and Fravel 2002). Root-associated traits to enhance the establishment and prolif-
eration of beneficial organisms are being pursued by genetic manipulation of host 
crops (Smith and Goodman 1999; Mansouri et al. 2002). Multi-strain inocula for-
mulations of PGPR with known functions may enhance the stability in the field 
(Jetiyanon and Kloepper 2002; Siddiqui and Shaukat 2002). Molecular techniques 
are playing lead roles in mounting our ability to understand and manage rhizosphere 
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for obtaining improved and potent products (Nelson 2004). Large number of 
mechanisms has been studied yet for engineering the rhizosphere for improved 
productivity of crops. This includes manipulation of plant for the modification of 
rhizosphere. This plays vital role in promoting the nutrient availability to plants, 
immunity against pathogens and boosting PGPR bacterial growth (Ryan et al. 
2008). A study conducted by Sundheim et al. (1998) reported during an in vitro 
technique that a modified strain of Pseudomonas with chitinase gene from Serratia 
marcescens had the potential to control Fusarium oxysporum f. sp. redolens and 
Gaeumannomyces graminis var. tritici effectively. Recent experiments performed 
on Pseudomonas fluorescens (DAPG-producing PGPR strain) have demonstrated 
that in rhizosphere different plant species have the ability to support and nourish 
unique microbial population and genotypes in rhizosphere (Fuente et al. 2006; 
Landa et al. 2006). DAPG accumulation by Pseudomonas fluorescens CHA0 with 
the expression of DAPG biosynthesis gene phlA has been significantly correlated 
by Notz et al. (2001). It was observed that the expression in rhizosphere of mono-
cots was greater than that of dicots. Gregorio et al. (2006) noticed that in EDTA-
amended soil, inocula with combined application (Triton X-100 and Sinorhizobium 
sp. Pb002) were beneficial for phytoextraction of lead by Brassica juncea.

4  Conclusion

PGPR synthesizes and exports phytohormones, also called as plant growth regula-
tors (PGRs), may play regulatory role synthesized in defined organs of the plant 
that can be translocated to other sites, where it triggers specific biochemical, phys-
iological and morphological responses in plant growth and development. PGRs are 
organic substances that influence physiological processes of plants at extremely 
low concentrations and are also active in the tissues where they are produced. 
Among different PGRs, auxins, gibberellins, cytokinins, ethylene and abscisic acid 
are well studied. In addition to IAA, abscisic acid (ABA) has also been detected 
by radioimmunoassay and TLC in supernatants of Azospirillium and Rhizobium 
spp. cultures. Role of PGPR in production of phosphatases, β-glucanase, dehydro-
genase, antibiotic solubilization of mineral phosphates and other nutrients, stabili-
zation of soil aggregates, improved soil structure and organic matter contents has 
been recognized. The mechanisms involved have a significant plant growth-pro-
moting potential, retaining more soil organic N and other nutrients in the plant-soil 
system thereby reducing the need for fertilizer N and P and enhancing the release 
of nutrients. Another recently identified mechanism for plant growth promotion is 
due to production of volatiles by PGPR. PGPR release different volatile blends 
and the differences in these volatile blends stimulate the plant growth. Volatile 
compounds like 3-hydroxy-2-butanone (acetoin) and 2, 3-butanediol, produced by 
Bacillus subtilis and B. amyloliquefaciens stimulated the growth of Arabidopsis 
thaliana by in vitro experiments. The volatile-mediated growth promotion of plant 
accomplished by PGPR is due to activation of cytokinin-signaling pathways.
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Abstract Plant growth is dependent on meristems where cell proliferations 
(cell division and growth) give rise to new plant structures and allow the plant 
to increase in size. We provided scientific linkages and evidence to show that the 
growth promoting factors in biofertilizers regulating cell proliferation and ulti-
mately modulating plant growth and development are phytohormones. The known 
biological functions of phytohormones (cytokinins, auxins, gibberellins, etc.) are 
in tandem with the observed physiological characteristics and crop yield of plants. 
When light, water and mineral nutrients are not limiting, phytohormones espe-
cially cytokinins, in biofertilizers help to drive plant growth by progressing faster 
through the various plant cell cycle checkpoints leading to the production of more 
cells. In the soil matrices, PGPRs (Plant Growth Promoting Rhizobacteria) have 
the ability to promote plant growth via various mechanisms such as nitrogen fixa-
tion, phosphorus and zinc solubilization. Some PGPRs secrete phytohormones, 
especially cytokinins, and can be cultured and developed into a biofertilizer. In the 
near future, a hybrid approach of combining organic and conventional fertilization 
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regimes will be the likely scenario as we have achieved a better understanding of 
plant growth and development through the regulatory controls on the cell prolif-
eration processes by phytohormones and mineral nutrients delivered by fertiliz-
ers. The futuristic green biofertilizer should come in the form of granules in which 
the active plant growth promoting and soil improving substances and/or suitable 
microbes, with carefully selected mineral nutrients, are embedded in the packing 
materials giving slow and sustained release over a desired period.

Keywords Phytohormones · Fertilizers · Biofertilizers · Mineral nutrition · Plant  
growth · Cell cycle · Cytokinins · Auxins · Microbes · PGPR · Rhizobacteria

1  Introduction

1.1  General Plant Growth and Mineral Nutrition

General plant growth and development require 16 chemical elements (Marschner 
1995). These essential elements can be classified into groups of non-mineral and 
mineral elements. Non-mineral elements, hydrogen (H), oxygen (O) and carbon 
(C), are found in air and water. Plants require these elements as raw ingredients, 
in the form of carbon dioxide (CO2) and water (H2O), to produce their own food 
via photosynthesis. During photosynthesis, CO2 and H2O are converted into glu-
cose and ultimately to complex sugars, starch and cellulose using the energy from 
the sun light. Starch and complex sugar in turn provide source of carbon, energy 
and polymeric substrates of the plant for their growth and biosynthesis processes 
(Rolland et al. 2002).

Unlike non-mineral nutrients, mineral nutrients are obtained from the soil 
(Bronick and Lal 2005). These nutrients can be classified into macronutrients and 
micronutrients according to their relative concentration in plant tissues (Shaviv 
and Mikkelsen 1993; Taiz and Zeiger 2010). Macronutrients can be further divided 
into primary and secondary nutrients. Amongst all the mineral nutrients, primary 
nutrients, nitrogen (N), phosphorus (P) and potassium (K), are utilized by plants 
in the largest amounts for growth and survival and thus these three components 
are most lacking in nutrient-depleted soil. The secondary macronutrients are cal-
cium (Ca), magnesium (Mg) and sulfur (S). Under natural conditions, the soil 
contains sufficient amount of secondary macronutrients and hence supplementa-
tion through fertilization is not always necessary. Furthermore, large amounts of 
Ca and Mg are added when lime is applied to reduce soil acidity; while S content 
in the soil is maintained by those released from the organic matter that underwent 
slow decomposition.

Micronutrients, boron (B), copper (Cu), iron (Fe), chloride (Cl), manga-
nese (Mn), molybdenum (Mo) and zinc (Zn), on the other hand are required by 
plants in much smaller (micro) amount (Hänsch and Mendel 2009). They are also 
commonly termed as trace elements. Like S, these elements are recycled from 
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decomposed organic matter. The above-mentioned elements in the form of micro-
nutrient and macronutrients are mandatory for plant growth and development. 
However, their availability for plant uptake is determined not only by the amount 
present in the soil; soil composition and physicochemical properties (e.g. soil tex-
ture, soil structure and soil pH) also determine the extent to which the nutrients are 
bioavailable to the plants.

1.2  Soil Properties and Nutrient Availability

The soil is a complex physical, chemical and biological substrate (Bronick and 
Lal 2005; Berendsen et al. 2012). It is the most common medium in which many 
plants grow, and thus good soil condition is the prerequisite for promoting favora-
ble plant growth which subsequently affects crop yield.

The properties contributing to the soil’s function and ability to support plant 
life are the soil structure, texture and pH. Many ecological and plant physiological 
processes are heavily influenced by these factors: nutrient cycling, erosion, root 
penetration and gas exchange are some of the processes more directly related to 
plant growth.

Soil texture refers to the proportion of sand, silt, clay and organic matter in 
the soil, which is influenced by the geographical location and seasons. Soil tex-
ture influences nutrient and water retention in the soil which in turn benefits the 
plants (Bronick and Lal 2005). Clay and organic soil have much better nutrients 
and water retention capacity than sandy soil. In soils with poor nutrient and water 
retention capacity, leaching and loss of soil nutrients into groundwater occur as 
nutrients drain away, along with the water that is not being retained. This results 
in less nutrients being available for plant uptake. When the soil has more clay 
and organic matter, then water might be retained for too long causing the soil to 
become waterlogged. Under waterlogged conditions, the oxygen content in the 
soil depletes, plant roots might also rot due to prolonged soaking in water and aer-
obic respiration at the roots ceases. Production of nitrates, N source for plants, is 
also inhibited by the anaerobic condition of waterlogged soil (Crawford and Glass 
1998). Hence, soil that contains optimum portions of sand, silt, clay and organic 
matter is ideal for farming and agricultural use.

Apart from the soil composition, soil structure, i.e. aggregation of soil particles, 
is also an important property of productive soil. It is the key factor that determines 
the functioning of the soil and enables the soil to support plant life on top of mod-
erating environmental quality with respect to soil carbon sequestration and water 
quality (Bronick and Lal 2005). The pore spaces created between the particles in 
the aggregates affect water and air movement within the rhizospheres, nutrient 
availability for plant root growth and microbial activity. Thus, favorable soil struc-
ture helps to improve soil fertility, agronomic productivity and enhance soil poros-
ity while lowering erodibility of the soil (Bronick and Lal 2005).
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Soil pH, a measure of the acidity or alkalinity of the soil, is another impor-
tant property that directly affects the availability of nutrients for plant uptake. At 
low pH, macronutrients tend to be less available; while at high pH, micronutrients 
tend to be less available. Under most circumstances, most soil has low pH level 
due to the release of hydrogen ion from the reaction between soil water and car-
bon dioxide produced during organic matter decomposition. Lime application can 
raise the soil pH level to the ideal range of 6.0–6.5. This slightly acidic pH range 
promotes root growth, weathering of rocks that releases minerals (Ca, K, Mg and 
Mn), and increases the solubility of carbonates, sulfates and phosphates (Taiz and 
Zeiger 2010). Beneficial plant bacterial activities, such as microbial nitrogen fixa-
tion and conversion of sulfur to forms suitable for plant uptake, also become more 
prevalent. Furthermore, the added lime also contributes to the pool of Ca and Mg 
for plant use and enhances the soil structure which subsequently promotes water 
and air movement.

Although nutrients occur naturally in the soil, some nutrients should be added 
to the soil such as lime or fertilizer to sustain plant growth and especially under 
situations where there are significant biomass removal periodically (Shaviv and 
Mikkelsen 1993; Chen 2006).

1.3  Fertilizers

Sustainable agriculture ideally should produce good crop yields with minimal 
impact on important ecological factors such as soil fertility (Tilman 1998; Mäder 
et al. 2002; Chen 2006). Mäder et al. (2002) defined fertile soil as a soil that pro-
vides essential nutrients for crop plant growth, supports a diverse and active biotic 
community, exhibits a typical soil structure, and allows for an undisturbed decom-
position. Such “ideal” fertile soil is, however, yet to be achieved widely in the 
current green revolution that practices high-intensity agriculture. Intensive agri-
culture, often referred to as conventional agriculture, has successfully increased 
crop yields to meet the demands of the growing global population, but it leads to 
serious environmental costs (Tilman 1998). These costs include contamination of 
groundwater, release of greenhouse gases, change in the natural soil structure, loss 
of crop genetic diversity, eutrophication of water bodies and aquatic ecosystems 
and alteration of aquatic food webs.

Over the years, an alternative agriculture practice known as organic farm-
ing, is steadily gaining wide acceptance and practice. Agriculture products from 
organic farming are also marketed globally. According to the survey conducted 
by Foundation Ecology and Agriculture (SÖL), 4.0 % (as of 2004) of the agri-
cultural land in Asia is managed organically; a rapid rise from the 0.33 % in 2001 
(Hsieh 2005). The survey also revealed that a significant percentage of agricultural 
land in other continents were also managed organically, e.g. Oceania: 42 %; Latin 
American: 24 %; North America: 6 %; Europe: 23 %; Africa: 1 % (as of 2004). 
The 21-year-long organic farming study conducted by Mäder et al. (2002) showed 
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that this method is also environment friendly. Nutrient inputs (N, P, K) and energy 
required to produce a crop dry matter unit was significantly reduced to 34, 51, 20 
and 56 %, respectively, as compared to the conventional practice. There was, how-
ever, 20 % less crop yield. But how sustainable is organic farming? Until today, 
the answer still remains elusive.

The success of both farming methods is highly dependent on soil fertility, 
i.e. mineral nutrients. Mineral nutrients from the soil are dissolved in water and 
absorbed through plant roots. These nutrients may occur naturally in the soil but 
the bioavailable amount may not be sufficient to support healthy and robust plant 
growth. Furthermore, farming (especially the conventional method) may also 
deplete the soil of nutrients, especially primary macronutrients—N, P and K. To 
overcome this nutritional limitation, farmers and gardeners add nutrients exter-
nally through the application of fertilizers to compensate for the shortage of min-
eral nutrients in the soil. Globally, fertilizer usage has been increasing steadily 
over the years; typically, 40–70 % of a food production company’s operating cost 
is spent on fertilizer usage.

In general, fertilizers refer to the substances added to the soil to increase its 
fertility. While most fertilizers are applied to the soil, some are formulated to be 
sprayed on leaves and the other aerial plant parts. Fertilizers can be derived from 
either organic sources or can be chemically synthesized. Regardless of the route 
of application and how they are derived, fertilizers supply the plants with nutrients 
that are generally absorbed in the form of inorganic ions (Taiz and Zeiger 2010). 
Nevertheless, there is new evidence to demonstrate that plants are able to absorb 
proteins directly and without involving other organisms (Paungfoo-Lonhienne 
et al. 2008).

Fertilizers play a pivotal role in regulating the growth of crop plants, and thus 
the reliability of food supply. The application of fertilizers is important for plant 
growth via cell proliferation (cell division and enlargement; detailed mechanisms 
will be discussed in Sects. 2 and 3), and the periodic replenishment of essential 
nutrients, especially the primary macronutrients, N, P, K, which are most likely to 
be depleted in heavily utilized soil, and other trace micronutrient, is essential to 
maintain soil fertility.

N, P and K are the three major mineral nutrients essential for plant growth and 
development (Orhan et al. 2006). Among these three nutrients, N is the mineral 
nutrient needed in greatest abundance by plants (Crawford 1995). N is the key 
constituent of molecules such as amino acids, amides, proteins, nucleic acids, 
nucleotides, coenzymes that are essential for various biological functions and 
comprises about 1.5 % of a plant’s dry weight (Taiz and Zeiger 2010). In addi-
tion to serving as a nutrient and as an osmolyte, N also functions as a signal that 
reprograms N and C metabolism and influences root and shoot growth (Crawford 
1995; Wang et al. 2007). N level in the soil is often lowered due to plant uptake, 
leaching and microbial denitrification, resulting in the dependence on N fertiliz-
ers to sustain the productivity of any modern intensive agriculture (Crawford and 
Glass 1998).
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After N, P is the second most frequently limiting macronutrient for plant 
growth (Schachtman et al. 1998). Making up about 0.2 % of a plant dry weight, 
P is a component of key molecules such as nucleic acids, phospholipids, sugar 
phosphates, coenzymes and ATP (Schachtman et al. 1998; Taiz and Zeiger 2010). 
Phosphorus in the form of orthophosphate (Pi), is also required in the regulation of 
metabolic pathways and enzymatic reactions (Theodorou and Plaxton 1993).

Potassium, K, generally constitutes 1 % of a plant dry weight and thus it is the 
nutrient to be absorbed in second largest amount, after N. It is essential as a cofac-
tor for enzyme activities involved in nutrient absorption, respiration, transpira-
tion and photosynthesis. Unlike N and P, K does not become a part of endogenous 
organic compounds but remain as a cation in the plant tissues. It is also the crucial 
for the establishment of cell turgor and maintenance of cell electroneutrality (Taiz 
and Zeiger 2010).

A wide variety of fertilizers are available commercially and they can be classi-
fied into chemical fertilizers and organic/green fertilizers. Another class of ferti-
lizers, biofertilizers, is also gaining worldwide attention, due to the awareness of 
the detrimental effects of chemical fertilizers imposed on the environment globally 
and of the improved knowledge on the relationships between plants and microor-
ganisms occurring in the soil (Malusá and Vassilev 2014). Thus, agricultural fer-
tilizers currently available in the market can be classified traditionally into three 
broad categories, namely chemical fertilizers, organic fertilizers and biofertilizers.

Chemical fertilizers are chemically synthesized compounds that contain spe-
cific nutrients, macro and/or micronutrients. This group of fertilizers provides the 
plants with nutrients in inorganic forms. In this review, we refer chemical fertiliz-
ers specifically to synthetic fertilizers containing N, P and K in various ratios in 
terms of weight percentage, otherwise also known as NPK fertilizers or inorganic 
fertilizers (Shaviv and Mikkelsen 1993).

Organic fertilizers are fertilizers generally derived from natural sources such as 
plant and animal matter. The commonly known examples are composts (decom-
posed plant materials) and manure (animal excrement). Meat and bone meal 
is another form of organic material being used as organic fertilizers (Jeng et al. 
2006). In this review, we consider composts and manures as organic fertilizers.

Biofertilizers are the new and emerging entities in the realm of agricultural 
fertilizers or “Biostimulants”. Biofertilizers are defined as fertilizers that enhance 
plant growth via the activities of microorganisms, i.e. conversion of nutrition-
ally important elements/compounds from the “unavailable state” to (bio)available 
form(s) and production of active ingredients, particularly phytohormones (e.g. 
cytokinins, auxins, gibberellins etc.), amino acids and proteins. To date, the defini-
tion of biofertilizers is still unclear and remains highly debatable. No consensus 
has been agreed upon on the inclusion of indirect microbial activities, such as bio-
control properties targeting pathogens and conferring resistance against pathogens, 
as plant growth enhancing properties (Malusá and Vassilev 2014). Interestingly, 
there are also some people who do not consider biofertilizers as organic fertilizers. 
For the purpose of this review, we would, however, like to define biofertilizers as 
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organic products containing biomass-based structural matrix, e.g. composts, humic 
acid and fulvic acid, with different types of useful (natural) microorganisms that 
enhance plant growth through their biological activities. Thus, in this review, our 
holistic classification of organic fertilizers is to include biofertilizers, unless other-
wise stated.

In the following sections, we will discuss briefly on the advantages and disad-
vantages of chemical and organic fertilizers, while biofertilizers will be discussed 
in greater depth in Sect. 5.

1.3.1  Chemical Fertilizers

Chemical fertilizers are NPK-based formulation that has been widely used for 
over 100 years. Chemical fertilizers, e.g. urea, are the preferred choice as they are 
deemed to be highly effective and can be transported more economically. They 
supply the plants with mineral nutrients in the form of organic/inorganic salts that 
are easily and readily taken up by the plants via the roots, giving rise to immediate 
or quick plant growth improvement. Most importantly, chemical fertilizers supple-
ment the soil with nutrients in desired ratios of N:P:K at a low cost.

Despite the advantages, a century-long usage of chemical fertilizers has seemed 
to reveal that these fertilizers are “losing” its growth promoting efficacy and 
increasingly, creating environmental problems. It has been reported that large frac-
tions of N fertilizers applied to agriculture systems are lost as N2, trace gases and 
nitrate leachate (Adesemoye et al. 2010), as the soil structure degrades and loses 
its mineral and water retention capacity. Larger amount of chemical fertilizers is 
thus required to achieve the same effect. The rampant use of chemical fertilizers 
in turn leads to eutrophication of water resources, pollution and contamination of 
soil, further degradation of soil structure, reduced soil fertility and reduced fer-
tilizer efficiency (Vitousek et al. 1997; Tilman 1998; Mahdi et al. 2010; Xiang 
et al. 2012). Prolonged supply of high amount of N to plants also causes plant tis-
sues softening, causing the plant to be more sensitive to pests and diseases (Chen 
2006).

Chemical fertilizers also pose adverse effects on the biological properties of 
the soil. Its continuous application usually causes the soil to become acidic and 
repels earthworms, beneficial entity in fertile soil. Acidic soil also alters microbial 
species composition and diversity in the rhizosphere and results in the destruction 
and hindrance of beneficial microbial activities such as organic matter decomposi-
tion and symbiotic interaction with plants. Also, biologically inactive soil contains 
less organic matter and do not release as much nutrients as biologically active soil 
(Chandramohan et al. 2013). Over time, soil treated only with chemical fertilizers 
will lose its organic matter and disrupt the interactions with the living organisms, 
namely earthworms and microorganisms, which contribute immensely to soil 
“health” (Tilman 1998).
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1.3.2  Organic Fertilizers

It is increasingly evident that the intensive agricultural methods employed as part 
of the conventional agriculture have been proven to be unsustainable (Tilman 
1998; Mäder et al. 2002). Small but growing cohorts of farmers/growers have 
recognized this issue and have turned to utilize an alternate farming method, i.e. 
organic agriculture. Organic agriculture is defined by the FAO/WHO as “a holis-
tic production management system which promotes and enhances agro-ecosys-
tem health, including biodiversity, biological cycles and soil biological activity. 
It emphasizes the use of sustainable management practices in all aspects of the 
farm management and taking into account of the regional conditions and locally 
adapted systems. This is accomplished by using, wherever possible, agronomic, 
biological and mechanical methods, as opposed to using synthetic materials, to 
fulfill any specific function within the system” (FAO/WHO 2015). In comparison 
to conventional agriculture, organic agriculture is deemed to be an effective farm-
ing system with self-sustainability features.

Theoretically, organic agriculture is self-sustainable but it still requires the input 
of external fertilizers to replenish the nutrients that are quickly sequestered by the 
growing plants. To adhere to its organic practices, organic agriculture supply their 
soil with N by more natural means such as growing cover crops, mainly legumi-
nous species that have the ability to fix atmospheric N. It makes use of organic 
fertilizers instead of chemical fertilizers. Organic fertilizers, also termed as green 
fertilizers, however, work on a different basis as compared to chemical fertilizers.

Organic fertilizers, including biofertilizers, supplement the soil with nutrients, 
but usually at a much lower concentration and slower release rate as compared to 
chemical fertilizers. N is released slowly from organic fertilizers (compost) due to 
its slow mineralization rate (Hernández et al. 2010) and its availability is depend-
ent on soil properties (Fricke and Vogtmann 1993). P is contributed at a percentage 
of 20–40 % (Fricke and Vogtmann 1993) of its total low P content (vermicompost: 
0.014 ± 0.0009 %; compost: 0.015 ± 0.0009 % (Hernández et al. 2010)). K is, 
however, contributed at an exceptionally higher percentage of 85 % (Fricke and 
Vogtmann 1993).

Generally, organic fertilizers have lower mineral nutrient contents which 
are often not well characterized and quantified, and may vary between produc-
tion batches and methods when compared with chemical fertilizers (Shaviv and 
Mikkelsen 1993; Mäder et al. 2002; Chen 2006; Mahdi et al. 2010). Thus, within 
the plant industry, there is certainly a need to develop/produce organic fertilizers 
in a reproducible way in order to gain wider acceptance by farmers utilizing the 
conventional farming approach, i.e. quality control and assurance for organic ferti-
lizers as a reliable commercial product. Furthermore, the rate of nutrient release in 
some poorly prepared organic fertilizers may not meet the needs of the vigorously 
growing plants, accustomed to conventional chemical fertilizers. Hence, larger 
amount of organic fertilizers has to be applied under certain situations. This in turn 
incurs more cost to the growers as compared with using the traditional chemical 
fertilizers.
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Organic fertilizers are, however, desirable over chemical fertilizers due to its 
ability to improve the soil structure via the enhancement of soil biological diver-
sity. As discussed earlier (Sect. 1.2), soil properties play a very vital role in deter-
mining plant growth and nutrient availability for plant uptake. Thus, organic 
fertilizers are more valued for their soil-improving qualities and to a lesser extent 
for their mineral nutrient, mainly N and P, contribution.

In comparison to chemical fertilizers, the environmentally friendly organic 
fertilizers (composts and manure) do appear to be the solution to attain sustain-
ability in modern agriculture. However, due to our current limited understanding 
about the growth stimulating mechanism(s) of organic fertilizers on plant growth, 
we will not be able to achieve optimal and sustainable agriculture yield by rely-
ing solely on organic fertilizers at present. We believe that the combined use of 
chemical and/or organic fertilizer with the active ingredients obtained from biofer-
tilizers, would help the present day farmers to achieve sustainable farming with 
maximal yield (Shafi et al. 2012; Qin et al. 2015; Song et al. 2015).

In order to understand how organic fertilizers and phytohormones work in tan-
dem to govern plant growth and development, and the other associated useful plant 
performance characteristics such as conferring resistance against pathogens, the 
fundamentals of plant growth mechanisms and cell proliferation regulations by 
various substrates (sucrose, phytohormones, availability of nutrients, etc.) will be 
revisited and discussed in depth and in relation to fertilizers.

2  Plant Growth Mechanisms

Plant growth is dependent on meristems, groups of dividing cells that give rise 
to new plant structures (Steeves and Sussex 1989; Coen and Meyerowitz 1991; 
Wolters and Jürgens 2009) and enable the plant to increase in size continuously 
throughout its lifetime (Huala and Sussex 1993). In order to be competent and 
ready to divide, proliferative cells in the plant meristems have to undergo four dis-
tinctive phases of the cell cycle: postmitotic interphase (G1), DNA synthetic phase 
(S), postsynthetic interphase (G2) and mitosis (M phase); and subdivision phases 
of mitosis, cytokinesis and G1-phase (G0); all of which are governed by a series 
of checkpoints (Francis and Sorrell 2001) regulated by cyclin-dependent kinases 
(CDKs) (Den Boer and Murray 2000; Inzé 2003; Dewitte and Murray 2003) 
(Fig. 1). Cyclins, CDK inhibitors, retinoblastoma proteins, E2F/DP transcription 
factors, histones, sucrose and phytohormones (specifically cytokinins, auxins, gib-
berellin and abscisic acid) are some of the other factors involved in the regulation 
of the cell cycles (Inzé 2003; Souza et al. 2010).

Meristems have the ability to divide and differentiate but can only give rise 
to certain structures; for example, the root meristems give rise to roots while the 
shoot meristems may result in leaves, flowers, axillary buds and internodes (Huala 
and Sussex 1993). Primary shoot apical meristem (SAM) that arises during embry-
ogenesis together with additional meristems formed after seed germination plays 
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a crucial role in giving the plants its various forms (Steeves and Sussex 1989). 
Primary SAM provides the plant with the main axis while the other meristems 
determine the development of the shoot branches, and the brunches temporal and 
spatial development determines the complexity of the branching pattern (Shimizu-
Sato and Mori 2001). Plant forms although plastic in nature, influenced by envi-
ronmental cues, are still genetically governed and thus retain their species-specific 
forms (Shimizu-Sato and Mori 2001).

Axillary meristems are typically located on the adaxial (upper) region where 
the primary organ, such as leaf axil and stems join (Grbić and Bleecker 2000; 
Long and Barton 2000; Shimizu-Sato and Mori 2001). Being secondary meris-
tems, axillary meristems are crucial for the continuous development of the plant 
morphology, such as lateral plant growth (Bennett and Leyser 2006). Lateral plant 
growth is, however, governed by a mechanism known as apical dominance. Apical 

Fig. 1  Schematic diagram of the plant cell cycle and regulatory actions of phytohormones. 
Cell cycle has four distinct phases, G1 (postmitotic interphase), S (DNA synthetic phase), G2 
(postsynthetic interphase) and M (mitosis); and subdivision phases of mitosis, cytokinesis and 
G1-phase (G0); all of which are governed by a series of checkpoints, mainly between G1 and 
S (G1/S checkpoint) and between G2 and M (G2/M checkpoint). The plant cell cycle is pre-
dominantly regulated by phytohormones while other factors exerting varying degrees of controls 
under different environmental (abiotic) and biotic circumstances in which the whole plant is 
exposed to. Generally, auxins, cytokinins and gibberellin play stimulatory roles; while abscisic 
acid (ABA), ethylene and jasmonates inhibit the progression of cell cycle. Systemin, a plant pep-
tide hormone, down regulates cell cycle by promoting the biosynthesis of jasmonates, while sali-
cylic acid up-regulates cell cycle progression by inhibiting the biosynthesis of ethylene
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dominance, broadly defined as the inhibitory control of the shoot apex over the 
outgrowth of lateral buds, is one of the mechanisms that ensure the plants sur-
vival with a reservoir of meristems to replace damaged primary shoot (Shimizu-
Sato and Mori 2001). Apical dominance, however, can be released by development 
programs, hormonal and environmental cues (Turnbull et al. 1997; Bangerth el 
al. 2000; Shimizu-Sato and Mori 2001; Schmülling 2002). Increased cytokinin 
concentrations and changes in phytohormone ratio(s) (e.g. auxins:cytokinins) are 
some of the hormonal cues that enable the plant to overcome apical dominance.

3  Plant Growth Regulation

Plant growth is regulated by various abiotic and biotic factors such as tempera-
ture, light intensity, water availability, soil compositions and characteristics, nutri-
ent availability, phytohormones (plant hormones) availability, interactions with the 
immediate organisms (microorganisms, fungi, other plants) in its surroundings, 
and other factors (for reviews, see Steeves and Sussex 1989; Mok 1994; Rolland 
et al. 2002; Van Loon 2007; Wolters and Jürgens 2009).

In this review, we will focus our discussion on sucrose and phytohormones 
availability in relation to fertilizer types and usage.

3.1  Regulation by Sucrose Availability

Photosynthesis is the fundamental process in plants and sugars are produced in 
the process. Sugars are essential for the plant growth as they are the source of car-
bon, energy and polymer substrates for biosynthesis (Rolland et al. 2002). They 
are transported via the plants phloem from the sites of photosynthesis (usually 
the leaves) to the various sink organs such as roots, flowers, developing fruits 
and seeds, mainly in the form of sucrose. Sucrose concentration plays an impor-
tant role in regulating various plant growth processes. Low sucrose concentration 
stimulates leaf photosynthetic activities, nutrient mobilization and export from the 
sink organs, while high sucrose concentration inhibits photosynthetic activities but 
stimulate growth and storage in the sink organs (Wang and Ruan 2013). Before 
sucrose can be utilized for metabolism and biosynthesis, they are normally con-
verted to simpler forms like glucose and fructose by invertase or UDP-glucose and 
fructose by sucrose synthase (Wang and Ruan 2013). In addition to their essential 
roles as source of carbon, energy and building blocks for plant growth, sucrose 
and its cleavage compound hexose have important hormone-like functions as sign-
aling molecules that regulate specific gene expression (Rolland et al. 2002; Wang 
and Ruan 2013).

A close correlation was observed between the supply of sucrose and the expres-
sions of cyclins, specifically d-type cyclins (CycD2 and CycD3), that induce the 
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cell to progress beyond the G1 phase and become committed to complete the full 
plant cell cycle (Riou-Khamlichi et al. 2000) (Fig. 1). Expression of CycD2 only 
requires sucrose while CycD3 expression requires the presence of sucrose and 
phytohormones, specifically cytokinins and auxins (Koning 1994; Riou-Khamlichi 
et al. 2000). In other words, sucrose is essential in the upstream regulation prior to 
hormonal regulation of CycD3 expression. Sucrose is also required for the activa-
tion of mitotic entry by activating the transcription of key components that drives 
the G2 to M transition (Skylar et al. 2011) (Fig. 1). Thus, it is evident that sucrose 
could be involved in the reactivation of cell from the state of growth arrest (Souza 
et al. 2010). Apart from driving plant cell cycle transition indirectly, sucrose is 
also required for general plant growth such as tuberization in potato (Šimko 1994), 
to induce formation of adventitious roots in Arabidopsis seedlings (Takahashi 
et al. 2003), to induce flowering (Roldán et al. 1999) and various other growth 
processes (for a review, see Gibson 2005).

3.2  Regulation by Phytohormones Availability

Phytohormones are naturally occurring substances known to be crucial for regulat-
ing various aspects of physiology and development throughout the lifecycle (for 
reviews, see Bleecker and Kende 2000; Mok and Mok 2001; Pimenta Lange and 
Lange 2006; Matsubayashi and Sakagami 2006; Wolters and Jürgens 2009; Zhao 
2010; Pacifici et al. 2015). Some of the growth regulatory functions include cell 
division and expansion, cell elongation, stem elongation, inhibition, root growth, 
activation of bud growth, branch development, promoting or delay in leaf senes-
cence and chlorophyll production. Regulatory functions of cytokinins and auxins 
will be discussed in detail in the following sections. Other classes of phytohor-
mones, such as gibberellins, ethylene, abscisic acid and strigolactones, are listed in 
Table 1 and will not be discussed in detail.

3.2.1  Cytokinins

The vast majority of naturally occurring cytokinins are a group of adenine com-
pounds with an isoprene, modified isoprene, or aromatic side chain attached to the 
N6 amino group. Refer to Fig. 2a for the basic structure of cytokinins and Fig. 2b 
for the representative cytokinins. Cytokinins occur in both free and tRNA-bound 
forms, and are essential in regulating various physiological processes in plants 
(Letham and Palni 1983; Haberer and Kieber 2002; Stirk and Van Staden 2010). 
The biosynthetic gene ipt, which encodes the enzyme isopentenyltransferase, is 
responsible for the synthesis and expression of cytokinins (Kamínek et al. 1997). 
This enzyme is produced in the roots and shoots (Chen et al. 1985), with the root 
apical meristems being the major site of synthesis. Isopentenyltransferase is essen-
tial in the first step of cytokinin synthesis. It transfers the isopentenyl moiety from 
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dimethylallyl diphosphate (DMAPP) to ATP/ADP, which is more efficiently uti-
lized by the plant isopentenyltransferase compared to AMP (Kakimoto 2001). In 
contrast, bacterial cytokinin synthesis, which shares a similar pathway, are able to 
start the first step by transferring isopentenyl moiety from 1-hydroxy-2-methyl-
2-(E)-butenyl 4-diphosphate (HMBDP) to AMP (Ueda et al. 2012) (Fig. 3).

Cytokinins are classified according to their side-chain configurations as either 
isoprenoid or aromatic cytokinins (Stirk and Van Staden 2010) with the lat-
ter being the rarer form (Kakimoto 2003). Naturally occurring isoprenoid cyto-
kinins are either isopentenyladenine (iP)-type, which carries an isopentenyl N6 
side chain, or zeatin-type, which carries hydroxylated isopentenyl N6 side chain 
(Kakimoto 2003). Zeatin-type cytokinins can occur in cis or trans configura-
tion, depending on the hydroxylation of the methyl group on the side chain; and 
trans-zeatin and its derivatives have higher biological activity than the cis forms. 
Zeatin-type cytokinins are also the main constituents in plants (Mok et al. 2000). 
Cytokinins also occur in different forms, namely in the form of free base, riboside, 
or ribotide (or nucleotide); with the free base form being biologically active and 
the riboside form being the form of transportation via the xylem system. The ribo-
side type of cytokinins are later converted to their active form by another enzyme 
at the shoot (Sakakibara 2006).

Fig. 2  Chemical structures of cytokinins and its basic structure. a Adenine structure and the 
numbering system for the nomenclature of cytokinins. b Representative cytokinins: trans-zeatin 
(tz), kinetin (K), N6-[2-isopentyl]adenine (iP), N6-benzyladenine (BA) and N6-isopentyladeno-
sine (iPR). Note that the isoprene, modified isoprene, or aromatic side chains are attached to the 
N6 amino group of adenine compounds
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The biological concentrations of these phytohormones are closely regulated by 
the rates of biosynthesis, metabolism, inactivation and degradation with homeo-
stasis under the influence of both internal and external factors (Sakakibara 2006). 
Any exchange or interconversion of cytokinins between plants and its various 
external components can potentially influence and even disrupt cytokinin homeo-
stasis in the plant and alter its growth pattern as low concentrations of cytokinins 
are needed to elicit a physiological response (Letham and Palni 1983; Stirk and 
Van Staden 2010).

Role of Cytokinins in Plant Growth

Cytokinins are crucial for activating cell division and to regulate plant growth 
from the cellular level through to the tissue, organ and whole plant level (Letham 
and Palni 1983; Francis and Sorrell 2001; Schmülling 2002; Sakakibara 2006). 

Fig. 3  A model for cytokinins biosynthesis and metabolic pathway in plants and bacteria. In 
plants, the isopentenyl moiety from dimethylallyl diphosphate (DMAPP) is transferred to ATP/
ADP while the bacterial pathways start off with AMP. Bacteria cytokinin biosynthesis may also 
start by transferring isopentenyl moiety from 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate 
(HMBDP) to AMP. Active cytokinins are shaded (adapted from: Haberer and Kieber (2002), 
Kakimoto (2003), Sakakibara (2006), Tarkowski et al. (2009) and Frébort et al. (2011))
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On the cellular level, cytokinins upregulate plant d-type cyclin (CycD3) at the 
G1 checkpoint and the phosphoregulation of the CDK at the G2/M checkpoint, 
thereby inducing a continuum of cell cycle activation that leads to plant growth 
(Francis and Sorrell 2001). The main cytokinin driver of the cell cycle is zeatin, 
which peaks its concentrations at the end of S phase, during the G2/M phase tran-
sition and in the late G1 phase.

Developmental processes such as formation of embryo vasculature, nutri-
tional signaling, leaf expansion, branching, chlorophyll production, root growth, 
promotion of seed germination and delay of senescence are also heavily influ-
enced by cytokinins (Letham and Palni 1983; Mok 1994; Schmülling 2002; 
Howell et al. 2003). The initiation and outgrowth of axillary buds, released from 
shoot apical dominance, were reported to be well correlated with the cytokinins 
levels (Turnbull et al. 1997; Bangerth et al. 2000; Shimizu-Sato and Mori 2001; 
Yong et al. 2014). It has been known that plants with reduced endogenous cyto-
kinins have distinct morphological and developmental alterations such as shorter 
shoot internodes, delayed flowering, fewer flowers and reduced leaf surface area 
with smaller vasculature, smaller shoot apical meristems with reduced cell divi-
sion, enhanced root growth and a larger root meristem (Schmülling 2002). Thus, 
any change in the levels of endogenous cytokinins could alter the regulation of 
the above-mentioned physiological processes and result in the disruption of nor-
mal plant growth (Letham and Palni 1983; Schmülling 2002). However, it is also 
important to note that different classes of phytohormones interact in a synergis-
tic way for regulation of physiological processes and optimum plant growth. The 
roles of these phytohormones will be discussed in their respective sections.

Cytokinins have been reported to function as local and long-range chemi-
cal signals in plants. They are transported via the xylem and phloem (Hwang and 
Sakakibara 2006) and the transpiration stream from the root tips to aerial plant 
parts (Yong et al. 2000; Schmülling 2002; Stirk and Van Staden 2010; Yong et al. 
2014). Studies conducted by Ma et al. (2002) showed that cytokinins synthe-
sized in the embryo function as local signal for increased meristematic activity. 
Reallocation of nutrients, minerals and nonmetabolizable substances are also initi-
ated with an increase in cytokinins concentrations in leaves (Leopold and Kawase 
1964; Gersani and Kende 1982; Mauk and Noodén 1992), a phenomenon termed 
as cytokinin-induced nutrient mobilization. It has also been suggested by Frugier 
et al. (2008) that cytokinins may function as the central signal for controlling lat-
eral organ differentiation. Their study revealed that a local increase in cytokinin 
concentrations within the roots induces nodule organogenesis while repressing lat-
eral root formation (Fig. 4). Cytokinins functioning as long-range biochemical sig-
nals help to coordinate root–shoot development (Schmülling 2002; Stirk and Van 
Staden 2010), communicate root biotic interactions (e.g. with Rhizobium, Yong 
et al. 2014) and environmental stresses such as nutritional status, low tempera-
tures, salinity and drought to the shoots (Goicoechea et al. 1996; Yong et al. 2000; 
Emery and Atkins 2002; Schmülling 2002), a phenomenon termed as root-to-shoot 
signaling.
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Fig. 4  Proposed role of cytokinin in nodulation and infection events. a Nod factor perception by 
lysin motif (LysM)-containing receptors elicits calcium signaling through a calcium- and calmo-
dulin-dependent kinase (CCaMK). This in turn leads to localized biosynthesis and/or activation 
of cytokinin signaling by an as yet unknown mechanism. Part of this signaling cascade can be 
bypassed by bacterially produced cytokinins (Rhizobium pTZS) or cytokinin-like molecules, ena-
bling Nod factor-independent nodulation. Epidermally produced cytokinin might be translocated 
to the cortex by diffusion and/or by selective transport from cell to cell. Alternatively, an interme-
diate messenger (*) might travel to the cortex to elicit de novo localized cytokinin signaling. b 
Cytokinin perception by LHK1 or ortholog MtCRE1, and signaling through cytokinin response 
regulators (RRs) leads to initiation of nodule organogenesis (cell divisions). This requires tran-
scription factors such as NSP1, NSP2 and ERN, as well as downstream functions, such as NIN 
and ENOD40. In the epidermis, NIN is required for infection thread formation but also nega-
tively regulates root susceptibility to rhizobial signaling. Hypothetically, cytokinin might partici-
pate in this process by signaling through an unknown histidine kinase receptor(s) (HK). In this 
scenario, cytokinin signaling contributes to, but is not fully responsible for, reprogramming of 
gene expression, possibly by regulating the activity and/or localization of transcriptional factors, 
such as NSP2, which is known to relocate from the nuclear envelope to the nucleus upon Nod 
factor signaling. Cytokinin might also be involved in both local and systemic feedback regulation 
of infection. In Lotus, LHK1 is not required for initiation and progression of infection events, 
but it participates in negative regulation of root susceptibility to infection. c In M. truncatula, 
both nodule inception and infection thread progression, but not initiation, are tightly linked to 
MtCRE1 function. d Cytokinin might also participate in systemic autoregulatory feedback mech-
anisms, possibly involving HAR1, to restrict nodule number (reprinted from Trends in Plant Sci-
ence, 13, F. Frugier, S. Kosuta, J.D. Murray, M. Crespi, K. Szczyglowski, Cytokinin: secret agent 
of symbiosis, 115–120, Copyright (2008), with permission from Elsevier)
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Flow of Cytokinins Through the Environment

Cytokinins are widely distributed throughout the plant kingdom (Stirk and Van 
Staden 2010), and are widely available and highly fluid within the environment 
(Fig. 5). In the following section, we will discuss the various plant-related sources 
of cytokinins and their distribution in the environment.

Fig. 5  Diagrammatic scheme showing the movement of cytokinins through the environment. 
Dotted circles indicate sites of cytokinins biosynthesis. 1 sites of cytokinin biosynthesis in vas-
cular plants including roots, flowers and fruits; 2 cytokinin translocation via the xylem from the 
roots; 3 cytokinin translocation via the phloem from aerial plant organs; 4 cytokinins derived 
from degradation of leaf litter; 5 movement of cytokinins through the soil due to rainwater and 
irrigation; 6 free-living microorganisms (bacteria, fungi, Cyanophyta and Chlorophyta) in the 
rhizosphere; 7 microorganisms, including nematodes in a symbiotic relationship (either benefi-
cial or parasitic) with the host plant’s roots; 8 cytokinins released into the soil by root exudates 
and cytokinin uptake by the roots; 9 air-borne microorganisms (bacteria and fungi) in a parasitic 
relationship with the host plant; 10 insects infecting the host plant to form galls; 11 agricultural 
input including irrigation with water that contains cytokinins and application of natural (e.g. sea-
weed concentrates) and synthetic cytokinins for crop improvement (reprinted from Plant Growth 
Regulation, 62, 2010, 101–116, Flow of cytokinins through the environment, W.A. Stirk and J. 
Van Staden, Fig. 1, with kind permission from Springer Science and Business Media)
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Sources of Cytokinins

Cytokinins can be derived from various sources and the most prominent source would 
be from plants as they are called phytohormones. Cytokinins have been known to be 
released directly into the soil from plant roots (Van Staden 1976). Studies conducted 
by Arthur et al. (2001) showed that tomato seedlings metabolize the cytokinins taken 
up from their external environment before releasing them back to the external envi-
ronment. Plant parts, such as cotyledons, flowers and leaf litter, are also sources of 
cytokinins (Letham and Palni 1983; Stirk and Van Staden 2010). Hence, root exudates 
and any plant parts that contain cytokinins are potential sources that may contribute to 
the pool of cytokinins available in the environment for the uptake by other plants.

Microalgae of both prokaryotic and eukaryotic nature, namely Cyanophyta 
and Chlorophyta, respectively, are also natural sources of cytokinins. Ördög et al. 
(2004), Stirk et al. (2003, 2009) and Burkiewicz (1987) have detected cytokinins 
and cytokinins-like activity in isolated microalgae samples. Stirk et al. (1999) had 
successfully proven the presence of cytokinins, specifically iP, in microalgae with 
the use of GC-MS. Also, studies on Chlorella had expressed highest biosynthetic 
rates for iPR, iP and cZ in samples harvested 8 h into the light period compared 
to samples harvested 8 h into the dark period (Stirk et al. 2011). These studies 
indicated that microalgae are capable of synthesizing cytokinins which might be 
released into the soil during cell decomposition, thereby further contributing to the 
pool of cytokinins available for plant uptake (Stirk and Van Staden 2010).

To date, various studies have proven that certain bacteria are important sources 
of cytokinins (Philip and Torrey 1972; Upadhyaya et al. 1991; Arkhipova et al. 
2005; Kudoyarova et al. 2014) and harbor the potential for the discovery and 
extractions of cytokinins from nature for plant industry applications. Interestingly, 
there are novel cytokinins that are yet to be discovered and characterized from 
these microbial sources. Genetic studies have successfully identified biosynthetic 
gene responsible for the expression of cytokinins in various bacteria (Powell and 
Morris 1986; Crespi et al. 1992; Binns 1994; for a review, see Taylor et al. 2003). 
It has also been reported that bacteria enhance or promote plant cytokinin pro-
duction. Agrobacterium tumefaciens, which induces crown galls in plants, was 
reported to be capable of transferring and integrating part of their Ti-plasmid DNA 
into the host plants’ genome (Sakakibara et al. 2005). The integrated bacterial 
genome which encodes an enzyme, adenosine phosphate-isopentenyltransferase, 
confers the host plant with the ability to synthesize cytokinin via an alternative 
biosynthesis pathway leading to increased plant cytokinin production. Unlike 
plants, bacteria produce iP-type cytokinins. These iP-type cytokinins could be 
taken up by plants, gets converted to Z (Mok and Mok 2001) and subsequently to 
ZR. ZR is then transported within the xylem to target sites where it gets cleaved 
into the bioactive form (Z) to drive growth (active cell cycle) using NPK (raw 
materials) to achieve optimal growth. Studies conducted by Ueda et al. (2012), 
however, proved that A. tumefaciens was capable of efficient biosynthesis of tZ 
during tumor formation in infected galls. Thus, there is a possibility that other bac-
teria capable of synthesizing zeatin-type cytokinins remains to be discovered.
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Apart from bacteria, other studies have also detected cytokinins production 
in various mycorrhizal fungi. Crafts and Miller (1974) had successfully obtained 
crystalized Z and ZR from the media in which Rhizopogon roseolus (Corda) 
Hollos, a fungus, had been cultured; presenting definite evidence for the produc-
tion of cytokinins by the various mycorrhizal fungi screened. Studies conducted 
by Barea and Azcón-Aguilar (1982), Ng et al. (1982) and Kraigher et al. (1991) 
had also successfully detected substances with cytokinin-like activity and cyto-
kinins in growth cultures of the various mycorrhizal fungi screened. Thus, it is 
possible that many cytokinin-producing fungi are contributing to the pool of cyto-
kinins in the environment and these fungal species have yet to be identified.

Parasitic nematodes, root-knot nematodes (Meloidogyne species) and cyst nem-
atodes (Heterodera species), the common cause of gall and cyst formation in plant 
roots (Stirk and Van Staden 2010) are known to be capable of exuding cytokinin-
like substances (Bird and Loveys 1980). De Meutter et al. (2003) had detected 
the presence of cytokinins, specifically BA, iP and Z, from in vitro grown nema-
tode exudates or lysates in concentrations high enough to be biologically active. 
The secretion of cytokinins together with host plant cytokinins had been reported 
to trigger a change in the nematodes’ surface lipophilicity (Akhkha et al. 2002), 
which might be an infection strategy against the host plant’s defense responses. It 
is also likely that the cytokinins help to establish and/or maintain the feeding cells 
as a nutrient sink (De Meutter et al. 2003) as roots with overexpressed cytokinins 
oxidase have reduced gall formation (Lohar et al. 2004).

Similar to nematodes, insect larvae had been reported to synthesize and secrete cyto-
kinins into the plant tissues (Mapes and Davies 2001). Results from the experiments 
conducted by Van Staden and Bennett (1991) and McDermott et al. (1996) revealed an 
elevation in cytokinin concentrations in plant tissues that were infected with insect lar-
vae compared to healthy tissue. Elevated concentration of up to 53 times was recorded 
in the cytokinin profile comparison between the insect larvae with the gall structure and 
the plant stem tissue. This observation suggested that the insect larvae are capable of 
synthesizing and secreting their own cytokinins (Mapes and Davies 2001).

Although the roles of cytokinins exuded by nematode and insect larvae are 
unclear, it is likely that high concentrations of cytokinins are secreted in the gall so 
that the feeding site remains as an active nutrient sink (Stirk and Van Staden 2010) 
as elevated concentration of cytokinins may function as local signal for the real-
location of nutrients and photoassimilates; similar to the cytokinin-induced nutri-
ent mobilization phenomenon observed in plants. Thus, both nematodes and insect 
larvae are also potential sources of cytokinins which could contribute to the envi-
ronmental cytokinins pool as exudates or lysates.

3.2.2  Auxins

Apart from cytokinins, auxins are another important class of phytohormones that 
play crucial roles in regulating various plant growth processes (for a review, see 
Zhao 2010). Auxins are synthesized at the root (Pacifici et al. 2015), in the shoot 
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apex and young expanding leaves (Al-Babili and Bouwmeester 2015). From the site 
of biosynthesis, auxins are transported basipetally via auxin transporters, which in 
turn create an auxin gradient across the plant (Al-Babili and Bouwmeester 2015). 
Peaks of auxin concentration and gradient then act as positional information for 
auxin activity and maintenance of correct cell division, polarity and fates at the root 
apex (Sabatini et al. 1999; Al-Babili and Bouwmeester 2015). Auxins also regulate 
the synthesis of other hormones such as strigolactones (Al-Babili and Bouwmeester 
2015), trigger organ primordia initiation and play a role in the initiation and mainte-
nance of the organ founder cell populations (Wolters and Jürgens 2009).

At the cellular level, auxins induce the expression of CycD3 and CDKs, both 
play crucial roles governing the various checkpoints of the cell cycle, especially 
in the transition of G1/S phase (Wang and Ruan 2013). Auxin signaling is also 
required in the later phase of G2/M transition to complete the mitosis process 
(Wang and Ruan 2013). The mechanisms on how auxins are involved in the initia-
tion of the various cell cycle stages have been reviewed by Wang and Ruan (2013).

Auxins are known to inhibit axillary bud growth, however, the mechanisms of 
axillary bud outgrowth are dependent on the ratio of cytokinins to auxin rather 
than the absolute concentration levels of either hormone (Shimizu-Sato and Mori 
2001). Direct application of auxin to axillary buds, however, cannot prevent bud 
growth (Shimizu-Sato and Mori 2001). Apart from regulating axillary bud growth, 
cytokinin to auxin ratios also determine the development of roots and shoots. A 
balanced ratio of the two hormones keep the cells in undifferentiated state, while 
low cytokinin to auxin ratios promote root development and high ratios promote 
shoot development (Haberer and Kieber 2002). Apart from interacting with cyto-
kinins, interactions between auxins and other phytohormones have been reported 
as well. Examples include interaction with ABA to regulate root growth (Zhao 
et al. 2015), with sugar for cell division and expansion regulation (Wang and Ruan 
2013) and with brassinosteroids to regulate differential growth (Zhou et al. 2013).

Like cytokinins, auxins can be found in various fertilizer sources and these 
included vermicomposts (Zhang et al. 2015) and humic acids (Canellas et al. 2002). 
Hayat et al. (2010) provided a useful listing of bacteria (Azospirillum, Azobacter, 
Bacillus, Kluyvera, Paenibacillus, Pseudomonas, Rhizobacteria, Rhizobium) that 
produce auxins although not all the research described in the review paper pro-
vided unequivocal evidence for the occurrence of auxins using mass spectrometery. 
Interestingly, Patten and Glick (2002) provided scientific evidence for a direct role of 
auxins produced by Pseudomonas putida in regulating mung bean root development.

4  Non-hormonal Plant Growth Promoters  
(Humic Substances)

Humic substances are the major components of natural organic matter found in 
soil, water and organic deposits such as sediments, peats, coals, leaf litters and 
composts (for reviews, see Piccolo et al. 1992; Piccolo 2002; International Humic 
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Substances Society 2007). The bioactive components of humic substances are 
humic acid and fulvic acid. Fulvic acid is essentially a polymerized humic acid 
and thus this section will focus on humic substances in general as both humic acid 
and fulvic acid share similar if not the same chemical characteristics. Both humic 
and fulvic acids are available commercially in the forms of pellets.

Studies have often shown positive effects of humic substances on seed germi-
nation, root initiation and total plant biomass (Rauthan and Schnitzer 1981; Chen 
et al. 2004). This is achieved via their ability to improve soil structure and their 
hormone-like activity on plants (Piccolo et al. 1992; Atiyeh et al. 2002). In plants, 
humic acids are involved in cell respiration, oxidative phosphorylation, protein 
synthesis, photosynthesis and various enzymatic reactions (Atiyeh et al. 2002) by 
improving iron, and possibly zinc nutrition (Chen et al. 2004). At the roots, humic 
acids enhance root initiation, root hair proliferation and mineral nutrient uptake by 
increasing the permeability of membranes of the root cells (Atiyeh et al. 2002).

Piccolo (2002) stated that the beneficial effects which humic substances have 
on the physical properties of soil and their role in the soil environment are signifi-
cantly greater than that attributed to their contributions to sustaining plant growth, 
and have provided a comprehensive review on how humic substances contribute 
to the soil properties and environment. Piccolo’s review (2002) provided insights 
that the hydrophobic nature of humic components protects compounds that are 
easily degradable and enhance their persistence in soil. This contributes to the 
accumulation of organic matter which harbors beneficial effects on the rhizosphere 
and plant growth. Review by Bronick and Lal (2005) also corroborated this view 
that humic acids help improve the soil condition by increasing the aggregate sta-
bility of the soil structure which results in better plant growth and higher yield. 
Furthermore, humic acid, being a weak acid, could function as a buffer that keeps 
the soil at the optimal pH for both plant and microbial growth.

5  Biofertilizers

With the ever growing concerns in environmental-related issues and increasing 
efforts to promote more environmentally friendly farming practices in conven-
tional farms and plantations, the usage of biofertilizers is gaining global accept-
ance. Unlike conventional chemically synthesized fertilizers that contain N, P 
and K, biofertilizers are biomass-based structural matrix (e.g. compost, humic 
acid, etc.) that contain live or latent cells of microorganisms that have the abil-
ity to augment nutrients for plant assimilation through microbial processes such 
as atmospheric nitrogen fixation, phosphate solubilization, cellulolytic degrada-
tion and production of phytohormones (Vessey 2003; Van Loon 2007; Lugtenberg 
and Kamilova 2009; Mishra et al. 2013; Ahemad and Kibret 2014; Owen et al. 
2014). It has been reported that the application of biofertilizers to the seeds and 
the soil, has helped to increase nutrient availability for plant uptake, increased 
and/or improved plant growth parameters and increased crop yield up to 10–20 % 
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without any adverse effect on the environment (Bhattacharjee and Dey 2014). 
Thus, biofertilizers are plausible means to tap onto the natural nutrient cycle with-
out posing any threat on the environment.

The use of biofertilizers in our modern farming practice should be encour-
aged so as to reduce the adverse effects of long-term chemical fertilizers usage. 
There is currently a wide range of biofertilizers available commercially (please 
refer to Table 2 for the mode of action of the various types of biofertilizers and 
their known microorganisms) and we will focus our discussion on PGPR and 
vermicomposts.

5.1  Plant Growth Promoting Rhizobacteria (PGPR)

PGPR are bacteria found within the rhizosphere and have the ability to promote 
plant growth (for reviews, see Kloepper et al. 1989; Vessey 2003; Hayat et al. 
2010; Ahemad and Kibret 2014) via various mechanisms such as nitrogen fixa-
tion, phosphorus and zinc solubilization, which help to enhance the availability 
of plant nutrients for absorption (Çakmakçi et al. 2006; Mahdi et al. 2010). The 
use of PGPR has been reported to increase plant uptake of nitrogen from ferti-
lizer (Adesemoye et al. 2010), and aid to sustain soil productivity and environmen-
tal health by reducing dependence on chemical fertilizers (Shaviv and Mikkelsen 
1993). PGPR are also referred to as biocontrol agents due to their ability to reduce 
the incidence or severity of plant diseases (Beattie 2006). Applications of PGPR 
have been investigated in various plants and crops such as maize, wheat, oat, bar-
ley, peas, canola, soy, potatoes, tomatoes, lentils, radicchio, cucumber and chick-
pea (Gray and Smith 2005; Gopalakrishnan et al. 2015).

While some would consider bacteria localized on the epidermis of plant leaves 
to be PGPR (Maksimov et al. 2011), we consider PGPR to be the bacteria found 
within the rhizosphere, free-living or in association with plant roots. However, 
most PGPR are bacteria that form close association with the plants on the root sur-
face (rhizoplane) or penetrate into the radicular tissues of the root. Most bacterial 
growth usually occurs at the junctions between epidermal cells and areas where 
side roots appear (Lugtenberg and Kamilova 2009). Some researchers speculated 
that PGPR must colonize the root surface efficiently, compete well against other 
microbes present within the same rhizosphere for nutrients secreted by the root 
and for sites that can be occupied on the root before being able to exert beneficial 
effects on the plants (Lugtenberg and Kamilova 2009).

In general, PGPR can affect plant growth in two different ways, directly or 
indirectly. Direct effects include the various positive influences that PGPR have on 
plant growth which occur in the absence of pathogens (Lugtenberg and Kamilova 
2009). Minimizing or preventing deleterious effects of plant pathogenic organisms 
via production of antagonistic substances or induction of plant resistance against 
pathogens is referred to as indirect effects (Glick 1995). It is difficult to classify 
the effects of PGPR on plant growth into the two distinct groups as a direct effect 
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might lead to an indirect influence. For example, production of phytohormones 
helps to enhance growth (direct effect) but may also induce disease resistance 
(indirect effect). Thus, our review will not classify the resultant effects into direct 
or indirect groups.

PGPR share similar functions with the other groups of biofertilizers. The com-
mon functions include converting atmospheric nitrogen (Döbereiner 1992) and 
facilitating the uptake of nutrients such as phosphorus and zinc via solubilizing 
inaccessible forms trapped in insoluble compounds. Unlike the other groups of 
biofertilizers that mainly exert one type of positive effect, PGPR enhance plant 
growth in many more ways. One of the most prominent enhancements is the secre-
tion of bacterial phytohormones (Glick 1995), specifically cytokinins (Philip and 
Torrey 1972; Upadhyaya et al. 1991), which promotes plant growth. The phyto-
hormones, specifically auxins which the bacteria synthesize using the tryptophan 
present in root exudates (Kravchenko et al. 2004), also promote better root sys-
tem formation, thereby enhancing water and nutrient absorption (Patten and Glick 
2002). These in turn help the plants to pass through the pathogen-sensitive early 
development stage more rapidly (Maksimov et al. 2011). This characteristic is 
especially important as studies with added inorganic nitrogen (to increase nitro-
gen fixation) suggested that plant growth promotion is caused by the production 
of plant growth factors such as phytohormones rather than nitrogen fixation (Okon 
et al. 1998).

Apart from providing the plants with phytohormones, PGPR are also known to 
stimulate plant growth by releasing volatiles and cofactor pyrrolquinoline quinone 
(PQQ) (Ryu et al. 2003; Lugtenberg and Kamilova 2009). Volatiles are reported 
to increase photosynthetic efficiency and chlorophyll content in Arabidopsis thali-
ana through the modulation of endogenous signaling of glucose and abscisic acid 
sensing (Zhang et al. 2008). PQQ on the other hand functions as antioxidants and 
cofactor of enzymes involved in antifungal activity and induction of systemic 
resistance (Lugtenberg and Kamilova 2009; Choi et al. 2008).

Other major substances known to be synthesized by PGPR and are beneficial 
to the plants include antibiotics, siderophores and hydrolytic enzymes. PGPR anti-
biotics are oligopeptides that inhibit cell wall synthesis in pathogens at the cell 
wall synthesis initiation stage. The antibiotics disrupt the functions of ribosomes 
and inhibit the formation of initiation complex on small subunit of ribosomes 
(Maksimov et al. 2011). PGPR antibiotics are said to be effective against Gram-
positive and Gram-negative bacteria and pathogenic fungi (Maksimov et al. 2011).

Microbial siderophores synthesis by PGPR is induced by low ferric ion level 
in the environment. Siderophores have high affinity to ferric ions and have the 
ability to solubilize and extract ferric ions from mineral or organic complexes 
(Wandersman and Delepelaire 2004). Thus, this increases the pool of iron avail-
able for plant assimilation. It was reported that microbial siderophores help to 
enhance iron uptake by plants that are able to recognize the bacterial ferric-
siderophore complex (Masalha et al. 2000; Katiyar and Goel 2004; Dimkpa 
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et al. 2009). Iron uptake by plants in the presence of other metals such as nickel 
and cadmium is also enhanced by siderophores (Burd et al. 1998; Dimkpa et al. 
2008). By enhancing plant iron uptake, pathogens are deprived of the iron that is 
much needed for their growth and development and thus reducing the occurrence 
of plant diseases (Maksimov et al. 2011). Calcium assimilation by plants is also 
enhanced by siderophores.

The production of bacterial hydrolytic enzymes, e.g. chitinases, glucanases, 
proteases, lipases, that lyse fungal cells, volatile compounds and their toxins are 
also ways which PGPR help reduce and/or prevent pathogenic diseases (Neeraja 
et al. 2010; Maksimov et al. 2011) and suppress nematode populations within the 
rhizosphere (Youssef and Eissa 2014).

PGPR also help facilitate plant growth and development by reducing the stress 
response within plants via decreased ethylene levels. Ethylene precursor 1-amino-
cyclopropane-1-carboxylate (ACC) is converted into 2-oxobutanoate and ammonia 
by bacterial ACC deaminase (Glick et al. 2007), relieving the inhibition of root 
growth (Van Loon 2007) while rendering the plants to be more resistant against 
stress due to heavy metals (Ca2+ and Ni2+), salt, draught and phytopathogenic 
bacteria (Glick and Bashan 1997; Lugtenberg and Kamilova 2009; Van Loon 
2007). Studies by Talaat et al. (2015) also provide concrete evidence on the appli-
cation of suitable microorganisms to help the plants gain tolerance against salinity 
stress via alteration of nutrient acquisition and accumulation of compatible solutes.

It is also noteworthy that PGPR play the role of rhizoremediator by degrading 
soil pollutants (Lugtenberg and Kamilova 2009). Siderophores produced by PGPR 
are able to aid in the bioremediation of soil pollutants (Crowley 2006) by isolating 
and degrading heavy metals and toxic organic matters such as metabolites of path-
ogenic origins (Maksimov et al. 2011) reducing the occurrence of contaminated 
crops that may pose adverse effects when consumed. Cleaner soil also allows 
more microorganisms and organisms (such as earthworms) to flourish, conferring 
beneficial effects on the plants.

Another way that plants benefit from the association with PGPR is the activa-
tion of defense mechanism—induced systemic resistance (ISR) against pathogens 
(Van Loon et al. 1998). Exudates produced by PGPR are able to stimulate ISR by 
activating components such as lipoxygenases, lipid peroxidases and reactive oxy-
gen species (Maksimov et al. 2011) conferring protection against diseases caused 
by different organisms (Lugtenberg and Kamilova 2009) by reducing the rate of 
disease development in terms of severity or number of diseased plants (Van Loon 
2007). ISR activation is dependent on jasmonic acid and ethylene signaling (Van 
Loon 2007). Systemic acquired resistance (SAR) which also enhances resistance 
against diseases is, however, induced by pathogens and dependent on salicylic 
acid (SA) signaling (Van Loon 2007). It is important to note that PGPR that elicit 
ISR in one plant species may not do so in another due to interaction specificity 
between rhizobacteria and plants (Van Loon 2007).
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5.2  Vermicomposts

Another form of biofertilizer that is gaining widespread acceptance globally is ver-
micompost and vermicompost tea, a leachate of the vermicompost. Vermicompost 
is the highly valued compost produced by earthworms (for a review, see Edwards 
et al. 2010). Vermicomposting not only helps to reduce organic wastes in vol-
ume, but also turning them into humus-like substance that is finer than compost 
and generally contains high concentration of mineral matter. This makes ver-
micompost a very good fertilizer that is up to 70 times more efficient than conven-
tional manure (Červená et al. 2013). The earthworm activity also stimulates and 
increases the diversity of microbial activity. Typically vermicompost is applied at 
low concentration to the plant growth medium or as soil drench or foliar spray.

Vermicomposts have been reported to have beneficial effects on plant growth 
such as improved seed germination, enhanced seedling growth and development, 
and increased plant productivity (Atiyeh et al. 2002; for a review, see Edwards 
et al. 2010). It enhances plant growth by improving the physical structure and 
moisture retention capacity of the soils (Arancon et al. 2004) while supplying the 
plants with N in stable form (Chaoui et al. 2003) and phytohormones or phytohor-
mone-like compounds produced by the microorganisms present within.

Our group has been actively characterizing the phytohormones in vermicom-
posts and their leachate (vermicompost tea). Recently, a new method has been 
successfully established by our group for the analysis of phytohormones present 
within vermicompost (Zhang et al. 2015) and quantitative evidence of the various 
growth regulating factors, such as phytohormones, i.e. cytokinins, auxins, gibberel-
lins and brassinosteroids, present in vermicompost tea and leachate have been pro-
vided by Zhang et al. (2014) and Aremu et al. (2015). Hopefully, the phytohormone 
screening approach developed for vermicomposts can be extended to all types of 
organic fertilizers. Aremu et al. (2015) have also provided insightful discussion on 
the importance of different phytohormones on their roles in regulating plant growth 
and development. Results from these studies indicated that vermicomposts harbor a 
rich diversity of plant growth promoting factors, specifically phytohormones. The 
origins of these “subterranean” phytohormones are likely to be linked to the sym-
biotic microbes living in the gut of the earthworms. There is also a possibility that 
vermicomposts may contain other factors that are beneficial for the plants that have 
yet to be detected. The beneficial effects of vermicomposts can also be attributed 
to the presence of humic acids or growth regulators associated with humic acids as 
demonstrated by Arancon et al. (2004) and Canellas et al. (2002).

Synergistic relationship between vermicompost and PGPR had been reported 
to improve plant growth, reduce plant mortality and increase microbial biomass 
(Sahni et al. 2008; Song et al. 2015). This could be due to the reason that ver-
micompost contains humus which allows PGPR to thrive well and multiply in 
population. Thus, farming practice can turn to a new biofertilization regime which 
utilizes both the vermicomposts and PGPR to reap the full synergistic benefits of 
these natural resources that are beneficial for the plants and to maintain good soil 
and environmental health.
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6  How Biofertilizers Work in Tandem with 
Microorganisms and Phytohormones  
to Influence Plant Growth?

An extensive review of published literature (Gharib et al. 2008; Datta et al. 2009; 
Edwards et al. 2010; Hayat et al. 2010; Mahdi et al. 2010; Shafi et al. 2012; 
Ahemad and Kibret 2014; Bhattacharjee and Dey 2014; Qin et al. 2015; Sarma 
et al. 2015; Song et al. 2015) and our extensive field observations have shown that 
organic fertilizers, despite having low NPK value, can sometimes produce the 
same growth promoting effect and/or achieving comparable yields, when com-
pared to plants grown using conventional chemical fertilizers with high NPK ratios 
(e.g. 10–21) (for reviews, see Shaviv and Mikkelsen 1993; Chen 2006). Hence, 
there must be some growth-promoting factors present in organic fertilizers and 
these positive factors are certainly not the NPK mineral nutrients per se, that are 
driving plant growth and development. These salient and positive growth enhance-
ment observations had been noted by many farmers/growers in the plant industry 
and a plausible scientific explanation remains elusive. In this review, we provided 
scientific evidence that the growth promoting factors in biofertilizers modulating 
plant growth and development are phytohormones, and that the known biological 
functions of phytohormones are in tandem with the observed physiological charac-
teristics and crop yield (Fig. 6).

At the whole plant level and in relation to the plant–soil continuum, the interac-
tions between the whole plant and the microorganisms present in the soil can be 
best illustrated by Fig. 7. The soil and the entire subterranean root system form 
a diverse and intimate association of “biological networks and entities” compris-
ing of plant roots, microbes (bacteria, fungi) and many very small organisms 
(nematodes, earthworms, etc.). Amidst the complex array of biological networks 
and entities is the soil matrix and water medium where multitudes of biological 
activities (e.g. microbial biochemical activities like enzyme production, plant exu-
dations [allelopathic] and uptake, ingestion by earthworms, etc.) and interactions 
are taking place. It is therefore conceivable that the soil matrix and water medium 
contain many naturally produced substances, biological metabolites and these 
include the phytohormones and their precursors (see Sect. 5). From a holistic per-
spective, one may view the entire plant subterranean root system as a “receiver” 
of the multitudes of biochemical signals and this information allows the plants to 
“sense” the prevailing soil conditions for water, nutrient and phytohormone avail-
ability. The selected biochemical signals are “received” at the root tips, “assim-
ilated” and sent to the various plant parts. These signals induce most responses 
at the actively growing areas within the plants. The actively growing areas within 
any plant are the plant meristems found mainly in the aboveground shoot sys-
tem: shoot apices, axillary buds, flower buds and the root tips (belowground). The 
growth rates of these meristems are governed by the various phytohormonal chem-
ical signals arriving there, from the roots. Most of these phytohormonal chemical 
signals have their origins in the subterranean soil and they normally travel with the 
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transpirational water flow through the xylem and onto many plant parts. Closer to 
the meristems where there may not be any functional conduits leading from the 
main transport tubes to the meristems, these chemical signals may travel via the 
phloem and/or through cell-to-cell linkages via diffusion and onto the meristems. 
Nevertheless, the xylem represents the main conduit for the root-to-shoot trans-
mission of the phytohormonal signals for plant growth and development, and there 
are ample scientific evidence to support this growth regulatory mechanism (Yong 
et al. 2000, 2014; for reviews, see Schmülling 2002; Stirk and Van Staden 2010).

Fig. 6  The contribution of chemical, organic and biofertilizers to plant growth and development 
through cell proliferation. Chemical and organic fertilizers provide nutrients, e.g. N, P, K, that are 
essential for the basic cellular structural machinery and the biosynthesis of DNA, enzymes, cells 
walls, etc. These processes are active when the meristematic cells are dividing, i.e. cell under-
goes the entire cell cycle process, and new cells are produced. Under normal conditions, plants 
grow at fairly predictable pace due in part to cell cycle regulation governed predominantly by the 
availability of resources (mineral nutrients, water), suitable environmental conditions (adequate 
sunlight, optimal temperature) and phytohormones. Thus, the addition of mineral nutrients via 
chemical fertilization will not necessarily increase the rate of plant growth per se, when there are 
other limitations imposed on the plant. The application of biofertilizers supplies the plants with 
phytohormones (in addition to those synthesized endogenously by the plants) that help the plant 
meristems to overcome the various cell cycle checkpoints’ “restrictions” and to facilitate active 
cell proliferation. The calibrated and integrated usage of different fertilizers (both chemical and 
organic) to supply the plants with ample nutrients for their cellular structural needs and appro-
priate phytohormonal signals to proceed through cell cycle checkpoints will eventually lead to 
active plant growth
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Fig. 7  Schematic diagram to describe how biofertilizers work in tandem with microorganisms 
and phytohormones to influence plant growth. 1 Soil provides the plants with general nutrients 
like N, P and K, that serve as cellular structural materials and building blocks for components 
such as nucleic acids, ATP and enzymes; and cofactors for enzyme activities. Fertilizers, either 
conventional or organic in origin, are added to restore the “nutrient loss” from biomass removal 
and/or through leaching or weathering processes. 2 Application of biofertilizers introduces 
microorganisms (e.g. bacteria and fungi) into the rhizosphere. 3 Microorganisms may be free-
living or in symbiosis with the plants (at the roots). 4 Certain microorganisms produce various 
useful enzymes for improving soil availability of certain nutrients, and other useful substances 
including phytohormones or possibly, their precursors (mainly cytokinins and auxins). 5 The 
phytohormones (and/or their precursors), present in the soil, are then taken up by the plant, via 
the roots, and 6 transported to/or near the sites of active growth, i.e. shoot apices and axillary 
meristems, through the xylem. 7 The phytohormones help the cells to bypass the G0 phase and 
8 proceed beyond the checkpoints (G1/S and G2/M) that results in active cell divisions, produc-
ing more cells at the meristems, and leading eventually to plant growth. 9 Phytohormones trans-
ported to the other parts of the plants also regulate various biological processes such as the open-
ing of stomata, chloroplast production, release from apical dominance, flower development and 
root development. 10 Earthworms produce vermicompost that contains phytohormones (through 
earthworms’ intestinal microbial activities) that are released into the soil and can be taken up by 
the plants. 11 Vermicompost also contains humus that allows beneficial bacteria (either of earth-
worm gut origin and/or soil origin) to thrive and multiply, and thereby increasing the bioactivity 
of the soil. Humus also help to improve the soil structure that allow better water and air move-
ment within the rhizospheres and thereby increasing soil fertility
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6.1  Improving Current Fertilizer Regime in Light  
of the Linkages Between Plant Growth and 
Microorganisms-Derived Phytohormones

For the general plant industry at present, the sole application of each type of ferti-
lizer (either chemical or organic) appears to be the current trend adopted by many 
growers/farmers. However, there is a gradual and progressive shift by some of the 
conventional farmers/growers toward using organic additives (organic fertilizers 
and biofertilizers) to supplement their chemically based NPK fertilizer applica-
tions in the farms/plantations. This is because many conventional farmers/grow-
ers have realized that the long-term and prolonged usage of chemical fertilizers 
on their lands had somewhat led to a drop in plant growth promoting efficacy and 
subsequently lower yield. Due to the complexity of these biotic and abiotic pro-
cesses (some of which are still unclear) and interactions, it was often impossible to 
give farmers/growers adequate scientific explanations. Some research suggested a 
plausible link between lower yields (despite increasing chemical fertilization) and 
diminishing microbial activities (“poor soil health”). Such ambiguity paves the 
way for more intensive research toward understanding the role of soil microbes 
(and their associated phytohormonal content), in relation to plant growth and ferti-
lizer formulations. Nevertheless, various scientific studies had been conducted on 
the use of a combination of fertilizers, chemical and organic (Shafi et al. 2012), 
organic and biofertilizers (Gharib et al. 2008; Sarma et al. 2015), vermicompost 
and PGPR (Song et al. 2015) and even a combination of all three types (chemi-
cal, organic and biofertilizers; Datta et al. 2009). The studies have proven that the 
integrated use of different fertilizers is highly beneficial in terms of crop yield and 
environmental friendliness.

Some conventional plant industries have started using humic acid (commer-
cially available in pellet forms) and/or biocharcoal, in their farming practices. 
Humic acid pellets are known to improve the soil properties, which are likely to be 
degraded by prolonged chemical fertilizer application. Other conventional farmers/
growers have used vermicomposts which not only improve the soil composition 
and structure but also introduce beneficial microorganisms. These microorgan-
isms in turn provide the necessary phytohormones needed to support plant growth 
and development. While organic fertilizers and biofertilizers contain phytohor-
mones (varying levels) and are environmentally friendly, they may fail to deliver 
stable and predictable growth stimulation comparable to chemical fertilizers as it 
is difficult to manage the batch–batch variation in microbial activities and miss-
ing mineral nutrients. Moving forward, plant industry that uses organic fertilizer 
or biofertilizers could consider fortifying their fertilizers with selected micro- and 
macromineral nutrients so as to supplement the low amount of nutrients, espe-
cially NPK and other trace elements, to improve or to maintain the yield.
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6.2  The Novel Futuristic Green Biofertilizer—With 
Microbial Phytohormones

In our current plant industry and fertilization practices, the shortage of min-
eral nutrients can be assessed rapidly and easily overcome by adding fertilizers. 
However, the apparent shortage of phytohormones in promoting plant growth 
and development has never been recognized as an important tenet of whole plant 
nutrition. Ironically, the importance of phytohormones in promoting in vitro 
plant growth and development in the plant tissue culture industry is widely rec-
ognized and supplementing phytohormones within a desired mineral nutrient for-
mulation is the standard practice (for reviews, see George and Sherrington 1984; 
George 1993). Unknown to many farmers/growers from the scientific perspective 
of plant cell cycle regulation through phytohormones, the use of organic fertiliz-
ers and biofertilizers (with their microbes and naturally occurring phytohormones 
and especially cytokinins) by either an organic farm (routinely) or as a periodic 
supplement to their conventional farming methods, help to increase the levels of 
growth promoting phytohormones in the subterranean root environment. With the 
new understanding about the pivotal role of phytohormones in regulating plant cell 
proliferation when mineral nutrients are sufficient, we believe that plant industry 
productivity or yield can be further enhanced with the supplementation (or natu-
ral occurrence) of phytohormones like cytokinins, auxins, gibberellins, etc., within 
the current fertilizer formulation, and possibly through microbial avenues with 
varying levels of controlled release technologies (Bashan et al. 2014).

Moving forward, we propose a new practice of introducing phytohormones, 
specifically cytokinins, in current agricultural/horticultural plant nutrition meth-
odologies. Cytokinins appear to be one of the limiting factors in regulating plant 
growth due to its scarcity and fluidity in the fragile subterranean environment, as 
discussed in earlier sections. Thus, we believe that agricultural/horticultural yield/
productivity can be greatly enhanced with the supplementation of cytokinins 
and other phytohormones in fertilizers. The preferred sources of cytokinins in 
any futuristic green biofertilizer should preferably be “natural” and originating 
from microorganisms (e.g. bacteria like Azospirillum and Rhizobium) and natu-
ral sources (coconuts, macroalgae, or seaweeds) that are widely available to the 
growers/farmers (for reviews, see Letham and Palni 1983; Stirk et al. 2003; Ördög 
et al. 2004; Yong et al. 2009). Microbial production of cytokinins has been well 
documented (Phillips and Torrey 1972; Ng et al. 1982; Burkiewicz 1987; Kraigher 
et al. 1991; Upadhyaya et al. 1991; Arkhipova et al. 2005; Kudoyarova et al. 2014) 
and could be cultured economically in large quantity using bioreactors and formu-
lated for agricultural/horticultural use (Fig. 8). Thus, cytokinin-producing bacte-
ria harbors the greatest potential for large-scale cytokinin production and can be 
developed into the next generation of green fertilizer for agricultural/horticultural 
applications.

The new generation of green biofertilizer is likely to come in the form of gran-
ules, and/or coated by natural/hydrophobic polymers or as matrices in which the 
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active plant growth promoting (e.g. cytokinins, auxins, gibberellins, etc.) and 
soil improving substances (e.g. humic acid), and/or suitable microbes, with care-
fully selected mineral nutrients, are embedded in packing materials (e.g. alginate) 
that restricts the rapid dissolution of the fertilizer, and consequently providing 
the plants with a sustained source of phytohormones, mineral nutrients, amino 
acids, proteins, etc. (Fig. 9). The current slow and controlled release or “sta-
bilized” fertilizers is a useful design template to develop the futuristic fertilizer 
(for reviews, see Shaviv and Mikkelsen 1993; Bashan et al. 2014). The selection 
of specific mineral nutrients to be embedded in the novel futuristic green ferti-
lizer should be formulated only after a proper chemical analysis of the targeted 
soil type or locality had been carried out. In situations where certain macro- and 

Fig. 8  Formulations of inoculants as biofertilizers for agricultural and environmental uses. 
(reprinted from Plant and Soil, 378, 2014, 1–33, Advances in plant growth promoting bacterial 
inoculant technology: formulations and practical perspectives (1998–2013), Y. Bashan, L.E. de-
Bashan, S.R. Prabhu, Juan-Pablo Hernandez, Fig. 2, with kind permission from Springer Science 
and Business Media)
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micronutrients may be biologically unavailable, suitable and effective microbial 
populations for solubilizing the chemically fixed phosphorus and to improve the 
availability of other macro and micronutrients, could be added onto these granules. 
When there are threats to plant health, the novel fertilizer may be formulated to 
have some levels of biocontrol properties against certain pathogens. Some other 
organic compounds such as humic acids and vermicomposts with favorable soil 

Fig. 9  Encapsulating bacteria for use in industrial fermentation and as an inoculant for agri-
cultural/environmental use (reprinted from Plant and Soil, 378, 2014, 1–33, Advances in plant 
growth promoting bacterial inoculant technology: formulations and practical perspectives (1998–
2013), Y. Bashan, L.E. de-Bashan, S.R. Prabhu, Juan-Pablo Hernandez, Fig. 3, with kind permis-
sion from Springer Science and Business Media)
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structure improving properties (such as water and mineral nutrient retention) and 
soil microbial activity-enhancing properties, could also be added in order to aug-
ment the overall performance of the novel futuristic green biofertilizer. Bashan 
et al. (2014) provided interesting and useful methodologies toward designing vary-
ing levels of controlled release centered on either a seed (Fig. 10a) or a microbial 
pellet (Fig. 10b). These useful microbial-inoculant design conceptual templates 

Fig. 10  Schematic representation of the various strategies available for a multilayered seed 
inoculation and b microbial pellets for soil inoculation (reprinted from Plant and Soil, 378, 2014, 
1–33, Advances in plant growth promoting bacterial inoculant technology: formulations and 
practical perspectives (1998–2013), Y. Bashan, L.E. de-Bashan, S.R. Prabhu, Juan-Pablo Hernan-
dez, Fig. 4, with kind permission from Springer Science and Business Media)
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can be broaden further to include the futuristic green fertilizer granule design that 
may carry some useful substances (see Sects. 3.2 and 5) and perhaps, concomi-
tantly embedding two different microbes with different biological functions in the 
soil. With above-mentioned benefits, together with a reasonable storage life (up 
to 3–6 months), the novel futuristic green biofertilizer in the form of granules is 
likely to be favored by the conventional farmers/growers.

The ideal fertilizers should have the following three characteristics:

•	 A single application should supply enough mineral nutrients and phytohor-
mones throughout the entire growing season to meet plant demand for optimum 
growth;

•	 Maximal plant growth stimulation thus allowing the largest financial return for 
the cost of input;

•	 Minimum detrimental ecological effects on the soil, water and atmospheric 
environment.

7  Conclusion

Plant growth is dependent on meristems where cell proliferations give rise to new 
plant structures and allow the plant to increase in size. We provided scientific link-
ages and evidence to show that the growth promoting factors in biofertilizers regu-
lating cell proliferation and ultimately modulating plant growth and development 
are phytohormones. The known biological functions of phytohormones (cyto-
kinins, auxins, gibberellins, etc.) are in tandem with the observed physiological 
characteristics and crop yield of plants. When light, water and mineral nutrients 
are not limiting, phytohormones, especially cytokinins, in biofertilizers help to 
drive plant growth by progressing faster through the various plant cell cycle check-
points leading to the production of more cells.

There is an enormous diversity of microbes found within the soil matrices of 
the subterranean environment where the plant root system exists. Within the 
rhizosphere, there is a group of PGPR bacteria that has the ability to promote 
plant growth via various mechanisms such as nitrogen fixation, phosphorus and 
zinc solubilization. Another prominent ability of some PGPR is the secretion of 
bacterial phytohormones, like cytokinins and auxins and other useful substances. 
Phytohormone-producing PGPR harbors the greatest potential for large-scale 
phytohormone (especially cytokinins) production and can be developed into the 
next generation of green fertilizer with microbial phytohormones and/or microbial 
inoculant for agricultural/horticultural applications.

Evidently, the above literature reviews and discussions reveal that biofertiliz-
ers bring about great advantages and improvements to our modern and intensive 
conventional agriculture practice. In addition, although not discussed in depth 
in this review, certain biofertilizers may also confer natural biocontrol property 
that would be useful for disease management. The long-term and fundamental 
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sustainable criterion for any futuristic farmland/plantation is essentially soil 
health. Good soil provides the foundation for healthy plant growth with minimal 
external mineral nutrient addition. However, despite its environmental friendli-
ness, any fertilizer regime that solely relies upon biofertilizer may not be feasible 
in terms of crop productivity per unit area when compared to conventional agri-
culture practice. Large amount of biofertilizers would be required as they gener-
ally contain lower mineral nutrient content, variable elemental composition and/or 
releasing nutrients at a much slower rate that is unable to sustain maximum plant 
growth over a limited time period (Chen 2006). Thus, for those involved solely in 
organic farming practices, we suggest that their organic fertilizers be fortified with 
selected macro- and micronutrients when there is a drop in horticultural productiv-
ity/crop yield. Conversely, for those involved in conventional farming practices, 
adding organic and biofertilizers periodically is the remedy to reduce chemical fer-
tilizer usage while maintaining their expected yields. Under certain circumstances, 
selective biofertilizer application to support conventional farming practices is 
considered the best way to restore the effective microbial populations in order to 
solubilize chemically fixed phosphorus and to improve the availability of other 
macro- and micronutrients for plant uptake.

In the near future, we envisage that a hybrid approach of combining organic 
and conventional fertilization regimes will be widely accepted throughout the 
global plant industry. This is evident from the 15-year-long study conducted by 
Qin et al. (2015) which demonstrated that the combined application of organic fer-
tilizers (manure was investigated in that study), together with chemical fertilizer 
are of great importance to improving agricultural economy as well as sustaining 
soil heath and quality. Moving forward, the new generation of green biofertilizer 
should come in the form of granules in which the active plant growth promoting 
(e.g. cytokinins, auxins, gibberellins, etc.) and soil improving substances (e.g. 
humic acid) and/or suitable microbes (“inoculants”), with carefully selected min-
eral nutrients, are embedded in the packing materials giving slow and sustained 
release over a desired period. The futuristic green fertilizers should provide the 
plants with a sustained source of phytohormones and mineral nutrients. In situa-
tions where certain macro- and micronutrients may be unavailable, suitable and 
effective microbial populations for solubilizing the chemically fixed phosphorus 
and to improve the availability of other macro- and micronutrients could be added 
onto these green fertilizer granules.
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Abstract Looking into account, the effective microorganisms (EM) discussed in 
green revolution are able to enhance plant growth and crop productivity. These act 
as fertilizers without causing any hazard on edaphic profile and ecological sustain-
ability. In recent scenario, these microorganisms as PGPR are known to produce 
phytohormones and cover tremendous role in sustainable agriculture. Major six 
classes of phytohormone including natural, semi-synthetic and synthetic check out 
seed dormancy of several crop plants and allow to germinate in short period and 
further induce plant growth in sustainable manner, trigger plant immunity, main-
tain stress tolerance and aid plant maturity for fruiting and seedling. Under this 
review, discussion lies on all the aspects covering role and significance of auxin 
and other phytohormone-producing PGPR important to agriculture in near future.

Keywords PGPR · Phytohormone · Cytokinin · Auxin · Salicylic acid · Plant  
immunity · Crop productivity

1  Introduction

The ecology of root vicinity is called as rhizosphere, which harbors diversified 
microorganisms having various interactions, under two broad means as symbi-
otic (formation of nodule) and non-symbiotic. Based on the mode of interactions 
in rhizosphere, plant growth promoting rhizobacteria are termed as extracellular 
PGPR (ePGPR) and intracellular PGPR (iPGPR) as stated by Martinez-Viveros 
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et al. (2010). Due to their importance in agro-ecosystem, these are now established 
to improve soil health and profile so as to increase crop productivity.

In the beginning of twentieth century, Starling was first to define the term 
phytohormone as organic substance which are synthesized in minute quantities 
in one part of the plant body and transported to another part where these influ-
ence specific physiological processes. Phytohormones are structurally unrelated 
small molecule in nature, regulating plant growth and development i.e. auxin, 
abscisic acid, cytokinin, gibberellin and ethylene. However, recently, many semi-
synthetic and synthetic phytohormones have been identified: brassinosteroids, jas-
monate, salicylic acid, nitric oxide, strigolactones, etc. (Santner and Estelle 2009). 
Phytohormone producing bacteria are gaining full swing in whole globe under the 
means of exploitation due to synergy between bacteria and plant led to sustain-
able agriculture (Narula et al. 2006). Growth and development of plant is predomi-
nantly influenced by mineral nutrients, hormones and other secreting metabolites. 
In fact, almost all the communication in plant cells is brought by plant hormones 
produced by plant cells or by rhizobacteria.

The most commonly occurring phytohormone is auxin (indole acetic acid). 
IAA produced in shoot apical meristem of plant and found throughout the plant 
body. It occurs in the form of free auxins (diffusible auxins), which is released 
out from plant tissues, released out from tissues only after hydrolysis,  autolysis 
and enzymolysis. Production of IAA is widespread among rhizospheric bac-
teria (Table 1). Different IAA biosynthesis pathways are used by these bacteria 
and sometimes a single bacterial strain exhibit more than one pathway (Patten 
and Glick 1996). There are many chemically synthesized phytohormones such 
as indole-3-butyric acid (IBA), 2-methyl-4-chlorophenoxy acetic acid (MCPA), 
indole-3-propionic acid (IPA), 2,4-dichlorophenoxy acetic acid (2,4-D), etc., able 
to trigger various physiological processes (Table 2).

Plant growth regulatory hormone generally called gibberellins (GAs) forms 
a large family of plant growth substances with distinct functions during the life 
cycle of higher plants. Gibberellins are involved in a number of developmental and 
physiological processes (Crozier et al. 2000) including seed germination, seedling 
emergence, stem and leaf growth, floral induction and flower or/and fruit growth 
(King and Evans 2003; Sponsel 2003), regulation of vegetative and reproductive 
(bud) dormancy and delay of senescence (Bottini and Luna 1993; Fulchieri et al. 
1993; Reinoso et al. 2002). Gibberellins in combination with other phytohor-
mones, are directly effective in promotion of shoot elongation in plants (Crozier 
et al. 2000). Very few bacteria produce GA during their cultivation on artificial 
culture medium.

Cytokinin mediates the responses to variable extrinsic factors, such as light 
conditions in the shoot and availability of nutrients and water in the root and also 
play role in the response to biotic and abiotic stresses. Together, these activities 
contribute to the fine-tuning of quantitative growth regulation in plants (Werner 
and Schmülling 2009; Gupta and Rashotte 2012). Cytokinin concentration in 
plant cells depends on biosynthesis immobilization from extracellular sources, 
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metabolic inter-conversions, inactivation and degradation. Increased cytokinin 
concentration results either from their uptake or biosynthesis. Accumulated cyto-
kinins are capable of inducing cytokinin oxidase which consequently decreases 
cytokinin levels. This seems to be the mechanism of re-establishment and mainte-
nance of cytokinin homeostasis required for further development of physiological 
events induced by transient cytokinin accumulation (Kaminek et al. 1997).

Abscisic acid (ABA) is produced in a very low concentration which influences 
physiological processes such as respiration rate, metabolism and root abundance. 
ABA is involved in protection against drought, salt stress and toxic metals. It also 
induces stomatal closure of leaf. Rhizospheric bacteria capable of producing ABA 
are experimentally poorly underpinned. ABA has effective role in synthesis and 
inhibition of cytokinin (Miernyk 1979), and increases plant growth by managing 
with cytokinin concentration (Spaepen et al. 2009). It also alleviates plant stress 
by increasing rhizosphere in terms of root abundance (Maheshwari 2011; Boiero 
et al. 2007).

Plants use ethylene in gaseous form to regulate myriad developmental pro-
cesses and stress responses. Ethylene production by infected plants is an early 
resistance response leading to activation of plant defense pathways. However, 
plant pathogens are also capable of producing ethylene, which might have an 
effect not only on the plant but also on the pathogen as well. Therefore, ethyl-
ene plays a dual role in plant–pathogen interactions by affecting the plant as well 
as the pathogen (Chagué et al. 2006). Ethylene regulates seed germination, root 

Table 1  Various indigenous genera-producing IAA and their influence on different crops

Author’s Lab
G/P Growth per plant over control

Name of genera Accession 
 number (NCBI)

IAA production 
(µg/ml)

Yield (%) 
increase

References

Pseudomonas 
 aeruginosa GRC1

31.00 42.6 (G/P) Aeron et al. (2010)

P. aeruginosa PS2 36.00 38.8 (G/P) Aeron et al. (2010)

P. aeruginosa PSII 30.00 39.2 (G/P) Aeron et al. (2010)

P. aeruginosa LES4 HQ123431 42.00 41.2 (G/P) Aeron et al. (2010)

P. aeruginosa PRS4 AB666551 40.00 40.8 (G/P) Aeron et al. (2010)

P. aeruginosa PS15 41.00 47.3 (G/P) Aeron et al. (2010)

P. aeruginosa PSI 36.00 45.74 Aeron et al. (2011)

Mesorhizobium loti 
MP6

24 34.28 Chandra et al. 
(2007)

Bacillus sp. BPR7 JN208240 17 Kumar et al. (2012)

Bradyrhizobium sp. 
BMP17

AB665550 40 Maheshwari et al. 
(2014)

Sinorhizobium 
meliloti PP3

80 Pandey and 
Maheshwari (2007)

S. meliloti MSSP 100 Pandey and 
Maheshwari (2007)
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Table 2  Involvement of various genes in biosynthetic pathways of IAA

Bacteria Gene Enzymatic activity Pathway References

Azospirillum brasilense 
Yu62

aldA Aldehyde 
dehydrogenase

IPA Xie et al. (2005)

A. brasilense Sp245 ipdC Indole pyruvate 
decarboxylase

IPA Costacurta et al. 
(1994)

A. brasilense Sp7 hisC1 Aromatic amino acid IPA Castro-Guerrero et al. 
(2012)

Rhizobium sp. 
NGR234

y4wE Aminotransferase IPA Kittell et al. (1989)
y4wE

Enterobacter cloacae 
FERM BP-1529

ipdC Indole pyruvate 
decarboxylase

IPA Koga et al. (1991)

Pseudomonas 
 fluorescens Psd

iaaM Tryptophan 
monooxygenase

IAM Kochar et al. (2011)

Ralstonia 
solanacearum

iaaM Tryptophan 
monooxygenase

IAM Salanoubat et al. 
(2002), Kurosawa 
et al. (2009)iaaH Indole acetamide 

hydrolase

Erwinia chrysanthemi 
3937

iaaM Tryptophan 
monooxygenase

IAM Yang et al. (2007)

iaaH Indole acetamide 
hydrolase

Streptomyces En-1 iaaM Tryptophan 
monooxygenase

IAM Lin and Xu (2013)

iaaH Indole acetamide 
hydrolase

P. fluorescens EBC191 nit Indoleacetonitrilase IAN Kiziak et al. (2005)

nthAB Nitrile hydrolase

Bacillus  
amyloliquefaciens 
FZB42

yhcX Indoleacetonitrilase IAN Idris et al. (2007)

Bacillus sp. OxB-1 oxd Phenylacetaldoxime 
dehydratase

IAOX Kato et al. (2005)

Rhodococcus 
 globerulus A-4

oxdRG Phenylacetaldoxime 
dehydratase

IAOX Kato et al. (2005)

Nha1 Nitrile hydratase

Pseudomonas sp. K-9 oxdK Phenylacetaldoxime 
dehydratase

IAOX Kato and Asano 
(2006)

Nha1 Nitrile hydratase

Rhodococcus 
 erythropolis JCM 3201

oxdK Phenylacetaldoxime 
dehydratase

IAOX Kato et al. (2005)

Nha1 Nitrile hydratase

Rhodococcus 
 rhodochrous J-1

oxdK Phenylacetaldoxime 
dehydratase

IAOX Kato et al. (2005)

Nha1 Nitrile hydratase

Rhodococcus sp. AK32 oxd Phenylacetonitrilase IAOX Kato et al. (2005)

(continued)
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initiation, flower development, fruit ripening, senescence and responses to biotic 
and abiotic stresses. It thus plays a key role in responses to the environment that 
have a direct bearing on a plant’s fitness for adaptation and reproduction (Lin et al. 
2009).

Beneficial group of bacteria presently dominating by auxin-producing and 
plant growth promoting rhizobacteria profoundly increases seed germination, root 
development and water utilization by plants. These rhizobacteria can arouse plant 
growth directly or indirectly by changing microbial balance in the rhizosphere in 
service of beneficial microorganisms. They can subdue a broad spectrum of bacte-
rial, fungal and nematode diseases. PGPR can also deliver protection against viral 
diseases (Siddiqui 2006).

More recently, there has been a resurgence of interest in environmental friendly, 
sustainable and organic agricultural practices (Esitken et al. 2005). Bio-inoculants 
or microbial inoculants are agricultural amendments that use beneficial micro-
organisms to promote plant health by providing phytohormone production in 
rhizosphere on colonization. Microbial inoculants can induce systemic acquired 
resistance (SAR) of crop species to several common crop diseases (provides resist-
ance against pathogens).

In this review, present state of knowledge is being discussed for better under-
standing the nature of beneficial bacterial physiology responsible to deliver phyto-
hormone in root vicinity and interaction with plant for their growth promotion and 
disease management.

2  Classification, Biochemistry and Biosynthesis  
of Phytohormones

Phytohormone production by soil bacteria has significant influence on plant 
growth and performance (Smaill et al. 2010). In fact such hormones are crucial 
signaling molecules that coordinate all aspects of plant growth, development and 
defense mechanism. Production of the phytohormone particularly auxin (IAA) is 
widespread among bacteria that inhabit the rhizosphere of plants.

IPA Indole-3-pyruvic acid; IAM Indole-3-acetamide pathway; IAN Indole-3-acetonitrile pathway; 
IAOX Indole acetaldoxime pathway

Table 2  (continued)

Bacteria Gene Enzymatic activity Pathway References

Brevibacterium 
butanicum

oxd Phenylacetaldoxime 
dehydratase

IAOX Kato et al. (2005)

Nha1 Nitrile hydratase

Corynebacterium sp. 
C5

oxd Phenylacetonitrilase IAOX Kato et al. (2005)
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Phytohormones are commonly classified as semi-synthetic and synthetic hor-
mone including few herbicides. These are grouped into five classes based on struc-
tural similarity (biochemistry) and physiological effect on plant (or plant part). 
Growth regulators of other synthetic hormones are not grouped into these classes; 
they may occur naturally, chemically synthesized, or organically (biochemi-
cally/microbiologically) synthesized in bacterial cells which further may harvest 
through several criteria and strategies. In each class of phytohormone including 
chemically synthesized, one have their pragmatic effect on plant for their growth 
regulation/promotion and health management. Naturally occurring bacteria are 
able to do such kind of action (production of phytohormone) which signifies their 
benefits to plant and soil by residing in rhizospheric habitat. Exhaustive infor-
mation about the biosynthesis of phytohormone auxins, gibberellins, cytokinins, 
ethylene and abscisic acid, as well as plant growth regulators such as polyamines 
and nitric oxide in Azospirillum spp. have been observed (Cassan et al. 2014). 
High level of auxin, gibberellins and salicylic acid in chemically defined media 
was produced by Bacillus amyloliquefaciens. Co-inoculation of this strain with 
Bradyrhizobium japonicum enhances soybean nodulation (Masciarelli et al. 2014). 
Phytohormonal basis for the plant growth promoting action of naturally occurring 
biostimulators attributed for enhancing the growth of agricultural and horticultural 
crops (Kurepin et al. 2014). PGPR treatment improves seedling growth and quality 
of cabbage and increases GA, SA and IAA in plants raised by such group of bacte-
ria (Turan et al. 2014).

2.1  Auxins

Several decades before, the term “Auxin” was introduced into the identification of 
scientific community (Went and Thirmann 1937). In recent scenario, understand-
ing of IAA in plant growth promotion has been truly spectacular. Undoubtedly, 
IAA has wide approach in enhancement of plant growth and health promotion. 
Five bacteria producing IAA in pure culture include members of genera Bacillus, 
Microbacterium, Methylophages, Agromyces and Paenibacillus which have 
considerable impact on root elongation of tropical rice plant (Bal et al. 2013). 
Rhizospheric halotolerant IAA-producing bacteria Kocuria turfanensis were able 
to promote growth of A. hypogoea both in nonsaline and saline soils (Goswami 
et al. 2014).

Auxins are versatile in nature which exhibit differential physiological action. 
They belong to five major groups namely indole acids, naphthalene acids, chlo-
rophenoxy acids, benzoic acids and picolinic acids and their derivatives. The 
first group belongs to indole propionic acids and indole butyric acid; second 
group comprises Nephthaleneacetic acid and β-naphthoxyacetic acid; third 
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group has 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid 
and 2-methyl-4-chlorophenoxyacetic acid; whereas, 2,4,6-trichlorobenzoic 
acid and 2-methoxy-3-6-dichlorobenzoic acid categorized in fourth group and 
4-amino-3,5,6-trichloropicoline acid in last group.

It is interesting to note that diverse bacterial genera produce “Auxin.” Recently, 
a number of studies have clearly shown that IAA can be a signaling molecule in 
microorganisms, in both IAA-producing and IAA-non-producing species. These 
findings raise new intriguing questions on the role of IAA in bacteria and their 
interaction with plants. Such phytohormones of bacterial origin directly affect 
plants physiology particularly in root colonization strategies adopted by bacte-
ria during plant–microbe interaction. IAA acts as signaling molecule in bacteria, 
therefore, facilitates positive outcome on the plant, which ranges from phytostimu-
lation to plant immunity (Cheynier et al. 2013).

High degree of similarity between IAA biosynthesis pathway in plants and 
bacteria has been observed. Tryptophan has been identified as a main precursor of 
IAA biosynthesis pathway in bacteria. Basically, two precursors of IAA formation 
are presumed, either tryptophan or a tryptophan precursor. Various intermediate 
products namely indole-3-pyruvate, indole-3-acetaldoxime, indole-3-acetaldehyde 
(IAAld), indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), or tryptamine 
(TAM) are involved in IAA biosynthesis.

IAA pathways are usually classified based on these intermittent compounds. 
Independently, indole-3-acetamide pathways are characterized in bacterial genera 
Agrobacterium, Pseudomonas, Pantoea, Rhizobium, Bradyrhizobium (Theunis 
et al. 2004). Conversion of tryptophan into IAA is accomplished by two steps: first 
step involved IAM that is produced by enzymatic action (tryptophan-2-monooxy-
genase) and during second step, IAA is obtained by enzymatic hydrolysis of IAM 
by IAM hydrolase (Bar and Okon 1993; Prinsen et al. 1993).

The other pathway is named as indole-3-pyruvate (IPyA) pathway which 
occurs in some pathogenic bacteria including species of Pantoea and few benefi-
cial genera such as Rhizobium and Bradyrhizobium. Initially, tryptophan is con-
verted into IPyA by enzymatic transformation and further decarboxylated into 
indole-3-acetaldehyde (IAAld) by indole-3-pyruvate decarboxylase (IPDC). In the 
terminal step, IAAld is oxidized into IAA. In tryptamine (TAM) pathway, TAM 
is directly converted to IAAld by amine oxidase and further decarboxylation 
brought about with indole-3-pyruvate decarboxylase lead to the formation of IAA 
(Hartmann et al. 1983) as identified in Bacillus spp. (Perley and Stowe 1966).

In tryptophan side chain oxidase (TSO) pathway, tryptophan is converted into 
IAAld by IPyA and oxidized to IAA simultaneously as in Pseudomonas fluore-
scens CHA0 (Oberhänsli et al. 1991). Conversion of indole-3-acetamide via 
nitrilase is another pathway where indole-3-acetonitrile is produced by tryptophan 
via indole-3-acetaldoxime (Patten and Glick 1996). The diagrammatic representa-
tion is shown in Fig. 1.
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2.2  Gibberellic Acid

The gibberellic acid (GA) production was first noticed in fungal genera Giberella 
fujikuroii and later discovered in higher plant species. The hormone induces stem 
elongation, early flowering/budding, breaks seed dormancy and delay senescence 
in plants. Free GAs, conjugated GAs and bound GAs are three major states of 
GAs. Natural GAs are the conjugates of β-D-glucose. About 76 derivatives of glu-
cosyl esters of GAs are presently identified and more than 6 glucoside derivatives 
namely GA1-glucoside, GA3, GA8, GA26, GA27 and GA29 have been character-
ized. GA is tetracyclic diterpenoid compound and their biosynthetic pathways are 
quite complex (Richman et al. 1999). Gibberellin biosynthetic pathways comprise 
three stages according to the nature of the enzymes involved.

During first stage, isopentenyl pyrophosphate (IPP) and ent-kaurene are syn-
thesized from mevalonic acid (Graebe 1987; Macmillan et al. 1997). Synthesized 
IPP is further converted into dimethylallyl pyrophosphate (DMAPP) which later 
on converted into geranyl-geranyl pyrophosphate (GGPP), IPP-isomerase and 
GGPP-synthase, localized in plastids of higher plants (Dogbo and Camara 1987). 
GGPP is further cyclized into ent-copalyl pyrophosphate (ent-CCP) and finally 
leads to ent-kaurene by CPP synthase and ent-kaurene synthase (Fig. 2). In second 
stage, the ent-kaurene so formed is converted into GA12. Ent-kaurene is oxidized 
into six steps to GA12 via ent-kaurenol, ent-kaurenal, ent-kaurenoic acid, ent-
7a-hydroxykaurenoic acid and GA12-aldehyde. Microsomal NADPH-dependent 
cytochrome P-450 monooxygenases catalyze this intermediate in endoplasmic 
reticulum (Graebe 1987). 7-oxidation, 12a-hydroxylation and 13-hydroxylation 
are certain biosynthetic steps catalyzed by both particulate monooxygenases and 
soluble dioxygenases, which occasionally occur together within the same species 
or same tissues with few exceptions (Lange and Graebe 1993; Bearder 1983).

The final step involves the oxidation of GA12-aldehyde by 2-oxoglutarate-
dependent dioxygenases to form GA12. In fact, GA 20-oxidase catalyzes the 
whole series of oxidation reactions carried out at carbon-20, leading to either 
C20-GAs (GA25), or after loss of C20 to form C19-GAs. Later, 3b-hydrox-
ylation activates C19-GAs to plant hormone and subsequently inactivated by 

Fig. 1  Auxin (IAA) 
biosynthesis—an overview 
via different routes (Dashed 
line represents the unknown 
pathways and solid lines 
represent the pathways of 
enzymatic action)
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2b-hydroxylation. C20-GAs are also 2b and 3b-hydroxylated but the resulting 
products are GA13 and GA43 (Fig. 2).

Among bacteria, characterization of GA was first reported in Rhizobium 
meliloti (Atzorn et al. 1988). The presence of GA1, GA4, GA9 and GA20 was 
also demonstrated in gnotobiotic cultures. Apart from Rhizobium spp., produc-
tion of gibberellins was also observed in other bacterial genera Acetobacter 
diazotrophicus, Herbaspirillum seropedicae (Bastian et al. 1998) and Bacillus 
spp. (Gutiérrez‐Mañero et al. 1998). Involvement of GA production in enhanced 
growth of Pinus pinea, is inoculated with Bacillus licheniformis and B. pumi-
lus was reported by Probanza et al. (2002). Other than Bacillus, endophytic 
Sphingomonas is recently reported to enhance growth of tomato (Khan et al. 
2014). Kang et al. (2014) reported that Pseudomonas putida modulates stress 
physiology of soybean and enhances its growth under saline conditions.

2.3  Cytokinin

Cytokinins play distinguish role in cell division, leaf expansion, delay senes-
cence and induce seed germination (Mok 1994). Naturally occurring cytokinins, 
N6-(D2-isopentenyl) adenine (i6Ade) and Zeatin (trans-zeatin), contain hydrox-
ylated side chain. Broadly, direct and indirect pathways have been proposed for 
cytokinin biosynthesis (Fig. 3).

During direct pathway of cytokinin biosynthesis, N6-isopentenyladenosine 
monophosphate formed from AMP and dimethylallyl pyrophosphate (DMAPP). Its 

Fig. 2  Gibberellin 
biosynthesis
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side chain hydrolyzed to form zeatin-type compounds, whereas indirect pathway 
involved release of cytokinin by turnover of tRNA containing cis-zeatin (Chen 1997).

Cytokinin production in Agrobacterium and Pseudomonas spp. was observed 
by Akiyoshi et al. (1987). Besides these genera, members of Methylobacterium 
spp. are capable to influence plant growth promotion by production of cytokinin 
(Lee et al. 2006; Madhaiyan et al. 2006). Earlier, Timmusk et al. (1999) observed 
that rhizobacteria of wheat produce cytokinin. Different bacterial genera Proteus, 
Klebsiella, Bacillus, Escherichia, Pseudomonas and Xanthomonas have ability to 
produce cytokinins (García de Salamone et al. 2001; Karadeniz et al. 2006).

2.4  Ethylene

In general, ethylene is known as hydrocarbon gas (C2H4) that acts as plant hor-
mone. Resurgence and current research focus on its role in fruit ripening, inhibition 
of seedling growth, increase in the membrane permeability and root gravitropism.

For its biosynthesis, S-adenosyl-methionine (S-AdoMet) and ACC are the main 
precursors. S-AdoMet is used as a substrate for many biochemical pathways includ-
ing polyamines in plants (Martin-Tanguy 2001). Initially, ethylene biosynthesis 
occurs by conversion of S-AdoMet to ACC by enzyme ACC synthase (S-adenosyl-
L-methionine methylthioadenosine-lyase). In addition to ACC, ACC synthase 
(ACS) produces 5′-methylthioadenosine (MTA) which later on converted to 
methionine using a modified methionine cycle (Bleecker and Kende 2000) (Fig. 4).

Ethylene production has been observed in almost all seed-bearing plants. 
Various plant parameters such as seed germination, tissue differentiation, forma-
tion of root and shoots primordial, root elongation, lateral bud formation, flowering 
initiation, anthocyanin synthesis, flower opening and senescence, fruit ripening and 
degreening, production of aroma, leaf and fruit abscission and response of plant to 
biotic and abiotic stresses as the major processes influenced due to ethylene-influ-
enced regulation that affects diverse developmental processes and stress responses 
(McKeon and Yang 1984; Abeles et al. 2012). Recently, few reports of bacterial 
species that produce plant growth modulating volatiles have been published. Blom 
et al. (2011) suggested the effects of bacterial volatiles highly dependent on the 

Fig. 3  Cytokinin biosynthesis
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cultivation medium and the inoculum quantity. However, less bacterial genera are 
identified to produce ethylene. Long back, Freebairn and Buddenhagen (1964) con-
sidered that ethylene might be involved in the apparent early ripening of banana 
fruits, which is characteristic of infection by P. solanacearum. Infected banana 
fruits indeed produce more ethylene than healthy fruits of comparable age and 
interestingly, no ethylene was detectable in uninfected green fruit.

On the other hand, IAA can activate the transcription of ACC synthase (Kim 
et al. 1992; Kende 1993). It may also inhibit IAA transport and signal transduction 
(Swarup et al. 2007), when ACC deaminase-containing bacteria lower the ethyl-
ene concentration in plant roots, relieve the ethylene repression of auxin response 
 synthesis and indirectly increase plant growth. Thus, ACC deaminase-containing 
bacteria decrease ethylene inhibition, permitting IAA stimulation without the 
negative effects of increasing ACC synthase and plant ethylene levels. In addi-
tion, it acts as signaling molecule in plant protection against pathogens. Ethylene 
production was reported to act as a virulence factor for bacterial pathogens, e.g. 
P.  syringae (Weingart and Volksch 1997; Weingart et al. 2001).

2.5  Abscisic Acid

Abscisic acid (ABA) is a naturally occurring growth inhibitor for leaf abscission 
and has a significant role in seed dormancy. This hormone is a sesquiterpenoid 

Fig. 4  Ethylene biosynthesis
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(15-C) compound related to monoterpenes, diterpenes (including GAs), carot-
enoids and triterpenes. The structural feature of ABA and related compound/mol-
ecule contains a free carboxyl group, cyclohexane ring with double bond in α or 
β- position and C-2 double bond in cis geometry. The hormone regulates physi-
ological processes such as stress adaptation and seed maturation. ABA is synthe-
sized by two distinct pathways (Oritani and Kiyota 2003; Schwartz and Zeevaart 
2010). Direct pathway occurs in phytopathogenic fungi in which IPP is synthe-
sized from mevalonate pathway (MVA) (Newman and Chappell 1999), while 
indirect pathway is present in higher plants wherein Methylerythritol phosphate 
(MEP) is the source of IPP (Fig. 5).

ABA is produced by bacterial genera Azospirillum brasilense (Cohen et al. 
2008) and Bradyrhizobium japonicum (Boiero et al. 2007). Available literature 
revealed that the effect of inoculation with ABA-producing bacteria on plant growth 
is under infancy. Since, ABA inhibits the synthesis of cytokinins (Miernyk 1979), 
it is therefore speculated that ABA increases plant growth by interfering with the 
cytokinin pool (Spaepen et al. 2009) and also alleviates plant stress by increasing 
the root/shoot ratio (Watts et al. 1981). Recent studies have reported regulation of 
endogenous ABA produced by PGPR of Oryza sativa (Belimov et al. 2014).

Fig. 5  Abscisic acid 
biosynthesis
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3  Applications

Phytohormone-producing PGPR are the free-living and associative community 
of bacteria in rhizosphere which encourage beneficial effects on plant health and 
growth, suppress disease-causing microbes and accelerate nutrient availability 
and assimilation. In virtue of metabolite production, survival of disease-causing 
organisms in its niche (rhizosphere) is quite less. Phytohormone production also 
corroborates plant immunity to withstand against density-dependent and density-
independent stress in rhizosphere. Density-dependent stress includes the parasitic 
(biotic) mode of interaction brought by pathogenic fungi, bacteria and viruses, 
while density-independent stress mainly occurs due to abiotic factors such as 
temperature, pH, water, salinity, etc. Thus, PGPR are the potential candidates to 
protect plant by colonizing within the rhizosphere and producing antimicrobial 
metabolites antagonistic in nature. Phytohormones produced by such community 
of bacteria provide plant health and immunity by regulatory hormones (Pieterse 
et al. 2012).

3.1  Seed Germination, Seedling Emergence and Elongation

Consideration of phytohormone to maintain seed dormancy is circumstantial 
evidence and ABA is involved in regulating the onset dormancy and its state. 
Interaction of abscisic acid (ABA), gibberellins (GA), ethylene (ET), brassinoster-
oids (BR), auxin and cytokinin influences the regulation of interconnected molecu-
lar processes that control dormancy release and seed germination in dicots (Kucera 
et al. 2005). ABA promotes dormancy induction and maintenance, whereas GA 
induces progression from release through seed germination. Environmental sig-
nals regulate this balance by modifying expression of biosynthetic and catabolic 
enzymes include both positive and negative regulators that are mainly feedback, 
regulate to enhance, or attenuate the response. The net result is a slightly heteroge-
neous response, thereby providing more temporal options for successful seed ger-
mination (Finkelstein et al. 2008).

The benefits derived from plant–PGPR interactions are improvements of seed 
germination rate, root development, shoot and root weights, yield, leaf area, chlo-
rophyll content, hydraulic activity, protein content and nutrient uptake—including 
phosphorus and nitrogen. PGPRs promote plant growth and development using 
any one, or more, of these mechanisms as elaborated in Sect. 3.4. Interestingly, 
PGPR may lower the plants ethylene concentration. Inhibition of seedling root 
length and lowering of ethylene levels in plants are through the synthesis of the 
enzyme 1-aminocyclopropane- 1-carboxylate (ACC) deaminase (Glick et al. 2007; 
Saraf et al. 2011).

Auxins such as indole acetic acid (IAA) and indole acetamide (IAM) influ-
ence root development, tissue differentiation and responses to light and gravity 
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(Adesemoye and Kloepper (2009). Bhatia et al. (2008) reported that IAA con-
taining fluorescent pseudomonads increase seed germination, growth promo-
tion and suppression of charcoal rot disease in oil seed crops. Jagadeesh et al. 
(2001) tested the influence of deleterious bacteria and PGPR on germination and 
growth of tomato in vitro. Deleterious bacteria inhibited seed germination, but 
PGPR (Pseudomonas sp. RDV 108) significantly suppressed the growth of del-
eterious bacteria and increased seed germination, root and shoot length in plants. 
Çakmakçı et al. (2007) Nitrogen fixing and phytohormone-secreting bacterial 
inoculant improved growth of spinach (Çakmakçı et al. 2007). Inoculation with 
PGPR increased shoot fresh weight, leaf area and plant height as compared with 
the non-inoculated control. Recently, a study done by Singh et al. (2010) showed 
P. aeruginosa PN1, which produce IAA, cyanogen, siderophore and cellulolytic 
enzymes when inoculated as seed dressing, resulted in increase biomass, root and 
shoot length in chir-pine seedlings. Increase in length of root and shoot enhanced 
due to significance of PGPR-mediated IAA which may prominently involve in 
growth promotion of several pulses and oil seed crop (Maheshwari 2008). Such 
observation was an agreement for stating that phytohormone-producing PGPRs 
have positive effect in early and increased seed germination, seed vigor index and 
increase in biomass with no side effect on plants.

3.2  Somatic Embryogenesis Initiation and Enhancement

Development of somatic cells into zygotic embryos is called somatic embryo-
genesis (SE). The combination of auxin and cytokinin induces callus formation. 
Auxin regulates stem cell formation during SE (Su et al. 2009). On the other hand, 
auxin and cytokinin regulate many processes that are critical to plant growth, 
development and environmental responsiveness (Jones et al. 2010). Initiation in 
response to auxins and cytokinins is complex due to strong interactions between 
these two classes of growth regulators (Hooker and Nabors 1977). Bai et al. 
(2013) reported that ethylene level decreased progressively during SE initiation, 
whereas treatment with the metabolic precursor of ethylene, 1-aminocyclopro-
pane-1-carboxylic acid (ACC), or mutation of ethylene-overproduction1 (ETO1) 
disrupted SE induction. Somatic embryo production was increased more by the 
presence of exogenous GA3 in the differentiation than that of induction medium. 
These results indicate that GA is beneficial for both embryo induction and for-
mation. The level of endogenous gibberellins is presumably sufficient for callus 
induction and growth. Various PGRs involve in SE/callus induction and develop-
ment signifies their role in plant development and their early growth. For example, 
Ruduś et al. (2002) studied the influence of exogenous GA3 and paclobutrazol, 
an inhibitor of gibberellin biosynthesis, on growth of callus and SE in petiole-
derived tissue cultures of Medicago sativa L. resulting increase in the weight of 
callus and number of somatic embryos. Gutiérrez‐Mañero et al. (2001) studied 
that PGPR B. pumilus and B. licheniformis isolated from the rhizosphere of alder 
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(Alnus glutinosa [L.] Gaertn.) induce seedlings of Quercus species. The promo-
tion and elongation induced by the PGPR could be mediated by bacterial GAs. 
Earlier, Phillips and Torrey (1970) found hormonal interactions between soybean 
roots and the Rhizobium initiating root nodule proliferation. Recently, Pallai et al. 
(2012) observed the ability of various strains of P. fluorescens that produce cyto-
kinins involved in enhancement of roots elongation and seedling growth.

3.3  Defense Mechanism (Plant Immunity)

Various groups of pathogenic microorganisms such as fungi, bacteria, viruses, 
nematodes, etc. cause disease in plants. Despite of attack, plants tend to protect 
themselves against disease. Plant defense mechanisms (immune system) are usu-
ally multifaceted and operative against diverse array of pathogens. On the other 
hand, plants also utilize physical and chemical barriers to avoid pathogen entry 
and pathogenesis. These consist of molecular, biochemical and morphological 
changes, such as oxidative burst, expression of defense-related genes, production 
of antimicrobial compounds and/or programed cell death, lignification of tissues, 
thickening of cell wall, etc. (van Loon et al. 2006).

Besides other metabolites, phytohormones auxins, gibberellins (GA), absci-
sic acid (ABA), cytokinins (CK), salicylic acid (SA), ethylene (ET), jasmonates 
(JA), brassinosteroids (BR) and peptide hormones play important roles in 
defense mechanisms. Infection of plants with diverse pathogens altered the level 
of various phytohormones (Robert-Seilaniantz et al. 2006; Adie et al. 2007). 
Microbial pathogens have also developed the ability to manipulate the defense-
related regulatory network mimicking plants by producing phytohormones 
resulting into hormonal imbalance causing failure of defense responses (Robert-
Seilaniantz et al. 2006). Beneficial PGPR able to produce hormones involve in 
strengthening of induced systemic resistance (ISR) and systemic acquired resist-
ance (SAR) of complex regulatory networks where multiple hormonal pathways 
interact and influence plant defense responses (van Loon et al. 1998; Pieterse 
et al. 2014).

In rhizosphere, PGPR antagonize pathogens through competition for nutri-
ents, production of antibiotics and secretion of lytic enzymes (Maheshwari 2013). 
PGPR reduce the activity of pathogenic microorganisms not only through micro-
bial antagonism, but also by activating the plant to better defend itself. This phe-
nomenon was termed ‘induced systemic resistance’ (ISR). When plant get infected 
with pathogens, the activation of certain PR genes in some, though not all, the 
systemic resistance is induced by the rhizobacteria, which is similar to pathogen-
induced systemic acquired resistance (SAR). In both, exogenous and endogenous 
productions of plant growth hormone are essential to maintain and develop disease 
resistance. In fact, plant’s root secretes plethora of organic compounds creating a 
favorable niche for diverse microbial populations. The means of disease suppres-
sion by PGPRs include siderophore-mediated competition for iron, antibiosis, 
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production of lytic enzymes and ISR, which are added advantages. The signal 
molecules elicit defense mechanisms in plants by activating quiescent defense 
genes which are present in healthy plants (Vidhyasekaran 1988a, b).

3.3.1  Induced Systemic Resistance (ISR)

ISR is triggered by PGPR without causing any adverse effect on plant system. 
Some lipopeptide-producing bacteria induce defense responses in plants. For 
example, B. subtilis S499 produces biosurfactant, viz., fengycins and surfactins, 
which in turn provide an ISR-mediated protective effect on tomato plant against 
Botrytis cinerea (Ongena et al. 2007). Varnier et al. (2009) also showed that rham-
nolipids and other metabolites trigger defense responses in plants.

Bacteria-produced salicylic acid (SA) contributes to the induction of systemic 
resistance. Involvement of SA as a precursor of pyochelin, its role for pyochelin in 
ISR cannot be ruled out (Delaney et al. 1994; De Meyer and Hofte 1997). While 
in initial stage of SA production, it triggers resistance in iron-chelating conditions. 
JA has also been implicated as a signal in several defensive responses (Wasternack 
and Parthier 1997).

Several PGPB initiate and carried SA-dependent pathway in rhizosphere 
exogenously. For example, Burkholderia phytofirmans PsJN triggers ISR against 
Botrytis cinerea on grapevine (Ait Barka et al. 2002). Several Pseudomonas spp. 
are able to induce ISR in a wide range of plants against different pathogens (van 
Loon 2007). ISR is associated with an increase in sensitivity to the related hor-
mone rather than an increase in production. This might lead to the activation of a 
partially different set of defense gene (Hase et al. 2003). SA, JA and ET, involved 
in ISR although 2,4-diacetylphloroglucinol (DAPG) are known for its antibiotic 
property. DAPG has dual nature as hormone and antibiotic-like substance pro-
duced by Pseudomonas and Bacillus spp. leads to physiological changes that sub-
sequently exit ISR (Weller et al. 2012).

3.3.2  Systemic Acquired Resistance (SAR)

Three phytohormones—SA, JA and ET are known to play major role in regulat-
ing plant defense responses against various pathogens, pests and abiotic stresses. 
SA plays a crucial role in plant defense and is generally involved in the activation 
of defense responses against biotrophic and hemi-biotrophic pathogens as well 
as the establishment of SAR (Grant and Jones 2002). SAR devised to plant by 
PGPR and hormones SA, JA and 2,6-dicholoro-isonicotinic acid (INA) or benzo 
(1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) required for the estab-
lishment of SAR coordination through accumulation of SA of JA in whole plant. 
Any disruption in the plant’s ability to accumulate SA resulted in the loss of PR 
gene expression and decrease in SAR response. JA-signaling mutants sgt1b, opr3 
and jin1 failed to develop SAR upon leaf infiltration with an avirulent strain of 
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the pathogen Pseudomonas syringae pv. tomato, suggesting that JAs play a role in 
SAR as well (Cui et al. 2005). SAR is characterized by the increased expression of 
a large number of PR genes both in local and systemic tissues. Antimicrobial prop-
erties of PR proteins function in defense response. SAR results from the corrected 
effect of many PR proteins rather than specific PR proteins. SAR preceded by an 
increase in SA concentration which changes in redox status and the induction of 
defense gene expression (Mou et al. 2003; Durrant and Dong 2004).

The classical form of SAR can be triggered by exposing the plant to virulent, 
avirulent and non-pathogenic microbes or phytohormones. Depending upon plant 
and elicitor, a set period of time is required for the establishment of SAR that cor-
responds to the time required for the coordinated accumulation of PR (Vallad and 
Goodman 2004).

3.4  Plant Growth Promotion and Crop Productivity

PGPR emerged as biostimulators on account of their ability of efficient phyto-
hormone production, which in turn contributes in plant growth and promotion 
(Maheshwari 2010). Plant growth and development is regulated by an array of 
structurally unrelated collection of plant hormones (Santner and Estelle 2009). On 
the other hand, lowering of plant ethylene levels by the ACC deaminase (Glick 
et al. 2007) is also a fortifying mechanism to provide drought tolerance to plant or 
remain healthy in adverse conditions. Other signal molecules are also involved in 
plant–microbe interactions in the form of nucleic acids, protein, lipid and polysac-
charides (Halverson and Stacey 1986). Bacteria interact with plants and bacterial 
auxins cause interference with plant developmental processes regulated by auxin 
(Spaepen and Vanderleyden 2011) and affect gene expression in some microor-
ganisms. Therefore, IAA acts as a reciprocal signaling molecule in microbe–plant 
interactions.

It is interesting to note that plant growth promotion is facilitated by PGPR via 
diverse mechanisms, due to the production and degradation of the major groups of 
plant hormones; although plant root exudates have many potential substrates for 
rhizobacterial growth including plant hormones or their precursors. Rhizobacterial 
mediation of plant hormone status not only showed local effects on root elonga-
tion and architecture, mediating water and nutrient capture, but also affect plant 
root-to-shoot hormonal signaling that regulates leaf growth and gas exchange. 
Combining rhizobacterial traits (or species) influences plant hormones and sta-
tus, thereby, modifying root architecture (to capture existing soil resources) to 
make additional resources available (e.g. nitrogen fixation, phosphate solubiliza-
tion) which may enhance the sustainability of crops (Dodd et al. 2010). Hence, the 
hormones play central role in the ability of plants to adapt to the changing envi-
ronments, by mediating growth, development, nutrient allocation and source/sink 
transitions (Mordukhova et al. 1991; Gupta et al. 1999; García et al. 2001; Peleg 
and Blumwald 2011) leading to sustainable growth and development.
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4  Conclusion

Phytohormones produced by PGPR are major signaling molecule employed 
in enhancement of crops production. IAA in majority and other hormones such 
as ABA, CK, ET, etc. (natural, semi-synthetic and synthetic) proved benefi-
cial by stabilizing plant immunity, biocontrol and crop productivity. The role of 
phytohormone in seed dormancy, seedling emergence and elongation as well as 
somatic embryogenesis, initiation and enhancement bring immense need to man-
age increasing food production to account sustainable agriculture. Phytohormone 
is exploiting endogenously and exogenously in the maintenance of several physi-
ological traits of plants. It has been revealed that some PGPR secrete novel signal-
ing molecules that also promote plant growth. The use of rhizobacterial signaling 
in promoting plant growth offers a new window of opportunity especially to pro-
vide novel biological products for enhancing plant growth and development in sus-
tainable manner.
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Abstract Majority of plants harbor a diverse community of bacteria, which can 
positively affect host plant growth. Plant-associated bacteria have various plant 
growth-promoting (PGP) traits. Rhizobacteria are PGP bacteria within rhizosphere 
that can enhance plant growth by a wide variety of mechanisms like production of 
phytohormones, siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deami-
nase and volatile organic compounds, phosphate solubilization, biological nitrogen 
fixation, rhizosphere engineering, quorum sensing signal interference and inhi-
bition of biofilm formation, exhibiting antifungal activity, induction of systemic 
resistance, promoting beneficial plant–microbe symbioses and interference with 
pathogen toxin production. In recent years, interest in the use of plant growth-
promoting rhizobacteria (PGPRs) to promote plant growth has increased. The use 
of PGPRs has steadily increased in agriculture and offers an attractive alternative 
to replace chemical fertilizers, pesticides and supplements. To act as PGPRs, any 
bacteria should be able to colonize and survive in the rhizosphere of plants. A 
competent colonization is essential for PGP effects produced by the bacteria and 
the important first step in the interaction of bacteria with plants. The purpose of 
this review was to give an overview on the most important PGP traits involved 
in plant more colonization. It seems that PGP traits of production of IAA and 
ACC deaminase may be required for endophytic and rhizosphere competence by 
PGPRs. In addition, this review indicates that the selected bacterial isolates based 
on their IAA and ACC deaminase-producing traits have the potential for more col-
onization of plants. Such bacteria may be used for a sustainable crop management 
under field conditions. Bacterial IAA together with ACC deaminase increase root 
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surface area and length, and thereby provide the plant to have greater access to 
soil nutrients under different environmental conditions including stress situations. 
Therefore, proper screening of PGPRs can be useful for future agricultural appli-
cations, providing higher production yields, reduced input costs and negative envi-
ronmental impact due to the use of chemical fertilizers.

Keywords Colonization · PGPR · IAA · ACC deaminase · Plant  
growth-promoting traits · Rhizosphere

1  Introduction

Food security is one of the fundamental needs that can never be ignored by any 
society. The extensive increases in both environmental damage due to unsuit-
able agricultural practices and human population pressure have the unlucky con-
sequence that global food production may soon become inadequate to feed all of 
the world’s people. To supplement the nutritional need, it is therefore essential that 
agriculture becomes intensive and sustainable. In addition, the agricultural produc-
tivity must significantly increase without destroying environment within the next 
few decades. The development of such a global system for sustainable food pro-
duction is one of the greatest challenges faced by the humans. To this end, agricul-
tural practice is moving toward a more sustainable and environmentally friendly 
approach. This includes both the use of transgenic plants and plant growth-pro-
moting rhizobacteria (PGPRs) as a part of conventional agricultural practice (Glick 
2012). In both managed and natural ecosystems, PGPRs play a key role in sup-
porting and enhancing plant health and growth (Maheshwari 2010). These bacteria 
are of interest for application in agriculture as biofertilizers and pesticides (biocon-
trol), as well as for phytoremediation applications (Bhattacharjee et al. 2008; Berg 
2009; Lugtenberg and Kamilova 2009; Weyens et al. 2009). Rhizobacteria colonize 
plant roots and enhance plant growth through a variety of mechanisms. Based on 
the area of colonization, these bacteria can be grouped into associative bacteria that 
include rhizosphere (in the vicinity of root) rhizoplane (on the surface of root) and 
endophytic bacteria. Plant-associated bacteria isolated from rhizoplane and phyllo-
plane surfaces are known as epiphytes (Andrews and Harris 2000), whereas those 
isolated from the interior of tissues, which they inhabit without causing harm to 
the host, are called endophytes (Petrini et al. 1989; Azevedo et al. 2000; Sturz et al. 
2000), with some bacterial populations fluctuating between endophytic and epi-
phytic colonization (Hallmann 1997). There are three basic categories of microbial 
interactions based on ecology, namely neutral, negative and positive interactions 
generally exist between rhizobacteria and plants (Whipps 2001). Most of the rhizo-
bacteria are commensals in which the bacteria establish an innocuous interaction 
with the host plants exhibiting no visible effect on the growth and overall physi-
ology of the host (Beattie 2006). In negative interactions, the phytopathogenic 
rhizobacteria produce phytotoxic substances such as hydrogen cyanide (HCN) 
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or ethylene, thus negatively influence on the growth and physiology of the plants 
(Khalid et al. 2005). In contrast to these deleterious bacteria, some PGPRs isolate 
can promote plant growth and development either directly or/and indirectly. Direct 
stimulation includes biological nitrogen fixation, producing phytohormones like 
auxins, cytokinins and gibberellins, solubilizing minerals like phosphorus and iron, 
while indirect stimulation is basically related to biocontrol, including antibiotic 
production, production of siderophores and enzymes and induction of systemic 
resistance, chelation of available Fe in the rhizosphere, synthesis of extracellular 
enzymes to hydrolyze the fungal cell wall and competition for niches within the 
rhizosphere (Zahir et al. 2004; van Loon 2007; Akhtar and Siddiqui 2008; Castro 
et al. 2009). Associative bacteria as well as endophytic bacteria use the same 
mechanisms to influence plant growth (Lugtenberg and Kamilova 2009). Since the 
extensive use of chemical based components can cause unanticipated environmen-
tal impacts (including nutrient imbalance, substantial economic loss to the farmers 
and reducing the population of beneficial microorganisms, disruption and degra-
dation of agroecosystem and decreased soil fertility) and impart pesticide resist-
ance in pests (Ayala and Rao 2002), interest in the use of PGPRs to promote plant 
growth has been increased in recent years. Based on their ability to stimulate plant 
growth, it is imperative to develop microbial inoculants for use in agricultural pro-
duction. Depending on their mode of action and effects, these products can be used 
as biofertilizers (direct mechanisms) and biocontrol agents (indirect mechanisms). 
This application can help to minimize dependence on chemical fertilizers, which 
have adverse effects on the environment, finally leading to have sustainable agri-
culture and environment (Fig. 1).

PGPRs may use more than one of these mechanisms to enhance plant growth, 
as experimental evidence suggests that the plant growth stimulation is the net result 
of multiple mechanisms that may be activated simultaneously (Martinez-Viveros 
et al. 2010). Despite their different mechanisms of action, their use has not been 
developed to its full potential due to inconsistencies in their performance and their 
commercialization has been limited to a few developed countries. In many cases, 
PGPRs fail to induce the desired effects when applied in the field. This might be 
due to insufficient rhizosphere and plant colonization, which is as an important 
step required for exhibiting beneficial effects (Lugtenberg et al. 2001). In addi-
tion, the variability in the performance of PGPRs under in vitro and field condi-
tions may be due to various environmental factors that may affect their growth and 
exert their effects on plant. The environmental factors include climate, weather 
conditions, soil characteristics or the composition or activity of the indigenous 
microbial flora of the soil (Chanway and Holl 1993; Zhender et al. 1999). To 
achieve the maximum growth-promoting interaction between PGPRs and plant, 
it is important to discover how the rhizobacteria exerting their effects on plant 
and whether the effects are altered by various environmental factors, including 
the presence of other microorganisms (Bent et al. 2001). One possible approach 
is to investigate soil microbial diversity for PGPRs having combination of plant 
growth-promoting (PGP) activities and well adapted to particular soil environment. 
Regardless of the mechanism of plant growth promotion, to be more effective in 
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the rhizosphere, PGPRs must maintain a critical population density for a longer 
period (Compant et al. 2005). In addition to these traits, PGP bacterial isolates 
must be rhizosphere/endophytic competence, able to survive and colonize in the 
rhizosphere soil (Cattelan et al. 1999; Chandra et al. 2007; Martínez-Viveros1 et al. 
2010). Therefore, not only mechanisms responsible for plant growth promotion 
have to be investigated, but also a thorough understanding of all steps involved in 
plant colonization by PGPRs is required to improve the efficiency and reliability 
of inoculant isolates. PGP traits can be assessed under laboratory conditions and 
allow the selection of strains that could lead to increased plant growth (Yanni et al. 
1997). Naturally, plants select PGPRs that are competitively fit to occupy com-
patible niches without causing pathological stress on them. Plant is restricting or 
directing the development of the attracted organisms in a way to keep control of 
these guests by excreting quite selective mixtures of substances that provide selec-
tive conditions for rhizosphere microorganisms. Furthermore, rhizosphere is a 
quite heavily populated microhabitat, which is characterized by competition and 
even predation among the inhabitants. Therefore, soil microorganisms do experi-
ence the rhizosphere environment as microhabitat of great opportunities but also 
of big challenges. The use of epiphytic and rhizosphere bacteria in agricultural 
production depends on our knowledge of the bacteria–plant interaction and our 
ability to maintain, manipulate and modify beneficial bacterial populations under 

Fig. 1  The role of PGPRs using different mechanisms of action in sustainable agriculture and 
environment
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field conditions (Hallmann 1997). The interactions that occur between plants 
and their associated microorganisms have long been of interest, as knowledge of 
these processes could lead to the development of novel agricultural applications. 
However, when screening bacteria for PGP agents, it is better to screen them for 
the most promising isolates having suitable colonization and PGP traits. In most 
researches, it has been seen that following incubation, bacterial flora are taken at 
random from Petri plates or morphological representatives are selected for further 
study. However, this type of selection may remove some superior bacteria of PGP 
traits and with high colonization ability. Gram reaction test and other phenotypic 
characteristics could not definitively determine the classification for the isolates. 
Therefore, it is essential to study all the bacteria isolated in an economic way. On 
the other hand, if we test all strains isolated from plants for all PGP traits, this 
process will take a long time and will be costly. Several methods have been used 
to demonstrate that root colonization is taking place, including use of fluores-
cence techniques, antibiotic-resistant mutants and marker genes, such as LUX and 
GUS. However, these methods are relatively expensive and time-consuming (Silva 
et al. 2003). Hence, we were interested in reviewing the previous studies for find-
ing the most important PGP traits in selection of the isolates with more coloniza-
tion and PGPR potentiality. The studies show IAA can be as a microbial metabolic 
and signaling molecule in microorganisms, in both IAA-producing and IAA-non-
producing species (in plant–bacteria interactions). In addition, the role of bacte-
rial IAA together with 1-aminocyclopropane-1-carboxylate (ACC) deaminase in 
different bacteria–plant interactions highlights the fact that bacteria use this phy-
tohormone (together with ACC deaminase) to interact with plants as part of their 
colonization strategy, including phytostimulation and circumvention of basal plant 
defense mechanisms. It may be suggested that plants select endophytic and rhizo-
sphere bacteria with these traits or that these bacteria harbor other traits that allow 
them to more effectively reach and establish themselves in rhizoplane and the inner 
plant tissue. This chapter will focus on the effect of IAA and ACC deaminase-pro-
ducing bacteria and will provide an insight into plant–bacteria interactions.

2  Plant Growth-Promoting Rhizobacteria (PGPRs)

A diverse group of free-living soil bacteria capable of stimulating plant growth 
by a number of different mechanisms is known as plant growth-promoting rhizo-
bacteria (PGPRs) (Klopper et al. 1989; Glick 1995) or yield increasing bacteria 
(YIB) (Tang 1994). The interactions between bacteria and plants may be benefi-
cial, harmful, or neutral for the plant and sometimes the effect of a particular bac-
terium may vary as the soil conditions change (Lynch 1990). The mechanisms by 
which these PGPRs increase plant phytohormones, increasing the local availabil-
ity of nutrients, or facilitating the uptake of nutrients by plants. They also may 
decrease heavy metal toxicity, antagonize plant pathogens and even induce sys-
temic resistance in the plant against pathogens. This section will focus on plant 
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growth promotion by PGPRs directly. There are several ways in which PGPRs can 
directly facilitate plant proliferation (Glick 1995) and they can be distinguished 
based on the modes of action of PGPRs.

2.1  Providing Nutrients for Plants

Under such conditions, PGPRs can provide the nutrients in soil, which is lacking, 
such as nitrogen by atmospheric nitrogen (N2) fixation. Nitrogen (N) is the most 
vital nutrient for plant growth and productivity. Although, there is about 78 % N2 
in the atmosphere, soil nitrogen is mostly in organic forms and unavailable for 
plants. The atmospheric N2 is converted into plant-utilizable forms by biological 
N2 fixation (BNF) which changes nitrogen to ammonia by nitrogen-fixing PGPRs 
using a complex enzyme system known as nitrogenase (Kim and Rees 1994).

2.2  Increasing Nutrients Availability to Plants

A large proportion of nutrients are unavailable for the root uptake by plants, 
because the nutrients in soils are generally bound to inorganic and organic soil 
constituents, or alternatively present as insoluble precipitates. Therefore, in these 
conditions, PGPRs enhance the availability of these nutrients to growing plants 
by influencing solubility or uptake conditions (such as enhancing the solubil-
ity of phosphorus and iron). For example, phosphorus (P) is precipitated after 
addition to soil, thus becoming less available to plants (Gyaneshwar et al. 2002; 
Kuklinsky-Sobral et al. 2004). Despite large reservoir of P, the amount of availa-
ble forms to plants is generally low. This low availability of phosphorous to plants 
is because the majority of soil P is found in insoluble forms, while the plants 
absorb it only in two soluble forms, the monobasic (H2PO4

−) and the diabasic 
(HPO4

−2) ions (Bhattacharyya and Jha 2012). A considerable amount of phospho-
rus applied to soil as fertilizers is rapidly fixed into less available forms through 
complexation with aluminum or iron in acidic soils or with calcium in calcare-
ous soils before plant roots have a chance to absorb it in orthophosphate form 
(Malboobi et al. 2009). Another PGP activity of PGPRs consists in solubilization 
of inorganic insoluble phosphates, transforming them into bioavailable forms. 
Phosphate-solubilizing bacteria (PSB) have been reported for promoting plant 
growth and increasing yield (Altomare et al. 1999; Barea et al. 2002; Amir et al. 
2005; Canbolat et al. 2006; Khan et al. 2009). Secretion of organic acids (pro-
duction of gluconic acid), proton release or production of chelating substances, 
exchange reactions and phosphatase enzymes are common mechanisms that facili-
tate the conversion of insoluble forms of phosphorous to plant accessible forms 
(Rodriguez and Fraga 1999; Chung et al. 2005; Zaidi et al. 2009; Gulati et al. 
2010; Singh and Satyanarayana 2011). Bacteria producing trace element-chelating 
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organic acids, such as citric, oxalic, or acetic acid have been shown to mobilize 
various elements in soil (Abou-Shanab et al. 2006; Li et al. 2009). Increased trace 
element uptake in various plants after inoculation with acid producers or PSB has 
been reported (Ma et al. 2011a). In aerobic conditions, iron exists primarily as fer-
ric state (Fe3+) and is largely unavailable to plants and microorganisms. Iron bioa-
vailability is also low at neutral pH, as it is mostly in the form of insoluble Fe (III) 
hydroxides. Siderophores are iron-chelating secondary metabolites, which some 
PGPRs release under iron-limiting conditions. Siderophore production is wide-
spread among bacteria, which can solubilize and sequester iron, making the nutri-
ent more available to plants. All siderophores possess higher affinity for Fe (III) 
than for Fe (II) or any other trace element ion (Hider and Kong 2010). In general, 
soil microorganisms are known to affect the nutrients mobility and availability to 
the plant, through acidification and redox changes, or by producing iron chelators 
and siderophores (Burd et al. 2000; Guan et al. 2001; Abou-Shanab et al. 2003).

2.3  Enhancing Plant Greater Access to Soil Nutrients

Nutrient presence in soil and its solubility may be high, but still plants do not have 
any access to it due to limitations in root growth or activities. Because essential 
plant nutrients are taken up from the soil by roots (Mills and Jones 1996), good 
root growth is considered as a prerequisite for enhanced plant development. 
Therefore, PGPRs enhance the access of plants to the nutrient and more uptake of 
it by increasing the root growth (such as production of IAA and ACC deaminase). 
For example, applied N can be lost through nitrate leaching (Biswas et al. 2000). 
Previous reports have suggested positive impacts of bacteria on N uptake involv-
ing non-legume biological fixation (Boddey et al. 1995; Kennedy et al. 1997; 
Biswas et al. 2000a; Dobbelaere et al. 2001; Saubidet et al. 2002; Wu et al. 2005; 
Aseri et al. 2008). Many PGPRs cause stimulation of root growth (Biswas et al. 
2000, Lucy et al. 2004), sometimes via production of phytohormones by the plant 
or the bacteria (Lucy et al. 2004; Shaharooma et al. 2008). If promotion of root 
growth by PGPRs could be achieved with high frequency in the field, PGPR may 
be potential tools for increasing nutrient uptake (Adesemoye et al. 2009). In gen-
eral, bacterial IAA and ACC deaminase increase root surface area and length and 
thereby provides the plant greater access to soil nutrients and water uptake (Vessey 
2003; Ryan et al. 2008).

3  Plant–Bacteria Interactions

Plant–bacteria interactions may occur at phyllosphere, endosphere and rhizos-
phere. Very important and intensive interactions are expected to take place among 
the plant environment, soil and microflora (Bringhurst et al. 2001). The term 
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rhizospheric effect designs the fact that bacterial density is higher in the rhizos-
phere in comparison with non-rhizosphere soil (Foster and Rovira 1978). Although 
all parts of the plant are colonized by microorganisms, the rhizosphere represents 
the main source of bacteria with plant-beneficial activities. Biochemical interac-
tions and exchanges of signal molecules between plants and soil microbes have 
been described and reviewed (Pinton et al. 2007). The plant–bacteria interactions 
in the rhizosphere are responsible for increasing plant health and soil fertility 
(Khan et al. 2006). Both aboveground and underground parts of the plants con-
stitute an excellent ecosystem for bacterial activity and development (Bonaterra 
et al. 2003). The relationship between the PGPRs and their host can be catego-
rized into two basic levels of complexity: (i) rhizospheric and (ii) endophytic. In 
rhizospheric relationship, the PGPRs can colonize the rhizosphere, the surface of 
the root or even the superficial intercellular spaces of plant roots (McCully 2001). 
In endophytic relationship, PGPRs reside within the apoplastic spaces inside the 
host plants. However, the degree of intimacy between the PGPRs and host plant 
can vary depending on where and how the PGPRs colonize the plant. PGPRs 
present in the rhizosphere play important roles in ecological fitness of their host 
plant. Exploring these bacteria by figuring out their possible relationships with 
plants, has started a new and fascinating area of investigations in the rhizosphere 
research. Understanding the interaction between consortium of microbial inocu-
lants and plant systems will pave way to link more benefits from bacterial inocu-
lants for improving plant growth and yield (Raja et al. 2006). Theoretically, the 
composition of microbes, which colonize the rhizosphere, can be a result of a 
positive or negative selection procedure or both. In many rhizospheric relation-
ships, the PGPRs are known to colonize the plant root (Andrews and Harris 2000) 
and exert beneficial effects on plant growth and development by a wide variety of 
mechanisms.

4  Rhizosphere, Rhizoplane and Endophytic Bacterial 
Colonization

Root colonization includes the ability of bacteria to establish on or in the plant 
root, to propagate, survive and disperse along the growing root in presence of the 
native microflora (Whipps 2001; Lugtenberg et al. 2002; Kamilova et al. 2005; 
Babalola and Glick 2012). Colonization of bacteria in rhizosphere or on plant sur-
face is a complex process which involves relationship between several bacterial 
traits and genes due to multistep process. Migration toward plant roots, attach-
ment, distribution along the root as well as growth and survival of the population 
have all been identified as colonization determinants and have widely been stud-
ied in symbiotic, pathogenic and associative plant–microbe interactions. For endo-
phytic bacteria, one additional step is required that is entry into root and formation 
of microcolonies inter- or intracellularly. Each trait may vary for different associa-
tive and endophytic bacteria (Lugtenberg and Dekkers 1999; Benizri et al. 2001; 
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Rodríguez-Navarro et al. 2007; Compant et al. 2010). The primary colonizers of 
the bacterial population are strongly influenced by the substances secreted as the 
root exudates and bacteria benefit from these derive nutrients (Bais et al. 2001; 
Dakora and Phillips 2002; Walker et al. 2003). Bacteria move toward rhizosphere 
in response to root exudates, which are rich in amino acids, sugars, organic acids, 
purines/pyrimidines, vitamins and other metabolic products. In addition to provid-
ing nutritional substances, plants start cross talk by secreting some signals which 
cause colonization by some bacteria while inhibits the other (Bais et al. 2006; 
Compant et al. 2011). Rhizospheric and/or rhizoplane and endophytic competence 
are a necessary prerequisite for rhizobacteria to be PGPRs (Compant et al. 2005). 
The root competence plays a major role in antagonistic activities of some bacte-
ria and is very much essential to deliver the beneficial bacteria at the right place 
and time on the root, as poor root colonization may result in decreased biocon-
trol activity (Schippers et al. 1987; Weller 1988; Lugtenberg et al. 1999). Indeed, 
population size was reported in many works as correlated to the efficiency of bio-
control activity against plant pathogens (Bull et al. 1991). As endophytic PGPRs 
colonize an ecological niche similar to certain plant pathogens, they are likely 
candidates for biocontrol agents (Adhikari et al. 2001; Arora et al. 2001; Lacava 
et al. 2007). Most PGPRs with their efficient PGP potential fail to increase plant 
yield under field trials in agricultural soils at most of the times. Attempts to exploit 
PGPRs as biocontrol inoculants, biofertilizers, phytostimulants, or inoculants for 
bioremediation had limited success so far. This has been attributed to their incom-
petence to successfully colonize the rhizosphere. In field soil, environmental 
conditions and competition or displacement by the numerous microorganisms pre-
sent in the rhizosphere limit colonization (Elliot and Lynch 1984; Thomas et al. 
2008). A major factor contributing to inconsistent results from field experiments 
seems to be variable ecological performance (Somers et al. 2004). Many factors 
as nature of colonizing organism (bacterial traits), composition of root exudates, 
bacterial quorum sensing effects, the PGPRs environment, seasonal changes, plant 
tissue (Bacilio-Jimenez 2003; Mocali et al. 2003), plant species and cultivar, soil 
type (Kinkel et al. 2000; Fromin et al. 2001; Gnanamanickam 2006; Saleem et al. 
2007), sufficient population density, root colonizing ability, PGP ability of the bac-
teria (Lugtenberg and Dekkers 1999), interaction with other beneficial or patho-
genic microorganisms (Araújo et al. 2001; Araújo et al. 2002) and several other 
biotic and abiotic factors can be involved in rhizosphere and rhizoplane compe-
tence by PGPRs (Benizri et al. 2001; Gnanamanickam 2006; Saleem et al. 2007). 
Further, the phenomenon of chemotaxis, the nature of bacteria flagella (through 
motility), lipopolysaccharides (LPS) and exopolysaccharides structure, the outer 
membrane protein OprF and to a lesser extent, presence of pili, all are important 
for competitive root colonization which determine the colonization of the roots 
by PGPRs (Lugtenberg and Bloemberg 2004; Fujishige et al. 2006; Böhm et al. 
2007). Approaches aiming to enhance PGPRs root colonization have focused 
on the effect of abiotic factors (Howie et al. 1987) and biotic factors (Notz et al. 
2001): host genotype (Baldani and Dobereiner 1980; Smith and Goodman 1999; 
Adams and Kloepper 2002; Arnold and Lutzoni 2007) and microbial genotypes 
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(Landa et al. 2002, 2003). Bacteria residing in the rhizosphere of plants may gain 
access into the root interior and establish endophytic populations. The endophytic 
colonization of host plant by bacteria reflects on their ability to selectively adapt 
themselves to these specific ecological niches resulting in an intimate association 
without any apparent harm to the plant (Sturz and Nowak 2000; Compant et al. 
2005a). Exploitation of endophyte–plant interactions can result in the promotion 
of plant health and can play a significant role in low-input sustainable agriculture 
applications for both food and non-food crops. An understanding of the mecha-
nisms enabling these endophytic bacteria to interact with plants will be essential 
to fully achieve the biotechnological potential of efficient plant–bacterial partner-
ships for a range of applications (Senthilkumar et al. 2011). Successful establish-
ment of the introduced bacteria depends on proper PGPRs selection that must be 
tailored to the soil and crop combination. There has been considerable confusion 
over the precise effects of PGPRs, which confounds scientific studies aimed at 
quantifying their contribution to plant growth. This is largely due to poor under-
standing of the interactions between PGPRs and their plant hosts and the resi-
dent microorganisms, as well as a paucity of information on how environmental 
factors influence processes that contribute to plant growth promotion (Martínez-
Viveros et al. 2010). Therefore, before the deliberate use of PGPRs as bioferti-
lizers or biocontrol agents, it is necessary to know some key parameters such as 
root colonization capacity, location of infection and degree of persistence of the 
inoculum (Wiehe and Hoflich 1995). These parameters must be studied under the 
most realistic conditions possible. The intimacy between plants and environment 
in rhizosphere is essential for better acquisition of water and nutrients by plants as 
well beneficial interactions of plants with soil-borne microorganisms (Ryan et al. 
2009). Therefore, in this section we will focus on PGP attributes of ACC deami-
nase and IAA as useful traits in more colonization of rhizosphere, rhizoplane 
and subsequent endosphere and promoting plant growth (root system) and subse-
quently more uptake of water and nutrients. For instance, we reported that plant 
growth promotion observed in rice was more pronounced with  endosphere-com-
petent Pseudomonas fluorescens as compared to a non-endosphere-competent iso-
late. This isolate produced both ACC deaminase and IAA (Etesami et al. 2014a). 
In general, the understanding of colonization processes is important to better 
predict how bacteria interact with plants and whether they are likely to establish 
themselves in the plant environment after field application.

5  Indole-3-Acetic Acid (IAA)

A member of the group of phytohormones, IAA is usually considered to be the 
most important native auxin which influences division, extension and differentia-
tion of plant cells and tissues, stimulate seed and tuber germination, increase the 
rate of xylem and root development, control processes of vegetative growth and 
initiate lateral and adventitious roots. Auxins can mediate responses to light and 
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gravity, florescence, fructification of plants and affect photosynthesis, pigment 
formation, biosynthesis of various metabolites and resistance to stressful condi-
tions (Tsavkelova et al. 2006). Microbial production of IAA has been known for 
a long time (Yamada 1993; Costacurta and Vanderleyden 1995; Ludwig-Muller 
2004). This property is best documented for bacteria that interact with plants 
because bacterial IAA can cause interference with many plant developmental 
processes regulated by this hormone. Many important plant–microbial interac-
tions focus on the production of IAA detected in many pathogenic, symbiotic 
and free-living bacterial species (Costacurta and Vanderleyden 1995; Tsavkelova 
et al. 2006). Production of IAA is widespread among a wide range of soil bac-
teria (estimated to be ~80 % of all soil bacteria) (Khalid et al. 2004), including 
in streptomycetes, methylobacteria, cyanobacteria and archaea. At present, IAA-
producing PGPRs are the most well-studied phytohormone producers (Tsavkelova 
et al. 2006; Spaepen et al. 2007). These PGP rhizobacteria produce IAA from 
l-Tryptophan (l-Trp) by different pathways, although it can also be synthesized 
via l-Trp-independent processes, though in lower quantities (Spaepen et al. 
2007). Among PGPRs species, Azospirillum is one of the best studied IAA pro-
ducers (Dobbelaere et al. 1999) and it is generally agreed that IAA production 
is the major factor responsible for the stimulation of root system development 
and growth promotion by this bacterium (Spaepen et al. 2007; van Loon 2007). 
Other IAA-producing bacteria belonging to Aeromonas (Halda-Alija 2003), 
Azotobacter (Ahmad et al. 2008), Bacillus (Swain et al. 2007), Burkholderia 
(Halda-Alija 2003), Enterobacter (Shoebitz et al. 2009), Pseudomonas 
(Hariprasad and Niranjana 2009), Variovorax (Belimov et al. 2005; Jiang et al. 
2012) and Rhizobium (Ghosh et al. 2008) genera have been isolated from differ-
ent rhizosphere soils. Inoculation with IAA-producing PGPRs has been used to 
stimulate seed germination, to accelerate root growth and modify the architec-
ture of the root system and increase the root biomass. The ability to synthesize 
IAA is responsible for symbiotic associations and pathogenesis as well (Patten 
and Glick 1996; Khalid et al. 2004). A positive correlation between IAA produc-
tion and growth-promoting activity of diverse PGPRs has been also reported in 
some plants (Asghar et al. 2002; Khalid et al. 2004; Etesami et al. 2013, 2014b). 
The root exudates and root-associated microflora are environmentally controlled 
sources of the IAA influx into the rhizosphere (Kravchenko et al. 1994; Muller 
et al. 1989; Benizri et al. 1998; Siciliano et al. 1998; Patten and Glick 2002; Badri 
and Vivanco 2009). Different IAA concentrations have diverse effects on the 
physiology of plants with plant responses being a function of the type of plant, 
the particular tissue involved, and its developmental stage. The actual effective 
range of IAA concentrations varies according to plant species and the sensitivity 
of the plant tissue to IAA; levels below this range have no effect, whereas higher 
concentrations inhibit growth (Peck and Kende 1995). For example, Evans et al. 
(1994) found that only exogenous concentrations between 10−10 and 10−12 M 
stimulated primary root elongation in Arabidopsis thaliana seedlings. Moreover, 
the endogenous pool of IAA in the plant is affected by soil microorganisms able 
to synthesize this phytohormone, and also the impact of bacterial IAA on plant 
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development ranges from positive to negative effects according to the amount of 
IAA available to the plant and to the sensitivity of the host plant to the phytohor-
mone. In addition, the level of IAA synthesized by the plant itself may be impor-
tant in determining whether bacterial IAA will stimulate or suppress plant growth. 
In plant roots, endogenous IAA may be suboptimal or optimal for growth (Pilet 
and Saugy l987) and additional IAA from bacteria could alter the such amount 
resulting in plant growth promotion or inhibition, respectively (Martínez-Morales 
et al. 2003; Spaepen et al. 2007). IAA biosynthesis in bacteria is affected by a 
number of factors including environmental stress, pH, osmotic and matrix stress, 
carbon starvation and the composition of the root exudates. However, due to the 
diversity of IAA expression and regulation according to the biosynthetic pathways 
and bacterial species, all of these factors cannot easily be integrated into a compre-
hensive regulatory scheme of IAA biosynthesis in bacteria (Spaepen et al. 2007). 
In general, the production of IAA seems to be one of the most prevalent PGP traits 
among PGPRs.

5.1  IAA and Stimulation of Plant Growth

Plant-associated bacteria can promote plant growth through modulating the level 
of plant hormones (Glick 1995; Lee et al. 2004; Dodd et al. 2010). Plants respond 
properly to environmental changes and adapt their physiology by changing hor-
mones (IAA) levels (De Salamone et al. 2005). The ability of bacteria to produce 
IAA in the rhizosphere depends on the availability of biochemical precursors and 
uptake of microbial IAA by plant. However, the total amount of IAA produced 
by the plant and the bacteria should be optimum to promote plant growth. On the 
other hand, the production of high levels of IAA is often a main trait of plant path-
ogens (Rezzonico et al. 1998). Based on the integrated IAA levels produced by 
plant and PGPRs, a detailed examination of action mechanisms of IAA-producing 
bacteria in the presence and absence of ACC deaminase activity is described 
below (Fig. 2).

5.1.1  Stimulation of Plant Growth in the Optimal Levels of IAA 
Without ACC Deaminase Activity

Plants typically exude a large fraction of their photosynthetically fixed carbon 
through their roots. Depending on the plant species and environmental conditions, 
the exudated substrates can account for up to 40 % of the dry matter produced by 
plants. Root exudates generally contain large amounts of sugars, organic acids and 
amino acids (l-Trp), vitamins, nucleotides, enzymes and other plant metabolites 
including IAA, which represent an important source of nutrients for microorgan-
isms in the rhizosphere. They also participate in early colonization by inducing 
chemotactic response of rhizospheric bacteria. Presence of these compounds is 
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the main reason why the numbers of bacteria in rhizosphere are 10–1000 times 
higher than in the bulk soil (Glick 2013). Plant-derived IAA presence or adequate 
amount of IAA precursor molecules in the rhizosphere could be adequate for IAA-
producing bacteria to enhance the expression of the ipdC gene, involved in IAA 
biosynthesis (Lambrecht et al. 1999, 2000). An important molecule that can alter 
the level of IAA synthesis is the amino acid l-Trp, identified as the main precursor 

Fig. 2  A possible mechanism of how action mechanisms of IAA-producing bacteria in the pres-
ence and the absence of ACC deaminase activity. a Stimulation of plant growth in the optimal 
levels of IAA without ACC deaminase activity. In this case, IAA does not act to stimulate the 
synthesis of ethylene in the plant. b Stimulation of plant growth in the supra-optimal levels of 
IAA with ACC deaminase activity. In these conditions, IAA acts to stimulate the synthesis of eth-
ylene in the plant. IAA induce the transcription of the plant enzyme ACC synthase that catalyzes 
the formation of ACC. AdoMet is converted to ACC by the enzyme ACC synthase; ACC is con-
verted to ethylene by ACC oxidase. ACC synthesized in plant tissues by ACC synthase is exuded 
from plant roots and be taken up by ACC deaminase-producing PGPR. Subsequently, the PGPR 
hydrolyze ACC to ammonia and α-ketobutyrate. This ACC hydrolysis maintains ACC concentra-
tions low in PGPR and permits continuous ACC transfer from plant roots to bacteria. Otherwise, 
ethylene can be produced from ACC and then cause stress responses including root elongation. 
Here, in the absence of ACC deaminase, root-produced ethylene inhibits transcription of IAA 
response factors, thereby limiting IAA stimulated plant growth as well as IAA promotion of ACC 
synthase transcription. In the presence of ACC deaminase, ethylene levels are decreased and the 
obstruction of IAA response factor transcription is alleviated thereby facilitating plant growth. 
Abbreviations: ACC 1-aminocyclopropane-1-carboxylate; IAA indole-3-acetic acid; S-AdoMet, 
S-adenosy-L-methionine. (Modified from Glick (2013) and Lambrecht et al. (2000))
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for IAA and thus expected to play a role in modulating the level of IAA biosyn-
thesis. In the rhizosphere, l-Trp is originated from degrading root and microbial 
cells and from root exudates (Spaepen et al. 2007). In the plant root exudates, 
PGPRs synthesize and secrete IAA, responding to l-Trp and other small mole-
cules. This IAA, together with endogenous plant-synthesized IAA, can stimulate 
plant cell proliferation and/or plant tissue elongation (increase of root growth and 
root length), resulting in greater root surface area. This would enable the plant to 
access more nutrients from soil (Jacobson et al. 1994; Boiero et al. 2007; Ortiz-
Castro et al. 2009) and in turn release more exudates. This IAA can also loosen 
plant cell walls promoting an increase of root exudation that provides additional 
nutrients to support the growth of rhizosphere bacteria (James et al. 2002; Chi 
et al. 2005). The release of more nutrients in turn increases microbial activity and 
subsequently IAA, and this process continues in a cycle (Fig. 2a).

5.1.2  Stimulation of Plant Growth in the Supra-Optimal Levels of IAA 
with ACC Deaminase Activity

The majority of substrates for microbial activity in the rhizosphere are derived 
from the plant. As mentioned above in response to the presence of l-Trp and other 
small molecules in the plant root exudates, PGPRs synthesize and secrete IAA, 
some of which is taken up by the plant. The IAA produced from different path-
ways can induce the transcript of the plant enzyme ACC synthase that catalyzes 
the formation of ACC. In this case, IAA acts as a stimulator of ethylene in the 
plant. Along with other small molecule components of root exudates, some of 
the plant ACC are exuded from seeds, roots, or leaves and may be taken up by 
the bacteria associated with these tissues, and later cleaved by ACC deaminase 
(Penrose and Glick 2003) and it can be used as nitrogen (Jacobson et al. 1994; 
Glick et al. 1995) and carbon sources (Belimov et al. 2005). The cleavage of 
exuded ACC by bacterial ACC deaminase is eventually acting as a sink for ACC. 
Moreover, because of lowering either the endogenous or the IAA-stimulated ACC 
level, the amount of ethylene that could potentially form in the plant is reduced. 
Subsequently, by lowering plant ethylene levels, ACC deaminase-containing 
PGPRs can reduce ethylene inhibition in plant growth following a wide range of 
abiotic and biotic stresses. As a result, plants that grow in association with ACC 
deaminase-containing PGPRs generally have longer roots and shoots and are more 
resistant to growth inhibition by a variety of ethylene-inducing stresses. According 
to Glick (2013) as plant ethylene levels increase, the ethylene that is produced in 
response inhibits IAA signal transduction, thereby limiting the extent that IAA 
can activate ACC synthase transcription (Pierik et al. 2006; Prayitno et al. 2006; 
Czarny et al. 2007; Glick et al. 2007; Stearns et al. 2012). With PGPRs that both 
secrete IAA and synthesize ACC deaminase, plant ethylene levels do not become 
elevated to the same extent as when plants interact with bacteria that secrete IAA 
but do not synthesize ACC deaminase. In the presence of ACC deaminase, there 
is much less ethylene and subsequent ethylene feedback inhibition of IAA signal 
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transduction, so that the bacterial IAA can continue to both promote plant growth 
and increase ACC synthase transcription. However, in this case, a large portion 
of the additional ACC that is synthesized is cleaved by the bacterial ACC deami-
nase. The net result of this cross talk between IAA and ACC deaminase is that by 
lowering plant ethylene levels, ACC deaminase facilitates the stimulation of plant 
growth by IAA (Fig. 2b).

There are some studies showing IAA and ACC deaminase work in concert to 
stimulate root elongation. The IAA level affecting the root system ranges from 10−13 
to 10−5 M, depending on the type of root formations (primary or lateral roots, root 
hairs) and on the plant species (Meuwley and Pilet 1991; Taiz and Zeiger 1998; 
Dobbelaere et al. 1999). For example, root tissues are more sensitive to fluctuat-
ing concentrations of IAA than other plant tissues (Tanimoto 2005). The synthesis 
of high quantities of IAA by PGPRs has been shown to inhibit the growth of roots 
rather than to promote it. Primary root growth is stimulated by application of rela-
tively low levels of IAA, typically between 10−9 and 10−12 M (Alvarez et al. 1989; 
Meuwley and Pilet 1991; Pilet and Saugy l987), and is inhibited by higher IAA 
concentrations, likely by IAA-induced ethylene (Fig. 2b) (Peck and Kende 1995). 
Production of IAA by Pseudomonas putida GR12-2 plays a major role in the root 
development of canola (Brassica rapa) root system as evidenced by the production 
of roots 35–50 % shorter by an IAA-deficient mutant (Patten and Glick 2002). On 
the contrary, inoculation of mung bean cuttings with the mutant aux1 of the same 
strain, which overproduces IAA, yielded a greater number of shorter roots com-
pared with controls (Mayak et al. 1999). Treatment of plants with low concentra-
tions (up to 10−8 M) of exogenous IAA can enhance nodulation on Medicago and 
Phaseolus vulgaris, whereas higher concentrations inhibit nodulation (van Noorden 
et al. 2006). The combined effect of IAA on growth promotion and inhibition of root 
elongation by ethylene may be the explanation (Jackson 1991). The bacterial IAA 
from the plant stimulates the activity of ACC synthase, resulting in increased syn-
thesis of ACC (Jackson 1991), and a rise in ethylene which, in turn, inhibited root 
elongation (Riov and Yang 1989). Therefore, the production of IAA by itself does 
not account for the capacity of PGPRs (Xie et al. 1996) in promoting growth. IAA 
secreted by a bacterium may promote root growth through direct stimulation of plant 
cell elongation or cell division or indirectly influencing bacterial ACC deaminase 
activity (Glick 1998; Shah et al. 1998). ACC deaminase hydrolyzes plant ACC and 
thus prevents the production of plant growth-inhibiting levels of ethylene (inhibi-
tor of root growth) inside the plant because of lack of precursor ACC (Glick 1998, 
2005). Mutants of PGPRs that do not produce ACC deaminase have lost the ability to 
stimulate root elongation (Li et al. 2000), because most IAA knock-out mutants are 
still able to promote plant growth, IAA biosynthesis alone is not responsible for the 
overall observed effect (Xie et al. 1996; Dobbelaere et al. 1999, 2003). It is possible 
that IAA and ACC deaminase work in concert to stimulate root elongation (Jacobson 
et al. 1994; Li and Glick 2001). In the additive hypothesis, it was suggested that mul-
tiple mechanisms, such as IAA biosynthesis, together with ACC deaminase activ-
ity, are responsible for the increase in plant growth promotion and yield (Bashan 
and Holguin 1997; Bhusan et al. 2013). In addition, some PGP traits do not work 
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independently to each other as exemplified by IAA biosynthesis and ACC deami-
nase activity. Although bacterial IAA production by some ACC deaminase-contain-
ing PGPRs (Glick 1998; Glick et al. 2007a) may stimulate root growth, the creation 
of bacterial mutants with severely diminished ACC deaminase activity abolished 
their root growth-promoting effect (Glick et al. 1994; Belimov et al. 2007, 2009). 
Nevertheless, in vitro application of bacterial mutants with decreased ACC deami-
nase activity resulted in plants with longer root hairs (Contesto et al. 2008) compared 
to those inoculated with wild-type ACC deaminase-producing PGPRs. ACC deam-
inase-containing PGPRs did not affect lateral root development or root architecture 
in A. thaliana (Contesto et al. 2008), Cucumis sativus (Gamalero et al. 2008) and  
P. sativum (Jiang et al. 2012). In general, it may be suggested that IAA and ACC 
deaminase-containing PGPRs can lead to better growth of plants than PGPRs produc-
ing ACC deaminase or IAA alone. For example, IAA and ACC deaminase-producing 
Variovox paradoxus 5C-2 stimulated root hair elongation of tomato and pea (Pisum 
sativum) in vitro by producing IAA and decreasing ACC concentrations via ACC 
deaminase activity (Belimov et al. 2005, 2009a; Belimov 2012; Jiang et al. 2012).

6  IAA as a Signaling Molecule in Bacteria

IAA is important in plant–bacteria interactions and may be involved at different 
levels in plant–bacteria interactions (Costacurta and Vanderleyden 1995; Bashan 
and Holguin 1998; Patten and Glick 2002; Molina-Favero et al. 2008). IAA acts as 
a signaling molecule in microorganisms including bacteria (Bianco et al. 2006; Liu 
and Nester 2006; Yang et al. 2007; Yuan et al. 2008; Spaepen et al. 2009) because 
it affects gene expression in some microorganisms. Extensive communication 
occurs between plants and bacteria during different stages of plant development in 
which signaling molecules from the two partners play an important role. Bacteria 
are capable to detect the plant host and initiate their colonization strategies in the 
rhizosphere by producing growth-regulating substances such as IAA. On the other 
hand, plants are able to recognize microbe-derived compounds and adjust their 
defense and growth responses according to the type of microorganism encoun-
tered. This molecular dialog will determine the final outcome of the relationship, 
ranging from pathogenesis to symbiosis, usually through highly coordinated cel-
lular processes (Bais et al. 2004). IAA like quorum sensing molecules may play 
a role in plant–bacterial signaling (Loper and Schroth 1986; Idris et al. 2007; Phi 
et al. 2008; Van Puyvelde et al. 2011). For example, IAA triggers a broad gene 
expression response in Azospirillum brasilense (Van Puyvelde et al. 2011) and 
IAA synthesis is controlled by a positive feedback transcriptional mechanism 
(Vande Broek et al. 1999). In addition to the hypothesis that bacterial IAA contrib-
utes to evade the host defense by derepressing the IAA signaling in the plant, IAA 
also have a direct effect on bacterial survival and its resistance to plant defense 
(Remans et al. 2006). Evidence has been accumulating that some microorgan-
isms, independent of their ability to produce IAA, make use of IAA as a signaling 
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molecule steering microbial behavior. These results led to the speculation that 
signaling by indole may have a role in adaptation of bacterial cells to a nutrient-
poor environment where amino acid catabolism is an important energy source 
(Wang et al. 2001). Other targets of indole mediated signaling were found signi-
fying a role for indole signaling in biofilm formation (Domka et al. 2006). Other 
evidence has accumulated indicating that classic plant signals such as IAA can be 
produced by microorganisms to efficiently colonize the root and control root sys-
tem architecture (Randy et al. 2009). Many studies have shown that bacterial IAA 
is known as an effector’s molecule in plant–bacteria interactions, both in patho-
genesis and phytostimulation. It has been shown that bacterial IAA biosynthesis 
contributes to colonization capacity and fitness on the host. A low IAA-producing 
mutant of P. fluorescens HP72 is reduced in colonization ability on bent grass roots 
as compared with the wild-type (Suzuki et al. 2003). It is logical to postulate that 
bacteria use IAA as part of their colonization strategy by stimulating proliferation 
of plant tissues and thus enhanced colonization surface and exudation of nutrients 
for bacterial growth. Some similarity exists between IAA signaling in bacteria–
plant interactions, in which IAA is produced by both partners, and signaling by 
bacterial quorum sensing molecules in bacteria–host interactions (Spaepen et al. 
2007). However, the ecological significance of IAA production by bacteria would 
be more conclusive if it could be established that bacterial IAA production occurs 
while bacteria colonize the root system. As both the plant and the bacteria syn-
thesize and secrete IAA, it is difficult to address the contribution of one particular 
hormone responsible for the effects observed (Spaepen et al. 2007). Nevertheless, 
it seems bacterial IAA, together with endogenous plant-synthesized IAA may have 
significantly affected plants and bacterial colonization as mentioned above (Fig. 2).

7  Bacterial IAA in Endophytic and Rhizosphere 
Colonization

The IAA-producing PGPRs can stimulate root growth and seed germination, 
modify the architecture of the root system, enhance root exudates and eventually 
increase the root biomass. These bacteria can facilitate more colonization of endo-
phytic and rhizosphere PGPRs. Enhanced root system and exudates in turn have 
many other effects as shown in Table 1.

7.1  IAA in Endophytic Bacterial Colonization

Endophytic bacteria can be defined as those bacteria that colonize the inter-
nal tissue of the plant showing no external sign of infection or negative effect 
on their host (Ryan et al. 2008). These bacteria significantly affect plant growth 
by different mechanisms, which is similar to those used by associative bacteria 
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(Lugtenberg and Kamilova 2009). Numerous endophytes are actively involved in 
the synthesis of IAA in pure culture and in plants and increased root growth and 
root length, resulting in greater root surface area that enables the plant to access 
more nutrients from soil (Jacobson et al. 1994; Boiero et al. 2007). Production 
of pectinase and cellulase (pectinolytic activity) are common features of endo-
phytic bacteria (Elbeltagy et al. 2000) responsible for plant invasion by them 
(Teaumroong et al. 2001). Endophytic bacteria may colonize root tissues and 
spread actively in aerial parts of plants through expressing moderate amount of 
degradative enzymes (pectinases and cellulases) (Adriano-Anaya et al. 2006). 
Utilization of previously mentioned enzymatic activities for colonization by 
PGPRs has been revealed as one of the efficient methods to get entry into the 
host plant. Endoglucanase is one of the major determinants for the coloniza-
tion of endorhizosphere, which was evident from the observation that Azoarcus 
strain lacking endoglucanse was not effective in colonizing the rice plants. The 
endoglucanase loosens larger cellulose fibers, which may help entering into the 
plant. However, in our studies, most of the root and rhizosphere isolates produced 
pectinases and cellulases and some of the isolates were not positive for activity 
of cellulases and pectinases (Etesami et al. 2014b). In addition, genes encoding 
plant cell wall degrading enzymes have not been found in endophytic bacteria 
Herbaspirillum seropedicae strain SmR1 (Pedrosa et al. 2011). Previous studies 
that have shown invasion can happen through lesions particularly occurring on the 
lateral or adventitious roots. This is through root hairs and between undamaged 
epidermal cells fissures at the lateral root base and by cortical, intercellular crack 

Table 1  Effects of resulting from increasing root exudates and root system by IAA-producing 
PGPRs

Increasing root exudates Increasing root system

• Affecting growth and metabolism of biocontrol agents •  Enhancing the plant access to 
nutrients

•  Altering the diversity and activity of plant-associated 
microbes

• Increasing plant growth

•  Serving as important nutrients, attractants and 
deterrents

• Increasing root exudates

•  Mobilizing nutrients (toxic/essential ions) such 
as phosphorus and micronutrient and/or metal 
immobilization

•  Complexation of toxic and essential ions and increase 
their mobility for plant uptake

• A major driving force for microbial root colonization
• Prolonging metabolic activity
• Extending colonization persistence
• Influencing on overall biological control performance
•  Effecting on the physical and chemical properties of 

the soil and on the indigenous microflora
• Uptake of nutrient ions by the plant
• Supporting higher populations of microflora
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entry (Chaintreuil et al. 2000; Sevilla et al. 2001; James et al. 2002). Chi et al. 
(2005) demonstrated that the colonization of gfp-tagged rhizobia in crop plants 
begins with surface colonization of the rhizoplane at lateral root emergence, fol-
lowed by endophytic colonization within roots and then ascending endophytic 
migration into the stem base, leaf sheath and leaves where they develop high 
populations. Azospirillum may also colonize endophytically through wounds and 
cracks of the plant root (Reinhold-Hurek and Hurek 2011). The colonization of 
the interior of plant roots by microbial endophytes appears as a most attractive 
goal, because their plant nutrient resources can be explored even more effectively 
without the tough competition with the high number of other microbes coloniz-
ing the root surface and environment (Rosenblueth and Martinez-Romero 2006; 
Schulz et al. 2006). However, in this case, the efficient interaction with the plant 
host gets even more important. The success of invasion and survival within the 
host also requires that bacteria overcome plant defense responses prompted after 
microbial recognition, a process in which surface polysaccharides, antioxidant 
systems, ethylene biosynthesis inhibitors and virulence genes are involved (Soto 
et al. 2006). However, it can be speculated that IAA production trait is part of 
the strategy used by IAA synthesizing bacteria to bypass the plant defense sys-
tem. It has been observed previously that IAA interfere with parts of the host 
defense system. IAA is able to block several pathogenesis-related (PR) enzymes, 
including β-glucanase (Mohnen et al. 1985; Jouanneau et al. 1991; Lim and Kim 
1995) and chitinase (Shinshi et al. 1987) at the mRNA level. The link between 
plant defense and IAA signaling gives an extra dimension to the role of bacte-
rial IAA in colonization ability (Spaepen et al. 2007). The capacity to synthe-
size IAA is common among endophytic bacteria. Most of endophytic diazotroph 
isolates (62.75 %) in the study conducted by Teaumroong et al. (2001) also pro-
duced a significant amount of IAA. Endophytic bacterial isolates from Thai rice 
also showed a high N2-fixation potential and were able to produce PGP substances 
such as IAA (Teaumroong et al. 2001). This suggests that the ability of IAA pro-
duction may help IAA-producing or IAA-non-producing bacteria (with and with-
out pectinolytic activity) invade inside plant roots. In such a process, IAA which 
is a plant hormone with no apparent function in bacterial cells could improve the 
fitness of the plant–bacterium interaction. Brandl and Lindow (1998) have stud-
ied the contribution of IAA for bacterial epiphytic fitness, and their observations 
were supported by the investigations of other workers (Glick 1995; Dobbelaere 
et al. 1999; Verma et al. 2001). Since the first step of bacteria invasion in plant 
root comprises of the attachment of isolates onto epidermal cells of the root sur-
face, where root hair zone shows one of the major sites of primary colonization 
(mainly on the basal region of emerging hairs), it is possible that IAA-producing 
bacteria by increased root system can colonize plant roots better than other bacte-
ria (Katherine et al. 2008; Prieto et al. 2011). In addition, IAA levels weaken plant 
defense mechanisms making colonization easier. Bacterial IAA can loosen plant 
cell walls and as a result promotes an increase in root exudation that provides 
additional nutrients to support the growth of rhizosphere bacteria (James et al. 
2002; Chi et al. 2005). Since endophytic microbial communities originate from 
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the soil and rhizosphere (Hallmann 1997; Sturz et al. 2000; Elvira-Recuenco and 
Van Vuurde 2000), bacterial IAA can attract more rhizosphere bacteria by increas-
ing root exudation. Bacterial IAA stimulates the development of the root sys-
tem of the host plant (De Salamone et al. 2005) and IAA-producing isolates can 
improve the fitness of plant–microbe interactions (Brandl and Lindow 1998; De 
Salamone et al. 2005). Mendes et al. (2007) showed most of the IAA-producing 
isolates were found among the stem endophytes, followed by root endophytes and 
rhizosphere isolates. Previous studies indicate higher frequency of IAA-producing 
bacteria in root compared to rhizosphere (Kuklinsky-Sobral et al. 2004; Mendes 
et al. 2007; Etesami et al. 2014b). The observation that the frequency of IAA-
producing bacteria is higher in the roots than in the rhizosphere of plants suggests 
that plants select for endophytic bacteria with this trait or that IAA-producing 
bacteria harbor other traits that allow them to more effectively reach and estab-
lish themselves in the inner plant tissue (Mendes et al. 2007). IAA of microbial 
origin in the interior of plants could induce a physiological response in the host 
plant. Therefore, screening of the endophytes for their in vitro potential of IAA 
production could provide a reliable base for selection of effective PGP bacteria 
(Patten and Glick 2002; Etesami et al. 2015). In general, IAA-producing bacteria 
by increasing root system and root exudates can have effective role in colonization 
themselves or other bacteria inside or on plants, explained separately in the fol-
lowing sections.

7.1.1  IAA and Root Exudates

One of the main effects of bacterial IAA is the enhancement of lateral and adventi-
tious rooting leading to improved nutrient uptake and root exudation that in turn 
stimulates bacterial proliferation on the roots (Tien et al. 1979; Fallik et al. 1988; 
Xie et al. 1996; Okon and Vanderleyden 1997; Dobbelaere et al. 1999; Lambrecht 
et al. 2000; Steenhoudt and Vanderleyden 2000; Himanen et al. 2002; Tsavkelova 
et al. 2007). Rhizosphere and rhizoplane colonization and after that endophytic 
colonization has been described to be linked to root exudation (Lugtenberg 
and Dekkers 1999). Carbon fixed by plant photosynthesis is known to be partly 
translocated into the root zone and released as root exudates (Bais et al. 2006). 
Various carbohydrates, amino acids (l-Trp), organic acids, as well as other com-
pounds, which provide a source of nutrients for root-associated bacteria, are 
released in the rhizosphere (Jones 1998; Walker et al. 2003). Microorganisms are 
known to be chemoattracted and move toward exudates, allowing them to colo-
nize and multiply both in the rhizosphere and in the rhizoplane (Lugtenberg and 
Kamilova 2009). It is known that bacterial IAA can loosen plant cell walls and 
as a result promotes an increasing amount of root exudation that provides addi-
tional nutrients to support the growth of rhizosphere bacteria (James et al. 2002; 
Chi et al. 2005). Many compounds present in the root exudates stimulate a posi-
tive chemotactic response in bacteria (Somers et al. 2004; Kumar et al. 2007a). 
Being a major driving force for microbial root colonization, plant root exudation 
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could stimulate microbial colonization on the roots. In addition, greater exudation 
or nutrient availability may prolong metabolic activity, extend colonization persis-
tence and enhance expression of certain traits (Pielach et al. 2008). Overall, bac-
terial IAA increases root surface area and length and thereby provides the plant 
with greater access to soil nutrients. In addition, IAA stimulates overproduction 
of root hairs and lateral roots in plants and release of saccharides from plant cell 
walls during the elongation (Davies 2004). Saccharides are a source of nutrients 
for microorganisms and can increase the colonization ability of plant-associated 
bacteria (Lindow and Brandl 2003). Failure of PGPRs to produce a desired effect 
after seeds inoculation is frequently associated with their failure to colonize plant 
roots (Benizri et al. 2001). The host plants may provide a satisfactory environment 
for bacteria to proliferate and produce excessive amounts of IAA, thus weakening 
the plant and promoting root colonization. Since bacterial attachment to plant sur-
faces begins with attraction by seedling root exudates (Begonia and Kremer 1994; 
Bellis and Ercolani 2001), bacterial IAA can increase colonization by loosening 
plant cell walls and as a result facilitating an increasing amount of root exuda-
tion. IAA may also regulate root exudation through changing plasmalemma per-
meability (Brandl and Lindow 1998). It was hypothesized that the production of 
rhizobacterial IAA contributes to circumvent the plant defense system by depress-
ing auxin signaling (Spaepen et al. 2007). The expression of IAA biosynthesis 
genes in bacteria colonizing the plant root zone testifies to the importance of IAA 
production for this colonization (Rothballer et al. 2005). As reviewed by Spaepen 
et al. (2007), regardless of their ability to produce IAA, bacteria can use the phy-
tohormone as a signaling molecule to trigger the expression of genes related to 
survival under stress. Therefore, IAA can be involved both in the establishment of 
plant–bacteria associations and in the regulation of their functioning under chang-
ing environmental conditions. Since endophytic microbial communities originate 
from the soil and rhizosphere (Hallmann 1997; Sturz et al. 2000; Elvira-Recuenco 
and Van Vuurde 2000), bacterial IAA can attract more rhizosphere bacteria and as 
a result endophytic bacteria by increasing more amount of root exudation. As the 
amount of photosynthates secreted as root exudates varies with the type of soil 
and the availability of nutrients (Kraffczyk et al. 1984; Paterson and Sim 2000), 
the effect of bacterial IAA in the amount of root exudation and subsequently root 
colonization can also be different under changing conditions.

7.1.2  IAA and Root System

Bacterial IAA plays a major role in promotion of root elongation when a bacte-
rium is associated with its host plant (Dangar and Basu 1987; Lynch 1990; Arshad 
and Frankenberger 1991; Glick 1995; García de Salamone et al. 2001; Gutiérrez-
Mañero et al. 2001; Persello-Cartieaux et al. 2003; Dobbelaere et al. 2003; Vivas 
et al. 2005). Promotion of root growth is one of the major markers by which the 
beneficial effect of PGPRs is measured (Glick 1995). Almost all endophytic bac-
teria were also found in the rhizosphere, thus supporting the hypothesis that there 
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is a continuum of root-associated bacteria from the rhizosphere to rhizoplane to 
epidermis and cortex (Kloepper and Beauchamp 1992; Quadt-Hallman et al. 
1997). This might explain the close relationship between endophytic and rhizo-
sphere colonizing bacteria. Except for bacteria transmitted through seeds, poten-
tial endophytes must first colonize the root surface prior to entering the plant. 
Potential internal colonists find their host by chemotaxis, electrotaxis, or acci-
dental encounter. Lipopolysaccharides, flagella, pili and twitching motility (Dörr 
et al. 1998; Böhm et al. 2007) have been shown to affect endophytic colonization 
and bacterial mobility within host plants. Motility of beneficial associative PGPRs 
has been described for several bacteria such as Alcaligenes faecalis, A. brasilense 
and P. fluorescens (Bashan 1986; You et al. 1995). In addition, the secretion of cell 
wall degrading enzymes is involved in bacterial penetration (Lodewyckx et al. 
2002) and spreading within the plant. The penetration process does not necessarily 
involve active mechanisms and thus all rhizosphere bacteria can be expected to be 
endophytic at one stage of their life (Hardoim et al. 2008). Entry into a plant tissue 
can also be via the stomata, lenticels, wounds (including broken trichomes), areas 
of emergence of lateral roots and emerging radicles. However, the main entry for 
endophytic bacteria appears to be through wounds that naturally occur because 
of plant growth or through root hairs and at epidermal conjunctions (Reinhold-
Hurek and Hurek 1998). Several authors have reported extensive colonization of 
the secondary root emergence zone (site of root branches) by bacterial endophytes 
(Hallmann 1997). The fact that colonization is especially abundant in root tissue 
may reflect the fact that the root is the primary site where endophytes gain entry 
into plants. A criterion for some endophytes to colonize the plant is thus must find 
their way through cracks formed at the emergence of lateral roots or at the zone of 
elongation and differentiation of the root. During the colonization process, migra-
tion of bacteria toward roots is dependent on active motility of bacteria and pas-
sive movement of bacteria in percolating water, on vectors, or via carrying and 
deposition by elongating root tips (Parke 1991; Walker et al. 2002; Bowen and 
Rovira 1991). Percolating water may enhance root colonization due to the trans-
port and spread of bacteria. Root elongation and expansion can also be involved 
in transporting bacteria down the root. IAA together with ACC deaminase activ-
ity can help transport bacteria by increasing root elongation. In addition, there 
are many independent evidences using microbiological and molecular techniques 
indicating that roots stimulate soil microbial communities selectively creating 
unique rhizosphere communities (Duineveld et al. 1998; Marschner et al. 2001; 
Rengel and Marschner 2005). IAA by increasing root system may help this selec-
tion. In view of function of bacterial IAA in increased root system, it is proposed 
that IAA-producing bacteria can provide more number of active sites and access 
to colonization for other PGPRs. For example, the presence of PGPRs in the root 
vicinity could improve ability of rhizobia to compete with indigenous popula-
tions for nodulation. Parmar and Dadarwal (2000) reported that increase in root 
growth provides more number of active sites and access to nodulation for rhizobia 
in chickpea.
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7.2  IAA in Epiphytic Bacterial Colonization

The biosynthesis of IAA is widespread among bacterial colonizers of the phyl-
losphere (Fett et al. 1987; Glickmann et al. 1998; Lindow et al. 1998; Brandl 
et al. 2001). Because IAA is involved in many aspects of plant development, it 
is of great importance that bacteria which colonize plant surfaces have the abil-
ity to synthesize an IAA matching that found in plants. Many studies reported 
the contribution of IAA for bacterial epiphytic fitness (Glick 1995; Patten and 
Glick 1996; Bastián et al. 1998; Brandl and Lindow 1998; Dobbelaere et al. 
1999; Verma et al. 2001). It is hypothesized that the secretion of IAA may mod-
ify the microhabitat of epiphytic bacteria by increasing nutrient leakage from 
plant cells; enhanced nutrient availability may better enable IAA-producing 
bacteria to colonize the phyllosphere and may contribute to their epiphytic fit-
ness (Brandl et al. 1996). In competition experiments, an IAA-producing strain 
of Pantoea agglomerans reached twice the population size of an isogenic IAA-
deficient mutant on pear flowers in the field and on bean plants in the greenhouse 
(Brandl and Lindow 1998). This increase in the ratio of the population size of the 
parental strain over that of the IAA-deficient mutant occurred only during peri-
ods of active colonization of the plants. IAA production in P. agglomerans was 
also associated with increased fitness during periods of drought stress on plants 
(Manulis et al. 1998). IAA stimulates the release of saccharides from the plant 
cell wall (Goldberg 1980; Vanderhoff and Dute 1981; Fry 1989). Because bac-
teria on plants are frequently nutrient limited (the nutrient concentration includ-
ing glucose and other sugars on leaves ranges from 3 to 20 mg L−1) (Chet et al. 
1973; Fokkema and Lorbeer 1974), it is hypothesized that the greater epiphytic 
fitness of IAA-producing strains resulted from enhanced nutrient availabil-
ity caused by increased leakage of saccharides from plant cells in their vicin-
ity. Brandl et al. (1996) showed a similar release of nutrients from plant cells in 
response to IAA produced by epiphytic bacteria on plants, which convene upon 
a selective advantage. Brandl and Lindow (1998) conducted the epiphytic fit-
ness of strains Erwinia herbicola 299R and 299XYLE, an isogenic IAA-deficient 
mutant of strain 299R, evaluated in greenhouse and field studies by analysis of 
changes in the ratio of the population sizes of these two strains after inoculation 
as mixtures onto plants. Populations of the parental strain increased to approxi-
mately twice those of the IAA-deficient mutant strain after co-inoculation in a 
proportion of 1:1 onto bean plants in the greenhouse and onto pear flowers in 
field studies. They showed that IAA synthesis could contribute to the growth 
of strain 299R on plant surfaces. Their results clearly indicate that a benefit of 
IAA production occurs primarily when cells can exploit resources in the phyllo-
sphere for further growth. Work performed with the non-pathogenic E. herbicola 
299R strain showed that ipdC transcription increased 32-fold in planta on leaves 
of bean and tobacco and 1000-fold on pears flowers (Brandl and Lindow 1997). 
Studies involving with wild-type and ipdC mutant have demonstrated that IAA 
production contributed to epiphytic fitness of the bacteria on bean plants and pear 
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blossoms, because the ipdC mutants exhibited a tenfold reduced fitness when 
compared to wild-type strain (Brandl and Lindow 1998). This change in the pro-
portion of IAA-producing to IAA-deficient strains in mixed populations on leaves 
appears also to reflect a plant specific benefit of IAA production, since no dif-
ference in the growth of these two strains was noted in culture. They concluded 
that this benefit may be mediated by the increased leakage of nutrients from 
plant cells in the vicinity of IAA-producing bacteria colonizing the plant surface. 
Another example is E. herbicola, a common colonist on plant surfaces such as 
leaves and buds. E. herbicola produces IAA through l-Trp-independent path-
ways. IAA can increase colonization of plant surfaces by this epiphyte (Brandl 
and Lindow 1996; Lindow and Brandl 2003). Earlier, Varvaro and Martella 
(1993) have shown that IAA-deficient mutants of Pseudomonas syringae pv. 
savastanoi, obtained by selection for resistance to α-methyltryptophan, reduced 
in their ability to colonize and survive on olive leaf surfaces. They also tested 
the importance of IAA production in bacterial colonization of bean leaves with 
the brown spot pathogen P. syringae pv. syringae and an IAA-deficient mutant 
derived by insertional mutagenesis (Mazzola and White 1994). Their results 
showed IAA biosynthesis is not essential for bacterial growth and survival, since 
IAA-deficient mutants as well as their IAA-producing parental strain grew in 
vitro (Brandl and Lindow 1996; Smidt and Kosuge 1978). Increased transcrip-
tional activity of ipdC during the growth of E. herbicola 299R on plant surfaces 
provides some evidence for the bacterial production of IAA in the phyllosphere 
(Brandl and Lindow 1997, 1998). Their results thus indicate that bacterial IAA 
synthesis can affect the normal physiology of plant cells. Exogenously applied 
IAA can stimulate the release of large quantities of monosaccharides and oligo-
saccharides from the plant cell wall (Fry 1989; Goldberg 1980). Therefore, IAA-
producing bacteria may modify their microhabitat or the microhabitat of other 
bacteria by increasing nutrient leakage from plant cells; enhanced nutrient avail-
ability may better enable them to colonize the phyllosphere and may contribute to 
their epiphytic fitness.

8  IAA and Solubilization of Phosphorous

After nitrogen, the essential mineral element that most frequently limits 
the growth of plants is phosphorus (P), which only is taken up in monobasic 
(H2PO4

−) or dibasic (HPO4
2−) soluble forms (Glass 1989). Although soils gen-

erally contain a large amount of total P but only a small fraction is available 
for plant uptake (Khan et al. 2006). Substantial amounts of phosphate fertilizers 
are applied to agricultural soils due to relative immobility of phosphate and its 
very low concentration in soil solutions. This results in an accumulation of large 
quantities of total phosphorus in the soil, of which 20–80 % is in organic form 
(Richardson 1994). However, plants are well adapted to uptake of P from low 
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concentration soil solution (Jungk 2001). Therefore, it is presumed that the sup-
ply and availability of P to the root surface is influenced by the root and micro-
bial processes. The plant-associated microorganisms improve the plant nutrient 
acquisition by mobilizing nutrients and making it available to plant roots. An 
example is the P-solubilizing bacteria, which dissolves various sparingly soluble 
P sources such as Ca3(PO4)2 (Rodriguez et al. 2004) and Zn3(PO4)2 (Saravanan 
et al. 2007) through lowering pH of the rhizosphere soil and making P available 
for plant uptake. The increased plant growth and P uptake have been reported 
on the inoculations of P-solubilizing Pseudomonas sp. in wheat (Babana and 
Antoun 2006), Pantoea J49 in peanut (Taurian et al. 2010) and Psychrobacter 
sp. SRS8 in Ricinus communis and Helianthus annuus (Ma et al. 2010). 
Furthermore, presence of high levels of heavy metals in soil interferes with P 
uptake and lead to plant growth retardation (Zaidi et al. 2006). Under metal 
stressed conditions, most metal-resistant PGPRs (specially ACC deaminase-
producing bacteria) can either convert these insoluble phosphates into available 
forms through acidification, chelation, exchange reactions and release of organic 
acids (Chung et al. 2005) or mineralize organic phosphates by secreting extra-
cellular phosphatases (Gyaneshwar et al. 2002; van der Heijden et al. 2008). As 
mentioned above, PGPRs stimulate the plant growth directly through increase in 
nutrition acquisition, such as phosphate solubilization, or more generally by ren-
dering the inaccessible nutrients available to the plants (Persello-Cartieaux et al. 
2003). Bacterial IAA can increase the root exudates and root system through soil 
pH and nutrient status. Exudation of organic acids from root results in acidifica-
tion of the rhizosphere (Amir and Pineau 2003; Dakora and Philips 2002; Jones 
et al. 2003). The organic acids play an important role in the complexation of 
toxic and essential ions and increase their mobility for plant uptake. An acidic 
pH is typical for the rhizosphere environment due to proton extrusion through 
membranes of root cells (Spaepen et al. 2007). The acidification can also con-
tribute to plant growth by mobilizing nutrients such as phosphorus and micro-
nutrient. Acidification of the surrounding soil can occur with the release of 
protons and organic acids from the seed and root and uptake of nutrient ions 
by the plant (Hartman et al. 2009). In addition, phosphorous deficiency in many 
plants enhances the production and release of phenolic and carboxylate com-
pounds (Hartman et al. 2009). Altered root morphology of inoculated plants 
may enhance phosphorus uptake. Furthermore, root hair abundance and length 
are also positively correlated with increased uptake of relatively immobile ele-
ments such as phosphorus. Datta et al. (1982) reported that a P-solubilizing and 
IAA-producing strain of Bacillus firmus increased the grain yield and P uptake 
of rice in a P-deficient soil amended with rock phosphate. In general, in view 
of function of bacterial IAA in increasing root exudates and root surface area 
(Dobbelaere et al. 1999; Lambrecht et al. 2000; Steenhoudt and Vanderleyden 
2000) (Fig. 2), it may be suggested that IAA-producing bacteria can also solubi-
lize insoluble phosphates similar to phosphate-solubilizing bacteria (Fig. 3).
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9  IAA and Availability of Iron

Iron is a necessary cofactor for many enzymatic reactions. Under aerobic con-
ditions, iron exists predominantly as Fe3+ and reacts to form highly insoluble 
hydroxides and oxyhydroxides that are basically unavailable to plants and micro-
organisms. High soil pH reduces while acidic soil conditions increase Fe avail-
ability. As pH increases by one unit, activity of Fe3+ decreases by 1000-fold. 
Under reducing conditions, addition of H+ or other reductants, Fe solubility 
increases. Under such situations, Fe can be adsorbed on soil as an exchange-
able ion. To acquire sufficient iron, plants under iron stress release phytosidero-
phores or protons and chelators (phenolics, carboxylates) to acquire iron (Hartman 
et al. 2009). Poorly soluble inorganic nutrients can be made available through 
the secretion of organic acids. Most plant-associated bacteria can produce iron 
chelators called siderophores in response to low iron levels in the rhizosphere. 
Several examples of increased Fe uptake in plants with concurrent stimula-
tion of plant growth as a result of PGPRs inoculations have been reported (Burd 
et al. 2000; Carrillo-Castañeda et al. 2003; Barzanti et al. 2007). Exudation of 
organic acids from root has resulted in acidification of the rhizosphere (Dakora 
and Philips 2002). Acidification of rhizosphere through organic acids can contrib-
ute to plant growth by mobilizing nutrients such as P and Fe. In addition, organic 
acids are capable of chelating Fe3+ and making it available to plant roots. Some 
of the compounds in root exudates are able to form Fe complexes that improve 

Fig. 3  Functions of bacterial IAA in obviating some of the roles of siderophore-producing bac-
teria and phosphate-solubilizing bacteria
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availability. Carbohydrates, amino acids, organic acids, phenolics and secondary 
metabolites (low-molecular-weight compounds), proteins and mucilage (high-
molecular-weight components) are typically the dominant soluble reduced carbon 
compounds in rhizodeposits (Lynch and Whipps 1990; Farrar et al. 2003; Wen 
et al. 2007; Badri and Vivanco 2009). Because of function of IAA in secreting root 
exudates and increasing rooting system and, since these exudates are involved in 
acidifying rhizosphere and in providing a reducing conditions required for con-
verting Fe3+ to Fe2+, it may be suggested IAA-producing bacteria can also solu-
bilize insoluble Fe sources and induce plant growth and iron uptake in a similar 
manner to siderophore-producing bacteria (Fig. 3). For example, protons and elec-
trons are secreted within carbon compounds as undissociated acids or compounds 
with reducing capabilities. Oxygen consumption, due to respiration by the root 
(increase of root system due to bacterial IAA) and associated microflora (increase 
of microflora activity due to production of more root exudates), can also result in 
steep redox gradients in the rhizosphere (Hartman et al. 2009). Because in the aer-
obic environment, iron occurs principally as Fe3+ and is likely to form insoluble 
hydroxides and oxyhydroxides, thus it is generally inaccessible to both plants and 
microorganisms (Rajkumar et al. 2010).

10  IAA in Phytopathogenesis

Production of IAA is common among plant-associated bacteria, which may 
be beneficial or detrimental to the plant health. For example, IAA production 
by P. putida GR12-2 has been found to improve the root proliferation resulting 
in increased root surface area, which helps in rise of nutrient and water uptake 
from soil (Patten and Glick 2002). On the other hand, in some reports, IAA pro-
duction has been found necessary for pathogenesis (Vandeputte et al. 2005; Yang 
et al. 2007). Plant–microbe interactions were determined by different IAA bio-
synthesis pathways. For instance, the beneficial plant-associated bacteria synthe-
size IAA via the indole-3-pyruvate (IPyA) pathway, whereas pathogenic bacteria 
mainly use the indole-3-acetamide (IAM) pathway (Patten and Glick 1996, 2002; 
Manulis et al. 1998; Hardoim et al. 2008). For example, in phytopathogenic bacte-
ria, such as Agrobacterium tumefaciens and pathovars of P. syringae, IAA is syn-
thesized from l-Trp via the intermediate IAM pathway and has been connected 
to the induction of plant tumors (Glickmann et al. 1998; Patten and Glick 2002; 
Buell et al. 2003). The production of phytohormones such as IAA and cytokinins 
in free-living cultures is an indication of many phytophatogenic gall forming bac-
teria such as P. agglomerans, P. savastanoi pv. savastanoi, P. syringae pv. syrin-
gae, Ralstonia solanacearum and Rhodococcus fascians (Morris 1995; Vandeputte 
et al. 2005). In many bacterial pathogens, the hrp-gene encoded type III secretion 
system that directly translocates effector proteins into the eukaryotic host cells is 
fundamental to pathogenesis and the development of disease symptoms (Jin et al. 
2003; He et al. 2004). In P. syringae, the presence of a functional Hrp promoter 
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upstream of the iaaL gene involved in IAA biosynthesis further supports the role 
for IAA production in virulence (Fouts et al. 2002). The results of Navarro et al. 
(2006) suggest that decreasing plant IAA signaling can increase resistance to bac-
terial pathogens. A possible mechanism is the expression of IAA-repressed plant 
defense genes. They further showed that exogenous application of IAA enhances 
susceptibility to bacterial pathogens. These findings allow us to hypothesize that 
bacterial IAA production may contribute to circumvent the host defense sys-
tem by deactivating repressor gene of IAA signaling. In this way, IAA biosyn-
thesis may play an important role in bacterial resistance and colonization on the 
plant (Remans et al. 2006). For disease development, the first step is to infect the 
plant host and obtain nutrients to support the pathogen’s growth and survival. In 
E. herbicola, the presence of IAA increases the ability of the bacterium to colo-
nize on plant surfaces (Brandl and Lindow 1996) and the loss of IAA production 
decreases the colony size and population growth (Lindow and Brandl 2003). For 
example, a twofold population increase relative to IAA-deficient strains in pear 
flowers and bean plants was reported in IAA-producing P. agglomerans (Brandl 
and Lindow 1996). It has also been suggested that bacteria synthesize IAA to 
stimulate the root hairs production and lateral roots in plants relating to release 
saccharides from plant cell walls during the elongation (Davies 2004). Saccharides 
are carbohydrates that can be a source of nutrients for microorganisms, increase 
the colonization ability of a bacterium (Lindow and Brandl 2003) and facilitate 
bacterial colonization of plant surfaces (Bender et al. 1999). In addition, IAA 
production has been demonstrated to be a virulence factor in some pathogens 
(Yamada 1993). Many microorganisms produce IAA in order to perturb host 
physiological processes for their own benefits (Costacurta and Vanderleyden 1995; 
Yamada 1993). Exogenous application of IAA produced by pathogens enhances 
susceptibility to bacterial pathogens. In their interaction with plants, these micro-
organisms can interfere with plant development by disturbing the IAA balance in 
plants. This is best documented for phytopathogenic bacteria like Agrobacterium 
spp. and P. savastanoi pv. savastanoi, causing tumors and galls, respectively 
(Jameson 2000; Mole et al. 2007), and PGPR such as Azospirillum spp. that have 
impact on plant root development (Persello-Cartieaux et al. 2003; Spaepen et al. 
2007). As many bacterial pathogens are known to produce IAA, it can be spec-
ulated that this property is part of the strategy used by the pathogen to bypass 
the plant defense system. The same could apply for IAA-producing PGPRs. 
Rhizobacteria may affect plant hosts by mechanisms similar to phytopathogenic 
bacteria through production of enzymes, phytotoxins, or phytohormones (Loper 
and Schroth 1986; Schippers et al. 1987). Nevertheless, biotrophic phytopathogens 
and plant-beneficial bacteria are coming closer to each other when taking an IAA 
perspective. Obviously, as we try to comprehend the challenges in one direction 
(phytopathology) new and fascinating questions raises in another direction (phyto-
stimulation). In general, the function of bacterial IAA in pathogenesis and disease 
development is not entirely clear.
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11  IAA in Rhizobium–Legume Symbiosis

The IAA produced by PGPRs is involved in plant–bacteria interactions and can 
affect plant growth promotion and root nodulation. They are involved in many 
processes of nodule formation by rhizobia in legume plants, such as founder cell 
specification, nodule initiation and differentiation (IAA accumulation), nodule 
numbers, vascular bundle formation and cell division and differentiation. These 
three later events are more necessary for nodule formation. Mutants of the bac-
terium Bradyrhizobium elkanii that had a decreased level of IAA synthesis 
induced fewer nodules on soybean roots than did the wild-type strain (Fukuhara 
et al. 1994). Nitrogen fixation capacity in the former nodules was also increased 
(Camerini et al. 2008). In addition, inoculation of Medicago truncatula with 
IAA-overproducing strain resulted in better plant growth under phosphorus defi-
ciency because of the release of organic acids by the bacterium (Bianco and 
Defez 2010). In co-inoculation studies with Azospirillum and Rhizobium, earlier 
and faster nodulation and higher crop yields were observed (Okon and Itzigsohn 
1995; Burdman et al. 1996). However, using an Azospirillum ipdC mutant, pro-
ducing 10 % of IAA produced by the wild-type strain, the increase in nodulation 
and nitrogen fixation was not observed, showing that bacterial IAA production 
is important in symbiosis (Remans et al. 2008). An extensive overlap of changes 
in protein level could be observed in M. truncatula in response to IAA treat-
ment and Sinorhizobium meliloti inoculation, probably because of regulation of 
these proteins by IAA during the early stages of nodulation (van Noorden et al. 
2007). It was demonstrated that the nod inducers, the flavonoids, also stimu-
late the production of IAA by Rhizobium (Prinsen et al. 1991). In fact, A. bra-
silense caused a significant increase in the nod-inducing activity of crude alfalfa 
root exudates. IAA could be important for maintaining a functional root nodule 
(Badenochjones et al. 1983). However, the origin of IAA in the nodules is still 
not clear. It has been suggested that elevated levels of IAA in nodules are derived 
from the prokaryotic microsymbiont because a mutant of Bradyrhizobium japoni-
cum that produces 30-fold more IAA than the wild-type strain has higher nodu-
lation efficiency (Kaneshiro and Kwolek 1985). Bacteroids of plants inoculated 
with mutant B. japonicum strains produce high amounts of IAA in comparison 
with wild-type bacteroids, suggesting that increased IAA biosynthesis in nodules 
is of prokaryotic origin. It is therefore likely that IAA transport regulation is part 
of the process leading to nodule initiation (Hunter 1989; Kaneshiro and Kwolek 
1985). In addition, rhizobia can also indirectly influence the IAA homeostasis by 
interfering with plant IAA transport (Badenochjones et al. 1983; Ghosh and Basu 
2006). Many studies indicate that changes in IAA balance in the host plant are a 
prerequisite for nodule organogenesis (Mathesius et al. 1998). An IAA-producing 
S. meliloti strain showed increased tolerance to several stresses, and M. truncatula 
plants inoculated with this strain have a higher IAA content in nodules and roots 
and are better resistant to salt stress (Bianco and Defez 2009). The link between 
Nod factors as symbiotic signaling molecules and rhizobial IAA production 
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points to a role for IAA in the Rhizobium–legume symbiosis (Theunis 2005). 
Nevertheless, the exact role of IAA in the different stages of Rhizobium–plant 
symbiosis remains unclear.

12  IAA in Actinorhizal Symbioses Formation

The term actinorhiza refers both to the filamentous bacteria Frankia, an actinobac-
teria, and to the root location of nitrogen-fixing nodules. Actinorhizal symbioses 
result from the interaction between Frankia and plants belonging to eight angio-
sperm families collectively called actinorhizal plants (Benson and Silvester 1993). 
This symbiotic interaction results in the formation of a actinorhizal nodule on the 
root system, where the bacteria are hosted and fix nitrogen (Obertello et al. 2003). 
Unlike legume nodules, actinorhizal nodules are structurally and developmentally 
related to lateral roots (Pawlowski and Bisseling 1996). Frankia like many soil 
bacteria has been known to produce auxins since long ago. For instance, IAA and 
phenylacetic acid (PAA) are found at relatively high concentration (10−5–10−6 M) 
in the supernatant of various Frankia strains in pure culture (Wheeler et al. 1979; 
Hammad et al. 2003). A specific IAA response might occur in infected cells allow-
ing the infection to proceed. The infection threads are encompassed by the plant 
cell membrane and a new cell wall-like structure composed mainly of pectin 
derivatives (Lalonde and Knowles 1975). IAA is known to regulate genes involved 
in cell wall remodeling and pectin biosynthesis and methylation (Lerouxel et al. 
2006). Auxin perception in infected plant cells might therefore be necessary to 
allow the growth of infection threads (Benjamin et al. 2008).

13  IAA in the Development of Arbuscular Mycorrhizal 
Symbioses

Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an 
ancient phylum of fungi, the Glomeromycota, improves the supply of water 
and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 
20 % of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs 
through symbiotic structures inside plant root cells known as arbuscules. The com-
plex relationship between host roots and AM fungi requires a continuous exchange 
of signals, which results in the proper development of the symbiosis (Gianinazzi-
Pearson 1996; Hause and Fester 2005). Plant hormones are signal molecules 
known to regulate many developmental processes in plants and are therefore suit-
able candidates to function in the colonization process and likely during the estab-
lishment of an AM symbiosis (Barker and Tagu 2000; Ludwig-Muller and Güther 
2007). IAA may facilitate the colonization of a host by increasing the number of 
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lateral roots as preferential colonization sites for the fungi during early growth 
phases (Kaldorf and Ludwig-Muller 2000). It is suggested that increased IAA 
levels and subsequent IAA-induced gene expression might contribute to the phe-
notypical changes during mycorrhizal colonization (Ludwig-Muller and Güther 
2007). Although reports on IAA levels during AM in different plant species are 
contradictory, the contribution of IAA to the establishment of an AM symbiosis 
might be an important factor especially for the development of lateral roots which 
are the preferred infection sites for the fungi (Ludwig-Muller and Güther 2007). 
Recent findings about the role of fungal-produced IAA in different plant–fungus 
interacting systems open the possibility that fungi may use IAA and related com-
pounds to interact with plants as part of its colonization strategy, leading to plant 
growth stimulation and modification of basal plant defense mechanisms (Prusty 
et al. 2004; Contreras-Cornejo et al. 2009). In maize/Zea mays and A. thaliana, 
Trichoderma inoculation affected root system architecture, which was related to 
increased yield of plants. Reported developmental effects include increased lateral 
root formation and root hair growth (Bjorkman et al. 1998; Harman et al. 2004; 
Contreras-Cornejo et al. 2009). Studies also indicate that the effects of inoculation 
with IAA-producing fungi in plants under natural conditions may depend on the 
type and concentration of IAA produced by the fungi. In general, the increased 
IAA levels lead to the formation of more lateral roots, which constitute preferen-
tial penetration sites for the AM hyphae, thus closing the infection cycle. Future 
research has to provide functional proof for these hypotheses.

14  IAA and Environmental Stresses

Studies have shown that IAA triggers an increased level of protection against 
external adverse conditions by coordinately enhancing different cellular defense 
systems (Lindberg et al. 1985; Frankenberger and Arshad 1995; Bianco et al. 
2006; Bianco and Defez 2009). These authors investigated the effect of IAA treat-
ment on bacterial cells and demonstrated that the cells were tolerant to a variety of 
stress conditions. The role of IAA produced by PGPRs in the promotion of plant 
growth during stress conditions such as salinity or drought has also been dem-
onstrated (Bianco and Defez 2009; Egamberdieva and Kucharova 2009). Since, 
indigenously produced IAA in plants decreases in salt stress conditions, salt tol-
erant PGPRs may increase plant growth and lengthen the root by supplying IAA 
synthesized by them. Spaepen et al. (2007) reported the role of IAA in response to 
stress as evident from its increased production of IAA in Azospirillum sp. during 
carbon limitation and acidic pH. An increased tolerance of M. truncatula against 
salt stress was also observed in plants inoculated by the IAA-overproducing strain 
S. meliloti DR-64 (Bianco and Defez 2009). Plants inoculated with this mutant 
accumulated a high amount of proline and showed enhanced levels of the anti-
oxidant enzymes superoxide dismutase, peroxidase, glutathione reductase and 
ascorbate peroxidase compared with plants inoculated with the parental strain. In 
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general, IAA-producing bacteria may enhance growth of plant in drought condi-
tions by stimulating formation of well-developed root system enough for provid-
ing sufficient water from soil.

15  Ethylene

The phytohormone ethylene (C2H4), a unique plant growth hormone, is found only 
in gaseous form and produced endogenously by almost all plants (Babalola 2010). 
Ethylene can function as an efficient plant growth regulator at very low concentra-
tions as low as 0.05 µL−1 (Abeles et al. 1992). This phytohormone is involved in 
the regulation of numerous physiological processes in plants including modulating 
the growth and cellular metabolism of plants, disease-resistant biotic/abiotic stress 
tolerance, plant–microbe partnership and plant nutrient cycle (Ping and Boland 
2004; Babalola 2010). However, stress conditions such as flooding, wounding, 
drought, chilling temperature, exposure to chemicals and pathogen attack may 
induce the production of ethylene substantially (Gnanamanickam 2006; Babalola 
2010). The term stress ethylene is used to describe the acceleration of ethylene 
biosynthesis associated with environmental and biological stresses (Morgan and 
Drew 1997). The overproduction of ethylene can cause the inhibition of root elon-
gation, lateral root growth and root hair formation (Mayak et al. 2004; Pierik et al. 
2006; Saleem et al. 2007; Belimov et al. 2009).

15.1  Ethylene and the Inhibition of Endophytic Colonization

The increased level of ethylene formed in response to stress conditions can be both 
the cause of some of the symptoms of stress, and the inducer of defense responses, 
which help to enhance survival of the plant under adverse conditions. The host 
plant induces defense mechanisms against pathogens. However, in contrast to the 
plant response to phytopathogens only few defense responses have been described 
in plant response to endophytes. These differences can be probably explained by 
the secretion of different compounds or by the amount of secreted metabolites, 
which may be very low in the case of endophytes (James et al. 2002). However, it 
has been reported that plants may show defense reactions controlling endophytic 
colonization (Iniguez et al. 2005). Some plants are known to use salicylic acid 
(SA), jasmonic acid (JA) and ethylene as signaling molecules, which control colo-
nization by some endophytes inside the root system (Iniguez et al. 2005; Miché 
et al. 2006). Ethylene has been known as signal molecule and secondary messen-
ger in the induction of a salicylic acid (SA)-independent plant defense pathway 
referred to as induced systemic resistance (ISR) in plants, decreasing endophytic 
colonization (Knoester et al. 1998; Pieterse et al. 1998; Ton et al. 2001, 2002; 
Wildermuth et al. 2001; Audenaert et al. 2002; Iniguez et al. 2005). In a study, 
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Iniguez et al. (2005) showed addition of ACC to the growth media significantly 
reduced endophytic colonization in wild-type Medicago sativa by Klebsiella pneu-
moniae 342 and Salmonella enteric. These evidences suggest that ethylene can 
significantly inhibit invasion of bacterial cells into plants.

16  ACC Deaminase-Containing PGPR

PGPRs containing ACC deaminase activity can affect plant growth directly 
through various ways such as nitrogen fixation, solubilization of phosphorus, and 
increasing growth by regulating endogenous level of plant hormones or indirectly 
by increasing the natural resistance of the host against pathogens and other envi-
ronmental stresses (Glick 2004; Lugtenberg and Kamilova 2009; Spaepen et al. 
2009). A particular bacterium may affect plant growth using any one, or more, of 
these mechanisms. Moreover, a bacterium may provide different benefits at vari-
ous times during the life cycle of the plant. These bacteria can cleave the plant 
ethylene precursor ACC, and thereby lower the level of ethylene in a develop-
ing or stressed plant (Jacobson et al. 1994; Glick 1995, 1998). Under stress con-
ditions, a sustained high level of ethylene may inhibit root elongation (Jackson 
1991). Thus, ACC deaminase-producing PGPRs, when bound to the seed coat of 
a developing seedling, may act as a mechanism for ensuring that the ethylene level 
does not become elevated to the point where root growth is impaired. By facili-
tating the formation of longer roots, these bacteria may enhance the survival of 
some seedlings, especially during the first few days after the seeds are planted. 
Similarly, ACC deaminase-containing PGPRs bound to the roots of plants can 
act as a sink for ACC and protect stressed plants from some of the deleterious 
effects of stress ethylene (Arshad et al. 2008; Belimov et al. 2009). ACC deami-
nase has been widely reported in numerous species of PGPRs such as V. para-
doxus, Agrobacterium genomovars, Azospirillum lipoferum, Alcaligenes, Bacillus, 
Burkholderia, Enterobacter, Methylobacterium fujisawaense, Pseudomonas, 
R. solanacearum, Rhizobium, Rhodococcus and S. meliloti (Belimov et al. 
2001; Dobbelaere et al. 2003; Blaha et al. 2006; Rasche et al. 2006; Pandey and 
Maheshwari 2007a; Belimov et al. 2009; Duan et al. 2009; Sharp et al. 2011; Jiang 
et al. 2012; Chen et al. 2013).

16.1  ACC Deaminase in Promotion of Plant Growth

Stimulation of root elongation and biomass production of different plant species 
by inoculations with PGPRs having ACC deaminase activity has been repeatedly 
documented, particularly when the plants were subjected to stressful growth condi-
tions (Hall et al. 1996; Burd et al. 1998; Glick 1998; Belimov et al. 2001, 2005; 
Madhaiyan et al. 2006; Safronova et al. 2006; Glick et al. 2007; Belimov et al. 
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2009). P. putida UW4 deficient in ACC deaminase activity simultaneously lost the 
ability to elongate roots in infected canola plants (Li et al. 2000). Inoculation of 
plants with PGPRs containing ACC deaminase activity may lead to various sub-
sequent physiological changes in plants (Glick et al. 2007; Saleem et al. 2007). 
Considerable evidences have demonstrated the beneficial role of bacterial ACC 
deaminase in decreasing stress reactions in plant growth under different stresses, 
including range of pathogenic agents (Arshad and Frankenberger 2002; Arshad 
et al. 2007; Saleem et al. 2007), salinity, flooding, drought, toxicity of high con-
centrations of heavy metals present in pollutant soils (Grichko et al. 2000; Grichko 
and Glick 2001; Nie et al. 2002; Kausar and Shahzad 2006; Zahir et al. 2007; 
Gamalero et al. 2009; Nadeem et al. 2009) and the presence of toxic organic com-
pounds (Arshad and Frankenberger 2002; Arshad et al. 2007; Glick et al. 2007). 
Saleem et al. (2007) reviewed the role of PGPRs containing ACC deaminase 
activity in stress management in agriculture. Following inoculation of pea with 
the ACC deaminase containing rhizobacterium V. paradoxus 5C-2 obtained from 
pea increased seed nitrogen concentration in plants grown and enhanced vegeta-
tive growth and seed yield in drying soil (Dey et al. 2004; Belimov et al. 2009) 
that may have been due to enhanced nodulation, since ethylene typically inhib-
its nodulation (Guinel and Geil 2002), attenuated a drought-induced increase in 
xylem sap ACC concentration in non-nodulated plants and prevented drought-
induced decrease in seed nitrogen content of nodulated plants respectively. In addi-
tion, adding the ACC deaminase-containing rhizobacterium V. paradoxus 5C-2 to 
the substrate of well-watered, well-fertilized pea plants increased root and shoot 
growth by 20 and 15 %, respectively (Jiang et al. 2012). Since bacterial mutants 
having low ACC deaminase activity (including a transposome mutant of V. para-
doxus 5C-2) did not stimulate plant growth (Glick et al. 1994; Belimov et al. 2007, 
2009) and the growth promotion observed was most probably due to decreased 
plant production of the growth-inhibitory phytohormone ethylene. In other study, 
Inoculation of V. paradoxus 5C-2 significantly (P < 0.01) increased fresh bio-
mass of A. thaliana by 34–47 % throughout development (Chen et al. 2013). 
Furthermore, transposon mutagenesis of microorganisms to downregulate ACC 
deaminase activity reduced or eliminated their growth-promoting effect, in plant–
microbe interactions such as canola–Enterobacter cloacae (Li et al. 2000), tomato–
Pseudomonas brassicacearum (Belimov et al. 2007), pea–V. paradoxus (Belimov 
et al. 2009) and canola–Trichoderma asperellum (Viterbo et al. 2010). These find-
ings suggested that ACC deaminase plays a key role in promoting plant growth. In 
general, inoculation with ACC deaminase-containing bacteria induce longer roots 
which might be helpful in the uptake of relatively more water from deep soil under 
drought stress conditions, thus increasing water use efficiency of the plants (Zahir 
et al. 2007). Many studies showed using ACC deaminase-producing bacteria in 
association with plants subjected to a wide range of different kinds of biotic and 
abiotic stresses, in all instances tested, resulted in enhanced plant tolerance to the 
stresses (Table 2). Thus, use of these microorganisms per se can alleviate stresses 
in agriculture thus opening a new and emerging application of microorganisms.
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16.2  ACC Deaminase in Endophytic Bacterial Colonization

Successful colonization of the root surface is considered as a key property of pro-
spective inoculants. PGPRs that produce the enzyme ACC deaminase promote 
plant growth by sequestering and cleaving plant-produced ACC and thereby low-
ering the level of ethylene in the plant. In experiments, the colonization of root 
systems with P. fluorescens, P. putida, Bacillus pumilus and Serratia marcescens 
was protected against foliar diseases (Pieterse et al. 2002). Decreased ethyl-
ene levels allow the plant to be more resistant to a wide variety of environmental 
stresses. It has been suggested that the ability to utilize ACC may contribute to 
the root-colonization ability of bacterial strains. It has been discovered that some 
PGPRs possess the enzyme ACC deaminase which can cleave ACC, the imme-
diate precursor of ethylene in plants, to α-ketobutyrate and ammonia. The prod-
ucts of this hydrolysis are used by the ACC-degrading PGPRs as nitrogen and 
carbon sources, and thereby, lower the level of ethylene in a developing seedling 
or stressed plant. Treatment of plant seeds or roots with ACC deaminase-con-
taining PGPRs typically reduces ACC and ethylene levels about two- to fourfold 
(Grichko and Glick 2001a; Mayak et al. 2004a). Under stress conditions, ACC 
deaminase-producing bacteria are able to utilize ACC, thereby increasing the root 
surface in contact with soil. Since a dynamic equilibrium of ACC concentration 
exists between root, rhizosphere and bacterium, bacterial uptake of rhizospheric 
ACC stimulates plant ACC efflux, decreases root ACC concentration and root eth-
ylene evolution, and can increase root growth (Glick 1998). Accordingly, rhizo-
sphere inoculation with ACC deaminase-containing bacteria decreases root ACC 
levels and ethylene evolution (Belimov et al. 2002; Mayak et al. 2004a). Previous 
results indicated that ethylene is a key regulator of the colonization of plant tis-
sue by bacteria and that this regulation is most likely mediated by its effect on the 
plant signaling pathways. In this context, bacterial endophytes with high locally 
induced ACC deaminase activities might be excellent plant growth promoters, 
because they ameliorate plant stress by efficiently blocking ethylene production 
(Cheng et al. 2007). Furthermore, IAA-producing bacteria known to stimulate 
plant growth might even increase plant ethylene levels (Glick 1995). To avoid the 
deleterious effects of ethylene, plants might actually select for ACC deaminase-
producing bacteria to become endophytic, thereby lessening plant stress caused 
by excessive ethylene levels. The selection of such beneficial endophytes might 
take place at an earlier stage (Kucera 2005). Thus, colonization by bacteria with 
high ACC deaminase activities might reduce the stress imposed by excessive 
ethylene to the plant originating from biotic and abiotic stresses (Arshad 2007). 
Hence, IAA and ACC deaminase production are being deployed as tools for iden-
tification and screening of endophytes (Khalid et al. 2005; Shaharoona et al. 2006; 
Etesami et al. 2014a, b). Therefore, trait of ACC utilization ability as a nutrient 
substance gives ACC deaminase-producing isolates advantages in more coloni-
zation and increase of root length of plants (Etesami et al. 2014a, b). For exam-
ple, presence of PGPRs containing ACC deaminase on the roots of legume could 
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suppress accelerated endogenous synthesis of ethylene during the rhizobial infec-
tion and thus may facilitate nodulation. Therefore, co-inoculation of legumes with 
competitive rhizobia and PGPRs containing ACC deaminase could be an effective 
and novel approach to achieve successful and dense nodulation in legumes. It is 
highly expected that inoculation with PGPRs containing ACC deaminase hydro-
lyzed endogenous ACC instead of ethylene and subsequently legume plant as well 
as nodulation can be promoted (Garcia Lucas et al. 2004; Remans et al. 2007). 
ACC deaminase-containing PGPRs can derepress the expression of auxin response 
genes in the shoots (Glick et al. 2007) and also suppress the expression or func-
tioning of other plant signaling molecules such as jasmonic acid and giberellin 
(Czarny et al. 2006; Cheng et al. 2010). Therefore, these bacteria may have a com-
petitive edge over other microorganisms in the rhizosphere because of use of ACC 
(Glick and Bashan 1997) that helps plants to overcome many detrimental effects 
of biotic and abiotic stresses (Glick et al. 2007; Saleem et al. 2007). In general, 
a decreased level of ACC results in a lower level of endogenous ethylene, which 
eliminates the inhibitory effect of high ethylene concentrations (Shaharoona et al. 
2006) and contribute to their root colonization (Etesami et al. 2014a).

16.3  IAA and ACC Deaminase-Producing PGPRs  
in Phytoremediation

Phytoremediation is the direct use of green plants and their associated microorgan-
isms to stabilize or reduce contamination in soils, sludges, sediments, surface water, 
or ground water. Plant species are selected for use based on factors such as abil-
ity to extract or degrade the contaminants of concern, adaptation to local climates, 
high biomass, depth root structure, compatibility with soils, growth rate, ease of 
planting and maintenance, and ability to take up large quantities of water through 
the roots. Since the activity of inoculated microbes is necessary to exhibit benefi-
cial traits for improving the plant growth and overall phytoremediation process in 
metal contaminated soils, the colonization and survival in metal stress field envi-
ronment are considered as important factors. Plant-associated bacteria can poten-
tially improve phytoextraction by altering the solubility, availability, and transport 
of heavy metal and nutrients by reducing soil pH, release of chelators, P solubiliza-
tion or redox changes (Gadd 2000, 2004). In addition to improving plant’s nutrient 
uptake and growth, the plant-associated microbes alleviate heavy metal toxicity by 
reducing stress ethylene production. In general, heavy metal stress induces endog-
enous ethylene production in plants, which can affect the root growth and conse-
quently the growth of the whole plant. Under such conditions, in order to maintain 
the equilibrium between the rhizosphere and root interior ACC levels, the plants 
release more ACC through exudation and thus results decrease in the produc-
tion of stress ethylene (Adams and Yang 1979). Recent studies have revealed that 
plants inoculated with PGPRs containing ACC were better able to thrive in metal 
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polluted soils (Rodriguez et al. 2008). Madhaiyan et al. (2007) reported that M. ory-
zae strain CBMB20 having ACC deaminase activity increased the growth of tomato 
seedlings grown in Ni and Cd polluted soils. The bacterium reduced the produc-
tion of ethylene, which was otherwise stimulated when seedlings were challenged 
with increasing Ni and Cd. Zhang et al. (2011) have also confirmed that Pb-resistant 
and ACC deaminase-producing endophytic bacteria conferred metal tolerance onto 
plants by lowering the synthesis of metal-induced stress ethylene and promoted the 
growth of rape. Ma et al. (2011b) have also observed similar results in the case of 
Allysusm serpyllifolium and Brassica juncea growth under Ni stress in response to 
inoculation with ACC deaminase-producing endophytic bacteria. We anticipate that 
manipulating the rhizosphere processes for example increasing rhizosphere micro-
bial population (by IAA-producing bacteria), inoculating the microbial strains with 
various PGP features as well as co-inoculating ecologically diverse microbes would 
yield better results for effective phytoremediation. In view of role of bacterial IAA 
and ACC deaminase activity in stimulation of root elongation and biomass produc-
tion, increasing root exudates, enhancing plant tolerance to stresses, decreasing 
stresses and effective colonization, IAA and ACC deaminase-producing PGPRs can 
be used for effective phytoremediation of contaminated soil environment (Arshad 
and Frankenberger 2002; Glick et al. 2007; Saleem et al. 2007) (Fig. 4).

Fig. 4  Acceleration of phytoremediation by IAA and ACC deaminase-producing PGPR. Abbre-
viations: indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)
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17  Mechanism of Action of IAA-Producing Bacteria  
in Nitrogen Uptake

The mechanism most often invoked to explain the direct effects of PGP bacteria 
on plants is the production of phytohormones, including IAA (Brown 1974; Patten 
and Glick 1996, 2002). The IAA containing PGPRs stimulate root proliferation 
and increase the root surface area or the general root architecture (Biswas et al. 
2000; Lucy et al. 2004; Aloni et al. 2006). These bacteria enhance uptake of soil 
minerals and nutrients by the host plant. The plants growing better in turn release 
higher amounts of C in root exudates. The release of more C prompts increase in 
microbial activity, and this process continues in a cycle. The whole process makes 
more N available from the soil pool, influencing N flux into plant roots, and the 
plant is able to take up more available N (Adesemoye et al. 2009) (Fig. 5).

For various PGPRs, it has been demonstrated that enhanced root prolif-
eration is related to bacterial IAA biosynthesis. The plant growth promotion 
observed after inoculation with A. brasilense is mainly caused by biosynthesis 
and secretion of bacterial IAA. In addition to providing the mechanical support 
and facilitating water and nutrient uptake, plant roots also synthesize, accumu-
late and secrete a diverse array of compounds (Walker et al. 2003). Because of 

Fig. 5  Action mechanism of IAA-producing bacteria in uptake of nitrogen
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the growth and development of the root system by bacterial IAA, an extremely 
diverse range of organic and inorganic compounds (substantial amounts of C- and 
N-containing compounds) can be taken up or released by seeds and roots into 
the soil. Microorganisms are attracted to this nutritious environment and use the 
root exudates and lysates for growth and multiplication on the surface of root and 
in the adjacent rhizosphere soil. These compounds secreted by plant roots act 
as chemical attractants for a vast number of heterogeneous, diverse and actively 
metabolizing soil microbial communities. Many organic compounds and enzymes 
are released by plants in root exudates that Faure et al. (2009) have reviewed their 
functions in the rhizosphere. Through the exudation of a wide variety of com-
pounds, roots may regulate the soil microbial community in their immediate vicin-
ity, cope with herbivores, encourage beneficial symbioses, change the chemical 
and physical properties of the soil and inhibit the growth of competing plant spe-
cies (Nardi et al. 2000). Moreover, the microbial community influences the com-
position of the exudates to its advantage (Paterson et al. 2006; Shaw et al. 2006). 
The exudation of a wide range of chemical compounds modifies the chemical and 
physical properties of the soil and thus regulates the structure of soil microbial 
community in the immediate vicinity of root surface (Dakora and Phillips 2002). 
A fraction of these plant-derived small organic molecules is further metabolized 
by microorganisms in the vicinity as carbon and nitrogen sources, and some 
microbe-oriented molecules are subsequently retaken up by plants for growth 
and development (Kang et al. 2010). Indeed, carbon fluxes are critical determi-
nants of rhizosphere function. It is reported that approximately 5–21 % of photo-
synthetically fixed carbon is transported to the rhizosphere through root exudation 
(Marschner 1995). The higher plant root system significantly contributes to the 
establishment of the microbial population in the rhizosphere (Dakora and Philips 
2002). PGPRs often help increase root surface area to increase nutrient uptake 
and in turn enhance plant production (Mantelin and Touraine 2004). Application 
of several genera, such as B. licheniformis RC02, Rhodobacter capsulatus RC04, 
Paenibacillus polymyxa RC05, P. putida RC06, Bacillus OSU-142, B. mega-
terium RC01 and Bacillus M-13, showed increased root and shoot weight along 
with nutrient uptake in barley (Cakmacki et al. 1999). Studies with Azospirillum 
mutants altered IAA production support the view that increased rooting is caused 
by Azospirillum IAA synthesis (Dobbelaere et al. 1999). This increased rooting 
enhances plant mineral uptake and root exudation, which in turn stimulates bacte-
rial colonization and thus amplifies the inoculation effect (Dobbelaere et al. 1999; 
Lambrecht et al. 2000; Steenhoudt and Vanderleyden 2000). It was demonstrated 
that M. fujisawaense promoted root elongation in canola (Madhaiyan et al. 2006). 
Ghosh et al. (2003) observed that Bacillus circulans DUC1, B. wrmus DUC2 and 
Bacillus globisporus DUC3 enhanced root and shoot elongation in Brassica camp-
estris. Some compounds identified in root exudates that have been shown to play 
an important role in root microbe interactions include flavonoids present in the 
root exudates of legumes that activate Rhizobium meliloti genes responsible for the 
nodulation process (Peters et al. 1986).
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17.1  IAA and ACC Deaminase in Reduced Application Rates 
of Chemical Fertilizers

Some chemical fertilizers have low use efficiency, meaning that only a portion of 
the applied nutrients are taken up by plants (Gyaneshwar et al. 2002) especially 
in the case of phosphorous fertilizers. One of the important mechanisms for the 
beneficial effects of PGPRs is stimulated nutrient availability and increase in 
nutrient use efficiency. Overall, results suggest that inoculants could be used to 
allow reductions in the current high rates of fertilizer and the resulting environ-
mental problems (Malakoff 1998; Gyaneshwar et al. 2002; Shaharooma et al. 
2008) without compromising plant productivity. In addition, under stress condi-
tions resulting from reduced rates of inorganic fertilizers, ACC deaminase activ-
ity might have produced better root growth in the initial stages of crop growth. 
There has also been much recent interest in using PGPRs inoculants to decrease 
the application of chemical fertilizers (Adesemoye et al. 2009), either by stimu-
lating root growth (thereby increasing root foraging for nutrients) or by directly 
stimulating plant nutrient uptake. Some ACC deaminase-containing PGPRs 
increased shoot and grain nutrient concentrations in specific plant–microbe inter-
actions: pea and Pseudomonas brassicacearum Am3, Pseudomonas marginalis 
Dp1, or Rhodococcus sp. Fp2 (Safronova et al. 2006); peanut (Arachis hypogea) 
and various Pseudomonas spp. isolates (Dey et al. 2004); and wheat (Triticum 
aestivum) and A. brasilense Sp245 (Creus et al. 2004). Therefore, the PGPRs 
enhance the access of plants to the nutrient and more uptake of it by increasing 
the root growth of plant. For example, applied N can be lost through nitrate leach-
ing (Biswas et al. 2000). However, a plant with a good root growth can uptake 
more nutrient than the same plant without a good root growth during a given 
period (Fig. 5). In a study, Adesemoye et al. (2009) showed PGPRs or combina-
tions of PGPRs and Arbuscular mycorrhizal fungi (AMF) can improve the nutrient 
use efficiency of fertilizers. When the percentage of recommended fertilizer was 
reduced and inoculants were used, plant growth parameters and nutrient uptake 
were comparable to those with the full rate of fertilizer without inoculants. After 
testing different reduced fertilizer rates, under these experimental conditions, 
75 % fertilizer was the stable minimum to which fertilizer could be reduced if 
supplemented with PGPRs to achieve growth equivalent to 100 % fertilizer with-
out PGPRs. Shaharoona et al. (2008) reported that N use efficiency increased in 
response to inoculation with P. fluorescens at all fertilizer levels in wheat, caus-
ing 115, 52, 26 and 27 % increase over the noninoculated control at N, P and K 
application rates of 25, 50, 75 and 100 % recommended doses, respectively. Plants 
inoculated with the PGPRs together with one-third of the normal rate (33 kg N 
ha−1) gave the highest storage root dry weight compared to noninoculated control 
sweet potato plants. Inoculation also increased the concentrations of N, P and K 
in shoots and storage root (Farzana et al. 2007). Many reports indicated that the 
enhancement of N uptake by plants inoculated with the PGPRs strains was not 
via associative N fixation (Malakoff 1998; Gyaneshwar et al. 2002; Shaharooma 
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et al. 2008; Adesemoye et al. 2009) and the resulting enhancement of N uptake has 
been attributed to alternative bacterial effects. Use of mutant strains (carrying nif 
D::kan interposan mutation that prevents N fixation entirely) proved the participa-
tion of Gluconacetobacter diazotrophicus in N fixation. It is an established fact 
that the growth hormones, auxins (IAA), cytokinins and gibberellins, play a role in 
enhancing the growth of grasses associated with diazotrophs (Bottini et al. 2004). 
Apart from N fixation, G. diazotrophicus is also reported to benefit sugarcane 
through production of PGP factors (Fuentes-Ramirez et al. 2001). As previously 
suggested, the effect of Azotobacter and Azospirillum species is attributed not only 
to the amounts of fixed nitrogen but also to the production of plant growth regula-
tors such as IAA, gibberellic acid, cytokinins and vitamins (Rodelas et al. 1999; 
Arkhipova et al. 2007). Similarly, Azospirillum is also known to secrete phyto-
hormones, induce root cell differentiation and increase water uptake (Bashan and 
Holguin 1997). As stated earlier, Gyaneshwar et al. (2001) also showed inocula-
tion of S. marcescens IRBG500 with rice variety IR72 resulted in a significant 
increase in root length and root dry weight but not in total N content of rice, sug-
gesting that the growth promotion was probably due to mechanisms other than N2 
fixation. Furthermore, S. marcescens IRBG500 did not show acetylene reduction 
activity (ARA) in association with rice.

Fig. 6  Improving the nutrient use efficiency of N-fertilizers by IAA-producing PGPR. a 100 % 
recommended fertilizer without IAA-producing PGPR. b 75 % recommended fertilizer with 
IAA-producing PGPR. IAA-producing PGPR by increasing root surface area led to reduction of 
the percentage of recommended fertilizer (25 % reduction). Nutrient (N) uptake was comparable 
to those with the full rate of fertilizer without inoculants (75 % N in each plant) during a given 
period
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Enhanced root growth following V. paradoxus 5C-2 inoculation probably 
improved nutrient uptake. These nutritional effects seem partially specific to V. 
paradoxus 5C-2, as other ACC deaminase-containing PGPRs (P. brassicacearum 
Am3, P. marginalis Dp1, or Rhodococcus sp. Fp2) had positive effects on pea 
foliar N, Ca, S and Fe concentrations (Safronova et al. 2006). A combination of 
the activities of plant and inoculants may be proposed as a model for PGPRs-
enhanced N uptake in plants (Adesemoye et al. 2009) (Fig. 5). PGPRs promote 
the growth of the plant and increase the root surface area or the general root archi-
tecture (Biswas et al. 2000; Lucy et al. 2004). Plants growing better in turn release 
higher amounts of C in root exudates. The release of more C prompts increase in 
microbial activity and this process continues in a cycle. The whole process makes 
more N available from the soil pool, influencing N flux into plant roots and the 
plant is able to take up more available N. Figure 6 shows Improving the nutrient 
use efficiency of N-fertilizers by IAA-producing PGPR.

18  Co-inoculation of Multiple PGPR Strains as Way  
to Enhance the Performance of PGPR

Because soil is an unpredictable environment, the effect of PGPRs in crop pro-
ductivity varies under laboratory, greenhouse and field trials. Climatic variations 
also have a large impact on the effectiveness of PGPRs but sometimes unfavorable 
growth conditions in the field are to be expected as normal functioning of agri-
culture (Zaidi et al. 2009a). To overcome the inconsistencies, one way that some 
previous studies have used to enhance the performance of PGPRs is co-inoculation 
of multiple PGPRs strains (Belimov et al. 1995; Raupach and Kloepper 2000; Bai 
et al. 2003; Kloepper et al. 2007; Pandey and Maheshwari 2007b; Elkoca et al. 
2008). The best PGPRs may use multiple mechanisms of action on plant growth. 
Studies showed a promising trend in the field of inoculation technology, which is 
the use of mixed inoculants or application of consortia (combinations of micro-
organisms) that interact synergistically are currently being devised (Parmar and 
Dadarwal 1999; Steenhoudt and Vanderleyden 2000; Kumar et al. 2007; Rokhzadi 
et al. 2008; Yadegari et al. 2008; Pirlak and Kose 2009). Tittabutr et al. (2008) 
conducted such a study to evaluate effect of ACC deaminase activity on nodula-
tion and growth of Leucaena leucocephala. Further, Remans et al. (2007) exam-
ined the potential of ACC deaminase producing PGPRs to enhance nodulation of 
common bean (P. vulgaris). Shaharoona et al. (2006) observed that co-inocula-
tion with Pseudomonas and Bradyrhizobium species significantly improved root 
length, total biomass and nodulation in mung bean. Co-inoculation of a variety of 
PGPRs such as Azotobacter chroococcum and P. putida with Rhizobium sp. (AR-
2-2 k) showed increased plant growth, nodulation and improved nitrogenase activ-
ity. The association of Rhizobium sp. with P. putida, P. fluorescens and Bacillus 
cereus seem to produce the best agronomical results (Tilak and Ranganayaki 
2006). Belimov et al. (1995) reported significantly greater uptake of P in shoot 
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of barley with co-inoculation of A. lipoferum 137 and Arthrobacter mysorens 7 
or A. lipoferum 137 and Agrobacterium radiobacter 10 than single inoculation 
of any of the three organisms. Microbial interaction studies performed without 
plants indicate that some bacterial genera allow each other to interact synergis-
tically providing nutrients, removing inhibitory products and stimulating each 
other through physical or biochemical activities that may enhance some benefi-
cial aspects of their physiology such as nitrogen fixation (Pandey and Maheshwari 
2007; Arora et al. 2008). Plant studies have shown that these beneficial effects of 
Azospirillum on plants can be enhanced by co-inoculation with other microorgan-
isms (Alagawadi and Gaur 1992; Belimov et al. 1995). Co-inoculation frequently 
increased growth and yield compared to single inoculation, which provided the 
plants with more balanced nutrition and improved absorption of nitrogen, phos-
phorus and mineral nutrients (Kumar et al. 2009). There is a great advantage of 
using phosphate-solubilizing bacteria in co-inoculation with rhizobia. This is 
because increased P mobilization in soil improves P deficiency. Deficit P severely 
limits plant growth and productivity particularly with legumes, where both plants 
and their symbiotic bacteria are affected. Iron availability is one of the limiting 
factors for poor rhizospheric colonization. The successful performance of rhizo-
bial inoculant strain depends upon their capability to outcompete the indigenous 
soil bacteria, survive, propagate and enter into effective symbiosis with host plant. 
Many studies have indicated that efficient utilization of siderophores by rhizobia 
is a positive fitness factor with respect to its survival in soil (Carson et al. 2000). 
Further, Joshi et al. (2009) observed increase in nodule occupancy and higher 
rhizospheric colonization by pigeon pea-nodulating rhizobia expressing engi-
neered siderophore cross-utilizing abilities. Thus, iron availability is one of the 
major factors determining rhizospheric colonization. This fact is further evidenced 
by work of Mahmoud and Abd-Alla (2001) where authors showed that co-inocula-
tion of siderophore-producing PGPRs significantly enhanced nodulation and nitro-
gen fixation in mung bean compared to plants infected with rhizobial strain alone. 
There are more reports that specific siderophore-producing PGPRs stimulated 
the nodulation, nitrogen fixation and plant growth of leguminous plants (Grimes 
and Mount 1987; Omar and Abd-Alla 1994; Shenker et al. 1999). Application of 
PGPRs could not only produce significant benefits that require minimal or reduced 
levels of fertilizers but also consequently produce a synergistic effect on root 
growth and development (Kumar et al. 2009). Figueiredo et al. (2008) reported 
increased plant growth, N content and nodulation of P. vulgaris L. under drought 
stress due to co-inoculation of Rhizobium tropici and P. polymyxa. P. vulgaris 
(common bean) plants inoculated with Rhizobium etli overexpressing trehalose-
6-phosphate synthase gene had more nodules with increased nitrogenase activity 
and high biomass compared with plants inoculated with wild-type R. etli. Three 
weeks old plants subjected to drought stress fully recovered, whereas plants inocu-
lated with a wild-type R. etli did not survive. Decreased ethylene levels allow the 
plant to be more resistant to a wide variety of environmental stresses. Indeed PGP 
microorganisms have multifaceted beneficial effects (Avis et al. 2008) that can 
complement each other due to multifarious phenomenon (Maheshwari et al. 2014).



232 H. Etesami et al.

19  Biological Fertilizers Based on Bacterial Hormones

Chemical fertilizers are essential components of modern agriculture because 
they provide essential plant nutrients. For example, rice is the most important 
staple food in several developing countries and chemical fertilizers (especially 
N) are the most important input required for its cultivation. However, overuse 
of the fertilizers can cause unanticipated environmental impacts. The search for 
microorganisms that improve soil fertility and enhance plant nutrition has contin-
ued to attract attention due to the increasing cost of fertilizers and some of their 
negative environmental impacts. One potential way is the use PGPRs in order to 
make its cultivation sustainable and less dependent on chemical fertilizers. It is 
important to know how to use PGPRs that can biologically fix nitrogen, solubi-
lize phosphorus and iron and induce some substances like IAA that could contrib-
ute to the improvement of plant growth. Nevertheless, PGPRs often fail to confer 
these beneficial effects when applied in the field, which is often due to insuffi-
cient rhizo- and/or endosphere colonization. The major limitation today for use of 
these organisms is the lack of consistent effects in PGP traits under field condi-
tions. This is likely due to competition with the native microflora and environmen-
tal factors that either limit the population size (poor colonization) or activity of the 
PGPRs. Thus, the ability of a bacterial inoculant to promote plant growth can only 
be fully evaluated when they are tested in association with all of the components 
of the rhizosphere (Schroth and Weinhold 1986). Physical and chemical (abiotic 
soil factors) factors, such as soil texture, pH, nutrient status, high osmotic condi-
tions, moisture, temperature, organic matter content and biological interactions in 
the rhizosphere are also known to impose stresses on microorganisms that may 
affect the establishment, survival and activity of certain organisms, whereas other 
organisms may remain unaffected (van Elsas and van Overbeek 1993; van Veen 
et al. 1997; Schroth and Weinhold 1986; Glick 1995). Bashan et al. (1995) dem-
onstrated that concentrations of nitrogen, potassium and phosphate in soil are cor-
related with survival of A. brasilense. Despite inconsistency in field performance, 
PGPRs are considered as an alternative or a supplemental way of reducing chemi-
cal fertilizer in agroecosystem. In natural ecosystems, the behavior of introduced 
bacterial inoculants (e.g. PGPRs) and the subsequent expression of PGP represent 
a complex set of multiple interactions between introduced bacteria, associated 
crops and indigenous soil microflora. The expression of a particular trait under 
soil conditions is governed by the interaction of the inoculant strain with the host 
plant, other microorganisms in the rhizosphere, environmental factors and its own 
genetic makeup. In general, root elongation changes qualitatively are based on the 
IAA level, therefore, the amount of released IAA could have an important role 
in modulating the plant–microbe interaction. The property of synthesizing IAA 
and ACC deaminase activity is considered as effective tool for screening benefi-
cial microorganisms suggesting that IAA-producing bacteria have profound effect 
on plant growth (Wahyudi et al. 2011). In view of role of bacterial IAA together 
with ACC deaminase activity in root elongation, enhancing root surface area, 
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decreasing environmental stresses and more colonization, it may be suggested the 
production of biological fertilizer based on bacterial hormones can be effectively 
used for a sustainable crop management under field conditions. Production of IAA 
and ACC deaminase by PGPRs, result in increased root length, root surface area 
and number of root tips, leading to enhanced uptake of nutrients thereby improv-
ing plant health under stress conditions (IAA by better root growth and nutri-
ent uptake and ACC deaminase by reducing stress ethylene) (Egamberdieva and 
Kucharova 2009).

20  Conclusion and Future Prospects

The regulation of growth and functioning of plant root systems has attracted 
increased scientific attention in studies which aim to increase crop production but 
decrease negative environmental impacts of agriculture by decreasing water and 
nutrient inputs (Lynch 2007; Ghanem et al. 2011). This can be achived by using 
ACC deaminase and IAA-producing bacteria. These PGPRs potentially offer a low 
cost and flexible method to increase plant growth by regulating the growth and 
functioning of the root system and can stimulate plant growth directly by produc-
ing or metabolizing plant hormones or enhancing plant nutrient uptake (Arshad 
and Frankenberger 1991; Vessey 2003; Dodd et al. 2010; Dodd and Ruiz-Lozano 
2012). It has been documented that the IAA-producing bacteria together with ACC 
deaminase activity exert stimulatory effects on the growth of plants. The beneficial 
effects of these PGPRs are mostly related to the changes in IAA concentration. At 
the same time, modification of phytohormone levels by microbes can lead to char-
acteristic changes in plant growth development such as phytohormones produced 
by the bacteria, which can increase root area, leading to higher water and other 
nutrients uptake from soil. These bacteria, therefore, can be effectively used for 
plant growth improvement.

Further investigations about the mechanisms involved would help to improve 
the understanding of plant growth promotion by microorganisms. IAA accumula-
tion in the rhizosphere contributes to an increase in the root surface area and to 
alterations in root exudation. As a result, plant nutrition and growth are improved, 
new niches for plant colonization by the bacteria are formed, and bacterial IAA 
production is corrected again. A better understanding of the basic principles of 
the rhizosphere ecology, including the function and diversity of inhabiting micro-
organisms is on the way but further knowledge is necessary to optimize soil 
microbial technology to the benefit of plant growth and health in the natural envi-
ronment. Therefore, current production methods in agriculture, e.g. the improper 
use of chemical pesticides and fertilizers creating a long list of environmental 
and health problems, should be reduced. Our understanding of plant–microbe 
interactions in rhizosphere must increase before we can presume that utilization 
of PGPRs as biofertilizers will determine a sustainable promotion of host plants 
growth. While considerable research has demonstrated their potential utility, the 
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successful application of PGPRs in the field has been limited by a lack of knowl-
edge of ecological factors that determine their survival and activity in the plant 
rhizosphere. Therefore, the practical application of these techniques should be fur-
ther evaluated in field experiments.

The finding that IAA is used as a signal for gene regulation in some bacteria, 
both in IAA producers and nonproducers further supports the idea of IAA being 
part of genetic networks in some microorganisms. When these microorganisms 
interact with plants as part of their ecological habitat, it becomes obvious that a 
reciprocal IAA-mediated signaling process in microbe–plant interactions is likely 
to occur (Lambrecht et al. 2000). Our further understanding of bacteria–plant 
interactions be it pathogenic or beneficial, needs detailed studies that examine 
hormonal dynamics throughout the course of the interaction. Nevertheless, these 
conditions were removed from real conditions where the inoculum strain has to 
compete with a wide variety of soil microorganisms. Therefore, experiments under 
real conditions are necessary to clarify if the strain is able to promote the growth 
of plants under real soil conditions. However, the application of inocula in agricul-
ture needs further research to better understand the interactions between plants and 
microorganisms. Not only is it necessary to provide the right microorganisms, but 
also the correct techniques to check the fate of the inoculum in order to establish 
the most suitable way to use the microorganisms in agriculture. The lack of such 
information has been shown to be the main cause of failure in the use of PGPRs. 
It is also suggested that PGPRs need to be reinoculated every year/season as they 
will not live forever in the soil. A large body of knowledge suggests that root exu-
dates may act as messengers that communicate and initiate biological and physi-
cal interactions between roots and soil organisms. Although root exudation clearly 
represents a significant carbon cost to the plant, the mechanisms and regulatory 
processes controlling root secretion are just now beginning to be examined. In 
conclusion, this review and our studies (Etesami et al. 2014a, b, 2015) also signify 
that screening of effective bacterial strains under controlled conditions based on 
IAA and ACC deaminase production and growth promotion may be a useful strat-
egy for the selection of efficient isolates.
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Abstract The global climate is predicted to change the environment drastically 
over the next century. Increase in CO2 and temperature and decrease in soil water 
content leading to enhance drought in several areas of the world are expected. In 
the last few years, it has been increased the interest in environmental friendly, sus-
tainable, and organic cultural practices that warrant high yield and quality in agri-
cultural crops. Plant growth-promoting rhizobacteria (PGPR) have an important 
role in the growth and metabolism of plants. The beneficial effects of PGPRs have 
been demonstrated for many agricultural crop species. Numerous studies indicated 
that PGPR allow plants survive to biotic and abiotic stresses. Production of phy-
tohormones is one of the main mechanisms to explain the beneficial effects that 
modified plant growth and development. In this review we are focusing on drought 
tolerance through ABA regulation and we showed that PGPR act as important 
agent for influencing the beneficial response of plants to climate change.

Keywords Abscisic acid · Phytohormones · Drought stress · PGPR · Agriculture

1  Introduction

According to the United Nations estimates, the global human population to meet 
out their requirement projected to reach nine billion in 2050, and as a consequence 
roughly calculation of 50 % more food to be produced (Tomlinson 2013). Green 
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revolution, together with intensification of agriculture triggered a dramatic use of 
chemical fertilizer, pesticide and insecticides. In order to increase world food pro-
duction and protect crops, the farmers have been applying high amounts of fertiliz-
ers which are very costly and make the environment hazardous especially when 
are used indiscriminately. The projections based on the crop intensification will 
need change to a more sustainable agriculture so as to preserve the different eco-
system in the world. Because of this, sustainable agriculture should be able to: (1) 
produce enough food for an increasing world population, (2) protect the environ-
ment (micro and macro-environment), (3) maintain and improve human health, 
and (4) should be economically beneficial to producers and consumers.

Moreover, drought and salinity are two of the main abiotic stress factors that 
decrease agricultural productivity most dramatically (Boyer 1982; Bray et al. 
2000). Global warming and decreases in annual precipitations produce more 
droughts areas with negative effects on agricultural productivity (Pandey et al. 
2007; Barrios et al. 2008; Ziska 2011). Climate change models indicate that 
warmer temperatures and increases in the frequency and duration of drought 
during the twenty-first century could adversely affect agriculture (St Clair and 
Lynch 2010). Drought reduces the availability of CO2 for photosynthesis, lead-
ing to the formation of reactive oxygen species. Abscisic acid (ABA), a sesquit-
erpenic plant growth regulator (PGR), is the signal that induces different adaptive 
responses, mainly the closure of stomata to avoid water loss (Zhang and Outlaw 
2001; Sansberro et al. 2004). Under water stress, plants increase ABA biosynthe-
sis and/or decrease its catabolism (Bray 2002; Seki et al. 2002; Christmann et al. 
2007; Zeller et al. 2009). Further, ABA plays a role in mediating root branching, 
thereby improving the plant water uptake capacity (De Smet et al. 2006; Cohen 
et al. 2015). Tardieu et al. (2010) proposed that ABA induces leaf growth by aug-
menting water movement in the plant because of increased tissue hydraulic con-
ductivity by other way.

Furthermore, global changes, as dry weather and relatively warm conditions, 
offer the opportunity for a wide variety of living organisms, typical of more arid 
habitats. According to the soil conditions, the diversity of microorganism vary, i.e. 
it could be replaced by others lesser or more beneficial micoorganisms for plants. 
So “native bacteria” need to be redefined in more specific concept to a spatial and 
physical environment. These soil bacteria, indispensable part of rhizosphere biota, 
produce positive effects on plant growth and development. When PGPR interact 
with plants can either directly or indirectly promote rooting, help host plants to 
establish and improve growth. Some PGPR antagonize the deleterious effects of 
phytopathogens by inducing systemic resistance (ISR, indirect mechanism) or by 
metabolites production such as antibiotics (that prevent the growth of the patho-
gens), siderophores (so, pathogenic microorganisms with nutritional deficit cannot 
attack the crop) or by synthesis of volatile metabolites such as hydrogen cyanide 
(Bano and Musarrat 2003; Bashan and de-Bashan 2005). Among PGPR, Bacillus, 
Streptomyces, Pseudomonas, Burkholderia and Agrobacterium are predominant 
genera marketed as the biological control agents.

PGPR provide plants with diverse mechanism like via production of plant 
growth regulators (PGR), (Arshad and Frankenberger 1993; Costacurta and 
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Vanderleyden 1995; Glick 1995; Bastián et al. 1998; Bloemberg and Lugtenberg 
2001; Bottini et al. 2004; Cohen et al. 2008; Piccoli et al. 2011), biological nitro-
gen fixation (FBN), (Boddey and Dobereiner 1995), or nutrient mobilization from 
the surrounding environment (Glick 1995; De Freitas et al. 1997; Rodriguez and 
Fraga 1999; Richardson 2001; Chen et al. 2006; Rodriguez and Fraga 2006; Hu 
et al. 2009; Sharma et al. 2011). Additionally, the use of PGPR increases plant’s 
resistance to adverse environmental stresses, drought, salinity, nutrient deficiency 
and heavy metal contamination. PGPR could alleviate the stress in plant growth 
caused by drought (summarized in Table 1), salt (Egamberdieva 2008; Mayak 
et al. 2004a; Kaymak et al. 2009; Ahmad et al. 2011) and some other unfavora-
ble environmental conditions. However, fewer reports have been published on 
PGPR related with mechanism of tolerance to abiotic stresses (Yang et al. 2009; 
Mahehswari 2012). Thus, PGPR are used to remediate and rehabilitate nonfertile 
and contaminated soils into fertile ones (Glick 2010).

In the recent years exist a pronounced interest in eco-friendly and sustainable 
agriculture, proved potential for the use of PGPR as inoculants for biofertilization, 

Table 1  Drought stress alleviation by PGPR in different crops

PGPR Plants Effect of inoculation References

Azospirillum sp. Corn, wheat, sorghum 
and other grasses

Improves plant–water 
relationships and 
grain yield

Okon (1985)

Azospirillum 
brasilense

Sorghum Improvements of 
water status and yield 
of field-grown grain 
sorghum

Sarig et al. (1988)

A. brasilense Sp 245 Wheat Increases shoot 
growth, water status 
and rate of coleoptile 
growth

Creus et al. (1997)

A. brasilense Sp 245 Wheat Stimulates water 
status, cell wall 
elasticity and (or) 
apoplastic water

Creus et al. (1998)

Paenibacillus 
polymyxa

Arabidopsis Induces changes in 
gene expression asso-
ciated with drought

Timmusk and Wagner 
(1999)

Bacillus sp. Lettuce Increases arbuscular 
mycorrhizal fungus 
colonization in roots 
and enhances photo-
synthesis rate

Vivas et al. (2003)

A. brasilense Sp 245 Wheat Improves water 
status, induces elastic 
adjustment, grain 
yield and mineral 
quality

Creus et al. (2004)

(continued)
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Table 1  (continued)

PGPR Plants Effect of inoculation References

Streptomyces 
padanus AOK-30

Laurel Enhancements of 
osmotic pressure in 
leaf cells and induces 
modifications in cell 
wall

Hasegawa et al. (2004)

Achromobacter 
piechaudii
ARV8

Tomato and pepper Increases fresh and 
dry weight

Mayak et al. (2004a)

Variovorax para-
doxus 5C-2

Pea Stimulates plant 
growth

Dodd et al. (2005)

Pseudomonas sp. 
ACP
Pseudomonas putida 
GR12-2
Hansenula saturnus
Penicillium citrinum
P. putida UW4

Arabidopsis Modulate plant 
ethylene levels by 
the bacterial enzyme 
ACC deaminase

Glick (2005)

S. padanus AOK-30 Laurel Accelerates callose 
accumulation and 
lignification

Hasegawa et al. (2005)

Bacillus subtilis 
GB03
B. amyloliquefaciens 
IN937a
B. pumilus SE-34
B. pumilus T4
B. pasteurii C9
P. polymyxa E681
Pseudomonas  
fluorescens 89B-61
Serratia marcescens 
90-166

Arabidopsis Increase foliar and 
fresh weight

Ryu et al. (2005)

Bacillus thuringiensis Broom Increases plant water 
uptake

Marulanda et al. 
(2006)

Bradyrhizobium
P. putida biotype A
P. fluorescens

Maize and bean Increase root and 
shoot growth and 
enhance nodulation 
in legume

Shaharoona et al. 
(2006a)

Achromobacter 
xiloxidans
Bacillus pumilus

LB media Increase ABA and JA Forchetti et al. (2007)

P. fluorescens Periwinkle Enhances biomass 
yield and ajmalicine 
production

Jaleel et al. (2007)

Pseudomonas sp. Pea Increases plant 
growth, yield and 
ripening

Arshad et al. (2008)

(continued)
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PGPR Plants Effect of inoculation References

A. brasilense Sp 245 Arabidopsis Increases growth and 
ABA levels

Cohen et al. (2008)

Acinetobacter
Alcaligenes faecalis
Bacillus cereus
Enterobacter 
hormaechei
Pantoae
P. aeruginosa

Wheat Improve plant growth 
and nutrition

Egamberdieva (2008)

Paenibacillus 
polymyma
Rhizobium tropici

Mung bean Alter hormo-
nal balance and 
stomatal conduct-
ance. Improve plant 
growth, nitrogen con-
tent, nodule number

Figueiredo et al. 
(2008)

Pseudomona 
mendonica

Lettuce Increases phos-
phatase activity in 
roots and proline 
accumulation in 
leaves

Kohler et al. (2008)

P. fluorescens biotype 
G ACC-5
P. fluorescens 
ACC-14
P. putida biotype A 
Q-7

Pea Improve fresh and 
dry weight, root 
length, shoot length, 
number of leaves per 
plant and water-use 
efficiency

Zahir et al. (2008)

V. paradoxus 5C-2 Pea Improves growth, 
yield and water-
use efficiency. 
Increases nodula-
tion by Rhizobium 
leguminosarum

Belimov et al. (2009)

A. lipoferum USA 
59b

Maize Reverses effect of 
fluridone (F) and 
prohexadione-Ca (P, 
inhibitors of ABA 
and GA synthe-
sis, respectively), 
increases relative 
water content and 
enhances growth in 
P, F, or P + F and 
enhances GAs and 
ABA levels in plants

Cohen et al. (2009)

Table 1  (continued)

(continued)
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Table 1  (continued)

PGPR Plants Effect of inoculation References

Agrobacterium rubi 
A 16
Burkholderia gladii 
BA 7
P. putida BA 8
B. subtilis BA 142
B. megaterium M 3

Radish Improve the 
percentage of seed 
germination

Kaymak et al. (2009)

A. brasilense mutant Maize Increases biomass 
and trehalose

Rodríguez-Salazar 
et al. (2009)

Pseudomonas BA-8
Bacillus OSU-142
Bacillus M-3

Strawberry Increase total soluble 
solids, total sugar and 
reduce sugar

Pirlak and Kose 
(2009)

P. putida
Pseudomonas sp.
Bacillus megaterium

Clover Increase IAA produc-
tion, shoot and root 
biomass and water 
content

Marulanda et al. 
(2009)

P. entomophila 
BV-P13
P. stutzeri 
GRFHAP-P14
P. putida GAP-P45
P. syringae 
GRFHYTP52
P. monteilli WAPP53

Maize Improve plant 
biomass, relative 
water content, leaf 
water potential, root 
adhering soil/root 
tissue ratio, aggregate 
stability and mean 
weight diameter, lev-
els of proline, sugars 
and free amino acids.
Decrease electrolyte 
leakage, leaf water 
loss and activities of 
antioxidant enzymes

Sandhya et al. (2010)

Pseudomonas sp.
Bacillus lentus

Basil Improve growth, 
photosynthesis, 
mineral content and 
antioxidant enzymes

Golpayegani and 
Tilebeni (2011)

Pseudomonas sp. Basil Improves plant 
growth, auxin and 
protein contents

Heidari et al. (2011)

Burkholdera cepacia 
SE4
Promicromonospora 
sp. SE188
Acinetobacter cal-
coaceticus E370

Cucumber Increase biomass and 
chlorophyll contents, 
water potential and 
decreased electrolytic 
leakage. Reduce 
sodium ion concentra-
tion and activities of 
catalase, peroxidase, 
polyphenol oxidase 
and total polyphenol 
and ABA. Increase 
salicylic acid and 
gibberellin

Kang et al. (2014)

(continued)
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phytostimulation and biocontrol (Lugtenberg and Kamilova 2009; Babalola 2010; 
Maheshwari 2010). These bioinoculants contribute to the development of sustain-
able agriculture under stressed conditions (Glick et al. 2007a; Dodd and Perez-
Alfocea 2012; Berg et al. 2013). Also, with the rise of organic agriculture, the 
demand of PGPR biofertilizers has been increasing. These are promising solu-
tion for sustainable, environmentally friendly agriculture (Tsavkelova et al. 2006). 
Biofertilizer and biopesticide containing efficient PGPR may improve crop produc-
tion, reduce agrochemical use, and support eco-friendly sustainable food production.

Table 1  (continued)

PGPR Plants Effect of inoculation References

Proteus penneri Pp1
Pseudomonas aerugi-
nosa Pa2
A. faecalis AF3

Maize Increase exopoly-
saccharide, relative 
water content, pro-
tein, sugar, proline 
and decrease in the 
activities of antioxi-
dant enzymes

Naseem and Bano 
(2014)

Bacillus licheni-
formis Rt4M10
P. fluorescens 
Rt6M10

Grapevine Decrease plant water 
loss rate in correla-
tion with increments 
of ABA.
Increase monoter-
penes and 
sesquiterpenes

Salomon et al. (2014)

P. aeruginosa 
GGRJ21

Mung bean Accelerates the accu-
mulation of levels of 
antioxidant enzymes, 
cell osmolytes and 
consistently expedit-
ing the upregulation 
of stress-responsive 
genes

Sarma and Saikia 
(2014)

A. brasilense Sp 245 Arabidopsis Augments plant 
biomass, alters root 
architecture, stimu-
lates photosynthetic 
and photoprotective 
pigments and retards 
water loss in correla-
tion with incre-
mented ABA levels. 
Improves plants seed 
yield, plants survival, 
proline levels and 
relative leaf water 
content; it also 
decreases stoma-
tal conductance, 
malondialdehyde and 
relative soil water

Cohen et al. (2015)
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2  Plant Growth Regulators

One of the most important mechanisms in plant growth promotion is the pro-
duction of phytohormones (Bottini et al. 2004; Spaepen et al. 2007; Bashan and 
de-Bashan 2010). PGPR synthesize different group of phytohormones, such as 
gibberellins (GAs), cytokinins, auxins (IAA), ABA, ethylene and nitric oxide 
(NO), which regulate plant growth and development throughout their life cycle.

Auxins are a group of compounds in which the most common and active auxin 
recognized in plants is indole-3-acetic acid (IAA). Different bacteria from plant 
rhizosphere possess the ability to produce auxin (Tien et al. 1979; Atzorn et al. 
1988; Costacurta and Vanderleyden 1995; Patten and Glick 1996; Bastián et al. 
1998; Barazani and Friedman 1999; Patten and Glick 2002; Salomon et al. 2014). 
Auxin is responsible to control processes such as expansion growth, vascular tissue 
differentiation, root initiation and development, gravitropism, phototropism, api-
cal dominance and stimulation of cell division among others (Bartel 1997; Ross 
and O’Neill 2001; Zhao 2010). In bacteria, the main precursor for the synthesis 
of IAA is tryptophan, however, Gluconoactebacter diazotrophicus, Herbaspirillum 
seropedicae and few others produce IAA without tryptophan in the culture medium 
(Bastián et al. 1998). In PGPR at least five different pathways for biosynthesis of 
IAA have been described (Hartmann et al. 1983; Spaepen et al. 2007). Moreover, 
several recent reports indicate that IAA can also act as signaling molecule in bacte-
ria and therefore, has a direct effect on bacterial physiology (Spaepen et al. 2009). 
Azospirillum, Burkholderia, Marinomonas, Pseudomonas, Rhodococcus and 
Sphingomonas genera can metabolize IAA and the genes and enzymes involved in 
these reactions have been described (Leveau and Gerards 2008).

Cytokinins are adenine derivatives regulating cell division and differentia-
tion process in plant. At least 90 % of rhizobacteria produce these compounds in 
culture medium (Barea et al. 1976; Tien et al. 1979). Arshad and Frankenberger 
(1993) and later Arkhipova et al. (2007) observed strains of Pseudomonas and 
Bacillus in the vicinity of wheat and lettuce roots able to produce cytokinins, so 
helping plant in growth and development. Also, many rhizobacteria are capable of 
synthesizing kinetins, zeatins, isopentenyladenines and other cytokinin derivatives 
(Tsavkelova et al. 2006).

PGPR also produce GAs, a group of ent-kaurene-derived diterpenoid phyto-
hormones. More than 130 GAs have been identified, in plants, fungi and bacteria 
(Bottini et al. 1989; Hedden and Phillips 2001; Yamaguchi 2008). GAs are pri-
marily responsible for stem elongation (Crozier et al. 2001; Davies 2005). They 
are essential in many other developmental processes in plants, including seed 
germination, leaf expansion, trichome development, pollen maturation and the 
induction of flowering (Achard and Genschik 2009). In bacteria, the ability of 
Azospirillum lipoferum to produce GA1 and GA3 was confirmed by Bottini et al. 
(1989) using GC-MS analysis. Different strains like A. brasilense, G. diazotrophi-
cus, H. seropedicae, Bacillus pumilus, B. licheniformis, Pseudomonas fluores-
cens, etc. are able to produce GAs in vitro (Janzen et al. 1992; Bastián et al. 1998; 
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Gutiérrez-Mañero et al. 2001; Probanza et al. 2002; Bottini et al. 2004; Salomon 
et al. 2014). Moreover, rhizobacteria increase the endogenous levels of GAs in 
plant thus stimulating plant growth (Fulchieri et al. 1993; Lucangeli and Bottini 
1997; Gutiérrez-Mañero et al. 2001; Cassán et al. 2001a, b). Also, Azospirillum 
species have capacity to metabolize GAs (Piccoli and Bottini 1994a, b; Piccoli 
et al. 1996, 1997; Bottini et al. 2004). It has been observed that inoculation with 
G. diazotrophicus and applications of GA3 enhance fructose and glucose levels in 
shoots of sorghum (Bastián et al. 1999). A. lipoferum USA 5b and A. brasilense 
Cd have the ability to reverse dwarfism in d1 maize and in dx rice mutants similar 
to that of exogenous application of GA3 (Lucangeli and Bottini 1997). In addition, 
B. pumilus, B. licheniformis and A. lipoferum USA 5b reverse the effect of GAs 
inhibitors in Alnus and maize (Gutiérrez-Mañero et al. 2001; Cohen et al. 2009)

Ethylene is other PGR synthesized by majority of bacterial species (Primrose 
and Dilworth 1976). However, if ethylene concentration remains high after ger-
mination, either root elongation, or symbiotic N2 fixation in leguminous plants 
are inhibited (Dobbelaere et al. 2003; Lohar et al. 2009). Under stress conditions, 
the endogenous synthesis of ethylene is accelerated and affects root growth and 
consequently the entire growth of plant. Certain PGPR produce enzymes like 
1-aminocyclopropane-1-carboxylate (ACC) deaminase, which hydrolyze ACC 
(an immediate precursor of ethylene biosynthesis) and lowers the level of ethyl-
ene in crop rhizosphere (Glick 2005; Glick et al. 2007a, b). The products of this 
hydrolysis, ammonia and α-ketobutyrate, can be used by the bacterium as source 
of nitrogen and carbon for growth. In this way the bacterium acts as a sink for 
ACC and thus diminished the ethylene level in plants, preventing some of the 
potentially deleterious consequences of high ethylene concentrations (Glick et al. 
1998). PGPR with ACC deaminase characteristics improve crop growth and yield 
(Glick et al. 1998; Grichko and Glick 2001; Shaharoona et al. 2006a, b; Glick 
et al. 2007a; Zahir et al. 2008; Belimov et al. 2009; Dodd et al. 2010).

ABA is related mainly with responses to biotic and abiotic stresses (Davies 
1995). Increases in ABA levels have been reported under salt, cold, drought and 
wounding conditions (Zeevaart and Creelman 1988; Peña-Cortés et al. 1989; 
Shinozaki and Yamaguchi-Shinozaki 2000; Nambara and Marion-Poll 2005). 
ABA is formed by cleavage of C40 carotenoids and can be produced ubiquitously 
by higher plants, algae, fungi and bacteria (Zeevaart 1999; Cutler and KrochKo 
1999). More recently, it has been identified as an endogenous proinflammatory 
cytokine in human’s granulocytes (Bruzzone et al. 2007; Bassaganya-Riera et al. 
2011). Reports on ABA production by PGPR were detected by radioimmunoassay 
(Kolb and Martin 1985; Belimov et al. 2001): ABA has been characterized with 
more accuracy by full scan mass spectrometry in chemically defined growth cul-
tures of A. brasilense Sp 245, Arthrobacter koereensis and B. licheniformis, to 
avoid contamination of PGR (Cohen et al. 2008; Perrig et al. 2007; Sgroy et al. 
2009; Piccoli et al. 2011). Cohen et al. (2008) observed that A. brasilense Sp 245 
increased ABA production in culture medium supplement with NaCl. Moreover, 
Corynebacterium sp. converts ABA to dehydrovomifoliol in vitro and pos-
sessed vomifoliol dehydrogenase activity (Hasegawa et al. 1984). Rhodococcus 
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sp. P1Y and Novosphingobium sp. P6W metabolize ABA in vitro as a sole car-
bon and energy source using ABA-supplemented medium (Belimov et al. 2014). 
Information about bacterial ABA metabolism is very limited. It was proposed that 
bacterial-synthesized ABA is a product of carotenoid metabolism (Marasco and 
Schmidt-Dannert 2008) although there are some evidences that the gene CtrZ, 
responsible of the synthesis of xanthoxine in plants, is expressed in P. fluorescens 
Rt6M10 cultures (Domínguez et al. 2011).

Some PGPR such as A. brasilense Sp 245 in Arabidopsis enhance the plant’s 
ABA levels (Cohen et al. 2008, 2015), for example, A. lipoferum USDA 59b in 
maize (Cohen et al. 2009); B. licheniformis Rt4M10 and P. fluorescens Rt6M10 in 
grape plants (Salomon et al. 2014); and B. subtilis in shoots of lettuce (Arkhipova 
et al. 2005). By contrary, Variovorax paradoxus 5C-2 does not stimulate ABA sign-
aling in maize in either well-watered or drying soil (Dodd et al. 2006); Raoultella 
planticola Rs-2 and Promicromonospora sp. SE188 inoculated in cotton and tomato, 
respectively, also decreased ABA concentrations (Wu et al. 2012; Kang et al. 2012).

3  Other PGR Compounds

Nitric Oxide (NO) is a volatile, lipophilic free radical that participates in meta-
bolic, signaling, defense and developmental pathways in plants (Lamattina and 
Polacco 2007). Many bacterial physiological processes involve NO participation 
both as an intermediate in metabolic pathways and as a regulatory signal molecule. 
NO modulates biofilm production by A. brasilense in NFB modified medium with 
the addition of NaCl (Arruebarrena Di Palma et al. 2013). NO plays a major role 
in the IAA signaling pathway and its participation leads to lateral and adventitious 
root formation (Creus et al. 2005).

Jasmonates are derived from oxygenated fatty acids via the octadecanoid path-
way and are characterized by a pentacyclic ring structure. These have diverse 
functions ranging from the initiation of biotic and abiotic stress responses to the 
regulation of plant growth and development. Some rhizobacteria such as B. pumi-
lus and Achromobacter sp. (Forchetti et al. 2007) and Arthrobacter koreensis 
(Piccoli et al. 2011) produce jasmonic acid.

4  Role of ABA Produced by PGPR in Plant–PGPR 
Interactions in Drought-Stressed Soils

Drought stress is one of the main adverse environmental conditions that limit crop 
growth and productivity worldwide, especially in arid and semiarid regions (Boyer 
1982). Plants must avoid or tolerate cellular dehydration to survive drought (Seki 
et al. 2007), particularly, morphological adaptation and responses at biochemi-
cal and genetic levels. Water balance regulations play an important role in plant 
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adaptation to these environmental conditions. Water deficits increase ABA biosyn-
thesis and/or ABA deactivation (Bray 2002; Ren et al. 2007; Huang et al. 2008), 
preparing the plant to resist water loss. Physiological responses to drought include 
stomatal closure (Zhang and Outlaw 2001), decrease in photosynthetic activity, 
modification in cell wall elasticity and generation of toxic metabolites causing 
plant death (Ahuja et al. 2010).

ABA acts as an endogenous messenger that modules several physiological 
processes controlling plant response to biotic and abiotic stresses. Different abi-
otic stress-inducible genes are controlled by ABA, however, others are ABA-
independent (Yamaguchi-Shinozaki and Shinozaki 2005). In addition, ABA 
regulates a variety of plant processes as it was mentioned, thereby improving 
the plant water uptake capacity (De Smet et al. 2006). Sansberro et al. (2004) 
observed that ABA sprayed on leaves promotes growth in Ilex paraguariensis by 
alleviating diurnal water stress and more recently Tardieu et al. (2010), observed 
that ABA induces leaf growth in maize by augmenting water movement in the 
plant because of increased tissue hydraulic conductivity. In tomato, ABA overpro-
duction enhanced transpiration efficiency and root hydraulic conductivity, thereby 
affecting leaf expansion through improvements in water status (Thompson et al. 
2007). Also, ABA increases leaf carotenoid content and allocation of carbohydrate 
in wheat and soybean grains (Travaglia et al. 2007, 2009), and augments yields 
in field-grown wheat with a moderate water restriction (Travaglia et al. 2010). In 
grape, ABA enhances fruit yield (Quiroga et al. 2009) and increases sugar trans-
port and promotes carbon allocation toward sink organs involved in plant survival 
(roots and fruits; Moreno et al. 2011).

In general, PGPR play an essential role in improving crop growth especially 
under stress conditions. Maize plants inoculated with A. lipoferum increase ABA 
levels and reverse the effects of inhibitors of ABA and GA synthesis (fluridone 
and prohexadione-Ca, respectively). Fluridone (inhibitor) application decreases 
the ABA levels and it affects growth in well-watered plants to a level found in 
drought-stressed. Fluridone plants are as short as those submitted to a period of 
water stress and they did not control water loss efficiently, which in turn reduce 
cell turgidity, decrease growth and as consequence reduce shoot and root dry 
weight. In fluridone plants, A. lipoferum reverse growth parameters at the level of 
control unstressed (well-watered) suggesting that it might supply the plant with 
ABA so as to cover the deficit produced by fluridone. This inhibitor also affects 
the relative water content (RWC) in both, well-watered and drought-stressed 
plants, and Azospirillum reverses this effect (Cohen et al. 2009). These results are 
further evidenced using the Arabidopsis mutant aba2-1, defective in ABA biosyn-
thesis and wild type Col-0 (Cohen et al. 2015).

A. brasilense Sp 245 colonizes the roots and rosettes of Col-0 and aba2-1 
plants and increases main root length, lateral roots number and fresh weight. The 
roots of aba2-1 plants have a larger number of lateral roots that grew longer than 
those of Col-0, something previously observed by Deak and Malamy (2005). In 
order to observe the effect of inhibitor similar effect is also founded applying flu-
ridone in Col-0 plants where Azospirillum inoculation increases the length and 
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number of lateral roots (Cohen et al. 2007). Although the bacterium-produced 
ABA might reduce the amount of lateral roots, such effect is counteracted by 
IAA and GAs produced by Azospirillum. There are many reports that support-
ing Azospirillum sp. produces both IAA (Crozier et al. 1988; Bashan and de-
Bashan 2010) and GAs (Bottini et al. 1989, 2004). Different PGPR produce small 
amounts of IAA increasing considerably the development of roots, plant growth 
and its crop productivity (maize, rice, sorghum, potato, canola).

Azospirillum increase the root system and leaf area of pot-grown Col-0 plants 
in respect to that of the control. In this case, inoculated plants improve root pro-
liferation, suggesting an increased ability to uptake water from the water stress, as 
confirmed by soil RWC determinations (Cohen et al. 2015). Azospirillum strains 
improve plant–water relationships and cell wall elasticity with higher seed yield 
in sorghum and wheat (Sarig et al. 1988; Creus et al. 1997, 1998, 2004). It was 
also observed in Retama sphaerocarpa due to B. thuringiensis (Marulanda et al. 
2006). Such ability may be related to the presence of aquaporins, as was observed 
in case of Azospirillum-inoculated barley seedlings whereas higher root expres-
sion of aquaporin gene was detected (Zawoznik et al. 2011). On the other hand, 
Dardanelli et al. (2008) reported that A. brasilense promotes root branching in 
bean seedling and increased secretion of flavonoids and lipochitooligosaccha-
rides. Also, Proteus penneri Pp1, P. aeruginosa Pa2 and Alcaligenes faecalis AF3 
increase exopolysaccharide (EPS) in maize plants. The EPS produced by bacteria 
protects the microbes against inhospitable conditions and enables their survival.

Azospirillum affects the whole life cycle of a plant, accelerating its growth rate 
and shortening its vegetative period, both effects relevant for most crops. Further, 
Azospirillum sp. increases both vegetative (rosettes size and dry weight as con-
sequence of root branching that improves the area active in water and nutrient 
uptake) and reproductive parameters (number of inflorescences and flowers, inflo-
rescences dry weight and seed production). Some of these effects have also been 
observed in Arabidopsis inoculated with B. subtilis GB03 that increase foliar and 
fresh weight (Ryu et al. 2005). On the other hand, Burkholderia phytofirmans 
PsJN produces bigger rosette areas and early flowering times (Poupin et al. 2013). 
The emission of volatile compounds by B. subtilis GB03 increases growth and 
photosynthesis through modulation of ABA signaling in Arabidopsis (Zhang et al. 
2008) and delayed flowering (Xie et al. 2009; Bresson et al. 2013), thereby flower-
ing time may depend more on the bacterium strain itself rather than on the assem-
bly PGPR–plant variety, probably because of differential modulation in the plant 
hormonal homeostasis.

Many reports have described the essential role of ABA in plant responses to 
drought during plant–bacteria interaction, it was observed that the mutant aba2-1 
has only 37 % of the total ABA measured in the wild-type Col-0, but when aba2-1 
is inoculated, it produced higher ABA levels than that of Col-0. Thus, confirm-
ing the ability of A. brasilense Sp 245 to produce ABA per se increases the plant 
biosynthesis of ABA in both Col-0 and aba2-1. This suggests that A. brasilense 
Sp 245 has the enzyme/s involved in this reaction. The plant–bacteria associa-
tion generates higher ABA levels than the sum of plant plus bacteria alone shown 
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previously (Cohen et al. 2008). Salomon et al. (2014) founded that B. licheni-
formis increased ABA content by 70-fold and P. fluorescens to that of 40-fold 
in grape leaf tissues. This was correlated with water loss rate assay, where the 
plants bacterized with P. fluorescens and B. licheniformis lost 4 and 10 % less 
water, respectively, than controls. During drought, ABA induces stomatal closure 
to minimize water loss through transpiration. Also, A. brasilense Sp 245 inocu-
lation delayed water losses after cutting rosettes by controlling stomatal closure 
through increasing ABA levels (Cohen et al. 2015). This augment in ABA lev-
els may provide the plant to cope better with unfavorable environmental condi-
tions. The highest leaf RWC found in Col-0+Sp 245 plants confirms once again 
how inoculated plants were able to control water loss. Stomatal conductance (gs) 
value is a crucial characteristic that determines plant water status. Although inocu-
lated plants had greater leaf area; the gs diminishes in these plants and reaches 
the wilting point later than the Col-0 probably because they have more ABA than 
the non-inoculated. Drought caused an accentuated increase in ABA levels when 
compared to those watered; however, Azospirillum increased the ABA levels under 
both watered and drought conditions (Cohen et al. 2015). Similarly, Paenibacillus 
polymyma and Rhizobium tropici inoculated in bean plants altered hormonal bal-
ance and stomatal conductance (Figueiredo et al. 2008). Nevertheless, tomato 
flacca and notabilis mutants deficient in ABA inoculated with Rhodococcus sp. 
P1Y and Novosphingobium sp. P6W decreased root and/or leaf ABA concentra-
tions (Belimov et al. 2014).

Plants inoculated with A. brasilense Sp 245 are greener than non-inoculated 
plants, with increase in both photosynthetic and photoprotective pigments (Cohen 
et al. 2015). The increment in chlorophyll and enhanced photosynthesis are well-
known responses of plants to inoculation with several PGPR (Deka and Dileep 
2002; Bashan et al. 2006; Zhang et al. 2008). Wheat and grapevine plants treated 
with ABA present higher content of carotenoids (Travaglia et al. 2007, 2010; Berli 
et al. 2010) indicating that inoculation with A. brasilense Sp 245 may be involved 
in this process. Also, total phenolic compound and anthocyanins were strongly 
augmented in inoculated A. brasilense Sp 245 under drought treatment because 
these compounds are related with stress conditions in grapevine with Solar UV-B 
and ABA treatments (Berli et al. 2010, 2011). The photoprotective role of antho-
cyanins can be due to radiation filtering and/or to ROS quenching through the 
powerful antioxidative capacity (Sperdouli and Moustakas 2012). Additionally, 
phenolic compounds may also enhance protection against oxidative stress, as they 
possess chemical structures capable of scavenging free radicals (Blokhina et al. 
2002; Berli et al. 2010). Drought stress induced changes in lipid peroxidation, 
can be quantified by malondialdehyde (MDA) levels. We observed an increased 
MDA in drought-Col-0 plants, whereas Col-0 plants inoculated with A. brasi-
lense Sp 245 (Col-0+Sp 245) or Col-0+ABA showed lesser damages, indicat-
ing that these plants are protected against the adverse effects of oxidative stress 
and demonstrating the efficiency of both A. brasilense Sp 245 and ABA to induce 
antioxidative defense mechanisms. Proline levels were increased in Col-0+Sp 245 
since irrigation was suspended, and the highest value was recorded at day 7 since 
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water was withheld before entering wilt. Afterward, Col-0+Sp 245 survive bet-
ter a second cycle of drought and also increase seed yield (Fig. 1) (Cohen et al. 
2015). This osmolyte contributes to osmotic adjustment during stress allowing the 
plant to obtain water even with very low soil water potentials, and it protects the 
structure of macromolecules and membranes during extreme dehydration (Meloni 
et al. 2001). Sandhya et al. (2010) observed that Pseudomonas sp. inoculated in 
maize increased solutes and modified antioxidants status in drought conditions. 
Earlier, Timmusk and Wagner (1999) reported that inoculation with P. polymyxa 
enhanced the drought tolerance of A. thaliana. Using RNA display, they con-
cluded that mRNA transcriptions of a drought-response gene, Early Response to 
Dehydration 15 (ERD15), were augmented in inoculated plants compared to uni-
noculated controls. P. aeruginosa GGRJ21 strain elicits water stress tolerance in 
mung bean plants by accelerating the accumulation of antioxidant enzymes, cell 
osmolytes and consistently expediting the upregulation of stress-responsive genes: 
dehydration responsive element binding protein (DREB2A), catalase and dehy-
drin in PGPR-treated plants (Sarma and Saikia 2014). Also, under drought stress, 
wheat plants inoculated with Azospirillum showed an enhanced osmotic adjust-
ment that maintains cell turgor, thus, preventing degenerative processes (Creus 
et al. 2004). Proline synthesis in stressed plants was reported in other PGPR such 
as Burkholderia sp., Arthrobacter sp. and Bacillus sp. (Dodd and Pérez-Alfocea 
2012). Also, the inoculation of basil with Pseudomonas sp. and Bacillus lentus 
alleviated the salinity effects on growth, photosynthesis, mineral content and anti-
oxidant enzymes (Golpayegani and Tilebeni 2011). Ociumum basilicum inocu-
lated with Pseudomonas sp. increases plant growth, as well as auxin and protein 

Fig. 1  Representative images of the Arabidopsis thaliana Col-0 pot-grown plants under drought 
conditions treated with 100 μM ABA (Col-0+ABA), control, (Col-0) and inoculated with Azos-
pirillum brasilense Sp 245 (Col-0+Sp 245)
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contents under drought stress conditions (Heidari et al. 2011). Similarly, P. mendo-
cina inoculated in lettuce plants increase phosphatase activity in roots and proline 
accumulation in leaves (Kohler et al. 2008).

These differences in the physiologic response of inoculated plants to drought 
are explained by a better control of stomatal closure and opening mediated by 
ABA as has been shown in Arabidopsis. Inoculation of Arabidopsis with A. bra-
silense Sp 245 enhances plant biomass, root surface, accelerate different stages of 
Arabidopsis growth, augment photosynthetic, photoprotective pigments and pro-
line levels. Augmented ABA levels corresponded to that of decrease in stomatal 
conductance and retard in water losses.

5  Conclusion

The productivity of important agricultural crops is drastically reduced due to both 
biotic and abiotic stresses. Climate model projections indicate large increases in 
drought frequency, duration and extent. Taking into account the research material 
related to the capacity of PGPR to help agricultural yield to increase their toler-
ance and adaptation to drought conditions as well as pathogens attack, it is rel-
evant to consider that PGPR alone or with ABA applications act as useful tools for 
increasing crop yield in an efficient and ecological way.
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cesses in crop plants. Plants have evolved several tolerance strategies to avert the 
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bial phytohormones are having critical roles in modulating the physiology and 
biochemistry of plants so as to elicit a tolerance response to avoid stress. Induced 
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1  Introduction

Plants are often exposed to several environmental stresses, such as water, salin-
ity, high temperature, freezing, radiation, heavy metals, pathogens, etc. These 
stresses alter almost every metabolic and physiological pathway leading to altered 
growth and development ultimately leading to the reduced crop yield (Alqarawi 
et al. 2014). Among these stresses, salinity is the most important and common 
environmental constraint restricting plant growth. Soil salinization is rapidly 
increasing reduced land area available for crop cultivation resulting in declining 
yields of major important crops (Ashraf et al. 2002). Salt stress-induced reduction 
in growth and development of plants is due to the collective effect of toxic salts 
on effect ion homeostasis, water imbalance and several other important metabolic 
pathways like photosynthesis, respiration as well as enzyme activity (Khan et al. 
2014). Exposure to higher levels of salt causes oxidative stress through enhanced 
production of toxic reactive oxygen species (ROS) which can disrupt functions 
of chloroplast (Apel and Hirt 2004). Toxic effects of salt stress on plant growth 
and metabolism are also related to the changes in endogenous levels of phytohor-
mones (Khan et al. 2014). Plant hormones, such as auxins, abscisic acid (ABA), 
cytokinins (CK), ethylene, gibberellic acid (GA), salicylic acid (SA), play an 
important role in plant physiology and are involved in the alleviation of salt stress 
(Teale et al. 2006). The inhibition of endogenous levels of phytohormones, such as 
auxins, gibberellins, ABA, jasmonic acid and SA by salinity stress decrease root 
growth and development (Debez et al. 2001; Egamberdieva 2009). The decrease of 
hormone levels in root system of plants resulted in disturbance of nutrient uptake 
by plant roots from soil (Egamberdieva 2012; Egamberdieva et al. 2013).

Different salinity tolerance mechanisms are employed by plants for ameliorat-
ing salinity-induced deleterious effects (Ahmad 2010; Jamil et al. 2007). Under 
salt stress enhanced activities of antioxidant enzymes mediate scavenging of toxic 
free radicals reducing effects of oxidative stress. In addition efficient and selective 
uptake as well as compartmentation of ions contributes to enhance salt tolerance 
(Ahanger et al. 2014; Khan et al. 2014). Moreover, under salt stress synthesis and 
accumulation of compatible organic osmolytes is enhanced. Compatible osmolytes 
include proline, glycine betaine, free sugars, etc. which help to maintain water 
content under stressful conditions (Ahmad et al. 2014). The exogenous application 
of phytohormones, such as GB (Afzal et al. 2005), auxins such as indole-3-acetic 
acid (IAA) (Egamberdieva 2009), and CK (Maggio et al. 2010) mitigate salt stress 
and stimulate root and shoot growth under stress condition. In salt stressed citrus 
plants, exogenously applied ABA reduces release of ethylene, and hence, reducing 
leaf abscission and possible reason for this is believed to be the restricted accu-
mulation of toxic Cl− in leaves (Gómez-Cadenas et al. 2002). Buran et al. (2012) 
have reported that exogenous application of ABA resulted in enhanced antioxidant 
potential in high bush blueberries (Vaccinium darrowii). Use of plant growth regu-
lators have been suggested as an effective strategy for enhancing growth of crop 
plants under stressful conditions (Egamberdieva 2008, 2011; Ahanger et al. 2014).
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Root associated bacteria isolated from various plant species has been found 
to produce phytohormones, including IAA, GA, CK and ABA (Spaepen et al. 
2007; Egamberdieva et al. 2014). Since they have potential root colonizing abili-
ties, continuous slow release of phytohormones produced by microbes taken 
up by roots positively affect on plant growth and development (Ali et al. 2009). 
Phytohormones were detected in the culture medium of diversified PGPR, such 
as Pseudomonas putida, P. extremorientalis, P. chlororaphis (Egamberdieva 
and Kucharova 2009), Bacillus subtilis, B, megaterium (Egamberdieva 2009), 
CK were detected in Halomonas desiderata, B. megaterium, B. cereus, B. subti-
lis and Escherichia coli (Karadeniz et al. 2006), and gibberellins in Acetobacter 
sp., Bacillus sp., Azospirillium sp. (Bottini et al. 2004). It has been observed that 
the content of phytohormones in plants may affect by microbes colonized in root 
system (Turan et al. 2014). For example, soybean inoculated with PGPR strains 
exhibited higher amounts of GA and IAA and stimulated root shoot growth under 
water stress condition (Bano et al. 2010). Several other bacterial strains, such as P. 
alcaligenes P. aurantiaca, P. aureofaciens and  P. chlororaphis isolated from saline 
arid soil produce phytohormones and promote growth of cotton, wheat, maize and 
pea under hostile condition (Egamberdiyeva 2005; Egamberdiyeva and Hoflich 
2003; Egamberdieva et al. 2008, 2011). The inoculation of plants with CK produc-
ing PGPR strains stimulated plant growth and mitigated adverse effect of drought 
stress on plant (Arkipova et al. 2007). The ability of PGPR strains to produce IAA 
at higher saline conditions could balance the decrease in the IAA levels of the 
roots and thus alleviate salt stress in plants.

2  Abscisic Acid

Several reports are available showing positive role of ABA in mediating normal 
plant growth. Besides having several key metabolic functions like seed germina-
tion, maturity and dormancy, it has been proposed to mediate plant responses to 
a range of environmental stresses like salinity and water stress (Baumann 2010). 
ABA serves as major internal signal providing plants with the potential to escape 
from the adverse environmental conditions (Keskin et al. 2010). Salinity causes 
increase in endogenous levels of ABA which is often correlated with the change in 
water potential of leaf and hence suggesting that increase in ABA due to salinity 
stress is as the result of reduced water potentials as well as toxicity of specific ions 
(Zhang et al. 2006). Increased endogenous levels of ABA often lead to the growth 
inhibition as has been reported in several plants like Zea mays (Kramer et al. 
2002) and Phaseolus vulgaris (Cabot et al. 2009). Kang et al. (2005) demonstrated 
that salinity stressed rice plants maintained higher levels of ABA. However, role of 
ABA in mediating signal from the root zone during stress is still not fully under-
stood. Nevertheless significant evidences are available pointing ABA as important 
root-to-shoot stress signal. Fricke et al. (2004) demonstrated contribution of ABA 
for increasing water potential of xylem sap through its role in mediating water 
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uptake under salinity stress. In root tissues ABA has been reported to stimulate 
accumulation of compatible ions and mediate compartmentation of toxic ones into 
vacuoles, an essential tolerance strategy to avoid salinity-induced toxic effects 
(Jeschke et al. 1997). The germination, plant growth and nitrogen fixation were 
improved under salt stress condition after treatment of seeds with ABA (Khadri 
et al. 2006). In Agrostis stolonifera and kentucky bluegrass (Poa pratensis), exog-
enous application of ABA mitigated the effect of salinity and drought stress by 
enhancing the activities of antioxidant enzymes and reducing electrolyte leakage 
and lipid peroxidation (Yang and Yu 2012). ABA is also synthesized in roots of 
plants by root colonizing bacteria, which often demonstrate plant growth stimula-
tion. For example, bacterial strains Proteus mirabilis, P. vulgaris, Klebsiella pneu-
moniae, Bacillus megaterium and B. cereus found to synthesize ABA (Karadeniz 
et al. 2006). The plant growth promoting rhizobacteria (PGPR) strains Bacillus 
licheniformis Rt4M10 and P. fluorescens Rt6M10 isolated from the rhizosphere 
of Vitis vinifera produced ABA and was able to stimulate plant growth under 
water stress and induce ABA synthesis in plants. The level of ABA levels in 
45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold 
by P. fluorescens as compared to control plants and strains reduced plant water 
loss rate in correlation with increments of ABA (Salomon et al. 2014). In other 
study, halophyte (Prosopis strombulifera) associated bacteria P. putida produced 
4.27 μg ml−1, A. xylosoxidans 0.127 μg ml−1, L. fusiformis 0.15 μg ml−1, B. 
licheniformis 0.32 μg ml−1, B. pumilus 0.06 μg ml−1, B. subtilis 1.79 μg ml−1 
and B. halotolerans 0.18 μg ml−1. PGPR strains with improved capacity of ABA 
synthesis could help plants tolerate abiotic stress.

3  Salicylic Acid

In plants, SA shows active participation in mediating and regulating several essen-
tial physiological and biochemical processes like growth, photosynthesis, nitrogen 
metabolism, production of ethylene and flowering (Hayat et al. 2010). In addition 
of its diverse physiological roles SA provides protection against various environ-
mental stresses including water stress (Senaratna et al. 2000), freezing (Tasgin et al. 
2003), salinity (Azooz et al. 2011), heavy metals (Ahmad et al. 2011), etc. On expo-
sure to stress exogenously applied SA acts as a signal which is involved in activa-
tion of specific response mechanisms in plants. Exogenous application of SA have 
been reported to protect plants from deleterious impact of stress factors by promot-
ing several processes that contribute to enhanced stress tolerance (Azooz et al. 2011; 
Khan et al. 2014). The role of SA in defense mechanism to alleviate salt stress in 
plants has been extensively studied (Afzal et al. 2006). SA-induced amelioration of 
salinity stress has been observed in several crops like faba bean (Azooz et al. 2011), 
maize (Gunes et al. 2007), Vigna radiata L. (Khan et al. 2014) and wheat (Shakirova 
et al. 2003). Direct addition of SA can be also an effective strategy to avoid salinity 
stress-induced damage to crop plants. In salinity stressed maize, Gunes et al. (2007) 
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reported that addition of SA to soil mitigates the salinity-induced negative impact 
by reducing the uptake of toxic ions like Na and hence reducing their accumula-
tion within the sensitive plant parts. SA alleviates salinity stress-induced oxidative 
damage due to accumulation of sufficient levels of hydrogen peroxide (Wahid et al. 
2007). In salt stressed Vigna radiata reduction in endogenous levels of ethylene 
observed due to SA application (Khan et al. 2014). The microbes which able to col-
onize plant root able to produce SA proved significant as important component in 
the induction of plant mediated defense enzymes. For example, the production of 
SA found in bacterial strains B. licheniformis MML2501 (18 µg/ml) (Shanmugam 
and Narayanasamy 2008), Serratia sp. PSGB13 (10.0 µg/ml), Acinetobacter sp. 
PRGB16 (7.2 µg/ml) and Pseudomonas sp. PRGB06 (6.8 µg/ml) (Indiragandhi et al. 
2008). Those PGPR strains elicit-induced systemic tolerance to salt and drought 
stress. Forchetti et al. (2010) reported production of SA in endophytic bacterial 
strains isolated from sunflower grown under drought condition Achromobacter 
xylosoxidans and Bacillus pumilus. The strains enhanced the root and shoot growth 
of sunflower seedlings under water stress condition. Recently, Lavania and Nautiyal 
(2013) observed production of SA in salt-tolerant Serratia marcescens NBRI1213 
strains. The strain colonized the rhizosphere of maize, stimulated root, shoot growth 
and N, P, K uptake by plants and increased salt stress tolerance of plants.

4  Indole Acetic Acid

Indole acetic acid (IAA) is a naturally occurring auxin which is having major role 
in plant growth regulation. It is involved in controlling the vascular tissue devel-
opment, cell elongation, apical dominance, etc. (Wang et al. 2001). Scanty infor-
mation is available regarding the relationship and impact of auxin with the salt 
tolerance and amelioration of salt stress. However, stress-induced alterations in 
levels of IAA is somehow similar to that of ABA. Therefore, applying growth hor-
mone exogenously gives an attractive vision and potent approach for counteract-
ing stress-induced changes. Most of the research work has quoted that IAA levels 
decrease under salinity, for example, a reduction in IAA level has been reported 
by Prakash and Prathapasenan (1990) in NaCl stressed rice leaves. They further 
reported that applying GA3 under such conditions mitigates the effect of salinity 
on IAA levels showing that salinity affects hormonal balance by influencing plant 
growth and development. Significant reduction in levels of IAA has been reported 
in salt stressed tomato (Dunlap and Binze 1996). Nevertheless several researchers 
have also reported IAA mitigates salinity-induced damage in plants, e.g. in wheat 
IAA has been reported to alleviate the inhibitory effects of salt stress (Afzal et al. 
2005). Gulnaz et al. (1999) reported that salinity reduced the growth of wheat con-
siderably and exogenous application of IAA mitigated the adverse effects to con-
siderable extent. Akbari et al. (2007) also demonstrated that exogenous application 
of auxin enhanced length of hypocotyls, fresh biomass as well as dry biomass of 
wheat cultivars under saline conditions.
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The root associated PGPR strains able to stimulate plant growth and stress toler-
ance of plants through supplying additional phytohormones into root system (Khan 
et al. 2011; Berg et al. 2013; Egamberdieva et al. 2013). In our previous studies, we 
observed that goat’s rue, wheat, cotton and chickpea growth improved by IAA pro-
ducing PGPR strains P. extremorientalis TSAU6, P. putida TSAU1, P. aureantiaca 
TSAU22 and P. chlororaphis TSAU13 due to increase nutrient absorbing surfaces 
(Egamberdieva and Kucharova 2009; Egamberdieva et al. 2011, 2013). In other stud-
ies, we observed that IAA producing, root associated bacteria were able to relieve 
salt stress and promote the growth of cucumber seedlings in salinated soil (Fig. 1). 
Moreover, shoot and root length of cucumber increased by 25 and 27 %, respectively.

The salt-tolerant strains Serratia plymuthica RR-2-5-10, Stenotrophomonas rhiz-
ophila e-p10, P. fluorescens SPB2145, P. extremorientalis TSAU20 and P. fluores-
cens PCL1751 also able to produce IAA under higher NaCl condition significantly 
increased dry weight of whole cucumber plants up to 62 % in comparison to the 
non-bacterized control. The strains also increased fruit yield in greenhouse vary-
ing from 9 to 32 % under saline soil condition (Egamberdieva et al. 2011). Similar 
observations reported by Figueiredo et al. (2008) where co-inoculation of bean 
(Phaseolus vulgaris L.) with Rhizobium tropici and two strains of P. polymyxa 
resulted in higher uptake of nutrient from soil and nodule formation. IAA pro-
ducing PGPR strain alleviated abiotic stress in sunflower (Fassler et al. 2010) and 
groundnut (Kishore et al. 2005). Bianco and Defez (2009) explained this process 
due to enhanced cellular defence systems by IAA which protect plants from external 
adverse conditions. In our previous work we observed that IAA producing strains 
were able to improve symbiotic performance of legumes under salt stress condition. 
The plant growth and nodule number of soybean inoculated with Bradyrhizobium 
japonicum USDA110 reduced at 75 mM NaCl. In that condition the co-inoculation 
of salt stressed soybean with B. japonicum USDA110 and IAA producing P. putida 
TSAU1 improved plant growth, and nodulation compared that to plants inoculated 

Fig. 1  The effect of IAA producing root associated bacteria (P. putida TSAU1, P. extremorien-
talis TSAU6, P. chlororaphis TSAU13 and P. aureantiaca TSAU22) on shoot and root growth of 
cucumber under saline soil condition
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with USDA110 alone. The co-inoculation of soybean gave a significantly higher pro-
portion of nodules compared to the numbers induced by USDA110 alone (Table 1). 
The production of IAA by bacterial inoculants might be responsible for the enlarged 
root system and number of infection sites prior to nodulation (Tilak et al. 2006).

5  Cytokinins

Cytokinins (CKs) are in regulation of various plant growth attributes and devel-
opmental events. They are involved in apical dominance, cell division, increasing 
biogenesis of chloroplast and synthesis of anthocyanin, tissue differentiation (both 
vascular and shoot), mobilization and assimilation of nutrients, photomorphogen-
esis and senescence (Kang et al. 2012; Kunikowska et al. 2013). In addition to this 
CK can also promote plant growth under stress conditions and impart salt toler-
ance to plants (Kang et al. 2012; Lubovska et al. 2014). CK can lead to increased 
salt tolerance through its vital interactions with the other phytohormones like aux-
ins and ABA (Frebort et al. 2011). During stress, reduced supply of CK from root 
tissues bring alterations in expression of genes in shoot so as to elicit a response 
leading to amelioration of the encountering stress (Haare et al. 1997). CK have the 
potential to break stress-induced seed dormancy of several plants, whereas kine-
tin increases plant growth and development under salt stress (Boucaud and Ungar 
1976). In barley, application of CK reduces growth of salt sensitive variety while 
enhances growth, shoot/root ratio and endogenous CK levels in salt-tolerant vari-
ety (Kuiper et al. 1990).

Several PGPR species, such as Arthrobacter, Bacillus, Azospirillum and 
Pseudomonas synthesize CK which positively affects root development (Naz et al. 
2009). Salmone et al. (2001) reported that plant inoculation with CK producing 

Table 1  The effect of IAA producing Pseudomonas putida TSAU1 combined with Bradyrhizobium 
japonicum USDA110 on root, shoot length and dry weight of soybean under salt stress condition

* Significantly different from the plant inoculated with rhizobia alone at P < 0.05; plants were 
grown under hydroponic sand system for 14 days

Treatments Root length (cm) Shoot length 
(cm)

Dry weight (g/
plant)

Nodule 
number

0 mM NaCl

USDA110 11.7 20.6 0.086 6.3

USDA110 + TSAU1 13.4* 23.4 0.1 8

50 mM NaCl

USDA110 10.2 10.6 0.067 4.2

USDA110 + TSAU1 12.4* 16.0* 0.088* 4.6

75 mM NaCl

USDA110 9 8.2 0.053 3

USDA110 + TSAU1 10.2 12.2* 0.084* 4
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PGPR strains increased the level of CK in root tissues, through which strains has 
impact on root growth and development. In other study, CK producing bacteria 
Micrococcus luteus chp37 isolated from desert of Pakistan increased shoot, root 
length, dry weight of maize (up to 54 %) and photosynthetic pigments, such as 
chlorophyll a, chlorophyll b and total carotenoids as compared to non-inoculated 
control plants under drought condition (Raza and Faizal 2013). Naz et al. (2009) 
observed CK production by root associated bacteria isolated from weed grown 
under salt affected soil. The strains stimulated root and shoot growth of soybean 
and proline content under 20 dS/m NaCl condition. More recently, Liu et al. 
(2013) studied the effect of CK producing Bacillus subtilis strain on the growth 
of Platycladus orientalis (oriental thuja) seedlings under drought conditions. They 
observed that plant inoculation with B. subtilis stimulated the shoot dry weight by 
19.2 %, as well as the root by 13.9 %, and alleviated drought stress. PGPR can 
affect on root system architecture through producing phytohormones including 
auxins and CK (Dodd et al. 2010).

6  Gibberellic Acid

Gibberellins are another group of plant growth regulators having important role in 
growth and development. As stated earlier, gibberellins are involved in seed germi-
nation, leaf expansion and stem elongation as well as flowering (Iqbal et al. 2014; 
Manjili et al. 2012). It is well accepted that cross-talking between GA and several 
growth hormones during signaling in response to environmental stress mediated 
controlled and regulate plant growth and development.

Both developmental and environmental factors contribute to synthesis of gib-
berellins in plants (Olszewski et al. 2002). Accumulation of GA occurs at higher 
rates when plants are exposed to environmental extremes. Plant scientists are 
widely studying the use of exogenous application of phytohormones for improving 
growth and yield of important crop plants. For instance, Ahmad (2010) observed 
increased growth in salinity stressed Brassica spp. due to exogenous application 
of GA. Moreover, an increase in content of osmotic constituents was reported in 
salinity stressed plants which were further increased by application of GA leading 
to better osmotic adjustment in GA treated plants even under salinity stress condi-
tions (Ahmad 2010). Maintained tissue water content and GA-induced mitigation 
of salinity effects on water content has been reported in wheat (Manjili et al. 2012) 
and maize (Tuna et al. 2008). Exogenous application of GA enhanced activity of 
antioxidant enzyme activity promoting better and quick removal of toxic free radi-
cals under salt stress. Several workers have reported efficiency of GA to amelio-
rate salinity-induced deleterious changes and result in maintained growth of salt 
stressed wheat and rice (Prakash and Prathapasenan 1990).

It has been also found that the content of phytohormones in plants may affect 
by root associated microorganisms (Turan et al. 2014). In earlier studies, Fulchieri 
et al. (1993) and Lucangeli and Bottini (1997) reported that corn seedlings 
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inoculated with PGPR strains exhibited relatively higher amounts of IAA, and 
gibberellin GA3, as compared to non-inoculated controls. PGPR inoculations P. 
agglomerans RK-92, and B. subtilis TV-17C increased GA, and SA concentra-
tions in cabbage. In other study, the inoculation of chickpea with Bradyrhizobium 
japonicum caused a marked increase in GA and IAA content (Bano et al. 2010). 
Azospirillum strains increased levels of GA3 in the roots after inoculation of 
maize seedling (Fulchieri et al. 1993). Endophytic fungi Aspergillus fumigatus 
isolated from soybean roots grown under saline soil condition produced gibber-
ellins (GAs), such as GA4 (24.8 ng/ml), GA9 (1.2 ng/ml) and GA12 (9.8 ng/ml) 
(Khan et al. 2011). The strain significantly increased shoot length, shoot fresh and 
dry biomass, leaf area, chlorophyll contents and photosynthetic rate under salt 
stress (70 and 140 mM) as compared to non-inoculated plants (Khan et al. 2011). 
Creus et al. (2004) observed mitigation of drought stress in wheat by Azospirillum 
lipoferum, which synthesized GA. While, Rodríguez et al. (2006) reported 
improved salt tolerance of lupine by GA3 producing Cyanobacteria strain. GA 
producing Bacillus subtilis stimulated root and shoot growth of Ephedra aphylla 
under salt and drought stress condition (Fig. 2).

7  Conclusion

It is widely accepted that salinity is having damaging effects on growth and phys-
iology of plants. Restrictions in uptake of water and essential mineral elements 
caused due to salinity results in perturbed growth and hence yield reductions. 
Plants have developed several tolerance strategies which help mitigate the deleteri-
ous impact of salinity. However, salinity-induced changes can be more precisely 
avoided and combated by exploiting potential of the growth regulators. Among the 
several approaches suggested and adapted worldwide exogenous application of 

Fig. 2  The effect of 
gibberellic acid producing 
Bacillus subtilus on the 
growth of Ephedra aphylla 
under salt stressed soil 
condition. a Uninoculated 
control plants. b Plants 
inoculated with B. subtilis)
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plant growth regulators and phytohormone producing microbes (PGPR) are now a 
day extensively used. PGPR increase levels of auxin, gibberellins, CK in roots and 
may affect the metabolism of endogenous phytohormones in the plant and plays a 
vital role in mitigation of salt stress in plants. Thus, applying genomic and prot-
eomic approaches to study the changes induced by interactions of phytohormone 
producing microbes in plants may prove quite significant for future studies.
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array of metabolites, especially phytohormones. Plant growth and development is 
substantially influenced by plant hormones; it is well known that plant hormones 
regulate the growth and development of plants. PGPR bioinoculant not only exerts 
a positive effect on growth and yield but also triggers biocontrol against a broad 
spectrum of pathogens. It is important to use selective PGPR as consortia, which 
are individually able to produce certain phytohormone in dexterity against mono-
species bioinoculant with multifarious activity. Understanding the application of 
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1  Introduction

The role of plant growth-promoting rhizobacteria (PGPRs) in plant growth pro-
motion and biological control of soil-borne phytopathogens has been intensively 
investigated. PGPRs influence plant growth directly due to the production of plant 
growth hormones, auxin, cytokinin, ethylene, gibberellin and abscisic acid (Glick 
2015). Such phytohormone-producing PGPRs facilitate the availability and uptake 
of certain nutrients from the root environment (Barea et al. 2004). Some bacte-
rial strains directly regulate plant physiological mimicking due to their synthesis 
of hormones, whereas others increase mineral and nitrogen availability in the soil 
as a way to augment growth. Apart from this, the release of volatile organic com-
pounds (VOCs) blends by PGPRs establishes an additional function for VOCs as 
signaling molecules mediating plant–microbe interaction. The plant responds to 
these external stimuli (VOC’s) and triggers growth promotion (Ryu et al. 2003).

PGPRs as microbial inoculants proved as an effective tool for boosting agri-
cultural productivity, thereby helping to feed the growing world population to 
ensure food security. Recently, there has been a shift in the approach of workers, 
as, instead of using a single strain of PGPR as inoculant, co-inoculation of two or 
multiple PGPR is the need of the hour to transform green revolution to evergreen 
revolution. The microbial consortium is ecofriendly and easy to apply, resulting 
in improved soil health-related problems, viz. decrease in soil pathogenic load, 
increase in soil micro and macronutrient status, etc. The specifically designed car-
rier-based poly-microbial formulations further offer nutrient management, its avail-
ability, beating deleterious phytopathogens besides producing nitrogen economy, 
thus lowering the requirements of chemical fertilizers and pesticides. In fact, the 
substitution of chemical fertilizers with bacterial inoculants, especially PGPRs that 
show multifarious activity including production of plant hormones are a promising 
approach to sustain plant growth and health. Various bacterial genera of the PGPR 
group are a potential source of plant growth regulators. The concept of combined 
use of PGPRs is an effort to shift microbiological equilibrium in favor of increased 
plant growth production, nutrient uptake and protection (Khalid et al. 2004).

Selection of efficient indigenous strains is important so as to obtain desir-
able crop yields that bring sustainability to the crop ecosystem. The indigenous 
microorganisms proved more efficient than that of non-indigenous strains in the 
improvement of crop yield (Aeron et al. 2010). Ecofriendly bioformulations of 
multi-microbial consortia significantly support and induce both vegetative and 
reproductive parameters of plant growth and development. In this review, we 
emphasized to rediscover the knowledge for two- or multi-strain bacterial con-
sortium over mono-inoculant excel to resist environmental stress and having long 
shelf life with low expenditure on production and storage. Secondly, the explo-
ration of agricultural importance of microbial formulations comprising phyto-
hormone in particular is covered in this chapter. In the recent scenario, different 
modes of inoculation of these bioinoculants, such as via soil drench, seed bacteri-
zation, seedling deep treatment or in the form of foliar spray, have lacunae within 
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laboratory to farmer’s field. Hence, a good quality bioinoculant with its suit-
able mode of application is necessary to investigate into crop growth. Further, to 
explore the applications of bioformulations for crop agroecosystem, this review 
focuses on consortial bioinoculant technology development for scientific as well 
as commercial up-gradation.

2  PGPRs-Involvement of Phytohormones

Microbial populations in the rhizosphere provide benefits to plants by a variety 
of ways, such as availability of mineral nutrients, synthesis of phytohormones, 
antagonism against plant pathogens through competition or due to the presence of 
antimicrobial metabolites. In fact, the growth hormones are effective to amelio-
rate environmental stress susceptible to that of plant growth. Bacterial synthesis 
of phytohormones, auxins and gibberellin, increases the rate of seed germina-
tion, seedling emergence and root system proliferation which further aid in plant 
growth promotion (Bottini et al. 2004; Hayat et al. 2010).

One of the phytohormones produced by soil microorganisms is indole acetic 
acid (IAA) (Spaepen et al. 2007). The capacity to synthesize IAA is widespread 
among soil- and plant-associated bacteria. It has been estimated that 80 % of 
rhizospheric bacteria produce plant-growth regulator IAA (Patten and Glick 
1996). IAA production has been reported in PGPR strains of genera Enterobacter, 
Pseudomonas, Azospirillum, Gluconacetobacter, Pseudomonas, Bacillus and 
Rhizobium spp. (Lucy et al. 2004; Prasad et al. 2015). Various strategies of phy-
tohormone-producing PGPR thus used for plant growth promotion in consortium 
formulation are summarized in Fig. 1.

Our current knowledge on the role of quorum sensing (QS) acts as a sophisti-
cated co-operative behavior mediated by extracellular signal molecules in nature. 
QS molecules of the N-acylhomoserine lactone (AHLs) type play a key role in 
the effective bacterial colonization of plant hosts. On the other hand, AHLs are 
used by symbiotic, pathogenic and biological control agents to regulate wide array 
of factors such as virulence, rhizosphere competence, conjugation, secretion of 
hydrolytic enzymes and production of antimicrobial compounds. Further, AHLs 
have a key role to play in bacterial-plant cross-signaling, as some plants are able to 
reprogram gene expression in the presence of these bacterial molecules, whereas, 
others may interfere with AHL-QS systems by producing small molecules. This 
role of QS in special reference to exogenous phytohormone signaling is yet to be 
explored (Valverde et al. 2014).

Most of PGPR genera are able to produce a capricious quantity of phyto-
hormones that enhance inculcation of both abiotic and biotic stresses in nature. 
Sufficient or excessive production of phytohormone is affected due to availability 
of suitable metabolic precursors that manage phytohormone production by pro-
viding suitable concentration of a specific substrate. It has been observed that the 
exogenous application of a precursor increased the magnitude of phytohormone 
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production many fold in culture as well as in soil. This precursor–inoculum inter-
action thus is useful for promoting plant growth (Asghar et al. 2002). Several stud-
ies put forward the concept of precursor–inoculum interaction that enhanced plant 
growth (Sarwar and Kremer 1995; Zahir et al. 1997; Arshad and Frankenberger 
1997). Zahir et al. (2005) conducted a study to evaluate the effectiveness of pre-
cursor–inoculum interaction for enhancing maize growth. In fact, the precursor–
inoculum interaction is not only effective under normal conditions but proves 
useful for promoting plant growth under stress conditions (Ahmad et al. 2012). As 
stated, PGPRs enhance plant growth by phytohormone production, and this atti-
tude of production of phytohormones depends upon precursor substrate. The appli-
cation of this technology is suggested to be exploited as per expectations, where 
sole bacterial inoculation is ineffective and cannot perform efficiently. Advocacies 
from Zahir et al. (2003) revealed the influence of plant growth regulators (PGRs) 
in growth and development. Further, Davies (2010) suggested the role of phyto-
hormones in phyto-physiological processes that enable plant growth enhancement 
by upholding hormonal balance.

The use of phytohormone-producing PGPRs as bioinoculant has certain limita-
tions as well. The application of a particular hormone-producing bacteria (in case 
of few) is found to be impractical. For example, ethylene is a gaseous hormone 
that stimulates various physiological processes in plants but, the application of eth-
ylene due to its gaseous nature is difficult. However, its precursor l-methionine 

Fig. 1  Plant growth and health promotion using bacterial consortia producing different phyto-
hormone
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(L-MET) can release ethylene in the presence of soil microflora, ultimately, stimu-
lating plant growth (Arshad and Frankenberger 1997; Arshad et al. 2008).

The mechanism of plant growth-promotion by non-pathogenic, plant-associated 
bacteria has not been completely elucidated, but the direct plant growth-promoting 
(PGP) mechanism involving production of plant growth regulators (hormones) has 
been studied by a number of workers whereas, indirect plant growth-promotion 
exhibits when PGPRs promote plant growth by improving growth-restricting con-
ditions (Glick 1995). Although, commercially available phytohormones are used 
for promoting plant growth, microbially synthesized phytohormones are more 
efficiently and reasonably good and better substitutes to that of chemical inocula. 
Considerable work on IAA-producing PGPR as biofertilizers and phytostimulators 
has been demonstrated (Table 1).

3  Bacterial Hormones, Synthesis and Regulations

Phytohormones have a wide range of biological activities that can affect plant 
growth and development in different ways including promoting root initiation, 
inhibiting root elongation, promoting fruit ripening, lower wilting, stimulate seed 
germination, promoting leaf abscission, activating the synthesis of other plant 
hormones as observed in case of ethylene (Ishibashi et al. 2012). IAA secreted 
by microorganisms has direct involvement in the enhancement of root prolifera-
tion and the increase in nutrient uptake (Reetha et al. 2014). Biosynthesis of IAA 
in bacteria is usually classified based on the intermittent compound of metabolic 
pathway (Table 2). Bacterial genera Agrobacterium tumefaciens, A. rhizogenes, 

Table 2  Mechanisms adopted by microbes for IAA biosynthesis

IAM Indole-3-acetamide; IPyA Indole-3-pyruvate acetic acid; TAM Tryptamine; IAAld indole-
3-acetaldehyde; TSO Tryptophan side chain oxidase

Pathways Microorganisms Mechanisms References

IAM pathway Agribacterium, 
Pseudomonas, 
Pantoae, Rhizobium, 
Bradyrhizobium

Tryptophan → IAM Prinsen et al. (1993)
IAM → IAA

IPyA pathway Rhizobium, 
Bradyrhizobium

Tryptophan → IPyA Hartmann et al. (1983)
IPyA → IAAld
IAAld → IAA

TAM pathway Bacillus TAM → IAAld Perley and Stowe 
(1966)IAAld → IAA

TSO pathway Pseudomonas Tryptophan → 
IAAld

Oberhänsli et al. (1991)

IAAld → IAA

Indole-3-acetanitrile 
pathway

Rhizobium Tryptophan → 
Indole-3-acetanitrile

Patten and Glick (1996)

Indole-3-acetanitrile 
→ IAA
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Erwinia herbicola and Pseudomonas sauastanoi possess IAM pathway that seems 
to be adopted for expression in different environment. IAM pathway is involved in 
gall size, whereas the IPyA pathway determines epiphytic fitness (Lambrecht et al. 
2000). Ali et al. (2009) reported auxin (IAA)-producing rhizobacteria exert positive 
effects on the growth and development of Triticum aestivum L. The auxin responses 
during microbe-induced de novo organ formation seem to be dynamic, suggest-
ing that plant-associated microbes can actively modify their host’s auxin transport 
(Grunewald et al. 2009). Lenin and Jayanthi (2012) reported that Azospirillum 
lipoferum, Azotobacter chroococcum, P. fluorescens and Bacillus megaterium from 
the rhizosphere region of Catharanthus roseus produce IAA, GA and siderophore. 
Recently, Morrone et al. (2009) demonstrated that Bradyrhizobium japonicum 
encodes separate diterpenoid from plant and fungi, ent-copalyldiphosphate and ent-
kaurene synthesis pathways for biosynthesis of gibberellin.

On the other hand, Cytokinins are one of the five (auxin, cytokinin, gibberellin, 
ethylene, abscisic acid) major groups of PGRs. Cytokinin production by PGPR is 
an innovative sustainable approach to improve the yield and quality of agricultural 
crops (de Garcia Salamone et al. 2006). Cytokinin produced by PGPR (Arkhipova 
et al. 2007; Melnykova et al. 2013) exhibited cell division, regulating apical domi-
nance, branching, leaf senescence, chloroplast and nodule development (Werner 
et al. 2001) beside inducing growth and control developmental process. Recently, 
Liu et al. (2013) reported that cytokinin-producing PGPR inoculation alleviates 
the drought stress and interferes with the suppression of shoot growth, show-
ing a real potential to perform as a drought stress inhibitor in arid environments. 
However, phytopathogens synthesize cytokinins and can affect plant growth and 
development (Frugier et al. 2008). Earlier, Arkhipova et al. (2007) studied that 
cytokinin-producing bacteria are able to enhance plant growth parameter (vegeta-
tive and reproductive) in dry-aired soil.

Ethylene is a key phytohormone which inhibits root elongation, nodulation and 
auxin transport and promotes seed germination, senescence, fruit ripening and 
abscission of various organs (Bleecker and Kende 2000). Ethylene is used in sys-
temic acquired resistance (SAR) during associative and symbiotic plant–bacterium 
interactions and, if high concentrations are present, is involved in plant defense 
pathways against pathogens (Broekaert et al. 2006; Glick et al. 2007). Ethylene 
level is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) catalyzed 
by ACC oxidase. Currently, bacterial strains exhibiting ACC-deaminase activity 
have been identified in a wide range of growth-promoting bacterial genera such 
as Acinetobacter, Agrobacterium, Achromobacter, Alcaligenes, Azospirillum, 
Bacillus, Burkholderia, Enterobacter, Pseudomonas, Ralstonia, Serratia and 
Rhizobium etc. (Gupta et al. 2015).

Apart from lowering ethylene levels, production of gibberellins, known as juve-
nile phytohormones, considered helpful in the postharvest environment (Glick 
et al. 1998; Lucy et al. 2004). Very less is accounted about work on bio-gibber-
ellin synthesis in rhizospheric bacteria. Some bacterial genera A. brasilense, A. 
lipoferum, Bacillus sp., Bradyrhizobium japonicum and Rhizobium phaseoli are 
able to secrete gibberellin (Frankenberger and Arshad 1995; Gutiérrez-Mañero 
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et al. 2001). Fulchieri et al. (1993) speculate that gibberellins increase root hair 
density in root zones involved in nutrient and water uptake. In another study, 
Gutiérrez-Mañero et al. (2001) isolated B. pumilus and B. licheniformis from the 
rhizosphere of Alnus glutinosa shown to produce physiologically active gibberel-
lins which had strong growth-promoting activity on alder.

4  Consortial Bioformulations

The bacterial consortium is a group of different species of single bacteria or 
sometimes multi-strain diverse genera, which act together as a community. These 
include bacterial species which are not only imparting resistant to environmen-
tal stress but contain natural biomolecule which have beneficial activity and long 
shelf life. In certain environmental conditions, where single-strain inoculum is 
unable to perform better, the development of multi-strain inoculum proved quite 
effective and significant in nature (Roy et al. 2015). The combined application 
of Sinorhizobium fredii KCC5 and Pseudomonas fluorescens LPK2 significantly 
reduced the wilt disease (Kumar et al. 2010). Similarly, multi-strain bacterial con-
sortia proved useful for enhancing plant growth and development particularly in 
conditions where single inoculation was not so effective (Maheshwari et al. 2015). 
Such multi-strain inocula are more effective for enhancing plant growth and devel-
opment due to the presence of more beneficial traits which might not be possible 
in single individual strain (Bashan et al. 2014). Broadly, two-species and multi-
species microbial consortia in bioformulation have found wide applicability in the 
growth promotion of several crops (Pandey and Maheshwari 2007a, b; Thakkar 
and Saraf 2014). These are applied through different modes such as via soil 
drench, seed bacterization, seedling deep treatment, or in the form of foliar spray. 
The nature of the formulation and display on the level about their mode of applica-
tion to the particular crop plants is prerequsite. In the present scenario, individual 
microbe at one time approach has been replaced with that of a mixture/consor-
tium of microorganisms bearing multifarious characteristics. But prior studies to 
determine balancing or synergistic behaviors during microbe–microbe interaction 
provide better and consistent effects. PGPR are known to enhance plant growth by 
a variety of mechanisms in particular due to phytohormone production although, 
role of other beneficial traits such as nitrogen fixation, siderophore production, 
solubilization of minerals, antibiotic production, induced systemic resistance 
(ISR) and SAR is another added advantage (Podile and Kishore 2006; Maheshwari 
2011). PGPR inoculation containing single inoculant (strain) has been proved use-
ful for enhancing plant growth and development even in salt-stress condition but 
inconsistency in their outcome lies due to various factors. This drawback might 
be due to adverse effects of biotic and abiotic factors and low-quality inoculum 
(Moënne-Loccoz et al. 1999). Under the circumstances more effort is to be made 
on multi-strain inoculum so as to gain agricultural sustainability (Maheshwari 
2012).
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5  Bioinoculants Characteristics

The bioinoculant products following quality according to the norms of the coun-
try have certain key effects to influence good agricultural practices. A variety of 
factors combine to build “quality” of a bioinoculant. In microbial consortia, indi-
vidually each strain can compete effectively with the indigenous rhizosphere 
population and also enhance plant growth with its co-strain. The two-strain con-
sortium showed not only successful competition for rhizospheric colonization 
but also promoted plant growth (Shenoy and Kalagudi 2003). The evaluation of 
growth and physiology of strains in consortium is an important aspect, which 
should not be overlooked. The growth rate affects the stability of artificial micro-
bial ecosystem in the process of establishment of consortium. Estimation of vari-
ations in growth rate results revealed out-numbered fast-growing strain, whereas 
slow-growing strain becomes outcompete. This imbalance may affect the colo-
nizing abilities and the potential of consortia bioinoculant. In one of our studies 
(author’s lab), it was observed that growth of Burkholderia sp. MSSP was simi-
lar in monospecies and mixed species cultures with Sinorhizobium meliloti PP3. 
However, a 25 % increase in mean growth rate was recorded for S. meliloti PP3 
when grown in a mixed species of two-species culture with respect to monocul-
ture. Although, the cumulative effect of inoculants cannot be ignored. In the mixed 
culture, these produced certain PGP effects much earlier than that of the individ-
ual. It was observed that Burkholderia sp. MSSP and S. meliloti PP3 in consor-
tia increased IAA production up to 50 % more in respect to monospecies culture, 
which further extends the finding of growth dependence between two species. 
There was no appreciable increment in maximum soluble P level but maximum 
P was released much earlier in two-species consortium. Further we observed that 
association with Burkholderia sp. favors S. meliloti as an adaptation of high rate 
of reproduction—a well-known evolved strategy that enables bacteria to survive 
successfully and maintain per se communities. In that phenomenon, bacteria attain 
homeostasis in which the population of indigenous bacterial population remained 
on the same order of magnitude throughout (Pandey et al. 2005).

Actually, formulation is one of the crucial steps that determines the success or 
failure of consortium formulation. The reason of failure of microbial formulation 
lies mainly in poor quality. In microbial formulation, the maintenance of meta-
bolic and physiological states of bacterium is an important aspect for gaining max-
imum advantage.

To produce a bio-inoculant, potential microorganism should be introduced 
into a carrier. Substantial proportion of the inoculant produced using non-strile 
carrier is unsatisfactory for routine use in farming, either because of low popula-
tion of effective strain or a large number of contaminants. But, the formulations 
made using sterile carriers are more expensive than those using non-sterile carri-
ers. Carrier materials are generally intended to provide ecological niche protective 
in nature to microbial inoculants. Therefore, bioformulations should be com-
posed of a superior carrier material with properties of high water-holding capac-
ity, high water retention capacity, no heat production from wetting, nearly sterile, 
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physically uniform, nontoxic in nature, easily biodegradable, nonpolluting, nearly 
neutral pH (or easily adjustable pH), that could support bacterial growth and sur-
vival over and above carrier should be such, that it could act as buffering agent.

From a microbiological point of view, inoculant formulations are expected to 
standardize to overcome few problems such as loss of viability during short storage 
in the grower’s warehouse, long shelf life and stability over the range of 20–30 °C 
in the marketing tenure. Naturally, an inoculant should contain a level of bacteria 
sufficient to impart effect on plant growth and produce economic gain. However, 
several common methods of inoculant application are available, yet farmers are not 
always known to practice them. Hence, ease of application and layman procedure 
to use should imprint over packing. The new bacterial inoculants must meet these 
standards if they are to compete with chemicals on the farmer’s list.

Regarding the commercialization of inoculant products, R&D laboratories 
should screen the efficient strains, optimized formulations, cost-effective pro-
duction and good and practical inoculation techniques to launch a new product 
in the market. Microbial inoculants have long been incorporated into field prac-
tices worldwide, with satisfactory results. Prior to release in the market field, 
trial in two different climatic zones on two different crops for 2 subsequent years 
should be carried out. Deshwal et al. (2006) demonstrated long-term effects of 
Pseudomonas aeruginosa GRC1 on a yield of subsequent crops of paddy after 
mustard. In this study, Rhizobium and Pseudomonas survive in the rhizosphere for 
several years and cast its growth-promoting effects on subsequent crops. Research 
and limited field trials of PGPRs over the last decade have opened up new hori-
zons for the inoculation industry.

For the development of successful bioformulation technology, progress must 
be made to meet numerous scientific challenges: (1) screening of potential strains 
having PGP properties, survival during seed coating/pelleting, soil drench applica-
tion, seedling drop treatment, folier spray and storage at variable temperatures. (2) 
study of environmental stresses that negatively affect plant growth and develop-
ment besides soil pH, nutritional deficiencies, salinity, high temperature and pres-
ence of toxic elements, (3) efficacy of microbial inoculants varies somewhat from 
site to site and year to year and this has to be considered and studied elaborately 
and, (4) understanding of interactions of strain with plant rhizosphere and rhizos-
pheric microbal community (5) study of highly complex and dynamic rhizosphere 
environments to overcome practical problems such as the inconsistency in field 
performance (Arora et al. 2010).

Development of PGPR formulation with improved technology is a challeng-
ing task for popularization of their beneficial effects particularly in tropical coun-
tries where the cold supply chain does not exist. As stated, their maintenance in a 
metabolically and physiologically competent state remains the primary concern to 
derive the maximum advantage of a formulation.

The application of microbial inoculants in the form of granular or liquid 
form is also attaining much attention now a days due to easy application of liq-
uid formulation has also achieved much popularity (Xavier et al. 2004). In bio-
formulations, bio-inoculants are generally prepared with either carriers (solid/
liquid) or primed over seed surface using additives and fixers e.g. sugar syrup, 
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carboxy-methyl-cellulose (CMC) and gum-arabic etc. On the other hand, some 
amendments indigenous in origin that improve chemical, biological, or physical 
properties of formulated biomass to prepare bio-formulations for routine farming 
on commercial level should also be explored.

6  Applications

The use of the consortium probably ensured a broader use of plant growth-promot-
ing trait and also for efficient biocontrol mechanisms under the unpredictable field 
conditions (Pierson and Weller 1994). Role of bacterial consortium in the develop-
ment of agriculture has its effectiveness and challenges.

Microbial studies executed that some mixtures of bacteria bear synergistic 
interactions which provision for nutrient availability, removal of inhibitory prod-
ucts and pathogens, and stimulate growth of each other through physical and 
biochemical activities that may have cumulative benefits for them and plant physi-
ology. Rajasekar and Elango (2011) observed that PGPR consortia significantly 
increased plant height, root length and alkaloid content in Withamia somnifera 
when compared to the uninoculated control and single inoculation. Jha and Saraf 
(2012) observed that growth of Jatropha (Jatropha curcas) plant improved maxi-
mally when three strains were applied together. Concurrently, Ibiene et al. (2012) 
demonstrated that the use of microbial consortia containing diverse bacterial 
genera is an excellent inoculant for growth performance of plants and supported 
the fruitful application for agricultural benefits. Earlier, Annapurna et al. (2011) 
studied the effectiveness of PGPRs separately and in combination for reducing 
the impact of salinity on wheat growth. In that, inoculation with single and dual 
strains of PGPR strains showed variable effects to increase crop tolerance to salt 
concentrations. The consortium formulation was found more robust for inducing 
salinity tolerance in wheat to improve plant performance and development under 
stress environment. Thus, the inoculation of phytohormone-mediated PGPR is one 
of the essential and key elements (Bowen and Rovira 1999). An organism with 
properties like phytohormone production or any other beneficial factor with mul-
tifarious functions is thought to be an ideal bioinoculant (Catroux et al. 2001). On 
the other hand, such bacterial inoculants should possess the ability of multiplica-
tion and bear a broad spectrum of phytohormone production in order to substanti-
ate overall growth promotion of plant.

7  Future Prospects and Strategies

The research has to be focused on the current concept of rhizo-engineering based 
on favorably partitioning of the biomolecules, which create a unique setting for the 
plant and microbes interactions. The rhizosphere biology will rely on the develop-
ment of molecular and biotechnological approaches to strengthen our knowledge 
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of rhizosphere biology and to achieve an integrated management of soil micro-
bial populations. Fresh alternatives should be explored for the use of bioinoculants 
for other high-value crops such as vegetables, fruits and flowers. The application 
of multi-strain bacterial consortium over single inoculation could be an effective 
approach for reducing the adverse effect on plant growth.

8  Conclusion

From a truthful perspective, one must receive that, in the predictable future, 
only a gradual and modest increase in the use of bacterial inoculants is yet to be 
expected. Nevertheless, special attention should be paid to the need-based bioin-
oculants which are easy-to-use and inexpensive. For the future perspectives, more 
research should be emphasized on the development of improved and extra-eco-
nomical viable, natural bio-inoculant, that could sustain production for their judi-
cious application in crop ecosystems.
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Abstract Biofilms are complex aggregation of microbial cells which aid the indwell-
ing cells to survive and flourish well in the hostile environments. Besides, biofilms 
act as multicellular entities and provide resistance toward antibiotics and other bacte-
ricidal agents which makes their eradication cumbersome. Biofilm-related infections 
are tough to treat in healthcare and they are equally important in agriculture as they 
afflict the crop survival and productivity. It is indeed important to develop a biofilm 
control strategy to combat biofilm-related infections in agriculture. In recent years, 
biosurfactants have been exploited as potential antibiofilm candidates to languish the 
vigor of biofilm formers by selectively eradicating the biofilms. Biosurfactants are 
the surface active metabolites produced by microbes and are proven to have multi-
farious role in many fields right from bioremediation to biomedical applications. 
Biosurfactants due to their surface modifying property, modulate the biofilm forming 
ability of pathogens which directly prevents microbial colonization and biofilm for-
mation. This chapter summarizes the importance of antibiofilm agents and the role of 
biosurfactants in eradicating biofilms formed by disease causing pathogens.

Keywords Phytopathogens · Antibiofilm · Biosurfactant · Colonization · PGPR

1  Introduction

Microorganisms are ubiquitous in nature, and they play decisive roles in any func-
tional ecosystem. Microbes are broadly classified into two distinct categories as 
beneficial and harmful, based on their association with plants, animals and other 
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organisms. Understanding the relationship between plant and their associated 
microbial community is indispensable, as they have explicit impact on plant pro-
ductivity. Pathogenic microorganisms are gaining importance worldwide than ben-
eficial microbes due to their direct influence in loss of plant productivity. Bacteria 
and fungi occupy prime positions among other pathogens because of their abil-
ity to infect and invade diverse hosts and their ability to thrive under hostile envi-
ronments. Microbicidal agents which can kill these pathogens by targeting their 
essential cellular components and machineries were employed over years to con-
trol these detrimental organisms (Mukhtar and Wright 2005; Drlica et al. 2008; 
Goo and Sim 2010; Maheshwari 2013). In due course, the disease causing path-
ogens developed resistance against these antimicrobials by modifying their cell 
membrane permeability and target receptors, by producing inactivating and modi-
fying enzymes, by activating the efflux pumps, or by forming biofilms (Ozanne 
et al. 1969; Tsang et al. 1975; Leclercq and Courvalin 1991; Gotoh 2001; Kumar 
and Worobec 2002; Davies 2003). Among the mechanisms enlisted above, biofilm 
formation is of great concern as it contributes to nonspecific and broad spectrum 
resistance toward antibiotics and also against metal ions, biocidal agents, proto-
zoan grazers, desiccation and other hostile environmental conditions (Flemming 
and Wingender 2010).

Biofilm is defined as a complex microbial aggregate embedded in a hydrated 
extracellular polymeric substance (EPS) matrix (Stewart and Costerton 2001). 
Growth of microbial aggregates attached to any solid substratum is the character-
istic nature of biofilms, though free flowing microbial aggregates are also reported 
recently, which usually forms biofilm on air-liquid interfaces. Biofilms render 
resistance to the harboring microbial cells and they are several times resistant to 
antimicrobials than their free living planktonic counterparts (Mah 2012). Biofilm 
formation causes severe complications in healthcare, agriculture and industries 
which results in recurrent infections, plant diseases and biocorrosion respec-
tively (Busalmen et al. 2002; Von Bodman et al. 2003; Aparna and Yadav 2008). 
Antibiotics and other bactericidal agents became ineffective in controlling the bio-
film formers and the subsequent damages caused by them. Biofilm acts as a pro-
tective barrier that prevents the penetration of drug molecules, and also it secretes 
various inactivating and modifying enzymes which nullify the effects exerted 
by antimicrobials (Flemming and Wingender 2010). To combat biofilm-related 
problems in any industry including agriculture, antibiofilm agents are the wisest 
choice.

Many natural, synthetic and semi-synthetic compounds were explored in 
the quest of antibiofilm agents in which biosurfactants gain importance as 
potential antibiofilm agents due to their amenability in extreme environments. 
Biosurfactants are amphipathic surface active molecules produced by living cells, 
capable of reducing the surface tensions of liquid. These have profound industrial, 
environmental, and biomedical applications. Anti-adhesive property of biosur-
factants has been explored for antibiofilm applications and found to be successful. 
The components and complexity of biofilms, application of biosurfactants as anti-
biofilm agents will be discussed in detail in this chapter.
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2  Biofilm—Intrinsic Guardian of Disease Causing 
Microbes

Biofilms are complex aggregation of microbial cells encased in EPS matrix which 
provide protection to the microbial inhabitants from unfavorable environmental 
conditions. Biofilm formers are differentiated from their free living planktonic 
counterparts by the secretion of EPS (Donlan 2002) and their collective behavior 
as a multicellular living system rather than single cell entities. Extensive research 
on biofilms has exposed five essential steps for biofilm formation: (i) Reversible 
adsorption, (ii) Irreversible attachment, (iii) Microcolony formation, (iv) 
Maturation and (v) Dispersion (Fig. 1) (Sauer et al. 2002; Stoodley et al. 2002). 
Initial adhesion of microbial cells to biotic/abiotic surfaces is the critical prereq-
uisite for the successful formation of a sessile biofilm community. Attached cells 
secrete EPS to stabilize the irreversible attachment which in turn develop to micro-
colonies. Biofilms formed on surfaces have a characteristic structure of microcolo-
nies enclosed with EPS.

3  Understanding the Biofilm Architecture

Biofilms have distinct,complex three-dimensional (3D) architecture which selec-
tively prevent the penetration of microbicidal agents and have specific channels 
for the inflow and exchange of nutrients and water (Donlan 2002; Wilking et al. 
2013). The biotic/abiotic solid surface acts as substratum for biofilm formation 
(Fletcher and Loeb 1979) and the EPS provides mechanical stability, 3D architec-
ture, and physical integrity to biofilms thereby transforming the biofilm formers 
the most successful forms of life on earth (Flemming and Wingender 2010). The 

Fig. 1  Developmental stages 
of biofilm formation. 1 Initial 
adhesion, 2 irreversible 
attachment, 3 microcolony 
formation, 4 maturation, 5 
dispersion
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chemical and physical properties of EPS may vary from species to species, but 
invariably EPS is composed of polysaccharides where some are neutral and some 
are polyanionic, apart from proteins, lipids and nucleic acids (DNA) are present in 
trace levels (Whitchurch et al. 2002; Branda et al. 2005; Lasa and Penadés 2006). 
The presence of uronic acids (d-glucuronic, d-galactouronic and mannuronic 
acids) or ketal-linked pyruvate confers the anionic properties to the polysaccha-
rides. This anionic nature helps in the association of divalent cations such as cal-
cium and magnesium, which have been shown to interconnect the polymer strands 
and provides greater binding force in a developed biofilm (O’Toole et al. 2000). 
EPS production is known to be affected by nutrient status of the growth medium 
and availability of excess carbon; however, limitation of nitrogen, potassium and 
phosphate promote the EPS synthesis (Donlan and Costerton 2002).

Biofilms can be of diverse morphological forms from smooth to rough, fluffy 
or filamentous, flat to raised 3D structures and fruiting bodies (Sutherland 2001; 
Flemming and Wingender 2010). Alginate in Pseudomonas aeruginosa EPS pro-
vides notable biofilm architecture and contributes to mucoid phenotype (Franklin 
and Ohman 1993; Wozniak et al. 2003). Acetyl group substituent of EPS increases 
the adhesive and cohesive properties which contribute to altered biofilm architec-
ture (Tielen et al. 2005). Studies with mutant strains showed that various factors 
like hydrodynamic environment, concentration of nutrients, bacterial motility and 
cell to cell communication between the species, exopolysaccharides and proteins 
grossly influence the biofilm architecture. Individual EPS components also play 
major role in biofilm architecture, lack of which leads to impaired biofilm phe-
notype (Watnick and Kolter 1999; Danese et al. 2000). Role of other abiotic and 
biotic factors on biofilm formation cannot be ruled out.

Pili, fimbriae and other flagellar structures also help in stabilizing the structure 
and integrity of biofilms (Zogaj et al. 2001). The term biofilm is often referred to 
a heterogeneous structure which is formed in response to environmental cues. It 
contains cells of different physiological states with different genotypes and pheno-
types. Oxygen, chemical, nutrient and temperature gradients exist in biofilm and 
the conditions vary inside this microenvironment (Huang et al. 1995; Schramm 
et al. 1996). A group of specialized cells known as persisters are present within 
this biofilm microenvironment which are metabolically inactive, slow growing and 
extremely resistant to antibiotics which regain their natural growth once the condi-
tions turn favorable (Barth et al. 2014; Butt et al. 2014; Cho et al. 2014). These 
persisters are the actual reason for the recurrent infections and therapeutic failures 
(Jubair et al. 2012; Knudsen et al. 2013; Conlon 2014).

4  Molecular Insights on Biofilm Formation

Although the formation of biofilms includes five direct stages, the mecha-
nism behind this is complex and controlled by more than one pathway in most 
instances. Despite the fact that the roles of individual genes associated with 
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biofilm are shown by many studies, complete knowledge about the molecular 
mechanism behind biofilm formation is available as of date for few bacteria like 
Staphylococcus aureus, P. aeruginosa and Serratia marcescens. Studies have even 
shown the interlink between the quorum sensing regulatory circuit and biofilm for-
mation, where the biofilms are modulated by the population density in pathogenic 
bacteria like P. aeruginosa, S. marcescens, Vibrio harveyi, V. parahaemolyticus 
and S. aureus (Stickler et al. 1998; Hardie and Heurlier 2008; Nadell et al. 2008). 
Brief description of genes involved in biofilm formation in different pathogenic 
microbes is given in the Table 1.

5  Pathogenic Biofilms in Agriculture

Plant systems possess vast area which can be readily colonized by disease causing 
bacteria or fungi. Most of these pathogens occupy the plant surfaces in the form of 
biofilms. Plants provide many microenvironments where most pathogens colonize 
heterogeneously and form biofilms. Biofilm mode of growth favors these patho-
gens by rendering resistance toward antibiotics, biocides, toxins, metals, heat, 
UV, acids and enzymes (Singh et al. 2000; Leid et al. 2002; Hall-Stoodley et al. 
2004; Leid et al. 2005; Kolter and Greenberg 2006; Spoering and Gilmore 2006). 
Most phytopathogens, chiefly those from the genera Erwinia, Pectobacterium, 
Pantoea, Agrobacterium, Pseudomonas, Ralstonia, Burkholderia, Acidovorax, 
Xanthomonas, Clavibacter, Streptomyces, Xylella, Spiroplasma and Phytoplasma 
form biofilms on the surface, vasculature, root and root hair surfaces in turn caus-
ing varied diseases in fruits, vegetables and other parts of crop plants (Carmichael 
et al. 1998; Von Bodman et al. 2003; Walker et al. 2004; Andersen et al. 2007; 
Danhorn and Fuqua 2007; Galiana et al. 2008; Zaini et al. 2009; Martinez-Gil 
et al. 2010). Many pathogens employ biofilm as a tool for the dissemination of 
infection. Xanthomonas fragariae causing angular leaf spot of strawberry forms 
biofilms on the surfaces and undergo wind-driven dispersal to infect new plants 
(Allan-Wojtas et al. 2010). Clavibacter michiganensis subsp. michiganensis caus-
ing bacterial wilt and canker of tomato, extensively colonizes the lumen of xylem 
vessels and reaches the apical region through acropetal movement and infects the 
whole plant (Chalupowicz et al. 2012). Acidovorax citrulli and Xylella fastidiosa 
form biofilms to move upstream and promulgate plant disease. Table 2 summa-
rizes the list of biofilm forming phytopathogens.

Apart from these phytopathogens, some of the enteric pathogens colonize and 
form biofilms on plants. Escherichia coli, Salmonella enterica and Enterococcus 
faecalis were shown to form persistent biofilms on leafy vegetables such as spin-
ach and other plants which led to many outbreaks due to the consumption of 
improperly processed vegetables (Ronconi et al. 2002; Brandl 2006; Kroupitski 
et al. 2009; Meric et al. 2012; Patel et al. 2013; Yaron and Romling 2014; Liu et al. 
2015).



325Significance of Biosurfactants as Antibiofilm Agents …

Ta
bl

e 
2 

 B
io

fil
m

 f
or

m
in

g 
ph

yt
op

at
ho

ge
ns

Pa
th

og
en

D
is

ea
se

R
ef

er
en

ce
s

A
ci

do
vo

ra
x 

ci
tr

ul
li

B
lo

tc
h 

in
 c

uc
ur

bi
ts

B
ah

ar
 e

t a
l. 

(2
01

1)
, S

hr
es

th
a 

et
 a

l. 
(2

01
3)

A
gr

ob
ac

te
ri

um
 tu

m
ef

ac
ie

ns
C

ro
w

n 
ga

ll 
di

se
as

e
M

or
to

n 
an

d 
Fu

qu
a 

(2
01

2)
, H

ec
ke

l e
t a

l. 
(2

01
4)

B
. c

ep
ac

ia
So

ur
 s

ki
n 

of
 o

ni
on

Ja
co

bs
 e

t a
l. 

(2
00

8)
, S

ub
ra

m
on

i e
t a

l. 
(2

01
1)

C
la

vi
ba

ct
er

 m
ic

hi
ga

ne
ns

is
 s

ub
sp

. 
m

ic
hi

ga
ne

ns
is

B
ac

te
ri

al
 w

ilt
 a

nd
 c

an
ke

r 
of

 to
m

at
o

G
ar

te
m

an
n 

et
 a

l. 
(2

00
3)

, C
ha

lu
po

w
ic

z 
et

 a
l. 

(2
01

2)

E
rw

in
ia

 a
m

yl
ov

or
a

Fi
re

 b
lig

ht
M

cN
al

ly
 e

t a
l. 

(2
01

1)
, E

dm
un

ds
 e

t a
l. 

(2
01

3)

E
. c

hr
ys

an
th

em
i

So
ft

 r
ot

 d
is

ea
se

To
th

 e
t a

l. 
(2

00
3)

, J
ah

n 
et

 a
l. 

(2
01

1)

P
se

ud
om

on
as

 s
yr

in
ga

e 
pv

 s
yr

in
ga

e
N

ec
ro

tic
 d

is
ea

se
s 

of
 f

ru
its

 a
nd

 b
ro

w
n 

sp
ot

 d
is

ea
se

 o
n 

be
an

R
ic

h 
an

d 
W

ill
is

 (
19

97
),

 B
ai

s 
et

 a
l. 

(2
00

4)
, 

Pe
na

lo
za

-V
az

qu
ez

 e
t a

l. 
(2

01
0)

, K
ei

sa
 e

t a
l. 

(2
01

1)

Pa
nt

oe
a 

st
ew

ar
ti

i s
ub

sp
. s

te
w

ar
ti

i
St

ew
ar

t’s
 w

ilt
 d

is
ea

se
 in

 m
ai

ze
H

er
re

ra
 e

t a
l. 

(2
00

8)
, R

op
er

 (
20

11
),

 B
ur

ba
nk

 
et

 a
l. 

(2
01

4)
, R

am
ac

ha
nd

ra
n 

et
 a

l. 
(2

01
4)

Pe
ct

ob
ac

te
ri

um
 c

ar
ot

ov
or

um
So

ft
 r

ot
 o

f 
fr

ui
ts

 a
nd

 v
eg

et
ab

le
s

K
ub

he
ka

 e
t a

l. 
(2

01
3)

, L
ee

 e
t a

l. 
(2

01
3)

P.
 c

or
ru

ga
te

Pi
th

 n
ec

ro
si

s 
of

 to
m

at
o

U
de

 e
t a

l. 
(2

00
6)

, L
ic

ci
ar

de
llo

 e
t a

l. 
(2

00
7)

R
al

st
on

ia
 s

ol
an

ac
ea

ru
m

L
et

ha
l w

ilt
Y

ao
 a

nd
 A

lle
n 

(2
00

7)
, C

he
n 

et
 a

l. 
(2

01
2b

)

X
an

th
om

on
as

 a
xo

no
po

di
s 

pv
. C

it
ri

C
itr

us
 c

an
ke

r 
di

se
as

e
G

ol
m

oh
am

m
ad

i e
t a

l. 
(2

00
7)

, R
ig

an
o 

et
 a

l. 
(2

00
7)

, M
al

am
ud

 e
t a

l. 
(2

01
0)

X
. c

am
pe

st
ri

s 
pv

 c
am

pe
st

ri
s

B
la

ck
 r

ot
 o

f 
cr

uc
if

er
s,

 a
ng

ul
ar

 le
af

 s
po

t o
f 

co
tto

n,
 b

ac
te

ri
al

 
sp

ot
 o

f 
pe

pp
er

 a
nd

 to
m

at
o

To
rr

es
 e

t a
l. 

(2
00

7)
, M

cC
ar

th
y 

et
 a

l. 
(2

00
8)

, T
ao

 
et

 a
l. 

(2
01

0)

X
. c

am
pe

st
ri

s 
pv

. V
es

ic
at

or
ia

B
ac

te
ri

al
 le

af
 s

po
t o

n 
pe

pp
er

s 
an

d 
to

m
at

oe
s

Jo
ne

s 
et

 a
l. 

(1
99

8)
, K

im
 e

t a
l. 

(2
01

4)
, P

ar
k 

et
 a

l. 
(2

01
4)

X
. f

ra
ga

ri
ae

A
ng

ul
ar

 le
af

 s
po

t o
f 

st
ra

w
be

rr
y

A
lla

n-
W

oj
ta

s 
et

 a
l. 

(2
01

0)

X
. o

ry
za

e 
pv

. o
ry

zi
co

la
B

lig
ht

 o
f 

ri
ce

Y
an

g 
an

d 
B

og
da

no
ve

 (
20

12
),

 Q
ia

n 
et

 a
l. 

(2
01

3)

X
. f

as
ti

di
os

a
Pi

er
ce

’s
 d

is
ea

se
 in

 g
ra

pe
s 

an
d 

ci
tr

us
 v

ar
ie

ga
te

d 
ch

lo
ro

si
s

G
ui

lh
ab

er
t a

nd
 K

ir
kp

at
ri

ck
 (

20
05

),
 S

ou
za

 e
t a

l. 
(2

00
6)

, P
ur

ci
no

 e
t a

l. 
(2

00
7)

, M
ur

an
ak

a 
et

 a
l. 

(2
01

3)



326 A.R. Padmavathi et al.

Ta
bl

e 
3 

 B
io

su
rf

ac
ta

nt
s 

as
 a

nt
ib

io
fil

m
 a

ge
nt

s

B
io

su
rf

ac
ta

nt
Pa

th
og

en
(s

)
R

ef
er

en
ce

s

G
ly

co
lip

id
 f

ro
m

 B
re

vi
ba

ct
er

iu
m

 c
as

ei
M

ix
ed

 b
io

fil
m

 b
ac

te
ri

a
K

ir
an

 e
t a

l. 
(2

01
0)

G
ly

co
lip

id
 f

ro
m

 C
or

al
 a

ss
oc

ia
te

d 
ba

ct
er

ia
P.

 a
er

ug
in

os
a

Pa
dm

av
at

hi
 a

nd
 P

an
di

an
 (

20
14

)

L
ip

op
ep

tid
e 

fr
om

 B
ac

il
lu

s 
ci

rc
ul

an
s

E
. c

ol
i, 

M
yc

ob
ac

te
ri

um
 fl

av
us

, P
ro

te
us

 v
ul

ga
ri

s,
 S

er
ra

ti
a 

 m
ar

ce
sc

en
s,

 
C

it
ro

ba
ct

er
 fr

eu
nd

ii
, K

le
bs

ie
ll

a 
ae

ro
ge

ne
s,

 A
lc

al
ig

en
s 

fa
ec

al
is

, 
S.

 ty
ph

im
ur

iu
m

D
as

 e
t a

l. 
(2

00
9)

R
ufi

sa
n 

fr
om

 C
. l

ip
ol

yt
ic

a 
U

C
P 

09
88

L
ac

to
ba

ci
ll

us
 c

as
ei

, L
. r

eu
te

ri
, S

tr
ep

to
co

cc
us

 m
ut

an
s,

 S
. o

ra
li

s,
 

S.
 s

an
gu

is
, R

ot
hi

a 
de

nt
oc

ar
io

sa
, S

. s
al

iv
ar

iu
s,

 E
. c

ol
i, 

P.
 a

er
ug

in
os

a,
 

S.
 a

ur
eu

s,
 S

. e
pi

de
rm

id
is

, S
. a

ga
la

ct
ia

e,
 S

. p
yo

ge
ne

s

R
ufi

no
 e

t a
l. 

(2
01

1)

L
ip

op
ep

tid
e 

fr
om

 B
. s

ub
ti

li
s 

A
R

2
C

. a
lb

ic
an

s
R

au
te

la
 e

t a
l. 

(2
01

4)

L
ip

op
ep

tid
e 

fr
om

 B
. c

er
eu

s 
N

K
1

P.
 a

er
ug

in
os

a,
 S

. e
pi

de
rm

id
is

Sr
ir

am
 e

t a
l. 

(2
01

1)

B
io

su
rf

ac
ta

nt
 f

ro
m

 L
. j

en
se

ni
i, 

L
. r

ha
m

no
su

s
A

ci
ne

to
ba

ct
er

 b
au

m
an

ni
i, 

E
. c

ol
i, 

M
R

SA
Sa

m
ba

nt
ha

m
oo

rt
hy

 e
t a

l. 
(2

01
4)

D
i-

rh
am

no
lip

id
 f

ro
m

 P
. a

er
ug

in
os

a 
D

SV
P2

0
C

. a
lb

ic
an

s
Si

ng
h 

et
 a

l. 
(2

01
3)

R
ha

m
no

lip
id

P.
 a

er
ug

in
os

a 
PA

O
1,

 B
or

de
te

ll
a 

br
on

ch
is

ep
ti

ca
Ir

ie
 e

t a
l. 

(2
00

5)
, R

ay
a 

et
 a

l. 
(2

01
0)

L
. f

er
m

en
tu

m
 d

er
iv

ed
 b

io
su

rf
ac

ta
nt

S.
 m

ut
an

s
Ta

hm
ou

re
sp

ou
r 

et
 a

l. 
(2

01
1b

)

L
ip

op
ep

tid
e 

fr
om

 B
. t

eq
ui

le
ns

is
 C

H
E

. c
ol

i, 
S.

 m
ut

an
s

Pr
ad

ha
n 

et
 a

l. 
(2

01
3a

)

L
ip

op
ep

tid
e 

fr
om

 P
ae

ni
ba

ci
ll

us
 p

ol
ym

yx
a

M
ix

ed
 s

pe
ci

es
 b

io
fil

m
Q

ui
nn

 e
t a

l. 
(2

01
2)

L
un

as
an

 f
ro

m
 C

. s
ph

ae
ri

ca
 U

C
P 

09
95

P.
 a

er
ug

in
os

a,
 S

. a
ga

la
ct

ia
e,

 S
. S

an
gu

is
L

un
a 

et
 a

l. 
(2

01
1)

G
ly

co
lip

id
 f

ro
m

 L
ys

in
ib

ac
il

lu
s 

fu
si

fo
rm

is
 S

9
E

. c
ol

i, 
S.

 m
ut

an
s

Pr
ad

ha
n 

et
 a

l.(
20

13
b)

G
ly

co
lip

id
 f

ro
m

 N
oc

ar
di

op
si

s 
sp

. M
SA

13
A

Vi
br

io
 a

lg
in

ol
yt

ic
us

K
ir

an
 e

t a
l. 

(2
01

4)

Pu
tis

ol
vi

n 
I 

an
d 

II
 f

ro
m

 P
. p

ut
id

a
P

se
ud

om
on

as
 s

p.
K

ui
pe

r 
et

 a
l. 

(2
00

4)

R
ha

m
no

lip
id

Ya
rr

ow
ia

 li
po

ly
ti

ca
D

us
an

e 
et

 a
l. 

(2
01

2)

B
io

su
rf

ac
ta

nt
 f

ro
m

 S
. t

he
rm

op
hi

lu
s

C
an

di
da

 s
pp

.
B

us
sc

he
r 

et
 a

l. 
(1

99
7)

Su
rf

ac
tin

S.
 ty

ph
im

ur
iu

m
M

ir
el

es
 e

t a
l. 

(2
00

1)

L
ip

op
ep

tid
e 

bi
os

ur
fa

ct
an

t w
ith

 a
nt

ib
io

tic
s

E
. c

ol
i C

FT
07

3
R

iv
ar

do
 e

t a
l. 

(2
01

1)

G
ly

co
lip

id
- 

ty
pe

 b
io

su
rf

ac
ta

nt
 f

ro
m

 T
ri

ch
os

po
ro

n 
m

on
te

vi
de

en
se

 C
L

O
A

72
C

. a
lb

ic
an

s
M

on
te

ir
o 

et
 a

l. 
(2

01
1)

L
ip

op
ep

tid
e 

fr
om

 B
. s

ub
ti

li
s 

an
d 

B
. l

ic
he

ni
fo

rm
is

E
. c

ol
i, 

S.
 a

ur
eu

s
R

iv
ar

do
 e

t a
l. 

(2
00

9)

Ps
eu

do
fa

ct
in

 I
I 

fr
om

 P
. fl

uo
re

sc
en

s 
B

D
5

E
. c

ol
i, 

E
. f

ae
ca

li
s,

 E
. h

ir
ae

, S
. e

pi
de

rm
id

is
, P

. m
ir

ab
il

is
, C

. a
lb

ic
an

s
Ja

ne
k 

et
 a

l. 
(2

01
2)



327Significance of Biosurfactants as Antibiofilm Agents …

6  Biosurfactants as Antibiofilm Agents

Biosurfactants are low molecular weight, amphipathic, surface active compounds 
produced by living cells capable of reducing the surface and interfacial tension 
of liquids at the surface and interface, respectively (Padmavathi and Pandian 
2014). Biosurfactants are chemically diverse group of molecules which com-
prise glycolipids, lipopeptides, lipoproteins, fatty acids, phospholipids, neutral 
lipids, polymeric and particulate biosurfactants. Though biosurfactants have ver-
satile applications, their antibiofilm activity has received enormous attention in 
recent years due to their potential in healthcare, agriculture and industrial appli-
cations (Sachdev and Cameotra 2013; Banat et al. 2014; Diaz et al. 2015; Kiran 
et al. 2015). Biosurfactants due to their surface modifying property, effectively 
affect the microbial colonization and subsequent biofilm formation. They selec-
tively reduce the hydrophobicity of bacterial cell wall. Hydrophobicity is directly 
corresponded to the pathogen’s biofilm forming ability and reduction of it, will 
have direct implications on biofilm formation. Apart from efficiently controlling 
the biofilm formation, biosurfactants proficiently disrupt the preformed biofilms 
(Irie et al. 2005; Kiran et al. 2010; Dusane et al. 2012; Singh et al. 2013). Certain 
biosurfactants have pronounced antibiofilm effect which are capable of down-reg-
ulating the biofilm and virulence genes in biofilm formers in addition to the phe-
notypic suppression (Tahmourespour et al. 2011a; Salehi et al. 2014; Savabi et al. 
2014). Table 3 summarizes the antibiofilm efficacy of biosurfactants.

Apart from acting as antibiofilm agents, they eradicate the zoospores of path-
ogenic fungus Phytophthora capsici and promote plant growth (Kruijt et al. 
2009) and also they act as microbial-Induced Systemic Resistance (ISR) elicitors 
(Ongena et al. 2007; Tran et al. 2007). Plant-derived biosurfactant has been shown 
to possess superior antibiofilm activity that effectively reduced the biomass of 
complex pathogenic biofilms (Quinn et al. 2013).

7  Conclusion

Antibiofilm potential of biosurfactants has been intensely explored in recent years 
with an intention to develop safer antibiofilm technology in near future. Though 
several antibiofilm agents have been reported so far, biosurfactants are preferred 
over their counterparts due to their environmental feasibility, reduced toxicity, 
better biodegradability and their stability over extreme environmental conditions. 
In addition to antibiofilm activity, they have multifarious role in agriculture like 
improving the soil quality and enhancement of plant productivity. Due to these 
preferable properties, biosurfactants have received enormous attention and hold 
extensive application in the field of agriculture.
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Abstract Biofilms are structurally complex communities of microbial cells that 
adhere to a surface and are surrounded by an extracellular polymeric matrix. 
Biofilm formation plays important roles in attachment and colonization of plant 
surfaces by both beneficial bacteria (e.g. plant growth-promoting rhizobacteria) 
and phytopathogenic bacteria. During the process of biofilm development and 
maturation, surface-attached cells undergo aggregation to form microcolonies. 
Biosurfactants are produced by many plant-associated bacterial species and play 
essential roles in bacterial motility, signaling, biofilm formation and control of 
plant-bacteria interactions. In this chapter, we review the biochemical and genetic 
mechanisms that underlie biofilm formation and biosurfactant activity in benefi-
cial (symbiotic) bacteria and phytopathogenic bacteria, particularly Pseudomonas 
species.
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1  Introduction

Bacteria live and proliferate in natural environments either as individual cells 
(planktonic form) or as highly organized multicellular communities (termed “bio-
films”) that are enclosed in self-produced polymeric matrices and are closely asso-
ciated with environmental surfaces or air−liquid interfaces (Burmølle et al. 2014).

In all species of soil bacteria (rhizobacteria) studied to date, biofilm forma-
tion depends on bacterial surface components (flagella, lipopolysaccharides and 
exopolysaccharides) in combination with bacterial quorum sensing (QS) signals 
(Rinaudi and Giordano 2010). This strategy allows the bacteria to colonize the sur-
rounding habitat and survive common environmental stresses such as desiccation 
and nutrient limitation. Pseudomonas is a large and well-studied genus of bacte-
ria that includes several phytopathogenic species. Biofilm formation enables these 
species to efficiently attach to and colonize plant surfaces and biosurfactant pro-
duction is often involved in this process (D’aes et al. 2010).

In the course of biofilm development during plant-bacteria interactions both in 
the symbiotic models (rhizobia) and pathogenic models (e.g. Pseudomonas), an 
initial reversible attachment to the surface is followed by an irreversible attach-
ment and multiplication of the bacteria to form microcolonies. The colonies then 
develop into mature communities with a three-dimensional (3-D) structure, in 
some cases permeated by channels that function as a circulatory system. These 
processes are all coordinated by bacterial QS systems (Stanley and Lazazzera 
2004).

This chapter reviews studies demonstrating the importance of biofilm forma-
tion in plant colonization processes in various symbiotic and pathogenic bacterial 
models.

2  Four-Stage Process of Biofilm Formation  
in Rhizobacteria

Living in biofilms confers numerous advantages to rhizobacteria, including the 
ability to survive or grow under fluctuating or extreme environmental conditions 
(soil pH, temperature, water availability, redox potential and salt concentration), to 
accumulate nutrients and to dispose of metabolic wastes (Vanderlinde et al. 2009; 
Seneviratne et al. 2011; Bogino et al. 2013).

Four stages are generally recognized in the process of biofilm formation: (i) 
initial reversible attachment of an individual bacterium to a surface, leading to a 
stronger, irreversible attachment by bacteria, (ii) microcolony formation with early 
stage development of biofilm architecture, (iii) biofilm maturation and (iv) even-
tual dispersal of single cells from the biofilm (Schuster and Markx 2014). This 
series of biological stages involves coordination of many physical and molecular 
steps, as detailed in the following sections.



339Biofilm Formation and Biosurfactant Activity …

2.1  Stage 1: Initial Reversible Attachment and Transition  
to Stronger Irreversible Attachment

The initial reversible attachment step is mediated by flagellum, pili and several 
outer membrane proteins collectively termed as adhesins and by Rhizobium-
adhering proteins (RAPs) such as RapA1 (Fujishige et al. 2006; Mongiardini 
et al. 2008; Karatan and Watnick 2009). The irreversible attachment step primar-
ily involves polysaccharides and other biopolymers on the bacterial surface. These 
cell surface components include lipopolysaccharides (LPSs), capsular polysac-
charides, exopolysaccharides (EPSs), neutral polysaccharides, gel-forming poly-
saccharides and cyclic β-glycans (cellulose microfibrils). They mediate stronger 
adhesion of bacteria to root hairs and anchor bacteria to the root surface. The 
dynamic attachment also depends on proteins, glycoprotein and lectins on the root 
hair (De Holf et al. 2009; Robledo et al. 2011; Bogino et al. 2013).

Adhesins, flagellar and pilar proteins play important roles in motility because 
they help the bacteria to overcome repulsive forces, thus promoting initial interac-
tion with the nearby surface and increasing the likelihood of close approach. In the 
rhizosphere, flagellar and/or pilar motility has been shown to accelerate surface 
adhesion in rhizobacteria such as Agrobacterium tumefaciens and Pseudomonas 
aeruginosa. These proteins are involved in biofilm formation as well as root colo-
nization (Petrova and Sauer 2012).

The surface polysaccharides in rhizobacteria are highly diverse in terms of 
location and physico-chemical properties. In addition to the irreversible attach-
ment step, they are involved in cell-cell interactions during the maturation process 
and interactions with matrix components in biofilms (Jefferson 2009). LPSs play 
important roles in symbiosis, as both structural components and signaling mole-
cules (Fraysse et al. 2003).

Rhizobial EPSs are involved in adhesion to roots, root colonization and devel-
opment of biofilms on roots (Rinaudi and Giordano 2010). Other reported func-
tions of EPSs include nutrient gathering, protection against environmental stresses 
and antimicrobial activity. In nitrogen-fixing bacteria that establish symbioses with 
legume plants through formation of indeterminate-type nodules, EPS are essential 
for successful infection of host plant roots. Rhizobial EPSs are the major compo-
nent of the biofilm matrix and are associated with successful biofilm formation on 
both abiotic surfaces and host plant roots (Robledo et al. 2012).

2.2  Stage 2: Microcolony Formation with Early Stage 
Development of Biofilm Architecture

During the attachment steps as mentioned above, rhizobacteria undergoes physi-
ological changes that lead to EPS production and fix the cells to the root surface. 
The cells then divide and form microcolonies by clonal propagation. During this 
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stage, bacteria often uses a QS system to accumulate from the surrounding envi-
ronment various extracellular signaling molecules termed autoinducers, which 
make it possible to monitor population density and coordinate gene expression 
(Waters and Bassler 2005). The QS circuits are activated when the concentration 
of autoinducers produced by the bacteria reaches a critical level, allowing coor-
dinated expression of genes and their consequent actions (Connell et al. 2010; 
Decho et al. 2010). QS systems modulate a wide variety of phenotypes, includ-
ing biofilm formation, toxin production, EPS production, virulence, plasmid trans-
fer and motility, which are essential for successful establishment of symbiotic or 
pathogenic relationships with eukaryotic hosts (Marketon et al. 2003; Rinaudi and 
Giordano 2010; Timmusk and Nevo 2011; Pérez Montaño et al. 2014).

Many different QS systems have been reported in Gram-negative plant-associ-
ated bacteria and other proteobacteria. The most commonly occurring diffusible 
signaling molecules are N-acyl homoserine lactones (AHLs). In Sinorhizobium 
meliloti, an ExpR/Sin QS system regulates many functions associated with root 
nodulation of Medicago sativa (alfalfa) by the bacteria. This system includes the 
response regulator ExpR and the autoinducer synthase SinI. Rhizobacteria may 
constitutively express multiple AHLs. For example, S. meliloti strain Rm8530 
produces at least seven AHLs: C12-HSL, C14-HSL, 3-oxo-C14-HSL, C16-HSL, 
3-oxo-C16:1-HSL, C16:1-HSL and C18-HSL. The concentration of the signal 
acts as an indicator of population density for the bacteria. Some strains synthe-
size ESP II, one of the two symbiotically active EPSs required for biofilm forma-
tion in roots (Gurich and González 2009; Sorroche et al. 2010; Gao et al. 2012). 
We recently characterized four novel AHLs (C6, 3OC10, 3OC12 and 3OC14) in 
peanut-nodulating Bradyrhizobium sp. strains. Comparisons of AHL-producing 
versus non-AHL-producing strains demonstrated a positive regulatory effect of 
these AHLs on motility and biofilm formation ability (Nievas et al. 2012). Another 
unique, conserved AHL system, (BraI/R) was found in all plant-associated 
Burkholderia species (Hirsch and Fujishige 2012).

2.3  Stage 3: Biofilm Maturation

Biofilm maturation requires two factors: QS signals and EPS accumulation 
through continued cell division. Differential gene expression between the two 
bacterial states (planktonic/sessile) is related to adhesive needs of populations 
during surface colonization. For example, production of surface appendages 
is inhibited in sessile forms because motility is no longer necessary. Expression 
of genes involved in production of cell surface proteins and excretion prod-
ucts increases concomitantly. Transport of extracellular products into the cell is 
facilitated by surface proteins (porins) such as OprC and OprE, whereas trans-
port of excretion products out of the cell is facilitated by certain polysaccharides 
(Davies 2003; Garret et al. 2008). Herbaspirillum seropedicae is a nitrogen-fixing 
β-proteobacterium with plant growth-promoting rhizobacterial (PGPR) properties, 
associated with a variety of important agricultural crops (e.g. maize, rice, sorghum 
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and sugarcane). Mutation of eps genes in this species prevented the development 
of a mature biofilm, demonstrating that EPSs are essential structural components 
(Balsanelli et al. 2014). In associative diazotrophs such as Azospirillum brasilense 
and Gluconacetobacter diazotrophicus, EPSs affected cell aggregation and bio-
film formation on plant root surfaces (Burdman et al. 2000; Meneses et al. 2011). 
Knockout of rhamnose biosynthesis in A. brasilense caused reductions in EPS pro-
duction and maize root colonization (Jofré et al. 2004). Continued EPS produc-
tion contributes to later-stage 3-D architectural structure in biofilms. Within the 
3-D architecture are various channels that allow circulation and exchange of water, 
nutrients, enzymes and signals and elimination of toxic metabolites (Sutherland 
2001; Wagner et al. 2009). EPSs are essential for biofilm structure, adhesion and 
cohesion, and play key roles in mechanical stability and resistance to stressful 
environmental conditions.

2.4  Stage 4: Dispersal of Single Cells from the Biofilm

In the fourth and final stage of the biofilm life cycle, differentiated “dispersal 
cells” are produced and released. The formation of these cells and their eventual 
dispersal are controlled through a variety of sophisticated mechanisms, indicat-
ing strong evolutionary pressures for dispersal from mature and sessile biofilms. 
Dispersal of planktonic cells from mature biofilms allows rhizobacteria to reach 
and colonize new root substrates (McDougald et al. 2012; Bogino et al. 2013). 
The dispersal process is regulated by a variety of intracellular and extracellular 
factors. In the PGPR species Gluconacetobacter xylinus, changes from sessile to 
planktonic phenotype in response to intercellular signals or environmental condi-
tions were associated with the intracellular concentration of cyclic di-guanosine 
monophosphate (c-di-GMP) (Römling et al. 2005). Reduction of the intracellular 
c-di-GMP level in mature biofilms triggered the dispersal process. Pseudomonas 
aeruginosa provides an advanced dispersal model. Dispersal from the biofilm 
in this species is activated by the lysis and death of a small cellular subpopula-
tion found in the mature architecture (Webb et al. 2003). Dispersal bacteria are 
released through resulting, characteristic rupture points or hollow points in the 
biofilm. Sessile-phenotypes bacteria in the biofilm undergo upregulation of genes 
that encode flagellar and chemotactic proteins, and suppression of genes that 
encode EPSs and fimbria proteins (Rollet et al. 2009). Dispersal cells of P. aer-
uginosa are more similar to planktonic cells than to the mature biofilm cells, and 
revert to a planktonic growth mode (Webb et al. 2004). Many of the phenotypic 
and genotypic changes that characterize dispersal cells are clearly affected by QS 
signals (AHLs), physiological signals (D-amino acids, intracellular modulation of 
c-di-GMP level), nutritional factors (high nutrient levels, carbon or nitrogen limi-
tation) and environmental factors (low iron concentration in soil). In addition to P. 
aeruginosa, dispersal of cells from biofilms into the surrounding rhizosphere has 
been reported for Rhodobacter sphaeroides, Xanthomonas campestris, Bacillus 
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subtilis, Pseudomonas fluorescens and P. putida (Davies and Marques 2009; 
Gjermansen et al. 2010; Kolodkin-Gal et al. 2010).

Dispersal may occur as an “insurance policy” to seed new biofilms in the sur-
rounding rhizosphere in response to resource limitation, or as a simple conse-
quence of aging of the original biofilm. The dispersal event provides new areas of 
potential bacteria recruitment, and functions as a template for post-dispersal pro-
cesses such as gene transfer, competition, invasion and development of new com-
munities (McDougald et al. 2012).

3  Biosurfactants and Their Roles in Plant−Microbe 
Interactions

Among various microbial surfactants, glycolipids have been most extensively 
studied. These include rhamnolipids, trehalolipids, sophorolipids and mannosyl 
erythritol lipids (MELs) consisting, respectively, of mono- or di-saccharides of 
rhamnose, glucose, sophorose, or mannose combined with long-chain aliphatic 
acids or hydroxyaliphatic acids (Van Bogaert et al. 2011). These glycolipids and 
other known biosurfactants are summarized in Table 1.

Table 1  Microbial biosurfactants and their producers

aMost important representative of its class

Type of biosurfactant Microbial producer References

Glycolipids
aRhamnolipids Pseudomonas aeruginosa 

Burkholdheria sp.
Abdel-Mawgoud et al. (2010), 
Dusane et al. (2012), Costa 
et al. (2011)

Trehalolipids Rhodococcus erythropolis  
Corynebacterium sp. 
Arthrobacter sp.

Franzetti et al. (2010), 
Tokumoto et al. (2009)

Sophorolipids Candida bombicola, other 
Candida sp.

Konishi et al. (2008), 
Kurztman et al. (2010)

Mannosyl erythritol lipids 
(MELs)

Various yeasts (Pseudozyma) Konishi et al. (2007)

Lipopeptides and lipoproteins
aSurfactin and subtilisin Bacillus subtilis 

Bacillus amyloliquefaciens
Arguelles-Arias et al. (2009), 
Jacques (2011)

Iturin family B. subtilis Yuan et al. (2011)

Fengycin family B. subtilis Romero et al. (2007)

Bioemulsan RAG1 Acinetobacter calcoaceticus 
(ATCC31012)

Suthar et al. (2008)

Fatty acids (corynomicolic 
acids, spiculisporic acids)

Corynebacterium spp., 
Nocardia erythropolis, 
Aspergillus spp.

Wang et al. (2012), Mulligan 
and Gibbs (2004)

Phospholipids
Pseudofactin
Putisolvin

Comamonas spp. 
Pseudomonas. fluorescens 
Pseudomonas putida

Sun et al. (2013), Janek et al. 
(2010), Kuiper et al. (2004)
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Soil microorganisms play essential roles in maintaining soil structure and fer-
tility, and in remediating contaminated soils. In this regard, PGPR may exert a 
direct effect on plant growth dynamics, or an indirect effect through acidification, 
chelation, precipitation and immobilization of heavy metals, or mobilization of 
micronutrients or macronutrients in the rhizosphere. Plant-microbe interactions are 
important factors in soil health and sustainability, largely because of their promot-
ing effects on plant growth and function (Tak et al. 2013).

Plant-rhizobacteria interactions are based on part of the coordinated bacterial 
mechanisms such as motility, the ability to form biofilms on root surfaces, and 
release of QS signals. The most abundant QS signaling molecules in the rhizos-
phere are the AHLs, which promote synthesis of antimicrobial substances and root 
surface colonization ability. In Rhizobium etli, the symbiotic partner of Phaseolus 
vulgaris (common bean plant), long-chain AHLs act as biosurfactants, regulating 
the swarming phenotype and surface movement, inducing liquid flow through a 
superficial tension gradient, and thereby facilitating attachment of the bacteria to 
surfaces (Daniels et al. 2006).

In various Pseudomonas spp., QS molecules regulate physiological processes 
involved in cell-social behavior and pathogenesis, as well as production of rham-
nolipids as biosurfactants. The rhamnolipids are surface active agents that have 
antibacterial, antifungal and antiviral properties and are involved in motility, cell-
cell interactions, differentiation and formation of water channels in Pseudomonas 
biofilms (Dusane et al. 2010).

Rhizobacterial motility is clearly important for colonization efficiency and fit-
ness in plant symbioses, but motility mechanisms used by bacteria on and around 
plants remain poorly understood. In a recent study of the biosurfactant-producing 
strain P. fluorescens SBW25, Alsohim et al. (2014) demonstrated that depletion 
of the biosurfactant viscosin altered motility, root colonization ability and plant 
growth promotion by the bacteria. Positive associations were found among vis-
cosin biosynthesis, root surface spreading efficiency and survival of germinating 
seedlings in soils infected with a phytopathogen (Pythium spp.).

Pseudomonas aeruginosa strain A11 is a rhamnolipid-producing bacterium 
with PGPR and multi-metal-resistant (MMR) properties, isolated from the rhizos-
phere of the allergy-producing invasive weed Parthenium hysterophorus. The bio-
surfactant-producing ability of P. aeruginosa A11 facilitated phytoremediation of 
heavy-metal-polluted soils, and plant growth promotion through effects on sidero-
phores, hydrogen cyanide, catalase, ammonia production and phosphate solubility 
(Singh and Cameotra 2013).

4  Biofilm Formation in Phytopathogenic Bacteria

Many microbial species may exert harmful effects on plants by directly damag-
ing plant tissues or competing for nutrients. Leaf surfaces typically support large 
populations of bacterial epiphytes, including plant pathogens that multiply on the 
surface before initiating a disease process.
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Many plant-bacteria associations involve physical interaction of the bacteria 
with plant tissues. Microcolony formation, aggregates, and cell clusters of bacteria 
on plant surfaces can be directly observed (Morris and Monier 2003). Such multi-
cellular structures may present the typical defining characteristics of biofilms, i.e. 
groups of cells located within an EPS matrix on a solid surface. In comparison to 
solitary cells, cells that belong to a large aggregate are more likely to survive water 
limitation (desiccation).

Ramey et al. (2004) reported that Pseudomonas syringae pv. syringae (Pss), the 
causative agent of brown spot disease on bean plants, may colonize the plant as 
small groups (<10 cells each) scattered on leaf surfaces, or as large populations 
(>1000 cells) located near trichomes or veins where nutrient availability is higher.

4.1  Biofilm Formation in Pseudomonas

Pseudomonads occupy many distinct niches in a wide variety of environments. 
Some Pseudomonas species are likely to cause disease, while others do not. Both 
pathogenic and nonpathogenic species are often attached to a surface and coated 
with a polymeric substance, characteristic of a biofilm (Mann and Wozniak 2012).

Pseudomonas species produce a variety of organic molecules, including poly-
saccharides, nucleic acids and proteins, that are used to form biofilm matrices. 
They may also synthesize accessory compounds involved in biofilm formation or 
adaptation to varying environmental conditions.

The opportunistic pathogen P. aeruginosa is the model most commonly utilized 
for studies of biofilm formation, composition and architecture. P. aeruginosa is 
also of interest because it causes various diseases in animals and humans (Donlan 
and Costerton 2002). Other Pseudomonas spp. has been studied in environments 
such as plant tissues, soil and freshwater streams.

Production of capsular polysaccharides is important for niche colonization by 
Pseudomonas spp. in many environments. Production of polysaccharides by bio-
film-forming microbes in general promotes colonization of surfaces by facilitating 
aggregation, adhesion and surface tolerance (Keith et al. 2003; Laus et al. 2006).

4.2  Function, Structure and Functions of Biosurfactants in 
Plant-Pseudomonas Interactions

D’aes et al. (2010) proposed that biosurfactants have three distinct activities: mod-
ification of surface properties, alteration of compound bio-availability and interac-
tion with membranes. The principal function of a particular biosurfactant depends 
on its structure and production characteristics.
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The properties of biosurfactants arise from their basic structure, consisting 
of both hydrophobic and a hydrophilic motifs. These structural properties vary 
widely among different species and strains of biosurfactant-producing microbes. 
The involvement of biosurfactants in plant−bacteria interactions may be beneficial 
to both partners that have adverse effects on competing microorganisms (Banat 
et al. 2014), or harm the host plant, as in the case of pathogens such as P. syringae.

Pseudomonas spp. mainly produce cyclic lipopeptide (CLP) type biosur-
factants, comprised of a cyclized oligopeptide lactone ring coupled to a fatty 
acid tail, and amino acids bound to the peptide chain. The biosurfactant activity 
depends on the type of amino acid and length of the fatty acid chain.

Biosynthesis of CLPs is controlled by nonribosomal peptide synthetases 
(NRPSs) (D’aes et al. 2010). Our knowledge of genetic regulation of CLP pro-
duction in Pseudomonas spp. is quite limited. Studies of several strains have 
shown that a GacS/GacA two-component system is necessary for CLP produc-
tion. Certain molecules with regulatory activity, including AHL QS signals, shock 
proteins, the global regulator GidA, and the protease ClpP are involved in genetic 
regulation of some (but not all) CLPs.

A variety of plant-associated bacteria, including PGPR and phytopathogens 
such as Pseudomonas spp., are able to produce biosurfactants. In early stages 
of plant-bacteria interactions, bacterial cells adhere to the phylloplane (for phy-
topathogens) or to the rhizoplane (for most beneficial species). Biofilm forma-
tion facilitates efficient colonization of plant surfaces by bacteria, and the process 
is sometimes accompanied by biosurfactant production. In P. fluorescens strains 
SS101 and SBW25, CLPs such as massetolide and viscosin are necessary for bio-
film formation. In mutant strains of Pseudomonas sp. MIS38 and P. putida with 
defective synthesis of the CLPs arthrofactin and putisolvin, respectively, thick and 
unstable biofilms were formed. Lindow and Brandl (2003) proposed that biosur-
factants enhance the epiphytic fitness of bacteria by promoting mobility and/or 
apoplast nutrient accumulation, because the waxy cuticle of plant leaves present 
a hydrophobic barrier that limits access of bacteria to nutrients in the absence of 
biosurfactants.

Burch et al. (2014) recently investigated the beneficial effects of the hygro-
scopic biosurfactant syringafactin synthesized by Pss B728a on leaves. 
Syringafactin on leaf surfaces had the ability to condense water vapor even during 
periods of low-atmospheric humidity. The increased humidity resulted in higher 
cuticle permeability and enhanced availability of apoplast nutrients.

5  Conclusions

The studies reviewed here demonstrate the importance of biofilm structures in ini-
tiating and maintaining contact of bacteria with the host plant, and the extent to 
which biofilm formation is an intrinsic component of plant−microbe interactions. 
Biosurfactant molecules are of particular interest because of their roles in plant 
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disease, and their antimicrobial properties that can be utilized in biocontrol strategies. 
Biosurfactants may trigger membrane depolarization through formation of trans-
membrane pores, induce immune responses by the host plant, or alter the bio-availa-
bility of nutrients on plant tissue surfaces and thereby promote nutrient accumulation 
by bacteria. Through their modification of surface properties, biosurfactants affect 
important bacterial processes such as surface motility, biofilm formation, and colo-
nization, which determine the efficiency and success of plant−bacteria interactions.
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1  Introduction

The genus Pseudomonas covers one of the most diverse and ecologically signif-
icant groups of bacteria. The taxonomy of the genus is complex, comprising at 
least 105 recognized species at the time this chapter was written. Members of this 
genus are found in large numbers in a wide range of environmental niches. This 
almost universal distribution of Pseudomonas suggests a remarkable degree of 
genomic diversity and genetic adaptability (Rehm Bernd 2008).

Pseudomonas is a large genus within the γ subclass of Proteobacteria known 
for its ubiquity in the environment, utilization of a striking variety of organic com-
pounds as energy sources (Wu et al. 2010), and production of an array of second-
ary metabolites (Gross and Loper 2009). As such, Pseudomonas spp. function as 
key components of ecological processes that suppress plant diseases in agricul-
tural and natural environments (Weller et al. 2002). Some of its members are well 
known for their beneficial role to plants; others are used for bioremediation and 
as biocontrol agents. This versatile group of Gram-negative bacteria is capable of 
synthesizing a variety of secondary metabolites and to degrade a wide range of 
macromolecules and various recalcitrant pollutant compounds. Furthermore, some 
strains of Pseudomonas spp. produce phytohormones (Loper and Schroth 1986), 
other strains induce resistance responses in plants against disease (Bakker et al. 
2007).

Among the soil microbiota, fluorescent Pseudomonas species like the PGPR 
one have attracted a significant interest and have been considered for bioreme-
diation. These Plant-surface associated microorganisms often form multicel-
lular aggregates, generally described as biofilms and play important roles in 
bioremediation.

Consequently, the production of biosurfactants rhamnolipids depends essen-
tially on understanding the full mechanism of their physiological and catabolic 
strategies towards the recalcitrant pollutants. An increased understanding of biore-
mediation strategies has driven a revolution that is now, more than ever, involve-
ment of biosurfactants and biofilm in bioremediation processes. Biofilm-grown 
cells exhibit enhanced tolerance toward adverse environmental stress conditions, 
and thus there has been a growing interest in recent years to use biofilms for bio-
technological applications (Halan et al. 2011). These multicellular aggregates 
embedded in the matrix are found to have applications in bioremediation of haz-
ardous waste sites, waste water treatment and mining acids or metals (Singh et al. 
2006). Several studies reported that biofilm formation, a surface life style for many 
bacteria (Watnick and Kolter 2000), was a promoting factor for biodegradation of 
Polycyclic Aromatic Hydrocarbons (PAHs) in that biofilm ensured higher bioavail-
ability of PAHs (Johnsen and Karlson 2004).

As highlighted in this brief introduction, it would be difficult to present all 
domains and aspects of Pseudomonas PGPR role in bioremediation. Therefore, 
here we review some mechanisms and strategies employed by Pseudomonas PGPR 
related to bioremediation processes through a special focus on the Rhamnolipids 
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(RLs). The second focus discusses applications of biofilm-mediated bioremedia-
tion processes. This chapter aims also to assemble the known cellular processes 
that might contribute to chemotaxis and motility behavior toward pollutants.

2  Applications of Pseudomonas as PGPR

Beneficial rhizobacteria that stimulate plant growth are usually referred to as 
plant growth-promoting rhizobacteria or PGPR (Glick et al. 1995). PGPR are a 
heterogeneous group of bacteria that can be found in the rhizosphere, at root sur-
faces and in association with roots. Plant growth-promoting bacteria may facili-
tate plant growth and development either indirectly or directly (Glick 2012, 2014). 
Indirect plant growth promotion occurs when these bacteria decrease or prevent 
some of the deleterious effects of a plant pathogen (usually a fungus) by any one 
of several different mechanisms. The direct promotion of plant growth by plant 

Fig. 1  The pseudomonas PGPR effect, the indirect plant growth promotion occurs with biocon-
trol action, whereas the direct promotion entails the releasing secondary metabolites in the rhizos-
phere or facilitating uptake of the released compounds from the environment (catabolic pathways)
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growth-promoting bacteria generally entails facilitating the acquisition of nutri-
ent resources from the environment (Fig. 1), such as nitrogen fixation (Compant 
et al. 2005), ammonia production (Marques et al. 2010), solubilization of mineral 
phosphate (Glick 2012), siderophore production (Lodewyckx et al. 2002), antibi-
otic production (Glick 2012) and production of plant hormones (Costacurta and 
Vanderleyden 1995) or in specifically modulating plant growth by altering plant 
hormone levels such as auxin, cytokinin and ethylene (Glick 2012).

Pseudomonas–plant interactions are found ubiquitously in nature and encom-
pass a growing number of plant species, many of which are important to com-
mercial horticulture (Rehm Bernd 2008). These interactions fall into two general 
groups those that are beneficial and those that are detrimental to the host plant’s 
health (Rehm Bernd 2008). Pseudomonas sp. which successfully interacts with 
plant hosts ultimately gains an advantage over the competing microorganisms 
in the immediate environment like the PGPR agents. The most effective PGPR 
strains of Pseudomonas have been fluorescent Pseudomonas spp.‚ and a consider-
able research is underway globally to exploit the potential of one group of bac-
teria that belongs to fluorescent Pseudomonads (Saharan and Nehra 2011). The 
presence of P. fluorescence inoculants in the combination of microbial fertilizer 
plays an effective role in stimulating yield and growth traits of chickpea (Rokhzadi 
et al. 2008), of sugarcane (Mehnaz et al. 2009). The Pseudomonads PGPR, rap-
idly colonize plant roots of potato, sugar beet, radish and cause statistically sig-
nificant yield increases up to 144 % in field tests (Burr et al. 1978). Among the 
different bacterial types, use of  plant growth promoting rhizobacteria (PGPR) 
for bioremediation activity is gaining imputes due to their differential abilities to 
degrade and  detoxify contaminants and also multiple effect on plant  growth pro-
motion (Glick et al. 2010)

3  PGPR Biosurfactants, Chemical Composition 
and Microbial Origin

Unlike chemically synthesized surfactants, which are classified according to 
their dissociation pattern in water, biosurfactants are categorized by their chemi-
cal composition, molecular weight, physico-chemical properties, mode of action 
and microbial origin (Pacwa-Płociniczak et al. 2011). Based on the structural fea-
tures, biosurfactants are classified into five types: (1) glycolipids, (2) phospholip-
ids, neutral lipids and fatty acids, (3) lipopeptides and lipoproteins, (4) flavolipids 
and (5) polymeric biosurfactants (Ron and Rosenberg 2001; Bodour et al. 2003; 
Makkar et al. 2011). Glycolipids are generally composed of a carbohydrate group 
and one or more aliphatic acids or hydroxyl aliphatic acids. The mostly and widely 
studied glycolipids are sophorolipids and rhamnolipids. Furthermore, due to their 
molecular-mass, biosurfactants can be divided into two classes: low-molecular-
mass molecules, which have the capability to lower surface and interfacial tension 
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and high-molecular mass polymers, which are well known as emulsion-stabilizing 
agents (Abdel-Mawgoud et al. 2011). The classes of low-mass surfactants include 
glycolipids, lipopeptides and phospholipids whereas high-mass ones include poly-
meric and particulate surfactants (Abdel-Mawgoud et al. 2011).

As was pointed out by Rosenberg and Ron (1999) low-molecular-mass bio-
surfactants are efficient in lowering surface and interfacial tensions, whereas 
high-molecular-mass biosurfactants are more effective at stabilizing oil in water 
emulsions. It is obvious that biosurfactants are categorized mainly by their chemi-
cal composition and microbial origin (Maneerat 2005) as depicted in Table 1. The 
different types of biosurfactants include lipopeptides synthesized by many spe-
cies of Bacillus and other species, glycolipids synthesized by Pseudomonas spe-
cies and Candida species, phospholipids synthesized by Thiobacillus thiooxidans, 
and polysaccharide-lipid complexes synthesized by Acinetobacter species, or even 
the microbial cell surface (Mousa et al. 2006). To our knowledge, several bio-
surfactants have been reported to be produced by Pseudomonads, Rhamnolipids 
(P. aeruginosa, P. putida, P. chlororaphis), Viscosin (P. fluorescens), Acaterin 
(Pseudomonas sp. A92), Carbohydrate–protein–lipid (P. fluorescens 378) and 
Protein PA (P. aeruginosa) (Rehm Bernd 2008). According to Pamp and Nielsen 
(2007) P. aeruginosa produces a number of biosurfactants, of which the three 
most abundant are 3-(3-hydroxyalkanoyloxy) alcanoic acid (HAA), l-rhamnosyl-
3-hydroxydecanoyl-3-hydroxydecanoate (mono-rhamnolipid) and l-rhamnosyl-
l-rhamnosyl-3-hydroxyde-canoyl-3-hydroxydecanoate (di-rhamnolipid). HAA 
is synthesized via the RhlA enzyme and is converted to mono-rhamnolipid by the 
RhlB enzyme (Déziel et al. 1999). Mono-rhamnolipid is converted to di-rham-
nolipid by the RhlC enzyme (Rahim et al. 2007)  as described in Fig. 2. In addi-
tion, phosphate limitation and the presence of nitrate have been shown to promote 
the synthesis of rhamnolipids, while ammonium and high amounts of iron have 
been shown to repress the production of rhamnolipids (Pamp and Nielsen 2007).

Our focus in this review will be on rhamnolipid compounds, low-molecular-
weight metabolites and the best studied and produced by other Pseudomonas 
species.

3.1  Pseudomonas Biosurfactants

Biosurfactants are surfactants that are produced extracellularly or as part of the 
cell membrane by bacteria, yeasts, and fungi (Mulligan 2005). They lower the 
surface tension of water; however, as commonly used, the term includes bioemul-
sifiers: substances which act as emulsifying agents but which do not necessar-
ily have a significant effect on surface tension (Desai and Banat 1997). Most 
biosurfactants/bioemulsifiers are amphipathic cell components such as fatty acids, 
phospholipids, lipopolysaccharides, lipoteichoic acids, etc. Biosurfactants can 
potentially replace virtually any synthetic surfactant and, moreover, introduce 
some unique physico-chemical properties (Banat et al. 2010). Currently, the main 
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Table 1  Biosurfactants classification, microorganismes and environmental applications 
(Mulligan and Gibbs 2004; Pacwa-Płociniczak et al. 2011)

Biosurfactant 
group

Class Microorganism Environmental application

Glycolipids Rhamnolipids Pseudomonas aeruginosa,  
Pseudomonas sp.

Enhancement of the  degradation 
and dispersion of  different 
classes of hydrocarbons; 
emulsification of hydrocarbons 
and vegetable oils; removal of 
metals from soil

Trehalolipids Mycobacterium  
tuberculosis, Rhodococcus 
erythropolis, Arthrobacter 
sp., Nocardia sp., 
Corynebacterium sp.

Enhancement of the bioavail-
ability of hydrocarbons

Sophorolipids Torulopsis bombicola,  
(T. petrophilum, T. 
apicola)

Recovery of hydrocarbons from 
dregs and muds; removal of 
heavy metals from sediments; 
enhancement of oil recovery

Fatty acids, 
phospholipids 
and neutral 
lipids

Corynomycolic 
acid

Corynebacterium lepus Enhancement of bitumen 
recovery

Spiculisporic 
acid

Penicillium spiculisporum Removal of metal ions from 
aqueous solution; dispersion 
action for hydrophilic pigments; 
preparation of new emulsion-
type organogels, superfine 
microcapsules (vesicles or 
liposomes), heavy metal 
sequestrants

Phosphati-
dylethanolamine

Acinetobacter sp., 
Rhodococcus erythropolis

Increasing the tolerance of 
bacteria to heavy metals

Lipopeptides Surfactin Bacillus subtilis Enhancement of the biodeg-
radation of hydrocarbons and 
chlorinated pesticides; removal 
of heavy metals from a contami-
nated soil, sediment and water; 
increasing the effectiveness of 
phytoextraction

Viscosin P. fluorescens Environmental and biomedical 
applications

P. fluorescens SBW25 Spreading motility and plant 
growth promotion.

Lichenysin Bacillus licheniformis Enhancement of oil recovery

Polymeric 
biosurfactants

Emulsan Acinetobacter  
calcoaceticus AG-1

Stabilization of the hydrocar-
bon-inwater emulsions

Alasa Acinetobacter  
radioresistens KA-53

Biodispersan Acinetobacter  
calcoaceticus A2

Dispersion of limestone in water

Liposan Candida lipolytica Stabilization of hydrocarbon-in-
water emulsionsMannoprotein Saccharomyces cerevisiae
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application is for the enhancement of oil recovery and hydrocarbon bioremedia-
tion due to their biodegradability and low critical micelle concentration (CMC) 
(Banat et al. 2010). Certain microorganisms produce extracellular biosurfactants 
or bioemulsifiers which may play a role e.g. in the adhesion of cells to and/or their 
detachment from surfaces, or in the utilization of hydrophobic substrates such as 
sulfur and hydrocarbons (Singleton and Sainsbury 2006).

Biosurfactants are a large heterogeneous group of microbial secondary metab-
olites and their most obvious property is their ability to effectively lower water 
surface tension (Fracchia et al. 2012). Biological surfactants possess several 
advantages over synthetic surfactants including high biodegradability, high emulsi-
fying abilities, low toxicity and good general environmental compatibility (Pacwa-
Plociniczak et al. 2011). Biosurfactants are therefore products with a broad 
potential of industrial (bioremediations, cosmetics, food and beverage manufac-
ture) and pharmaceutical applications (Magalhaes and Nitschke 2013).

ß-D-(ß-D-
hydroxyalkanoyloxy)alkanoic 

acid (HHA)

Fatty acid de novo  

Biosynthesis

1,3-di-P-Glycerate

Gluconate-6-P

Ribulose-5-P

Xylulose-5-P

EMP

KDPG

PP

RhlA

ED

Acetyl - CoA 

dTDP-4keto-6 desoxy -D-

Glucose

dTDP-D-Glucose

LPS

dTDP-4keto-6 desoxy –L-

mannose

dTDP-Rhamnose
LPS

PDC

Sucrose

Glycerol

Glucose

R-(-)3-Hydroxyacyl-ACP

Malonyl-CoA

Malonyl-ACP

RhlB
Mono-rhamnolipids

Di-rhamnolipids

RhlC

dTDP-D-Glucose
4,6-dehydratase

Glucose-6-P

Fructose-6-P-

D-Glyceraldehyde-3-P
Di-OH-

Acetone-P

PEP

2-P-Glycerate

3-P-Glycerate

Pyruvate

RhlC

Fig. 2  Rhamnolipids biosynthesis pathway, highlighting the proposed contributions of de novo 
fatty acid biosynthesis and β-oxidation to the fatty acids incorporated into rhamnolipids. EMP 
Embden-Meyerhof-Parnas; PP Pentose phosphate; ED Entner-Doudoroff, ACP Acyl carrier pro-
tein; CoA Coenzyme A; KDPG 2-keto-3-deoxy-6-phosphogluconate, dTDP-l-rhamnose: deoxy-
thymidine-diphospho-l-rhamnose, HHA β-hydroxyalkanoyl-β hydroxyalkanoic acid; PDC Pyru-
vate dehydrogenase complex
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These secondary metabolites are a structurally diverse group of surface-active 
molecules and could have more or less specific roles in different ecological 
niches (Rosenberg and Ron 1999). Biosurfactants, produced by microorganisms 
(Nerurkar et al. 2009), are amphipathic surface-active molecules containing hydro-
philic and hydrophobic moieties that act by emulsifying hydrocarbons, increasing 
their solubilization and subsequently rendering them available for microbial degra-
dation (Darvishi et al. 2011). They consist of two parts: a polar (hydrophilic) moi-
ety and non polar (hydrophobic) group. A hydrophilic group consists of mono-, 
oligo- or polysaccharides, peptides or proteins and a hydrophobic moiety usu-
ally contains saturated, unsaturated and hydroxylated fatty acids or fatty alcohols 
(Lang 2002). A characteristic feature of biosurfactants is a hydrophilic-lipophilic 
balance (HLB) which specifies the portion of hydrophilic and hydrophobic con-
stituents in surface-active substances (Pacwa-Płociniczak et al. 2011).

Due to their amphiphilic structure, biosurfactants increase the surface area of 
hydrophobic water-insoluble substances, increase the water bioavailability of such 
substances and change the properties of the bacterial cell surface. Surface activity 
makes surfactants excellent emulsifiers, foaming and dispersing agents (Desai and 
Banat 1997).

3.1.1  Rhamnolipids (RLs) Biosurfactants

Among the biological surfactants, rhamnolipids reportedly have a good chance 
of being adopted by the industry as a new class of renewable resource-based sur-
factants (Müller et al. 2012). The rhamnolipid molecules reduce water surface 
tension and emulsify oil (Hang Pham et al. 2004), the glycolipid molecules com-
prising l-rhamnose and 3-hydroxylalkanoic acid were first identified in the mid 
1900s in cultures of P. aeruginosa (Hauser and Karnovsky 1957). They are com-
prised of mono- and dirhamnose groups linked to 3-hydroxy fatty acids that vary 
in length, the most common being l-rhamnosyl-3-hydroxydecanoyl-3-hydroxyde-
canoate (monorhamnolipid) and l-rhamnosyl-l-rhamnosyl-3-hydroxydecanoyl-
3-hydroxydecanoate (dirhamnolipid) (Maier and Soberon-Chavez 2000).

To date, the glycolipid biosurfactants produced mainly by P. aeruginosa are 
the most intensively studied biosurfactants. This arises from two contrasting facts 
(Abdel-Mawgoud et al. 2011). First, they display relatively high surface activities 
and are produced in relatively high yields after relatively short incubation periods 
by a well-understood, easy to cultivate microorganism. Second, they are one of 
the virulence factors contributing to the pathogenesis of P. aeruginosa infections, 
and consequently, many aspects of RL biosynthesis have been investigated, in part, 
to control their production and effects (Abdel-Mawgoud et al. 2011). However, 
many bacteria have been found to produce also rhamnolipids (Abdel-Mawgoud 
et al. 2010; Soberón-Chávez and Maier 2011). These include other Pseudomonas 
species or species that are taxonomically more distant from Pseudomonas, e.g. 
Acinetobacter calcoaceticus, Pseudoxanthomonas sp., Enterobacter sp., Pantoea 
sp., Renibacterium salmoninarum, Nocardioides sp., Tetragenococcus koreensis or 
Burkholderia sp. (Rooney et al. 2009).
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Pseudomonas rhamnolipid producers Pseudomonas species have long been 
the main sources of RLs, with P. aeruginosa being considered the primary pro-
ducing species. However, many isolates from other bacterial species of a varying 
distance in their taxonomical classification are increasingly reported to be also RL 
producers (Abdel-Mawgoud et al. 2010). First, many Pseudomonas species other 
than P. aeruginosa have been reported to produce RLs (Onbasli and Aslim 2009).

Furthermore, Several attempts to produce Pseudomonas RLs in heterologous 
hosts have been reported. Yet, none produces RLs in comparable levels as the best 
P. aeruginosa strains. In view of a commercial production of RLs, there is still 
a huge potential for genetic optimization (Abdel-Mawgoud et al. 2011). Ochsner 
and Reiser (1995) cloned the rhlAB rhamnosyl transferase gene into various hosts, 
P. fluorescens, P. oleovorans, P. putida and Escherichia coli. The best RL produc-
tion was 60 mg/L and was achieved with P. putida, whereas no production was 
obtained with E. coli.

The structure of RLs is highly diverse and those produced by P. aeruginosa 
have been extensively studied. These RLs are amphiphilic molecules typically 
composed of 3-hydroxyfatty acids linked through a beta-glycosidic bond to mono- 
or di-rhamnoses (Soberon-chavez et al. 2005) (Fig. 2). RLs have several poten-
tial functions in bacteria (Vasta et al. 2010). They are one of the virulence factors 
contributing to the pathogenesis of P. aeruginosa infections and are essential for 
surface motility and biofilm development (Abdel-Mawgoud et al. 2010). Inspite of 
that, rhamnolipids exhibit several useful industrial applications such as emulsifi-
cation, detergency, wetting, foaming, dispersing, solubilization, antimicrobial and 
anti-adhesive activities in different areas from bioremediation to food additives. 
These topics have been extensively reviewed including some very recent articles 
(Banat et al. 2010; Pornsunthorntawee et al. 2010). Recent studies also reported a 
new role for RLs as potential players in the combat of plants and animals against 
microbes have recently emerged (Vatsa et al. 2010).

Non-P. aeruginosa rhamnolipid producers As described in the literature 
most RL-producing species belong to the closely related genera Pseudomonas 
and Burkholderia in the phylum proteobacteria (Walter et al. 2010). The genus 
Burkholderia arose from the genus Pseudomonas and was classified as a new 
genus in 1992 based on 16S rRNA sequence analysis (Yabuuchi et al. 1992). 
Consequently, bacteria of this genus have characteristics similar to Pseudomonas, 
and some species indeed produce RLs (Abdel-Mawgoud et al. 2011).

It is also interesting to note that another nonpathogenic species (Biosafety level 
1) would represent a very interesting alternative—if sufficient RL yields can be 
obtained (Abdel-Mawgoud et al. 2011). The most prominent nonpathogenic RL 
producers from the genus Pseudomonas are P. chlororaphis (Gunther et al. 2005), 
P. alcaligenes (Oliveira et al. 2009), P. putida (Martinez-Toledo et al. 2006; 
Meliani and bensoltane 2014) and P. fluorescens (Meliani and bensoltane 2014).

It is interesting to point out that despite the apparent safety advantage of these 
RL producers, very little is yet known about the biotechnological potential of these 
species (Abdel-Mawgoud et al. 2011).
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3.1.2  The Rhamnolipid Biosynthesis Pathway

Rhamnolipids are composed of one or two hydrophobic β-hydroxy fatty acids, 
which are linked through a β-glycosidic bond to one or two rhamnose mol-
ecules forming the hydrophilic moiety (Wang et al. 2007; Wittgens et al. 2011). 
According to the number of rhamnose moieties, mono- and di-rhamnolipids are 
differentiated (Wittgens et al. 2011). The fatty acids alkyl chain length in P. aerug-
inosa can vary from C8 to C14 (Abdel-Mawgoud et al. 2010); the most abundant 
species contains two β-hydroxy fatty acids with C10 chains. The alkyl chains can 
also contain up to two unsaturated C–C bonds (Wittgens et al. 2011).

Rhamnolipid production is transcriptionally regulated by quorum sens-
ing (Ochsner and Reiser 1995; Pearson et al. 1997). The synthesis pathway 
of rhamnolipids consists of three dedicated enzymatic reactions (Wittgens 
et al. 2011). The biosynthesis of these tensio-active molecules proceeds by two 
sequential rhamnosyl transfer reactions, each catalysed by a specific rhamnosyl-
transferase (RhlB and RhlC, respectively), with deoxythymidine diphospho-l-
rhamnose (dTDP-l-rhamnose) acting as rhamnosyl donor in both reactions and 
3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the product of RhlA catalysis 
(Déziel et al. 2003; Cabrera-Valladares et al. 2006), or mono-rhamnolipid acting 
as the respective recipients (Aguirre-Ramı´rez et al. 2012). In the first step two 
activated β-hydroxy fatty acids are linked by RhlA, the 3-hydroxyacyl-ACP (acyl 
carrier protein):3-hydro-xyacyl-ACP O-3-hydroxyacyltransferase, to a dimer, 
called 3-(3-hydroxyalkanoyloxy) alkanoate (HAA) (Zhu and Rock 2008). Mono-
rhamnolipids are produced by RhlB, the rhamno-syltransferase I, by the conden-
sation of HAA and dTDP-l-rhamnose. The rhamnosyltransferase II (RhlC) adds 
another rhamnose moiety to the mono-rhamnolipid resulting in a di-rhamnolipid 
(Rahim et al. 2001) as outlined in Fig. 2 for P. aeruginosa. Notably, RhlG, ab-
hydroxyacyl-ACP: CoA (coenzyme A) transacylase, previously associated with 
rhamnolipid synthesis, is not required for rhamnolipid synthesis in vitro. The 
genes rhlA and rhlB are organized in a single operon, while rhlC is localized in 
another region of the P. aeruginosa genome and forms an operon with a gene of 
unknown function (Wittgens et al. 2011).

The donor of the rhamnosyl moiety is dTDP-l-rhamnose, produced from 
d-glucose by a series of reactions catalyzed by the AlgC and Rml enzymes 
(Maier and Soberon-Chavez 2000). It has been suggested that the lipid moiety 
precursor is diverted from de novo fatty acid synthesis since the stereochemis-
try of the β-hydroxy fatty acid in the lipid moiety matches that of the interme-
diates in de novo fatty acid synthesis but not intermediates in the catabolic fatty 
acid β-oxidation pathway. RhlA has been identified as the enzyme that diverts the 
(R)-β-hydroxyacyl-acyl carrier protein (ACP) from de novo fatty acid synthesis to 
the rhamnolipid biosynthesis pathway by catalyzing the formation of HAA. RhlB 
and RhlC are two rhamnosyltransferases which are responsible for the consecutive 
additions of two rhamnosyl groups to HAA to form monorhamnolipid first and 
then dirhamnolipid (Zhang et al. 2012).
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In P. aeruginosa the expression of all three genes involved in rhamnolipid syn-
thesis is regulated by two quorum sensing systems and is active when Paeruginosa 
is cultivated under phosphate or nitrogen-limiting conditions (Benincasa et al. 
2002). The σ54 factor is responsible for the expression of rhlAB under these condi-
tions. LasI/R and RhlI/R are also regulating transcription of many virulence fac-
tors (Wittgens et al. 2011).

3.1.3  Focus on Rhamnolipids Market

Rhamnolipids are well-characterized and scientifically proven biosurfactants 
which are slowly and steadily becoming highly sought after biomolecules (Sekhon 
Randhawa and Rahman 2014). Among other biosurfactants rhamnolipids have the 
highest number of patents and research publications. However, cost-competitive-
ness is one of the major factors that is holding rhamnolipids back from becoming 
the champions of their field (Sekhon Randhawa and Rahman 2014).

It has been proven that rhamnolipids being produced using fermentation pro-
cesses can be produced at a United States cost of $5–20/kg (Renfro 2013). 
Compared to a synthetic surfactant production at a United States cost of $1–3/kg, 
a decrease in Rhamnolipid manufacturing cost will increase production (Maier and 
Soberon-Chavez 2000; Soberon-Chavez et al. 2005). The current market price of 
rhamnolipid (R-95, 95 %) is $227/10 mg (Sigma-aldrich) and $200/10 mg (AGAE 
technologies, USA) calling for strenuous research. Rhamnolipids have favorable 
applications in various sectors and if made economically sustainable nothing can 
stop these biomolecules to rule the surface-active compounds market (Sekhon 
Randhawa and Rahman 2014).

3.2  Inimitable Applications of Rhamnolipids

In the past close to three decades, there has been a great body of research work 
carried out on rhamnolipids revealing many of their astonishing applications and 
making them reach the pinnacle of popularity among all the categories of biosur-
factants in the global market (Sekhon Randhawa and Rahman 2014). The reason 
behind the current global interest in rhamnolipid production owes to their broad 
range of applications in various industries along with many spectacular “eco-
friendly” properties (Sekhon Randhawa and Rahman 2014).

It is imperative to evaluate the major applications of rhamnolipids that make 
them noticeable among other biosurfactants (Sekhon Randhawa and Rahman 
2014). Among the five major applications listed below, our attention had been 
focused on their application in Bioremediation and enhanced oil recovery (EOR):

(i) Bioremediation and enhanced oil recovery (EOR) Rhamnolipids show excel-
lent emulsification properties, efficiently remove crude oil from contaminated 
soil and facilitate bioremediation of oil spills (Rahman et al. 2003).
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(ii) Pharmaceuticals and therapeutics Clinical testing of RLs as  pharmacoactive 
compounds has been performed. Some successful trials proved the poten-
tial applications of RLs for the treatment of ulcers (Piljac et al. 2008) and 
of full-thickness wounds (Stipcevic et al. 2006). Furthermore‚  rhamnolipids 
have been shown to display antibacterial activities against plant and human 
pathogenic bacteria (Vatsa et al. 2010)· They show low-toxicity, surface-
active properties and antimicrobial activities against several microbes 
(Bacillus cereus, Micrococcus luteus, Staphylococcus aureus, Listeria mono-
cytogenes), thereby showing promising applications in pharmaceuticals and 
therapeutics (Magalhaes and Nitschke 2013).

(iii) Cosmetics Rhamnolipid as an active ingredient is found to be effective for 
several skin treatments i.e. wound healing with reduced fibrosis, cure of 
burn shock and treatment of wrinkles; hence are in demand in the health and 
beauty industry (Sekhon Randhawa and Rahman 2014).

(iv) Detergents and cleaners Rhamnolipids are natural emulsifiers and surface-
active agents leading to their wide spread usage in detergent compositions, 
laundry products, shampoos and soaps (Pacwa-Płociniczak et al. 2011; Parry 
et al. 2013).

(v) Agriculture Rhamnolipids are already used for soil remediation for improv-
ing soil quality and are now further getting explored for plant pathogen elim-
ination, for aiding the absorption of fertilizers and nutrients through roots and 
as biopesticides (Sachdev and Cameotra 2013).

3.2.1  Rhamnolipids on Environmental Remediation

From a biotechnological point of view, RLs are powerful biosurfactants with 
applications related to environmental concerns, such as bioremediation of hydro-
carbon, organic pollutants and heavy-metal-contaminated sites (Vatsa et al. 2010). 
Rhamnolipids have been shown to have potential use in several applications, 
but most of the research has focused on environmental remediation. Currently, 
bioremediation is thought to be a cost- and performance-effective technology to 
solve environmental pollution problems (Pornsunthorntawee et al. 2010). With 
the use of rhamnolipids, the biodegradation of these pollutants can be signifi-
cantly enhanced (Pornsunthorntawee et al. 2010). Zhang et al. (1997) reported 
that rhamnolipids increased the solubility of phenanthrene (polycyclic aromatic 
hydrocarbons) in a test solution, resulting in the enhancement of the phenanthrene 
biodegradation rate.

In addition, rhamnolipids produced by P. aeruginosa UG2 was found to 
increase the solubilization of pesticides, resulting in the stimulation of biodegrada-
tion rate and extent (Mata-Sandoval et al. 2000). Furthermore, the enhancement 
of hexadecane biodegradation by rhamnolipids has also been reported by Abalos 
et al. (2001), however Rahman et al. (2002) showed that rhamnolipid-containing 
additives had positive effects on the bioremediation of gasoline-contaminated 
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soil. Whang et al. (2008) signaled a potential use of rhamnolipids produced by 
P. aeruginosa J4 for the biodegradation of diesel-contaminated water and soil, 
whereas Clifford et al. (2007) found that rhamnolipids produced by P. aerugi-
nosa ATCC 9027 significantly improved the solubilization of tetrachloroethylene 
(PCE), a common ground water pollutant, indicating the potential use of the tested 
biosurfactant in surfactant-enhanced aquifer remediation (SEAR) applications 
(Pornsunthorntawee et al. 2010).

Moreover, Cassidy et al. (2002) also suggested that rhamnolipids might be 
applied in intrinsic bioremediation using in situ rhamnolipid production at an 
abandoned petroleum refinery. Bai et al. (1997) reported that monorhamno-lipid 
produced by P. aeruginosa ATCC 9027 displayed efficiency in the removal of 
residual hexadecane from soil higher than three synthetic surfactants: SDS, pol-
yoxyethylene and sorbitan monooleate. However, Noordman et al. showed that 
rhamnolipids produced by P. aeruginosa UG2 effectively removed phenanthrene 
from soil (Noordman et al. 1998).

For the removal of heavy metals such as copper, zinc and lead by rhamnolipids 
several studies have also been reported (Mulligan et al. 2001; Herman et al. 1995). 
Mulligan and Wang (2006) found that rhamnolipid foam effectively removed inor-
ganic heavy metal, including cadmium and nickel, from a contaminated soil sam-
ple (Pornsunthorntawee et al. 2010).

4  Applications of Biofilms in Bioremediation

The pollutants can range from polycyclic aromatic hydrocarbons, refined petro-
leum products, acid mine drainage, pesticides, industrial waste and heavy metals 
to crude oil (Finnerty 1994). Interestingly, biofilms are found to have applica-
tions in bioremediation of hazardous waste sites, waste water treatment and min-
ing acids or metals (Singh et al. 2006). Applications of biofilms in bioremediation 
are of recent interest because they exhibit better metabolic activity (Kirchman and 
Mitchell 1982), survival rate and rate of gene transfer (Molin and Tolker-Nielsen 
2003).

Several studies emphasize the importance of the formation of biofilms in 
bioremediation of toxic pollutants and recalcitrant polymers. Furthermore, 
many reports are available on the bioremediation of heavy metals (Langley and 
Beveridge 1999) and hydrocarbons (Puhakka et al. 1995) by biofilms composed of 
Pseudomonas sp.

Similarly, applications of rhamnolipid in heavy metal removal and their role in 
enhancing the bioavailability of hydrocarbons have been reported (Mulligan 2004). 
Moreover, successful application of a bioremediation process relies upon an under-
standing of interactions among microorganisms, organic contaminants and soil or 
aquifer materials (Singh et al. 2006). Physiological properties of the microorgan-
isms such as biosurfactant production and chemotaxis enhance bioavailability and, 
hence, degradation of hydrophobic compounds (Pandey and Jain 2002).
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Microorganisms that secrete polymers and form biofilms on the surface of 
hydrocarbons are especially well suited for the treatment of recalcitrant or slow-
degrading compounds because of their high microbial biomass and ability to 
immobilize compounds by biosorption (passive sequestration by interactions with 
biological matter), bioaccumulation (increased accumulation of microbes under 
influence) and biomineralization (formation of insoluble precipitates by interac-
tions with microbial metabolic products) (Singh et al. 2006).

Furthermore, biofilms support a high biomass density that facilitates the min-
eralization processes by maintaining optimal conditions of pH, localized solute 
concentrations and redox potential in the vicinity of the cells. This is achieved by 
the unique architecture of the biofilm and controlled circulation of fluids within 
it (Flemming 1995). Biofilm-based reactors are commonly used for treating large 
volumes of dilute aqueous solutions such as industrial and municipal wastewaters 
(Singh et al. 2006).

In the case of Pseudomonas sp. (P. putida, P. fluorescens and P. cepacia) some 
bioreactors are currently being used for bioremediation of various hydrocarbon 
contaminants such as 2,4-dichloropheno, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlo-
rophenol, pentachlorophenol, pyrene, phenanthrene, o-cresol, naphthalene, phe-
nol, 1,2,3-trimethylbenzene and carbon tetrachloride, with an overall efficiency of 
~100 % (Kargi and Eker 2005; Puhakka et al. 1995; Singh et al. 2006).

4.1  Biofilm a Promoting Factor for Biodegradation

Biofilm formation is often thought to represent a protective mode of growth which 
may enhance bacterial survival under conditions of environmental stress (Webb 
et al. 2003). Recently it was found that rhamnolipids play a major role in the 
architecture of biofilms produced by P. aeruginosa and that the formation of water 
channels is strongly dependent on the presence of rhamnolipids (Davey et al. 
2003). In this context, one obvious question is whether rhamnolipid regulates the 
biofilm formation and resistance toward pollutants. This will be addressed through 
a report of certain studies related to the promoting role of biofilm in biodegrada-
tion. Three gram-negative soil bacteria P. fluorescens, P. putida and P. aeruginosa 
are of intense interest for bioremediation, as they may degrade various organic 
pollutants and at the same time withstand the toxicity of many soluble metal ions. 
Growth in a biofilm modulates microbial metal resistance, often increasing the 
ability of microorganisms to withstand toxic metal ions by several orders of mag-
nitude. Past studies have often focused on only a few metal ions at a time and 
hence little data are available for elucidating universal trends of metal toxicity in 
bacteria.

Several studies reported that biofilm formation, a surface life style for many 
bacteria (Watnick and Kolter 2000), was a promoting factor for biodegradation of 
Polycyclic Aromatic Hydrocarbons (PAHs) in that biofilm ensured higher bioavail-
ability of PAHs (Johnsen and Karlson 2004). Meliani and Bensoltane (2014) study 
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offers important insights into the biodegradation of monoaromatic, cyclic hydro-
carbons compounds and indicates that the biofilm is able to grow more in the pres-
ence of xylene and thereby maintain itself over a long period of incubation with 
different aspects of thickness.

Biofilm-mediated bioremediation has been found to be a more effective and 
safer alternative to bioremediation with planktonic bacteria since cells growing 
within a biofilm have higher chances of adaptation to different environments and 
their subsequent survival (Singh et al. 2006). Biofilms have been found to protect 
the microbial community from environmental stresses (Flemming and Wingender 
2002). This is why the formation of biofilms in natural and industrial environ-
ments allows bacteria to develop resistance to bacteriophage, amoebae, chemi-
cally diverse biocides, host immune responses and antibiotics (Costerton et al. 
1999) and is increasingly recognized as an important virulence factor in a variety 
of chronic infections. Biofilm reactors are generally used to treat hydrocarbons, 
heavy metals and large volumes of dilute aqueous solutions such as industrial and 
municipal waste water (Singh et al. 2006).

Moreover, rhamnolipids, produced under control of the quorum-sensing regula-
tor, rhlR, are known to contribute to the biofilm architecture and detachment, but 
their influence at early stages of biofilm formation is less certain.

4.2  Chemotaxis and Motility Behavior Toward Pollutants

Chemotaxis is the movement of organisms in response to a chemical nutrient or 
chemical gradient. It helps bacteria to find optimum conditions for growth and sur-
vival and is an integral feature of biodegradation (Pandey and Jain 2002). Cells 
displaying chemotaxis can sense chemicals such as those adsorbed to soil parti-
cles in a particular niche and swim toward them; hence, the mass-transfer limita-
tions that impede the bioremediation process can be overcome (Al-Awadhi et al. 
2003). Once the cells are brought into close contact with a surface, the mecha-
nism of biofilm formation and surfactant production commences, which leads to 
enhanced bioavailability and biodegradation. When the target contaminants are 
dissolved in an aqueous medium, the rate of biodegradation is improved compared 
with those hydrophobic pollutants that remain adsorbed in the non-aqueous phase 
liquid (NAPL) associated with contaminated soils (Law and Aitken 2003; Singh 
et al. 2006). Bacteria access these target compounds either by dissolution of the 
target compounds in the aqueous phase or by direct adhesion to the NAPL–water 
inter-face, a process that is facilitated by biofilm formation (Singh et al. 2006).

Motile bacteria have the ability to sense changes in the concentration of chemi-
cals in environments and respond to them by altering their pattern of motility. This 
behavioral response is called chemotaxis. The Pseudomonads also show chemo-
tactic responses to various chemical compounds, including amino acids, organic 
acids, sugars, aromatic compounds and inorganic ions (Rehm Bernd 2008).
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Since the Pseudomonads include important plant and animal pathogens and 
potential agents of geochemical cycles, biocontrol and bioremediation, and chem-
otaxis is thought to play an important role in microbe host and microbe substrate 
interactions, ecological aspects of chemotaxis have been intensively investigated 
in Pseudomonas species (Rehm Bernd 2008).

Soil-borne fluorescent pseudomonads, including P. fluorescens and P. putida, 
exhibit beneficial effects on plants such as the promotion of plant health and devel-
opment, and biological control of soil-borne diseases (Bolwerk et al. 2003). These 
plant-deleterious and plant-beneficial Pseudomonads were found to exhibit chem-
otactic responses toward root and seed exudates, leaf surface water and organic 
compounds prevalent in them (Grewal and Rainey 1991). Furthermore, it was 
reported that ethylene, a plant hormone, also serves as a chemo attractant for P. 
fluorescens, P. putida and P. syringae (Kim et al. 2007).

Interestingly, chemotaxis of pollutant-degrading bacteria is a trait important 
for bioremediation, especially in situ bioremediation. The migration of pollutant 
degraders to pollutants is expected to speed the biodegradation process because 
it should bring the cells into contact with pollutants. Therefore, there has been 
much research on chemotaxis of Pseudomonads toward environmental pollut-
ants. Benzoate-degrading P. putida PRS2000 is attracted by aromatic acids includ-
ing benzoate, p-hydroxybenzoate, toluates, salicylate and chlorobenzoates (Rehm 
Bernd 2008). Parales et al. (2000) reported that the soil bacteria can sense and 
swim toward the toxic compounds toluene, benzene, trichloroethylene and related 
chemicals suggesting that the introduction of chemotactic bacteria into selected 
polluted sites may accelerate bioremediation processes.

Though chemotactic response of motile bacteria to a wide variety of attractants 
is well documented (Gupta et al. 1991), the behavioral aspect of different motil-
ity traits, such as speed, rate of change in direction and net to gross displacement 
ratio in response to recalcitrants compounds and pollutants is yet to be ascertained. 
Harrison et al. (2007) signaled that biofilm formation is a strategy that microor-
ganisms might use to survive a toxic flux in the inorganic compounds. Evidence 
in the literature suggests that biofilm populations are protected from toxic com-
pounds by the combined action of physiological phenomena that are, in some 
instances, linked to phenotypic variation among the constituent biofilm cells 
such as the swarming, swimming and twitching behavior. In this section, we have 
assembled the known cellular and physiological phenomena of Pseudomonas 
behavioral aspect related to Rhamnolipids synthesis.

Bacterial swarming motility has been shown to be important to biofilm forma-
tion (Shrout et al. 2006), where cells act not as individuals, but as coordinated 
groups to move across surfaces, often within a thin-liquid film (Kearns 2010). 
Many swarming bacteria are aided by the production of a surfactant that lowers 
surface tension of the liquid film to improve bacterial motility (Kearns 2010; Du 
et al. 2012). The swarming communities of P. aeruginosa represent a complex 
intersection of physical, biological and chemical phenomena (Du et al. 2012). The 



367Bioremediation Strategies Employed by Pseudomonas Species

branched tendril patterns that are often, but not always, observed in P. aeruginosa 
swarms require production of rhamnolipid (RL) (Xavier et al. 2011). As an extra-
cellular lipid, RL acts as a surfactant to reduce surface tension in bacterial sus-
pensions. In addition to RL, a functional bacterial flagellum is also required for 
swarms to form tendrils (Caiazza et al. 2005) (Fig. 3).

This complex type of motility is usually defined as a rapid and coordinated 
translocation of a bacterial population across a semi-solid surface (Tremblay 
and Déziel 2010). In addition to flagella, swarming of P. aeruginosa requires the 
release of two exoproducts, rhamnolipids (RLs) and 3-(3-hydroxyalka-noyloxy) 
alkanoic acids (HAAs), which act as wetting agents and chemotactic-like stimuli 
(Kohler et al. 2000) and are also implicated in many aspects of biofilm develop-
ment (Tremblay and Déziel 2010).

Fig. 3  Rhamnolipids are required for modulating swarming behavior in certain different spe-
cies of Pseudomonas. Note the formation of dendritic fractal-like patterns formed by migrat-
ing swarms moving away from an initial location of these species. Swarming motility on TSA 
medium (1.5 % agar) for 72 h at 30 °C after a central spot of 5 ml of an overnight bacterial cul-
ture in TSB. Views of swarming motility are provided from my personal current study
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4.3  Biofilm and Microbial Adhesion, Beneficial Tools  
for the Degradation of Environmental Hazardous

Another line of research is devoted to understanding the role of rhamnolipids 
in biofilm formation. Biofilms are abundant in nature and are of clinical, envi-
ronmental and industrial importance (Glick et al. 2010). Biofilm development 
is known to follow a series of complex but discrete and tightly regulated steps 
(Harbron and Kent 1988; Kjelleberg and Givskov 2007), including (i) microbial 
attachment to the surface, (ii) growth and aggregation of cells into microcolonies, 
(iii) maturation and (iv) dissemination of progeny cells that can colonize new 
niches (Glick et al. 2010). Over the last decade, several key processes important 
for biofilm formation have been identified, including quorum sensing (Joseph et al. 
2001) and surface motility (O’Toole and Kolter 1998; Rehm Bernd 2008).

The extracellular filamentous appendages produced by motile microorganisms 
are responsible for the attachment process and interact with surface in a different 
manner. Till date, Flagella and pili had been the subject of intense study mainly 
for two reasons. First, their responsibility in behavior motility. Second, because of 
their consideration as one of the three major matrix components.

Flagella are very fine threads of the protein flagellin with a helical structure 
extending out from the cytoplasm through the cell wall. Flagella may have a 
diameter between 0.01 and 0.02 mm, and a length of up to 10 mm. Many types 
of bacteria have flagella, including the genus Pseudomonas. It is possible that the 
flagellum itself may form an adhesive bond with the adhesion surface (Harbron 
and Kent 1988). The primary function of flagella in biofilm formation is assumed 
to be in transport and in initial cell–surface interactions (Sauer and Camper 2001). 
Flagella-mediated motility is believed to overcome repulsive forces at the surface 
of the substratum. Moreover, pili or fimbriae are found on many Gram-negative 
bacteria including Pseudomonas species. They are fine, filamentous appendages, 
also of protein, 4–35-nm wide and up to several micrometers long (Harbron and 
Kent 1988). These structures are usually straight, and are not involved in motil-
ity. Their only known general function is to make cells more adhesive, since bac-
teria with pili can adhere strongly to other bacterial cells and inorganic particles 
(Rogers 1979).

Biofilm development involves several stages which must be understood in order 
to achieve biofilm control and which begin by the attachment of pioneer bacteria 
to the surface. Biofilm formation and swarming motility are inversely regulated 
(Kuchma et al. 2007). This phenotype requires coordination of several pathways, 
including flagellar motility, cell–cell signaling/quorum sensing and biosurfactant 
secretion (Déziel et al. 2003). Swarming motility is operationally defined as a 
rapid multicellular movement of bacteria across a surface, powered by rotating fla-
gella (Kearns 2010). Swimming motility is a mode of bacterial movement that is 
also powered by rotating flagella but, unlike swarming motility, swimming takes 
place as individual cells moving in liquid environments. Twitching motility is a 
surface motility powered by the extension and retraction of type IV pili, which 
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confers slow cell movement, often with a jerky or ‘twitchy’ appearance (Mattick 
2002). Gliding motility is a catch-all definition for active surface movement that 
occurs along the long axis of the cell without the aid of flagella or pili (Kearns 
2010). Gliding seems to have evolved independently in multiple lineages but 
generally involves the cell body moving through the use of focal-adhesion com-
plexes that bind to a surface substrate. Sliding motility is a passive form of surface 
spreading that does not require an active motor but instead relies on surfactants to 
reduce surface tension, enabling the colony to spread away from the origin, driven 
by the outward pressure of cell growth (Kearns 2010).

Biofilm-forming bacteria are generally known to employ both extracellular and 
intracellular biofilm factors including membrane appendages and extracellular 
matrices (Déziel et al. 2003). As is the case with most bacteria, environmental iso-
lates of Pseudomonas are capable of forming different types of biofilm, including 
pellicles (floating biofilms at the air liquid interface) or wrinkly spreaders (WSs, 
or solid surface-associated submerged biofilms) (Kearns 2010). Recent studies 
involving P. fluorescens WSs have shown that certain factors including cellulose 
matrix, fimbriae and lipopolysaccharides (LPS) might be extremely relevant to the 
strength and integrity of WS (Mattick 2002).

Biofilms can be detrimental to both human life and industrial processes, caus-
ing infection associated with medical implants (Dankert et al. 1986), pathogen 
interaction with host cells (Soto and Hultgren 1999), periodontitis, contamina-
tion of food from processing equipment, enhancement of metal corrosion (Hori 
and Matsumoto 2010), and so on. However, microbial adhesion can be also benefi-
cial, for example, in the degradation of environmental hazardous chemicals in soil 
(Bouwer and Zehnder 1993) or in bioreactors for waste water treatment or off-gas 
treatment (Hori and Matsumoto 2010), in agricultural uses of root nodule bacteria 
in the rhizosphere (Espinosa-Urgel et al. 2000) and in bioflocculants used for the 
separation of coal particles (Hori and Matsumoto 2010).

4.3.1  Role of Biofilms in Remediation of Heavy Metals

Metal contamination has been linked to birth defects, cancer, skin lesions, mental 
and physical retardation, learning disabilities, liver and kidney damage and a host 
of other diseases (Singh and Cameotra 2004). Heavy metals are the primary inor-
ganic contaminants, which include cadmium, chromium, copper, lead, mercury, 
nickel and zinc. Heavy metal bioremediation can be achieved by immobilization, 
concentration and partitioning to an environmental compartment, thereby mini-
mizing the anticipated hazards (Barkay and Schaefer 2001; Lloyd 2003).

Another promising application of biofilms is in heavy metal and radionu-
clide remediation (Barkay and Schaefer 2001). The distribution and diversity of 
microbes that inhabit contaminated sites and of the genes that encode for pheno-
types responsible for metal–microbe interactions are crucial elements in metal and 
radionuclide bioremediation (Singh et al. 2006). Déziel et al. (1996) demonstrated 
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the potential of rhamnolipids in bioremediation of sites contaminated with toxic 
heavy metals such as uranium, cadmium and lead.

Furthermore and because of their anionic nature, rhamnolipids can be used to 
remove heavy metalions, i.e. cadmium, lead and zinc (Miller 1995). Along with 
their potential in removing heavy metals, their addition to the hydrophobic sub-
strates helps microorganisms with uptake and assimilation of insoluble hydro-
carbons such as linear alkanes, which are very insoluble in water but are good 
nutrient sources for P. aeruginosa (Hommel 1994).

Bioremediation and enhanced oil recovery (EOR): Rhamnolipids show excel-
lent emulsification properties, efficiently remove crude oil from contaminated soil 
and facilitate bioremediation of oil spills (Rahman et al. 2003; Costa et al. 2010).

Furthermore, a simultaneous increase in the EPS content of the biofilm was 
also observed, which suggested the role of EPS and biofilms in the entrapment of 
metal precipitates (Singh et al. 2006). Macaskie et al. (2000) observed that poly-
crystalline NaUO2PO4 accumulated in and around the cell wall of Citrobacter sp. 
N14 by adsorption to lipopolysaccharide and, hence, aided in its bioprecipita-
tion of the uranium salt. In another study of metal precipitation, Labrenz et al. 
(2000) observed the formation of sphalerite (ZnS) by members of the aerotolerant 
Desulfo bacteriaceae in a natural biofilm. In this process, Zn was concentrated and 
metal sulfides were then precipitated by sulfate-reducing bacteria in the second 
phase of a combined sulfur oxidation–reduction biotreatment technique (Singh 
et al. 2006).

In White and Gadd (2000) study by a simultaneous increase in the EPS content 
of the biofilm was also observed, which suggested the role of EPS and biofilms 
in the entrapment of metal precipitates. Biofilms can also affect the fate of other 
compounds in their vicinity as a consequence of their physiological response dur-
ing the absorption of water and inorganic or organic solutes (Flemming 1995).

According to the United States Agency for Toxic Substances and Disease 
Registry, the Comprehensive Environmental Response, Compensation and 
Liability Act 2005 Priority List names As, Pb, Hg and Cd as 4 of the top 10 most 
prevalent environmental toxins that are hazardous to public health (Harrison et al. 
2007). Microbial biofilms, natural or engineered, could be used to remediate heavy 
metal pollution by biochemical modification and/or the accumulation of toxic 
metal ions (Chang et al. 2006), which notably include the radioactive actinides as 
well as other radionuclides (Anderson et al. 2006).

An understanding of metal toxicity in biofilms is crucial to the successful 
design of bioreactors that are used for biomining (Harrison et al. 2007), as well 
as those reactors that are used for biodegrading organic contaminants that are fre-
quently intermingled with metals (Singh et al. 2006). Moreover, Biofilm-mediated 
bioremediation presents a proficient and safer alternative to bioremediation with 
planktonic microorganisms because cells in a biofilm have a better chance of 
adaptation and survival (especially during periods of stress) as they are protected 
within the matrix (Decho 2000).
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Owing to the close, mutually beneficial physical and physiological interactions 
among organisms in biofilms, the usage of xenobiotics is accelerated and, conse-
quently, biofilms are used in industrial plants to help in immobilization and deg-
radation of pollutants (Das et al. 2012). However, it is only during the past few 
decades that biofilm reactors have become a focus of interest for researchers in the 
field of bioremediation (Singh et al. 2006).

4.3.2  Role of Biofilms in Remediation of Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the 
environment with potential mutagenicity and carcinogenicity. They are generated 
from natural combustion processes as well as from human activities (Luan et al. 
2006). Most of the pollutant hydrocarbons in the environment are often composed 
of mixtures of numerous homologous compounds and bound to particulates in soil 
and sediments, restricting their availability for biodegradation (Mao et al. 2012).

To our knowledge microbial bioremediation technology depends mainly on 
aerobic microorganisms; rhamnolipids can be used in the microbial remedia-
tion of hydrocarbon- and crude-oil-contaminated soils (Itoh and Suzuki 1974). 
Biodegradation of hydrocarbons by native microbial populations is the primary 
mechanism by which hydrocarbon contamination can be removed from the envi-
ronment (Banat 1993).

In another experiment, Shabtai and Gutnick demonstrated a 25–70 % and 
40–80 % increase in the recovery of hydrocarbons from contaminated sandy-loam 
and silt-loam soil, respectively (Shabtai and Gutnick 1985). Furthermore, and in 
another report, 56 and 73 % of the aliphatic and aromatic hydrocarbons, respec-
tively, were recovered from contaminated sandy-loam soil when treated with 
rhamnolipids (Scheibenbogen et al. 1994). On the other hand, the degradation of 
hexadecane and octadecane by different Pseudomonas strains has also been stud-
ied (Miller 1995).

The ability of rhamnolipid biosurfactants to emulsify hydrocarbon-water mix-
tures, degrade hydrocarbons in oil spill management, and remediate metal-con-
taminated soil has been well documented (Long et al. 2013).

The recent report by Cameotra and Singh (2009) throws more light on the 
uptake mechanism of n-alkane by P. aeruginosa and the role of rhamnolipids in the 
process. The authors reported a new and exciting research for hydrocarbon uptake 
involving internalization of hydrocarbon inside the cell for subsequent degradation 
(Pacwa-Plociniczak et al. 2011). Biosurfactant action dispersed hexadecane into 
micro droplets, increasing the availability of the hydrocarbon to the bacterial cells. 
The electron microscopic studies indicated that uptake of the biosurfactant-coated 
hydrocarbon droplets occurred. Interestingly, “internalization” of “biosurfactant 
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layered hydrocarbon droplets” was taking place by a mechanism similar in appear-
ance to active pinocytosis. This mechanism was not earlier visually reported in bac-
terial modes for hydrocarbon uptake (Pacwa-Płociniczak et al. 2011).

5  Remediation of Organic Contaminants  
by PGPR/Rhizoremediation

Recently, the combination of microbial remediation and phytoremediation has 
become a general practice in the field treatment of petroleum-contaminated soils. 
This technique can be defined as rhizoremediation, which is a specific type of phy-
toremediation that involves both plants and their associated rhizosphere microbes. 
It is interesting to point out that different approaches such as rhizoremediation, 
combination of PGPR and specific contaminant degrading bacteria, genetically 
engineered microbes, transgenic plants and enzyme technology can be used to 
improve the efficiency of bioremediation (Divya and Deepak Kumar 2011).

Phytoremediation is an emerging technology that uses plants and associated 
bacteria for the treatment of soil and groundwater contaminated by toxic pollut-
ants (Salt et al. 1997). Moreover, this strategy uses plants to degrade, stabilize 
and/or remove soil contaminants (Gurska et al. 2009). Depending upon the type 
of contaminant and underlying process, phytoremediation is broadly categorized 
into several areas such as: phytoextraction, phytoaccumulation, phytostabilization, 
phytostimulation/rhizostimulation, phytovolatilization and rhizofiltration (Akpor 
and Muchie 2010). On the basis of understanding these mechanisms, researchers 
have focused on the relationships between plants and their microbial rhizospheric 
symbionts. They have speculated that application of rhizoremediation process is a 
simple and rational choice.

As a specific form of phytoremediation, rhizoremediation can either occur 
naturally or can be facilitated by inoculating soil with microorganisms capable of 
degrading environmental contaminants. The presence of Pseudomonas PGPR in 
rhizosphere with particular traits of the uptake of certain nutrients is considered 
a promising method to improve bioremediation effectiveness of hydrocarbon-con-
taminated environments (Fig. 4). Due to their excellent root-colonizing ability and 
ecological competence, pseudomonads are ideal candidates for rhizoremediation. 
Several species of Pseudomonas have been identified as carrying the abilities to 
degrade a number of environmental pollutants. Genetic engineering technology 
has the potential to increase the bioremediation ability of microorganisms in the 
degradation of three important organic pollutants, i.e. polycyclic aromatic hydro-
carbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides (Rehm Bernd 
2008).
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5.1  Heavy Metal Solubilizing Pseudomonas

Heavy metals pose a critical concern to human health and environmental issues due 
to their high occurrence as a contaminant, low solubility in biota and the classifi-
cation of several heavy metals as carcinogenic and mutagenic (Diels et al. 2002). 
Therefore, the application of heavy metal solubilizing microorganisms is a promis-
ing approach for increasing heavy metal bioavailability in heavy metal-amended 
soils. In addition, bacteria producing indole acetic acid, siderophores and 1-ami-
nocyclopropane-1-carbox-ylate deaminase and phosphate-solubilizing bacteria are 
capable of stimulating plant growth (Glick et al. 1995). Generally, PGPR function 
in three different ways (Glick 2001), synthesizing particular compounds for the 
plants, lessening or preventing the plants from diseases Raj et al. (2003), and facili-
tating the uptake of certain nutrients from the environment (Çakmakçi et al.2006). 
The feasibility of using a PGPR Pseudomonas, for the removal of heavy metals 
from a contaminated soil and sediments was evaluated by several scientific reports.

Fig. 4  The feasibility of using PGPR Pseudomonas, inoculation of these species increases the 
efficiency of phytoextraction directly by enhancing the metal accumulation in plant tissues, note 
that phytoremediation is broadly categorized into several areas such as: phytoextraction, phy-
toaccumulation, phytostabilization, phytostimulation/rhizostimulation, phytovolatilization and 
rhizofiltration. Furthermore, chemotaxis and biofilm formation governed by the QS system are 
selected as an advantageous behavior in bacteria, along with xenobiotic degradation capabilities 
after exposure to pollutants compounds
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The results of the Rajkumar and Freitas (2008) study revealed that inoculation 
of metal resistant PGPB Pseudomonas sp. PsM6 and P. jessenii PjM15 increases 
the efficiency of phytoextraction directly by enhancing the metal accumulation in 
plant tissues (especially Zn) and indirectly by promoting the shoot and root bio-
mass of R. communis. The use of these metal resistant PGPB can be considered as 
a biotechnological tool of great economical and ecological relevance. As the tech-
nology of metal ‘phytomining’ matures and is commercially developed, even small 
increases in metal uptake can have very significant impacts on profitability (Ma 
et al. 2009). Thus, suitable modification of the roots/rhizosphere system of heavy 
metal phytoaccumulators with beneficial microflora could promote metal bioavail-
ability and phytoextraction (Ma et al. 2009).

6  Siderophores and Bioremediation

Siderophores are molecules especially designed to trap traces of iron(III) under 
the form of very stable complexes (Winkelmann 1991). They are excreted by 
iron-starved microorganisms, and after the complexes have formed, they are 
internalized into the cells by specific membrane receptors (Neilands 1982). Most 
microorganisms, including fungi and bacteria, use siderophores to fulfill their iron 
requirements and a couple of hundred of different siderophore structures have 
been described (Winkelmann 1991).

Pyoverdine, the well-known yellow-green fluorescent pigment characteristic of 
the fluorescent Pseudomonas species (Elliott 1958), is the major siderophore of 
these bacteria (Meyer and Stintzi 1998). In the structure of pyoverdine, there is a 
quinoleinic chromophore which imparts the color and fluorescence to the mole-
cule, associated with a peptide chain of l-,d-, and uncommon amino acids, such as 
δ-N-hydroxyornithine and β-hydroxyaspartic acid (9). Both parts of the molecule 
participate in the complexation of the iron(III) ion (Meyer et al. 2002).

During the last years, there had been an increasing interest in investigating the 
potential of using siderophores in metal bioremediation (Neubauer et al. 2000). 
Siderophores become a useful tool in bioremediation, which is a cost-effective and 
environmentally friendly technique (Rajkumar et al. 2010). Schalk et al. (2011) 
reported that the siderophores are extremely effective in solubilizing and increas-
ing the mobility of a wide range of metals such as Cd, Cu, Ni, Pb, Zn and the 
actinides Th(IV), U(IV) and Pu(IV) Because of their ligand functionalities, sidero-
phores may have a strong affinity or selectivity for a particular metal other than Fe 
with regard to the stability constants of this metal siderophore complex.

Not surprisingly, pseudomonads have a wide range of iron acquisition mech-
anisms (Rehm Bernd 2008). Furthermore, siderophore pyochelin produced by P. 
aeruginosa is capable to chelate a wide range of metals, i.e. Ag+, Al3+, Cd2+, 
Co2+, Cr2+, Cu2+, Eu3+, Ga3+, Hg2+, Mn2+, Ni2+, Pb2+, Sn2+, Tb3+, Tl+ and 
Zn2+; however, the uptake process did not appear to assimilate any metal other 
than Fe3+ (Braud et al. 2009).
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As was pointed out by Edberg et al. (2010), the siderophores also played a sig-
nificant role in mobilizing metals from mine waste material or metal-contaminated 
soils. Several metals (i.e. Fe, Ni and Co) were mobilized from waste material 
(acid-leachedore) of a former uranium mine in the presence of siderophores pro-
duced by P. fluorescens. Moreover, It has also been shown that pyoverdines mobi-
lized U(VI), Np(V) and other metals from uranium mine waste (Behrends et al. 
2012). It is also interesting to note that microbial siderophores participate in the 
biodegradation of petroleum hydrocarbons through an indirect mechanism, by 
facilitating the Fe acquisition for the degraded microorganisms under Fe-limiting 
conditions (Barbeau et al. 2002). Both pyoverdine and pyochelin can decompose 
organotin pesticides (Inoue et al. 2003) and monothiocarboxylic acid (PDTC) was 
shown to dechlorinate CCl4 in the presence of reducing agents (Lee et al. 1999). 
The possibility of applying siderophores from Pseudomonas in xenobiotic degra-
dation deserves further investigation (Rehm Bernd 2008).

7  Conclusion

During the last few decades, a great body of research work was carried out on 
PGPR rhamnolipids revealing many of their astonishing applications and making 
them reach the pinnacle of popularity among all the categories of biosurfactants. 
However, the importance of Pseudomonas rhamnolipids (RLs) is obvious, and 
they play a significant role in the bioremediation applications, even if there are 
many questions remaining to be answered. What is the specific role of Biofilm 
formation, chemotaxis and motility behavior toward the different nature of pollut-
ants? It is important to note that future endeavors are needed to answer this ques-
tion, to elucidate mechanisms that govern this link and might also explain and 
improve strategies employed by Pseudomonas PGPR toward multiple pollutants.
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