High-Resolution Numerical Analysis
of Turbulent Flow in Straight Ducts
with Rectangular Cross-Section

Yoshiyuki Sakai and Markus Uhlmann

Abstract Turbulent secondary motion of straight open duct flows with a rectan-
gular cross-section was studied by means of direct numerical simulations, and the
unique mean flow patterns were analysed with the aid of instantaneous coherent
structure analysis for their Reynolds number dependence. Similar to the closed
duct counterparts, it was found that the mean streamwise vorticity pattern is
the statistical footprint of the most probable locations of the quasi-streamwise
vortices. Furthermore, the existence of tightly-concentrated vortices with preferable
rotational directions inside the mixed corners formed by no-/free-slip boundaries
was observed. Such flow structures correspond to the side-wall high-speed streaks
located directly on the free-slip plane, independently of Reynolds number, as well
as the following low-speed streaks reside approximately 50 wall units away from
the free-slip plane for friction Reynolds number larger than 200.

1 Introduction

Fluid flow in a straight duct with rectangular cross-section exhibits turbulence-
induced secondary motion of small amplitude (few percent of the bulk velocity),
but with large consequences for momentum, heat and mass transport; hence the
difficulties in experimental measurements and engineering significance co-exist.
Much of the previous attention was paid upon the closed duct configuration
with the square cross-section at marginal to moderate Reynolds numbers (e.g.
[7, 9], where high-resolution direct numerical simulations were performed up to
bulk Reynolds number of 3500). As a consequence, understanding in Reynolds
number dependence up to a point where the flow exhibits a clear scale separation
between near-wall structures and outer-scale structures still needs to be established.
Furthermore, thorough numerical investigations in aspect ratio dependence covering
a range over where the flow structures start to be detached from the side-walls,
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to the point where the side-wall influence vanishes at the duct centre need to be
achieved. Rigorous understanding in such phenomenon will, for instance, serve as a
theoretical backbone of wind/water-tunnel design in fluid labs, where the side-wall
effects need to be negligible at the measurement windows.

The corresponding open duct flow—featuring a free surface—is characterized
by a distinct secondary flow pattern, leading to such practically important effects
as the so-called “dip phenomenon”: the maximum of average streamwise velocity
is not found at the surface of a river, but somewhat below. Despite such practical
importance, understanding of open duct flows is less established than the closed-
duct counterpart.

In the present work, we investigate the mechanism of secondary flow formation
in open duct flows. Here, free-surface deformation is neglected by enforcing a
free-slip boundary condition on the top boundary. In the case of negligible surface
tension, this hypothesis amounts to requiring the Froude number to be sufficiently
small such that gravity effectively suppresses any significant deformation of the
surface. Particular emphasis in our analysis is placed upon the dynamics of coherent
structures and the consequences for Reynolds number and aspect-ratio scaling.

2 Numerical Methods

2.1 Algorithm and Implementation

For the purpose of current studies, the pseudo-spectral DNS code previously
used in the studies in closed square duct flows by Uhlmann et al. [9], Pinelli
et al. [7] and Sekimoto et al. [8] has been extended to incorporate the free-slip
boundary condition. The code integrates the Navier-Stokes equations by expanding
flow variables in terms of truncated Fourier series in the streamwise direction on
equidistant grid points, while Chebyshev polynomials are used in the two cross-
stream directions on collocated Chebyshev—Gauss—Lobatto points. A fractional
step method is employed in order to decouple the momentum equations from the
continuity constraint. The temporal integration is based on the Crank—Nicolson
scheme for the viscous terms and a three-step low-storage Runge—Kutta method
for the nonlinear terms. The 2D Helmholtz and Poisson problems for each Fourier
mode are solved by a fast diagonalisation technique. The code is MPI parallel and
the parallelisation of the pseudo-spectral algorithm is achieved by a global data
transpose strategy. A schematic of the data decomposition by slices is shown in
Fig. 1 and a cyclic communication pattern, which avoids communication cascade
and used for global data transpose, is illustrated in Fig.2. The cost of such
communication is 2 x (number of parallel process — 1) MPI send/receive calls
per data transpose per MPI process. Asynchronous communications are used to
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Fig. 1 “Slice” data decomposition strategy used for parallelisation of our DNS code
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Fig. 2 (a) A cyclic all-to-all communication pattern used for data transpose between “X-cut” and
“Z-cut” data decompositions (cf. Fig. 1), illustrated by an example of parallel execution model with
4 MPI processes. Each “P*” element represents individual MPI rank, while arrows show data flow
by MPI communications. (b) Top view of the above example’s domain. Sub-domains surrounded
by solid lines (coloured in light gray) are the overlapped regions between “X-cut” and “Z-cut”
of each MPI process, hence no communication is required. Any other areas are required to be
communicated to other MPI processes. An example of such communications for the MPI process
“P0” is illustrated
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minimise the communication overhead. It should be noted that this parallelisation
strategy is standard in spectral methods applied to plane channel flows.

2.2 Code Performance

In order to demonstrate the efficiency of our DNS code, we have carried out strong
scaling tests on CRAY XC40 HORNET at HLRS (cf. Table 1, Fig. 3). The results
show that for the chosen problem size (approx. 103 modes), the code maintains a
good parallel efficiency up to several hundred cores. With roughly 10° modes per
processor core we obtain the desired efficiency of > 65 % over a range of system
sizes, at a cost of approx. 3 s per full Runge-Kutta timestep.

Table 1 Strong scaling tests with the modal resolution of M, = 3075, M, = 33, M. = 1025

nproc
1

5

25

41
205
1025

parallel efficiency [%]

Walltime/ Para. efficiency
timestep (sec) Speed-up (%)
427.76 1.00 100
99.19 4.31 86
22.73 18.82 75.28
15.54 27.53 67.15
3.12 137.10 66.89
2.21 193.56 19
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Fig. 3 Parallel efficiency for two numbers of Chebyshev modes in y-direction: M, = 33, open
circle in blue ; M, = 67, plus symbol in red. The number of modes in the x-/z-direction are fixed
at M, = 3075 and M, = 1025 respectively. The runs were performed on Cray XC40 HORNET at

HLRS
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2.3 Simulations

Wall-bounded turbulent flows—such as channel flow and boundary layers—
suffer from severe near-wall grid resolution requirements as the Reynolds number
increases. In the duct geometry, such requirement is even more demanding since the
side-wall boundary layers also need to be resolved. Two kinds of Reynolds numbers
need to be introduced for convenience hereafter, namely: bulk Reynolds number
(Rep, = Uyh/v, formed with the bulk velocity Uy, the duct semi-(full-) height h(H)
and the kinematic viscosity v); and friction Reynolds number (Re;, = u h/v or
Re, = u.H/v, where u, is the friction velocity defined as u, = /1,,/p with the
wall shear stress 7,, averaged in time and space on no-slip walls, and the constant
density p). Please note that we always use 4 to normalise length scales in the bulk
unit in the closed duct configuration, while H is used in the open duct configuration,
unless stated otherwise. In the current studies, we chose the grid resolutions to
satisfy Axt < 15.0; Ayt Azt < 4.0, where the superscript ‘+’ stands for
wall units: [T = 1/§, with §, = v/u, the viscous length scale. The corresponding
Ay(z)}. values remained to be smaller than 0.06. CFL number is maintained to
be always under 0.3. Numerical box size of our simulations has a fixed streamwise
length L,/h = 4x for closed ducts, and L,/H = 87 for open ducts respectively.
The box size in y-direction is also fixed at L,/h = 2 and L,/H = 1, while the
size in z-direction is varied according to the aspect ratio (A = W/h for closed
ducts, A = W/H for open ducts) of our interests. Please refer to Fig.4 for a
schematic of the domain dimensions. It is also essential to note that the statistical
data are averaged over a sufficiently long time interval which can be estimated
as approximately 10,000 bulk time units (a bulk time unit is defined as h/U,, or
H/Up).

More than 30 separate simulations have been performed so far to cover a
wide range of parameter space necessary for the current studies (cf. Fig.5). The
total amount of the generated data is approximately 15 TB, including several

L,=2W +W

-w L=2W +W

Fig. 4 Coordinates system and geometry of: (a) closed; and (b) open duct



306 Y. Sakai and M. Uhlmann

10000

8000
A
A
6000 | 4
A
o®
@
2000 | O @
®
©O8 a A
[ ] [ ] [ ]
1 O @ @ @®
2000 5 X
o . . . .
0 2 4 6 8 10

Fig. 5 Parameter map of duct DNS simulations. The red symbols represent the simulations for
the current study, while the blue symbols represent the previous studies by: [1, 3, 7, 9, 10]
for closed duct; [4] for open duct. Open and filled symbols represent open and closed duct
configurations respectively, while the shape of the symbols shows whether those runs’ statistics
are fully converged (circle), or not (triangle)

“o”

Table 2 Representative examples of simulations. In the “Type” column, indicates open duct,

while “c” indicates closed duct

Type A Rey, (M, .M,,M_] Machine nproc Walltime
o 1.0 2205 [256,97,193] HERMIT 32 1 month

o 2.0 2205 [256,97,385] HERMIT 64 1.5 months
o 4.0 2205 [256,97,769] HERMIT 64 3.5 months
o 8.0 2205 [256,97,1153] HORNET 48 3 months
o 1.0 3000 [384,97,193] HORNET 48 1 month

o 1.0 5000 [512,129,257] HORNET 96 1.5 month
o 1.0 6500 [768,193,385] HORNET 96 6 months
c 2.0 2205 [193,129,257] HERMIT 32 1.5 month
c 4.0 2205 [193,129,513] HERMIT 64 2 months

c 8.0 2205 [193,129,1025] HERMIT 64 4 months
c 1.0 4000 [512,257,257] HORNET 96 5 months

c 1.0 6000 [768,385,385] HORNET 120 12 months

thousands instantaneous flow fields necessary for scientific visualisations as well
as coherent structure analysis and its statistics discussed in the following section.
Some representative simulation configurations are summarised in Table 2 including
spatial resolution, number of processors and typical walltime to complete such
simulations.
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As it is mentioned in Sect. 2.2, our DNS code maintains a good parallel efficiency
up to several hundred cores. However, since queueing time for reserving such
number of cores was inconveniently long, we have utilised only up to 120 CPUs in
order to maximise the throughput of our simulations. In total 3.45851 million core-
hours of computational time was granted for Cray XE6 HERMIT (used: 100 %);
while computational time of 6.359745 million core-hours was granted for Cray
XC40 HORNET (used: 53 %). The estimated percentage of usage for HORNET
at the end of the current project period (31st May 2015) at the current rate of
throughput is around 72 %.

3 Results and Discussions

3.1 Coherent Structure Analysis on Open Duct Flows

We have identified the centres of vortical structures by the technique proposed
by Kida and Miura [5] for the open duct case at bulk Reynolds number Re, =
2205 with the aspect ratio set at unity. It was found that the mean streamwise
vorticity pattern in the turbulent open duct flows is the statistical footprint of
the most probable locations of the quasi-streamwise vortices, similarly to the
corresponding closed duct cases (cf. Fig.6, also [7, 9]). There is, however, a
significant difference between the open and the closed duct statistics, which is
the tightly-concentrated vortices with preferable rotational directions that exist in
the mixed-boundary corners. Our results show that those vortices persist in the
mixed-boundary corners much more likely than anywhere else in the duct domain.
By considering streaks as byproducts of those near-wall vortices, our finding is
consistent with the existence of statistically highly concentrated near-free-surface
low-speed streaks found experimentally by Grega et al. [2] (cf. their Fig. 12).

3.2 Reynolds Number Dependence in Open Duct Flows

Gavrilakis [1] demonstrated with their direct numerical simulations of square
closed duct flow (Re, = 2205) that there is an ambiguity on the selection of the
normalisation velocity scale for the near-wall dynamics. The ambiguity is caused
by the fact that, unlike canonical plane channel flows, the average wall friction has
a variation along the duct perimeter due to the mean secondary flow. Gavrilakis
[1] highlighted this aspect of duct flows by studying the mean streamwise velocity
profile along the wall bisector in logarithmic scale, and argued that the local friction
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Fig. 6 Probability of occurrence of vortex centres for the open duct case with Re, = 2205,
detected by the technique proposed by Kida and Miura [5]. (a) vortices with positive streamwise
vorticity; (b) negative streamwise vorticity; and (c) the difference between (a) and (b). The iso-
contours indicate 0.1(0.1)0.9 times the maximum values (except (¢) where —0.9(0.1)0.9 times the
maximum absolute value is used instead. Negative values correspond to vortices with negative
vorticity). The statistics in (a)—(c) were accumulated from 1000 instantaneous snapshots over a
time interval of 721.5H/U,. (d) Mean streamwise vorticity contours indicate —0.9(0.1)0.9 times
the maximum absolute value where red and blue lines correspond to positive and negative values,
respectively. The vorticity field was averaged over a time interval of 8000H /U,

Table 3 Numerical set-up of A |Rey, |Re
the open duct simulations -
discussed in Sect. 3.2

M, ,M,,M]
1.0 | 1500 | 104 | 113 25697193]

(Re )visector | [

[

1.0 {2205 | 150 | 170 [256,97,193]
[

[

1.0 {3000 | 197 | 218 384,97,193]
1.0 |5000 |309 |330 512,129,257]

velocity should be used for the quantities within the viscous sublayer, while the
global friction velocity is more appropriate for the quantity near the duct centre.
However, as it was pointed out by Huser and Biringen [3], Gavrilakis’ data also show
a closer fit to the law of the wall (u™ = ol 41 logy™ +5.5) in the logarithmic region if
the local friction velocity is used throughout for normalisation. Please also note that
[6] experimentally determined a Reynolds number-independent logarithmic relation
wt = T2 4 5 log yT + 5.29) from their open duct measurements.

We analysed four of our open duct simulations with Reynolds numbers Re;, =
1500, 2205, 3000, 5000 and aspect ratio A = 1 (cf. Table 3 for the configurations)
and the results agree well with such observation except the lowest Reynolds number
case, whose logarithmic region does not exist (cf. Fig.7). Furthermore, it was
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Fig. 7 Mean streamwise velocity in logarithmic scale. Symbols indicate the bulk Reynolds
numbers: triangle, Re, = 1500; open circle in blue, Re, = 2205; diamond symbol in red,
Re, = 3000; plus symbol in green, Re, = 5000. Solid lines indicate the values normalised by the
global friction velocity u,, while dotted lines indicate the values normalised by the local friction
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Fig. 8 Mean local wall shear stress normalised by the average over the whole no-slip walls, along
(a) bottom wall and (b) side walls (the origin has been translated to the corner). Symbols indicate
the bulk Reynolds numbers: triangle, Re, = 1500; open circle in blue, Re, = 2205; diamond
symbol in red, Re;, = 3000; plus symbol in green, Re, = 5000

observed that the discrepancy between the two scalings reduce as Reynolds number
increases. This phenomenon can be explained by studying the distribution of the
mean wall shear stress along the duct bottom wall shown in Fig.8a. It can be
seen that by increasing Reynolds number, the local variation of the bottom wall
shear stress becomes smaller and develops a channel-like plateau around the bottom
wall bisector. Furthermore, examining the number of extrema of the bottom wall
shear stress profile shown in Fig. 8a shows that the Re, = 1500 case exhibits a
three velocity streaks state (high-, low-, and high-speed streaks arrangement, as
discussed in [7]), while the Re, = 2205 case’s profile indicates a five streaks
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state. The highest Reynolds case, whose bottom-wall shear profile has a plateau
around the wall bisector, can theoretically host up to thirteen streaks. However, at
this high Reynolds number, the middle-wall streaks travel more freely and randomly
in contrast to the quasi-permanent high-speed streaks residing next to the bottom
wall corners (mean distance from the closest side wall &~ 50 wall units [7]), thus
less significant signatures result in the mean wall-shear profile.

In contrast to the bottom wall statistics behaving similarly to the closed duct
counterparts, the open duct side walls host distinctive features especially near
the corners formed by no-/free-slip boundaries. Such differences are apparent, for
example, by examining the wall shear stress along the side walls shown in Fig. 8b.
Here, we observe the signatures of existence of the nearest high-speed streak from
the free-slip plane to appear directly on the plane. The positions of the following
low-speed streaks appear to move away from the free-slip plane as Reynolds number
increases, then settle down at approximately 50 wall units (i.e. d© ~ 50) for
Rep, > 3000 with L;r =1L,/8, = 200.

The time evolutions of the instantaneous low-speed streak locations, determined
as the location of the minimum wall shear stress, are plotted for the three Reynolds
numbers in Fig. 9. Please note that data from Re;, = 1450 had to be used here instead
of Re, = 1500, due to the availability of such large number of instantaneous data.
It can be observed that the amplitude of the streaks’ lateral movement are much
more restricted and therefore their paths are significantly more distinguishable than
the ones from the bottom wall, which appear similar to the ones previously studied
for closed ducts (cf. [7] their Fig. 6). Regarding the side-walls, the corresponding
probability density function of the distance from the free-slip plane is shown in
Fig. 10, illustrating that the locations of their peaks are actually at similar distances
at all Reynolds numbers (d* = 25), but the tails of the distribution develop away
from the free-slip plane as Reynolds number is increased, which brings the averaged
location of the low-speed streaks away from the plane up to ~ 50 wall units for high
enough Reynolds numbers.

4 Conclusions and Outlook

We have performed a series of direct numerical simulations both in the open and the
closed duct configurations with variable Reynolds number and aspect ratio.

Our coherent structure analysis revealed that, likewise in turbulent closed duct
flows, the mean streamwise vorticity pattern in turbulent open duct flows is the
statistical footprint of the most probable locations of the quasi-streamwise vortices.
The same analysis also revealed the existence of tightly-concentrated vortices with
preferable rotational directions in the corners formed by no-/free-slip boundaries.

Those in-corner vortices and their corresponding low-speed streaks are later
demonstrated to be the main players of distinctive features on the duct side walls,
such as the unique wall shear stress profile whose peak laying directly on the free-
slip boundary.
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Fig. 9 Time evolution of position of minimum of the wall shear stress at z/H = 1, x/H = 0. (a)
Re, = 1450; (b) Re, = 2205; (¢) Re, = 3000
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Fig. 10 Probability density 0.14
function of low speed streak

distance from the free-slip 0.12 |
plane (d 1), computed '
considering the instantaneous
location of the minimum
value of wall skin friction.
Symbols indicate the bulk 0.08 1
Reynolds numbers: triangle,

Re;, = 1450; open circle in 0.06 1
blue, Re, = 2205; diamond

symbol in red, Re;, = 3000 0.04 1
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Results regarding other aspects of turbulent duct flows that are not reported here,
including variable aspect ratio effects on open/closed duct flows, as well as closed
duct flows with Reynolds numbers significantly higher than previous studies, will
be discussed in details in other forms of publication in near-future elsewhere.

Overall, the outcomes of our current project at HLRS has been fruitful. However,
computing high Reynolds number duct flows with high aspect ratio is still a
challenge even with the aid of sophisticated HPC facilities such as Cray XC40
HORNET. Alongside the severe spatio-temporal resolution requirements mentioned
earlier, the main difficulties arise from the limited flexibility of Chebyshev-Gauss-
Labatto point distribution used in spatial discretisation in the cross-stream direc-
tions, which let us tweak only one parameter, namely number of grid points for each
direction. As a consequence, near-wall regions are in general over-resolved in order
to maintain adequate resolution around the duct core region, where Chevyshev-
Gauss-Lobatto points have the coarsest distribution, which carries severe timestep
size restriction thus slower computations. To cope with such challenges by obtaining
better grid-design freedom while maintaining spectral accuracy, our DNS code is
currently under a major upgrade with a use of spectral element spatial discretisation
method in the cross-stream directions. The upgraded code would not only enable
us to compute higher Reynolds number/aspect ratio duct flows efficiently, but also
to incorporate wall-roughness elements as well as angled duct side walls within
our simulations, which are of great interest to civil/environmental engineering
applications.
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