
A Lean Automotive E/E-System Design
Approach with Open Toolbox Access

Harald Sporer(B)

Institute of Technical Informatics,
Graz University of Technology, Inffeldgasse 16/1, 8010 Graz, Austria

sporer@tugraz.at

http://www.iti.tugraz.at/

Abstract. Replacing former pure mechanical functionalities by mecha-
tronics-based solutions, introducing new propulsion technologies, and
connecting cars to their environment are only a few reasons for the still
growing electrical and electronic systems (E/E-Systems) complexity at
modern passenger cars. Smart methodologies and processes are necessary
during the development life cycle to master the related challenges success-
fully. One of the key issues is to have an adequate environment for creat-
ing architectural system designs, and linking them to other development
artifacts. In this paper, a novel model-based domain-specific language for
embedded mechatronics-based systems, with focus on the support of dif-
ferent automotive sub-domains, is presented. With the described method-
ology, the domain-specific modeling (DSM) approach can be adapted to
the needs of the respective company or project easily. Though, the model-
based language definition can be implemented using various platforms
(e.g. Eclipse Modeling Framework), also a custom-made open source edi-
tor supporting the DSM technique, is presented.

Keywords: System architectural design · Domain-specific modeling ·
Automotive embedded systems · E/E-Systems

1 Introduction

The electrical and/or electronic systems (E/E-Systems) in the automotive
domain have been getting more and more complex over the past decades. New
functionality, mainly realized through embedded E/E-Systems, as well as the
growing connectivity (Car2X-Communication), will keep this trend alive in the
upcoming years. Well-defined development processes are crucial to manage this
complexity and to achieve high quality products. Wide-spread standards and
regulations, like Automotive SPICE R© and ISO 26262, give a guidance through
the development life cycle.

Best practice for the E/E-System development process is still to refer to
some kind of the V-Model. Starting with an initialization and analyzing phase,
via the subdivided system elements, down to the implementation, and back up
by integration and test phases towards the completed system, a multitude of
c© Springer International Publishing Switzerland 2015
R.V. O’Connor et al. (Eds.): EuroSPI 2015, CCIS 543, pp. 41–50, 2015.
DOI: 10.1007/978-3-319-24647-5 4



42 H. Sporer

work products arises and have to be managed properly. Trying to keep all of the
artifacts consistent manually, is an error-prone and tedious task. Therefore, a
lot of effort has been made through the last years to increase the quality by an
adequate and highly automated tool support.

To create the system design, most of the existing approaches utilize some kind
of UML profile (e.g. SysML1). Though these techniques have a lot of advantages,
in some scenarios they are not best choice. On the one hand, the possibility to
include mechanical parts or the flow of fluids and forces is missing, and on the
other hand, a possible lack of UML skills, especially in small project teams,
which wants to carry out a lean development, makes the UML-based design to
an awkward task.

The main goal of this work is to contribute to the improvement of the existing
system architectural design methods. The herein presented approach has been
created for the development of embedded mechatronics-based E/E-Systems in
the automotive field mainly. However, the techniques are also suitable for other
domains. The mentioned improvement is accomplished by extending the wide-
spread and common UML-based methods by domain-specific modeling (DSM)
techniques. It’s crucial to state that the existing design techniques shall not be
replaced by the presented work.

Similar to the previous mentioned de facto standard Automotive SPICE, full
traceability and consistency between the development artifacts are also one of
the main objectives of this work. Various types of requirements are linked to the
system architectural design elements, and in the case of requirement changes the
affected system parts can be determined easily. Moreover, supported by the DSM
definition, a software architectural design can be either created within the same
environment as the system design, or a established seamless tool chain can be
facilitated after a domain-specific model to UML-based model transformation.
In both cases, a Simulink R©2 software framework model can be generated from
the software architectural design.

In this contribution the highlighted aspect of the novel DSM approach is
the methodology of creating new modeling toolboxes for a particular project or
company. The definition of the domain-specific language in combination with
the support from the newly developed designer tool, allows a straight forward
and intuitive procedure for customizing the DSM to the specific needs. A big
advantage of this solution is that the customization can be conducted by the
user easily and without coding.

In the course of this document, Section 2 presents an overview of the related
approaches, as well as of domain-specific modeling. In Section 3, a detailed
description of the proposed modeling approach with a focus on the tailoring
for specific (sub-)domains is provided. An application of the described method-
ology is presented in Section 4. Finally, this paper is concluded with an overview
of the presented work in Section 5.

1 http://www.omgsysml.org/
2 http://www.mathworks.com/products/simulink/

http://www.omgsysml.org/
http://www.mathworks.com/products/simulink/


A Lean Automotive E/E-System Design Approach 43

2 Related Work

In recent years, a lot of effort has been made to improve the model-based auto-
motive E/E-System design methods and techniques. Nowadays, the advantages
of a model-based approach are clear and without controversy. Meseguer [12]
grants much more reliability, reusability, automatisation, and cost effectiveness
to software that is developed with modeling languages. However, model trans-
formation within or also across different languages is crucial to achieve all these
benefits.

Traceability, as well as consistency, between the development artifacts has
always been an important topic. However, due to the increasing number of
electronic- and electric-based functionality, these properties have become vital.
If it comes to safety-critical functionalities, according to the 2011 released inter-
national standard ISO 26262 [8], traceability between the relevant artifacts is
mandatory. A description of the common deliverables along an automotive E/E-
System development, and a corresponding process reference model is presented
by the de facto standard Automotive SPICE [2]. Neither the functional safety
standard nor the process reference model enforces a specific methodology, how
the development artifacts have to be created or linked to each other. However,
connecting the various work products manually is a tedious and error-prone task.

One of the early work products along the engineering process, is the archi-
tectural system design. In the field of automotive E/E-System development, a
wide-spread and common approach is to utilize a UML-based technique for this
design, like the UML2 profile SysML. Andrianarison and Piques [1], Boldt [3],
and many other publications (e.g. [6], [9], [13]) present their SysML methodolo-
gies for the system design.

To agree with Broy et al. [4], the drawbacks of the UML-based design are still
the low degree of formalization, and the lack of technical agreement regarding
the proprietary model formats and interfaces. The numerous possibilities of how
to customize the UML diagrams, to get a language for embedded system design,
drive these drawbacks. On the one hand, the meta model can be extended, and on
the other hand, a profile can be defined [13]. Even if there is a agreement to utilize
a common UML profile like SysML, a plenty of design artifact variations are
feasible. This scenario doesn’t provide an optimal base for the engineer who has
to design the embedded automotive system from a mechatronics point of view.
Ideally, the tool should be intuitive and easily operated also without specific
UML knowledge. These findings led the author to the idea to create a more
tailored model-based language for the stated domain. The definition and other
details of this language can be found at [16].

Mernik et al. [11] describe a domain-specific language as a language that is
tailored to the specific application domain. Enhanced by this tailoring, substan-
tial gains in expressiveness and ease of use, compared to general-purpose lan-
guages, should be given. Even if a gain regarding the expressiveness is achieved
by the utilization of SysML-based modeling techniques, the ease of use regarding
an embedded automotive mechatronics system design is out of sight.



44 H. Sporer

Preschern et al. [14] claim that DSLs help to decrease system development
costs by providing developers with an effective way to construct systems for a
specific domain. The benefit in terms of a more effective development has to
be higher than the investment for creating or establishing a DSL at a company
or department. Supplementary, the authors argue that in the next years the
mentioned DSL development cost will decrease significantly, due to new tools
supporting the language creation like the Eclipse-based Sirius3.

Vujović et al. [17] present a model-driven engineering approach to create a
domain-specific modeling (DSM). Sirius is the framework for developing a new
DSM, respectively the DSM graphical modeling workbench. The big advantage of
this tool is that the workbench for the DSM is developed graphically. Therefore,
knowledge about software development with Java, the graphical editor frame-
work (GEF) or the graphical modeling framework (GMF) is not needed.

According to Hudak [7], programs written in a DSL are more concise, can be
written more quickly, are easier to maintain and reason about. In the authors
opinion, this list of advantages is also valid for domain-specific modeling. Fur-
thermore, Hudak determines the basic steps for developing a own domain-specific
language as

– Definition of the domain
– Design of the DSL capturing the domain semantics
– Provide support through software tools
– Create use-cases for the new DSL infrastructure

The approach described in this paper is presented according to theses steps in
Section 3 and 4.

3 Approach

In this section, the domain specific modeling methodology for automotive mecha-
tronics-based system development, with a focus on the open toolbox strategy,
is presented. As mentioned in Section 2, details on the definition of the domain
specific modeling can be found in [16]. Therefore, just a brief description is given
in the following subsection.

3.1 Domain-Specific Modeling Language

The established SysML-based design method from [10] is extended by the newly
developed Embedded Mechatronics System Domain-Specific Modeling (EMS-
DSM) for the automotive embedded system design. The main goal of this
methodology is to provide a lean approach for engineers to facilitate an embedded
automotive mechatronics system modeling on a high abstraction level. The focus
of the approach is on the model-based structural description of the E/E-System
under development. Additionally, the signals and interfaces are an essential part
of the modeling.
3 https://eclipse.org/sirius/

https://eclipse.org/sirius/


A Lean Automotive E/E-System Design Approach 45

The definition of the newly developed model-based domain specific language
is shown in Figure 1. The top node EMS-DSM Component is the origin of all
other classes at the language definition. Therefore, each of the derived classes
inherits the five properties (ID, Name, Requirement, Verification Criteria, and
Specification) from the base class.

Fig. 1. EMS-DSM Definition (UML)

The language definition in Figure 1 represents the meta-domain of the model-
based language. Subsequently, the EMS-DSM is tailored to the needs of the
domain at the particular project or company. That is, design elements of possible
types Mechnical, Compartment, Sensor, Control Unit, Actuator, External Control
Unit, Basis Software, and Application Software are specified for the particular
field of application. E.g. the domain of the presented application in Section 4 is
Embedded Mechatronics E/E-System Design for Compressed Natural Gas (CNG)
Fuel Tank Systems.

The EMS-DSM can be supported by a various number of tools, but at the
time when the research project was initiated, a highest possible flexibility, as
well as full access to the tools source code was desired. To achieve this, an own
model editor (Embedded Automotive System Design) has been developed, based
on the open source project WPF Diagram Designer [5].

3.2 Traceability Between the Design and Other Artifacts

To achieve a lean development environment for automotive E/E-Systems, the
whole engineering life cycle has to be supported. Therefore, not only the sys-
tem architectural design, but also other artifacts, like requirements and test



46 H. Sporer

case specification, are in the scope of this work. For topics like project man-
agement and requirements management, the web-based open source application
Redmine4 is used in this project. The de facto standard Automotive SPICE [2]
defines three different types of requirements at the engineering process group:
Customer Requirements, System Requirements, and Software Requirements. Out
of the embedded E/E-System view, at least the hardware focus is missing. Addi-
tionally, requirements and design items regarding the mechanical components,
have been introduced for the design of an embedded mechatronics-based E/E-
System. Similar to the Automotive SPICE methodology on system and software
level, engineering processes has been defined for these missing artifacts.

Section 3.1 contains the description of how the different types of designs (sys-
tem level, software level, etc.) are created corresponding to the novel domain spe-
cific modeling. To achieve full traceability, these designs, respectively the various
components at the designs, have to be linked to the corresponding requirements.
This is accomplished by the Requirements Linker at EASy Design, which estab-
lishes a connection to the MySQL database, and therefore has full access to the
requirements data at Redmine. More details about the requirements manage-
ment capability of the presented project can be found at [15].

3.3 Open Toolbox Approach at the DSM

The main objective of the open toolbox strategy is to provide a possibility for
the user to tailor the modeling item set to their particular needs. Every non-
abstract EMS-DSM class from Figure 1 can be instantiated and utilized as type
for a new toolbox item. By selecting one of the provided types, the behaviour of
the new toolbox item is defined. E.g. if a new Application Software Component
is created at the toolbox, the aggregation ”1..* 0..*” between Hardware and
Software Components guarantees that the item can be used at the model within
a Hardware Component only. These constraints contributes to the easy and intu-
itive handling of the modeling language. As mentioned previously, the defined
modeling language and all presented features can be implemented on various
modeling framework platforms, but at this project a self-made C# implementa-
tion has been preferred to achieve a highest possible grade of independence from
third-party platforms.

To support the open toolbox methodology, additional functionality has been
added to the custom-made software tool EASy Design. By selecting the command
Open Library Editor at the menu bar, a new window (see Figure 2 in Section 4)
is opened, offering toolbox modification options. At the window area Create New
Toolbox Item the properties of the new toolbox item can be set. The drop down
menu Type provides all non-abstract classes from the language definition. Name
is a freely selectable identifier for the item, and Mask prompts the user to enter
the path of a Portable Network Graphic (PNG), which determines the graphical
representation of the toolbox item and its later appearance at the model. At the

4 http://www.redmine.org/

http://www.redmine.org/


A Lean Automotive E/E-System Design Approach 47

window area Delete Existing Toolbox Item the no longer required item can be
removed by choosing the respective name.

All library items are stored in an Extensible Markup Language (XML) file,
corresponding to the following structure:

<EASyDesignLib>
<LibItem>

<Type></Type>
<Name></Name>
<Mask></Mask>

</LibItem>
</EASyDesignLib>

4 Application

In this section the EMS-DSM approach with an open toolbox strategy is applied
to the development of an automotive fuel tank system for compressed natural
gas (CNG). For an appropriate scale of the use-case, only a small part of the
real-world system is utilized. The application should be recognized as an illus-
trative material, reduced for internal training purpose for students. Therefore,
the disclosed and commercially non-sensitivity use-case is not intended to be
exhaustive or representing leading-edge technology.

To model the CNG fuel tank system, several mechanical, hardware, and soft-
ware components are needed. As the main mechanical components, the following
items being assumed to exist in the EMS-DSM library: Tank Cylinder, Mechan-
ical Pressure Regulator, Filter, Engine Rail, and some Tubing. Moreover, four
hardware components have already been added to the library: In-Tank Temper-
ature Sensor, CNG High Pressure Sensor, On-Tank Valve (Actuator), and Tank
ECU (Control Unit). So far, there are no software components at the library.

For a first draft of the system architectural design, an external control
unit component Engine ECU, and a basis software component CAN Driver
is needed. Therefore, the steps described in Subsection 3.3 are carried out for
these new library items. The corresponding Library Editor windows are shown in
Figure 2. The new library items are added at the EASy Design Library Browser,
and the library file EMS-DSM-Lib.xml is extended by the following entries:

<LibItem>
<Type>External Control Unit Component</Type>
<Name>Engine ECU</Name>
<Mask>"..\images\EASyLibExtEngECU.png"</Mask>

</LibItem> <LibItem>
<Type>Basis Software Component</Type>
<Name>CAN Driver</Name>
<Mask>"..\images\EASyLibCANDriver.png"</Mask>

</LibItem>



48 H. Sporer

Fig. 2. Library Editor Windows for New Modeling Items

By adding these model items to the library, the system architectural design
of the presented use-case can be created as shown in Figure 3. The CNG fuel
tank system consists of seven mechanical components, which are blue coloured
(Tank Cylinder, Filter, etc.) The medium flow between mechanical components,
which is CNG in this use case, is displayed by blue lines with an arrow at the end.
Furthermore, five hardware components are placed at the System Architectural
Design Model level, which are yellow coloured (In-Tank Temperature Sensor,

Fig. 3. CNG Tank System Architectural Design



A Lean Automotive E/E-System Design Approach 49

Tank ECU, etc.) The signal flow between the components is displayed by yellow
lines, ending with an arrow. Between the Control Unit and the External Control
Unit component, a communication bus is inserted, characterized by the double
compound line type and arrows on both ends.

As previously mentioned, the EMS-DSM definition requires at least one hard-
ware component at the model to implement a software component. In this use-
case the created basis software component CAN Driver shall be integrated at
the CNG Tank ECU. With a double-click on the hardware component, the next
modeling level is opened (named E/E Item Design Level), and the CAN Driver
can be put in place.

5 Conclusions

In the previous sections, a lean method for the design of embedded automotive
mechatronics-based E/E-Systems, with a focus on the open toolbox strategy,
was presented. This approach has the potential to bring together the different
engineering disciplines along the E/E-System development. Many artifacts like
requirements, verification criteria, and various specifications can be linked to the
models, created with the novel domain-specific modeling language. Supported by
the linking of the artifacts, the vital traceability can be established. Depending
on the respective tool chain and the organizations process landscape, the EMS-
DSM models can also facilitate a single point of truth strategy.

By the model-to-model transformation mentioned in Section 2, a decision
between the established SysML design techniques and the presented approach is
not necessary. Instead, the EMS-DSM methodology can be utilized as an exten-
sion for mechatronics-based system designs to the existing tool chain. However,
the possibility of modeling not only the system level, but also the software archi-
tectural level enables the presented work to be a standalone solution as well.

First use case implementations show promising results. However, there are
several features on the open issue list, which have to be implemented in a next
step. On the one hand, the options for describing the systems behavior, like
e.g. some kind of task scheduling definition, shall be introduced. On the other
hand, an advanced methodology for managing, as well as importing/exporting
the signal interfaces has to be developed.

References

1. Andrianarison, E., Piques, J.-D.: SysML for embedded automotive Systems: a prac-
tical approach. In: Conference on Embedded Real Time Software and Systems.
IEEE (2010)

2. Automotive SIG. Automotive SPICEProcess Assessment Model. Technical report,
The SPICE User Group, Version 2.5 (May 2010)

3. Boldt, R.: Modeling AUTOSAR systems with a UML/SysML profile. Technical
report, IBM Software Group (July 2009)



50 H. Sporer

4. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless
Model-Based Development: From Isolated Tools to Integrated Model Engineering
Environments. Proceedings of the IEEE 98(4), 526–545 (2010)

5. Code Project. WPF Diagram Designer - Part 4. Online Resource (March 2008).
http://www.codeproject.com/Articles/24681/WPF-Diagram-Designer-Part
(accessed March 2015)

6. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven
Engineering. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg (2010)

7. Hudak, P.: Domain-specific languages. Handbook of Programming Languages 3,
39–60 (1997)

8. ISO 26262, Road vehicles - Functional safety. International standard, International
Organization for Standardization, Geneva, CH (November 2011)

9. Kawahara, R., Nakamura, H., Dotan, D., Kirshin, A., Sakairi, T., Hirose, S., Ono,
K., Ishikawa, H.: Verification of embedded system’s specification using collabo-
rative simulation of SysML and simulink models. In International Conference on
Model Based Systems Engineering (MBSE 2009), pp. 21–28. IEEE (2009)

10. Macher, G., Armengaud, E., Kreiner, C.: Bridging Automotive Systems, Safety
and Software Engineering by a Seamless Tool Chain. In: 7th European Congress
Embedded Real Time Software and Systems Proceedings, pp. 256–263 (2014)

11. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR) 37(4), 316–344 (2005)

12. Meseguer, J.: Why Formal Modeling Language Semantics Matters. In: Dingel, J.,
Schulte, W., Ramos, I., Abrahao, S., Insfran, E. (eds.) International Conference
on Model-Driven Engineering Languages and Systems, MODELS 2014, Valencia,
Spain. LNCS. Springer International Publishing Switzerland (2014)

13. Meyer, J.: Eine durchgängige modellbasierte Entwicklungsmethodik für die auto-
mobile Steuergeräteentwicklung unter Einbeziehung des AUTOSAR Standards.
PhD thesis, Universität Paderborn, Fakultät für Elektrotechnik, Informatik und
Mathematik, Paderborn, Germany (July 2014)

14. Preschern, C., Kajtazovic, N., Kreiner, C.: Efficient development and reuse of
domain-specific languages for automation systems. International Journal of Meta-
data, Semantics and Ontologies 9(3), 215–226 (2014)

15. Sporer, H., Macher, G., Kreiner, C., Brenner, E.: A Lean Automotive E/E-System
Design Approach with Integrated Requirements Management Capability. In: 9th
European Conference on Software Architecture (ECSA 2015), Dubrovnik/Cavtat,
Croatia (in press, 2015)

16. Sporer, H., Macher, G., Kreiner, C., Brenner, E.: A Model-Based Domain-Specific
Language Approach for the Automotive E/E-System Design. In: International Con-
ference on Research in Adaptive and Convergent Systems, RACS 2015, Prague,
Czech Republic (2015) (under review)

17. Vujović, V., Maksimović, M., Perǐsić, B.: Sirius: A rapid development of DSM
graphical editor. In: 18th International Conference on Intelligent Engineering Sys-
tems (INES), pp. 233–238. IEEE (2014)

http://www.codeproject.com/Articles/24681/WPF-Diagram-Designer-Part

	A Lean Automotive E/E-System Design Approach with Open Toolbox Access
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Domain-Specific Modeling Language
	3.2 Traceability Between the Design and Other Artifacts
	3.3 Open Toolbox Approach at the DSM

	4 Application
	5 Conclusions
	References


