
On the Impact of Forward-Facing Steps
on Disturbance Amplification
in Boundary-Layer Flows

Christopher Edelmann and Ulrich Rist

Abstract Using our DNS code NS3D boundary-layer flows over smooth walls
and walls containing a forward-facing step have been simulated using a so-called
disturbance formulation, i.e., by first computing a steady two-dimensional base
flow and then an unsteady disturbance flow. The influence of step height and free-
stream Mach number on streamwise pressure gradient and the occurrence or absence
of laminar separation bubbles are shown for some base flows. A fundamental
difference between subsonic and a supersonic flow over the same step height is
that the flow directly after the step exhibits an adverse pressure gradient with
laminar separation in the subsonic case but due to an expansion of the supersonic
flow around the corner, a favourable pressure gradient without separation in the
supersonic case. The unsteady disturbance flow is initialised by a wave packet in the
upstream part of the integration domain that contains all frequencies which become
unstable in the considered area. Amplification factors, so called N-factors, are then
extracted from the frequency spectra of the disturbance flow for quantification of
the impact of step parameters on disturbance amplification. Our results show that
the observed differences between different cases are fully due to the local flow
properties of the base flow, i.e. streamwise pressure gradient and Mach number.
Three-dimensional simulation results for a supersonic case with a large step height
where the N-factor approach is no longer applicable are presented towards the end.
Self-excited three-dimensional disturbances appear in this case, probably due to a
three-dimensional global instability.
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1 Introduction

Laminar flow is important for drag and hence fuel reduction, but laminar flow
is only possible if the surface obeys certain smoothness parameters. Important
generic surface roughness shapes are steps and gaps which may occur at the
joint of two adjacent surface panels. Previous investigations, like [3, 12, 13, 19],
tried to parameterise the detrimental influence of such surface protuberances on
the growth factor of small-amplitude disturbances, so-called Tollmien-Schlichting
waves. These waves are the precursors of laminar-turbulent transition in a flow
with low turbulence levels in the free stream. Previous investigations measured
the impact of surface imperfections by a so-called �N factor that quantifies the
additional amplification in a flow with surface imperfection relative to the flow
over the corresponding smooth surface. The present project uses Direct Numerical
Simulation (DNS) on a High-Performance Computer (HPC) to investigate the
effects of Mach number, pressure gradient, step position and step height on �N
for forward-facing steps.

The paper is organized as follows. The numerical method is presented in Sect. 2
which includes discussion of implementation aspects on the HPC. This is followed
by exemplary results in Sect. 3, a discussion of the limits of the present approach in
Sect. 3.3 and conclusions in Sect. 4.

2 Numerical Method

A sketch of the integration domain for a flat plate with a forward-facing (i.e. against
the flow direction) step is shown in Fig. 1. The x-axis is normal to the leading edge,
parallel to the wall and pointing in streamwise direction. The y-axis points in the
wall-normal direction, whereas the z-axis is aligned with the spanwise direction. The
computational domain extends in the x-direction from x0 to xE, the location of the
step is given by xS, where all x positions are measured as distances from the leading
edge of the plate. The height of the step is given by H. The coordinate xD;M denotes
the position of a disturbance strip where the stability of the steady laminar base
flow will be probed by small-amplitude disturbances (see further down). Most cases
studied are two-dimensional and thus only an x-y plane needs to be considered. In
the three-dimensional case, the flow field is assumed to be periodic in the spanwise
direction with the spanwise wave length �z. In the following, all spatial dimensions
will be given in non-dimensional form as Reynolds numbers.

In Fig. 2, a sketch of the domain decomposition with forward-facing step is
shown. A minimum of three domains (red domains labelled 1–3) is necessary to
discretise the step geometry. To increase the performance by further parallelising the
simulation (see Sect. 2.2), the basic domains can be split into smaller sub-domains.
An example is given by the blue sub-domains in Fig. 2.
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Fig. 1 Sketch of computational domain with forward-facing step with step height H at xS on a flat
plate
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Fig. 2 Sketch of domain decomposition with step geometry

The present DNS code NS3D was originally written by Babucke [2] and is
continuously enhanced as part of the ongoing work on transition research at the IAG.
In the following, the most important aspects for the present study will be explained.
A more detailed insight can be found in the thesis by Babucke [2].

NS3D offers a multitude of different finite-difference schemes for spatial dis-
cretisation in x- and y- direction. These schemes can be classified in explicit,
compact and sub-domain compact schemes, cf. [8, 9]. Hereby, sub-domain compact
means that in every sub-domain a compact scheme is used, whereas the coupling
between sub-domains is accomplished using an explicit scheme. For the present
study, explicit as well as compact and sub-domain compact differences are used
because of parallelisation issues (see Sect. 2.2). The numerical properties of the
different schemes are chosen to be as similar as possible.
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As non-linear terms generate higher harmonics, damping of under-resolved
wavelengths is necessary. Thus, alternating up- and downwind-biased finite-
differences are applied for convective terms. The compact finite differences used
for convective terms are of 6th-order accuracy.

Time integration is performed using the classical fourth-order accurate Runge-
Kutta scheme. It consists of four steps at two equidistant time levels. After each
sub-step, the direction of the alternating up- and downwind-biased finite-differences
changes [10]. A preferred direction is avoided by changing the alternation of the
differences after each timestep, using all possible combinations in x-, y- and z-1

direction.

2.1 Selective Frequency Damping

For stability analyses of flows, a steady baseflow solution is needed. As the code
NS3D is a time-accurate high-order code with low numerical dissipation, it is
impossible to reach this solution if the flow under consideration is globally unstable.
Thus, selective frequency damping (SFD) was implemented in the code. With
SFD, a temporal filter is used to calculate a solution which successively suppresses
temporal fluctuations. The method is based on the work by Åkervik et al. [1] which
again elaborates an idea by Pruett [15]. Parameters which need to be defined by the
user are the filter width � and the control coefficient �. Details of the method can
be find in Åkervik et al. [1].

2.2 Parallelisation

Three different high performance computing systems were used for the present
numerical simulations. At the beginning, two vector machines, the NEC SX-8 and
SX-9 were available at the HLRS. Later on, these machines were replaced by a
massive-parallel system, the Cray XE6 “Hermit”. Both vector machines have very
similar requirements for parallelisation, but for the massive-parallel system some
new problems arose.

For both vector and massive-parallel systems, the domain in the x-y plane is
divided into sub-domains with data exchange using the Message Passing Interface
(MPI) [11]. This domain decomposition in the x-y-directions not only serves for
parallelisation purposes but also allows more complex geometrical configurations

1When finite differences are used in the z-direction.
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like the step geometry for the present study (see Fig. 2). In the z-direction, loops are
parallelised utilizing a shared memory parallelisation.

A typical configuration on vector machines would be for example for a two-
dimensional configuration a decomposition in eight domains using eight CPUs
running on one SX-8 node or for a three-dimensional computation a decomposition
in eight domains each running on one SX-8 node, using 64 CPUs in total. On
the vector machines, compact finite differences are used. The resulting tridiagonal
system is solved using a pipelined Thomas algorithm (see Babucke [2], pp. 48–51
and Povitsky [14]), leading to an efficient parallelisation for the typical amount of
sub-domains (and thus MPI-processes) used on the vector machines.

As the new massive-parallel “Hermit” system has a much higher peak per-
formance than the vector machines, another strategy is used to achieve highest
performance. Instead of relatively few, very powerful CPUs, a great number of
“standard” CPUs, similar to those used in personal computers, are built together
in one big system. The large-grain sub-domain configuration used for the vector
machines is no longer sufficient as the computational time for a given problem
would increase severely. Therefore, for the present forward-facing step problem, the
x-y-plane is typically split into up to more than 1000 sub-domains. In this scenario,
the pipelined Thomas algorithm of the compact scheme performs poorly as huge
dead-lock times arise when processes are waiting for other processes to calculate
data they need. An illustration of this behaviour is given in Table 1 for a typical
two-dimensional run which was run over 20,000 time steps using a domain that
contains 448 subdomains in streamwise direction x plus 320 subdomains in wall-
normal-direction y, i.e., 811,008 grid points. The performance advantage of the
explicit finite differences compared to the other two alternatives is quite obvious
from the data given in the table: 103 s instead of 352, i.e., a speed-up factor of
3.4. The reason for this speed-up is that data exchange is necessary only once per
Runge-Kutta timestep such that each MPI-process performs the calculations for its
sub-domain independent from the other processes.

Typical resource requirements and performance data for three-dimensional
simulations are as follows: For a case with 786,432 grid points per spanwise Fourier
mode, 42 Fourier modes and 129 collocation points in spanwise direction 6144 cores
have been used using simultaneous OpenMP and MPI parallelisation. The execution
time in this case is 0.3 s/time step.

Table 1 Comparison of execution times using different spatial discretisation schemes

Compact Sub-domain compact Explicit

CPU time (s) 352 153 103
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3 Results

Many cases with different step heights, step positions and free-stream conditions
(identified by the Mach number Ma1) have been investigated. Each case starts with
the computation of a two-dimensional steady base flow. If this fails (e.g., if SFD
is not applied) the according case cannot be investigated further with the present
approach (see Sect. 3.3).

Baseflow results for subsonic and supersonic cases are presented in Sect. 3.1,
followed by a description of the N-factor method to quantify the results in Sect. 3.2
and a discussion of a case with a large step height H in Sect. 3.3.

3.1 Base Flows

Laminar separation bubbles are the most influential flow phenomena in all base
flows. Depending on flow parameters, either only one separation bubble in front of
the step or two zones of separated flow, one in front and one on top of the step are
found for subsonic cases.

Figure 3 shows streamlines, pressure contours, the region of reversed flow and
representative velocity profiles in the area around the step for high subsonic Mach
number and a small step height (Ma1 D 0:8; ReS D 2;450;000; ReH D 1320),
where ReS and ReH are the Reynolds numbers based on step position (xS) and step
height (H), respectively. Here, only one very small separation bubble is found in
front of the step. Streamlines near the step are tightened but follow the contour
smoothly. The pressure rises in front of the step and then decreases as the flow is
accelerated around it.

The profiles of the streamwise velocity component u at four streamwise positions
are shown for two grid resolutions. Refined grid means a grid refinement in both the
x- and y-directions by a factor of two. Results for both resolutions are found to be
in very good accordance.

The boundary layer depicted in these profiles starts with a typical laminar
boundary-layer profile far upstream of the step and develops an inflection point
in front of the step. The third position at Rex D 2;450;320 is immediately past
the step. Here, a small sub-boundary-layer starting at the step corner can be seen,
whereas the outer profile remains nearly unchanged. At Rex D 2;800;000 the sub-
boundary-layer has vanished and the flat-plate boundary layer is recovered.

Figure 4 presents a case with higher step but otherwise identical parameters
(Ma1 D 0:8; ReS D 2;450;000; ReH D 2640). Now, two zones of separated flow
are observed. The first one is much bigger than the second, which is in particular
much flatter. Compared to the first case, the first separation bubble is much longer,
with the region of separated flow being roughly ten times longer, whereas the step is
only twice the height in absolute values and approximately four times higher when
both cases are compared using local flow properties at the step. Pressure contours
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Fig. 3 Baseflow near the step for Ma1 D 0:8, ReS D 2;450;000, ReH D 1320. (a) Streamlines
and pressure contours. Region of reversed flow visualized by dashed line. y-direction stretched
by factor 2. (b) Profiles of streamwise velocity u at four streamwise positions Rex D 2;000;000,
Rex D 2;445;000, Rex D 2;450;320, and Rex D 2;800;000, respectively

show that the pressure in front of the step reaches higher values compared to the
case with only one separation bubble. Additionally, a distinct low-pressure zone is
observed on top of the step, after which the pressure rises again.

The profiles of streamwise velocity u are shown for two grid resolutions and
at the same four streamwise positions as before. Whereas profiles far upstream
and downstream of the step are nearly identical to those from the case with only
one separation bubble, differences around the step are visible. In front of the step,
the flow separation can be seen. Only marginally negative velocities are observed.
Downstream of the step, the sub-boundary-layer is now bigger than in the previous
case. A very small region of separated flow is existent but barely visible.

Figure 5 compares the wall pressure along the streamwise coordinate for both
cases. Upstream of the step, the pressure equals the level of the flat plate. It remains
nearly unchanged until approximately Rex D 2;000;000, where it rises until the step
location. Here, an immediate pressure drop occurs. After the step, the wall pressure
increases until the level of the flat plate solution is again asymptotically reached.

When the flow at the step reaches supersonic conditions, which would be a
typical situation for an airliner wing, the base-flow topology changes markedly.
Figure 6 presents results for Ma1 D 1:06; ReS D 2;300;000; ReH D 2640
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Fig. 4 Baseflow near the step for Ma1 D 0:8, ReS D 2;450;000, ReH D 2640. (a) Streamlines
and pressure contours. Region of reversed flow visualized by dashed line. y-direction stretched
by factor 2. (b) Profiles of streamwise velocity u at four streamwise positions Rex D 2;000;000,
Rex D 2;445;000, Rex D 2;450;320, and Rex D 2;800;000, respectively
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Fig. 5 Comparison of wall pressure pw along x for Ma1 D 0:8, ReS D 2;450;000, ReH D 2640

and various step heights H
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Fig. 6 Baseflow near the step for Ma1 D 1:06, ReS D 2;300;000, ReH D 2640. (a) Streamlines
and pressure contours. Region of reversed flow visualized by dashed line. y-direction stretched
by factor 5. (b) Profiles of streamwise velocity u at four streamwise positions Rex D 1;800;000,
Rex D 2;250;000, Rex D 2;300;320, and Rex D 2;800;000

in the same way as for the subsonic cases before. The relative step height in
terms of boundary-layer momentum thickness is the same as for the case shown
in Fig. 4 which exhibits two separation bubbles in subsonic flow. Now, only one
separation zone is observed. Compared to the subsonic case, this separation bubble
is approximately eight times longer. The rise of the separation streamline from the
separation point at the wall towards the step is very slow and constant, such that the
separation zone acts like a smooth ramp in front of the step. Thus, flow deflection
around the step is much smoother than in the subsonic case, allowing the flow to
follow the wall contour after the step without further separation. Due to the upward
flow deflection in front of the step (because of the separation bubble) the pressure
increases. Afterwards the flow expands around the step, leading to a pressure drop
in the right half of the domain.

The velocity profiles at four different streamwise locations show again a very
good grid convergence. Far upstream of the step the nearly unaltered boundary-
layer profile of the similarity solution can be seen. Inside the separation zone only
marginal negative velocities are observed. The third profile is directly on top of
the step. Here, like in the subsonic case, the oncoming profile is cut-off and a
new sub-boundary-layer is observed. However, this sub-boundary-layer is smaller
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Fig. 7 Wall pressure pw along x for Ma1 D 1:06, ReS D 2;300;000, ReH D 2640

in the supersonic case because of the smoother flow deflection around the step. Far
downstream, the boundary-layer profile of the flat plate is recovered as in all cases
shown here.

The wall pressure distribution in streamwise direction x is illustrated in Fig. 7.
Starting from the nearly constant pressure of the flat plate, the pressure rises (with
inverse curvature compared to the subsonic case) until the step location. Here, a
sudden pressure drop occurs, followed by a steep rise and a slow decay until a
constant value is reached again. This decay stands in contrast to the progression of
the wall pressure in the subsonic cases, where the wall pressure increases after the
step.

For supersonic cases, three different steady flow regimes are observed when
conducting two-dimensional simulations. In the first regime, one very long zone
of separated flow is found in front of the step. For increasing step height, while all
other parameters stay constant, secondary separation zones within the separation
bubble are visible. When the step height is further increased, a second region of
separated flow on top of the step is formed. However, it is found that cases within
both the latter aforementioned regimes are naturally three-dimensionally unsteady,
thus a purely two-dimensional analysis seems unphysical. The flow characteristics
of these cases are therefore described in Sect. 3.3, where three-dimensional base
flows are discussed.

3.2 Disturbance Excitation and N-factor Computations

A wave packet is introduced into the steady baseflow by blowing and suction over a
finite span of time at the wall within the disturbance strip introduced in Fig. 1.

A multitude of different disturbance excitations were tested. Usually the best
results are obtained when not a single Dirac-pulse is used but the amplitudes of
the blowing/suction are first smoothly increased and subsequently decreased in
time. By turning the disturbance strip on and off, sound waves are emitted which
travel in up- and downstream direction. These sound waves interact with the step
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Fig. 8 Sound waves at step for Ma1 D 0:8, ReS D 2;450;000, ReH D 3520. Six contour levels
of p0 between �5 � 10�11 and 5 � 10�11 shown

as well. A certain optimization with respect to using multiple frequencies for the
blowing/suction was necessary to reduce the amplitudes of these unavoidable sound
waves [4]. Nevertheless, the unsteady, instantaneous flow field is rather complex as
can be seen using three snapshots of the pressure disturbances p0 in Fig. 8.

Two main phenomena are observed. Firstly, a part of the sound wave is reflected
with the main direction pointing upstream at an angle of 45ı. Secondly, a new wave
packet emerges at the step inside the boundary layer. In the region directly after the
step, a very small dominant wavelength of approximately Rex D 6000 width and a
small propagation speed of c � 0:2 is found, which leads to a frequency in the range
of the dominant frequency of the sound waves. Wavelengths as well as amplitudes
of the wave packet in that region very near the step increase rapidly. However, an
accurate Fourier analysis is not possible as the wave packet is superposed by the
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sound waves. Slightly further downstream, the analysis becomes possible as the
sound waves have passed.

The generation of acoustics at the disturbance strip and the thereby induced
excitation of a small wave packet at the step due to receptivity is only a side effect
of the chosen disturbance method. The main purpose remains the generation of a
wave packet in the boundary layer where all frequencies of interest are existent with
sufficient amplitude such that their amplitude development can be studied. At the
beginning, the wave packet develops in the same manner as on a flat plate without
step. However, as soon as the disturbance reaches the region where, caused by the
step, the pressure deviates from the pressure without step, the development of the
wave packet differs from the development without step.

The spatial growth of the wave packet is illustrated in Fig. 9 using contours of
the streamwise velocity disturbance (u0) for three different time steps in the region
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Fig. 9 Contours of u0 for three different timesteps. Main wave packet Ma1 D 0:8, ReS D
2;450;000, ReH D 3520. y-direction stretched by factor 5
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around the step. At the step, the appearance of the wave packet changes as some
irregular structures in the near-wall region are observed. Behind the step, the wave
packet is again similar to the wave packet in front of the step but with much higher
amplitude. Additionally, it can be seen that the wave packet induces sound waves at
the step which are mainly directed in upstream direction.

For quantification of the influence of steps so-called N-factors are used. This
term comes from the eN-method proposed by van Ingen [18] and Smith and Gam-
beroni [17] for prediction of laminar-turbulent transition in boundary-layer flows.
The N-factor is just a measure of the maximal possible streamwise disturbance
growth. Originally, it would be calculated from linear stability theory. However,
here we extract it from the results of disturbance-flow calculations with our code
NS3D as follows.

First, a Fourier analysis of the time signals at each grid point is performed to
obtain the disturbance amplitude field � .x; y; f /, where x and y are the spatial
coordinates, and f is the frequency. Additional details like the elimination of the
sound waves from the Fourier analysis are not presented here, they are discussed
in [4]. A maximum search in wall-normal direction y is then performed at every
streamwise station x and for all frequencies f to yield A.x; f / D maxy.� /. Next, we
define A0. f / as the amplitude where the growth curve A.x; f / for each frequency
f enters the unstable region, i.e., starts to grow. From this we obtain normalised
amplitude growth-curves n D ln.A.x; f /=A0. f // like those which are plotted in
Fig. 10. The envelope curve N.x/ which is indicated by the red line in the figure
is the so-called N-factor curve then.

Quantification of the influence of surface roughness is thereafter performed by
comparing the N-factor curves for the flow over the smooth wall with the results for
the flow over the roughness, see Fig. 11. It turns out that the difference �N between
the two is not a constant but rather a function of x.

Figure 12 presents a comparison of N-factor curves for two Mach numbers,
Ma D 0:6 and Ma D 1:06 but for the same relative step height ReH D 2640.
The first difference between the two is the stronger disturbance growth in the flat-
plate boundary layer in the subsonic case that leads to generally higher N-factors
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Fig. 10 Evaluation of N-factor curve from amplitudes of simulation with optimized disturbance
excitation
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there. The next difference is the different qualitative behaviour in the presence of
the step. Two regions of amplification occur in the subsonic case and only one in
the supersonic. Both cases show a �N after the step that can be quantified from
the figure: �N � 2 in the subsonic and an approximately constant �N � 1:6

downstream of the step in the supersonic case.
Another striking qualitative difference between bot cases is that the subsonic

wave packet continues to grow after the step whereas its amplitude is reduced in
the supersonic case. However, in light of the above discussion of the streamwise
pressure gradient, together with the occurrence (or absence) of a second separation
bubble, this is not surprising but fully consistent with the observed qualitative
differences in the two base flows. Adverse pressure gradients (i.e., streamwise
pressure increase) and boundary-layer separation leads to increased disturbance
amplification, whereas flow expansion and streamwise pressure decrease, reduce
the disturbance amplitudes. Comparisons with linear stability theory have also
confirmed these results in a quantitative manner. Furthermore, all N-factor results of
the present research are published in [4–6]. They shall not be repeated here. Instead,
we present some more DNS results that go beyond the applicability of linear stability
theory and the N-factor method in the next section.
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3.3 Limits of the Present Approach: High Steps
in the Supersonic Regime

The influence of steps on laminar-turbulent transition has been represented by a
local additional �N-factor in the present study. Basis for this approach is the
simulation of a steady, two-dimensional baseflow (see Sect. 3.1). The time-accurate
DNS-code NS3D allows simulation of steady base flows for subsequent N-factor
calculations as shown above. However, when the height of the step exceeds a certain
value, new phenomena arise. These steps are in the following called “high steps”.
Differences are again found between sub- and supersonic cases, but we shall limit
our presentation here to the supersonic case at Ma1 D 1:06.

The required three-dimensional simulations are computationally extremely
expensive. Thus, only relatively few cases with high steps were simulated and
only a quite short description of the physical phenomena follows.

For flows at Ma1 D 1:06 and the step located at ReS D 2;450;000, a steady
baseflow is reached for step heights up to ReH D 7000 if a two-dimensional
simulation is conducted. At ReH D 9000, the simulation crashed after a while. A
grid refinement study would be necessary to clarify the situation in this case.

The baseflow for a case with a step height of ReH D 6000, located at ReS D
2;450;000 and Ma1 D 1:06 is visualized in Fig. 13. Compared to Fig. 6, used for the
description of supersonic base flows in Sect. 3.1, some differences are observable.
First, the separation bubble in front of the step is even bigger and has a relative
length of L1=H � 51. Second, a very small separation bubble on top of the step
emerges. However, this separation bubble is very small. The relative length of the
second bubble is only L2=H � 1=6 and the height of the region with negative
u-velocity is approximately 1=6H. Furthermore, a secondary separation zone is
observed within the separated zone in front of the step.

Fig. 13 Baseflow around step geometry for Ma1 D 1:06 with ReS D 2;450;000 and ReH D
6000. Region of reversed flow visualized by dashed line. y-direction stretched by factor 10
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Fig. 14 Snapshot of three-dimensional flow around step geometry for Ma1 D 1:06 with ReS D
2;450;000 and ReH D 6000. y- and z-directions stretched by factor 10. x-plane: w-contours with
21 contour levels between �5 �10�4 and 5 �10�4. �2 (vortex identification criterion [7]) isolines in
white. y-plane: Contours of !x at the walls. Twenty contour levels between �1 � 10�6 and 1 � 10�6 .
z-plane: u-contours with 21 contour levels between 0 and 1

This flow is now used as a baseflow for a three-dimensional simulation without
introduced disturbances. It is found that a spanwise (w) velocity component emerges
in front of the step and grows in time. As soon as the w-component exceeds
w � 0:001, the unsteady motion becomes visible in the other variables as well.
Soon thereafter, the secondary separation bubble disappears. Saturation of the w-
component seems to be reached at w � 0:05 which is found directly in front of the
step. However, in the time simulated, neither a steady nor a truly periodic state was
achieved.

A snapshot of the flow field at the last time step simulated is shown in Fig. 14.
Directly in front of the step, the separation bubble is highly three-dimensional with
all three velocity components being in the same order of magnitude. In the shown
plane just in front of the step, two main vortices can be seen. These are of extremely
short spatial extent as they are not visible after the step and the separation bubble
in front of the step gets increasingly two-dimensional in the upstream direction.
This fact is further illustrated by the streamline remaining two-dimensional in the
upstream region and becoming chaotic, three-dimensional directly in front of the
step. On top of the step, some weak streaky structures are visible. However, the
maximum w-velocity in the shown plane after the step is only w � 0:001 compared
to w � 0:02 in the displayed plane in front of the step. Together with a strong
u-component the flow is again nearly two-dimensional after the step.

The described state is only a snapshot and it is not clear whether a periodic or a
steady state will be reached if the simulation is continued. A comparable behaviour
is observed for a step height of ReH D 5000. Here, the secondary separation bubble
within the separated zone in front of the step is found as well, whereas the separation
on top of the step is missing. However, in this case, the w-velocity grows much
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slower and even though the simulation is run for twice as long, the maximum w-
component has only reached w � 0:015.

To check that the three-dimensional behaviour is not encountered in the ear-
lier supersonic cases used for the N-factor calculation, an additional full three-
dimensional simulation has been conducted for one of those. In that case, the
w-velocity stayed within the computational error with a maximum of w � 5 � 10�15.

4 Conclusions

The existing HPC-DNS code NS3D has been used to compute amplification
factors (N-factors) for boundary-layer flows over smooth walls and walls with
steps. Compressible cases with high subsonic and low supersonic Mach numbers
have been investigated. Many interesting and unexpected differences between the
supersonic and subsonic flow conditions have been detected. The most prominent
is the occurrence of different streamwise pressure gradients and flow fields with
different laminar separation bubbles. As these have a predictable influence on the
growth of disturbances which are precursors of laminar-turbulent transition, it turns
out that the additional amplification �N caused by a step relative to the smooth case
can be predicted if it is possible to compute the steady base accurate enough for
subsequent local linear stability analysis.

However, if the step height exceeds some critical value, new phenomena occur
which need to be studied further. Here, the observed unsteady flow occurring for
high steps at Ma1 D 1:06 was briefly described but the flow in this case is far
from being understood. The simulation was neither run long enough nor was the
influence of spanwise wave length studied. Furthermore, a two-dimensional linear
stability study as conducted by Robinet [16] for separation bubbles induced by
shock-wave/boundary-layer interaction is recommended.
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