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Abstract We report on our calculation of the equation of state of Quantum
Chromodynamics (QCD) from first principles, through simulations of Lattice QCD.
We use an improved lattice action and Nf D 2 C 1 C 1 dynamical quark flavors and
physical quark mass parameters. Now, we are in a position to present first results at
Nt D 12.

1 Introduction

The aim of our project is to compute the charmed equation of state for Quantum
Chromodynamics (for details, see [1]). We are using the lattice discretized version
of Quantum Chromodynamics, called lattice QCD, which allows simulations
of the theory through importance sampling methods. Our results are important
input quantities for phenomenological calculations and are required to understand
experiments aiming to generate a new state of matter, called Quark-Gluon-Plasma,
such as the upcoming FAIR at GSI, Darmstadt.

Our simulations are performed using so-called staggered fermions. In the
continuum limit, i.e. at vanishing lattice spacing a, one staggered Dirac operator
implements four flavors of mass degenerate fermions. At finite lattice spacing,
however, discretization effects induce an interaction between these would be flavors
lifting the degeneracy. The “flavors” are, consequentially, renamed to “tastes”,
and the interactions are referred to as “taste-breaking” effects. Even though the
tastes are not degenerate, in simulations one takes the fourth root of the staggered
fermion determinant to implement a single flavor. This procedure is not proven to be
correct—however, practical evidence suggests that is does not induce errors visible
with present day statistics.
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Fig. 1 RMS pion mass for
different staggered fermion
actions, in the continuum
limit
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Taste-breaking is most severely felt at low pion masses and large lattice spacing,
as the pion sector is distorted through the taste-breaking artifacts: there is one
would-be Goldstone boson, and 15 additional heavier “pions”, which results in
an RMS pion mass larger than the mass of the would-be Goldstone boson. This
effect is depicted in Fig. 1 for different staggered type fermion actions. As can be
seen for this figure, the previously used twice stout smeared action (“2stout”) has
a larger RMS pion mass and thus taste-breaking effects than the HISQ/tree action.
If, however, the number of smearing steps is increased to four, with slightly smaller
smearing strength (“4stout”), the RMS pion mass measured agrees with that of the
HISQ/tree action. In order to have an improved pion sector, we, therefore, opted to
switch to this new action and to restart our production runs.

So far, the equation of state is known only in 2+1 flavor QCD. Here, the status
of the field is marked by our papers on the Nf D 2 C 1 equation of state [2, 3] (see
Fig. 2). The contribution from the sea charm quarks most likely matter at least for
T > 300–400 MeV (for an illustration, see Fig. 3).

1.1 Reference Point: The Nf D 2C 1 Equation of State

In [3] we have presented the first full calculation of the Nf D 2 C 1 Equation
of State (EoS) of Quantum Chromodynamics (QCD) (still using our 2stout action).
This result is the reference point for our calculation of the charmed EoS, and already
included one continuum extrapolated result at T D 214 MeV for the trace anomaly
using our new lattice action including a dynamical charm quark (Nf D 2 C 1 C 1).
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Fig. 2 Left:The trace anomaly as a function of the temperature. The continuum extrapolated result
with total errors is given by the shaded band. Also shown is a cross-check point computed in the
continuum limit with our new and different lattice action at T D 214 MeV, indicated by a smaller
filled red point, which serves as a crosscheck on the peak’s hight. Right: Setting the overall scale
of the pressure: integration from the infinitely large mass region down to the physical point using
a range of dedicated ensembles and time extents up to Nt D 16; the sum of the areas under the
curves gives p=T4 . This result could be used for the cEoS normalization as well (see text)
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Fig. 3 Left: Laine and Schroeder’s perturbative estimate of the effect of the charm in the QCD
equation of state [4]. Right: Wuppertal-Budapest [2] and perturbative (up to O.g5/) results for the
equation of state

As visible in Fig. 2, at this temperature the charm quark is not yet relevant, since
the Nf D 2 C 1 C 1 (continuum) data point falls right onto the (continuum) Nf D
2 C 1 curve. Below this temperature, we can compare the results with and without
dynamical charm and can even use the Nf D 2 C 1 results to renormalize the Nf D
2 C 1 C 1 curve [5, 6].
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2 Progress for the Charmed Equation of State

The Nf D 2C1 lattice results mentioned in the previous section agree with the HRG
at low temperatures and are correct for the small to medium temperatures, and,
as is shown in Fig. 3, at temperatures of about 1 GeV perturbative results become
sufficiently precise. Therefore, we need to calculate the EoS with a dynamical charm
only for the remaining temperatures in the region of approximately 300 MeV < T <

1000 MeV.
We are using our 4stout lattice action for these calculations. The crosscheck point

shown in Fig. 2 was computed using this new action. Since it perfectly agrees with
the Nf D 2 C 1 results, even though it was computed using a dynamical charm, we
can be certain that at temperatures at and below T D 214 MeV, we can rely on the
Nf D 2 C 1 results.

Our preliminary results are shown in Fig. 4, all errors are statistical only. Our
results span a region of temperatures from T D 214 MeV up to T D 1:2 GeV. At
the low end we make contact to the Nf D 2 C 1 equation of state, and at large
temperatures to the HTL result. Thereby, we cover the full region of temperatures,
from low temperatures, where the HRG gives reliable results, to high temperatures,
where we make contact with perturbation theory. The figure contains new data
points at Nt D 12 generated in the last period.
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Fig. 4 Left: Preliminary results for the charmed EoS. For comparison, we show the HRG result,
the Nf D 2 C 1 band, and, at high Temperatures, the HTL result [7], where the central
line marks the HTL expectation for the EoS with the band resulting from (large) variations of
the renormalization scale. Right: Preliminary result for the pressure, errors indicate the Stefan-
Boltzmann value. All errors are statistical only
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2.1 Line of Constant Physics

With the switch to a new lattice action comes the need to (re-) compute the LCP.
In order to be able to reach large temperatures (ˇ > 4), we have extended these
calculations since the last report. Since we would like to span the temperature range
from approximately 300 MeV < T < 1000 MeV, we have to compute the LCP
for a large range of couplings or lattice spacings. We split this range up in three
overlapping regions (since we have to make sure that the derivative is smooth)
according to the applicable simulation strategies.

At medium to coarse lattice spacings (region I) one can afford to use spectroscopy
to tune the parameters. This is shown in Fig. 5. Here, we bracketed the physical point
defined through M�=f� and .2MK �M� /=f� and, through interpolation, tune the light
and strange quark masses to per-mill precision.

Using the parameters computed in this way, we then performed simulations on
JUROPA at the SU(3) flavor-symmetrical point [8], extrapolating the results to our
target couplings. There, we tuned the parameters to reproduce the extrapolated
results. Since the quark masses are larger than physical, such simulations are
considerably less costly than using spectroscopy as for region I, and we are thus
able to compute a precise LCP down to fine lattice spacings of a D 0:05 fm (region
II), where the HMC starts being affected by the freezing of topology (Fig. 6).
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Fig. 5 Region of the LCP, for coarse to medium lattice spacing (a > 0:08 fm). Here, dedicated
simulations bracketing the physical point archive a sub-percent accuracy for the LCP. Left:
Bracketing of the physical point defined through M�=f� and .2MK � M�/=f� . The strange quark
mass is tuned (ms=ml is not fixed) and the ratio of the charm to strange quark mass is set at
mc=ms D 11:85. Right: LCP computed through spectroscopy
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Fig. 6 Using the LCP computed from spectroscopy for coarse to medium lattice spacings (region
I), dedicated simulations in the SU(3) flavor-symmetrical point [8] using these parameters are
extrapolated towards the continuum. At the target coupling, the parameters are tuned until they
reproduce the extrapolated value. In this way the LCP is extended to medium to small lattice
spacings of 0:08 > a > 0:05 fm (region II)

For finer lattice spacings we thus used our established step scaling procedure [3]
based on the w0 scale. To this end, we computed the observable

O D t
d

dt

�
t2E.t/

�
ˇ
ˇ̌
ˇ
0:01L2

at three different lattice spacings (a0, a1, a2) and volumes (164, 204, 244) chosen
to keep the physical volume fixed, extrapolated to a3 D 24=32a2, and tuned the
coupling to match the extrapolated result. Using this method, we extended the LCP
to very fine lattice spacings with a < 0:05 fm (region III).

2.2 Additional Results

In another effort, we calculated the neutron-proton and other mass splittings from
first principles [9], using simulations of the combined theories of Quantum Electro-
and Quantum Chromodynamics. Here, we used Hermit for valence calculations,
i.e. we analyzed configurations generated elsewhere, computing the mass difference
for a number of different bare parameters. The complete result is shown in Fig. 7.
Due to the long range nature of Quantum Electrodynamics (QED) these simulations
face significant finite-size effects, inducing shifts in the results considerably larger
than the signal. Through analytical calculations (see SOM of [9]), we were able to
predict and thus subtract these effects. Another important step was the development
of a new update algorithm for the QED, which reduced the autocorrelation by more
than 2 orders of magnitude.
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Fig. 7 Left: Mass splittings. The horizontal lines are the experimental values and the grey shaded
regions represent the experimental error. Our results are shown by red dots with their uncertainties.
Splittings which have either not been measured in experiment or are measured with less precision
than in our calculation are indicated by a blue shaded region around the label. Right: Finite-volume
behavior of kaon masses. (A) The neutral kaon mass, MK0 , shows no significant finite volume
dependence; L denotes the linear size of the system. (B) The mass-squared difference of the charged
kaon mass, MKC , and MK0 indicates that MKC is strongly dependent on volume. This finite-volume
dependence is well described by an analytical results [9] (Figures taken from Science 347 1452,
reference [9]. Reprinted with permission from AAAS.)

3 Production Specifics and Performance

Most of our production is done using modest partition sizes, as we found these to
be most efficient for our implementation.
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3.1 Performance

Our code shows nice scaling properties on HERMIT and HORNET. For our scaling
analysis below, we used two lattices (Ns D 32 and 48) and several partition sizes up
to 256 nodes (HERMIT). We timed the most time consuming part of the code: the
fermion matrix multiplication. The results are summarized in the following table:

No. of nodes Gflop/node Ns D 32 Gflop/node Ns D 48

1 16.3 15.4

2 16.8 16.0

4 16.5 16.2

8 16.3 16.3

16 16.3 16.3

32 16.8 16.0

64 17.1 16.5

128 19.2 16.5

256 16.3 16.0

Test show that our scaling on HORNET is similarly good - however at a higher
performance of � 22 and � 21 Gflop/s for the Ns D 32 and Ns D 48 lattices,
respectively.

3.2 Production

Given the nice scaling properties of our code, we were able to run at the sweet spot
for queue throughput, which we found to be located at a job size of 64 nodes. Larger
job sizes proved to have a scheduling probability sufficiently low that benefits in
the runtime due to the larger number of cores were compensated and the overall
production throughput decreased. We, therefore, opted to stay at jobs sizes with 64
nodes.

4 Outlook

We believe we will be able to publish within the year. HERMIT and HORNET have
proved to be essential tools enabling us to achieve this goal.
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