
Ab Initio Transport Calculations
for Functionalized Graphene Flakes
on a Supercomputer

Michael Walz, Alexei Bagrets, Ferdinand Evers, and Ivan Kondov

Abstract We present ab initio transport studies of large graphene flakes focusing
on the local current density j.r/ as it arises from a dc-transport measurement.
Such ab initio transport calculations for sufficiently large flakes can be successfully
tackled only using well scaling ab initio packages capable for transport calculations
in thin film geometries. We employ the FHI-AIMS/AITRANSS packages to study
the effect of disorder on the local current density in graphene flakes, in particular,
the effect of chemical functionalization on mesoscopic fluctuations of the current
density. Simulating graphene flakes with several thousands of atoms, we clearly see
the qualitative effects of quantum interference and mesoscopic fluctuations in such
systems. We also discuss the parallelization and optimization techniques, which
we implemented into the transport module AITRANSS to allow efficient ab initio
transport calculation on Cray XE6 and XC40 supercomputers.

1 Introduction

Graphene is an atomically thin layer of carbon atoms that self-organize in a
honeycomb lattice. Since several years, such layers are routinely manufactured
in laboratories worldwide. Electron transport in graphene and other graphene
properties are investigated intensively and form one of the hottest fields in con-
densed matter and materials sciences. The driving force results from prospective
applications in information and nanotechnology, e.g., as field effect transistors or
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spin quantum bits. Also, chemical functionalization triggers proposals for additional
technologies like hydrogen storage or sensor applications.

In most applications, the electron transport properties of graphene-based films
are crucial. Despite intensive research, the transport properties are far from being
fully understood, especially concerning the influence of disorder, as it is induced,
e.g., by functionalization with adsorbates. In computational work, disorder effects
have been treated so far mostly on the level of tight-binding calculations that
incorporate aspects of �-electron physics; genuine ab initio treatments of transport
in functionalized molecular films were not yet available. Partially, this is because
electronic structure calculations based on the density functional theory (DFT)
for large, sufficiently representable flakes are computationally highly demanding.
They can be successfully treated only by the most advanced ab initio packages.
An additional difficulty is that such packages are often not capable for transport
calculations in film geometries.

Recently, the FHI-AIMS code [1] has been complemented with a versatile
transport module AITRANSS [2–5], which implements the non-equilibrium Green’s
function formalism (NEGF) and uses DFT results as input. It enables computing ab
initio transport properties of single molecules but also of more extended structures
such as molecular flakes, films or nanotubes.

In this work we study the effect of disorder (e.g. hydrogen adsorbates) and
chemical functionalization on the conductance of graphene flakes. In contrast to
the presently available tight-binding treatments, our DFT approach includes the
effects of charging and screening of impurities, and lattice distortion, i.e., strain.
As a consequence, we can study the cross-talk between different impurities which
is not possible with present tight-binding implementations.

The sizes of computationally tractable graphene flakes reach 2500 carbon
atoms. This is sufficient to see the qualitative effects of quantum interference
and mesoscopic fluctuations in such systems. Reaching such flake sizes was only
possible by achieving an excellent DFT performance on the HLRS systems when
using the FHI-AIMS package. In addition, we improved the parallel scaling of the
transport module AITRANSS.

The structure of the paper is as follows: in Sect. 2.1, we describe our transport
method as implemented in the code, and we comment on the employed paral-
lelization techniques (Sect. 2.2). In Sect. 3.1, the key findings are summarized.
For reference, we provide the numerical parameters used in a typical calculation
in Sect. 3.2. Next, the achieved excellent performance on the HLRS computing
systems is shown, first for the DFT simulation (Sect. 3.3), second for the transport
part (Sect. 3.4). In Sect. 3.5, we present two optimizations, necessary for achieving
the excellent performance.
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2 Methods

Our transport calculations are performed in a two-step procedure. First, we perform
a DFT calculation using the all-electron DFT code FHI-AIMS including relaxation
effects. Second, we perform a transport calculation using AITRANSS with the Kohn–
Sham orbitals from the previous DFT step as input. We summarize the transport
calculation in the following and point out where parallelization is necessary. The
implementation description of FHI-AIMS and AITRANSS is outlined in [1] and [5],
respectively.

2.1 Transport Calculations

We extract the Kohn–Sham (KS) Green’s function GKS
0 .E/ D �

E1 � HKS C i0
��1

for a finite disordered graphene flake from the DFT calculations. To model the
infinite extension of the system in current flow direction, we compute the self-
energies ˙ L/R using absorbing boundary conditions [5, 6]. The self-energies ˙ L/R

represent the influences of the leads. The resulting Green’s function

G.E/�1 D GKS
0 .E/�1 � ˙ L.E/ � ˙ R.E/ (1)

describes the propagation of KS particles in the device in the presence of leads and
is used to calculate the transmission T .E/ D Trf� L G � R G�g : Here, � L/R denote
the anti-Hermitian parts of the self-energies, i.e., � L/R D i.˙ L/R � ˙

�
L/R/. They

account for the level broadenings in the finite graphene flake due to the coupling to
the leads.

Using the retarded Green’s function, we calculate the non-equilibrium Keldysh
Green’s function G< D iG

�
fL� L C fR� R

�
G�. Assuming that the scattering states

originating from the left/right lead are occupied/unoccupied, the Keldysh Green’s
function G<.E/ simplifies to

G<.E/ D iG.E/� L.E/G�.E/ : (2)

Here, we assumed zero temperature and an energy inside the voltage window, so
that fL D 1 and fR D 0 for the occupation in the leads.
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We use orthonormal basis functions Q'i.r/ [constructed via Löwdin-orthogonal-
ization from the DFT basis functions 'i.r/] to transform the Keldysh Green’s
function into real space:

G<.r; r0; E/ D
X

ij

Q'i.r/G<
ij .E/ Q'�

j .r0/ : (3)

The current density (per spin and energy) is then expressed as

j.r; E/ D 1

2�

„
2m

lim
r0!r

.r r0 � r r/G
<.r; r0; E/ : (4)

2.2 Implementation: Parallelization Efforts

Because the computational demand of the DFT and transport steps scale very similar
with flake size (see Sect. 3.5), none of the steps represents a single bottleneck for
the whole simulation. Thus, we also optimized and parallelized the transport module
AITRANSS to enable study of large flakes.
The AITRANSS code uses two types of parallelization:

shared-memory parallelization, in which several threads within one process
have access to the same data, i.e., the same energy point E. We use threaded
LAPACK as implemented in the Intel MKL for matrix operations and OpenMP
for parallelization of loops over real space, etc.

distributed-memory parallelization, in which each process works with separate
data sets for possibly different energy points E. The Message Passing Interface
(MPI) is used for work balancing, e.g., for distributing different energy points to
different processes, cutting and distributing the real-space grid.

A workflow diagram of the parallelized modules is shown in Fig. 1.
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Fig. 1 Workflow diagram of the transport module AITRANSS. The two most common module
sequences are depicted in blue (transmission calculation) and red (current density and magnetic
field calculation). Both sequences include the reconstruction of the Kohn–Sham Hamiltonian
and the calculation of the self-energies (purple). Left: timing symbols used in the following for
performance analysis, cf. Figs. 4 and 5. Right: overview of the parallelization techniques used in
each module

3 Results

The results of this work are twofold. First, we summarize the physics results for
the investigated graphene flakes in Sect. 3.1. Second, we present our development
of computational techniques: (a) we demonstrate that our applied codes scale
sufficiently when using a few thousand cores and (b) we discuss the improvements
in our transport module that were necessary to achieve good scalability.
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3.1 Overview of the Key Findings

As a preparation for this work, we calculated the local current density response
j.r; E/ of pristine armchair graphene nanoribbons (AGNRs) with varying width [7].
We observe pronounced current patterns, which we call “streamlines”, with three-
fold periodicity in the ribbon width. They arise as a consequence of quantum
confinement in the direction transverse to the current flow. Neighboring streamlines
are separated by stripes of almost vanishing flow. This effect can be explained in
a tight-binding toy model. The response of the current density to adatoms is very
sensitive to the placement: adatoms placed within the current filaments lead to
strong backscattering; while in other regions, adatoms have almost no impact.

Then, we switched to larger graphene flakes calculating the local current density
j.r; E/ in the presence of hydrogen adsorbates [8], an example with 5 % hydrogen
is shown in Fig. 2. We discovered pronounced local current patterns, ring currents
(current vortices), that go along with orbital magnetism. Importantly, the magnitude
of the ring currents can exceed the average transport current by orders of magnitude.
The associated magnetic fields exhibit drastic fluctuations with large field gradients
reaching up to 1 T nm�1 V�1. These observations are relevant for spin relaxation
in systems with very weak spin–orbit interaction, e.g., organic semiconductors. In

Fig. 2 Local current density response (integrated over the out-of-plane direction) in an AGNR41
(24�41) with 5 % hydrogen adsorbates. The current density exhibits very strong mesoscopic
fluctuations which exceed the average current by over two orders of magnitude in the logarithmic
color scale. The current density is plotted relative to average current density. Plot shows current
amplitude (color), current direction (arrows), carbon atoms (grey crosses) and hydrogen atoms
(red crosses). Some arbitrary current paths (black lines) are drawn into the plot for illustration
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such systems, spin relaxation induced by bias-driven orbital magnetism competes
with the hyperfine interaction. Both appear to be of similar strength. As a result of
our calculation, we propose an NMR-type experiment combined with a dc-transport
setup to observe the spatial fluctuations of the induced magnetic fields. We studied
several impurity concentrations and different graphene flake sizes. The described
physics seems to be independent and, therefore, should also be present in larger
mesoscopic samples which are more common in experiments.

We also studied the statistical distribution of the current density in the graphene
flakes [9]. The distribution function of the current density follows a log-normal
distribution in a wide range. Its typical value is larger than the average current.
Therefore, there are always significant contributions to the current density which do
not contribute to the conductance, i.e., they form current rings. This work is still
on-going, but so far, these features seem to be remarkably stable, in a wide range
of impurity concentrations (5–30 %) and system sizes (up to 2500 carbon atoms),
and even survive an averaging over several scattering states, e.g., when a finite bias
voltage is applied to the system.

3.2 Typical Numerical Parameters

In Table 1, we list the numerical parameters of a typical calculation performed for
hydrogenated graphene flakes. First, the graphene flake is structurally relaxed using
FHI-AIMS until the remaining forces decrease below 10�2 eV=Å. This is, by far, the
most expensive part of the calculation. Then a final DFT run for the relaxed structure

Table 1 An overview of a typical calculation performed on Cray XC40 (Hornet) for a graphene
flake (with 1312 carbon atoms) whose central 24 � 41 carbon atoms have been functionalized with
hydrogen (compare with Fig. 2)

FHI-AIMS AITRANSS

Relaxation DFT Transmissiona Current densityb

Numbers of processes NMPI 2688 96 60 3

Cores per process p 1 1 4 8

Total number of cores P 2688 96 240 24

Number of nodes n 112 4 10 1

Wall time Twall 36.4 hc 1.85 h 0.80 h 7.37 h

Core hours Tcores 97 800 h 178 h 192 h 177 h

Memory usage per process M 0.55 GB 0.55 GB 14.8 GB 21.5 GB

Memory usage per node Mnode 13.2 GB 13.2 GB 88.7 GB 64.4 GB

Note that some information is redundant, i.e., P D p NMPI D 24 n, Tcores D TwallP, Mnode D
MNMPI=n
aTransmission T .E/ has been calculation at 2423 energies values
bThe current density j.r; E/ has been calculation at 6 energies values
cThe relaxation calculation was broken down into several jobs, each with a wall time below 24 h
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is performed and the output written to disk. This is used by AITRANSS to perform a
wide scan over the transmission function (the self-energies ˙ are pre-calculated
since they only depend on the system size, not on the impurity configuration).
Eventually, a few interesting energy points are taken from the transmission function
and the current density is calculated at those energy points.

3.3 Achieved DFT Performance on Cray XE6 (Hermit)
and Cray XC40 (Hornet)

Within a test project on Hermit for which a budget of 40,000 core hours has been
granted, we carried out code porting, tuning and performance measurements for
DFT calculations of graphene to ensure that the FHI-AIMS code scales as necessary
for the completion of the project goals and that the envisaged computing system
Hermit was appropriate for the planned productive simulations.

The scalability of the FHI-AIMS code was demonstrated running the DFT module
for pure planar graphene flakes, in which dangling bonds at the boundaries were
saturated with hydrogen atoms with 170 (10�17), 345 (15�23), 735 (21�35) and
1500 (30�50) carbon atoms, each represented by a tier 1 basis set, i.e. 14 basis
functions per C atom and 5 per H atom. The total number of basis functions N is
2560, 5095, 10,675 and 21,550, respectively.

Figure 3 (upper plot) presents the scaling of the code where the data from each
set (color) are plotted as reduced speedup Tn=TP. TP is the wall time of calculation
on P processor cores and Tn is the wall time on the minimum number of cores
n necessary for the job to finish within wall time limit (24 h). Thus, n is 8, 16,
32 or 256, depending on the graphene flake size, i.e., each color in Fig. 3 is for a
different n. The normalization with n is also necessary to allow easy comparison
of the speedups for the four graphene flake sizes. Then, the data for each set have
been fitted to Amdahl’s law (the solid lines) showing that the serial fraction of the
work ˛ is always very small, around 1 �.D 0:001/ and furthermore decreases with
increasing the graphene flake size.

Figure 3 (lower plot) shows the scaling for graphene using the same data as in
Fig. 3 (upper plot) now represented by the speedup S.P/ D QT1=TP achieved on
P cores, where QT1 is a hypothetical time for which the same calculation would
take when a single core were used. Note that for a fixed number of cores used for
computations, e.g., set of data points for P D 256, the speedup is improved when
the size of the problem increases approaching the ideal speedup (Gustafson’s law).
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Fig. 3 Strong scaling of FHI-AIMS for pure graphene flakes on the CRAY XE6 (Hermit) cluster at
HLRS (upper plot). Scaling of FHI-AIMS for pure graphene flakes of different size on the CRAY
XE6 (Hermit) cluster at HLRS (weak scaling, lower plot)

3.4 Parallelization of the Transport Module AITRANSS
and Achieved Performance

In Fig. 4, we present detailed measurements of the performance of our transport
code for realistic system sizes. In the tests, we distinguish between calculation
of the transmission and of local observables. Transmission calculations (T .E/)
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Fig. 4 O.Nn/-scaling: Performance measurements with varying system size for a transmission
(upper plot) and local observable (lower plot) calculation for a fixed number of CPU cores (PD32).
Symbols: number of basis functions N, number of energy points NE, number of CPU cores P

also include the density of states �.E/. Local observables are the local current
density j.r; E/ but also its divergence r � j.r; E/, the non-equilibrium density n.r; E/

and the local density of states �.r; E/.
In the upper panel, the wall time for calculating NE D 128 transmission and

density of states of hydrogen-saturated AGNRs (the same as in Sect. 3.3) is plotted
depending on the number of basis functions N. The total time TT .N/ is divided into
four groups (tH, tdiag, t˙ , tG, cf. Fig. 1). Because the calculation (via 200 iterations
in the decimation technique [5]) of the self-energy representing the leads depends
directly on the number of basis functions Nlead of the leads (and only indirectly
on the basis functions N of the device region), it is plotted separately. The main
effort for a transmission calculation is reconstructing the self-energy of the leads;
therefore it makes sense to save them on the hard disk if several different impurity
configurations are processed which all use the same leads. Then, the main effort
is spent for reconstructing the Green’s function (tG). The diagonalization (tdiag, see
Sect. 3.5.3) does not significantly contribute to the overall effort for the considered
system sizes since it is performed only once and not for every energy point.
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Fig. 5 MPI-parallelization: speedup for a fixed system size (735 (21�35) carbon atoms) and for
a fixed number of CPU cores per MPI process (pD8). Left: speedup for transmission calculations.
Right: speedup for local observable calculation. Symbols are the same as in Fig. 4. The p is the
number of CPU cores per MPI process, and NMPI is the number of MPI processes (P D p NMPI)

In the lower panel of Fig. 4, the same quantities are plotted for a single (NE D 1)
current density calculation. The number of grid points used is proportional to the
system size (one grid point every 0:2 Å, 31 in z-direction). We first note, that the
main effort is dominated by the discretization of the local quantities (t.r/). We
were able to optimize local observable calculation to scale below N2 employing
the locality of the basis functions.1

In Fig. 5, we discuss the parallelization efficiency of the transmission calculation
and current density calculation for a fixed system size (21�35 D 735 carbon atoms).
The speedup S for many MPI processes compared to a single process is shown and
compared to Amdahl’s law: TNMPI D T1 Œ˛ C .1 � ˛/=NMPI�, ˛ � 1%. We see a
good scalability for the total wall time, the self-energy construction and the Green’s
function construction (TT , t˙ , tG). The reconstruction of the KS Hamiltonian
does not speedup since only the first MPI process is involved (cf. Fig. 1). For the
diagonalization, we even observe that using two processes (using ScaLAPACK) is
slower than using only one process (using LAPACK). Therefore, our code now only
uses ScaLAPACK starting with 4 MPI processes.

3.5 Optimization of the Transport Module AITRANSS

3.5.1 Overview: Code Optimization

In the following sections, the two most important optimizations used throughout
our code development are presented. Their performance impact is summarized in
Table 2. Please note, that both optimizations have larger impact for larger systems.

1Naively the evaluation of the current or its divergence scales as N3 with N since the number of
spatial grid points r scales linearly, for constant grid spacing, and the summation of i, j [see Eq. (3)]
gives additional N2. Please, refer to Sect. 3.5.2 for optimization details.
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Table 2 Increase in wall time when specific optimizations are removed from the code

Changed 398 atoms 812 atoms

Optimization quantity (345 carbon atoms) (735 carbon atoms)

SpaceBlocks: j Local quantities: t.r/ � 18:3; 557s !10177s � 41:1; 1845s !75811s

MatrixInverse: T Constructing G: tG � 7:0; 203s !1414s � 10:6; 1342s !14264s

To get a feeling about the dependence on the system size, two different sizes are shown. The
computational parameters and the systems are identical to the ones used in Fig. 4. Symbols are used
to distinguish transmission (T ) and current density (j) calculations. The self-energy was always
read from hard disk. To measure the wall time without optimization “SpaceBlocks” for 810 atoms,
we doubled the grid spacing (taking only every eighth grid point) and used linear extrapolation to
approximate t.r/ for the full grid

The optimization “SpaceBlocks” is vital because without it calculations for
systems with more than 1000 atoms become unfeasible. Also the optimization
“MatrixInverse” is quite handy because it allows quick transmission scans before
turning to more expensive current density calculations.

3.5.2 SpaceBlocks: Dividing Space into Blocks

Here, we discuss how to evaluate the formulas for space-depending local quantities
such as the current density

j.r; E/ /
X

ij

'i.r/
as
G<

ij

�r'j.r/
�

;
as
G<

ij D 1

2

� LG<
ij � LG<

ji

�
: (5)

In principle, the double sum runs over all basis functions of the underlying DFT
simulation. FHI-AIMS uses numerically tabulated atom-centered orbitals (NAOs),
i.e. localized basis functions. When restricting the spatial point r to a small region,
most basis functions are vanishing inside this region. (These basis functions are, of
course, nonzero elsewhere.) This locality in the basis set can be exploited in the
following way.

First, we define rmax as the maximal radial extent of all basis functions (i.e. all
basis functions are zero at points which are further away from the central atom
than rmax). Second, the 3D space is divided into little cubes with edge length rmax=n
with n being an integer (see Fig. 6 for an example). When performing the sum of
Eq. (5) for any spatial point r inside the blue shaded area, the only basis functions
taken into account are centered around atoms in the green (and blue) shaded area.
All other basis functions do not contribute to this area.

Hence, we divide the space into cubes of length rmax=n and distribute them to
separate MPI processes. The integer n is chosen such that every MPI process works
on at least five blocks to alleviate load imbalance due to different block sizes. Then,
for each inner (blue) block, we restrict the Green’s function G< to the basis functions
localized at atoms in the extended (green) block.



Ab Initio Transport Calculations for Functionalized Graphene Flakes on a. . . 151

Fig. 6 Dividing space into 156 (13�12�1) non-overlapping blocks, exemplary for a graphene
flake with 398 atoms. (2D model with n D 2, rmax D 5:05 Å)

3.5.3 MatrixInverse: Calculating the Green’s Function Inverse

As the self-energy can be read from hard disk, the most expensive part in a
transmission calculation is the matrix inversion in calculating the retarded Green’s
function G, cf. Eq. (1). According to Fig. 4 (upper panel), G can be constructed in
O.N2/. Without this optimization the matrix inversion in calculating the Green’s
function would scale as O.N3/ and would therefore dominate for large systems.

Partitioning of the Green’s function: The Green’s function inverse, see Eq. (1),
can be calculated by transforming the Hamiltonian so that it is diagonal in the
regions where the self-energies ˙ are zero. We partition the indices in the Green’s
function inverse such that the self-energy contribution of the leads only appears in
subblock D, i.e.,

G�1 D E1 � H � ˙ L.E/ � ˙ R.E/

D
�

E1AA � HAA �HAD

�HDA E1DD � HDD � ˙ L.E/ � ˙ R.E/

��1

DW
�

A B
C D

��1

;

(6)

with the subscripts AA, AD, DA, DD denoting the restriction to the respective
matrix subspace.

As advantage of this partitioning, the only non-trivial energy dependence appears
in subblock D D E1DD � HDD � ˙ L.E/ � ˙ R.E/. The block A can be diagonalized
for all energies in a single eigenvalue problem: the eigenvalues are given by the
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diagonal matrix QA D E1 � QHAA where QHAA denotes the diagonal matrix with the
eigenvalues of HAA. The transformation matrix V ( QHAADV�1HAAV) is constructed
by filling its columns with the (right) eigenvectors of HAA. The off-diagonal blocks
stay energy independent, i.e., QB D �V�1HAD.

General matrix: For the matrix inversion, we first tend to a general matrix which
we divide into four blocks

�
A B
C D

�
; (7)

so that the submatrices A and D are square matrices. The inverse is given by

�
A B
C D

��1

D
�

A�1.1 C BE�1CA�1/ �A�1BE�1

�E�1CA�1 E�1

�
with E WD D � CA�1B

(8)

as is easily checked by direct matrix multiplication.
Transforming A into diagonal form QA, i.e., A D V QAV�1, makes the calculation

of the inverse QA�1 trivial and we get:

�
A B
C D

��1

D
�

V QA�1.1 C QBE�1 QC QA�1/V�1 �V QA�1 QBE�1

�E�1 QC QA�1V�1 E�1

�
with E WD D� QC QA�1 QB

(9)

using the abbreviations QC WD CV and QB WD V�1B.
Exploiting symmetries of G: In general, the Hamiltonian H is Hermitian and

the self-energies ˙ are non-Hermitian. In most cases, we can restrict ourselves
to a real symmetric Hamiltonian and complex symmetric self-energies. In that
case, the Green’s function G is also (complex) symmetric, QB and QC are related by
transposition, the eigenvalue problem simplifies to a real symmetric one2 which
makes the transformation matrix V orthogonal, i.e., V�1 D VT .

Basis change for non-local quantities: If we are only interested in non-local
quantities such as the transmission or the density of states, we can go one step
further. Such quantities do not dependent on the spatial basis and we can transform
the Green’s function so that the Hamiltonian is diagonal in the subblock A:

G ! S�1GS ; S D
�

V 0

0 1DD

�
: (10)

2For real symmetric eigenvalue problems, efficient implementations such as ScaLAPACK [10] or
ELPA [11] exist that are parallelized over many computing nodes.
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In practice, we indirectly perform this transformation by omitting the respective
factors of V in Eq. (9). All in all, the inverse is given by:

G D
 QA�1.1 C QBE�1 QBT QA�1/ � QA�1 QBE�1

h
� QA�1 QBE�1

iT
E�1

!

with E WD D � QBT QA�1 QB (11)

using the abbreviation QB WD VTB.
Optimization traits: In Eq. (11), no matrix operations for matrices of size of

HAA appear (except for the initial eigenvalue problem): the inverse QA�1 is trivial
since QA is diagonal. Therefore, this optimization is extremely useful for large
systems where the contact regions to the leads are only a small part of the overall
system, i.e., NA � ND with NA/D denoting the size of the square matrices A; D,
respectively.

For a short complexity analysis, we assume that multiplication and eigenvalue
problem of N�N-matrices have computational complexity O.N3/. Then, without
above optimization, the direct matrix inversion used to calculate the Green’s

function has complexity O..NA C ND/3/
NA�ND! O.N3

A/.
In the above optimization, the complexity of the preparation process containing

the eigenvalue problem and the calculation of QB is O.N3
A C N2

AND/
NA�ND! O.N3

A/.
All the following inversions using Eq. (11) only are of complexity O.N3

D CNAN2
D C

NA/
NA�ND! O.NAN2

D/. The summands stand for inversion of E, products of NA�ND-
matrices with ND�ND-matrices like QBE�1 and inversion of QA, respectively.

Strictly speaking, the optimization still scales cubically in NA due to the initial
eigenvalue problem. Nevertheless, for energy sweeps over the density of states or the
transmission, the complexity of each inversion step dominates and this effort could
be reduced to complexity O.NAN2

D/ for large systems,3 cf. Fig. 4 (lower panel).
As stated above, the optimization only applies for non-local quantities. For local

quantities such as current densities, the transformation matrix V cannot be omitted
from Eq. (9) and we are back to cubic complexity.

4 Conclusions

In this work, we calculated the local current density in large hydrogenated graphene
flakes. The current flow shows complicated patterns, a fact that is ignored in most
studies focusing only on the total conductance. These patterns show large local
fluctuations. The idea behind the nontrivial local current patterns is very general:

3For the AGNRs used for Fig. 4, the central part scales linearly, NA 2 O.N/, but the contact regions
scale with the square root, ND 2 O.

p
N/ because they only grow transverse to the current direction

but not in current direction. This gives the observed overall complexity O.N2/.
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scattering states of mesoscopic samples have an inner, nontrivial structure. The
latter is seen in the electric current density but it is easily generalized for other
observables, e.g. for heat. A mesoscopic device (like a hydrogenated graphene
ribbon) which is connected to reservoirs with different temperatures will show
fluctuations in the local temperatures as a result of the nontrivial structure of the
scattering states.

Along the way, we parallelized and optimized our transport module AITRANSS
to benefit from a supercomputer, thus to enable ab initio transport calculations for
large graphene flakes. We showed that our techniques feature good scalability and
discussed necessary optimizations. Future work will benefit from the fact that ab
initio current density calculations for disordered systems are now available for large
2D film materials and for medium sized 3D materials. Essentially, the approach is
only limited by the available computing power.
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