
Optimizing Resource Utilization by Combining
Activities Across Process Instances

Christine Natschläger1(B), Andreas Bögl2, Verena Geist1, and Miklós Biró1

1 Software Competence Center Hagenberg GmbH, Hagenberg Im Mühlkreis, Austria
{christine.natschlaeger,miklos.biro,verena.geist}@scch.at

2 Pascom Kommunikationssysteme GmbH, Arbing, Austria
andreas.boegl@pascom.at

Abstract. Resource-efficient business processes are a key asset of an
organization in a competitive market environment. Current efforts
address this issue either at the process schema level by specifying an
optimal sequence of process activities or at the process instance level by
optimizing resource utilization within a single running process instance.

In this paper, we present a novel approach for combining activities
across process instances to optimize resource utilization. The proposed
approach comprises the (i) definition of business processes and combin-
able activities, (ii) identification of possible combinations at runtime,
(iii) determination of optimization potential, and (iv) actual combina-
tion of activities across process instances. The approach further sup-
ports partial activity combinations and dynamic resource selection for
combined activities. The applicability of the approach is demonstrated
by a case study.

1 Introduction

Efficient business processes are a key asset for a company’s success and are
addressed by the discipline Business Process Management (BPM), which com-
prises the definition, implementation, control, and improvement of business
processes. In this paper, we present the Combined-Instance Approach, which
improves resource utilization in business processes by combining activities across
running processes instances. It thereby considers different resource types includ-
ing physical, human, and financial resources. Optimization potential is given if
the capacity of a resource is (or can be) higher than required by the actual pro-
cess instance, so that activities from further process instances can be integrated,
thereby saving their setup and/or execution costs. With the proposed approach,
we address the goals of the Industry 4.0 project of the German government,
which emphasizes the demand for adaptable processes and resource efficiency in

The research reported in this paper has been supported by the Austrian Ministry for
Transport, Innovation and Technology, the Federal Ministry of Science, Research and
Economy, and the Province of Upper Austria in the frame of the COMET center
SCCH. This publication has been written within the project AdaBPM (number
842437), which is funded by the Austrian Research Promotion Agency (FFG).

c© Springer International Publishing Switzerland 2015
R.V. O’Connor et al. (Eds.): EuroSPI 2015, CCIS 543, pp. 155–167, 2015.
DOI: 10.1007/978-3-319-24647-5 13



156 C. Natschläger et al.

traditional industries. Some preliminary ideas were presented at a workshop on
resource management in service-oriented computing (see [12]).

2 The Combined-Instance Approach

The Combined-Instance Approach combines activities of different process
instances to optimize resource utilization and consists of the following four steps:
(1) definition of business processes with data objects and constraints, (2) identi-
fication of candidates for process instance combinations, (3) determination of an
optimization potential, and (4) actual combination of business process instances.
An overview of the four steps applied to a running example is shown in Fig. 1.
The running example relates to an order execution process of a sand and fer-
tilizer producer in Upper Austria, called S&F company for short. The company
produces and delivers several thousand tons of sand and fertilizer products to
various destinations in Europe, where they are mainly used for cultivating sport
fields, golf courses and for producing other final products in the cement industry.

2.1 Business Processes with Data Objects and Constraints

The first step of the combined-instance approach is to extend the business pro-
cess with additional definitions required for possible instance combinations. The
basis for all process instances is the business process schema (S), which provides
the process specification including data objects and resources. For the combined-
instance approach, S is extended with (i) meta-information specifying possible
resources and their capacities, (ii) type-level constraints defining general restric-
tions that apply to all instances either based on given data or being specified
manually, and (iii) combinable activities (C) comprising a combinable condition
(cc) that defines the required matching of two activity instances for a possible
combination and an optimization function (of) that determines the optimization
potential of a combination. The cc and the of must be specified individually for
every combinable activity and the combinable activity is then marked with a ‘C’
in the process diagram. All constraints must be formally specified (e.g., based on
the Object Constraint Language (OCL)) to support business process execution.

In our running example shown in Fig. 1, S defines an order execution pro-
cess comprising activities for order handling, production, delivery, and invoicing
with corresponding data objects (e.g., order, product, and invoice) and resources
(e.g., production and transportation means). Due to space limitations not all of
them are shown in Fig. 1. S is then extended with (i) meta-information like pos-
sible transportation means and their capacity, (ii) type-level constraints like the
capacity of a resource (based on data) or that a ship can only be used if both
departure and destination point have a harbor and are connected by a river
(manually specified constraint), and (iii) combinable activities. In our example,
the production and delivery activity specify a cc and an of (see Section 2.3 for
of), so these two activities are combinable (C). The cc of the production activ-
ity specifies that two production activities are combinable, if the product types



Optimizing Resource Utilization by Combining Activities 157

Fig. 1. Combined-Instance Approach

are the same (ProductType1 = ProductType2). The cc of the delivery activity
defines that the routes must be overlapping or, more specifically, that it is shorter
to go from the departure point (dep) to one destination (dest) and then to the
other than starting twice from the departure point (min(distance(dep, dest1)
+ distance(dest1, dest2), distance(dep, dest2) + distance(dest2,
dest1)) < distance(dep, dest1) + distance(dep, dest2)).

An instantiation of S is called a business process instance I. During execution
of I, data objects and corresponding constraints defined in S are instantiated
and provide concrete instance-specific data and restrictions. No additional con-
straints are expected on the instance-level, since process execution must be kept
simple for end-users. A running business process instance rI indicates that I is
active and comprises one or more tokens that mark the current position(s) in
the process flow (shown by a black-filled circle in Fig. 1).

In our running example, the order execution process is instantiated three
times (I1, I2, and I3). The first process instance comprises an order of 200 t of
sand that must be sent from Linz to Vienna until 12/31/15. The order of I2 has
the same route but with 120 t of sand that must be delivered until 01/31/16.
Finally, 40 t of sand are ordered in I3 (see step 2) and must be sent to Bratislava
until 01/15/16. All three instances are active, but the current positions differ.

We, thus, have the following special resource-constrained scheduling problem:



158 C. Natschläger et al.

– Activities IiOrderHandling, IiProduction, IiDelivery, IiInvoicing, i = 1, 2, 3
with processing times piActivity, earliest release times eiActivity given by the
tokens, and deadlines diDelivery (only for delivery activities).

– Resources k = 1, ..., n with Rk units of resource k available (capacity), in our
case k = MachineP, Ship400, Ship600, Ship800, T rainWagon, Truck with
RMachineP = unlimited, RShip400 = 400t, RShip600 = 600t, etc.

– Activity x occupies rx,k units of resource k (demand) for k = 1, ..., n during
processing, e.g., if x is I1Delivery then x occupies rx,Ship400 = 200t.

– Precedence constraints m → n only between the activities IiOrderHandling,
IiProduction, IiDelivery, IiInvoicing of the same process instance Ii.
Finally, we require some auxiliary functions that return all rI, the current

token position(s) of rI, the state of C (open, active, or completed), whether C is
still reachable, and the expected costs and execution time of activities.

2.2 Identifying Candidates for Process Instance Combinations

The second step of the combined-instance approach receives the extended busi-
ness process schema S and all running process instances (set of rI). The goal
then is to identify two combinable instances of C that satisfy all constraints and
can be called a candidate pair. The search for candidate pairs is initiated when-
ever a token reaches an instance of C and the triggering activity is compared with
the corresponding activity of every other rI. If the other activity is open and
reachable and all constraints and the cc are satisfiable, then the two instances
of C are a candidate pair. Several candidate pairs may be combined to sets of
higher cardinality. In subsequent research, we intend to also consider future pro-
cess instances, i.e. the current process instance waits for further combination
possibilities for as long as possible while not violating any deadlines or until the
maximum capacity of the resource is reached.

In our running example, the token of I2 reaches the production activity and
triggers a search. A combination with I1Production is not possible, since the
activity already completed. However, I3Production is still open, reachable and all
constraints are satisfiable. The cc is also fulfilled, since the product type (sand)
is the same. Thus, I2Production & I3Production are a candidate pair. In addition,
the token of I1 reaches the delivery activity and triggers a further search. In this
case, I2Delivery and I3Delivery are still open, reachable and all constraints are
satisfiable. The cc of I1Delivery and I2Delivery is obviously fulfilled, since both
activities have the same route. Furthermore, the cc of I1Delivery and I3Delivery

is also satisfied, since the distance from Linz to Vienna to Bratislava (approx.
265 km) is shorter than the distance from Linz to Vienna (approx. 185 km) plus
the distance from Linz to Bratislava (approx. 265 km). Thus, we identify two
candidate pairs I1Delivery & I2Delivery and I1Delivery & I3Delivery which can,
after re-evaluating the cc, be combined to I1Delivery & I2Delivery & I3Delivery.

Whether identified candidate pairs can actually be combined depends, how-
ever, on three further conditions:



Optimizing Resource Utilization by Combining Activities 159

1. if the other (not-triggering) activity ever receives a token (after a preceding
split an alternative path may be taken).

2. if waiting for the other (not-triggering) activity does not violate a deadline.
3. if the combination achieves improvement (optimization potential). This con-

dition is evaluated within the next step.

2.3 Determining the Optimization Potential

The third step of the combined-instance approach receives a set of combinable
candidates. The goal then is to identify possible combinations and whether they
are economically worthwhile by applying the optimization function (of) defined
for every C. The of calculates a value for comparison (e.g., costs, time) with a
predefined optimum (lowest/highest value). In some cases, possible candidates
satisfy the cc, but concrete tasks differ, so that activities cannot be fully com-
bined, e.g., due to routes being overlapping but not identical. To cope with this
issue, the combined-instance approach provides the possibility to split activities
so that part of it can be combined and the remaining part is executed individu-
ally (partial activity combination). The method for splitting activities can also
be applied to optimally use resources with respect to their maximum capacity
(i.e. activities are split to fill resources). If activities are split, the optimization
function has to consider all sub-activities.

So the main goal of the third step is to compare the separate execution of
activities with possible combined executions, in the following called separate and
combined solutions. Considering the separate solution, all activities are defined
by S and receive instance specific data and constraints. The of then calculates a
value for comparison for the separate solution that reflects the main goal of the
optimization, e.g., costs, time, or quality indicators. The calculation is based on
a predefined formula and a list of given values.

Considering combined solutions, it is first necessary to determine all possible
combinations of identified candidates (also taking activity splits into account). If
predefined resources of the separate solution do not fit for a combination, then
either a fitting resource is identified (dynamic resource selection) or the com-
bination is disregarded. The next step is to apply the of and calculate a value
for each combination, thereby using the same value type and calculation process
as defined for the separate solution. The values of the combined solutions are
then compared with that of the separate solution to identify all combined solu-
tions with an optimization potential. The combination with the highest potential
is ranked first; however, if several expected combinations initiated by different
activities are overlapping, then an overall optimal solution must be identified.

In our running example, there is only one resource (MachineP )
with no capacity limitation available for the production activity, which
is taken by separate and combined solutions. To calculate a value for
comparison, we define the formula: productionCosts = productAmount x
costsPerUnit(productAmount) and a list of costs: producing 1 t sand costs
e 3; 20 t sand costs e 2.9 (per t); 200 t sand costs e 2.5 (per t); and 1000 t sand
costs e 2 (per t). So the calculated production costs for I2Production (120 t)



160 C. Natschläger et al.

are e 348 and for I3Production (40 t) e 116 (sum: e 464). Considering possible
combinations, both production activities can fully be combined so that 160 t
of sand can be produced at once. However, the resulting production costs are
again e 464, so no optimization potential is given by combining I2Production &
I3Production.

Considering transportation means, all possible resources are defined in S and
shown in Fig. 1. Not explicitly given are the costs of a resource, but we assume
that Ship400 costs e 10/km, Ship600 e 14/km, Ship800 e 17/km, TrainWagon
e 4.5/km, and Truck e 2/km. The formula is then: transportationCosts =
resourceCosts x distance. So for the separate solution, the optimal means of
transportation for I1Delivery is Ship400 (e 10 x 185 km = e 1850), for I2Delivery

two TrainWagon (2 x e 4.5 x 185 km = e 1665), and for I3Delivery two Truck
(2 x e 2 x 265 km = e 1060) (sum: e 4575). For the combined solution, different
combinations of candidates are possible:

1. I1Delivery & I2Delivery (resource for combination: Ship400, costs of combi-
nation: e 1850, optimization potential: e 1665),

2. I1Delivery & part of I3Delivery (from Linz-Vienna) (resource for combi-
nation: Ship400, costs of combination: e 1850 + e 320 (remaining part of
I3Delivery: two Truck from Vienna-Bratislava, 80 km), optimization poten-
tial: e 740),

3. I2Delivery & part of I3Delivery (from Linz-Vienna) (resource for combi-
nation: Ship400, costs of combination: e 1850 + e 320 (remaining part of
I3Delivery), optimization potential: e 555), and

4. I1Delivery & I2Delivery & part of I3Delivery (from Linz-Vienna) (resource
for combination: Ship400, costs of combination: e 1850 + e 320 (remaining
part of I3Delivery), optimization potential: e 2405).

So compared to the separate solution, all combined solutions provide an opti-
mization potential, but the best solution is the fourth combination (I1Delivery

& I2Delivery & part of I3Delivery) with an optimization potential of e 2405.

2.4 Combining Business Process Instances

The fourth step of the combined-instance approach receives a set of combinable
candidates with optimization potential. The goal then is to actually combine
activities to permit common use of resources. However, combining activities of
different process instances requires a new process element, which we call Com-
bined Activity (X ). The difference between a Combinable Activity (C) and a
Combined Activity (X ) is that C marks potentially combinable activities at the
schema-level, whereas X represents actually combined activities at the instance-
level. Syntactically, X is addressed by several incoming and outgoing flows from
different process instances and receives the data objects and resources of all
participating activities. The semantics is that X consumes a token from every
participating process instance, executes the combined activity using the recom-
mended resource(s) and, finally, produces the same amount of tokens and returns



Optimizing Resource Utilization by Combining Activities 161

them to the process instances. So, X comprises two constructs that can merge
and split tokens from different process instances. For the graphical representa-
tion in the process diagram, we recommend two overlapping activities where the
front activity is marked with a bold ’X’. A similar element with the same seman-
tics is not available in any other business process modeling language (BPMN,
UML, EPC, or YAWL).

For the actual combination, we consider all activities from the set of com-
binable candidates with optimization potential. However, some candidates may
not be reached at all (alternative path is taken) or not reached in time. Thus,
we propose a deferred approach for the actual combination. The activity trig-
gering the search for possible combinations has necessarily been activated by an
incoming token. We then have to wait for further candidates to be activated.
However, the waiting time must be restricted:

– by a predefined amount of time (e.g., 24 h),
– by not explicitly delaying the activity but considering the time before exe-

cution as implicit waiting (e.g., if delivery is planned for next Monday then
the time in between is considered as implicit waiting), or

– by a given deadline of the activity minus the expected processing time.

In addition, it should be checked regularly whether reachable candidates still
exist, since otherwise waiting can be stopped. When a second combinable activity
is reached in time, X is created and replaces the two activities (if necessary an
activity is thereby split). If a further candidate receives a token in time, it is also
integrated in X . When all possible activities are integrated or the waiting time
expired, X is executed and separately written in the log-file of every process
instance (together with further split activities).

In our running example, I1Delivery is first activated by a token and then
waiting for corresponding candidates in other rI. The waiting time is limited by
deadline d1Delivery (12/31/15) minus the expected processing time p1Delivery

(approx. 1 day), so delivery must at latest be started by 12/30/15. We assume
that all other delivery activities receive a token in time. The next delivery activity
being activated is, presumably, I2Delivery. I1Delivery and I2Delivery are fully
combined and replaced by an X . Afterwards, also I3Delivery receives a token.
However, this activity must be split so that part of it (delivery from Linz to
Vienna) can be integrated in X and the remaining part (delivery from Vienna to
Bratislava) is executed individually (i.e. it is inserted as new activity “Delivery2”
after X in process instance I3).

3 Related Work

Related work is provided by different domains. In the mathematical domain,
scheduling problems are investigated and algorithms are provided that calcu-
late the optimal solution. Interesting for our research are dynamic optimization
problems, constrained optimization problems, and resource-constrained schedul-
ing problems [2,5,8,9]. If several objectives must be optimized simultaneously,
then multi-objective optimizations [6] are applied.



162 C. Natschläger et al.

In the business process domain, resource optimization is typically based on
goals, constraints, or performance optimizations (e.g. [10]). However, presented
approaches either focus on the schema level or on single active process instances
sometimes in combination with completed process executions as suggested in [7].

The probably most relevant related research in the business process domain is
provided by Pufahl and Weske in [13–15]. The authors synchronize multiple pro-
cess instances by introducing the concept of batch activities in process modeling
and execution. Commonalities with the combined-instance approach are the com-
bination of activities across different processes instances, the goal to thereby save
setup and execution costs, and the consideration of resources and their capaci-
ties. A difference, however, is the identification of possible instance combinations.
The approach by Pufahl and Weske is data-based (i.e., a data view comprises
relevant attributes for comparison and only instances with identical values are
combinable), whereas the combined-instance approach is constraint-based (i.e.,
constraints specify how data values must correlate for a possible instance combi-
nation). The data-based approach provides better usability, since only relevant
attributes must be selected, but the approach is restricted to equality of data
attributes. The constraint-based approach is more complex but also supports
extensive definitions, thereby enabling the concept of activity splits. Another
difference is the synchronization method. Batch activities are not merged to
retain single instance autonomy and only the execution of activities is delayed.
In contrast, the combined-instance approach provides an actual combination of
activities across process instances and therefore introduces the Combined Activ-
ity element. Advantages of the individual execution are instance autonomy, no
additional process element, and the support of batch regions. The advantage of
the combined-instance approach is the possibility to dynamically select a differ-
ent resource for the combined activity. In addition, a further important benefit of
the combined-instance approach is the consideration of optimization potential.
So, summing up, although both approaches combine activities across different
process instances, there are significant differences regarding the chosen methods.

Another similar approach supporting instance-level adaptation is provided
by Browne et al. in [3]. The authors introduce the concept of activity crediting
to eliminate redundant or overlapping activities at runtime. The paper provides
a notion for partial crediting resembling our concept of activity splits, but the
suggested approach is restricted to single workflow instances.

For further related research in the business process domain, we refer to the
areas of service composition and dynamic resource allocation (e.g. [1]).

Finally, applications and methods have been developed that optimize
resource utilization in specific domains like logistics or production (e.g., dynamic
logistics process management problems [4,17]). However, our goal is to address
resource optimization on a higher level of abstraction, i.e. business processes, so
that resources from different domains can be considered within the same business
process (e.g., optimization of production and transportation means).



Optimizing Resource Utilization by Combining Activities 163

4 Discussion and Case Study

In this section, we provide a detailed discussion of possible resource optimizations
and validate the approach by a more comprehensive case study. First of all, we
identify all resources with optimization potential. A classification of business
resources is given in [16] and consists of the following seven groups:

– Physical Resources like machinery, equipment, raw material, or land.
– Financial Resources like internal/external funds or financial instruments.
– Legal Resources like patents, licenses, copyrights, or trademarks.
– Relational Resources including relationships within the company or

towards suppliers/customers/competitors/external parties.
– Human Resources including their experience, education, and networks.
– Organizational Resources like routines, processes, and reputation.
– Informational Resources including information about the industry, cus-

tomers, suppliers, internal processes, and products.

Obviously only the utilization of scarce resource types can be optimized by
activity combination. If a resource type is not scarce, it means that the full
amount remains available while using any amount of it. For example, combining
activities that both use the same patent does not improve the utilization of the
patent. So no optimization potential is given for legal, relational, organizational,
and informational resources. The remaining resource groups (physical, financial,
and human) provide the possibility for resource optimization for most types, e.g.,
an exception is the education of an employee which is not scarce. Nevertheless,
these three resource groups are interesting for our approach and are considered
in the following examples:

1. A company produces twelve types of ice-cream cones which are all baked
with a distinct batter composition by one machine using different plates.
Changing production to another type requires cleaning the machine, chang-
ing the plates, and mixing the required batter. Thus, combining orders with
same ice-cream cone types improves the workload of the machine (physical
resources) and saves cleaning and cooking time (human resources).
cc: same ice-cream cone type

2. Every employee requiring office supplies forwards the demand to the admin-
istration which places the orders. A combination of (not urgent) order activ-
ities saves working time (human resources) and may provide the opportunity
for a quantity discount (financial resources). cc: same office supplies

3. Starting a new project in a company frequently requires that project mem-
bers install new software. In some cases the activity “Install Software” can
be combined so that instead of forcing every project member to install the
software locally, the software is once installed on a server and provided as
virtual application. This saves all types of resources: working time of the
project members (human resources), disk space on local computers (physi-
cal resources), and sometimes license fees (financial resources).
cc: same software (available as virtual application)



164 C. Natschläger et al.

The examples presented above show that human resources are often opti-
mized by saving working time whereas financial resources are addressed by sav-
ing money. Only physical resources have a greater variation and reach from
raw material to production means to disk space. Nevertheless, also physical and
human resource optimizations finally result in a financial benefit. The financial
benefit of activity combination can emerge from saving setup and/or execution
costs, e.g. combining orders in the ice-cream cones example saves setup costs,
whereas execution costs are saved by combining transportation in the running
example in Section 2.

In addition, we used the combined-instance approach in an actual business
environment to evaluate the practical utility of the suggested concepts. We there-
fore considered the support process of a hardware manufacturer, software devel-
oper and system solution provider for building security, service billing, alerting,
multimedia and IT services in health care. The business process schema of the
support process is shown in Fig. 2. An instance of the support process is created
whenever the company receives a support request of a customer. A service ticket
is then opened and the actual problem is analyzed. If the problem is already
solved, the service ticket is closed. However, if the problem is not solved, then
the ticket is forwarded to a technician who decides whether it is a software
or hardware problem. If it is a hardware problem, then a replacement device
is ordered or created and the firmware is installed. Afterwards, the replacement
unit is delivered to the customer. However, if it is a software problem, then a soft-
ware ticket is created followed by an error analysis and correction in the software
component. After correcting the error, it is checked whether remote maintenance
is possible. If this is the case, then the software is updated remotely, otherwise
a technician visits the customer to update the firmware on-site.

The support process is instantiated several thousand times a year mak-
ing activity combination and resource optimization an interesting improvement
opportunity. In sum, we identified the following combinable activities:

– Order or Create Replacement Device: Replacement devices are, e.g., Media-
Boxes, PT-Terminals, or Multimedia Telephones. Optimization potential is
given by combining orders to external companies (lower delivery costs, quan-
tity discount) and by combining internal production orders (saving working
time and setup time of production means). cc: same external company (for
external orders); same product (for internal orders)

– Deliver Replacement Device to Customer: Optimization potential is given by
combining different deliveries to the same customer. cc: same customer

– Error Analysis and Correction in Software Component: Optimization poten-
tial is given by combing analysis and correction with other errors in the
same software component. Similar errors can be assigned to the same soft-
ware developer reducing familiarization effort and time for quality control.
cc: same software component

– Plan Visit at Customer: Optimization potential is given by combining visits
of nearby customers (similar to our running example in Section 2), thereby



Optimizing Resource Utilization by Combining Activities 165

saving traveling time of the technician and transportation resources. cc: see
cc of delivery activity in Section 2

– Update Firmware at Customer: Optimization potential is given by combining
firmware updates (also of other products), e.g., updates to correct errors with
planned updates comprising new features. cc: same customer

Create Service 
Ticket

Analyze and 
Handle Problem

Problem Solved

Close Service 
Ticket

Forward Ticket 

Problem NOT Solved

Decision Software/
Hardware Problem

Order or Create 
Replacement Device

C

Hardware Problem identified

Create
Software Ticket

Software Problem identified

Error Analysis and Correction 
in Software Component

C

Perform 
Firmware 
Installation

Deliver Replacement 
Device to Customer

C

Check if Remote 
Maintenance is 

possible

Update 
Software 
(remote)

Remote Maintenance 
possible

Plan Visit at 
Customer

C

Remote Maintenance 
NOT possible

Update Firmware at 
Customer

C

Support Request of Customer
(per E-Mail or Telephone)

Fig. 2. Case Study: Support Process

5 Conclusion

In this paper, we suggest a novel approach for resource optimization. The key
idea of the proposed Combined-Instance Approach is to combine corresponding



166 C. Natschläger et al.

activities of different process instances and to thereby improve resource utiliza-
tion (e.g., by combining delivery activities of different orders). The approach
consists of four steps and various concepts to increase resource efficiency, e.g.,
calculation of optimization potential, dynamic resource allocation for combined
activities, and activity splitting to partly combine activities. The applicability of
the combined-instance approach was demonstrated by applying it to a running
example and by using it within a case study. We further expect that using this
approach provides a financial benefit for many companies.

Our future goals are to formally define activity splits, to provide exception
handling for combined activities, and to combine similar activities derived from
different process schemas (e.g., based on the identification of similarities [11]).
We will further extend the case study by considering other processes of the
company as, e.g., an order execution process.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering 33(6), 369–384 (2007)

2. Biró, M.: Object-oriented interaction in resource constrained scheduling. Informa-
tion Processing Letters 36(2), 65–67 (1990)

3. Browne, E.D., Schrefl, M., Warren, J.R.: Activity crediting in distributed workflow
environments. In: ICEIS, vol.3, pp. 245–253 (2004)

4. Chow, H.K., Choy, K.L., Lee, W.B.: A dynamic logistics process knowledge-based
system - an RFID multi-agent approach. Know-Based Syst 20(4), 357–372 (2007)

5. Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Computing 15(7), 1427–1448 (2011)

6. Deb, K.: Multi-objective optimization. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies, pp. 403–449. Springer, US (2014)

7. Ernst, M.: Method and apparatus for dynamic optimization of business processes
managed by a computer system (1999). US Patent Number 5890133

8. Golden, B., Raghavan, S., Wasil, E.: The Vehicle Routing Problem: Latest
Advances and New Challenges. Operations Research/Computer Science Interfaces
Series. Springer, US (2008)

9. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. EJOR 207(1), 1–14 (2010)

10. Huang, Z., van der Aalst, W., Lu, X., Duan, H.: Reinforcement learning based
resource allocation in business process management. Data & Knowledge Engineer-
ing 70(1), 127–145 (2011)

11. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt,
H.: Probabilistic optimization of semantic process model matching. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Hei-
delberg (2012)

12. Natschläger, C., Bögl, A., Geist, V.: Optimizing resource utilization by combining
running business process instances. In: Toumani, F., Pernici, B., Grigori, D.e.a.
(eds.) ICSOC 2014 workshops and satellite events. LNCS, Springer (2014)

13. Pufahl, L., Herzberg, N., Meyer, A., Weske, M.: Flexible batch configuration in
business processes based on events. In: Franch, X., Ghose, A.K., Lewis, G.A.,
Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 63–78. Springer, Heidelberg
(2014)



Optimizing Resource Utilization by Combining Activities 167

14. Pufahl, L., Meyer, A., Weske, M.: Batch regions: Process instance synchronization
based on data. In: EDOC, pp. 150–159. IEEE (2014)

15. Pufahl, L., Weske, M.: Batch activities in process modeling and execution. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 283–297. Springer, Heidelberg (2013)

16. Seppänen, M., Mäkinen, S.: Towards classification of resources for the business
model concept. International Journal of Management Concepts and Philosophy
2(4), 389–404 (2007)

17. Wang, Y., Caron, F., Vanthienen, J., Huang, L., Guo, Y.: Acquiring logistics pro-
cess intelligence: Methodology and an application for a chinese bulk port. Expert
Systems with Applications, pp. 195–209 (2014)


	Optimizing Resource Utilization by Combining Activities Across Process Instances
	1 Introduction
	2 The Combined-Instance Approach
	2.1 Business Processes with Data Objects and Constraints
	2.2 Identifying Candidates for Process Instance Combinations
	2.3 Determining the Optimization Potential
	2.4 Combining Business Process Instances

	3 Related Work
	4 Discussion and Case Study
	5 Conclusion
	References


