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Preface

The present volume contains the proceedings of the sixth IPM International
Conference on Fundamentals of Software Engineering (FSEN), held in Tehran,
Iran, April 22–24, 2015. This event, FSEN 2015, was organized by the School of
Computer Science at the Institute for Research in Fundamental Sciences (IPM)
in Iran, in cooperation with ACM SIGSOFT and IFIP WG 2.2.

The topics of interest span all aspects of formal methods, especially those
related to advancing the application of formal methods in the software industry
and promoting their integration with practical engineering techniques. The Pro-
gram Committee of FSEN 2015 consisted of 46 top researchers from 38 different
academic institutes in 17 countries. We received a total of 62 submissions from
22 countries out of which we have accepted 14 regular papers, 5 short papers and
6 posters. Each submission was reviewed by at least 3 independent referees, for
its quality, originality, contribution, clarity of presentation, and its relevance to
the conference topics. These proceedings include the regular and short papers,
as well as two papers by the invited speakers.

Three distinguished keynote speakers delivered their lectures at FSEN 2015.
Paola Inverardi gave a talk on “Automated Integration of Service-Oriented Soft-
ware Systems”, Holger Giese presented his work on “Towards Smart Systems of
Systems”, and John Hughes gave a presentation on “Experiences with Property-
Based Testing: Testing the Hard Stuff and Staying Sane.”

We thank the Institute for Research in Fundamental Sciences (IPM), Tehran,
Iran for their financial support and local organization of FSEN 2015. We also
thank the members of the Program Committee for their time, effort, and ex-
cellent contributions to making FSEN a quality conference. We thank Hossein
Hojjat for his help in preparing this volume. Last but not least, our thanks go to
the authors and conference participants, without whom FSEN 2015 would not
have been possible.

July 2015 Mehdi Dastani
Marjan Sirjani
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Towards Smart Systems of Systems∗

Holger Giese, Thomas Vogel, and Sebastian Wätzoldt

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany

{Holger.Giese,Thomas.Vogel,Sebastian.Waetzoldt}@hpi.de

Abstract. Systems of Systems (SoS) have started to emerge as a con-
sequence of the general trend toward the integration of beforehand iso-
lated systems. To unleash the full potential, the contained systems must
be able to operate as elements in open, dynamic, and deviating SoS
architectures and to adapt to open and dynamic contexts while being
developed, operated, evolved, and governed independently. We name the
resulting advanced SoS to be smart as they must be self-adaptive at the
level of the individual systems and self-organizing at the SoS level to
cope with the emergent behavior at that level. In this paper we analyze
the open challenges for the envisioned smart SoS. In addition, we dis-
cuss our ideas for tackling this vision with our SMARTSOS approach
that employs open and adaptive collaborations and models at runtime.
In particular, we focus on preliminary ideas for the construction and
assurance of smart SoS.

1 Introduction

Systems of Systems (SoS) [1, 2] nowadays become a highly relevant challenge
as the general trend can be observed that beforehand isolated systems are inte-
grated into larger federations of systems. To unleash the full potential of such
federations, SoS must be smart such that the contained systems are able to
operate as elements in open, dynamic, and deviating SoS architectures and to
adapt to open and dynamic contexts while being developed, operated, evolved,
and governed independently.1 Therefore, the resulting smart SoS must be self-
adaptive at the level of the individual systems and self-organizing at the SoS
level to cope with the emergent behavior at that level.

For a smart SoS holds that each of its systems has to be independent in the
sense that it is developed, operated, evolved, and governed independently from

∗ This work was partially developed in the course of the project “Quantitative
analysis of service-oriented real-time systems with structure dynamics” (Quan-
tum) at the Hasso Plattner Institute at the University of Potsdam, pub-
lished on its behalf, and funded by the Deutsche Forschungsgemeinschaft. See
http://www.hpi.de/en/giese/projects/quantum.html

1 Similar needs are observed for specific cases of SoS, such as ultra-large-scale sys-
tems [3] focusing on issues arising from the complexity of SoS or cyber-physcial
systems [4] emphasizing the integration of the physical and cyber world.

c© IFIP International Federation for Information Processing 2015
M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 1–29, 2015.
DOI: 10.1007/978-3-319-24644-4_1

http://www.hpi.de/en/giese/projects/quantum.html
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the other systems in the SoS. Furthermore, these systems interact with each
other in an open and dynamic world (cf. [5]), which causes individual systems to
dynamically join or leave the SoS over time, the SoS architecture to deviate, and
emergent behavior at the SoS level. Moreover, each independent system must
adapt its behavior autonomously according to its own needs and peer systems
in the SoS (self-adaptation [6, 7]) while considering the interplay between its
own behavior, the other systems’ behavior, and the required SoS-level behavior
(self-organization [8]). The envisioned interaction between the systems involves
independently developed systems and requires means for exchanging knowledge
between these systems at runtime. This knowledge covers aspects of a running
system itself and the context or the requirements of a running system. While
the outlined rich interaction is key, the development of the systems has to scale
and thus only can take into account the publically available knowledge about
possible collaborations with the other systems. Finally, the systems as part of a
smart SoS will evolve in order to adjust to new needs or changing regulations
(cf. software evolution [9]). Since it seems today improbable or even impossible
that all the required evolution steps can be covered automatically by a system
itself (e.g., by self-adaptation or self-organization), it must still be possible that
required evolution steps for each individually governed system are performed
during the operation of the SoS. These challenges for engineering smart SoS are
currently hardly covered by the available approaches.

The current state of the art suggests constructing SoS using an architecture
perspective and services (cf. [10]) employing, for example, the Service oriented
architecture Modeling Language (SoaML) [11] and the Unified Modeling Language
(UML) [12] to specify the cooperation of systems by means of service contracts
and collaborations. In these collaborations, roles with dedicated interfaces de-
scribe the behavior of the systems while the SoS-level behavior emerges from the
interactions of these roles.

The use of collaborations for the modeling of services [13,14], the use of class
diagrams for the structure and graph transformations for the behavior model-
ing [15,16], and a formal model of ensembles [17] have been proposed. However,
none of these approaches supports the construction of dynamic collaborations as
required for smart SoS where systems dynamically join or leave the federation.
And even though well-established formal approaches such as π-calculus [18] or
bigrahs [19] tackle such structural dynamics, to the best of our knowledge no
work exists that especially covers the problem of providing assurances for dy-
namic collaborations of arbitrary size. Either the approaches require an initial
system configuration and only support finite state systems (or systems for which
an abstract finite state model of moderate size exist) [15,20–24] or they lack the
expressive power to describe typical problems concerning the structural dynam-
ics [25, 26].

In our ownMechatronic UML approach (mUML) [27] for the model-driven
development of self-optimizing embedded real-time systems, we already support
collaborations of self-optimizing autonomous systems in a rigorous manner by
means of role protocols. For mUML and its collaboration concepts an overall
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assurance scheme has been presented in [28]: it combines a modular verifica-
tion approach [29] for the component hierarchies of the autonomous systems,
the compositional verification [30] of ad hoc real-time collaborations between
the autonomous systems, and a fully automatic checker for inductive invariants
of graph transformation system rules [31] describing the possible changes of the
dynamic architecture at the SoS level. Additional work on assurances for mUML
employs a multi-agent system view on an SoS to study how commitments be-
tween the collaborating systems can be modeled and analyzed [32]. Therefore,
with mUML an approach exists that provides assurances for systems that com-
bine self-adaptive autonomous systems similar to an SoS. However, in contrast
to the challenges of smart SoS, which are discussed in the next section, mUML
provides no solution for collaborations with structural dynamics of the roles, is
restricted to homogeneous systems (i.e., systems that evolve jointly and similarly
and that have complete knowledge about each other), and does not support the
runtime exchange of complex knowledge. Moreover, the self-adaptation is limited
to pre-planned reconfigurations in hierarchical architectures.

Our Executable Runtime Megamodels approach (EUREMA) [33] for
the model-driven engineering of self-adaptive systems supports – in contrast to
mUML – the flexible specification of self-adaptation by allowing us to employ
abstract runtime models (cf. [34]) of the context and the system itself such that
the self-adaptation behavior can be specified by rules operating on such abstrac-
tions. However, EUREMA is so far limited to centralized and non-distributed
systems and does not address collaborations or the self-organizing SoS level.

In this paper, we will first analyze open challenges for engineering smart SoS.
We will then discuss our Software with Models at Runtime for Systems of
Systems (SMARTSOS) vision that employs collaborations and generic mod-
els at runtime for trustworthy self-organization and evolution of the systems
at the SoS level and self-adaptation within the systems while taking the inde-
pendent development, operation, management, and evolution of these systems
into account. We will particularly outline the formal foundations underlying
SMARTSOS based on graph transformation systems [35,36] which cover in prin-
ciple the identified challenges for the construction and assurance of smart SoS.

The rest of the paper is structured as follows: In Section 2, we discuss open
challenges for smart SoS. Afterwards, our SMARTSOS vision is outlined in Sec-
tion 3. Then, the concepts for constructing smart SoS with collaborations, com-
ponents, and runtime models are outlined in Section 4. Afterwards, the results
that enable the assurance for the smart SoS are presented in Section 5. The pa-
per closes with a discussion of these results in Section 6 and provides in Section 7
some concluding remarks and an outlook on future work.

2 Challenges

SoS as a composition of systems that are operationally and managerially inde-
pendent from each other [1] is characterized by uncoordinated evolution steps
and geographic distribution of these systems (cf. [37]). Additionally, dynamic
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Table 1. Summary of the Identified Challenges.

Construction/Assurance of Self-Adaptation (C1/A1)
Construction/Assurance of SoS-Level Interactions for Self-Organization (C2/A2)
Construction/Assurance of SoS-Level Structural Dynamics (C3/A3)
Construction/Assurance of SoS-Level Runtime Knowledge Exchange (C4/A4)
Construction/Assurance of Evolution of Smart SoS (C5/A5)
Scalable Construction/Assurance of Smart SoS (C6/A6)
Construction/Assurance of Smart SoS with Restricted Knowledge (C7/A7)

configuration capabilities, resilience, the ability to dynamically adapt and ab-
sorb deviations in the SoS structure, and the ability to deal with emergent be-
havior in context of self-organization that goes beyond developing contractual
descriptions are crucial [2] for smart SoS. These issues are challenging since each
system as part of a smart SoS is independent in the sense that it is developed,
operated, evolved, and governed independently from the other systems in the
same SoS. Furthermore, the systems interact with each other in an open and
dynamic world (cf. [5]), which causes individual systems to dynamically join or
leave the smart SoS over time, the SoS architecture to deviate, and emergent
behavior at the SoS level. Consequently, the SoS-level architecture and behavior
are not controlled by a single, centralized authority.

As example in this paper we consider a large-scale transport system where
different organizations operate fleets of autonomously driving shuttles that share
a track system. This constitutes an SoS since the shuttles are operated, managed,
and evolved by different authorities, they dynamically interact with each other
(e.g., to build convoys), and they adapt to their own and the other shuttle’s
states and behavior (e.g., to decrease the speed when the shuttle’s own battery
level is low or when the speed of the shuttle running ahead decreases).2

Engineering such smart SoS imposes several challenges that we outline in
Table 1. All of them aim for means for the construction and assurance of smart
SoS and its individual systems, which must take the operational and managerial
independence of the individual systems and the emergent behavior at the SoS
level into account.

The first challenge considers the Construction/Assurance of Self-Adaptation
(C1/A1) of the individual systems as each system within a smart SoS must
adapt its behavior according to its own needs and the behavior of other systems
as well as the emergent SoS-level behavior (cf. [38, 39]). For instance, a shuttle
adapts its speed to its battery level, to the speed of the shuttle running ahead,
or to an agreement established by all shuttles in a convoy. Such changes of the
behavior must be systematically constructed and assured to enable trustworthy
operation and in particular self-adaptation [6, 7].

Due to the operational and managerial independence of the systems, the Con-
struction/Assurance of SoS-Level Interactions for Self-Organization (C2/A2)
challenge captures that the interactions among these systems must be self-
organizing (cf. [8]) to achieve the SoS-level goals. For example, shuttles
from different organization must interact to avoid collisions or they may even

2 See http://www.railcab.de for an example with the outlined characteristics.

http://www.railcab.de
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cooperate to build convoys in order to save energy. Such interplays of autonomous
shuttles must be systematically constructed and assured to provide confidence
for satisfying SoS-level goals (e.g., reliable and safe rail traffic).

Furthermore, since the operational context changes or the systems dynam-
ically join or leave the SoS such that the SoS-level architecture dynamically
changes, the challenge of the Construction/Assurance of SoS-Level Structural
Dynamics (C3/A3) must be supported. For instance, autonomous shuttles may
join or leave a convoy and the other shuttles already part of the convoy must
account for it. Such dynamics must be constructed and assured to guarantee
certain SoS-level behavior resulting from the interactions.

Additionally to the structural dynamics, the Construction/Assurance of SoS-
Level Runtime Knowledge Exchange (C4/A4) is required since no system in
the SoS typically has all the knowledge needed to achieve the SoS-level goals at
runtime. This calls for exchanging knowledge between interacting systems. This
knowledge refers to the current state, context, and requirements of individual
systems. For instance, shuttles establishing a convoy may exchange their driving
modes to agree on a common mode for the whole convoy. Such a knowledge
exchange must be constructed and assured when engineering interactions to
gain confidence that the SoS-level goals can be achieved.

In parallel to the self-adaptive and self-organizing behavior of systems in the
SoS, the systems evolve in an uncoordinated way as they are managed indepen-
dently from each other by different organizations. Evolution is caused by the per-
manent need to change the software in response to changing requirements of the
stakeholders, no longer valid assumptions, or changing regulations the software
has to adhere to (cf. software evolution [9]).With evolution, we refer to introducing
new or removing existing types of systems or interactions (and therefore, also be-
havior) from the SoS. For example, new shuttle versions that support new cooper-
ation mechanisms are integrated into the SoS and they must not interfere with the
already existing versions. To handle such radical changes in a trustworthymanner
and to support the long-term existence of the SoS, the Construction/Assurance of
Evolution of Smart SoS (C5/A5) is a main challenge.

In general, engineering smart SoS is challenging due to the ultra-large scale
and complexity of such systems and due to the different authorities manag-
ing such systems. Therefore, the Scalable Construction/Assurance of Smart SoS
(C6/A6) and the Construction/Assurance of Smart SoS with Restricted Knowl-
edge (C7/A7) are also important aspects for the engineering. The first aspect is
motivated by the fact that it is not feasible to construct the whole SoS upfront
before its deployment, or to analyze all possible SoS configurations or archi-
tectures that grow exponentially with the number of participating systems. For
instance, any number of shuttles of arbitrary types may run on the track system
or may cooperate in a convoy. Thus, the construction and assurances for SoS
must scale with the size of the SoS. The second aspect refers to the construction
and assurances for smart SoS, which must work despite the restricted knowledge
that participants of the SoS have. An organization responsible for an individual
system in the SoS or the system itself might have no global view of the SoS and
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no concrete information about the other participants and possible interactions
among participants. Nevertheless, assurances for each system and the SoS must
be provided to enable trustworthy operations. For example, when constructing
and assuring new shuttle versions supporting a certain interaction, details about
other organizations’ shuttle versions that are potential cooperators for the in-
teraction might not be available. However, the construction and assurance must
cope with the limited knowledge available.

These open challenges, each with a construction and assurance dimension as
summarized in Table 1, reveal the difficulty of engineering and ruling smart SoS
due to the complexity, dynamics, emergence, and decentralized management and
governance.

3 SMARTSOS

In our vision SMARTSOS, we suggest combining the benefits of mUML and
EUREMA to tackle the challenges for smart SoS. However, we do not suggest
simply integrating the ideas of both approaches. Instead we developed a radically
different and more abstract perspective on the SoS-level interactions to overcome
the limitations of the state-of-the-art and former approaches and to master the
complexity of smart SoS. This novel perspective is based on the combination of
runtime models and collaborations.

3.1 Runtime Models

To realize the challenge of the Construction/Assurance of SoS-Level Runtime
Knowledge Exchange (C4/A4), SMARTSOS employs models at runtime [34]
that suggest following model-driven engineering principles to engineer abstract
runtime representations of running systems or their contexts and requirements.
Such models are said to be causally connected to the running system, which
means that changes in the system are reflected in the model and vice versa. Thus,
“change agents (e.g., software maintainers, software-based agents) use [abstract]
runtime models to modify executing software in a controlled manner” [40, p. 39]
rather than directly adapting the running software at the code level.

With EUREMA we have extended this perspective by providing runtime
models at different levels of abstraction [41] and by specifying the adaptation
itself, that is, software-based agents, using runtime models [33]. The latter aspect
leverages the flexibility of runtime models for managing the change agents at
runtime in addition to the running systems. In SMARTSOS, we go another step
further and suggest using generic in contrast to highly specific and optimized
runtime models, which eases interoperability and evolution of systems in an
SoS, as it excludes individual optimization and specific solution for the runtime
models.

For an individual system in a smart SoS, such generic runtime models may
capture the system’s state, context, requirements, and adaptation logic. These
models may be used locally for self-adaptation and assurances that each system
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Fig. 1. Local and shared runtime models of a complex SoS architecture.

fulfills its requirements. As discussed in the following, they may also be used for
collaborations among systems leading to the self-organization of the SoS, which
requires the exchange of runtime knowledge.

The basic idea to integrate runtime models and collaborations for the con-
struction of smart SoS is depicted in Fig. 1. At first, each running system living
in the cyber world may have a view on its physical context and its own state
in the cyber and physical world by means of runtime models of the context and
the self. In general, we consider runtime descriptions reflecting the running sys-
tem and its context as Reflection Models. Particularly, System Models (Self in
Fig. 1) reflect about architectural and behavioral key aspects of the system and
they are causally connected to the system. Context Models (Context in Fig. 1)
describe the environmental situation of a system (cf. [42, 43]). In our example,
models of the Context and Self are depicted in the individual Shuttle systems
in Fig. 1. This supports designing the self-adaptation of the shuttles as MAPE-
K feedback loops (Monitor/Analyze/Plan/Execute-Knowledge) [44] while the
knowledge part is implemented by the runtime models. Such feedback loops are
realized by analyze and plan activities that operate on the basis of the runtime
models while linking the runtime models to the system and context is realized
by the monitor and execute activities. The Self and Context runtime models can
refer to the local state of a shuttle (e.g., the Mode and Battery status) as well
as the available information about the context (e.g., whether there is another
shuttle driving on the tracks ahead of the shuttle). This context does not only
consist of the physical context such as the shuttle’s position, the topology of the
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Fig. 2. Visibility of local and shared runtime models.

track system, and the positions of other shuttles nearby, but additionally the
context in the cyber world. This cyber-world context covers, for instance, the
established collaboration instances and context shared with other roles of these
collaboration instances.

As depicted in Fig. 1, these runtime models of the context and self constitute
an overall local runtime model, that is, the Reflection Model, for each :Shuttle
system. As described in Fig. 2 in more detail, each system does not only operate
on information about its own local context and itself, but can also get access
to the information stored in runtime models of other systems concerning their
context or themselves.3 In our example, the left most Shuttle system has also
access to information in form of runtime models in quite different ways. The
directly visible elements are the information available local to the shuttle by
means of runtime models (white with solid frame). Additional information like
the position of the shuttle in front of it, which is encoded by the on edge between
that shuttle and its current track, is accessible for shuttles that knows the Coord
collaboration type (gray with dashed frame). Finally, information about the
mode of the shuttle system in front of it is accessible for a shuttle, if it is connected
to this via a Coord collaboration instance (gray with solid frame).

Likewise to EUREMA, the behavior of the systems in reaction to particular
situations can now be directly described based on such overall local runtime
models. This is illustrated at the top of the left-hand side of Fig. 2 showing
the feedback loop (i.e., the monitor, analyze, plan, and execute activities) of a
shuttle realizing the self-adaptation and therefore, addressing the Construction

3 In the case of heterogeneous local runtime models, efficient incremental model syn-
chronization techniques such as triple graph grammars [45] can be employed. Such
techniques realize required translation steps between runtime models that are spec-
ified in different modeling languages but that capture similar content. We already
applied them to create and maintain multiple runtime models of a system in [41].
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of Self-Adaptation (C1) challenge. In the following, we will elaborate the use of
such generic runtime models in the context of collaborations. In general, such
models as employed by SMARTSOS provide an idealization of the systems and
contexts, which is discussed in Section 4.3.

3.2 Collaborations

To approach the challenges of the Construction/Assurance of SoS-Level Inter-
actions for Self-Organization (C2/A2) and the Construction/Assurance of SoS-
Level Structural Dynamics (C3/A3) while taking aspects of the Scalable Con-
struction/Assurance of Smart SoS (C6/A6) and the Construction/Assurance of
Smart SoS with Restricted Knowledge (C7/A7) into account, SoaML and UML
provide basic concepts of modeling collaborations. They support specifying ab-
stract collaboration types and corresponding roles. The interaction of roles is
defined by sequence or activity diagrams and UML interface descriptions (in
form of class diagrams). Role behavior may be also covered by protocol state
machines. The mUML approach goes beyond the ideas of SoaML and UML by
describing the possible interaction always via real-time variant of state machines
for each role and the communication medium. Due to the well-defined seman-
tics for all employed formalism such as the real-time variant of state machines,
mUML enables the basic verification of the interactions through model checking.

SMARTSOS supports a more flexible concept for collaborations compared
to mUML and SoaML/UML. In SMARTSOS a richer language to specify the
collaborations is provided, which also covers the exchange of complex information
as well as specifying structural dynamics covering, for example, how systems
can join the collaboration, leave the collaboration, or how the structure of the
collaboration may change at runtime. In order to ensure interoperability and
achieve trustworthy behavior at the SoS level, we furthermore need also more
sophisticated analysis capabilities, for example, to investigate the impact from
one system part to another through collaborations.

The basic idea of separating the required interactions into separated collab-
orations is depicted in Fig. 1. The autonomous systems of the SoS can connect
with each other as specified by the collaboration types and can establish collab-
oration instances to cooperate as needed. For example, the two left most Shuttle
instances in Fig. 1 are linked by a Coord collaboration instance to build a tem-
porary convoy and the right most Shuttle instance is linked to a Station instance
by an Allocate collaboration instance.

It has to be noted that different collaboration types and their involved views
on the physical or cyber world may not be disjoint. In such a case, the construc-
tion and assurance for the collaboration types that share some of their elements
of the physical or cyber world have to take such overlapping into account. The
required concepts for abstract shared collaborations types that includes runtime
models with overlapping entities are discussed in Section 4.3.

The elements of the Coord collaboration type are defined in the class diagram
depicted on the left hand side of Fig. 3. The Coord collaboration element as well
as the Shuttle role with its Mode and Battery status are introduced using the
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Fig. 3. Class diagram of the collaboration type Coord (left); properties of the collabo-
ration type Coord as forbidden SPs (middle and right).

stereotypes �collab� for collaborations and �role� for roles. The class dia-
gram also defines the track topology, that is, multiple Track elements connected
with each other by the next relationship, as well as the positioning of the Shuttles
on the tracks by the on relationship.

The class diagram of a collaboration type implicitly specifies in form of all
valid object configurations for the class diagram the possible states the collabora-
tion may be in. Later on, we define rules that refer to such object configurations
to capture the system behavior. We formally define these object configurations
as attributed graphs in Section 4.

Fig. 4. Behavior rules for the Shuttle role of the Coord collaboration as SPs.

To capture the laws that should hold for the different collaboration types, we
specify behavior rules with Story Patterns (SPs) [45] that define the permitted
and mandatory behavior of each role, read rules with SPs having no side effects
that define the visibility of shared runtime models, and the properties the col-
laboration has to ensure. These properties are described by SPs without side
effects in the case of simple state properties and with Timed Story Sequence
Diagrams (TSSDs) [46] in the case of sequence properties. A major duty for the
SoS-level assurance is to ensure that the properties are the guaranteed outcome
of the roles’ behavior.
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Fig. 4 depicts the behavior rules, that is, the SPs defining the permitted and
mandatory behavior of each role of the Coord collaboration (we refer to [47] for
the complete set of behavior rules). The SP called move in coordination on the
lower right-hand side of Fig. 4, for example, describes that after the building of a
platoon encoded by the existence of the Coord instance, the rear shuttle instance
can move with a reduced distance behind the front shuttle instance and therefore,
both shuttle instances may even be positioned on the same Track instance. The
instance name self used in a rule determines the role of the collaboration, for
which this rule is intended, in this example, for the shuttle role (cf. self:Shuttle
element). Furthermore, the create coordination SP defines that shuttles must
create a collaboration if they are on neighboring tracks and do not yet collaborate
(i.e., there is no Coord instance yet).

A simple SP denotes two graphs at once. The first one is the left-hand-side
graph L that you try to find in the current instance situation encoded in the
graph G and that consists of all unmarked elements and those marked with
�destroy�. The second one is right-hand-side graph R that consists of all un-
marked elements and those marked with �create�. If L can be matched in G,
the SP rule can be applied. A rule application on G results in the replacement
of the match of L in G by R. In the case of complex SPs that have a negative
application condition (NAC) that defines a graph L′ resulting from extending L
by all the crossed-out elements. Then, besides finding the left-hand-side graph
L in G there must exist no match for the NAC L′ in G that extends that match
for L. Otherwise, the rule cannot be applied.

On the upper right-hand side of Fig. 4, the move SP specifies using such a
NAC that shuttles can move forward along the track over time if there is no other
shuttle on the next track. Additionally, the SP defines a temporal condition that
a shuttle must stay on a track at least ten time units before it can move to
the next track. This temporal condition ensures that the move SP can only be
applied with respect to realistic physical movement conditions of the shuttles.
If the shuttle moves, the on reference is created on the t2 Track and the clock
attribute timeAtTrack of the shuttle is reseted to zero. As a consequence, the
shuttle has to stay on the next track again at least for ten time units before the
move SP can be applied again.

Fig. 5 shows an example of an application of a graph transformation rule. If
we consider the instance situation (start graph) on the left-hand side and apply
the move SP rule from Figure 4, first a match for the move SP has to be found.

Fig. 5. Application of the move SP from Figure 4 on an exemplary instance situation.
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Thereby, we can find a match, where the shuttle instance self from Figure 4 is
matched to the s1 shuttle instance on the left side in Figure 5. Because there
is no other shuttle on the next track t2, the move SP can be applied for the
found match with the consequence that the on link from shuttle s1 to track t1
is deleted and a new on link from shuttle s1 to track t2 is created. Thus, we
obtain the instance situation (result graph) as depicted on the right-hand side
on Figure 5.

The properties the collaboration type Coord should guarantee are depicted in
Fig. 3. We have the forbidden situations collision and missing collaboration that
must not happen. Hence, these properties are marked with ¬∃. For example, the
collision SP in the middle of Fig. 3 shows the situation where two shuttles that
are not collaborating with each other are on the same track, that is, these two
shuttles may collide. Furthermore, the missing collaboration SP on the right-hand
side of Fig. 3 reflects the faulty situation where two shuttles are on neighboring
tracks but they do not collaborate with each other. Both situations have to be
excluded to ensure a proper operation of the collaboration. For both instance
situations in Figure 5 must hold that all specified properties are fulfilled (that
the forbidden collision and missing collaboration SP cannot be matched).

Fig. 6. Read rules for the Shuttle role of the Coord collaboration type as SPs.

The read rules for the collaboration type Coord are depicted in Fig. 6 using
SPs and so called path expressions that allow us to describe the fraction of the
runtime models that can be accessed in a more compact form than standard SPs
without such path expressions. In general, read rules on the one hand describe
what the roles can access (read) but also imply on the other hand that the other
roles somehow have to provide the related information. In any case, the self
instance name in a read rule that must always be present determines for which
role this rule specifies access to other runtime models. The optional provider
instance name if present in a rule indicates whether a related role is in charge
of providing that information.

The first read rule, called common, describes that it is assumed that a shuttle
(marked with the self instance name) has access to the complete track topology
because the path expression next[0..∗] denotes any finite path between two Tracks
with arbitrary many omitted and thus not visible nodes in between. Looking at
the class diagram in Fig. 3, it reveals that the omitted nodes must always be
of type Track and thus, the path expression represents all sequences of Tracks
connected by next edges. As this read rule does not require any instance of the
Coord collaboration, it denotes that each shuttle knows the track topology on
its own (a possible implementation would be that each shuttle has a map of the
track topology).
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The read rule detect-obstacle for the Shuttle role (cf. self instance name) em-
ploys the path expression next[0..3] to denote a path between two Tracks with
0 to 3 not visible Tracks in between. The provider instance name for the other
Shuttle role indicates that this role must provide this fragments of its runtime
model. As this read rule does not require any instance of the Coord collaboration,
it defines that the shuttles are able to see other shuttles nearby even though no
collaboration has been established yet (a possible implementation can be based
on GPS and a related protocol to broadcast position data to the shuttle’s vicin-
ity [48]). The read rule share-mode for the Shuttle role (cf. self instance name) is
different as it always requires an instance of the Coord collaboration. Otherwise,
it does not allow a shuttle to retrieve (read) the mode of the other Shuttle role.
The provider instance name for that Shuttle role indicates that this role must
provide this data.

4 Construction

To cover in particular the challenges of the Construction of SoS-Level Interac-
tions for Self-Organization (C2), Construction of SoS-Level Structural Dynamics
(C3), Construction of SoS-Level Runtime Knowledge Exchange (C4), Construc-
tion of Evolution of Smart SoS (C5), and Scalable Construction of Smart SoS
(C6), SMARTSOS supports collaborations with a dynamic number of roles, run-
time models, the independent evolution of the autonomous systems and their
collaborations, and the specification of individual autonomous systems without
having complete knowledge about the overall SoS. These aspects require at first
a solid foundation for the concepts used for the construction and assurance of
smart SoS. Based on this foundation we then can formally introduce types and
instances of collaborations, systems, and SoS as well as the notions of runtime
models and overlapping collaborations. Finally, we cover the evolution of smart
SoS, that is, the set of types and instances of the SoS evolve (e.g., new types
and instances are introduced).

4.1 Foundation

The formal foundation of SMARTSOS can be based on our former results in the
context of mUML and experience in formal models for self-adaptive systems [49]
and model transformations [50] based on graph transformation systems. In this
context, graphs serve as a formal model to represent object configurations cap-
turing the SoS-level architecture and runtime models (see the formal model
depicted in Fig. 1) while the graph transformation rules such as SPs denote the
behavior of the collaboration roles and graph conditions the required proper-
ties. To address various software aspects, we have developed extended attributed
graph transformations systems covering real-time [51], probabilistic [52], and hy-
brid [47,53,54] behavior. These extensions can be used in the formal foundation
of SMARTSOS.
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In this paper, we will only introduce the basic ideas of the underlying for-
mal model and refer to [54] for more details. The formal model we use can be
described as follows:

Typed attributed graphs G with attributes describe the states of our model
elements (system of systems, systems, and collaborations). They relate to the
possible object configurations that a class diagram CD defines (cf. Figure 3 for
the Coord collaboration). We use G∅(CD) to denote all those possible typed
attributed graphs that fit to a class diagram CD and do not contain any role
objects. We will further refer to the empty graph as G∅. An example of an object
configuration is depicted in Figure 2, where two shuttles are linked by a Coord
collaboration. The corresponding elements can also be found in the formal model
depicted on top of Fig. 1.

Sets of graph transformation rules R define the behavior. They related to the
SPs we employed earlier (cf. Figure 4 for the Coord collaboration). Rules r ∈ R
can match a certain fragment of a graph representing the state and in addition
describe how the graph changes when the rule is applied. Given a start graph
and a number of rule applications we get a path π.

Furthermore, a suitable logic for state and sequence properties is assumed
and we can describe whether a sequence property φ holds for a path π (π |= φ)
or for all paths generated by a start graph G and a set of rules R applied on
G (G,R |= φ). Simple state conditions are specified by SPs without side effects
(cf. Fig. 3), while TSSDs [46] can be employed to describe sequence properties.

Additionally, we use a refinement notion for graph transformation rule sets
R′ � R that guarantees preservation of safety properties while allowing us to
extend the rules unless guaranteed behavior will be blocked.

We further exploit the fact that the different elements in our formal model
are by construction separated either by their types or so-called pseudo types4

For two rules separated by their types or pseudo types holds that the behavior
cannot interfere in unexpected ways.

4.2 Collaborations, Systems, and System of Systems

Collaborations. Similar to SoaML and mUML, collaborations are the main
elements to address the interactions among individual systems in SMARTSOS.
However, we need an extended formalization as presented in more detail in [54]
to cover also the structural dynamics such as joining a collaboration, leaving
a collaboration, or changing the structure of a collaboration.5 At first and in
addition to the simplified view depicted in Fig. 1, we have to add extra nodes in
the graphs for the role instances of a collaboration:

Definition 1 (see [54]). A role type roi equals a node type roi.

4 Their types separate two rules if they have no node and edge type in common. Their
pseudo types separate them, if for all nodes of shared type holds that always a single
link to a special node with not shared type at the instance level are demanded.

5 The terminology used in [54] has been adjusted and extended in this paper to better
fit the concepts of SoS.
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In our application example, the Shuttle element of the Coord collaboration is
such a role type.

In addition to the basic notion of collaborations used in SoaML/UML and
the extended one provided by mUML, we have to cover more information for a
collaboration type as depicted in Fig. 1, 2, 3, and 4.

Definition 2 (see [54]). A collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni

i ), CDi,

Ri, Φi) consists of a collaboration type node coli, a number of role types roji , an
UML class diagram CDi, a function Ri : {coli, ro1i , . . . , roni

i } �→ 2R assigning
rules to role types, and a guaranteed property Φi.

A collaboration instance of collaboration type Coli is represented by a node
of type coli. In our example we have the Coord and Allocate collaboration types
(see related dashed oval shapes in Fig. 1) as well as single :Coord and :Allocate
collaboration instances (see related solid oval shapes in Fig. 1).

For two different role types roki and roli the set of assigned rules has to be
disjoint Ri(ro

k
i )∩Ri(ro

l
i) = ∅. The creation of collaboration instances of collab-

oration type Coli is only possible through the collaboration type’s roles roki and
their assigned behavior Ri(ro

k
i ). E.g., see the create shuttle SP in Fig. 4.

The relation among the collaboration Coli’s role types ro1i , . . . , ro
ni

i and any
additional data types that are used within the collaboration are specified by the
class diagram CDi. The class diagrams of different collaborations have to be
separated by different name spaces.

In our example, we have a role type Shuttle and its behavior rules are given
by the set { create shuttle, move, create coordination, move in coordination } of
SPs as depicted in Fig. 4. The corresponding class diagram CDi defining the
roles and all the other elements in the rules is depicted on the left-hand side of
Fig. 3. The guaranteed property Φi is in our example the and-combination of
two forbidden properties collision and missing collaboration depicted in the middle
and right-hand side of Fig. 3. The read rules that are depicted in Fig. 6 are not
explicitly covered in the formal model but the behavioral rules of the systems
that realize the roles have to take them into account. This issue will be discussed
in more detail in Section 4.3.

Within a collaboration many styles of interactions, particularly, synchronous
or asynchronous ones can be used. For asynchronous message passing, the fol-
lowing scheme can be employed: an instance of the Shuttle role creates a new
message (i.e., a node in the graph) and links it to another instance of the Shuttle
role that should be the receiver of the message. The latter shuttle instance can
afterwards process the message that has been linked to this instance. For syn-
chronous interactions, an instance of a role may directly modify links and data of
another instance. For example, an instance of the Shuttle role may if permitted
directly change the mode of another instance of the Shuttle role (cf. Fig. 1).

Systems. Similar to UML and SoaML, we employ components to represent
systems that interact through collaborations by realizing the related roles. Our
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specification of a system further comprises safety properties that have to be
fulfilled by the system’s implementation.

Definition 3 (see [54]). A system type Sysi = (sysi, (ro
1
i , . . . , ro

mi

i ), CDi, Ri,

Ii, Ψi) consists of a system type node sysi, a number of role types roji , a class
diagram CDi, a function Ri : {sysi, ro1i , . . . , romi

i } �→ 2R assigning rules to role
types, a set of initial rules Ii ⊆ Ri(sysi), and a safety property Ψi.

A system as an instance of system type Sysi is represented by a node of
type sysi, which also fulfills the pseudo-typing requirements and thus separates
elements from each other that belong to different systems. In our example we
have the Shuttle and Station system types (see related dashed boxes in Fig. 1) as
well as several :Shuttle and one :Station system of the corresponding types (see
related solid boxes in Fig. 1).

All rules of Sysi preserve a pseudo-typing linking of all nodes to sysi. The
function Ri is defined as for collaboration types (see Definition 2). The only
way a system/instance of type Sysi can be created is through the execution
of any of the creation rules in Ii. The system type’s class diagram CDi con-
tains all class diagrams of the collaboration types that are used by the system
type.6 Additionally, the system itself represented by a class sysi (node type) and
all data types required by the system are contained in CDi. We further write
Ri(ro

k
i ) ⊆ Ri(sysi) to refer to the set of all rules that belong to the system Sysi’s

implementation of role roki .

System of Systems. To cover SoS, we employ system of system types and
instances. System of systems combine collaboration and system types to a con-
ceptual unit (depicted by the outer dashed box in Fig. 1).

Definition 4 (see [54]). A system of system type SoS = ((Col1, . . . ,Coln),
(Sys1, . . . , Sysm)) consists of a number of collaborations types Coli and a number
of system types Sysj.

Definition 5 (see [54]). A system of system instance is a pair sys = (SoS, Gsys)
with system of system type SoS = ((Col1, . . . ,Coln), (Sys1, . . . , Sysm)) and an
initial configuration Gsys that is type conform to SoS.

As this paper does not include the details of a system type and system of
system type for our example, we refer to [47, 54] to obtain these details and an
example that cover abstract system specifications and a system of system type.

4.3 Runtime Models

As depicted in Fig. 1, in our formal model an idealized view of the context is
directly visible and accessible by the shuttle systems. This idealization reflects

6 A system type uses a collaboration type if it implements a role that has been defined
for this collaboration type.
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that the systems handle the related information about the physical and cyber
world by means of runtime models and their exchange. The idea of the read
rules depicted in Fig. 6 generalizes the concept of [32] to capture the capabilities
of sensors and actuators for the physical world. Consequently, the formal model
describes what can be read directly by local sensors or indirectly by the exchange
of runtime models reflecting the context or the other systems’ internal states.

The read rules are not formalized but the behavior rules of the systems have
to adhere to them, that is, the rules must not access information that should
not be visible to them through local runtime models or the exchange/sharing of
runtime models. In the example of Fig. 1, this visible information of the local
and shared runtime models relates to the local context as well as the mode and
battery status of the shuttle itself, the topology as given by the common read
rule, the position of the shuttles nearby as given by the detect-obstacle read rule,
and the mode of the other shuttles that are connected by a Coord collaboration
instance as given by the share-mode read rule (cf. Fig. 6).

It has to be noted that the outlined formal model is an idealization. It assumes
that the systems operate on consistent and not delayed observations and ignore
the risk of partial failures. However, it many cases the outlined idealization is
quite reasonable. At first, any solution that would not work for the idealization
will also likely not work under more realistic assumptions. Secondly, a more
detailed design would in particular acknowledge that the effects due to partial
failures and delayed and inconsistent observations are limited to the extent which
can be tolerated for the considered problem addressed by the collaboration type
(e.g., see the protocol developed in [48] that covers the loss of connection while
preserving a basis for a safe behavior).

Another issue that has to be taken into account is that even though different
collaborations can be employed to talk about different required interactions, as
soon as they refer to the same phenomena of the physical or cyber world, the
observations in the different collaborations must be consistent. Therefore, we
require that in these cases an initial collaboration has to cover the interrelated
phenomena of the domain that should be considered in a consistent manner and
share these phenomena with the other collaborations.

If other and more specific collaboration types take a subset of the phenomena
of the physical or cyber world covered by such an initial collaboration type into
account, they have to extend the initial collaboration type. Then, these more
specific collaboration types cannot be specified completely separated from each
other and the shared one.

Definition 6. An overlapping collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni

i ),
CDi, Ri, Φi) extending a shared collaboration type Colj = (colj , (ro

1
j , . . . , ro

nj

j ),

CDj , Rj , Φj) consists of a collaboration type node coli, a number of roles roji with
ni ≥ nj and for all 1 ≤ l ≤ nj roli = rolj , an UML class diagram CDi extending

CDj, a function Ri : {coli, ro1i , . . . , roni

i } �→ 2R extending Rj assigning rules to
roles, and a guaranteed property Φi.
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In our example depicted in Fig. 1, the Allocate collaboration type refines the
Coord collaboration type and therefore is aware that the shuttles may move.

4.4 Evolution

One aspect of our motivation for this work is that individual systems in a smart
SoS are subject to independent changes (evolution), which has to be handled
by construction and assurance. In the following, we will explicitly consider the
modeling of evolution, which is not addressed by SoaML or mUML.

Definition 7 (see [54]). An extended evolution sequence is a sequence of sys-
tem of systems (SoS1, G

1
S), . . . , (SoSn, G

n
S) such that (1) SoSi+1 only extends

SoSi by additional collaboration and system types, (2) Gi+1
S is also type con-

form to SoSi, and (2) Gi+1
S can be reached from Gi

S in the system of system
(SoSi, G

i
S).

An evolution sequence is a sequence of system of system types SoS1, . . . , SoSn
such that at least one related extended evolution sequence (SoS1, G

1
S), . . . , (SoSn,

Gn
S) exists.

As presented in [54], type conformance for the introduced evolution concepts
can be defined that ensure a proper typing of collaborations, systems, and system
of systems.

5 Assurance

Existing instance-based formal approaches do not scale and are often not appli-
cable to the specific settings of SoS such as openness, dynamic structures, and
independent evolution. Thus, the challenges of establishing Assurance of SoS-
Level Interactions for Self-Organization (A2), Assurance of SoS-Level Structural
Dynamics (A3), and Assurance of Evolution of Smart SoS (A5) and in particular
the Scalable Assurance of Smart SoS (A6) and the Assurance of Smart SoS with
Restricted Knowledge (A7) for the assurance for smart SoS are not covered.

Therefore and similar to the mUML approach, we propose establishing the
required guarantees for the assurance by referring only to the collaboration and
system types rather than to the instance level. For the verification at the type
level we show that the correctness proven for the collaboration and system types
and only type conformance for the system of systems type will by construction
imply that the related correctness also holds at the instance level for any possible
configurations of the related system of systems. The scalability of our approach
comes from the fact that the size of the type level is independent of the size of the
instance level. However, we have to show as a general property of our approach
that the results we yield for the type level are also valid for the instance level.

To tackle assurance for the envisioned SMARTSOS approach, we will first
address the correctness at the type level looking into collaboration and system
types. Then, we will look at the instances of collaboration and system types
and show that the correctness established for the types can be transfered to the
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instances. Afterwards, we outline how the special case of collaborations with
overlapping runtime models can be handled. Finally, we cover evolution where
the set of types and instances of a SoS may evolve.

5.1 Collaboration and System Types

We start our considerations with defining what we mean by correct types for
collaborations and systems (see dashed inner elements in Fig. 1).

Definition 8 (see [54]). A collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni

i ), CDi,
Ri, Φi) is correct if for all initial configurations GI ∈ G∅(CDi) holds that for
Ri(Coli) = Ri(ro

1
i )∪ · · · ∪Ri(ro

n
i )∪Ri(coli)) the overall behavior of the collabo-

ration the reachable collaboration configurations are correct: GI , Ri(Coli) |= Φi.

Please note that looking only at the behavior of all roles and to consider only
the initial object configurations GI without any roles is sufficient to cover all
possible behavior, as we have a closed model where only the behavior of the
roles is allowed to create or delete roles or any other considered elements.

For our example and the behavior rules of the Coord collaboration type as
depicted in Fig. 4, it can be formally verified that the collaboration type is
correct employing an automated checker (cf. [47, 51]). These checks only work
for state properties and operate at the level of the types. Therefore, they do not
have to consider the instance situation that would require checking infinite many
and arbitrary large object configurations over arbitrary long sequences of steps.
Another option that would allow us to cover sequence properties might be to
use incomplete techniques such as simulation/testing or bounded or statistical
model checking to establish a certain confidence for the correctness of a specific
collaboration type.

A correct system type requires that the resulting behavior ensures the guar-
antees and that the system’s implementation refines the combined role behavior.

Definition 9 (see [54]). Asystem type Sysi = (sysi, (ro
1
i , . . . , ro

mi

i ), CDi, Ii, Ψi)
is correct if for all initial configurations GI ∈ G∅(CDi) holds that (1) the reach-
able configurations are correct GI , Ri(sysi) ∪ COMP (Sysi) ∪ Ii |= Ψi and that
(2) the system behavior Ri(sysi) refines the orthogonally combined role behav-
ior and creation behavior Ri(sysi) � Ri(ro

1
i ) ∪ · · · ∪ Ri(ro

mi

i ) ∪ Ii. To
add the collaboration behavior to the system behavior for each role without the
role itself, we employ here COMP (Sysi) =

⋃
1≤l≤mi

COMP (Sysi, ro
l
i) with

COMP (Sysi, ro
l
i) = Rj(Colj) which is covered by Ri(sysi) to derive a related

closed behavior.

Due to lack of space, we do not discuss an example for a correct system type
and refer to [47,54] for such an example and its formal verification. Again, another
option might be to employ incomplete techniques such as simulation/testing or
bounded or statistical model checking to establish a certain confidence for the cor-
rectness of a specific system type.
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5.2 Collaborations and System Instances

After defining our notion of correctness for the types, we have to define the
related notion of correctness at the instance level (cf. the solid elements in Fig. 1).

Definition 10 (see [54]). A concrete system of system sos = (SoS, GS) with
system of system type SoS = ((Col1, . . . ,Coln), (Sys1, . . . , Sysm)) is correct if it
holds:

GS , R(sys1)∪· · ·∪R(sysm)∪R(col1)∪· · ·∪R(coln) |= Φ1∧· · ·∧Φn∧Ψ1∧· · ·∧Ψm.

Then, we can show in the following Theorem 1 that the type conformance of
the system of system type and the correctness of collaboration types and system
types ensures correctness at the instance level for the system of system.

Theorem 1 ( [54]). A system of systems sos = (SoS, G∅) with system of system
type SoS = ((Col1, . . . , Coln), (Sys1, . . . , Sysm)) is correct if (1) the system of
system type SoS is type conform, (2) all collaboration types Col1, . . . ,Coln are
correct, and (3) all system types Sys1, . . . , Sysm are correct.

Theorem 1 provides sufficient but not necessary conditions to ensure the cor-
rectness. It permits us to straightforward establish the required correctness of
the types by checking refinement and the guarantees for the properties using the
rule sets as employed in condition (2) and (3).7

Due to lack of space, we do not present an example for a correct system of
system type here and refer to [47, 54] for such an example. In general, at the
system of systems level, we only have to collect the evidence for correctness that
is provided for the collaboration and system types being part of this system of
systems.

5.3 Runtime Models

The sharing of runtime models by a single collaboration type as depicted in Fig. 1
for the Coord collaboration can be covered with the introduced basic concepts
for collaborations. Thus, the results of Theorem 1 also apply in such cases and
permit us to provide the required assurance. However, this does not hold for
overlapping collaborations.

For collaboration types that refine a shared collaboration type we can exploit
the following Definition 12 and Lemma 1 that outline under which circumstances
the correctness of the composition of all overlapping collaboration types can be
derived only on the basis of the correctness of all the overlapping collaboration
types, the correctness of the refined shared collaboration type, and the compat-
ibility of their roles.

7 As outlined in [54] in detail, based on the refinement of the rule sets for the in-
volved roles the result of Theorem 1 can also be extended to abstract system and
collaboration types.



Towards Smart Systems of Systems 21

Definition 11. An overlapping collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni

i ),
CDi, Ri, Φi) extending the shared collaboration type Colj = (colj , (ro

1
j , . . . , ro

nj

j ),
CDj , Rj , Φj) is correct if for all initial configurations GI ∈ G∅(CDi) holds that
the reachable collaboration configurations are correct GI , Ri(Coli) |= Φj ∧ Φi for
Ri(Coli) = Ri(ro

1
i ) ∪ · · · ∪Ri(ro

n
i ) ∪Ri(coli)) the overall behavior of the collab-

oration and that all added roles refine roles of the refined shared collaboration
type: ∀l ∈ [nj + 1, ni]∃k ∈ [1, nj]Ri(ro

l
i) � Ri(ro

k
j ).

We can combine a set of overlapping collaboration types of the same shared
refined collaboration type to obtain the related resulting collaboration type.

Definition 12. For a set of overlapping collaboration types Coli1 , . . . ,Colim ex-
tending a shared collaboration type Col0 = (col0, (ro

1
0, . . . , ro

n0
0 ), CD0, R0, Φ0) the

resulting collaboration type is defined as Coli = (coli, (ro
1
i , . . . , ro

ni

i ), CDi, Ri, Φi)
with a collaboration type node coli, a set of roles that unites the roles sets of
Col0,Coli1 , . . . ,Colim , an UML class diagram CDi = CD0 ∪ ⋃

1≤k≤m CDik , a

function Ri : {coli, ro1i , . . . , roni

i } �→ 2R extending R0 and all Rik for 1 ≤ k ≤ m
assigning rules to roles, and a guaranteed property Φi = Φ0 ∧ (∧1≤k≤mΦik).

In a next step we can show with the following Lemma that the resulting
collaboration type is correct, if all overlapping collaboration types of the related
shared collaboration types are correct.

Lemma 1. If all overlapping collaboration types Coli1 , . . . ,Colim and the shared
refined collaboration type Col0 = (col0, (ro

1
0, . . . , ro

nj

0 ), CD0, R0, Φ0) are correct,
then the resulting collaboration type Coli = (coli, (ro

1
i , . . . , ro

ni

i ), CDi, Ri, Φi) is
also correct.

Proof. For any correct overlapping collaboration type Colik = (colik , (ro
1
ik
, . . . ,

ro
nik

ik
), CDik , Rik , Φik) of the shared refined collaboration type Col0 = (col0, (ro

1
0,

. . . , ro
nj

0 ), CD0, R0, Φ0) holds that GI , Rik(Colik) |= Φ0∧Φik . As the extension of
each overlapping collaboration type are disjoint and the shared behavior is refining
the roles of the shared collaboration, we can conclude that also GI , Ri(Coli) |= Φik

will hold. As Φi = Φ0 ∧ (∧1≤k≤mΦik) we only have to combine this finding for
all 1 ≤ k ≤ m and get GI , Ri(Coli) |= ∧1≤k≤mΦik and thus GI , Ri(Coli) |= Φi

such that Coli is correct. �

Due to Lemma 1 we can now employ Theorem 1 to cover overlapping collabo-
rations.

5.4 Evolution

So far the presented results for assurance do not cover the evolution of SoS.
Therefore, we will extend the former results to cover typical evolution scenarios
such as adding new collaboration or system types. If we look at our former
results in more detail, we can notice that the assumption has been made that all
types are known at verification time. This assumption is not true for a steadily



22 H. Giese, T. Vogel, and S. Wätzoldt

evolving system where new type definitions are added over time. Furthermore,
the different organizations involved in an SoS will only have a partial view and
thus do not know all currently existing types in the SoS. For a given extended
evolution sequence (cf. Definition 7) we can define correctness as follows:

Definition 13 (see [54]). An extended evolution sequence (SoS1, G
1
S), . . . ,

(SoSn, G
n
S) with SoSn = ((Col1, . . . ,Colp), (Sys1, . . . , Sysq)) is correct if for any

combined path π1 ◦· · ·◦πn such that πi is a path in SoSi leading from Gi
S to Gi+1

S

for i < n and that πn is a path in SoSn starting from Gn
S holds: π1 ◦ · · · ◦ πn |=

Φ1 ∧ · · · ∧ Φp ∧ Ψ1 ∧ · · · ∧ Ψq. An evolution sequence SoS1, . . . , SoSn is correct
if all possible related extended evolution sequence (SoS1, G

1
S), . . . , (SoSn, G

n
S) are

correct.

A first observation is that SoSn contains all types defined in any SoSi. How-
ever, for a combined path π1 ◦ · · ·◦πn such that πi is a path in SoSi leading from
Gi

S to Gi+1
S for i < n does not hold in general that an equal path π in SoSn exists

that goes through all Gi
S , as the rules added by later added types may influence

the possible outcomes if added at the start.8 Another observation is that the
properties guaranteed for newly introduced collaboration or system types have
to be true as long as the types have not yet been introduced as otherwise the
evolution cannot be correct. We can exploit these observations and construct
related collaboration types E(Coli) and system types E(Sysj) encoding that the
types come into existence later. Based on this we can then define E(SoS1, SoSn)
as that system of system type where the types of SoSn not present in SoS1 can
come into existence later. E(SoS1, SoSn) therefore includes all possible combined
paths of any possible extended evolution sequences for a given evolution sequence
SoS1, . . . , SoSn.

We can then use the fact that the related dynamically evolving system of
system type includes all possible extended evolution sequences to check also the
correctness for all possible evolution sequences.

Theorem 2 (see [54]). An evolution sequence of systems SoS1, . . . , SoSn is
correct if the related dynamic evolving system of system type E(SoS1, SoSn) is
correct.

Lemma 2 (see [54]). For a correct collaboration type Col holds also that its
dynamic extension E(Col) is correct. For a correct system type Sys holds also
that its dynamic extension E(Sys) is correct.

Due to Lemma 2, it is sufficient to simply check the collaboration and system
types and this already guarantees that any extended evolution sequence will also
show correct behavior.

Moreover, due to Theorem 2 and Lemma 2, an organization that wants to
extend the system of system type accordingly does not require any knowledge
about all the other types besides those which are refined or where an overlap

8 For example, in a refined model there may be urgent rules that have to be executed
if enabled and thus may preempt other rules when added during the evolution.
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exists. Furthermore, if two independent extensions are done which do not refer
to each other, the concrete order of these extensions does not matter as the
checks remain the same. Therefore, each organization can simply check its own
extension by means of added collaboration and system types without considering
when the other extensions are enacted.

Due to lack of space, we do not present an example for a correct system of
system type with evolution here and refer to [47, 54] for such an example.

6 Discussion

In SMARTSOS, we combine ideas from mUML and EUREMA to tackle the
challenges for smart SoS that are discussed in Section 2. A radically different and
more abstract perspective on the SoS-level interactions based on runtime models
and collaborations is employed to overcome the limitations of the state-of-the-art
and our former approaches and to master the complexity of smart SoS. In the
following, we will discuss which challenges are addressed by the proposed ideas,
particularly, by the concepts of collaborations and runtime models, the novelty
of these ideas, and the additional benefits of these ideas.

6.1 Runtime Models

As discussed for the envisioned SMARTSOS approach in Section 3 and its formal
model in Sections 4 and 5, SMARTSOS employs generic runtime models.

On the one hand, this supports the engineering of the self-adaptation for in-
dividual systems in the smart SoS as required by the challenge of Construc-
tion/Assurance of Self-Adaptation (C1/A1) (cf. Section 2). Similar to EU-
REMA, the self-adaptation for each system is implemented in SMARTSOS by
a feedback loop with monitor, analyze, plan, and execute activities that operate
on the generic runtime models. For instance, the self-adaptive behavior of each
shuttle in the large-scale transport system is specified by such feedback loops
operating on partially shared runtime models that reflect the shuttle itself and
the shuttle’s context (cf. top of the left-hand side of Fig. 2).

On the other hand, SMARTSOS uses the generic runtime models to exchange
information between individual collaborating systems, which addresses the chal-
lenge of Construction/Assurance of SoS-Level Runtime Knowledge Exchange
(C4/A4). This aspect distinguishes SMARTSOS from the state of the art in
engineering SoS that employ specific and optimized runtime models without
exchanging them among individual systems.

Therefore, SMARTSOS goes beyond the mUML approach and the state of
the art by supporting generic runtime models of the contexts and the systems
in the SoS. SMARTSOS also goes beyond EUREMA and the state of the art
by supporting the runtime exchange of these models between the individual
collaborating systems in an SoS. In the context of collaborations, such runtime
models can also reflect agreements between the collaborating systems which is a
prerequisite for jointly achieving the SoS-level goals. Thereby, such collaborations
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may be established in a self-organizing manner while each system still evolves
and self-adapts independently from the other systems in the SoS.

While the generic nature of the runtime models used in SMARTSOS clearly
leads to a higher complexity of the models compared to the state of the art,
it also leverages a number of benefits: (B1) As a “success in regulation implies
that a sufficiently similar model must have been built,” [55], it is consequently
unavoidable that the software captures all the relevant variety of the controlled
system itself, the requirements, and the context to be able to control their vari-
ability effectively. (B2) Herbert A. Simon observed for the example of an ant
that “[t]he apparent complexity of its behavior over time is largely a reflection
of the complexity of the environment in which it finds itself” [56, p. 52]. Thus,
it can be expected that including the physical and cyber environment by run-
time models will in fact help to reduce the complexity of the remaining software
solution that operates on the basis of these runtime models. Finally, (B3) while
specialized solutions that only capture a minimal amount of information about
the environments lead to simpler software in the short run, it can be expected
that the envisioned generic runtime models without such optimizations result in
a direct-mapping [57] between the original (e.g., the system or context) and the
model. Such a mapping is usually more stable in the long run and considerably
eases interoperability. The latter aspect is a critical issue to achieve open and
dynamic collaborations in smart SoS.

6.2 Collaborations

Based on the generic runtime models, SMARTSOS employs open and dynamic
collaborations (cf. Section 3) to achieve self-organizing interactions between in-
dividual systems of the smart SoS. The collaboration concept of SMARTSOS is
also covered in the formal model for the construction and assurance of smart
SoS (cf. Sections 4 and 5). In contrast to state of the art approaches, this
perspective on the SoS-level interactions addresses the challenges of Construc-
tion/Assurance of SoS-Level Interactions for Self-Organization (C2/A2) and
Construction/Assurance of SoS-Level Structural Dynamics (C3/A3) (cf. Sec-
tion 2). Moreover, it is key to address the challenges of Construction/Assurance
of Evolution of Smart SoS (C5/A5), Scalable Construction/Assurance of Smart
SoS (C6/A6), and Construction/Assurance of Smart SoS with Restricted Knowl-
edge (C7/A7).

In this context, SMARTSOS extends EUREMA that does not consider col-
laborations at all since EUREMA focuses on centralized and non-distributed
systems. In contrast to mUML, SMARTSOS employs open and more dynamic
collaborations that are governed by laws supporting self-organization at the SoS
level and that support the structural dynamics of smart SoS where, for example,
systems may dynamically join or leave the SoS. The collaboration concept of
SMARTSOS supports abstracting details of individual systems in the SoS by
means of roles, runtime models, and behavioral contracts while distinguishing
the type and instance levels (cf. Section 3). This collaboration concept lever-
ages the independent development, operation, management, and evolution of
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these systems (cf. Sections 4 and 5). Thus, the evolution of smart SoS and its
contained systems with respect to construction (cf. Section 4.4) and assurance
(cf. Section 5.4) aspects is supported. By abstraction and explicitly distinguish-
ing the type and instance levels of smart SoS, the construction and assurance
are scalable as they mainly work at the type level – hence abstracting from the
sheer scale and number of all possible instance situations of a smart SoS. In the
same line of reasoning, the construction and assurance of smart SoS works de-
spite not considering the complete instance situation and thus all details of the
SoS. Therefore, SMARTSOS can handle the restricted knowledge of SoS caused
by multiple authorities governing the SoS.

In general, the collaboration concept of SMARTSOS is motivated by the ben-
eficial observations that (B4) in our society we have established legal domains,
which we consider independent of each other. We can expect that the individuals
behave according to the laws of each of these legal domains independent of the
other domains. This approach allows us to cooperate even though the systems
and legal domains evolve and adapt in principle independently from each other
(cf. law-governed interaction [58]). In the traffic domain, for example, rules for
driving vehicles and related regulations and laws impose what individual drivers
are allowed to do while within these bounds the individuals are free to act. In
our example, the Coord collaboration in Fig. 1 establishes such a solution with
respect to the driving behavior of the shuttles. As another example, individ-
uals in the traffic domain may establish contracts with each other to allocate
parking slots. In our example, a Shuttle may establish such a contract to have
the privilege to stop at a specific platform of a Station by means of an Allocate
collaboration instance as depicted in Fig. 1.

7 Conclusion and Future Work

In this paper we analyzed the open challenges for the envisioned smart SoS
looking in particular into construction and assurance of such SoS. In this con-
text, we presented our ideas how to tackle this vision with our SMARTSOS ap-
proach, specifically, by employing open and adaptive collaborations and generic
models at runtime. We discussed that by supporting generic runtime models
at the SoS level, the challenge of Construction/Assurance of SoS-Level Run-
time Knowledge Exchange (C4/A4) can be covered by SMARTSOS. Further-
more, based on such runtime models, the SMARTSOS collaboration concept
directly covers the challenges of Construction/Assurance of SoS-Level Interac-
tions for Self-Organization (C2/A2) and Construction/Assurance of SoS-Level
Structural Dynamics (C3/A3). Moreover, it provides the required foundation
to tackle the challenges of Construction/Assurance of Evolution of Smart SoS
(C5/A5), Scalable Construction/Assurance of Smart SoS (C6/A6), and Con-
struction/Assurance of Smart SoS with Restricted Knowledge (C7/A7). While
SMARTSOS addresses the challenges related to the SoS level, the challenge of
Construction/Assurance of Self-Adaptation (C1/A1) of individual systems in
the SoS is mainly addressed by our former work on mUML and EUREMA.
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Our plans for future work are to further elaborate SMARTSOS by extending
the model-driven EUREMA approach [33] with open and adaptive collabora-
tions and means for the distributed management of runtime models. Addition-
ally, we plan to further strengthen the links between runtime and development-
time models [59] and model-driven techniques in runtime scenarios [45].
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Abstract. In the near future we will be surrounded by a virtually infi-
nite number of software applications that provide services in the digital
space. This situation radically changes the way software will be produced
and used: (i) software is increasingly produced according to specific goals
and by integrating existing software; (ii) the focus of software production
will be shifted towards reuse of third-parties software, typically black-
box, that is often provided without a machine readable documentation.
The evidence underlying this scenario is that the price to pay for this
software availability is a lack of knowledge on the software itself, notably
on its interaction behaviour. A producer will operate with software arte-
facts that are not completely known in terms of their functional and
non-functional characteristics. The general problem is therefore directed
to the ability of interacting with the artefacts to the extent the goal is
reached. This is not a trivial problem given the virtually infinite interac-
tion protocols that can be defined at application level. Different software
artefacts with heterogeneous interaction protocols may need to interop-
erate in order to reach the goal. In this paper we focus on techniques and
tools for integration code synthesis, which are able to deal with partial
knowledge and automatically produce correct-by-construction service-
oriented systems with respect to functional goals. The research approach
we propose builds around two phases: elicit and integrate. The first con-
cerns observation theories and techniques to elicit functional behavioural
models of the interaction protocol of black-box services. The second deals
with compositional theories and techniques to automatically synthesize
appropriate integration means to compose the services together in order
to realize a service choreography that satisfies the goal.

1 Introduction

In the near future we will be increasingly surrounded by a virtually infinite
number of software services that can be composed to build new added value
applications in the Digital Space. According to John Musser, founder of Pro-
grammableWeb1, the production of Application Programming Interfaces (APIs)
grows exponentially and some companies are accounting for billions of dollars

1 http://www.programmableweb.com .
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in revenue per year via API links to their services. Moreover, the evolution of
today Internet is expected to lead to an ultra large number of available services,
hence increasing their number to billions of services in the near future. This situ-
ation radically changes the way software will be produced and used: (i) software
is increasingly produced according to specific goals and by integrating existing
software; (ii) the focus of software production is on integration of third party
and typically black-box software, that is only provided with an interface that ex-
poses the available functionalities but does not provide the assumed interaction
protocol. The first characteristic implies a goal oriented, opportunistic use
of the software being integrated, i.e., the producer will only use a subset of the
available functionalities, some of which may not even be (completely) known.
The second one implies the need to (a) extract suitable interaction models
from discoverable and accessible pieces of software, which are made available
as services in the digital space, and (b) devise appropriate integration means
(e.g., architectures, connectors, mediators, integration patterns) that ease the
composition of existing services so to achieve the goal.

The aim of the proposed research is to provide automatic support to
the production of software systems by integrating existing software services
according to a specified goal.

Our proposal builds on the model-based software production paradigm while
accounting for the inherent incompleteness of information about existing soft-
ware. This evidence suggests the use of an experimental approach, as opposed
to a creationistic one, to the production of software. Software development has
been so far biased towards a creationist view: a producer is the owner of the arte-
fact and, if needed, she can declaratively supply any needed piece of information
(interfaces, behaviours, contracts, etc.). The digital space promotes a different
experimental view: the knowledge of a software artefact is limited to what can
be observed of it. The more powerful and extensive the observations are, the
deeper the knowledge will be; the knowledge will always remain partial, though.
Indeed, there is a theoretical barrier that limits, in general, the power and the
extent of observations.

Beyond automation, a further big challenge underlying this scenario is there-
fore to live up with the fact that this immense software resources availability
corresponds to a lack of knowledge about the software, notably on its behaviour.
A software producer will know less and less the precise behaviour of a third-party
software service, nevertheless she will try to use it to build her own application.
This very same problem recognized in the software engineering domain [16] is
faced in many other computer science domains, e.g., exploratory search [39] and
search computing [12].

In order to face this problem and provide a producer with a supporting frame-
work to realize software applications via automated integration, we envision
a process that implements a radically new perspective. First results can be found
in [22]. This process builds around elicit and integrate phases.

From now on, when referring to models of services we always mean models
of the interaction protocols of the services, that is models of the sequences of
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actions/messages exchange that need to be performed in order to consume the
service, e.g., “login” and “get authorized”, before “access bank account”.

The elicit phase automatically produces an interaction protocol model for each
service that has been discovered as a candidate to provide a desired functionality
with respect to a specified system goal. This model is complete enough to allow
the service to be integrated with others in order to satisfy the goal.

The integrate phase assists the producer in creating the appropriate integra-
tion means to compose the observed services together in order to produce a
system that satisfies the goal.

In this paper we present a specific instance of the above reuse-based elicit-
integrate development process, which is suitable for service-oriented systems.

The paper is organized as follows. Section 2 describes an instance of the elicit
phase, which is suitable for the automatic elicitation of the interaction proto-
col of a Web Service. Section 3 discusses in detail an instance of the integrate
phase, which allows the producer to automatically enforce the realization of a
specific form of service composition, namely a choreography. Thus, this instance
is suitable for the automatic production of choreography-based service-oriented
systems. Section 4 discusses related work in the domains of behavioral model
elicitation techniques and of service choreography development. Section 5 dis-
cusses final remarks and future research directions.

2 The Elicit Phase

Given a software service S that has been discovered as a candidate to provide a
desired functionality with respect to a system goal G, elicitation techniques must
be defined to produce interaction protocol models that are complete enough
to allow the service to be integrated with others in order to satisfy G. This
means that we admit partial models of the service interaction protocols. For the
integration phases to be automated, a goal G specification is a machine-readable
model achieved by the producer by operationalizing the needs and preferences
of the user [36].

Fig. 1. Elicit phase
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Referring to Figure 1, a concrete example of a goal specification can be found
in [7], where domain expert and user goals are operationalized into a BPMN22

choreography specification, after being transformed into a CTT (ConcurTask-
Trees) intermediate model [32]. The elicit phase is composed of two steps, namely
observation and construction [22]. For each service to be integrated, the obser-
vation step is driven by G and collects a set of observation data. We focus on
observations devoted to the identification of a set of functional behaviours, e.g.,
the SOAP response to a Web-Service (WS) operation invocation. Construction
takes as input the set of observation data and produces a (partial) model of
the observed service. This model represents the observed behaviours enriched
with inferred information that is relevant for achieving G. For instance, as done
in [11], the collection of the SOAP responses to WS operation invocations, en-
riched with the inferred partial order of the invocations, can be represented as an
automaton that models the interaction protocol of the observed WS. Note that,
as it is shown in Section 3, having a partial model of the interaction protocol,
for each observed WS to be integrated, is sufficient to automatically synthesize
the code of proxies that allow for integrating the WSs so to realize the specified
BPMN2 choreography. An important aspect is that the elicit phase produces
models that, although partial, are still good enough to achieve G. Goal driven
elicitation can be very effective, e.g., as observed on the Amazon E-commerce
WS (AEWS) where we apply the approach in [11] to elicit the AEWS interaction
protocol. The experiment considered a goal-independent elicitation versus a goal-
driven one [5]. Starting from the AEWS WSDL consisting of 85 XML schema
type definitions and 23 WSDL operation definitions, the goal independent elici-
tation resulted in an interaction protocol made of 24 states and 288 transitions
by using 106 test cases, each executed in 10−2 secs, e.g., few hours of testing.
By considering a goal specification that the user wished to “develop a client for
cart management only”, the interaction protocol computed was made of 6 state
and 21 transitions only. The goal driven elicitation required the generation and
execution of 105 test cases, e.g., few seconds of testing.

As it is shown in Section 3, having a partial model of the interaction protocol,
for each observed WS to be integrated, is sufficient to automatically synthesize
the code of additional software entities that, proxyfing the WSs, allow for in-
tegrating them so to realize the specified BPMN2 choreography. An important
aspect is that the elicit phase produces models that, although partial, are still
good enough to achieve G.

Goal driven elicitation can be very effective, e.g., as observed on the Ama-
zon E-commerce WS (AEWS) where we apply the approach in [11] to elicit the
AEWS interaction protocol. The experiment considered a goal independent elic-
itation versus a goal driven one [5]. Starting from the AEWS WSDL consisting
of 85 XML schema type definitions and 23 WSDL operation definitions, the goal
independent elicitation resulted in an interaction protocol made of 24 states and
288 transitions by using 106 test cases, each executed in 10−2 secs, e.g., few
hours of testing. By considering a goal specification that the user wished to

2 http://www.omg.org/spec/BPMN/2.0.

http://www.omg.org/spec/BPMN/2.0
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“develop a client for cart management only”, the interaction protocol computed
was made of 6 state and 21 transitions only. The goal driven elicitation required
the generation and execution of 105 test cases, e.g., few seconds of testing.

The following section summarizes the elicit technique that we describe in
detail in [11]. It represents a specific realization of the elicit phase, which is
suitable for producing the interaction protocol of a WS.

2.1 StrawBerry: Automated Synthesis of WS Interaction Protocols

By taking as input a syntactical description of the WS signature, expressed by
means of the WSDL notation, StrawBerry [11] derives in an automated way a
partial ordering relation among the invocations of the different WSDL opera-
tions. This partial ordering relation is represented as an automaton that we call
Behavior Protocol automaton. It models the interaction protocol that a client
has to follow in order to correctly interact with the WS. This automaton also
explicitly models the information that has to be passed to the WS operations.
StrawBerry is a black-box and extra-procedural method. It is black-box since
it takes into account only the WSDL of the WS. It is extra-procedural since it
focuses on synthesizing a model of the behavior that is assumed when interacting
with the WS from outside, as opposed to intra-procedural methods that synthe-
size a model of the implementation logic of the single WS operations [29, 38].

Figure 2 graphically represents StrawBerry as a process that is split in five
main activities that realize its observation and construction phases.
Observation: the observation phase is in turn organized in two sub-phases. The
first sub-phase exploits the WSDL of the WS, and performs data type analysis.

Fig. 2. Overview of the StrawBerry technique
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The Dependencies Elicitation activity elicits data dependencies between the I/O
parameters of the operations defined in the WSDL. A dependency is recorded
whenever the type of the output of an operation (called source) matches with
the type of the input of another operation (called sink). The match is syntactic.
The elicited set of I/O dependencies (Input/Output Dependencies in Figure 2)
may be optimized under some heuristics [11]. It is used for constructing a data-
flow model (Saturated Dependencies Automaton Synthesis activity and Saturated
Dependencies Automaton artifact) where each node stores data dependencies
that concern the output parameters of a specific operation and directed arcs are
used to model syntactic matches between output parameters of an operation and
input parameters of another operation. This model is completed by applying a
saturation rule. This rule adds new dependencies that model the possibility for
a client to invoke a WS operation by directly providing its input parameters.

The second sub-phase validates the dependencies automaton through testing
against the WS to verify conformance (Dependencies Automaton Refinement
Through Testing activity). The testing phase takes as input the SOAP messages
produced by the Test-cases Generation activity. The latter, driven by coverage
criteria, automatically derives a suite of test cases (i.e., SOAP envelop messages)
for the operations to be tested, according to the WSDL of the WS. Tests are
generated from the WSDL and aim at validating whether the synthesized au-
tomaton is a correct abstraction of the service implementation. Testing is used
to refine the syntactic dependencies by discovering those that are semantically
wrong. By construction, the inferred set of dependencies is syntactically cor-
rect. However, it might not be correct semantically since it may contain false
positives. The testing activity is organized into three steps. StrawBerry runs
positive tests in the first step and negative tests in the second step. Positive
test cases reproduce the elicited data dependencies and are used to reject fake
dependencies: if a positive test invocation returns an error answer, StrawBerry
concludes that the tested dependency does not exist. Negative test cases are
instead used to confirm uncertain dependencies: StrawBerry provides in input
to the sink operation a random test case of the expected type. If this test in-
vocation returns an error answer, then StrawBerry concludes that the WS was
indeed expecting as input the output produced by the source operation, and
it confirms the hypothesized dependency as certain. If uncertain dependencies
remain after the two steps, StrawBerry resolves the uncertainty by assuming
that the hypothesized dependencies do not exist.

Construction: the construction phase consists in a synthesis stage which aims
at transforming the validated dependency automaton (a data-flow model) into
an automaton defining the behavior protocol (a control-flow model), see the Be-
havior Protocol Synthesis activity in Figure 2. This automaton explicitly models
also the data that has to be passed to the WS operations. More precisely, the
states of the behavior protocol automaton are WS execution states and the tran-
sitions, labeled with operation names plus I/O data, model possible operation
invocations from the client of the WS.
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3 The Integrate Phase

The integrate phase assists the producer in creating the appropriate integration
means to compose the observed services together in order to produce a system
that satisfies G. Multiple models may exist for each service (e.g., behavioural,
interfaces, stochastic or Bayesian), each of them representing a view of the inter-
action protocol. Model transformation techniques ensure coherence and consis-
tency among the different views, hence providing a systematic support to model
interoperability [14, 19]. Model and code synthesis techniques produce an Inte-
gration Architecture (IA), including the the corresponding code for the actual
integration, out of the elicited models by suitably instantiating architectural
styles [34] and integration patterns [15]. If needed, extra integration logic can be
synthesized as connectors, coordinators, mediators and adapters [7,23,24,30] to
guarantee correctness of the IA with respect to G.

Continuing the example introduced above, Figure 3 shows a possible concrete
instance of the Integrate phase [7, 8]. Here, the elicit phase has produced the
interaction protocol of each participant service in the choreography specified by
G (AEWS included). Starting from G and the elicited models, the Integrate
phase synthesizes a set of software coordinators. The synthesis exploits model
transformations implemented by means of the Atlas Transformation Language
(ATL3). The developed ATL transformations consist of a number of rules each
devoted to the management of specific BPMN2 Choreography Diagram mod-
elling constructs. Coordinators are implemented in Java and their deployment
descriptors are codified in XML. By instantiating a fully distributed architec-
tural style, coordinators are interposed among the participant services that need
to be coordinated. By exploiting a request/response delegation pattern, coordi-
nators proxify the services and coordinate their interaction in a way that the
resulting collaboration realizes G.

Next section briefly describes the integration synthesis techniques we have
implemented in the CHOReOSynt tool. More details can be found in [7, 8].

3.1 CHOReOSynt: Automated Synthesis of Service Choreographies

From the BPMN2 specification of a choreography (i.e., the goal G), CHORe-
OSynt allows for deriving the coordinators, hereafter called Coordination Dele-
gates (CD). CHOReOSynt offers bespoke functionalities to:

– start the synthesis process giving as input a BPMN 2.0 Choreography Dia-
gram;

– transform the BPMN2 Choreography Diagram into an intermediate
automata-based model, which is amenable to automated reasoning;

– derive a set of Coordination Models containing information that serve to
coordinate the services involved in the choreography in a distributed way;

3 ATL is a domain specific language for realizing model-to-model transformations -
www.eclipse.org/atl

www.eclipse.org/atl


Automated Software Integration 37

Fig. 3. Integrate phase

– extract the participants of the choreography and project the choreography
on their behavioral role;

– simulate the behavioral role of the participants in the choreography against
the interaction protocol of the services discovered by the service discovery;

– generate the Coordination Delegate artefacts and the so called “ChorSpec”
specification to be used by the Enactment Engine component for deploying
and enacting the choreography;

We have implemented these functionalities in a set of REST (Representational
State Transfer) services, which are called by CHOReOSynt as shown in Figure 4
and described below.

M2M Transformator – The Model-to-Model (M2M) Transformator offers a
set of model transformations. Specifically, it offers an operation bpmn2clts()

that takes as input the BPMN2 specification of the choreography and transforms
it into a model called CLTS. The latter is an extended Labeled Transition System
(LTS) that allows for automatically handling complex constructs of BPMN2
Choreography Diagrams, such as gateways, loops, forks and joins.

Then, starting from the CLTS, CHOReOSynt extracts the list of the par-
ticipants and, applying a further M2M transformation, automatically derives,
for each participant, the CLTS model of the expected behavior with re-
spect to the specified choreography. To this end another operation named
extractParticipants() is offered. The CLTS model of expected behavior is
achieved by projecting (projection()) the choreography onto the participant,
hence filtering out those transitions, and related states, that do not belong to the
participant. Basically, for each participant, this CLTS specifies the interaction
protocol that a candidate service (to be discovered) has to support to play the
role of the participant in the choreography.

Synthesis Discovery Manager – The Synthesis process and the Discovery
process interact each other to retrieve, from the service registry, those candidate
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Fig. 4. CHOReOSynt REST architecture

services that are suitable for playing the participant roles, and hence, those ser-
vices whose (offered and required) operations and protocol are compatible with
the CLTS models of the expected behavior. In particular, for each participant,
the call to the discoverServices() operation is performed. It takes the par-
ticipant (abstract) CLTS as input. Then, a query is issued to the eXtensible
Service Discovery (XSD) component (not in the focus of this paper). Note that,
although for each choreography participant a suitable third-party service may
have been discovered (and hence, its interaction protocol fits the behavior of the
participant in isolation), the uncontrolled (or wrongly coordinated) composite
behavior of all the discovered services may show undesired interactions that pre-
vent the choreography realization. For a detailed and formal description of the
notion of undesired interaction, refer to [4, 6, 9].

Behavior Simulator – Once a set of concrete candidate services has been
discovered, the synthesis process has to select them by checking, for each partic-
ipant, if its expected behavior can be simulated by some candidate service. Note
that, for a given participant, behavioral simulation is required since, although
the discovered candidate services for it are able to offer and require (at least) the
operations needed to play the role of the participant, one cannot be sure that
the candidate services are able to support the operations flow as expected by the
choreography. Thus, in order to simulate the expected behavior of a participant
with the behavior of a service, the Behavior Simulator offers an operation named
simulate() that takes as input the projected (abstract) CLTS of the participant
and the extended (concrete) LTS of the service as retrieved by the URI returned
by the discovery service. It might be interesting to mention that the simulation
method implemented a notion of strong simulation suitably extended to treat
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the CLTSs and extended the LTSs we use in CHOReOS. After simulation, if
all the participant roles have been “covered” by (some of) the discovered ser-
vices, the abstract CLTS is concretized with the actual names of the selected
services and the actual names of the offered and requested operations. Then, the
automated synthesis process distributes the coordination logic specified by the
obtained CLTS into a set of Coordination Models by means of the functionality
clts2coord().

Coordination Delegate Generator – Once the services have been selected
for all the choreography participants, and hence the CLTS has been concretized,
the synthesis processor can generate the Coordination Delegates through the
operation generateCDs() offered by the Coordination Delegate Generator com-
ponent.

Next Step in the Process – Once the Coordination Delegates have been gen-
erated, the Coordination Delegate Generator component can further generate a
specification of the choreography (called ChorSpec) to be passed to the chore-
ography Enactment Engine (not in the focus of this paper). To this end, the
operation createChorSpec() is offered. It takes as input the selected services
and the coordination delegates generated for them. The ChorSpec is an XML-
based declarative description of the choreography that specifies the locations of
the selected services and of the generated Coordination Delegate artifacts that
can be deployed. Indeed, before passing the ChorSpec to the Enactment En-
gine, the Choreography Offline Testing process activity is performed to assess
the quality of the choreography specification, its well formedness, etc.

4 Related Work

In this section we discuss related work in the domains of behavioral model elic-
itation techniques and of service choreography development.

Elicitation Techniques. We focus on black-box/grey-box techniques able to
elicit behavioural models of the software. The reader interested on white-box
techniques can refer to [3, 37, 38] and references therein.

LearnLib [21] is a framework to automatically construct a finite automaton
through automata learning and experimentation. Active automata learning tries
to automatically construct a finite automaton that matches the behavior of a
given target automaton on the basis of active interrogation of target systems
and observation of the produced behavior.

The work described in [27] presents a comprehensive approach for building
parametrized behaviour models of existing black-box components for perfor-
mance prediction. Those parameters represent three performance-influencing
factor, i.e., usage, assembly, and deployment context; this makes the models
sensitive to changing load situations, connected components, and the underlying
hardware. The approach makes use of static and dynamic analysis and search-
based approaches, namely genetic programming. These techniques take as input
monitoring data, runtime bytecode counts, and static bytecode analysis.
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SPY [17] is an approach to infer a formal specification of stateful black-box
components that behave as data abstractions (Java classes that behave as data
containers) by observing their run-time behavior. SPY proceeds in two main
stages: first, SPY infers a partial model of the considered Java class; second,
through graph transformation, this partial model is generalized to deal with
data values beyond the ones specified by the given instance pools. The inferred
model is partial since it models the intentional behavior of the class with respect
to only a set of instance pools provided as input, which are used to get values for
method parameters, and an upper bound on the number of states of the model.

GK-Tail [29] is a technique to automatically generate behavioral models
from (object-oriented) system execution traces. GK-Tail assumes that execution
traces are obtained by monitoring the system through message logging frame-
works. For each system method, an Extended Finite State Machine (EFSM) is
generated. It models the interaction between the components forming the system
in terms of sequences of method invocations and data constraints on these invo-
cations. The correctness of these data constraints depends on the completeness
of the set of monitored traces with respect to all the possible system executions
that might be infinite.

The work described in [10] presents an approach for inferring state machines
with an infinite state space. By observing the output that the system produces
when stimulated with selected inputs, they extend existing algorithms for reg-
ular inference (which infer finite state machines) to deal with infinite-state sys-
tems. This approach makes the problem of dealing with an infinite state space
tractable, but may suffer a higher degree of model approximation.

The work described in [31] presents a learning-based black-box testing ap-
proach in which the problem of testing functional correctness is reduced to a
constraint solving problem. Functional correctness is modeled by pre- and post-
conditions that are first-order predicate formulas. A successful black-box test is
an execution of the program on a set of input values satisfying the pre-condition,
which terminates by retrieving a set of output values violating the post-condition.
Black-box functional testing is the search for successful tests with respect to the
program pre- and post-conditions. As coverage criterion the authors formulate
a convergence criterion on function approximation.

The work in [13] presents an approach that, through a combination of sys-
tematic test case generation (by means of the TAUTOKO tool) and typestate
mining, infers models of program behavior in the form of finite state automata
describing transitions between object states. The generation of test cases per-
mits to cover previously unobserved behavior, and systematically extends the
execution space, and enriches the inferred behavior model. In this sense, it can
be said this approach goes in an opposite direction with respect to StrawBerry.

The work in [2] concerns an application of active learning whose aim is to
establish the correctness of protocol implementations relative to a given reference
implementation. The work in [1] shows how to fully-automatically construct the
typical abstractions needed to perform automata learning.
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Choreography Realization Techniques. CHOReOSynt is related to several
approaches developed for automated choreography enforcement.

The approach described in [18] enforces a choreography’s realizability by au-
tomatically generating monitors. Each monitor acts as a local controller for its
peer. Monitors are built by iterating equivalence-checking steps between two
centralized models of the whole system. A monitor is similar to our coordina-
tion delegate (CD). However, our approach synthesizes CDs without producing
a centralized model of the whole system, hence preventing state explosion.

The method described in [26] checks the conformance between the choreog-
raphy specification and the composition of participant implementations. Their
framework can model and analyze compositions in which the interactions can
also be asynchronous and the messages can be stored in unbounded queues and
reordered if needed. Following this line of research, the authors of [26] provided a
hierarchy of realizability notions that forms the basis for a more flexible analysis
regarding classic realizability checks [25, 26]. These two approaches are novel in
that they characterize relevant properties to check a certain degree of realizabil-
ity. However, they statically check realizability and do not enforce it.

The ASTRO toolset [35] supports automated composition of Web services
and the monitoring of their execution. It aims to compose a service start-
ing from a business requirement and the description of the protocols defin-
ing available external services. Unlike our approach, ASTRO deals with cen-
tralized orchestration-based business processes rather than fully decentralized
choreography-based ones.

The CIGAR (Concurrent and Interleaving Goal and Activity Recognition)
framework aims for multigoal recognition [20]. CIGAR decomposes an observed
sequence of multigoal activities into a set of action sequences, one for each goal,
specifying whether a goal is active in a specific action. Although such goal decom-
position somewhat recalls CHOReOSynt’s choreography decentralization, goal
recognition represents a fundamentally different problem regarding realizability
enforcement.

Given a set of candidate services offering the desired functionalities, the TCP-
Compose* algorithm [33] identifies the set of composite services that best fit the
user-specified qualitative preferences over non-functional attributes. CHORe-
OSynt could exploit this research to extend the discovery process to enable
more flexible selection of services from the registry.

The research we described in this paper is an advance over our previous re-
search [4, 6]. Although the synthesis process described in our previous research
treated most BPMN2 constructs, it considered a simplified version of their ac-
tual semantics. For instance, as in [18], the selection of conditional branches
was simply abstracted as a non-deterministic choice, regardless of the run-
time evaluation of their enabling conditions. Analogously, the synthesis process
enforced parallel flows by non-deterministically choosing one of their lineariza-
tions obtained through interleaving, thus losing the actual degree of paral-
lelism. To overcome these limitations, CHOReOSynt relies on a choreography
model that, being more expressive than the choreography model in CIGAR and
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TCP-Compose*, preserves the BPMN2 constructs’ actual semantics. Relying
on a more expressive model led us to define a novel, more effective distributed
coordination algorithm [9].

5 Final Remarks and Future Perspectives

Our past experience in behavioural models elicitation and integration code syn-
thesis gives a first evidence, yet concrete, that the proposed approach is viable
once referring to specific application domains, e.g., choreography-based systems.

Our experiments with strawberry have shown that it is practical and realistic
in that it only assumes: (i) the availability of the WSDL; and (ii) the possibility
to derive a partial oracle that can distinguish between regular and error answers.
Furthermore, we observed that strawberry nicely converges to a realistic au-
tomaton. In future work, we intend to investigate if and how assumption (ii)
could be relaxed.

Our experiments with CHOReOSynt demonstrated that considering domain-
specific interaction patterns mitigates the complexity of coordination enforceabil-
ity when recurrent business protocols must be enforced. Generally, choreography
synthesis is difficult in that not all possible collaborations can be automatically
realized. This suggests we could improve CHOReOSynt with a combination of
domain-specific choreography patterns, as well as protocol interaction patterns
that correspond to service collaborations that are tractable through exogenous
coordination. Currently, CHOReOSynt supports pure coordination. It doesn’t
deal with protocol adaptation because it doesn’t account for mismatches at
the level of service operations and related I/O parameter types. To support
data-based coordination through the elicitation and application of complex data
mappings, CHOReOSynt should be enhanced to automatically infer mappings
to match the data types of messages sent or received by mismatching participant
services. This means effectively coping with heterogeneous service interfaces and
dealing with as many Enterprise Integration Patterns [15] and protocol medi-
ation patterns [28] as possible, in a fully automatic way. Toward that end, we
achieved promising results in automated synthesis of modular mediators [24].

We want to enable the market acceptance and further enhancement of
CHOReOSynt by third-party developers, especially small and medium enter-
prises, including development of applications for commercialization. So, we re-
leased CHOReOSynt under the umbrella of the Future Internet Software and
Services Initiative (FISSi4). Using a market-oriented approach, FISSi aims to
develop awareness of OW2 Future Internet software in both FISSi members and
non-members and both open source vendors and proprietary vendors. Our pri-
mary objective, to be achieved in the near future, is to establish a community of
developers and third-party market stakeholders (for example, users, application
vendors, and policy makers) around CHOReOSynt.

Last but not least, an interesting future direction is the investigation of non-
functional properties at the level of the elicited interaction protocols and of the

4 http://www.ow2.org/view/Future_Internet/CHOReOS

http://www.ow2.org/view/Future_Internet/CHOReOS
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synthesized choreography. For instance, this requires considering operation invo-
cation response time, extending the choreography specification with performance
or reliability attributes, and accounting for them in the CDs synthesis process.
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Abstract. Quantitative and integrated evaluation of software quality
attributes at the architectural design stage provides a sound basis for
making objective decisions for design trade-offs and developing a high
quality software. In this paper we introduce a formal method for model-
ing software architectures and evaluationg their quality attributes quan-
titatively and in a unified manner. This method is based on stochastic
activity networks (SANs) and the quality attributes considered include
security, dependability and performance.

Keywords: Software architecture, quality attributes, quantitative eval-
uation, stochastic activity networks (SANs), reward structures.

1 Introduction

Dealing with quality attributes is one of the most difficult tasks in software engi-
neering. To know whether a quality attribute is achieved, it has to be quantified
by analysis or measured. However, not only quantification of each attribute has
its own difficulties, but also they have complex dependencies.

In software systems, quality attributes are principally determined by the sys-
tem’s architecture. Evaluating quality attributes at the architectural design stage
not only helps in assuring that stakeholders expectations are met, but also aids
in discovering flaws in a shorter time and with lower cost than latter stages.

According to an investigation on different types of quality attributes and their
application domains [1], security, dependability and performance are among the
top quality attributes important for software systems. The necessity of the in-
tegrated evaluation of security and performance has gained much attention in
research communities. However, a few have contributed to the quantitative eval-
uation of security. Dependability is a quality attribute closely related to both
security and performance [2]. The necessity of the integrated evaluation of de-
pendability and performance led to the derivation of a new quality attribute
called perfomability. On the other hand, many of the methods proposed for
quantitative security evaluation are inspired from dependability evaluation tech-
niques. Therefore, despite the significant differences between security and perfor-
mance, their integrated and quantitative evaluation can be performed regarding
their close relation to dependability.
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M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 46–53, 2015.
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The purpose of this paper is to take a small step in the direction of devel-
oping a unified approach for reasoning about multiple quality attributes. The
attributes considered include security, dependability and performance (called
the SDP attributes in this paper). In this approach hierarchical colored stochas-
tic activity networks (HCSANs) [5,6] are used for architecture modeling and
activity-marking oriented reward structures [5] are used for evaluation.

Stochastic activity networks (SANs) [6] are stochastic extensions of Petri Nets,
which are more powerful and more flexible than other stochastic extensions such
as GSPNs and have been effectively used for performance, dependability, per-
formability and security evaluations. HCSANs are extensions of SANs, whose
hierarchical nature facilitates top-down and bottom-up model construction and
their support for colored tokens facilitates complex data manipulations.

The remainder of this paper is organized as follows: in section 2 the related
work is discussed. An introduction to HCSANs and activity-marking oriented
reward struc-tures is provided in section 3. Section 4 presents the proposed
approach and finally section 5 provides the concluding remarks and outlines the
future work.

2 Related Work

Discrete-time Markov chains (DTMCs) are used in [7] to model software architec-
tures and evaluate their security, performance and reliability. In this approach
each component is modeled as a simple state and the arcs between states model
the control flow between components. Quality attributes are evaluated by as-
signing reward functions to the states of the model.

In [8] a framework is proposed for analyzing the performance degradation in-
duced by different security solutions. In this approach UML is used for modeling
both the architecture and different security solutions. These models are then
composed and converted to GSPN models for performance evaluation.

A methodology is proposed in [9] for combined performance and security risk
analysis for border management systems. These systems are good examples of
the systems in which both security and performance are critical. On one hand
travelers should not linger because of security checks and on the other hand
impostors should be distinguished from genuine travelers. In this approach the
UML models of systems architecture are annotated with performance require-
ments. From these models LQN models are extracted for performance analysis.
Also, cost curves are used to estimate the risk of misclassifying travelers with
different classifiers.

In comparison to the above methods, the approach presented in this paper
has the following distinguishing features:

– all the three SDP attributes can be evaluated quantitatively,
– the internal behavior of components can be modeled and analyzed,
– error propagation between components can be modeled,
– in contrast to many evaluation methods, any distribution function can be

used for estimating the time spent by each software activity and



48 A. Sedaghatbaf and M.A. Azgomi

– the generality of the activity-marking oriented reward structures makes this
approach extensible to other quality attributes.

3 HCSAN-Based Reward Models

In addition to the five primitives of ordinary SANs (i.e. place, input gate, out-
put gate, instantaneous activity and timed activity), Colored stochastic activity
networks (CSANs) [3,4] have the following two primitives: (1) token type: a non-
integer data type specifying the type of each token stored in a colored place and
(2) colored place: a place maintaining a list of tokens with a specific token type.
A selection policy (e.g. FIFO, LIFO, Priority) may be associated to each colored
place specifying the order in which tokens are removed from that place.

HCSANs as an extension of CSANs, have one additional primitive, i.e. macro
activity. A macro activity is a sub-model of an HCSAN model with a predefined
interface. This interface includes a set of fusion places, which are virtual (colored)
places that must be bound to concrete (colored) places in the encompassing
model.

As a modification of the SAN-based reward structures, the reward structure
of an HCSAN model can be defined formally as follows:

Definition 1. An activity-marking reward structure of an HCSAN model with
places P = SP ∪ CP and activities A = IA ∪ TA ∪MA is a pair of functions:

– C : A → � where for a ∈ A, C(a) is the reward obtained due to the comple-
tion of activity a, and

– R : ℘(P,M) → � where for v ∈ ℘(P,M), R(v) is the rate of reward obtained
when for each (p,m) ∈ v the marking of place p is m,

where � is the set of real numbers, and ℘(P,M) is the set of all partial functions
between P and M .

In order to quantify the total reward associated with an HCSAN model at an
instant of time t, variable Vt can be used, which is defined as follows:

Vt =
∑

v∈℘(P,M)

R(v).Ivt +
∑

a∈A

C(a).Iat (1)

where Ivt is a random variable indicating that for each (p,m) ∈ v, the marking
of place p is m at time instant t, and the random variable Iat indicates that
activity a is the most recently completed activity with respect to time instant t.
If Ivt and Iat converge in distribution for all v and a with non-zero rewards as t
approaches ∞, then steady-state reward evaluation is also possible:

Vt→∞ =
∑

v∈℘(P,M)

R(v).Ivt→∞ +
∑

a∈A

C(a).Iat→∞ (2)

In order to evaluate the total reward accumulated in an interval [t, t + τ ]
variable Y[t,t+τ ] can be used, which can be expressed as:

Y[t,t+τ ] =
∑

v∈℘(P,M)

R(v).Jv
[t,t+τ ] +

∑

a∈A

C(a).Na
[t,t+τ ] (3)
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where Jv
t is a random variable indicating the total time the model is in a

marking such that for each (p,m) ∈ v, the marking of place p is m during
[t, t + τ ], and the random variable Na

t indicates the number of completions of

activity a during [t, t + τ ]. Variable W[t,t+τ ] =
Y[t,t+τ]

τ can be used to evaluate
time-averaged measures.

4 The Proposed Approach

In this section we explain how to model software architectures and evaluate their
SDP attributes with HCSAN-based reward models. We call this approach SAN-
based architecture modeling (SANAM). In SANAM, HCSANs are used to define
the behavior models of components and connectors and HCSAN-based reward
structures are used to define and evaluate quality attributes.

A SANAM-based architecture model can be formally defined as a 4-tuple
SANAM = (CM,CN,HD,RS), where:

– CM = {cm1, cm2, . . . ,mn} is a set of component models such that each
component model cm = (IBM,PS,RS) consists of: an internal behavior
model IBM specified with HCSANs, a set PS of provided services such
that each provided service is modeled by a concrete macro activity and a
set RS of required services, each modeled by a virtual macro activity which
should be bound to a concrete macro activity providing the service.

– CN = {cn1, cn2, . . . , cnn} is a set of connector models. Connectors are build-
ing blocks for modeling interactions among components.

– HD = {hd1, hd2, . . . , hdn} is a set of hardware device models. Each software
component or connector may be bound with a set of hardware devices such
as processors, disks, links, etc. Speed, capacity, and failure behavior of these
devices have significant impacts on the SDP attributes of software and

– RS is a set of HCSAN-based reward structures which can be used for spec-
ifying and evaluating the quality measures of interest.

As an illustrative example, consider a Group Communication System (GCS)
used to store a set of documents and give users access to them. Several use
cases can be defined for a GCS (e.g. subscribe, unsubscribe, submit a document,
retrieve a docu-ment and update a document). In this paper we focus on doc-
ument retrieval. The SANAM model of this system is depicted in Fig. 1. This
model includes two software components (i.e. CApp and Serv) representing the
client application and the communication server respectively. Serv provides one
service (i.e. rDoc) which facilitates retrieving a document. This component is
bound with two hardware resources i.e. the processor SPrc and the disk SDsk,
and its communication with Serv is handled by the connector CSPr, which rep-
resents a client-server protocol. The behavior model of CApp is depicted in Fig 2.
This component iteratively generates requests, sends them to Serv and displays
the responses. In this model the timed activities genReq and display are bound
with the processor CPrc. The activity genReq (display) is enabled whenever a
token is put in the place resp (doc) and it has acquired an idle processor i.e.
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Fig. 1. SANAM model of a GCS system

the ID of this activity is put in the place acID by CPrc. After completion, this
activity releases the acquired processor. If display fails, an error message will
be displayed. Otherwise, the response of the server will be displayed which may
be either a valid document or a server-side error message. The virtual macro
activity rDoc corresponds to the required service of CApp. The behavior model

Fig. 2. HCSAN model of CApp

of the service Serv.rDoc is presented in Fig. 3. This activity first requests access
to the local disk and processor. If it acquires these resources, it will seek for the
requested document. In case of success, the content of the found document is
put in the place doc, and a token representing an error message otherwise.

The behavior model of CSPr includes two timed activities for transferring
requests and documents between Serv and CApp (see Fig. 4). The activity send
is enabled whenever a request is received from CApp and an idle processor is
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Fig. 3. HCSAN model of Serv.rDoc

Fig. 4. HCSAN model of CSPr

available. After completion, if this activity succeeds in sending the request, the
activity Serv.rDoc will be enabled. Otherwise, the request token will be put back
in req to try again. The behavior of recv is similar to send. The only difference
is the type of token they process. The two activities intercept and modify are
added to the behavior model of CSPr to represent Man-in-the-Middle (MitM)
attacks. In MitM attacks, an attacker establishes independent connections with
the communicating parties and relays messages between them such that they
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Fig. 5. HCSAN model of the hardware resources

believe that they are communicating directly over a private connection. But in
fact, the connection is controlled by the attacker. As such, attacker will be able
to intercept and modify the messages transferred between them.

For simplicity, the HCSAN models of the hardware resources are considered
identical. As depicted in Fig. 5, the incoming requests which include the ID of
the requesting activity are put in a queue and if at least one idle resource exists,
one of the requests is approved probabilistically and its ID is put in the place
resp. If the resource fails, it will be repaired. The order of processing requests
is determined by the selection policy associated with the place queue i.e. FIFO.
Whenever a timed activity releases a resource or the repair process completes, a
token will be put in the place idle.

Now, to evaluate reliability as a dependability measure, the notion of system
failure should be defined first. The GCS system fails when a token is put in the
place CApp.failure. Therefore, the reliability of this system can be specified as:

C(a) = 0, ∀a ∈ A,

R(v) =

{
1 if v = {(CApp.failure, 0)}
0 otherwise

(4)

Performance measures can be evaluated in a similar way. For example, if we
define the throughput of the GCS system during some interval [t, t + τ ] as the
number of documents successfully displayed for users in this interval, then the
following reward structure can be used to specify throughput:

C(a) =

{
p if a = CApp.display and rdoc! = error

0 otherwise

R(v) = 0, ∀v ∈ ℘P (P,M)

(5)

where p is the success probability of the activity display and rdoc is the token
that this activity has removed from the place CApp.doc (see Fig. 2).

To evaluate confidentiality as a security measure, we should determine in
which states this attribute is compromised. The confidentiality of the GCS sys-
tem is compromised whenever the content of a document is intercepted during
transfer i.e. place CApp.doc is marked with a token whose value is idoc. There-
fore, the confidentiality attribute can be specified using the reward structure
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C(a) = 0, ∀a ∈ A,

R(v) =

{
0 if v = {(CApp.doc, idoc)}
1 otherwise

(6)

5 Conclusions and Future Work

Regarding the necessity of integrated and quantitative evaluation of software
quality attributes, we proposed SANAM as a formal method for modeling soft-
ware architectures and evaluating their quality attributes in a unified manner. As
future work we intend to define transformation rules to extract SANAM models
from software modeling notations (e.g. UML, PCM, etc.) and develop a software
tool for automating the transformation and evaluation procedures.
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Abstract. Applicative bisimulation is a coinductive technique to check
program equivalence in higher-order functional languages. It is known to
be sound — and sometimes complete — with respect to context equiv-
alence. In this paper we show that applicative bisimulation also works
when the underlying language of programs takes the form of a linear λ-
calculus extended with features such as probabilistic binary choice, but
also quantum data, the latter being a setting in which linearity plays a
role. The main results are proofs of soundness for the obtained notions
of bisimilarity.

1 Introduction

Program equivalence is one of the fundamental notions in the theory of pro-
gramming languages. Studying the nature of program equivalence is not only
interesting from a purely foundational point of view, but can also be the first
step towards defining (semi)automatic techniques for program verification, or for
validating compiler optimisations. As an example, conformance of a program to
a specification often corresponds to the equivalence between the program and the
specification, once the latter is written in the same formalism as the program.

If the language at hand is an higher-order functional language, equivalence
is traditionally formalised as Morris’ context equivalence: two programs are con-
sidered equivalent if and only if they have the same behavior in every possible
context [15]. This makes it relatively easy to prove two programs to be not equiv-
alent, since this merely amounts to finding one context which separates them.
On the other hand, proving two terms to be equivalent requires one to examine
their behaviour in every possible context.

Various ways to alleviate the burden of proving context equivalence have been
proposed in the literature, from CIU theorems (in which the class of contexts
is restricted without altering the underlying relation [14]) to adequate denota-
tional semantics, to logical relations [17]. We are here interested in coinductive
techniques akin to bisimulation. Indeed, they have been shown to be very pow-
erful, to the point of not only being sound, but even complete as ways to prove
terms to be context equivalent [16]. Among the various notions of bisimulation
which are known to be amenable to higher-order programs, the simplest one is
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certainly Abramsky’s applicative bisimulation [1], in which terms are seen as
interactive objects and the interaction with their environment consists in taking
input arguments or outputting observable results.

Applicative bisimulation is indeed well-known to be fully-abstract w.r.t. con-
text equivalence when instantiated on plain, untyped, deterministic λ-calculi [1].
When the calculus at hand also includes a choice operator, the situation is more
complicated: while applicative bisimilarity is invariably a congruence, thus sound
for context equivalence, completeness generally fails [16,13], even if some un-
expected positive results have recently been obtained by Crubillé and the first
author [4] in a probabilistic setting. An orthogonal issue is the one of linearity:
does applicative bisimulation work well when the underlying calculus has linear
types? The question has been answered positively, but only for deterministic
λ-calculi [3,2]. Finally, soundness does not hold in general if the programming
language at hand has references [11].

In this paper, we define and study applicative bisimulation when instanti-
ated on linear λ-calculi, starting with a purely deterministic language, and pro-
gressively extending it with probabilistic choice and quantum data, a setting
in which linearity is an essential ingredient [19,20]. The newly added features
in the language are shown to correspond to mild variations in the underlying
transition system, which in presence of probabilistic choice becomes a labelled
Markov chain. The main contributions of this paper are congruence results for
applicative bisimilarity in probabilistic and quantum λ-calculi, with soundness
with respect to context equivalence as an easy corollary. In all the considered
calculi, Howe’s technique [9,16] plays a key role.

This is the first successful attempt to apply coinductive techniques to quan-
tum, higher-order, calculi. The literature offers some ideas and results about
bisimulation and simulation in the context of quantum process algebras [8,7,6].
Deep relations between quantum computation and coalgebras have recently
been discovered [10]. None of the cited works, however, deals with higher-order
functions.

This paper is structured as follows. In Section 2, a simple linear λ-calculus,
called �STλ will be introduced, together with its operational semantics. This is
a purely deterministic calculus, on top of which our extensions will be defined.
Section 3 presents the basics of applicative bisimulation, instantiated on �STλ.
A probabilistic variation on �STλ, called �PSTλ, is the subject of Section 4,
which also discusses the impact of probabilities to equivalences and bisimilarity.
Section 5 is about a quantum variation on �STλ, dubbed �QSTλ, together with
a study of bimilarity for it. Section 6 concludes the paper with a discussion
about full-abstraction. An extended version of this paper with more details is
available [5].

2 Linear λ-Calculi: A Minimal Core

In this section, a simple linear λ-calculus called �STλ will be introduced, together
with the basics of its operational semantics. Terms and values are generated by
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the following grammar:

e, f ::= v | ee | if e then e else e | let e be 〈x, x〉 in e | Ω;

v, w ::= x | tt | ff | λx.e | 〈v, v〉.

Observe the presence not only of abstractions and applications, but also of value
pairs, and of basic constructions for booleans. Pairs of arbitrary terms can be
formed as follows, as syntactic sugar:

〈e, f〉 = (λx.λy.〈x, y〉)ef.

Finally, terms include a constant Ω for divergence. b is a metavariable for truth
values, i.e. b stands for either tt or ff. We need a way to enforce linearity, i.e.,
the fact that functions use their arguments exactly once. This can take the form
of a linear type system whose language of types is the following:

A, B ::= bool | A � A | A ⊗ A.

The set Y includes all types. Typing judgments are in the form Γ � e : A,
where Γ is a set of assignments of types to variables. Typing rules are standard,
and can be found in Figure 1. The set T �STλ

Γ,A contains all terms e such that

x : A � x : A � b : bool
Γ � e : A � B Δ � f : A

Γ, Δ � ef : B Γ � Ω : A

Γ � v : A Δ � w : B
Γ, Δ � 〈v, w〉 : A ⊗ B

Γ, x : X, y : Y � e : A Δ � f : X ⊗ Y

Γ, Δ � let f be 〈x, y〉 in e : A

Γ, x : A � e : B

Γ � λx.e : A � B

Γ � e : bool Δ � f : A Δ � g : A

Γ, Δ � if e then f else g : A

Fig. 1. Typing Rules

Γ � e : A. T �STλ

∅,A is usually written as T �STλ

A . Notations like V�STλ

Γ,A or V�STλ

A are
the analogues for values of the corresponding notations for terms.

Endowing �STλ with call-by-value small-step or big-step semantics poses no
significant problem. In the first case, one defines a binary relation → between
closed terms of any type by the usual rule for β-reduction, the natural rule for
the conditional operator, and the following rule: let 〈v, w〉 be 〈x, y〉 in e →
e{v, w/x, y}. Similarly, one can define a big-step evaluation relation ⇓ between
closed terms and values by a completely standard set of rules (see [5] for more
details). The expression e ⇓, as usual, indicates the existence of a value v with
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e ⇓ v. Subject reduction holds in the following sense: if ∅ � e : A, e → f , and
e ⇓ v, then both ∅ � f : A and ∅ � v : A.

The expressive power of the just-introduced calculus is rather poor. Nonethe-
less, it can be proved to be complete for first-order computation over booleans,
in the following sense: for every function F : {tt, ff}n → {tt, ff}, there is a
term which computes F , i.e. a term eF such that eF 〈b1, . . . , bn〉 ⇓ F (b1, . . . , bn)
for every b1, . . . , bn ∈ {tt, ff}n. Indeed, even if copying and erasing bits is not
in principle allowed, one could anyway encode, e.g., duplication as the following
combinator of type bool � bool ⊗ bool: λx.if x then 〈tt, tt〉 else 〈ff, ff〉.
Similarly, if Γ � e : A and x is a fresh variable, one can easily find a term
weak x in e such that Γ, x : bool � weak x in e : A and weak b in e behaves like
e for every b ∈ {ff, tt}.

But how could one capture program equivalence in an higher-order setting
like the one we are examining? The canonical answer goes back to Morris [15],
who proposed context equivalence (also known as observational equivalence) as
the right way to compare terms. Roughly, two terms are context equivalent iff
they behave the same when observed in any possible context, i.e. when tested
against any possible observer. Formally, a context is nothing more than a term
with a single occurrence of a special marker called the hole and denoted as [·]
(see [5]). Given a context C and a term e, C[e] is the term obtained by filling
the single occurrence of [·] in C with e. For contexts to make sense in a typed
setting, one needs to extend typing rules to contexts, introducing a set of rules
deriving judgments in the form Γ � C[Δ � A] : B, which can be read informally
as saying that whenever Δ � e : A, it holds that Γ � C[e] : B.

We are now in a position to define the context preorder: given two terms e
and f such that Γ � e, f : A, we write e ≤Γ,A f iff for every context C such
that ∅ � C[Γ � A] : B, if C[e] ⇓ then C[f ] ⇓. If e ≤Γ,A f and f ≤Γ,A e,
then e and f are said to be context equivalent, and we write e ≡Γ,A f . What
we have just defined, infact, are two typed relations ≤ and ≡, that is to say
two families of relations indexed by contexts and types, i.e. ≤ is the family
{≤Γ,A}Γ,A, while ≡ is {≡Γ,A}Γ,A. If in the scheme above the type B is restricted
so as to be bool, then the obtained relations are the ground context preorder
and ground context equivalence, respectively. Context equivalence is, almost by
construction, a congruence. Similarly, the context preorder is easily seen to be a
precongruence.

3 Applicative Bisimilarity and Its Properties
Context equivalence is universally accepted as the canonical notion of equiva-
lence of higher-order programs, being robust, and only relying on the underlying
operational semantics. Proving terms not context equivalent is relatively easy:
ending up with a single context separating the two terms suffices. On the other
hand, the universal quantification over all contexts makes proofs of equivalence
hard.

A variety of techniques have been proposed to overcome this problem, among
them logical relations, adequate denotational models and context lemmas.
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As first proposed by Abramsky [1], coinductive methodologies (and the bisimula-
tion proof method in particular) can be fruitfully employed. Abramsky’s applica-
tive bisimulation is based on taking argument passing as the basic interaction
mechanism: what the environment can do with a λ-term is either evaluating it
or passing it an argument.

In this section, we will briefly delineate how to define applicative bisimilarity
for the linear λ-calculus �STλ. We will do that in an unnecessarily pedantic
way, defining a labelled transition system, and then playing the usual bisimu-
lation game on top of it. This has the advantage of making the extensions to
probabilistic and quantum calculi much easier.

A labelled transition system (LTS in the following) is a triple L = (S, L, N ),
where S is a set of states, L is a set of labels, and N is a subset of S × L × S.
If for every s ∈ S and for every � ∈ L there is at most one state t ∈ S with
(s, �, t) ∈ N , then L is said to be deterministic. The theory of bisimulation for
LTSs is very well-studied [18] and forms one of the cornerstones of concurrency
theory.

An applicative bisimulation relation is nothing more than a bisimulation on
an LTS L�STλ

defined on top of the λ-calculus �STλ. More specifically, the LTS
L�STλ

is defined as the triple

(T �STλ � V�STλ , E�STλ � V�STλ ∪ {eval, tt, ff} ∪ (Y � Y), N�STλ
),

where:
• T �STλ is the set ∪A∈Y(T �STλ

A × {A}), similarly for V�STλ . On the other
hand, E�STλ is ∪A,B,E∈Y(T �STλ

x:A,y:B,E × {(A, B, E)}). Observe how any pair
(v, A) appears twice as a state, once as an element of T �STλ and again as
an element of V�STλ . Whenever necessary to avoid ambiguity, the second
instance will be denoted as (v̂, A). Similarly for the two copies of any type A
one finds as labels.

• The label eval models evaluation of terms, while the labels tt, ff are the way
a boolean constant declares its own value.

• The relation N�STλ
contains all triples in the following forms:

((̂tt, bool), tt, (̂tt, bool)); ((̂ff, bool), ff, (̂ff, bool));
(( ̂λx.e, A � B), (v, A), (e{v/x}, B));

((̂〈v, w〉, A ⊗ B), (e, (A, B, E)), (e{v/x, w/y}, E));
((e, A), A, (e, A)); ((v̂, A), ̂A, (v̂, A)); ((e, A), eval , (v̂, A));

where, in the last item, we of course assume that e ⇓ v.
Basically, values interact with their environment based on their types: abstrac-
tions take an input argument, pairs gives their two components to a term which
can handle them, and booleans constants simply expose their value. The only
way to interact with terms is by evaluating them. Both terms and values expose
their type. As one can easily verify, the labelled transition system L�STλ

is de-
terministic. Simulation and bisimulation relations for L�STλ

are defined as for
any other LTS. Notice, however, that both are binary relations on states, i.e., on
elements of T �STλ � V�STλ . Let us observe that:
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• Two pairs (e, A) and (f, B) can be put in relation only if A = B, because
each state makes its type public through a label. For similar reasons, states
in the form (v, A) and (ŵ, B) cannot be in relation, not even if A = B.

• If (v, A) and (w, A) are in relation, then also (v̂, A) and (ŵ, A) are in relation.
Conversely, if (v̂, A) and (ŵ, A) are in a (bi)simulation relation R, then R ∪
{((v, A), (w, A))} is itself a (bi)simulation.

As a consequence, (bi)similarity can be seen as a relation on terms, indexed by
types. Similarity is denoted as �, and its restriction to (closed) terms of type
A is indicated with �A. For bisimilarity, symbols are ∼ and ∼A, respectively.
(Bi)similarity can be generalised to a typed relation by the usual open extension.

Example 1. An example of two distinct programs which can be proved bisimilar
are the following:

e = λx.λy.λz.and (xy) (or z tt); f = λx.λy.λz.x(or (and z ff) y);

where and and or are combinators computing the eponymous boolean functions.
Both e and f can be given the type (bool � bool) � bool � bool � bool
in the empty context. They can be proved bisimilar by just giving a relation
Re,f which contains the pair (e, f) and which can be proved to be an applicative
bisimulation. Another interesting example of terms which can be proved bisimilar
are the term e = if f then g else h and the term s obtained from e by λ-
abstracting all variables which occur free in g (and, equivalently, in h), then
applying the same variables to the obtained term. For more details, see [5].

Is bisimilarity sound for (i.e., included in) context equivalence? And how about
the reverse inclusion? For a linear, deterministic λ-calculus like the one we are
describing, both questions have already been given a positive answer [7]. In the
next two sections, we will briefly sketch how the correspondence can be proved.

3.1 (Bi)similarity is a (Pre)congruence

A natural way to prove that similarity is included in the context preorder, (and
thus that bisimilarity is included in context equivalence) consists in first showing
that similarity is a precongruence, that is to say a preorder relation which is
compatible with all the operators of the language.

While proving that � is a preorder is relatively easy, the naive proof of com-
patibility (i.e. the obvious induction) fails, due to application. A nice way out is
due to Howe [9], who proposed a powerful and reasonably robust proof based on
so-called precongruence candidates. Intuitively, the structure of Howe’s method
is the following:
1. First of all, one defines an operator (·)H on typed relations, in such a way

that whenever a typed relation R is a preorder, RH is a precongruence.
2. One then proves, again under the condition that R is an equivalence relation,

that R is included into RH , and that RH is substitutive.
3. Finally, one proves that �H is itself an applicative simulation. This is the

so-called Key Lemma [16], definitely the most difficult of the three steps.
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Points 2 and 3 together imply that � and �H coincide. But by point 1, �H ,
thus also �, are precongruences. Points 1 and 2 do not depend on the underlying
operational semantics, but on only on the language’s constructs.

In Figure 2, one can find the full set of rules defining (·)H when the underlying
terms are those of �STλ.

∅ � cRt : A

∅ � cRHt : A

x : A � xRt : A

∅ � xRHt : A

Γ, x : B � eRHh : A Γ � (λ x.h)Rt : B � A

Γ � (λ x.e)RHt : B � A

Γ � eRHh : B � A Δ � fRHs : B Γ, Δ � (hs)Rt : A

Γ, Δ � (ef)RHt : A

Γ � eRHh : bool
Δ � fRHs : A Δ � gRHr : A

Γ, Δ � (if h then s else r)Rt : A

Γ, Δ � (if e then f else g)RHt : A

Γ � eRHh : X ⊗ Y
Δ, x : X, y : Y � fRHs : A

Γ, Δ � (let h be 〈x, y〉 in s)Rt : A

Γ, Δ � (let e be 〈x, y〉 in f)RHt : A

Γ � vRHu : A Δ � wRHz : B Γ, Δ � 〈u, z〉Re : A ⊗ B

Γ, Δ � 〈v, w〉RHe : A ⊗ B

Fig. 2. The Howe’s Rules for �STλ.

Theorem 1. In �STλ, � is included in ≤, thus ∼ is included in ≡.

4 Injecting Probabilistic Choice

The expressive power of �STλ is rather limited, due to the presence of linearity.
Nevertheless, the calculus is complete for first-order computations over the finite
domain of boolean values, as discussed previously. Rather than relaxing linear-
ity, we now modify �STλ by endowing it with a form or probabilistic choice,
thus obtaining a new linear λ-calculus, called �PSTλ, which is complete for
probabilistic circuits. We see �PSTλ as an intermediate step towards �QSTλ, a
quantum λ-calculus we will analyze in the following section.

The language of terms of �PSTλ is the one of �STλ where, however, there
is one additional binary construct ⊕, to be interpreted as probabilistic choice:
e ::= e ⊕ e. The set Y of types is the same as the one of �STλ. An evaluation
operation is introduced as a relation ⇓⊆ T �PSTλ

∅,A × D�PSTλ

A between the sets of
closed terms of type A belonging to �PSTλ and the one of subdistributions of
values of type A in �PSTλ. The elements of D�PSTλ

A are actually subdistributions
whose support is some finite subset of the set of values V�PSTλ

A , i.e., for each
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such E , we have E : V�PSTλ

A �→ R[0,1] and
∑

v∈V�PSTλ
A

E (v) ≤ 1. Whenever
this does not cause ambiguity, subdistributions will be referred to simply as
distributions. In Figure 3 a selection of the rules for big-step semantics in �PSTλ

is given. Expressions in the form {vpi

i }i∈I have the obvious meaning, namely the
distribution with support {vi}i∈I which attributes probability pi to each vi.

As for the terms e ∈ T �PSTλ

A , the following lemma holds:

Lemma 1. If ∅ � e : A, then there is a unique distribution E such that e ⇓ E .

Lemma 1 only holds because the λ-calculus we are working with is linear, and as
a consequence strongly normalising. If e ⇓ E , then the unique E from Lemma 1
is called the semantics of e and is denoted simply as �e�.

v ⇓ {v1} Ω ⇓ ∅
e ⇓ E f ⇓ F s{w/x} ⇓ Gλ x.s,w

ef ⇓ ∑

λ x.s∈S(E ),w∈S(F) E (λ x.s)F (w)Gλ x.s,w

e ⇓ E f ⇓ F g ⇓ G

if e then f else g ⇓ E (tt)F + E (ff)G
e ⇓ E f ⇓ F

e ⊕ f ⇓ 1
2E + 1

2F

Fig. 3. Big-step Semantics of �PSTλ — Selection

Context equivalence and the context preorder are defined very similarly to
�STλ, the only difference being the underlying notion of observation, which in
�STλ takes the form of convergence, and in �PSTλ becomes the probability of
convergence.

4.1 Applicative Bisimilarity

Would it be possible to define applicative bisimilarity for �PSTλ similarly to
what we have done for �STλ? The first obstacle towards this goal is the dy-
namics of �PSTλ, which is not deterministic but rather probabilistic, and thus
cannot fit into an LTS. In the literature, however, various notions of probabilis-
tic bisimulation have been introduced, and it turns out that the earliest and
simplest one, due to Larsen and Skou [12], is sufficient for our purposes.

A labelled Markov chain (LMC in the following) is a triple (S, L, P), where S
and L are as in the definition of a LTS, while P is a transition probability matrix,
i.e., a function from S×L×S to R[0,1] such that for every s and for every �, it holds
that P(s, �, S) ≤ 1 (where the expression P(s, �, X) stands for

∑

t∈X P(s, �, t)
whenever X ⊆ S). Given such a LMC M , an equivalence relation R on S is said
to be a bisimulation on M iff whenever (s, t) ∈ R, it holds that P(s, �, E) =
P(t, �, E) for every equivalence class E of S modulo R. A preorder R on S is
said to be a simulation iff for every subset X of S, it holds that P(s, �, X) ≤
P(t, �, R(X)). With some efforts (see [5] for some more details) one can prove that
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there exist largest bisimulation and simulation, that we continue to call similarity
and bisimilarity, respectively. Probabilistic (bi)simulation, despite the endeavor
required to define it, preserves all fundamental properties of its deterministic
sibling. As an example, a symmetric probabilistic simulation is a bisimulation.
Moreover, bisimilarity is the intersection of similarity and co-similarity.

Labelled Markov chains are exactly the objects we need when generalising
the construction L�STλ

to �PSTλ. The LMC M�PSTλ
, indeed, is defined as the

triple

(T �PSTλ � V�PSTλ , E�PSTλ � V�PSTλ ∪ {eval, tt, ff} ∪ (Y � Y), P�PSTλ
)

where P�PSTλ
is the function assuming the following values:

P�PSTλ
((t̂t, bool), tt, (t̂t, bool)) = 1; P�PSTλ

(( ̂ff, bool), ff, ( ̂ff, bool)) = 1;
P�PSTλ

(( ̂λx.e, A � B), (v, A), (e{v/x}, B)) = 1;
P�PSTλ

((̂〈v, w〉, A ⊗ B), (e, (A, B, E)), (e{v/x, w/y}, E)) = 1;
P�PSTλ

((e, A), A, (e, A)) = 1 P�PSTλ
((v̂, A), ̂A, (v̂, A)) = 1;

P�PSTλ
((e, A), eval , (v̂, A)) = �e�(v);

and having value 0 in all the other cases. It is easy to realise that P�PSTλ
can

indeed be seen as the natural generalisation of N�STλ
: on states in the form

(v̂, A), the function either returns 0 or 1, while in correspondence to states like
(e, A) and the label eval , it behaves in a genuinely probabilistic way.

As for �STλ, simulation and bisimulation relations, and the largest such rela-
tions, namely similarity and bisimilarity, can be given by just instantiating the
general scheme described above to the specific LMC modeling terms of �PSTλ

and their dynamics. All these turn out to be relations on closed terms, but as
for �STλ, they can be turned into proper typed relations just by the usual open
extension.

The question now is: are the just introduced coinductive methodologies sound
with respect to context equivalence? And is it that the proof of precongruence
for similiarity from Section 3.1 can be applied here? The answer is positive, but
some effort is needed. More specifically, one can proceed as in [4], generalising
Howe’s method to a probabilistic setting, which makes the Key Lemma harder
to prove. By the way, the set of Howe’s rules are the same as in �STλ, except
for a new one, namely

Γ � eRHh : A Δ � fRHs : A Γ, Δ � (h ⊕ s)Rt : A

Γ, Δ � (e ⊕ f)RHt : A

Thus:

Theorem 2. In �PSTλ, � is included in ≤, thus ∼ is included in ≡.

5 On Quantum Data

Linear λ-calculi with classical control and quantum data have been introduced
and studied both from an operational and from a semantical point of view [20,7].
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Definitionally, they can be thought of as λ-calculi in which ordinary, classic,
terms have access to a so-called quantum register, which models quantum data.

A quantum register Q on a finite set of quantum variables Q is mathematically
described by an element of a finite-dimensional Hilbert space whose computa-
tional basis is the set SB(Q) of all maps from Q to {tt, ff} (of which there are
2|Q|). Any element of this basis takes the form |r1 ← b1, r2 ← b2, · · · , rn ← bn〉,
where Q = {r1, . . . , rn} and b1, . . . , bn ∈ {tt, ff}. Elements of this Hilbert space,
called H(Q), are in the form

Q =
∑

η∈SB(Q)

αη|η〉, (1)

where the complex numbers αη ∈ C are the so-called amplitudes, and must
satisfy the normalisation condition

∑

η∈SB(Q) |αη|2 = 1. If η ∈ SB(Q) and r is
a variable not necessarily in Q, then η{r ← b} stands for the substitution which
coincides with η except on r where it equals b.

The interaction of a quantum register with the outer environment can create or
destroy quantum bits increasing or decreasing the dimension of Q. This shaping
of the quantum register is mathematically described making use of the following
operators:
• The probability operator PRr

b : H(Q) → R[0,1] gives the probability to obtain
b ∈ {tt, ff} as a result of the measurement of r ∈ Q in the input register:

PRr
b(Q) =

∑

η(r)=b

|αη|2.

• If r ∈ Q, then the projection operator MSr
b : H(Q) → H(Q−{r}) measures the

variable r, stored in the input register, destroying the corresponding qubit.
More precisely MSr

tt(Q) and MSr
ff(Q) give as a result the quantum register

configuration corresponding to a measure of the variable r, when the result
of the variable measurement is tt or ff, respectively:

MSr
b(Q) = [PRr

b(Q)]−
1
2

∑

η∈SB(Q−{r})
αη{r←b}|η〉,

where Q is as in (1).
• If r �∈ Q, then the operator NWr

b : H(Q) → H(Q ∪ {r}) creates a new qubit,
accessible through the fresh variable name r, and increases the dimension of
the quantum register by one .

Qubits can not only be created and measured, but their value can also be modified
by applying unitary operators to them. Given any such n-ary operator U , and
any sequence of distinct variables r1, . . . , rn (where ri ∈ Q for every 1 ≤ i ≤ n),
one can build a unitary operator Ur1,...,rn on H(Q).
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5.1 The Language

We can obtain the quantum language �QSTλ as an extension of basic �STλ. The
grammar of �STλ is enhanced by adding the following values:

e ::= U(v) | meas(v) | new(v); v ::= r;

where r ranges over an infinite set of quantum variables, and U ranges over a fi-
nite set of unitary transformations. The term new(v) acting on boolean constant,
returns (a quantum variable pointing to) a qubit of the same value, increasing
this way the dimension of the quantum register. The term meas(v) measures a
value of type qubit, therefore it decreases the dimension of the quantum register.

Typing terms in �QSTλ does not require any particular efforts. The class of
types needs to be sligthly extended with a new base type for qubits, called qbit,
while contexts now give types not only to classical variables, but also to quantum
variables. The new typing rules are in Figure 4.

Γ � v : qbit
Γ � meas(v) : bool

Γ � v : bool
Γ � new(v) : qbit

Γ � v : qbit⊗n

Γ � U(v) : qbit⊗n r : qbit � r : qbit

Fig. 4. Typing rules in �QSTλ.

The semantics of �QSTλ, on the other hand, cannot be specified merely as a
relation between terms, since terms only make sense computationally if coupled
with a quantum register, namely in a pair in the form [Q, e], which is called
a quantum closure. Analogously to what has been made for �PSTλ, small step
reduction operator → and the big step evaluation operator ⇓ are given as rela-
tions between the set of quantum closures and of quantum closures distributions.
In figures 5 and 6 the small-step semantics and big-step semantics for �QSTλ

are given. Quantum closures, however, are not what we want to compare, since
what we want to be able to compare are terms. Context equivalence, in other
words, continues to be a relation on terms, and can be specified similarly to the
probablistic case, following, e.g. [20].

5.2 Applicative Bisimilarity in �QSTλ

Would it be possible to have a notion of bisimilarity for �QSTλ? What is the
underlying “Markov Chain”? It turns out that LMCs as introduced in Section 4.1
are sufficient, but we need to be careful. In particular, states of the LMC are not
terms, but quantum closures, of which there are in principle nondenumerably
many. However, since we are only interested in quantum closures which can be
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[Q, (λ x.e)v] → {[Q, e{v/x}]1}

[Q, e] → {[Qi, fi]pi}i∈I

[Q, eg] → {[Qi, fig]pi }i∈I

[Q, e] → {[Qi, fi]pi }i∈I

[Q, ve] → {[Qi, vfi]pi }i∈I

[Q, if tt then f else g] → {[Q, f ]1} [Q, if ff then f else g] → {[Q, g]1}

[Q, e] → {[Qi, hi]pi }i∈I

[Q, if e then f else g] → {[Qi, if hi then f else g]pi}i∈I

[Q, let 〈v, w〉 be 〈x, y〉 in f ] → {[Q, f{v/x, w/y}]1}

[Q, e] → {[Qi, hi]pi }i∈I

[Q, let e be 〈x, y〉 in g] → {[Qi, let hi be 〈x, y〉 in g]pi}i∈I

[Q, meas(r)] → {[MSr
ff(Q), ff]PR

r
ff(Q) , [MSr

tt(Q), tt]PR
r
tt(Q)}

[Q, U〈r1, . . . , rn〉] → {[Ur1,...,rn (Q), 〈r1, . . . , rn〉]1}

r fresh variable
[Q, new(b)] → {[NWr

b(Q), r]1} [Q, Ω] → ∅

Fig. 5. Small-step Semantics of �QSTλ.

obtained (in a finite number of evaluation steps) from closures having an empty
quantum register, this is not a problem: we simply take states as those closures,
which we dub constructible. M�QSTλ

can be built similarly to M�PSTλ
, where

(constructible) quantum closures take the place of terms. The non zero elements
of the function P�QSTλ

are defined as follows:

P�QSTλ
((

[

Q, t̂t
]

, bool), ([W , e] , A, tt), ([Q ⊗ W , e] , A)) = 1;
P�QSTλ

((
[

Q, ̂ff
]

, bool), ([W , e] , A, ff), ([Q ⊗ W , e] , A)) = 1;

P�QSTλ
((

[

Q, ̂〈v, w〉
]

, A ⊗ B), ([W , e] , (A, B, E)), ([Q ⊗ W , e{v/x, w/y}] , E)) = 1;
P�QSTλ

(([Q, e] , A), A, ([Q, e] , A)) = 1 P�QSTλ
(([Q, ê] , A), A, ([Q, ê] , A)) = 1;

P�QSTλ
(([Q, e] , A), eval , ([U , v] , A)) = �[Q, e]� ([U , v]) .

Once we have a LMC, it is easy to apply the same definitional scheme we have
seen for �PSTλ, and obtain a notion of applicative (bi)similarity. Howe’s method,
in turn, can be adapted to the calculus here, resulting in a proof of precongruence
and ultimately in the following:
Theorem 3. In �QSTλ, � is included in ≤, thus ∼ is included in ≡.
More details on the proof of this can be found in [5].
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[Q, v] ⇓ {[Q, v]1} [Q, Ω] ⇓ ∅
r fresh variable

[Q, new(b)] ⇓ {[NWr
b(Q), r]1}

[Q, U〈r1 . . . rm〉] ⇓ {[Ur1,...,rm(Q), 〈r1, . . . , rm〉]1}

[Q, meas(r)] ⇓ {[MSr
ff(Q), ff]PR

r
ff(Q) , [MSr

tt(Q), tt]PR
r
tt(Q)}

[Q, e] ⇓ {[Qi, λ x.hi]pi }i∈I

[Qi, f ] ⇓ {[Qi,h, si,h]qi,h }i,h∈H
[Qi,h, hi{si,h/x}] ⇓ Ei,h

[Q, ef ] ⇓ ∑

i,h
pi · qi,h · Ei,h

[Q, e] ⇓ {[Qff, ff]pff , [Qtt, tt]ptt}
[Qff, g] ⇓ E
[Qtt, f ] ⇓ F

[Q, if e then f else g] ⇓ pffE + pttF

[Q, e] ⇓ {[Qi, 〈vi, wi〉]pi}i∈I [Qi, f{vi/x, wi/y}] ⇓ Ei

[Q, let e be 〈x, y〉 in f ] ⇓ ∑

i
pi · Ei

Fig. 6. Big-step Semantics of �QSTλ.

Example 2. An interesting pair of terms which can be proved bisimilar are the
following two:

e = λx.if (meas x) then ff else tt; f = λx.meas(X x);

where X is the unitary operator which flips the value of a qubit. This is remark-
able given, e.g. the “non-local” effects entanglement could cause.

6 On Full-Abstraction

In the deterministic calculus �STλ, bisimilarity not only is included into context
equivalence, but coincides with it (and, analogously, similarity coincides with the
context preorder). This can be proved by observing that in L�STλ

, bisimilarity
coincides with trace equivalence, and each linear test, i.e., each trace, can be
implemented by a context. This result is not surprising, and has already been
obtained in similar settings elsewhere [2].

But how about �PSTλ and �QSTλ? Actually, there is little hope to prove
full-abstraction between context equivalence and bisimilarity in a linear setting
if probabilistic choice is present. Indeed, as shown by van Breugel et al. [21],
probabilistic bisimilarity can be characterised by a notion of test equivalence
where tests can be conjunctive, i.e., they can be in the form t = 〈s, p〉, and t
succeeds if both s and p succeeds. Implementing conjuctive tests, thus, requires
copying the tested term, which is impossible in a linear setting. Indeed, it is easy
to find a counterexample to full-abstraction already in �PSTλ. Consider the
following two terms, both of which can be given type bool � bool in �PSTλ:

e = λx.weak x in tt ⊕ ff; f = (λx.weak x in tt) ⊕ (λx.weak x in ff).
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The two terms are not bisimilar, simply because tt and ff are not bisimilar, and
thus also λx.weak x in tt and λx.weak x in ff cannot be bisimilar. However,
e and f can be proved to be context equivalent: there is simply no way to
discriminate between them by way of a linear context (see [5] for more details).

What one may hope to get is full-abstraction for extensions of the consid-
ered calculi in which duplication is reintroduced, although in a controlled way.
This has been recently done in a probabilistic setting by Crubillé and the first
author [4], and is the topic of current investigations by the authors for a non-
strictly-linear extension of �QSTλ.

7 Conclusions

We show that Abramsky’s applicative bisimulation can be adapted to linear λ-
calculi endowed with probabilistic choice and quantum data. The main result
is that in both cases, the obtained bisimilarity relation is a congruence, thus
included in context equivalence.

For the sake of simplicity, we have deliberately kept the considered calculi as
simple as possible. We believe, however, that many extensions would be harm-
less. This includes, as an example, generalising types to recursive types which,
although infinitary in nature, can be dealt with very easily in a coinductive set-
ting. Adding a form of controlled duplication requires more care, e.g. in presence
of quantum data (which cannot be duplicated).
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Abstract. Many distributed systems use broadcast communication for
various reasons such as saving energy or increasing throughput. How-
ever, the actor model for concurrent and distributed systems does not
directly support this kind of communication. In such cases, a broadcast
must be modeled as multiple unicasts which leads to loss of modularity
and state space explosion for any non-trivial system. In this paper, we
extend Rebeca, an actor-based model language, to support asynchronous
anonymous message broadcasting. Then, we apply counter abstraction
for reducing the state space which efficiently bypasses the constructive
orbit problem by considering the global state as a vector of counters, one
per each local state. This makes the model checking of systems possible
without further considerations of symmetry. This approach is efficient for
fully symmetric system like broadcasting environments. We use a couple
of case studies to illustrate the applicability of our method and the way
their state spaces are reduced in size.

Keywords: state space reduction, broadcast, Rebeca, actor-based
language, model checking, verification.

1 Introduction

The actor model [2,13] is one of the pioneers in modeling of concurrent and
distributed applications. It has been introduced as an agent-based language by
Hewitt [13] and then extended by Agha as an object-based concurrent compu-
tation model [2]. An actor model consists of a set of actors that communicate
through asynchronous message passing. Communication in actor models is based
on unicast, i.e. in each message the receiver has to be specified. On the other
hand, broadcast communication is a simple model of parallel computation [28]
and a large number of algorithms in distributed networks use broadcast, such
as consensus agreement [20,4,7,5,22], leader election [23,16,21], and max finding
[9,17,27,18]. In addition, wireless channels have a broadcast nature as when a
node sends a message, it can be received by any other node that lies within its
communication range, which leads to power saving and throughput improvement
[8]. Modeling these algorithms with actor model would cause some complexities
both in modeling and analysis. In the modeling aspect, a broadcast has to be
replaced with multiple unicasts, which leads to loss of modularity and clutter-
ing of the model code. The (unnecessary) interleaving of these unicast messages
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DOI: 10.1007/978-3-319-24644-4_5
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causes state space explosion during analysis, the main obstacle in model check-
ing of nontrivial systems. Using broadcasts instead of multiple unicasts, enables
efficient use of counter abstraction technique [3] to overcome this problem.

In this paper, we extend the actor-based modeling language Rebeca [31] with
broadcast communication. Rebeca is an operational interpretation of the actor
model with the aim of bridging the gap between formal verification techniques
and the real world software engineering of concurrent and distributed applica-
tions. This is achieved by its simple Java-like syntax and extensive tool support
[1,32], including a modeling environment and a model checker employing well
known reduction techniques [14]. The resulting modeling language provides a
suitable framework to model mobile ad hoc networks (MANETs). Having broad-
cast as the main communication mechanism in the broadcasting actor language,
we have applied counter abstraction to efficiently reduce the size of the state
space. To the best of our knowledge, there is no actor-based language with direct
support for broadcast communication. In [29], Rebeca is extended with compo-
nents to provide a higher level of abstraction and encapsulation and broadcast
has been used for communication between the components of actors and not
within a component.

In the original actor model, message delivery is guaranteed and each actor
has a mailbox to maintain messages while it is busy processing another message.
However, due to unpredictability of networks, the arrival order of messages are
assumed to be arbitrary and unknown [2]. To prevent state space explosion,
Rebeca makes use of FIFO queues as a means of message storage [30] so that
messages will be processed based on the order that they have been received.
In our extended model, queues are replaced by bags (unordered multi-sets of
messages).

The paper is structured as follows. Section 2 briefly introduces Rebeca and
provides an overview on the counter abstraction technique. Section 3 presents
our extension to Rebeca to support broadcast. In Section 4, we show how we
have implemented counter abstraction to generate the state space compactly. To
illustrate the applicability of our approach, we bring two case studies in Section
5. Finally, we review some related work in 6 before concluding the paper.

2 Preliminaries

2.1 Rebeca

Rebeca [31] is an actor- based modeling language which has been proposed for
modeling and verification of concurrent and distributed systems. It aims to bring
the formal verification techniques into the real world of software engineering by
means of providing a Java-like syntax familiar to software developers and also
providing tool support via an integrated modeling and verification environment
[1]. A design principle behind Rebeca is to enable domain-specific extensions
of the core language [30]. Examples of such extensions has been introduced in
various domains such as probabilistic systems [33], real-time systems [25], and
software product lines [26].
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In Rebeca, actors are the units of computation, called rebecs (short for reactive
objects) which are instances of the defined reactive classes in the model. Rebecs
communicate with other rebecs only through message-passing which is fair and
asynchronous. A rebec can send messages only to its known rebecs mentioned in
its definition and also to itself using “self” keyword. The local state of a rebec
is represented by its state variables as well as the contents of its message queue.
The message servers, which indicate how received messages must be processed,
are also other parts of a rebec definition. Each rebec has at least one message
server called “initial” which acts as a constructor in object-oriented language
and is responsible for initialization tasks, and it is always put in every rebec’s
queue initially.

A rebec is enabled if and only if there is at least one message in its queue.
The computation takes place by removing a message from the head of the queue
and executing its corresponding message server atomically, after which the re-
bec proceeds to process the next message in the queue (if exists). Processing a
message may have the following consequences:

– the value of the state variables of the executing rebec may be modified,
– new rebecs may be created,
– some messages may be sent to other rebecs or the executing rebec itself.

Besides the definition of the reactive classes, the main part of a Rebeca model
specifies the instances of the reactive classes initially created along with their
known-rebecs. The parameters of initial message server, if there is any, will also
be specified.

As an example, Fig.1 illustrates a simple leader election algorithm modeled in
Rebeca, aiming to select a node with the highest id as the leader. The nodes are
organized in a (directed) ring. Each node sends its id to its neighbor and upon
receiving a message compares the received id with its own id. If it is greater
than its own id, it passes the number to its neighbor. So, when a number passes
through the ring and is received by the node which its id is equal to the received
id, it means that node has the greatest id and will be elected as the leader.

2.2 Counter Abstraction

When analyzing complex systems, their state space is prone to grow exponen-
tially in space, known as the state space explosion problem, which is common
in the realm of model checking. Counter abstraction is one of the proposed ap-
proaches to overcome this difficulty [24,3]. Its idea is to record the global state
of a system as a vector of counters, one per local state, tracking how many of the
n components currently reside in that local state. In our work, “components”
refer to actors in the system. Let n and m be the number of components and
local states respectively. This technique turns the n-component model of a size

exponential in n, i.e., mn, into one of a size polynomial in n, i.e.,

(
n+m− 1

m

)

.

Counter abstraction can be seen as a form of symmetry reduction [10]. Two
global states S and S′ are identical up to permutation if for every local state
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1 reactiveclass Node

2 {

3 knownrebecs

4 {

5 Node neighbour;

6 }

7 statevars

8 {

9 boolean isLeader;

10 int myInt;

11 }

12 msgsrv initial(int num)

13 {

14 isLeader = false;

15 myInt = num;

16 neighbour.receiveInt(myInt);

17 }

18 msgsrv receiveInt(int num)

19 {

20 if (num > myInt)

21 neighbour.receiveInt(num);

22 if (num == myInt)

23 {

24 isLeader = true;

25 self.isLeader();

26 }

27 }

28 msgsrv isLeader()

29 {

30 // elected as the

leader,

31 // continue the

computation

32 }

33 }

35 main

36 {

37 Node node0(node1):(1);

38 Node node1(node2):(2);

39 Node node2(node0):(3);

40 }

Fig. 1. Simple leader election algorithm: an example of a Rebeca model

s, the same number of components reside in s is the same in the two states S
and S′, only the order of elements change through permutation. For example,
consider a system which consists of 3 components each with only one variable
vi of type of Boolean. The global states of (T, T, F ), (F, T, T ) and (T, F, T ) are
equivalent and can be represented as (2T, F ).

3 Broadcasting Rebeca

In this section, we present a modeling language based on Rebeca, by replacing the
unicast communication mechanism by broadcast. We name the language bRebeca
and will describe its syntax and formal semantics in the following subsections.

3.1 Syntax

In bRebeca, rebecs communicate with each other only through broadcasting:
the sent message will be received by all rebecs of the model (as specified in
the main part). After taking a message from its bag, the receiving rebec simply
discards the message if no corresponding message server is defined in its reactive
class. Since every message will be received by all existing rebecs, unlike Rebeca,
there is no need for declaring the known rebecs in the reactive class definitions.
Furthermore, there is no need to specify the receiver of a message in a send
statement. Every initial message server at least have one parameter, named
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starter. The value of starter is only true for the rebec which initiates the
algorithm by broadcasting the first message.

The grammar of bRebeca is presented in Fig. 2.

Model ::= ReactiveClass+ Main

Main ::= main {RebecDecl+ }
ReactiveClass ::= reactiveclass C { StateVars MsgServer∗ }

StateVars ::= statevars { VarDecl∗ }
MsgServer ::= msgsrv M(< T V >∗) { Statement∗ }

VarDecl ::= T V ;

Statement ::= Assign | Broadcast | Conditional
Assign ::= V = Expr;

Broadcast ::= M(< V >∗);

Conditional ::= if (Expr){ Statement∗ } else { Statement∗ }
RebecDecl ::= C R(< V >∗);

Fig. 2. bRebeca language syntax: Angle brackets (< >) are used as metaparentheses.
Superscript ? denotes that preceding part is optional, superscript + is used for more
than once repetition, and * indicates the zero or more times repetition. The symbols C,
T , M , and V denote class, type, method and variable names respectively. The symbol
E denotes an expression, which can be an arithmetic or Boolean expression.

3.2 Semantics

The formal semantics of bRebeca is expressed as a labeled transition system
(LTS), defined by the quadruple 〈S,→, L, s0〉, where S is a set of states, → a set
of transitions between states, L a set of labels, and s0 the initial state.

Let I denote the set of all existing rebec identifiers, ranged over 1..n, V a set
of all possible values for the state variables, and M the set of all message servers
identifiers in the model. All rebecs of the model which execute concurrently form
a closed model R = ‖i∈Iri. Each rebec with identifier i ∈ I, is described by a
tuple ri = 〈Vi,Mi〉, where Vi is the set of its state variables and Mi the set of
messages it can respond to. As said earlier, a rebec in bRebeca holds its received
messages in an unordered bag (unlike Rebeca, in which maintains such messages
in a FIFO queue).

Definition 1. (Local State) The local state of a rebec ri is an element of Si =
Val i × Bag i, where Val i is the set of all valuations for the state variables of ri
(functions from Vi into V ), and Bag i is the set of all possible bags of messages
to rebec ri.
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Definition 2. (Global State) A global state S is defined as the combination of
all local states of rebecs in the model:

S =
∏

i∈I

Si

An initial state s0 consists of all rebecs initial state, where all rebecs have
executed their initial messages. In fact, an initial message server can be seen as
a constructor in object-oriented languages.

To formally define the transitions between the states, we assume there are
two sets of auxilary functions defined as follows:

– Updatei(vi,m) : Vi ×Mi → Vi receives a valuation vi for the state variables
of ri and a message m, and returns the updated valuation for the state
variables of ri. This function abstracts the effect of processing m by ri on
its state variables.

– Sent i(m) : Mi → M specifies the set of messages broadcasted by ri as a
result of processing message m.

To keep our semantic description simple, we do not give the details of the
above two functions, since the semantics of control statements and expressions
are the same as those in Rebeca. We also ignore the parameters in the messages.
For a detailed semantic description, the reader may refer to [31].

Definition 3. (Transition Relation) Let L denote to the set of all messages
which can be passed between rebecs in the model R, L =

⋃
i∈I Mi. Also assume

s = 〈s1, s2, . . . , sn〉 and s′ = 〈s′1, s′2, . . . , s′n〉 be two states in S such that si =
〈vi, bi〉 and s′i = 〈v′i, b′i〉. The transition relation →⊆ S × L × S is defined such

that (s,m, s′) ∈→ (written as s
l−→ s′) if and only if

∃i ∈ I · m ∈ bi ∧
v′i = Updatei(vi,m) ∧
b′i = bi ∪ Sent i(m)− {m} ∧
(∀j ∈ I, j �= i · v′j = vj ∧ b′j = bj ∪ Sent i(m)).

Note that in the definition above, the operators ∪ and − are assumed to be
applied to message bags, which are multi-sets. In other words, if m is already in
b, {m}∪ b adds another copy of m to b, and b−{m} removes one instance of m
from b.

4 Implementing Counter Abstraction

To apply the counter abstraction technique on bRebeca, we consider each global
state as a vector of counters, one per each distinct local state, and keep track of
how many rebecs have that local state: the same state variable values and bag.
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The reduction takes place on-the-fly while constructing the state space. When-
ever a new global state is reached, we create a temporary global state by compar-
ing the local states and count how many are equal. Then the temporary global
state is compared with existing temporary global states and if it is a new state,
then it would be added to the set of the reached states. Fig. 3 shows an example
of applying counter abstraction on a global state. The global state consists of
three rebecs with only one state variable i and one update message The local
states, i.e. the state variables and bags of rebecs r1 and r2 are equal and they
can be considered the same while ignoring their identities.

i=2, bag:update(3) ,  counter=2
i=3, bag:update(3) ,  counter=1 

r1: i=2, bag:update(3) 
r2: i=2, bag:update(3) 
r3: i=3, bag:update(3) 

Fig. 3. Example of applying counter abstraction on a global state

To implement the state space builder, we follow a model-driven approach
implemented in C#. A reusable layer of abstract classes are defined to provide the
basic entities and services needed to generate the state space, such as State and
Message. Also, the basic mechanism of generating the state space using a Depth-
First Search (DFS) is implemented in this layer (named StateSpaceBuilder). The
DFS is implemented in a multi-threaded way to exploit multi-core processing
power. This class takes the responsibility of handling nondeterminism in message
scheduling: in each state, a separate task is created for scheduling each enabled
rebec with distinct local state where rebecs are fairly run by keeping track of
rebecs in each state.

The proposed model supports only broadcast communications, as rebecs have
no ids to be distinguished from each other it would be impossible to add unicast
to such a model. Though with some minor modifications of current model, as
follows, very limited unicast would be feasible. A node can unicast a message
only to itself or the sender of prepossessing message, otherwise it will jeopardize
the soundness of counter abstraction technique by considering two states equal
while they are not. In the other words, only relative addresses (i.e. the sender of
a message) are allowed as ids have no absolute meaning.

We need to keep somehow the ids of rebecs instead of just counters in some
level of state space exploration. While constructing the state space, by process-
ing messages, we keep the ids of those rebecs together in a group which have
the same local state, regardless of their ids. The resulting global state is called
middle global state.To store reachable states, the final global states are
computed from middle global states by counting the number of ids in each
group.

To make unicast unconditionally possible we need to consider the permutation
of ids and use the known-rebec concept like symmetry reduction[14].
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For processing a bRebeca model, we use a bRebeca parser to generate a C#
code from the source model. Each reactive class is translated into two basic
classes: one subclass of State to represent the local states of the rebecs of that
class, and another class which holds the implementation of the message servers. A
translated message server, when executed, generates all possible “next states”.
Note that due to the existence of “non-deterministic assignment” in Rebeca,
there may be more than one next state.

When generating a subclass of State for a rebec, the code generator is re-
sponsible for implementing an abstract hash function, which is used to compare
the local states. This is essential to implement an efficient comparison for global
states which is encoded as a mapping from (the polymorphic) State into integers,
implemented by a Dictionary class in C#.

5 Case Studies

To illustrate the applicability of the proposed modeling language, two algorithms
are modeled and the amount of reduction in state space size is shown.

5.1 Max-algorithm

Consider a network where every node stores an integer value and they are going
to find the maximum value in the network in a distributed manner. The bRebeca
code for the model is illustrated in Fig.4 for a simple network of three nodes.

The nodes in the network are modeled by the reactive class Node with two
state variables my i to store the node value and done which indicates whether
the node has already sent its value or there is no need to send it, based on
the values of the other nodes received so far. The goal is to find the maximum
value of my i among nodes. One node initiates the algorithm by broadcasting its
value to other nodes. Upon receiving a value from others, each node compares its
value with the received one. If its value is less than the received one, it updates
its value to the received one and waits for receiving the next messages while
giving up on sending by setting its done to true. Otherwise, it broadcasts its
value to other rebecs, if it has not already and then sets its done to true. The
algorithm terminates when there is no further message to be processed. It means
that everyone has either transmitted its value or given up. In this case, all state
variables have been updated to the maximum value. This algorithm is referred
to as “Max-Algorithm” [17].

For a network consists of three rebecs, if we start with rebec rebec2 which
has the maximum value (3), each node gives up transmitting after receiving the
maximum and procedure has only one step. The reduced state space obtained
from the execution of max-algorithm in this network is shown in Fig.5.

5.2 Leader Election

One way of electing leader in a distributed network is through flipping a coin [11].
The algorithm consists of several rounds. In each round, all competitors, nodes
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1 reactiveclass Node

2 {

3 statevars

4 {

5 int my_i;

6 boolean done;

7 }

9 msgsrv initial(int j,

boolean starter)

10 {

11 my_i = j;

12 if(starter) {

13 done = true;

14 send(my_i);

15 } else

16 done = false;

17 }

19 msgsrv send(int i)

20 {

21 if (i < my_i) {

22 if (!done) {

23 done = true;

24 send(my_i);

25 }

26 } else {

27 my_i = i;

28 done = true;

29 }

30 }

31 }

32 main

33 {

34 Node rebec0(1,false);

35 Node rebec1(2,false);

36 Node rebec2(3,true);

37 }

Fig. 4. Max-algorithm with 3 nodes

with coin value of true, participate by flipping their coin and broadcasting the
observed results to the others. A round is completed whenever all competitors
have flipped their coin and received other nodes’ observation. At the end of each
round:

– If there is only one node with coin value of true, then it is elected as the
leader.

– If there is no node with coin value of true, it means that the round should be
repeated. So all coin values of the previous competitors will be set to true.

– If the number of nodes with coin value of true is more than one, nodes with
coin value of true will participate in the next round and flip the coin again.

Fig. 6 shows one execution scenario of the leader election algorithm in a network
of five nodes.

The bRebeca code for this algorithm is represented in Fig. 7. There are two
reactive classes, named Node and Barrier, in the model. We use Barrier to
synchronize nodes before starting a new round, in order to prevent mixing up the
messages between different rounds. The Barrier is to make sure that the current
round is completed, and all nodes are aware of each other observation, and ready
to start a new round. Reactive class Barrier has only one state variable which
counts the number of nodes has completed their round. Whenever all nodes
complete their round, it would broadcast start next round to all nodes to start
a new round.

In reactive class Node, two state variables head and tail are used to store
the number of heads and tails have been observed in the current round. The
state variable comp indicates whether the node was a competitor in the previous
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Fig. 5. max-algorithm state space
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Fig. 6. An execution scenario of leader election algorithm with five nodes

round. Therefore if the number of competitors in the current round is equal
to zero, no head observed in the previous round, we would be able to repeat
the round by restoring the previous competitors (lines 32-35). In every round if
currently there is more than one competitor and node is one them, its coin value
is true, it flips its coin and after updating its counters accordingly broadcasts
the result to the other nodes (lines 31-45). The number of previous and current
competitors also need to be saved. Each node needs to keep the number of
current competitors to decide when it has completed its round so it can inform
the Barrier (line 46). The number of previous competitors is needed to specify
when we can clean our counters and move to the next round (lines 25-30). Note
that as the delivery order of messages is not guaranteed, a node may process
its rec coin message before start next round message. Hence, both message
servers must check whether the counter variables, such as head and tail, belong
to the previous round and need to be reset before using them.
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1 reactiveclass Node {
2 statevars {
3 int head;
4 boolean my_coin;
5 int tail;
6 int current_comp;
7 int prev_comp;
8 boolean comp;
9 boolean is_leader;

10 }

12 msgsrv initial(boolean starter) {
13 if(starter==true)
14 start_next_round();
15 my_coin=true;
16 head=3;
17 tail=0;
18 current_comp=3;
19 prev_comp=3;
20 comp=true;
21 is_leader=false;
22 }

24 msgsrv start_next_round() {
25 if (head+tail == prev_comp) {
26 prev_comp = current_comp;
27 current_comp = head;
28 head = 0;
29 tail = 0;
30 }
31 if (current_comp != 1 &&

comp) {
32 if (current_comp == 0) {
33 my_coin = true;
34 current_comp =

prev_comp;
35 }
36 if (my_coin) {
37 int ch=?(0,1);
38 if (ch == 0) {
39 my_coin = false;
40 tail = tail+1;
41 } else {
42 my_coin=true;
43 head=head+1;
44 }
45 rec_coin(my_coin);
46 if (head+tail ==

current_comp)

47 rec_barrier();
48 } else
49 comp=false;
50 }
51 if (my_coin && current_comp

== 1)
52 is_leader = true;
53 }

55 msgsrv rec_coin(boolean c) {
56 if (head + tail == prev_comp)

{
57 prev_comp = current_comp;
58 current_comp = head;
59 head = 0;
60 tail = 0;
61 }
62 if (c)
63 head = head+1;
64 else
65 tail=tail+1;
66 if(head+tail == current_comp)
67 rec_barrier();
68 }
69 }

71 reactiveclass Barrier {
72 statevars {
73 int barrier;
74 }

76 msgsrv initial(boolean starter) {
77 barrier=0;
78 }

80 msgsrv rec_barrier() {
81 barrier = barrier + 1;
82 if (barrier == 3) {
83 start_next_round();
84 barrier=0;
85 }
86 }
87 }
88 main {
89 Node rebec0(true);
90 Node rebec1(false);
91 Node rebec2(false);
92 Barrier bar(false);
93 }

Fig. 7. Leader election algorithm

Table 1 compares the number of states resulted with and without applying
counter abstraction. Note that with increasing the number of nodes, the oppor-
tunity of collapsing nodes together grows.

6 Related Work

In order to avoid state space explosion, different approaches have been proposed
such as symbolic model checking [19], symmetry reduction [6], partial order
reduction [12] and counter abstraction [3].
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Table 1. Comparing the state spaces size with and without applying counter abstrac-
tion

No. of nodes No. of states No. of states with reduction

Max-Algorithm 3 64 53

4 3216 1675

5 719,189 185,381

Leader election 3 3792 752

4 308,553 15,905

5 > 1,200,000 521,679

Counter abstraction has been studied in several other works (e.g., in [10,3,24]).
The proposed approach in [24] aims to abstract an unbounded parameterized
system into a finite-state system and then verify various liveness properties ef-
ficiently. The authors in [24] use limited abstracted variables to count for each
local state of a process how many processes currently reside in. However, coun-
ters were saturated at a static value of c, meaning that c or more processes are
at local state s. In [3], counter abstraction is used to achieve efficiency in BDD-
based symbolic state space exploration of concurrent Boolean programs while
unlike [24] it makes use of exact counters where in a global state only non-zero
counters are stored. The idea of counting have also been used in [15] to record
the local states of a biological system, in which each local state is represented
as a vector of counters, each element denotes to the corresponding number of
species.

In this paper counters are unbounded, similar to [3], to show the exact number
of Rebecs having the specific local state, and abstracted local states are not
limited either.

As mentioned before, there are several techniques for reducing the state space
such as symmetry reduction which aims to reduce the state space by partition-
ing the state space into equivalence classes which are represented by one state[6]
as their representative. Since finding the unique representative of state while
exploring the state space, known as constructive orbit problem, is NP-Hard [6],
some heuristics have been proposed to avoid this problem, which may result
in multiple representatives. In [14], a polynomial-time heuristic solution is pro-
posed to exploit symmetry in Rebeca, computing a representative state using
the on-the-fly approach takes O(n4) in the worst-case. The complexity of the
proposed algorithm is due to the role of “known rebecs” that should be pre-
served during the permutation. Since in the broadcast environment there is no
notion of “known rebecs” and the system is fully symmetric, we can skip paying
such a price by applying counter abstraction which is suitable for such systems.
The complexity of finding the equivalent of each state is linear in the number of
states.
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7 Conclusion

In this paper we extended the syntax and semantics of Rebeca to support broad-
cast efficiently. On one hand, it makes modeling easier, by replacing a set of
unicast statements by a single broadcast statement, there is no need to define
each rebec as a known-rebec to every other rebec to make the broadcast pos-
sible. On the other hand, as all rebecs instantiated from one reactive class are
identical, their indexes are irrelevant and can be ignored while constructing the
state space. This property makes counter abstraction applicable which is more
efficient in fully symmetry systems as discussed in section 6.

The broadcasting actors model provides a suitable framework to model wire-
less sensor (WSNs) and mobile ad hoc networks (MANETs). In these networks,
broadcast is restricted by locality of nodes, meaning that a node receives a mes-
sage if it is located close enough to a sender, so called connected. Connectivity
of nodes defines the topology concept which should be modeled as a part of se-
mantics. Due to energy consumption of nodes and their mobility, the underlying
topology changes arbitrary. Therefore, to address local broadcast and topology
changes, bRebeca can be extended at the semantics level to allow verification of
WSNs and MANETs. To this aim, we pair the global state with the topology of
networks and generate the state space for permutations of a topology. We merge
states with identical structures of topology while applying counting abstraction
which makes automatic verification of such networks susceptible.
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Abstract. We propose the notion of tamper-evident stabilization –that
combines stabilization with the concept of tamper evidence– for com-
puting systems. On the first glance, these notions are contradictory;
stabilization requires that eventually the system functionality is fully
restored whereas tamper evidence requires that the system functional-
ity is permanently degraded in the event of tampering. Tamper-evident
stabilization captures the intuition that the system will tolerate pertur-
bation upto a limit. In the event that it is perturbed beyond that limit,
it will exhibit permanent evidence of tampering, where it may provide
reduced (possibly none) functionality. We compare tamper-evident sta-
bilization with (conventional) stabilization and with active stabilization
and propose an approach to verify tamper-evident stabilizing programs
in polynomial time. We demonstrate tamper-evident stabilization with
two examples and argue how approaches for designing stabilization can
be used to design tamper-evident stabilization. We also study issues of
composition in tamper-evident stabilization. Finally, we point out how
tamper-evident stabilization can effectively be used to provide tradeoff
between fault-prevention and fault tolerance.

Keywords: Self-stabilization, reactive systems, adversary, formal
methods.

1 Introduction

In this paper, we introduce the notion of tamper-evident stabilizing systems, and
study these systems in the context of composition, verification, and synthesis.
The notion of tamper-evident stabilizing systems is motivated by the need for
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tamper-resistant systems that also stabilize. A tamper-resistant system ensures
that an effort to tamper with the system makes the system less useful/inoperable
(e.g., by zeroing out sensitive data in a chip or voiding the warranty). The notion
of tamper resistance is contradictory to the notion of stabilization in that the
notion of stabilization requires that in spite of any possible tampering the system
inherently acquires its usefulness eventually.

Intuitively, the notion of tamper-evident stabilization is based on the observa-
tion that all tamper-resistant systems tolerate some level of tampering without
making the system less useful/inoperable. For example, a tamper-resistant chip
may have a circuitry that does some rudimentary checks on the input and dis-
cards the input if the check fails. A communication protocol may use CRC to
ensure that most random bit-flips in the message are tolerated without affect-
ing the system. However, if the tampering is beyond acceptable level then they
become less useful/inoperable. Based on this intuition, we observe that a tamper-
evident stabilizing system will recover to its legitimate state if its perturbation
is within an acceptable limit. However, if it is perturbed outside this boundary,
it will make itself inoperable. Moreover, when the system enters the mode of
making itself inoperable, it is necessary that it cannot be prevented.

Thus, if the system is outside its normal legitimate states, it is in one of two
modes: recovery mode, where it is trying to restore itself to a legitimate state, or
tamper-evident mode, where it is trying to make itself inoperable. The recovery
mode is similar to the typical stabilizing systems in that the recovery should be
guaranteed after external perturbations stop. However, in the tamper-evident
mode, it is essential that the system makes itself inoperable even if outside
perturbations continue.

To realize the last requirement, we need to make certain assumptions about
what external perturbations can be performed during tamper-evident mode. For
example, if these perturbations could restore the system to a legitimate state
then designing tamper-evident stabilizing systems is impossible. Hence, we view
the system execution to consist of (1) program executions (in the absence of
fault and adversary); (2) program executions in the presence of faults; and (3)
program execution in the presence of adversary.

Faults are random events that perturb the system randomly and rarely. By
contrast, the adversary is actively preventing the system from making itself in-
operable. However, unlike faults, the adversary may not be able to perturb the
system to an arbitrary state. Also, unlike faults, adversary may continue to ex-
ecute forever. Even if the adversary executes forever, it is necessary that system
actions have some fairness during execution. Hence, we assume that the system
can make some number (in our formal definitions, we have this as strictly greater
than 1) of steps between two steps of the adversary.

The contributions of the paper are as follows. We

– formally define the notion of tamper-evident stabilization;

– compare the notion of tamper-evident stabilization with (conventional) sta-
bilization and active stabilization, where a system stabilizes in spite of the
interference of an adversary [7];
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– explain the cost of automated verification of tamper-evident stabilization;

– present some theorems about composing tamper-evident stabilizing systems;

– identify how methods for designing stabilizing programs can be used in de-
signing tamper-evident stabilizing systems. We also identify potential obsta-
cles in using those methods, and

– identify potential applications of tamper-evident stabilization and illustrate
it with two examples.

Organization. The rest of the paper is organized as follows: In Section 2,
we present the preliminary concepts on stabilization. We introduce the notion
of tamper-evident stabilization, illustrate it with two examples, and compare it
with (conventional) stabilization and active stabilization in Section 3. Section 4
represents an algorithm for automatic verification of tamper-evident stabilizing
programs. We evaluate the composition of tamper-evident stabilizing systems
in Section 5 and discuss a design methodology for tamper-evident stabilizing
programs in Section 6. The relationship between tamper-evident stabilization
and other stabilizing techniques is discussed in Section 7, and finally, Section 8
concludes our paper.

2 Preliminaries

Our program modeling utilizes standard approach for defining interleaving pro-
grams, stabilization [3, 11, 12], and active stabilization [7]. A program includes
a finite set of variables with finite (or any finite abstraction of an infinite state
system) domain. It also includes guarded commands (a.k.a. actions) [11] that up-
date those program variables atomically. Since these internal variables are not
needed in the definitions involved in this section, we describe a program in terms
of its state space Sp, and its transitions δp ⊆ Sp × Sp, where Sp is obtained by
assigning each variable in p a value from its domain.

Definition 1 (Program). A program p is of the form 〈Sp, δp〉 where Sp is the
state space of program p and δp ⊆ Sp × Sp.

Definition 2 (State Predicate). A state predicate of p is any subset of Sp.

Definition 3 (Computation). Let p be a program with state space Sp and
transitions δp. We say that a sequence 〈s0, s1, s2, ...〉 is a computation iff

– ∀j ≥ 0 :: (sj , sj+1) ∈ δp

Definition 4 (Closure). A state predicate S of p = 〈Sp, δp〉 is closed in p iff
∀s0, s1 ∈ Sp :: (s0 ∈ S ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ S).

Definition 5 (Invariant). A state predicate S is an invariant of p iff S is
closed in p.
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Remark 1. Normally, the definition of invariant (legitimate states) also includes
a requirement that computations of p that start from an invariant state are cor-
rect with respect to its specification. The theory of tamper-evident stabilization
is independent of the behaviors of the program inside legitimate states. Instead,
it only focuses on the behavior of p outside its legitimate states. We have defined
the invariant in terms of the closure property alone since it is the only relevant
property in the definitions/theorems/examples in this paper.

Definition 6 (Convergence). Let p be a program with state space Sp and
transitions δp. Let S and T be state predicates of p. We say that T converges to
S in p iff

– S ⊆ T ,
– S is closed in p,
– T is closed in p, and
– For any computation σ =〈s0, s1, s2, ...〉 of p if s0 ∈ T then there exists l such

that sl ∈ S.

Definition 7 (Stabilization). Let p be a program with state space Sp and tran-
sitions δp. We say that program p is stabilizing for invariant S iff Sp converges
to S in p.

Using the approach in [7, 15], we define the adversary as follows and define
the notion of tamper-evident stabilization with respect to the capabilities of the
given adversary in Section 3.

Definition 8 (Adversary). We define an adversary for program p = 〈Sp, δp〉
to be a subset of Sp × Sp.

Next, we define a computation of the program, say p, in the presence of the
adversary, say adv.

Definition 9 (〈p, adv, k〉-computation). Let p be a program with state space
Sp and transitions δp. Let adv be an adversary for program p and k be an integer
greater than 1. We say that a sequence 〈s0, s1, s2, ...〉 is a 〈p, adv, k〉-computation
iff

– ∀j ≥ 0 :: sj ∈ Sp, and
– ∀j ≥ 0 :: (sj , sj+1) ∈ δp ∪ adv, and
– ∀j ≥ 0 :: ((sj , sj+1) �∈ δp) ⇒ (∀l | j < l < j + k :: (sl, sl+1) ∈ δp)

Observe that a 〈p, adv, k〉-computation guarantees that there are at least k−
1 program transitions/actions between any two adversary actions for k > 1.
Moreover, the adversary is not required to execute in a 〈p, adv, k〉-computation.

Remark 2 (Fairness among program transitions). The above definition and def-
inition 3 only consider fairness between program actions and adversary actions.
If a program requires fairness among its actions to ensure stabilization, they can
be strengthened accordingly. For reasons of space, this issue is outside the scope
of this paper.
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Definition 10 (Convergence in the presence of adversary). Let p be a
program with state space Sp and transitions δp. Let S and T be state predicates
of p. Let adv be an adversary for p and let k be an integer greater than 1. We
say that T 〈adv, k〉-converges to S in p in the presence of adversary adv iff

– S ⊆ T ,
– S is closed in p ∪ adv,
– T is closed in p ∪ adv, and
– For any 〈p, adv, k〉-computation σ =〈s0, s1, s2, ...〉 if s0 ∈ T then there exists

l such that sl ∈ S.

Definition 11 (Active stabilization). Let p be a program with state space Sp

and transitions δp. Let adv be an adversary for program p and k be an integer
greater than 1. We say that program p is k-active stabilizing with adversary adv
for invariant S iff Sp 〈p, adv, k〉-converges to S in p.

3 Tamper-Evident Stabilization

This section defines the notion of tamper-evident stabilization, illustrates it in
the context of two examples, and compares it with the notion of (conventional)
stabilization and active stabilization.

3.1 The Definition of Tamper-Evident Stabilization

In this section, we define the notion of tamper-evident stabilization.

Definition 12 (Tamper-evident stabilization). Let p be a program with
state space Sp and transitions δp. Let adv be an adversary for program p. And,
let k be an integer greater than 1. We say that program p is k-tamper-evident
stabilizing with adversary adv for invariants 〈S1, S2〉 iff there exists a state
predicate T of p such that

– T converges to S1 in p
– ¬T 〈adv, k〉-converges to S2 in p.

From the above definition (especially closure of T and ¬T ), it follows that S1
and S2 must be disjoint (See Figure 1(a)). In addition, tamper-evident stabiliza-
tion provides no guarantees about program behaviors if the adversary executes
in T .

Remark 3. Observe that in the above definition k must be greater than 1, as k=1
allows the adversary to prevent the program from executing entirely. In terms
of permitted values of k, k = 2 provides the maximum power to the adversary.
Hence, in most cases, in this paper we will consider k=2. In this case, we will
omit the value of k. In other words tamper-evident stabilizing is the same as
2-tamper-evident stabilizing.
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(a) (b)

Fig. 1. (a) Structure of a tamper-evident stabilizing system, (b) Tamper-evident sta-
bilizing traffic controller program

Remark 4. Based on the definition of convergence, in the above definition, S1
should be a subset of T . Given this constraint, if S1 = T then it corresponds to
a pure tamper evident system. If such a system is perturbed to a non-legitimate
state then it is guaranteed to recover to S2 even in the presence of an adversary.
And, if T = Sp, then it corresponds to a stabilizing program (cf. Theorem 3).
Thus, tamper-evident stabilization captures a range of systems from the ones
that are pure tamper-evident and that are pure stabilizing.

The notion of tamper-evident stabilization prescribes the behavior of the pro-
gram from all possible states. In this respect, it is similar to the notion of sta-
bilizing fault tolerance. In [3], authors introduce the notion of nonmasking fault
tolerance; it only prescribes behaviors in a subset of states. We can extend the
notion of tamper-evident stabilization in a similar manner. We do so by simply
overloading the definition of tamper-evident stabilization.

Definition 13 (Tamper-evident stabilization in environment U). Let p
be a program with state space Sp and transitions δp. Let adv be an adversary for
program p, and U be a state predicate. Moreover, let k be an integer greater than
1. We say that program p is k-tamper-evident stabilizing with adversary adv for
invariants 〈S1, S2〉 in environment U iff there exists a state predicate T such that

– S1, S2, and T are subsets of U ,
– U is closed in p ∪ adv,
– U ⇒ (T converges to S1 in p),
– U ⇒ ¬T 〈adv, k〉-converges to S2 in p.

Observe that if U equals true then the above definition is identical to that of
Definition 12.

3.2 The Token Ring Program

This section describes the well-known token ring program [10] and then repre-
sent that this program is tamper-evident stabilizing. The program consists of N
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processes arranged in a ring. Each process j, 0 ≤ j ≤ N−1, has a variable x.j
with the domain {0, 1, · · · , N−1}. To model the impact of adversary actions on
a process j, we add an auxiliary variable up.j, where process j has failed iff up.j
is false. We say, a process j, 1 ≤ j ≤ N−1, has the token iff processes j and j−1
have not failed and x.j �= x.(j−1). If process j, 1 ≤ j ≤ N−1, has a token then
it copies the value of x.(j−1) to x.j. The process 0 has the token iff processes 0
and N−1 have not failed and x.(N−1) = x.0. If process 0 has the token then it
increments its value in modulo N arithmetic (we show modulo N arithmetic by
notation +N ). Thus, the actions of the program are as follows:

TR0 :: up.0 ∧ up.(N−1)∧ x.0 = x.(N−1) −→ x.0 := (x.(N−1) +N 1)
TRj :: up.j ∧ up.(j−1) ∧ x.j �= x.(j−1) −→ x.j := x.(j−1);

Adversary Action. The adversary can cause any process to fail. Hence, the
adversary action can be represented as

TRadv :: up.j −→ up.j := false

Tamper-evident Stabilization of the Program. To show that the token
ring program TR is tamper-evident stabilizing in the presence of the adversary
TRadv, we define the predicate Ttr and invariants S1tr and S2tr as follows:

Ttr = ∀j :: up.j
S1tr= Ttr ∧ (∀j : 1 ≤ j ≤ N − 1 : (x.j = x.(j − 1)) ∨ (x.(j − 1) = x.j +N 1))

∧ ((x.0 = x.(N − 1)) ∨ (x.0 = x.(N − 1) +N 1))
S2tr= ¬Ttr∧ (∀j : 1 ≤ j ≤ N − 1 : (up.j ∧ up.(j − 1)) ⇒ x.j = x.(j − 1))

∧ ((up.0 ∧ up.(N − 1)) ⇒ (x.0 �= x.(N − 1)))

Theorem 1. The token ring program TR is tamper-evident stabilizing with
adversary TRadv for invariants 〈S1tr, S2tr〉.
Proof. If Ttr is true then the program is essentially the same as the token ring
program from [11] and, hence, it stabilizes to S1tr. If Ttr is violated then the
token cannot go past failed process(es). Hence, S2tr would eventually be satisfied.
Note that for the second constraint, adversary action (that may fail a process)
cannot prevent the program from reaching S2tr. ��

3.3 Tamper-Evident Stabilizing Traffic Controller Program

This section describes another tamper-evident stabilizing program that illus-
trates a traffic light program that (1) recovers to normal operation from per-
turbations that do not cause the system to reach an unsafe state, and (2) per-
manently preserves the evidence of tampering if perturbations cause the system
to reach an unsafe state. This example also illustrates why tamper-evident sta-
bilization is desirable over (conventional) stabilization in some circumstances.
Moreover, it can be used as a part of multiphase recovery [6] where a quick re-
covery is provided to safe states and complete recovery to legitimate states can
be obtained later (or with human intervention).
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Description of the Program. In this program, we have an intersection with
two one-way roads [5]. Each road is associated with a signal that can be either
green (G), yellow (Y ), red (R), or flashing (F ). As expected, in any normal state,
at least one of the signals should be red to ensure that traffic accidents do not
occur.

If such a system is perturbed by an adversary where an adversary can somehow
affect the signal operation causing safety violations then it is crucial that such an
occurrence is noted for potential investigation. (These adversary actions can be
triggered with simple transient faults that reset clock variables. For simplicity,
we omit the cause of such adversary actions and only consider their effects.) In
this example, we consider the requirement that if both signals are simultaneously
yellow or green then the system must reach a state where both signals are flashing
to indicate a signal malfunction due to adversary.

Thus, this program consists of two variables sig0 and sig1. The program con-
sists of five actions: The first two actions are responsible for normal operation
where a signal changes from G to Y to R and back to G. The third action con-
siders the case where the system is perturbed outside legitimate states (e.g., by
transient faults) and it is desirable that the system recovers from that state.
The fourth action considers the case where the adversary actions perturb the
system beyond an acceptable level and, hence, it is necessary that the system
enters the tamper-evident state. Thus, the program actions are as follows: (In
this program, j is instantiated to be either 0 or 1, and k is instantiated to be
1− j.)

TC1j :: (sigj = G) ∧ (sigk = R) −→ sigj = Y
TC2j :: (sigj = Y ) ∧ (sigk = R) −→ (sigj = R) ∧ (sigk = G)
TC3j :: (sigj = R) ∧ (sigk = R) −→ (sigj = G)
TC4j :: ((sigj �= R) ∧ (sigk �= R)) ∨ (sigk = F ) −→ (sigj = F )
TC5j :: (sigj = F ) ∧ (sigk = F ) −→ {notify the user that the system is in

S2}
Adversary Actions. The adversary TCadv can cause a red signal to become
either yellow or green. Hence, the adversary actions can be represented as (j =
0, 1):

TCadv1 :: sigj = R −→ sigj = Y
TCadv2 :: sigj = R −→ sigj = G

Tamper-evident Stabilization of the Program. To show that the program
TC is tamper-evident stabilizing in the presence of adversary TCadv, we define
the predicate Ttc and invariants S1tc and S2tc as follows:

Ttc = 〈((G,R), (Y,R), (R,G), (R, Y )), (R,R)〉
S1tc = 〈(G,R), (Y,R), (R,G), (R, Y )〉
S2tc = 〈(F, F )〉

Theorem 2. The traffic controller program TC is tamper-evident stabilizing
with adversary TCadv for invariants 〈S1tc, S2tc〉.
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Proof. If Ttc is true then the program is essentially the same as the traffic control
program from [5] and, hence, it stabilizes to S1tc. If the adversary TCadv violates
Ttc, the action TC4 can execute and one of the signals will be flashing. As a
result, the other signal would eventually become flashing and S2tr would be
satisfied (See Figure 1(b)). ��

3.4 Stabilization, Tamper-evident Stabilization, and Active
Stabilization

In this section, we compare the notion of (conventional) stabilization, active sta-
bilization and tamper-evident stabilization. Specifically, Theorem 3 considers the
case where p is stabilizing and evaluates whether it is tamper-evident stabilizing,
and Theorem 4 considers the reverse direction. Relation with active stabilization
follows trivially from these theorems.

Theorem 3. If a program p is stabilizing for invariant S, then p is k-tamper-
evident stabilizing with adversary adv for invariants 〈S, ∅〉, for any adversary
adv and k ≥ 2.

Proof. To prove tamper-evident stabilization, we need to identify a value of T .
We set T = true, representing the state space of p. Now, we need to show that
Sp converges to S in p and ¬true 〈adv, k〉-converges to φ in p. Of these, the
former is satisfied since p is stabilizing for invariant S, and the latter is trivially
satisfied since ¬true corresponds to the empty set. ��

Corollary 1. If program p is k-active stabilizing with adversary adv and k ≥ 2
for invariant S, then p is k-tamper-evident stabilizing with adversary adv for
invariants 〈S, ∅〉.

Note that, if there exists k and adv such that program p is k-active stabilizing
with adversary adv for invariant S, then p is stabilizing for invariant S.

Theorem 4. If program p = 〈Sp, δp〉 is k-tamper-evident stabilizing with ad-
versary adv for invariants 〈S1, S2〉, then p is stabilizing for invariant (S1∨S2).

Proof. Since program p is tamper-evident stabilizing, the two constraints in the
definition of tamper-evident stabilizing are true. If the program p starts from T ,
it converges to S1. If p starts from ¬T , in the presence or absence of adversary
adv, it converges to S2. This completes the proof. ��

However, a similar result relating tamper-evident stabilization and active sta-
bilization is not valid. In other words, it is possible to have a program p that is
k-tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉 but it is
not k-active stabilizing with adversary adv for invariant (S1 ∨ S2). This is due
to the fact that if the program begins in T then in the presence of the adversary,
there is no guarantee that it would recover to S1.
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4 Verification of Tamper-evident Stabilization

To prove tamper-evident stabilization of a given program, we need to determine
the predicate T (from Definition 12). Based on Definition 12, from every state in
¬T , we must eventually reach a state in S2. Hence, from ¬T , we cannot reach a
state in S1. Also, from every state in T , wemust reach a state in S1. Thus, the only
possible choice for T is the states fromwhere the program can reachS1. Therefore,
Algorithm 1 starts with the construction of T (Lines 1-3) and checking the closure
property of predicatesT and¬T , and invariantsS1 andS2 (Lines 4-6). Thereafter,
we utilize CheckCycle() to detect if program p has cycles in T − S1. Notice that
if there is a cycle in a state predicate Y , then the following is true for any state s0
in the cycle: ∃s1 ∈ Y : (s0, s1) ∈ p. As such, the absence of any cycles in Y would
require the negation of the aforementioned expression to hold (see Line 16). This is
the basic idea behind the CheckCycle routine (Lines 15-19). If any states in T −S1
is not removed, it implies that some of them form a cycle. If such a cycle exists then
p is not tamper-evident stabilizing.

Utilizing the ideas in [7], we construct p1 that considers the effect of adver-
sary adv and checks for cycles of p1 in ¬T − S2 (Line 8-9). In this construction,
reach(s0, s1, l) denotes that s1 can be reached from s0 by execution of exactly l
transitions of ¬T . If such cycles of p1 do not exist then p is tamper-evident stabi-
lizing.

Algorithm 1. Verification of tamper-evident stabilization
Input: program p = 〈Sp, δp〉, invariants S1 and S2, adversary adv.
Output: true or false.

1: T = S1
2: repeat T1 = T ; T = T1 ∪ {s0 | (s0, s1) ∈ δp ∧ s1 ∈ T}
3: until (T1 == T )
4: if ¬(CheckClosure(T , p) ∧ CheckClosure(¬T , p) ∧ CheckClosure(S1, p) ∧ CheckClosure(S2,

p)) then
5: return false
6: end if
7: if CheckCycle(T − S1, p) �= ∅ then return false end if
8: p1 = {(s0, s1) | (∃l : l ≥ k − 1 : reach(s0, s1, l)) ∨ (∃s2 : reach(s0, s2, l) ∧ (s2, s1) ∈ adv)}
9: if CheckCycle(¬T − S2, p1) �= ∅ then return false end if
10: return true

11: function CheckClosure(X, p)
12: if ∀s0, s1 ∈ Sp : (s0 ∈ X ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ X) then return true
13: else return false end if
14: end function
15: function CheckCycle(Y , p)
16: repeat Y 1 = Y ; Y = Y1 − {s0 | ∀s1 ∈ Y : (s0, s1) �∈ δp}
17: until (Y 1 == Y )
18: return Y
19: end function

Theorem 5. The following problem can be solved in polynomial time in |Sp|.1
Given a program p, adversary adv, and state predicates S1 and S2, is p
tamper-evident stabilizing with adversary adv for invariants 〈S1, S2〉?

1 For reason of space, proofs appear in [17].
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5 Composing Tamper-evident Stabilization

In this section, we evaluate the composition of tamper-evident stabilizing sys-
tems by investigating different types of compositions considered for stabilizing
systems.

Parallel Composition. A parallel composition of two programs considers the
case where two independent programs are run in parallel on a weakly fair sched-
uler so that each program is guaranteed to execute its enabled actions. Weak
fairness ensures that any action that is continuously enabled will be executed
infinitely often. Thus, during the parallel execution, the behavior of one program
does not affect the behavior of the other. Hence, if we have two programs p and q
that do not share any variables such that p is stabilizing for S and q is stabilizing
for R then parallel composition of p and q is stabilizing for S ∧R.

Now, we consider the case where we have two programs p and q that are
tamper-evident stabilizing for 〈S1, S2〉 and 〈S1′, S2′〉, and p and q do not share
any variables. Is the parallel composition of p and q (denoted by p[]q) also
tamper-evident stabilizing?

Theorem 6 (Parallel Composition). Given programs p and q that do not
share variables.

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
q is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉
⇒
p[]q is tamper-evident stabilizing with adversary adv for 〈S1 ∧ S1′, S2 ∨ S2′〉
Note that in parallel composition of two tamper-evident stabilizing programs,

the first predicate is combined by conjunction whereas the second one is com-
bined by disjunction. However, we could make p[]q tamper-evident stabilizing
for 〈S1 ∧ S1′, S2 ∧ S2′〉 provided we add actions to p (respectively q) so that it
checks if q (respectively, p) is in a state in S2′ (respectively, S2). Accordingly, p
can change its own state to be in S2 (respectively, S2′).

Superposition. We can also superpose two tamper-evident stabilizing sys-
tems in a similar manner. For example, consider the case where program p is
superposed on program q, i.e., p has read-only access to variables of q and q does
not have access to variables of p.

Theorem 7 (Superposition).

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 in S1′ ∧
q is active stabilizing with adversary adv for S1′ ∧
q is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉 ∧
q is silent in S1′, i.e., q has no transition (except self-loops) in S1′ ∧
p is superposed on q
⇒
p[]q is tamper-evident stabilizing with adversary adv for 〈S1, S2 ∨ S2′〉.
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Transitivity. Tamper-evident stabilization preserves transitivity in a manner
similar to stabilizing programs. Specifically,

Theorem 8 (Transitivity 1).

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 in U ∧
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉 in S1
⇒
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2〉 in U , and
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2 ∨ S2′〉 in U .

We can also infer transitivity property by the following theorem.

Theorem 9 (Transitivity 2).

p is tamper-evident stabilizing with adversary adv for 〈S1, S2〉 ∧
S1 converges to S1′ in p ∧
S2 〈adv, k〉-converges to S2′ in p
⇒
p is tamper-evident stabilizing with adversary adv for 〈S1′, S2′〉.

6 Designing Tamper-evident Stabilization by Local
Detection and Global/Local Correction

In this section, we identify some possible approaches for designing tamper-
evident stabilization. Specifically, we evaluate the use of some of the existing
approaches for designing stabilization in designing tamper-evident stabilization.

Local Detection and Global Correction. One approach for designing sta-
bilization is via local detection and global correction. In such a system, the
invariant S of the system is of the form ∀j : S.j, where S.j is a local predicate
that can be checked by process j. Each process j is responsible for checking
its own predicate. If the system is outside the legitimate state then the local
predicate of at least one process is violated. Hence, this process is responsible
for initiating a global correction (such as distributed reset [19]) to restore the
system to a legitimate state.

A similar approach is also applicable for tamper-evident stabilization. For
example, consider the case where the predicates involved in defining tamper-
evident stabilization are S1 = ∀j :: S1.j, S2 = ∀j :: S2.j, and T = ∀j :: T.j.
Based on the problem of tamper-evident stabilization, we have ∀j :: (S1.j ⇒
T.j) ∧ (S2.j ⇒ ¬T.j) ∧ ¬(S1.j ∧ S2.j).

In this case, the actions of process j to obtain tamper-evident stabilization is
as follows:

¬T.j ∧ ¬S2.j −→ Satisfy S2.j
T.j ∧ ¬S1.j −→ Initiate global correction to restore S1

To utilize such an approach to design tamper-evident stabilization, we need
to make some changes to global correction and put some reasonable constraints
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on what an adversary can do. In particular, the global correction to restore
S1 involves changes to all processes. For tamper-evident stabilization, however,
process j will execute its part in global correction only if T.j is true. Also, if
process j observes that T.k is false for some neighbor k then j will satisfy S2.j.
This will guarantee that if T.j is false for some process then the program will
eventually reach a state in S2. The definition of tamper-evident stabilization
requires that ¬T is closed in the adversary actions. This assumption is essential
since if the adversary could move the system from a state in ¬T to T then the
system would have forgotten that it was tampered beyond acceptable levels. In
the context of this example, it would be necessary that the adversary cannot
cause the program to start in a state where T.j is false for some process j and
the adversary causes j to move to a state where T.j is true.

Local Detection and Local Correction. We can also utilize the above ap-
proach in the context of local detection and local correction [3] to add tamper-
evident-stabilization if invariant S1 is of the form ∀j :: S1.j, predicates of dif-
ferent processes are arranged in a partial order, and actions that correct S1.j
preserve all predicates that come earlier in the order. In such a system when
process j finds that T.j ∧ ¬S1.j is true it only locally satisfies S1.j. Given that
we have a partial order, eventually we reach a state where S.j is true in all states.

Effect of the Structure of the Predicate T . Intuitively, in tamper-evident
stabilization, we have two convergence requirements. T converges to S1 and ¬T
converges to S2 in the presence of an adversary. If T is a conjunctive predicate
then ¬T is a disjunctive predicate. Hence, a reader may wonder what would
happen if T were a disjunctive predicate instead of a conjunctive predicate. We
argue that this is likely to be a harder problem than the case where T is a
conjunctive predicate.

7 The Relationship between Tamper-evident Stabilization
and other Stabilization Techniques

Starting with Dijkstra’s seminal work [10] on stabilizing algorithms for token cir-
culation, several variations of stabilizing algorithms have been proposed during
the past decades. These algorithms can be classified into two categories: stronger
stabilizing and weaker stabilizing algorithms.

The algorithms in the first category not only guarantee stabilization but
also satisfy some additional properties. Examples of this category include fault-
containment stabilization, byzantine stabilization, Fault-Tolerant Self Stabiliza-
tion (FTSS), multitolerance, and active stabilization. Fault-containment
stabilization (e.g., [14, 25]) refers to stabilizing programs that ensure that if
one (respectively small number of) fault occurs then quick recovery is provided
to the invariant. Byzantine stabilizing (e.g., [21, 22]) programs tolerate the sce-
narios where a subset of processes is byzantine. FTSS (e.g., [4]) covers stabi-
lizing programs that tolerate permanent crash faults. Multitolerant stabilizing
(e.g., [13, 19]) systems ensure that, in addition to stabilization, the program
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masks a certain class of faults. Finally, active stabilization [7] requires that the
program should recover to the invariant even if it is constantly perturbed by an
adversary.

By contrast, a stabilizing program satisfies the constraints of weaker versions
of stabilization. However, a program that provides a weaker version of stabiliza-
tion may not be stabilizing. Examples of this include weak stabilization, prob-
abilistic stabilization, and pseudo stabilization. Weak stabilization (e.g., [9, 16])
requires that starting from any initial configuration, there exists an execution
that eventually reaches a point from which its behavior is correct. However, the
program may execute on a path where such a legitimate state is never reached.
Probabilistic stabilization [18] refers to problems that ensure that starting from
any initial configuration, the program converges to its legitimate states with
probability 1. Nonmasking fault tolerance (e.g., [1,2]) targets the programs where
the program recovers from states reached in the presence of a limited class of
faults. However, this limited set of states may not cover the set of all states.
Pseudo stabilization [8] relaxes the notion of points in the execution from which
the behavior is correct. In other words, every execution has a suffix that exhibits
correct behavior, yet time before reaching this suffix is unbounded.

The aforementioned stabilizing algorithms consider several problems including
mutual exclusion, leader election, consensus, graph coloring, clustering, routing,
and overlay construction. However, none of them considers problem of tampering
(e.g., [20, 23, 24]). In part, this is due to the fact that stabilization and tamper
evidence are potentially conflicting requirements.

Tamper-evident stabilization is in some sense a weaker version of stabilization
in that from Theorem 3 every stabilizing program is also tamper-evident stabi-
lizing. In particular, a stabilizing program guarantees that from all states pro-
gram would eventually recover to legitimate states. By contrast, tamper-evident
stabilizing program gives the option of recovering to tamper-evident states. (Al-
though Theorem 4 suggests that every tamper-evident stabilizing program can
be thought of as a stabilizing program, the invariant of such a stabilizing program
is of the form 〈S1, S2〉, where S2 includes states that the system has no/reduced
functionality.)

Tamper-evident stabilization is stronger than the notion of nonmasking fault
tolerance. In particular, nonmasking fault-tolerance also has the notion of fault-
span (similar to T in Definition 12) from where recovery to the invariant is
provided. In tamper-evident stabilization, if the program reaches a state in ¬T ,
it is required that it stays in ¬T . By contrast, in nonmasking fault-tolerance,
the program may recover from ¬T to T .

Tamper-evident stabilization can be considered as a special case of nonmasking-
failsafe multitolerance, where a program that is subject to two types of faults Ff

and Fn provides (i) failsafe fault tolerance when Ff occurs, (ii) nonmasking toler-
ance in the presence of Fn, and (iii) no guarantees if both Ff and Fn occur in the
same computation. We have previously identified [13] sufficient conditions for effi-
cient stepwise design of failsafe-nonmasking multitolerant systems, where Ff and
Fn do not occur simultaneously and their scopes of perturbation outside the invari-
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ant are disjoint. Based on the role of T in Definition 12, we can ensure that these
conditions are satisfied (Due to reasons of space, this proof is beyond the scope of
the paper) for tamper-evident stabilization. This suggests that efficient algorithms
can be designed for tamper-evident stabilization based on the approach in [13].

8 Conclusion and FutureWork

This paper introduces the notion of tamper-evident stabilization that captures the
requirement that if a system is perturbedwithin an acceptable limit then it restores
itself to legitimate states. However, if it is perturbed beyond this boundary then
it permanently preserves evidence of tampering. Moreover, the latter operation is
unaffected even if the adversary attempts to stop it. We formally defined tamper-
evident stabilization and investigated how it relates to stabilization and active
stabilization. We argued that tamper-evident stabilization is weaker than stabi-
lization in that every stabilizing system is indeed tamper-evident stabilizing. Also,
tamper-evident stabilization captures a spectrum of systems from pure tamper-
evident systems to pure stabilizing systems. We also demonstrated two examples
where we design tamper-evident stabilizing token passing and traffic control pro-
tocols. We identified howmethods for designing stabilizing programs can be lever-
aged to design tamper-evident stabilizing programs.We showed that the problem
of verifying whether a given program is tamper-evident stabilizing is polynomial in
the state space of the given program.We note that the problem of adding tamper-
evident stabilization to a given high atomicity program can be solved in polyno-
mial time. However, the problem is NP-hard for distributed programs. Moreover,
we find that parallel composition of tamper-evident stabilizing systems works in a
manner similar to that of stabilizing systems. Nevertheless, superposition or tran-
sitivity requirements of tamper-evident stabilization are somewhat different than
that for stabilizing systems.

We are currently investigating the design and analysis of tamper-evident sta-
bilizing System-on-Chip (SoC) systems in the context of the IEEE SystemC lan-
guage. Our objective here is to design systems that facilitate reasoning about what
they do and what they do not do in the event of tampering. Second, we will lever-
age our existing work on model repair and synthesis of stabilization in automated
design of tamper-evident stabilization. Third, we plan to study the application of
tamper-evident stabilization in game theory (and vice versa).
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Abstract. Despite the need for change, highly available software sys-
tems cannot be stopped to perform changes because disruption in their
services may consequent irrecoverable losses. Current work on runtime
evolution are either too disruptive, e.g., “blackouts” in unnecessary com-
ponents in the quiescence criterion approach or presume restrictive as-
sumptions such as the “black-box design” in the tranquility approach.
In this paper, an architecture-based approach, called SAFER, is pro-
posed which provides a better timeliness by relaxing any precondition
required to start reconfiguration. We demonstrate the validity of the
SAFER through model checking and a realization of the approach on a
component model.

Keywords: Reconfiguration, Safe stopping, Consistency.

1 Introduction

Many software-intensive systems are required to be reconfigured to maintain
the key functions while they face changes in user requirements and/or domain
assumptions. In some special category of software systems, it may not be possible
to simply shut down the software from functioning and then apply the changes. In
this regard, runtime evolution1 aims at adapting the system to changes without
disrupting those parts of the system which are unaffected by the change [1]. The
three most important issues which must be addressed in the runtime evolution
are (i) reaching a safe application state, (ii) ensuring reliable reconfiguration, and
(iii) transferring the internal state of entities which have to be replaced. Despite
extensive research in component-based dynamic reconfiguration, and available
component models which allow reconfiguration [2], safe reconfiguration is still
an open problem, and existing approaches have made small steps in solving real
world scenarios [3].

This paper focuses on the first two challenges of runtime evolution, i.e., reach-
ing a safe application state and ensuring a reliable reconfiguration. It proposes

1 Interchangeably in this paper, dynamic reconfiguration.

c© IFIP International Federation for Information Processing 2015
M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 100–109, 2015.
DOI: 10.1007/978-3-319-24644-4_7



A Reliable Reconfiguration Protocol 101

an architecture-based reconfiguration approach, called SAFER2, that provides a
better timeliness by relaxing any preconditions required to start reconfiguration.
The approach extends the notion of tranquility in a way that not only enjoys
the low disruption of this proposal, but also works safely in both distributed
and interleaved transactions. The paper presents the formalization of the pro-
posed approach in Alloy [4] and the verification of its consistency by means of
model checking in different architectural configurations and also for the most
well known evolution scenarios [5]. Implementation of a running example on top
of the Fractal [6] shows the applicability of this approach [5].

This paper is organized as follows. Section 2 gives an overview of the challenges
posed by runtime evolution. SAFER, an approach for ensuring safe dynamic
reconfiguration, is articulated in Section 3. Related work are then discussed in
Section 4, and Section 5 concludes the paper. The verification and evaluation
reports are available in the appendix.

2 Problem Setting

Existing approaches to safe dynamic reconfiguration try to put the elements of
the running system that are subject to change at a specific state called safe state
before performing the reconfiguration operations on them. Of most relevant work
in this area, quiescence [1] causes a high disruption to the running system that
is not acceptable in many critical systems [7]. To address this issue, Vandewoude
et al. [8] proposed the concept of tranquility, as a low disruptive alternative to
quiescence:

Definition 1 (Tranquility). A component is tranquil if: (i) it is not currently
engaged in a transaction that it initiated; (ii) it will not initiate new transac-
tions; (iii) it is not actively processing a request; and (iv) none of its adjacent
components are engaged in a transaction in which both of them have already
participated and might still participate in the future.

In [9], Ma et al. show that the tranquility criterion may not guarantee safe
dynamic reconfiguration of distributed transactions. Moreover, when a compo-
nent is used in an infinite sequence of concurrent interleaving transactions, it is
not guaranteed that it will ever reach tranquility [8]. Also, tranquility criterion
is not stable by itself. Once node N is in a tranquil state, all interactions between
N and its environment should be blocked to assure that the tranquil state of that
node is preserved [8]. In addition, tranquility does not guarantee consistency
when deleting or detaching nodes [3]. Furthermore, both notions of quiescence
and tranquility assume that a valid component substitution cannot be ensured
if a transaction starts with an old version of a component and finishes with the
new version [10]. These issues are thoroughly discussed in [7].

2 SAFe runtimE Reconfiguration.
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3 Safe Reconfiguration

In many critical cases, changes should be applied as soon as the software violates
a requirement, however, the consistency of changes is not guaranteed unless the
affected components of the system are in a safe state. Such a precondition is
not acceptable if changes in the running system are subject to very stringent
time constraints to react. This section extends the notion of tranquility, and
proposes SAFER, an approach to enable safe, low disruptive runtime evolution
in distributed contexts.

3.1 The Concept of Tranquility

The notion of tranquility is a necessary criterion, but not sufficient to guarantee
a safe reconfiguration [7]. In fact, the type of reconfiguration can also play an
important role in the system’s consistency which has not been considered by ex-
isting approaches. Therefore, we extend tranquility to guarantee a more reliable
reconfiguration. To clarify the concept, the definitions of consistent reconfigura-
tion and dependency violation are provided first:

Definition 2 (Consistent Reconfiguration). A reconfiguration is consistent
if it applies desired changes in a way that it transfers the system from a consistent
configuration (before the evolution) to another consistent configuration (after the
evolution). More specifically, a consistent configuration is a state of the system
in which a component in a safe state can be changed without impacting both what
has been already executed and what has still to be executed in active transactions.

Definition 3 (Dependency Violation). Modification of a component may
have side effects on other components. Dependency violation is defined as the
removal or modification of a certain component that leads to malfunction or
failure in other component(s).

Having these definitions in place, we define e-tranquility3, an extension to
tranquility as follows:

Definition 4 (E-Tranquility). (i) node N is in the tranquil state; (ii) the re-
configuration does not intend to delete or unlink the node; and (iii) the change
does not impose any dependency violation among the components.

If one of these conditions is not satisfied, reaching e-tranquility delays until the
transaction which N belongs to, is accomplished completely (either committed
or rolled back). In the following section, we show that despite whether or not
e-tranquility is met, leveraging SAFER, relaxes any precondition to start the
evolution process. In other words, e-tranquility is only to indicate the time in
which an old component can be removed safely.

3 Extended tranquility.
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3.2 SAFER: An Approach to Safe Runtime Reconfiguration

The software architecture plays a central role in achieving a safe adaptation [11].
The behavioral and structural aspects of the architecture provide useful infor-
mation like component dependencies. Here, we assume the availability of such
information at runtime. This is not an infeasible assumption since reflective com-
ponent models, e.g., Fractal [6], not only provide such an view by introspection
but also allow changing them on-the-fly by intercession.

The concept of SAFER is established based on the idea that the transac-
tions involving a component that will be updated should be separated from new
transactions as soon as the update request is issued. This is operationalized as
follows:

1. Whenever a component receives a change request, its new version is added
to the system immediately. At this time, which is referred to as the evolution
time, both the old and new versions of this component exist simultaneously.

2. As the second step, an event is published to dependent connectors (i.e., those
which can initiate a transaction on the target component) to notify them
about the start time of the evolution and the address of the new component.

3. When a connector receives a request, if the target is an evolved component
N, the connector decides on the path to which the request should be routed,
and the component which should serve the request (the old or the new ver-
sion). In fact, the connector chooses the qualified component based on its
knowledge about the undergoing evolution. The switching algorithm works
based on the following rules: (i) if the request belongs to a transaction which
has been initiated after the evolution time, it is directed to the new version
of N; (ii) if the old version of N has not been used in the ongoing transaction,
and reconfiguration is not resulted in a node deletion/unlinking or depen-
dency violation, the new version is responsible for processing the request.
Otherwise, the old version serves the request.

4. The switching policy continues till the old component reaches the e-tranquility.
Finally, the old component will be removed completely from the system,
and the completion of the evolution is notified to its dependent connectors.
Accordingly, all subsequent requests will be processed by the reconfigured
version.

According to SAFER, to guarantee that the old system and its related trans-
actions will still work and that all functionalities and qualities are preserved
during the reconfiguration, multiple versions of a component exist in the system
until the component reaches the e-tranquility. In fact, each connector contains
the intelligence necessary to manage the requests and is enriched by the infor-
mation about the dependencies that exist among the components so that it can
route messages to the proper version of a component.

In order to clarify SAFER, imagine a Message Delivery system as illustrated
in Figure 1(a), it includes four main components which are connected by specific
connectors (Cnn-*). Each component invoking a request to another component
initiates a transaction. Each transaction as a unit of work may also need to use or
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collaborate with other neighboring components by initiating new transactions
(sub-transactions). The completion of a transaction depends on its execution
after the termination of its sub-transactions. We assume that transactions com-
plete in a bounded time and that the initiator of a transaction is aware of its
completion [1] . Respecting this definition, a behavioral scenario of the exemplary
system specified in Figure 1(b) can be therefore described as follows:

“Whenever a client requests Sender to send a message, Sender as the root
transaction invokes a request to the (De)Compression in order to compress the
message. Next, the compressed message is sent to Packer to encapsulate the mes-
sage with a header (including the time-stamp, message type, and decompression
key) required to extract the message later. As soon as the message is prepared,
it is sent to Receiver. On the other side, once the message is received by the
Receiver, it asks (De)Compression to decompress the message to obtain the
original message”.

(a) System configuration. (b) Behavioral scenario.

Fig. 1. Message Delivery System

To clarify SAFER, suppose a hypothetical situation where the
(De)Compression component in the Message Delivery system needs to be re-
placed with a new version: Once an update request to (De)Compression is
received, its new version will be added to the system. Thus, the dependent
connectors of the (De)Compression (i.e., Cnn-S-C and Cnn-R-D) determine the
component which should serve the incoming requests among a set of candidate
components (the old or the new version). The coexistence of both of the ver-
sions of the (De)Compression continues until the old version finally reaches the
e-tranquility. At this time, the old one can be removed safely from the sys-
tem, and the new version of the (De)Compression is responsible for serving all
corresponding requests. From the behavioral view of the system during the evo-
lution, whenever Sender sends a request to use the compression service, since
(De)Compression is under the evolution (two versions of this component coex-
ist simultaneously), the request is mediated by Cnn-S-C to decide which version
of (De)Compression should provide the service required by Sender. The target



A Reliable Reconfiguration Protocol 105

component is chosen based on considering both the initiation time of the trans-
action which the request belongs to and the history of using this component in
the ongoing transaction.

Regarding the definition of tranquility and the behavior of the system de-
picted in Figure 1(b), although (De)Compression is tranquil at time T1, due
to the dependency violation, changing this component leads the system toward
a failure at time T2 where the compressed message needs to be decompressed.
However, based on the e-tranquility, this component cannot be removed until the
transactions involved with this component finish completely. As a result, when
Receiver sends a decompression request at time T2, since the evolution is not
completed yet, Cnn-R-D can still forward the request to the old version.

4 Related Work

Several work on software reconfiguration have been reported in literature, all
of which tackle the problem from different perspectives. However, the most re-
lated approaches to deal with safe reconfiguration are considered here. These
approaches fall into two major categories.

The first category of approaches is those addressing consistency through recov-
ery. In these approaches, components can deal with the failures of an operation
and recover from inconsistencies introduced during the reconfiguration. How-
ever, these approaches bring certain drawbacks: in one hand, it cannot be used
in systems which do not use atomic actions. On the other hand, atomic actions
are not suited to all application domains since they often result in reduced levels
of concurrency in the target application. Besides, aborting transactions prior to
reconfiguration is an expensive process. In contrast to the recovery approach,
the second category focuses on preventing inconsistencies from occurring in the
first place [8] [1] [9]. They try to put the elements of the running system that are
subject to change at a specific state before performing reconfiguration operations
on them. This category is of particular interest in this paper and is discussed
more in the following.

Among existing approaches, a highly cited paper co-authored by Kramer and
Magee [1], introduced quiescence as a reliable criterion to guarantee system con-
sistency during the evolution. It works properly in interleaving transactions,
guarantees to achieve a safe state in bounded time, and also is the only criterion
which supports component removals. However, due to deactivation of all po-
tentially related components before the reconfiguration to ensure consistency, it
imposes high disruption to the running system. In order to reduce the disruption
imposed by quiescence, tranquility criterion is proposed by Vandewoude et al. [8]
which avoids unnecessary disturbances. Nevertheless, this criterion does not work
safely in distributed transactions because of its assumption about black-box de-
sign. Moreover, there is no guarantee to achieve tranquility in bounded time in
interleaving transactions [7]. In a recent work, Ma et al. [9] proposed a version-
consistent approach that benefits dynamic component dependency model of the
system. While it guarantees a safe dynamic reconfiguration in distributed con-
texts, the algorithm they propose seems to impose unnecessary processing time
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to maintain dynamic dependencies when the architecture model becomes large.
The time is required to reach a safe state is bounded in most approaches, while
it depends on a number of transactions for version-consistency. Both tranquility
and version-consistent approaches assume that the interactions with the environ-
ment should remain blocked in order to remain stable. The more assumption a
specific approach is based on, a narrower application area it would be applicable.
Interested readers may consult with [7].

The idea of using multi-versioning is not a new concept. Cook et al. propose
a framework, HERCULES, to improve the reliability of a system by keeping
existing versions of the component running and only fully removing the old
component when a determination is made that the new one fully satisfies its
role [12]. The new version aims to correct deficiencies that have been detected in
the old version and the old version offers an example of correct behavior outside
of those deficiencies. Similarly, Miki-Rakic et al. [13] encapsulate the new and old
components in a wrapper component named Multi-Versioning Connector. The
wrapper serves as a connector between the encapsulated component versions and
the rest of the system and is responsible for propagating the generated result(s).

5 Conclusions

In this paper, we promoted connectors for enabling a safe dynamic reconfigura-
tion by addressing the shortcomings of tranquility in distributed contexts. We
demonstrated that the proposed approach, called SAFER, not only impose low
disruption, but also relaxes any preconditions required to start a reconfigura-
tion that reduces the delay within which the system is being updated. To verify
the consistency of SAFER, we specified it in Alloy and applied a model check-
ing tool to examine SAFER in different architectural configurations and also
possible evolution scenarios.

We implemented SAFER in a simple example and, we compared it with other
approaches based on existing information. In order to objectively compare time-
liness and the disruption introduced by this approach with existing approaches,
different experiments with randomly generated system configurations, different
levels of workloads, and even different component models are needed. This vali-
dation is beyond the scope of this paper and we leave it for future work.
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pean Commission, Programme IDEAS-ERC, Project 227977-SMScom.
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Appendix

Verification Report

Dependability of runtime evolution is of major importance because any viola-
tions of consistency in running programs may lead to irreversible damages. To
prevent this, reconfiguration safety should be ensured by performing appropriate
(preferably formal) verification techniques. To achieve this goal, we have mod-
eled our evolution procedure, i.e., SAFER, and its related definitions in Alloy [4]
to verify whether if a consistent system is evolved using the SAFER, it still
remains consistent. Due to space limitations, interested readers can refer to [5]
for obtaining further details, including complete specifications of the structural,
behavioral, and evolutional aspects of SAFER in Alloy

As stated earlier, a system is consistent if and only if all its transactions are
consistent, and a transaction is consistent if and only if a specific version of
each component is used during that transaction’s lifecycle. In other words, all
requests belonging to that transaction and its sub-transactions must be served
by non-equivalent components.

pred consistent[t : Transaction, tm : T ime]{
let exe = {e : t. ∗ subTransactions.actions| e in ExeRequest and lte[e.pre, tm]}|

all disj e1, e2 : exe| equivalent[e1.to, e2.to] => e2.to in (e1.to).sysmetric

}
With respect to the above definition of consistent transactions, we executed

the following assertion using the Alloy Analyzer to examine the reliability of
SAFER for various configurations and the evolution scenarios in which we have
corrective changes or node deletion/unlinkings.

assert algorithmPreservesConsistency{
all t : Transaction, en : EndNotify| consistent[t, en.cause.pre] =>

consistent[t, en.post]
}

More precisely, we let the Alloy Analyzer to consider all valid configurations
of totally 12 components and connectors. The invariants which we have specified
through the Alloy facts forced this tool to only instantiate valid configurations
of our model. In addition, before analyzing the above assertion for generated
configurations, we used more other assertions based on predicates some of which
are given in [5] to show that our model was valid. After executing the assertion
algorithmPreservesConsistency for all of the instantiated configurations, the
tool reported no counterexamples, or in other words, it did not find any incon-
sistencies. Experience has shown that if a specification has a flaw, it can usually
be demonstrated by a relatively small counterexample [14].
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Evaluation Report

We claim that the proposed reconfiguration approach is promising in the sense
that it covers the limitations of tranquility in distributed contexts. To evaluate
the applicability of SAFER in practice, it is implemented as a tool to facilitate
the evolution of our running example on top of the Fractal component model [6].
After realizing the SAFER, we put its functionalities in the Fractal components
membrane as controller methods to be utilized in enabling a safe reconfiguration.
Interested readers are referred to [5] for details of implementation and experi-
mental setup.

The result of this preliminary evaluation shows that in situations that a re-
configuration results in deletion of a tranquil node, the node still remains in the
system to guarantee if it may, at some point in the future, participate in an ongo-
ing transaction, even if it has not yet participated. Accordingly, the connectors
could still route requests from old transactions to the deleted node. Secondly, the
behavior of a component and its environmental dependencies during its execution
within a transaction remains consistent. Consequently, even a temporary depen-
dency violation does not impose any inconsistency in distributed transactions
while an ongoing transaction still could use the same version of a component.
In addition, the simultaneous operation of both the old and the evolved version
of components enhances the availability of the system in long reconfiguration
plans that include a lot of actions which will take more time to be executed and
increases unavailability. Likewise, it guarantees achieving tranquility in bounded
time even in the case of interleaved transactions. This is addressed by bringing a
new version of the component on line to service the new top-level transactions,
while the old component gradually transitions to an inactive state. Indeed, since
those transactions initiated after evolution time will use new version of the com-
ponent intended to be evolved, the old version would not be involved in new
transactions anymore and old transactions are isolated from new interleaved
ones. Furthermore, on demand possibility of using the evolved entities by new
transactions increases the reliability of system in the case of critical changes like
security breaches in banking services. In other words, there is no need to wait for
a safe state since it is only a precondition to safely remove the old components,
but not to perform the change, e.g., adding a new component.

Although the results are promising, there is still space for improvements.
Having the exact component dependency model in an adaptive system is not
trivial especially when the system often goes under the evolution. One way of
sidestepping the overhead imposed by SAFER to keep track of transactions
and their log is to collect dependencies with the mining transaction log [15].
Moreover, the overhead of performing the evolution and memory consumption
of multi-version existence of the same component might impose limitations in
resource-poor scenarios, especially in cases with high workloads. A remedy to
this problem would be deploying changes temporary on idle resources [16].
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Abstract. Configuration is a recurring problem in many domains. In
our earlier work, we focused on architecture-level configuration of large-
scale embedded software systems and proposed a methodology that en-
ables engineers to configure products by instantiating a given reference
architecture model. Products have to satisfy a number of constraints
specified in the reference architecture model. If not, the engineers have
to backtrack their configuration decisions to rebuild a configured product
that satisfies the constraints. Backtracking configuration decisions makes
the configuration process considerably slow. In this paper, we improve
our earlier work and propose a backtrack-free configuration mechanism.
Specifically, given a cycle-free generic reference architecture model, we
propose an algorithm that computes an ordering over configuration pa-
rameters that yields a consistent configuration without any need to back-
track. We evaluated our approach on a simplified model of an industrial
case study. We show that our ordering approach eliminates backtracking.
It reduces the overall configuration time by both reducing the required
number of value assignments, and reducing the time that it takes to com-
plete one configuration iteration. Furthermore, we show that the latter
has a linear growth with the size of the configuration problem.

Keywords: Model-based configuration, CSP, Backtracking, UML/OCL.

1 Introduction

Configuration is a recurring problem in many embedded software system do-
mains such as energy, automotive, and avionics. In these domains, product-line
engineering approaches [27,22] are largely applied to develop various configu-
rations of a reference architecture. Briefly, a reference architecture provides a
common, high-level, and customizable structure for all members of the product
family [27] by specifying different types of components and configurable param-
eters, as well as, constraints capturing relationships between these parameters.
Through configuration, engineers develop each product by creating component
instances and assigning values to their parameters such that the constraints over
parameters are satisfied.
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Normally, configuring embedded systems involves assigning values to tens of
thousands of interdependent parameters, and ensuring their consistency.
Typically, 15 to 20 percent of these parameters are interdependent. Finding
consistent values for interdependent parameters without any automated sup-
port is challenging. Manual configuration – the common practice in many com-
panies – is time-consuming and error-prone, especially for large-scale systems.
During the last three decades, researchers have developed a large number of
approaches to automate various configuration use cases [6]. Most of these ap-
proaches concern consistency of configuration decisions, and rely on constraint
solvers (e.g., [13,23,19]) or SAT solvers (e.g., [20]) for ensuring consistency.

In our earlier work [4], we proposed an iterative approach for configuring
large embedded systems where at each iteration the value for one parameter is
specified. If at some point during configuration, a value assignment violates some
constraints, then the engineers may have to backtrack some of their recent choices
until they can find a configuration assignment consistent with the constraints
in the reference architecture. Backtracking configuration decisions makes the
configuration process considerably expensive.

In this paper, we extend our earlier work [4] and propose a new approach
that eliminates backtracking during configuration by configuring parameters in
a certain order. We explain how such an ordering is extracted from an acyclic1
reference architecture model, and argue that if the ordering is followed, our algo-
rithm generates consistent and complete configured products without any need
to backtrack a decision. We argue that elimination of backtracking considerably
improves the performance of our configuration approach. We show this by ap-
plying our approach to a simplified excerpt of an industrial case study from the
oil and gas domain. The experiment shows that our ordering approach reduces
the overall configuration time by both reducing the required number of value
assignments, and reducing the time that it takes to complete one configura-
tion iteration. Further, we demonstrate that in our backtrack-free configuration
approach the time required for completing one configuration iteration grows lin-
early with the size of the configuration problem. In our original configuration
approach, this time has a quadratic growth.

In the rest of the paper, we first present the related work and position our
work in the literature. Section 3 provides an overview of the main concepts in
product family modeling and configuration. Our ordering approach for eliminat-
ing backtracking, and the resulting backtrack-free configuration algorithm are
presented in Section 4. In Section 5, we experimentally evaluate the efficiency
and scalability of our approach. A discussion of the potentials and limitations of
the work is presented in Section 6. Finally, we conclude the work in Section 7.

1 In our approach, a reference architecture model consists of a component hierarchy,
and a set of constraints (see Section 3.1). Such a reference architecture is acyclic if it
neither contains any cycles in the component hierarchy nor in the constraints. This
condition is required to ensure the termination of the configuration process as well
as the complete elimination of backtracking (see Sections 4 and 6).
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2 Related Work

Existing configuration approaches fall into two general categories, non-interactive
and interactive. Most configuration approaches belong to the first category, where
the objective is to produce some final configured products without requiring in-
termediate input from users. They may either find an optimized solution based
on some given optimization criteria (e.g., [13,19]) or find all configuration solu-
tions (e.g., [7,11,23]). The non-interactive approaches may either rely on meta-
heuristic search approaches [14,16,21], or on systematic search techniques used in
constraint solvers [9,10,18], or on symbolic decision procedures [8]. Among these,
meta-heuristic search approaches are generally faster and require less memory.
However, since meta-heuristic search is stochastic and incomplete, it cannot sup-
port an interactive process where engineers have to be provided with precise and
complete guidance information at each iteration.

Interactive configuration methods (e.g., [17,20,30,31]) mostly rely on con-
straint solvers or symbolic reasoning approaches. Backtracking is required when-
ever an inconsistency arises, even though it may make the process considerably
slower. In general, constraint solvers alleviate the drawbacks of backtracking
by employing heuristics such as back-jumping [12], identifying no-goods con-
straints [1,2], and ordering the search [15]. None of these improvements, however,
totally eliminates the possibility of backtracking. In addition, it is open whether
these heuristics can be tailored to interactive configuration solutions.

Some more recent interactive configuration approaches [17,30] have eliminated
backtracking by adding an offline preprocessing phase to configuration, during
which all consistent configurations are computed and used to direct the user
during the interactive phase, preventing the user to make any decision that
gives rise to an inconsistency. These approaches only scale when the space of
all consistent configurations can be encoded and computed within the available
memory. In the case of large-scale embedded software systems, the complexity
of constraints and the size of the configuration space is so large2, making it
impossible to compute the set of all possible configurations in an offline mode.

In our work, using information provided in reference architecture model, we
identify an ordering over variables and show that by following this ordering,
backtracking does not arise during the configuration of a single product. Our
approach applies to architecture-level configuration of embedded software sys-
tems with architectural dependencies and constraints specified in First-Order
Logic (FOL) [29]. Computation of ordering in our work is fast and performed
based on static analysis of architectural models and the constraints syntax.

3 Preliminaries

The work presented in this paper is based on a model-based configuration frame-
work presented in [4]. In this section, we present the reference architecture model,
2 Creating a product usually involves configuring tens of thousands of parameters.

The configuration space, which is in fact the combinatorial space created for these
parameters is, as well, significantly large.
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and exemplify the main concepts in modeling and configuration of embedded
software systems. In addition, we propose the notion of a configuration tree.

3.1 The Reference Architecture Model

In our approach, a reference architecture model defines a hierarchy of component
types. Each component has a number of configurable parameters, and may as
well contain other configurable elements. We consider configurable parameters as
one type of configurable elements. Furthermore, the reference architecture model
specifies constraints among the configurable parameters. The SimPL methodol-
ogy [5] is an approach for creating such reference architecture models. As men-
tioned earlier, during configuration, products are created by creating component
instances and configuring their parameters. In the following, we explain compo-
nents as the main building blocks of products, and constraints as they play a
key role is ensuring the consistency of products. A complete specification of the
reference architecture model and its formal semantics is given in [4].

3.1.1 Components
Each component in a product is an instance of a component type in the cor-
responding reference architecture. We define a component c as a tuple (id,V),
where id is a unique identifier, and V is a set of configurable elements. Each
configurable element in V is a tuple e = (ide, te), where ide is the name of the
element, and te is the type of the element. Figure 1 gives a grammar for the
types of elements in V .

type ::= single_type | arrayed_type ;
single_type ::= primitive_type | user_defined_type |

referenced_type ;
referenced_type ::= ‘&’ user_defined_type ;
arrayed_type ::= single_type ‘[]’ ;

Fig. 1. A simplified grammar for types.

In Figure 1, primitive_type represents a set of terminals for primitive types
‘integer’ and ‘boolean’ (we do not consider ‘strings’), and user_defined_type
denotes a set of terminals each corresponding to a component type defined in
the reference architecture model.

Configurable elements of a primitive type or a referenced type represent con-
figurable parameters. A configurable element of a user defined type represents a
sub-component of c (i.e., the sub-component is a component c′ = (id′,V ′) itself).

3.1.2 Constraints
Let c = (id,V) be a component. We use Φid to denote the set of constraints
defined in the context of c (i.e., specifying relations among elements of c). Each
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member of the set Φid is a boolean expression denoting a constraint φ. A sim-
plified grammar for the language of boolean expressions is given in Figure 2.
This grammar maps to a subset of the Object Constraint Language (OCL) [26]
that we use in the SimPL methodology. The grammar allows the basic OCL
operators including for-all, exists, arithmetic, relational and logical operators.
In Figure 2, FA represents the universal quantifier, which maps to OCL forAll
operator. Similarly, EX represents the existential quantifier, which maps to OCL
exists operator.

bool_expr ::= bool_term (OR bool_term)*;
bool_term ::= bool_factor (AND bool_factor)*;
bool_factor ::= bool_literal | bool_qName | var |

‘(’ bool_expr ‘)’ | rel_expr | NOT bool_factor |
FA ‘(’ var ‘in’ array_qName ‘,’ bool_expr ‘)’ |
EX ‘(’ var ‘in’ array_qName ‘,’ bool_expr ‘)’ ;

rel_expr ::= num_expr (GT | LT | GEQ | LEQ | EQ | NEQ) num_expr ;
num_expr ::= num_term ((PLUS | MINUS) num_term)*;
num_term ::= num_factor ((MUL | DIV) num_factor)*;
num_factor ::= num_literal | int_qName | var |

‘(’ num_expr ‘)’ | NEG num_factor ;

Fig. 2. A simplified grammar of boolean formulas.

Three types of qualified names (i.e., bool_qName, int_qName, and array_q-
Name) are used in the production rules of the grammar given in Figure 2. Quali-
fied names together with literals and operators create numerical, relational, and
boolean expressions. Qualified names of numerical types (i.e., integer or a user
defined enumeration) form one type of numerical factors and are used in creating
relational expressions. Qualified names of type boolean form one type of boolean
factors. Qualified names representing collections of items can be combined with
set quantifiers (i.e., for all and exists) to form another group of boolean fac-
tors. In addition to these, variables (i.e., var) may be used as integer or boolean
factors. Variables are used in combination with quantifiers.

3.1.3 A Configuration Example
Figure 3 is a class diagram showing an excerpt of a simplified reference architec-
ture for a family of subsea oil production systems. It is part of a larger case study,
which is presented in [5,4]. Each class in Figure 3 represents a component type,
and each attribute in a class represents a configurable parameter. In addition,
two OCL constraints are defined in the context of class ElectronicConnections.

To make a product, one has to create and configure an instance of a XmasTree.
To do so, engineers have to specify the number of electronic boards on each of
the Subsea Electronic Modules3 (SEMs) by initializing the eBoards array in each

3 A Subsea Electronic Module is an electronic unit, with software deployed on it. It is
the main component in a subsea control system.
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of the two SEMs (each XmasTree instance has two SEM instances) and assign
a value to each item in those arrays, create a number of electronic connections
by setting the size of array myConnections, and assigning values to relatedSEM,
pinIndex and bIndex attributes of each ElectronicConnection instance.

XmasTree

ElectronicConnection

int bIndex
int pinIndex

myConnections      *

1
relatedSEM

Device *     
devices

SEM

int[] eBoards

2    mySEMs

context ElectronicConnection
bIndex   <= relatedSEM.eBoards->size()
pinIndex <= relatedSEM.eBoards[bIndex]

Fig. 3. An excerpt of the reference architecture model of a subsea oil production system.

Example 1. Suppose that, at some point in the configuration of a product, a user
configures an ElectronicConnection by first setting its bIndex to 5, then setting its
pinIndex to 20, and finally setting its relatedSEM to one of the SEM instances. At
this point, if the chosen SEM instance has less than 5 electronic boards, or its
eBoards[5] is less than 20, an inconsistency happens. In this case, the user has to
backtrack to fix the inconsistency, for example by changing the value of pinIndex
or bIndex. Alternatively, to eliminate backtracking, the user can first configure
relatedSEM, then assign a value to bIndex, and finally configure pinIndex. �

In this paper, based on a static analysis of the constraints, we propose an ap-
proach for identifying configuration orderings that eliminate backtracking.

3.2 The Configuration Tree

A product is usually represented by a configuration tree. We denote a configura-
tion tree by a tuple (N,E), where N is the set of nodes, and E is the set of edges
of the tree. In our approach, each node in a configuration tree has a type and
a value, and each edge has a label. The type of a node belongs to the language
of types in Figure 1. Based on this, we identify four types of nodes: primitive
nodes, component nodes (if the node is typed by a user defined type), reference
nodes, and array nodes. Figure 4 shows two example configuration trees.

Primitive nodes and reference nodes represent configurable parameters, and
are always leaf nodes in the tree. The value of a leaf node must conform to its
type. A missing value for a leaf node means that the corresponding configurable
parameter is not yet configured. Nodes m13 and m15 in Figure 4-(b) are primitive
and reference nodes, respectively. Both nodes are unconfigured.

Each array node has a child node of type ‘int’, which is connected to it by
an edge labeled ‘size()’. We refer to this node as the array’s size node. An array
node is called uninitialized if its size node does not have a value, and is called
initialized otherwise. An initialized array node of size n, and type ‘single_type[]’
has n additional child nodes. Each of these child nodes is typed by ‘single_type’,
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int[] 
(-)

int 
()
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ElectronicCo
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()
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int 
()

pinIndex

&
SEM()
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m10
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()
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SEM[] 
(-)

at(1) at(2)

m2

mySEMs

int 
(2)

size()

m3

Fig. 4. Configuration subtrees representing two components. Text inside a circle rep-
resents the type and value (in parenthesis) of the node. The text next to a node is a
unique name to refer to the node in our explanation of the approach. (a) an instance
of XmasTree, and (b) an instance of ElectronicConnection.

and is connected to the array node via an edge labeled ‘at(i)’, where i is an integer
in [1..n]. Node m2 in Figure 4-(a) is an initialized array node of size two.

A component node represents a component. Such a node is typed by a user
defined type, and its value is the identifier of the corresponding component. Let
m be the component node representing the component c = (id,V). For each
(ide, te) ∈ V , there is a child node for m typed by te and connected to m via an
edge labeled ide. Node m1 in Figure 4-(a) is a component node of type XmasTree,
representing a component with identifier xt1. To avoid cluttering, we have not
shown the type of the component (i.e., XmasTree) in the text inside node m1.
The subtree beneath m1 shows the configurable elements of xt1. None of these
elements are configured in Figure 4-(a). One possible partial configuration is
given in Figure 5.
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Fig. 5. One possible partial configuration of node m1 in Figure 4-(a).
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4 The Configuration Process

Our model-based configuration approach presented in [4] validates configuration
decisions automatically and interactively. For this purpose, we use the config-
uration tree and the constraints defined in the reference architecture model to
create a constraint network [24]. A constraint network is a finite set of vari-
ables, each associated with a finite domain of discrete values, and a number of
constraints over those variables. The problem of finding a consistent configura-
tion maps to a constraint satisfaction problem, where the objective is to find a
consistent assignment of values to all the variables in the constraint network.
Each configurable parameter (a leaf node in the configuration tree) maps to a
variable in the constraint network. The domain of the variable corresponding
to configurable parameter p is a finite set of literals that can be assigned to p.
Each constraint in the reference architecture model is rewritten in terms of the
variables in the constraint network, and is added to the constraint network. Dur-
ing configuration, new variables or constraints may be added to the constraint
network. We call this the dynamic growth of the constraint network.

To ensure the consistency of configuration decisions, we use constraint prop-
agation over finite domains [28]. Constraint propagation provides a sound ap-
proximation of consistency: it does not eliminate any consistent solution, but it
may fail to identify all inconsistent value-assignments. In other words, constraint
propagation prunes the search space, but it does not enumerate all possible solu-
tions. The benefit of using constraint propagation is that it is fast, and therefore
applicable in an interactive context. Its drawback is that it does not eliminate
all inconsistent value-assignments, and therefore, backtracking may be needed
to ensure consistency. This can be avoided by imposing some restrictions on the
reference architecture model of the product family. In particular, the model of
the product family should not contain any cyclic constraints.

Another reason for requiring backtracking in our original configuration ap-
proach is the dynamic growth of the constraint network. New constraints that
are added to the constraint network may be inconsistent with some of the pre-
viously made decisions. To avoid this, we configure parameters in a particular
order. In the following, before presenting our approach for ordering configuration
decisions, we first present the notion of qualified names. Then, based on the pro-
posed ordering approach, we present a backtrack-free configuration algorithm.

4.1 Qualified Names

Figure 6 shows a grammar for qualified names. A qualified name (e.g., int_qName)
represents a typed variable (e.g., a configurable parameter) and may represent an
individual item (e.g., int_qName) or a collection of items (i.e., array_qName).The
last rule in Figure 6 is added to explicitly define int_qName and bool_qName as
primitive qualified names. Primitive qualifiednames represent configurableparam-
eters, and together with array qualified names are used in the grammar of boolean
expressions in Figure 2.
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A qualified name can be created by traversing a configuration tree. Let CT
be a configuration tree, and n be a node representing a component c = (id,V) in
the configuration tree. Each node n′ in the subtree rooted at n can be uniquely
identified by a string created using id and edge labels. To do so, we start with
string str = “id”, and follow the edges that bring us to n′. After traversing each
edge, we concatenate str with “ .l”, where l is the label of the last traversed edge4.
Using this approach each node in the tree may be represented by more than one
string, depending on the starting node. A string should always start with the
label of a component node.

1 int_qName ::= element_qName ‘.’ int_prop_name |
2 array_qName ‘.’ ‘size()’ |
3 int_array_qName ‘[’ int_factor ‘]’;
4 int_factor ::= int_literal | int_qName;
5 int_array_qName ::= element_qName ‘.’ int_array_prop_name;
6 element_qName ::= component_id |
7 element_qName ‘.’ element_prop_name |
8 element_array_qName ‘[’ int_factor ‘]’;
9 element_array_qName ::= element_qName ‘.’ element_array_prop_name;
10 bool_qName ::= element_qName ‘.’ bool_prop_name |
11 bool_array_qName ‘[’ int_factor ‘]’;
12 bool_array_qName ::= element_qName ‘.’ bool_array_prop_name;
13 array_qName ::= int_array_qName | bool_array_qName |
14 element_array_qName;
15 primitive_qName ::= int_qName | bool_qName;

Fig. 6. The grammar of qualified names.

4.1.1 Semantically Valid Qualified Names
Let CT be a configuration tree representing a possibly partially-configured prod-
uct derived from a given reference architecture. A subset of the qualified names
created using the grammar in Figure 6 are semantically valid with respect to the
configuration tree CT . We use Q(CT ) to denote this subset. A qualified name q
belongs to Q(CT ) iff one of the following holds:

– q is the label of a component node in CT ,
– q = q1.t, where q1 ∈ Q(CT ), and q1 represents a component c = (id,V),

such that t is the name of an element in V ,
– q = q1[q2], where q1 ∈ Q(CT ), q1 represents an arrayed element, and q2 is

either an integer literal or a semantically valid qualified name representing
an integer parameter,

– q = q1.size(), where q1 ∈ Q(CT ), and q1 is an arrayed element.

4 In the rest of this paper, for the sake of conciseness, we use a[i] to denote a.at(i),
where a represents an array node in the configuration tree, and i is an integer literal.
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4.1.2 Mapped and Unmapped Qualified Names
Let CT be a configuration tree, and q be a semantically valid qualified name
in Q(CT ). If q corresponds to a node in CT , then we call q a mapped qualified
name, otherwise, it is called an unmapped qualified name. A qualified name q is
unmapped if any of the following conditions holds:

– a prefix of q maps to an unconfigured reference node,
– q is of the form q1[q2], where q2 represents an unconfigured parameter,
– q is of the form q1[q2], where q1 is an uninitialized array (q1.size() is not

configured).

In each case, a parameter is unconfigured. For a semantically valid unmapped
qualified name q, we use U(q) to denote the set of all such unconfigured param-
eters. For a qualified name q mapped to a leaf node, we use M(q) to denote the
corresponding configurable parameter.

Let CT be the configuration tree in Figure 5. Then xt1.mySEMs[1] is mapped,
and sem1.eBoards[1] is an unmapped semantically valid qualified name in Q(CT ).
An unmapped qualified name can become mapped as parameters are configured
and the tree is expanded. For example, sem1.eBoards[1] becomes mapped after
configuring the size of sem1.eBoards.

4.2 Ordering Configuration Decisions

Example 1 in Section 3.1.3 shows an example of inconsistencies that arise due
to the dynamic growth. In this example, the two constraints in Figure 3 cannot
be evaluated until relatedSEM is configured. This is because relatedSEM.eBoards,
appeared in both constraints, is unmapped as it does not correspond to a unique
node in the tree. By configuring relatedSEM both constraints become ready-to-
evaluate, can be added to the constraint network, and can be used in constraint
propagation to validate the values assigned to pinIndex and bIndex or to eliminate
inconsistent values for them if they were not configured. We call a constraint that
is not yet ready-to-evaluate, a pending constraint. Such a constraint contains one
or more unmapped qualified names and is pending on one or more parameters
to be configured. These parameters should be configured to make the unmapped
qualified names mapped. For example, the constraints in Example 1 are pending
on relatedSEM to be configured. In each configuration iteration, each constraint
is either pending or ready-to-evaluate. Figure 7 shows the state transition di-
agram of a constraint. As a consequence of configuring parameters, a pending
constraint may become ready-to-evaluate. Only ready-to-evaluate constraints
can be included in the constraint network.

Consider the ith step of configuration and let c be a pending binary constraint,
containing two qualified names q1 and q2. Suppose that q1 is unmapped, and q2
is mapped to the configurable parameter p (i.e., M(q2) = p). This parameter
cannot be configured until c becomes ready-to-evaluate (i.e., until q1 becomes a
mapped qualified name). We refer to such a parameter as a pending parameter.
Let parameters p1, ..., pn be the parameters that should be configured to make q1
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a mapped qualified name (i.e., U(q1) = {p1, ..., pn}). To eliminate backtracking,
parameter p should be configured after all pis are configured. This is shown in
Figure 8. Before a parameter reaches the state ready, the set X , which is the set
of all pis as described above, should be empty. As shown in Figure 8, a parameter
can be configured only when it is in state ready. Note that, as suggested by the
formulation of X , in general p may be involved in more than one constraint.

initstart pending ready
U(q1) �= ∅ ∨ U(q2) �= ∅

U(q1) = U(q2) = ∅

U(q1) = U(q2) = ∅

Fig. 7. States of constraint c = φ(q1, q2).

initstart pending ready configured
X �= ∅

X = ∅
X = ∅

Config. of p

Fig. 8. States of parameter p. X is {p′|∃c = φ(q1, q2).p
′ ∈ U(q1) ∧M(q2) = p}.

In other words, in each configuration iteration, the set of all unconfigured pa-
rameters is partitioned into two sets: pending and ready-to-configure parameters.
This partitioning of parameters, together with the stepwise configuration, which
in each iteration may add new unconfigured parameters to the system, imposes
an ordering on the configuration decisions. Note that, in each iteration, there
is no ordering among the ready-to-configure parameters. The acyclic property
of the reference architecture model guarantees that every parameter eventually
reaches the state ready.

4.3 Backtrack-Free Configuration

Algorithm 1 is our backtrack free configuration algorithm, which implements
the ordering approach explained above. Input to the algorithm is a cycle-free
reference architecture, which contains a class diagram and a set of constraints.
The output is a configuration tree CT . We maintain three sets of parameters:
configured (C), ready-to-configure (R), and pending parameters (P ); and two
sets of constraints: ready-to-evaluate (Φ), and pending (Φ′) constraints. Using
the input reference architecture model, we initialize all these sets and the con-
figuration tree in line 1 of the algorithm.
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Algorithm 1. BTFreeConfig
Input: A reference architecture RA
Output: a configuration tree CT

1 (CT, C,R, P, Φ, Φ′) ← initializeConfigurationProblem(RA)
2 D ← computeValidDomains(C,R, Φ)
3 while R �= ∅ do
4 read(i) � i: index of the selected unconfigured parameter
5 read(v) � value to be assigned to the selected parameter
6 � v must be in D[i] (the domain of the selected parameter)
7 while not v ∈ D[i] do
8 read(v)
9 applyConfiguration(CT,C, R, P, Φ, Φ′, i, tmp)

10 D ← updateValidDomains(C,R, Φ)
11 if some domains in D are empty then
12 throwException()
13 return CT

In line 2, domains of the unconfigured parameters are computed using the
routine computeValidDomains. In this routine, we use a constraint solver
to prune the domains by removing values that are inconsistent with one or
more constraints in Φ or some values in C. Note that only the ready-to-evaluate
constraints and their variables are considered when pruning the domains (i.e.,
P and Q are not included in the computation).

The while loop in lines 3-12 repeats while there are some ready-to-configure
parameters (i.e., R �= ∅). In each iteration, one parameter is configured. Both the
parameter and its value are selected by the human user in lines 4 and 5 of the
algorithm. Lines 7 and 8 guarantee that the selected value is within the domain
of the selected parameter and is, therefore, consistent. As a result of assigning a
value v to a parameter R[i], one or more of the following may happen:

– new nodes may be added to the configuration tree, therefore new elements
may be added to R and P

– if a constraint is pending on R[i], it may become ready-to-evaluate, and
– some of the parameters that are pending on R[i] may become ready for

configuration. We move them to the set of ready-to-configure parameters R.

These actions are performed in line 9 by calling the routine applyConfig-
uration. The constraint solver is again invoked in line 10 to update the valid
domains. If some domains become empty, the algorithm throws an exception in
line 12. Otherwise, it continues to the next iteration. Eventually, a completely
and consistently configured configuration tree is returned in line 13.

In [4], we showed that our original configuration algorithm produces complete
and consistent products. A product is complete if it does not contain any un-
configured parameters, and is consistent if it satisfies all the constraints in the
reference architecture model. In our technical report [3], we have shown that
Algorithm 1 produces complete and consistent products, but without requiring
backtracking. In other words, for any given acyclic reference architecture model,
Algorithm 1 terminates without ever reaching line 12.
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5 Evaluation

To evaluate the efficiency brought by our ordering approach, we performed an
experiment using the reference architecture model presented in Figure 3. For
this purpose, 1600 random configuration scenarios were created (800 scenarios
for each of our original and backtrack-free configuration approaches). In each
case, we started by configuring three parameters that identify the size of the
configuration problem, then randomly configured the rest of the parameters.
The first three parameters were configured as listed in Table 1. This is done
merely to control the number of parameters in each case to simplify the analysis
of the results. For each case in Table 1, we randomly generated 100 sample con-
figuration scenarios using our original configuration approach, and 100 sample
configuration scenarios using the backtrack-free configuration approach. Figure 9
shows the average response time in each iteration for both cases.

# Parameters
# Elec. # eBoards

Connections on SEMs

25 5 3,4
50 14 2,3
75 21 4,5
100 27 6,10
125 32 12,14
150 35 17,25
175 49 11,14
200 49 25,25

Table 1. Configuration settings.
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Fig. 9. A comparison of the average re-
sponse time for our original and backtrack-
free configuration approaches.

In our original configuration approach, a complete configuration iteration, in
addition to validating the decision and propagating it, may involve several deci-
sion roll-backs, and is therefore time consuming. On the other hand, a complete
configuration iteration in the backtrack-free configuration approach involves val-
idating and propagating the decision, and updating the ordering (i.e., updating
lists of pending constraints and parameters). By using the ordering, we eliminate
all the roll-backs and their costs. This explains why for most cases in Figure 9, an
average iteration in the original configuration approach takes much longer than
that in the backtrack-free configuration approach. This experiment shows that
for configuration scenarios with more than 50 parameters, the time overhead of
computing the ordering is negligible compared to the time that should otherwise
be spent on rolling-back the decisions.
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In our original configuration approach, for fixing an inconsistency, in addi-
tion to rolling back some of the decisions, new values must be assigned to the
parameters that might have caused that inconsistency. In our experiment, on
average 23.6 different values were tried per parameter to achieve a consistent
configuration. This high number is a result of our current naive implementation
of backtracking. By exploiting heuristics such as back jumping [12], this number
can be reduced significantly. Table 2 shows the number of decisions that were
needed to achieve a consistent configuration.

Table 2. Overhead of backtracking.

# Parameters 25 50 75 100 125 150 175 200
Avg. # Decisions 174.85 949.60 1773.49 2678.15 3426.29 2112.34 6301.47 3842.10
Avg. Ratio 6.99 18.99 23.65 26.78 27.41 14.08 36.00 19.21
Total Avg. Ratio (average number of decisions per parameter) 23.62

To provide a better insight into the time complexity of our configuration
approaches, we performed another experiment. The result of this experiment is
shown in Figures 10 and 11. In each case, we measured the average response
time for randomly generated configuration scenarios. Figure 10 shows that for
our original approach the response time (i.e., the time that it takes to complete
one configuration iteration) grows quadratically with the size of the configuration
problem (i.e., the number of configurable parameters). On the other hand, as
shown in Figure 11, in the case of our backtrack-free configuration approach,
this growth is linear with the size of the configuration problem.
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y = 1.422 + 0.006 * x + 0.001 * x^ 2
(R2 = 0.91 )

Fig. 10. Quadratic growth of the aver-
age response time in our original config-
uration approach.
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Fig. 11. Linear growth of the average
response time in our backtrack-free con-
figuration approach.

Furthermore, Figure 11 gives an insight into the usability of our backtrack-free
configuration approach. According to a study reported in [25], 0.1 second is about
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the limit for having the user feel that the system is reacting instantaneously.
Figure 11 shows that our backtrack-free configuration approach can respond
instantly even for configuration problems with up to 2000 parameters.

6 Discussion

Normally, backtracking is used to explore the search space, in order to resolve
inconsistencies, or to find all solutions. In our configuration approach [4], we
use backtracking to resolve inconsistencies that may arise while configuring a
single product. Analyzing configuration scenarios shows that, in our approach,
most of these inconsistencies are due to early configuration of parameters that
are involved in some pending constraints. By delaying the configuration of such
parameters, using our ordering approach, we can prevent inconsistent configu-
rations. One should note that our approach cannot generally eliminate back-
tracking for every use-case, such as enumerating all configurations, or resolving
inconsistencies that may arise due to cyclic constraints.

For our backtrack-free configuration approach to be able to produce consistent
and complete products, the input reference architecture model must be cycle-
free. In particular, to guarantee the termination of the configuration algorithm,
the component hierarchy must be acyclic. Achieving this property for embedded
software systems, where the software architecture follows, to a great extent, the
architecture of hardware, is straightforward. To guarantee consistency, without
requiring backtracking, the model should contain no cyclic constraints. Whether
this restriction can negatively affect the applicability of our approach is a ques-
tion that requires further investigation. Identifying the likelihood of embedded
systems with cyclic constraints and proposing heuristics for ensuring their consis-
tency with a minimum number of backtracks is left for future work. Finally, our
proposed ordering approach may introduce some rigidity. Whether this rigidity
affects usability negatively or not is an open questions that should be studied in
future.

7 Conclusion

Constraint solving is generally used to ensure consistency of configurations,
which are an essential part of software development in today’s industries. A
drawback of these techniques is the need for backtracking, which in the case
of interactive configuration drastically hampers usability. In this paper, we pro-
posed a partial ordering over the configurable parameters. The ordering is de-
rived from a static analysis of the constraints between the parameters. Using the
ordering approach, we have implemented a backtrack-free configuration tool. We
performed a number of experiments using a case study from an industry part-
ner. Results of our experiments show that our backtrack-free configuration tool
ensures consistency, while preventing the need for backtracking. Furthermore,
our approach significantly reduces the overall configuration time.



Efficient Architecture-Level Configuration 125

Acknowledgements. The first author acknowledges the Research Council of
Norway (the ModelFusion Project - NFR 205606). The second author is funded
by the National Research Fund - Luxembourg (FNR/P10/03 - Verification and
Validation Laboratory).

References

1. Armstrong, A.A., Durfee, E.H.: Dynamic prioritization of complex agents in dis-
tributed constraint satisfaction problems. In: AAAI/IAAI (1997)

2. Bayardo, R.J., Miranker, D.P.: A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. In: AAAI (1996)

3. Behjati, R., Nejati, S.: Backtrack-free consistent configuration of cyber-physical
systems (2014), http://simula.no/publications/Simula.simula.2608

4. Behjati, R., Nejati, S., Briand, L.C.: Architecture-level configuration of large-scale
embedded software systems. In: Accepted for publication in TOSEM (2014)

5. Behjati, R., Yue, T., Briand, L.C., Selic, B.: SimPL: a product-line modeling
methodology for families of integrated control systems. In: Information and Soft-
ware Technology (2013); Special Issue on Software Reuse and Product Lines

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. In: Inf. Syst. (2010)

7. Benavides, D., Segura, S., Trinidad, P., Ruiz Cortés, A.: FAMA: tooling a frame-
work for the automated analysis of feature models. In: VaMoS (2007)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. (1986)

9. Carlsson, M., Mildner, P.: SICStus Prolog – the first 25 years. CoRR (2010)
10. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–
206. Springer, Heidelberg (1997)

11. Czarnecki, K., Kim, P.: Cardinality-Based Feature Modeling and Constraints: A
Progress Report. In: Workshop on Software Factories at OOPSLA (2005)

12. Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction
problems. Artif. Intell. 136(2) (2002)

13. Eames, B.K., Neema, S., Saraswat, R.: DesertFD: a finite-domain constraint based
tool for design space exploration. Design Autom. for Emb. Sys. 14(2) (2010)

14. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiob-
jective optimization. In: Evolutionary Computation (1995)

15. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM
(JACM) (1982)

16. Glover, F., Taillard, E.D.: A user’s guide to tabu search. In: Annals OR (1993)
17. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen, H.R., Møller, J., Hulgaard,

H.: Fast backtrack-free product configuration using a precompiled solution space
representation. In: PETO (2004)

18. Hentenryck, P.V., Saraswat, V.A., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). In: Selected Papers from Constraint
Programming: Basics and Trends (1995)

19. Horváth, Á., Varró, D.: Dynamic constraint satisfaction problems over models.
Software and Systems Modeling (2010)

http://simula.no/publications/Simula.simula.2608


126 R. Behjati and S. Nejati

20. Janota, M., Botterweck, G., Grigore, R., Marques-Silva, J.: How to complete an in-
teractive configuration process? In: van Leeuwen, J., Muscholl, A., Peleg, D., Poko-
rný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 528–539. Springer,
Heidelberg (2010)

21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science (1983)

22. Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Springer-Verlag New York, Inc.
(2007)

23. Mazo, R., Salinesi, C., Diaz, D., Lora-Michiels, A.: Transforming attribute and
clone-enabled feature models into constraint programs over finite domains. In:
ENASE 2011 (2011)

24. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences 7, 95–132 (1974)

25. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1993)

26. OMG. OMG Object Constraint Language (OMG OCL), Version 2.3.1 (2012)
27. Pohl, K., Böckle, G., Linden, F.J.: Software Product Line Engineering: Founda-

tions, Principles and Techniques. Springer-Verlag New York, Inc. (2005)
28. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier

Science Inc., New York (2006)
29. Smullyan, R.M.: First-order logic. Springer (1968)
30. van der Meer, E.R., Wasowski, A., Andersen, H.R.: Efficient interactive configura-

tion of unbounded modular systems. In: SAC (2006)
31. Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range fixes for software

configuration. In: ICSE 2012 (2012)



Benchmarks for Parity Games

Jeroen J.A. Keiren1,2

1 Open University of the Netherlands
Faculty of Management, Science & Technology

Heerlen, The Netherlands
Jeroen.Keiren@ou.nl

2 VU University Amsterdam
Theoretical Computer Science
Amsterdam, The Netherlands

Abstract. We propose a benchmark suite for parity games that in-
cludes the benchmarks that have been used in the literature, and make
it available online. We give an overview of the parity games, including
a description of how they have been generated. We also describe struc-
tural properties of parity games, and using these properties we show that
our benchmarks are representative. With this work we provide a starting
point for further experimentation with parity games.

1 Introduction

Parity games (see, e.g., [24,55,78]) play an important role in model checking
research. The μ-calculus model checking problem is polynomial time reducible
to the problem of deciding the winner in parity games [73]. Other problems that
are expressible in parity games are equivalence checking of labelled transition
systems [73], as well as synthesis, satisfiability and validity of temporal logics
[66].

Besides their practical interest for verification, solving (deciding the winner
of) parity games is known to be in the complexity class NP ∩ co− NP, and
more specifically in UP ∩ co− UP [42]. Parity game solving is one of the few
problems in this complexity class that is not known to be in P, yet there is
hope that a polynomial time algorithm exists. In recent years this has led to the
development of (1) a large number of algorithms for solving parity games, such
as [44,67,68], all of which were recently shown to be exponential, and (2) the
study of (polynomial time) reduction techniques for parity games [30,47,21,22].

So far, practical evaluation of parity game algorithms has been based on ad-
hoc benchmarks, mainly consisting of random games or synthetic benchmarks.
Friedmann and Lange observed in 2009 [30] that no standard benchmark set for
parity games was available. They introduced a small benchmark set in the con-
text of their comprehensive comparison of parity game solving algorithms and
their related heuristics [30]. The set of benchmarks was extended in [47,21,22]
using model checking and equivalence checking cases. To the best of our know-
ledge, the situation has not improved since then, and the benchmarks in these

c© IFIP International Federation for Information Processing 2015
M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 127–142, 2015.
DOI: 10.1007/978-3-319-24644-4�9
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papers still are the most comprehensive benchmarks included in a single paper.
The number of games and the diversity of parity games in each set in isolation
are however limited. The lack of standard benchmarks makes it hard to compare
the different tools and algorithms presented in the literature.

To improve the current situation, in this paper we propose a set of parity
games for benchmarking purposes that (1) is diverse, (2) contains games that
originate from different verification problems, and (3) includes those games that
have been used to experimentally evaluate algorithms in the literature.

In general, parity game examples in the literature can be classified as follows
(we indicate their origins):

1. Encodings of problems such as model checking, equivalence checking and
complementation of Büchi automata to parity games [53,54,75,47,21,22,30].

2. Synthetic parity games for which a certain solving algorithm requires expo-
nential time [53,43,58,26,31,29,35].

3. Random games [6,49,68,69,30,31].

Our benchmarks include games from each of these categories.
Additionally, inspired by the properties for explicit state spaces in [60] we

introduce a set of structural properties for parity games, and in the spirit of
[61,62] we analyse our benchmarks. Among others, we introduce a novel notion
of alternation depth for parity games.

The structure of the paper is as follows. We first introduce parity games
and their structural properties in Section 2. Next we describe the benchmarks
(Section 3) and the way in which they have been generated (Section 4). Finally we
illustrate diversity of our benchmarks with respect to the structural properties in
Section 5. This paper is based on the PhD thesis of the author [45, Chapter 5]; an
extended version of this paper, including more detailed descriptions and analyses
is available as [46]. We plan to keep [46] up-to-date when new benchmarks are
added, and we invite the community to contribute benchmarks.

2 Parity Games and Their Structural Properties

A parity game is a two-player game played on a finite, directed graph by two
players, even and odd, denoted � and �, respectively. We use © ∈ { �,�} to
denote an arbitrary player. Formally, a parity game is a structure (V �, V�,→, Ω),
where V � and V� are disjoint sets of vertices. We say that © owns v if v ∈ V©,
we write V for V �∪V�; →⊆ V ×V provides the total edge relation—hence each
vertex has a successor—and Ω : V → N assigns a non-negative integer priority
to every vertex. The parity game is played by placing a token on some initial
vertex, and then the players take turns moving the token: if the token is on a
vertex v ∈ V© then © plays the token to one of the successors of v. This way, an
infinite play through the game is constructed. If the largest priority that occurs
infinitely often on this play is even (resp. odd) then � (resp. �) wins the play.

The time required for parity game solving and reduction algorithms depends
on the structure of the game. Typically the algorithmic complexity of parity
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game algorithms are expressed in terms of the size of the game graph, i.e. the
number of vertices and edges, and the number of priorities in the game. Although
other structural properties may not affect the asymptotic running times of the
algorithms, in general they do affect the actual running time. We therefore de-
scribe a number structural properties that could be used for the further study
of parity games.

Sizes. As basic parity game properties, we consider the numbers of vertices |V |,∣
∣V �

∣
∣ and |V�|, and the number of edges |→|. We write Ω(V ) for the set of

priorities {Ω(v) | v ∈ V }, and denote the number of priorities in the game by
|Ω(V )|. The number of vertices with priority k is represented by

∣
∣Ω−1(k)

∣
∣. The

complexity of most parity game algorithms is expressed in these quantities. For
parity games in which either |V�| = 0 or

∣
∣V �

∣
∣ = 0, special polynomial time

solving algorithms are available, see [30].

Degrees. Typical structural properties in the graph are the in- and out-degrees of
vertices, i.e., the number of incoming and outgoing edges of vertices. Formally, for
vertex v ∈ V , indeg(v) = |{u ∈ V | u → v}|, outdeg(v) = |{w ∈ V | v → w}|, and
deg(v) = |{w ∈ V | v → w ∨ w → v}| are the in-degree, out-degree and degree
of v. We consider the minimum, maximum and average of these values.

The degrees of vertices might have an effect on, e.g., algorithms that use
lifting strategies to propagate information between vertices. Examples of such
algorithms are small progress measures [43] and the strategy improvement al-
gorithm [68].

Strongly Connected Components. The strongly connected components (SCCs) of
a graph are the maximal strongly connected subgraphs. More formally, a strongly
connected component is a maximal set C ⊆ V for which, for all u, v ∈ C, u →∗ v,
i.e., each vertex in C can reach every other vertex in C.

The strongly connected components in a graph induce a quotient graph. Let
sccs(G) denote the strongly connected components of the graph. The quotient
graph is the graph (sccs(G),→′) and for C1, C2 ∈ sccs(G), there is an edge C1 →′

C2 if and only if C1 	= C2 and there exist u ∈ C1 and v ∈ C2 such that u → v.
Observe that the quotient graph is a directed acyclic graph.

We say that an SCC C is trivial if |C| = 1 and C 	→ C, i.e., it only contains one
vertex and no edges, and we say that C is terminal if C 	→′, i.e., its outdegree in
the quotient graph is 0. The SCC quotient height of a graph is the length of the
longest path in the quotient graph.

Parity game algorithms and heuristics can benefit from a decomposition into
strongly connected components (SCCs). One prominent example of this is the
global parity game solving algorithm presented by Friedmann and Lange [30],
for which it was shown that SCC decomposition generally works well in practice.

Properties of Search Strategies. Given some initial vertex v0 ∈ V , breadth-first
search (BFS) and depth-first search (DFS) are search strategies that can be used
to systematically explore all vertices in the graph. The fundamental difference
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between BFS and DFS is that the BFS maintains a queue of vertices that still
need to be processed, whereas the DFS maintains a stack of vertices. We record
the queue and stack sizes during the search.

Breadth-first search induces a natural notion of levels, where a vertex is at
level k if it has least distance k to v0. The BFS height of a graph is k if k is
the maximal non-empty level of the BFS. For each level the number of vertices
at that level is recorded. During a BFS, three kinds of edges can be detected,
viz. edges that go to a vertex that was not yet seen, edges that go to a vertex
that was seen, but has not yet been processed (i.e., vertices in the queue) and
edges that go back to a vertex on a previous level. This last type of edges is also
referred to as a back-level edge. Formally it is an edge u → v where the level of
u, say ku is larger than the level of v, say kv. The length of a back-level edge
u → v is ku − kv.

Graph algorithms are typically based on a search strategy like BFS or DFS,
given some initial vertex v0 ∈ V . The characteristics of these search strategies
are therefore likely to affect the performance of such graph algorithms.

Width-measures on Graphs. Width-measures of graphs are based on cops-and-
robbers games [56,63], where different measures are obtained by varying the rules
of the game. For various measures, specialised algorithms are known that can
solve games polynomially if their width is bounded. Most of the measures have
an alternative characterisation using graph decompositions.

The classical width notion for undirected graphs is treewidth [64,11]. Intuit-
ively, the treewidth of a graph expresses how tree-like the graph is—the treewidth
of a tree is 1. This corresponds to the idea that some problems are easier to solve
for trees, or graphs that are almost trees, than for arbitrary graphs. For direc-
ted graphs, the treewidth is defined as the treewidth of the graph obtained by
forgetting the direction of the edges. The complexity for solving parity games is
bounded in the treewidth [57]; this means that, for parity games with a small,
constant treewidth, parity game solving is polynomial.

Treewidth has been lifted to directed graphs in a number of different ways.
For instance, Directed treewidth [41] is bounded by the treewidth [1]. DAG-
width [7] describes how much a graph is like a directed acyclic graph. DAG-
width bounds the directed tree width of a graph from above, and is at most
the treewidth. The Kelly-width [40] is yet another generalitation of treewidth to
directed graphs. If the Kelly-width of a graph is bounded, then also a bound
on its directed treewidth can be given, however, classes of directed graphs with
bounded directed treewidth and unbounded Kelly-width exist. Entanglement
[9,10] is a graph measure that aims to express how much the cycles in a graph
are intertwined. If an undirected graph has bounded treewidth or bounded DAG-
with, then it also has bounded entanglement. Finally, clique-width [19] measures
how close a graph is to a complete bipartite graph. For every directed graph
with bounded treewidth an exponential upper bound on its clique-width can be
given. Unlike the other width measures that we discussed clique-width does not
have a characterisation in terms of cops-and-robbers games.
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If a parity game is bounded to a constant in any of the measures introduced
above, it can be solved in polynomial time.

Alternation Depth. Typically, the complexity of parity game algorithms is ex-
pressed in the number of vertices, the number of edges, and the number of pri-
orities in the game. If we look at other verification problems, such as μ-calculus
model checking, or solving Boolean equation systems, the complexity is typic-
ally expressed in terms of the alternation depth. Different versions of alternation
depth (with varying precision) have been coined, see [14]. Intuitively, the altern-
ation depth of a formula captures the number of alternations between different
fixed point symbols.

Analogous to the definition of alternation depth for modal equation systems
by Cleaveland et al. [18], our definition consists of two parts. First we define the
nesting depth of a strongly connected component within a parity game, next we
define the alternation depth of the parity game as the maximum of the nesting
depths of its strongly connected components.

Definition 1. Let G = (V �, V�,→, Ω) be a parity game, and let sccs(G) be
the set of strongly connected components of G. Let C ∈ sccs(G) be a strongly
connected component. The nesting depth of vi in C is given by

nd(vi, C) Δ
= max{1,

max{nd(vj , C) | vj →∗
C,Ω(vi)

vi, vj �= vi and Ω(vi) ≡2 Ω(vj)},
max{nd(vj , C) + 1 | vj →∗

C,Ω(vi)
vi and Ω(vi) �≡2 Ω(vj)}

}

where vj →C,k vi if vj → vi is an edge in the SCC C with Ω(vj) ≤ k and
Ω(vi) ≤ k. Intuitively, the nesting depth of a vertex v counts the number of
alternations between even and odd priorities on paths of descending priorities
in the SCC of v. Note that this is well-defined since we forbid paths between
identical nodes.

The nesting depth of an SCC C ∈ sccs(G) is defined as the maximum nesting

depth of any vertices in C, i.e., nd(C) Δ
= max{nd(v, C) | v ∈ C}. The alternation

depth of a parity game is defined as the maximal nesting depth of its SCCs.

Definition 2. Let G = (V �, V�,→, Ω) be a parity game, and let sccs(G) be the
set of strongly connected components of G. Then the alternation depth of G is

defined as ad(G)
Δ
= max{nd(C) | C ∈ sccs(G)}.

There are reasonable translations of the μ-calculus model checking problem into
parity games, such that the alternation depth of the resulting parity game is at
most the fixed point alternation depth of the μ-calculus formula as described by
Emerson and Lei [25], see [45, Proposition 5.4]. Note that the alternation depth
of a game can be smaller than the number of priorities in the game, and could
provide an interesting alternative to the number of priorities in computing the
complexity of parity game algorithms.
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Other measures. When studying structural properties for labelled transition sys-
tems, other global measures such as diameter and girth have been considered.
The diameter is the maximal length of a shortest path between any pair of
vertices. The girth is the length of the shortest cycle in the graph. Also, local
properties such as the number of diamonds and the k-neighbourhood were stud-
ied. These measures could be considered for parity games as well, but currently
there is no clear indication that they are related to the performance of parity
game algorithms. These measures and their analysis with respect to the games
presented in the next section have been described in more detail in the extended
version [46].

3 Benchmarks

For benchmarking parity game algorithms, it makes sense to distinguish three
classes of parity games, (1) the games that are the result of encoding a problem
into parity games, (2) games that represent hard cases for certain algorithms,
and (3) random games. All three classes of games occur in the literature, and
our benchmark set contains games from each of these classes. In the rest of this
section we discuss our benchmarks. In the next section we briefly discuss these
games with respect to the properties described in Section 2.

3.1 Encodings

A broad range of verification problems can be encoded as a parity game. The most
prominent examples of these are the μ-calculus model checking problem—does a
model satisfy a given property?—, equivalence checking problems—are two mod-
els equivalent?—, decision procedures—is a formula valid or satisfiable?— and
synthesis—given a property, give a model that satisfies the property.

Model Checking. The model checking problems we consider are mainly selected
from the literature. All of the systems are encodings that, given a model L of
a system, and a property ϕ, encode the model checking problem L |= ϕ, i.e.,
does L satisfy property ϕ. Most sensible encodings of model checking problems
typically lead to a low number of priorities, corresponding to the low alternation
depths of these properties. We verify fairness, liveness and safety properties.
This set includes, but is not limited to, the model checking problems described
in [54,75,30,21,22].

We take a number of communication protocols from the literature, see, e.g.,
[4,15,48,38]: two variations of the Alternating Bit Protocol (ABP), the Con-
current Alternating Bit Protocol (CABP), the Positive Acknowledgement with
Retransmission Protocol (PAR), the Bounded Retransmission Protocol (BRP),
the Onebit sliding window protocol, and the Sliding Window Protocol (SWP).
All protocols are parameterised with the number of messages that can be sent,
and the sliding window protocol is parameterised by the window size. For these
protocols a number of properties of varying complexity was considered, ranging
from alternation free properties, e.g. deadlock freedom, to fairness properties.
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A Cache Coherence Protocol (CCP) [76] and a wait-free handshake register
(Hesselink) [39] are considered. For the cache coherence protocol we consider
a number of properties from [59] and for the register we consider properties
from [39]. Additionally we consider a leader election protocol for which we verify
whether it eventually stabilises.

To obtain parity games with a high degree of alternation between vertices
owned by different players we also consider a number of two-player board games,
viz. Clobber [2], Domineering [34], Hex, see e.g. [5,52], Othello, also known as
reversi, see e.g. [65], and Snake. For these games we check for each of the players
whether the player has a winning strategy starting from the initial configuration
of the game. The games are parameterised by their board size.

Additionally, we consider a number of industrial model checking problems.
The first is a system for lifting trucks (Lift) [37], of which we consider both a
correct and an incorrect version. We verify the liveness and safety properties
described in [37]. For the IEEE 1394 Link Layer Protocol (1394) we verify the
properties from [51]. We translated the ACTL properties from [71] to the μ-
calculus.

Finally, we check the Elevator described by Friedmann and Lange, in a ver-
sion in which requests are treated on a first-in-first-out basis (FIFO), and on
a last-in-first-out basis (LIFO). We then check whether, globally, if the lift is
requested on the top floor, then it is eventually served. This holds for the FIFO
version, but does not hold for the LIFO version of the model. The elevator model
is parameterised by the strategy and the number of floors. Furthermore we con-
sider the parity games generated using an encoding of an LTS with a μ-calculus
formula, as well as the direct encoding presented in [30]. In a similar way we
consider the Hanoi towers from [30] as well as our own version of this problem.

Equivalence Checking. Given two processes L1, L2, the problem whether L1 ≡
L2, for relations ≡, denoting that L1 and L2 are equivalent under some pro-
cess equivalence, can be encoded as a parity game [50,77]. We consider strong
bisimulation, weak bisimulation, branching bisimulation and branching simula-
tion equivalence in our benchmarks, using the approach described in [17]. The
number of different priorities in these parity games is limited to 2, but they do
include alternations between vertices owned by different players.

Here we again use the specifications of the communication protocols that we
also used for model checking, i.e., two ABP versions, CABP, PAR, Onebit and
SWP. In addition we include a model of a buffer. We vary the capacity of the
buffer, the number of messages that can be transmitted, and the window size in
the sliding window protocol. We compare each pair of protocols using all four
equivalences, resulting in both positive and negative cases. These cases are a
superset of the ones described in [21,22].

In addition, we include a comparison of the implementation of the wait-free
handshake register with a possible specification. The implementation is trace
equivalent to the specification, but it is not equivalent with respect to the equi-
valences that we consider here.



134 J.J.A. Keiren

Decision Procedures. Parity games can also be obtained from decision procedures
for temporal logics such as LTL, CTL, CTL∗, PDL and the μ-calculus. Friedmann
et al. presented a decision procedure that is based on a combination of infinite
tableaux in which the existence of a tableau is coded as a parity game [33]. For
a given formula, it is checked whether it is (1) valid, i.e., whether the formula
holds in all models, or (2) satisfiable, i.e., whether the formula is satisfiable in
some model.

Our benchmark set includes a number of scalable satisfiability and validity
problems that are provided as examples for the MLSolver tool [32]. In particular,
we include the benchmarks used in [32]: encoding that a deterministic parity con-
dition is expressible as a nondeterministic Büchi condition, and nesting Kleene
stars in different logics. Additionally we consider formulas that involve encodings
of a binary counter in various logics.

Synthesis. Another problem that involves solving parity games is the LTL syn-
thesis problem. Traditional synthesis approaches convert a formula into a
non-deterministic Büchi automaton, which is, in turn, transformed into a de-
terministic parity automaton using Safra’s construction [66]. Emptiness of this
deterministic parity automaton can then be checked using parity games with
three priorities. Synthesis tools have been implemented that employ parity games
internally, most notably GOAL [74] and Gist [16]. All synthesis tools that we are
aware of, however, are research quality tools, of which we have not been able to
obtain working versions on current computing platforms. As a result, our bench-
mark set currently does not include parity games obtained from the synthesis
problem. We plan to extend our benchmarks with such games, and update [46]
accordingly.

3.2 Hard Games

The interesting complexity of solving parity games, and its link to the model
checking problem, have led to the conception of a large number of parity game
solving algorithms. For most of these algorithms it has long been an open prob-
lem whether they have exponential lower bounds.

We consider the games described by Jurdziński that shows the exponential
lower bound for small progress measures [43], the ladder games described by
Friedmann [28] defeating strategy guessing heuristics, recursive ladder games
that give a lower bound for the recursive algorithms, and model checker lad-
der games [27] for which the algorithm by Stevens and Stirling [72] behaves
exponentially.

3.3 Random Games

The final class of games that is typically used in publications that empirically
evaluate the performance of algorithms on parity games are random parity games
[6,69,68,49,30]. We study three classes of random games. We expect that the
structural properties of random games are, typically, different from parity games
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obtained in the previous classes. This class is, therefore, unlikely to give insights
in the performance of parity game algorithms on practical problems.

4 Implementation

All games were generated on a 1TB main memory, 56-core Linux machine, where
each core was running at 2.27GHz. Executions of tools generating and solving
parity games, and tools collecting statistics about parity games, were limited to
running times of 1 hour and their memory usage was limited to 32GB.

To systematically generate the benchmarks, we have implemented tooling
that allows the parallel execution of individual cases. Here a case is either
generating or solving a game, or collecting a single measure. Each individual
case only uses a single core. The tools are implemented in an extensible way,
i.e., additional parity games, additional encodings, as well as additional meas-
ures can be added straightforwardly. The tools are available for download from
https://github.com/jkeiren/paritygame-generator.

4.1 Generating Parity Games

For the generation of our benchmarks we rely on a number of external tools:
version 3.3 of PGSolver [31] for generating random games, and games that prove
to be hard for certain algorithms; version 1.2 of MLSolver to generate the games
for satisfiability and validity problems [32]; and revision 11703 of the mCRL2
toolset [20] for the model checking and equivalence checking problems. For all
games we have collected the information described in Section 2 to the extent in
which this is feasible.

4.2 Collecting Statistics

We developed the tool pginfo for collecting structural information from parity
games. The tool is available from https://github.com/jkeiren/pginfo and
accepts parity games in the file format used by PGSolver. The tool reads a
parity game, and writes statistics to a file in a structured way.

The implementation is built on top of the Boost Graph library [70], which
provides data structures and basic algorithms for manipulating graphs. Com-
puting the exact value for the width-measures is problematic: it is known to be
NP-complete [3]. Approximation algorithms are known that compute upper- and
lower bound for these measures; especially for treewidth these have been thor-
oughly studied [12,13]. To determine feasibility of computing width-measures
for our benchmarks we have implemented three approximation algorithms. For
computing upper and lower bounds on treewidth we implemented the greedy
degree algorithm [12] and the minor min-width algorithm [36], respectively. For
computing an upper bound of the Kelly-width we implemented the elimination
ordering described in [40]. Even these approximation algorithms have proven to
be impractical due to their complexity. Computing (bounds) on the other width
measures is equally complex.

https://github.com/jkeiren/paritygame-generator
https://github.com/jkeiren/pginfo
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4.3 Availability of Parity Games

All parity games that are described in this paper are available for download
from http://www.github.com/jkeiren/paritygame-generator in bzip2 com-
pressed PGSolver format [31]. The dataset is approximately 10GB in size, and
includes the structural information that was collected from these games.

5 Analysis of Benchmarks

We have presented benchmarks originating from different problems. Next we ana-
lyse them with respect to the measures described in Section 2. This analysis il-
lustrates that our benchmarks exhibit a wide variety of properties. Furthermore,
this gives us some insights in the characteristics of typical parity games. For each
of the statistics, we only consider games for which that specific statistic could be
computed within an hour, and we only include those statistics that can feasibly be
computed for the majority of games, as a consequence the width measure are ex-
cluded from the analysis we present here. We used this selection to avoid timeouts
for computing the measures that are expensive to compute. All graphs in this sec-
tion are labelled by their class. Note that the satisfiability and validity problems are
labelled by “mlsolver” and the games that are hard for some solving algorithms are
labelled by “specialcases”. The full data presented in this chapter is also available
from http://www.github.com/jkeiren/paritygame-generator. Due to lack
of space, we cannot present an analysis of all measures.

Our data set contains 1037 parity games that range from 2 vertices to 40
million vertices, and on average they have about 95,000 vertices. The number of
edges ranges from 2 to 167 million, with an average of about 3.1 million. The
59 parity games are games in which all vertices are owned by a single player,
the so-called solitaire games [8], the rest are parity games in which both players
own non-empty sets of vertices. The parity games that we consider have differing
degrees. There are instances in which the average degree is 1, the average degree
is maximally 9999, but it is typically below 10. The ratio between the number of
vertices and the number of edges is, therefore, relatively small in general. This
can also be observed from Figure 1a, which displays the correlation between the
two. The games in which these numbers coincide are on the line x = y, the
other games lie around this line due to the log scale that we use. Our parity
games generally contain a vertex with in-degree 0, which is the starting vertex.
Most of the games contain vertices with a high in-degree—typically representing
vertices that are trivially won by either of the players—, and vertices with a high
out-degree.

In general, the SCC quotient height ranges up to 513 for the parity games
that we consider with an average of around 14. The number of non-trivial SCCs
can grow large, up to 1.4 million for our games.

We have included parity games with alternation depths up to 50,000 as shown
in Figure 1b. Observe that the games for model checking and equivalence check-
ing included in our benchmarks all have alternation depth at most 2. Model
checking problems could be formulated that have a higher alternation depth—up

http://www.github.com/jkeiren/paritygame-generator
http://www.github.com/jkeiren/paritygame-generator
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Fig. 1. Relation between number of vertices and (a) number of edges (b) alternation
depth. The legend is the same for both plots.

to arbitrary numbers—however, in practice properties have limited alternation
depth because they become too hard to understand otherwise. The satisfiability
and validity properties have alternation depths between 1 and 4. The alternation
depths of the random games are between 10 and 15. All parity games with more
than 50 priorities represent special cases. Closer investigation shows that these
special cases are the clique games and recursive ladder games.

To summarise, we have presented a large set of parity games. For a selection of
the structural properties introduced in Section 2 we have shown that the games
cover a large range of values. Due to space restrictions we have not covered all
structural properties here, we refer to [46] for a more detailed analysis. Also ob-
serve that, for parity game specific properties such as alternation depth, higher
values are only available for smaller games due to generation times. Unsurpris-
ingly, the random games considered in this paper are not structurally similar to
parity games that represent encodings of verification problems.

6 Closing Remarks

No standard benchmarks for parity game algorithms existed. As a consequence,
it was virtually impossible to make a good comparison between algorithms and
applications described in the literature. In this paper we have addressed this issue
by presenting a comprehensive set of parity game benchmarks. Our benchmarks
include the games that appear in the literature, and provides a first step towards
standardising experimental evaluation of parity game algorithms. All games have
been generated in an extensible way, and are available on-line.

We also presented a set of structural properties for parity games, and analysed
our benchmarks with respect to these properties. Of particular interest is a
new notion of alternation depth for parity games, that is always at most the
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number of priorities in a parity game, and that is bounded also by the alternation
depth of μ-calculus formulae given a reasonable translation of the model checking
problem.

Future work. Some of the structural properties, such as treewidth, cannot be
computed for all games in the benchmark suite due to their complexity. An
interesting algorithmic question is, therefore, whether algorithms or heuristics
can be devised that can compute or approximate these measures for large graphs.

Additionally, we have presented a selection of structural properties in this
paper. One can wonder whether there are other structural properties of parity
games that are relevant to the practical performance of parity game algorithms.
The question whether the theoretical complexity of existing parity game al-
gorithms can be made tighter using structural properties, such as our notion of
alternation depth is left open.

We believe our work also paves the way for a full-scale comparison of par-
ity game algorithms and the effect of heuristics in the spirit of [30], including
the comparison of alternative implementations of algorithms [20,23]. Here also
the impact of the structural properties on the performance of implementations
should be studied, since we have only scratched the surface of this aspect in this
paper.

Finally, we welcome the addition of problems and properties to our bench-
mark suite to establish and maintain a corpus for experimentation with parity
game algorithms. In particular parity games with a large number of priorities
and a high alternation depth stemming from encodings of, e.g., verification and
synthesis problems form a welcome addition.
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61. Pelánek, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Faculty of Informatics Masaryk University Brno (2006)
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Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

63. Quilliot, A.: Jeux et pointes fixes sur les graphes. PhD thesis, Université de Paris
VI (1978)

64. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309–322 (1986)



142 J.J.A. Keiren

65. Rose, B.: Othello: A Minute to Learn... A Lifetime to Master (2005)
66. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on

Foundations of Computer Science, pp. 319–327. IEEE (1988)
67. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)

FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)
68. Schewe, S.: An optimal strategy improvement algorithm for solving parity and

payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008)

69. Schewe, S.: Synthesis of Distributed Systems. Phd thesis, Universität des Saar-
landes (2008)

70. Siek, J.G., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and
Reference Manual. Addison-Wesley (2002)

71. Sighireanu, M., Mateescu, R.: Verification of the link layer protocol of the IEEE-
1394 serial bus (FireWire): An experiment with e-Lotos. STTT 2(1), 68–88 (1998)

72. Stevens, P., Stirling, C.: Practical model checking using games. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998)

73. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal
of IGPL 7(1), 103–124 (1999)

74. Tsay, Y.K., Chen, Y.F., Tsai, M.H., Chan, W.C., Luo, C.J.: GOAL extended:
Towards a research tool for omega automata and temporal logic. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer,
Heidelberg (2008)

75. van de Pol, J.C., Weber, M.: A multi-core solver for parity games. Electronic Notes
in Theoretical Computer Science 220(2), 19–34 (2008)

76. Veldema, R., Hofman, R.F.H., Bhoedjang, R.A.F., Jacobs, C.J.H., Bal, H.E.:
Source-level global optimizations for fine-grain distributed shared memory systems.
ACM SIGPLAN Notices 36(7), 83–92 (2001)

77. Vergauwen, B., Lewi, J.: Efficient local correctness checking for single and altern-
ating Boolean equation systems. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994.
LNCS, vol. 820, pp. 304–315. Springer, Heidelberg (1994)

78. Zielonka, W.: Infinite games on finitely coloured graphs with applications to auto-
mata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)



A Behavioural Theory

for a π-calculus with Preorders

Daniel Hirschkoff1, Jean-Marie Madiot1, and Xian Xu2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France,
2 East China University of Science and Technology, China

Abstract. We study the behavioural theory of πP, a π-calculus in the
tradition of Fusions and Chi calculi. In contrast with such calculi, re-
duction in πP generates a preorder on names rather than an equivalence
relation. We present two characterisations of barbed congruence in πP:
the first is based on a compositional LTS, and the second is an axiomati-
sation. The results in this paper bring out basic properties of πP, mostly
related to the interplay between the restriction operator and the preorder
on names.

Consequently, πP is a calculus in the tradition of Fusion calculi, in
which both types and behavioural equivalences can be exploited in order
to reason rigorously about concurrent and mobile systems.

1 Introduction

The π-calculus expresses mobility via name passing, and has two binders: the
input prefix binds the value to be received, and restriction is used to delimit the
scope of a private name. The study of Fusions [16], Chi [8], Explicit Fusions [20]
and Solos [13] has shown that using restriction as the only binder is enough to
express name passing. In such calculi (which, reusing a terminology from [10],
we shall refer to as fusion calculi), the bound input prefix, c(x).P , is dropped
in favour of free input, cb.P , and communication involving two prefixes cb and
ca generates the fusion of names a and b. This yields a pleasing symmetry
between input and output prefixes; moreover, one can encode bound input in
terms of free input as (νx)cx.P . Fusion calculi therefore promote minimality
(keep only restriction as a binder) and symmetry (input and output prefixes
play similar roles). Moreover, and most importantly, fusions act on restricted
names, in contrast with the π-calculus, where restricted names can only replace
names bound by input (and are thus treated like constants).

The behavioural theory of existing fusion calculi is generally simpler than in
the π-calculus (in particular, bisimilarity is a congruence). Fusion calculi have
notably been used to analyse concurrent constraints [19], to study distributed
implementations of programming languages [9,5] and to establish connections
with proof theory [7].

Symmetry comes however at a price. It has indeed been shown in [10] that
i/o-types (input/output types, [17]) cannot be adapted to a fusion calculus. Such
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types go beyond the simple discipline of sorting, and can be useful, in particular,
to reason using typed behavioural equivalences [17,18].

The intuitive reason of the incompatibility of i/o-types with fusions can be
explained by considering the following structural congruence law in Explicit
Fusions (but the point is essentially the same for other fusion calculi):

a(x).P | a=b ≡ b(x).P | a=b .

Process a=b is an explicit fusion. The law says that in presence of a=b, an input
on a can be viewed as the same input on b, and vice-versa (fusion processes
are somehow akin to equators, in an asynchronous setting [12]). This shows
that fusions define a symmetric relation on names; this is incompatible with a
nontrivial (i.e., asymmetric) subtyping relation, which is necessary for i/o-types
to make sense.

This observation has led in [10] to the introduction of πP, a π-calculus with
name preorders. The most important difference between πP and existing name-
passing calculi is that interaction does not have the effect of equating (or fusing)
two names, but instead generates an arc process, as follows:

ca.P | cb.Q −→ a/b | P | Q .

The arc a/b expresses the fact that anything that can be done using name b can
be done using a as well (but not the opposite): we say that a is above b. Arcs
induce a preorder relation on names, which can evolve along reductions.

Arcs can modify interaction possibilities: in presence of a/b, a is above b, hence
a process emitting on b can also make an output transition along channel a. In
general, an output on channel c can interact with an input on d provided c and
d are joinable, written c� d, which means that there is some name that is above
both c and d according to the preorder relation. To formalise these observations,
the operational semantics exploits conditions involving names, which are either
of the form b ≺ a (a is above b), or a � b (a and b are joinable).

πP can be described as a variant of Explicit Fusions, in which arcs replace
fusion processes. Beyond the possibility to define i/o-types and subtyping for
πP [10], we would like to analyse the consequences of the novel aspects of πP,
whose behaviour does not seem to be reducible to existing calculi.

In particular, name preorders have an impact on how processes express be-
haviours. Barbed congruence for πP, written �, is defined in [10]. Some laws for
� suggest that the behavioural theory of πP differs w.r.t. existing fusion calculi.
As an illustration, consider the following interleaving law, which is valid in πP
(and in π):

a(x).b(y).(x | y) � a(x).b(y).(x.y + y.x) .

a(x) is the emission of a fresh name x on a, and x (resp. y) stands for an output
(resp. input) where the value being transmitted is irrelevant. In Fusions, unlike
in the π-calculus, the process that creates successively two fresh names x and y
cannot prevent the context from equating (“fusing”) x and y. Hence, in order
for the equivalence to hold, it is necessary to add a third summand on the right,
[x = y]τ . This example suggests that πP gives a better control on restricted
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names than existing fusion calculi. This issue also motivated the study of two
variants of fusion calculi that have a refined notion of restriction [3,4].

The main purpose of the present work is to deepen the study of the be-
havioural theory of πP, in an untyped setting. We define a Labelled Transition
System (LTS) for πP, and show that the induced notion of bisimilarity, written
∼, characterises � (Section 3). It can be noted that [10] presents a characteri-
sation of barbed congruence, using an LTS that is rather ad hoc, because it is
based on the definition of the reduction relation. Unlike the latter, the LTS we
present here is structural.

The LTS reveals interesting aspects of interaction in πP. An important obser-
vation is related to the interplay between arcs and the restriction operator. It is
for instance possible for a process to react to an input offer on some channel, say
c, without being actually able to perform an output on c. This is the case for
process P0 � (νa)(a(x).0 | a/c). Because a is above c in the preorder, P0 cannot
do an output on c, although c is occurs free in P0 (it could if the arc a/c was
replaced with c/a). However, P0 | c(y).0 can perform a reduction: intuitively,
by extending the scope of (νa), the input at c can be moved to a, so that the
communication takes place.

This phenomenon leads to the addition of a new type of labels in the LTS,
corresponding to what we call protected actions : in the example P0 can do a pro-
tected output at c, meaning that it can react to an input offer at c. Accordingly,
we introduce protected names, which correspond to (usages of) names where a
protected action occurs: intuitively, in P0, name c is protected. As expected,
protected actions correspond to observables in the reduction-based semantics
supporting the definition of �.

Arc processes do not have transitions, but they induce relations between
names, which in turn influence the behaviour of processes. Accordingly, strong
bisimilarity, ∼, not only tests transitions, but also has a clause to guarantee that
related processes entail the same conditions.

Finally, the LTS also includes a label [ϕ]τ , expressing “conditional synchroni-
sation”. Intuitively, process a | b is not able to perform a τ transition by itself,
but it should be when the environment entails a� b. Hence, in order for our LTS
to be compositional, we include labels of the form [ϕ]τ , interpreted as “τ under
the condition ϕ”.

In Section 4, we provide a second characterisation of barbed congruence, by
presenting a set of laws that define an axiomatisation of �. Algebraic laws help
analysing the behaviour of the constructs of the calculus and their interplay. We
present a sample of behavioural equalities, and explain how they can be derived
equationally, in Section 4.1.

The axiomatisation we give is less simple than, say, the one for Fusions in [16],
for two reasons: first, we manipulate preorders between names rather than equiv-
alences. Second, the preorder is explicitly represented in processes, so that some
equational laws must describe the interplay between processes and the preorder
relation. On the contrary, such aspects are dealt with implicitly in Fusions—we
sketch how our ideas can be adapted to Explicit Fusions in Section 4.3.
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The axiomatisation exploits the idea that πP processes have a state compo-
nent, corresponding to the preorder induced by arcs. Several laws in the ax-
iomatisation express persistence of the state component (the state can only be
extended along computation). Moreover, the restriction operator prevents the
state from being globally shared in general: for instance, in process P0 above,
name a can be used instead of c, but is only known inside the scope of (νa). All
in all, the handling of restriction in our axiomatisation requires more care than
is usually the case, due to the necessity to express the “view” that subprocesses
have on the preorder of names.

To present the axiomatisation, we renounce minimality. The syntax of the
calculus in this paper differs from the one in [10]: we include bound prefixes
and sums with conditions, as it is customary for axiomatisations for the π-
calculus [15,18]. We compare the calculus from [10] with ours in Remark 3
and Proposition 11. We show that the differences are unimportant: the calculus
from [10] can be encoded into ours and the behavioural equivalence is unaffected.

We focus in this paper on a finite calculus. This is sufficient to enlighten the
main aspects of the behavioural theory of processes. We do not expect any unpre-
dicted difficulty to arise, in the definition of labelled transitions and bisimilarity,
from the extension of πP with a replication operator.

The paper describes our results and sketches the most important proofs. We
refer to [11] for a more detailed presentation of the technical details. Related
work is discussed along the paper, where it is relevant.

2 πP: Reduction-Based Semantics

The Calculus: Preorders and Processes. We consider a countable set of names
a, b, c, . . . , x, y, . . . , and define conditions (ϕ), extended names (α, β), prefixes
(π) and processes (P,Q) as follows:

ϕ ::= a ≺ b
∣
∣ a � b α, β ::= a

∣
∣ {a} π ::= α(x)

∣
∣ α(x)

∣
∣ [ϕ]τ

P,Q ::= P | Q ∣
∣ (νa)P

∣
∣ a/b

∣
∣ Σi∈Iπi.Pi

There are two forms of conditions, ranged over with ϕ: ϕ = a ≺ b is read “b is
above a” and ϕ = a � b is read “a and b are joinable”. In both cases, we have
n(ϕ) = {a, b}. We explain below how we extend relations ≺ and � to extended
names. When n(ϕ) = {a}, we say that ϕ is reflexive, and abbreviate in this case
prefix [ϕ]τ as τ . Condition b ≺ a is ensured by the arc process a/b.

In a prefix α(x) or α(x), we say that extended name α is in subject position,
while x is in object position. As discussed in Section 1, extended names include
protected names, of the form {a}, which can be used in subject position only. We
call protected prefix a prefix where the subject is a protected name. A prefix of the
form [ϕ]τ is called a conditional τ , while other prefixes are called visible. Bound
and free names for prefixes are given by: bn([ϕ]τ) = ∅ and bn(α(x)) = bn(α(x)) =
{x}, fn([ϕ]τ) = n(ϕ), fn(α(x)) = fn(α(x)) = n(α) with n(a) = n({a}) = {a}.

In a sum process, we let I range over a finite set of integers. 0 is the inactive
process, defined as the empty sum. We use S to range over sum processes of the
form Σi∈Iπi.Pi, and write π.P ∈ S if π.P is a summand of S. We sometimes
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decompose sum processes using the binary sum operator, writing, e.g., S1 + S2

(in particular, S + 0 = S). We abbreviate π.0 as π, and write α(x).P simply as
α.P when the transmitted name is not relevant, and similarly for α. In (νa)P ,
(νa) binds a in P , and prefixes α(x) and α(x) bind x in the continuation process.
The set of free names of P , fn(P ), is defined in the usual way, and we work up to
α-conversion of processes. P{b/a} is the process obtained by substituting a with
b in P , in a capture-avoiding way.

We use an overloaded notation, and define processes representing conditions:

a � b � (νu)(u/a | u/b) a ≺ b � b/a .

Below, Γ ranges over sets of conditions. We define Γ 	 ϕ, meaning that Γ implies
ϕ, and P � ϕ (we write P � Γ to express that P entails ϕ for all ϕ ∈ Γ ):

Γ 	 a ≺ a

ϕ ∈ Γ

Γ 	 ϕ

Γ 	 b � a

Γ 	 a � b

Γ 	 a ≺ b
Γ 	 b ≺ c

Γ 	 a ≺ c

Γ 	 a ≺ b
Γ 	 c ≺ b

Γ 	 a � c

Γ 	 a ≺ b
Γ 	 b � c

Γ 	 a � c

a/b� b ≺ a

P � Γ Γ 	 ϕ

P � ϕ

P � ϕ

P | Q� ϕ

Q� ϕ

P | Q� ϕ

P � ϕ a /∈ n(ϕ)

(νa)P � ϕ

As an example, the reader might check that (νu)(u/a | u/b) | b/c � a � c.

Reduction Semantics and Barbed Congruence. The definition of structural con-
gruence, ≡, is standard. In particular, we have

Σi∈Iπi.Pi ≡ Σi∈Iπσ(i).Pσ(i) if σ is a permutation of I .

Relations ≡ and � are used to define the reduction of processes. We rely on �
to infer that two processes interact on joinable (extended) names. This allows
us to introduce reduction-closed barbed congruence, along the lines of [10].

Definition 1 (Reduction). Relation 
→ is defined by the following rules:

α(x).P ∈ S1 β(y).Q ∈ S2 R � α � β x �= y

R | S1 | S2 
→ R | (νxy)(x/y | P | Q)

where:
a � {b} = {b} � a = a ≺ b
{a} � {b} = undefined

[ϕ]τ.P ∈ S R� ϕ

R | S 
→ R | P
P 
→ P ′

P | R 
→ P ′ | R
P 
→ P ′

(νa)P 
→ (νa)P ′
P ≡ 
→ ≡ P ′

P 
→ P ′

Definition 2 (Barbs, barbed congruence). We write P ↓a if P | a(x).ω 
→
P ′, where P ′ is a process in which ω is unguarded, and ω is a special name that
does not appear in P . We define similarly the barb ↓a, using the tester a(x).ω.

Barbed congruence, �, is the largest congruence that satisfies:

– if P ↓a and P � Q then Q ↓a, and similarly for ↓a, and
– if P 
→ P ′ and P � Q then for some Q′, Q 
→ Q′ and P ′ � Q′.

We can remark that P0 ↓c, where P0 is the process defined in Section 1.

The remainder of the paper is devoted to the presentation of two characteri-
sations of �. We first comment on the definition of πP given above.
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One could consider an alternative version of reduction, called “eager”, whereby
arcs can rewrite prefixes in one step of computation, yielding, e.g., d/c | c(x).P 
→
d/c | d(x).P . It appears in [10] that the present semantics is more compelling (for
instance a(x).a(y) would not be equivalent to a(x) | a(y) in the eager version).

Remark 3 (Encodability of free and protected prefixes).
In πP, arcs act like “instantaneous forwarders”. This allows us to define an

encoding [·]f from a calculus with free prefixes to a calculus with bound prefixes
as follows (x is chosen fresh):

[ab.P ]f � a(x).([P ]f | x/b) [ab.P ]f � a(x).([P ]f | b/x) ,

where [·]f preserves other operators of the calculi. We return to this encoding
below (Proposition 11), and show that it allows us to reflect behavioural equiv-
alence in [10] into our calculus.

We can also encode protected prefixes as follows (u is chosen fresh):

[{a}(x).P ]p � (νu)(u/a | u(x).[P ]p) [{a}(x).P ]p � (νu)(u/a | u(x).[P ]p) .

Although protected prefixes are in some sense redundant, we do not treat them
as derived operators, to simplify the presentation (in particular in Section 4).

The results of this paper (Sections 3 and 4) can be adapted to a calculus
featuring only free prefixes, and restriction as the only binder, like the calcu-
lus of [10]. This yields more complex definitions to handle bound prefixes and
protected actions, in particular when defining sum processes. We discuss in [11]
a presentation of transitions and bisimilarity based on free prefixes. It can be
noted that the axiomatisation of Fusions given in [16] relies only on free input
and output, and treats bound prefixes as derived operators. We think that, for
πP, handling prefixes for bound and protected actions as derived operators would
introduce further technical complications that would make the axiomatisation
more obscure.

3 A Labelled Transition System for πP

3.1 LTS and Bisimilarity

The LTS defines transitions P
μ−→ P ′, where the grammar for the labels, μ, is

the same as the one for prefixes π. We comment on the rules, given in Figure 1.
The first two rules correspond to the firing of visible prefixes. The transi-

tion involves a fresh name x, upon which the participants in a communication
“agree”. Name y remains local, via the installation of an arc, according to the
directionality of the prefix. (Adopting a rule with no arc installation would yield
a more complex definition of ∼). The rule for the [ϕ]τ prefix is self explanatory.
The rule describing communication follows the lines of the corresponding rule
for 
→; no arc is installed (but arcs are introduced in the prefix rules).

The three rules mentioning � are called preorder rules. The two preorder
rules for visible actions exploit ≺, which is defined for extended names (as we
did for � above). Note that the condition involving � is the same in these two
rules. To understand these rules, and the role of protected actions, we recall the
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x /∈ n(α) ∪ {y} ∪ fn(P )

α(y).P
α(x)−−−→ (νy)(x/y | P )

x /∈ n(α) ∪ {y} ∪ fn(P )

α(y).P
α(x)−−−→ (νy)(y/x | P ) [ϕ]τ.P

[ϕ]τ−−→ P

P
α(x)−−−→ P ′ Q

β(x)−−−→ Q′

P | Q [α�β]τ−−−−−→ (νx)(P ′ | Q′)

P
[ϕ2]τ−−−→ P ′ P � Γ Γ, ϕ1 � ϕ2

P
[ϕ1]τ−−−→ P ′

P
α(x)−−−→ P ′ P � α ≺ β

P
β(x)−−−→ P ′

P
α(x)−−−→ P ′ P � α ≺ β

P
β(x)−−−→ P ′

a ≺ {b} = a � b
{a} ≺ {b} = b ≺ a
{a} ≺ b = undefined

P
μ−→ P ′ a /∈ fn(μ) ∪ bn(μ)

(νa)P
μ−→ (νa)P ′

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P | Q μ−→ P ′ | Q
πi.Pi

μ−→ P ′

Σiπi.Pi
μ−→ P ′

Fig. 1. LTS for πP. Symmetric versions of the two rules involving | are omitted.

basic intuition about arcs: an arc d/a can transform an interaction at a into an
interaction at d. For instance, from P

a(x)−−−→P ′ and P � a ≺ d, we can derive
P

d(x)−−−→P ′. As a consequence, an input at a can synchronise with an output at
b if both a and b can be “pulled upwards in the preorder”, using arcs, to some
name, say u, which is above a and b. Observe also that if, like in P above, the
input at a is transformed into an input at d, then a name u′ standing above d
and b can be used to let the synchronisation happen (because u′ would be above
a and b).

If, on the contrary, we want to replace, in the input, name a with a name
that sits below a, say c (like in process P0 from Section 1), we are moving
downwards in the preorder. Because of this, the action becomes protected, and
we can derive for instance P0

{c}(y)−−−→, because a(x).0 | a/c � c � a (and hence
a ≺ {c}). By going downwards, we have somehow fixed the channel where the
communication occurs (e.g., at a in Pfxu0). Indeed, it is no longer the case that
an output at b can synchronise with the protected input at c whenever some u
is above b and c, because such u would not necessarily be above a (where the
original input takes place) and b in the preorder. For this reason, we can only
move further downwards in the preorder, and for instance deduce, from P0

{c}(y)−−−→,
that P0

{c1}(y)−−−−→ as soon as c1 ≺ c (which implies {c} ≺ {c1}).
The other preorder rule can be used to modify conditional τs involved in a

transition. As an example, let P1 � (a(x).Q | n/u) | (u(y).R | n/a). Process P1

can perform a τ transition: the two arcs can, intuitively, let the output at a and
the input at u interact at name n. Technically, this can be derived by inferring
a [a�u]τ−−−−→ transition (from the output on the left and the input on the right),
which can then be turned into a τ transition, exploiting the fact that the whole
process entails a � u. Finally, the congruence rules are as expected.

Definition 4 (∼). A symmetric relation R is a bisimulation if P R Q implies:
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– If P � ϕ then Q� ϕ.

– If P
α(x)−−−→ P ′, with x /∈ fn(Q), then there is Q′ such that Q

α(x)−−−→ Q′ and
P ′ R Q′; we impose the same condition with α instead of α.

– If P
[ϕ]τ−−→ P ′ then there is Q′ such that Q

[ϕ]τ−−→ Q′ and P ′ | ϕ R Q′ | ϕ.
Bisimilarity, written ∼, is the greatest bisimulation.

This definition can be related to the efficient bisimulation from [20]. In the
last clause, we add ϕ in parallel, since the transition is fired only if ϕ is satisfied.

Remark 5. Our LTS does not have rules for opening and closing the scope of a
restriction. Instead, we rely on arcs in πP to handle scope extrusion. To illustrate
this, consider the following πP transition where a a private name c is emitted:

a(c).P
a(x)−−−→ (νc)(c/x | P ) .

Name x is visible in the label, and arc c/x is installed. Through x, the envi-
ronment can affect c, so that πP actually implements scope extrusion via arcs,
without the need to move restrictions. We have:

a(c).P | a(y).Q τ−→ (νx)((νc)(c/x | P ) | (νy)(x/y | Q))
� (νc)(νy)(P | c/y | Q) .

3.2 The Characterisation Theorem

Lemma 6. If P ≡ Q and P � ϕ then Q� ϕ.

Definition 7. We define a relation ϕ between labels as follows: (i) α1(x) ϕ

α2(x) and α1(x) ϕ α2(x) when ϕ = α2 ≺ α1, and (ii) [ϕ1]τϕ[ϕ2]τ when
ϕ1, ϕ 	 ϕ2.We write P for the smallest preorder containing all ϕ when P �ϕ.

Intuitively, ηP μ means that label μ is less general than η, given some condi-
tion (ϕ above) entailed by P . For instance, we have {a}(x)0 a(x). This notion
is used in the following lemma to reason about transitions of processes.

Lemma 8. If P
μ−→ P ′ and ηP μ then P

η−→ P ′. Conversely, whenever P
η−→ P ′,

there exists μ such that ηP μ and P
μ−→ P ′, of which there is a proof, not bigger

than the one for P
η−→ P ′, that does not end with a preorder rule.

Congruence for parallel composition is proved using Lemma 8, which gives:

Lemma 9. Relation ∼ is a congruence.

Theorem 10 (Characterisation). P � Q iff P ∼ Q.

Proof (Sketch). The proof follows a standard pattern: soundness is a consequence
of Lemma 9. For completeness, we have to show that contexts can express the
conditions in the three clauses of Definition 4, and we define accordingly tester
processes. The first clause about ϕ is handled using process α.w1 | β.w2 where α
and β are such that ϕ = α � β. For transitions (second clause), the counterpart
of, e.g., {a}(x)−−−→, is given by tester process a(y).(z/y | w | w). We use process ϕ for

the third clause, since P [ϕ]τ−−→ Q iff P | ϕ τ−→ Q | ϕ. ��
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As mentioned above, the calculus in [10] is a version of πP with prefixes for
free input and output, and without the corresponding bound prefixes. Let us call
that calculus πP1. The encoding [·]f, which we introduced in Remark 3, allows
us to embed πP1 into πP in a faithful way:

Proposition 11. P �πP1 Q (in πP1) iff [P ]f � [Q]f (in πP).

The proof of the above result exploits in a crucial way the fact that, although
πP1 does not feature sums and the [ϕ]τ prefix, those are not needed to prove the
completeness of ∼.

4 Axiomatisation

4.1 Equational Laws for Strong Bisimilarity

Notations and Terminology. We use A to range over processes that consist
of compositions of ϕ processes only, which we call preorder processes. We often
view such processes as multisets of conditions. We use notation A,P to denote a
process that can be written, using the monoid laws for parallel composition, as
A | P , where P does not contain toplevel arcs. Note that A may contain restric-
tions, but only those corresponding to the definition of join processes (given in
Section 2).

We write 	 P = Q whenever P and Q can be related by equational reasoning
using the laws of Figure 2. We omit the standard laws expressing that | and +
obey the laws of commutative monoids, and that + is idempotent. We also omit
the laws for equational reasoning (equivalence, substitutivity). We will reason
up to these laws in the remainder.

Comments on the Laws. Before presenting the properties of the axiomatisa-
tion, we comment on the laws of Figure 2 and illustrate them on some examples.

As usual, expansion (L1) allows us to rewrite the parallel composition of two
sum processes into a sum, the third summand describing synchronisation in πP.

Preorders. Laws L2-L5 express basic properties of relations ≺ and �, and actu-
ally provide an axiomatisation of ∼ for preorder processes.

Prefixes. Law L6 propagates ϕs in depth, expressing the persistence of condition
processes (ϕ). Law L7 is the counterpart of the third clause of Definition 4, and
describes the outcome of a [ϕ]τ transition. Similarly, laws L18-L19 correspond
to the firing of visible transitions in the LTS (regarding these rules, see also the
comments after Proposition 16).

α-conversion for input prefixes follows from laws L20 and L18, by deriving
the following equalities (and similarly for the other visible prefixes):

a(y).P
L18
= a(x).(νy)(x/y | P )

L20
= a(x).(νy′)(x/y′ | P{y′

/y}) L18
= a(y′).P{y′

/y} .
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Expansion law (we can suppose x 	= y, bn(πi) /∈ fn(T ), bn(ρj) /∈ fn(S).)

L1 Σiπi.Pi
︸ ︷︷ ︸

S

| Σjρj .Rj
︸ ︷︷ ︸

T

= Σiπi.(Pi | T ) + Σjρj .(S | Rj)
when α � β is defined.

+ Σi,j [α�β]τ.(νxy)(x/y | Pi | Rj) and {πi, ρj}={α(x), β(y)}
Laws for preorder processes

L2 a ≺ b | b ≺ c = a ≺ b | b ≺ c | a ≺ c L3 a ≺ b | c ≺ b = a ≺ b | c ≺ b | a � c

L4 a ≺ b | b � c = a ≺ b | b � c | a � c L5 a ≺ a = 0

Laws for prefixes (the counterparts of laws L11-L13 for output are omitted)

L6 ϕ, S + π.P = ϕ, S + π.(ϕ | P ) L7 [ϕ]τ.P = [ϕ]τ.(ϕ | P )

L8 [a ≺ a]τ.P = [b � b]τ.P

L9 [a � b]τ.P = [a � b]τ.P + [a ≺ b]τ.P
L10 [a � b]τ.P = [a � b]τ.P + [b � a]τ.P

L11 a(x).P = a(x).P + {a}(x).P
L12 b/a, S + a(x).P = b/a, S + a(x).P + b(x).P

L13 a/b, S + {a}(x).P = a/b, S + {a}(x).P + {b}(x).P

L14 b/a, S + [a ≺ c]τ.P = b/a, S + [a ≺ c]τ.P + [b ≺ c]τ.P

L15 a/b, S + [c ≺ a]τ.P = a/b, S + [c ≺ a]τ.P + [c ≺ b]τ.P

L16 b/a, S + [a � c]τ.P = b/a, S + [a � c]τ.P + [b � c]τ.P

L17 b/a, S + [a � c]τ.P = b/a, S + [a � c]τ.P + [c ≺ b]τ.P

L18 α(y).P = α(x).(νy)(x/y | P ) if x /∈ fn(P )

L19 α(y).P = α(x).(νy)(y/x | P ) if x /∈ fn(P )

Laws for restriction (the counterparts of laws L26 and L27 for output are omitted;
a ≺ b ∈ A	= stands for a ≺ b ∈ A and a 	= b, and similarly for a � b.)

L20 (νb)P = (νa)(P{a/b}) if a /∈ fn(P ) L21 (νc)(νd)P = (νd)(νc)P

L22 P | (νa)Q = (νa)(P | Q) if a /∈ fn(P ) L23 (νa)0 = 0

L24 (νa)A = {b ≺ c | b ≺ a, a ≺ c ∈ A	=} 
 {b � c | b ≺ a, c ≺ a ∈ A	=}

 {b � c | a � c, b ≺ a ∈ A	=} 
 {ϕ ∈ A | a /∈ n(ϕ)}

L25 (νa)(A, S+ π.P ) = (νa)
(

A, S + π.(νa)(A | P )
)

a /∈ n(π)

L26 (νa)(A, S+ a(x).P ) = (νa)
(

A, S +Σa≺b∈A	=b(x).(νa)(A | P )
+Σb≺a∈A	=

∨a�b∈A	=
{b}(x).(νa)(A | P )

)

L27 (νa)(A, S+ {a}(x).P ) = (νa)
(

A, S +Σb≺a∈A	={b}(x).(νa)(A | P )
)

L28 (νa)(A, S+ [a ≺ c]τ.P ) = (νa)
(

A, S +Σa≺b∈A	=[b ≺ c]τ.(νa)(A | P )
)

a 	= c

L29 (νa)(A, S+ [c ≺ a]τ.P ) = (νa)
(

A, S +Σb≺a∈A	=[c ≺ b]τ.(νa)(A | P )
)

a 	= c

L30 (νa)(A, S+ [a � c]τ.P ) = (νa)
(

A, S +Σa≺b∈A	=[b � c]τ.(νa)(A | P ) a 	= c
+Σb≺a∈A	=

∨a�b∈A	=
[c ≺ b]τ.(νa)(A | P )

)

Fig. 2. An axiomatisation of ∼
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Laws L11-L17 can be used to expand process behaviours using the preorder:
arcs can modify the subject of visible prefixes (L11-L13) and the condition in [ϕ]τ
prefixes (L14-L17). Laws L9, L10 and L14-L17 rely on the defining properties of
relations ≺ and �. Finally, law L8 is used to equate all reflexive τ prefixes.

Restriction. Laws L20-L23 are standard. The other laws are used to “push”
restrictions inside processes. Due to the necessity to handle the preorder com-
ponent (A), they are rather complex.

Law L24 is used to eliminate a restriction on a name a in a preorder process,
by propagating the information expressed by all ϕs that mention a.

Law L25 is rather self-explanatory, and shows how the A component prevents
us from simply pushing the restriction downwards (under prefixes).

Laws L26-L30 describe a kind of “synchronous application” of the prefix laws
seen above. For instance, the two summands in law L26 correspond to applica-
tions of laws L12-L13: as we push the restriction on a downwards, we make sure
that all possible applications of these laws are taken into account.

Intuitively, L24 is applied after laws L25-L30 have been used to erase all
prefixes mentioning the restricted name a, pushing the restriction on a inwards.

All in all, the set of laws in Figure 2 is rather lengthy. We make two comments
on this. First, it can be remarked that axiomatisations often treat restriction sep-
arately, by first focusing on a restriction-free calculus. In πP, because of preorder
processes, we cannot in general push restrictions on top of sum processes, so the
situation is more complex (see also the discussion about [14] in Section 5).

Second, we could have presented the laws in a more compact way, by writing
schemas. A uniform presentation for laws L8-L17 and L26-L30 is as follows:

η A μ μ.P ∈ S

A, S = A,S + η.P

a ∈ fn(μ) ∀η A μ a ∈ fn(η) ∨ ∃ρ η A ρ ∧ ρ.P ∈ S

(νa)(A, μ.P + S) = (νa)(A,S)

(To remove μ.P from μ.P + S, the second rule requires that some ρ.P are in S.
The second rule can be used to add those summands to S.) We prefer nevertheless
to write all rules explicitly, since this is how they are handled in proofs.

Examples of Derivable Equalities. In the following examples, we sometimes
switch silently to notation A,P to ease readability. We also allow ourselves to
simplify some reasonings involving prefixes where the object is not important.
We explain how the following derivable between πP processes can be derived:

(νa)(b/a | a/c) = b/c (νa)(S+a(x).P ) = (νa)S

(νa)(a/b | a(x).P ) = {b}(x).(νa)P a(x).x = a(x).{x} a(x).{x} = a(x).0

The first equality above is established using law L24: before getting rid of the
restriction on a, we compute all conditions not involving a that can be deduced
from b/a | a/c. In this case, this is only b/c.

The second equality is a direct consequence of law L26. Law L26 is also used
for the third equality: only the second sum in the law is not empty, which gives
(νa)(a/b, a(x).P ) = (νa)(a/b, {b}(x).(νa)P ). Then, L22 allows us to restrict the
scope of νa, and we can get rid of (νa)a/b using law 24, which yields the result.
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Another way to see the third equality is to observe that we can derive a/b,
a(x).P = a/b, a(x).P + {a}(x).P + {b}(x).P using laws L11 and L13. In the latter
process, the sum is intuitively expanded, in the sense that all derivable toplevel
summands have been made explicit. When considering the restricted version
of both processes, it is sound to push the restriction on a downwards in the
expanded process, to obtain the expected equality. In this sense, law L26 im-
plements a “synchronous version” of this reasoning, so as to insure that when
pushing a restriction downwards, the behaviour of the process is fully expanded.

The next two equalities illustrate the meaning of protected names. We reason

as follows: a(x).x
L19
= a(x′).(νx)(x/x′, x) L26

= a(x′).(νx)(x/x′, {x′}.(νx)(x/x′ | 0)).
We then obtain the expected equality by getting rid of (νx)x/x′, twice, using
laws L22 and L24. The reason why this equality holds is that fresh name x is
emitted without the context having the ability to interact at x, since x will never
be under another name in an arc. Therefore, the input at x is equivalent to a
protected input.

In the last equality, because of the transition a(x).{x} a(x′)−−−→(νx)(x′/x | {x}), x
will never be above another name, so that the prefix {x} cannot be triggered,
and is equivalent to 0. This equality is derived as follows:

a(x).{x} L18
= a(x′).(νx)(x′/x | {x}) L27

= a(x′).(νx)x′/x L24
= a(x′).0 .

(we have explained above how a(x′).0 = a(x).0 can be derived).

We leave it to the reader to check that the law for interleaving, presented
in Section 1, can be derived using the expansion law, followed by the rules for
prefixes and restriction to get rid of the summand [x � y]τ.(νt, u)(t/u).

4.2 Soundness and Completeness of the Axioms

Lemma 12 (Soundness). The laws of Figure 2 relate bisimilar processes.

Proof (Sketch). For laws 24-30, we establish a “saturation property”, expressing
the fact that when erasing a preorder process ϕ or a prefix π that mentions a,
we generate all processes ϕ or π could induce. The other laws are easy. ��

Auxiliary Results: Preorder Processes, Prefixes, Restriction.
In order to establish completeness, we first need some technical results, given

by Propositions 13, 16 and 17.
First, laws L2-L5 can be used to saturate preorder processes:

Proposition 13. If A1, S1 ∼ A2, S2, then there exists A� such that 	 Ai, Si =
A�, Si (i = 1, 2), and A� =

∏{ϕ | ϕ not reflexive and A1 � ϕ}.
(Note that we could have picked A2 instead of A1 above.) We say that A is
a saturated preorder process whenever A� ≡ A. We use A� to range over such
processes. We can remark that even if A contains only arcs, A� may contain
restrictions, because of induced conditions involving �.

The next lemma relates transitions of sum processes and the laws for prefixes.
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Lemma 14. If A,S
μ−→ A,P then 	 A,S = A,S + π.Q for some π and Q such

that μ and π only differ in their bound names and π.Q
μ−→ P .

Laws L9-L17 can be used to “saturate” the topmost prefixes in sums. We ex-
press this using the equivalence below, and rely on Lemma 14 to prove Prop. 16:

Definition 15 (Head sum normal form, �h). Given two sum processes S
and T , we write S ≺h T whenever for any summand π.P of S, there exists a
summand π.Q of T with π.P ∼ π.Q. We let S �h T stand for S ≺h T ∧ T ≺h S.

Proposition 16. Whenever A�, S1 ∼ A�, S2, where S1, S2 are two sum pro-
cesses, there are S′

1, S
′
2 s.t. 	 A�, Si = A�, S′

i (for i = 1, 2) and S′
1 �h S′

2.

In the definition of ≺h, we impose π.P ∼ π.Q, and not simply P ∼ Q. The
equivalence induced by the choice of the latter condition would indeed be too
discriminating. To see why, consider Q1 = a(x).c/x and Q2 = a(x).0. Obviously,
c/x �∼ 0. On the other hand, we have Q1 ∼ Q2: after a a(y)−−−→ transition on both
sides, we must compare (νx)(c/x | y/x) and (νx)(y/x), and both are bisimilar to 0.
In order to derive 	 Q1 = Q2, we rely on the following property, which explains
the shape of laws L18, L19: a(y).P ∼ a(y).Q iff (νy)(x/y | P ) ∼ (νy)(x/y | Q).

Proposition 17 expresses that restrictions can be pushed inwards in processes.
It introduces a notion of measure on processes that is useful to reason by induc-
tion on processes in the completeness proof:

Proposition 17. We define |P | as follows: |Σiπi.Pi| = maxi (1 + |Pi|) |(νa)P |
= |P |, |P | Q| = |P |+ |Q|, and |a/b| = 0.

For any A,S, a, there exist A′ and S′ such that 	 (νa)(A,S) = A′, S′ and
|(νa)(A,S)| ≥ |A′, S′|.

Establishing Completeness. The grammar P ::= A,Σiπi.Pi

∣
∣ (νa)P defines

what we call |-free processes : only arcs are composed, and the non-preorder part
of processes is a sum.

Proposition 18. For all |-free processes P and Q, P ∼ Q iff 	 P = Q.

Proof (Sketch). The ‘if’ part follows from Lemmas 9 and 12. Suppose now
P ∼ Q; we reason by induction on |P |+ |Q|. By Propositions 17, 13 and 16, we
obtain 	 P = A�, S1 and 	 Q = A�, S2, for some A, S1, S2 such that S1 �h S2.

We then consider a(x).T1 ∈ S1 and a(x).T2 ∈ S2 s.t. a(x).T1 ∼ a(x).T2. The
latter yields, by triggering the input transition, (νx)(y/x | T1) ∼ (νx)(y/x | T2).
By induction we derive 	 (νx)(y/x | T1) = (νx)(y/x | T2) from which we get
	 a(x).T1 = a(x).T2 by law L18.

The other kinds of prefixes are handled similarly. This reasoning allows us to
prove 	 S1 = S2 and hence 	 P = Q. ��

The expansion law yields the following result, which then gives Theorem 20.

Lemma 19. For any P , there exists a |-free process Q s.t. 	 P = Q.
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Theorem 20 (Axiomatisation of ∼). For all P and Q, P ∼ Q iff 	 P = Q.

Remark 21 (Normal forms). The proofs of the results in this section suggest
that we can define a strategy to apply the rules of Figure 2, in order to rewrite
a πP process P to its normal form, nf(P ), so that P ∼ Q iff nf(P ) = nf(Q). We
leave the rigorous description of this normalisation procedure for future work.

4.3 Adapting our Axiomatisation to Explicit Fusions

We can reuse the ideas presented above to describe an axiomatisation for barbed
congruence in Explicit Fusions (EF, [20]). EF feature fusion processes, of the form
a=b, which can equate names via ≡: we have a=b | P ≡ a=b | P{b/a}.

Like in πP, we work with three kinds of prefixes, a(x), a(x) and [a=b]τ , the
latter being the counterpart of [ϕ]τ in πP (it appears, e.g., in [20]).

The “state component” of processes is simpler in EF than in πP, since fusions
implement an equivalence relation on names. The laws of Figure 2 can be ported
to EF, yielding an axiomatisation. We only discuss some relevant laws, and refer
to [11] for a complete definition. The laws for fusion processes are

a=a = 0 a=b | a=c = a=b | a=c | b=c a=b = b=a ,
and the EF counterpart of (some of) the laws for prefixes in πP is given by

a=b | a(x).P = a=b | b(x).P a=b | [a=c]τ.P = a=b | [b=c]τ.P
(laws L6-L7 are inherited directly, ϕ denoting fusions). Because fusions satisfy
transitivity, every fusion can be eliminated if one of its names is restricted, as
(νa)(a=b | P ) ∼ P{b/a}. This makes the laws for restriction much simpler than
in πP:

(νa)a=b = 0 (νa)Σiπi.Pi = Σi|a/∈n(πi)πi.(νa)Pi .

5 Conclusions and Future Work

Working with a preorder on names has an influence on the behavioural theory
of πP, notably through the interplay between arcs and restrictions. The preorder
relation is represented explicitly in πP processes, using arcs. We do not see any
natural “implicit version” of πP, mimicking the relation between Explicit Fusions
and Fusions, whereby the extension of the preorder along a communication would
not generate an arc process.

The stateful nature of the preorder component of πP processes can be related
to frames in the applied π-calculus [1] and Psi-calculi [2]. Arcs in πP can be seen
in some sense as substitutions, but they differ from the active substitutions of
applied π. The latter map variables to terms, while, in the tradition of fusion
calculi, we only have (channel) names in πP. Moreover, several arcs acting on the
same name are allowed in πP, while a substitution acts on at most one variable
in applied π. For these reasons, the behavioural theories of πP and applied π are
rather different. Liu and Lin’s proof system for applied π [14] departs from our
axiomatisation for πP, but has in common the stateful component of processes.
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Psi-calculi can represent the active substitutions of applied π. It would be
interesting to study whether arcs, and the preorder between names, can be rep-
resented in the setting of Psi-calculi. An important technical point to address
in this perspective is whether transitivity of (generalised) channel equivalence
in Psi-calculi would conflict with the fact that name joinability is not transi-
tive in πP. Another important feature of Psi-calculi is that they come with a
fully mechanised metatheory: this is clearly something that πP is lacking at the
moment.

The behavioural theory of πP is based on an operational account. An intriguing
question is the construction of a denotational model for πP, and the comparison
with known models for π and Fusions. We would also like to study the weak
version of behavioural equivalence.

The results of this work provide foundations for the behavioural theory of the
πP calculus, which also has i/o-types (cf. [10]). As already mentioned, typed be-
havioural equivalence [17,6] can be used to establish fine behavioural properties
of concurrent systems. We would like to find out whether it can be helpful to
refine untyped analyses of systems where Fusions have been used.

Acknowledgements.We thank Davide Sangiorgi and Fu Yuxi for useful discus-
sions about this work. This work has been supported by projects ANR 12IS02001
PACE, ANR 2010-BLAN-0305 PiCoq and NSF of China (61261130589).
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Abstract. This paper investigates the impact of non-determinism and
modularity on the complexity of incremental incorporation of safety re-
quirements while preserving liveness (a.k.a. the problem of incremental
synthesis). Previous work shows that realizing safety in non-deterministic
programs under limited observability is an NP-complete problem (in the
state space of the program), where limited observability imposes read
restrictions on program components with respect to the local state of
other components. In this paper, we present a surprising result that syn-
thesizing safety remains an NP-complete problem even for deterministic
programs! The results of this paper imply that non-determinism is not
the source of the hardness of synthesizing safety in concurrent programs;
instead, limited observability has a major impact on the complexity of
realizing safety. We also provide a roadmap for future research on ex-
ploiting the benefits of modularization while keeping the complexity of
incremental synthesis manageable.

Keywords: Program Synthesis, Safety Specifications, Non-
Determinism, Modularity.

1 Introduction

Understanding the complexity of realizing new (safety/liveness) properties is of
paramount importance since today’s systems often have to adapt to new re-
quirements while preserving some existing functionalities. Safety stipulates that
nothing bad ever happens (e.g., at most one process/thread accesses shared re-
sources at any moment), and liveness states that something good will eventually
occur (e.g., each process eventually gets access to shared resources). New re-
quirements are raised due to changes in platform, environmental faults, design
flaws, new user requirements (e.g., non-functional concerns), porting, etc. Thus,
it is important to enhance our understanding of what complicates behavioral
changes. Towards this end, this paper investigates the complexity of redesigning
finite-state programs towards capturing new safety requirements while preserv-
ing liveness, called the problem of incremental synthesis.
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Several approaches exist for capturing safety most of which lack a thorough
complexity analysis. For example, aspect-oriented approaches [5,17,16,10,13,6]
provide a method for capturing and verifying cross-cutting functionalities.
Control-theoretic techniques [25,12] realize new safety requirements by gener-
ating controllers that implement safety in different components of a system.
Techniques based on transformation automata [24] enforce safety and/or se-
curity policies. Our previous work [7,3] shows that incremental synthesis for
non-deterministic programs can be done in polynomial time (in the size of
program state space) if we consider unlimited observability, where program
components/processes can atomically read the state of other processes. Nonethe-
less, the authors of [4] demonstrate that incremental synthesis of safety in non-
deterministic programs under limited observability is NP-complete (in the size of
the program state space). Limited observability imposes restrictions on processes
with regard to reading the state of other processes. Vechev et al. [27] present
an exponential algorithm for synthesizing synchronization mechanisms under
limited observability, but they provide no results on the general case hardness
of synthesizing synchronization mechanisms. Now, the open questions are: What
role do non-determinism and observability/modularization play in the complexity
of incremental synthesis? Is incremental synthesis of safety easier for determin-
istic programs?

In this paper, we prove that non-determinism is not the major source of the
complexity of incremental synthesis; rather it is modularization constraints that
complicate the incremental synthesis of safety properties. We consider Alpern
and Schneider’s [1] definition of safety/liveness properties, where a property is a
set of sequences of states. Their definition of a safety property P can be repre-
sented as a set of finite sequences that cannot be extended to be in P , which we
call them bad sequences. We also investigate a special case of safety properties
that can be specified as a set of Bad Transitions (BT) (introduced in [18]). The
BT model is more general than the usual notion of Bad States (BS) in that every
transition reaching a bad state is considered to be a bad transition, whereas not
every bad transition reaches a bad state [20]. Previous work [7,3] shows that in-
cremental synthesis of safety (for deterministic and non-deterministic programs)
can be done in polynomial time (in the size of the state space) under unlimited
observability. Nonetheless, we show that under limited observability the general
case complexity of synthesizing safety in deterministic programs increases to
NP-complete! Our results imply that limited observability has a major impact
on the complexity of incremental synthesis of safety (see Figure 1) regardless of
non-determinism/determinism. While modularity is a powerful design concept,
design for change [22] is also an important goal. To achieve this goal, research
should be focused on identifying the kind of modularization techniques that
facilitate incremental synthesis.

Organization. Section 2 presents preliminary concepts. Section 3 formulates
the problem of incremental synthesis of safety. Section 4 shows that the general
case complexity of incremental synthesis of safety in deterministic programs
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increases to NP-complete if we assume limited observability. Finally, in Section
5, we make concluding remarks and present a roadmap for future research.

Unlimited Observability Limited Observability

Deterministic Programs P NP-complete∗

Non-Deterministic Programs P NP-complete

Fig. 1. The impact of non-determinism and limited observability on the complexity of
incremental synthesis (∗ depicts the contribution of this paper).

2 Preliminaries

In this section, we present formal definitions of finite-state programs, program
components1 The definition of specification is adapted from Alpern and Schnei-
der [1]. We use a read/write model from [2,19].

Programs. A program p = 〈Vp, Cp, Ip,Fp〉 is a tuple of a finite set Vp of variables
and a finite set Cp of computing components C1, · · · , Ck, where k ≥ 1. Each
variable vi ∈ Vp, for 1 ≤ i ≤ N , has a finite non-empty domain Di. A state s
of p is a valuation 〈d1, d2, · · · , dN 〉 of program variables 〈v1, v2, · · · , vN 〉, where
di ∈ Di. Ip denotes a finite set of initial states, and Fp represents a finite set of
accepting/final states. For a variable v and a state s, v(s) denotes the value of
v in s. The state space Sp is the set of all possible states of p and |Sp| denotes
the size of Sp. A state predicate is a subset of Sp. A transition is an ordered pair
(s, s′), where s and s′ are program states. A component Cj is a triple 〈δj , rj , wj〉,
where 1 ≤ j ≤ k and δj ⊆ Sp × Sp denotes the set of transitions of Cj . We
shall define rj and wj below. The set of transitions of a program p, denoted δp,

is the union of the sets of transitions of its components; i.e., δp =
⋃k

j=1 δj . A
program p is non-deterministic iff (if and only if) the transition function δp is
defined as Sp → 2Sp . A deterministic program is a special case where from each
state there is at most one outgoing transition. That is, the set δp defines a partial
(transition) function from Sp to Sp. Thus, given a state s ∈ Sp, δp returns at
most one state s′ ∈ Sp. This is a property that each δj inherits from δp.
Notation. For simplicity, we shall misuse p and δp interchangeably.

Read/Write Model. In order to model the access rights of each component Cj

(1 ≤ j ≤ k) with respect to program variables, we define a set of variables that Cj

is allowed to read, denoted rj , and a set of variables that Cj can write, denoted
wj . Notice that, if a variable v of some component Ci is read/written through the
interface of Ci, then v is considered readable/writable for the component that
invokes the interface of Ci. We assume that wj ⊆ rj ; i.e., a component cannot
blindly write a variable it cannot read. The write restrictions of a component

1 The term component can capture objects in object-oriented program,
threads/processes in concurrent programming, nodes of network protocols, etc.,
computations and safety specifications.
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Cj identify a set of transitions {(s, s′) | ∃v : v /∈ wj : v(s) 
= v(s′)} that δj
excludes, where v denotes a variable. For example, consider a program pr with
two components C1 and C2 and two binary variables v1 and v2. The component
C1 (respectively, C2) can read and write the variable v1 (respectively, v2), but it
cannot read (or write) v2 (respectively, v1). Let 〈v1, v2〉 denote the state of the
program pr. A transition t1, represented as (〈0, 0〉, 〈1, 1〉), does not belong to C1

because v2 /∈ w1 and the value of v2 is being updated. For similar reasons, t1
does not belong to C2 either.

The effect of read restrictions is that, during the synthesis of safety, δj of
a component Cj includes (respectively, excludes) a transition t iff a group of
transitions associated with t is included (respectively, excluded) in δj [19,2].
In the aforementioned example, consider the transition t2 as (〈0, 0〉, 〈1, 0〉). If
C1 includes only t2, then the execution of t2 can be interpreted as the atomic
execution of the following if statement: ‘if (v1 = 0)∧ (v2 = 0) then v1 := 1’; i.e.,
C1 needs to read v2. Including both transitions (〈0, 0〉, 〈1, 0〉) and (〈0, 1〉, 〈1, 1〉)
makes the value of v2 irrelevant, thereby eliminating the need for reading v2 by
C1. Thus, the component C1 must either include or exclude both transitions as
a group. Formally, a component Cj can include a transition (s, s′) if and only if
Cj also includes any transition (sg, s

′
g) such that for all variables v ∈ rj , we have

v(s) = v(sg) and v(s′) = v(s′g), and for all variables u /∈ rj , we have u(s) = u(s′)
and u(sg) = u(s′g).

Computations. A computation of a program p = 〈Vp, Cp, Ip,Fp〉 is a sequence
of states σ =� s0, s1, · · · , where each transition (si, si+1) in σ (i ≥ 0) belongs
to some component Cj , 1 ≤ j ≤ k, i.e., Cj executes the transition (si, si+1), and
σ is maximal. That is, either σ is infinite, or if σ is finite and terminates in a
state sf , then there is no component of p that executes a transition (sf , s) for
any state s. A computation prefix of p is a finite sequence σ =� s0, s1, · · · , sm 
of states in which every transition (si, si+1), for 0 ≤ i < m, is executed by some
component Cj , 1 ≤ j ≤ k.

Properties and Specifications. Intuitively, a safety property/requirement
states that nothing bad ever happens. Formally, we follow Alpern and Schnei-
der [1] in defining a property as a set of sequences of states. A safety property P
can be represented by a set of finite sequences of states, denoted B, that cannot
be extended to be in P . Each sequence in B represents a scenario of the occur-
rence of something bad. For example, a safety property of a program with an
integer variable x could stipulate that an increment of x must not immediately
be followed by a decrement in the value of x. Such a safety property can be
represented by a set of bad sequences of three states (i.e., two immediate tran-
sitions; one that increments x and the subsequent one that decrements x). In
this paper, a liveness property states that something good eventually happens,
including good things that occur infinitely often. Formally, a liveness property,
denoted L, is a set of sequences of states, where each sequence in L either ter-
minates in a state belonging to a state predicate F (representing the good thing
that should happen), or infinitely often visits some states in F . This notion of
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liveness is sufficiently general to capture stutter-invariant Linear Temporal Logic
(LTL) [8] properties [11,23]. Following Alpern and Schneider [1], we define a spec-
ification, denoted spec, as a set of safety and liveness properties. A computation
σ =� s0, s1, · · ·  of a program p = 〈Vp, Cp, Ip,Fp〉 satisfies a specification spec
from Ip iff (1) s0 ∈ Ip, (2) no sequence of the safety of spec, denoted B, appears
in σ, and (3) if σ terminates in a state sf , then sf ∈ Fp; otherwise, some states
in Fp are reached infinitely often in σ. A program p satisfies its specification
spec from Ip iff all computations of p satisfy spec from any state in Ip. Given
a finite computation σ =� s0, s1, · · · , sd , if no program component executes
from sd and sd /∈ Fp, then σ is a deadlocked computation and sd is a deadlock
state. A computation σ =� s0, s1, · · ·  of p is a non-progress computation iff σ
does not infinitely often reach some state in Fp nor does it terminate in a state
in Fp. A deadlocked computation is an instance of a non-progress computation.
Another example is the case where a computation of p includes a cycle in which
no state belongs to Fp, called a non-progress cycle. If a computation σ includes
a sequence in B, then σ is a safety-violating computation. A computation σ of
p violates spec from a state s0 iff σ starts at s0 and σ is either a non-progress
computation or a safety-violating computation. A program p violates spec from
Ip iff there exists a computation of p that violates spec from some state s0 in
Ip.
Notation. Whenever it is clear from the context, we abbreviate ‘p satisfies spec
from Ip’ as ‘p satisfies spec’.

Bad Transitions (BT) Model. Consider a special case in which safety speci-
fications are modeled as a set of finite sequences of length 2; i.e., a sequence has
only two states. That is, the safety specification rules out a set of transitions
that must not appear in program computations, called bad transitions [18]. For
instance, the safety specification of a program with an integer variable x may
stipulate that x can be decremented only if its value is positive. Consider a state
s0, where x(s0) = −2. State s0 can be reached either by incrementing x from s1,
where x(s1) = −3, or by decrementing x from s2, where x(s2) = −1. Observe
that the transition (s2, s0) is a bad transition, whereas (s1, s0) is not. In this
model, reaching s0 does not necessarily violate safety and it depends on how
s0 is reached. Such a model of safety specification is a restricted version of the
general model of safety specifications presented by Alpern and Schneider [1],
but it is more general than the usual model of bad states often specified in the
literature in terms of the always operator (or invariance properties) in temporal
logic [8].

Remark. We investigate incremental synthesis under “no fairness”.

3 Problem Statement

In this section, we formally define the problem of incremental synthesis of safety.
Let p = 〈Vp, Cp, Ip,Fp〉 be a program that satisfies a specification spec. Moreover,
let B denote the safety of spec, and Bnew represent a new safety property (e.g.,
data race-freedom) that p does not satisfy. Our goal is to redesign p to a program
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pr = 〈V r
p , Cr

p, Ir
p ,Fr

p 〉, such that pr satisfies B ∧ Bnew and the liveness of spec
from Ir

p . For simplicity, during such redesign, we do not expand the state space
of p; i.e., no new variables are added to Vp. Thus, we have V

r
p = Vp and Sr

p = Sp.
Since pr must still satisfy spec from all states in Ip, we should preserve all initial
states of p. Thus, we require that Ip = Ir

p . We state the problem as follows:

Problem 1. Incremental Synthesis of Safety

– Input: A program p = 〈Vp, Cp, Ip,Fp〉 with its specification spec, its set
of safety properties B, a new safety property Bnew and a set of read/write
restrictions for all components in Cp.
• Input Assumptions: The program p satisfies spec from Ip, but p may not
satisfy Bnew from Ip.

– Output: A redesigned program pr = 〈V r
p , Cr

p , Ir
p ,Fr

p 〉.
– Constraints:

1. V r
p = Vp (i.e., Sr

p = Sp)
2. Ir

p = Ip
3. Fr

p ⊆ Fp and Fr
p 
= ∅

4. The number of components and the read/write restrictions of each com-
ponent in Cp remain the same in Cr

p , but δj of each component Cj may
change in Cr

p

5. δpr 
= ∅, and pr satisfies B ∧ Bnew from Ip
6. Starting from any initial state s0 ∈ Ip, the revised program pr satisfies

its liveness specifications.

We now define the decision problem of incremental synthesis in the BT model.

Problem 2. Decision Problem of Incremental Synthesis

– Instance: A program p = 〈Vp, Cp, Ip,Fp〉 with its specification spec, its set
of safety properties B, a new safety property Bnew and a set of read/write
restrictions for all components in Cp, where B and Bnew are specified in the
BT model of safety.

– Question: Does there exist a program pr = 〈V r
p , Cr

p , Ir
p ,Fr

p 〉 that meets the
constraints of Problem 1?

Significance of Problem 1. Several activities (e.g., debugging, porting, compo-
sition) during software development are instances of Problem 1. A few examples
are as follows:

– Debugging: Consider the debugging of concurrent programs for data races
between multiple threads. That is, multiple threads access shared data where
at least one of them performs a write operation. Data race-freedom is a safety
property whereas ensuring that each thread eventually gains access to the
shared data (i.e., makes progress) is a liveness property. Eliminating data
races while preserving the progress of each thread is a clear example of
synthesizing safety [27].
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– Porting: Consider a scenario in which a distributed application designed to
be deployed on a traditional wireless network is considered for deployment
on a wireless sensor network. The sensor nodes have a power-saving mode in
which a node automatically turns off its radio (i.e., sleep mode) if no network
activities are detected for a specific time interval. To port an existing wireless
application to this new platform, one has to revise the application considering
the sleep mode. That is, some of the activities would be forbidden in the sleep
mode (e.g., sending messages). This is an additional safety constraint that
should be met while preserving all other safety/liveness properties.

– Composition and incremental development: While in this paper we
investigate Problem 1 in the same state space (i.e., no new variables are
added while synthesizing safety), we will investigate the synthesis of safety
under more relaxed conditions where the redesigned program may include
new variables. Such a generalized formulation of Problem 1 captures soft-
ware composition. Several approaches in software engineering (e.g. aspect-
oriented programming [15]) rely on incremental design of software where
modules/components that implement features/aspects are incrementally
composed with an existing base system [15,14,26,16]. Moreover, there are
numerous applications where software behaviors should evolve by composing
plug-in components (e.g., Mozilla extensions) or by integrating mobile code
(e.g., Java applets, composable proxy filters [21]). While some researchers
have investigated type safety of compositions [26], dynamic safety properties
of compositions are also of paramount importance.

4 Hardness of Incremental Synthesis

In this section, we illustrate that the general case complexity of synthesizing
safety in deterministic programs increases significantly if program components
have limited observability with respect to the state of other components. The
intuition behind our complexity result lies in the difficulty of redesigning program
computations towards capturing a new safety property while preserving liveness.
Consider a computation σ =� s0, · · · , si−1, si, · · · , where i > 0, in a program
p and a new safety property Bnew that forbids the execution of the transition
t = (si−1, si); i.e., t must not be executed in the redesigned program. As such,
we have to remove t. If si−1 /∈ Fp, then σ becomes a deadlocked computation.
To resolve the deadlock state si−1, we systematically synthesize a new sequence
of states σr =� s′0, · · · , s′k , for k ≥ 0, that is inserted between si−1 and
si to satisfy Bnew (i.e., avoid executing t). Note that while a direct transition
from si−1 to si violates Bnew, there may be another sequence of states that can
be traversed from si−1 to si without violating Bnew. The same argument holds
about building a computation prefix between any predecessor of si−1 and any
successor of si; there is nothing particular about si−1 and si.

Additionally, the synthesized sequence σr must not preclude the reachability
of the accepting states in σ. To meet this requirement, no transition (s, s′) in σr

should be grouped with a transition (sg, s
′
g) such that sg is reachable in some
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computation of pr and the execution of the transition (sg, s
′
g) causes one of the

following problems: (1) s′g is a deadlock state, (2) (sg, s
′
g) is a safety-violating

transition that must not be executed, and (3) s′g is a predecessor state of sg
in σ, thereby creating a non-progress cycle2. To ensure that the above cases
do not occur, we should examine (i) all transitions selected to be in σr, (ii)
all transitions used to connect σr to si−1 and si along with their associated
transition groups, and (iii) the transitions of other computations. Intuitively,
this leads to exploring an exponential number of possible combinations of the
safe transitions (and their transition groups) that can potentially be selected to
be in σr. With this intuition, we prove that synthesizing safety in deterministic
programs in the BT model of safety under limited observability is NP-complete
(using a reduction from the 3-SAT problem [9]).

Problem 3. The 3-SAT Decision Problem
- Instance: A set of propositional variables, x1, x2, ..., xn, and a Boolean

formula Φ = C1 ∧C2 ∧ ...∧Cm, where m,n > 1 and each clause Cj (1 ≤ j ≤ m)
is a disjunction of exactly three literals. Wlog, we assume that the literals xi

and ¬xi do not simultaneously appear in the same clause (1 ≤ i ≤ n).
- Question: Does there exist an assignment of truth values to x1, x2, ..., xn

such that Φ is satisfiable?

In Subsection 4.1, we present a polynomial mapping from an arbitrary instance
of 3-SAT to an instance of Problem 2. In Subsection 4.2, we illustrate that the
instance of 3-SAT is satisfiable iff safety can be synthesized in the instance of
Problem 2.

4.1 Polynomial Mapping from 3-SAT

In this section, we illustrate how for each instance of 3-SAT, we create an in-
stance of Problem 2, which includes a program p = 〈Vp, Cp, Ip,Fp〉, and its safety
specification B and the new safety property Bnew that should be captured by the
redesigned program. We build the instance of Problem 2 by considering states
and transitions corresponding to each propositional variable and each clause in
the instance of 3-SAT.

States and Transitions. Corresponding to each propositional variable
xi, where 1 ≤ i ≤ n, we consider the states ai, a

′
i, bi, b

′
i, ci, c

′
i and di

(as illustrated in Figure 2). We also include an additional state an+1.
For each variable xi, the instance of Problem 2 includes the transi-
tions (ai, di), (ai, bi), (bi, ai), (ai, b

′
i), (bi, ci), (bi, c

′
i), (b

′
i, c

′
i), (c

′
i, b

′
i), (ci, a

′
i), (c

′
i, a

′
i)

and (di, a
′
i).

Corresponding to each clause Cr = xi ∨ ¬xj ∨ xk, where 1 ≤ r ≤ m and
1 ≤ i, j, k ≤ n, program p includes 8 states zr, zri, z

′
ri, zrj, z

′
rj, zrk, z

′
rk and z′r,

and 7 transitions (zr, zri), (zri, z
′
ri), (z

′
ri, zrj), (zrj , z

′
rj), (z

′
rj, zrk), (zrk, z

′
rk) and

2 If s′g is a successor of sg in σ or is reachable in a different computation, then sg
should not have any other outgoing transition due to the determinism constraints.
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(z′rk, z
′
r) depicted in Figure 3. Notice that the transitions in Figures 2 and 3

belong to different program components, which we shall explain later.

Fig. 2. The set of states and safe transitions corresponding to each propositional vari-
able xi in the instance of 3-SAT. Each state is annotated with the values assigned to
program variables in that state.

Fig. 3. States and transitions considered in the instance of Problem 2 corresponding
to each clause Cr = xi ∨ ¬xj ∨ xk along with the values of variables.

Input program. The input program p includes the transitions (ai, di) and
(di, a

′
i), for 1 ≤ i ≤ n and the transitions (an, an+1) and (an+1, a1) (see Figure

4). Starting from a1, the input program p executes transitions (ai, di), (di, a
′
i)

and (a′i, ai+1), where 1 ≤ i ≤ n. From an+1, the program returns to a1.
Initial and final states. The states a1 and zr (1 ≤ r ≤ m) are initial states,
and an+1 is an accepting/final state. Moreover, the states zri, zrj, zrk and z′r are
accepting states, where 1 ≤ r ≤ m and 1 ≤ i, j, k ≤ n. Starting from a1, the final
state an+1 is infinitely often reached. Further, if the program starts at zr then it
will halt in the accepting state z′r. Since all transitions (ai, di), (di, a

′
i), (a

′
i, ai+1)

and (an+1, a1) satisfy B, the program p satisfies its safety and liveness specifica-
tions from a1. In summary, we have

– Ip = {a1} ∪ {zr|1 ≤ r ≤ m}
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Fig. 4. States and transitions considered in the instance of Problem 2 corresponding
to each propositional variable xi.

– Fp = {an+1} ∪ {zri, zrj, zrk, z′r| for each clause Cr = xi ∨ ¬xj ∨ xk in Φ,
where (1 ≤ r ≤ m) ∧ (1 ≤ i, j, k ≤ n)}

Safety Specifications. The safety specification B rules out any transition other
than the transitions in Figures 2 and 3. Notice that while these transitions are
permitted by the safety specification B, the input program p does not necessarily
include all of them. The new safety property Bnew rules out the transitions
(ai, di) and (z′rk, z

′
r), where 1 ≤ i, k ≤ n and 1 ≤ r ≤ m. Thus, in the revised

version of the instance of Problem 2, denoted pr, these transitions must not be
executed.

Program variables. The instance of Problem 2, denoted p, has four variables
e, f, g and h. We denote a program state by 〈e, f, g, h〉. Figure 2 illustrates the
values of variables in the states included corresponding to each variable xi. Figure
3 presents the values of variables in the states included corresponding to each
clause Cr = xi ∨ ¬xj ∨ xk. As such, the domains of the variables are as follows:

– The variable e has the domain {0, · · · , n} ∪ {m+ n+ 1, · · · , 2m+ n}.
– The domain of variable f is equal to {0, 1}.
– The variable g has a domain of {0, · · · , n+ 1}.
– The domain of the variable h is {0, 1} ∪ {m+ n+ 1, · · · , 2m+ n}.

Program components. The program p includes seven components C1-C7

whose transitions have been depicted in Figure 5. The read and write restrictions
of each component are as follows:

– The first component C1 includes the transitions (ai, di) and (ai, bi), for all
1 ≤ i ≤ n (see Figures 2 and 5). The set of readable variables of C1, denoted
r1, is equal to {e, f, g, h} and its set of writable variables is w1 = {f, g, h}.

– The set of transitions (ai, b
′
i) and (a′i, ai+1) comprises the component C2

(see the arrow with a crossed line on it in Figures 2 and 5). We have r2 =
{e, f, g, h} and w2 = {e, g, h}.

– The component C3 includes the transitions (bi, ci) for 1 ≤ i ≤ n (see the ar-
row with two parallel lines on it in Figures 2 and 5). We have r3 = {e, f, g, h}
and w3 = {e, h}.
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Fig. 5. Program components, their read/write restrictions and the annotation of their
transitions.

– The fourth component, denoted C4, includes transitions (b
′
i, c

′
i) for 1 ≤ i ≤ n,

r4 = {e, f, g, h} and w4 = {f, g} (see the arrow with three parallel lines on
it in Figures 2 and 5).

– For component C5, we have r5 = w5 = {e, f, g}; i.e., C5 cannot read h.
The component C5 includes transition (ci, a

′
i), which is grouped with (c′i, b

′
i)

and (zqi, z
′
qi), due to inability of reading h, where (zqi, z

′
qi) corresponds to a

clause Cq in which the literal ¬xi appears (see the dashed arrow (zrj , z
′
rj) in

Figure 3). Notice that in these three transitions, the values of the readable
variables e, f and g are the same in the source states (and in the destination
states) and the value of h does not change during these transitions because
it is not readable for C5.

– The sixth component C6 can read/write r6 = w6 = {f, g, h}, but cannot read
e. Its set of transitions includes (c′i, a

′
i), (bi, ai) and (zri, z

′
ri) (see Figures

2 and 3) that are grouped due to inability of reading e, where (zri, z
′
ri)

corresponds to a clause Cr in which the literal xi appears.

– The component C7 can read and write all variables and its set of transitions
includes (di, a

′
i), (an+1, a1), (bi, c

′
i) and (c′i, ci) for 1 ≤ i ≤ n. Moreover,

for each clause Cr = xi ∨ ¬xj ∨ xk, where 1 ≤ r ≤ m and 1 ≤ i, j, k ≤ n,
component C7 includes the following transitions: (zr, zri), (z

′
ri, zrj), (z

′
rj, zrk)

and (z′rk, z
′
r) (see Figure 3).

Theorem 1. The complexity of the mapping is polynomial. (Proof is straight-
forward; hence omitted.)
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4.2 Correctness of Reduction

In this section, we show that the instance of 3-SAT is satisfiable iff the instance
of Problem 2 (created by the mapping in Section 4.1) can be redesigned to meet
the safety properties B and Bnew while preserving its liveness.

Lemma 1. If the instance of 3-SAT is satisfiable, then the instance of Problem
2, denoted p, can be redesigned to another program pr for the safety property
Bnew such that pr meets the requirements of Problem 1.

Proof. If the 3-SAT instance is satisfiable, then there must exist a value as-
signment to the propositional variables x1, · · · , xn such that all clauses Cr, for
1 ≤ r ≤ m, evaluate to true. Corresponding to the value assignment to a variable
xi, for 1 ≤ i ≤ n, we include a set of transitions in the redesigned program as
follows:

– If xi is assigned true, then we include transitions (ai, bi), (bi, ci), (ci, a
′
i). Thus

the computation prefix � ai, bi, ci, a
′
i, ai+1  is synthesized between ai and

ai+1. Since we have included the transition (ci, a
′
i), and transition (ci, a

′
i) is

grouped with (zqi, z
′
qi), where 1 ≤ q ≤ m for any clause Cq in which ¬xi

appears, we must include (zqi, z
′
qi) as well (see the dashed arrow (zrj, z

′
rj) in

Figure 3).
– If xi is assigned false, then we include transitions (ai, b

′
i), (b

′
i, c

′
i), (c

′
i, a

′
i),

thereby synthesizing the computation prefix � ai, b
′
i, c

′
i, a

′
i, ai+1  between

ai and ai+1. Due to the inability of reading e, including the transition (c′i, a
′
i)

results in the inclusion of the transitions (zli, z
′
li), where 1 ≤ l ≤ m, for any

clause Cl in which xi appears (see the dotted arrows (zri, z
′
ri) and (zrk, z

′
rk)

in Figure 3).
– For each clause Cr = xi ∨ ¬xj ∨ xk, the transition (zri, z

′
ri) (respectively,

(zrk, z
′
rk)) is included iff xi (respectively, xk) is assigned false. The transition

(zrj, z
′
rj) is included iff xj is assigned true.

Figure 6 depicts a partial structure of a redesigned program for the value
assignment x1 = false, x2 = true and x3 = true in an example clause C5 =
x1 ∨ ¬x2 ∨ x3. Note that the bad transition (z′53, z

′
5) is not reached because

x3 = true and the transition (z53, z
′
53) is excluded.

Now, we illustrate that the redesigned program in fact meets the requirements
of Problem 1. The state space remains obviously the same as no new variables
have been introduced; i.e., Vp = Vr

p . During the selection of transitions based on
value assignment to propositional variables, we do not remove any initial states.
Thus, we have Ip = Ir

p .

Satisfying Safety Properties. Since the new safety property rules out transi-
tions (ai, di) and (z′rk, z

′
r), we have to ensure that the redesigned program does

not execute them. From ai, the program either transitions to bi or to b′i. Thus,
safety is not violated from ai. Moreover, since all clauses are satisfied, at least
one literal in each clause Cr = xi ∨ ¬xj ∨ xk must be true. Thus, at least one
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Fig. 6. A partial structure of the redesigned program corresponding to the value assign-
ment x1 = false, x2 = true and x3 = true for an example clause C5 = x1 ∨ ¬x2 ∨ x3.

of the three transitions (zri, z
′
ri), (zrj , z

′
rj) or (zrk, z

′
rk) is excluded, thereby pre-

venting the reachability of z′rk; i.e., the safety-violating transition (z′rk, z
′
r) will

not be executed.

Reachability of Accepting States (Satisfying Liveness Specifications).
While the accepting state z′r is no longer reachable, the redesigned program halts
in one of the accepting state zri, zrj or zrk. Moreover, the accepting state an+1

is reached infinitely often due to the way we have synthesized the sequences of
states � ai, bi, ci, a

′
i, ai+1  or� ai, b

′
i, c

′
i, a

′
i, ai+1  between ai and ai+1. That

is, (non-)terminating computations remains (non-)terminating. Thus, starting
from any initial state, some accepting states will be visited infinitely often; i.e.,
Fr

p ⊆ Fp. Therefore, if the instance of 3-SAT is satisfiable, then there exists a
redesigned program for the instance of Problem 2 that satisfies the requirements
of Problem 1.

Lemma 2. If there exists a redesigned version of the instance of Problem 2 that
meets the requirements of Problem 1, then the instance of 3-SAT is satisfiable.

Proof. Let pr be a redesigned version of the instance of Problem 2 that meets
all the requirements of Problem 1. As such, the set of initial states Ir

p must be
equal to the set {a1} ∪ {zr|1 ≤ r ≤ m}. Starting from a1, pr must execute a
safe transition. Otherwise, we reach a contradiction; i.e., either a1 is a deadlock
state or the transition (a1, d1), which violates the new safety specification is
executed. Thus, pr either includes (a1, b1) or (a1, b

′
1), but not both (because pr

is a deterministic program). If pr includes (a1, b1), then we set x1 to true in the
3-SAT formula. If pr includes (a1, b

′
1), then we set x1 to false.

We assign truth values to each xi, for 1 ≤ i ≤ n, depending on the presence
of (ai, bi) or (ai, b

′
i) at state ai (similar to the way we assign a value to x1).

Such a value assignment strategy results in a unique truth-value assigned to
each variable xi. If pr includes (ai, bi), then, from bi, pr includes either (bi, ci)
or (bi, c

′
i) (see Figure 2), but not both (because of determinism). If pr includes
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(bi, c
′
i), then, from c′i, pr must include either (c′i, ci) or (c′i, a

′
i). If pr includes

(c′i, a
′
i), then it must include (bi, ai) since these two transitions are grouped due

to inability of C6 in reading e. As such, the two transitions (ai, bi) and (bi, ai)
make a non-progress cycle in pr (see Figure 2), which is unacceptable as it
violates liveness. Now, we show that, from c′i, pr cannot include (c′i, ci) either. If
pr includes (c

′
i, ci), then it must include (ci, a

′
i), which is grouped with (c′i, b

′
i) due

to inability of C5 in reading h (see Figure 2). Thus, pr may reach b′i from c′i and
deadlock in b′i. Thus, if pr includes (ai, bi) from ai, then it must include (bi, ci)
and (ci, a

′
i). In case where pr includes (ai, b

′
i) from ai, the transition (b′i, c

′
i) must

also be included; otherwise pr deadlocks in b′i (Figure 2). From c′i, pr cannot
include (c′i, ci) because it has to include (ci, a

′
i) that is grouped with (c′i, b

′
i),

which creates a non-progress cycle. Thus, pr must include (c′i, a
′
i) from c′i.

We also illustrate that each clause in the 3-SAT formula evaluates to true.
Consider a clause Cr = xi∨¬xj ∨xk. Starting from the initial state zr, the tran-
sition (zr, zri) must be present in pr; otherwise zr is a deadlock state. Moreover,
from zr, the safety-violating transition (z′rk, z

′
r) must not be executed. Thus,

at least one of the transitions (zri, z
′
ri), (z

′
ri, zrj), (zrj , z

′
rj), (z

′
rj , zrk) or (zrk, z

′
rk)

(see Figure 3) must be excluded in pr. However, if one of the transitions (zr, zri),
(z′ri, zrj), (z

′
rj , zrk) or (z

′
rk, z

′
r) is excluded, then a reachable deadlock state could

be created as their source states are not accepting states. Thus, if either z′ri or
z′rj is reached from zr, then the corresponding transition (z′ri, zrj) or (z′rj, zrk)
must be present in pr. Hence, at least one of the transitions (zri, z

′
ri), (zrj, z

′
rj)

or (zrk, z
′
rk) must be excluded in pr; i.e., at least one literal in Cr must be true,

thereby satisfying Cr.

Theorem 2. Synthesizing safety (under limited observability) in deterministic
programs in the BT model of safety specifications is NP-hard in |Sp|. (Proof
follows from Lemmas 1 and 2.)

Theorem 3. Synthesizing safety (under limited observability) in deterministic
programs in the BT model of safety specifications is NP-complete (in |Sp|).
Proof. The proof of NP-hardness follows from Theorem 2. The proof of mem-
bership in NP is straightforward; given a revised program one can verify the
constraints of Problem 1 (in the BT model) in polynomial time.

Theorem 4. Synthesizing safety (under limited observability) in deterministic
programs in the Bad State (BS) model of safety specifications is also NP-complete
(in |Sp|).
Proof. The proof of NP-hardness works for the case where the safety specification
rules out the reachability of states di and z′r in the instance of Problem 2. The
proof of NP membership is straightforward.

5 Conclusions and Future Work

This paper investigates the problem of capturing new safety require-
ments/properties while preserving existing safety and liveness properties, called
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the problem of incremental synthesis. Previous work [7,3] shows that incremen-
tal synthesis for non-deterministic programs can be done in polynomial time
(in the size of program state space) under unlimited observability. Moreover,
it is known [4] that the complexity of incremental synthesis of safety for non-
deterministic programs would increase to NP-complete under limited observ-
ability. In this paper, we illustrated that even for deterministic programs the
complexity of incremental synthesis of safety is NP-complete (in program state
space). Our NP-hardness proof illustrates that the read inabilities of each com-
ponent with respect to the local state of other components is a major cause
of complexity. Such read inabilities are mainly created because of encapsula-
tion/modularization of functionalities at early stages of design. On one hand,
encapsulation/modularity enables designers to create good abstractions while
capturing different functionalities. On the other hand, encapsulation exacerbates
the complexity of behavioral changes [22] when new crosscutting requirements
have to be realized across the components of an existing program. To facilitate
change while reaping the benefits of modularization in design, we will extend
the work presented in this paper in the following directions:

– Sound polynomial-time heuristics. We will concentrate on devising
polynomial-time heuristics that reduce the complexity of synthesizing safety
at the expense of completeness. That is, if heuristics succeed in generat-
ing a redesigned program, then the generated program will capture the new
safety property while preserving liveness. However, such heuristics may fail
to generate a redesigned program while one exists.

– Sufficient conditions. We will identify conditions under which safety can
be synthesized in polynomial time. Specifically, we would like to address
the following questions: (i) What kinds of inter-component topologies (i.e.,
read/write restrictions) should a program have such that a new safety re-
quirement can be captured in it efficiently? (ii) For which types of programs
and safety specifications the complexity of synthesizing safety is polynomial?

– Backtracking. We will implement a backtracking algorithm for synthesizing
safety under limited observability. While we showed that it is unlikely that
safety can efficiently be synthesized under limited observability, in many
practical contexts the worst case exponential complexity may not be ex-
perienced. Thus, we expect that a backtracking algorithm can explore the
entire state space in a reasonable amount of time. Moreover, we will imple-
ment a parallel version of the backtracking algorithm that will benefit from
randomization for search diversification.

– An extensible software framework. We will develop a framework that pro-
vides automated assistance in synthesizing safety. Such a framework will
include a repository of reusable heuristics that facilitate the synthesis of
safety in an automated fashion. Two categories of users can benefit from our
extensible framework, namely, (1) developers of heuristics who will focus on
designing new heuristics and integrating them into our framework, and (2)
mainstream programmers who will use the built-in heuristics to capture new
safety properties in programs.



174 A. Ebnenasir

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21,
181–185 (1985)

2. Attie, P., Emerson, A.: Synthesis of concurrent programs for an atomic read/write
model of computation. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 23(2) (March 2001). An extended abstract appeared at the ACM
Symposium on Principles of Distributed Computing (1996)

3. Bonakdarpour, B., Ebnenasir, A., Kulkarni, S.S.: Complexity results in revising
UNITY programs. ACM Transactions on Autonomous and Adaptive Systems 4(1),
1–28 (2009)

4. Bonakdarpour, B., Kulkarni, S.S.: Revising distributed UNITY programs is NP-
complete. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS,
vol. 5401, pp. 408–427. Springer, Heidelberg (2008)

5. Colcombet, T., Fradet, P.: Enforcing trace properties by program transformation.
In: POPL 2000: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 54–66 (2000)

6. Djoko, S.D., Douence, R., Fradet, P.: Aspects preserving properties. In: ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Program Manipu-
lation (PEPM), pp. 135–145 (2008)

7. Ebnenasir, A., Kulkarni, S.S., Bonakdarpour, B.: Revising UNITY programs: Pos-
sibilities and limitations. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 275–290. Springer, Heidelberg (2006)

8. Emerson, E.A.: chapter 16: Temporal and Modal Logics. In: Handbook of Theo-
retical Computer Science, vol. B, pp. 995–1067. Elsevier Science Publishers B.V
(1990)

9. Garey, M., Johnson, D.: Computers and Interactability: A guide to the theory of
NP-completeness. W.H. Freeman and Company (1979)

10. Goldman, M., Katz, S.: Maven: Modular aspect verification. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 308–322. Springer, Heidelberg
(2007)

11. Hansen, H., Penczek, W., Valmari, A.: Stuttering-insensitive automata for on-the-
fly detection of livelock properties. Electronic Notes in Theoretical Computer Sci-
ence 66(2), 178–193 (2002)

12. Iordache, M.V., Moody, J.O., Antsaklis, P.J.: Synthesis of deadlock prevention su-
pervisors using Petri Nets. IEEE Transactions on Robotics and Automation 18(1),
59–68 (2002)

13. Khatchadourian, R., Dovland, J., Soundarajan, N.: Enforcing behavioral con-
straints in evolving aspect-oriented programs. In: Proceedings of the 7th Workshop
on Foundations of Aspect-oriented Languages (FOAL), pp. 19–28 (2008)

14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
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Abstract. The well-known coordinated snapshot algorithm of mutable
checkpointing [7,8,9] is studied. We equip it with a concise formal model
and analyze its operational behavior via an invariant characterizing the
snapshot computation. By this we obtain a clear understanding of the
intermediate behavior and a correctness proof of the final snapshot based
on a strong notion of consistency (reachability within the partial order
representing the underlying computation). The formal model further en-
ables a comparison with the blocking queue algorithm [13] introduced
for the same scenario and with the same objective.
From a broader perspective, we advocate the use of formal semantics to
formulate and prove correctness of distributed algorithms.

Keywords: snapshot, checkpointing, consistency,distributedcomputing.

1 Introduction

The on-the-fly calculation of a snapshot, a consistent global state, is a known
means to enhance fault tolerance and system diagnosis of distributed systems.
Coordinated snapshot algorithms exchange coordination messages to orchestrate
the checkpointing. One of these is mutable checkpointing ([7,8,9]) which aims at
a reduced coordination overhead - both in number of checkpoints to be taken
and coordination messages to be sent. It is known from [7] that there is no algo-
rithm which minimizes the number of checkpoints without blocking processes.
To avoid the blocking, in mutable checkpointing, local checkpoints may be taken
which may be discarded later. The presence of such checkpoints and an addi-
tional feature to further reduce the number of coordination messages hinder an
easy analysis of the algorithm. With this paper we equip mutable checkpointing
with a precise formal model and make it amenable to a formal analysis. We
establish an invariant to obtain deeper insight into the intermediate behavior
of the algorithm and prove consistency of the final snapshot. The model can
further be used as a common ground for qualitative comparisons of snapshot
algorithms. We give such a comparison with the conceptually different blocking
queue algorithm [13] which, as mutable checkpointing, had been set up to reduce
the coordination overhead.
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Unlike other coordinated snapshot algorithms (eg. Chandy/ Lamport’s sem-
inal algorithm [10]), mutable checkpointing algorithms do not monotonously
build up the snapshot with the underlying computation. In mutable checkpoint-
ing, checkpoints of local states may be taken from which the underlying compu-
tation had already progressed. The computation of the snapshot, thus, involves
forward and backward reasoning and the correctness of the algorithm, the consis-
tency of the final snapshot, is not obvious. The proofs provided in the literature
[7,8,9] are based on contradiction, use absence of orphans (messages recorded as
received but not as being sent) as consistency notion, and lack a formal model.
The formal proof provided in this paper is based on an invariant which char-
acterizes the snapshot partially computed. We use a stronger but well-accepted
notion of consistency [17]: reachability within the partial order representing the
underlying distributed computation. It implies the absence of orphans.

In case of a snapshot algorithm the invariant should explain how the snap-
shot gradually builds up on course of the underlying computation. For a global
state S of the underlying computation, the invariant should provide the snap-
shot calculated so far. We call the latter the potential snapshot psn(S) of S. For
a snapshot algorithm which simply freezes local processes at certain points of
their computation, the potential snapshot consists of these checkpoints and the
current states of the none-frozen processes. In mutable checkpointing, local pro-
cesses may be frozen to states – the so-called mutable checkpoints - from which
they had already progressed. Reachability of psn(S) can therefore not simply
be obtained from a simultaneous progression of psn(S) and S. We solve this
problem by extracting a set of global states from S of which each corresponds to
a different prediction of which of the mutable checkpoints will be frozen. These
states collectively define the psn(S). We then show how each of the states in
psn(S) progresses together with S, where the progress may be partial, only,
due to the frozen processes. Using this result we provide a direct proof for the
consistency of the final snapshot. The potential snapshot, however, – or more
precisely the predicted states of it -, in general, are shown not to be consistent.
This implies that if the run of a mutable checkpointing algorithm needs to be
interrupted then the entire checkpointing needs to be started afresh.

The proof is based on the specification of the operational behavior of what
we consider the essence of mutable checkpointing. We extracted it from the
pseudocode given in [9] by removing all details not related to the basic concept
of taking a mutable checkpoint upon receiving a flagged message for the first time
(and before a checkpoint) – where the flag indicates that the sender had taken a
checkpoint or a mutable checkpoint. In this way we obtained a concise description
of the core of mutable checkpointing which we see as another contribution of this
paper.

With this formal model and analysis we relate mutable checkpointing to the
blocking queue algorithm introduced in [13]. In fact, this paper can be seen as
a companion paper as it deploys the proof technique developed there (however,
setting up the invariant for mutual checkpointing was a much more demanding
task). Having fixed the underlying computation, the two snapshot algorithms
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can directly be compared due to the same underlying formal model. We show
that the respective final snapshots, in general, are incomparable and discuss the
differences between the algorithms.

The paper is structured as follows. Basic terminology is introduced in Section
2, followed by a short description of mutable checkpointing in Section 3. Section 4
specifies the operational behavior of the algorithm defined in terms of predicates
and rules. The rules we deduced from the pseudocode of [9] where we abstracted
away as many details as possible to get the essence of mutable checkpointing.
In Section 5 we introduce the potential snapshot, show its progression with the
underlying computation and prove the consistency of the final snapshot. Section
6 gives the comparison with the blocking queue algorithm of [13]. The conclusion
is given in Section 7.

2 Preliminaries

We assume a finite number of processes P1, ..., Pn which communicate solely by
message passing via FIFO channels Cij . Channel Cij leads from Pi to Pj and
for each pair of processes there is such a unidirectional channel. Channels are
assumed not to lose or reorder messages. There is no assumption on the state
space of processes.

A state S = (p1, . . . , pn,Chan) of a distributed computation is given by the
histories (events performed so far) of the local processes and the current contents
of the channels where Chan : {Cij | i, j ≤ n, i �= j} → MSG∗ and pi ∈ Events∗.
To ease readability, for a global state S we attach S as a superscript to the
histories and channels and abbreviate Chan(Cij)

S by CS
ij . In the initial state

S0, p
S0

i = ε, and CS0

ij = ε for all i, j. A distributed computation is a sequence

π = S0
e1−→ S1

e2−→ S2 · · · ek−→ Sk where each Si is obtained from updating Si−1

according to the semantics of event ei. We also write π = S0 →∗ Sk to mention
the initial and final states of π, explicitly.

The notion of consistency of a state with a computation π is best understood
in terms of π’s space-time diagram (its partial order representation, see [14],
[17] or [4]). A state is consistent with π if it is a cut of π closed under the
happens-before ordering in the space-time diagram. Equivalently, a consistent
state S of π can be characterized by that all local histories of S are prefixes
of the corresponding histories of π’s final state Sk, and if a message occurs as
received in a history of S then it also needs to occur as having been sent in a
history (that is there are no orphans).

Snapshot algorithms are superimposed on a distributed computation π on
course of which a state consistent with π is to be calculated. We will only describe
the behavior of the snapshot algorithm which, if it is non blocking, should allow
for send and receive events induced by the underlying computation at any point
of time. All other events of the snapshot algorithm are coordination events.
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3 Mutable Checkpoint Algorithms

Mutable checkpoint algorithms are coordinated snapshot algorithms which re-
duce the coordination overhead (compared to [10]) by combining message flags
(indicating whether messages have been sent before of after a checkpoint, cf. [15])
with the new concept of mutable checkpoints. Mutable checkpoints are taken on
a tentative basis (on volatile storage) and are only finalized (on non-volatile
storage) when the need for a local checkpoint has been confirmed.

The Algorithm in Short

The initiating process requests the processes it depends on (from which it had
received a message) to take a checkpoint. Any process receiving such a request
takes a checkpoint and propagates the request further to the – up to its knowl-
edge – so far uninformed processes it itself depends on. After a process has taken
a checkpoint all the messages sent out by this process carry a flag (bb=1). A pro-
cess which hasn’t received a checkpoint request but a message with flag (bb=1),
takes a mutable checkpoint indicating that it must convert the current local
state to a checkpoint, if in future it receives a checkpoint request. This is done
before the received message is processed and only if it hadn’t taken a mutable
checkpoint earlier. Under certain progress assumptions, all processes which, in
principle, need to take a checkpoint will finally have done so and this completes
phase I of the algorithm. Phase II would deal with the confirmation that the
checkpointing is complete and the dissemination of this information to the local
processes. However, in this paper we only investigate phase I.

With minor modifications the algorithm has widely been published see [7,8,9],
our reference algorithm is [9]. We specify the operational behavior of the algo-
rithm in terms of predicates and transition rules which an implementation would
need to satisfy. To be able to focus on the essence of mutable checkpointing, in
the translation we omitted everything related to earlier checkpointing and a
feature to reduce the number of coordination messages further (the sent i condi-
tion). We also assume that the initiating process is always P1 and as in [9] do
not consider concurrent checkpointing. Finally, all details relating to termination
(the completion of taking checkpoints) of phase I are omitted.

The Algorithm in Detail

Rule numbers in brackets refer to corresponding rules given in the next section.

1. As part of their computations, processes send messages to each other which
come attached with a flag (Rules 1.1 and 1.2). If the flag is set, this indi-
cates that the sending process has already taken its checkpoint (instantly or
belated via a mutable checkpoint).

2. Every process maintains a dependency vector which provides all the pro-
cesses it depends on. A process Pi depends on process Pj if Pi has received
a message from Pj . This is a dynamic notion of dependency as at the time
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of initiation of the checkpointing all dependencies may not be known. The
checkpointing will involve all processes which are dependent in a transitive
way. Say at the time of initiation, the checkpointing process P1 depends on
P2 and P3, and P3 depends on P4. Then, P4 needs to be included in the
checkpointing.

3. The initiator takes its checkpoint and sends the checkpoint request to the
processes it depends on using its dependency vector. It attaches the depen-
dency vector to its request (Rule 3).

4. If a process Pj receives a checkpoint request from a process Pi then either
of the following will happen:

- If it has already taken a checkpoint (cp takenj is true), then the request
is ignored (Rule 4.1).

- If it has not taken a checkpoint but has taken a mutable checkpoint
(mcp takenj is true), then by receiving the request it converts the muta-
ble checkpoint into a checkpoint. This conversion is not explicitly mod-
eled but from now on cp takenj will be true. Further, Pj propagates
the checkpoint request to processes as follows. For each process Pk on
which Pi does not depend on, but on which Pj depended when it took
the mutable checkpoint, Pj sends a request to Pk (Pi has already sent a
request to the processes on which it depends, Rule 4.2).

- If it has neither taken a checkpoint or a mutable checkpoint, then it takes
a checkpoint and propagates the request as in the previous case (Rule
4.3).

5. If a process Pj removes a message (with attached flag) from a channel then
either of the following will happen:

- If the received message has flag 0, then Pj processes the message (Rule
2.1, Rule 2.2). If this happens before a mutable checkpoint or checkpoint
is taken, then Pj depends on Pi and the dependency vector might need
to be updated (Rule 2.1).

- If the flag is 1 and Pj has already taken a checkpoint, then Pj processes
the message (Rule 2.3).

- If the flag is 1 and Pj has neither taken a checkpoint nor mutable check-
point, then it takes a mutable checkpoint and immediately after that
processes the message (Rule 2.4). Taking the mutable checkpoint and
processing the message is one atomic action.

- If the flag is 1 and Pj has taken a mutable checkpoint but not a check-
point, then Pj processes the message (Rule 2.5).

4 The Operational Behavior of Mutable Checkpointing

We specify the algorithm’s behavior by a set of predicates and rules describing
how the global state of the system changes with a transition. The rules of the
following format:

Rule No. Preconditions Event Postconditions
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If a global state S satisfies the precondition of a rule, then the event may occur
and S is updated to T as specified in the field of postconditions. The occurrence
of event e is written as S

e−→ T . So a distributed computation π = S0
e1−→

S1
e2−→ S2 · · · ek−→ Sk is a sequence of such events where each of the transitions

is justified by one of the rules. In some of the rules (Rules 1.2 and 2.2) the
preconditions are split into two rows. These should be read as a disjunction,
that is, each of these rules presents two rules with the same event name and
postconditions. The possible events and messages of the mutable checkpointing
algorithm are given by the following table.

mcp taken i process Pi takes a mutable checkpoint
cp taken i Pi takes the checkpoint
sendij(.) Pi adds a message to channel Cij

recij(.) Pj receives a message or
checkpoint request from channel Cij

〈cpr i, dep〉 the message that Pi has taken a checkpoint
with attached dependency vector

〈msg, bb〉 a message and attached flag

In the algorithm every local process maintains a dependency vector dep in which
it keeps the dependencies to other processes: depj(i) = 1 if Pj has received a
message from Pi before a mutable checkpoint has been taken. This dependency
vector can be retrieved from the history of a process at any state. However, for
clarity we explicitly mention it in the semantics.

The first element of a channel is at the rightmost position and provided by
first and the remainder by rem. We use the simple dot to separate letters in a
word. For the concatenation of words we use ◦. If an event occurs in the history
of a process at state S then we state this as a predicate eventSi . For example,
¬mcp takenS

i stands for that mcp taken i does not occur in the history pSi . It
represents that Pi has not taken a mutable checkpoint so far. The cp takenS

i

predicate, however, is more general as it also needs to cover the conversion of
a mutable checkpoint to a (proper) checkpoint. Hence, cp takenS

i if and only if
either cp takeni occurs in the history of Pi ormcp takenS

i and recji(〈cpr j , dep〉)S
for some j.

Rules are grouped according to their functionality.

5 Main Results

We here define the potential snapshot and show how it progresses with the
underlying computation. With this invariant result we will show the reachability
of the snapshot finally calculated.

As already discussed, in mutable checkpointing the potential snapshot psn(S)
extracted from an intermediate state S of the underlying computation cannot
simply be a global state containing the current local checkpoints. At S there is
no clarity whether a mutable checkpoint should be considered as a checkpoint
or simply be discarded since the future computation steps cannot be foreseen.
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Table 1. Rules 1.1, 1.2: A message can be sent at any time and the attached flag
shows whether this happened before (bb=0) or after (bb=1) a checkpoint or mutable
checkpoint was taken. Rules 2.1–2.5: A mutable checkpoint is taken if the flag of the
received message is 1 and the receiving process has neither taken a checkpoint nor a
mutable checkpoint so far. Rule 3: We assume that the checkpointing will always be
initiated by P1. It sends the checkpoint request to all the processes it depends on and
takes the checkpoint as part of one atomic action. Rules 4.1–4.3: Receiving, setting and
propagating a checkpoint request is modeled as one atomic event. This event comprises
of removing the request from the channel, taking the checkpoint and propagating the
request and causal dependencies to the concerned processes. These are the processes on
which the receiving process depends but which are not listed in the dependency array
received with the incoming request. In case a mutable checkpoint had been taken, it is
converted to a permanent one (this, however, is not explicitly modeled).

No Preconditions Event Postconditions

1.1
¬cp takenS

i

S
sendij(〈msg,0〉)−→ T

pTi = pSi .send ij(〈msg , 0〉)
¬mcp takenS

i CT
ij = 〈msg , 0〉.CS

ij

1.2
cp takenS

i

S
sendij(〈msg,1〉)−→ T

pTi = pSi .send ij(〈msg , 1〉)
mcp takenS

i

CT
ij = 〈msg , 1〉.CS

ij

2.1

first(CS
ij) = 〈msg , 0〉

S
recij(〈msg,0〉)−→ T

pTj = pSj .recij(〈msg , 0〉)
¬mcp takenS

j CT
ij = rem(CS

ij)

¬cp takenS
j depT

j (i) = 1

2.2

first(CS
ij) = 〈msg , 0〉

S
recij(〈msg,0〉)−→ T

pTj = pSj .recij(〈msg , 0〉)
mcp takenS

j CT
ij = rem(CS

ij)

first(CS
ij) = 〈msg , 0〉

cp takenS
j

2.3
first(CS

ij) = 〈msg , 1〉
S

recij(〈msg,1〉)−→ T

pTj = pSj .recij(〈msg , 1〉)
cp takenS

j CT
ij = rem(CS

ij)

2.4
first(CS

ij) = 〈msg , 1〉
S

recij(〈msg,1〉)−→ T

pTj = pSj .mcp taken j .recij(〈msg, 1〉)
¬cp takenS

j CT
ij = rem(CS

ij)

¬mcp takenS
j

2.5
first(CS

ij) = 〈msg , 1〉
S

recij(〈msg,1〉)−→ T

pTj = pSj .recij(〈msg , 1〉)
¬cp takenS

j CT
ij = rem(CS

ij)

mcp takenS
j

3 ¬cp takenS
1 S

cp taken1−→ T

pT1 = pS1 .cp taken1

CT
1k = 〈cpr1, depS

1 〉.CS
1k

for all k > 1 with depS
1 (k) = 1

4.1
first(CS

ij) = 〈cpr i, dep〉
S

recij(〈cpri,dep〉)−→ T

pTj = pSj .recij(〈cpr i, dep〉)
cp takenS

j CT
ij = rem(CS

ij)

4.2 S
cp takenj−→ T

pTj = pSj .recij(〈cpr i, dep〉).cp takenj

first(CS
ij) = 〈cpr i, dep〉 CT

ij = rem(CS
ij)

¬cp takenS
j CT

jk = 〈cpr j , dep ∨ depS
j 〉.CS

jk

¬mcp takenS
j for all k with dep(k) = 0, depS

j (k) = 1

4.3 S
recij(〈cpri,dep〉)−→ T

pTj = pSj .recij(〈cpr i, dep〉)
first(CS

ij) = 〈cpr i, dep〉 CT
ij = rem(CS

ij)
¬cp takenS

j CT
jk = 〈cpr j , dep ∨ depS

j 〉.CS
jk

mcp takenS
j for all k with dep(k) = 0, depS

j (k) = 1
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In psn(S) all options have to be simultaneously considered. Accordingly, psn(S)
is a set of global states of which each corresponds to a different prediction with
respect to the final conversion of mutable checkpoints to (proper) checkpoints.

The formal definitions are given next. Note that all projection functions used
in this paper are summarized in Figure 1. The freeze function allows one to cut
down the history of individual processes to the point where they have taken a
mutable checkpoint or a checkpoint. These points we call freeze points. In order
to freeze a process Pi all events after the freeze point need to be deleted from
the history. In general, the freezing of Pi may effect process Pj as the latter
may have received a message from Pi sent after its freeze point. Processes that
may be frozen are those in MCP (S) while those in CP (S) must be frozen if a
freezing is to be conducted.

MCP (S) = {Pi | mcp takenS
i and ¬cp takenS

i }
CP (S) = {Pi | cp takenS

i }

Due to the various freezing options we obtain the set of potential snapshots:

PSN(S) = {f(A,S) | CP (S) ⊆ A ⊆ MCP (S) ∪ CP (S)}
Each f(A,S) provides a potential snapshot at state S of which the processes in
A are frozen.

f(A,S) =< p
f(A,S)
1 , p

f(A,S)
2 , . . . , pf(A,S)

n , Chanf(A,S) >

p
f(A,S)
i =

{
pSi ↓mcp,cp Pi ∈ A
pSi |Arem bb=1 Pi /∈ A

Chanf(A,S) = {Cf(A,S)
ij | 1 ≤ i, j ≤ n and i �= j}

C
f(A,S)
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

̂CS
ij |bb=0 o rev(pj ↑imcp,cp,bb=0)Pi, Pj ∈ A

̂CS
ij |bb=0 Pi ∈ A, Pj /∈ A

ĈS
ij o rev(pj ↑imcp,cp) Pi /∈ A, Pj ∈ A

ĈS
ij Pi /∈ A, Pj /∈ A

where Ĉij removes all the coordination messages from the channel and rev re-
verses the string. Note that we do not explicitly remove the flag (which are used
for coordination reasons only) from a message, but this is implied whenever
coordination messages are removed.

To show the simultaneous progression of psn(S) with S
e−→ S′ each of the

states in psn(S) needs to be considered with respect to its corresponding move.
If a mutable checkpoint has to be frozen then those states in psn(S) which
had not predicted this are discarded. This means that the size of psn(S) can
shrink. It will, however, grow with every new mutable checkpoint taken as the
concerned process will now have to be considered as progressing and as frozen,
simultaneously. The next lemma describes this progression in detail.
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↓mcp,cp It is applied to the local history of a process and yields the string of send and
receive events before mcp taken or cp taken in their respective order. Only one of
the latter events can occur in a history.

|Arembb=1 It is applied to the local history of a process not in A and removes all coor-
dination messages and all messages with flag 1 received from a process in A.

↑imcp,cp It is applied to the local history of a process Pj and yields the string of messages
in recij(〈msg , bb〉) events after mcp taken or cp taken in their respective order.
Only one of the latter events can occur in a history.

↑imcp,cp,bb=0 It is applied to the local history of a process Pj and yields the string of
messages in recij(〈msg , 0〉) events after mcp taken or cp taken in their respective
order. Only one of the latter events can occur in a history.

|jsent It is applied to the local history of a process Pi and yields the string of messages
occurring in send ij(〈msg , bb〉) events in their respective order.

|bb=0 This projection is applied to strings of messages, only. It removes from the string
all coordination messages and messages with attached flag 1.

Fig. 1. Projection functions used in this paper.

Lemma 1. Let S0 −→∗ S and S
e−→ S′ where e is an event of Pi, i ∈ {1, . . . , n}.

Then for all freeze sets A of S the following holds:

1. Pi ∈ A implies f(A,S) = f(A,S′)
2. Pi /∈ A implies one of the following:

(a) e /∈ {cp taken i, recji(〈cpr j , dep〉), recji(〈msg , 1〉) | j ∈ {1, . . . , n}}, and
f(A,S)

e−→ f(A,S′)
(b) e = recji(〈cpr j , dep〉), mcp takenS

i , and f(A∪{Pi}, S) = f(A∪{Pi}, S′)
(c) e = cp takeni, ¬mcp takenS

i , and f(A,S) = f(A ∪ {Pi}, S′)
(d) e = recji(〈msg , 1〉), Pj /∈ A, and

i. f(A,S)
e−→ f(A,S′)

ii. f(A,S) = f(A ∪ {Pi}, S′) if ¬mcp takenS
i

(e) ei = recji(〈msg , 1〉), Pj ∈ A, and
i. f(A,S) = f(A,S′)
ii. f(A,S) = f(A ∪ {Pi}, S′) if ¬mcp takenS

i

3. p
f(A′,S′)
k = pS

′
k if Pk /∈ A′, ¬mcp takenS′

k , ¬ cp takenS′
k and A′ is a freeze

set of S′

where A ∪ {Pi} is a freeze set of the respective state whenever given as an argu-
ment to the freeze function.

Proof. By induction on the number of transitions leading from S0 to S.
If there is no transition then S0 = S and A = ∅. Of item 2. only 2.(a) and 2.(c)
apply which can be easily verified, and item 3. is trivial.
Now suppose the induction hypothesis applies to S0 →∗ S and there is one more
transition S

e−→ S′. We have to explore all freeze sets of the relevant state and
all the possible transitions.

We sketch two cases, for all others we refer to [2].
Proof of item 2.(c) for Rule 4.2.
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Rule 4.2 deals with the case e = cp taken i, first(C
S
ji) = 〈cpr j , dep〉, ¬cp takenS

i

and ¬mcp takenS
i . Let A be a freeze set of S.

p
f(A∪{Pi},S′)
i = pS

′
i ↓mcp,cp

= pSi .recji(〈cpr j , dep〉.cp taken i) ↓mcp,cp

= pSi def. ↓mcp,cp

= p
f(A,S)
i ind. hyp. 3.

The proofs for the other pk, k �= i, and the channels are similar.
Proof of item 3. for Rule 4.2.
Let A′ be a freeze set of S′. Then A′ \ {Pi} is a freeze set of S, and by induction
hypthesis 2.(c), f(A′ \ {Pi}, S) = f(A′, S′). Let Pk /∈ A′, ¬mcp takenS

k and
¬ cp takenS

k .

p
f(A′,S′)
k = p

f(A′\{Pi},S)
k ind. hyp. 2.(c), already established

= pSk ind. hyp. 3.

= pS
′

k

Note again, that in the lemma notationally we did not distinguish between
a message with or without flag. However, in all events performed by a frozen
process the flags have been removed. Similarly, in the next lemma � denotes
the prefix relation up to messages with or without flags. We further do not
distinguish between S0 and f(∅, S). Lemma 2 summarizes the invariant property
of reachable states relevant for the consistency proof of the final snapshot. It is
an immediate corrollary of Lemma 1 and the basic definitions.

Lemma 2. Let π : S0 →∗ S.
If A is a freeze set of S then S0 →∗ f(A,S) and

(1) p
f(A,S)
k � pSk for Pk ∈ A,

(2) p
f(A,S)
k = pSk for Pk /∈ A, ¬mcp takenS

k and ¬ cp takenS
k ,

(3) p
f(A,S)
k = pSk |Arem bb=1 for Pk /∈ A, mcp takenS

k or cp takenS
k .

Lemma 2 shows that each f(A,S) is reachable. This, however, does not mean
that f(A,S) is consistent with π since events of frozen processes are removed
from the history and may create ”holes”. One may argue that the states to be
considered here should be those with all none-frozen processes reset to their ini-
tial states. This would avoid the ”hole” problem. For an arbitrary set of processes
I, I ⊆ {P1, . . . , Pn}, the reset of I at S is defined by

p
r(I ,S)
i =

{
pSi if Pi /∈ I,
ε otherwise

and

C
r(I ,S)
ij =

⎧
⎨

⎩

CS
ij Pi, Pj /∈ I,

pSi |jsent Pj ∈ I,
ε Pi ∈ I.

In general, r(I , S ) is not a consistent state. This is always the case if a process
in I had sent a message to a process not in I and this message had been received
before the resetting. It would become an orphan.
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This problem does not occur if S is the final state of a computation with com-
pleted checkpointing. The checkpointing is complete if there is no coordination
message in any of the channels (recall that taking a checkpoint and propagating
it further is an atomic event). The final snapshot T is defined by resetting all
processes that have not taken a checkpoint at S to their starting point. So, in
this case I = CP (S), the complement set of CP (S).

Theorem 1. Let π be a distributed computation from S0 to S with completed
checkpointing. Then the final snapshot T obtained by resetting to the initial state
all processes that have not taken a checkpoint at S is consistent with π.

Proof. The final snapshot is defined by T := r(CP(S ), f (CP(S ), S )). The histo-
ries of T are given by

pTi =

{
p
f(CP (S),S)
i if Pi ∈ CP (S),

ε otherwise.

By Lemma 2 we know that f(CP (S), S) is reachable from S0 as CP (S) is a
freeze set of S. So there is a computation

π′ = S0
e1−→ U1

e2−→ . . .
em−→ Um = f(CP (S), S).

Let I stand for CP (S). From π′ we extract the computation which restricts to
events performed by processes not in I, only.

S0
ẽ1−→ r(I ,U1 )

ẽ2−→ . . .
ẽm−→ r(I ,Um)

where r(I ,Ut )
ẽt+1−→ r(I ,Ut+1 ) stands for r(I ,Ut ) = r(I ,Ut+1 ) if et+1 is an event

of a process in I, and for r(I ,Ut)
ẽt+1−→ r(I ,Ut+1 ) otherwise. For the former case

there is nothing to prove, so consider the case et+1 is performed by a process
outside I. Again, if et+1 is not of the form recij(msg) where Pi ∈ I, Pj ∈ CP (S),
the transition can obviously be performed. for the case et+1 = recij(msg), Pi ∈ I,
Pj ∈ CP (S) we show that it cannot occur. So suppose there was such an event,
then

p
Ut+1

j = pUt

j .recij(msg)

pUt

j .recij(msg) � p
f(CP (S),S)
j by Rule 2.1 (1)

p
f(CP (S),S)
j � pSj by Lemma 2 (2)

p
f(CP (S),S)
j = PS

j ↓mcp,cp by definition (3)

This implies recij(〈msg , 0〉) is in the history of pSj (by (1) and (2)) and occurs

before mcp takenS
i or cp takenS

i (by (1) and (3)). Hence, by Rule 2.1, depS
j (i) =

1. Thus, since Pj had taken a checkpoint after the receive event it had also sent a
cpr j to Pi. Now, as Pi ∈ I, this event had not been received and must therefore

be in CS
ji. This, however, contradicts that the checkpointing was complete.
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Table 2. Comparison of the two algorithms.

Mutable Checkpointing Blocking Queue Algorithm

blocking processes no no

delaying processing of messages no yes

PSN consistent no yes

Actions to be taken after phase I discard unconverted clear blocking queues
mutable checkpoints

Autonomy of processes no yes

6 Comparison of Mutable Checkpointing with the
Blocking Queue Algorithm

Like mutable checkpointing, the blocking queue algorithm in [13] aims at a re-
duced coordination overhead. It assumes the same system model. The main
difference is that the receipt of flagged messages which would lead to mutable
checkpoints are buffered in so-called blocking queues and are not processed un-
til the necessary checkpoints have been taken. This can be viewed as blocking
channels or blocking processes partially. Mutable checkpointing neither blocks
channels nor processes but, in general, it takes mutable checkpoints which if not
converted to checkpoints need to be discarded after completion of the check-
pointing (i.e. after phase I). A garbage collection is not required in the blocking
queue algorithm, but the blocking queues need to be cleared.

The snapshots determined by the two algorithms over the same underlying
computation, in general, are incomparable. That is, it is not the case that a
checkpoint taken in mutable computing is always equal or earlier than the cor-
responding checkpoint in the blocking queue setting, or vice versa. It may even
happen that a process takes a checkpoint in one setting but not in the other.
We discuss this next. It should be clear that a converted mutable checkpoint
can be earlier than the corresponding checkpoint taken by the blocking queue
algorithm. A computation in which a process takes a checkpoint in the blocking
queue algorithm but not in mutable checkpointing is illustrated in Figure 2. We
use M to depict a mutable checkpoint, M for a mutable checkpoint converted to
a checkpoint, and ⊗ for a (regular) checkpoint. Arcs with numbers reflect mes-
sages and their flag. Checkpoint requests are indicated by cpr. In Figure 2, the
checkpoint of Pi in the blocking queue algorithm has no counterpart in mutable
checkpointing. Such checkpoints, however, can lead to earlier checkpoints in the
blocking queue algorithms and in turn lead to fewer checkpoints than in mutable
checkpointing.

With regard to the potential snapshots, it has been established in [13] that
the potential snapshots of the blocking queue algorithm are always consistent,
contrasting the general inconsistency of the potential snapshots of mutable check-
pointing shown here. In particular, the former implies that one can always only
reset those processes for which a checkpoint has been taken without losing con-
sistency. In mutable checkpointing the processes not taking part in the check-
pointing also need to be reset as they may have received messages sent out after
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Fig. 2. a) Mutable checkpointing, b) blocking queue algorithm. Process Pi takes a
checkpoint in in b), only.

a checkpoint. Similarly, the garbage collection after phase I does also involve
the non-participating processes while for clearing the blocking queues it is suf-
ficient for the participating processes to send a respective clearing message. For
mobile computing environments the blocking queue algorithm seems therefore
preferable, but it comes together with the temporary buffering and delaying of
messages. The comparison is summed up in Table 2. Note, that we did not dis-
cuss autonomy of processes here as it is a feature present in [13] independent of
the others (but it utilizes the blocking queues). In brief, it allows processes not
to take a checkpoint immediately but to postpone it to a time more suitable.

7 Conclusions

We gave a concise specification of the operational behavior of mutable check-
pointing, set up an invariant for the reachable states (Lemma 2) and utilized it
for the correctness proof of the final snapshot. We extracted the specification of
the operational behavior from the pseudo code in [9]. With our translation we
omitted a feature not part of the mutable checkpointing concept (the sent i con-
dition) and in this way obtained a more concise presentation of the algorithm.
This feature, however, reduces the number of checkpoints further. It needs to be
worked out how it reflects in the potential snapshot.

Taking aside the initial work [10] most papers on checkpointing prove correct-
ness by contradiction. We believe that a direct approach provides more insight
into an algorithm. It can also form the basis of a tool-supported proof as re-
cently shown in [3] for Chandy/Lamport’s snapshot algorithm (among others).
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The set-up in [3] is based on the Event-B modelling language [6] and very similar
to ours. Whether the proof given in this paper can be mechanized in a similar
way is subject of future work.

A concise formal model can be the base of qualitative comparisons which
would add to existing quantitative comparisons based on simulations, like [1,12].
We gave such a comparison with the blocking queue algorithm introduced in [13].
That algorithm is conceptually different – it employs partial buffering of channel
contents – but the overall objective is the reduction of coordination overhead as
for mutable checkpointing.

We further showed that for a given underlying computation the respective
snapshots may be incomparable. The potential snapshots of [13] are always con-
sistent unlike those of mutable checkpointing. Moreover, resetting processes and
clearing blocking queues can be done in a localized way (that is involving only
processes participating in the checkpointing). Hence, for computing environ-
ments in which the economic use of resources is crucial, the blocking queue
algorithm seems preferable.

Recently, checkpointing has gained new attention in the area of high perfor-
mance computing where fault tolerance techniques are essential [5,11,16]. As the
reduction of the coordination overhead may help to improve the overall perfor-
mance, the algorithm discussed in this paper may be of interest there.
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Abstract. Multicore processors are growing with respect to the number
of cores on a chip. In a parallel computation context, multicore platforms
have several important features such as exploiting multiple parallel pro-
cesses, having access to a shared memory with noticeably lower cost than
the distributed alternative and optimizing different levels of parallelism.
In this paper, we introduce the Parallel Data Processing Unit (PDPU)
which is a group of objects that benefits from the shared memory of the
multicore configuration and that consists of two parts: a shared memory
for maintaining data consistent, and a set of objects that are processing
the data, then producing and aggregating the results concurrently. We
then implement two examples in Java that illustrate PDPU behavior, and
compare them with their actor based counterparts and show significant
performance improvements. We also put forward the idea of integrating
PDPU with the actor model which will result in an optimization for a
specific spectrum of problems in actor based development.

Keywords: Multicore Processors, High Performance Computing, Actor
Based Implementation, Shared Memory, Programming Construct, Data
Management.

1 Introduction

In computer science research and industry, hardware development has always
been progressing at a very fast rate in terms of performance and costs com-
pared to the software adapted to run on it. Ever since the notion of parallel
programming was first introduced, the demand for algorithms and models to
support this paradigm has drastically increased. Very important issues like syn-
chronization, concurrency and fine-grained task parallelism have been raised in a
wide spectrum of domains requiring significant computing power and speed-up.
Currently, chip manufacturers are moving from single-processor chips to new
architectures that utilize the same silicon real estate for a conglomerate of mul-
tiple independent processors known as multicores, which is also the focus of our
ongoing research in the UPSCALE European Project [25].

Throughout all of the mainstream languages, several libraries have been pro-
posed with the objective to efficiently and reliably map tasks to these cores
providing a high degree of parallelism to applications while avoiding race condi-
tions and data inconsistency. At a lower level, compilers have also been adapted

c© IFIP International Federation for Information Processing 2015
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to ensure instruction-level parallelism on operations that do not depend on each
other and these optimizations are completely transparent to the user. Our on-
going research in this project focuses on how to ”lift” this transparency to a
higher level, offering an abstraction of task-level parallelism that allows the user
to specify how and which tasks are executed in parallel without the complexity
of monitoring data dependencies. We present this approach in one of the main
programming languages, namely the Java language, while avoiding the need to
learn specific instructions of particular Java libraries and packages or forcing
the programmer to adopt a certain ”pattern” to developing highly concurrent
applications.

In a parallel computation context, multicore platforms provide some features
like exploiting several parallel processes and having access to a shared memory
that enables us to propose new higher level software abstractions containing both
parallel processes and the memory which is shared among them, and encapsulat-
ing the before-mentioned low level coordination issues as one solid entity. In this
direction, we introduce the Parallel Data Processing Unit (PDPU) as the ele-
mentary effort towards the elaboration of this category of software abstractions.
In a nutshell, we may have multiple PDPUs in a software, each of which has its
own memory which is shared among constituent processes running in parallel.
In addition, the synchronization considerations caused by concurrent access to
the shared memory are managed as internal features and are hidden from the
programmers.

Through this solution we offer designers a reliable and efficient framework
for avoiding race conditions, deadlocks and managing critical sections in their
programs. We also allow them to analyze their code and identify the exact degree
of parallelism and cost of their parallel sections, while making a clear separation
between sequential and concurrent parts of their programs. Finally our solution
focuses on how to optimize memory accesses by separate processes in a MIMD
architecture [23,24]. This is a crucial research question in the field of Computer
Science as more and more computation intensive applications are moving to
GRID environments or even further to CLOUD storage and resources. Therefore
we formulate our main objective in this paper as follows: to introduce a new
model for programming parallel data processing applications which encapsulates
the multithreaded java programming model and its synchronization features.
The model exposes an interface that is easy to use and transparent, while adding
optimizations for efficient memory management and data consistency. In the rest
of this paper, we first survey the related work in section 2. We then introduce
the definition of PDPU in section 3. The implementation efforts and evaluation
of PDPU will be addressed in section 4. In section 5, we put forward the idea of
integrating PDPU with the actor model in order to take advantage of simplicity
of higher level abstractions and better performance. Finally, we conclude the
paper and present future works in section 6.
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2 Related Work

In this section we look at several solutions proposed and developed in mainstream
programming languages for adapting programs to run on multicores. We start
from some of the basic concepts and examples that have been validated and used
in research and industry for multicore programming. For each example we will
look at what aspects are drawn into our solution, mainly the ease of use and
readability of these solutions, as well as the drawbacks that we want to avoid
in our approach. Furthermore, we look at some complex directions of research
that are oriented towards memory management and mapping user-level threads
to kernel-level threads and propose their integration into our model.

We first look into the kernel-level threads [22] which is a POSIX standard
for programming in C, C++ and Fortran. The advantages of this standard are
that, when implemented correctly, it is extremely efficient and fast, ensuring a
high degree of parallelism that is specified by the user explicitly. The advantage
of these threads is that they can be directly mapped to the kernel threads of
an operating system making it very easy for the user to observe the load of
each task and appropriately balance the computation amongst cores by correctly
defining each thread’s functionality and adjusting it according to its profiling
results. It has been validated in numerous applications and has yielded the best
scaling results among parallel programming solutions [17,21]. The drawbacks
of this approach are centered around the fact that the user is responsible for
synchronization, avoiding race conditions or deadlocks and managing critical
sections and variables. The POSIX Library offers no warnings, compiler errors or
exceptions when these issues occur. In our solution we use the thread mechanism
due to its excellent performance and offer a certain degree of control to the user,
however some of the basic synchronization issues are handled implicitly and due
to our solution being specific to the Java language, it offers the user exceptions
on these issues if they are violated.

Another contribution to our proposal is related to the OpenMP standard pro-
posed in [20]. This solution is also specialized in shared-memory programming
and parallelism is fully implicit. It comprises of a set of directives used to control
repetitive instructions in particular and allow them to be scheduled on the avail-
able cores such that they can be executed in parallel. The directives offer limited
control over scheduling options, the degree of parallelism and critical sections.
What is the most important aspect that we draw from OpenMP is the trans-
parency of the parallelism, as it does not have to be explicitly specified [16]. Basic
instruction-level parallelism and, starting with the recently passed OpenMP 3.0
standard, task-level parallelism are achieved by adding the appropriate directive
before a repetitive instruction or a code-block.

A significant research topic related to OpenMP is how to use this standard to-
gether with the well-known Message Passing Interface (MPI) standard for dis-
tributed programming [15]. This solution allows the user to explicitly model par-
allel processes at a much higher programming level than POSIX Threads while at
the same time handling remote or local communication via messages. The commu-
nication is completely transparent to the user and avoids the implementation of
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sockets or remote method invocation. Essentially, every node is considered a sep-
arate entity with its own address space, a model which disregards shared memory.
From a software engineering standpoint this standard is the easiest to use in the
FORTRAN, C and C++ languages as it does not present any difficult language
constructs and offers high level methods to handle, spawn, finalize and synchro-
nize processes either on the same machine or on several computing entities. Com-
munication transparency is the key feature that we introduce in our model from
the MPI standard, but without affecting the shared memory model that an ap-
plication may or may not be running on. A study in [19] has shown that a hybrid
approach between OpenMP and MPI depending on the programming model can
yield the best performance results and our solution is based on this hybrid ap-
proach.

Nobakht et al. [3] proposed a modeling language for leveraging performance
and scheduling concepts to application level. The proposal introduces the notion
of concurrent object groups (COGs) that isolates multiple objects into sepa-
rate entities and exposes a user-friendly solution to set scheduling policies at a
higher-programming level. As stated in our main objective, we model our solu-
tion for the Java language, therefore we needed to carefully study the parallel
programming concepts introduced by the Java Platform[14]. The solutions for
this programming language are similar to POSIX threads in the sense that the
user is responsible for every step in the concurrent application’s design. Although
Java provides an abstraction for both Threads [13] and synchronization mecha-
nisms [12] a programmer still has the difficult task of learning and using these
new constructs being responsible for handling deadlocks, race conditions and
data consistency. Our goal is to combine these solutions and their advantages
to present a novel approach in multicore programming with a shared memory
model. Our proposed setting is more general than coordination languages [31]
in the sense that the data structures used for memory management can be cus-
tomized and are not restricted to a specific tuple-space, with our aim being
towards a more general data component.

3 The Definition of Parallel Data Processing Unit

Parallel Data Processing Unit (PDPU) is an abstract object (or unit) that puts
together a group of objects so that they process the data in the shared memory
concurrently. PDPU has two main constituents (Figure 1):

A group of processes: a frame that aggregates objects so that one can look at the
group of objects as one solid entity. The group members and their correspond-
ing details are abstracted away from the rest of the application (like a black
box). Instead, PDPU provides one interface just like one coarse-grained object.
There should be some reason that makes this frame meaningful e.g. conceptual
coherence among active object classes. At least, all of them have one feature in
common; they need a specific kind of data to process. From now on, we refer to
the group members as processes since they process the data in shared memory,
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Fig. 1. General Perspective of PDPU

though they can also behave the same as producers by pushing data in the input
shared memory through the interface.

Input and output shared memory: PDPU, as an individual object, has one input
shared memory for storing data received from outside. This memory is shared
within the processes, and the group processes the data from it. There is also
an output shared memory which is filled with the data produced by processes.
The processes do not share any memory except the input for reading and the
output for writing. Furthermore, the data elements are just added or removed
and they are immutable. We refer to those objects which are responsible to fill
in the input shared memory as data producers. Producers are not a part of
the PDPU, instead they use its interface in order to put the data. The output
shared memory is also accessed by the objects called consumers through PDPU
interface. Inside the PDPU, the shared memory is responsible for thread safety
and data consistency when processes work with data concurrently.

3.1 PDPU Interface Description

As shown in Figure 1, there are a group of processes inside the PDPU. Each
process must follow the following template:

Start Process ()

Do

data = retrieve()

result = process(data)

write(result)

Until (data meets ending condition)

End Process

This abstract template shows how proactively processes obtain the data from
the input shared memory and then process it based on their own logic. They
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Table 1. PDPU interface

Method Name Output
Type

Method Description

PDPU<InputType,

OutputType>(Boolean,

Runnable, int)

Object PDPU Consructor which generates PDPU with m
individual processes from reproducible Runnable

process and specified data retrieving policy
(isAll). InputType is the input data type and
OutputType is the output data type.

PDPU<InputType,

OutputType>(Boolean,

List)

Object PDPU Consructor which generates PDPU
with individual Runnable processes from List

and specified data retrieving policy (isAll).
InputType is the input data type and OutputType

is the output data type.

retrieve() InputType Retrieve the data for process usage based on re-
trieving policy

add(InputType) Boolean Add the data to the shared memory and return
True if it is successful

write(OutputType) Boolean Write the data to the output shared memory and
return True if it is successful

read() OutputTypeReturn the data from output shared memory

may, if necessary, generate a result and put it in the output shared memory. In
the above mentioned code, there are two functions which are provided by PDPU
interface: retrieve and write. A brief description of the PDPU interface is given in
Table 1. The ”retrieve()” method provides the process with the next data element
from input shared memory. It encapsulates which is the next data element and
how the synchronization issues are handled. The process may generate some
explicit result for processing each data element. In this case it uses ”write(data)”
to record them in the output shared memory. This function also encapsulates
the synchronization issues for writing in the output shared memory as well. The
process’s result, however, may be produced implicitly through the ”process()”
method, as you will see in section 4. On the other hand, there has to be a data
producer (or producers) which fills the input shared memory and consequently
provides the processes with the data to be retrieved and processed. To this aim,
the producer uses the interface method ”add(data)” which adds the data to the
shared memory. This function is propagated by PDPU interface.

In the definition of PDPU, there are two factors that impact the internal
design of it and both should be specified based on user’s problem requirements.

– Initialization phase: initial state and logic of the processes.
– Memory access: the way that the data in shared memory will be retrieved.

The processes may be instances of the same class and their internal state may be
the same after initialization. We refer to this type of processes as Reproducible
(R) and otherwise as Non-Reproducible (NR). If the process is reproducible, it
is enough to initiate one process and to send it to the PDPU object along with
its number of replicas. Otherwise, the programmer is supposed to make a list
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of processes with different initial states, and then to send the list to the PDPU
object.

(1) PDPU(isAll, process, m) //for Reproducible processes

(2) PDPU(isAll, processList) // For Non-Reproducible processes

Furthermore, the data elements in the shared memory can have two different
ways of being retrieved. The shared memory’s data is targeted either to all
processes or to any of them. In the first instance, it means all the m processes
will retrieve one specific data, and in the second case it means that it is enough for
the data to be processed just by one of the processes. An example of how PDPU
is used is given in Listing 1.1. The processes inside PDPU retrieve the next data
element as soon as they become idle. The start-up sequence of the processes is
also based on which one retrieves data from the input shared memory earlier.

Listing 1.1. PDPU User Example

public class PDPUUser {

Process [ ] p roce s s ;
PDPU<InputType , OuputType> pdpu ;
Input dataFlux = new input ( ) ;
//this can be a socketHandler

//or anything which continuously receives Data

public void I n i t ( int m) {
proce s s = new proce s s [m] ;
pdpu = new PDPU<InputType , OuputType>("all" , p roce s s

) ;
//the first parameter corresponds to how data is

processed

for ( int i = 0 ; i < m; i++){
proce s s [ i ] = new Process ( ) ;
p roce s s [ i ] . setPDPU(pdpu) ;

}

while ( dataFlux . hasData ( ) )
pdpu . add ( dataFlux . getNewData ( ) ) ;
//The producer rule in the model

for ( int i = 1 ; i <= m; i++)
pdpu . add ( dataFlux . endData ( ) ) ;
// ending condition

}
}

public class Process implements Runnable{

PDPU<InputType , OutputType> pdpu ;
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public void setPDPU(PDPU<InputType , OutputType> pdpu){
this . pdpu = pdpu ;

}

public void run ( ) {
InputType x ;
OuputType y ;

while ( x != ENDDATA) {
x = pdpu . r e t r i e v e ( i ) ;
y = proce s s ( x ) ;
pdpu . wr i t e ( y ) ;

}

OutputType proce s s ( InputType x ) {} // process

related code

}

3.2 PDPU Scientific Impact

PDPUs bring about some advantages with respect to software engineering qual-
ities, as they provide:

– Ease of use: some lower level implementation details are handled not by
programmers, but by the PDPU; like allocating computation resources to the
processes, allocating shared memory, and the thread-safety issues concerning
access to the shared memory.

– Understandability of system design and code: PDPU as a coarse granular co-
hesive design component (or module) makes the design models of the system
simpler and easier to understand.

– Loose coupling : the producer interacts only with PDPU interface instead of
all processes.

Furthermore with respect to concurrent computation, PDPUs provide new ab-
stract constructs for parallel programming languages and, more generally, they
put forward a new paradigm of designing coarse grained objects which encapsu-
lates both memory and multiple computation resources.

4 PDPU Implementation and Evaluation

In this section we present a technical explanation of the shared memory man-
agement. We illustrate the operation of PDPU through a case study with two
examples in Java.
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4.1 Memory Management

As explained in section 3 the PDPU hides all of the elements concerning syn-
chronization, thread-safety and data consistency from the user. The memory
can be customized to support retrieval of each data item by either a sin-
gle process or all processes. In the first case, we implement the memory as
a LinkedBlockingQueue[12] which translates to a classic producer-consumer [11]
problem with the synchronization hidden from the user. The real issue appears
in the second instance where the memory must take into account blocking all
processes when new data is not available, releasing them for work when new data
is added and cleaning up the input data when all processes have read it. This
case maps to the classic readers/writers problem [10] with a garbage collection
issue. We use a ConcurrentHashMap with an index for a key and a counter/data
pair for a value. A CyclicBarrier is assigned to a separate counter (the current
number of items that were added up to a moment) which blocks all processes
when no new data is available. After each process reads an item from the hash
map it increments the item’s corresponding counter. The last process to read
an item is responsible for eliminating the item based on the counter reaching
the fixed number of processes. It is worth mentioning that because according to
the definition of PDPU the data is immutable both in input and output shared
memories, we use object cloning in order to have a copy of the data instead of
reference to guarantee the immutability of the data.

4.2 Example 1: The Behavior of PDPU with Respect to
Transferring Data

We first compare a Java program in the domain of actor based applications
with its PDPU-based counterpart. In this example, there is no computation and
the only important factor is delivering data elements to the processes. Figure
2 presents the PDPU in Object Oriented model. For implementing above men-
tioned actor based Java programs, we use ABS-API [7], an actor-model library
implemented in JAVA 8 using the newly introduced feature of lambda expres-
sions. We also run all the programs on SaraSURF cluster on a 16 core processor
2.70 GHz (Intel Xeon CPU E5-4650 0) with 128GB of memory[7] to have the
same framework for comparison.

Let us assume a common actor based configuration in which there is a pro-
ducer of data that provides multiple actors with a stream of data objects through
message passing. The producer generates the data and sends it through asyn-
chronous method invocation. Each data element will be processed by all of the
actors. Therefore the producer composes and sends m messages for each data,
wherem is the number of actors receiving the message. Thus, for n data elements,
the producer sends m ∗ n messages. However, instead of broadcasting each mes-
sage to all actors, the PDPU alternative for this implementation involves having
a PDPU which contains a fixed number of m processes. The producer is sup-
posed to add each data element to the shared memory of the PDPU instance just
once through calling ”add(data)” and processes retrieve and process the data.
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Therefore the producer adds the n data elements to the PDPU which starts m
processes. It is clear that, in terms of transferring data to the processes, the com-
putation complexities of producers are O(nm) and O(n+m) for the actor based
and PDPU based implementations respectively. The difference is more clear,
when we consider large m because of the future of multicore platforms, namely
manycores, with thousands or even millions of cores on a chip. Figure 3 illus-
trates the advantage of PDPU in terms of performance. The important point of
this plot is the behavior of these two approaches, disregarding the elapsed times.
As you can see, the line corresponding to actor based implementation grows ex-
ponentially, when m is increased. The PDPU based implementation, however,
grows at a linear rate. There are multiple factors other than computation com-
plexity that impact on the elapsed time in the actor based configuration, namely,
the resource consumption due to among others enqueueing and dequeueing the
messages and generating the call stacks.

4.3 Example 2: The Concurrent Version of Sieve of Eratosthenes

In mathematics, the sieve of Eratosthenes, one of a number of prime number
sieves, is a simple algorithm for finding all prime numbers up to any given limit.
It does so by iteratively marking as composite (i.e. not prime) the multiples
of each prime, starting with the multiples of 2 [6]. To model the algorithm
in two different versions using actors [5] and PDPU, we use the well-known
parallel algorithm which partitions the sequence of candidate numbers [2,1]. In
this algorithm, the numbers are partitioned into smaller sequences of numbers
with almost the same size. The size of each partition must be equal or greater
than �√n�, and the number of partitions must be equal or less than �n/�√n��,
where n is the target number such that the first partition contains all of the
prime numbers that sieve composites throughout all partitions. Therefore the
first actor in the model, namely producer, will send asynchronous messages to
the others that will invoke the sieving process. To this aim, each prime number
must be sent m times to the m actors. This is where the PDPU based model
affects the performance of the program. If prime numbers are processed on the

Fig. 2. The Object Oriented model containing PDPU
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Fig. 3. The comparison between the behavior of Actor based and PDPU based Java
programs. 106 data items are sent to each process.

same machine they can exploit PDPU abstraction which reads and writes the
numbers in a shared data structure, with message passing being required only
between the producer and remote partitions. So each prime number is produced
and written in shared memory just once. The comparison of actor based and
PDPU based implementations of prime sieve is shown in Figure 4. While both
algorithms scale, PDPU based implementation outperforms the actor based one.
However it is not because of theoretical analysis we have mentioned in Section
4.2, but because of practical overheads in ABS-API for receiving the messages
containing data. In other words, when the producer is not the bottleneck, in
opposite to example 1, then both programs performances are limited to the
computations done in actors and processes. In this example, they behave the
same, though there is some constant difference in performance. In contrast, if
we consider just producers overheads and disregard other parts of programs, the
PDPU based implementation significantly outperforms since the same reason
mentioned in Section 4.2.

5 Discussion: Integrating PDPU with Actor Model

In previous sections, we introduced PDPU as a high abstraction level object
that is orthogonal to both Java Threads and the actor model. PDPU enhances
the Java language to obtain parallelism in processing data via encapsulating
synchronization. In other words, it is simpler to implement a parallel data pro-
cessing algorithm using PDPU than using Java Threads, and the programmer
does not need to face synchronization issues, race conditions and so forth. We
have also shown how PDPU outperforms actor based implementations and what
is the reason behind it through the examples in section 4. In this section, we
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Fig. 4. The comparison between the behavior of Actor based and PDPU based imple-
mentations of Sieve of Eratosthenes. The target number for sieving is 109

explain how PDPU concept is integrated with actor model in such a way that
the extended actor model exploits the strength points of both concepts.

Although it is achieved novel advantages in the area of actor model and asyn-
chronous message passing, there are some downsides in practice e.g. the overhead
of composing, sending and receiving messages and dealing with obtaining future
results when their number is large. Sometimes the overhead is because of the
nature of broadcasting mechanism — that is — broadcasting the same message
to several actors which has both computation overhead, because of redundant
repetitive actions for broadcasting message, and memory overhead, because of
redundant queuing the same message by several actors. On the other hand, the
actor model [7] provides the actor notion which is an entity with high abstraction
level that leads to eliminating design and implementation complexities caused
by the nature of parallel computation and programming. However, there can be
higher abstract constructs or design patterns that still follow the actor concept
and eliminate or lessen these cumbersome and confusing details in some specific
circumstances.

This section puts forward the idea of a new abstract programming language
construct, which is called Active Group in order to benefit from both actor
based implementation and PDPU features. The general idea is that we have one
actor-like component in a higher level abstraction. This component consists of
one queue of runnable messages and one processing part which processes the
messages. At lower abstraction level, similar to PDPU, the processing part con-
tains multiple processes, i.e. actors, receiving messages. Instead of data elements
in PDPU, here we will have runnable messages in the shared memory. You can
see a simple scheme of Active Group in Figure 5. However we ignore some of its
details, e.g. how actors have access to the shared queue. Here we briefly address
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Fig. 5. Active Group (right side) and its extended actor based counterpart (left side)

some of these details as the main features of Active Groups. We use the same
terminology as the definition of PDPU:
Proactive or Reactive Actors: The actor can proactively fetch one message
from shared memory or wait for the next element to be prepared. In contrast,
it may passively receive the message through an independent scheduler in the
group, and process it. Thus the values for this feature are Proactive and Re-
active. In the former case, there is no need for each individual actor to have a
message queue.
Different Scheduling Policies: One of the advantages of the active group is to
apply different scheduling policies. Data is usually received in a particular order,
but if the policy is not FIFO, the group may process them in other orders. To this
aim, data can be reordered based on, say, Priority or Content. Furthermore,
if actors are not proactive, they are supposed to be managed as computation
resources by schedulers. They may be selected as the target actor based on
different policies like Round Robin.
Different Ways of Using the Shared Memory: In some applications of
active groups, each message in the shared memory will be fetched by one actor
and processed by it. So, in that case, the message is removed from shared memory
(e.g. a queue of HTTP requests, each of which will be enough to be processed
by one server). This type of shared memory is technically a queue. However, in
some other applications, the message is used by all actors. In that case, the data
is read from the shared memory but it is not removed since it will be used by
others (e.g. in section 4.3, the messages containing prime numbers that are used
by actors in concurrent version of sieve of Eratosthenes).

There can be several distinct versions of active group, each of which have
different feature values. If we refer to the above-mentioned issues as customizable
features of active group, then the ideal active group definition provides the user
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with all these features to be customizable with existing values. To reach this
aim, there can be different ways:

1. Parameterizing the active group construct so that the user can initialize
appropriate feature values.

2. Using polymorphism to refine the abstract active group.
3. Having distinct types of active groups so that their definition illustrates their

features values.

6 Conclusion and Future Works

In this paper we proposed a coarser granular object, i.e. Parallel Data Processing
Unit, which contains both computation and memory, and encapsulates efforts
for synchronization issues to make parallel programming easier for programmers.
Through case studies and complexity analysis, we have shown how it overcomes
one of the drawbacks of actor model and significantly improves performance.

Reasoning about multi-threaded Java programs is notoriously hard (see [8])
because of its fine-grained interleaving. In contrast PDPUs allow for a com-
positional proof method along the lines of the proof method for monitors as
introduced in [9]. Given an appropriate assertion language for describing the
internal data structures of a PDPU such a proof method is based on the spec-
ification of these data structures by means of an invariant. The external proof
obligations for the invariant are specified in terms of the implementations of the
”add” and the ”read” operation, given a precondition of the caller specifying the
input parameter in case of an ”add” operation. The internal proof obligations
of the invariant are specified in terms of the implementations of the processes
which involves the implementations of the ”retrieve” and ”write” operations.

We then put forward the idea of integrating this novel approach with the actor
model by bridging the gap between their conceptual differences. To this aim, we
have generalized PDPU as a new concept, called Active Group, which is based
on actor model. It will make it possible for a broader types of problems to be
implemented in Active Groups. As future work, we aim to extend the syntax
and the operational semantics of ABS language [4] to have the new construct,
namely Active Group, and also extend the ABS-API so that it contains support
for defining and using Active Groups.
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Abstract. Value and policy iteration are powerful methods for verify-
ing quantitative properties of Markov Decision Processes (MDPs). In
order to accelerate these methods many approaches have been proposed.
The performance of these methods depends on the graphical structure
of MDPs. Experimental results show that they don’t work much better
than normal value/policy iteration when the graph of the MDP is dense.
In this paper we present an algorithm which tries to reduce the number
of updates in dense MDPs. In this algorithm, instead of saving unneces-
sary updates we use graph partitioning method to have more important
updates.

Keywords: Markov decision processes, probabilistic model checking,
value iteration, policy iteration, graph partitioning, variable ordering.

1 Introduction

Markov Decision Processes (MDPs) are transition systems that can be used for
modeling both nondeterministic and stochastic behaviors of reactive systems.
In this paper we mainly focus on the quantitative verification of MDPs and
consider reachability probabilities, i.e., calculating the maximum (or minimum)
probability of reaching some goal states.

In general there are some main classic methods to solve MDPs: value iter-
ation [1], Gauss-Seidel, policy iteration, and linear programming approach [6].
Many researchers have tried to improve the performance of Value Iteration (VI)
and Policy Iteration (PI) by reducing the number of updates of states [2,4,7–9].
Although the main focus of so-called papers is on dealing with some problems in
learning, one can use those techniques for quantitative verification of MDPs [3,5].

Experimental results show that when the graph of an MDP is dense or in the
situation where all states belong to only one Strongly Connected Component
(SCC), Gauss-Seidel version of VI works better than other advanced methods. In
addition, a good variable ordering can accelerate iterative methods, but finding
the optimal variable ordering for cyclic MDPs is an NP-complete problem [9].

In this paper we concentrate on dense MDPs and consider maximum reach-
ability probability problems (as defined in [1]). We present an algorithm that
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works faster than VI (and also faster than other methods). The main contribu-
tion is to present a prioritized algorithm for accelerating verification of dense
MDPs.

The remainder of this paper is structured as follows. Section 2 formally defines
MDPs and reviews PI algorithm. In Section 3 we present heuristics for variable
reordering in both sparse and dense MDPs and then present a prioritized al-
gorithm for dense MDPs. Section 4 summarises our experimental results and
Section 5 presents conclusions and ideas for future research.

2 Preliminaries

In this section, we provide an overview of MDP and policy iteration method.
Detailed definitions and topics are available in [1, 5].

2.1 Markov Decision Processes (MDPs)

An MDP is a tuple M = (S,Act, P,AP, L), where S is a countable set of
states, Act is a finite set of actions, P : S × Act × S → [0, 1] is the tran-
sition probability function such that for each state s ∈ S and each action
α ∈ Act :

∑
s′∈S P (s, α, s′) ∈ {0, 1} , AP is a nonempty set of atomic proposi-

tions, and L : S → 2AP is a labeling function.
For the sake of simplicity, we suppose that AP = {goal, non−goal} and there

is a unique start state s0. For a state s ∈ S and an enabled action α ∈ Act, set
of successors are defined as

Post(s, α) = {s′ ∈ S|P (s, α, s′) > 0} and Post(s) = ∪α∈ActPost(s, α).

A path in an MDP is a non-empty (finite or infinite) sequence of the form:

s0
α0−→ s1

α1−→ s2
α2−→ · · · where si ∈ S and si+1 ∈ Post(si, α) for each i > 0. We

define Pathss as the set of infinite paths that start in s. To resolve nondeter-
ministic choices in an MDP we require the notion of policy. A policy π selects
an enabled action in each state based on the history of choices made so far (or
simply the last state in memory-less policies). It restricts the behavior of the
MDP to a set of paths pathsπs ⊆ pathss. One can define a probability space
Probπs over the paths Pathsπs [1]. For an MDP M we use ΠM to denote the set
of all policied of M .

MDPs can be used in the verification of systems (probabilistic verification).
In this area, properties that should be verified against MDPs can be expressed
using temporal logics such as PCTL [5]. In this paper, we concentrate on a
limited yet important class of problems: maximum reachability probabilities, i.e.
the maximum probability that a path through the MDP which starts from s0
eventually reaches a goal state.

2.2 Quantitative Verification of MDPs

Model checking of PCTL formulas can be reduced to some important questions
against MDPs. The maximum (or minimum) reachability probability is one of
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the most important questions against them. Given a set of goal states G ⊆ S,
the maximum and minimum reachability probability can be defined as:

pmin
s (G) = inf

π∈ΠM

pπs (G) and pmax
s (G) = sup

π∈ΠM

pπs (G),

where pπs (G) = Probπs ({ω ∈ Pathπ
s |∃i.ωi ∈ G}). As we have mentioned, there

are some methods to compute reachability probabilities in MDPs but we only
consider PI (because PI has better performance for dense MDPs).

2.3 Policy Iteration

Algorithm 1 describes the policy iteration method to calculate the values of
pmax
s . This algorithm uses an array P to save the value pmax

si for each state si.
It first estimates a good policy (Line 8) and computes the value of states itera-
tively according to this policy (Lines 15-25). After reaching the threshold if the
estimated policy is not optimal it will be improved and the iterative method
continues. Act[si] saves the best estimated action for each state si.

Algorithm1: Policy Iteration

1. Set initial values: P [si] = 1 if {si ∈ G} and o.w. P [si] = 0.
2. diff1 := 1

3. while diff1 > epsilon do

4. diff1 := 0; temp := 0; diff2 := 1

5. for i := 1 to number_of_states do

6. if P [si] < 1 then

7. temp := max
α∈enabled(si)

∑

s′∈S p(si, α, s
′)× P [s′]

8. Act[si] := arg max
α∈enabled(si)

∑

s′∈S p(si, α, s
′)× P [s′]

9. if temp − P [si] > diff1 then

10. diff1 := temp − P [si] end if

11. end if

12. end for

13. if diff1 < epsilon then

14. return P [s1] end if

15. while diff2 > epsilon do

16. diff2 := 0

17. temp := 0

18. for i:= 1 to number of states do

19. if P [si] < 1 then

20. temp :=
∑

s′∈S p(si, Act[si], s
′)× P [s′]

21. if temp − P [si] > diff2 then

22. diff2 := temp − P [si] end if

23. end if

24. end for

25. end while

26. end while
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3 Accelerating VI and PI Algorithms

One of the main drawbacks of VI (and also PI) is that in every iteration it
updates the values of all (nontrivial) states. Researchers proposed a range of
methods to avoid unnecessary updates and speed up this algorithm. Some of
these methods [4, 9] try to split the MDP to some SCCs and in every iteration
only compute the new value for states in some SCCs. Another approach for
accelerating iterative methods is to consider a better variable ordering [4, 5, 9].

We review the idea of variable reordering and propose a heuristic algorithm
for variable reordering in dense MDPs.

3.1 Variable Ordering

The PI algorithm in Section 2 tries to use the update of states as soon as pos-
sible. In this case the order of updated states can influence the performance of
algorithm. Let StatesOrder[si] be the array that determines the (static) order
of states for update. When the value of a state is updated the new value can be
propagated to next computation if the values of next states depend on the value
of the current state. There are some heuristics for variable ordering in previous
works [3–5, 9], but none of them are useful for dense MDPs.

Here we propose an algorithm for variable reordering whose time complexity
is linear in the size of the MDP. The idea of this algorithm is to select a state s
for update where the most of states of Post(s) have been updated before. The
for loop in line 5 is used to guarantee the selection of all states.

Algorithm2: VariableReordering

1. for i := 0 to n - 1

2. Selected[i] := false;

3. end for

4. left := right := 0;

5. for i := 0 to n - 1

6. if Selected[i] = false then

7. Selected[i] := true; StateOrder[left] := i;

8. while left <= right and right < n do

9. j := StateOrder[left++];

10. for each sk ∈ Post(sj)
11. if Selected[k] = false then

12. Selected[k] := true;

13. StateOrder[right ++] = k;

14. end if

15. end for

16. end while

17. end if

18. end for
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Policy iteration algorithm should call this function before the beginning of
inner while loop (line 15 of Algorithm 1). In this case the VariableReordering
function uses Post(sj , Act[sj ]) (line 10 of algorithm 2). The for loop of line 18
(of algorithm 1) should be in reverse order and the state si could be selected
according to the StateOrder array:

for i := number_of_states down to 1

si = StateOrder[i];

This algorithm is useful for sparse MDPs but in order to deal with dense
MDPs we modify the Post set in line 10. Given t < 1 as a threshold, we define
Post(si, α, t) = {sj |P (si, α, sj) ≥ t}. The experimental results show that the
good value for t is between 0.3 and 0.5. It causes the algorithm to consider more
important transitions. Algorithm 2 is used as a precomputation for every policy
modification and doesn’t affect the correctness of the PI algorithm.

3.2 Prioritized Algorithm for PI

Prioritized algorithms [9] in general try to focus on regions of the problem space
that are more important and have the maximum effect on the whole problem.
In this section we propose an algorithm that uses a simple graph partitioning
method for prioritizing state updates.

Inspiring from the idea of SCC-based methods [5] we propose an algorithm
which uses a good heuristic to split the state space to some partitions and up-
dates these states according to this partitioning. Let B be a partition. Define

AverageT rans(si, B) =

∑
Sj∈B P (si,Act(si),sj)

sizeof(B) . Our method tries to make parti-

tionswhere for each state si and eachpartitionB the value ofAverageT rans(si, B)
is high if si ∈ B and this value is low otherwise. In this case the partition that con-
tains goal states is the most important and the frequency of updates for states
of this partition should be more than the other two. We use this partitioning
algorithm in the PI because for dense MDPs the performance of PI is usually
better than the performance of VI.

We use an O(n2) heuristic for graph partitioning of the MDP because its
overhead in the case of dense MDPs is negligible for most case studies. There
are some options for the size of partitions. In this paper we define 3 partitions
and suppose that the size of the first partition is 25% and the second partition
is 35% of all state space. Algorithm 3 describes this partitioning method and
because of page limitation, we only present the code for the first partition (with
25% of states).

Algorithm3: Graph Partitioning

1. for i := 1 to number_of_states do

2. Distance [i] := 0;

3. end for

4. for i := 1 to number_of_states do

5. if si is a goal state then

6. Selected[i] := true;
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7. for j := 1 to number_of_states do

8. Distance[j] += P (sj , Act[sj ], si);
9. end for

10. end if

11. end for

12. for i := 1 to 0.25×number_of_states do

13. k := the index of non -selected state for which

Distance[k] is maximum;

14. Selected [k] := true;

15. for j := 1 to number_of_states do

16. if Selected[j] = false then

17. Distance [j] += P (sk, Act[sk], sj) + P (sj , Act[sj ], sk);
18. end if

19. end for

20. end for

This algorithm should be called before the second while loop (Line 15) in
Algorithm 1. In order to use the result of this algorithm we modify Algorithm 1
and add the following statements after Line 18:

if i % 7 = 0

update states of partition #3

else if i % 7 = 2 or i % 7 = 5

update states of partition #2

else

update states of partition #1

end if

end if

4 Experiments

We implemented the proposed and original iterative algorithms in C++ using
MS Visual Studio 2010 and ran it on an Intel Core i3 processor with 4GB
memory. In the sections that follow we first consider the proposed algorithm of
Section 3.1 and then consider the algorithm of Section 3.2.

4.1 Results for the Variable Ordering Algorithm

We tested our modified ordering algorithm on some dense MDPs. These models
are randomly generated problems with 100 states and 3 actions per state and a
parameter λ. We created these MDPs such that for each state si, the average
of maximum value of P (si, α, si+1) is λ with standard deviation of 0.1. Table 1
shows results of running Policy Iteration with best and worst variable ordering
and also a random variable ordering. For simplicity we only present number of
iterations for the execution of PI with ε = 10−6.

The impact of variable ordering for these case studies is considerable where
the λ parameter is more than 30%.
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Table 1. Results of Variable Ordering for Some Dense MDPs

λ 0.9 0.7 0.5 0.3 0.2 0.1

Random ordering 11.6K 5.5K 3.7K 2.9K 2.6K 2.5K

Best ordering 1.7K 1.9K 2K 2.1K 2.2K 2.2K

Worst ordering 20.5K 9.2K 5.6K 3.8K 3.2K 2.9K

Best/random 0.147 0.364 0.568 0.758 0.846 0.88

4.2 Results for Partitioning-Based Algorithms

SysAdmin problem [9] is a good example of real problems that have dense MDPs.
Because of relatively high number of actions per state, the performance of PI
algorithm is better than VI and Gauss-Seidel. We used an implementation for
the MDP of this problem that is developed by the authors of [9].

We also defined one other MDP: M1 is a model that the probability of reaching
to 20% of its states is about 8 times more than the probability of reaching other
80% of states. This model has 400 states where average number of actions per
state is 3.

It has been shown that the performance of SCC-based methods is lower than
standard iterative method for dense MDPs [9]. Hence, we don’t compare our
algorithm with SCC-based methods. To compare it with learning based ones, we
use the implementation of learning algorithms that the authors of [3] proposed.

Table 2 shows the results of running normal VI and PI methods and, our
prioritized algorithm (PI with algorithm 3). We called our algorithm Prioritized
PI (PPI). Because of high average number of actions per state, the running time
of PI is less than VI. The results show that our prioritized algorithm reduces the
running time for all models. While prioritized methods of [9] could not improve
the performance of iterative methods for SysAdmin, our algorithm accelerates
iterative computations for these models.

Table 2. Results for our prioritized algorithm

Model Number of
States

Time in
VI

Time in
PI

Time in
Learning-
based

Time in
PPI

SysAdmin6 64 < 0.1 < 0.1 2.6 < 0.1

SysAdmin8 256 0.7 0.19 11.5 0.16

SysAdmin9 512 4.5 0.76 24.3 0.63

SysAdmin10 1023 27.2 2.45 49 1.96

M1 410 1.11 0.95 8.5 0.49

The main reason that the performance of learning based algorithms for dense
MDP’s is so low is that these methods doesnt usually propose good variable
ordering for this class of MDPs.
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5 Conclusions and Future Research

The main contribution of this paper is that we present a prioritized algorithm for
dense MDPs and show that it can reduce the running time of iterative methods
for solving probabilistic reachability problems of this class of MDPs.

An approach for future works is to use a good variable ordering in each par-
tition in our prioritized algorithm. In addition, one can propose a better priori-
tized algorithm that outperforms other prioritized ones in both dense and sparse
models.

While many of previous works focus on VI, we believe that variable reordering
can improve the performance when it is used in PI. One can also improve the
performance of PI for both dense and sparse MDPs and outperform the VI
approach by using advanced methods for selection of good policies (like action
elimination.)
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Abstract. XY -simulation is a generalization of bisimulation that is pa-
rameterized with two subsets of actions. XY -simulation is known in the
literature under different names such as modal refinement, partial bisim-
ulation, and alternating simulation. In this paper, we propose a pre-
congruence rule format for XY -simulation. The format allows for check-
ing compositionality of XY -simulation for an arbitrary language with
structural operational semantics, by performing very simple checks on
the syntactic shape of the rules. We apply our format to derive concrete
compositionality results for different notions of behavioral pre-order with
respect to different process calculi in the literature.

1 Introduction

XY -simulation is a generalization of bisimulation that is parameterized by two
subsets of actions: X and Y [1]. The idea is to weaken the transfer property
of a bisimulation relation in the following way: the actions in X are simulated
from left to right, while the actions in Y are simulated from right to left. XY -
simulation is well-known in the literature, albeit under different names, such as
modal refinement [16], partial bisimulation [6], and alternating simulation [4].

An essential property for any notion of behavioral pre-order and hence, also
for XY-simulation, is the so-called pre-congruence property. This property allows
for compositional verification and reasoning about processes under arbitrary
contexts. The pre-congruence property has been studied in the literature for
some instances of XY-simulation and for a fixed set of well-known operators from
the field of process algebras (see [6,16] for instance). In this paper, we generalize
these results by providing generic sufficient conditions for compositionality of
XY-simulation with respect to any arbitrary set of operators with a Structural
Operational Semantics (SOS) [21]. We do so by restricting the syntactic shape
of the SOS rules to ensure pre-congruence. The result of this paper provides a
unified account of existing results and is instantiated to generate new results.
Furthermore, the proposed rule format can serve as a yardstick for language
designers to check the compositionality of their operators while defining their
semantics.
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To develop our rule format, we employ the modal decomposition approach
proposed in [9,13] in combination with an existing modal characterization of
XY -simulation, due to [11]. We devise a modal decomposition that specifies
when an open term satisfies a modal formula in terms of the modal formulae that
are to be satisfied by its variables. This modal decomposition is then directly
employed in generating a pre-congruence rule format for XY -simulation. The
obtained format is an elegant and simple one; the only specific checks required
are simple checks on the labels of the transition formulae, with respect to their
inclusion in X or Y . As we demonstrate by some examples in this paper, the
format is applicable to various notions of behavioral pre-order and to various
process calculi in the literature.

The rest of this paper is structured as follows. In Section 2, we recall the basic
definitions that will be used throughout the paper. Then, in Section 3, we first
formulate and prove the modal decomposition theorem and using that, derive
our pre-congruence rule format. In Section 4, we apply the obtained rule format
to various examples from the literature. In Section 5, we show that the syntactic
conditions on the rule format cannot be trivially relaxed. Finally, in Section 6,
we conclude the paper and present the direction of our ongoing research.

2 Preliminaries

In this section, we first quote the basic definition of labeled transition systems
and XY -simulation and some of their properties. Subsequently, we recall a for-
malization of SOS, and building upon this formalization, we define the basic rule
formats that will form the foundations of our results in this paper.

2.1 Transition Systems and XY -simulation

We start by recalling below the well-known notion of labeled transition systems.

Definition 1 (Labeled Transition Systems). A labeled transition system
(LTS) is a triple (P,A,→), where P is the set of processes, A is the set of
actions, and →⊆ P×A×P is the transition relation. We denote (p, a, q) ∈→ by
p

a−→ q.

The following definition formalizes the notion of XY -simulation, originally
due to [1].

Definition 2 (XY -simulation). Let X,Y ⊆ A. A binary relation R ⊆ P× P

is an XY -simulation relation iff the following transfer conditions are satisfied:

1. ∀p,a,q,p′ (p
a−→ p′ ∧ pRq ∧ a ∈ X) ⇒ ∃q′ q a−→ q′ ∧ p′Rq′.

2. ∀p,a,q,q′ (q a−→ q′ ∧ pRq ∧ a ∈ Y ) ⇒ ∃p′ p
a−→ p′ ∧ p′Rq′.

Two processes p, q ∈ P are XY -similar , denoted by p 	X,Y q, iff there is an
XY -simulation relation R such that pRq.
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It is worth noting that in [2], XY -simulation relations are called covariant-
contravariant simulation relations.

The following lemma lists some of the intuitive properties of XY -similarity.

Lemma 1. Consider an arbitrary LTS (P,A,→) and assume that X,Y,X ′, Y ′ ⊆
A; the following statements hold.

1. Relation 	X,Y is a pre-order.
2. If X ⊆ X ′, then 	X′,Y ⊆ 	X,Y .
3. If Y ⊆ Y ′, then 	X,Y ′ ⊆ 	X,Y .
4. 	Y,X=	−1

X,Y .

Proof. 1. It is straightforward to verify that the identity relation is an XY -
simulation relation. To prove transitivity, let p 	X,Y p′ and p′ 	X,Y p′′ with
R and R′ their witnessing XY -simulation relations, respectively. It remains to
show that R ◦ R′ = {(p, p′′) | ∃p′ pRp′ ∧ p′R′p′′} is an XY -simulation relation.
We distinguish the following cases:

– Let p
a−→ q, for some a ∈ X , and pR ◦ R′p′′. By the definition of relation

composition, there exists some p′ such that pRp′ and p′R′p′′. Since R and
R′ are XY -simulation relations, we have p′ a−→ q′, p′′ a−→ q′′, and qR ◦ R′q′′,
for some q′, q′′.

– Let p′′ a−→ q′′, for some a ∈ Y , and pR ◦R′p′′. Similar to the previous case.

The proof of Items 2., 3., and 4. are straightforward from Definition 2. ��
Definition 3 (Modal Characterization of XY -simulation). Let ΦX,Y be
the set of modal formulas generated by the following grammar:

ΦX,Y ::=
∧

i∈I

ϕi |
∨

i∈I

ϕi | 〈a〉ϕ | [b]ϕ (a ∈ X, b ∈ Y ).

The semantics of a formula ϕ ∈ ΦX,Y is inductively defined in the standard
way, i.e.,

p |=
∧

i∈I

ϕi ⇐⇒ ∀i∈I p |= ϕi p |=
∨

i∈I

ϕi ⇐⇒ ∃i∈I p |= ϕi

p |= 〈a〉ϕ ⇐⇒ ∃q p
a−→ q ∧ q |= ϕ p |= [a]ϕ ⇐⇒ ∀q p

a−→ q ⇒ q |= ϕ .

Note that � =
∧

∅ and ⊥ =
∨

∅. Furthermore, we let Φ = ΦA,A and ϕ1∨ϕ2 =∨
i∈{1,2} ϕi. For any two formulas ϕ, ϕ′ ∈ Φ, we define ϕ ⇒ ϕ′ = neg(ϕ) ∨ ϕ′,

where neg : Φ → Φ is a function that encodes negation in the logic, by pushing
negation through conjunction, disjunction, and the modalities in the standard
way.

Theorem 1. p 	X,Y q ⇐⇒ ∀ϕ∈ΦX,Y p |= ϕ ⇒ q |= ϕ.

Proof. Standard (see [11]). ��
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2.2 Transition System Specifications

In this section, we recall some basic concepts that are used in the meta-theory
of SOS. Regarding the notions treated in this section and the next one, we refer
to [3,19] for more details, examples and results.

Definition 4 (Terms and Signatures). Let V be an infinite set of variables
with |V| ≥ |A|. A signature is a collection Σ of function symbols f �∈ V equipped
with a function ar : Σ → N denoting their arity. The set T(Σ) of terms over
signature Σ is defined as follows:

– V ⊆ T(Σ),
– if f ∈ Σ and t1, · · · , tar(f) ∈ T(Σ) then f(t1, · · · , tar(f)) ∈ T(Σ).

A constant term c() is denoted by c. Let var(t) denote the set of variables
that occur in term t. Let T (Σ) = {t | var(t) = ∅} denote the set of closed terms.
A (closed) Σ-substitution σ is a total function from the set of variables V to
(closed) terms (T (Σ)) T(Σ).

Definition 5 (Transition System Specifications). Let Σ be a signature. A
positive Σ-literal is an expression of the form t

a−→ t′ with t, t′ ∈ T(Σ) and a ∈ A.
A negative Σ-literal is an expression of the form t

a−� with t ∈ T(Σ) and a ∈ A.
A transition rule (or simply a rule) over Σ is an expression of the form H

α with
H a set of Σ-literals (whose elements are called the premises of the rule) and
α a Σ-literal (called the conclusion of the rule). Furthermore, the left- and the
right-hand side (if any) of the conclusion of a rule are called the source and the
target of the rule, respectively. A transition system specification (TSS) over Σ
is a collection of rules over Σ. A TSS is standard if all its rules have positive
conclusions and positive if moreover all premises of its rules are also positive.

For each literal α of the form t
a−→ t′ (t a−� ), the action label of α, denoted by

action(α), is defined to be a. For each two terms t, t′, literals t
a−→ t′ and t

a−�
deny each other.

A TSS is meant to define an LTS; however, in the presence of negative lit-
erals, this is not straightforward. To start with, we first recall the definition of
irredundant proof, by Bloom et al. [9], which corresponds to the intuitive notion
of proof from a given set of hypotheses.

Definition 6 (Irredundant Proof). Let P be a TSS over a signature Σ. An
irredundant proof of a transition rule H

α from P is a well-founded, upwardly
branching tree with the nodes labeled by Σ-literals, and some of the leaves marked
as “hypotheses”, such that:

– the root is labeled by α.
– H is the set of labels of the hypotheses, and
– if β is the label of a node � which is not a hypothesis and K is the set of

labels of the nodes directly above �, then there is a transition rule K′
β′ in P

and substitution σ such that σ(K ′) = K and σ(β′) = β.
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A proof of K
α from P is an irredundant proof of H

α from P with H ⊆ K.

Note that the term “irredundant” highlights that the set of literals marked as
hypotheses in the proof corresponds exactly to the set of premises of the proven
rule. In other words, irredundantly provable rules contain no junk literals (i.e.,
literals not used in the proof tree) among their premises.

Next, we use the notion of irredundant proof to define the LTS associated
with a TSS. This is achieved through the following notion of well-supported
proof [23].

Definition 7. Let P be a standard TSS over a signature Σ. A well-supported
proof of a closed literal α from P is a well-founded, upwardly branching tree with
the nodes labeled by closed Σ-literals, such that the root is labeled by α and if β
is the label of a node � and K is the set of labels of the nodes directly above �,
then

– either there is a rule K′
β′ from P and closed substitution σ such that σ(K ′) =

K ∧ σ(β′) = β,
– or β is negative and for every set N of closed negative literals such that N

γ
is irredundantly provable from P for γ a closed literal denying β, a literal in
K denies one in N .

A well-supported proof of α from P (if it exists) is denoted by P �ws α.

In order to unequivocally define an LTS, a TSS has to be complete, as defined
below.

Definition 8 (Complete TSSs). A standard TSS is complete if and only if
for any closed literal t

a−� , either P �ws t
a−→ t′ for some closed term t′, or

P �ws t
a−� .

It is often possible to establish completeness by using a syntactic measure on
rules, called stratification [10]. All practical examples of TSSs are standard and
complete and hence, almost all SOS meta-theorems are formed around complete
TSSs. In this paper, we also follow this tradition and formulate our results for
complete TSSs.

2.3 Rule Formats

The goal of a rule format is to establish a semantic property via syntactic con-
straints on rules. One of the most important semantic properties addressed by
rule formats is compositionality or (pre-)congruence, defined below.

Definition 9 (Pre-congruence). Let P be a TSS over signature Σ. A pre-
order �⊆ T (Σ)×T (Σ) on closed terms is a pre-congruence if and only if for all
operators f ∈ Σ and closed terms t1, t

′
1, · · · , tar(f), t′ar(f) ∈ T (Σ), we have that

ti � t′i (for i ∈ [1, ar(f)]) implies f(t1, · · · , tar(f)) � f(t′1, · · · , t′ar(f)).
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A rule format that establishes pre-congruence for simulation (and congruence
for bisimulation) is the following ntyft/ntyxt format [14].

Definition 10 (ntyft/ntyxt format). An ntytt rule is a transition rule in
which the right-hand sides of positive premises are variables that are all distinct
and do not occur in the source of the conclusion. An ntytt rule is an ntyxt rule
if the source of its conclusion is a variable and an ntyft rule if the source of
its conclusion contains exactly one function symbol applied to distinct variables.
An ntytt rule (resp. an ntyft rule) is an nxytt rule (resp. an nxyft rule) if the
left-hand sides of its premises are variables. A TSS is in the ntyft/ntyxt format
if it contains only ntyft and ntyxt rules.

The ready simulation format, defined below, guarantees pre-congruence for
ready simulation. Moreover, it is the basis of the modal decomposition technique
presented in [9,13] and hence, also serves as the basis of our approach.

Definition 11 (Ready simulation format). A transition rule has no looka-
head if the variables occurring in the right-hand sides of its positive premises
do not occur in the left-hand sides of its premises. A TSS is in the ready sim-
ulation format if it is in the ntyft/ntyxt format and its transition rules have no
lookahead.

SOS rules are meant to define a flow of variable valuations from the source
of the conclusion to the premises and eventually to the target of the conclusion.
However, some rules may feature free variables whose valuations do not depend
on the source of the conclusion. Rules without free variables and lookahead are
called decent [9].

Definition 12 (Decent rule). A variable occurring in a transition rule is free
iff it does not occur in the source of the conclusion nor in the right-hand sides of
the positive premises of the rule. A transition rule is decent if it has no lookahead
and does not contain free variables.

Rules with free variables can always be replaced with infinitely many decent
rules, by replacing the free variables with all their possible closed valuations.
The following lemma captures this intuition. According to the following lemma,
focusing on decent rules in the proofs does not impose any extra theoretical
constraint.

Lemma 2 ([9]). Let P be a standard TSS in the ready simulation format. Then
there is a TSS P+ in the decent ntyft format such that any closed literal α is
provable from P+ if and only if P �ws α.

Definition 13. A P -ruloid is a decent nxytt rule that is irredundantly provable
from P+. Lastly, the set of all P -ruloids of a given TSS P is denoted by P̄ .

For the results to come, we need the following lemma. Intuitively, it states
that for any TSS P in the ready simulation format, there is a well-supported
proof of a positive closed literal α if and only if there is an irredundant proof of
a P -ruloid such that the closed literal α is a closed substitution instance of the
ruloid.
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Lemma 3 ([9]). Let P be a TSS in the ready simulation format. For any term
t ∈ T(Σ), closed term t′, and a closed substitution σ, we have P �ws σ(t)

a−→ t′

iff there are a P -ruloid H

t
a−→u

and a closed substitution σ′ such that P �ws σ
′(α)

(for every α ∈ H), σ′(t) = σ(t), and σ′(u) = t′.

3 Deriving a Pre-congruence Format

The basic machinery developed in [9] to derive a pre-congruence format works in
two steps. First, a modal formula ϕ ∈ Φ for an open term t is decomposed into a
choice of modal formulas ψ(x) for variables x such that σ(t) satisfies ϕ if and only
if for one of those ψ’s and all the variables x in t, σ(x) satisfies ψ(x) (Theorem 2).
This is achieved by considering the provable transition rules for term t (given
that such rules are in a given rule format.) Secondly a pre-congruence format
for a pre-order is devised such that if a modal formula belongs to characterizing
logic of the pre-order, then the resulting decomposed modal formulas also belong
to the same characterizing logic (Theorem 3).

3.1 Modal Decomposition

Definition 14. Let P be a standard TSS over Σ in the ready simulation format.
The decomposition function ·−1 : T(Σ) → (Φ → 2V→Φ) for a term is defined in
the following way:

1. ψ ∈ t−1(〈a〉ϕ) iff

ψ(x) =
∨

H

t
a−→u

∈P̄

∨

χ∈u−1(ϕ)

(
χ(x) ∧

∧

(x
c−�)∈H

[c]⊥ ∧
∧

(x
b−→y)∈H

〈b〉χ(y)
)
,

whenever x ∈ var(t). For x �∈ var(t), we let ψ(x) = �.
2. ψ ∈ t−1([a]ϕ) iff ψ(x) (for x ∈ var(t)) is defined to be

∧

H

t
a−→u

∈P̄

[( ∧

(x
c−�)∈H

[c]⊥ ∧
∧

(x
b−→y)∈H

〈b〉�
)
⇒

( ∨

χ∈u−1(ϕ)

χ(x) ∧
∧

(x
b−→y)∈H

[b]
∨

χ∈u−1(ϕ)

χ(y)
)]

.

As in the previous case, we let ψ(x) = � for x �∈ var(t).
3. ψ ∈ t−1(

∧
i∈I ϕi) iff ψ(x) =

∧
i∈I ψi(x), where ψi ∈ t−1(ϕi) for i ∈ I.

4. ψ ∈ t−1(
∨

i∈I ϕi) iff ψ(x) =
∨

i∈I ψi(x), where ψi ∈ t−1(ϕi) for i ∈ I.

Note that item 2. has not been treated in the past decomposition approaches
[9,13]. It concerns the semantic clause of the box modality [a]ϕ, i.e., for any
closed terms t, t′, if there is a transition t

a−→ t′, then t′ must satisfy ϕ.
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Theorem 2. Let P be a complete TSS in the ready simulation format over the
signature Σ. Then, for any term t ∈ T(Σ), closed substitution σ, and a formula
ϕ ∈ Φ, we have σ(t) |= ϕ ⇐⇒ ∃ψ∈t−1(ϕ)∀x∈var(t) σ(x) |= ψ(x).

Proof. By structural induction on ϕ. In the remainder, we only consider the case
when ϕ = [a]ϕ′. The proof of the remaining cases is the same as the proof given
in [13, Theorem 2].

(⇐) Let σ(t) a−→ t′ for some closed term t′. We need to show that t′ |= ϕ′. We
begin by using Lemma 3 to find a P -ruloid of the form:

{x bi−→ yi | i ∈ Ix ∧ x ∈ var(t)} ∪ {x cj−� | j ∈ Jx ∧ x ∈ var(t)}
t

a−→ u
(1)

and a closed substitution σ′ such that σ(t) = σ′(t), P �ws σ
′(H), and σ′(u) = t′.

Since ∃ψ∈t−1(ϕ)∀x∈var(t) σ(x) |= ψ(x), by Definition 14, we have (for every x ∈
var(t)):

σ(x) |=
( ∧

j∈Jx

[cj ]⊥ ∧
∧

i∈Ix

〈bi〉�
)
⇒

( ∨

χ∈u−1(ϕ′)

χ(x) ∧
∧

i∈Ix

[bi]
∨

χ∈u−1(ϕ′)

χ(y)
)
.

(2)
We claim that ∀z∈var(u) σ

′(z) |= ∨
χ∈u−1(ϕ′) χ(z). Let z ∈ var(u). We distinguish

the following cases depending on the position of z in the decent P-ruloid:

– Let z = x for some x ∈ var(t). Using σ(x) = σ′(x) and P �ws σ
′(H) in (2)

we get σ′(x) |= ∨
χ∈u−1(ϕ′) χ(x).

– Let z = yi for some i ∈ Ix and x ∈ var(t). Then, using σ(x) = σ′(x)
and P �ws σ′(H) in (2) we have σ′(x) |= [bi]

∨
χ∈u−1(ϕ′) χ(yi) and P �ws

σ′(x) bi−→ σ′(yi). Therefore, from the semantics of box modality we obtain
σ′(yi) |=

∨
χ∈u−1(ϕ′) χ(yi).

This proves the claim. Fix χ̄(z) =
∨

χ∈u−1(ϕ′) χ(z) for every z ∈ var(u). Since
Definition 14 is closed under arbitrary disjunctions, we know that χ̄ ∈ u−1(ϕ′).
Moreover, we have σ′(z) |= χ̄(z) (for every z ∈ var(u)). Thus, by the induction
hypothesis we obtain σ′(u) |= ϕ′.

(⇒) Let σ(t) |= [a]ϕ′. Suppose there are no P -ruloids of the form H

t
a−→u

. Then,
by Definition 14 we have ψ(x) =

∧
∅ = � for every x ∈ var(t). Since every closed

term satisfies �, we have σ(x) |= ψ(x) for every x ∈ var(t) as required.
Now suppose there is a P -ruloid of the form given in (1). It suffices to show that

the condition in (2) holds. Assume that σ(x) |= ∧
j∈Jx

[cj ]⊥∧∧
i∈Ix

〈bi〉�. Then,
the completeness of P together with the semantics of box modality guarantee
that P �ws σ(x)

cj−� (for every j ∈ Jx). Furthermore, from the semantics of
diamond modality, for every i ∈ Ix, we find some closed term ti such that P �ws

σ(x)
bi−→ ti. Thus, we can define a closed substitution σ′ such that σ(x) = σ′(x)

(for x ∈ var(t)), σ′(yi) = ti (for i ∈ Ix). Note that σ′ is well-defined because
the P -ruloids have no lookahead and all yi’s are distinct (i.e., ∀i,i′∈Ix i �= i′ ⇒
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yi �= yi′). By Lemma 3, we obtain σ(t)
a−→ σ′(u). Thus, σ′(u) |= ϕ′ because

σ(t) |= [a]ϕ′. From the induction hypothesis we obtain

∃χ∈u−1(ϕ′)∀z∈var(u) σ
′(z) |= χ(z). (3)

From (3) we have, for every x ∈ var(t), σ(x) |= ∨
χ∈u−1(ϕ′) χ(x). Thus, it suffices

to show that, for every x ∈ var(t), we have σ(x) |= ∧
i∈Ix

[bi]
∨

χ∈u−1(ϕ′) χ(yi).

Let σ(x) bi−→ t′′ for some i ∈ Ix. Then, we define a closed substitution σ′′ such
that σ(t) = σ′′(t), σ′′(yi) = t′′, and σ′′(yi′) = σ′(yi′) (for i′ ∈ Ix such that i �= i′).
By repeating the same arguments (from above) to derive P �ws σ(t)

a−→ σ′(u),
we can find P �ws σ(t)

a−→ σ′′(u). Thus, σ′′(u) |= ϕ′ because σ(t) |= [a]ϕ′.
We can again instantiate the induction hypothesis to find a χ′′ ∈ u−1(ϕ′) such
that ∀z∈var(u) σ

′′(z) |= χ′′(z). Therefore, σ′′(yi) |=
∨

χ∈u−1(ϕ′) χ(yi) and we can
conclude that σ(x) |= [bi]

∨
χ∈u−1(ϕ′) χ(yi).

We have shown for every P -ruloid H

t
a−→u

and for every x ∈ var(t), if σ(x) |=
∧

(x
c−�)∈H

[c]⊥ and σ(x) |= ∧

(x
b−→y)∈H

〈b〉� then σ(x) |= ∨
χ∈u−1(ϕ′) χ(x) and

σ(x) |= ∧

x
b−→y∈H

[b]
∨

χ∈u−1(ϕ′) χ(y). Therefore, the formula ψ(x) as defined in

Definition 14(2) is satisfied by σ(x). ��

3.2 XY -simulation Format

Definition 15. Given a set H of premises, we write H+ and H− to denote the
set of all positive and negative literals in H, respectively. A rule H

t
a−→u

is in the
XY -simulation format iff it is in the ready simulation format and the following
conditions hold:

1. If a ∈ X then
(a) ∀α (α ∈ H+ ⇒ action(α) ∈ X)
(b) ∀α (α ∈ H− ⇒ action(α) ∈ Y )

2. If a ∈ Y then
(a) ∀α (α ∈ H+ ⇒ action(α) ∈ Y )
(b) ∀α (α ∈ H− ⇒ action(α) ∈ X)

A TSS is in the XY -simulation format iff all its rules are in the XY -simulation
format.

Lemma 4. If a TSS is in the XY -simulation format, then all its P-ruloids are.

Due to space limitations, we do not present the complete poof of Lemma 4.
It goes by an induction on the depth of the irredundant proof for the P -ruloid
at hand.

Theorem 3. Let P be a standard TSS in the XY -simulation format and Σ be its
signature. If t ∈ T(Σ), ϕ ∈ ΦX,Y , and ψ ∈ t−1(ϕ) then ∀x∈var(t) ψ(x) ∈ ΦX,Y .
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Proof. We prove this theorem by structural induction on ϕ and consider the
cases when ϕ = 〈a〉ϕ′ and ϕ = [a]ϕ′. In the following, due to Lemma 4, we use
the fact that every derived P -ruloid is in the XY -simulation format, whenever
P is in the XY -simulation format.
(1) Let ϕ = 〈a〉ϕ′ for some a ∈ X . By Definition 14, we have

ψ(x) =
(
χ(x) ∧

∧

(x
c−�)∈H

[c]⊥ ∧
∧

(x
b−→y)∈H

〈b〉χ(y)
)

,

for some P -ruloid H

t
a−→u

and a decomposition function χ ∈ u−1(ϕ′). Hence, by
the induction hypothesis χ(z) ∈ ΦX,Y (for z ∈ var(u)). It suffices to show that
∀
(x

c−�)∈H
c ∈ Y and ∀

x
b−→y∈H

b ∈ X .

– Let (x
c−� ) ∈ H . Then, Definition 15(1b) ensures that c ∈ Y .

– Let x
b−→ y ∈ H . Then, Definition 15(1a) ensures that b ∈ X .

(2) Let ϕ = [a]ϕ′ for some a ∈ Y . By Definition 14, we have (for x ∈ var(t)):

ψ(x) =
∧

H

t
a−→u

∈P̄

( ∨

(x
c−�)∈H

〈c〉� ∨
∨

(x
b−→y)∈H

[b]⊥ ∨

( ∨

χ∈u−1(ϕ′)

χ(x) ∧
∧

(x
b−→y)∈H

[b]
∨

χ∈u−1(ϕ′)

χ(y)
))

.

By the induction hypothesis we have, for every χ ∈ u−1(ϕ′), z ∈ var(u), that
χ(z) is a formula in ΦX,Y ; therefore

∨
χ∈u−1(ϕ′) χ(z) is a formula in ΦX,Y . Thus,

it suffices to show that ∀
x

b−→y∈H
b ∈ X ⇒ b ∈ Y and ∀

(x
c−�)∈H

c ∈ Y ⇒ c ∈ X ,

which follow directly from conditions (2a) and (2b) of Definition 15, respectively.
��

Corollary 1 (Main Result). Let P be a complete TSS in the XY -simulation
format over the signature Σ. Then, for any term t ∈ T(Σ) and closed substitu-
tions σ, σ′ we have: ∀x∈var(t) σ(x) 	X,Y σ′(x) =⇒ σ(t) 	X,Y σ′(t).

Proof. It suffices to show that if σ(t) |= ϕ then σ′(t) |= ϕ, for all ϕ ∈ ΦX,Y .

σ(t) |= ϕ =⇒ ∃ψ∈t−1(ϕ)∩ΦX,Y
∀x∈var(t) σ(x) |= ψ(x) (Theorem 2 and 3)

=⇒ ∃ψ∈t−1(ϕ)∩ΦX,Y
∀x∈var(t) σ′(x) |= ψ(x) (∵ ∀x∈var(t) σ(x) �X,Y σ′(x))

=⇒ σ′(t) |= ϕ (Theorem 2).

4 Applications

In this section, we review the different incarnations of XY -simulation relation
present in the literature and assert their pre-congruence property with respect
to some well-known operators from the field of process algebra. To start with,
through the following proposition, we establish a link between XY -similarity
and some other notions of behavioral pre-order and equivalence.
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Proposition 1. Let (P,A,→) be an arbitrary LTS. Then, the following state-
ments hold:

1. Relation 	A,A is the bisimilarity relation in the sense of [20].
2. Relation 	A,∅ is the similarity relation in the sense of [18].
3. If X ⊆ A, then the relation 	A,X is the partial bisimilarity relation in the

sense of [6].
4. If the set of actions are partitioned into two sets of may actions A♦ and

must actions A�, then the relation 	A♦,A� is the modal refinement relation
in the sense of [16].

5. If the set of actions are partitioned into two sets of input actions I and output
actions O, then the relation 	O,I is the alternating similarity relation in the
sense of [4].

In the following subsection, we show how our rule format can be applied to
obtain compositionality results for various process calculi.

4.1 Partial Bisimulation

In [6], Baeten et al. used the partial bisimulation pre-order to define controlla-
bility of nondeterministic processes. (Controllability is a central notion in the
supervisory control theory.) To this end, they defined a basic sequential process
algebra BSP|(A↓, B) (for some fixed subset B ⊆ A and A↓ = A�{↓}1) and pro-
vided a ground-complete axiomatization of partial bisimulation pre-order. The
signature of process terms Σ in BSP|(A↓, B) is given below:

Σ = { (0, 0) , (1, 0) , (a., 1)a∈A , (+, 2) , (|, 2) } .
Constant 0, called inaction, denotes that no actions can be performed and can
only deadlock, whereas constant 1 denotes successful termination. The family of
unary operators a._ (for a ∈ A), called action prefix operator, expresses that
a process can initially perform a and then the argument process takes over. Bi-
nary operator _ + _, known as the alternative composition operator, specifies
the choice between two process terms. Lastly, the synchronization parallel com-
position is denoted by _|_ and specifies that the two arguments synchronize on
common actions. The formal semantics for each operator in Σ is given in Table 1
by means of a standard TSS that is in the ready simulation format.

By a quick inspection of the labels, we note that all rules in Table 1 are in the
A↓B-simulation format, the A↓∅-simulation format, and the A↓A↓-simulation
format. Therefore, we obtain the following (pre-)congruence results for free.

Corollary 2. Partial bisimilarity pre-order 	A↓,B⊆ T (Σ) × T (Σ) is a pre-
congruence relation for all closed terms in process algebra BSP|(A↓, B). More-
over, similarity pre-order 	A↓,∅ and bisimilarity equivalence 	A↓,A↓ are also
pre-congruence and congruence relations, respectively, for all constructs of pro-
cess algebra BSP|(A↓, B).
1 We employ ↓ (by a coding proposed by Baeten and Verhoef in [7]) as a special action

label modeling successful termination.
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Table 1. Operational rules of BSP|(A↓, B), where a ∈ A, a↓ ∈ A ∪ {↓}.

1
↓−→ 1 (1) a.x

a−→ x (2)
x

a↓−→ x′

x+ y
a↓−→ x′ (3)

y
a↓−→ y′

x+ y
a↓−→ y′ (4)

x
a↓−→ x′ y

a↓−→ y′

x|y a↓−→ x′|y′ (5)

4.2 Modal Refinement

Next, we consider the framework of modal specifications [15,16]. Let Act be the
set of action labels ranged over by a,b, · · · . Construct the set of may and must
actions as: A♦ = Act×{♦} and A� = Act×{�}. We write a♦ and a� to denote
the elements (a,♦) ∈ A♦ and (a,�) ∈ A�, respectively. Let A = A♦ ∪ A� and
consider the following signature:

Σm = { (0, 0) , (a., 1)a∈A , (+, 2) , (|, 2) , (∨, 2) , (∧, 2) } .
The formal semantics of the operators in Σ ∩ Σm remains the same in this

new setting, whereas the semantics of conjunction and disjunction is given by
the rules in Table 2.

Table 2. Operational rules for ∨ and ∧, taken from [15]

x
a♦−−→ x′

x ∨ y
a♦−−→ x′ (6)

y
a♦−−→ y′

x ∨ y
a♦−−→ y′ (7)

x
a�−−→ x′ y

a�−−→ y′

x ∨ y
a�−−→ x′ ∨ y′ (8)

x
a�−−→ x′

x ∧ y
a�−−→ x′ (9)

y
a�−−→ y′

x ∧ y
a�−−→ y′ (10)

x
a♦−−→ x′ y

a♦−−→ y′

x ∧ y
a♦−−→ x′ ∧ y′ (11)

Note that the process terms induced by our operational rules are not admis-
sible (consistent) in the sense of [16], i.e., the set of must transitions are not
necessary included in the set of may transitions. In essence, the transition sys-
tem induced by our algebra corresponds to the mixed transition system, where
the consistency assumption is dropped.

By inspection we note that all the rules in Table 1 and Table 2 are in A♦A�-
simulation format. Therefore, we obtain the following pre-congruence result for
free.

Corollary 3. The modal refinement pre-order 	A♦,A�⊆ T (Σm)× T (Σm) is a
pre-congruence relation. Moreover, the A♦A�-simulation format subsumes the
static constructor format given by Larsen and Thomsen [16, Section 4].
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Next consider the following modified operational rules of conjunction ∧′ taken
from [17]. Note that, in [17], the conjunction is defined between any two arbitrary
interface automata [12] and we interpret the input actions as must actions and
the output actions as may actions.

x
a�−−→ x′ y

a�−�
x ∧′ y

a�−−→ x′ (9′)
y

a�−−→ y′ x
a�−�

x ∧′ y
a�−−→ y′

(10′)

x
a�−−→ x′ y

a�−−→ y′

x ∧′ y
a�−−→ x′ ∧′ y′

(11′)
x

a♦−−→ x′ y
a♦−−→ y′

x ∧′ y
a♦−−→ x′ ∧′ y′

(11′′)

Clearly, rules (9′) and (10′) are not in the A♦A�-simulation format because they
violate condition (2b) of Definition 15. Next, by a counterexample, we show
that the modal refinement pre-order is not a pre-congruence for the modified
conjunction operator ∧′.

Example 1. Consider the following process terms: t = a�.b�.0, t′ = a�.c�.0,
and t̄ = t+t′. Clearly, t̄ 	A♦,A� t and t̄ 	A♦,A� t′. However, t̄∧′ t̄ �	A♦,A� t∧′ t′.

5 Adequacy of XY -simulation Format

In this section, with the help of the following counterexamples, we motivate why
the conditions of XY -simulation format are essential for the pre-congruence
result. In particular, we show how dropping each of the conditions is sufficient
for breaking pre-congruence.

Example 2. Consider the synchronous parallel composition parameterized with
a partial function γ : A × A → A (called as communication function [5]) such
that rule 5 is substituted by the following rules:

x
a−→ x′ y

b−→ y′ γ(a, b) is defined

x|γy γ(a,b)−−−−→ x′|γy′
(5′)

x
↓−→ x′ y

↓−→ y′

x|γy ↓−→ x′|γy′
(5′′).

Let A = {a, b} and the communication function γ be defined as: γ(b, b) = a and
undefined otherwise. Clearly, the inequation b.0 	{a},{b} a.0 holds; however,
b.0|γb.0 �	{a},{b} a.0|γa.0. We note that rule 5 of |γ violates Definition 15(1a).
Similarly, by defining a communication function γ′ as γ(a, a) = b and undefined
otherwise, we can see that b.0|γ′b.0 �	{a},{b} a.0|γ′a.0. Furthermore, we now note
that rule 5 of |γ′ violates Definition 15(2a).

Example 3. This example concerns negative premises. Consider the unary op-
erator θ (called the priority operator) from TCP [5], which also comes with a
partial ordering < on the set of actions A. Intuitively, the priority operator can
execute an a-transition if the operand can execute an a-transition and no action
with priority over a can be executed.
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x
a−→ x′ x

b−� for all b with a < b

θ(x)
a−→ θ(x′)

(12)

Clearly, the above rule is in the ready simulation format. Let A = {a, b} with
a < b and consider the process terms a.0, a.0 + b.0. It holds that a.0 	A,∅
a.0+ b.0; however, θ(a.0) �	A,∅ θ(a.0+ b.0). We note that rule 12 of θ violates
Definition 15(1b). Furthermore, since 	∅,X=	−1

X,∅, the above counterexample
also highlights the violation of Definition 15(2b).

6 Conclusions

In this paper, we proposed a pre-congruence rule format for XY -simulation. The
rule format guarantees that once the SOS rules of a given language satisfy certain
syntactic conditions, then XY -simulation is pre-congruence for the constructs of
the language. We showed that the format is applicable to obtain compositionality
results for different behavioral pre-orders and for different process calculi. We
also showed that dropping each of the syntactic conditions imposed by the rule
format can jeopardize compositionality.

We intend to exploit the results of this paper in order to obtain a rule format
for input-output conformance (ioco) testing [22], which is a behavioral pre-order
widely used as a basis for model-based testing. This will generalize the earlier
compositionality results reported in [8], which only address a particular synchro-
nization operator and the hiding (abstraction) operator.
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Abstract. The increasing complexity and heterogeneity of systems re-
quire engineers to consider the verification and validation aspects in the
earliest stages of the system development life cycle. To meet these ex-
pectations, Model-Based Systems Engineering (MBSE) is identified as
a key practice for efficient system development while simulation is still
widely used by engineers to evaluate the performance and conformance
of complex systems regarding requirements. To bridge the gap between
high-level modeling (from requirements) and simulation, the present pa-
per proposes a Model-Driven Engineering (MDE) tooled approach to
automate the system requirements validation using SysML models and
Modelica simulation. The implementation of the related toolchain has
been officially adopted by the OMG SysML-Modelica working group.

Keywords: Requirements Validation, SysML Models, Modelica Simu-
lation, Model Transformation, Code Generation, OMG Standard.

1 Introduction

Over the last years, the complexity of physical and hybrid systems has consider-
ably grown since these systems integrate an increasing number of heterogeneous
components (electrical, mechanical, software, etc). At the same time, system en-
gineers always have to achieve the following objectives: building the right system
correctly, reducing costs and ensuring delivery date. Designing the right system
is still a challenge for engineers. Bad design choices or bugs, which are not dis-
covered during early design stages, may indeed be very expensive. Therefore,
it is today crucial to be able to validate a system design as soon as possible,
even before the development has started and a single line of code has been writ-
ten. Moreover, despite the increasing complexity of the system requirements, a
consistent understanding of the project scopes between all the involved engi-
neer teams is required to ensure the conformity to requirements, and to provide
adapted guidance for their production and development choices. Hence, it entails
the necessity of adopting and sharing an overall view of system development, es-
pecially during the early design stages (in particular during conceptual design,
system design and rapid prototyping).

c© IFIP International Federation for Information Processing 2015
M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 230–237, 2015.
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In the last decade, to overcome these challenges, Model-Based System Engi-
neering (MBSE) methodologies have emerged on the sharing and standardization
of embedded software technologies [1]. MBSE deals with the definition of system
models that could be exploited during all the system development life cycle, such
as the System Modeling Language (SysML) [2]. This approach puts a strong em-
phasis on the use of models at the different steps of the system specification. As
reported by the International Council on Systems Engineering (INCOSE), vali-
dation of system requirements using modeling and simulation is today a common
method for system analysis and evaluation. Replacing the traditional document
centric approach by MBSE approaches entails to use models as the core of the
requirements definition, design, analysis, verification and validation activities. In
this MBSE context, the communication and cooperation between all the project
stakeholders are necessary, and it is thus stimulating to design a first overall
system model from requirements. A model may describe expected requirements,
behaviours and structure of the designed system. It may be used to validate some
parts or the whole designed system regarding functional as well as non-functional
requirements. To achieve that, different kinds of analysis can be performed: this
can be abstract formal analysis methods (e.g., using analytic techniques) as well
as simulation-based analysis (e.g., using SystemC hardware models). Formal
analysis allows to cover and guarantee corner cases of the system behaviours
while the simulation computation time is in general much smaller. Nevertheless,
some components may be too complex for economical formal verification. In
these cases, formal analysis may be done on an abstract functional level whereas
the implementation or detailed internal behaviours have to be checked via accu-
rate simulation models. However, in some cases, simulation models are the only
possibility to estimate timed behaviours of software-hardware interactions.

To address mechatronic systems and embedded systems modeling, high-level
design using SysML is on the rise. SysML allows to graphically specify all aspects
of physical systems (mixing software and hardware parts) including require-
ments, structural and behavioural aspects. Moreover, using SysML improves the
communication since it eases the interaction between different teams of multi-
domain engineers. But SysML is not executable: there is neither an action lan-
guage nor a simulation framework to evaluate SysML models containing equa-
tions. To overcome this issue, we propose a tooled approach to automatically
generate Modelica1 simulation code from SysML models.

The contributions of this paper are threefold. First, it relies on the SysML-
Modelica Transformation specification [3], provided by the Object Management
Group (OMG), to integrate Modelica concepts in SysML models. Second, we
propose a Model-Driven Engineering (MDE) approach to automatically trans-
late such high-level SysML models into executable Modelica code. The obtained
simulation results are then compared with the initial system requirements to
assess them. Thirdly, to evaluate this whole process, experiments have been con-
ducted within the Smart Blocks project in the mechatronic domain.

1 http://www.modelica.org/ [Last visited: Jan. 2015]

http://www.modelica.org/


232 J.-M. Gauthier et al.

The paper is structured as follows. Section 2 introduces the integration of
Modelica constructs into SysML models and describes the process of Model-
ica code generation from such models. Section 3 discusses the relevance of the
tooled approach. Finally, after surveying related work in Sect. 4, we conclude
and outline the future work in Sect. 5.

2 From SysML Models to Modelica Code

SysML and Modelica are two complementary languages: their joint use en-
ables the integration of Modelica simulation constructs to complete architectural
SysML models. This integration, based on existing recommendations provided by
the OMG, has been implemented as the SysML4Modelica profile, which defines
the practical contribution of the present paper. Then, we describe the process
of Modelica code generation from SysML models using model-driven engineer-
ing techniques. The implementation of this whole process is available to the
community2 (demos, examples and source code).

2.1 The Gap between SysML and Modelica

To support MBSE principles, OMG has developed and promotes the System
Modeling Language (SysML) that enables systems engineers to specify all as-
pects of a complex system using graphical constructs. SysML is built on the
well-known Unified Modeling Language (UML) by bringing adapted semantics
to the system engineering field: SysML is implemented as a UML profile. Using
SysML enables the adoption of a Model-Based approach to represent, specify
and manage knowledge at the early stage of the design. However, SysML is
a semi-formal language and it lacks of structures for requirements and model
validation. To tackle this issue, the Modelica language is a convincing candi-
date: it is a non-proprietary, object-oriented and equation-based language for
complex physical systems simulation. Moreover, OMG promotes a dedicated
standard (SysML-Modelica Transformation standard) to integrate Modelica se-
mantics into SysML.

The objectives of the SysML-Modelica Transformation specification are to
enable a bi-directional transformation between the both modeling languages.
The specification defines an extension to SysML, called SysML4Modelica, which
proposes matching semantics between the SysML4Modelica constructs and the
Modelica language. The integration of Modelica concepts into SysML is based
on a profiling approach. Basically, the SysML4Modelica constructs enable to
stereotype elements that are part of the Block Definition Diagram (BDD) and
the Internal Block Diagram (IBD) of SysML (the BDD is analogous to the
UML class diagram whereas the IBD permits to represent physical or logical
interactions between component instances via input and output FlowPorts).
Thus, BDD and IBD (and optionally the requirements diagram) are the SysML
diagrams that are addressed by the approach.

2 https://github.com/SysMLModelicaIntegration/ [Last visited: Jan. 2015]

https://github.com/SysMLModelicaIntegration/
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This SysML4Modelica profile is therefore used to bridge the gap between
the two modeling language: SysML, which is a non executable graphical high-
level modeling language, and Modelica, which is used as simulation language
for complex and heterogeneous systems. The next step of the proposed pro-
cess is to perform Modelica code generation from SysML models profiled with
SysML4Modelica. Thus, the next subsections describe this process and its im-
plementation using Model Driven Architecture (MDA) approach.

2.2 Model to Model Transformation

Model transformation and code generation are the backbone of the Model Driven
Architecture approach [4]. In the context of MBSE, this approach helps to bring
the analysis of specifications and the rapid prototyping closer. Considering that
SysML enables system modeling from specifications, MDA offers techniques to
obtain executable Modelica prototypes from SysML models. The next para-
graphs give details of this process, which is depicted in Fig. 1.

Fig. 1. Modelica Generation Process

The starting point of this translation process consists of manually giving Mod-
elica semantics to SysML models using SysML4Modelica constructs. After ver-
ifying that the SysML model contains the correct Modelica constructs, using
the automated SysML2Problem verification, a model transformation, based on
the ATLAS Transformation Language (ATL) framework, is performed from the
SysML4Modelica metamodel to the Modelica metamodel. ATL [5] is a model
transformation language inspired by the OMG standard QVT3. It makes it pos-
sible to implement model transformation rules and to run transformation pro-
cess. ATL matched rules are the heart of the transformation process as they
describe how output elements (that conform to the output metamodel) are pro-
duced from input elements (that conform to the input metamodel). For instance,
Fig. 2 shows an example of such ATL matched rule.

3 http://www.omg.org/spec/QVT/1.1/ [Last visited: Jan. 2015]

http://www.omg.org/spec/QVT/1.1/
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rule Block2ModelicaModel{
from

sysmlBlock : MMuml! Class (
sysmlBlock . i sB l o ckS t e r eo typed ( ) and
sysmlBlock . i sMode l i caModelStereotyped ( )

)
to

modelicaModel : MMmodelica ! Model ( )
}

Fig. 2. ATL Matched Rule

Within this approach, ATL is used to automatically verify the correctness of
SysML4Modelica constructs (SysML2Problem) and to translate SysML models
into Modelica models (SysML2Modelica). The Modelica metamodel is built with
Eclipse Modeling Framework (EMF) as an ecore file. The generated Modelica
model defines the entry point of Modelica code generation, which is described in
the next subsection.

2.3 From Modelica Model to Modelica Code

To perform the generation of the Modelica code from the generated Modelica
models, the approach is based on the Acceleo technology. Acceleo4, developed by
the company Obeo, is an open source code generator from the Eclipse founda-
tion. It implements the MDA approach to develop application from EMF based
models. The Acceleo language is an implementation of the MOF Models to Text
Transformation (MOFM2T) standard.

The implementation of the OMG SysML-Modelica Transformation specifica-
tion is available for the Topcased and Papyrus environments as an Eclipse plugin.
It is adopted and promoted by the OMG SysML-Modelica working group. The
next section discusses experiments feedback of the proposed process on a con-
crete case study about the Smart Blocks system.

3 Discussion and Lessons Learned from Experiments

The following discussion is based on the obtained results and lessons learned
from the experiments of our prototype for carrying out the Smart Blocks5 case
study (results are presented in [6]). Basically, the goal of this project consists
to empirically evaluate the reliability and the scalability of our approach, and
finally to answer the following questions regarding the proposed tooled process:

(A) How appropriate and convenient is the SysML4Modelica profile?
(B) Is our prototype efficient enough to support large systems modeling and

simulation?
(C) Does it fit the need to validate a high-level SysML design and requirements

at the soonest?
4 http://www.eclipse.org/acceleo/ [Last visited: Jan. 2015]
5 http://smartblocks.univ-fcomte.fr/ [Last visited: Jan. 2015]

http://www.eclipse.org/acceleo/
http://smartblocks.univ-fcomte.fr/
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3.1 Using SysML4Modelica

At the first sight, the relevance of the proposed approach to early validate system
design using SysML models to perform Modelica simulation, instead of writing
directly Modelica code for simulation, is debatable. SysML is indeed a high-level
modeling language, traditionally used to specify all aspects of a complex system
at the earliest stage of the development, whereas Modelica is used later in the
development life cycle for rapid prototyping. However, the integration of the both
notations enables to fulfill validation challenges and offers new perspectives.

On the one hand, software developers as well as software architects are ex-
perienced in using modeling methodology, but they usually lack knowledge to
perform hardware related coding and setup of variables to support compilers and
simulation platform. The proposed approach allows them to initiate the simula-
tion validation process (in collaboration with engineers) and therefore guarantees
the continuous validation of the modeled expected requirements. On the other
hand, from robotics engineers point of view and feedback, the advantages of us-
ing SysML over using Modelica directly are also significant since the proposed
approach attempts to bring closer system modeling from requirements using
SysML and allows rapid prototyping using Modelica simulation.

Nevertheless, the gap between SysML and Modelica being quite important
at business-level, the cost to perform simulation from SysML model can be
also important since design teams have to learn two languages. One impor-
tant key for the adoption success of this approach by the industry would be
to provide reverse-engineering tools that enable to automate the generation of
SysML models from existing simulation code. It should also be underlined that
the SysML4Modelica profile can be applied to existing SysML models without
changing the structure of the model. Incomplete model can also be handled:
we could generate the structure of Modelica code without considering all the
behavioural rules (e.g., equations, algorithms).

3.2 Scalability of the Approach

The Smart Blocks case study is not very large. To evaluate the scalability of the
proposed approach, we have applied it on a large and complex energy manager
of a new generation of helicopter type. Basically, this system is composed of
an energy source that emulates a permanent power source (alternator coupled
with a turbine or a fuel cell system), an accumulators battery and a battery
of super-capacitors. Each source is connected with a controller that gives man-
aging strategies. The SysML model of this energy manager system contains 20
blocks, 30 properties, 37 constraints, 30 instances, 109 flow ports and 62 connec-
tors. This case study allows to assess the scalability of the proposed approach
regarding modeling effort and automatic Modelica code derivation (the trans-
formation process takes less than one second to generate 23 Modelica files). For
confidentiality reasons, experiments results and report about this case study are
not presented in this paper.
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3.3 Validation of a Design at the Soonest

High-level SysML model validation over requirements was the main motivation
of the proposed approach. The Smart Blocks case study is managed by strong re-
quirements concerning the velocity and the acceleration of different kind of tiny
objects. Therefore, the SysML model of the system had to meet these require-
ments. The results obtained with several simulations with different initial con-
ditions gave some clues on future design choices. Moreover, structural modeling
error are immediately detected and reported by the SysML2Problem checking.

4 Related Work

This section discusses related work investigating the integration of Modelica into
UML and SysML models in the context of MBSE.

In [7, 8], the authors propose techniques to apply the ModelicaML profile
on UML models to generate Modelica code. An Eclipse plugin for the Papyrus
modeler has been developed, but it is not based on the OMG SysML-Modelica
specification and it does not take into account SysML models. Schramm et al. [9]
introduce the MDRE4BR profile (Model Driven Requirement Engineering for
Bosch Rexroth), which aims to perform verification of the design against the
requirements using an executable model. This profile extends the current SysML
requirements constructs and is linked with ModelicaML to translate analytical
models into executable Modelica models. However, this work focuses on the
SysML requirements diagram only. Nytsch-Geusen [10] also proposes to use a
special format of UML, named UMLH, for the modeling of hybrid systems.
Modelica code can be produced automatically from UMLH models. However,
the generated code has to be manually completed with the physical equations of
the system to allow simulations.

A representation of Modelica models in SysML is introduced by Johnson et
al. in [11]. This work explores the definition of continuous dynamics models in
SysML and the use of triple graph grammar to maintain a bidirectional mapping
between SysML and Modelica constructs. A mapping between SysML and Mod-
elica considering a smaller subset of the Modelica language has been proposed
by Vasaiely [12]. This work does not use the OMG specification, but uses its own
mapping between SysML parametric diagrams and Modelica equations.

5 Conclusion and Future Work

The present paper proposes a tooled MDE approach to validate requirements of
complex systems at the earliest stages of design process. This approach consists
to generate Modelica simulation code from SysML models. To address this issue,
the OMG SysML-Modelica Transformation specification has been implemented
as a UML profile for SysML called SysML4Modelica. The model transformations
are based on ATL and Acceleo rules, and use a dedicated Modelica metamodel
that verifies Modelica syntax. The constraints defined in the OMG specification
are thus verified and ensure the SysML model consistency. The approach has
been experimented and validated within several industrial case studies.
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We are now investigating a novel SysML modeling approach that could allow
both to generate test cases and to simulate the system under test from a unique
SysML model. This innovative approach could be used within Hardware-In-the-
Loop process since the simulation could play two key roles: simulating a system
component and providing test cases and oracles for its concrete product. Fi-
nally, depending on the OMG standards evolution, we will update the proposed
prototype, which is officially promoted by the OMG SysML-Modelica group.

Acknowledgment. This project is supported by the Smart Blocks project (con-
tract ANR-2011-BS03-005) and the Labex ACTION program (contract ANR-
11-LABX-0001-01) – see http://www.labex-action.fr/en.
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Can High Throughput Atone for High Latency

in Compiler-Generated Protocol Code?
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Abstract. High-level concurrency constructs and abstractions have sev-
eral well-known software engineering advantages when it comes to pro-
gramming concurrency protocols among threads inmulticore applications.
To also explore their complementary performance advantages, in ongoing
work, we are developing compilation technology for a high-level coordina-
tion language, Reo, based on this language’s formal automaton semantics.
By now, as shown in our previous work, our tools are capable of generat-
ing code that can compete with carefully hand-crafted code, at least for
some protocols. An important prerequisite to further advance this promis-
ing technology, now, is to gain a better understanding of how the signif-
icantly different compilation approaches that we developed so far, which
vary in the amount of parallelism in their generated code, compare against
each other. For instance, to better and more reliably tune our compilers,
wemust learn under which circumstances parallel protocol code, with high
throughput but also high latency, outperforms sequential protocol code,
with low latency but also low throughput.

In this paper, we report on an extensive performance comparison be-
tween these approaches for a substantial number of protocols, expressed
in Reo. Because we have always formulated our compilation technology
in terms of a general kind of communicating automaton (i.e., constraint
automata), our findings apply not only to Reo but, in principle, to any
language whose semantics can be defined in terms of such automata.

1 Introduction

Context. A promising application domain for coordination languages is pro-
gramming protocols among threads in multicore applications. One reason for
this is a classical software engineering advantage: coordination languages typ-
ically provide high-level constructs and abstractions that more easily compose
into correct—with respect to programmers’ intentions—protocol specifications
than do conventional lower-level synchronization mechanisms (e.g., locks or sem-
aphores). However, not only do coordination languages simplify programming
protocols, but their high-level constructs and abstractions also leave more room
for compilers to perform optimizations that conventional language compilers
cannot apply. Eventually, sufficiently smart compilers for coordination languages
should be capable of generating code (e.g., in Java or in C) that can compete

c© IFIP International Federation for Information Processing 2015
M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 238–258, 2015.
DOI: 10.1007/978-3-319-24644-4 17
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Fig. 1. Example connectors (ordered alphabetically)

with carefully hand-crafted code. Preliminary evidence for feasibility of this goal
appears elsewhere [13]. A crucial step toward adoption of coordination languages
for multicore programming, then, is the development of such compilers.

To study the performance advantages of using coordination languages for
multicore programming, in ongoing work, we are developing compilation tech-
nology for the coordination language Reo [1,2]. Reo facilitates compositional
construction of protocol specifications manifested as connectors : channel-based
mediums through which threads can communicate with each other. Figure 1
shows a number of example connectors in their usual graphical syntax. Briefly, a
connector consists of one or more channels, through which data items flow, and
a number of nodes, on which channel ends coincide. Reo features an open-ended
set of channels, which means that programmers can define their own channels
with custom semantics. Figure 1, for instance, includes standard synchronous
channels (normal arrows) and asynchronous channels with a 1-capacity buffer
(rectangle-decorated arrows), among others. Nodes, in contrast, have fixed se-
mantics. Threads can perform blocking i/o operations—put and get—on the
named public nodes of a connector, while a connector uses its anonymous private
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nodes only for internal routing. Section 2 provides a more detailed overview of
Reo; Section 4 explains the behavior of the connectors in Figure 1.

 

Fig. 2. Earlier results [13]

Figure 2 shows one of our most promising
achievements in developing compilation technology
so far [13]. It shows the performance of three k-produ-
cer-single-consumer protocol implementations in C,
for k ∈ {2i | 2 ≤ i ≤ 9}: one naive hand-written im-
plementation (continuous line), one optimized hand-
written implementation (dashed line), and one im-
plementation compiled from a Reo connector (dotted
line). In every round of this protocol, every producer
sends one data item to the consumer. Once the con-
sumer has received a data item from every producer,
in any order, it sends an acknowledgement to the pro-
ducers, thereby signaling that the consumer is ready
for the next round. (The Reo connector for this pro-
tocol, for k = 2, resembles EarlyAsyncBarrierMerger2
in Figure 1c.) This example shows that already our
current compilation technology is capable of generat-
ing code that can compete with—and in this case even outperform—carefully
hand-crafted code. Surely, our technology is not yet mature enough to achieve
similarly positive results in every multicore application, for every connector.
Nevertheless, this example offers preliminary evidence that programming pro-
tocols among threads using high-level constructs and abstractions can result in
equally good—or better—performance as compared to conventional low-level,
manual techniques.

Problem. Despite our encouraging first results, a long road still lies ahead of us
before we reach the point at which our tools can compile every connector into
high-performance code, the following step of which we try to take in this paper.

In the Reo literature, three different approaches for compiling Reo connectors
exist [11]. In the distributed approach, a compiler implements the behavior of each
of the k constituents of a connector (i.e., its nodes and its channels) and runs
these k implementations in parallel as a distributed system; in the centralized ap-
proach, a compiler computes the behavior of a connector as a whole, implements
this behavior, and runs this implementation sequentially as a centralized system.
The distributed approach has maximal parallelism, and it has the advantage of
fast compilation at build-time and high throughput at run-time. However, this
comes at the cost of higher latency at run-time (because of a necessary dis-
tributed consensus algorithm). In contrast, the centralized approach has maxi-
mal sequentiality, and it has the advantage of low latency at run-time. However,
this comes at the cost of slower compilation and lower throughput. Moreover,
centralized-approach compilers may generate an amount of code exponential in
k, which may make their output prohibitively large and the time to produce it
prohibitively long. Proença et al. observe that a partially-distributed, partially-
centralized hybrid approach, where a compiler splits a connector into parts, im-
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plements those parts according to the centralized approach, and runs those im-
plementations according to the distributed approach, is generally ideal [16,17]:
a hybrid approach strikes a middle ground between latency and throughput at
run-time while achieving reasonably fast compilation at build-time.

We started developing a centralized-approach compiler and gradually moved
to a hybrid-approach version, mainly motivated by the latter’s advantages at
build-time. Before this paper, however, we had only little understanding of the
implications with respect to run-time performance. Moreover, in recent work [11],
we found a case where hybrid-approach compilation actually took much longer
than centralized-approach compilation. This made us realize that we must im-
prove our understanding of the differences between the centralized approach and
the hybrid approach to advance our compilation technology.

Contribution & Organization. In this paper, we compare centralized-approach
compilation and execution with hybrid-approach compilation and execution. For
this, we use nine different connector “families” (i.e., connectors parametric in
the number of the coordinated threads), “members” of which Figure 1 shows.
Our comparison reveals previously unknown strengths and weaknesses of the
approaches under investigation. These new insights are imperative for the future
development of our compilation technology and, consequently, for evidencing
the performance merits of high-level constructs and abstractions for multicore
programming, complementary to their classical software engineering advantages.

Although framed in the context of Reo, our technology works at the level of
Reo’s formal automaton semantics. This means that we have formulated and
implemented our compilers in terms of a general kind of communicating au-
tomaton. Therefore, our findings apply to compilation technology not only for
Reo but for any high-level model or language whose semantics one can define in
terms of such automata (e.g., some process calculi). We expect this generality
to make our work interesting to a larger audience, beyond the Reo community.

In Section 2, we discuss preliminaries on Reo and its automaton semantics. In
Section 3, we present a centralized-approach and a hybrid-approach compiler for
Reo, which we implemented from scratch (though conceptually based on earlier
implementations). In Section 4, we explain our experimental setup. In Sections 5
and 6, we discuss our experimental results: in Section 5, we discuss results related
to the compilation of our experimental connectors, while in Section 6, we discuss
results related to their execution. Section 7 concludes this paper.

2 Preliminaries

Reo is a language for compositional construction of concurrency protocols, man-
ifested as connectors [1,2]. Connectors consist of channels and nodes, organized
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Table 1. Graphical syntax and informal semantics of common channels

Syntax Semantics

e1 e2
Synchronously takes a data item d from its source end e1 and writes d
to its sink end e2.

e1 e2
Synchronously takes a data item d from its source end e1 and nondeter-
ministically either writes d to its sink end e2 or loses d.

e1 e2
Synchronously takes data items from both its source ends and loses them.

�
x

e1 e2
Asynchronously

[

takes a data item d from its source end e1 and stores d
in a buffer x

]

, then
[

writes d to its sink end e2 and clears x
]

.

in a graph-like structure. Every channel consists of two ends and a constraint
that relates the timing and the content of the data-flows at those ends. A channel
end has one of two types: source ends accept data (i.e., a source end of a channel
connects to that channel’s data source/producer), while sink ends dispense data
(i.e., a sink end of a channel connects to that channel’s data sink/consumer). Reo
makes no other assumptions about channels and allows, for instance, channels
with two source ends. Table 1 shows four common channels.

Channel ends coincide on nodes. Contrasting channels, every node behaves in
the same way: repeatedly, it nondeterministically selects an available data item
out of one of its coincident sink ends and replicates this data item into each of its
coincident source ends. A node’s nondeterministic selection and its subsequent
replication constitute one atomic execution step; nodes cannot temporarily store,
generate, or lose data items. Threads can perform blocking i/o operations on the
public nodes of a connector: put operations enable threads to send data, while
get operations enable threads to receive data. In Figure 1, we distinguish the
white, named public nodes of a connector from its shaded, anonymous private
nodes. Before a connector makes a global execution step, usually instigated by
pending i/o operations, its channels and its nodes must have reached consensus
about their behavior to guarantee mutual consistency of their local execution
steps (e.g., a node should not replicate a data item into a channel with an
already full buffer). Afterward, connector-wide data-flow emerges.

Through composition, programmers can construct arbitrarily complex connec-
tors out of simpler ones. As Reo supports both synchronous and asynchronous
channels, connector composition enables mixing synchronous and asynchronous
communication within the same protocol.

Our compilers generate code for Reo connectors based on their constraint
automaton (ca) semantics [4]. Constraint automata are a general formalism for
modeling concurrent systems, better suited for modeling Reo connectors—and
their composition in particular—than classical automata or traditional process
calculi. For Reo, a ca specifies when during execution of a connector which
data items flow where (i.e., through which channel ends). Structurally, every ca



Throughput vs. Latency in Compiler-Generated Protocol Code 243

e1 e2 e1 e2
�
x

e1 e2

e1

e2
e3

N

N

e

e

{e1 , e2} ,
d(e1) = d(e2)

{e1 , e2} ,
d(e1) = d(e2)

{e1} , �

{e1} ,
d(e1) = x′

{e2} ,
x = d(e2)

{e1 , e3} ,
d(e1) = d(e3)

{e2 , e3} ,
d(e2) = d(e3)

{e , N} ,
d(e) = d(N)

Fig. 3. Constraint automata for the channels in Table 1 (first three from the left), for
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the left). The latter ca is defined not only over the names of its coincident channel
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to perform i/o operations on, and therefore, public node names must explicitly occur
in their ca semantics.)

Out

In1

In2

e
1 e

2

e3
e4

�
x

e5 e6

(a) LateAsyncMerger2

�1

�2

{e6 , Out} ,
x = d(e6) ∧ d(e6) = d(Out)

(b) Composition

�′1

�′2

{Out} ,
x = d(Out)

(c) Comp. and abstr.

�1 : {In1 , e1 , e2 , e5} , d(e1) = d(e2) ∧ d(e2) = d(e5) ∧ d(e5) = x′

�2 : {In2 , e3 , e4 , e5} , d(e3) = d(e4) ∧ d(e4) = d(e5) ∧ d(e5) = x′
�′1 : {In1} , d(In1) = x′

�′2 : {In2} , d(In2) = x′

(d) Transition labels

Fig. 4. Composition and abstraction of LateAsyncMerger2 in Figure 1g

consists of finite sets of states and transitions, which model a connector’s internal
configurations and atomic execution steps. Every transition has a label that
consists of two elements: (i) a set with the names of those channel ends that have
synchronous data-flow (ii) and a logical formula that specifies which particular
data items may flow through which of those ends. In such formulas, d(e1) = d(e2)
means that the same data item flows through e1 and e2. In practice, we associate
every node and every channel with an elementary ca for its behavior. Figure 3
shows example cas. A product operator on cas subsequently models connector
composition: to obtain the “big” ca for a whole connector, one can incrementally
form the product of the “small” cas for its constituent nodes and channels.
Afterward, one can abstract away private nodes’ coincident channel ends with
a hide operator on cas [4], which also eliminates internal transitions involving
only such ends. Figure 4 shows the composite ca of LateAsyncMerger2.
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3 Compilers

Our compilers operate fully at the level of Reo’s ca semantics. Our focus on
Reo so far in this paper is therefore misleading: we use Reo’s graphical, channel-
based abstractions, just as a—not the—programmer-friendly syntax for expos-
ing ca-based protocol programming. Different syntax alternatives for cas may
work equally well or yield perhaps even more user-friendly languages. For in-
stance, we know how to translate Uml sequence/activity diagrams and Bpmn to
cas [3,7,15]. Algebras of Bliudze and Sifakis [6], originally developed for Bip [5],
also have a straightforward interpretation in terms of cas, thereby offering an
interesting alternative possible syntax. Due to their generality, cas can thus
serve as an intermediate format for compiling specifications in many different
languages and models of concurrency, by reusing the core of our compilers. This
makes the development of our compilation technology relevant beyond Reo.

For our performance comparison, based on earlier implementations [10,14], we
developed two Reo/ca-to-Java compilers as mentioned already in Section 1: a
centralized-approach one, henceforth referred to as Compilercentr, and a hybrid-
approach one, henceforth referred to as Compilerhybr. (Both compilers are avail-
able on request.) Both compilers generate shared-memory Java code, geared to-
ward multicore execution. On input of a connector, Compilercentr (i) first finds
a small ca for every channel and every node that this connector consists of, (ii)
then forms the product of all those cas to get a big ca for the whole connector,
abstracting away all internal details in the process, and (iii) finally generates one
piece of sequential code for that big ca. At run-time, this piece of code logically
has its own thread. (Physically, however, we can optimize this “protocol thread”
away by letting “computation threads” perform its work.) Essentially, the con-
struction of a big ca in this way corresponds to parallel expansion in process
algebra [8]. Compilerhybr also first finds a set of small cas, but in contrast to
Compilercentr, it does not form their product to get a big ca. Instead, it com-
putes an m-size partition of this set. By doing so, Compilerhybr effectively splits
a connector into a number of “regions” (i.e., connected subconnectors), each of
which has a corresponding subset in the partition. After computing a partition,
Compilerhybr forms products on a per-region basis, which results inm “medium”
cas, and generates a piece of sequential code for each of them. At run-time, every
such piece of code has its own thread. These threads use shared-memory (plus
concurrency protection) to synchronize their actions whenever necessary.

Compilerhybr’s partitioning algorithm iterates over the set of small cas and in-
crementally extends its computed partition (starting from an empty one) [9,14].
For every small ca α, the algorithm decides either to add {α} to the partition
(as a new singleton subset) or to add α to one or more existing parts. (In the
latter case, the algorithm subsequently merges all extended subsets into one new
subset.) Jongmans et al. formulated the condition based on which the algorithm
makes this decision generally, in terms of cas and their transitions. In the context
of Reo, however, this partitioning algorithm precisely coincides with the identi-
fication of synchronous/asynchronous regions of a connector [17] (each of which
gets a corresponding subset in the partition). The asynchronous regions of a
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Fig. 5. Medium cas that result from applying the partitioning algorithm to
LateAsyncMerger2 (see also Figure 4. The middle ca represents the asynchronous chan-
nel in the middle (i.e., one asynchronous region). The leftmost ca represents the syn-
chronous region left of the asynchronous channel (i.e., three nodes, two channels). It
repeatedly makes a choice between its two inputs and passes the data item from that
input into the asynchronous channel (i.e., into buffer x). The rightmost ca represents
the synchronous region right of the asynchronous channel (i.e., only one node). It re-
peatedly passes a data item from the asynchronous channel (i.e., from buffer x) to its
output.

connector are its smallest connected subconnectors that have only asynchronous
data-flow (e.g., the fourth channel in Table 1). By removing the asynchronous
regions from a connector, its pairwise disconnected synchronous regions remain:
connected subconnectors with synchronous data-flow. Intuitively, asynchronous
regions decouple synchronous regions. Such decoupling enables synchronous re-
gions to run independently of each other: communication between synchronous
regions always proceeds in an asynchronous fashion, through a shared asyn-
chronous region. Figure 5 shows the medium cas that result from applying the
previous partitioning algorithm to LateAsyncMerger2, composing cas on a per-
subset basis, and abstracting away private nodes (see also Figure 4). Note that
a connector without asynchronous regions consists of one comprehensive syn-
chronous region. For such connectors, Compilerhybr reduces to Compilercentr.

Notably, a connector represents the logic behind—not the architecture of—the
data-flow in a protocol. For instance, even though Lock2 in Figure 1j, which rep-
resents a classical lock, consists of a mix of synchronous, asynchronous, and lossy
channels, its compiler-generated code uses neither physical hardware channels
nor virtual software channels to realize its desired behavior.

4 Experimental Setup

Practical details. To study under which circumstances code generated by Com-

pilerhybr outperforms code generated by Compilercentr, we performed a number
of experiments. In every experiment, we compared the performance of central-
ized and hybrid implementations of a k-parametric connector family, for k ∈ {2 ,
4 , 6 , 8 , 10 , 12 , 14 , 16 , 32 , 48 , 64}. Figure 1 shows the k = 2 members of the
nine connector families that we investigated. (One can extend these k = 2 mem-
bers to their k > 2 versions in a similar way as how we extended Figure 1a to
Figure 1b.) We selected these families because each of them exhibits different
behavior in terms of (a)synchrony, exclusion, nondeterminism, polarity, sequen-
tiality, and parallelism, thereby aiming for a balanced comparison. In total, thus,
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we investigated 99 different connectors and twice as many Java implementations.
We ran every implementation nine times on a machine with 24 cores (two In-
tel E5-2690V3 processors with twelve physical cores statically at 2.6 ghz in two
sockets, hyperthreading disabled) and averaged our measurements. In every run,
we warmed up the Jvm for thirty seconds before starting to measure the number
of “rounds” that an implementation could finish in the subsequent four minutes.
What constitutes one round differs per connector; see below.

Primarily, we wanted to study and measure the overhead of the synchro-
nization algorithm between the protocol threads in the hybrid implementations
(which increases their latency) relative to those implementations’ increased par-
allelism (which increases their throughput). To focus our measurements on only
that particular aspect, we needed to eliminate as much as possible all other,
orthogonal sources of computation inside compiler-generated code. One notable
such source is data processing: although both our compilers support compila-
tion of data-sensitive connectors, whose behavior may depend on the particular
data items that pass through them, we nevertheless compiled all connectors in
a data-insensitive fashion. This ensured that no data processing occurred at
run-time during our experiments, which would have constituted a substantial
source of sequential, unoptimized computation, even though we already know of
ways to significantly improve this. If we would have enabled data processing, its
irrelevant—at least to this comparison—overhead would have polluted our mea-
surements. Perhaps even worse, our results would become obsolete the moment
we implement our upcoming data processing optimizations.

For convenience, we divided the connector families under study—except Lock—
over two categories: k-producer-single-consumer and single-producer-k-consum-
er. Both of these categories consist of four families. The k-producer-single-con-
sumer category contains LateAsyncMerger (cf. Figure 1g), EarlyAsyncMerger (cf.
Figure 1d), EarlyAsyncBarrierMerger (cf. Figure 1c), and Alternator (cf. Figures 1a
and 1b); the single-producer-k-consumer category contains LateAsyncReplicator
(cf. Figure 1h),EarlyAsyncReplicator (cf. Figure 1f),LateAsyncRouter (cf. Figure 1i),
and EarlyAsyncOutSequencer (cf., Figure 1e).

Connectors. Next, we explain the behavior of the connectors in Figure 1. We
start with explaining the k-producer-single-consumer connector families. With
LateAsyncMergerk (cf. Figure 1g), whenever producer i puts a data item on its
local node Ini, the connector stores this data item in its only buffer (unless this
buffer is already filled by another producer, in which case the put suspends until
the buffer becomes empty). The relieved producer can immediately continue,
possibly before the consumer has completed a get for its data item (i.e., com-
munication between a producer and the consumer transpires asynchronously).
Whenever the consumer gets a data item from its local node Out, the connector
empties the previously full buffer. The consumer gets data items in the order
in which producers put them (i.e., communication between a producer and the
consumer transpires transactionally, i.e., undisrupted by other producers). Ev-
ery round consists of a put by a producer and a get by the consumer; in every
round, two transitions fire.
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With EarlyAsyncMergerk (cf. Figure 1d), whenever a producer i puts a data
item on its local node Ini, the connector stores this data item in its correspond-
ing buffer. The relieved producer can immediately continue, possibly before the
consumer has completed a get for its data item (i.e., communication between
a producer and the consumer transpires asynchronously). Whenever the con-
sumer gets a data item from its local node Out, the connector empties one
of the previously full buffers, selected nondeterministically. The consumer does
not necessarily get data items in the order in which producers put them (i.e.,
communication between a producer and the consumer transpires not necessarily
transactionally). Every round consists of a put by a producer and a get by the
consumer; in every round, two transitions fire.

Connectors in the EarlyAsyncBarrierMerger family work in largely the same
way as those in the EarlyAsyncMerger family, except that the former enforce a
barrier on the producers: no producer can put its n-th data item until all other
producers have put their (n−1)-th data items. The consumer may still get data
items in an order different from the order in which the producers put them. Every
round consists of a put by every producer and k gets by the consumer, one for
every producer; in every round, 2k transitions fire.

With Alternatork (cf. Figures 1a and 1b), whenever a producer i attempts to
put a data item on its local node Ini, this operation suspends until both (1)
the consumer attempts to get a data item from its local node Out, and (2)
every other producer j attempts to put a data item on its local node Inj (i.e.,
the producers can put only synchronously). Once each of the producers and
the consumer attempt to put/get, the consumer gets the data item sent by
the top producer (i.e., communication between the top producer and the con-
sumer transpires synchronously), while the connector stores the data items of the
other producers in their corresponding buffers (i.e., communication between the
other producers and the consumer transpires asynchronously). Afterward, the
consumer gets the remaining buffered data items in the spatial top-to-bottom
order of the producers. Every round consists of a put by every producer and k
gets by the consumer, one for every producer; in every round, k transitions fire.

We proceed with explaining the single-producer-k-consumer connector fami-
lies. With EarlyAsyncReplicatork (cf. Figure 1f), whenever the producer puts a
data item on its local node In, the connector stores this data item in its only
buffer. The relieved producer can immediately continue, possibly before the con-
sumers have completed gets for its data item (i.e., communication between the
producers and a consumer transpires asynchronously). Whenever a consumer i
attempts to get a data item from its local node Outi, this operation suspends
until both (1) the buffer has become full, and (2) every other consumer attempts
to get a data item (i.e., the consumers can get only synchronously). Once the
buffer has become full and each of the consumers attempts to get, every con-
sumer gets the data item in the buffer, while the connector empties that buffer.
Every round consists of a put by the producer and a get by every consumer; in
every round, two transitions fire.
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With LateAsyncReplicatork (cf. Figure 1h), whenever the producer puts a data
item on its local node In, the connector stores a copy of this data item in each
of its buffers. The relieved producer can immediately continue, possibly before
the consumers have completed gets for its data item (i.e., communication be-
tween the producers and a consumer transpires asynchronously). Whenever a
consumer i gets a data item from its local node Outi, the connector empties its
corresponding full buffer. Every round consists of a put by the producer and a
get by every consumer; in every round, k + 1 transitions fire.

With LateAsyncRouterk (cf. Figure 1i), whenever the producer puts a data
item on its local node In, the connector stores this data item in exactly one of
its buffers (instead of a copy in each of its buffers as LateAsyncReplicatork does),
selected nondeterministically. The relieved producer can immediately continue,
possibly before the consumer of the selected buffer has completed a get for its
data item (i.e., communication between the producer and a consumer transpires
asynchronously). Whenever a consumer i gets a data item from its local node
Outi, the connector empties its corresponding full buffer. The consumers do not
necessarily get data items in the order in which the connector stored those data
items in its buffers. Every round consists of a put by the producer and a get by
a consumer; in every round, two transitions fire.

With EarlyAsyncOutSequencerk (cf. Figure 1e), whenever the producer puts
a data item on its local node In, the connector stores this data item in its
leftmost buffer. The relieved producer can immediately continue, possibly before
a consumer has completed a get for its data item (i.e., communication between a
producer and the consumers transpires asynchronously). The connector ensures
that the consumers can get only in the top-to-bottom sequence. Whenever a
consumer i gets a data item from its local node Outi, the connector empties its
corresponding full buffer. Every round consists of k puts by the producer and a
get by every consumer; in every round, 2k transitions fire.

Finally, Lockk represents a classical lock (cf. Figure 1j). To acquire the lock,
a computation thread i puts an arbitrary data item (i.e., a signal) on its local
node Acqi; to release the lock, this thread puts an arbitrary data item on its
local node Reli. A put on Acqi suspends until every computation thread j that
previously performed a put on Acqj has performed its complementary put on
Relj (i.e., the connector guarantees mutual exclusion). Every round consists of
two puts by one of the k producers; in every round, two transitions fire.

5 Experimental Results: Compilation

Measurements. We used Compilerhybr and Compilercentr to compile the con-
nector families in Figure 1 for the aformentioned values of k with a transition
limit of 8096 and a timeout after five minutes. We imposed a transition limit,
because the Java compiler cannot conveniently handle Java code generated for
cas with so many transitions; we imposed a compilation timeout, because wait-
ing for longer than five minutes to compile a single connector in practice seems
unacceptable to us. Figure 6 shows the measured compilation times; see also [12].
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(a) k-producer-single-consumer

(b) single-producer-k-consumer and Lockk

Fig. 6. Compilation times (continuous lines for Compilercentr ; dotted lines for Compil-
erhybr; gray lines for proportional growth x = y, just as a reference)
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For most connector families, Compilerhybr required substantially less time
than Compilercentr. In fact, for six of our nine connector families, Compilercentr
failed to run to completion beyond certain (relatively low) values of k, as wit-
nessed also by their very steep curves in Figure 6:

– For EarlyAsyncMergerk>7, LateAsyncReplicatork>8 and LateAsyncRouterk>7,
the transition number of their “big” cas exceeded the limit (e.g., EarlyAsync-
Merger8 has 23801 transitions, LateAsyncReplicator9 has 19172 transitions,
and LateAsyncRouter8 has 23801 transitions) or the compiler timed out.

– For EarlyAsyncBarrierMergerk>4, EarlyAsyncOutSequencerk>14, and Lockk>12,
the compiler timed out.

In contrast, Compilerhybr had no problems compiling these connector families
for all values of k under investigation. For LateAsyncMergerk and EarlyAsyncRep-
licatork, our two compilers required a comparable amount of time for all values of
k under investigation. Finally, only for Alternatork, Compilerhybr required sub-
stantially more time than Compilercentr does. In this case, Compilerhybr timed
out for k > 12, while Compilercentr had no problems.

Discussion. In Section 1, we stated that hybrid-approach compilers have the ad-
vantage of “reasonably fast compilation at build-time” compared to centralized-
approach compilers. The idea behind this statement is that the formation of a big
ca in the centralized approach requires much computational resource, notably
when state spaces or transition relations of such big cas grow exponentially in
k; hybrid-approach compilers usually avoid this, because hybrid-approach com-
pilers do not compute big cas. Intuitively, the medium cas computed for a con-
nector by hybrid-approach compilers are typically much smaller than its big ca.
After all, each of those medium cas consists of fewer small cas than does this big
ca. (The big ca consists of every small ca that also constitutes a medium ca.)
Thus, in cases of exponential growth, medium cas typically have a much smaller
exponent than their corresponding big ca. A quick look at our measurements
in Figure 6a seems to confirm this intuition: all six connector families for which
Compilercentr eventually failed require exponentially more time as k increases.
Beyond this quick look, however, there are peculiarities that need clarification.

A first, obvious peculiarity are the measurements for Alternator, which Com-

pilerhybr—instead of Compilercentr—eventually fails for. Actually, we already
made a preliminary qualitative analysis of this phenomenon in a recent work-
shop contribution [11]; our current quantitative results fully support the anec-
dotal analysis in that extended abstract. To save space—an in-depth explana-
tion requires significantly more details of the partitioning algorithm used in
hybrid-approach compilation—we only briefly summarize the cause of this phe-
nomenon. Essentially, a hybrid-approach compiler cannot treat every private
node of a connector as truly private: Compilerhybr cannot use the hide operator
to abstract away those private nodes that mark the boundaries between a con-
nector’s regions. After all, protocol threads for neighboring regions synchronize
their transitions through those nodes, which makes explicitly representing them
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in compiler-generated code essential. But because those private nodes must re-
main, also many internal transitions remain, potentially to the extent that they
cause the transition relation of “medium” cas formed for certain problematic
regions to explode. This happens with Alternator. Compilercentr, in contrast, can
incrementally hide all private nodes to neutralize this source of explosion.

The second peculiarity concerns centralized-approach compilation. First, by
analyzing the big cas of the k-parametric connector families EarlyAsyncBarri-
erMerger, EarlyAsyncMerger, EarlyAsyncOutSequencer, LateAsyncReplicator, and
LateAsyncRouter, we found that those cas grow exponentially as k increases
(due to the many ways in which their k independent transition can concurrently
fire). This explains why Compilercentr requires exponentially more time as k
increases to compile members of those families, as shown in Figure 6. Now, it
seems not unreasonable to assume also the inverse: for k-parametric connector
families whose big cas grow only linearly in k, Compilercentr should scale fine.
Alternator, EarlyAsyncReplicator, and LateAsyncMerger, which satisfy its premise,
seem to validate this assumption. Indeed, Figure 6 shows that Compilercentr has
no problems with compiling members of those families. (The big cas of the Ear-
lyAsyncReplicator family even have a constant number of transitions.) However,
this still leaves us with two families whose compilation behavior we have not
yet accounted for: EarlyAsyncOutSequencer and Lock. Although the big cas of
both these k-parametric families grow only linearly in k, Figure 6 shows that
Compilercentr nevertheless requires exponentially more time as k increases.

It turns out that even if big cas grow only linearly in k, the “intermediate
products” during their formation may “temporarily” grow exponentially. For
instance, if we have three cas α1, α2 and α3, the intermediate product of α1

and α2 may grow exponentially in k, while the full product of α1, α2, and α3

grows only linearly. This is easiest to explain for EarlyAsyncOutSequencerk (cf.
Figure 1e), in terms of its number of states. EarlyAsyncOutSequencerk consists
of a subconnector that, in turn, consists of a cycle of k buffered channels (of
capacity 1). The first buffered channel initially contains a dummy data item
� (i.e., its actual value does not matter); the other buffered channels initially
contain nothing. As in the literature [1,2], we call this subconnector Sequencerk.
Because no new data items can flow into Sequencerk, only � cycles through the
buffers—ad infinitum—such that only one buffer holds a data item at any time.
Consequently, the ca for Sequencerk has only k states, each of which represents
the presence of � in a different one of the k buffers. However, when Compilercentr
compositionally computes this ca out of a number of smaller cas by forming
their product, it closes the cycle only with the very last application of the prod-
uct operator: until that moment, the “cycle” still looks to the compiler as an
open-ended chain of buffered channels. Because new data items can freely flow
into it, such an open-ended chain can have a data item in any buffer at any time.
Consequently, the ca for the largest chain (i.e., the chain of k− 1 buffered chan-
nels, just before it becomes closed) has 2k−1 states. Only when Compilercentr
forms the product of

[
the ca of the k-th buffered channel

]
and

[
the previously

formed ca for the chain of k−1 buffered channels
]
, the state space of 2k−1 states
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collapses into k states, as the compiler “finds out” that the open-ended chain
is actually an input-closed cycle with exactly one data item. Clearly, because
Sequencerk constitutes EarlyAsyncOutSequencerk, also EarlyAsyncOutSequencerk
itself suffers from this problem. A similar argument applies to Lockk.

Thus, even for k-parametric connector families whose big cas grow only
linearly in k, Compilercentr can have scalability issues because of exponential
growth in intermediate products. Compilerhybr has no problems with the kind
of cycle-based exponential growth discussed above because of how it deals with
such cycles in its partitioning algorithm. Generally, however, we can imagine
also Compilerhybr to have this problem for other sources of exponential growth.

Conclusion. For the four k-parametric connector families whose big cas grow
exponentially in k (i.e., EarlyAsyncBarrierMerger, EarlyAsyncMerger, LateAsync-
Replicator, and LateAsyncRouter), hybrid compilation has clear advantages over
centralized compilation, as we already expected. For the two k-parametric con-
nector families whose big cas and intermediate products grow only linearly in
k (i.e., LateAsyncMerger and EarlyAsyncReplicator), centralized-approach compi-
lation and hybrid-approach compilation do not make much of a difference; here,
run-time performance—investigated in the next section—becomes the key fac-
tor in deciding which approach to apply. For Alternator, centralized compilation
has clear advantages over hybrid compilation. Finally, for the two k-parametric
connector families whose intermediate products grow exponentially in k (i.e.,
EarlyAsyncOutSequencer and Lock), hybrid compilation seems to have clear ad-
vantages over centralized compilation as suggested by Figure 6b.

We find the latter conclusion slightly rash, though. After all, our previous
analysis showed that the big cas—the only cas that we actually care about—
for both EarlyAsyncOutSequencer and Lock grow only linearly in k. If we can
develop technology that enables Compilercentr to avoid temporary exponential
growth of intermediate products, Compilercentr should perform similar to Com-

pilerhybr.
One option is to equip Compilercentr with a novel static analysis technique

to infer, before forming the full product, which states will have become unreach-
able after forming the full product. For instance, in the case of EarlyAsyncOutSe-
quencerk (or its subconnector Sequencerk), every state where two or more buffers
contain a data item will have become unreachable in the full product but not so
yet in the intermediate products. If Compilercentr can determine such “eventu-
ally unreachable states” from the start, it can already remove those states while
forming the full product to keep the intermediate products as small as possi-
ble. This optimization requires significant theoretical work: not only must we
formulate the analysis technique itself, but we must also prove that it preserves
certain behavioral properties. It seems an interesting form of on-the-fly state
space reduction, though, which may have applications also in model checking.

Another option is not really a solution to our problem but a way to avoid
it. We observed that the Sequencerk subconnector of EarlyAsyncOutSequencerk
causes its intermediate products to grow exponentially in k. For simplicity, let
us therefore focus on this problematic Sequencerk. The obvious way to construct



Throughput vs. Latency in Compiler-Generated Protocol Code 253

a connector with the behavior of Sequencerk is by putting k buffered channels
in a cycle, as we did before. An alternative way to construct such a connector,
however, is by connecting a Sequencer0.5k to another Sequencer0.5k with a “glue
subconnector”. The details of this glue subconnector do not matter here: what
matters is that in this alternative construction, Compilercentr can first form the
products of the Sequencer0.5k subconnectors to get two cas with 0.5k states, and
then form the products of those cas and the two-state ca of the glue subconnec-
tor. The largest intermediate ca encountered by the compiler during this process
has at most max(20.5k , 0.5k ·0.5k ·2) states. In contrast, the largest intermediate
ca for the obviously constructed Sequencerk—the one with the cycle—has 2k−1

states. This analysis shows that hierarchically constructing Sequencerk out of
Sequencerl<k subconnectors reduces its centralized-approach compilation com-
plexity compared to its flat design. Generally, we should therefore encourage
programmers to design connectors as hierarchically as possible.

6 Experimental Results: Execution

Measurements. We ran every successfully compiled connector with “empty” com-
putation threads: in every iteration of their infinite loop, a producer/consumer
had no work and immediately performed a put/get on its own public node. As
a result, we measured the performance of only the compiler-generated code. Fig-
ure 7 shows our measurements, in completed protocol rounds per four minutes.
By dividing this number of rounds by 240, one gets the round-throughput, in
rounds per second. By further dividing this number by the number of transitions
per round, one gets the (transition-)throughput.

Figures 7a, 7b, 7c, and 7f show the performances in the k-producers-single-
consumer category. For LateAsyncMerger, EarlyAsyncMerger, and EarlyAsyncBar-
rierMerger, their centralized implementations outperform their hybrid implemen-
tations in cases involving only few producers (up to/including four in the case of
LateAsyncMerger and EarlyAsyncBarrierMerger; up to/including six in the case of
EarlyAsyncMerger). In cases involving more producers, either the hybrid imple-
mentations outperform the centralized implementations, or Compilercentr failed
to compile such that we cannot make a direct comparison. In those latter cases,
however, it seems reasonable to assert, by extrapolation, that if compilation had
succeeded, these generated centralized implementations would have performed
worse than their corresponding hybrid counterparts. For Alternator, in contrast,
its centralized implementations always outperform its hybrid implementations.

Figures 7d, 7e, 7g, and 7h show the performances in the single-producer-k-
consumers category. The figures for LateAsyncReplicator and LateAsyncRouter are
similar to those of LateAsyncMerger, EarlyAsyncMerger, and EarlyAsyncBarrier-
Merger that we saw before: with only few consumers, their centralized implemen-
tations outperform their hybrid implementations, while with more consumers,
their hybrid implementations outperform their centralized implementations. For
EarlyAsyncReplicator, the performance of its centralized and hybrid implemen-
tations is nearly the same. For EarlyAsyncOutSequencer, because Compilercentr
failed to generate code for k > 14, the comparison remains inconclusive.
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(a) Alternator (b) EarlyAsyncBarrierMerger (c) EarlyAsyncMerger

(d) EarlyAsyncOutSequencer (e) EarlyAsyncReplicator (f) LateAsyncMerger

(g) LateAsyncReplicator (h) LateAsyncRouter (i) Lock

Fig. 7. Performance, in rounds per four minutes (blue continuous/dotted lines for
centralized/hybrid implementations; gray lines for inverse-proportional growth)
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Discussion. For six of the nine connector families, the obtained results look as
expected. For those families, we observe that with low values of k (i.e., little
parallelism), their centralized implementations outperform their hybrid imple-
mentations. In those cases, the increased throughput of hybrid implementations
as compared to their centralized counterparts cannot yet compensate for their
increased latency. As k increases and more parallelism becomes available, how-
ever, hybrid implementations start to outperform centralized implementations.
In those cases, increased throughput does seem to compensate for increased
latency. This, however, is not the only reason why hybrid implementations out-
perform centralized implementations for larger values of k. More importantly, we
found that the latency of not only hybrid implementations but also centralized
implementations increases with k. In fact, the latency of centralized implemen-
tations increases much more dramatically. By analyzing the “big” cas formed
by Compilercentr for the families currently under discussion, we found that their
exponential growth (cf. Section 5) causes this steep increase in latency: the more
transitions a ca has per state, the more time it takes for a thread to select and
check any one of them at run-time. (EarlyAsyncReplicator constitutes a special
case, where increased throughput and increased latency roughly balance out.)

Contrasting the families discussed in the previous paragraph, the results ob-
tained for Alternator, EarlyAsyncOutSequencer, and Lock are more peculiar. In
Section 5, we already briefly explained why Compilercentr succeeded in gener-
ating code for Alternatork>12, while Compilerhybr failed. This, however, does
not yet explain why centralized implementations of Alternator connectors out-
perform their hybrid implementations also at run-time. The reason becomes
clear when we realize that Alternatork essentially behaves sequentially: in ev-
ery round, the producers start by synchronously putting their data items (and
the consumer synchronously gets the first data item), after which the consumer
asynchronously gets the remaining k−1 data items in sequence. The centralized
implementation of Alternatork at run-time sequentially simulates one ca, which
consists of k transitions between k states, that represents exactly this sequen-
tiality. Its hybrid implementation, in contrast, at run-time has k parallel proto-
col threads and, as such, suffers from overparallelization: it uses parallelism—
and incurs the overhead that parallelism involves—to implement intrinsically
sequential behavior. Because also EarlyAsyncOutSequencer and Lock essentially
behave sequentially, they suffer from the same problem. For these two families,
however, this observation is even more imporant than for Alternator. After all,
hybrid-approach compilation fails for Alternatork>12, so for larger k, we must
use centralized-approach compilation anyway. For EarlyAsyncOutSequencerk>14

and Lockk>12, in contrast, centralized-approach compilation fails, even though
centralized implementations of those connectors are, by extrapolation, likely to
perform better than their hybrid counterparts.

Centralized implementations consist of only one protocol thread, which can
do only one thing at a time. If many computation threads each perform an i/o
operation roughly simultaneously, depending on the connector, this may result
in contention (i.e., every computation thread must wait until the protocol thread
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has time to process its i/o operation). To further study the effect of contention,
we repeated our experiments with z-parametric producers/consumers that wait a
random amount of time between 0 and

[
z times the previously measured round-

latency
]
before they perform their put/get, for z ∈ {1 , 10 , 100}. [12] contains

our measurements. The short conclusion is that as z increases, the performance of
centralized implementations and hybrid implementations becomes more similar.
We doubt whether this can be ascribed to less contention, though. Instead, we
consider it more likely that the producers’/consumers’ waiting times now dom-
inate our measurements. Although perhaps not too surprising, we nevertheless
consider this something that one should be aware of: the more work threads per-
form, the less important the choice between centralized/hybrid implementation
becomes (with respect to run-time performance).

Conclusion. For six of the nine connector families, the obtained results are as we
expected: their centralized implementations outperform their hybrid implemen-
tations for smaller values of k, while their hybrid implementations outperform
their centralized implementations for larger values of k. As k increases and more
parallelism becomes available, the higher throughput of hybrid implementations
as compared to their centralized counterparts compensates for their higher la-
tency, while the latency of centralized implementations dramatically increases.

Because Alternator, EarlyAsyncOutSequencer, and Lock essentially behave se-
quentially, their centralized implementations in fact outperform their hybrid
implementations for all k. This is a strong incentive to improve our centralized-
approach compilation technology (e.g., the optimization at the end of Section 5).

7 Conclusion

Better understanding the differences between centralized-approach compilation
and hybrid-approach compilation is crucial to further advance our compilation
technology, one of whose promising applications is programming protocols among
threads in multicore applications. Initially, we wanted to investigate under which
circumstances parallel protocol code generated by a hybrid-approach compiler,
with high throughput but also high latency, outperforms sequential protocol
code generated by a centralized-approach compiler, with low latency but also
low throughput. Based on our comparison, the answer to this question is this:

– Except for cases with overparallelization, hybrid implementations of connec-
tors with more than a few (e.g., at least ten to twelve) parallel computation
threads perform at least as good as their centralized counterparts.

Our comparison taught us much more about centralized/hybrid-approach com-
pilation, though. To summarize our other findings:

– Hybrid-approach compilation may suffer from exponentially sized cas in
cases where centralized-approach compilation works fine.

– Centralized-approach compilation may suffer from exponentially sized inter-
mediate products in cases where hybrid-approach compilation works fine.
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– Programmers should prefer hierarchically constructed connectors over flat
constructed connectors to reduce compilation complexity.

– Hybrid implementations may overparallelize inherently sequential connec-
tors, which leads to poor run-time performance.

– Centralized implementations may in fact have even higher latency than hy-
brid implementations.

– The more work threads perform, the less important the choice between cen-
tralized/hybrid approach becomes (with respect to run-time performance).

In future work, we want to follow up on these findings by developing new op-
timization techniques (such as the one sketched in Section 5). In particular, we
should identify when hybrid-approach compilation should reduce to centralized-
approach compilation and improve our partitioning algorithm accordingly.

Although we heavily used Reo/connector terminology in this paper as a nar-
rative mechanism, we really have been talking about and investigating different
kinds of implementations of a general kind of communicating automaton (i.e.,
cas). Because also other languages can have semantics in terms of such automata
(e.g., Rebeca [18] and Bip [5]), our findings have applications beyond Reo.
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Abstract. Architecture Description Languages (ADL) provide descrip-
tions of a software system in terms of its structure. Such descriptions give
a high-level overview and come from the need to cope with arbitrarily
complex dependencies arising from software components.

In this paper we present Painless, a novel ADL with a declarative
trait supporting parametrized specifications and architectural reconfig-
urations. Moreover, we exhibit its reliable facet on its integration with
ProActive — a middleware for distributed programming. This is achieved
by building on top of Mefresa, a Coq framework for the reasoning on
software architectures. We inherit its strong guarantees by extracting
certified code, and subsequently integrating it in our toolchain.

Keywords: The Coq Proof Assistant, Component-based Engineering,
Formal Methods, Architecture Description Language

1 Introduction

Typically, one uses an Architecture Description Language (ADL) as a means
to specify the software architecture. This promotes separation of concerns and
compels the software architect to accurately define structural requisites. Nev-
ertheless, this task is seldom trivial as arbitrarily complex architectures may
need to be defined. It is thus important to provide the means for expressive and
intuitive, yet reliable, specifications.

In this paper we present Painless, a novel ADL for describing parametrized
software architectures, and its related formal verification support. We discuss its
integration with ProActive [1], a middleware for distributed programming, and
the reference implementation for the Grid Component Model (GCM) [2].

The GCM ADL lacks support for architectural reconfigurations and para-
metrization. Further, it is XML-based: while it may be suitable for tools, it is
a rather verbose and static description of the architecture. Painless supports
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both the definition of parametrized architectures and the specification of recon-
figurations in a declarative style. This facilitates deployment tasks and gives a
more comprehensive understanding of the application’s topology.

For instance, let us consider the motivating example depicted by Figure 1.

Fig. 1. Architecture of the Lights Control use case

This architecture concerns a previous use case [3] on the saving of power con-
sumption by adequately adding/removing Street Light and Brightness Info com-
ponents. For such scenario an ADL solely describing the deployment topology
and unable to handle parametrized specifications becomes cumbersome. In this
paper, our main goal is to provide an ADL specifying at the same time the ini-
tial deployment and the possible reconfigurations, while providing support for
describing parametrized topologies. We also want to rely on formal methods to
guarantee a safe deployment and reconfiguration of the considered systems.

In [11], we presented Mefresa — a Coq [16] framework providing the means
for the formal reasoning on software architectures. Here, we extend Mefresa
with the ability to interpret Painless specifications, and provably correct func-
tions computing their compliance with the GCM technical specification [10]. We
take advantage of Coq’s strong guarantees by extracting certified code, and sub-
sequently integrate it with the ProActive middleware. In our previous work we
focused on the mechanization of the GCM, and facilities for developing arbit-
rarily complex proofs regarding its intricacies. In this paper, we focus on the
pragmatical aspects of deployment and reconfiguration by providing an ADL,
and all the toolchain that allows us to deploy and reconfigure GCM applications
in ProActive while reusing the guarantees provided by our proven back-end.

We see our contribution as two-fold. Firstly, we propose Painless, a novel
ADL supporting parametrized specifications and architectural reconfigurations.
Its declarative nature promotes concise and modular specifications. Secondly,
we describe the integration of its related tool support with ProActive. This
provides a case study on the use of certified code, fostering the application of
formal methods in a software engineering context.

The remainder of this paper is organised as follows. Section 2 briefly discusses
GCM and Mefresa. Section 3 overviews our approach for extending the Pro-
Active middleware to cope with Painless specifications. Section 4 introduces
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the semantics of Painless. Section 5 shows the specification of the use case
depicted by Figure 1 in Painless. Related work is discussed in Section 6. For
last, Section 7 concludes this paper.

2 Background

Mefresa provides a mechanized specification of the GCM, a simple operation
language for manipulating architectural specifications, and the means to prove
arbitrary complex properties about instantiated or parametrized architectures.
It is developed with the Coq proof assistant [16].1

The GCM is constituted by three core elements: interfaces, components, and
bindings.

An interface is defined by an id denoting its name, a signature corresponding
to its classpath, and a path identifying its location in the component’s hierarchy
(i.e. the component it belongs to). It is of internal or external visibility, has
a client or server role, is of functional or non-functional functionality, has an
optional or mandatory contingency, and its cardinality is singleton, multicast or
gathercast.

A component has an id, a path, a class, subcomponents, interfaces, and bind-
ings. This implicitly models GCM’s hierarchical nature. Further, components
holding subcomponents are called composite.

Bindings act as the means to connect components together through their
interfaces. They are composed by a path indicating the component holding the
binding, and ids identifying the involved components and interfaces. Moreover,
they can be of normal, import or export kind. A normal binding connects two
components at the same hierarchical level, that is, they have the same enclosing
component. The remaining kind of bindings are connecting together a component
with a subcomponent. Whether of import and export kind depends on the client
interface being from the subcomponent or from the enclosing one, respectively.

The GCM technical specification [10] dictates the constraints that a GCM ap-
plication must comply with. They can be summed up into properties regarding
the form of the architecture and its readiness to start execution. These require-
ments are encoded by the well-formed and well-typed predicates.

Well-Formed and Well-Typed Architectures. A component is well-formed
if its subcomponents are well-formed and uniquely identifiable through their
identifiers. Further, its interfaces, and bindings must also be well-formed.

Interfaces are well-formed if they are uniquely identifiable by their identifiers
and visibility value: two interfacesmay have the same identifier provided that they
have a different visibility. bindings are well-formed if they are established between
existing components/interfaces, from client to server interfaces, and unique.

A component may be well-formed but still unable to start execution. Further
insurances are needed for the overall good functioning of the system in terms of
its application dependencies. These are dictated by typing rules (see [10, p. 22]).

1 Mefresa is available online at http://mefresa.gaspar.link

http://mefresa.gaspar.link
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An interface possesses cardinality and contingency attributes. These determine
its supported communication model and the guarantee of its functionality avail-
ability, respectively. For instance, for proper system execution we must ensure
that client and singleton interfaces are bound at most once. For client interfaces
only those of multicast cardinality are allowed to be bound more than once.

Analogously, similar constraints apply to the interfaces’ contingency attribute.
An interface of mandatory contingency is guaranteed to be available at runtime.
This is rather obvious for server interfaces as they implement one or more service
methods, i.e., they do have a functionality of their own. Client interfaces however,
are used by service methods that require other service methods to perform their
task. It therefore follows that a client and mandatory interface must be bound
to another mandatory interface of server role. As expected, interfaces of optional
contingency are not guaranteed to be available.

Mefresa captures these requirements by defining a well-typed predicate. Ba-
sically, it requires that both the contingency and cardinality concerns are met
throughout the component hierarchy. Architectures not meeting these require-
ments are said to be ill-typed.

An Operation Language for Manipulating GCM Architectures. An-
other important element of Mefresa is an operation language that al-
lows the manipulation of GCM architectures. It possesses seven constructors:
Mk component, Rm component, Mk interface, Mk binding, Rm binding, Seq, and
Done. The meaning of each constructor should be intuitive from its name.
The only doubt may arise from the Seq constructor: it stands for operation
composition.

Its operational semantics is mechanized by the step predicate, and exhibit
the following structure: op / σ → op′ / σ′. States are denoted by σ, and in our
particular case these have the shape of a component, i.e., an empty state is an
empty component, etc. Thus, σ represents the component hierarchy being built.

With Coq, one can use these semantic rules to interactively reduce an op-
eration to its normal form done, at which point some final state σ is attained.
Naturally, the ability to perform such reduction depends on the demonstration
that all required premises for each individual reduction step are met. This lets
us wonder about a more general property that one can expect about σ on an
overall operation reduction. Let −→* be the reflexive transitive closure of the
step predicate. Then, the theorem depicted by Listing 1.1 should be intuitive.

1 Theorem va l i d i t y : f o r a l l ( s s ’ : s t a t e ) ( op : operat ion ) ,
2 wel l f ormed s −>
3 op / s −−−>∗ Done / s ’ −>
4 wel l f ormed s ’ .

Listing 1.1. validity statement

Informally, it expresses that if s is a well-formed state, and if we are able to re-
duce op to Done, then we know that the resulting state s’ is well-formed. Proving
this theorem is achieved by induction on the operation language constructors.
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3 Overview of Our Approach

Figure 2 gives an overview of our approach. In short, we obtain an extension to
ProActive that is able to cope with Painless architectures.

Mefresa

Painless interpreter

extraction

Ocaml-Java
+

Ocaml-Java

build_state
well_typed_bool

Fig. 2. Integration of Painless with ProActive

We extend Mefresa with functions — build state and well typed bool — re-
sponsible for ensuring the compliance of a deployment/reconfiguration specific-
ation with the GCM requirements. We prove these functions correct w.r.t the
GCM mechanized specification, and use Coq’s extraction mechanism to obtain
certified OCaml code. Further, we also define a Painless interpreter that trans-
lates Painless expressions to Mefresa’s operation language. This is directly
programmed in OCaml. Finally, to ease the integration with ProActive, we use
OCaml-Java [5] to produce Java byte code.

3.1 Painless Hello World

Painless provides the software architect with the ability to write parametrized
architectures and its possible structural reconfigurations in a declarative style.
An excerpt of its grammar is defined by Table 1.

Its elementary — or normal forms — expressions include natural numbers,
booleans, lists, and strings. Naturally, one can also use variables. Making and
removing elements from the component architecture is achieved by the poly-
morphic mk and rm, respectively. As expected, skip is idempotent. Components,
interfaces and bindings are also first-class citizens — where bexp is an expression
for the three types of bindings. Facilities for manipulating lists, comparison, and
binary operators such as + and - are also built-in features. The standard if-then-
else, function application, sequence ; and match constructors conclude the range
of allowed expressions. decl acts as a declaration layer composed by the usual
(potentially recursive) let definitions, indexed by a parameter P.
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Table 1. Painless syntax (excerpt)
exp ::= n | true | false | [] | str | x | mk exp | rm exp | skip

| Component exp1 ... exp6 | Interface exp1 ... exp7 | Binding bexp
| exp :: exp | exp = exp | exp + exp | exp − exp
| if exp then exp else exp | exp exp | exp ; exp
| match exp with pat1 → exp1 ... patk → expk≥1 end

decl ::= let P = exp | let rec P = exp

rcfg ::= Reconfiguration str arg0 ... argk: decl0 ... declk reconfigure exp

arch ::= Architecture str : decl0 ... decl k≥0 deploy exp rcfg0 ... rcfgh≥0

An architecture arch is composed by a string str representing its name, k ≥ 0
declarations, and an expression describing the application deployment topology.
Further, it may contain h ≥ 0 similarly defined reconfigurations.

Listing 1.2 depicts a simple Painless specification.

1 Arch i t e c tu r e ” S t r e e t Light component” :
2 l e t i t f c l a s s = ”org . l i g h t s c o n t r o l . GetLight In fo”
3 l e t imp l c l a s s = ” org . l i g h t s c o n t r o l . S t r e e tL i gh t ”
4

5 l e t i t f = Interface ”GetLight In fo” i t f c l a s s [ ” S t r e e t Light ” ] External
Server Functional Mandatory Singleton

6 l e t s t r e e tL i gh t = Component ” S t r e e t Light ” [ ] imp l c l a s s [ ] [ i t f ] [ ]
7 deploy mk s t r e e tL i g h t

Listing 1.2. A first Painless specification

Its meaning should be intuitive. We give a representative name to the specific-
ation (line 1), and define two definitions holding an interface and component
class (lines 2-3). Then, we define an interface named ”GetLightInto”, using the
previously defined class, with a path indicating the component it belongs, and
followed by its attributes concerning its visibility, role, etc (line 5). Next, we
define the component named ”Street Light”, with an empty path — i.e., at the
root of the component hierarchy —, with impl class as its implementation class,
without subcomponents, with itf as its only interface, and without bindings (line
6). Finally, we deploy the application (line 7).

3.2 Computing States from Operations

Painless specifications are translated to Mefresa’s operation language. The
details of this process are discussed in Section 4.

As discussed above, one can check the feasibility of reducing an operation by
interactively applying its reduction rules and attempting to prove the required
premises. This ability is of great value when attempting to prove arbitrary com-
plex properties about parametrized architectures. Yet, if we intend to build a
state representing the result of an operation reduction, then we would be bet-
ter with a function performing such task. This is the purpose of the function
depicted by Listing 1.3.
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1 Function bu i l d s t a t e ( op : operat ion ) ( s : s t a t e ) : opt ion s t a t e :=
2 match op with
3 | Mk component i p i c c l l c l i lb =>
4 i f beq boo l ( va l id component path boo l p s && no i d c l a s h b oo l i p

s
5 && dec component (Component i p i c c l l c l i lb ) ) f a l s e then
6 None
7 e l s e
8 add component s p i i c c l l c l i lb
9 . . .

10

11 | Seq op1 op2 =>
12 match bu i l d s t a t e op1 s with
13 | None => None
14 | Some s ’ => bu i l d s t a t e op2 s ’
15 end
16 | Done => Some s
17 end .

Listing 1.3. Excerpt of the build state function definition

The above excerpt shows how we can use a function to compute the result of
an arbitrary operation reduction. Basically, it pattern matches on the parameter
op (line 2), and proceeds depending on the matched constructor. For instance,
if it is a Mk component, it performs the adequate checks w.r.t. to the creation of
a component, and invokes the add component function (lines 3-8). As expected,
valid component path bool is a boolean function checking if path p points to an
existing component in the state init. no id clash checks that the identifier i is
not already used by another component at the same hierarchical level. For last,
dec component computes whether the component to be added is well-formed.

Apart from the Seq and Done constructors, the remaining operation construct-
ors are handled analogously. Seq is composed by two operations (line 11), the
leftmost operation is fully evaluated, and the resulting state is used for evaluating
the rightmost operation (lines 12-15). Done means that the end of the operation
was reached, and it simply returns the current state (line 16).

Another important note regards the use of the option type as return type
of this function. This is due to the fact that it only returns a state if it was
able to fully evaluate the given operation, otherwise, if the operation is invalid,
it simply returns None. As seen above, the validity theorem (see Listing 1.1)
enunciates that reducing an operation to Done from a well-formed state yields
a well-formed state. Naturally, the analogous behaviour is expected from the
build state function. Further, we also expect it to always be able to compute a
resulting state from an operation op, whenever it is possible to fully evaluate op.
Formally, listing 1.4 depicts the relevant theorem.

1 Theorem bu i l d s t a t e c o r r e c t n e s s :
2 f o r a l l op s s ’ ,
3 wel l f ormed s −>
4 ( op / s −−−>∗ Done / s ’ <−> bu i l d s t a t e op s = Some s ’ ) .

Listing 1.4. build state correctness

Proving build state correctness requires a case analysis on the operation construct-
ors, and relating the boolean checks made in build state with the premises of the
step predicate.
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Considering the context of a component-based application life-cycle, one de-
ploys its application by performing an operation op on an empty state —which is
provably well-formed. Then, if op can indeed be reduced, we reach a well-formed
state s (see Listing 1.1). Performing an architectural reconfiguration boils down
to applying an operation op’ to s, leading to yet another well-formed state s’ —
provided that op’ can indeed be reduced —, and this can be
repeated indefinitely. Indeed, there is no need to explicitly compute the well-
formedness of the attained states, as it is provably guaranteed. There is how-
ever such a need regarding their well-typedness. To this end, we define the
well typed bool : component → boolean function. Basically, it acts as a de-
cision procedure w.r.t. the well-typedness of a component. It is proved as the
computational counterpart of the well typed predicate, that is, it is both sound
and complete w.r.t. the well typed predicate.

If an issue occurs — invalid operation or ill-typedness of the returned state —
an exception is thrown and the deployment aborts. Otherwise, the operation is
mapped to the adequate methods composing the ProActive API, and the actual
deployment is performed by the middleware. Further, the object holding the
state’s structure is kept for subsequent reconfiguration tasks.

4 Painless Semantics

Table 2 gives an excerpt of the rules for translating expressions to Mefresa’s
operation language. We use Γ � e ⇓ v for denoting the evaluation of e under the
environment Γ being reduced to v, and �t stands for type inference.

Rule nfsem dictates that a normal form yields immediately a semantic value.
The rule skipsem simply depicts that skip is translated to Mefresa’s done op-
eration. Rules mkcsem and mkisem illustrate the polymorphic constructor mk at
work. It can be used to build components, interfaces and bindings — making
bindings is omitted for the sake of space. These proceed by fully reducing the ex-
pression e into a component/interface/binding that can be used into Mefresa’s
operations. Rule csem shows the reduction of a Component: all its elements (iden-
tifier, subcomponents, ...) need to be reduced and of adequate type. Analogous
rules apply for Interfaces and Bindings. matchsem illustrates how pattern match-
ing is performed. First, the expression exp to be matched is reduced to some
value val. Then, we reduce the expression expk with the corresponding pattern
patk∈{1,n} matching with val. As expected, this occurs in an environment Γ en-
larged with a mapping between patk and val, and patterns are checked by order.
varsem shows that a variable is reduced by looking it up in the environment Γ .
Finally, the rule seqsem simple attests that a sequence of Painless expressions
is translated to Mefresa’s operations.

The complete reduction of an expression should yield a (sequence of) Me-
fresa’s operations, otherwise it is rejected. For instance, the rule archsem depicts
how an architecture without reconfiguration strategies is evaluated.
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Table 2. Painless semantic rules (excerpt)

normal form(v)

Γ � v ⇓ v
nfsem

Γ � skip ⇓ Done
skipsem

Γ � e ⇓ c
c = Component id p cl lc li lb

Γ � mk e ⇓ Mk component c
mkc

sem

Γ � e ⇓ i
i = Interface id p sig v f co ca

Γ � mk e ⇓ Mk interface i
mki

sem

Γ � exp1 ⇓ id Γ �t id : string Γ � exp2 ⇓ p Γ �t p : list string
Γ � exp3 ⇓ cl Γ �t cl : string Γ � exp4 ⇓ lc Γ �t lc : list component

Γ � exp5 ⇓ li Γ �t li : list interface Γ � exp6 ⇓ lb Γ �t lb : list binding

Γ � Component exp1 ... exp6 ⇓ Component id p cl lc li lb
csem

Γ � exp ⇓ val matches(patk, val) ∧ ∀h, h < k → ¬matches(path, val)
Γ, (patk, val) � expk ⇓ vk

Γ � match exp with pat1 → exp1 ... patn → expn end ⇓ vk
matchsem

Γ [x] = α

Γ � x ⇓ α
varsem

Γ � exp1 ⇓ α Γ �t α : operation
Γ � exp2 ⇓ β Γ �t β : operation

Γ � exp1 ; exp2 ⇓ α ; β
seqsem

∀i, 0 ≤ i ≤ k. decli = (Pi, expi) Γ � expi ⇓ βi

Γ, (P0, β0), ..., (Pk, βk) � exp ⇓ α Γ �t α : operation

Γ � Architecture str: decl0 ... declk≥0 deploy exp ⇓ α
archsem

Basically, the deployment expression exp is reduced to α, under an environment
including all the declarations decli. Naturally, α must be of type operation.

Dealing with reconfigurations is performed analogously. The expression to be
evaluated is reduced on a context including the deployment declarations, the
ones defined locally, and its instantiated parameters.

4.1 Painless Standard Library

As discussed above, the GCM component model is hierarchical, that is, a
component may possess subcomponents. A component communicates with the
”outside” world through its external interface, whereas it relies on its internal
interfaces to communicate with its subcomponents. Typically, composite com-
ponent interfaces are symmetric, that is, for each external interface of server role
there is a internal interface of client role, and vice-versa. Listing 1.5 and Listing
1.6 depict a convenient function to ease the specification of such scenarios —
with the obvious definition of visibility symmetry omitted for the sake of space.
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1 l e t role symmetry r =
2 match r with
3 Client −> Server
4 | Server −> Client
5 end

Listing 1.5. Role symmetry

1 l e t symmetric i = match i with
2 Interface id s i p v r f co ca −>
3 l e t vs = v i s i b i l i t y s ymme t r y v in
4 l e t r s = role symmetry r in
5 Interface id s i p vs r s f co ca

end

Listing 1.6. Interface symmetry

Another common scenario regards the need to change the location of a com-
ponent. For this, we define the function depicted by Listing 1.7.

1 l e t change component path p comp =
2 match comp with
3 Component id cp c l l c l i lb −>
4

5 l e t r e c change subcomponents path p l c =
6 match l c with
7 [ ] −> [ ]
8 | c : : r −> change component path p c : :

change subcomponents path p r
9 end

10 in
11

12 l e t lcm = change subcomponents path ( s u f f i x p id ) l c in
13 l e t l im = chan g e i n t e r f a c e s p a t h ( s u f f i x p id ) l i in
14 l e t lbm = change b ind ings path ( s u f f i x p id ) lb in
15 Component id p c l lcm l im lbm
16 end

Listing 1.7. Changing the path of a component

A component may contain subcomponents, interfaces and bindings. As such, it
is also necessary to adjust their paths. We define a inner function (lines 5-9) to
deal with nested recursion. The function suffix returns a path with the second
parameter suffixed to the first one. Moreover, we use other library functions —
change interfaces path and change bindings path — to adjust the interfaces and
bindings paths (lines 13-14).

Another useful function concerns the making of components in a specific path.
Listing 1.8 defines such a function.

1 l e t mk in p c = mk ( change component path p c )

Listing 1.8. Changing the path of a component

All the discussed functions are part of Painless standard library along with
other facilities for dealing with common specification tasks. Further, the user
can easily build its own libraries as specifications can be imported.

5 Specifying the Lights Control use case in Painless

In this section we show how the specification of the Lights Control application
discussed in Section 1 (see Figure 1) is achieved in Painless. We follow a modu-
lar approach by separately specifying the Switched On Lights, Sensed Brightness
Info, and Lights Control components.

Listing 1.9 depicts the specification of the Switched On Lights component.
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1 Arch i t e c tu r e ”Composite component : Switched On Lights ” :
2

3 l e t id = ”Switched On Lights ”
4 l e t p = [ id ]
5

6 l e t s t r e e tL i gh t =
7 Component ” S t r e e t Light ” p ” org . l i g h t s c o n t r o l . S t r e e tL i gh t”
8 [ ]
9 [ Interface ”GetLight In fo” ” org . l i g h t s c o n t r o l . GetLight In fo”

10 [ id ; ” S t r e e t Light ” ] External Server Functional Mandatory Singleton
]

11 [ ]
12

13 l e t c o l l e c tL i g h t I n f o p =
14 Interface ” Co l l e c tL i gh t I n f o” ” org . l i g h t s c o n t r o l . Co l l e c tL i gh t In f o”
15 p External Server Functional Mandatory Singleton
16

17 l e t g e tL i gh t In f o =
18 Interface ”GetLight In fo” ” org . l i g h t s c o n t r o l . GetLight In fo”
19 [ id ; ” Light Co l l e c t o r” ] External Client Functional Mandatory

Multicast
20

21 l e t l i g h tCo l l e c t o r =
22 Component ”Light Co l l e c t o r” p ” org . l i g h t s c o n t r o l . L i gh tCo l l e c t o r ”
23 [ ] [ c o l l e c t L i gh t I n f o [ id ; ” Light Co l l e c t o r” ] ; g e tL i gh t In f o ] [ ]
24

25 l e t switchedOnLights n rOfS t r e e tL ight s =
26 Component id [ ] ” n u l l ”
27 ( l i g h tCo l l e c t o r : : l i s t o f s t r e e tL i gh t n rOfS t r e e tL i gh ts )
28 [ c o l l e c t L i gh t I n f o p ; symmetric ( c o l l e c tL i g h t I n f o p) ]
29 (Export p ” Co l l e c tL i gh t I n f o” ”Light Co l l e c t o r” ” Co l l e c tL i gh t In f o” : :
30 normal b ind ings p ”Light Co l l e c t o r” ”GetLight In fo” ” S t r e e t Light ” ”

GetLight In fo” n rOfS t r e e tL i gh ts )

Listing 1.9. Specification for the Switched On Lights component (from Figure 1)

We start by giving a descriptive name to this ADL (line 1). Then, we define the
Street Light component (lines 6-11). It possesses a name, a path indicating where
it is in the component hierarchy, a classpath, an empty list of subcomponents,
one server interface and no bindings. This definition should be seen as a template,
as its instances are the ones dynamically added/removed. Next, we define the
Light Collector component (lines 21-23) and its two interfaces (lines 13-19). The
first interface is parametrized by its path as we shall use it later when specifying
the Lights Control component (see Listing 1.11). Last, we specify the Switched
On Lights component parametrized by its number of Street Lights (lines 25-30).
As expected, its subcomponents include the Light Collector component and a list
of nrOfStreetLights Street Light components (line 27). The interfaces are sym-
metric and their specification is conveniently handled by the interface symmetry
function. Further, the function normal bindings is responsible for binding Light
Collector’s multicast interface to the several Street Light instances.

It should be noted that this specification can be used on its own by adding
a deployment expression. Listing 1.10 depicts an example of a deployment with
one hundred Street Light components.

33 deploy mk ( switchedOnLights 100)

Listing 1.10. Example of a deployment specification for Switched On Lights
component
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The ADL of the Sensed Brightness Info component follows the same rationale
and is omitted for the sake of space. Listing 1.11 depicts the deployment spe-
cification of the overall Lights Control application. As an example, the Street
Light and Sensed Brightness Info components are instantiated to ten each.

1 Require ” org . l i g h t s c o n t r o l . ad l . SwitchedOnLights . p a i n l e s s ”
2 Require ” org . l i g h t s c o n t r o l . ad l . S en sedBr i ghtn ess In fo . pa i n l e s s ”
3 Arch i t e c tu r e ” Lights Control Arch i t e c tu r e” :
4

5 l e t p = [ ” Lights Control ” ]
6

7 l e t l i g h t sCont r o l =
8 Component ” Lights Control ” [ ] ” n u l l ” [ ]
9 [ c o l l e c t B r i g h t n e s s I n f o p ; symmetric ( c o l l e c tB r i g h t n e s s I n f o p) ;

10 c o l l e c tL i g h t I n f o p ; symmetric ( c o l l e c t L i g h t I n f o p ) ] [ ]
11

12 l e t n = 10 //number o f s en so r components to deploy
13 l e t m = 10 //number o f l i g h t components to deploy
14

15 deploy
16 mk ( add subcomponents l i g h t sCon t r o l [ s e n sedBr i gh tn e s s In f o n ;

switchedOnLights m] ) ;
17 mk export p ” Co l l e c tL i g h t I n f o” ”Switched On Lights ” ” Co l l e c tL i g h t In f o

” ;
18 mk export p ” Co l l e c tB r i g h tn e s s In f o” ”Sensed Br ightness In f o ” ”

Co l l e c tB r i g h tn e s s I n f o”

Listing 1.11. Specification for the Lights Control application

We start by importing the ADLs from the Switched On Lights and Sensed Bright-
ness Info components (lines 1-2). This adds all their definitions to the current
scope, namely the interfaces collectLightInfo and collectBrightnessInfo. Next, we
define the Lights Control without including its subcomponents and bindings (lines
7-10). These are added directly in the deployment expression. The function
add subcomponents belongs to Painless standard library. It places the subcom-
ponents into LightsControl while adequately adjusting their path field (line 16).
Finally, the two export bindings are established to the two added subcomponents
(lines 17-18).

The last remaining ingredient concerns the structural reconfigurations. Listing
1.12 depicts two reconfiguration strategies regarding the addition and removal
of the nth Street Light component.

22 Recon f i gura t ion ”add l i g h t ” n :
23 l e t p = [ ” Lights Control ” ; ”Switched On Lights ” ]
24 r e c on f i g u r e
25 mk in p ( nth s t r e e tL i g h t n) ;
26 mk normal p ”Light Co l l e c t o r” ”GetLight In fo” ( ” S t r e e t Light ”+n) ”

GetLight In fo”
27

28 Recon f i gura t ion ”remove l i g h t ” n :
29 l e t p = [ ” Lights Control ” ; ”Switched On Lights ” ]
30 r e c on f i g u r e
31 rm normal p ”Light Co l l e c t o r” ”GetLight In fo” ( ” S t r e e t Light ”+n) ”

GetLight In fo” ;
32 rm [ ” Lights Control ” ; ”Switched On Lights ” ] ( ” S t r e e t Light ”+n)

Listing 1.12. Reconfigurations specification for the Lights Control application

Their understanding should pose no doubt. The first adds a Street Light com-
ponent by making it with the adequate path (line 25) and subsequently binding
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it to Light Collector’s multicast interface (line 26). As expected, the expression
nth streetLight n returns a streetLight component with an identifier suffixed by
n. The second reconfiguration is handled in a similar manner. We first need to
unbind the component to remove (line 31) — where normal is the constructor
for normal bindings —, and then we proceed by removing it (line 32).

From a programming perspective, the reconfigurations are available through
a simple method call indicating its name and parameters. Further, the evalu-
ation of the deployment specification and subsequent applied reconfigurations is
carried out by the machinery originating from Mefresa. Moreover, it should be
noted that checking that a reconfiguration leads to a well-formed and well-typed
component architecture is achieved without stopping any component. Indeed,
before reconfiguring the application, ProActive needs to stop the involved com-
posite component. The inherent benefit is that only valid reconfigurations w.r.t
the mechanized GCM specification are mapped to the ProActive API. For in-
stance, attempting to add a Street Light component with the same identifier as
another one already deployed is rejected, i.e., an exception is thrown.

Our ProActive extension is freely available online. The release contains the
examples discussed here and several others. The reader is pointed to the following
website for more details http://painless.gaspar.link.

6 Related Work

Let us mention the work around the ArchWare ADL [14]. They claim that ”soft-
ware that cannot change is condemned to atrophy” and introduce the concept of
an active software architecture. Based on the higher-order π-calculus, it provides
constructs for specifying control flow, communication and dynamic topology.
Unlike Painless, its syntax exhibits an imperative style and type inference is
not supported, thus not promoting concise specifications. Nevertheless, it is suf-
ficiently rich to provide executable specifications of active software architectures.
Moreover, user-defined constraints are supported through the ArchWare Archi-
tecture Analysis Language. Yet, their focus is more aimed at the specification
and analysis of the ADL, rather than actual application execution and deploy-
ment. In our work, the user solely defines the architecture of its application,
structural constraints are implicit: they are within the mechanized GCM spe-
cification. Further, our tool support is tightly coupled with ProActive.

Also from the realm of process algebras, Archery [15] is a modelling lan-
guage for software architectural patterns. It is composed by a core language and
two extensions: Archery-Core, Archery-Script and Archery-Structural-Constraint.
These permit the specification of structural and behavioural dimensions of ar-
chitectures, the definition of scripts for reconfiguration, and the formulation of
structural constraints, respectively. Moreover, a bigraphical semantics is defined
for Archery specifications. This grants the reduction of the constraint satisfaction
verification to a type-checking problem. However, this process is not guarantee
to be automatic, and type-checking decidability remains as future work.

Gerel [9] is a generic reconfiguration language including powerful query con-
structs based on first-order logic. Further, its reconfiguration procedures may

http://painless.gaspar.link
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contain preconditions à la Hoare Logic [12]. These are evaluated by brute force.
It is unclear how they cope with the inherent undecidability of such task.

Di Cosmo et. al. defined the Aeolus component model [6]. Their focus is on the
automation of cloud-based applications deployment scenarios. Their proposal is
loosely inspired by the Fractal component model [4] whose most peculiar char-
acteristics are its hierarchical composition nature and reconfiguration capabil-
ities. However, while both approaches permit architectural reconfigurations at
runtime, its specification is not supported by their ADL, it solely contemplates
deployment related aspects. Moreover, support for parametrized specifications
is also not covered, forcing the software architect to explicitly define the applic-
ation’s structure.

Regarding Fractal, it is also worth noticing that it tries to overcome the lack
of support for reconfiguration specification through Fscript [7]. Fscript embeds
FPath — a DSL for navigation and querying of Fractal architectures — and
acts as a scripting language for reconfiguration strategies. These are not evalu-
ated for their validity. Nevertheless, system consistency is ensured by the use of
transactions : a violating reconfiguration is rolled back.

Like the Fractal ADL, xMAML [13] is XML-based, yet it permits the spe-
cification of reconfigurations. An important difference is that their focus is on
processor architectures and aim at producing synthesizable models.

In [8], Di Ruscio et. al. defend the concept of building your own ADL through
the byADL framework. Further, they claim that ”it is not possible to define
a general, optimal ADL once and forever”, and propose the means to incre-
mentally extend and customize existing ADLs by composing their metamodels.
This approach offers an interesting perspective regarding the interoperability of
Painless with other ADLs.

7 Final Remarks

In this paper we presented Painless and its related novel approach for the
specification of software architectures. Its declarative trait allows for intuitive
and concise specifications, liberating the software architect from highly verb-
ose specifications such as the ones obtained via machine languages like XML.
Moreover, its support for parametrized architectures eases deployment — it be-
comes a matter of instantiation —, and thus boosts productivity. Further, in
ProActive, mapping components to physical resources is achieved through ap-
plication/deployment descriptors. While this information is not an aspect of the
architecture per se, extending Painless with such feature could be envisaged.

Another key ingredient is the treatment of structural reconfigurations as first-
class citizens. Indeed, by supporting the specification of the topological changes
that may occur at runtime, it yields a better understanding of the application.
Moreover, it is worth noticing that the specified reconfigurations become easily
accessible from a programming perspective: through a simple method call with
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the name of the desired reconfiguration. Furthermore, reconfiguration specific-
ations are evaluated at runtime. The clear benefit is that one can be highly
confident that the reconfiguration will not leave the application in a ill formed
or ill typed state as the evaluation process is carried out by provably correct code
extracted from Mefresa. Additionally, a further inherent advantage is that it
all happens without stopping the application. Indeed, actually performing the
reconfiguration requires it to be stopped at the composite level. By making a
prior evaluation, the risk of reconfiguration failure is avoided.
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Abstract. In service-oriented software product lines, when a change
occurs in the business process variability model, designing the domain
architecture from scratch imposes costs of re-architecture, high costs of
change in the domain-level assets; and high costs of change in many
products based on the new domain architecture. In this paper, focusing
on the linear evolution scenario in service-oriented product lines, which
refers to propagating changes in some assets to some other assets, both
in the domain level, we deal with the problem of propagating changes
in domain requirements (the business process variability model) to the
domain architecture level, in a cost-optimal and consistency-preserving
way. We present a method to suggest the optimal change propagation op-
tions to reach the aforementioned goals. The method showed promising
to provide minimal change costs as well as to fully preserve consistency
of the target models if no human intervention exists in the change prop-
agation results.

Keywords: variability. service-oriented product line. linear evolution.
Pareto optimization. consistency.

1 Introduction

A software product line is a collection of software-intensive systems that share
common properties and are developed aiming at meeting specific market needs
or special missions based on a set of core assets [1]. Indeed, a software prod-
uct line contains a family of software systems that share a number of common
functionalities and a number of variable ones. To address the common and vari-
able functionalities, reusable core assets (such as requirements, design artifacts,
components, test cases, etc.) are developed, which can be reused by different
members of the family[2].

There are two main lifecycles in software product line engineering: domain
engineering and application engineering[3]. In the domain engineering lifecycle,
the main emphasis is on defining the commonalities and the differences, or in
other words determining variability among the aimed products, based on which,
the reusable artifacts (the core assets) are developed or obtained. Meanwhile,
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in application engineering, the core assets are reused in developing particular
products of the product line, using the common (mandatory) product elements
and selecting optional and variant product elements, both determined in domain
engineering lifecycle.

In a service-oriented software product line, the software architecture build-
ing blocks are services, which are identified and specified based on the business
processes[4]. The business processes are continually changing and hence, a do-
main engineer may decide to reflect the changes of the business processes to
other artifacts in the software product line. Such a change, therefore, can widely
affect artifacts both in the domain and application engineering lifecycles [3].

In general, changing or evolution of a software product line can take place in
terms of one or a combination of six evolution scenarios, namely, linear evolution,
synchronization, merge, propagation, cloning and derivation [5] (see Table 1).
These evolution scenarios are different in the change source and change target.
For instance, in the linear evolution scenario, the change source and the change
target are both in the domain-level.

Table 1. SPL evolution scenarios [5]

Scenario Change Source Change Target Description

Linear Evolution Domain Variability Models Domain Variability Models -

Synchronization Domain Variability Models Product Configurations -

Merge Product Configurations Domain Variability Models -

Propagation Product Configurations Other Product Configurations -

Cloning - New Product Configuration Based on current product configurations

Derivation - New Product Configuration Based on domain variability models

The scope of research in this paper includes the linear evolution scenario, to
propagate changes in a service-oriented software product line, from the
requirements-level variability model (which is the business process variability
model) to the architecture-level variability model (which mainly includes the
variability of services). One way to achieve the mentioned propagation is re-
architecting the target architecture model back from scratch based on the changed
domain requirements. However, using this way will impose costs, not only for
the re-architecture itself, but also for providing new single services and service
compositions that may be too distant from their previous versions, and thus will
result to: (A) wide changes in the core assets in the domain level; and hence,
(B) wide changes in the products that are built by reusing them.

On this basis, in this research we aim to: “propose a semi-automatic method for
linear evolution of service-oriented architecture-level variability model due to the
changes in the business process variability model in a way that the costs of change
are minimized and that the consistency of the changed model is preserved”.

To reach this goal, we were inspired by the MAPE-K control loop which is
widely adopted in software adaptation in response to changes [6] and we made
use of multi-objective Pareto optimization mechanisms to minimize change costs.

Decision making for applying the changes may depend on other factors (such
as economic conditions, state of the market, etc.) that cannot be comprehen-
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sively determined and formulated in terms of computerized processes; therefore,
although it is desirable that the change propagation process be fully automated,
we emphasize on a semi-automatic method to avoid missing the role of human
factors and expertise in the change decisions. We expect that the method mini-
mizes the change costs and preserves the consistency of the target model, keeping
it free from logical conflicts.

1.1 Motivating Example

As a simple example, suppose that a service-oriented Office Letter Submission
(OLS) product line is established by a company. For such a product line, a
business process family model is designed, based on which, a service variability
model was carried out. Fig. 1 depicts the business process variability model in
terms of a Business Process Family Model (BPFM), which is a notation pro-
posed by Moon and her team [7,8]. It is an extended UML activity diagram
augmented with variability-specific elements, such as variation points, optional
versus mandatory activities, variant regions (set of variant activities that gener-
ally form an optional sub-process), variability relationships (either excludes or
requires constraint), etc.

Moreover, we consider the service variability model (which we name SVM for
ease) as a set of services and their interfaces (including operations and messages),
along with their variability attributes (optional versus mandatory services, op-
erations and messages) and variability relationships (“excludes”, “requires”, and
“or” relationships between services and between operations). An SVM for the
sample OLS product line is depicted in Fig. 3.

Suppose that the models represented in Fig. 1 and 3 both belong to the current
version (version i) of the sample OLS product line. Note that, for convenience,
we have only included the identifiers of activities that are realized by the corre-
sponding service operations in the services; for example in Fig. 3, optional service
“Serv1” includes an optional operation “Oper1” that realizes activity “Create
Draft for Internal Letters”. It has a set of incoming and outgoing messages that
are not depicted in Fig. 3, as they are not necessary for the purposes of the
current running example.

Let us suppose that the BPFM is requested to change to version i+1 as
depicted in Fig. 2. As it is obvious, the following items of change have occurred
in BPFM version i+1 regarding its previous version.

– Mandatory activity (4) is removed.
– Mandatory activity (7) is changed to optional.
– Mandatory activity (9) is added.

Considering specifically the addition of the new activity (9), we have five
change options in the SVM: adding the new operation to: “Serv1”, “Serv2”,
“Serv3”, “Serv4”, or a new empty service “Serv5”. If, for example, for the ab-
stract architecture-level service “Serv1” two concrete services CS1 and CS2 are
developed, and if there are 20 configurations in which, CS1 or CS2 are invoked,
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Fig. 1. Current version (i) of the BPFM diagram for the sample Office Letter Submis-
sion (OLS) product line

Fig. 2. New version (i + 1) of the BPFM diagram for the sample Office Letter Sub-
mission (OLS) product line

then a change in “Serv1” propagates not only to those two concrete services,
but also to 20 products. Similarly, we would have a number of concrete services
for other abstract services in the SVM, each of which could be invoked in a
number of product configurations. Therefore, it is crucial to find an optimal set
of changes to the SVM so that the change cost, in terms of number of affected
artifacts, is minimized.

Moreover, a method to deal with this problem is expected to preserve consis-
tency in the new version of SVM. An inconsistent SVM contains internal logical
conflicts between its elements. For example, if there is an “excludes” relationship
between two mandatory services, then it is not consistent, since being mandatory
implies that in every product configuration, both services are invoked; and the
“excludes” relationship implies that only one of them can be invoked in a prod-
uct configuration, which is contradictory. In another work in progress, we have
derived and articulated inconsistency conditions to be checked automatically on
SVM models.
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In short, the research problem is how to find the set of proper changes in the
SVM among a set of change options, so that the cost of change is minimized
and the consistency of the target model is preserved. The rest of the paper is
organized as follows: In section 2, we take a glance at the previous work on this
subject; afterwards, in section 3 we fully describe the proposed method. Section
4 is dedicated to evaluation of the research, while section 5 concludes the paper
and proposes a few trends for the future work.

2 State of the Art

The previous work regarding the subject of this research can be divided into
two main categories: research works related to software product line evolution,
and the research reports on evolution of variability in services and the service-
oriented product lines.

Irrespective of service-orientation, there are a number of research works re-
ported for managing and controlling evolution in software product lines (refer
to [9] for a wide survey in this regard). The common notion among most of
these works is two-fold: emphasis on minimizing the cost of change [10,11,12],
and emphasis on consistency preservation in the product line artifacts which are
subject to change [10,11,12,13].

Another common point of focus among these works is the steps of encounter-
ing with a change request. For instance, Ajila and Kaba in [11] propose evolu-
tion management mechanisms that fit in a four-phased process, which includes
change identification, change impact analysis, change propagation , and change
validation. The same has been proposed in service evolution (irrespective of the
product line engineering) [14]; for example for services self-adaptation, the well-
known MAPE-K loop has been suggested to Monitor, Analyze, Plan and Execute
changes, providing and consuming some change Knowledge [6]. However, all of
the research works in this first category are feature-model-based; while in a
service-oriented product line, we need to support the business processes; thus
these methods cannot fit to our problem.

The research works reported on evolving software with respect to the vari-
ability of services within or out of the scopes of a product line, fall into two
subcategories: (A) Reports on using the concept of variability to support a set
of pre-determined changes in single service-oriented software systems (such as
[15] and [16]), none of which are in the scope of a software product line, and
thus the works in this subcategory does not fit to our problem.

(B) Reports on supporting some type of evolution in service-oriented product
lines (such as [12] and [17]); however, in this subcategory, although the research
works are within the scopes of service-oriented product lines, there are no em-
phasis on the business processes as the main source of continuous change. Gomaa
and Hashimoto [17] propose a general service-oriented variability model which
uses feature models as the main requirements-level variability model, and do
not focus on business process variability model. They concentrate on the ba-
sics of self-adaptation in service-oriented product lines. Moreover, Hinchey et al.
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[12] discuss general issues in dynamic product lines and do not specifically ad-
dress evolution scenarios in the service-oriented product lines emerging from the
changes in the business processes. Hence, the research works in this subcategory,
either, cannot be leveraged to solve the problem mentioned in this paper.

3 The Proposed Method

Considering the linear evolution scenario, the source of changes in the domain
architecture of a service-oriented product line is the business process variability
model. In this research, we specifically chose the Business Process Family Model
(BPFM) notation [7,8] for the purpose of specifying the business process variabil-
ity. Meanwhile, the change target is the service variability model (SVM). SVM
is basically a set of mandatory and/or optional services, each of which contains
a nonempty set of mandatory and/or optional operations. Among services and
among operations, there can be variability relationships, including, “or”, “ex-
cludes”, and “requires” relationships. Thus, if we consider the proposed method
as a black box, then the input to it will be a BPFM′ (the changed version of
the current BPFM), and the output from it will be an SVM′ (the changed ver-
sion of the current SVM). Inside the black box, we embed four main units and
a knowledge repository, which support four main operations by sharing some
knowledge among them. These four main operations are: change identification,
change impact analysis, change planning and change execution, which can con-
tinue over to the change identification operation if the result of change execution
is exposed to some new change. Fig. 4 depicts these four main operations be-
sides the knowledge repository in which, all of the changes, their details, and
rationales are stored. This paper focuses mostly on the first two operations of
the proposed cycle.

Fig. 3. Current version (i) of the SVM di-
agram for the sample Office Letter Submis-
sion (OLS) product line

Fig. 4. The proposed change cy-
cle for linear evolution in service-
oriented product line
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3.1 Change Identification

“Change identification” operation includes the identification of the elements in
the source model (BPFM) that are added, removed, or modified. The result,
which we represent by ΔB, is in fact, the set of differences of BPFM′ (the new
version) with BPFM (the old version). Each change item in ΔB, can be an
element (e) or a variability relationship (r) between the elements in the BPFM,
where each element e (such as an activity, a variation point, or a variants region)
is a member of all BPFM elements (E ); and each relationship r (such as a
control flow, a connection or a constraint) is a member of all BPFM relationships
(R). Elements can be added, removed or modified, while relationships can only
be added or removed. On this basis we will have formula (1), in which add
means adding an element or a relationship, rem means removing an element or
a relationship, and mod denotes modifying an element.

ChangeItem : : = add e | mod e | rem e | add r | rem r (1)

Elements and relationships each have their quadruple structures specified in
formulas (2) and (3). Formula (2) states that each element has a type (e.g.,
it is an activity, a variation point, or a variants region), a name, an attribute
type, and an attribute value; while formula (3) denotes that a relationship has
a category, a type, a source and a target (see [7,8] for details of BPFM).

e = (etype, ename, eattrtype, eattrvalue) (2)

r = (rcat, rtype, rsource, rdestin) (3)

In the example in subsection 1.1, we depicted a list of change items that
occurred to the OLS BPFM.

3.2 Change Impact Analysis

The goal of “change impact analysis” operation is to (1) determine all change
options for reflecting the change items of BPFM to SVM; (2) calculating the
cost of applying each change option; and (3) providing a set of optimal change
options for the architects and the domain engineers to help them in decision
making about which change options to apply.

Determining SVM Change Options: To designate the changes to SVM (ΔS)
as a result of changes in BPFM, we should determine all potential change items
that can take place in the SVM (we call them change options) in reflection to
each change item existing in ΔB; and then we should analyze costs of each
change option. Let CI be the set of all change items residing in ΔB, and COi

be the set of all possible change options in SVM in response to a change item
CIi. As an example, if currently there exists three services S1 to S3 in the SVM,
and some CI1 corresponds to adding a mandatory activity “a” to the BPFM,
then each of the following four items makes up a change option in the set COi:
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adding a new operation corresponding to activity “a” to (1) S1, (2) S2, (3) S3,
and (4) a new empty service S4. Then a set CO is formed from the union of
all change options coj in each COi. Fig. 5 depicts the relationship between sets
CI and CO. For our running OLS example in subsection 1.1, the set of change
items and change options are depicted in Fig. 6.

Change Items in BPFM (CI) CI1 CI2 CI3 ...
Change Options in SVM (CO) co1 co2 co3 co4 co5 co6 co7 co8 ...

Selection Vector v1 v2 v3 v4 v5 v6 v7 v8 ...

Fig. 5. The relationship between change items in BPFM and change options in SVM

Change Items (CI) Remove activity (4)
Change activity (7)
from mandatory to optional Add new activity (9)
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Selection Vector index v1 v2 v3 v4 v5 v6 v7
Solution z1 1 1 1 0 0 0 0
Solution z2 1 1 0 1 0 0 0
Solution z3 1 1 0 0 1 0 0
Solution z4 1 1 0 0 0 1 0
Solution z5 1 1 0 0 0 0 1

c1 1 0 1 1 1 1 1
c2 1 0 1 1 1 1 1
c3 1 0 0 0 0 0 0

Affected Services S2 - S1 S2 S3 S4 New Empty S5

Fig. 6. Potential solutions for the OLS sample

Moreover, to build up a single solution (a potential ΔS) we need to select one
of the change options for each change item. The selection is done by designating
a Boolean selection vector as shown in Fig. 5, with the constraint that for each
change item CIi one and only one of the corresponding change options should be
set to 1, and the rest should be set to zero. Fig. 6 depicts the possible selection
vectors as well as the affected services by each change option and the values of
three Boolean coefficients (which will be discussed later in this subsection).

Analyzing Costs of Change in SVM: We define the total cost of reflect-
ing the changes of BPFM to SVM as a function of (1) the costs due to the
changes in service interfaces (ICost) and (2) the costs imposed by the changes
in relationships between the services (RCost).

Since the calculation of economical costs of change is not within the scope of
this research, we consider the change cost as the number of affected artifacts.
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Here, artifacts are classified into two main classes: first, the domain-level concrete
services, and second, the application-level products that use the domain-level
services in their configurations.

Therefore, ICost imparts two costs: costs due to changes of (domain-level) con-
crete services developed internally or consumed from external repositories that
implement and realize the abstract architecture-level services that are subject
to change; and second, costs of change to all (application-level) configured prod-
ucts derived from the product line, which invoke those affected concrete services.
The interface cost is calculated in formula (4) in which, z denotes a solution (a
potential ΔS), and Nocsi and Noappi represent the number of concrete services
and the applications affected by the changes to the interface, respectively.

Similarly, RCost can be calculated. However, changes that are imposed by
changing the relationships between services do not impose any effects on the
domain-level concrete services; however, the products are affected, since it is
crucial to keep the products “conforming” to the domain level, i.e., the new con-
straints (relationships) should hold in each product configuration. Otherwise,
products will deviate from the product line, and this imposes extra costs for
maintaining the product line. Hence, since product reconfiguration may be re-
quired, we will have formula 5, in which, z denotes a potential solution and
Noappr represents the number of application that need to be reconfigured due
to the changes to the relationships between services. Furthermore, changes to
relationships in BPFM, require a re-extraction of relationships in SVM. This is
achieved by Algorithm 1 , which uses the possible configurations that can be
derived from the BPFM and the set of services (from the SVM) to generate the
SVM which is modified in its variability relationships (we proposed this algo-
rithm in a previous work [18], which aimed at automating extraction of an SVM
from a BPFM).

ICost(z) = Nocsi +Noappi (4)

RCost(z) = Noappi (5)

A change item, regarding its effect on SVM, may result in changes to either the
concrete services, the products, both or neither (either impacting their interface
or relationships or both). Therefore for each change item, we can define Boolean
coefficients c1, c2 and c3, which show whether the change necessitates considering
costs for changing interfaces of concrete services (c1), costs for changing products
because of interface changes in concrete services (c2), and costs for reconfiguring
the products due to the changes in the relationships (c3). Table 2 lists the values
of c1 to c3 per each potential feasible change scenario in SVM. These coefficients
for our running OLS example are listed for each change option in Fig. 6.

For a set of potential solutions, Z, we can form a set Objz , which is popu-
lated with individual objective vectors as ordered pairs of (ICost, RCost) to be
minimized. We will use these objective vectors to find a set of the most cost-
effective change options in the target SVM in response to the changes in the
corresponding BPFM.
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Algorithm 1. Service Variability Identification

Input: Service Set (SS), BPFM Configuration Set (CS)
Output: Service variability Model (SVM)

1. SVM ← NIL
2. for each service in SS do
3. for each c in CS do
4. if !(IsUsed(service,c)) then
5. // service is not used in configuration c
6. add service to SVM.OptionalServiceSet
7. ServiceIsOptional ← True
8. break
9. end if
10. if !ServiceIsOptional then
11. add service to SVM.MandatoryServiceSet
12. end if
13. end for
14. for each si in optionalServiceSet do
15. for each sj �= si in optionalServiceSet do
16. for each c in CS do
17. if !((IsUsed(si,c) ⊕ (IsUsed(sj ,c))) then
18. AreAlt ← false
19. end if
20. if !((IsUsed(si,c) ∨ (IsUsed(sj,c))) then
21. AreOR ← false
22. end if
23. if !(!(IsUsed(si,c) ∨ (IsUsed(sj ,c))) then
24. AreIncl ← false
25. end if
26. end for
27. if !(AreAlt = false) ∧ (sj , si) /∈ SVM.AltRelations then
28. add (si, sj) to SVM.AltRelations
29. end if
30. if !(AreOr = false) ∧ (sj , si) /∈ SVM.OrRelations then
31. add (si, sj) to SVM.OrRelations
32. end if
33. if !(AreIncl = false) then
34. add (si, sj) to SVM.IncRelations
35. end if
36. end for
37. end for
38. end for
39. return SVM

Determining the Most Cost-Effective solution: In this step, for each
change item in ΔB we should determine which change options are the least
costly. For this purpose, we utilize multi-objective Pareto optimization [19]. If
there is a solution z, whose ICost and Rcost are both less than all other change
options’ ICost and RCost respectively, then z is announced the most cost-
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effective solution which dominates all other solutions in cost-effectiveness. How-
ever, the problem arises when we reach a set of solutions, in which, some solutions
have lower ICosts but higher RCosts, or have higher ICosts but lower RCosts
compared with the other ones. In this case, no single solution can be announced
as “dominating”; instead, we only can select a set of solutions, that although not
dominating other solutions, are not dominated by other solutions either; that is,
the set of “non-dominated” solutions that form the “Pareto-optimal” set of solu-
tions [19]. The results of this step are used in the next step for decision-making
on the Pareto-optimal set of solutions. Algorithm 2 represents the triple steps
of change impact analysis.

For our OLS example, considering the concrete services and the configured
products using them as denoted in Table 3, the objective vectors are those repre-
sented in Table 4. Since solution z2 (see Fig. 6) is selected as the Pareto optimal
solution, and assuming that the change is approved by the decision makers, the
changes are executed and the new version of SVM (i.e., version i+1) is depicted
in Fig. 7. In the new version of SVM, operation “Oper4” is removed from ser-
vice “Serv2”, operation “Oper7” in “Serv4” has changed from mandatory to
optional, and a new operation “Oper9” is added to “Serv2” (there is no need
to remind that each operation “Oper i” is an operation to realize activity i in
the BPFM). No change was made to the variability attributes of the services,
and no relationship exists among the services, and thus the new SVM cannot be
inconsistent.

Table 2. General change options in SVM due to the change items in BPFM and the
corresponding coefficient values
No. Change Item in BPFM Change Option in SVM c1 c2 c3

1
Remove a mandatory activity

Remove mandatory operation from the mandatory
service, and the service does not get empty to be removed 1 1 1

2
Remove mandatory operation from the mandatory
service, and the service gets empty and is removed 0 1 1

3
Remove a non-mandatory (optional or variant) activity

Remove non-mandatory operation from the mandatory service 1 1 0

4
Remove non-mandatory operation from the optional service,
and the service does not get empty to be removed 1 1 1

5
Remove non-mandatory operation from the optional service,
and the service gets empty and is removed 0 1 1

6
Add a new mandatory activity

Add a new mandatory operation to a mandatory service 1 1 0
7 Add a new mandatory operation to an optional service 1 1 0
8 Add a new mandatory operation to a new empty service 1 1 0

9
Add a new non-mandatory (optional or variant) activity

Add a new optional operation to a mandatory service 1 0 0
10 Add a new optional operation to an optional service 1 0 1
11 Add a new optional operation to a new empty service 1 0 1

12 Modify data of an existing activity Modify the operation in the same service that it currently resides 1 1 0

13 Remove a constraint (relationship) b/w activities (has no impact on service interfaces and their relationships) 0 0 0

14 Add a new constraint (relationship) b/w activities (has impact on relationships between services) 0 0 1

15 Modify cardinality from (x,y) to (x′,y′) where x′ ≤ x and y′ ≥ y (has no impact on service interfaces and their relationships) 0 0 0

16 Modify cardinality from (x,y) to (x’,y’) where x′ > x or y′ < y (has impact on relationships between services) 0 0 1

17 Modify the variability attribute of an
activity from mandatory to optional

Modify variability attribute of the operation from
mandatory to optional, if the service remains mandatory 0 0 0

18
Modify variability attribute of the operation
from mandatory to optional, if the service becomes optional 0 0 0

19 Modify the variability attribute of an
activity from optional to mandatory

Modify variability attribute of the operation from optional to
mandatory, if the service turns from optional to mandatory 0 0 1

20
Modify variability attribute of the operation from optional to
mandatory, if the service was mandatory before change 0 0 0

21 Move activity outside variant regions (has no impact on service interfaces and their relationships) 0 0 0

22 Move activity from outside to inside variant regions or vice versa (has impact on relationships between services) 0 0 1
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Algorithm 2. Change Impact Analysis

Input: BPFM , BPFM ′, SVM
Output: Pareto optimal set of change solutions(POSC)

1. POSC ← NIL
2. ΔB ← CalculateDelta(BPFM,BPFM ′)
3. Obj ← NIL
4. for each CIi in ΔB do
5. COi ← all potential change options to reflect CIi in SVM ()
6. fetch coefficients()
7. end for
8. Generate Z //all possible solutions
9. for each zi in Z do
10. ICost ← Calculate ICost(zi)
11. RCost ← Calculate RCost(zi)
12. Obj ← Obj ∪ (Icost,RCost)
13. end for
14. POSC ← FindPaertoOptimalSet(Z , Obj)
15. return POSC

Table 3. Concrete services and currently existing products (before change)

abstract service in SVM concrete services existing configurations (products)

S1 CS1 app1, app2

S2 CS2 app1, app2, app3, app4

S3 CS3 app3

S4
CS4 app1, app2

CS5 app3, app4

Table 4. Values of Objective functions for the potential solutions

Obj ICost RCost Selected in Pareto Optimal Set

Obj(z1) 6 4 -

Obj(z2) 5 4 ✓

Obj(z3) 6 4 -

Obj(z4) 6 4 -

Obj(z5) 6 4 -

3.3 Change Planning and Decision Making

In this step, domain architects and engineers decide between change options
among the Pareto-optimal set of change options, and may even disapprove a
change item to take place in the product line.

As stated earlier, change cost is not necessarily the main and single factor to
consider when deciding on a change; on the contrary, there can be a multitude
of other factors such as market state, specific metrics and measures, and other
particular features that exists especially for the external services; or other costs
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Fig. 7. New version of SVM (version i+ 1)

and benefits, and miscellaneous priorities that affect the decision, which cannot
necessarily be grabbed in a formula to be calculated and included in the opti-
mization process. That is why we emphasize on the human factor and the role
the experts play in this regard. Therefore, a fully-automated method is not ad-
visable for propagating the changes from the business process variability model
to the abstract and concrete services and to the applications configured based
on them; since it is unlikely to identify all effective factors. Details of this step
is outside the scope of this research and can be achieved by utilizing different
decision making processes such as AHP and its variants.

3.4 Change Execution

A potential way to execute the changes that are determined in the selected
change items (ΔS) is using model driven methods, and more specifically, model
transformation. The advantage of applying these methods is preserving consis-
tency in the target models by setting consistency constraints on the meta-model
(e.g. in OCL) that will prevent inconsistent models to form. Using the change
items in ΔS, the modified version of SVM, SVM′, is formed.

3.5 Version Control

For supporting traceability between the versions of the product line, we utilize
an evolution graph (similar to what is proposed in [20]) as follows: in this graph,
the nodes denote different product line versions, and directed edges denote a
transition from a version to another. The nodes are attributed with the version
number, and other version-related attributes such as creation date, approver,
etc., while the edges are attributed with ΔB, ΔS, rationale for transitioning
from the previous version to the new one, decisions made, etc. Every approved
change in the product line domain must be reflected to and documented in the
evolution graph, which acts as a shared knowledge among the four operations.
Apache SVN can be utilized as a well-known version (revision) control tool.
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4 Evaluation

To evaluate the method, we utilized the GQM approach [21] and controlled
experimentation, performed on three experimental cases. In GQM, evaluation
goal, evaluation questions and metrics that are measured to answer the eval-
uation questions are determined. We define the evaluation goal, questions and
metric as follows:

Evaluation Goal (G): To analyze the proposed method for the purpose of
evaluation from the aspect of specific quality metrics of cost minimization and
consistency preservation in linear evolution in service-oriented product lines.

Evaluation Questions (Q): Q1 : Does the method minimize change costs?;
Q2 :Does the method preserve consistency of the SVM after applying the change
items, in terms of avoiding logical conflicts?

Evaluation Metrics (M): To answer question Q1, we calculate change ratio
which is the ratio of artifacts changed due to interface change and due to re-
lationship change of the services (Metrics M1 and M2 ). Moreover, to answer
question Q2, we introduce consistency degree metric (M3 ) which calculates a
ratio of the number of consistent changed SVMs to the total number of changed
SVMs that had gone through the change process. Table 5 represents more GQM
details of evaluation.

Table 5. GQM details of evaluation
Evaluation
Goal

Evaluation
Question

Evaluation
Metric Metric Name Metric Formula Description

G1
Q1

M1
Change Ratio for Interface
Change (CRI) CRI = AAI

A

AAI : number of affected artifacts by interface change
A: total number of artifacts

M2
Change Ratio for Relationship
Change (CRR) CRR = AAR

A

AAR: number of affected artifacts by relationship change
A: total number of artifacts

Q2 M3 Consistency Degree (CD) CD = CS
S

CS: number of consistent changed SVMs
S: total number of changed SVMs

4.1 Experimentation Materials and Procedure

Ten product lines (A to J) were selected for experimentation, for each of which
a distinct BPFM was derived beforehand based on business processes existing in
detergent manufacturing, sales and distribution, and food industries, by domain
engineers and business experts. Input materials to the experimentation were the
current versions of SVMs related to each case, along with their corresponding
BPFM models. Other information such as the number of concrete services and
the number of applications was also supplied.

Then, to design changes to the BPFM models, a set of random numbers
were generated, to designate the number of changes to that BPFM (which we
considered between 1 to 8) and the change scenarios for each change (random
numbers between 1 and 22). If a change scenario was not applicable on the
BPFM, then (rotationally) the next possible scenario was chosen. Moreover, we
sometimes re-generated the random numbers for scenarios to make sure we had
covered each change scenario at least once. All random numbers were generated
in MS Excel.
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Then, the changed BPFMs were designed in a way that the change require-
ments denoted by the numbers and scenarios of changes (random numbers) were
met. Some details about the experimental materials are listed in Table 6.

The metrics were measured on the new SVMs generated by the method.
Moreover, the consistency of the obtained outputs was then inspected using
the SPLOT online consistency checking tool for variability models [22].

Table 6. Details on experimental cases for evaluating the method

Exp.Case
Business
process

Business
domain

No. of changes
in BPFM

Change
scenarios

No. of total
concrete services

Total No. of
Configurations

A
Purchase order
processing Procurement 5 10,18,5,17,14 25 138

B Order Processing Sales 3 2,19,13 10 45

C Adding new asset Asset management 7 6,1,20,17,10,14,3 9 45

D
Repair order
processing

Maintenance, operation
and repair 2 19,21 18 107

E Online sales Sales 6 11,17,6,21,1,14 7 45

F Letter submission Office automation 2 16,20 4 29

G
Issue warehouse
note Warehousing 4 11,9,22,4 4 22

H
Create new bill
of materials Manufacturing 2 7,12 9 49

I
Calculate wages
and salaries Payment 1 11 14 94

J
Issue accounting
notes Accounting 6 5,9,21,8,3,15 6 39

4.2 Experimentation Results

The summary of experimentation results to answer question Q1 is shown in
Table 7. As it is obvious, average change ratios of 33.6% and 33% are resulted
by the method for changes costs caused by interface changes and by relationship
changes, respectively. Therefore, in response to question Q1, the method has
managed to affect an average of only 33.3% (one third) of the artifacts in the
product line.

Since the Pareto optimal set, which was obtained by the method is a set of
optimal non-dominated solutions, it is obvious that these solutions are the least
costly from the aspects of interface and relationships change costs, compared
with the other solutions that are not a member of this set. Therefore, if the
decision maker selects any of the members of the Pareto optimal set, he or she
has chosen one of the least costly choices.

To answer question Q2, we measured metric M3, namely, the consistency de-
gree, which shows a full (100%) consistency preservation. The reason is that the
variability relationships between services must be re-determined by Algorithm 1
when a change occurs to the relationships; and the algorithm guarantees consis-
tency. In other words, the automated process prevents formation of conflicting
variability relationships between services, unless a human factor intervenes in
the produced results. Hence, the answer to question Q2 would be that, in case
there is no human intervention in the change results, the method guarantees
100% consistency preservation.
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Table 7. A summary of experimentation results for Question Q1

Experimental Case No. of Total Artifacts ICost RCost CRI (%) CRR (%)

A 163 27 26 17 16

B 55 17 24 31 44

C 54 24 42 44 78

D 125 0 28 0 22

E 52 6 32 12 62

F 33 0 4 0 12

G 26 21 22 81 85

H 58 30 0 52 0

I 108 1 0 1 0

J 45 44 5 98 11

Average 71.9 17 18.3 33.6 33

5 Conclusion

In this paper, focusing on linear evolution scenario in service-oriented product
lines, we dealt with the problem of propagating changes from domain require-
ments (the business process variability model) to the domain architecture (the
service variability model) so that the costs of change in the concrete domain
services and the configured applications are minimal; and simultaneously, the
consistency of the target domain architecture model is preserved. This paper
provides a method based on Pareto optimization to find an optimal solution,
that is, the least costly changes in the target architecture model. The method
consists of four main operations, namely, change identification, change impact
analysis, change planning and change execution, interrelating with the evolu-
tion graph, which is used for version control. These operations along with the
evolution graph form the whole evolution cycle to control and manage linear
evolution. The evaluation results showed that the method manages to minimize
change costs and can fully preserve consistency of the target model.

The future research includes proposing methods to cover other evolution sce-
narios, implementing model transformation to realize change execution as well
as model-driven method to apply the deltas, along with extending the method
to support runtime changes and dynamic reconfiguration of service-based appli-
cations in the service-oriented product line.
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Abstract. Our work was inspired by our modelling and verification of
a cardiac pacemaker, which includes concurrent aspects and a set of in-
terdependent and cyclic timing constraints. To model timing constraints
in such systems, we present an approach based on the concept of tim-
ing interval. We provide a template-based timing constraint modelling
scheme that could potentially be applicable to a wide range of modelling
scenarios. We give a notation and Event-B semantics for the interval.
The Event-B coding of the interval is decoupled from the application
logic of the model, therefore a generative design of the approach is pos-
sible. We demonstrate our interval approach and its refinement through
a small example. The example is verified, model-checked and animated
(manually validated) with the ProB animator.

1 Introduction

Control systems must interact with all possible events that the environment
may present. A number of factors contribute to the complexity and challenge of
these systems. Concurrent and communicating components tend to exhibit un-
predictable interactions that may lead to incorrect behaviours. Moreover, timing
constraints add real complexity to real-time control systems.

Formal methods are used for rigorous modelling and verification of safety-
critical real-time systems. Mathematical models enable generation of verification
conditions which then can be proved using theorem provers. Formalising com-
plex real-time systems is demanding, thus suitable modelling abstractions are
desirable.

This work emerges from our work on a cardiac pacemaker case study [1]. The
pacemaker is a complex control system that interacts with a non-deterministic
environment (the heart) via sensors and actuators, whose functionality depends
on its internal model of a normal heart. The pacemaker identifies certain heart
dysfunctions and intervenes when necessary in order to maintain a correct heart-
beat rate. The normal behaviour of the heart is usually modelled [8] in terms
of a set of interconnected time intervals, representing various requirements of
the normal pacing cycle. The pacemaker intervenes when the heart is observed
to violate these requirements. The pacemaker can be single- or dual-channel,
being able to interact with one or both (atrium and ventricle) heart chambers
respectively.
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In this paper we present a timing interval approach that builds on the existing
notion of delay, deadline and expiry [21]. We introduce the concept of the interval
and reusable patterns that are potentially suitable for modelling systems. Their
demands range from a single deadline timing constraint to systems with complex
timing constraints that are cyclic, concurrent and interdependent.

A timing interval can have lower and upper boundary timing constraints de-
fined in a number of ways. Typically, such timing constraints share many ele-
ments, such as trigger and response events. We present a notation for our timing
interval approach that helps describe the timing requirements at a high level but
hides the underlying implementation complexity from the modeller.

We demonstrate the interval approach through an example model. The ex-
ample is modelled in the Event-B language [5] with the Rodin [6] tool. Our
development process consists of two main stages. In the first stage, we express
the system in UML diagrams using the UML-like modelling tool called iUML
[3]. In the second stage, we add explicit timing using our interval approach. We
leverage the power of abstraction and reuse via templates.

Section 2 introduces Event-B and the related formal approaches to modelling
timing. Section 3 gives the Event-B semantics of the timing interval as a pattern-
based collection of variables, invariants, event guards and actions. The approach
allows the intervals to be specified in a manner that does not interfere with the
logic of the model, and in a compositional fashion. This affords the opportunity to
a generative description of the approach with a potential for automated support;
in section 4 we give Event-B code templates for such potential automation. In
section 5 we give an example of the interval refinement. Sections 6, 7 present
verification and validation results of the approach and discuss related work on
the pacemaker. Section 8 concludes.

2 Preliminaries

The Event-B [5] formalism is an evolution of the Classical B method [4]. Most of
the formal concepts it uses were already proposed in Action Systems [7]. Event-B
focuses on reactive systems and is aimed at modelling whereas the Classical B is
just for software. We prefer Event-B for its simplicity of notations, extensibility
and tool support.

An Event-B model is composed of contexts and machines . Contexts specify
the static part of a model such as carrier sets s , constants c and axioms A(s , c).
Machines represent the dynamic part of a model and contain variables v , invari-
ants I (s , c, v) and events . An event may accept a number of parameters x and
consists of at least two blocks: guards G(x , s , c, v) that describe the conditions
that need to hold for the occurrence of the event, and actions which determine
how specific state variables change as a result of the occurrence of the event.
Conceptually, events in Event-B are atomic and instantaneous. Contexts can be
extended by other contexts and machines can be refined by other machines. Each
machine may refer to one or more contexts.
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Event-B employs a strong proof-based verification. The system’s safety prop-
erty requirements are encoded as invariants from which Event-B verification
conditions, called proof obligations (POs), are then generated. There are various
kinds of POs concerned with different proof problems. For instance, an Invariant
Preservation PO (INV) indicates that the invariant condition is preserved by an
event with before-after predicate R:

A(s , c) ∧ I (s , c, v) ∧G(x , s , c, v) ∧R(x , s , c, v , v ′) � i(s , c, v ′) (1)

where i(s , c, v ′) is a modified specific invariant.
Systems are usually too complex to model all at once. Refinements help to

deal with the complexity in a stepwise manner, by developing a system incre-
mentally. There are two forms of refinement in Event-B. The feature augmenta-
tion refinement (horizontal refinement) introduces new features of the system.
The data refinement (vertical refinement) enriches the structure of a model to
bring it closer to an implementation structure. Refined variables are linked to
the abstract layer state variables by means of gluing invariants that ensure the
consistency of the system.

One of the key advantages of Event-B is its tooling support. Rodin [6] is an
Eclipse based IDE for Event-B that provides effective support for modelling,
refinement and proof. Rodin auto-generates POs for project machines. These
are then discharged by automated theorem provers, such as AtelierB [2] or SMT
[13], or manually via the interactive proving environment. Rodin provides a
wide range of plug-ins, such as Camille text editor, statemachine-to-Event-B
modelling tool iUML [3] and ProB [17] model checker, which were used in our
case study.

2.1 Timing

The Event-B is a general purpose modelling language that lacks explicit support
for expressing and verifying timing constraints. However, several concepts were
proposed on how to model the time in Event-B. Event-B does not support real
numbers natively, hence in this work we discuss only the discrete time related
work.

Butler and Falampin [11] describe an approach to model discrete time in
Classical B, which is the origin of Event-B. They express current time as a natural
number and model the time flow with a tick operation. Deadline conditions are
modelled as guards on the tick operation.

Cansell et al. [12] propose a scheme in Event-B. The authors model time as a
variable time ∈ N. An event post time adds a new active time to a variable at ⊆
N. Active time elements are the future events’ activation times (min(at) > time)
that must be handled by the system. Event tick handles the time flow, where the
time progress is limited to the least at element – min(at). Event process time
then handles the active time. The paper recommends to introduce timing not
too early into the model, to avoid unnecessary complexity, especially in terms of
proof obligation discharge.
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Rehm [20] extends Cansell’s work on the active time approach. The author
introduces an event-calendar atCal that allows to keep a record of the active
times for every process. Let evts be the finite set of processes or names for
one model. Event-calendar is a function that gives for every element of evts a
set of activation times in the future: atCal ∈ evts → P(N). In order to facilitate
model-checking, [20] shows an approach to refine an infinite model with absolute
timing to a finite model with relative timing and show the equivalence of the
two models.

Bryans et al. [10], like Rehm, use the extended version of active times, thatmaps
a set of events to future time and adds the support for bounded inconsistency. They
remove the guard from the tick event to allow time to progress beyond the deadline.
Instead, they split event process time into two cases. One event then handles the
case when the active time is handled within expected time boundaries. The other
handles the case when the timing constraint is not correctly maintained by the
system.

Sarshogh [21] categorises timing properties in terms of delay, expiry and dead-
line. He introduces notation to specify these timing properties and provides
Event-B semantics for the notation. The notation hides the complexity of en-
coding timing properties in an Event-B model, thus making timing requirements
easier to perceive for the modeller.

In this approach a typical constraint starts with a trigger event followed by
a possible response event. A timing constraint relates a trigger event T and a
response event R or a set of response events R1...Rn :

Deadline(T ; R1...Rn ; t) (2a)

Delay(T ; R; t) (2b)

Expiry(T ; R; t) (2c)

Deadline(T ,R1...Rn , t) means that one and only one of the response events
(R1..Rn) must occur within time t of trigger event T occurring. In case of
Delay(T ; R; t), the response event R cannot occur before time t of trigger
event T occurring. Expiry(T ; R; t) means that the response event cannot oc-
cur after time t of trigger event occurring.

In general, Sarshogh’s timing properties correspond to timed automata delay,
deadline and time-out modelling patterns [25]. However, two significant differ-
ences must be pointed out. Firstly, time in Event-B is modelled explicitly whereas
in timed automata it is implicit and continuous (R). Secondly, Sarshogh’s pat-
terns can be used in a stepwise refinement modelling, whereas timed automata
does not natively support such a feature. We build our approach on Sarshogh’s
timing properties (2a - 2c) and use similarly structured Event-B semantics.

3 Timing Interval Approach

Our aim is to provide a generative, simple to apply approach to enrich an already
existing Event-Bmodel with timing interval constraints. The model can be of any
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size, may include cyclic and concurrent behaviours and have multiple intervals
and other timing constraints.

In the following paragraphs we emphasize the limitations that we solve in our
contribution. The need for such timing requirements comes from the pacemaker
case study [1] that we have performed [24].

In this paper we present a simple Event-B model [23] to illustrate various mod-
elling needs for timing constraints. The model is abstracted from our pacemaker
case study model. We choose a visual state representation for ease of discussion.
The abstract model is represented in UML-like diagrams that are generated with
the iUML tool as a statemachine SM with two concurrent regions (Fig. 1). A
transition is enabled when all its source states are active. Therefore e3 is always
enabled, e1 is enabled when the left hand side region is in state A. Transition
e2 works as a synchronisation point – it is enabled only when the left hand side
region is in state st INT1 and the right hand side region is in state st INT2.
SM regions act independently unless the shared event e2 is executed.

At the abstract level, we express the timing interval as time spent in a state.
In this example we define two intervals INT1 and INT2 as the time periods
during which states st INT1 and st INT2 respectively are occupied.

st_INT1 st_INT2A

SM e2

INIT

e2

e1
INIT

e3

Fig. 1. Example iUML model.

In the left hand side region of the SM (Fig. 1), we define an interval INT1,
triggered by the event e1 and responded by the event e2. We assume that this
interval is an aggregate of delay and deadline timing properties, with lower and
upper duration limits. We propose the interval as an abstraction over these
properties that formally combine these boundaries. An interval is called active,
when it has been triggered but not yet responded to.

We consider the notion of interrupt event, which can interrupt an already
active timing interval. For instance, event e3, at any point in time, must be able
to interrupt the left hand side region’s active timing interval INT1. Moreover,
we require the enabledness of event e3 to be independent of whether INT1 is
active or not. In contrast, e2 is enabled only if there is an active interval to
respond to.

The right hand side region contains a timing interval INT2. The interval
INT2 may be triggered by INIT or e2 event, hence it requires a multiple trigger
support. Timing interval INT2 is responded by the event e2.

Note that both timing intervals are interdependent – they share the event
e2, effectively forcing a single event to serve as a response for the INT1 and as
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both trigger and response for INT2. We call this phenomenon event overloading,
when an event serves a number of roles in one or more timing intervals.

3.1 Modelling Notation

In order to model the given example, we introduce the timing interval approach.
The interval is characterised by one or two timing properties TP and a set of
events – optional ones denoted by [ ]. The system may have a number of timing
intervals that are identified by a unique name – Interval name. There may be
multiple active instances of a given interval that occur independently from each
other.

Interval name(T1[, ...,Ti ]; R1[, ...,Rj ]; [I1, ..., Ik ]; TP1(t1)[,TP2(t2)]) (3)

The interval is defined by three kinds of events. One of a set of trigger events
T ∈ T1..Ti always creates a new instance of the interval. One of a set of response
events R ∈ R1...Rj always terminates an interval instance under conditions
specified by timing properties. If there is no active interval instance to terminate,
the response event is disabled. In order to be well defined, the interval must have
at least one trigger and response event. One of a set of optional interrupt events
I ∈ I1..Ik interrupts the interval. Unlike the response event, the interrupt event
is not constrained by timing properties TP and does not block if there is no
active interval instance to interrupt. The interrupt event always interrupts an
active interval instance (if one exists).

The interval must have at least one timing property TP(t) of duration t ,
where TP stands for Deadline, Delay or Expiry. Further, the interval can have
one of five TP configurations: (i.) Deadline; (ii.) Delay; (iii.) Expiry; (iv.) De-
lay and Expiry; (v.) Delay and Deadline. If more than one timing property is
associated with an interval, then there is a relation between the interval’s tim-
ing property durations (2a-2c): the delay duration must be less or equal to the
deadline duration (tDelay ≤ tDeadline) and the expiry duration (tDelay ≤ tExpiry).

Having defined the notation, we can now use it to specify the left hand side
region timing constraint INT1 ((4), Fig. 1), with trigger e1, response e2 and
interrupt e3. Upon event e1 execution, a new interval INT1 instance is cre-
ated. The occurrence of the response event e2 then becomes constrained by
the delay and deadline timing properties whose durations are INT1 t dly and
INT1 t ddl respectively. The interrupt event e3 can be executed at any given
time regardless of the state the model is in. Upon event e3 execution the active
INT1 instance is interrupted (if one exists) and the left hand side region enters
state A.

INT1(e1; e2; e3; Delay(INT1 t dly),Deadline(INT1 t ddl)) (4)

According to the interval INT2 specification (5), the right hand side (Fig. 1)
interval is triggered by INIT or e2 events. Event INIT means that the interval
is activated immediately upon the model initialisation. The overloaded e2 event
serves as the trigger and the response for the interval INT2. Therefore when
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executed, event e2 responds to an already existing interval instance and initiates
a new one. The deadline timing property means that event e2 must occur within
time INT2 t ddl of trigger event occurring. INT2 has no interrupt and therefore
can be responded to only by the response event e2.

INT2(INIT , e2; e2; ; Deadline(INT2 t ddl)) (5)

As mentioned before, event e2 is an overloaded event – it is a response event
for INT1 and INT2 intervals. Therefore e2 is constrained by both interval INT1
and INT2 timing properties.

3.2 Semantics of Example Intervals

We give semantics to our interval construct by translating it to Event-B variables,
invariants, guards and actions. The interval timing notation serves as a blueprint,
indicating the required Event-B code and its location in the model. In this section
we provide semantics of the example interval INT1.

Interval. We translate the interval INT1 to a set of variables that store the infor-
mation about interval instances (Fig. 2). Variable INT1 trig stores the indices
of triggered interval INT1 instances. When the interval instance is responded to,
its index is copied to the INT1 resp variable. Trigger and response activities are
timestamped and the timestamps are stored in INT1 trig ts and INT1 resp ts
variables respectively. We model timestamp as a total function X→N, where the
index set X serves as a unique identification for the interval instance. In case
the interval is interrupted, its index is copied to variable INT1 intr . Interval
INT1-specific variables are prefixed with INT1 .

Invariants INT1 consist1 and INT1 consist2 ensure the interval index con-
sistency across the variables (Fig. 2). INT1 consist1 is the sequencing invariant
ensuring that only the triggered indexes can be responded to or interrupted.
INT1 consist2 states that interval instance can be either responded to or inter-
rupted, but not both.

Timing Properties. In Event-B semantics, the timing property is expressed as
a set of invariants (Fig. 7). According to INT1 specification (4), the interval is
constrained by two timing properties: the delay and the deadline. The deadline
timing property consists of two invariants. The first invariant INT1 inv ddl1
expresses the requirement, that while the active interval instance has not yet
been responded to or interrupted, it must not exceed the deadline duration
INT1 t ddl . The second deadline invariant INT1 inv ddl2 requires the active
interval INT1 instance to be responded to within INT1 t ddl of the trigger
event occurring. In order to preserve INT1 deadline timing property invariants,
a guard INT1 grd ddl1 is needed in the tick event to ensure that the time will
not progress beyond active interval’s deadline boundaries (Fig. 6).

The delay timing property of INT1 is expressed as one invariant
INT1 inv dly1 (Fig. 7). The guard INT1 grd dly1 in event e2 ensures the in-
variant preservation (Fig. 4). Note that event tick (Fig. 6) is not constrained by
delay timing properties.



An Interval-Based Approach to Modelling Time 299

INT1 type1 : INT1 trig ⊆ X
INT1 type2 : INT1 resp ⊆ X
INT1 type3 : INT1 intr ⊆ X
INT1 type4 : INT1 trig ts ∈ INT1 trig → N

INT1 type5 : INT1 resp ts ∈ INT1 resp → N

INT1 consist1 : ∀ idx · idx /∈ INT1 trig
⇒ idx /∈ INT1 resp ∪ INT1 intr

INT1 consist2 : INT1 intr ∩ INT1 resp = ∅

Fig. 2. Interval INT1 variables.

Event e1 =̂
any INT1 pTrig
where
Grds
INT1 trg grd1 : INT1 pTrig ∈ X
INT1 trg grd2 : INT1 pTrig /∈ INT1 trig
then
Acts
INT1 trg act1 :

INT1 trig := INT1 trig ∪ {INT1 pTrig}
INT1 trg act2 :

INT1 trig ts(INT1 pTrig) := time
end

Fig. 3. Event e1.

Event e2 =̂
any INT1 pResp INT2 pTrig INT2 pResp
where
Grds
INT1 rsp grd1 : INT1 pResp ∈ INT1 trig
INT1 rsp grd2 : INT1 pResp /∈ INT1 resp ∪ INT1 intr
INT1 grd dly1 : time ≥ INT1 trig ts(INT1 pResp) + INT1 t dly
INT2 trg grd1 : INT2 pTrig ∈ X
INT2 trg grd2 : INT2 pTrig /∈ INT2 trig
INT2 rsp grd1 : INT2 pResp ∈ INT2 trig
INT2 rsp grd2 : INT2 pResp /∈ INT2 resp ∪ INT2 intr
then
Acts
INT1 rsp act1 : INT1 resp := INT1 resp ∪ {INT1 pResp}
INT1 rsp act2 : INT1 resp ts(INT1 pResp) := time
INT2 trg act1 : INT2 trig := INT2 trig ∪ {INT2 pTrig}
INT2 trg act2 : INT2 trig ts(INT2 pTrig) := time
INT2 rsp act1 : INT2 resp := INT2 resp ∪ {INT2 pResp}
INT2 rsp act2 : INT2 resp ts(INT2 pResp) := time
end

Fig. 4. Event e2.

Event e3 =̂
any INT1 pIntr
where
Grds
INT1 intr grd1 : INT1 pIntr ⊆ INT1 trig \ (INT1 resp ∪ INT1 intr)
INT1 intr grd2 : finite(INT1 pIntr)
INT1 intr grd3 : INT1 trig \ (INT1 resp ∪ INT1 intr) �= ∅ ⇒ card(INT1 pIntr) = 1
then
Acts
INT1 intr act1 : INT1 intr := INT1 intr ∪ INT1 pIntr
end

Fig. 5. Event e3.

Event tick =̂
when
Grds
INT1 grd ddl1 : ∀ idx·idx ∈ INT1 trig ∧ idx /∈ INT1 resp ∪ INT1 intr

⇒time + 1 ≤ INT1 trig ts(idx) + INT1 t ddl
INT2 grd ddl1 : ∀ idx·idx ∈ INT2 trig ∧ idx /∈ INT2 resp ∪ INT2 intr

⇒time + 1 ≤ INT2 trig ts(idx) + INT2 t ddl
then
Acts
act1 : time := time+ 1
end

Fig. 6. tick event.
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INT1 inv ddl1 : ∀ idx·idx ∈ INT1 trig ∧ idx /∈ INT1 resp ∪ INT1 intr
⇒time ≤ INT1 trig ts(idx) + INT1 t ddl

INT1 inv ddl2 : ∀ idx·idx ∈ INT1 trig ∧ idx ∈ INT1 resp
⇒INT1 resp ts(idx) ≤ INT1 trig ts(idx) + INT1 t ddl

INT1 inv dly1 : ∀ idx·idx ∈ INT1 trig ∧ idx ∈ INT1 resp
⇒INT1 resp ts(idx) ≥ INT1 trig ts(idx) + INT1 t dly

INT1 rel dly ddl : INT1 t dly ≤ INT1 t ddl

Fig. 7. Interval INT1 timing property invariants.

Invariant INT1 rel dly ddl (Fig. 7) specifies the relation between delay and
deadline timing property durations.

Events. According to the INV 1 specification (4), event e1 serves as the trig-
ger for INT1 (Fig. 3). To trigger a new instance of the interval, event ac-
cepts a parameter INT1 pTrig that must be an unused index (INT1 trg grd1,
INT1 trg grd2). If the conditions are met, the new index and the timestamp
are added to INT1 trigger and timestamp sets (INT1 trg act1, INT1 trg act2).
Event e2 serves as INT1 response (Fig. 4). e2 takes a parameter INT1 pResp
that must be an already existing interval INT1 index and has not yet been re-
sponded to or interrupted (INT1 rsp grd1, INT1 rsp grd2). Upon response,
the selected index is recorded into the responded event set INT1 resp with its
timestamp (INT1 rsp act1, INT1 rsp act2). Grds represents the other guards
and Acts represents the other actions of the corresponding event.

Event e2 is an example of an overloaded event. It serves as the response for
INT1 and as both, trigger and response for INT2 (Fig. 4). INT2 trigger parame-
ter INT2 pTrig and labels INT2 trg ∗ correspond to those of INT1; In an anal-
ogous manner, INT2 response parameter INT2 pResp and labels INT2 rsp ∗
match the ones of INT1. As mentioned in subsection 3.1, the response event
must always respond to an active interval instance. Hence e2 can be executed
only when there are active instances of intervals INT1 and INT2 to respond
to, otherwise the event is disabled. There is no interference between these three
roles, as they operate on different variables.

Event e3 serves as an interrupt for INT1 (Fig. 5). Parameter INT1 pIntr
is modelled as a subset of active but non-responded INT1 instance indexes
(INT1 grd1). If, upon event execution, there is no active INT1 instance, the pa-
rameter becomes equal to ∅ and interval’s variable is not affected (INT1 act1).
On the other hand, if there is at least one active interval instance available, the
parameter is forced to contain one index (INT1 grd3). The guard INT1 grd2
is required for well-definedness, since cardinality function can accept only finite
parameters. We limit INT1 pIntr size to 1 to ensure a consistent behaviour with
trigger and response parameters that always accept strictly one element.

4 Interval Templates

We provide a generative approach for translating interval specification to Event-
B code. Our approach defines a number of generic Event-B code templates that
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represent elements of the interval notation (3). The templates can potentially be
specialised, and thus simplified, to handle, e.g., strictly a single instance interval.

The interval timing approach consists of the interval base template, event
templates and timing property templates. Our process comprises three steps.
Firstly, we pick relevant templates according to the interval specification. Then,
we instantiate the templates by adding the interval name as a prefix to each
template variable (as for INT1 and INT2 prefixes in the previous sections).
Finally, we inject instantiated templates into the model locations, specified by
the interval specification.

Interval Base Template. The interval base template is a set of variables and
invariants that describe all interval instance states and ensures their consistency
(Fig. 8). Prefix P is a place holder for the interval name that gets instantiated
in the template code. @ indicates the target Event-B block to be injected with
the instantiated template code.

@INVARIANTS
P type1 : P trig ⊆ X
P type2 : P resp ⊆ X
P type3 : P intr ⊆ X
P type4 : P trig ts ∈ P trig→ N

P type5 : P resp ts ∈ P resp→ N

P consist1 : ∀ idx·idx /∈ P trig ⇒ idx /∈ P resp ∪
P intr

P consist2 : P intr ∩ P resp = ∅

Fig. 8. Interval base template elements.

Timing Property Templates. We define timing property templates for deadline
and delay; expiry can be defined similarly. The timing property template is a
collection of invariants and guards appropriate for the timing property.

The deadline timing property template consists of two invariants and a guard
in Tick event (Fig. 9). Invariants P inv ddl1 and P inv ddl2 expresses the
deadline timing property requirement. Guard P grd ddl1 is for Tick event.1

@INVARIANTS
P inv ddl1 : ∀ idx·idx ∈ P trig ∧ idx /∈ P resp∪P intr⇒time ≤ P trig ts(idx)+P t ddl
P inv ddl2 : ∀ idx·idx ∈ P trig ∧ idx ∈ P resp ⇒ P resp ts(idx) ≤ P trig ts(idx) +
P t ddl
@Event Tick =̂
@where
P grd dd1 : ∀ idx·idx ∈ P trig ∧ idx /∈ P resp ∪ P intr ⇒ time + tick ≤ P trig ts(idx) +
P t ddl
end

Fig. 9. Deadline template.

The delay timing property template consists of a single invariant P inv dly1
and a guard P grd dly1 on a response event (Fig. 10).

In case interval has delay and deadline (Fig. 11) or delay and expiry (Fig. 12)
timing properties, their duration relation is specified as an invariant.

1 We assume, that the time variable time and the time flow event Tick are present in
the model.
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P inv dly1 : ∀ idx·idx ∈ P trig ∧ idx ∈ P resp ⇒ P resp ts(idx) ≥ P trig ts(idx) +
P t dly
@Event R =̂
@where
P grd dly1 : time ≥ P trig ts(P pResp) + P t dly
end

Fig. 10. Delay template.

Interval Event Templates. We define Event-B code templates for trigger T
(Fig. 13), response R (Fig. 14) and interrupt I (Fig. 15) interval event types.
Templates consist of parameters, guards and actions that are needed for a spe-
cific interval role. The templates are analogous to INT1 trigger (Fig. 3), response
(Fig. 4) and interrupt (Fig. 5).

@INVARIANTS
P rel dly ddl : P t dly ≤ P t ddl

Fig. 11. Delay-deadline TP rel. tl.

@INVARIANTS
P rel dly xpr : P t dly ≤ P t xpr

Fig. 12. Delay-expiry TP rel. tl.

@Event T =̂
@any P pTrig
@where
P trg grd1 : P pTrig ∈ X
P trg grd2 : P pTrig /∈ P trig
@then
P trg act1 : P trig := P trig ∪ {P pTrig}
P trg act2 : P trig ts(P pTrig) := time
end

Fig. 13. Trigger event template.

@Event R =̂
@any P pResp
@where
P rsp grd1 : P pResp ∈ P trig
P rsp grd2 : P pResp /∈ P resp ∪ P intr
@then
P rsp act1 : P resp := P resp∪{P pResp}
P rsp act2 : P resp ts(P pResp) := time
end

Fig. 14. Response event template.

@Event I =̂
@any P pIntr
@where
P intr grd1 : P pIntr ⊆ P trig \ (P resp ∪

P intr)
P intr grd2 : finite(P pIntr)
P intr grd3 : P trig\ (P resp∪P intr) �= ∅⇒

card(P pIntr) = 1
@then
P intr act1 : P intr := P intr ∪ P pIntr
end

Fig. 15. Interrupt event template.

st_INT1

st_INT1_2st_INT1_1

e2

e1 e4

Fig. 16. Ref. of PM example.

5 Example Interval Refinement to Sequential
Sub-intervals

We chose one interval refinement pattern out of a number of possible ones [21].
In this section we demonstrate in our example model how the abstract timing
interval INT1 (4) can be refined into two sub-intervals INT1 1 (6) and INT1 2
(7). We visually express sub-intervals as sub-states st INT1 1 and st INT1 2
of the parent state st INT1 (Fig. 16). Sub-states are connected with a new
transition e4.
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Sub-intervals are modelled in the same way as the abstract interval INT1
unless stated otherwise. Concrete sub-intervals INT1 1 and INT1 2 have their
own trigger, response and interrupt variables, and at least the same number and
type of timing properties. Concrete sub-intervals proceed sequentially, where
preceding interval’s response serves as succeeding interval’s trigger. Thus the
INT1 1 response e4 serves as the trigger for INT1 2.

INT1 1(e1; e4; e3; Delay(INT1 1 t dly),Deadline(INT1 1 t ddl)) (6)

INT1 2(e4; e2; e3; Delay(INT1 2 t dly),Deadline(INT1 2 t ddl)) (7)

This interval refinement is encoded by a set of gluing invariants that map abstract
interval variables to concrete sub-interval variables.

Firstly, the concrete sub-interval INT1 1 must data refine all abstract interval
INT1 trigger variables. Interval INT1 trigger index and trigger timestamp vari-
ables must map to interval INT1 1 trigger index and timestamp (8). Secondly,
abstract interval INT1’s response index variables must be refined (9).

INT1 trig = INT1 1 trig ∧ INT1 trig ts = INT1 1 trig ts (8)

INT1 resp = INT1 2 resp ∧ INT1 resp ts = INT1 resp ts (9)

Thirdly, INT1’s interrupt indexes must be refined (10).The concrete interrupt
indices must be unique to each sub-interval.

INT1 intr = INT1 1 intr ∪ INT1 2 intr ∧ INT1 1 intr ∩ INT1 2 intr = ∅

(10)
Note that in the refined model of subsection 3.2, event e3 acts as interrupt
for both INT1 1 and INT1 2 intervals (Fig. 17). We reuse the interrupt event
pattern. In case there are no active interval instances, both interrupt in-
dex parameters become empty sets. Otherwise, guards INT1 1 intr grd3 and
INT1 2 intr grd3 force strictly one of the parameters to be a non empty set
with the cardinality of 1. The with Event-B keyword (witness) defines the re-
lation between the abstract parameter that has been refined away and concrete
parameters. In event e3 witness INT1 pIntr specifies that the indexes of inter-
rupted abstract and concrete intervals must match.

Finally, interval INT1 1 response indexes and timestamps must map to inter-
val INT1 2 indexes and timestamps (11). This ensures the continuity of concrete
intervals.

INT1 1 resp = INT1 2 trig ∧ INT1 1 resp ts = INT1 2 trig ts (11)

To make sure that concrete sub-intervals do not violate abstract interval dura-
tions, the relation between timing property durations is specified as invariants.
The sum of sub-interval deadline property durations must be less or equal to
the abstract interval’s deadline property duration (12). The sum of sub-interval
delay property durations must be higher or equal to abstract interval’s delay
property duration (13).

INT1 1 t ddl + INT1 2 t ddl ≤ INT1 t ddl (12)

INT1 1 t dly + INT1 2 t dly ≥ INT1 t dly (13)
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Event e3 =̂
refines e3
any INT1 1 pIntr INT1 2 pIntr
where
seq grd : SM = TRUE
INT1 1 intr grd1 : INT1 1 pIntr ⊆ INT1 1 trig \ (INT1 1 resp ∪ INT1 1 intr)
INT1 2 intr grd1 : INT1 2 pIntr ⊆ INT1 2 trig \ (INT1 2 resp ∪ INT1 2 intr)
INT1 1 intr grd2 : finite(INT1 1 pIntr)
INT1 2 intr grd2 : finite(INT1 2 pIntr)
INT1 1 intr grd3 : INT1 1 trig \ (INT1 1 resp ∪ INT1 1 intr) �= ∅ ⇒ card(INT1 1 pIntr ∪
INT1 2 pIntr) = 1
INT1 2 intr grd3 : INT1 2 trig \ (INT1 2 resp ∪ INT1 2 intr) �= ∅ ⇒ card(INT1 1 pIntr ∪
INT1 2 pIntr) = 1
with
INT1 pIntr : INT1 pIntr = INT1 1 pIntr ∪ INT1 2 pIntr
then
seq act : C := TRUE, A := TRUE, B := FALSE, B2 := FALSE, B1 := FALSE
INT1 1 intr act1 : INT1 1 intr := INT1 1 intr ∪ INT1 1 pIntr
INT1 2 intr act2 : INT1 2 intr := INT1 2 intr ∪ INT1 2 pIntr
end

Fig. 17. m1: refined interrupt event e3.

6 Verification and Validation

We have evaluated our timing interval approach in terms of applicability, veri-
fication and validation. The refinement model has 3 timing intervals (INT1 1,
INT1 2 and INT2) and 47 time-related invariants. All 132 generated timing-
related POs were automatically discharged. Verification for deadlock freeness is
not well integrated into Event-B framework [26], hence we favour model-checking
for this task. To further verify our approach, we have model-checked our model
with a limited state-space coverage and did not find any deadlocks of invariant
violations. Since we model time as an absolute value of N, the infinite state space
prevents us from a full state-space coverage. Finally, the model has been man-
ually animated in the ProB and there were no invariant violations or deadlocks
found.

A fuller evaluation of our approach is the pacemaker case study [24]. The
pacemaker model resulted in three refinements with the final refinement having
10 timing intervals. No customisations were needed to our approach in order
to model the timing requirements. Overall, the model has 177 timing related
invariants. There are 652 time-related proof obligations, all of which were au-
tomatically discharged. A limited coverage model checking has been performed
using ProB model-checker. No deadlocks or invariant violations were found, so
our approach appears to scale.

We have written a number of test case scenarios for manual validation with
the ProB animator in order to test various aspects of the model and the timing
interval approach.

Finally, we have developed a heart model in Groovy language for ProB model
checker [9]. The heart model has been written as a Java plug-in. It is a simplis-
tic system with two methods isVentricleContracted() and isAtriumContracted()
that return a random boolean value. The simulation engine performs actions in
a sequential loop fashion: (i.) invokes the methods to update the heart model
state (ii.) if appropriate, executes pacemaker model sense events (iii.) arbitrarily
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executes any non-sense pacemaker model event. The simulation did not return
any negative results.

7 Related Work

A number of authors have modelled the pacemaker system. Each case study
differs in the covered scope of requirements and the modelling challenges that
authors have perceived and tackled. For timing, we note some modelling im-
provement our approach offers over other work.

[19] have developed a single electrode pacemaker system using Event-B. The
authors used the activation times pattern [12] to model timing constraints. They
did not treat timing constraints as a separate element but rather integrated them
tightly into the model. Timing constraint implementation is tightly coupled with
the model structure, thus does not take advantage of reusability and requires
more modelling effort. [16] used timed automata to model a closed loop system
of the two-channel pacemaker and the heart. Since UPPAAL lacks a notion
of refinement, the complexity of the system is put all at once in a component
oriented fashion. The authors modelled pacemaker timing intervals as separate
automata that correspond to time counters. The automata communicate via
broadcast channels. This is a more complex bottom-up approach than ours.
Other works include [18], [14] and [15]. None of the reviewed case studies uses
notation specific to timing requirements.

We have chosen to model a dual-channel pacemaker. The support of refine-
ment in Event-B allowed us to use a top-down approach, dealing with the system
complexity incrementally. We have expressed the pacemaker system as two in-
terdependent statemachines, representing atrium and ventricle channels. Inter-
dependency and concurrent behaviour are the main factors for the complexity of
our the model. To specify the requirements, we used the timing interval notation.
We then generated explicit time constraints using our approach, that required
no customisations.

8 Conclusions and Future Work

In the simple example model we have highlighted some timing aspects of a
complex critical system and demonstrated how to overcome them using our
approach. From the case study results we have concluded that the introduced
notation gives a sufficient degree of flexibility in terms of timing requirement
specification. The example model shows how the interrupt event facilitates event
interruption by non-deterministic events and helps to avoid event replication to
tackle different cases. As demonstrated in the example model, the event can be
overloaded, that is, serve many event roles (trigger, response or interrupt) for
multiple intervals. Our approach decouples intervals from other model structure.
This affords a template-driven generative approach to modelling timing.

We plan to formalise the interval refinement of section 5 and provide tem-
plates for generative modelling. Further, we plan to present more refinement
patterns [21].
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Two factors prevent the full state-space coverage model-checking. Firstly, we
model time as absolute value N. Secondly, the interval instance indexes are not
discarded after the use and accumulate. To overcome the infinite state-space
problem we consider introducing a relative countdown timer for modelling cyclic
intervals [20] and an index reset method for our approach that clears used interval
instance indices.

More complex pacemaker systems support variable timing intervals, therefore
in future we plan to implement a variable duration t for timing properties. We
intend to use a co-simulation plug-in [22] to validate our model against more
sophisticated heart models.

Finally, our plan is to develop a plug-in for Event-B code generation, add
visualisation support for timing interval representation in iUML diagrams and
ProB animations.
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Abstract. The constructive approach to software correctness aims at
formal modelling and verification of the structure and behaviour of a
system in different levels of abstraction. In contrast, the analytical ap-
proach to software verification focuses on code level correctness and its
verification. Therefore it would seem that the constructive and analytical
approaches should complement each other well. To demonstrate this idea
we present a case for linking two existing verification methods, Event-B
(constructive) and Dafny (analytical). This approach combines the power
of Event-B abstraction and its stepwise refinement with the verification
capabilities of Dafny. We presented a small case study to demonstrate
this approach and outline of the rules for transforming Event-B events
to Dafny contracts. Finally, a tool for automatic generation of Dafny
contracts from Event-B formal models is presented.

Keywords: Event-B, Dafny, Formal Methods, Program Verification,
Methodologies.

1 Introduction

The constructive approach to software correctness focuses on early stages of
the development and aims at formal modelling of the intended behaviour and
structure of a system in different levels of abstraction and verifying the formal
specification of it. In contrast, the analytical approach focuses on code level and
its target is to verify the properties of the code level. In other words, the con-
structive approach is concerned with the derivation of an algorithm from the
specifications of the desired dynamic behaviour of that, in a way that the algo-
rithm satisfies its specification [5] while the analytical approach is concerned with
verifying that a given algorithm satisfies its given specifications. Both approaches
are supported through a range of verification tools from groups worldwide. At a
high level it would seem that the constructive and analytical approaches should
complement each other well. However there is little understanding or experience
of how these approaches can be combined at a large scale and very little tool sup-
port for transitioning from constructive formal models to annotated code that
is amenable to analytical verification. This represents a wasted opportunity, as
deployments of the approaches are not benefiting from each other effectively.

This paper presents work in progress on a tool-supported development ap-
proach by linking two existing verification tools, Rodin [2] and Dafny [4]. The
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Rodin platform supports the creation and verification of Event-B formal mod-
els. The Dafny tool is an extension to Microsoft Visual Studio for writing and
verifying programs written in the Dafny programming language. Event-B in its
original form does not have any support for the final phase of the develop-
ment(implementation phase). On the other hand, Dafny has a very little sup-
port for abstraction and refinement. Our combined methodology is beneficial
for both Event-B and Dafny users. It makes the abstraction and refinement of
Event-B available for generating Dafny specifications which are correct with re-
gards to a higher level of abstract specification in Event-B and allows Event-B
models to be implemented and verified in a programming language. We dis-
cuss our approach for transforming Event-B formal models to annotated Dafny
method declarations. Our focus here is only on generating code contracts (pre-
and post-conditions) from Event-B models rather than implementations. Gener-
ated method contracts with this approach can be seen as an interface that can be
implemented and verified later against the high level abstract specification. We
also present a tool for automatic generation of Dafny annotations from Event-B
models. We have validated our transformation rules by applying our tool to an
Event-B model of a map abstract datatype which is presented in this paper.

The organisation of the rest of the paper is as follows: in section 2, background
information on Event-B and Dafny is given. Section 3 contains an example of
transformation of an Event-B model of a map abstract datatype to Dafny con-
tracts. Transformation rules for transforming an Event-B machine to an anno-
tated Dafny class are described in section 4. In section 5 related and future work
are presented and finally section 6 contains conclusions.

2 Background

2.1 Event-B

Event-B is a formal modelling language for system level modelling based on set
theory and predicate logic for specifying, modelling and reasoning about sys-
tems, introduced by Abrial [1]. Modelling in Event-B is facilitated by a platform
called Rodin [2]. Rodin is an extensible open source software which is built on
top of the Eclipse IDE. A model in Event-B consists of two main parts: contexts
and machines. The static part (types and constants) of a model is specified in a
context and the dynamic part (variables and events) is specified in a machine.
To describe the static part of a model there are four elements in the struc-
ture of a context: carrier sets, constants, axioms, and theorems. Carrier sets
are represented by their name and they are distinct from each other. Constants
are defined using axioms. Axioms are predicates that express properties of sets
and constants. Theorems in contexts can be proved from axioms. A machine in
Event-B consists of three main elements: (1) a set of variables, which defines the
states of a model (2) a set of invariants, which is a set of conditions on state
variables that must hold permanently by all events and (3) a number of events
which model the state change in the system. Each event may have a number of
assignments called actions and also may have a number of guards. Guards are
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Fig. 1. Machine m0 : the Most Abstract Level of Map ADT Model

predicates that describe the necessary conditions which should be true before an
event can occur. An event may have a number of parameters. Event parameters
are considered to be local to the event. Figure 1 illustrates machine m0 with
two events Add and Remove.

Modelling a complex system in Event-B can benefit from refinement. Refine-
ment is a stepwise process of building a large system starting from an abstract
level towards a concrete level [1]. This is done by a series of successive steps in
which, new details of functionality are added to the model in each step. The ab-
stract level represents key features and the main purpose of the system. Refining
an Event-B machine may involve adding new events or new variables(concrete
variables). Concrete variables are connected to abstract variables through gluing
invariants. A gluing invariant associates the state of the concrete machine with
that of its abstraction. All invariants of a concrete model including gluing invari-
ants should preserve by all events. The built-in mathematical language of the
Rodin platform is limited to basic types and constructs like integers, boolean,
relations and so on. The Theory Plug-in [3] has been developed to make the core
language extension possible. A theory, which is a new kind of Event-B compo-
nent, can be defined independently from a particular model and it is the mean
by which the mathematical language and mechanical provers may be extended.

2.2 Dafny

Dafny [4] is an imperative sequential programming language which supports
generic classes, dynamic allocation and inductive datatypes and has its own
specification constructs. A Dafny program may contain both specification and
implementation details. Specifications are omitted by the compiler and are used
just during the verification process. Programs written and specified in Dafny
can be verified using the Dafny verifier which is based on an SMT-solver. Stan-
dard pre- and post-conditions, framing construct and termination metrics are
included in the specifications. The language offers updatable ghost variables,
recursive functions, sets, sequences and some other features to support specifica-
tion. The verification power of Dafny originates from its annotations (contracts).
A program behaviour can be annotated in Dafny using specification constructs
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such as methods’ pre- and post-conditions. The verifier then tries to prove that
the code behaviour satisfies its annotations. This approach leads to producing
correct programs not only in terms of syntax but also in terms of behaviour. A
basic program in Dafny consists of a number of methods. A method in Dafny is a
piece of imperative, executable code. Dafny also supports functions. A function
in Dafny is different from a method and has very similar concept to mathe-
matical functions. A Dafny function cannot write to memory and consists of
just one expression. A special form of functions which returns a boolean value
is called predicate. Dafny uses the ensures keyword for post-condition declara-
tion. A post-condition is always a boolean expression. Each method can have
more than one post-condition which can either be joined with boolean and (&&)
operator or be defined separately using the ensures keyword. To declare a pre-
condition the requires keyword is used. Like post-conditions, adding multiple
pre-conditions is allowed in the same style. Pre- and post-conditions are placed
after method declarations and before method bodies. Dafny does not have any
specific construct for specifying class invariants. Class invariants are specified in
a predicate named Valid() and this predicate is incorporated in all methods pre-
and post-conditions so the verifier checks if each method preserve all invariants
or not.

3 Case Study: A Map Abstract Data Type

In this section we present a map abstract datatype as a case study and show
the Event-B formal model and its transformation to Dafny contracts that is per-
formed by our tool. A map (also called associated array) is an abstract data type
which associates a collection of unique keys to a collection of values. This case
study is originally taken from [6] where the map ADT is specified, implemented
and verified in Dafny. The most abstract model of the map in Event-B (machine
m0 ) is illustrated in Figure 1. The map is simply modelled using a partial func-
tion from KEYS to VALUES. KEYS and VALUES are generic types which are
defined in a context (not shown here) as carrier sets. There is only one invariant
in this model which says that the variable map is a partial function. The model
contains two events for add and removing keys and values to the map. By prov-
ing that these events preserve the invariant of the model, the uniqueness of the
map’s keys is verified.

Dafny does not support relations (and functions) as data structures so we
cannot directly transformmachinem0 to Dafny annotations. Machinem0 should
be refined in order to reduce the abstraction and syntax gap between the Event-
B model and Dafny specification. In the refined machine two new variables keys
and values are introduced to model. Variable keys is a sequence of type KEYS
and variable values is a sequence of type VALUES. Sequences are built-in data
structures in Dafny but they are not part of the built-in mathematical language
of Rodin. However sequences are available through the standard library of the
Rodin theory plug-in. As the name suggests sequence keys stores keys and the
other sequence stores values where a value in position i of sequence values is
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Fig. 2. Event Add is refined to two events Add1 and Add2

associated with the key that is stored in position i of sequence keys. An invariant
is needed in this refinement to state that both sequences have the same size. A
gluing invariants is also needed to prove the consistency between refinements.
Figure 2 shows that the event Add from machine m0 is refined to two events
Add1 (for adding new keys to the map) and Add2 (for updating an associated
value to an existing key). Refinement of event Remove and other elements of
the refined machine are omitted here because of the space limitation. Listing
1.1 shows the transformation of events of the refined machine to an annotated
Dafny method called Add.

method Add(k:KEYS , v:VALUES)

requires Valid();

ensures (k !in old(keys) && keys ==[k] + old(keys) &&

values==[v] + old(values))

||

(exists i :: i in (set k0| 0<=k0 && k0 <|old(keys)|) &&

old(keys)[i]==k && values==old(values)[i:= v] &&

keys == old(keys));

Listing 1.1. Transformation of Machine m1 to a Dafny Contract

Post-conditions of the Add method are directly derived from those events
that form the method and they specify the behaviour of the method. Method
Add is specified by two events in Event-B therefore two ensures clauses are
generated (beside ensures Valid();). The reason for specifying a method with
two Event-B events is that each event represents a separate case of the method
and each case in a Dafny method is represented with a separate post-condition
in the method contract. The keyword old which is used in the post-conditions
of methods represents the value of the variable on entry to the method. Internal
variables of each event are defined using existential quantifier with regards to
the event’s guards. The class declaration, predicate Valid() and other details of
the generated class are not shown here. The transformation of Event-B events
to annotated Dafny methods is discussed in the next section.



From Event-B Models to Dafny Code Contracts 313

4 Transforming Event-B Models to Dafny Contracts

In this section we describe how we generate Dafny contracts from Event-B events.
In order to be able to merge different Event-B events together to form a single
method from them in Dafny, we have introduced a new element to Event-B
machines called constructor statement. A constructor statement has the following
form:

method mtd name(pi 1, pi 2,...) returns(po 1, po 2,...) {evt 1, evt 2,...}
In the above statement, mtd name is the name of the target method in Dafny,

(pi 1, pi 2,...) represents the list of input parameters, (po 1, po 2,...) represents
the list of output parameters, and evt 1, evt 2,... represents the list of Event-B
events that must be merged together to form the target method.

A method may or may not have input/output parameters. Input parameters
which are stated in the constructor statement must exist in all events which are
listed in the the statement and also the type of the parameters must be explicitly
declared in Event-B events as guards of the event. If a method in a constructor
statement has a parameter which is not listed as a method’s input/output pa-
rameter, it should be treated as an internal parameter. An internal parameter is
a local variable to the method and will be specified using an existential quanti-
fier. A number of post-conditions can be generated from before-after predicates
of the actions of the events together with their guards. A before-after predi-
cate denotes the relation that exists between the value of a variable just before
and just after the execution of an action. In the example shown in the previous
section, the method Add was generated as a result of the following constructor
statement:

method Add(k,v) returns() {Add1, Add2}
Consider act1 of event Add1 from Figure 2. The before-after predicate associ-

ated with this action is keys′ = seqPrepend(keys, k) where the primed variable
denotes the value of the variable just after the execution and the unprimed
variables denote the value of the variables before the execution. The following
expression can be derived from event Add1 by conjunction of all non-typing
guards of the event before-after predicates of all actions of the event. The result
would be for event Add1 :

k/∈ ran(keys)∧ keys′=seqPrepend(keys, k)∧ values′=seqPrepend(values, v)
(1)

The same should be done for event Add2. As it is obvious from the action
of event Add2, variable keys is not changed by this event therefore the value
of this variable after the execution of the event is equal to its value before the
execution. The following expression is derived from this event:

i ∈ 1..seqSize(keys)∧ keys(i) = k ∧ values′(i) = v ∧ keys′ == keys (2)
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Note that event Add2 has a third parameter i which is not listed as Add
method parameter in constructor statement so it is an internal parameter and
should be specified using an existential quantifier:

∃i·i ∈ 1..seqSize(keys)∧ keys(i) = k ∧ values′(i) = v ∧ keys′ == keys (3)

The disjunction of (1) and (3) becomes the post-condition for method Add
and specifies the desirable behaviour of the method. In addition to the generated
contracts from events of the Event-B model, predicate Valid()(which contains
the conjunction of machines invariants) must be a pre-condition for all method
declarations. This is necessary as the verifier needs this information to be able
to verify the post-conditions.

4.1 Tool Support for Automatic Transformation

We have developed a Rodin plug-in for automatic transformation of Event-B
machines to annotated Dafny classes. The plug-in builds an abstract syntax tree
(AST) with regards to the Event-B machine and contexts that it sees and con-
structor statements that are provided by the user. The AST then is translated
to Dafny code by a number of translation rules that are encoded in the plug-in
source code. The tool only supports the translation of those Event-B mathe-
matical constructs that have a counterpart in Dafny and ignores the rest. So
it is important that the model should be refined to a level that only has those
constructs that have a Dafny counterpart.

5 Related and Future Work

To the best of our knowledge, no research has been carried out in order to
generate annotated Dafny programs from Event-B models and there is very
little research on generating verifiable code from Event-B models. EventB2Dafny
[7] is a Rodin plug-in for translating Event-B proof obligations to Dafny code
to use Dafny verifier as an external theorem prover for proving Event-B proof
obligations. Another research has been carried out in order to translate Even-B
models to JML-specified JAVA code. A Rodin plug-in called EventB2JML [8]
has been developed to automate the translation from Event-B models to Java
specified code. Tasking Event-B [9] is a code generator that generates code from
Event-B models to a target language but it does not support verification of the
generated code.

Our current transformation rules allow us to generate Dafny contracts for
abstract data types. We plan to extend our rules and the tool to be able to
generate code contracts from Event-B model of complex algorithms. We have
already done another case study for transforming an Event-B model of a model
checking algorithm to Dafny contracts.
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6 Conclusion

We have presented an approach for generating Dafny code contracts from Event-
B models. This approach allows us to start the development with a very high level
specification of the program in Event-B and use the Rodin platform facilities to
prove the correctness and consistency of specification and refine the specifica-
tion to a level that is suitable for transformation to Dafny. The implementation
can be done later manually and verified against the abstract specification. The
abstraction level that can be achieved in a modelling language like Event-B is
not achievable at Dafny level therefore using the stepwise manner of Event-B for
building specification will help to tackle the complexity that is associated with
this task.
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