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Preface

Welcome to the proceedings of the 10th edition of the Augmented Reality for
Computer-Assisted Interventions (AE-CAI) workshop. We are pleased to present the
proceedings of this exciting workshop held in conjunction with MICCAI 2015 on
October 9, 2015, in Munich, Germany.

The event was jointly organized by scientists from Rochester Institute of Tech-
nology (Rochester, NY, USA), National Institutes of Health and National Library of
Medicine, and the Technical University of Munich (Munich, Germany). In addition, a
Program Committee consisting of more than 70 international experts served as
reviewers for the submitted papers.

The objective of the AE-CAI workshop was to attract scientific contributions that
offer solutions to the technical problems in the area of augmented and virtual envi-
ronments for computer-assisted interventions, and to provide a venue for dissemination
of papers describing both complete systems and clinical applications. The community
also encourages a broad interpretation of the field – from macroscopic to molecular
imaging, passing the information on to scientists and engineers for the development of
breakthrough therapeutics, diagnostics, and medical devices, which can then be
seamlessly delivered back to patients. The workshop attracted researchers in computer
science, biomedical engineering, computer vision, robotics, and medical imaging. This
meeting featured a single track of oral and poster presentations showcasing original
research engaged in the development of virtual and augmented environments for
medical image visualization and image-guided interventions.

In addition to the proffered papers and posters, we were pleased to welcome as
keynote speaker Dr. Simon Weidert (Ludwig Maximilian University, Munich, Ger-
many) speaking on the development, clinical integration, and commercialization of
computer-assisted surgery and simulation technology at the intersection of medicine
and computer science.

AE-CAI 2015 attracted high-quality paper submissions from seven countries. The
submissions were distributed for review to the Program Committee and each paper was
evaluated, in a double-blind manner, by at least three experts, who provided detailed
critiques and constructive comments to the authors and workshop editorial board.
Based on the reviews, 15 papers were selected for oral and poster presentation and
publication in these proceedings. The authors revised their submissions according to
the reviewers’ suggestions, and resubmitted their manuscripts, along with their
response to reviewers, for a final review by the volume editors (to ensure that all
reviewers’ comments were properly addressed) prior to publication in this collection.

On behalf of the AE-CAI 2015 Organizing Committee, we would like to extend our
sincere thanks to all Program Committee members for providing detailed and timely
reviews of the submitted manuscripts. We also thank all authors, presenters, and
attendees at AE-CAI 2015 for their scientific contribution, enthusiasm, and support.



We hope that you all will enjoy reading this volume and we look forward to your
continuing support and participation in our future AE-CAI events.

August 2015 Cristian A. Linte
Ziv Yaniv

Pascal Fallavollita
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Ultrasound-Guided Navigation System
for Orthognathic Surgery

Beatriz Paniagua1(&), Dženan Zukic2, Ricardo Ortiz2,
Stephen Aylward2, Brent Golden3, Tung Nguyen3,

and Andinet Enquobahrie2
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Abstract. Around 1–2 % of the US population has craniofacial deformities
severe enough to be disabling and stigmatizing, and could benefit from
orthognathic surgery. This surgery involves repositioning the jaws, due to the
unique features of each patient’s teeth, jaws, and joint. Approximately 20 % of
patients who had mandibular advancement surgery experience moderate relapse
1–5 years after surgery. We believe ultrasound is a promising imaging tech-
nology for orthognathic surgery guidance that can assist surgeons to visualize
the condyle/ramus segment in order to guide it into its pre-surgical, biologically
stable position. This paper explores the role of 3D ultrasound imaging as a
real-time surgical guidance to improve treatment outcomes for orthognathic
surgery. This paper shows our work designing a 3D ultrasound volume recon-
struction system and our results demonstrating its ability to capture the bony
structures of the mandible, compared with those structures reconstructed from
pre-surgical Cone Beam Computed Tomography (CBCT).

Keywords: Ultrasound � Computer guided interventions � Orthognathic
surgery � Cone beam computed tomography

1 Introduction

Around 1–2 % of the US population has craniofacial deformities severe enough to be
disabling and stigmatizing, and could benefit from reconstructive surgery [1]. If left
untreated, craniofacial deformities can produce physical problems such as speech,
respiratory and masticatory problems, and psychosocial problems such as teasing,
stereotyping or bullying [2, 3]. Correction of these deformities using orthognathic
surgery involves precise repositioning of the jaws, due to the unique features of each
patient’s teeth, jaws, and joint.

© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 1–10, 2015.
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Surgical techniques have improved over the past 50 years decreasing post-operative
complications. The introduction of 3D imaging techniques [4–7] and 3D splint fabri-
cation [8] have improved aesthetic and functional outcomes. However, skeletal surgical
relapse, which relates to the return of bony tissues to their pre-surgical state, still
remains a problem. Approximately 20 % of patients who had mandibular advancement
surgery experience moderate relapse 1–5 years after surgery [9]. A major factor in
post-operative relapse lies with the inability to precisely relocate the temporoman-
dibular joint in the exact pre-operative position.

Ultrasound (US) imaging has attracted the attention of researchers in the dental and
cranio-maxillo facial surgery fields since it is a non-invasive, non-ionizing imaging
technology that is inexpensive and readily available. Recent studies show that it has
been used in the assessment of facial soft tissues before and after orthognathic surgery
[10]. Ultrasound has been also employed to capture position of the temporomandibular
joint (TMJ) as well as its dynamic properties during movement [11–14].

We believe ultrasound is a promising imaging technology for orthognathic surgery
guidance. This imaging technology, combined with real-time 3D registration tech-
niques can assist Oral Maxillofacial Surgeons during surgery to visualize the
condyle/ramus segment in order to guide it into its pre-surgical, biologically stable
position. Having the condyle/ramus segment is in its biologically stable position can
potentially reduce surgical relapse and improve treatment outcomes.

This paper presents the preliminary results we obtained by exploring the role of
real-time surgical guidance using 3D ultrasound imaging to improve treatment out-
comes for orthognathic surgery.

2 Materials

2.1 CBCT

Cone-beam CT (CBCT) images are acquired for comparison with ultrasound recon-
structions using the New-Tom 3G scanner (AFP Imaging, Elmsford, NY). The imaging
protocol involves a 36-second head CBCT scan with a 12-inch field of view. After the

Fig. 1. A patient with a Class III dentofacial deformities requiring orthognathic surgery.
Pre-operative CBCT (A) and post-operative CBCT (B) are shown.
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images are acquired, the next step is image segmentation, where the anatomical
structures of interest are identified and delineated in the CBCT image. In orthognathic
surgery, the goal of segmentation is to obtain a 3D representation (surface model) of
the hard tissue that is essential for virtual planning. Currently available 3D image
analysis software tools utilize manual, semi-automatic and/or fully automatic seg-
mentation techniques (Dolphin [15], 3DMD Vultus [16] and Maxillim [17]). Automatic
segmentation, which relies on greyscale thresholding algorithms, does not offer the best
results for virtual surgery planning, since different bony structures in the mandible have
different bone density and thickness. The condyles often have thin, less dense bone
compared the ramus or body of the mandible. Therefore an automated threshold level
that accurately reproduces the 3D surface structure of the ramus, will not capture the
anatomic details of the condyles or vice versa.

To best capture all the relevant structures for orthognathic surgery, we used the
semi-automatic segmentation procedures provided by OrthognathicTrac. Orthogna-
thicTrac is a 3D Slicer based GUI application that is customized for surgical planning
of orthognathic surgery (Fig. 1). OrthognathicTrac is designed for ultrasound 3D
reconstruction and CBCT segmentation, and as a platform to easily deploy new
algorithms. After obtaining the segmentation result, manual post-processing is neces-
sary to remove common artifacts resulting from metallic elements. After segmentation
of the anatomical structures of interest, OrthognathicTrac allows a 3D display of the
anatomical areas directly from the volume data.

2.2 Ultrasound

For 3D ultrasound volume acquisition, we built a tracked 3D freehand ultrasound
image acquisition system. This acquisition system consists of multiple components.
The major components are the 2D ultrasound probe, a tracking device and tracked
markers, and a computer for image processing, storage and display (Fig. 2). In this
project, we used the MicronTracker H40 (passive optical tracker from ClaroNav, 1140
Sheppard Avenue West, Unit 10, Toronto, M3 K 2A2 Ontario, Canada) and TeleMed

Fig. 2. Left: OrthognaticTrac graphic user interface. Right: A 3D tracked ultrasound acquisition
set-up consist of computer, optical tracker and ultrasound probe.

Ultrasound-Guided Navigation System for Orthognathic Surgery 3



LogicScan 128 ultrasound scanner with probe model LV7.5/60/128Z-2 (60 mm long
8 MHz linear probe from Telemed, Dariaus ir Gireno str. 42, Vilnius LT-02189,
Lithuania).

The goal is to acquire multiple 2D ultrasound scans and their corresponding
tracking information to create a 3D ultrasound volume. The 3D Ultrasound volume
acquisition involves two phases (1) Calibration and (2) Data acquisition and
reconstruction.

Calibration: US system calibration involves 4 steps i.e. Stylus calibration, phantom
registration, temporal calibration and then spatial calibration, and it needs to be per-
formed once. During the stylus calibration step, we compute the coordinate transfor-
mation from the stylus tip to the tracker fiducials. For this we use a pivot-calibration
algorithm, that first places the stylus in a position that allows the tip of the needle to
remain stationary and for all of tracker fiducials to be seen by the camera, then swivels
the stylus (tip remains stationary) until enough points are collected and finally runs a
pivot calibration algorithm to compute the transformation between stylus and tracker
fiducials. The phantom registration step’s goal is to compute the coordinate trans-
formation between the tracker and the phantom model, by identifying pre-designated
reference points on the phantom and record the location using the stylus and then
running landmark registration to compute the transformation. The temporal calibration
step computes the time lag of the US probe’s tracker stream relative to the US video
stream. Finally, the spatial calibration step determines the coordinate transformation
between the ultrasound probe and the image, by scanning the calibration phantom in a
water bath. For this, we use N-wire calibration phantom in which threads forming a
shape like uppercase letter N are attached to a 3D printed plastic template.

The probe calibration and 3-D volume construction software were developed using
the Public software Library for Ultrasound Imaging research (PLUS), an open source
toolkit for translational research of ultrasound-guided intervention systems [18].

Data Acquisition: Once the system is calibrated, it is possible to start acquiring 2D
ultrasound scans and associated tracking information in order to run the 3D Volume
reconstruction algorithm. To acquire 3D ultrasound scans, we first sweep the

Fig. 3. Acquisition pose for 3D ultrasound data
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ultrasound probe in the posterior-anterior direction in the area of mandibular ramus (see
Fig. 3) to acquire 2D images and its associated tracking information. Starting with an
empty volume, slices are inserted into their correct spatial position and orientation.
At the end, a hole filling step [18] is performed to fill minor gaps due to jerky
movement of the probe or similar issues. This ultrasound volume is what we will use
for intra-surgical registration.

3 Methods

For the pilot work presented in this paper, two volunteers (RO and DZ) were recruited,
and CBCT and 3D ultrasound scans were acquired. Approval was obtained from the
University of North Carolina Institutional Review Board (study #13-4096). From those
scans, we generated segmentations and 3D surface models to register 3D ultrasound
volumes for left and right mandibular ramus and CBCT data using functions available
in OrthognathicTrac.

3.1 Surface Model Generation

Surface models representing the bony anatomic structures of the mandible are gener-
ated from 3D ultrasound and CBCT volumes. CBCT is the image modality that is
commonly acquired as part of the pre-surgical clinical protocol for malocclusion 3D
diagnosis and treatment planning. We consider CBCT as the off-line modality that can
be prepared carefully for ultrasound surgical guidance during orthognathic surgery. The
first step to generate surface models from CBCT images is to perform image seg-
mentation, where the anatomical structures of interest are identified and delineated in
the image. For orthognathic surgery the goal of CBCT segmentation is to obtain a 3D
surface model of the bony structures that is usable for computer-assisted interventions.

Fig. 4. OrthognathicTrac semi-automatic segmentation.

Ultrasound-Guided Navigation System for Orthognathic Surgery 5



Key structures include the posterior and inferior borders of the mandible, the zygomatic
bone, the external auditory meatus, and the mastoid process. OrthognathicTrac offers a
semi-automatic, multi-threshold segmentation methods (see Fig. 4) that produce more
accurate 3D representations of the anatomic structures of interests. Many commercial
automatic segmentation software rely on a single threshold algorithm which cannot
accurately reproduce anatomical structures of varying bone density objects such as the
condyle, ramus, and body of the mandible.

Ultrasound surface generation is done by first generating a segmentation using a
thresholding-based method. The thresholding-based method is computationally very
fast and it requires minimal user interaction. Then, a de-noising algorithm consisting in
a closing operation with a structuring element of 1 × 1 × 1 voxel and a median filter of
kernel 2 × 2 × 2 voxels is performed. Other high intensity structures captured in the 3D
ultrasound such as the masseter muscle are manually removed from the label
map. Surface models for both image modalities are then generated using a marching
cubes algorithm [19].

3.2 Surface Models Registration

Landmark registration was used for initial alignment of the 3D ultrasound and CBCT
scans. Corresponding anatomical (landmark) points are identified in the parts of the
mandible that are visible in both mandibular models such as the retromolar fossa.
Landmark points were usually between 4–5 points, but not less than three, to be able to
capture the best transformation between both models. Since high-frequency linear probe
does not introduce any geometric distortion to captured structures, a rigid body transform
can accurately register 3D surface models from 3D ultrasound and CBCT.
Landmark-based registration was used instead of surface registration since US recon-
struction does not reconstruct bony structures as a whole, like it happens in CBCT,
therefore a point-cloud surface registration would have trouble finding the best match
between both surface models. Landmark-based registration is computationally very fast.

3.3 Registration of Pre-surgical Off-line CBCT to On-line Ultrasound
for Computer-Assisted Surgical Guidance

The goal of this step is to implement intra-operative 3D ultrasound to CBCT regis-
tration algorithms to combine pre-surgical CBCT generated surfaces (zygomatic bone,
auditory meatus and mastoid process) on to the ultrasound image for real-time feed-
back. OrthognathicTrac allows applying any previously calculated rigid body transform
to any source data. In order to register 3D ultrasound to CBCT volumes we apply the
previously calculated transform (see Sect. 3.2) to the 3D ultrasound volumes. Error
distances between the two registered surfaces were calculated using VAM (Vectra
Scientific, Atlanta, GA)

6 B. Paniagua et al.



4 Results

This study demonstrates 3D ultrasound can accurately capture the outer surfaces of the
mandibular bones. Figure 5 shows the registered superimposition of the 3D US surface
(red) to the CBCT mandibular surfaces (tan). The shape and contour of the US gen-
erated bony surfaces aligned well with that of the CBCT generated surfaces.

In addition, error distances between the US and CBCT surfaces were calculated. On
average, the Root Mean Square (RMS) error between the US surfaces and CBCT
surfaces was 0.51 mm, with a mean total surface error of 0.45 mm (Table 1).

Our data indicates that 3D ultrasound and CBCT volume registration show accurate
registration results, and that precise outer layers of bone in the mandibular ramus can
be visualized in 3D ultrasound (Fig. 6).

Fig. 5. 3D Surface model registration: 3D ultrasound reconstruction (red) and CBCT (yellow)
surface models show that ultrasound is able to accurately capture the outer layer of bone in the
mandibular ramus (Color figure online).

Table 1. Descriptive statistics of error distances between registered US surfaces and CBCT
surfaces.

Patient Max RMS Mean StdDev

RO Left 1.475 0.71 0.654 0.29
RO Right 1.293 0.37 0.311 0.214
DZ Left 1.205 0.49 0.401 0.29
DZ Right 1.237 0.50 0.434 0.60
Absolute Error 1.3025 0.5175 0.45 0.3485

Ultrasound-Guided Navigation System for Orthognathic Surgery 7



5 Conclusions

This work demonstrates that it is possible to reconstruct high-density bone in the
mandibular ramus from US imaging, and register it to CBCT. This shows the potential
of US as non-invasive, accurate, low-cost real-time imaging modality to help confirm
the position of the condyle within the mandibular fossa by rendering the position of the
connected bony structures (ramus, gonial angle, mandibular notch) and reduce surgical
relapse. As part of this work, we have also developed OrthognathicTrac, which is a
platform to develop, prototype, and test algorithms for orthognathic surgery planning,
navigation and visualization. Setting up the US pipeline for 3D ultrasound recon-
struction was not trivial and several problems related with US parameters and fre-
quency were encountered and solved in the course of this research. Also, and even with
the current data acquisition setup, the calibration requirements and line of sight issues
are problems to resolve before the proposed framework can be integrated fully in the

Fig. 6. Coronal view of CBCT (grayscale) and 3D ultrasound (red semitransparent) volume
overlay. Areas of high ultrasound reflection depicted in red. Both the masseter muscle and the
mandibular ramus surface area can be clearly visualized in both modalities. In slice
cross-sections, deeper layers of skin are visible in the ultrasound scan (red semitransparent).
The surface layers of skin were removed during US acquisition by 2D image cropping (Color
figure online).
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operating room. To address these problems, we intend to explore tracker-less 3D
ultrasound acquisition systems as part of the future work. Inter-rater reliability of US to
CBCT model registration using landmarks will need to be also studied in the future.

Future work contemplates evaluating the effectiveness and feasibility of the algo-
rithms implemented in the OrthognathicTrac prototype using a head phantom and
mimicking operating room conditions, as well as improving the current processing time
of 5 min and test its clinical viability via mock up surgical case.
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Abstract. Central line procedures are interventions in which a nee-
dle is placed in the jugular vein in the patient’s neck inferior to the
carotid bifurcation. In these procedures, avoiding the puncture of the
carotid artery is of upmost importance as it can cause severe neuro-
logical consequences or death. Often, these procedures are performed
under ultrasound guidance, meaning that a linear ultrasound probe is
held to the patient’s neck in which the interventionalist can visualize
both the carotid artery and jugular vein. However, due to the geometry
of the interventional scene, the needle must be placed out-of-plane with
the ultrasound and the needle cannot be fully visualized, only a cross-
section thereof. This lack of visualization can lead to issues gaging the
correct penetration depth. This paper presents preliminary results on
an augmented reality (AR) needle guidance system in which a tracked
needle and ultrasound fan are simultaneously visualized in their entirety.
This AR guidance system is compared against traditional ultrasound-
only guidance on a neck phantom. The use of the AR system significantly
reduces the intervention time (average decrease of 3.51±1.44 s) and nor-
malized path length (average decrease of 150 ± 40 %) implying that the
use of such as system makes the procedure easier for the interventionalist
(n = 36, p ≤ 0.05). This AR system has gained regulatory approval and
is scheduled for clinical trials in humans.

Keywords: Central line procedure · Needle guidance · Ultrasound-
guided interventions · Augmented reality

1 Introduction

Central venous cannulation, predominantly in the internal jugular, femoral, and
subclavian veins, is a widely performed procedure in current medical practice
often used in intensive care units and operating rooms. Among the main cen-
tral venous catheter sites, the right internal jugular vein (IJV) cannulation is
perhaps the most popular method providing access to the deep venous system
c© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 11–20, 2015.
DOI: 10.1007/978-3-319-24601-7 2
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Fig. 1. Ultrasound images of a healthy volunteer. The image has been labeled with the
carotid artery (CA) and internal jugular vein (IJV) for reference.

for a large number of applications including hemodynamic monitoring with pul-
monary artery catheter, access for prolonged intravenous therapy, and access for
endomyocardial biopsy [4]. Over 5 million central venous catheters are inserted
annually in the US alone with an overall complication rate of 15 % [7]. Inad-
vertent carotid artery (CA) puncture can occure either by needle placement
directly into the artery lumen, or after the cannulating needle transverses the
IJV [8]. Severe neurological problems and life thretening complications may arise
during central venous needling and catheterization due to arterial puncture and
hematoma [5,7,9]. A safe needle and catheter placement is of utmost importance
in central venous catheterization procedures.

Commonly, the IJV is identified using an external anatomical landmark-
guided technique and then the introducer needle and subsequently the catheter
are inserted blindly. However, an aberrant anatomical position of the IJV (in
8.5 % of patients) would make this technique unreliable even in the hands of the
experienced interventionalists [4]. The reported failure rate to access to the IJV
ranges from 7 %–19.4 % depending, in part, on the operator’s experience [4].

Ultrasound (US) has been used off-line to localize the CA, the IJV, and the
insertion site prior to cannulation. An ultrasound image of a healthy volunteer
is shown in Fig. 1. The pulsation of the CA is visible under real-time US and has
been suggested to be used to distinguish it from the IJV [8]. Real-time US has
also been employed to guide needle placement inside the IJV. Ultrasound guid-
ance during internal jugular catheterization has been shown to reduce the inser-
tion time, the rates of unsuccessful catheterization, CA puncture, and hematoma
formation [7].
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The IJV is at a depth of 1.0–1.5 cm beneath the skin surface in most patients
[2] and can be easily visualized in US using a 5–10 MHz linear transducer [7].
However, complications in central venous cannulation still arise in spite of real-
time US guidance [3]. Blaivas et al. [3] reported that 68 % of emergency medi-
cine residents, undergone 2-day US-guided vascular access training, inadvertently
penetrated the posterior wall of the IJV during US-guided cannulation in a phan-
tom study. The main reason for the failure of the US guidance in preventing any
complication in IJV cannulation is that the US guidance is provided using a
transverse approach, where the US image plane is perpendicular to the length
of the vein [3]. As a result, only the cross section of the venous lumen is seen
in the US image. In addition, the needle is inserted out-of-plane with the ultra-
sound and as a result only its cross section appears in the US image, as a bright
spot, making it difficult to distingush the needle tip from needle shaft. Therefore,
even under US guidance, issues arise regarding the correct needle placement and
evaluation of the penetration depth.

The purpose of this work is to present a novel guidance system, which has
been approved for clinical evaluation for the IJV cannulation procedure to facili-
tate needle navigation and placement in the IJV and improve the overall safety of
this procedure. The proposed guidance system consists of an augmented reality
(AR) environment, in which a tracked needle, its trajectory, and real-time US
images are simultaneously visualized in the same coordinate system. The AR
guidance system is compared against traditional US-only guidance on a neck
phantom in a user study. This system has the potential to improve accuracy and
safety of the central venous cannulation procedure in a clinical setting and has
received regulatory approval for clinical trials in humans.

2 Methods

2.1 Augmented Reality Guidance System

An AR guidance platform was developed, which allowed for the US image and a
virtual representation of the needle to be displayed simultaneously in the same
coordinate frame. Ultrasound images were acquired using a SonixTouch US scan-
ner and a magnetically tracked L14-5/38 ultrasound probe (Ultrasonix, Analogic
Corporation, MA, USA). An Aurora magnetic tracking system (NDI, Waterloo,
ON, Canada) was used to determine the physical location and orientation of
the ultrasound probe and needle for use in the visualization. The US probe was
calibrated using a line fiducial as described in [1]. The needle used was an 18G
Aurora needle, which has a 5DOF magnetic sensor integrated into its stylet’s tip.
To improve the usability of the AR system, the virtual needle was equipped with
a representation of its trajectory as well as a sequence of uniformly spaced 1 cm
markings along the needle and its trajectory, giving the user a rapid understand-
ing of the depth of penetration beyond, or remaining depth to, the ultrasound
plane. The open source Atamai Image Guided Surgery (AIGS) library1 was used

1 https://github.com/awiles/AIGS.

https://github.com/awiles/AIGS
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for communication with tracking systems. The Visualization Toolkit (VTK)2 and
QT were used for visualization and user interface3, respectively. The AR system
visualization is shown in Fig. 2.

The developed needle guidance system is similar to the commercial SonixGPS
(Ultrasonix, Analogic Corporation, MA, USA) system. However, it uses an
Aurora tracking system instead of Ascension, which is used in SonixGPS. In
addition, our custom AR system for needle visualization is substantially differ-
ent from that used in SonixGPS and provides a 3D visualization environment.
The advantage of our visualization system is that the needle can be guided
and visualized in any orientation relative to the US probe (in-plane and out-
of-plane), and the user can adjust the vantage point of the virtual camera to
any arbitrary angle as needed. As SonixGPS is not widely available across all
institutions/hospital, and the blind/US-guided technique is the current gold-
standard, we conduct our study to illustrate the efficacy of the developed AR
system compared to the clinical gold-standard.

(a) Needle prior to puncturing the IJV (b) Needle after positioning in the IJV

Fig. 2. Augmented reality needle guidance platform.

2.2 Phantom Construction

A phantom was designed to represent three IJV and CA sets for a user study,
as shown in Fig. 3a. The IJV and the CA were simulated as hollow tubes inside
a tissue mimicking polyvinyl alcohol (PVA-C) block (10 % PVA-C). In order
to create the hollow tubes, plastic straws and metal tubes of different sizes
were used.

The mean diameters in adults of the right IJV and the common CA is 14±5
mm and 6.5 ± 1.0 mm, respectively [6,10]. The IJV is usually positioned in
laterally and anteriorly to the CA at a depth of 1 to 1.5 cm below the skin [4].

2 http://www.vtk.org/.
3 http://www.qt.io/.

http://www.vtk.org/
http://www.qt.io/
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(a) User Study Phantom consisting of a PVA-C block with water-filled
tubes simulating the CA and IJV

(b) Phantom prior to introduction of
PVA-C, showing three CA/IJV vascular
combinations

(c) Rapid prototyped support block to
keep the straws and tubes in place

Fig. 3. Phantom employed in user study.

In our phantom, the diameter of the hollow tubes representing the IJV and the
CA were 12.3 mm and 8 mm, respectively. Three supporting blocks, Fig. 3c, were
placed at three different angles along the length of the container on each side
in order to account for anatomical variations and reduce training effects. Straws
and metal tubes were placed inside the holes of the support block as shown in
Fig. 3b. The plastic container was then filled with PVA-C and subjected to two
freezing-thaw cycles, after which the straws were removed. A penrose tube filled
with water was passed through the smaller tube so that it could be pulsed, by
squeezing one end periodically, in order to create a more realistic representation
of the CA as visualized in US. An Aurora 6DOF magnetic sensor, 25 mm Disc,
(NDI, Waterloo, ON, Canada) was placed on the phantom box as a tracking
reference to accommodate for any overall shift. An ultrasound image of the
phantom is shown in Fig. 4.

2.3 User Study

Eighteen novice participants were recruited. After a brief training phase (approx-
imately 20 min) in which the participants could familiarize themselves with both
the US and AR guidance systems, the participants performed a set of two central
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Fig. 4. Ultrasound images of the phantom. In comparison to Fig. 1, the phantom pro-
vides a realistic US image of the IJV and CA.

line procedures, one with AR guidance and one with US only. The order in which
these were performed was randomized to control for the training effect. The task
was defined as complete when the participant reported the needle to be in the
IJV in the phantom. After a period of one week, each participant performed an
additional set of central line procedures and the opposite order was used. In this
study, the desired target for needle placement is any location within the phan-
tom IJV. This is similar to the clinical central venous cannulation procedure in
which any location along the IJV inferior to the carotid bifurcation is considered
adequate for central line insertion.

For each procedure, two performance metrics were collected: procedure time
and needle path tortuosity. The time taken to deliver the procedure was mea-
sured directly by our tracking software. Lower procedure times are desirable to
minimize patient discomfort and to improve clinical workflow. The tortuosity of
the needle path, how much the needle path deviates from a straight line during
the procedure, is calculated using the normalized path length. The normalized
path length is the ratio of the actual travelled path, divided by the length of a
straight line connecting the start and end locations. Both lengths were collected
directly by our tracking software.

3 Results

The results were processed using two-way ANOVA with the guidance system
type (AR vs. US-only) and the trial number (1 to 4) as factors. To correct for
multiple comparisons, the Holm-Bonferroni correction was used with a combined
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significance of p ≤ 0.05. The results displayed in Fig. 5 demonstrate that both
the system type and trial number have a significant effect on both metrics with
no significant interaction effect.

Box-plots organizing the data by the guidance system type are shown in
Fig. 5. The 95% confidence interval on the average improvement in terms of
time for AR compared to US-only guidance is 3.51 ± 1.44 s. The 95% confi-
dence interval on the average improvement in terms of needle path tortuosity
for AR compared to US-only guidance is 150 ± 40%. Thus, AR guidance shows
a significant improvement in terms of procedure time and needle path tortuos-
ity. In addition, AR showed a lower interquartile range than US-only guidance
for both metrics, implying that performance in AR was more consistent across
participants.

Fig. 5. Results organized by guidance system type. AR significantly outperforms US
in terms of both time and tortuosity.

A significant training effect was detected in our analysis of variance. To exam-
ine this effect, the time and tortuosity results re-organized by trial are plotted
in Fig. 6. Because there was no significant interaction between system type and
trial number, Fig. 6 shows the results for ultrasound-only and AR guidance com-
bined. For both metrics, there is a clear improvement over the first three trials
which qualitatively confirms the existence of a strong training effect for novice
users for the procedure as a whole. For both time and tortuosity, the interquar-
tile range decreased over the first three trials while keeping a consistent lower
bound indicating that not only was performance better on average, it is also
more consistent amongst participants.
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Fig. 6. Results organized by trial number. A significant training effect was observed
for both metrics which is evident from the first three trials.

In terms of safety, there was only one incident in which the phantom CA was
punctured, and this trial occurred under US-only guidance. A larger study is
required to determine if there is a significance difference in terms of the number
of carotid punctures given their infrequency under both guidance modalities.

4 Discussion

This study is a precursor to evaluating this system using medical practitioners
and nursing staff who routinely perform central line cannulations. In this prelim-
inary study, to establish the validation of the methodology, we investigated the
performance of novice users guiding needle in a simulated central line procedure
using an in-house designed phantom. The results indicate that AR guidance sig-
nificantly outperforms traditional US-only guidance in terms of both time and
needle path tortuosity, implying that the AR can make the central line proce-
dure easier while minimizing patient discomfort. Additionally, AR showed more
consistent performance that US-only guidance with fewer outliers and a tighter
inter-quartile range, suggesting that the AR system can accommodate for varia-
tions amongst interventionalists, such as in the interpretation of the US images.
Although these results are preliminary and use a novice participant group, they
are promising as the AR guidance system enters clinical trials with expert inter-
ventionalists.
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In addition to its use in an interventional setting, the proposed AR system
could also be used for teaching purposes. As shown by Blaivas et al. [3], ade-
quate training in central line procedures is a major concern deserving of greater
attention. In this context, the AR system would teach the trainees how to inter-
pret the ultrasound image with respect to the underlying anatomy and needle
position so that they would be better able to perform the procedure using con-
ventional US guidance. Such AR reality training has been shown to be beneficial
for US-guided facet joint injections where it improved the safety and success rate
compared with traditional US-only training [11]. While the main focus of our
study was on the use of AR for guiding interventions, we did observe substantial
training effects with the novice users. Our future work will better characterize
these effects in central line procedures both with AR and US-only guidance and
to repeat this experiment with expert interventionalists to better gauge clinical
applicability.

5 Conclusion

In this paper, we propose and perform preliminary validation on an augmented
reality (AR) guidance system tailored for the central line procedure. This AR
system combined a magnetically tracked needle and ultrasound probe into a
lightweight framework that is run directly from the ultrasound scanner itself.
This system has been shown to significantly reduce procedure time and path
tortuosity, improving the safety of the procedure. This system has received reg-
ulatory approval and is scheduled for clinical trials.
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Abstract. In image-guided neurosurgery the patient is registered with the ref-
erence of a tracking system and preoperative data before sterile draping. Due to
several factors extensively reported in the literature, the accuracy of this reg-
istration can be much deteriorated after the initial phases of the surgery. In this
paper, we present a simple method that allows the surgeon to correct the initial
registration by tracing corresponding features in the real and virtual parts of an
augmented reality view of the surgical field using a tracked pointer. Results of a
preliminary study on a phantom yielded a target registration error of
4.06 ± 0.91 mm, which is comparable to results for initial landmark registration
reported in the literature.

1 Introduction and Background

In image-guided neurosurgery (IGNS), the head of the patient is rigidly attached to the
operating room table and fixed relative to the frame of reference of a tracking system.
The preoperative images can be registered with the patient’s anatomy using different
methods, including the selection of predefined anatomical landmarks on the patient
using a tracked pointer and skin surface matching. This registration procedure is per-
formed before sterile draping of the patient, since relevant features are not typically
accessible after draping is completed. After this initial patient registration however,
there can be a significant loss of navigation accuracy due in part to draping, attachment
of skin retractors, and the duration of surgery as reported in [1]. In addition, registration
accuracy is also affected by ‘brain shift’, which can be caused by a number of factors
including CSF drainage, swelling and resection. Brain shift at the cortical surface can
range from almost no detectable shift up to 50 mm [2].

Several solutions have been proposed to improve patient-to-image registration
during surgery, including: intraoperative MRI, intraoperative ultrasound with automatic
registration to preoperative data [3] and computer-vision based techniques to register
the surface of the operating field with preoperative data [4, 5].

In this paper, we propose a method that allows the surgeon to correct patient
registration manually without having to remove his attention from the surgical field or
the need to introduce additional equipment in the operating room (OR). To do so, we
rely on a surgical microscope, the navigation system, and the tracked navigation
pointer, which are already present in the OR in IGNS. The tracked surgical microscope

© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 21–29, 2015.
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is used to produce an augmented reality (AR) image. It provides the surgeon with a
single image that contains corresponding features from the patient and the preoperative
data, allowing him to visualize the discrepancy. The surgeon uses the tracked navi-
gation pointer to trace corresponding features in both images. These traces can then be
used to establish a correction matrix for the patient registration.

The main contribution of this paper lies in its innovative use of AR to allow the
surgeon to specify corresponding features on the patient and in preoperative data
directly within his field of view without having to rely on the help of a technician. To
our knowledge, it is the first time AR is used in this way to improve patient registration
in IGNS.

The advantages of the proposed registration paradigm are threefold:

1. The surgeon can correct the registration at any moment during the surgery without
having to remove his attention from the surgical field and without the intervention
of a technician.

2. The method is robust because it is based the surgeon’s extensive knowledge of the
anatomy and of the specificities of the patient on the operating room table.

3. In the future, this method could be used to provide a starting point for automated
methods that might further refine the patient-to-image registration.

In neurosurgery, the features that are most likely visible in both rendering of
preoperative scans and live video of the operating field are sulci and blood vessels.
Although the method presented in this paper can apply to both types of features, we
focus our attention on blood vessels.

2 Materials and Methods

In this section we first describe the surgical context in which our AR-based registration
method can be used. Then we give an overview of the system that is used to produce
AR images before describing the registration method itself.

2.1 Surgical Context

Figure 1 illustrates the surgical context in which our method is used. The patient is
rigidly attached to the operating table by way of a Mayfield® clamp for example, and a
reference tool acts as the origin of the IGNS system’s frame of reference. The patient’s
preoperative imaging data is registered to this coordinate system, typically using a
patient-to-image landmark registration that yields transform P.

An AR view is obtained by merging live video images captured from the micro-
scope (the real image) and a 3D volume rendering of preoperative patient data com-
puted from the point of view of the microscope (the virtual image). Before rendering,
the patient data is transformed to the space of the microscope’s optics by concatenating
following transforms: (1) P, the patient registration, (2) M, the microscope transform
obtained directly from the tracking system and (3) E, the extrinsic calibration transform
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discussed below. Once the data is in microscope space, it can be rendered using a
standard direct volume rendering technique and a perspective projection model I whose
parameters are estimated during a preoperative calibration procedure also described
below.

2.2 Microscope Calibration

The preoperative microscope calibration procedure enables the estimation of the pro-
jection model of the microscope’s optics I as well as the rigid transform E between the
tracker tool attached to the microscope and the optical center of the microscope. The
calibration procedure consists of capturing a series of microscope images of a check-
erboard pattern printed on a flat board to which we rigidly attached a tracker tool
compatible with the IGNS system. For every image, we record the transform of the tool
attached to the board. The parameters of the optical model of the microscope are
estimated using OpenCV’s implementation of the method presented by Zhang [6]. The
extrinsic transform E is obtained by combining microscope poses computed by
Zhang’s method and the tracker tool transforms recorded from the IGNS system. An
optimization procedure borrowed from the field of robotics allows for the simultaneous
computation of (1) the transform from the tracker tool to the board and (2) the extrinsic
calibration matrix E. For more details about the optimization procedure, we refer the
reader to [7].

Fig. 1. (a) Surgeon using a tracked surgical pointer to trace features of the anatomy with the help
of an AR view displayed within the microscope oculars or on the navigation system. The AR
view is obtained by combining live video images from the tracked microscope and 3D rendering
of preoperative images registered to the reference of the tracking system. (b) Transformation
model used to render preoperative images from the point of view of the microscope: P: Initial
patient to IGNS system registration transform, M: Transform between the IGNS system reference
and the tracker tool attached to the microscope, E: Extrinsic calibration transform that maps the
tracker tool to the optical center of the microscope, I: intrinsic calibration transform that projects
3D points in microscope space to the image plane.
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2.3 Merging Real and Virtual Images

The process of merging real and virtual images to produce the final AR view is
illustrated in Fig. 2.

The AR view in this example is produced with the 3D nylon printed patient
phantom shown in Fig. 2a. Parameters of the tracked surgical microscope obtained by
way of the calibration procedure outlined in the previous section are used to produce a
3D rendering of preoperative patient data from the point of view of the microscope
(Fig. 2b). After capturing an image from a USB digital camera (FireFly MV, Pointgrey,
Richmond, BC, Canada), attached to one of the optical ports of the microscope
(Fig. 2c), we compute a mask (Fig. 2d) that is used to alpha-blend the real and virtual
images to produce the final AR view (Fig. 2e). The mask is created by computing the
pixel-wise maximum opacity between a blurred circular transparent region and
Sobel-filtered version of the real image. The center of the circular region is updated in
real-time to follow the projection of the tip of the tracked surgical pointer on the
microscope image, allowing the surgeon to control the area of the real image that is
transparent. The Sobel filter is used to extract edges in the real image to maintain
occlusion cues and create the perception that the elements of the virtual image are
located below the surface rather than floating above it, a problem often reported with
augmented reality images [8].

Fig. 2. (a) Phantom used to illustrate the method. (b) Virtual image rendered from the point of
view of the microscope. (c) Real image captured from the microscope. (d) Mask that is used to
determine the opacity of real image per pixel. (e) Resulting AR view obtained by combining the
masked real image and the virtual image. (f) Close-up on a vessel that shows alignment of real
and virtual images (diameter of circle is * 12 mm).
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2.4 Curve Tracing and Registration

Once we have produced an AR view of the surgical field in the OR, we can apply our
method to correct for the misalignment between real and virtual images discussed
above. The system allows the surgeon to use the tracked surgical pointer of the IGNS
system to trace one or more corresponding piecewise linear curves in the real and
virtual parts of the AR images as illustrated in Fig. 3.

Curves on the real image are traced by simply moving the surgical pointer along the
surface of the tissues of interest and capturing the 3D position of the tip of the pointer.
The surgeon triggers the acquisition of control points of the curve by pressing a USB
foot pedal connected to the navigation system. The use of a foot pedal allows to avoid
bringing a new piece of equipment within the sterile field.

Capturing the corresponding curve in the virtual image is slightly more compli-
cated. Misregistration of the patient might cause the features of interest to lie below the
surface of the patient’s tissues for example. In this case, it is not possible to reach those
areas with the tip of the pointer.

To determine the exact position of the point to capture, we use the concept of 3D
picking. When the user presses the foot pedal, a ray is traced starting from origin of the
virtual camera, going through the pointer tip and find the first vessel along the line of
sight. The vessel is identified by finding the first voxel along the ray with intensity
higher than a predefined threshold. The point that is picked on the vessel becomes the
virtual coordinate of the next curve control point. This method allows tracing of
elements of the virtual image without having to touch the tissues with the tip of the
pointer.

Once the curves have been traced on the real and AR images, the corresponding
curves are used to compute a correction of the initial patient registration using the
iterative closest point (ICP) algorithm [9]. The registration transform computed is thus
rigid. Furthermore, since control points in one curve are not matched to the closest
control point in the other curve but rather to the closest location along the curve, the

Fig. 3. (a) MR + CTA-based phantom with simulated craniotomies exposing the cortex and
superficial blood vessels. (b) Using the tracked surgical pointer of the IGNS system, the surgeon
can trace piecewise linear curves (orange curves) along the surface of the vessels. (c) The area
around the surgical pointer becomes transparent, revealing corresponding misregistered vessels in
the CTA, which can be traced in a similar way. (d) After both real and virtual images have been
traced, the curves can be registered using the iterative closest point algorithm. Applying the
resulting transform to the CTA aligns it with the virtual image (Color figure online).
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number of points in both datasets don’t need to match. In this work, we use the open
source implementation of the ICP algorithm provided in the Visualization Toolkit
(VTK) software package.

3 Experiment

We validate our method with a simple user study in the laboratory. The goal of the
study is to show that registration accuracy can be improved with our method in a
controlled lab environment. We test our method using a 3D printed phantom that is
based on MRI and CT DSA imaging of a patient operated for the ablation of an AVM
at the Montreal Neurological Hospital (Fig. 2a). The phantom represents the whole
head of the patient and has simulated craniotomies that expose the cortex and super-
ficial blood vessels. It was designed with 8 conical recesses around the simulated
craniotomies that are used as landmarks. The position of the apex of the recesses is
known, which allows for a very accurate landmark registration of the phantom with
preoperative data. For more details about the fabrication of the phantom, we refer the
reader to [10].

Prior to the experiment, we registered the phantom to its CT data by capturing the
world space position of the phantom’s built in landmarks with the tracked pointer. The
registration transform is then computed using Horn’s method [11]. We obtained a
fiducial registration error (FRE) of 1.12 mm. The tracked microscope has also been
calibrated according to the method described above. A cross-validation yielded a re-
projection error of 0.37 mm for camera calibration. After completing these 2 initial
steps, we are able to produce an accurate AR view of the simulated craniotomy of the
phantom.

The user study consists in every subject attempting to correct simulated patient
mis-registration 5 times using our method. The subject is initially trained and asked to
explore the AR view to find vessels that are visible in both the real image and the
rendered image. The subject is then asked to trace the surface of those vessels in the
real image.

For each of the trials, we apply an artificial offset transform to the patient’s pre-
operative data, simulating the loss of navigation accuracy that can result from initial
phases of the surgery. The subject then needs to correct for this offset by tracing blood
vessels on the virtual part of the image. The offset transform is composed of a trans-
lation and a rotation. The translation is obtained by choosing a random direction in the
plane perpendicular to the optical axis of the microscope. The rotation is defined
around the same axis and the sign of the angle is chosen randomly. The amplitude of
the rotation and translation for each of the trial are listed in Table 1. One of the
hypotheses we pose in this study is that our method may improve the registration only
for shifts larger than a certain threshold. For this reason, the amplitude of the artificial
shift we used in the experiment is decreasing with every trial. The maximum values for
amplitudes are motivated by practical reasons. In the OR, shifts larger than 15 mm can
happen and have been reported in the literature. However, random shifts of larger
amplitude can cause the features of the virtual image to be out of the field of view of the
microscope. If such case should happen in the OR, the surgeon could reposition the
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microscope and would still be able to use our method. However, for the purpose of our
analysis it was not possible to move the microscope during this experiment.

4 Results

We ran the user study described above with 5 subjects who are all medical imaging
experts. We used the set of 8 landmark points embedded in the phantom to measure
the accuracy of the registration correction obtained with our method. We compute doff,
the distance between the original landmark position and its position after imposing the
artificial offset (red cross in Fig. 4a), and dcor, the distance between the original
landmark position and their position after applying the correction computed using the
proposed method (green cross in Fig. 4a). For each of the trials, we compute the root
mean square (RMS) of doff and dcor over the 8 points. Figure 4b shows a plot of the
resulting RMS(dcor) as a function of RMS(doff), where each of the points represents one
trial of one of the subjects. This plot is an indication of how registration accuracy of our
method varies with the original offset. We also computed the mean RMS corrected
distance over all trials and all subjects and obtained 4.06 ± 0.91 mm.

5 Discussion

Results of this preliminary study show that the initial offset distance has little influence
on the accuracy of the resulting registration after the proposed manual correction. This
suggests that our technique could be used to correct for arbitrarily large misalignment
of the patient with the preoperative data, such as when the navigation setup is acci-
dentally displaced during the operation.

In [1], Stieglitz et al. reviewed the literature on accuracy of patient registration.
They report errors ranging between 2.7 and 6.2 mm, with a median of 4.0 mm. The
mean registration error obtained with our method (4.06 ± 0.91 mm) is thus comparable
with the outcome of standard initial registration methods.

In this study, each subject was asked to perform the task only 5 times. A greater
number of trials per subject would be desirable, but in practice, since we have only 1
phantom available, we found that subjects tend to produce the same trace for every trial
and 5 trials per subject was sufficient to account for the variability of the traces that can
be obtained. In a future study, we will perform each trial with a different phantom.

Table 1. Amplitude of the offset for translation and rotation of each of the trials of the study.

Trial no Translation amplitude (mm) Rotation amplitude (deg.)

1 15 5
2 10 4
3 6 3
4 3 2
5 1 1
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One of the findings from our study is that the curves traced by the subjects are very
noisy. This might be due to the relatively primitive tracing tools available so far in our
system. If the tools are refined, by allowing for Bezier curves or by using computer
vision methods to automatically snap the curve to features of images, it will be possible
to significantly improve the accuracy of the registration.

6 Conclusion and Future Work

We have presented a simple system that can allow surgeons to correct the loss of
navigation accuracy during an operation by leveraging their knowledge of the anatomy
and taking advantage of a set of tools already present in the OR (tracked surgical
pointer, surgical microscope, and navigation system). Through a user study in the lab,
we have shown that our technique can produce registration accuracies comparable to
state of the art methods used for initial registration of the patient before surgical
draping. The next step is to bring our system to the OR where its accuracy could be
compared to other registration correction methods.

One of the main advantages of our method is its robustness that comes from the fact
that it relies on the surgeon’s knowledge of the anatomy and it is inherently manual. In
the future, we would like to study how this robust method can be used to constrain
other more automatic methods such as ultrasound-based automatic registration. It
would be particularly interesting to use the curves traced with our method to regularize

Fig. 4. (a) Illustration of the landmarks that are used to compute RMS offset distance and RMS
corrected distance. Blue crosses show the position of the original landmarks, red crosses show the
position of the landmarks after applying the artificial offset and the green crosses represent the
position of the landmarks after applying our method. (b) Corrected RMS distance as a function of
the RMS offset distance for each trial (red squares) and corresponding linear fit (black dashed
line) (Color figure online).
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the computation of non-linear registration between preoperative MR scans and intra-
operative ultrasound and correct for brain shift.
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Abstract. Range imaging devices have already shown their value for patient
setup and motion management in external beam radiation therapy. However
current systems need several range imaging devices recording the patient’s
surface from different viewpoints to achieve the required stability and accuracy.
Since range imaging devices come as add-ons to regular linear accelerators, they
have to share the limited space with other sensors in the treatment room to get a
line of sight to the patient’s isocenter. The objective of this work is to describe a
new registration framework which enables stable tracking using only one range
imager. We unveil the design of our solution to the problem of tracking a patient
over long trajectories and large viewpoint changes including surface acquisition,
pose estimation and simultaneous surface reconstruction. We evaluate the per-
formance of the system using three clinically motivated experiments: (i) motion
management, (ii) non-coplanar patient setup and (iii) tracking over very large
angles. We compare our framework to the state-of-art ICP algorithm and to a
ground-truth stereoscopic X-ray system from BrainLab. Results demonstrate
that we could track subtle movements up to 2.5 cm with a mean target regis-
tration error of 0.44 mm and 0.02°. Subsequent non-coplanar field setup on 30°
and 2 cm motion yielded a target registration error of 2.88 mm which is within
clinical tolerances. Our sensor design demonstrates the potential of simultaneous
reconstruction and tracking algorithms and its use for patient setup and motion
management in radiation therapy.

Keywords: Range imaging � Patient setup � Motion management � Radiation
therapy

1 Introduction

Surface scanning systems that utilize a pre-op CT surface for patient setup in radiation
therapy can cause target registration errors up to 1.3 cm [8]. A typical clinical protocol
to circumvent this is to combine CBCT with surface imaging. In this scenario one
CBCT is used to setup the patient. Immediately after CBCT acquisition a surface
imaging device records the position of the patient as a reference surface. From that
instant, patient movements can be tracked and compensated. In the event that the
patient has to be treated at multiple anatomical sites or additional non-coplanar beams,
the range imager can also be used for subsequent site setup without further CBCT
acquisition. To realize that, a range imaging tracker must be able to detect subtle
movements of a patient but also track the patient over large trajectories and rotations.
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Using a single sensor, large areas within an initially acquired reference surface become
invisible while the relative viewpoint changes. This would cause a state-of-art ICP
registration algorithm to fail.

1.1 Literature Review

A small number of optical, markerless systems have been developed over the last years,
using different physical methods such as Kinect [1], speckle projection photogram-
metry [2], time-of-flight (ToF) measurements [3, 4] and laser triangulation [5]. Most of
these techniques register the reconstructed surface to pre-op CT for patient positioning.
Authors using the Kinect sensor for patient setup focused only on bringing the patient
roughly from the loading position, where the patient is supposed to enter the couch, to
the isocenter position. The translational errors of these approaches are 1 cm. In 2013, a
positioning system was developed, consisting of two camera and projector units
capable of projecting and capturing 120 images/s and covering 180° of the surface [6].
On the commercial side, the stereo system AlignRT (VisionRT, London UK) uses three
camera pods to cover as much as possible of the patients surface at once. The system
was reported in [7] to have a mean translational registration error of 1.2 mm. It needs
3–10 s for patient position estimation, which is too slow to account for spontaneous
movements. Recently, the Catalyst (C-RAD, Uppsala Sweden) system was released
containing multiple cameras-rigs for full body coverage. It however needs three devices
to be mounted, which can often block the field of view of other systems in the treatment
room. The system was studied in [8] and reported a mean accuracy of 4 mm and 1.7°.
To our knowledge, all clinically applied systems today, that are used for ‘real-time
tracking’ of a patient, merge range images from several sensors at different viewpoints
to get sufficient coverage of the patient’s surface during radiation therapy.

1.2 Contributions

While state-of-art systems above stabilize patient positioning and tracking by stacking
up the hardware and merge the images of several range imaging devices, we solve that
problem algorithmically needing only one sensor.

We emphasize several advantages of the proposed system: (1) the cost of our
hardware < 1000 k compared to commercial systems as VISION RT (* 250,000 k);
(2) compared to ‘one stereo-cameras’ sold by BrainLAB that are marker-based
requiring patient preparation, our system is seamless with no patient preparation; (3)
other commercial markerless stereo trackers come as multi-camera setups whereas we
propose a single camera rig; (4) the accuracy is tested on both planar and non-coplanar
experiments – a first within the MICCAI community; (5) our core contribution is how
we use the patient generated point clouds. We iteratively extend the patient model as
more of the patient’s body becomes visible. In this way we increase the body coverage;
and (6) the runtime varies with how many points are in the patient model. Our system
performs with a higher frame rate on average, outperforming AlignRT (0.1–0.3 fps), a
commercial system. To validate the performance and accuracy, an in-depth evaluation
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is presented on 6D pose recovery of our system compared to a ground-truth stereo-
scopic X-ray technology from BrainLab.

2 Methods

From Fig. 1-top, our patient positioning and tracking pipeline is separated into three
threads: (a) stereo reconstruction, (b) tracking, and (c) parallel patient model recon-
struction. These three tasks can be performed independently as they have different
demands regarding performance respectively. The tracking task is developed in
real-time. We optimize a global patient model where we accumulate the information
collected by the surface acquisition to get a more reliable reference surface constantly
over time, which we use to align to the current measurement.

2.1 Surface Acquisition

As a range imaging device we use a stereo-rig made of two Basler cameras with a
resolution of 1604 × 1204 pixels (Fig. 1-bottom). Each camera lens is augmented with
an IR filter. The cameras are mounted with a baseline of 12 cm. To this setup, we add
an IR laser with a fixed diffraction grating as available in the Kinect sensor. It projects a
speckle pattern on the patient surface. The pattern is invisible to the patient and thus
will not cause irritation unlike the pattern used by the system described in [7]. We
mount the stereo-rig to the ceiling near the LINAC gantry at 1 m distance to the
machine isocenter. This is an optimal position regarding compatibility with other
scanning systems that are usually also mounted in the treatment room and need a line of
sight to the machine isocenter. At time k the stereo rig, consisting of camera a and

Fig. 1. (Top) Algorithm pipeline. (Bottom) The single stereo rig.
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camera b, acquires simultaneously two images from the projected pattern. To calculate
the range image RIk which is a set of point measurements pu,v 2 ℝ3 indexed by the
originating pixel (u, v) from camera a, we used the implementation of the census
transform algorithm [9]. The algorithm has a low memory footprint, is fast, and yields
satisfying accuracy. Hence, it is suited to be implemented on embedded platforms,
which would reduce the size of the device even more. To match a pixel (u,v) from
camera a to camera b, the algorithm searches along the epipolar line minimizing a cost
function. A local neighborhood around pixel (u,v) is transformed into bitstring
according to its intensity differences with

T u; vð Þ := �n
2
i¼�n

2
�m

2
j¼�m

2
nðI u; vð Þ; I uþ i; vþ jð ÞÞ

where I(u,v) is the intensity of (u,v), ⊗ is a bitwise catenation, (n × m) denoted the
local neighborhood. The parameter ξ is defined as

n x; yð Þ :¼ 0 if x� y
1 if x� y

�

As our cameras are mounted in a horizontal line we can minimize for the disparity
value d with the following cost function

C u; v; dð Þ := HamðTa u; vð Þ;Tb uþ d; vð ÞÞ

where Ham is the Hamming distance between bitstrings Ta and Tb of the images from
camera a and camera b. Using the disparity d we get for each pixel (u,v) a metric point
measurement pu,v = (x,y,z) in ℝ3.

2.2 Patient Pose Estimation

The incoming range image RI is filtered using a bilateral filter on the current
depth-frame to remove noise while still preserving edges. We down sample the cloud
further by discretizing the space into regular voxels of 0.3 mm3 and taking only the
average of each occupied voxel. As soon as the buffer that holds the current patient
model has been filled, the tracking thread starts registering the model against the
prepared range image RI. Therefore, we use a variant of the ICP algorithm initialized
with the most recent pose by incorporating the plane-to-plane metric [10]. Using the
plane-to-plane metric we are able to successfully exclude sliding effects which are
introduced by the thorax of patients, for example, being a larger low-frequency region
in the point cloud.

2.3 Patient Reconstruction

As we do not rely on a pre-operative CT surface, we have to acquire a ‘close enough’
initial guess of the surface in the initialization phase. We take advantage that following
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the clinical procedure (i) the patient has been positioned at the isocenter and in the field
of view of the camera rig and (ii) the patient is not moved in the initialization phase.
Thus we can define a filter which rejects all points not being in a box sized region of
50 cm3 around isocenter. Subsequently, we acquire 5 frames and feed them directly
into the patient model reconstruction thread. We assume for all frames captured in the
initialization phase the registered pose to be the origin pose. Later we qualify the
registration result by their residual registration error and integrate the cloud if the error
is reasonably low. The incoming frame is then segmented by a simple outlier rejector
that removes points having less than 20 neighbors in a radius of 2 cm. We rely on the
assumption that the patient is a single large cluster and other small clusters are noise
and do not belong to the patient. The remaining points are assumed to belong to the
patient only and will be integrated into a single global cluster cloud representation
which we can query for either a complete version or a geometrically stable sample of
the cloud [11]. Having performed the initial segmentation and integrating only points
that are very near to our patient model, we can skip the segmentation step from now on.
Each point of the reference surface serves as a seed for a corresponding cluster. The
cluster cloud is a set C of clusters Cli with i = 1, 2,…n. Each cluster has a cluster
representant ci 2 ℝ3. Furthermore, there exists a variance σ, and a generation gi for
each cluster, whereas the generation defines the number this cluster has been con-
firmed by subsequent observations. Querying the model will either yield the complete
or a downsampled set of cluster representants from the cluster cloud. For each
incoming registered frame we perform a Neaserst-Neighbour-Search on the complete
version of the patient model between points p 2 ℝ3 from the incoming frame and
cluster representants c. We threshold correspondences to a maximum distance value.
This shall enforce that only points correspond to each other that represent a measure
of the same point in space. Each cluster Cli which has a representant ci that has
corresponding nearest point pj will be updated calculating the cumulative moving
average. We then update the variance of the cluster using the sum of squared dif-
ferences from the current representant ci. This can easily be incrementally updated
and yields the variance of the cluster in a numerically stable way. Similar to [12] we
use a data structure to fuse repeating measurements of the same scenery to improve
the performance of the system. Using the cluster cloud we do not discretize space
artificially. We furthermore have a representation that immediately can be used for
tracking and thus can save the step of generating a reference cloud by raytracing a
truncated signed distance function representation. On the other hand we acquire
confidence values on our measurements and thus can further remove noise from the
reference cloud. If we query now a reference that is supposed to be used by the
tracking thread, the resulting set of cluster representants can be thresholded by
variance and generation. We rely here on the assumption that representants that have
been measured by several frames with low variance have a higher confidence. The
downsampled version of the cluster cloud is finally sent to a buffer where it can be
consumed by the tracking thread. Figure 2 depicts the visual pipeline of our
reconstruction and tracking of a torso phantom.
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3 Results and Discussion

Study Aim: Our aim was investigating the variability in patient movements that can
happen during treatment (coplanar/non-coplanar), which is the primary concern in
current clinical practice. Here, we define ‘coplanar movements’ as the patient being
positioned for a coplanar beam (couch angle = 0°). The radiation therapy setting will
never be utterly cluttered, and varying patient body size only implies varying size of the
points in our model. Thus, we believe tuning the proposed system towards an
anthropomorphic phantom is sufficient. Thus, we used a torso phantom which contains
internally anthropomorphic bone structures. Lastly, we emphasize that aim to study the
dynamic behavior of our system (not registration).

Ground-Truth: We evaluated our technology via a comparative study in a clinical
setting against another clinical system (Brainlab ExacTrac, which is stereoscopic
X-Ray). A CT scan was recorded and a test plan was created using Brainlab IPlan RT
4.5. The surface was filmed using our camera setup, while the internal structure was
imaged and registered against the CT scan using the stereoscopic X-Ray, which
became our ground truth. We positioned the torso phantom using ExacTrac in the
machine isocenter. The target registration error is evaluated separately for the trans-
lational part TRtrans and the rotational part TRErot, where

TREtrans ¼ jjtalgjj � jjtref jj

talg is the translation computed by our algorithm and tref is the translation vector
computed by the ground-truth stereoscopic X-Ray (similarly for the rotational part).

Study 1- Motion Management: Patient motion management implies the experienced
subtle movements after the patient has already been correctly positioned. This largely
happens when tension is relieved and the patient calms down prior to external beam
radiation therapy. To simulate this, we initialized our algorithm to acquire the basis
reference surface from which the point evolution can start. In the next step we dis-
placed the torso phantom at twelve defined couch positions between 1 cm, 2 cm and
2.5 cm using an Elekta Hexapod. We verified the length of the offset using the Ex-
acTrac system and compared these ground truth results to those of our algorithm
(Table 1). The mean target registration error for the compensation of coplanar patient
misalignment was 0.44 ± 0.1 mm. To evaluate the rotational component we rotated the

Fig. 2. The principle of surface evolution. Algorithm was initialized with torso only. While the
patient moved along the longitudinal axis the patient was tracked in real-time and simultaneously
reconstructed. (Grey color: Current Observation, Red color: Current patient model) (Color figure
online)
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couch around the x, y, z axis for 2.5° respectively. The mean errors were:
x = 0.049 ± 0.06°, y = 0.024 ± 0.03° and z = 0.032 ± 0.039°.

Study 2- Noncoplanar Patient Setup: In this experiment we investigate the common
clinical scenario in which a patient has been setup using CBCT. The patient is prepared
for a beam to the same treatment site but with a different couch angle. Hence, a solution
must be in place to ensure the patient does not move. Furthermore, if the couch is not
rotating perfectly at the isocenter then non-coplanar errors occur. To evaluate the
system’s performance with respect to non-coplanar positioning, we displaced the torso
phantom manually from 0° to 30° around the couch’s vertical axis while simulta-
neously tracking the phantom. We then repeated a test similar to the motion man-
agement of Study 1, but now moving the phantom for 2 cm along the vertical axis. Our
algorithm must be robust to this accumulated drift. For an absolute shift of 30° vertical
and 2 cm vertical displacement the algorithm performed with an error of
4.88 ± 0.721 mm. We compare this to a state-of-art ICP only registration, and observed
that the ICP registration fluctuated already at 1.1 cm and a couch rotation of only 13°.

Study 3: Tracking Stability at Very Large Angles: We verified as well the stability of
our system on very large angles. For this we tracked the phantom for 100° without

Table 1. Target registration errors for patient misalignment compared to ground-truth.

Shift (mm) Lateral (mm) Longitudinal (mm) Vertical (mm)

10 0.077 ± 0.09 0.322 ± 0.08 0.527 ± 0.04
20 0.047 ± 0.16 0.389 ± 0.09 0.630 ± 0.05
25 0.160 ± 0.12 0.220 ± 0.17 0.748 ± 0.08

Fig. 3. Surface evolution during 100°couch angles. The grey points are the points currently
detected by the sensor. The red points are distributed all over the surface although much of the
surface in the final pose was initially not visible. (Grey color: Current Observation, Red color:
Current patient model) (Color figure online)
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falling into a local minimum (Fig. 3). With 80 % of the finally reconstructed points
initially not visible, the algorithm tracked from 20 k to 100 k points with a speed of
2 Hz. As a comparison, the ICP-only registration diverged completely with couch
angles larger than 57°.

4 Conclusions

We presented a new registration framework for patient setup and motion management
in Radiation Therapy. We have demonstrated an algorithmic solution that can operate
under limited fields of view using only a single camera compared to state-of-art
technologies. The sensor consists of standard components and utilizes simultaneous
reconstruction and tracking to achieve accuracy within clinical tolerances.
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Abstract. Integration of pre- or peri-operative images may improve
image guidance in minimally invasive interventions. In abdominal
catheterization procedures such as transcatheter arterial chemoemboliza-
tion, 3D pre-/peri-operative images contain relevant information, such
as complete 3D vasculature, that is not directly available from 2D imag-
ing. Accurate knowledge of the catheter tip position in 3D is currently
not available, and after registration of 3D information to 2D images
(angiographies), the registration is invalidated by breathing motion and
thus requires continuous updates. We propose a hidden Markov model
based method to track the 3D catheter position, using 2D fluoroscopic
image sequences and a 3D vessel tree obtained from 3D Rotational
Angiography. Such a tracking facilitates display of the catheter in the 3D
anatomy, and it enables to use the 3D vessels as a roadmap in 2D imaging.
The tracking is initialized with the first 2D image of the sequence. For
the subsequent images, based on a state transition probability distribu-
tion and the registration observations, the catheter tip position is tracked
in the 3D vessel tree using registrations to the 2D fluoroscopic images.
The method is evaluated on simulated data and two clinical sequences.
In the simulations, we obtain a median tip position accuracies up to
2.9 mm. On clinical sequence, the distance between the catheter and the
projected vessels after registration is below 1.9 mm.
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1 Introduction

Minimally invasive procedures are commonly performed to treat various diseases
because they are less demanding and risky for the patient than, for example, open
surgeries. In such procedures, as direct eyesight is lacking, physicians require
intra-operative images to visualize the instruments and the anatomy. During
catheterization interventions, 2D fluoroscopic (X-ray) imaging is usually used,
but the noise, 2D projection and inability to continuously use contrast agent
prevent physicians to have a continuous understanding of the instrument position
with regard to the 3D vasculature.

The purpose of our work is to improve image guidance in 2D X-ray guided
sequence abdominal catheterization procedures, specifically during transcatheter
arterial chemoembolization (TACE) procedures, by using 3D information from
peri/pre-operative images. During the procedure, the physician injects chemother-
apeutic agents and embolizes liver tumors by inserting a catheter into the femoral
artery and guiding it toward the tumors. The physician uses single-plane 2D X-ray
images in which only the catheter and the ribs are visible (Fig. 1). Pre-operative
3D Computed Tomography Angiography (CTA) and intra-operative 2D angiogra-
phies (X-rays with contrast agent) are acquired, providing detailed images of the
arterial tree, and enabling a roadmap to guide the catheter. However, such sta-
tic roadmaps are hampered by breathing motion and catheter deformation. We
therefore propose a 3D tracking method that follows the position of the catheter
tip in the 3D vessel tree, enabling guidance in the 3D image as well as facilitating
continuous roadmapping.

Fig. 1. TACE overview (left) and fluoroscopy example (right).

Image fusion and 3D/2D registration have already been addressed in the
literature (see reviews [5,7]), particularly for 2D X-ray guidance in cranial [8],
cardiac [10] and abdominal [3] interventions. These methods rely on anatomical
structures such as bones or the vasculature. A vessel-based rigid or non-rigid reg-
istration is done between pre-/peri-operative 3D images and single/bi-plane 2D
angiographies or 2D fluoroscopies. These approaches align the 3D vessels with the
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2D vasculature visualized using contrast agent. Such approaches cannot be used
continuously because of the toxic nature of the contrast agent. Without contrast
agent, in cardiac interventions, Ma et al. [6] use features such as diaphragm/heart
border, tracheal bifurcation or the catheter to correct for breathing motion.
In 2D abdominal fluoroscopies, however, such features are lacking. Other meth-
ods propose 3D/2D registration with peri-operative 3D Rotational Angiogra-
phies (3DRA) or Cone Beam Computed Tomography (CBCT) [1,2,11] where
the calibrated geometry of the C-arm enables accurate alignment with the 2D
X-ray images (acquired with the same device). Such an approach is effective
in cranial interventions, as the head does not deform [11], but in abdominal
procedures, the breathing motion invalidates the alignment. That is why a semi-
automatic method following a region of the catheter [2] and a catheter-based
registration [1] have been proposed to follow the catheter. Ambrosini et al. [1]
have an automatic registration but when the catheter visible part is too short,
the alignment fails. Position tracking of catheters has been addressed less fre-
quently. The method proposed by van Walsum et al. [13] is one of the first
approaches for neural applications.

In our work, we combine a hidden Markov model (HMM) [9] with 3D/2D
registration to track the catheter tip in 3D over the time. The main contribution
is a novel method for tracking the catheter tip in 3D, using a 3D vessel tree,
2D images and a HMM. The method is evaluated using a large set of simulated
catheter motions in patient 3D datasets, and demonstrated on two patient cases.

2 Method

The purpose of our method is to track the catheter tip inside a 3D vessel tree,
where the catheter position in 2D is obtained from the interventional X-ray
images. As the catheter is assumed to be in the vasculature tree and as its
displacement is relatively small between subsequent 2D images, we propose to
model the catheter motion within the 3D vessel tree using hidden Markov model
(HMM) [9]. Each 3D point of the vessel centerlines represents a state that denotes
the probability that the catheter tip is at that location. Each state is linked with
state transitions between connected close-by vessel parts. The observations to
update the HMM are based on a 3D/2D registration metric where the 3D vessel
tree is aligned with the 2D catheter visible in the image.

In the following, we explain the HMM, followed by a description of how the
different elements of the HMM are integrated in our 3D tracking method.

2.1 Hidden Markov Model

A HMM is described as a system with a set of states S = {s1, . . . sN} (Fig. 2).
The HMM changes, at each time point t, according to the probabilities associated
with the states and the current set of observation Ot = {Ot(1), . . . Ot(N)}. The
transition probabilities between states are defines in a matrix A (with a N × N
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Fig. 2. HMM with 3 states and its matrix A of state transition probabilities.

dimension) where each aij ∈ A is the probability that the state i can move to
the state j (aij ≥ 0 and

∑

j

aij = 1).

Following Rabiner et al. [9], the Viterbi algorithm selects at time t the most
probable path through the state space based on the maximum δt(i) which is the
best score (highest probability) along a single path that ends in state si. Viterbi
takes into account the first t observations. Starting from an initial distribution of

the probabilities over the states π = {π1, . . . πN} where
N∑

j=1

πj = 1, the algorithm

initializes the δ1(i) as follows:

δ1(i) = πi · O1(i),

where O1(i) is an observation score given that we are in the state si at time
t = 1. Next, the subsequent δt(i) can be computed using recursion:

δt(j) = max
i

[δt−1(i) · aij ] · Ot(j).

2.2 Catheter Tip Tracking

Timepoint and States. At each timepoint t, a single 2D fluoroscopic image
of the complete image sequence is processed. In this image, the 2D catheter
centerline Ct = {c1, . . . cnC

} is extracted, where c1 is the tip of the catheter.
The full 2D catheter is used during the 3D/2D registrations to compute the
observations. A set of 3D points P = {p1, . . . pN}, corresponding to the 3D
vessel centerlines, is extracted from the peri-operative 3DRA. In the HMM, the
probability of being in state si is the probability of the catheter tip being at
position pi (Fig. 3).

Matrix A of State Transition Probabilities. Each aij in the matrix A
contains the probability that the catheter tip moves from the position pi to pj

(state si to sj) between two images. In the context of tip motion, the closer pi

and pj are, the higher the probability of transition should be.
To define A, the transition probabilities are set according to the distance

along the vessel path between points pi and pj of the 3D vessel tree and distrib-
uted with a Gaussian function:

a
′
ij = e

− D(pi,pj)2

2σ2
a
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Fig. 3. HMM with a simple vessel tree. Here, the transitions between possible tip
locations exist only with direct neighbours and are equiprobable. The Viterbi path
goes to the optimum tip position knowing the observations O1. . . O5 in the 5-images
sequence.

where σa controls how far the catheter tip can move. If {l1, . . . ln} is the set of
points representing the vessel centerline between the points pi = l1 and pj = ln,
D(pi, pj) is defined as the sum of the distances between each neighboring pair
lk, and lk+1:

D(pi, pj) =
n−1∑

k=1

||lk, lk+1||.

Because the matrix A defines probabilities,
∑

j

aij has to be equal to 1 so we

normalize the coefficients to obtain aij = a
′
ij .(

∑

j

a
′
ij)

−1.

Observations. An observation score Ot(i), under the assumption that the
catheter tip is at the position pi (thus in the state si), has to be determined. From
the 3D vessel tree, the unique 3D catheter path centerline Vi = {v1, . . . vnV

},
starting from the tip pi and going to the root of the tree, is extracted. This 3D
path Vi is registered to the current 2D catheter Ct, obtaining a rigid transforma-
tion that aligns the 3D vessel tree with the catheter centerline in the 2D image.
The observation score Ot(i) (between 0 and 1) using the metric M of the 3D/2D
registration is defined as follows:

Ot(i) = e
− M(Ct,Vi)

2

2σ2
s

where σs controls the registration score distribution and where M is defined as
the minimum sum of the minimal distance between each point of the 2D catheter
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Ct and any projected point of the 3D centerline Vi:

M(Ct, Vi) = min
τ

(
∑

c∈Ct

min
v∈Vi

||c − Fproj(v, τ)||
)

where Fproj(v, τ) is the projection of the 3D point v onto the 2D images and τ
represents a 4 degrees of freedom rigid transformation matrix (three rotations
and one translation) used to align the catheter Ct and the vessel path Vi. We
define the projection function Fproj as follows (Fig. 4):

Fproj(v, τ) = Tproj.Tdet←w.Tw←li .τ.Tli←w.T−−→
pili

.v

where Tproj is the cone-beam projection and Tdet←w the transformation matrix
from the C-arm world to the detector (X-ray image plane). Both transformations
are known because of the C-arm geometry (given in the DICOM file). As the
projection of the 3D tip pi has to match the 2D catheter tip c1 (i.e. Fproj(pi, τ) =
c1), the search of the transformation τ translates along the line from c1 to the
origin of the X-ray projection and rotates around it (Fig. 4). li is the intersection
point of the projection line of c1 and the plane, containing pi, parallel to the
patient table. It is a coherent starting point for the registration search because
we are expecting mostly only a breathing motion of pi in the cranial-caudal
direction. τ is thus computed in the coordinate system around li. T−−→

pili
is the

in-plane translation from pi to li in the world coordinate system.

Fig. 4. Transformations in the projection function Fproj.

Viterbi. For each image in the sequence, using the Viterbi algorithm [9], the
Viterbi path (best tracking of the tip) is computed from the initial state position
at the first image to the current image. The result gives the highest probability
of the 3D tip position pi and also (as a 3D/2D registration has been performed
during the observations computations) the transformation τ to align the 3D
vessel tree inside the 2D fluoroscopy.
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3 Experiments and Results

We perform two experiments. First, we evaluate the accuracy of the catheter tip
tracking using clinical image data where the catheter and the breathing motion
are simulated. In these experiments, the availability of the ground truth from the
simulation permits quantitative evaluation. Next, we demonstrate the approach
for tip tracking on two real image sequences.

3.1 Implementation

We retrospectively acquired anonymized data of 19 TACE procedures in three
different hospitals using intervention rooms with angiographic C-arm systems
(Xper Allura, Philips Healthcare, Best, the Netherlands). In total, we acquired
67 fluoroscopic image sequences. A 3DRA was acquired at the beginning of each
intervention when the catheter was in the hepatic artery. The 2D catheter is
manually segmented in each fluoroscopic image and the 3D vessel tree in the
3DRA is extracted with a semi-automatic method based on thresholding and
skeletonization [12].

The matrix A of state transition probabilities is built with σa = 12 mm
which enables a relatively large catheter tip motion per frame. The registration
score uses σs = 1.5 mm, which penalizes registrations where the normalized
sum of the minimal distance M(Ct, Vi) is larger than 1.5 mm. These values have
been chosen after a pilot on one simulated image sequence. For the initialization,
δ1(i) is equal to 1 in the state where the tip is and equal to 0 for all the other
states. We manually initialize the tip position of the first image of each sequence.
The discretization of the 3D blood vessel and the 2D catheter are set to 3 mm.
Because the method has to be computed in real-time, the number of observations
Ot(j) to compute at time t is limited to 50. Thus, to calculate every δt(j), we sort
in descending order the states sj based on the probabilities max

i
[δt−1(i) ·aij ] and

compute the observations Ot(j) for the 50 first states sj in the sorting. All the
other state observations are assumed to return a score close to 0, as those states
have very low probabilities. Therefore these observation scores are set directly
to 0 without any computation and thus δt will be also 0. When we compute
the observation scores, M(Ct, Vi) is minimized using the Powell optimizer to
find the 4 degrees of freedom rigid transformation matrix τ . The search space is
limited to ±2◦ for the three rotations and ±2 mm for the translation along the
projection line. The average computation time for each image is below 60 ms
with a 2.0 Ghz Intel Core i7 processor.

3.2 Clinical Data with a Simulated Catheter and Breathing Motion

As we do not have ground truth for the catheter position in 3D in our clinical
data, we evaluate our method on simulated data. We use the 3D vessel tree from
the 3DRA and also the projection geometry of the fluoroscopic images sequence
(saved in the DICOM file). Initially, the catheter tip is positioned at a proximal
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Table 1. Percentage of incorrect tip tracking at the end of the sequences with different
simulation parameters.

Catheter tip speed No deformation Slight deformation Large deformation

1.5 mm/frame 7.8 % 6.2 % 7.8 %

3 mm/frame 4.7 % 1.6 % 0.0 %

6 mm/frame 3.1 % 3.1 % 1.6 %

location in the 3D vessel tree, and over time the tip is advanced. The catheter
shape in 3D is obtained by smoothing the corresponding vessel centerline with a
Gaussian kernel. The effect of liver motion due to respiration is simulated with
a translation along the y-axis (cranial-caudal direction), where the translation
magnitude is defined as:

translationy(i) = λ · sin(
2π

β
· i · Δt − π

2
)

where λ = 10 mm is the peak amplitude, β = 4 s the respiration period, i the
number of the current image in the sequence and Δt = 0.133 s the time between
two images, obtained from the fluoroscopic image frequency.

The simulated catheter tip has three different constant speeds: 1.5, 3 and
6 mm/frame (resp. 11.2, 22.5 and 45 mm/s), which is similar to tip speeds during
clinical procedures.The simulationhas two catheter deformations: slight (Gaussian
smoothing with a random (between each image sequence) σ ∈ [3, 6] mm) and large
(σ ∈ [7, 11] mm). We tracked the tip and registered all the 67 simulated sequences
starting with the correct initial registration at the first frame.

To evaluate the tip tracking, we compute the distance between the real tip
and the registered tip chosen by the HMM at every image frame. Both the dis-
tance in the 2D image space and the 3D world space are calculated. The average
distances between the real 2D projected tip and the registered 2D projected tip
for every simulated sequence with different tip speeds and catheter deformations
are presented in Fig. 5. The medians of the distances are in a range of 1.1 and
2.7 mm. These distances increase when the deformation is larger and also when
the tip moves faster. The average distances between the real 3D tip and the reg-
istered 3D tip for every simulated sequence with different tip speeds and catheter
deformations are also shown in Fig. 5. The medians of the tip distances are up to
2.9 mm. We define an incorrect tip tracking when the distance between the real
3D tip and the registered 3D tip, in the last 5 images of a tracked sequence,
is superior to 3 mm. Following this definition, Table 1 shows the percentage of
sequence in which the tracking is incorrect at the end of the sequence. This
percentage is up to 7.8 %.

3.3 Clinical Data

We applied the method on two clinical sequences. As there is no ground truth for
the 3D tip position available, we qualitatively evaluated whether the tracking is
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consistent. In these sequences, the catheter tip is moved from the hepatic artery to
a vessel close to the tumor. The first frame is manually registered and the method

Fig. 5. Average distance for each sequence between the real 2D projected tip and the
registered one with different simulation parameters (left). Average distance for each
sequence between the real 3D tip and the registered one (right).

Fig. 6. Average distance (in mm), of the clinical sequences, between points from the
2D catheter centerline and their closest points from the 2D projected vessel centerline
Vi, after registration at each frame.

a) b) c) d)

Fig. 7. Tip tracking with 2D catheter (in orange) and 3D vessel tree projection (in
green). Before the tracking (a), breathing and table motion prevent the alignment.
After the tracking, the roadmap is possible with all the vessel tree visible (b) or only
the vessels after the tracked tip (c). Close view of the 3D tracking tip score δt inside
the vasculature (d) with a colored scale: red (score = 0) to green (score = best score)
(Color figure online).
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is run on the sequences (74 frames each at 7.5 Hz). Visual checking showed that
the registration is approximately correct. Video clips showing the tracking on both
sequences are available as supplementary material. In the second sequence, at a
bifurcation, the tip goes in the wrong vessel but goes back to the correct one after
two frames. We also computed the distance from each catheter point (in 2D) to
the closest point of the projected centerline Vi after registration (see Fig. 6). For
both sequences, the average point distances between the catheter and the vessel
Vi are below 1.9 mm. Figure 7 shows one registered frame of the first sequence.

4 Discussion and Conclusion

We proposed a method for tracking the 3D catheter tip in fluoroscopies using
an HMM and registration with the 3D vessel tree extracted from a 3DRA. The
method uses the Markov models to estimate the probabilities of the states, which
represent the possible catheter tip positions in the 3D vessel tree. The evalua-
tion on simulated data showed a median distance between the real tip and the
registered one up to 2.7 mm in the 2D image space and up to 2.9 mm in the 3D
space. With the two clinical sequences, we obtain an average distance between
the 2D catheter centerline and the projection of the 3D vessel centerline below
1.9 mm.

As the discretization of the catheter centerline and the blood vessel tree is
3 mm, the distances between real tip and registered tip are close to the sampling.
The tracking gives better tip accuracy when the motion of the catheter is small
and the catheter deformation is slight. The percentage of incorrect tracking at
the end of the sequence (up to 7.8 %) is relatively low and is not impacted by
deformation. It is higher for the slow catheter motion which implies that the
parameter σa for the state transition matrix A is probably too large for static
and slow catheter motion.

Evaluation of the method on the two clinical cases showed that the catheter
and the 3D vessel tree match well. According to our clinical partners, the track-
ing of the tip position (both in 2D and 3D) is accurate enough to be used for
roadmapping and to provide the physician with an overview of where the catheter
is and where to go.

Robust automatic 2D catheter segmentation is required after initialization to
integrate our method into the interventional workflow. Heibel et al. [4] obtained
a mean error of real-time catheter tracking less than 1.2 pixels for abdominal
fluoroscopies. Those results should be sufficiently accurate for our registration.
In clinical practice, the first initialization of the catheter tip position can be done
after the 3DRA acquisition by pointing the catheter tip in the 3DRA. Due to
clear visibility of the catheter, this task could be easily automated.

The lack of a ground truth position of the catheter in 3D hampers thor-
ough evaluation of approaches such as ours, which is why we employed exten-
sive experimentation using simulated catheter positions obtained from clinical
patient data. Additionally, qualitative evaluation was performed using clinical
data only, demonstrating that the method is able to consistently track the posi-
tion in 3D.
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Whereas we have now fixed the parameter σa for the state transition matrix A,
and the σs for converting the registration distance to an observation score, based
on a pilot experiment, these values could be tuned to a specific patient or anatomy
(e.g. at bifurcations). In the future we therefore intend to investigate the impact
of these parameters and how they should be set optimally for each case.

To conclude, we have presented a model to track a catheter tip thanks to 2D flu-
oroscopies and 3DRA. We evaluated the feasibility of our approach with simulated
data demonstrating a tip accuracy below 2.7 mm in 2D image space and 2.9 mm
in 3D space. The method was also successfully applied in two clinical cases.
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Abstract. The human perception of the three-dimensional world is influenced
by the mutual integration of physiological and psychological depth cues, whose
complexity is still an unresolved issue per se. Even more so if we wish to mimic
the perceptive efficiency of the human visual system within augmented reality
(AR) based surgical navigation systems. In this work we present a novel and
ergonomic AR interaction paradigm that aids the manual placement of a
non-tracked rigid body in space by manually minimizing the reprojection
residuals between a set of corresponding virtual and real feature points. Our
paradigm draws its inspiration from the general problem of estimating camera
pose from a set of n-correspondences, i.e. perspective-n-point problem. In a
recent work, positive results were achieved in terms of geometric error by
applying the proposed strategy on the validation of a wearable AR system to aid
manual maxillary repositioning.

Keywords: Augmented reality and visualization � Computer assisted inter-
vention � Interventional imaging

1 Introduction

In the context of image-guided surgery (IGS), augmented reality (AR) technology
represents a promising integration between navigational surgery and virtual planning.

In 2012 Kersten-Oertel et al. [1] proposed a taxonomy of mixed reality visuali-
zation systems in IGS and defined the three major components based on which they
then presented a systematic overview of the trends and solutions adopted in the field
[2]. The acronym for the taxonomy (DVV) derives from its three key components: Data
type, Visualization Processing and View. According to the taxonomy, for classifying
and assessing the efficacy of a new AR system for IGS, we must focus our attention on
the particular surgical scenario in which the visualization system aim to be integrated.
The surgical scenario affects each of the three DVV factors, namely the type of data
that should be displayed at a specific surgical step, the visualization processing tech-
nique implemented to provide the best pictorial representation of the augmented scene
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and how and where the output of the visualization processing should be presented to
the end-user.

Several visualization processing techniques have been adopted to allow a more
immersive viewing experience for the surgeon and a more precise definition of the
spatial relationships between real scene and visually processed data along the three
dimensions. The human visual system exploits several physiological and psychological
cues to deal with the ill-posed inverse problem of understanding a three-dimensional
scene from one retinal image. However, monocular and binocular cues are not always
sufficient to infer the spatial relationships between objects in the three-dimensional
scene. Therefore, a full comprehension of the mechanisms underpinning depth per-
ception is not a completely resolved issue per se in a real scene and it results even more
complex within an augmented scene [3]. In this regard, among the suggested visuali-
zation processing techniques, researchers have tried to improve the perceptive effi-
ciency by modeling and contextually rendering the virtual content in a photo-realistic
manner, and/or by using pixel-wise transparency maps and “virtual windows” [4] to
recreate occlusions and motion parallax cues. Some of the proposed techniques for
enhancing depth perception comprise high-fidelity texturing [5] or colour coding
methods, whereas others consist in lighting and shading cues and/or on the adoption of
an interactive “virtual mirror” [6, 7]. Alternatively, depth perception can be improved
by relying on standard stereopsis and two-view displays or on more complex full
parallax multi-view displays. In any case, to the best of our knowledge, hitherto there
are no visualization processing techniques that provide the user with useful information
able to improve the postoperative outcome for those specific surgical tasks that involve
the accurate manual placement of rigid anatomies in space.

Many surgical procedures in the field of orthopedic surgery or maxillofacial sur-
gery, involve the task of reducing displacements or correcting abnormalities between
rigid anatomical structures, i.e. bones, on the basis of a pre-operative planning. The
direct tracking of all the rigid anatomies involved in the procedure would yield a
measure of the six-degrees-of-freedom displacements between them and it would aid
the correct performance of the surgical task, yet it is not always feasible for technical
and logistic reasons. In case of single object tracking, the pointer of a standard surgical
navigator can be employed by the surgeon to compare the final positions of clearly
detectable reference points, over the repositioned anatomy, with those of their coun-
terparts from the surgical planning. Nevertheless, this approach does not allow the
assessment of all of the six-degrees-of-freedom at the same time.

AR seems the optimal solution to aid this kind of surgical tasks. Yet, the traditional
AR interaction technique featuring the superimposition of a semi-transparent virtual
replica of the rigid anatomy in a position and orientation (pose) defined during planning,
is not very effective in aiding the surgeon in the correct performance of those procedure.
In this regard, it is more beneficial and intuitive for the surgeon to deal with task-oriented
visualization techniques, more than with complex reproductions of the virtual anatomies
through photorealistic rendering, transparencies and/or virtual windows.

The goal of this work is to present a novel and ergonomic AR interaction paradigm
based on a simple visualization processing technique that aims at aiding the accurate
manual placement of a non-tracked rigid object in space. Our strategy relies on the
tracking of a single object in the scene (e.g. the patient’s head), namely on the real-time

Human-PnP: Ergonomic AR Interaction Paradigm for Manual Placement 51



estimation of the geometric relation between a scene reference system (SRS) and the
camera reference system (CRS), e.g. performed by means of a video based registration
approach. In this scenario, the AR guide aids the surgeon in placing other non-tracked
rigid bodies (e.g. bones fragments) at a planned pose relative to the CRS. Our paradigm
draws its inspiration from the general problem of estimating camera pose from a set of
n-correspondences, i.e. perspective-n-point problem. The key idea is that manually
minimizing the distance, in the image plane, between a set of corresponding real and
virtual feature points is sufficient to aid the accurate placement of a non-tracked rigid
body in space.

2 Methods

Perspective-n-Point Problem. The task of estimating the pose of a camera with
respect to a scene object given its intrinsic parameters and a set of n world-to-image
point correspondences is known as the Perspective-n-Point (PnP) problem in computer
vision and exterior orientation or space resection problem in photogrammetry.

This inverse problem concerns many fields of applications (structure from motion,
robotics, augmented reality, etc.) and it was first formally introduced in the computer
vision community by Fishler and Bolles in 1981 [8], albeit already used in the pho-
togrammetry community before then. According to Fishler and Bolles the PnP problem
can be defined as follows (distance-based definition):

Given the relative spatial locations of n control points Pi; i ¼ 1; . . .n, and given the angle to
every pair of these points from an additional point called the center of perspective C, find the
lengths Di ¼ CPij j of the line segments joining C to each of the control points.

The constraint equations are:

D2
i þ D2

j � 2DiDj cos hij ¼ d2ij; i 6¼ j ð1Þ

Where Di ¼ CPij j, Dj ¼ CPj
�� �� are the unknown variables, hij ¼ dPiCPj and dij ¼

PiPj
�� �� are the known entries (Fig. 1). In computer vision hij are determined finding the
correspondences between world-to-image points and knowing the intrinsic camera
parameters, while dij are established by the control points.

Following this definition, once each distance Di is computed, the position of the
points Pi can be expressed in the CRS. Therefore, being the position of each Pi in the
SRS known, the problem of estimating camera pose with respect to the SRS is reduced
to a standard absolute orientation problem whose solution can be found in closed-form
fashion through quaternions [9] or singular value decomposition (SVD) [10].

The same problem is also known under the transformation-based definition [11]
which can be formalized as:

kibpi ¼ Kj0½ � R T
0 1

� �bPi; i ¼ 1; . . .n ð2Þ
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Where the scene and image points P̂i and p̂i are represented in homogeneous
coordinates and the equation is up to a scale factor ki. Hence, according to this defi-
nition, the PnP problem aims at determining the pose (in terms of a rotation matrix R
and a translation vector T) given a set of n world-to-image correspondences and known
the intrinsic camera parameters encapsulated by the matrix K.

The PnP problem has been extensively studied by several groups, which have
proposed different iterative, closed-form for solving it.

Closed-form methods [12–18], directly provide an estimation of the camera pose but
they are usually less accurate and more susceptible to noise than iterative methods. Iter-
ative non-linear optimization methods solve the PnP problem by iteratively minimizing a
cost function generally related to the geometric (reprojection residuals) or algebraic error
but they need a good initial guess and yield only one solution at a time [19–21]. A useful
overview of the state-of-the-art methods can be found in [17] and in [22].

In terms of geometric reprojection residual, the non-linear cost function can be
formulated as the sum of the squared measurement errors (di):

�Rj�T ¼ arg min
Xn
i¼1

dðpi; p̂iÞ2

¼ arg min
Xn
i¼1

pi � p̂iðK; R̂; T̂;PiÞ
�� ��2

ð3Þ

Fig. 1. Geometry of the PnP problem.
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Where pi are the measured image points, and p̂i are the calculated projections of the
corresponding control points as a function of K; R̂; T̂.

The other important research direction on the PnP problem is the study of the
multi-solution phenomenon of the PnP problem [23], principally when n ¼ 3 (P3P)
[24, 25], being three the smallest subset of control points that yields a finite number of
solutions. P3P problem yields at most four solutions which can be disambiguated using
a fourth point, and it is the most studied case since it can be used as first step to reduce
the complexity of the computation of a PnP problem, e.g. in a RANSAC scheme by
removing the outliers.

AR Video-Based Camera Registration. Regardless of the method adopted for solving
the PnP problem, an immediate application of the PnP problem is to locate the pose of a
calibrated camera with respect to an object, given the 3D position of a set of n control
points rigidly constrained to the object and the 2D position of their correspondent
projections onto the image plane.

For a correct registration of computer-generated elements to the real scene in
AR-based surgical navigation systems, the image formation process of the virtual
camera must perfectly mimic the real camera one. In mostly all the AR applications the
estimation of the intrinsic camera parameters is the result of an off-line calibration
process whereas the extrinsic camera parameters are determined online, e.g. solving a
PnP problem in real-time. This video-based camera registration method suggested us
the implementation of an ergonomic AR interaction paradigm for positioning and
orienting a non-tracked rigid object in space.

Human-PnP. As written in the introduction, many surgical procedures in the field of
orthopedic surgery or maxillofacial surgery, involve the task of manually placing rigid
anatomies on the basis of preoperative planning. In that case, let us assume that we can
rely on a robust and accurate registration of the surgical planning onto the real scene,
by means of the tracking of at least one rigid body (e.g. the head). The
six-degrees-of-freedom pose of an additional and non-tracked rigid anatomy in relation
to the SRS, can be retrieved by physically placing it as to minimize the geometric
distance, on the image plane, between a set of real and virtual feature points. For
brevity, from now on, we shall refer to these structures as “tracked anatomy” for the
former and “non-tracked anatomy” for the latter, while the proposed method will be
referred to as the human-perspective-n-point problem (hPnP).

From a theoretical standpoint, our method draws its inspiration and physically
mimics the paradigm on which the PnP problem is formulated. As mentioned in the
previous section, the main goal of the PnP problem is to infer useful information on the
real 3D scene, based on 2D observations of it. In an AR application, this spatial
information is used to geometrically register the virtual elements onto the real scene.
Thus, as a general rule and regardless of the method adopted for solving the PnP
problem, a robust and accurate registration should minimize in the image plane the
geometric reprojection residuals between measured and estimated projections (see
Eq. 3). Similarly, the goal of our hPnP interaction paradigm is to achieve the desired
placement of a non-tracked anatomy by manually minimizing the reprojection residuals
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between correct/planned projections �pi of virtual landmarks, and observed projections
�̂pi of real landmarks.

The correct/planned projections �pi are rendered on the image plane according to the
real-time estimation of the camera pose ½�R; �T� relative to the tracked anatomy reference
system (SRS) and assuming the intrinsic camera parameters, encapsulated by matrix K,
are determined offline, e.g. through the Zhang’s method [26]. The position of each
virtual landmark Pi in the SRS is established during surgical planning.

The real projections �̂pi are associated with the pose, encapsulated by ½b�R; b�T�, between
viewing camera and non-tracked anatomy reference frame (ARS): this resulting pose
varies according to the manual placement of the rigid body relative to the camera:

~Rj~T ¼ arg min
Xn
i¼1

d �pi; b�pi� �2

¼ arg min
Xn
i¼1

�pi K; �R; �T;Pið Þ � b�piðK; b�R; b�T;PiÞ
��� ���2

ð4Þ

In this way, we wish to obtain ~Rj~T� 	 � �Rj�T½ � (see Fig. 2), namely we seek to
positioning and orienting the ARS as coincident with the planned and registered SRS
(non-tracked anatomy reference frame ≈ planning reference frame).

To implement this strategy, we add simple virtual elements (e.g. virtual asterisks,
crosses, etc.) to the virtual scene during the surgical planning: one element for each of
the clearly detectable physical landmarks on the rigid body. The landmarks may consist
of a series of distinguishable feature points over the surface of the anatomy or rigidly

Fig. 2. Geometry of the hPnP: minimizing the reprojection residual between registered
projections �pi and real projections b�p is sufficient to aid the accurate placement of a rigid body (the
maxilla in the image) in space.
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constrained to it. Under such AR guidance, the user moves the non-tracked rigid body
up to obtain a perfect overlapping between real and virtual landmarks, hence manually
minimizing the reprojection residuals on the image plane: �pi � �̂pi8i (Fig. 3). The
theoretical assumptions underpinning the PnP problem ensure that if �pi � �̂pi8i, the
non-tracked anatomy is placed in the correct pose as planned in SRS.

3 Results

In a recent work [27], the described strategy was applied in the validation of a wearable
AR system to aid maxillary repositioning. AR system consisted of a stereoscopic video
see-through head mounted display equipped with two external USB cameras placed in
a quasi-orthoscopic position [28, 29]. The video see-through paradigm of the system is
implemented as follows (Fig. 4): real-world views are grabbed by a pair of calibrated
external cameras; the captured frames, after compensation of the radial distortion, are
screened as backgrounds of the virtual scene onto the corresponding display; the virtual
elements, defined during planning, are added to the real scene and observed by a pair of
virtual cameras whose processes of image formation mimic those of the real cameras in
terms of intrinsic and extrinsic camera parameters. Zhang’s method is used to calibrate
the two cameras. The estimation of the extrinsic parameters, allowing the real-time
registration of the virtual elements to real scene, is achieved through a marker-based
video-registration method [29].

In the study, manual repositioning of the upper maxilla following LeFort 1 osteotomy
was chosen as test procedure. The test was conducted on a CT-scanned/3D-printed
replica of a cadaveric human skull. The planned pose of the maxilla, as defined during
preoperative planning, acts as a guide for the surgeon during the intervention performed
in-vitro. The traditional AR interaction technique, featuring the superimposition of a
semi-transparent virtual replica of the maxilla, as dictated by the surgical planning, did

Fig. 3. Detail of the image plane with the minimization of the reprojection residuals. Here the
virtual information consists of a cyan-colored asterisk for each physical landmark clearly
detectable over the maxilla, e.g. coloured landmarks fixed on the brackets of the orthodontic
appliance (Color figure online).
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not prove to be very effective in aiding the surgeon in manually repositioning the upper
maxilla. This was mostly due to the surgeon’s limited perception of the relative distances
of objects within the AR scene owing to the presence of unnatural occlusions between the
real and the virtual maxilla. Conversely, a more ergonomic form of visualization con-
sisted in the use of an interaction paradigm which actualizes the above described hPnP
approach: physical landmarks onto the maxilla and corresponding to coloured landmarks
fixed on the brackets of the orthodontic appliance usually applied prior to this kind of
interventions, were designated as reference markers for the AR view modality. The
repositioning of the maxilla is assisted by visually aligning small virtual asterisks, drawn
in positions defined during planning (relative to the SRS), with the corresponding real
landmarks.

The upper surface of the maxilla (corresponding to the post-osteotomy surface) was
covered with highly malleable plasticine so to be fixed to the upper skull once the
surgeon performed the repositioning. The surgical accuracy was validated with the aid
of an optical navigation system that recorded the coordinates of three reference points
on the non-tracked maxilla after repositioning. Six surgeons and three unskilled
engineers were involved in the testing, each of whom was asked to manually reposition
the maxilla as dictated by three surgical plannings of variable complexity. Results in
terms of linear distances between the real positions of the reference holes and the
expected positions (defined during planning) were very promising: mean error was
1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis,
0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the cranio-caudal axis.
Such results were obtained without the tracking of the maxilla but just relying on the
ergonomics of the chosen AR interaction paradigm: the overlapping on the image plane
between virtual feature points and real landmarks, visible over the non-tracked anat-
omy, proved to be sufficient to aid the accurate repositioning of the maxilla.

Fig. 4. Video see-through paradigm of the stereoscopic head mounted display used to aid
maxillary repositioning.
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4 Discussion

It is important to note that the chosen AR interaction paradigm was not bound to the
particular video-based tracking modality exploited in the cited study, neither to the use
of a specific wearable stereoscopic system. Howbeit, the user can enhance the accuracy
in object placement by checking consistency of real and virtual landmarks from dif-
ferent viewpoints. In this regard, the ergonomics of the proposed method may benefit
from the adoption of a wearable AR system. Moreover, the choice of such instance of
visualization data was, in that work, empirically inspired by the authors’ endeavor of
defining a modality that were ergonomic for the surgeon and that provided the smallest
perceived parallax error: no further discussion was held on the theoretical hypotheses
behind such interaction paradigm which are here discussed for the first time.

5 Conclusion

In this work, we proposed a novel and ergonomic AR interaction paradigm that aims at
obtaining the accurate placement of a rigid body in space without the need for multiple
objects tracking and/or complex visual representations of the virtual guide. From a
theoretical standpoint, our method draws its inspiration and physically mimics the
paradigm on which the PnP problem in computer vision is formulated. This approach,
represented by the acronym hPnP, could be of help in those tasks, also not specifically
surgical, where the AR guide aims at aiding the placement of a rigid body in space. The
key-principle behind this interaction paradigm can be exploited in many different
AR-based navigation systems: it can be integrated with different end-products of the
visualization process in terms of display technology and perception location and/or it
could be realized in conjunction with various tracking modalities.

To increase robustness and applicability of the proposed AR interaction paradigm
in a real clinical scenario, redundancy in choosing the set of landmarks must be
granted. Further, the presence of line-of-sight occlusions caused by soft-tissues, sur-
geon’s hands or surgical instrumentation may be restricted by conveniently selecting
the position of the landmarks in relation to the surgical field.
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Abstract. We present a novel approach to jointly generate multidimen-
sional breathing signals and identify unintentional patient motion based
on thermal torso imaging. The system can operate at least 30 % faster
than the currently fastest optical surface imaging systems. It provides
easily obtainable point-to-point correspondences on the patients surface
which makes the current use of computationally heavy non-rigid sur-
face registration algorithms obsolete in our setup, as we can show that
2d tracking is sufficient to solve our problem. In a volunteer study con-
sisting of 5 patient subjects we show that we can use the information to
automatically separate unintentional movement, due to pain or coughing,
from breathing motion to signal the user that it is necessary to re-register
the patient. The method is validated on ground-truth annotated thermal
videos and a clinical IR respiratory motion tracking system.

1 Introduction

In external beam radiation therapy it is crucial to keep the patient aligned with
respect to pre-operative planning data during the whole treatment fraction. The
task can be separated into two categories: setup and motion management. While
setup tries to align the patient with the highest possible accuracy, motion man-
agement tries to keep the patient aligned over time. Motion management is
two-fold if treatment is applied to extra-cranial sites: respiratory motion, which
can be used as a surrogate signal for internal tumor movement, and sponta-
neous movement of the patient. Range Imaging (RI) sensors promise to provide
continuous, non-invasive imaging and therefore have been studied for motion
management [6,7]. Typical approaches try to separate respiratory motion from
patient movement. Early versions of the AlignRT system (Vision RT, London
UK) acquired RI surfaces for one respiratory cycle. A respiratory signal was
extracted and mapped to the surfaces. Afterwards only surfaces recorded dur-
ing End of Exhale were registered to each other, which inevitably drops the
frame rate to 0.1–0.3 Hz. An extension to this idea was proposed by Wasza
et al. [7], where the whole respiratory cycle is used to build a deformation model
that later can be used for an efficient non-rigid registration. In a following work
[8] a multi-RI sensor fusion framework was developed to increase the patient’s
body coverage since linear independence of the deformation vectors of non-rigidly
registered surfaces potentially allows a better separation of rigid and non-rigid
c© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 61–68, 2015.
DOI: 10.1007/978-3-319-24601-7 7
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movement. This goes in line with [3] who outline general problems of 3D surface
registration algorithms, which suffer from a decrease of robustness near or on
featureless areas, like thorax or abdomen. All these works try to separate non-
rigid from rigid movement due to the assumption that non-rigid movement is
equivalent to respiratory motion and rigid-movement to spontaneous movement
which then can be compensated by a robotic couch. These assumptions are inac-
curate since a patients movement on a couch is always highly non-rigid. Some
tumor tracking devices are capable to work with very densely sampled surrogate
signals at 60 Hz (Vero System, Brainlab). Such tracking rates currently can only
be achieved by marker based systems. To our knowledge the fastest known RI
system achieves 20 Hz [4]. This is due to the complex nature of structured light
systems, which have to project one or more patterns per frame on the patient’s
body with a camera filming the patterns in exact synchronization. This technol-
ogy is somehow limited since to increase frame-rate also an increased amount
of light is needed for the pattern projection, which at some point can become
dangerous for the patients retina.

Contributions. In this paper, we propose an algorithm which separates non-
rigid respiratory motion from non-rigid spontaneous movement while being able
to generate multi-dimensional breathing signals to serve as a surrogate for tumor
motion compensation. We also make use of thermal imaging which only relies
on the thermal energy emanated by the patients body. The lower priced system
used in our work runs comfortably at 30 Hz. From this, we exploit the fact
that the patients torso consists of many distinctive thermal regions exactly at
those locations where typically used state-of-the-art RI sensors give a low signal.
These features can be tracked directly in the 2D sensor plane which makes the
use of computational heavy non-rigid surface algorithms obsolete in our setup.
Although this MICCAI paper tracks surface deformation only implicitly, the
assumption also would hold if used in a setup that reconstructs the 3D surface
based on motion or stereo using thermal imaging.

2 Methods

Our method relies on thermal image sensors delivering spatially consistent ther-
mal surface information over time which can be approximated in a simplified
manner: a scene point X ∈ R

3 on a potentially moving surface appears in the
thermal sensor-plane as

Θ(x) := T (X),with x = PX (1)

where P projects X from scene coordinate system to x ∈ R
2 in the two-

dimensional sensor plane, and T (X) ∈ R represents the temperature of the
measured surface point. In our setup we film a patients naked chest and abdom-
inal region with an acquisition rate of 30 Hz. Given two successive thermal mea-
surements at time t and t + 1 of a moving surface location, Xt = (x, y, z) could
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move to Xt+1 = (x + Δx, y + Δy, z + Δz), but assuming the body is not rapidly
cooling down or heating up at the given location yields

T (Xt) ≈ T (Xt+1) (2)

The obvious nice property of 2 is its independence of external lighting conditions
or patients skin color. Equations 1 and 2 give way to a reformulation of the well
known brightness constancy assumption as a temperature constancy assumption:
Let Θ(x, y, t) be a filmed sequence of thermal images and let (x(t), y(t)) be a
trajectory of a point in the thermal sensor plane then:

d

dt
Θ(x(t), y(t), t) = 0 (3)

In the results section we will see that this assumption holds in a stable room
climate, which is traditionally the case in all radiation therapy treatment rooms.
Following the assumption of 1 such trajectories directly relate to the deformation
of the patients chest surface. Given that a chest surface consists of sufficiently
distinctive thermal regions we can estimate a vector field u that matches a point
in one image to a shifted point in another such that:

∇Θ ∗ u +
δ

δt
Θ = 0 (4)

To estimate u we employ [1], which implements a pyramidal block matching
algorithm which minimizes:

∑

x

[Θ(W (x;u)) − J(x)]2 (5)

where J(x) is an extracted subregion of the sensor measurement at t = 1 and
Θ(x) is the thermal image at t = 2. W (x;u) warps each pixel from J(x) to sub-
pixel location in Θ(x). To find subregions that can be tracked with high stability
we detect corner like features around the borders of equithermal regions [5].

2.1 An External Surrogate for Tumor Tracking

By tracking thermal landmarks on the patient’s surface we get an implicit
description of the body surface deformation. Current radiation therapy systems
often use a single-dimensional surrogate signal (e.g. to gate the treatment beam).
To investigate the applicability of our approach we demonstrate how we can build
a meaningful single or low-dimensional breathing signal out of the tracked land-
marks. After the patient has been setup for treatment we build a respiratory
motion model which we can use for dimensionality reduction. The model acqui-
sition process is started by the user marking at least one region of interest (ROI)
in the live thermal video stream. By key-press the user can now capture at least
one full EI (End of Inhale) to EE (End of Exhale) breathing phase measured by
n frames. For each ROI a feature detection is performed to find c := 1, 2, .., j
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Fig. 1. Respiratory signal generation by analyzing the optical (thermal) flow

Fig. 2. Red: Respiratory signal bROI; (x:=FrameNr, y:=Shift in px) Green: Direc-
tional Change φt (x:=FrameNr, y:=angle) Blue: Flow Velocity ΔΓt (x:=FrameNr,
y:=Px/Frame) (Color figure online)

landmarks suitable for tracking. For a tracked landmark we build a track of
measurements Γ1c, Γ2c, ..., Γnc ∈ R

2 (Fig. 1).
We do a Principal Component Analysis on each track c and extract the

largest Eigenvector ec and project, then each incoming track is updated from
Γt.

bROI(t) =
1
j

∑
ecΓt (6)

Equation 6 yields a one dimensional breathing signal for a ROI. This is similar
to state of the art marker based breathing signal trackers as Vero [2], which
average the anterior-posterior (AP) movement of several markers around a region
of interest.

2.2 Separate Patient Movement from Respiratory Motion

To separate unintended patient movement from respiratory motion we build a
model out of the fist few seconds of respiratory motion tracking. Respiratory
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motion can be considered as a slow motion. In our preliminary experiments
when using the ground-truth Vero System (i.e. marker-based) we observed that
each marker typically moves around 2–3 mm in three seconds. Any other form
of human motion, whether it be coughing and patient movement on the couch,
was considerably faster. Analyzing our videos we could also identify a sudden
change in track direction as a typical feature (see Fig. 2). After having recorded
one respiratory cycle we transform all measurements Γ1c, Γ2c, ..., Γnc for each
track to polar coordinates Π1c,Π2c, ...,Πnc with

Π := (r, φ),with Γ (Π) := (r cos φ, r sin φ) (7)

Fig. 3. Approximation of respiratory motion in polar coordinates. The margin can be
scaled by tuning parameter fd

We then build a lookup-table LUTc in which we save for each rounded angle
ψ(φ) ≈ φ :∈ 0, 1, .., 360 the maximum radius r discovered through the res-
piratory cycle (see Fig. 3. Furthermore we calculate the average flow velocity
vc :=

∑n
1 ΔΓ . We then use a classification function on each track to decide if a

current measurement signals respiratory motion 0 or movement 1:

Mc(Γct, fv, fd) :=

⎧
⎪⎨

⎪⎩

1 if ||ΔΓct − vc|| > fvσc

1 if fd LUT(ψ(φtc)) > rtc

0 otherwise
(8)

whereas σtc is the standard deviation of the track’s average flow velocity
vc, φtc and rtc are the angular and radial component of Πtc respectively and
fv and fd are tuning parameters to increase or decrease tolerance. To separate
respiratory motion from spontaneous movement, we classify each track with its
respective current measurement and decide by majority vote.

3 Results

Study Protocol. The evaluation was performed using an InfraTec Vario Cam
HD 900 Research (30 Hz, Resolution 1024 × 768). The tuning parameters were
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Fig. 4. (Top row) Breathing tracks during respiratory motion; (Bottom row) breathing
tracks due to coughing or movement

chosen as fv = 2 and fd = 1.5. While fv was chosen typically for outlier detec-
tion using the standard deviation, fd was chosen intuitively but generalized well
for all tracked patients (Fig. 4). The tracking algorithm worked on thermal sub-
regions of 16×16 pixels. We performed a volunteer study on 4 male and 1 female
subject. Each patient had their breathing tracked for 2 min. Figure 5 depicts the
different breathing patterns seen on each patient. To investigate the quality of
the respiratory signals we compared the signal of a single bROI with the ground-
truth signal of the marker-based motion tracker of a VERO Linear Accelerator
(Brainlab, Germany). We restricted the VERO Tracker to use a single marker.
We explicitly masked the trajectory area of the marker, that was in the cen-
ter of our ROI, to not confuse our tracking algorithm. During the experiments,
the patients were instructed to randomly cough and subtly move to produce
diverse signals. One can see in Fig. 5 that although the signals are not aligned
(as expected) they have a remarkable congruity. We repeated recordings with
each patient for another two minutes but without any marker. Here we tested
the quality of our movement and coughing classifier against the ground-truth
manual annotation: The frames were carefully labeled with respect to the start
of movement or coughing. We then applied our classification algorithm to each
video. As ROI we used a user defined rectangular region around the solarplexus.
On average 243 trackable thermal features were found. The tracking algorithm
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Fig. 5. Respiratory signals. Red: thermal tracking; Green: VERO marker-based
tracking (Color figure online)

including classification was implemented without GPU acceleration on an Intel
Xeon E5-1650 3.5 Ghz under 28 ms/iteration. To build the model we captured by
key-press one whole EE to EI respiration phase in around 3 to 6 s. The classifier
was able to predict all movements and coughing in all videos in a range of ±7
frames which is acceptable considering a user labeled sequence. It is also notewor-
thy that the experiments were performed in temperature-controlled treatment
room with 22◦. The camera pictures were thresholded between 25◦ and 35◦ which
is a cheap way of segmenting the patient’s skin from all other surroundings yield-
ing sufficiently many thermal regions. When thresholding was done with a range
below 5◦ the pictures began to suffer from severe noise artifacts.

4 Conclusion

We presented a marker-less real-time framework for respiratory motion analysis
and motion and management. As our major contribution we proposed to use
thermal cameras and track torso deformation implicitly by analyzing the opti-
cal/thermal flow of equithermal regions on the patient’s body. We furthermore
demonstrated a simple but effective model to jointly analyze the respiratory
motion and classify the detected moving patterns as respiratory or spontaneous
patient motion, such that a beam-off signal could be triggered automatically
during a radiation therapy treatment, which could significantly increase patient
safety. Due to the high frame rates of off-the-shelve thermal cameras this frame-
work is eligible to be integrated into tumor tracking setups in radiation therapy,
where a marker-less solution can significantly reduce setup time and increase
reproducibility between fractions.
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Abstract. We introduce an Iterative Closest Point framework for ultra-
sound calibration based on a hollow-line phantom. The main novelty
of our approach is the application of a hollow-tube fiducial made from
hyperechoic material, which allows for highly accurate fiducial localiza-
tion via both manual and automatic segmentation. By reducing fiducial
localization error, this framework is able to achieve sub-millimeter target
registration error. The calibration phantom introduced can be manufac-
tured inexpensively and precisely. Using a Monte Carlo approach, our cal-
ibration framework achieved 0.5mm mean target registration error, with
a standard deviation of 0.24mm, using 12 or more tracked ultrasound
images. This suggests that our framework is approaching the accuracy
limit imposed by the tracking device used.

1 Introduction

Ultrasound (US) has become a pivotal component in many image-guided inter-
ventions, providing information support by visualizing anatomy beneath the
organ surface. For example, US is used to monitor real-time needle advance in
US-guided spinal anaesthesia [11] and is used routinely in minimally invasive
abdominal and cardiac procedures. To aid spatial reasoning, a tracking system
can be integrated into the surgical work flow, allowing the pose (orientation and
position) of the US transducer and other tracked objects to be determined in
a common coordinate frame. This enables advanced visualization such as image
fusion between US and endoscopic video [7] and augmented virtuality environ-
ments for cardiac surgery [14]. For any navigated-US intervention, accurate US
calibration is critical to the success of the procedure.

Ultrasound calibration [13] remains an active research topic. Categorically,
one common means of achieving US calibration is to employ a tracked line fidu-
cial as the calibration phantom. Muratore and Galloway [15] employed a cali-
brated pointer carefully placed in the US beam, producing a bright, sharp image
of the pointer tip. The location of this feature, or fiducial, is determined both in
the US image space and the tracker space, serving as the basis for solving the
US calibration using a closed-form, least-squares, solution [10]. The accuracy of
this method depends on how well the pointer tip can be placed on the ideal US
c© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 69–79, 2015.
DOI: 10.1007/978-3-319-24601-7 8
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(a) (b) (c) (d)

Fig. 1. Appearance of various line fiducials, scale: each tick mark = 2.5mm: (a) hollow
straw, outer diameter = 7.0mm, (b) braided wire, diameter = 0.3mm, (c) plastic
sphere, diameter = 3.18mm, and (d) 24G spine needle, diameter = 0.51mm.

mid-plane, and how well these fiducials can be localized in both the calibration
phantom and the US image [17]. Khamene and Sauer [12] relaxed the require-
ment of the precise tip placement, by imaging the tool shaft instead, and using
the orientation of the tracked line fiducial as the basis for US calibration. The
mathematical formulation of their approach resolved the calibration parameter
through numerical optimization, thus their method is sensitive to initialization
and the configuration of the tracked poses.

Another common line fiducial phantom is the z-phantom [5,6,8], with wires
or rods arranged in coplanar z patterns. The coplanar lines appear as colinear
fiducials in the US image: by similar triangles, the location of the middle fidu-
cial can be determined in the tracker space. The z-phantom eliminates the need
for precise placement of the calibration phantom in the US beam, while allow-
ing the closed-form and least-squares solution to be applied. Multiple z-fiducials
can be placed within the phantom at varying depths and orientations, increas-
ing the number of fiducials acquired per image while increasing robustness of
the approach. However, the requirement for the z-phantom approach is that the
phantom needs to be manufactured precisely, and the required image process-
ing as the number of z-fiducials increases. Moreover, the configuration of the
z-fiducials must be optimized for transducer geometry to accommodate US fan
width and depth.

A variation of the Z-phantom was proposed by Welch et al. [18]. Instead of
solving the calibration parameter using closed-form solution, they reformulated
the calibration as a rigid body Iterative Closest Point [3] (ICP) point-to-line
registration. Their phantom consisted of multiple wires stretched taut between
two parallel plates. The configuration of the wire was not constrained in the z
pattern. Correspondences between US fiducials and lines were assumed.

In all the line-fiducial based calibration methods, the centroid of the hyper-
echoic signal is used as the US fiducial [5,9,18]. Due to factors such as spec-
ular reflection, beam width, ringing effects, and low resolution outside of the
US focal zone, these hyperechoic signal often appear wide and blurred in US
image (Fig. 1). In our experience, the centroids of these US reflections are hard
to identify accurately and robustly, resulting in large variation in the Fiducial
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(c)(b)(a)

Fig. 2. (a) the concentric cylinder base of the straw phantom, with integrated magnetic
sensor, (b) assembled straw phantom: common drinking straw provides a straight line
fiducial, (c) a linear probe with magnetic sensor rigidly attached.

Localization Error (FLE). In contrast, a hollow-tube fiducial made with hyper-
echoic material can be easily segmented in B-mode images [1]. Based on this
observation, we introduce an inexpensive calibration tool comprising of a single
hollow straw. Because the assumption of scale isotropy in the US image may
be incorrect (the scaling in the lateral direction being defined by the transducer
element spacing, and the axial by the speed of sound in the medium), we further
introduce a variation of the Iterative Closest Point (ICP) algorithm to determine
the US calibration transformation incorporating anisotropic pixel scales as well
as the rotation and translation.

2 Methods and Materials

We introduce a “straw phantom”, comprising a tracking sensor and a hollow
straw, both attached to a concentric cylinder base (Fig. 2a). The base can be
constructed precisely and inexpensively using a lathe. The axis of the cylindrical
base, hence the direction of the straw, can be calibrated to the tracking sensor
(Aurora, NDI, Canada) precisely by rotating it about a fixed axis.

A linear probe (L14-5/38, Ultrasonix, Canada) augmented with a 6-DOF
magnetic (NDI, Canada) sensor was used (Fig. 2c). A standard US acquisition
protocol was used: 10 MHz, 8 cm, with gain of 55 percent. The single focal point
was set the the center of the image (4 cm depth). The digital US image were
acquired using a frame-grabber (Epiphan System, Canada) at the size of 1280×
1024 pixels.

2.1 Centroid Segmentation

The hollow cylindrical straw has low attenuation, producing either a circular
or elliptical reflection in US image depending on the angle of insonation. The
centroid of such a fiducial can be manually identified with the aid of a cross-hair
cursor to a high degree of consistency (Fig. 3a).

For automatic segmentation, a thresholding technique [16] was first applied to
binarize the US image. The edge of the fiducial was extracted by a morphological
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(c)(b)(a)

Fig. 3. Segmentation of the hollow straw in US image: (a) manual centroid identifica-
tion using a cross-hair cursor, (b) automatic ellipse fitting, and (c) automatic ellipse
fitting with visible error.

closing operation on the resulting binary image to remove missing pixels, followed
by a morphological opening operation to remove clutter. A randomized Hough
transform was applied to fit an ellipse to the resulting edge and the centroid was
used as the US fiducial (Fig. 3b,c).

2.2 Anisotropic Scaled Iterative Closest Point Algorithm

We formulate the calibration as a special case of the point-to-line ICP registra-
tion, where the correspondence between a single point (US fiducial) and a line
(tracked straw) is known explicitly. Denote CTp and CTl as the tracked pose of
the tracker sensor attached to the probe (p) and line fiducial (l), respectively,
and C the common coordinate system (i.e. tracker). Let usf = (fx, fy, 0, 1) be
the pixel location of a fiducial, and the paired points (la,lb) denote the end points
of the straw phantom. Applying tracked transformations to the fiducial,

lf = (CTl)−1(CTp)(pTus)usf (1)

describes the location of f in l, where it must lie within the line segment lalb.
The similarity matrix pTus is the ultrasound calibration matrix we seek. At each
iteration, the point q on line ab closest to f is used as the corresponding point.

Ordinary ICP does not solve for a similarity transform although isotropic
scaling can be trivially incorporated into the underlying transformation [10].
The error metric to minimize for ICP is the Fiducial Registration Error (FRE):

FRE2 =
1

Np

Np∑

i=1

|(RS(uspi) + t) − (pqi)|2 (2)

where R is the orthonormal rotation, S = diag(sx, sy, sz) the diagonal scaling, t
the translation, and Np is the number of fiducials.
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We [4] recently introduced a generalization of ICP to solve for anisotropic
scaling between datasets, where the underlying solution for the Anisotropic-
Scaled Orthogonal Procrustes Problem (ASOPP) was based on the recent theo-
retical development by Bennani Dosse and Ten Berge [2]. Given two datasets X
and Y with one-to-one correspondence, the pseudo-code for solving the registra-
tion between these two datasets involving anisotropic-scales is presented below:

demean the data to obtain X̂ and Ŷ ;
normalize the row of X̂ such thatX̂i · X̂i

T
= 1;

while Δ FRE > threshold do
[U,Λ, V ] = svd(B ∗ diag(diag(RT ∗ B)));
R = U diag([1, 1, det(U ∗ V )]) V T ;
compute new FRE

end
S = diag(BT ∗ R)

As with the ordinary ICP, our Anisotropic Scaled ICP (ASICP) has monotonic
convergence. To apply ASICP to solve US calibration, Xi is the pixel locations of
the segmented US centroid, and Yi is the point on tracked line-fiducial closest to
Xi at each ASOPP iteration. Since there is only one line-fiducial, and hence one
US fiducial per data collection, the correspondence between Xi and Yi is explicitly
known.

2.3 Extension to Bi-Plane Ultrasound

Modern US transducers employing 2D matrix-array have the ability to acquire
simultaneous bi-plane images with a common origin, where the angles between
each plane can be manually adjusted. Our proposed ICP algorithm naturally
extends to this image modality, where 2 fiducials can be collected simultaneously
(one from each plane) to further constrain the calibration transform.

For instance, when the bi-plane US images are mutually perpendicular, the
fiducial at one image plane can be assigned a coordinate of p1 = (px1, py1, 0),
and p2 = (0, py2, pz2) on the other (Fig. 4). In this mode of operation, the straw
phantom intersects both planes at an oblique angle, allowing two US fiducials
to be collected simultaneously with a single set of tracking data.

3 Results

We evaluate the proposed straw phantom using three variations of the ICP
algorithm: the proposed anisotropic-scaled ICP (ASICP), isotropic-scaled ICP
(Iso-ICP), and pre-scaled rigid ICP (Pre-ICP). For rigid ICP, the isotropic scale
was estimated using the on-screen caliper, and applied to the pixel coordinate
system prior to calibration (Fig. 5).
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Fig. 4.Modern US scanners has the ability to acquire simultaneous bi-plane US images.
When they are mutually perpendicular to each other, a common coordinate system can
be assigned in which both US images share a common origin and an axis.

(b)(a)

(d)(c)

Fig. 5. Visualization of the proposed US calibration: (a,b) straw phantom intersecting
with the US beam, producing an elliptical hyperechoic reflection, (c,d) extension of the
US calibration to bi-plane US. Note the tip and orientation of the surgical tools aligns
well with US reflection.
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(b)(a)

Fig. 6. Mean and standard deviation of absolute TRE using (a) manual segmentation,
(b) automatic segmentation. The TRE is measured as the error between the centroid
and the line fiducial projected onto the ultrasound image.Mean and standard deviation
of absolute TRE using (a) manual segmentation, (b) automatic segmentation. The TRE
is measured as the error between the centroid and the line fiducial projected onto the
ultrasound image.

A total of 100 datasets were acquired, each comprising the US image and the
tracked poses of the straw phantom and US transducer. Both manual and auto-
matic identification of the fiducial centroids were obtained. The straw phantom
was moved uniformly throughout the imaging volume.

A Monte Carlo approach was employed to assess the robustness and accuracy
of the proposed US calibration algorithm. A set of k datasets were randomly
sampled from the total of 100 (k ∈ [5..40]), based on which a set of 6 calibrations
were derived (3 ICPs × 2 segmentations) For each calibration, the remaining
100 − k datasets were treated as targets to calculate TRE. For each k, this
experiment was repeated 1000 times.

Figure 6 displays the spread of the TRE for k ∈ [5..15] in terms of mean (solid
line) plus or minus one standard deviation (hatched area). Using both manual
and automated segmentation, there is an inversion in terms of the preference of
calibration technique. At low numbers of fiducials (< 7), both isotropic and pre-
scaled ICP outperform ASICP, largely due to overfitting based on the number
of degrees-of-freedom in the calibration transform.
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As the number of fiducials used to calibrate becomes larger, the error in each
transform decreases as does the standard deviation of said error, reaching a hor-
izontal asymptote dependent on the tracking accuracy and FLE. The difference
between automatic and manual segmentation can give an estimate as to how
much of this asymptote is attributable to segmentation error (Table 1).

Table 1. RMS, mean, and std of the mean TRE, k=40

mTRE (mm) ani auto ani manu iso auto iso manu pre auto pre manu

rms 0.86 0.52 1.27 1.02 1.27 1.02

mean 0.77 0.47 1.14 0.90 1.16 0.92

std 0.38 0.23 0.57 0.47 0.53 0.42

For all variants of ICP, calibration based on manual segmentation works
significantly better, suggesting that our automatic ellipse fitting algorithm can
benefit from further improvement. Despite the error in fiducial localization, all
variants of the ICP calibrations achieved a mean-TRE of less than 1.2 mm, when
more than 20 fiducials were used to derived the calibration. For all ICP using
manual segmentation, sub-millimeter mean-TRE can be achieved with only 12
images. ASICP performed the best, achieved a mean-TRE of 0.5 mm when using
more than 12 fiducials (Fig. 7).

To validate the scale, we constructed a grid phantom with 4 parallel thin
wires. The US transducer was carefully placed on top of the grid phantom,
ensuring all 4 fiducials were aligned in both vertical and horizontal direction.
The US probe was then rotated axially until the US fiducials are at the brightest,
at when the US image was acquired. The top-center edge of each fiducial was
carefully identified, and scales calculated serving as ground truth (Table 2).

ASICP successfully compensated for anisotropic scaling. In the axial direc-
tion, the scaling factor was reduced by 3.5% relative to the on-screen caliper.
This corresponds to the 3.8% reduction in speed of sound from the assumed
1540m/s to that of the room temperature water bath. Additionally, the scaling
factor in the lateral direction was slightly higher than in the axial direction. This
was due to the aspect ratio of the display during screen capture and represents
another source of anisotropic scaling that is often unaccounted for. Both the axial
and lateral scale factors found by ASICP agreed closely with the ground truth
measurements obtained using the grid phantom. On the other hand, isotropic
ICP produced a single scaling factor between those found for the axial and lateral
dimensions resulting in less accurate calibration.

ASICP consistently over estimates the scaling in the axial direction to reflect
the decrease in speed of sound. A consequence of which is it under-estimates
the scaling in the lateral directions. As a reference, the pixel scaled determined
using the on-screen caliber is 0.125 mm per pixel. Isotropic ICP over estimates
the scaling as well to reflect the speed of sound
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Fig. 7. US image of the wire-grid phantom: the physical distance between wires in
lateral and axial directions are 25mm and 20mm, respectively. The pixel coordinate
for each fiducial are: (468, 215), (652, 215), (468, 380), (652, 380).

Table 2. Scales determined by ICP algorithms.

Scales (mm/pixel) Iso-ICP auto/manu ASICP auto/manu Ground Truth

Lateral 0.1273/0.1268 0.1369/0.1357 0.1359

Axial 0.1206/0.1208 0.1212

4 Conclusion

We propose an Anisotropic Scaled Iterative Closest point framework for solv-
ing ultrasound calibration, where the transformation we seek is the anisotropic
scales, followed by rotation and translation. We also introduce a readily con-
structed hollow-tube phantom which is easier to segment from ultrasound image.
By reducing the Fiducial Localization Error through accurate segmentation, our
framework is able to achieve sub-millimeter accuracy with as little as 12 data
acquisitions. An automatic segmentation algorithm for this phantom is proposed
which greatly reduces the labor spent in ultrasound calibration.

Anisotropic scaled ICP provides a physically complete model of the transfor-
mation required for ultrasound calibration. This model resulted in lower mean
and standard deviation of absolute TRE, approaching the fundamental limit of
the tracking system. ASICP also accurately estimates the physical size of the
pixels in both the lateral and axial dimensions. Relatively few additional fiducials
are necessary to prevent overfitting of the calibration transform.

The spatial configuration of the line fiducials provides a direct and physical
constrain for the ultrasound calibration parameters. Consider, as an example,
all tracked line-fiducials are parallel to each other. Such spatial configuration
would result in an infinite number of ultrasound calibrations as translation along
parallel line-fiducials cannot be constrained. For future work, we intent to work
on a theoretical model for optimizing line-fiducial configuration [19], incorporate
anisotropic uncertainties into calibration method, and investigate automatic in
situ calibration in which the speed of sound in human tissue is intraoperatively
compensated for.
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Abstract. Any part of a live human body bears constant dynamic changes in
the spatial and temporal axis. Therefore we believe that analyzing and under-
standing the 4 dimensional dynamics of a human body will contribute to new
inputs in medical diagnosis and doctor’s judgment for effective treatment. To
achieve this objective, we are developing a quantitative 4D human body model
with inner structures such as the skeletal structure and major organs. We are
aiming to grasp from various viewpoints, the spatiotemporal (four-dimensional)
changes of an anatomical structure of a live human being. The model in this
research is constructed based on a subject measured by MRI. The aim is to have
the model’s inner structures change according to the subject’s full body
movement data. In addition, we aim to have a function in which the shape of the
skin surface changes synchronizing with the data.
In this research, we examine the possibilities of clinical application of our 4D

model that not only has skeletal and major organ blood vessel systems but also
has muscular systems as inner structure.

Keywords: 4D human model � Elastic skin surface � Motion analysis

1 Introduction

It is still difficult with current diagnostic imagingmethods to measure the dynamic changes
of the whole human body as 4D phenomenon and analyze them in quantitative way. It is
true that we are able to carry it out in separate parts of the body, such asmeasuring the heart
dynamics by cardiac MRI and measuring lung and digestive tract by MDCT. But cur-
rently, there are no diagnostic devices that measure the 4D changes of the inner body when
the whole body moves, for example when humans walk, stand or sit down.

Therefore, we need a method that can observe and analyze the human dynamics in
4D so that we have the comprehensive understanding of the human body and the
quantitative grasp of the medical condition from various aspects.
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We believe that a 4D human body model that can analyze the dynamic changes
without restraint and to understand quantitatively the spatio-temporal (four-dimensional)
changes of the anatomical structure of the human body will lead to improving future
medical practice. We therefore endeavored to manipulate a human body model that has
an inner structure including skeletons, major organs, blood vessel and muscular systems
and manipulate it in real time so that we can observe and analyze it without restraint.

2 Methods

2.1 Construction of 4D Drive Model

The 4D human model mentioned here is not a model like a sculpture designed by
software and a creator. Rather, it is a quantitative structure model system that is
reconstructed by extracting anatomical shape from the subject’s oriented data and has a
function that can drive the model according to dynamic data derived from the subject.

There are two major steps to drive this human model. One is to construct a skeletal
model that can show body dynamics by moving the body model’s “non-deformable
skeletal structure” around each joint based on the position data of optical markers
spread throughout the body surface.

The second process is to generate dynamic changes in the soft tissue system such as
internal organ systems, blood vessel systems and muscular systems that deform their
shapes and positions according to the dynamic changes in the “non-deformable skeletal
structure”.

There are already various researches on the former, i.e. the analysis of the dynamic
changes of the skeletal system [1–6]. We have conducted clinical cases where we assume
the movements of the skeletons using body surface motion capture data and applying
them to surgery planning, surgery assistance and after surgery management [7–9].

2.2 Generation Process Void of “Anatomical Contradiction”

The most important thing in constructing a 4D human body model is to generate proper
deformation in the soft tissue system surrounding the “non-deformable skeletal struc-
ture”. To realize this, we need to create a deformation rule similar to that of natural soft
tissue deformation. In addition, this calculation process for this rule needs to be fast
enough to deform the data volume of the whole human body in real time to maintain
the effectiveness of the model. Therefore, the rule must enable the soft tissues to
deform in an anatomically reasonable manner without having a significant burden on
the calculation inside the workstation. There must be a soft tissue deformation rule that
drives the bodies of humans and other animals effectively. It is a known fact ana-
tomically, that soft tissues of organisms surrounding the skeletal system do not hugely
change their positions nor do their layered structure invert in normal body motions.
This non-contradictory deformation corresponding to organ deformation also occurs in
the vascular system including the blood vessel system in the organs that are spread in a
dendritic structure in the body.
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We think that ultimately, the skin that layers outside these contents in the body also
deform according to the same deformation rule of “void of anatomical contradiction”.
We mention below 6 points to the deformation rule.

(1) Create “Branch off Dendritic Model” structure where the non-deformable
skeletal system changes directions with each joint at their centers. Create a rule where
the surrounding soft tissues systematically deform according to this structure.

(2) Generate subordination relation between dendritic model that has multiple joints
and their surrounding soft tissue structures. Carry out movement and deformation
based on skeletal infliction and movement.

(3) Decide the deformation volume using the distance between each soft tissues and
the nearest dendritic model as parameter. Generate relative deformation that is void of
“anatomical contradiction” by generating serial deformation and movement.

(4) Do not change the attachment position on the skeletal model of the skeletal
muscle on the muscle model. The muscle deformation will be restricted by the
movement of the attachment position that follows the movement of the skeletal system
along with the deformation mentioned above.

(5) The skin surface shape will deform in the same process as mentioned above. If
the deformation occurs that does not contradict with anatomy, abnormal deformation
such as the inner structure projecting from the skin that is farthest from the dendritic
model should not occur based on this rule.

(6) If we set the parameter based only on the distance to the nearest dendritic model
for branched off dendritic model, it will generate abnormal deformation called
“deformation accident”. This is because if an anatomically non-subordinate dendritic
model is situated near the branched off model, it will be affected. We will sectionalize
body parts and calculate the deformation volume of each section to prevent this, so that
we will be able to restrain abnormal deformation that will be affected by other parts that
approach it due to body movement.

We used linear blend skinning, a method commonly used in computer graphics to
deform soft tissues.

Regarding Point P on the model before deformation, Point P(t) after deformation at
a point in time t can mathematically be expressed as below if there are n number of
joints that influence P and there are Mi(t) changes from the basic posture of each joint.

P tð Þ ¼
Xn

i¼1
wiMi tð ÞP

Xn

i¼1
wi ¼ 1;wi � 0

ð1Þ

Weight wi, is the sum of distance di which is the distance between P and joint ji, and
distance di+1 which is the distance between P and adjacent joint ji+1.

wi ¼ ðdi þ diþ1Þ�c ð2Þ

Currently, we are using constant c = 15 which is by experience known to be close
to the deformation of human beings. But in the future, we feel the need to reflect the
changes of joint peripherals and amount of changes at each body part that are even
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closer to real human changes. We plan to carry this out by measuring the amount of
changes in the soft tissues when each joint is in motion and reflecting this to the weight,
so that we can change the weight according to body parts, sex and physical size.

In addition, we use GPU for deformation calculation to realize deformation of the
inner structure in real time. We can process the whole body movement such as walking
in approximately 40fps. We did not use commercially available software and devel-
oped the system on our own as we plan to use it for human inner structure real time
analysis in the future.

2.3 Data Collection for Creating Whole Body Model

The whole human body structure was measure by MRI (Slice thickness: 2 mm by T1
weighted image, slice amount: 840 slices). We took the shapes of body surface, main
organs, skeletal system, and vascular system from MRI data and segmented them using
Analyze software (Mayo Clinic, USA) and made them surface models. We also seg-
mented major muscle shape for the skeletal muscular system and designated attachment
position for each muscle in the skeletal framework. We set the joints so that the skeletal
system could be bent and rotated surrounding each joint.

We obtained the heart drive from an MRI cluster (20 slices of coronary tomo-
graphical images) taken under different condition from the rest of the body. We con-
structed a serial 3D image cluster of a heartbeat divided into 15 phases. We segmented
the outer cardiac wall, right and left atriums and ventricle lumen from this and created a
4D heart cardiac model.

We used surface body model (628,940 polygon), abdominal organ 31 model
(1,074,432 polygon), vascular system 71 model (394,250 polygon), lower limb skeletal
muscle 70 model (73,252 polygon) and skeleton 223 model (942,220 polygon).

2.4 Motion Measurement

We used a 3D motion analysis system VICON512 (Vicon Motion Systems, UK)
and measured the motions of the head, body trunk, right and left upper and lower leg
with 42 optical markers. We converted the dendritic model (Fig. 1 green model) that
was constructed from the position data of the optical markers to a dendritic model
(Fig. 1 blue model) that corresponds to the anatomical shape of the skeletal model and
joint cluster. We ultimately created a 4D model (Fig. 1 front row model) generating
deformation of major organs, blood vessel system, skeletal muscular system and skin.

2.5 Verification of Method

In verifying the active changes of each part of the whole human body of the model we
have developed this time, i.e. the flexing motions accompanying human actions, it is
difficult to measure and examine the changes in the inner structure of a human body
with non-invasive way. Therefore, we examined the accuracy of the model by
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measuring the body surface shape, specifically the changes in elasticity of the skin by
using optical markers.

We positioned optical markers near joints, where the skin largely changes in elas-
ticity through body motion and measured the changes in optical markers when the body
is in motion using VICON512. We targeted upper and lower limb region. We set up 3
markers in the targeted region and measured the position of each marker during flexing
motion. Next, we calculated the elasticity from the changes of skin from the changes of
the triangle consisted by the 3 points. We also set up 3 measuring points on the skin of
upper and lower limbs of the 4D whole human body model and calculated the shape
changes of the triangle according to the flexing motions. We compared the two.

The first marker in the upper limb is situated at the olecranon and consists the top of
the triangle. The second marker is situated near the armpit, which overlaps with the
inner border of the deltoid muscle. This consists one point in the base of the triangle.
The third marker is set up to make up an isosceles triangle with the other two points. It
is set up at the outer border of the deltoid muscle. The measurement was done in a
situation where the body did not move the upper arm and flexed the elbow to the
periphery (Fig. 2).

The first marker in the lower limb is situated in the upper border of the patella and
consists the top of the triangle. The second maker is situated at the center of the vastus
lateralis muscle in the middle level of the upper border of the patella and the anterior
superior iliac spine. We chose the inner border of the vastus lateralis muscle for the third
marker to make up an isosceles triangle with the other two points. The measurement was
done in a situationwhere the body pulled up the thigh to the horizontal position against the
body (Fig. 3).

Fig. 1. Video image of subject being measured in walking motion (upper left) and manipulation
example of 4D model (from far right: dendritic model by optical marker, dendritic model
corresponding to anatomical shape of skeletal model and joint cluster, skeletal whole human
body model, whole human body model including major soft tissues) (Color figure online).
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a 

b 

Fig. 2. Measurement of skin elasticity of upper arm during flexing of elbow joint (a: bending
elbow by subject, b: bending elbow by 4D body model)

a 

b 

Fig. 3. Measurement of skin elasticity of thigh during flexing of knee joint (a: bending knee by
subject, b: bending knee by 4D body model)
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We measured the changes in the skin in the joint region by setting the markers at
the elbow and the upper border of the patella, which consist the tops of the each
triangle, as reference marks. We measured the distance of the other markers to the
reference marks.

In the current verification process, we took the following method to match the
measurement point on the subject’s body surface and that of the 4D model. It is easy to
specify the olecranon of the upper limb and the superior boarders of patella in the lower
limb in both the subject and the model. But the 2 others do not have external form
characteristics that are easy to specify and therefore we used subcutaneous muscle form
as specification factors. A specialist located subcutaneous muscle in the subject body
and we used translucent display to observe the muscle form on the model’s skin model.

3 Results

3.1 4D Model Visualization

We show in the upper left of Fig. 1, the operational status of the whole body model
from data of subject motions captured by VICON system. The process of corre-
sponding optical marker information to the skeletal model and ultimately deforming
soft tissues to display them as a whole body image covered with skin is as already
explained in 2-4 Motion Measurement.

Figure 4 shows the status of deformation of the organs and blood vessel system
without “anatomical contradiction” in all parts of the body by displaying the 4D model
from the front (Fig. 4a) and right (Fig. 4a) in the form of time sequential images. This
image shows the deformation of lower limb muscular system, vascular system
including the beating heart and the inner structure that has major organs such lung,
kidney, abdomen, and digestive system according to body motion. In addition, it
displays the deformation of the skin that wraps these body contents.

Figure 5 shows deformation of abdominal region (Fig. 5a) and lower limb muscle
(Fig. 5b). The body surface is transparent in order to clearly see the motions of the
abdominal organs and lower limb muscular cluster when the body is walking. We
could observe the motions of the lower muscular limb and we could also focus on a
particular muscle and see its flexibility if needed.

3.2 Verification of the Model

There were 5 subjects and the experiment was conducted with total of 20 lower and
upper limbs. We show in Fig. 6 examples of the changes in the 3 makers during
measurement of subjects. In the figure, we show a case in which the distance between
the reference mark and the other two markers is the shortest and the longest. The
elasticity of the each joint region during flexing and bending motions resulted in an
average of 22.8 ± 7.1 % for elbow joints and 18.9 ± 7.7 % for knee joints. For the same
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motions by the 4D whole body model, the result was 15.9 ± 3.8 % for elbow joint and
8.3 ± 3.0 % for knee joint (Fig. 7).

From the examination of the measurement of changes in the body surface shape
during flexing motion, we admitted that the 4D human body model and the real human
body showed approximately the same changes. Therefore we concluded that the model
could be applied to clinical situations such the visualization of the changes in the
human inner structure and diagnosis.

a 

b 

Fig. 4. Result of chronological display of 4D human body model manipulated by walking
motion data a: viewed from front b: viewed from right
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a 

b 

Fig. 5. Result of chronological display of abdominal region (a) and lower limb muscle
(b) motion during walking

Olecranon 
Upper border of the 

patella 

Fig. 6. Changes in the position of marker on the skin during subject’s flexing motion. Extension
is displayed in blue, bending is displayed in red. (a: bending of elbow joint, b: bending of knee
joint) (Color figure online).
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4 Conclusion

This 4D display has a function in which we can observe and measure the change
according to body motion in real time. In addition by setting temporal axis randomly, it
can observe both fast and slow movements.

With the method, we were able to quantitatively visualize changes in soft tissues
and skin surface corresponding to human body structure movements by using patient
oriented data, which are not possible to measure by current imaging diagnostic devices.
Therefore we can say that we were able to construct a human model that is able to
apply to various clinical situations. By using this method, we were able to display by
image what surgeons and clinicians could only picture in their heads.

The mutual changes made in the skeleton and its surrounding skeletal muscles have
been visualized and used in kinematic analysis [10–13]. But there are still very few
methods to visualize the movements and the changes that occur from these movements
in the field of organs and blood vessel systems that make up the trunk of the body using
the patient’s inner structure model and his/her motion data.

If this is realized, it will enable us the following in clinical medicine. (1) compre-
hend the location and changes made to the target organ when a patient takes complex
posture on the surgical bed, (2) assume the changes of hemodynamics following
posture changes, (3) comprehend the amount and direction of outside force applied to
thoracic and abdominal organs. In addition, it will enable us the following in sports
medicine and biotechnology. (4) Calculation of acceleration applied to organs when
body is in motion, (5) calculation of kinetic energy for each body part, (6) shift in
center of gravity during body motion, (7) understanding of energy consumption. And it
will enable us the following in forensic medicine. (8) detailed inspection of how the
victim’s body was injured by outside force taking into account victim’s body motion.

(%)

Upper limb Lower limb

Subjects 4D model 4D modelSubjects

Fig. 7. Elasticity ratio of subjects and 4D model. Light blue shows subjects. Dark blue shows
4D model (Color figure online).

Development of 4D Human Body Model 89



In the future, to evaluate the deformation of soft tissues in the deeper parts of the
body, we plan to acquire as 4D data set, the deformation situation of a specific body
part when a body carries out certain action using MRI, and compare them with the
deformation situation on the same body parts on the model to conduct accuracy
verification.

Going forward, we plan to examine the accuracy of outer deformation result by
obtaining the deformation status of a particular body part corresponding to a motion
using MRI as 4Ddata set for inner soft structure and examine the accuracy by com-
paring it with the same body part on the model. Based on the examination result, we
plan to create a 4D human model that can generate more accurate deformation to
approach those being generated in the real body structure. We also plan to develop a
method to display the whole body as “volume image” in 4D by using this same
deformation method as we see adopting the whole body volume data is effective in
clinical situations.
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Abstract. Augmented reality has the potential to aid surgeons with particular
surgical tasks in image-guided surgery. In augmented reality (AR) visualization
for neurosurgery, the live view of the surgical scene is merged with preoperative
patient data, aiding the surgeon in mapping patient images from the
image-guidance system to the real patient. Furthermore, augmented reality
visualization allows the surgeon to see beyond the visible surface of the head or
brain at the anatomy that is relevant at different stages of surgery. In this paper,
the particular surgical tasks that have benefited from AR visualization by the
neurosurgeons that have used our system are described. These tasks include:
tailoring a craniotomy, localizing the anatomy of interest, planning a resection
corridor and determining a surgical strategy. We present each of these surgical
tasks and provide examples of how AR was used in the operating room.

Keywords: Augmented reality � Neurosurgery � Neurovascular surgery �
Task-based analysis � Image-guided neurosurgery

1 Introduction

Augmented reality (AR) visualization is increasingly being studied for use in the
clinical domain. In AR, virtual elements and data (e.g. patient imaging data) are merged
with the real world (e.g. the actual patient) in order to present information that is not
readily visible or accessible to a clinical practitioner. Many research groups are
exploring the use AR visualization for image-guided surgery as it promises advantages
over traditional image guided surgery techniques. One of the main advantages of AR is
that the patient images and surgical plans from the navigation system are visualized in
the context of the real patient anatomy. In other words, in using AR the surgeon has all
of the preoperative and/or intraoperative patient data (i.e. virtual objects) merged with
the surgical field in a single view.

One of the main elements that has been missing from this field of research is
validation of AR image-guided surgery (IGS) systems in real clinical cases in the
operating room (OR) [1]. The constraints of the OR (sterility, ethics, etc.), accessibility
to surgeons and operating rooms, and challenge of determining metrics for validating
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visualization techniques make it difficult to evaluate AR visualization in image-guided
surgery systems. Over the last couple of years we have brought our AR image-guided
neurosurgery system (IGNS) [2, 3] into the OR to determine the feasibility of this type
of visualization in neurovascular surgery. Prior to conducting an extensive clinical
evaluation and validation of augmented reality image-guidance, it is important to
determine the different surgical stages and tasks where augmented reality can benefit
the surgeon, the operating room staff, and/or the patient. Based on the experiences of
the surgeons that have used our AR navigation system in neurovascular surgery, in this
paper we define the surgical tasks for which this type of visualization is useful. In order
to create effective and understandable AR visualizations, it is important to focus on
how to visualize the data based on the needs of the surgeon in the OR for a particular
surgical task. For this reason, as well as discussing the surgical tasks that benefit from
AR visualization we also describe the planning and visualization tasks that are done
preoperatively in order to create useful AR views. Furthermore, we present examples of
AR use from real surgical cases for each of the defined tasks.

2 Augmented Reality for Neurovascular Surgery

In the following section the types of neurovascular surgeries for which our system was
used, the system itself and related work are briefly described.

2.1 Neurovascular Surgery

The focus of our work has been on developing AR visualization techniques for neu-
rovascular surgery. Neurovascular surgery aims at managing and treating cerebrovas-
cular disease such as aneurysms and vascular malformations. Our augmented reality
system has been used during surgeries for (1) clipping aneurysms (balloon-like bulges
of the vessels) and (2) resecting arteriovenous malformations (AVMs) and arteriove-
nous fistulae (AVF). AVMs and AVFs are abnormal tangles of blood vessels that are
fed by one or more arteries (feeders) and drained by one or more veins (drainers). In the
case of an AVM these tangles occur in the brain or spine, whereas AVFs occur in the
dura mater.

2.2 AR IGNS System

The developed augmented reality system consists of three components: a neuronavi-
gation workstation, a camera (either a Sony HDR XR150 video camera or a Point Grey
Firefly MV USB camera that is attached to an ocular of the neurosurgical microscope),
and a Polaris tracking system (Northern Digital, Waterloo, Canada) that tracks the
patient, surgical tools and the camera. The neuronavigation workstation runs Ubuntu
12.04 (64-bit), with an Intel Core i7-3820@3.6 GHz on a quad-core processor with
32 GB RAM. The graphics card is a GeForce GTX 670 and the video capture card is a
Conexant cx23800. The custom-built neuronavigation software, IBIS, is written in C++
and uses the Visualization Toolkit (version 5.10), the Qt 4 user interface platform, and
the Insight Registration and Segmentation Toolkit (version 4.4).
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To create the AR view, live images of the surgical scene are captured by the
calibrated camera and augmented on the IBIS navigation system. In order to merge the
preoperative patient data with the live view of the surgical scene three things are
necessary: the camera must be calibrated, it must be tracked it in the OR and a
patient-to-image registration must be done. For calibration, intrinsic (e.g. focus and
image center) and extrinsic (i.e. the transform between the camera tracker and the
optical center of the camera) parameters are computed by taking images of a check-
erboard pattern and using an implementation of Zhang’s method [4] to determine the
transform between image and real world coordinates. Patient-to-image registration,
which determines the transformation between the patient and the preoperative images is
done in the operating room using corresponding anatomical landmarks (e.g. the bridge
of the nose) as described in [5]. The camera calibration matrix and patient-to-image
registration gives us the mapping between the preoperative images and the live images
of the surgical field of view, allowing for the creation of the AR visualization.

At any point in time during the surgery, the surgeon can make use of AR visual-
ization for surgical decision-making and guidance. In Fig. 1 we show the system being
used in the operating room. For a detailed description of the system, calibration and
registration procedure, we refer the reader to [3].

Fig. 1. The IBIS augmented reality system in use in the operating room. A tracker is attached to
the neurosurgical microscope (indicated in green circle in (a) & (c)) and a Point Grey Firefly
MV USB camera is mounted onto one of the oculars of the microscope (indicated in blue circle in
(c)), it is calibrated and used to capture the live views of the surgical scene. The tracker gives the
position of the camera with respect to the cranial reference (indicated in pink circle in (a)). In
(b) the surgeon looks at the AR visualization and discusses the anatomy with the resident in order
to plan the surgical approach prior to incision. During surgery, the surgeon can make use of the
AR image-guidance at any time (d) (Color figure online).
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2.3 Related Work

Neurosurgery was one of the first applications of clinical AR and is currently one of the
most popular [1]. In the early 90 s, Gleason et al. [6] proposed the first neurosurgical AR
system, which combined 3D segmented virtual objects (e.g. tumours) from preoperative
patient images with live video images of the patient. Edwards et al. [7, 8] developed a
microscope-assisted guided intervention (MAGI) neuronavigation system that allowed
for stereo projection of virtual images into a neurosurgical microscope for ear, nose and
throat (ENT) surgery and neurosurgery. Birkfellner et al. [9, 10] developed the
Varioscope AR, a custom-built head-mounted operating microscope that allowed for
virtual objects to be presented to the viewer using VGA displays. In the particular
domain of neurovascular surgery, Cabrilo et al. used the Zeiss OPMI Pentero’s Mul-
tivision function that injects virtual images into one ocular of the neurosurgical
microscope to carry out two studies, one for AVMs [11] and one for aneurysms [12].
Based on feedback from the surgeons, their results suggested that AR visualization
enabled a more tailored surgical approach and optimal clipping of aneurysms. In AVM
surgery, the authors found that AR was useful for tailoring craniotomies, guiding dis-
sections, and localizing draining arteries; however, it did not provide useful information
in terms of feeding arteries of the AVM. For more information as to the use of aug-
mented reality in image-guided surgery the reader is referred to [1].

3 Methods

In the following section we describe the methods for preparing and using the AR IGNS
system in the operating room. In particular we look at those sets of tasks that are done
prior to surgery and those that are done during surgery as shown in Fig. 2.

3.1 Preoperative Tasks: Image Processing, Visualization and Planning

In order to prepare for each case, the preoperative imaging data is processed to identify
all structures and regions of interest. The data is visualized for the surgeon during
preoperative planning and may be updated based on the surgeons needs for a given
surgical case. A scene with the data and any planning information (e.g. landmarks for
registration and selected anatomical landmarks/vessels of interest) is saved for use in
the operating room.

Image and Visualization Processing. One of the main goals of AR visualization is to
provide information that is not readily available or that is not obvious in the live
surgical scene. In neurovascular surgery, localization of key vessels (e.g. deep feeding
arteries) and intraoperative differentiation between arteries and veins in malformations
can be challenging. Therefore, preoperatively we focus on identifying vessels of
interest that relate to the malformation using landmarks and colour-coding based on
vessel type. By developing visualization that supports anatomical understanding, we
can better aid clinical decision-making and improve image-guidance.
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The data that is most often acquired and used for planning and guidance in neu-
rovascular surgery at the Montreal Neurological Institute & Hospital is computed
tomography angiography (CTA). With CTA imaging, a contrast substance is injected
into the patient allowing for imaging of the arteries and veins. Three phases are made
available for navigation: arterial, capillary and venous.

Typically, the arterial and venous phases are colour coded and visualized for the
surgeon during planning. If MRI is also available for the patient, the cortical surface is
extracted [13] and rendered for planning. Based on the images, the surgeon will typ-
ically pick points of interest on the visualized vasculature, for example, feeding
arteries, draining veins, and other vessels that may be pertinent during surgery (Fig. 3).
A colour scheme is developed based on the available data and needs of the surgeon.
Furthermore, depending on the case either volume rendering or surface rendering is
used. In cases where automatic flow information causes mislabeling of vessels (arteries
identified as veins or vice-versa) [3], manual segmentation and colour coding is done
using MeshLab1 (e.g. as seen is Fig. 4). We have found that preoperative vessel
evaluation with the surgeon is of utmost importance in identifying all the important
vessels and their direction of flow, particularly for vascular malformations.

Fig. 2. The main tasks that are in association with preoperative planning and intraoperative
IGNS use as well as the main surgical tasks. Tasks where we have found AR useful are indicated
with blue (Color figure online).

1 http://meshlab.sourceforge.net
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The plan that is developed with the surgeon (including datasets to be used, colour
coding, points of interest, and landmarks for patient-to-image registration) is then saved
so that it may be loaded in the operating room.

3.2 Intraoperative Tasks: Surgical and IGNS

During surgery, the typical tasks involved in image-guided procedures are performed.
As described in Fig. 2, the patient is first anaesthetized and positioned and then a
patient-to-image registration is done. In our case this is a landmark registration pro-
cedure that is done simultaneously with the registration procedure required for the
commercial neuronavigation system, a Medtronic StealthStation (Dublin, Leinster,
Republic of Ireland). Furthermore, the Medtronic and our AR system track the same

Fig. 3. Planning scene for a craniotomy for a right frontal aneurysm (indicated with green
triangle) fed by the middle cerebral artery. The surgeon chose landmarks on arteries feeding the
aneurysm, as well as landmarks on a superficial vessel in case an extracranial to intracranial
(EC-IC) bypass was needed. Arterial phase is encoded in pink, venous in blue (Color figure
online).

Fig. 4. Manually colour coded surface mesh for a craniotomy for an AVM (right lateral (a),
anterior-posterior (AP) (b) and inferior (c) views). The red arrow indicates the carotid artery and
purple arrows the draining vein. The main draining vein and associated venous aneurysm are
coloured blue, and the AVM feeding arteries are coloured pink. Other vessels that are not part of
the malformation are colour coded as green (Color figure online).
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surgical tools; this ensures that there are no additional steps in the typical workflow of
setting up the AR system.

Next the surgeon plans and performs the craniotomy. After opening the dura the
surgeon may retract some tissue and dissect down to the anatomy of interest to treat the
malformation by resecting, clipping and obliterating vessels. Traditional image-guidance
visualization or AR guidance (which requires capturing live images of the surgical scene)
can be used during any of these surgical tasks to aid surgical decision-making and
guidance. In some cases intraoperative imaging in the form of ultrasound is used to
account for brain shift and to create a more accurate overlay between real and virtual
images in the augmented reality view [14].

Data Collection. During the surgical cases each use of augmented reality and all
comments from the surgeon are recorded. The use of the commercial neuronavigation
system and whether the PACS system was accessed for more data is also noted. The
surgeon is asked to comment on each case and the use of AR for different tasks, in
terms of visualization and in terms of benefit. For the first 8 cases, the surgeon was
asked to use augmented reality whenever he thought it might be beneficial. Based on
those cases we determined the main tasks for which AR was useful and describe these
below. On the most recent cases and in all future cases the surgeon will fill out a
questionnaire rating the usefulness of AR for the identified surgical tasks on a Likert
scale.

4 Results and Discussion

In the following section we report the different tasks that the surgeons who have used
our system have determined as benefiting from augmented reality visualization
(Table 1). We describe each of the tasks and present examples from surgical cases of
how AR was used in the operating room.

Table 1. Surgical tasks for neurovascular surgery and the possible uses of AR.

Surgical Tasks Uses of AR 

Craniotomy Planning skin incision, planning size and shape of skull to remove

(craniotomy), planning dural incision, identifying/tracing superficial 

and deep vessels

Dissection Identifying feeding arteries, draining veins, and aneurysms, plan-

ning corridor to anatomy of interest

Vessel Identification Differentiate between artery and vein

Treatment Assessing normal vasculature anatomy post resection of 

AVM/AVF, Aiding in clip choice for aneurysm obliteration, Clip-

ping/obliterating abnormal vessels
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4.1 Tailoring the Craniotomy

The surgeons have consistently found that augmented reality is very useful for planning
the craniotomy (i.e. the removal of the skull bone to expose the brain). Planning a
craniotomy involves determining: (1) the size and site of the skin incision, (2) the
actual size and shape of the bone to be removed and (3) opening the dura. The AR
system is used at each of these points – on the skin, on the bone and on the dura. At this
stage during surgery, the surgeon uses augmented reality to view the extent of a
vascular malformation and its location relative to his view of the patient. The visual-
ization of the anatomy of interest below the visible surface of the skin or skull allows
the surgeon to determine the most appropriately-sized craniotomy for each surgical
case. In Fig. 5, augmented reality images of the skin, bone and dura, recorded during a
craniotomy for a large aneurysm case are shown. The surgeon used AR to determine
the location of the aneurysm and the feeding arteries and their position with respect to
the skin and bone surface to plan the craniotomy. In this particular surgical case, a
surface artery was identified, skeletonized and reflected posteriorly in case an extra-
cranial to intracranial (EC-IC) bypass was needed. To better plan the craniotomy in
order to facilitate access to this vessel, AR was used to trace the superficial temporal
artery branch.

We have also found that prior to the craniotomy, the surgeon finds it beneficial to
manipulate the augmented reality imaging to explain and show the different aspects of
the vascular malformation or vessels to residents or students that may be present in the
OR. Showing the actual anatomical and vascular areas of interest projected onto the
actual patient who is asleep and positioned on the operating room table facilitates

Fig. 5. Augmented reality for tailoring the craniotomy is used on the skin, bone and dura. The
surgeon determined the location of important arteries (arising from the aneurysm) indicated as a
green dot (a, b, c). AR was also used to determine the location of the superficial temporal artery
(STA) that was harvested in case a bypass to this artery was needed (d). The course of the STA
was traced on the skin using AR visualization (e, f) (Color figure online).
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discussion of the surgical plan. We plan to explore the spectrum of AR for teaching in
future work.

4.2 Planning Dissection

In order to plan a dissection corridor, a surgeon can use AR visualization to determine
the location of the anatomy of interest and determine eloquent areas that should be
avoided. AR allows the surgeon to see the anatomy of interest that is not visible on the
exposed surface of the patient and determine the best approach. In Fig. 6 we show the
surgeon placing Surgicel (Ethicon, Johnson & Johnson, US), a hemostatic agent on top
of a virtual marker of a deep feeding artery to an AVM. Based on this localization the
surgeon was able to plan an optimal dissection corridor to access the feeding artery.

4.3 Vessel Identification

In neurovascular surgery, malformations can make intraoperative identification of a
vessel as artery or vein difficult and determining the direction of blood flow is of utmost
importance. For example, in arteriovenous malformations or fistulae, the surgical plan
involves first clipping or obliterating all feeding vessels to the nidus, then clipping
draining veins, and lastly safely removing the nidus. Identification and differentiation
between feeding and draining vessels is often difficult intraoperatively because these
vessels are neither true arteries nor true veins. Augmented reality visualization, where
colour coding can be used to differentiate between arteries and veins, facilitates this
task. We have found that by colour coding and using landmarks we can enable the
surgeon to better differentiate, intra-operatively, those veins that mimic arteries and vice
versa. In these special ‘fistula’ cases, automatic flow techniques that rely on 4D CTA
do not properly label vessels because of high velocity blood flow and shunting
of blood through the malformations that cause veins to appear in arterial phases.

Fig. 6. Augmented reality visualization of a craniotomy for an AVM. Feeding vessels to the
AVM were marked with pink points during planning (a). In order to plan a corridor of dissection
the surgeon placed Surgicel, a hemostatic agent, on the cortex (b) above the location of a deep
feeding artery that was to be clipped first (c, d), indicated with blue triangle in (c). In (a) and
(b) we see a large draining vein (indicated in purple) that was mislabeled as an artery using 4D
CTA data (Color figure online).
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Therefore, manual segmentation based on preoperative study and individual vessel
identification that relies upon the surgical and anatomical knowledge of the clinicians is
necessary. In Fig. 6 we show a mislabeled draining vein of an AVM (indicated with
purple arrow) where 4D CTA data was used.

In contrast to the work of Cabrilo et al. [11], the surgeons that have used our system
have found that AR visualization aids with the localization of (deep) feeding arteries in
AVMs and AVFs. This difference may be partially attributed to using more sophisti-
cated rendering techniques as well as preoperatively choosing and placing landmarks
on the feeding arteries, and using these landmarks to localize the selected vessels
intra-operatively.

4.4 Planning and Executing Treatment

Planning treatment intra-operatively involves such tasks as determining the risk of
treatment, deciding which vessel to expose and obliterate or clip at a given time and
how to do so, determining the type and size of the clip to use, etc. These tasks are
typically done after some dissection and once a pertinent vessel is exposed. We have
found that after retraction of the brain and significant dissection, the system is no longer
accurate and the AR view does not correspond well with the real anatomy due to large
amounts of brain shift (Fig. 7). For this reason, we have not thoroughly explored the
use of AR for treatment tasks. New solutions that account for deformations and brain
shift are needed in order for AR visualization to be useful at later stages during surgery.
We are currently exploring the use of intraoperative ultrasound to account for brain
shift and create a more accurate AR overlay in neurosurgery for brain tumours [14]. We
plan to explore this avenue or research in the future for neurovascular surgery.

In the work of Cabrilo et al. [12], the authors found that AR visualization, which
showed the extent and size of an aneurysm aided surgeons in determining an

Fig. 7. Brain retraction and lesion dissection results in large amounts of surgical site
deformation (a) making the AR overlay no longer accurate. Figure (b) shows frontal lobe
retraction with the intracerebral/intraparenchymal AVM vessels, augmented in the view, rising
into free air.
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appropriate hemoclip to use. To date, we have not explored the use of AR for this
particular task but plan to explore it in future work.

5 Conclusions

We have used a task-based approach to determine the usefulness of augmented reality
in neurovascular surgery based on experiences from the operating room and our dis-
cussions with neurovascular surgeons that have used our AR system. By determining
the tasks where AR is most applicable in neurovascular surgery we can better deter-
mine validation and evaluation criteria for testing AR in each of these tasks. For
example, one could imagine determining if there is a difference between traditional
image-guidance and AR guidance for the task of craniotomy planning. The surgeon
would first plan the craniotomy using the commercial IGNS system and next the
surgeon would use the AR view. This comparison would help to determine if the
surgeon changes the planned craniotomy based on the AR view. The next step of this
work will be to perform rigorous studies that quantitatively determine the effect of AR
for each of the described surgical tasks both on the surgeon and the patient.
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Abstract. Automatic vessel extraction from X-ray angiograms (XA)
for percutaneous coronary interventions is often hampered by low con-
trast and presence of background structures, e.g. diaphragm, guiding
catheters, stitches. In this paper, we present a novel layer separation tech-
nique for vessel enhancement in XA to address this problem. The method
uses morphological filtering and Robust PCA to separate interventional
XA images into three layers, i.e. a large-scale breathing structure layer, a
quasi-static background layer and a layer containing the vessel structures
that could potentially improve the quality of vessel extraction from XA.
The method is evaluated on several clinical XA sequences. The result
shows that the proposed method significantly increases the visibility of
vessels in XA and outperforms other background-removal methods.

1 Introduction

Percutaneous coronary intervention (PCI) is a minimally invasive procedure for
treating patients with advanced coronary artery disease. It is usually performed
under guidance of X-ray angiograms (XA) where coronary arteries are opacified
with contrast agent. Automatic processing of XA images, e.g. vessel extraction
of coronary arteries, may serve as a basis for further processing, such as coronary
motion analysis [1] and pre/intra-operative information fusion [2].

Hessian-based vessel enhancement filtering, e.g. Frangi vesselness filter [3],
is commonly used for extraction of vessels in medical images. Applying such
filters directly on interventional XA, however, often also enhances non-vascular
structures, such as catheter segments and vertebral contours, due to their tubular
or curvilinear structural appearances.

Related works have reported on methods to remove non-vessel structures or
improve the visibility of vessels in XA images. In [4], a method that subtracts the
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median frame was used for removing static structures in XA, such as vertebral
bodies. Schneider et al. [5] proposed a post-processing technique on vesselness
images that combines a local probability map with local directional vessel infor-
mation for artifact reduction and catheter removal. Layer separation methods
provide an alternative way of vessel enhancement. In [6], a multi-scale frame-
work was developed to separate XA images into three layers based on different
motion patterns such that coronary arteries are better visible in the fast motion
layer. This method involves human-interactions to label corresponding control
points in XA images for motion field estimation. In another study [7], a Bayesian
framework was developed that combines dense motion estimation, uncertainty
propagation and statistical fusion to achieve motion layer separation. Both layer
separation methods require to compute motion field. Robust principal compo-
nent analysis (Robust PCA) is a data decomposition technique that has e.g.
been used for background modeling from surveillance video in [8]. In [9], Robust
PCA was adopted for registration of DCE MR time series.

In this paper, we propose an automatic method to robustly separate
foreground (contrast-enhanced vessels, guiding catheter tip) from (quasi) static
background, such as vertebral bodies and guiding catheters in the aorta, while
ignoring large-scale motion such as diaphragm movement. Our contributions are
three folds: (1) the development of a Robust PCA based layer separation method
that does not require computation of the motion field; (2) qualitative and quanti-
tative evaluations on four clinical XA sequences; (3) comparison to other related
background-removal approaches.

2 Method

The method enhances vessels in XA images by separating an image into three
layers, i.e. a large-scale breathing layer, a quasi-static background layer and a
foreground layer containing the vessels. To this end, our proposed method con-
sists of two steps: first, separation and removal of large-scale breathing struc-
tures, such as diaphragm, from the original images, using morphological closing;
second, separation of a quasi-static background from the moving structures using
Robust PCA. In the remainder of this section, we describe both steps in more
details, followed by the integrated layer separation.

2.1 Separation of Breathing Structures

To obtain a separate layer containing large-scale structures, we remove small
objects from the original image, including guiding catheters, guide wires, stitches
and vertebral bodies. Similar to the approach in [10], we apply morphological
closing to the image with a circular structuring element of 8.5 mm in diameter.
Pilot experiments indicated that this size was adequate for a complete removal
of vessels and guiding catheters from our images while not causing too much cir-
cular artifacts. An example of a resulting image is shown in Fig. 1(b). Compared
to the original image, the guiding catheter and coronary arteries are removed
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and vertebral contours are blurred, while structures that presents respiratory
motion, such as the diaphragm and lung tissue, remain in the image (white area
in the upper left part of the image). The resulting image that contains large
scale structures which exhibit respiratory motion is called the breathing layer,
and will later be subtracted from the original image to obtain the difference
image (DI, Fig. 1(c)) of an XA frame for further processing.

(a) (b) (c)

Fig. 1. Morphological closing operation on an XA image: (a) the original image,
(b) image processed with morphological closing, (c) the difference image (DI) of (a)
and (b).

2.2 Background Separation Using Robust PCA

Robust PCA decomposes a data matrix into two different sources: a low-rank
matrix and a sparse matrix. Suppose that M is an m × n matrix to be decom-
posed, which contains n observations of m dimensional data in its columns.
Robust PCA is formulated as the following optimization problem [8]:

minimize ‖L‖∗ + λ‖S‖1
subject to L + S = M

(1)

where L is a low-rank matrix and S is a sparse matrix of the same size as M .
‖L‖∗ denotes the nuclear norm of L and ‖S‖1 is the L1 norm of S. λ is the
tuning parameter of regularization. Source decomposition is achieved by solving
this optimization problem. In this work, we use inexact Augmented Lagrange
Multiplier (ALM) method [11] to solve the problem.1

Robust PCA can be applied for separation of the background layer of DI
from the vessel layer. The background of an XA sequence is an image series
with small changes of pixel intensity containing (quasi) static structures, while
the foreground, or the vessel layer, consists of moving objects. Thus, resizing
the background image into a column vector and combining all these vectors
from a background series together results in a low rank matrix. Likewise, the
1 The implementation is available at http://perception.csl.illinois.edu/matrix-rank/

sample code.html.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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image series of vessel layer can be modeled as a sparse matrix, as either vessels
or guiding catheters take up only a small part of the whole image content.
Therefore, the background layer and vessel layer of DIs can be separated by
solving the Robust PCA problem.

2.3 Image Processing Pipeline of XA Layer Separation

The proposed layer separation algorithm consists of the following steps. All steps
are illustrated in Fig. 2.

1. Given an XA sequence, apply morphological closing on each frame of the
series, as described in Sect. 2.1. For each frame, subtract the morphological-
closed image from the original image to obtain the DI.

2. Rearrange the DIs of the XA sequence to construct a matrix whose columns
represent the frames. This matrix is considered as the input matrix M in
Eq. 1.

3. Solve the Robust PCA problem to obtain the background layer matrix L and
vessel layer matrix S. Resize L and S to get the background layer and vessel
layer of the previous size for each frame of the sequence.

Fig. 2. The pipeline of the proposed layer separation method.

3 Experiments

Fully anonymized imaging data were used in our experiments. Four XA image
series that were acquired with Siemens AXIOM-Artis biplane system were ana-
lyzed. The frame rate of all sequences is 15 frames per second. The number of
frames per series ranges from 55 to 169. From our data, the image matrix is
512 × 512 pixels for one of the series and 600 × 600 for the other three, with
resolution 0.216 × 0.216 and 0.184 × 0.184 mm2, respectively.

To quantify the visibility of vessels in an image, the contrast-to-noise ratio
(CNR) is used in the experiments. CNR is a measure of image quality based
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on contrast. Once the background and foreground of an image is defined, the
definition of CNR can be formulated as:

CNR =
|μF − μB |

σB
(2)

where μF and μB are the mean of foreground and background pixel values respec-
tively, and σB is the standard deviation of the background pixel values. This def-
inition of CNR measures the contrast between the foreground and background
pixel intensities in relation to the standard deviation of the background pixel
intensities. Larger CNR values imply a better contrast.

Fig. 3. Two types of mask images. Background is defined as the white image region,
foreground is defined as the dark area within the white part: (Column 1) Mask 1 for
one frame in the four XA sequences; (Column 2) Mask 1 overlaid on the corresponding
XA frames; (Column 3) Mask 2 for one frame in the four XA sequences; (Column 4)
Mask 2 overlaid on the corresponding XA frames.
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Two different versions of CNR are computed, using two different masks for
defining the foreground (vessel) and the background in XA images (Fig. 3).
In mask 1, as shown in Fig. 3 column 1, a 4 mm-wide image area around the
manually-labeled vessel centerline is defined as the foreground (the dark area
inside white region); the background are its 3 mm-wide neighborhood area (white
region surrounding the vessel). This mask can be used to assess the local con-
trast around vessels in XA. In mask 2, as shown in Fig. 3 column 3, everything
outside the foreground is considered background, which thus also evaluates the
removal of the diaphragm, guiding catheters, etc. In our experiments, we ran-
domly select 5 frames once from each sequence for the mask generation and
compute the average CNR of the 5 frames.

We compare the performance of our approach to 3 other related methods.
In [4], static background is eliminated by subtracting the median of the first 10
frames from each frame in the sequence. This method is referred to as MedSub-
tract 1. Second, we considered an advanced version of median subtraction by
firstly removing the breathing layer using morphological closing and then sub-
tracting the median. This is called MedSubtract 2 in the experiments. Third, a
conventional PCA technique is explored. The breathing layer is first removed to
generate the difference image and the background layer is later reconstructed
with the first principal component using PCA. This is referred to as Nor-
mal PCA.

For the parameter λ in the formulation of Robust PCA, we use the value
suggested in [8]. All experiments were implemented in MATLAB 2013b on an
Intel Core i7-4800MQ 2.70 GHz computer with 16 GB RAM running Windows.

4 Results

Figure 4 shows an example result of layer separation on one XA sequence. Note
that in the original image (Fig. 4(a)), the presence of the diaphragm, the ver-
tebral structures and the long guiding catheter segment makes extracting the
vessels challenging. In the vessel layer image (Fig. 4(d)), those structures are
removed, and the contrast between vessels and their neighborhood pixels is larger
than in the original image.

(a) (b) (c) (d)

Fig. 4. An example of layer separation: (a) the original image, (b) breathing layer,
(c) quasi-static background layer, and (d) vessel layer.
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Figure 5 presents the comparison of our proposed method (Row 5) to three
other background-removal methods (Row 2–4) applied on four XA sequences.
For each of the sequences, we selected a representative frame. It can be observed
that all the four methods increase the visibility of vessels in XA with better

Fig. 5. Example frames of foreground images obtained by different background-removal
techniques applied on four XA sequences: (Column 1–4) The four different XA
sequences, (Row 1) The original image, (Row 2) MedSubtract 1, (Row 3) MedSubtract
2, (Row 4) Normal PCA, (Row 5) our method using Robust PCA.
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contrast. However, the result of MedSubtract 1 method (Row 2) still presents
artifacts in the foreground due to the motion of diaphragm, whereas our method
successfully removes the diaphragm using morphological closing. Compared to
MedSubtract 2 (Row 3) and Normal PCA methods (Row 4), the method based
on Robust PCA performs better on removing quasi-static structures, such as the
guiding catheter segment in aorta (column 1–3) and stitches (column 4).

The CNR values of XA sequences and vessel layers are illustrated in Fig. 6.
Compared to the original XA, as shown in both Figs. 6(a) and (b), all methods
improve the CNR values. For CNR 1, when only local contrast around vessels
is measured, Robust PCA method performs better than the other approaches
for patient 1 and 2, but has slightly lower CNR than Normal PCA for patient
3 and 4. In the case that the removal of diaphragm and guiding catheter is
considered, as what CNR 2 indicates, Robust PCA is superior in all four patients.

Patient ID
1 2 3 4

C
N

R
 1

0

0.5

1

1.5

2

2.5

3
Original
MedSubtract 1
MedSubtract 2
Normal PCA
Robust PCA

(a) CNR 1

Patient ID
1 2 3 4

C
N

R
 2

0

1

2

3

4

5

6
Original
MedSubtract 1
MedSubtract 2
Normal PCA
Robust PCA

(b) CNR 2

Fig. 6. The average CNR over 5 randomly-chosen frames using two types of masks for
the four XA sequences.

5 Discussion and Conclusion

We have developed an automatic method for layer separation of interventional
XA images, to enhance vessel visualization. The method separate XA images
into a breathing layer, a quasi-static background layer and a vessel layer using
morphological filtering and applying Robust PCA. The separation is evaluated
on four XA sequences, demonstrating better separation of the coronary arteries
and reduced inclusion of breathing or quasi-static structures compared to other
approaches.

Figure 5 shows that the proposed method is able to improve the visibility of
vessels and performs better on representative frames of the four XA sequences.
Figure 6(a) shows that the Robust PCA method is advantageous over the two
median subtraction methods on improving the local contrast, and has similar
performance with Normal PCA. Figure 6(b), which displays the global CNR
measure, shows that Robust PCA is superior on all four patients which indicates
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that the superiority of Robust PCA to other approaches is more on removing
respiratory and quasi-static structures from XA to improve the contrast of vessels
in the whole image. This advantage could potentially reduce the generation of
spurious vessels when applying vessel extraction methods on XA.

Compared to original images, the Robust PCA method improves image quality
in the vessel layer by removing breathing structures and background objects. Com-
pared to the absolute-static background resulted from the median-subtraction-
based methods,Robust PCAmodels a quasi-static background with small changes,
which is more adaptive to the change of image content caused by coronary motion.
Normal PCA also models a flexible background, which could be the reason why
it has similar performance with Robust PCA. Compared to Normal PCA, Robust
PCA produces less residuals of guiding catheter in the vessel layer after the removal
of the background layer. The regularization parameter ofRobust PCA enables bet-
ter flexibility of balancing between moving objects and background in layer sepa-
ration. Compared to other related techniques e.g. in [6,7], the main difference of
the proposed method is that it does not rely on motion field, therefore, no motion
field is required to extract before doing layer separation.

Several factors might have impact on CNR values. The masks defines the
background and foreground, therefore the mask-related factors could directly
influence the CNR values, e.g. the width of the foreground or background,
whether or not including small vessels or the guiding catheter distal segment
in the foreground. In addition, the number of the selected frames for mask gen-
eration from each XA sequence might also be an important factor. More in-depth
analysis of these factors is part of the future work.

In conclusion, we proposed a novel layer separation method based on mor-
phological operation and Robust PCA. We also demonstrated that the method
improves the visibility of coronary arteries in XA and has advantages over sev-
eral other related approaches. In the future, we will assess this technique in
prospective settings and study its application in approaches that improve image
guidance in XA guided cardiac interventions.
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Abstract. In neuro-interventional surgeries, physicians rely on fluoro-
scopic video sequences to guide tools through the vascular system to
the region of interest. Due to the low signal-to-noise ratio of low-dose
images and the presence of many line-like structures in the brain, the
guide-wire and other tools are difficult to see. In this work we propose
an effective method to detect guide-wires in fluoroscopic videos that aims
at enhancing the visualization for better intervention guidance. In con-
trast to prior work, we do not rely on a specific modeling of the catheter
(e.g. shape, intensity, etc.), nor on prior statistical learning. Instead, we
base our approach on motion cues by making use of recent advances in
low-rank and sparse matrix decomposition, which we then combine with
denoising. An evaluation on 651 X-ray images from 5 patient shows that
our guide-wire tip detection is precise and within clinical tolerance for
guide-wire inter-frame motions as high as 6 mm.

1 Introduction

Neuro-interventional procedures are minimally invasive surgeries designed for
the treatment of pathologies in the cerebrovascular system. Examples of neuro-
interventions are endovascular aneurysm coiling, embolization of fistulae, or for
stenosis, intracranial angioplasty and stenting. During such procedures surgeons
insert a guide-wire through the patient’s femoral artery in order to navigate the
tools through the catheter up to the brain. The navigation is performed under
image guidance, in particular angiography, where a sequence of fluoroscopic
X-ray images show the motion of the interventional tools inside the patient at
video frame-rate (typically 7.5 or 15 fps). Navigation is a complex task for several
reasons: (i) the sensible anatomy in the brain, (ii) the low contrast, resolution and
signal-to-noise ratio resulting from limiting the radiation dose, (iii) the fact that
X-ray images are only two-dimensional projections of three-dimensional struc-
tures, causing structure super-imposition and occlusions (cf. Fig. 1-top left), and
c© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 114–123, 2015.
DOI: 10.1007/978-3-319-24601-7 12
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Fig. 1. Example of results for one frame, cropped and scaled for clarity. (top left)
original frame. (top right) results for the proposed method (RPCA/FNLM). (bottom
left) Estimated foreground E. (bottom right) Estimated foreground Ê = E < 0.

(vi) motion blur. In this work we aim at assisting the surgeon by automatically
detecting and visualizing the guide-wire (see Fig. 1 top right). Such guide-wire
detection could be further used in higher level visualizations, e.g. for 3D guid-
ance using 3D models of the vessels acquired preoperatively with a rotational
X-ray angiography [1,3], which is our long-term goal.

Prior work addressing enhanced tool visualization for navigation are based
either on a frame-wise detection or on tracking [8]. We focus hereon on detec-
tion techniques which are more suitable for a fully automated solution and can
serve as input or reinitialization for tracking. Most of current detection tech-
niques exploit the prior knowledge on the line like structure of the guidewire.
For instance, Petkovic et al. [15] designed a filter to enhance line-like structures
observed through X-Ray images, while Bismuth et al. [4], presented a curvilin-
ear structure enhancement using a polygonal path image. These methods are
general but may have problems detecting the tortuous guide-wire tips. Further-
more, they lead only to an enhanced image possibly containing other unde-
sired structures. To address these issues, Lessard et al. [12] combined filtering
with segmentation, whereas Honnorat et al. [9] relied on steerable filters regular-
ized by tensor-voting. However, due to the difficulty of selecting the structures
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corresponding to the guidewire both methods still rely on the manual selection
of segmentation seeds for the former, or the guide-wire endpoints for the later,
in order to initialize the algorithm. To overcome the difficulties above, there has
been an increasing interest in automatic guide-wire detection by means of learn-
ing techniques, e.g. [2,10,14], which have shown promising results at the cost
of a prior training stage and large amounts of manually labelled data needed in
order to generalize to different image settings.

In this work we propose to detect tools in fluoroscopic sequences by rely-
ing on their motion, which is a less explored type of prior knowledge. A first
approach in this direction was proposed by Spiegel et al. [16], where a sim-
ple background subtraction is applied using as mask an initial frame where no
guide-wire is present. Although such detection is fast and easy to implement, it
assumes a static background; so no patient motion, illumination variations nor
image-parameter changes are allowed. Inspired by advances in sparse and low-
rank decomposition of matrices we propose here a two step approach to detect
the guidewire during neuro-interventional procedures. In the first step, we use
a robust background subtraction method based on Robust PCA (RPCA) [6]
to detect candidate guidewire regions. Several reasons motivate our choice for
RPCA: (i) robustness to variations in image brightness, (ii) ability to handle a
dynamic background, and (iii) capability of accounting for the partly-correlated
noise present in X-ray sequences. In the second step, we investigate different
methods to filter remaining noise in the foreground estimation. We evaluate
our solution on clinical data and show its robustness for inter-frame guidewire
motion of up to 6 mm.

2 Method

The input to our method is the fluoroscopic video used for guiding a neuro-
intervention. We assume the main source of visible motion in the video is caused
by the interventional tools, while the remaining part of the images will be close
to static and considered as background. The tools can then be separated by sub-
tracting the background from the current image of interest. To enforce robustness
against subtle motions and imaging condition changes, the background is esti-
mated w.r.t. the previous k frames in a sliding window fashion. More formally,
we denote the video frames by fi ∈ R

s, i ∈ {1, . . . , N}, with N the length of the
video and s = m×n the size of the image. For each frame of interest fi, the goal
is to obtain a binary mask Mi ∈ {0, 1}s indicating which pixels belongs to the
guidewire. Our method is composed of two steps. First, for each time-window
Robust Principal Component Analysis (RPCA) [6] is applied to detect candidate
guidewire regions for the current frame (cf. Sect. 2.1). Then, the remaining noise
is filtered out (cf. Sect. 2.2).

2.1 Low-Rank Background Subtraction via RPCA

To estimate the background of current image fi, we consider a time window
including the last k frames and stack them in the columns of the data matrix
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D = [fi−k, . . . , fi], where D ∈ R
s×k. Given the neuro-interventional sequences

have video frame-rates, it is expected that the contiguous frames composing
D are highly correlated. If the correlation is linear, then the matrix D is low-
rank and it is possible to estimate the background masks by finding a rank-q
matrix L approximating the data matrix D, i.e. by optimizing minL ‖ D − L ‖
s.t. rank(L) ≤ q, where q ≤ rank(D). This minimization can be solved using
ordinary PCA over the data matrix D and retaining only the most significant
components to build L.

However, moving parts primary caused by the guide-wire, would cause errors
when using linear methods for estimating a low-rank representation. To handle
such cases, where gross but sparse corruptions are present, Candes et al. [6]
proposed the following Robust PCA method. Assuming the data matrix D can
be modeled as the sum of a low rank matrix L and some additive sparse error
E, i.e. D = L+E, RPCA is able to exactly recover1 L by solving the following
convex optimization problem:

min
L;E

||L||∗ + γ||E||1 s.t. D = L + E, (1)

where || · ||∗ denotes the nuclear norm (enforcing low-rank), || · ||1 is the L1 norm
modeling the sparsity, and γ is a positive weighting parameter controlling the
sparsity (of the foreground). From the different solvers for Eq. 1 we use the inex-
act augmented Lagrangian multiplier method (iALM) [13]. After solution, the
low rank component L gives us an estimate of the background, while the moving
parts of the image and the noise will be encoded in the noise component E. Actu-
ally, the foreground estimate for the current frame corresponds to the (matrix
version of the) last column of E, which we denote here Ek. More particularly
we are interested in its negative range, which contains the motion information
of the dark structures of the interventional tool. To ease later notation, let us
additionally denote:

Ê(x) =
{ |Ek(x)|, ∀Ek(x) < 0

0 otherwise

where x ∈ Ω is a pixel taken from the image domain Ω ⊂ R
2. Finally, Ê is

normalized to lie in the range [0, 1], such that intensities belonging to the guide-
wire are close to 1. After this first step, the current foreground estimate Ê will
still contain noise that we target to remove in the second stage of our method
described next.

2.2 Denoising

Since our low-rank background estimation can only cover up noise that is corre-
lated between frames we need a further step to remove remaining artifacts. To
do so, we compare the following four different methods.
1 As long as the error matrix E is sufficiently sparse w.r.t. the rank of L.
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Thresholding and Cluster Removal (TCR). This method, chosen for its
simplicity and computationally efficiency, consists of a histogram-based thresh-
olding heuristic followed by the removal of small connected components. First,
the discrete histogram of intensities for the current frame is estimated. We
assume that the catheter information is in the tail of the histogram (as most
pixels belonging to background have values closer to 1 after the normalization
and dominate the distribution). Therefore a threshold tTCR was heuristically
determined by finding the position htail of the first bin exceeding a minimum
of counts and defining tTCR = htail + 1

3 (1 − htail). Only the values below tTCR

are retained. Finally, each pixel x is assigned to a connected component ωx and
components with fewer than cTCR elements are removed. For a pixel x ∈ Ω this
results in:

MTCR(x) =

{
1 ∀

(
Ê(x) ≤ tTCR

)
∧ (#ωx ≥ cTCR)

0 otherwise.

Hessian-Based Filtering (HES). Hessian-based methods are popular for
enhancing lines for guide-wire tracking and detection [4]. We used the approach
presented in [16], computing the eigenvalues (|λ1| ≤ |λ2|) of the image Hessian
at each pixel, and determining that a line like structure is present when the
following constraints are true: |λ1| ≈ 0, |λ1| ≤ |λ2|, and |λ2| > tHES, where
tHES denotes a user-specified threshold. The Hessian is computed on the basis of
image second derivatives over smoothed images, where a smoothness parameter
σHES determines the scale of the used Gaussian kernel. A search is done over
a range of scales, rHES = [rmin, rg], where rmin is a small value and rg is an
estimate of the guide-wire radius. At the end, the guidewire mask for a pixel is
computed for the optimal scale r∗

HES leading to the highest vesselness value λ∗
2.

In sum,

MHES(x) =
{

1 if |λ∗
1| ≈ 0, |λ∗

1| ≤ |λ∗
2|, and |λ∗

2| > tHES

0 otherwise.

Fast Non-local Means Filtering (FNLM). Non-local means (NLM) filtering
methods, introduced by Buades et al. [5], are known to achieve good denoising
while preserving textures and fine structures, even for high noise levels. Instead
of depending on the guidewire width as the HES method, NLM depends on an
estimate of the standard deviation of the image noise σFNML. Given the noisy
foreground estimation Ê, the denoised value for pixel x is computed as a weighted
average over a search region Rx ⊂ Ω around x:

ÊFNLM(x) =
∑

y∈Rx

w(x,y)Ê(y) (2)

The weights w(x,y) = − exp
∑

t∈{0,...,p}2 |f(x+t)−f(y+t)|2
h , with a h as a filtering

parameter reflect the similarity of two patches of size p × p centered at x and y.
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This definition enforces that higher weights are given to pixels lying on patches
with similar structure to the current one. In this work we used a fast variant
of NLM (FNML) that allows for an efficient computation of the weights [7].
The final mask MFNLM is computed by thresholding the denoised image with a
user-defined parameter tFNLM.

Markov-Random-Field (MRF). Inspired by the work in [17] we use a MRF to
enforce the guide-wire continuity. A graph is built, where the vertices represent
the pixels of the image V = {x1, . . . ,xs} and edges E = {exy} link pairs of
neighboring nodes, that is, exy exists if y lies within a square neighbourhood
y ∈ Nx around x. The binary foreground mask MMRF for the guidewire is
obtained by optimizing the following energy according to the Ising model [11]:

min
MMRF

∑

x∈V
u(MMRF(x)) +

∑

exy∈E
α|MMRF(x) − MMRF(y)| (3)

The first term describes the unary potential of a pixel being foreground or back-
ground. u is set to depend on the intensity value of the foreground estimation:

u(M(k)) =
{

βÊ(k) if M(k) = 0
(1 − Ê(k))2 if M(k) = 1

(4)

where the parameter β controls the balance between the two unary costs. The
second term in Eq. 3 describes the pairwise potential imposing constraints on the
mask value for neighboring pixels; it penalizes discontinuities and discouraging
noise. The parameter α, controlling the strength of this neighboring dependency
was chosen to be constant and Eq. 3 was minimized using graph cuts [11].

3 Experimental Validation

The validation was performed on fluoroscopic sequences of five patient datasets
with a total of 651 frames of size s = 512×512. The sequences were acquired with
a frame rate of 15 fps. Two of the datasets were acquired using a biplanar X-ray
system. The tip position and guide-wire centerlines were manually annotated by
two experienced observers.

Implementation Details

– For the background estimation we set the time window size to k = 20, which
corresponds to 1.333 s at the current frame-rate.

– The sparsity parameter of RPCA to γ = 1/(
√

max(m,n)), the tolerance of
the iALM solver to 10−4, and its maximum iterations to 1000.

– For TCR, the number of histogram bins is set to 1000, and the threshold tTCR

is computed by finding the first histogram bin containing 250 elements. Also,
the minimum allowed size for a connected component is cTCR = 8.
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– For HES, we set the scale range to rHES = [0.3, rg], with rg given by the
specifications of the guide-wire, and fix tHES to the standard deviation of the
foreground image σÊ.

– For FNLM, we set the filtering parameter as h = 2σÊ, the patch size to
p = 11, and the size of the search region Rx to 43 × 43. h was also used as
final threshold tFNLM.

– Finally, for MRF, a parameter search was performed on a subset of the data.
According to the F1-measure we set 0.06 ≤ α ≤ 0.16, and 8 ≤ β ≤ 10.

Validation/Results. Quantitative results of our evaluation are presented in
Table 1. All of the method combinations show as desired high accuracies (ACC)
and very low false positive rates (FPR). This is in part due to an imbalance of
the positive and negative classes as there is a significant larger amount of pix-
els in the background (negatives) in comparison to those depicting the catheter
(positives). Furthermore, the positive predicted values (PPV), not taking into
account the negative class, are also high which is associated to a good precision.
The apparently low TPR values are a consequence of the videos containing rela-
tively long periods of no guide-wire motion, where our motion-based assumption
does not hold. Indeed, the performance depends on the amount of motion, as
well as how much of it is captured by the current time-window. We claim that
during such static frames the navigation assistance is less relevant.

On the contrary, the most important for the surgeon is being able to see the
moving tip, which has been a challenge for prior techniques. Therefore, we also
measure the distances of the detected tips to the ground truth, which results in
values of around dtip ≈ 2.5 mm for at least 3 of the methods. Moreover, if we focus
on the most interesting frames containing tip motion, that is, considering frames
were there ground-truth tip moves up to 6 mm and removing frames for which
the tip is static, then, the tip is accurately detected (e.g. d∗

tip = 1.28±1.18 mm).
To better illustrate the discussion above we also plot in Fig. 2 the influence of
the underlying motion on the estimated tip distance. The crosses on the vertical
axis (tip motion = 0) indicate no motion of the ground truth tip w.r.t. the

Table 1. Quantitative evaluation: True Positive Rate (TPR), False Positive Rate
(FPR), Accuracy (ACC), Positive Predictive Value (PPV/Precision), avg. tip distance
dtip, missed tips within ROI (80 × 80 px), d∗

tip avg. tip distance for the cases where
the ground truth tip moved up to 6mm between the last and the current frame (see
Fig. 2). Distances are given in mm, other values in percentages.

ACC PPV FPR TPR dtip ± σtip Missed tips d∗
tip ± σ∗

tip

RPCA/TCR 99.30 70.65 0.15 16.16 2.03 ± 2.49 12.66 1.11 ± 1.20

RPCA/HES 99.38 88.11 0.05 13.33 2.54 ± 3.19 34.82 1.64 ± 1.77

RPCA/FNLM 99.37 88.71 0.06 13.78 2.24 ± 2.51 17.88 1.28 ± 1.18

RPCA/MRF 99.33 82.59 0.09 11.90 2.92 ± 2.57 28.68 1.49 ± 1.52
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previous frame, leading to the RPCA not being able to detect the guidewire,
and thus resulting in high tip distance estimates. On the other hand, errors
in distance estimates also increase when the tip moves very fast (tip motion
> 6 mm), mainly due to motion blur. In these frames tips appear washed out,
and have weak intensities that prevent their detection.

Regarding the comparative performance of the different denoising techniques,
we recommend FNLM given its good accuracy (ACC) and precision (PPV).
Even if HES gives similar results and has less artifacts (FPR) it has twice as
many missed tips than FNLM. Additionally FNLM has the advantage of being
independent of the tool width. While the performance of FNLM in terms of tip
distance is slightly worse than that of TCR, FNLM produces less than half of
the outliers (FPR) compared to TCR, which is for the application more relevant.
In case of tension stress on the guide-wire, fast motions can occur resulting in
artifacts showing a second line (Fig. 1-bottom-left). Note that our method is able
to differentiate such motion (see full foreground estimation Fig. 1-bottom-right)
and correctly detect the guide-wire, whereas other detection methods would
produce false positives or need further processing.

Fig. 2. Estimated tip distance vs. ground truth tip motion. The ground-tip motion is
measured as the Euclidean distance of the ground-truth tip position w.r.t. the previous
frame. Static tips corresponding to ground-tip motion of 0 are not well captured by
our approach, as shown by the estimated distances variate along the vertical axis. This
is to be expected as our method relies on motion cues. Better estimates are obtained
for the four different methods, when the tool effectively moves.

4 Conclusion

Navigating the guide-wire through the vessels and positioning its tip at the
operation site is a crucial step in neuro-interventional procedures. Guide-wire
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tracking and detection methods have focused on the delineation of the tip or the
whole guide-wire. Our approach concentrates instead on the motion information
obtained from the last k frames, is independent of the interventional tool being
used, and provides valuable information to the surgeon as during navigation the
motion of the tip and changes in tension on vessels depict the most important
pieces of information that could be overlaid.

One current limitation of the method is in detecting parts of the guide-wire
that are static. This simply because our main assumption to detect the tool is
that the tool moves. Although we have discussed that in a real application this
assumption will be probably enough for navigation, possible ways to overcome
it would be by combining our approach with an appearance model, in order to
complete continuous line structures.

To conclude, we have proposed a robust guidewire detection approach that
takes advantage of state-of-the-art developments in denoising and low-rank and
sparse decomposition. Our work introduces a novel perspective for road-mapping
in neuro-interventions that considers motion as the most important cue for tool
detection. The method is precise, fully automatic, and does not require specific
models of the tools, nor a training stage. It uses the image statistics over a
sliding time-window of a given number of frames, thus being robust to rigid
patient motion or imaging parameter changes. Finally, the algorithm requires few
parameters and can be implemented to eventually achieve real-time performance.
In sum, our method deals with important requirements for its real application
in interventional neuroradiology.
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archical learning of curves application to guidewire localization in fluoroscopy. In:
Computer Vision and Pattern Recognition (CVPR) (2007)

3. Baur, C., Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Automatic
3D reconstruction of electrophysiology catheters from two-view monoplane C-
Arm image sequences. In: International Conference on Information Processing in
Computer-Assisted Interventions (2015)

4. Bismuth, V., Vancamberg, L., Gorges, S.: A comparison of line enhancement tech-
niques: applications to guide-wire detection and respiratory motion tracking. In:
SPIE Conference Series, vol. 7529 (2009)

5. Buades, A. Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
Computer Vision and Pattern Recognition (CVPR) (2005)

6. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J.
ACM 58(3), 11:1–11:37 (2011)

7. Darbon, J., Cunha, A., Chan, T., Osher, S., Jensen, G.: Fast nonlocal filtering
applied to electron cryomicroscopy. In IEEE International Conference on Biomed-
ical imaging: from Nano to Macro, pp. 1331–1334 (2008)



Automatic Guide-Wire Detection for Neurointerventions 123

8. Heibel, H., Glocker, B., Groher, M., Paragios, N., Komodakis, N., Navab, N.: Dis-
crete tracking of parametrized curves. In: IEEE Computer Vision and Pattern
Recognition (CVPR) (2009)

9. Honnorat, N., Vaillant, R., Paragios, N.: Graph-based geometric-iconic guide-wire
tracking. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I.
LNCS, vol. 6891, pp. 9–16. Springer, Heidelberg (2011)

10. Honnorat, N., Vaillant, R., Paragios, N.: Robust guidewire segmentation through
boosting, clustering and linear programming. In: IEEE International Conference
on Biomedical Imaging: From Nano to Macro, pp. 924–927 (2010)

11. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intel. (PAMI) 26(2), 147–159 (2004)

12. Lessard, S., Lau, C., Roy, D., Soulez, G., de Guise, J.A.: Wires segmentation in
fluoroscopic images during cerebral aneurysm endovascular intervention. In: IEEE
International Conference on Biomedical Imaging: From Nano to Macro. IEEE
(2008)

13. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. Math. Program. (2010)

14. Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Fully automatic catheter
localization in C-Arm images using �1-sparse coding. In: Golland, P., Hata, N.,
Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol.
8674, pp. 570–577. Springer, Heidelberg (2014)
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Abstract. Minimum invasive surgery can benefit from surgical visual-
ization, which is achieved by either virtual reality or augmented reality.
We previously proposed an integrated 3D image overlay based surgical
visualization solution including 3D image rendering, distortion correc-
tion, and spatial projection. For correct spatial projection of the 3D
image, image registration is necessary. In this paper we present a 3D
image overlay based augmented reality surgical navigation system with
markerless image registration using a single camera. The innovation com-
pared with our previous work lies in the single camera based image reg-
istration method for 3D image overlay. The 3D mesh model of patient’s
teeth which is created from the preoperative CT data is matched with the
intraoperative image captured by a single optical camera to determine
the six-degree-of-freedom pose of the model with respect to the camera.
The obtained pose is used to superimpose the 3D image of critical hid-
den tissues on patient’s body directly via a translucent mirror for surgi-
cal visualization. The image registration performs automatically within
approximate 0.2 s, which enables real-time update to tackle patient’s
movement. Experimental results show that the registration accuracy is
about 1mm and confirm the feasibility of the 3D surgical overlay system.

1 Introduction

Three dimensional (3D) image overlay based augmented reality (AR) surgical
navigation has been introduced many times in the literature [3–5,8]. The 3D
image with both horizontal and vertical parallax is displayed by a lens array
monitor (3D display) which can be observed without wearing glasses. In our
recent work [12], we proposed an integrated 3D image overlay based surgical
visualization solution including 3D image rendering, distortion correction, and
spatial projection. Given an anatomical mesh model derived from CT data, the
3D image of the model, which has the same geometric dimensions as the original
organ, can be rendered in real time with the help of a graphics processing unit
(GPU). To superimpose the 3D image on patient’s body with correct overlay,
the pose of the anatomical model (i.e., the digitalized patient organ in the image

c© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 124–133, 2015.
DOI: 10.1007/978-3-319-24601-7 13
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space) with respect to the 3D display has to be determined intraoperatively.
3D measurement systems (e.g., Polaris Tracking System) are usually employed
for this purpose. The pose determination is composed of two steps. One is to
calculate the transformation from the 3D display to the 3D measurement sys-
tem, which is called display-camera calibration. The other is to calculate the
transformation from the 3D measurement system to the patient (i.e., the pose
of the anatomical model with respect to the 3D measurement system), which is
called image registration. The device calibration is performed offline only once
because the 3D display and the 3D measurement system are relatively fixed
during surgery. However the image registration suffers from patient’s movement,
which requires the image registration process to be performed automatically in
real time.

In the previous work [3–5,8], an optical tracking system was employed for image
registration using a manual marker-based registration method. The involvement
of markers will hamper common surgical workflow, and the attachment of markers
is either invasive or infeasible in many cases. Automatic markerless image regis-
tration is preferable in surgical navigation. In our previous work [10,13], a low-
priced stereo camera was employed replacing the Polaris tracking system for the
image registration task in oral and maxillofacial surgery. A teeth contour track-
ing method was proposed to calculate the pose of patient’s teeth with respect to
the stereo camera without manual intervention. However, this method is a 3D-3D
matching method requiring that the organ to be registered have sharp 3D contour
features; and these features should be easily reconstructed by the stereo camera
three-dimensionally. Such conditions are quite strict, hence limit the applicable
scope of the 3D contour tracking method. Furthermore, in the previous method,
only silhouette features in the captured image pair are used while other useful
visual clues such as image gradients on non-silhouette edges are ignored. The incor-
poration of these information could improve the accuracy and robustness of image
registration.

In this study, we further simplify the hardware for image registration by using
a single camera. We present a 3D surgical overlay system with automatic mark-
erless image registration. The image registration is achieved by matching the 2D
shape of teeth’s mesh model with the intraoperative 2D image captured by the
camera. The display-camera calibration is performed by solving a perspective-n-
point (PnP) problem (i.e., the estimation of camera’s extrinsic parameters given
its intrinsic parameters and n-point 3D-2D correspondences). The proposed sys-
tem enables real-time correct 3D image overlay on patient’s head and neck area
for surgical visualization in oral and maxillofacial surgery.

2 System Overview

The proposed system consists of a 3D display, a translucent mirror (AR window),
a monochrome camera and a workstation for information processing, as shown in
Fig. 1(a). The 3D display is composed of a high pixel per inch (ppi) liquid crystal
display (LCD) and a hexagonal lens array which is placed in front of the LCD.
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The 3D image of a mesh model (e.g., in the form of an STL file) is created using
computer generated integral imaging (CGII) techniques and can be projected to
a specified location and orientation with respect to the 3D display [12]. The 3D
image is further overlaid on the patient by the translucent mirror. Surgeons will see
a superimposed 3D image through the AR window to acquire visualized anatom-
ical information. In this study, the goal of the system is to realize intraoperative
augmented reality visualization in oral and maxillofacial surgery.

Figure 1(b) shows the involved coordinate systems in the overlay system. We
denote by TC , TD, TM the camera, 3D display, and model coordinate systems,
respectively. TD is the world coordinate system in which the 3D image is ren-
dered as described in our CGII rendering algorithm [12]. TM actually represents
the image space where the patient is digitalized (e.g., by CT scanning). To over-
lay the 3D image correctly on the patient, the transformation from TD to TM

denoted by TM
D should be determined. Because we have TM

D = TC
DTM

C , this
raises two problems: display-camera calibration and image registration.

Fig. 1. (a) System overview. (b) Coordinate systems.

3 Display-Camera Calibration

Display-camera calibration is to determine the transformation TC
D, which can

be formulated as a camera extrinsic calibration problem. The 3D image of a
known geometry in TD is projected by the 3D display, and the 2D image of the
3D image is captured by the camera through the AR window. In the captured
image, the 2D-3D correspondences are established. The pose (RD

C , tDC ) of the 3D
display1 with respect to the camera can be estimated by solving

min
〈RD

C ,tDC 〉

N∑

i=1

||K
(
RD

C , tDC

)
Xi − xi||2 (1)

1 det(RD
C ) = −1 due to the reflection of the AR window.
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where Xi ↔ xi, i = 1 · · · N are 3D-2D correspondences in the form of homoge-
neous coordinates; K is the intrinsic matrix of the camera; ||Xi − xi|| denotes
the underlying 2D distance between Xi and xi.

Figure 2(a) shows the calibration model which is a 5×5 planar ball array. The
captured 2D image through the AR window is shown in Fig. 2(b). The centers
of the projected balls are automatically detected using a simple threshold fol-
lowed by an ellipse fitting. Figure 2(c) shows an example of ball center detection.
Equation (1) is well known as a PnP problem which can be easily solved using
a nonlinear least squares technique [1]. TC

D is the inverse of the pose (RD
C , tDC ).

Fig. 2. (a) Calibration model. (b) Captured image of (a). (c) Automatic ball center
detection.

4 Image Registration

Image registration is to determine the transformation TM
C . Unlike the fixed spa-

tial relationship during surgery in the device calibration, TM
C suffers from patient

movement and varies when patient’s pose is changed. This requires the image
registration to be performed automatically in real time. We propose a 3D-2D
registration method by matching patient’s 3D teeth model (created from pre-
operative CT data) with the intraoperative 2D camera image based on Ulrich’s
method [9]. Because teeth are rigid and can be easily exposed to an optical cam-
era, they can serve as “natural markers” for registering anatomical information
in the head and neck area.

4.1 Problem Formulation

Our problem is to find the best pose (R, t) so that the 2D projection of the 3D
model using the projection matrix K(R, t) is most consistent with the 2D image.
2D projection views of the 3D model can be rendered using computer graphics
API, such as OpenGL. To measure the consistency between the projected model
shape E2D and the image I(x, y), we use the following similarity proposed by
Steger [7]

s(E2D, I) =
1
N

N∑

i=1

|〈∇I(xi, yi),di〉|
‖∇I(xi, yi)‖ · ‖di‖ (2)
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where E2D
def= {xi, yi,di}Ni=1 is a set of edge points (xi, yi) with associated direc-

tion vectors di representing the normal direction; ∇I(xi, yi) is the image gradient
at (xi, yi); 〈, 〉 denotes dot product. The absolute value | · | on the numerator will
ignore local contrast polarity change. s(E2D, I) ranges from [0, 1].

Given (R, t), the projected 2D shape E2D of the 3D model is extracted as
follows. First, the intrinsic matrix K is used to set the view frustum of the
virtual camera so that the virtual camera has the same projection geometry as
the real camera. Then, the 3D model is rendered into a 3-channel RGB image
whose RBG values represent the normal vector on the corresponding surface of
the 3D model. Next, the image tensor (2 × 2 matrix) at each pixel of the RGB
image is calculated, whose largest eigen value represents the edge strength of the
pixel [6]. The edge strength corresponds to the face angle of the corresponding
3D edge of the model. Subsequently, a threshold is applied to the edge strength
to suppress the pixel whose corresponding face angle is below a certain value
(e.g., 30◦). Finally, non-maximum suppression is performed for edge thinning
and the remaining edge pixels with their gradient vectors constitute the 2D
shape E2D. Figure 3 shows the extracted 2D shape of a left molar model with
the suppression angle of 35◦. A straightforward idea is to find optimal (R, t) so
that (2) is maximized.

4.2 Aspect Graph Based Matching

It is impossible to directly optimize (2) unless the start point is quite near to
the true pose. However, we do not have the prior knowledge about the pose
of the model. We instead adopt a view-based approach. An aspect graph-based
matching method proposed by Ulrich [9] is used for fast 3D-2D pose estimation.

Offline Aspect Graph Building. Views are generated by specifying view-
points (virtual camera positions) in a spherical coordinate system (SCS) whose
origin is set to be the center of 3D model’s bounding box. The viewpoint range
is specified by [rmin, rmax], [ϕmin, ϕmax], and [θmin, θmax], which is a spherical

Fig. 3. (a) Rendered RGB image of a molar model. (b) Projected 2D shape of (a).
(c) Associated direction vectors.
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quadrilateral. r, ϕ, and θ represent altitude, longitude, and latitude, respec-
tively. The generated views are clustered into aspects according to their mutual
similarities calculated using (2) on the overlapped pixels. The aspect in this
context means a cluster of views (can be one view) whose mutual similarities
are higher than a threshold tc. A complete-linkage clustering method is used for
view clustering. After the clustering is finished, the aspect is downsampled to
the next higher image pyramid level and the clustering process is repeated. As a
result, we can obtain a hierarchical aspect graph spanning different image levels.

Online 2D Matching. After the hierarchical aspect graph has been built, it
is ready to use in the online search phase for pose estimation. We assume the
proposed method is used for real-time image registration, in which case the input
data is a video stream. A tracking-matching-optimization strategy is proposed
for robust and fast pose estimation. The output of the tracking is used to confine
the search space at the top image level to a tight bounding box encompassing
the object. The tracking-learning-detection (TLD) framework [2] is incorporated
for tracking the 2D appearance of the 3D model over a video stream at a higher
image level whose resolution is close to 512 × 512. Let Bn

target be the tracked
bounding box at the top image level n, denoted by In(x, y). All aspects at the
top level of the hierarchical aspect graph are examined within Bn

target in In(x, y).
An aspect is represented by its shape features E2D = {xi, yi,di}Ni=1. To search
for a match of an aspect, E2D is scaled, rotated, and translated by discrete steps
as follows

x′
i = xiσ cos γ − yiσ sin γ + tx (3)

y′
i = xiσ sin γ + yiσ cos γ + ty (4)

where σ is scaling factor; γ is rotation angle; (tx, ty) is translation. The similarity
between the transformed E2D and the image In(x, y) is calculated using (2).
Those 2D poses (σ, γ, tx, ty) with resulting similarity exceeding a threshold ts are
stored in a candidate list. These candidates are either refined in the child aspects
by searching close neighboring poses, or discarded due to lower similarity than
ts. All candidates are tracked down along the hierarchical level until reaching
the bottom image level. The best candidate is considered as the candidate with
the highest similarity score. The 3D pose can be recovered from the 2D pose
of the best match at the bottom level and the pose of its associated aspect.

4.3 3D Pose Refinement

The accuracy of the obtained 3D pose from matching is usually insufficient due
to the discrete step widths when searching for matches. Iterative optimization
using an iterative closest point (ICP) algorithm is performed to refine the 3D pose
by alternately identifying feature correspondences and estimating the pose. The
corresponding 3D point (Xi, Yi, Zi) of the shape feature (xi, yi) can be recovered
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using the z buffer value of OpenGL. The sub-pixel edge point (x′
i, y

′
i) near (xi, yi)

is localized along the direction of di using the method proposed in [11]. The
refined pose can be calculated by solving the PnP problem (Xi, Yi, Zi) ↔ (x′

i, y
′
i).

The above procedure is repeated until convergence. Usually, several iterations
will lead to satisfactory convergence.

5 Experiments and Results

5.1 Experimental Setting

Figure 4(a) shows the experimental scene. The LCD (6.4 inch) of the 3D display
has a resolution of 1024 × 768 pixels with a pixel pitch of 0.13 mm (200 ppi).
The micro lens array has lens pitches of 0.89 mm and 1.02 mm in the vertical
and horizontal directions, respectively.

A mandibular phantom was created using a 3D printer from real patient’s
CT data as shown in Fig. 4(b). Fiducial points were made in the front teeth area
and molar area of the phantom with known positions in the image (model) space,
for accuracy evaluation. The front teeth model and the molar model shown in
Fig. 4(c) are used for image registration. Which model should be used depends
on the exposed area (front teeth area or molar area).

The camera (UI-3370CP-M-GL, IDS Imaging Development Systems GmbH,
Germany) employed in the experiments has a resolution of 2048 × 2048 pixels
with maximum frame rate of 80 frames per second (fps). Camera calibration was
performed in advance to obtain the intrinsic matrix and remove lens distortion.
The computer used in the experiments has an Intel� CoreTM i7-4820K CPU
(3.7GHz) and a NVIDIA� GeForce GTX TITAN Black GPU. The GPU is used
to accelerate the aspect graph building process and the online matching process
by parallel computing.

Fig. 4. (a) Experimental scene. (b) Mandibular phantom with fiducial points. (c) Teeth
models for image registration.
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5.2 Display-Camera Calibration

Figure 5 shows the automatic processing flow of the display-camera calibration.
The original image was smoothed using a Gaussian filter. White spots were
segmented out using a threshold followed by classifications according to their
roundness and areas. The contours of the extracted spots were approximated by
ellipses whose centers were used for PnP estimation. The PnP estimation yielded
a geometric estimation error of 1.9 pixels.

Fig. 5. Processing flow of display-camera calibration.

Fig. 6. Image registration results using (a) front teeth model (b) left molar model.
(c) Target registration evaluation.

5.3 Image Registration Evaluation

Image registration was performed by matching the model with the video stream
captured through the AR window. The distance between the camera and the
phantom was approximately 710 mm. The registration process took approxi-
mately 0.2 s yielding an update frame rate of 5 fps. Figure 6(a) and (b) show the
image registration results using the front teeth model and the left molar model
(see Fig. 4(c)), respectively, with critical structures (tooth roots and nerve chan-
nels) and fiducial points (in red) overlaid on camera’s view.

Target registration errors (TREs) on the fiducial points (see Fig. 4(b)) were
calculated to evaluate the registration accuracy as follows. A surgical tool (dental
driller) was used to approach individual fiducial points on the phantom under the
guidance of the virtually overlaid fiducial points on camera’s view. The physical
distance between the indicated position and the real position of a fiducial point
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on the phantom was measured as the error on that fiducial point. The average
error distance in an evaluation area was calculated as the TRE in that area.
For TRE calculation in the front teeth (left molar) area, the front teeth (left
molar) model was used for the image registration. Figure 6(c) shows the accuracy
evaluation process. The accuracy evaluation results yielded TREs of 0.8 mm in
the front teeth area (15 points) and 1.1 mm in the molar area (18 points).

5.4 3D Surgical Overlay

After display-camera calibration and image registration, the necessary spatial
information for 3D display has become available. Figure 7 shows the 3D overlay
of the tooth roots and nerve channels, observed through the AR window. The
visualized information could be used to guide surgical operation.

Fig. 7. 3D surgical overlay by (a) molar matching and (b) front teeth matching.

6 Conclusion

This paper presents a 3D surgical overlay system with automatic markerless
image registration using a single camera. Teeth are rigid and easy to be exposed
to a camera, making it possible to match a teeth model with an intraoperative
camera image for the image registration task. The registered 3D images repre-
senting anatomical structures are superimposed on the patient via a translucent
mirror for augmented reality surgical visualization. In this study, the application
in dental surgery was demonstrated using our proposed system. Given the fact
that the maxillary teeth are fixed with the skull, the proposed method may also
be used for surgical navigation in the craniofacial region. In that case, the error
compensation in the area far from the registration features can be a challeng-
ing work.
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Abstract. In-situ visualization of ultrasound in robot-assisted surgery
requires robust, real-time computation of the pose of the intra-corporeal
ultrasound (US) probe with respect to the stereo-laparoscopic camera.
Image based, intrinsic methods of computing this relative pose need to
overcome challenges due to irregular illumination, partial feature occlu-
sion and clutter that are unavoidable in practical robotic-laparoscopy. In
this paper, we extend a state-of-the-art simultaneous monocular pose and
correspondence estimation framework to a stereo imaging model. The
method is robust to partial feature occlusion and clutter, and does not
require explicit feature matching. Through exhaustive experiments, we
demonstrate that in terms of accuracy, the proposed method outperforms
the conventional stereo pose estimation approach and the state-of-the-
art monocular camera-based method. Both quantitative and qualitative
results are presented.

1 Introduction

Laparoscopic ultrasound (LUS) is an essential intraprocedural imaging modal-
ity that provides real-time imaging of hidden structures in many robot-assisted
laparoscopic interventions. During US guided tasks, US video is typically visual-
ized side-by-side with that from the laparoscopic camera, requiring the surgeon
to mentally fuse information from one modality to the other. This cognitively
mediated information integration strategy is known to cause excessive cognitive
load, leading to surgical errors [1]. In-situ visualization avoids such complica-
tions, but requires robust, real-time tracking of the US probe with respect to
the laparoscopic camera in six degrees of freedom (6DoF).

To solve this relative pose problem, the use of extrinsic tracking systems
has been demonstrated with magnetic [2], optical [3], magneto-optic hybrid [4]
and robot-kinematic-based [5] systems. In addition to high cost, these extrin-
sic tracking systems disturb the current operating room (OR) workflow and
demand impractical tracking environments (magnetically clean environment for
c© Springer International Publishing Switzerland 2015
C.A. Linte et al. (Eds.): AE-CAI 2015, LNCS 9365, pp. 134–144, 2015.
DOI: 10.1007/978-3-319-24601-7 14
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magnetic tracking and optical line of sight for optical tracking). As a solution,
image-based intrinsic tracking methods [6] have been introduced that can be
seamlessly integrated into the existing OR workflow. However, these methods
are challenging primarily due to irregular illumination, and feature association
issues in the presence of occlusion and clutter.

In order to explicitly solve the feature association problem, appearance based
descriptors (e.g. SIFT, SURF) are often used. These descriptors tend to fail in
the presence of irregular illumination in addition to their high localization uncer-
tainty [7]. Hence they are not appropriate for practical, accuracy-demanding
laparoscopic applications. Without relying on appearance cues, Jayarathne et al.
[6] proposed an Extended Kalman Filter (EKF)-based algorithm to jointly solve
for the 3D-2D feature correspondence and 6DoF object pose using a monocular
camera. However, to date no attempt has been made to extend this method to
stereo (and general multi-view case) to exploit additional information in multiple
views which may improve depth estimates and tracking range.

The conventional approach to stereo (and multi-view) pose estimation is to
explicitly establish feature correspondence across views, triangulate the matched
features and extract the pose parameters by fitting the 3D object model to the
triangulated points with an Iterated Closest Point (ICP)-based algorithm [8].
In the presence of feature occlusion due to the curvature of the probe, blood
or other surgical tools, and clutter due to imperfections of the feature detector,
these methods often fail to provide accurate pose estimates. Moreover, feature
matching based on merely epipolar constraints could result in spurious matching
which often leads to erroneous estimates. Typically RANdom SAmple Consen-
sus (RANSAC) [9] algorithm based post processing techniques are employed to
remedy this, but such methods affect the run-time performance of the algorithm.

In this paper, we extend the Kalman Filter based, joint pose and correspon-
dence estimation framework [6] to a stereo imaging model, but it can readily
be applied to the general multi-view case. We demonstrate through exhaustive
experiments that the proposed method outperforms the conventional triangula-
tion based method, and that its pose estimates are more accurate compared to
the single camera EKF-based method. Section 2 describes the proposed method
and experiments in detail, Sect. 3 summarizes the results and Sect. 4 concludes
the paper with a detailed discussion and offers some insight into future work.

2 Materials and Methods

2.1 Experimental Setup

Camera Geometric Calibration: In all our experiments we used an Olympus
Stereoscopic camera from the daVinci S surgical system. The video feed from
the left and the right camera was captured at 640× 480 resolution. The well-
known generic camera calibration method proposed in [10] was employed with a
checkerboard calibration pattern to determine the intrinsic parameters of each
camera with corresponding distortion parameters. The fundamental matrix of
the stereo-pair was derived with a method based on least median of squares [11].
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Fig. 1. (a) A fiducial pattern is glued on the back surface of the 3D-printed cover
for the Ultrasonix US probe. (b) Optically tracked validation tool with a mock-probe
rigidly placed in middle. (c) US calibration tool. The 3D-printed straw holder is tracked
with a checkerboard pattern glued on its flat surface.

Features and Feature Detection: Inspired by the idea of using a curved
“X-corner” pattern for accurate 6DoF tracking of a clinical LUS probe presented
in [6], an “X-corner” pattern was glued on the curved back surface of a 3D-
printed probe-tip cover (Fig. 1(a)) for the LUS probe (LAP9-4/38, Ultrasonix,
Canada). The 3D position of the “X-corners” were measured accurately with a
measurement microscope (STM6-LM, Olympus, Japan), and a local coordinate
system was defined on the marker space with one corner arbitrarily chosen as the
origin. The 3D point-set thus defined serves as the model. The “X-corners” were
detected with an efficient algorithm [12] in each left and right camera frame, and
were further refined to sub-pixel accuracy.

2.2 Joint Estimation Framework

Alleviating the issues in the conventional triangulation-based pose estimation
approach, we solve both the feature correspondence problem and the pose prob-
lem simultaneously in an efficient Bayesian framework. This allows natural inte-
gration of priors on the pose to drastically reduce the search space, resulting
in real-time performances. In addition, the framework provides easy access to
uncertainty information of the estimation parameters which could be useful in
analyzing tracking performance.

Pose Parameterization and Priors: The pose of the probe was parameter-
ized as a 6D vector: three parameters representing 3D rotation1 and three 3D
translation. To sample this six dimensional pose space, an optically tracked mock
probe with a fiducial pattern (Fig. 1(b)) was moved freely within the camera field
of view, while the camera itself was being tracked. The hand-eye calibration, and
the transform between the fiducial pattern and the optical tracking dynamic ref-
erence body (DRB) was determined (see Experiments section for details), and the
pose of the fiducial pattern with respect to the camera image was saved. Finally
a Gaussian Mixture Model (GMM) was learned [13] over these collected pose

1 In Rodrigues representation.
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Fig. 2. An instance of the algorithm. In (a) and (c) only the left image is shown
due to space limitations: (a) Model points are projected to the image space (green +
marker) with their covariance (in red ellipses while the bold green ellipse represents
the one currently being evaluated) (b) Within the ellipse currently being evaluated, the
correspondence between the detected features (yellow dots) across images is determined
based on minimum Sampsons distance (c) image space uncertainty drops after the UKF
update. This is indicated by the shrinkage of the search ellipses (Color figure online).

samples providing pose priors for initialization. Once initialized, the Gaussian
prior for the subsequent frame is derived based on a motion model of the probe.

Joint Estimation: Let x = [r1, r2, r3, tx, ty, tz] be the pose, Px be its covariance
matrix and ProjK(Mi, x) be the operator that projects the model point Mi onto
the Kth camera with the pose x. We begin with the mean pose and the covariance
of the GMM component with highest weighting.

Each model point Mi is projected to the stereo-image space with the pose
x with its image space locations, yL

i and yR
i respectively in left and the right

camera, and their covariance, Py
L
i and Py

R
i respectively, estimated with the

Unscented Transform [14]. The Unscented Transform avoids complex Jacobian
computation in the EKF-based approach [6] and is superior in handling non-
linearities in the stereo-imaging model. Feature points in each image (left/right)
with less than a predefined Mahalanobis distance from yL

i (and yR
i ) are then

considered to be possible matches for the projected model point. The ellipsoid
defined by this Mahalanobis distance defines the search region for model-to-
feature correspondence (Fig. 2(a)). In all our experiments we use Mahalanobis
distance of 3, corresponding to 99 % confidence interval.

For each feature point lying inside the elliptical search region in the left
camera Sampsons distance [15] is computed to each feature point in the right
camera lying inside the corresponding search ellipse (Fig. 2(b)). Feature pairs
with less than a predefined Sampsons distance threshold are then considered to
be potential left-right matched pairs for the model point. Assuming that one of
these matching pairs is the correct model-to-feature correspondence, we update
the pose and its covariance using Unscented Kalman filter (UKF) state update
equations [14] (For better numerical stability we use the strategy presented in
Square-Root Kalman (SRUKF) [16] filter whose practical run-time complexity
is better than that of the standard UKF). This update reduces the covariance
of the pose further constraining the search regions. This is illustrated by the
shrinkage of the search ellipses in Fig. 2(c). Model points are projected back
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again with the updated pose and the covariance, and possible matching pairs
determined as described above. After three such updates the evolution of the
pose (and the covariance) becomes negligible which confirms that three point
correspondences are adequate to determine the 6DoF pose uniquely. At this
point, the model points are projected into the left and right cameras and the
following error function is computed.

Error(x) =
∑

i=1,...,N
|ProjL(Mi, x) − UL|

+
∑

i=1,...,N
|ProjR(Mi, x) − UR| + γ|NotDetected|

(1)

where UL and UR are feature points in the left and right cameras respec-
tively with closest euclidean distance to the projection of model point Mi,
|NotDetected| is the cardinality of the not detected model points, and γ is a
tuning parameter. Feature points, lying at a distance greater than the variance
of the sensor noise from the closest projected model point, are considered to be
outliers.

The algorithm iterates through all the model-feature matched-pairs, and
through all the GMM components until the error in Eq. (1) drops below a
pre-defined threshold. Once converged, the updated pose is very close to the
correct one. Note that at this point we know the correct model-feature corre-
spondence as well as the correct left-right correspondence. Finally, this pose is
further refined by applying SRUKF updates per each model-feature correspon-
dence. This refined pose is considered to be the correct pose for the processed
frame.

The prior pose and covariance for the next frame is given by an SRUKF
state prediction step with the identity process model. However, with sophisti-
cated process models that closely simulate the probe motion, better tracking
performances can be expected.

2.3 Experiments

To evaluate the performance of the proposed two-view pose estimation frame-
work, several experiments were performed. A commercial optical tracking system
(Spectra, NDI, Canada) provided ground truth poses by tracking the stereo-
endoscope and the special assembly with the 3D printed probe mock-up which
will be termed the validation tool from here onwards (Fig. 1(b)). To be able to
compare the image-based estimates with the ground truth, we estimated the
hand-eye calibration matrix with a globally optimal algorithm [17] while the
transformation between the fiducial pattern and the optically tracked DRB was
determined by a robust method [18]. Pose estimates were computed offline on a
computer with Intel Core i7 (3.4 GHz) 64-bit CPU and 16 GB of RAM running
Microsoft Windows 7.
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Fig. 3. (a) The CAD design for the 3D-printed straw-holder used in US calibration.
(b) Left camera image showing an instance in data acquisition for US calibration.
(c) US image of the hollow straw

Comparison to Ground Truth: The validation tool was moved freely in
front of the camera while the endoscope and the validation tool were being
tracked by the optical tracking system. A stereo video was saved and the pose
estimates were computed offline using the proposed method implemented in
Matlab. The EKF-based method presented in [6] was implemented in Matlab
and pose estimates were computed using the left camera frames of the saved
stereo video. To avoid feature matching errors in the conventional triangulation
based approach, the feature matches determined by the proposed method were
used. The matched features were triangulated [15] and the pose parameters were
extracted by aligning the model with the triangulated points with standard
Procrustes analysis.

Ultrasound Calibration and Image Overlay: To overlay US images in endo-
scopic video, the US calibration transform was determined with a method that
formulates the problem as a point-to-line registration [19]. A plastic straw was
imaged while it was tracked with a checkerboard pattern glued to its 3D-printed
holder (Figs. 1(c) and 3(b)) designed such that the central axis of the straw is
known relative to the coordinate system defined on the pattern (Fig. 3(a)). The
pose of the probe was determined with the proposed method. The centroids of
the elliptical representations of the ultrasound images of the straw (Fig. 3(c))
were determined manually in each image, and the end points of the tracked
straw were then used as inputs to the Anisotropic-Scaled ICP (AS-ICP) [20]
algorithm, where the point-to-line registration transform in form of anisotropic
scales, followed by rotation and translation is the US calibration we seek.

To qualitatively evaluate the performance, a hollow plastic straw submerged
in a water-bath was imaged with the probe tracked by the proposed method.
Pose estimates with US calibration transform were then used to overlay US
images in the stereoscopic video.
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Fig. 4. Estimates computed by mono (in red), stereo (in blue) and tr (in green)
methods. The ground truth is in black. (a) Rotation in YZ-plane. (b) Rotation in XZ-
plane. (c) Rotation in XY-plane. (d) Translation along X-axis. (e) Translation along
Y-axis. (f) Translation along Z-axis (Color figure online).

3 Results

Poses computed by the method presented in [6], the proposed method and the
triangulation-based method, referred to here as mono, stereo and tr respec-
tively, were compared to the optical tracker based ground truth, referred to as
ots. Over a total of 650 frames, the root mean square (RMS) translational error
was 2.0 ± 1.4 mm, 1.6 ± 0.9 mm and 2.4 ± 1.3 mm for mono, stereo and tr
respectively. The results are summarized in Fig. 4. The average computation
time for the EKF based method in [6] was 15.7 ms, while that for the proposed
method was 38.3 ms.

Parameter estimates, particularly those related to rotation and the transla-
tion along the Z-axis, resulting from tr are jittery, and deviate significantly from
the ground truth. Even though estimates computed by mono follow the ground
truth fairly closely, significant jitter and errors are observed in the rotational
estimates about the Y-axis and translational estimates along the Z-axis of the
camera (Fig. 4(b) and (f)). The estimates computed by the proposed method
follow the ground truth very closely and smoothly.

A total of 20 images, captured at an imaging depth of 4 cm, were used
for ultrasound calibration, resulting in Fiducial Registration Error (FRE) of
0.57 mm. The estimated US calibration transform together with the probe poses
estimated by the proposed method were used to overlay US images in the stereo-
scopic video. Figure 6(a) shows a snap-shot of the overlaid video corresponding
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Fig. 5. The mean TRE maps for (a) mono method, (b) stereo method and (c) tr
method. The X and Y axes correspond to that of the US image while the origin of the
fiducial pattern is close to the top-left corner. Errors are in millimeters. Note that the
scale in the error bar is different in each image

to the left camera. Note that the extended edges of the straw perfectly inter-
sect with its US image, providing a qualitative measure of the accuracy of the
estimates.

Considering 3D points corresponding to each US pixel as targets, the Target
Registration Error (TRE) was computed for mono, stereo and tr methods,
using the estimated US calibration matrix to transform US pixel locations to
the coordinate system defined on the fiducial pattern. The mean TRE maps
for each method are shown in Fig. 5. The tr method demonstrates the worst
TRE (mean ranging from 1.6 mm – 4.9 mm), while the TRE resulted in stereo
demonstrates the best (mean ranging from 0.9 mm – 1.1 mm). Even though it
is minor, an improvement in the mean TRE is observed in stereo compared to
that in mono (compare range of mean TRE in mono, 1.1 mm – 1.3 mm, to that
in stereo).

)b()a(

Fig. 6. (a) US image overlaid onto the left camera image using the pose estimated by
the proposed method and the estimated US calibration matrix. Note that the extended
edges of the straw (in red) perfectly intersect with its US image. The solid white line
in the US image corresponds to the strong reflection of sound waves from the bottom
of the water-bath. (b) Stereo image showing that the proposed method has accurately
determined the left-right feature correspondence even in the presence of clutter and
partial feature occlusion (Color figure online).
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Figure 6(b) qualitatively illustrates the robustness of the algorithm to clutter
and partial feature occlusion. The left-right feature correspondence has accu-
rately been determined even though the fiducial pattern is partially occluded by
a surgical tool.

4 Discussion and Conclusion

In this paper, an efficient image based method for stereo pose estimation is
presented. Extending the state-of-the-art method [6] to stereo-imaging model,
it simultaneously solves for both the feature correspondence and the object
pose while maintaining robustness to feature occlusion and clutter. The method
is compared to the conventional triangulation-based approach using an opti-
cal tracking system as the ground truth. In addition, the performance of the
proposed algorithm is compared to the state-of-the-art monocular image-based
method to demonstrate the improvements due to the use of multiple views for
pose estimation.

The proposed method produces more accurate and stable pose estimates
compared to the conventional triangulation-based method and the state-of-the-
art single-view-based method. The improvement in precision and accuracy is
significant in the rotational estimates and translation along the depth direction.
This may be explained by the wealth of depth information in multiple views. The
smooth evolution of the estimates computed by the proposed and the monocular-
image-based methods is a result of the inbuilt Kalman Filter. The mean TRE
maps further confirms the improvements in tracking resulted in the proposed
method compared to the others. Note that the imperfect registration between
the coordinate system of the optical tracking system and that centered in the
imaging plane of the camera has some contribution to the TRE computation.
Future work will look into methods to minimize this error contribution to achieve
more accurate estimates of the TRE.

The proposed method uses Unscented Transforms to propagate uncertainty
from pose space to the measurement (image) space, while the single-view-based
method uses Jacobians that can be computed efficiently. This could be the cause
of the added computational burden resulting in increased average computation
time in the proposed method. However, we believe that real-time performance
can still be achieved with efficient C/C++ implementation of the algorithm,
which will be a part of our future work.
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Abstract. When compared to other imaging modalities, the acquisition
and interpretation of ultrasound data is challenging for new users. The
main aim of this work is to investigate whether augmented reality can
provide a patient specific correspondence between the ultrasound image
and a virtual anatomic model of the heart and thus simplify the live
echocardiographic scanning process.

The proposed augmented view contains the image of the scene
(acquired with a tablet’s camera), a generic heart model and the ultra-
sound image plane. The position and orientation of the ultrasound probe
and patient are tracked with the Vuforia framework, using fiducial mark-
ers that are visible on the tablet’s camera image. A customized ren-
derer for augmentation purposes was implemented in OpenGL ES. Data
streaming from a high end ultrasound scanner to the tablet device was
implemented and the position of the heart model is continuously updated
to match the ultrasound data by tracking and matching a set of anatomic
landmarks. The prototype was tested in the echo laboratory and real-
time performance was achievable as no significant lag between the
scanner image and the one presented on the tablet was experienced.
Furthermore the suitability of Vuforia for fiducial tracking was evalu-
ated and was deemed sufficiently accurate for this application. The pre-
sented prototype was tested by an experienced echocardiographer and
was considered beneficial for both teaching purposes and as a help tool
for inexperienced ultrasound users.

Keywords: Ultrasound · Echocardiography · Augmented reality ·
Vuforia

1 Introduction

The acquisition and interpretation of ultrasound images remains a great chal-
lenge for new users [6], a typical learning process taking between 6 and 12 months.
The teaching process should eventually lead to the development of specific cog-
nitive and motor skills, required for good quality image acquisition and interpre-
tation. Since ultrasound image acquisition is operator dependent its successful
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24601-7 15



146 G. Kiss et al.

utilization is highly dependent on the experience of the examiner in contrast to
computed tomography or magnetic resonance imaging which are less operator
dependent. The late 1990’s have marked the introduction of the first portable
ultrasound units for medical purposes. This poses additional challenges since
typically the portable devices are aimed at non-experts. Thus ensuring that a
user has a sufficient degree of training, aiding the user during image acquisition
as well as making sure that the acquired image has sufficient image quality is of
importance for a successful examination.

Augmented reality is an active field of research in the context of medical
procedures [5]. The Sonic Flashlight introduced by Stetten et al. [9,10] uses a
half-silvered mirror to depict ultrasound images directly on the patient’s body.
Bajura et al. [1] used a see-through head-mounted display to integrate ultrasound
images into a three-dimensional scene. State et al. [8] employed a similar setup
for ultrasound-guided biopsies. Studeli et al. [11] presented information from pre-
operative CT images combined with live ultrasound data during radio-frequency
ablation of liver tumors. However, most of these systems require complex techni-
cal setups and typically use head-mounted displays [4] or projector-based setups
[2], which are not well suited for bedside examinations. In addition, many of
the mentioned tools are aimed at a very specific application and are to be used
by highly experienced clinicians, which limits their usability. Systems that min-
imally interfere with the clinical workflow and are able to provide visual guid-
ance during the echocardiographic image acquisition process have been recently
proposed. In [3] a prototype system that employs tablet technology for display
purposes is presented. However, the presented approach required an external
server for processing purposes, while the visual compositing requires a manual
alignment of the patient to the virtual scene. Once this alignment is made no
corrections are attempted for the duration of the scan. Moreover, the alignment
step has to be repeated for each new scanning.

The main aim of our work is to develop and test an augmented reality based
system that will enhance and simplify the echocardiographic acquisition process
as well as help non-experienced users during teaching and acquisition. Further-
more, we aim to implement most of the augmentation pipeline on a tablet device
and as such address challenges such as affordability, maintenance (use of easy
to replace off the shelf hardware) and portability. Additionally, by showing the
augmented view on a tablet placed near the patient an in-situ visualization that
does not interfere with the clinical workflow is achieved.

2 Methods

Figure 1 presents an overview of our system. A continuous stream of 3D ultra-
sound data is recorded with a high end ultrasound scanner. A deformable model
is fitted to the data in real-time and the position of a set of anatomic landmarks
is detected and subsequently tracked in time (Sect. 2.1). A high level heart model
triangle mesh is deformed and aligned to the ultrasound data (Sect. 2.2). Simul-
taneously, the position of both probe and patient is also computed by detecting
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Fig. 1. System overview of the augmented reality prototype. Ultrasound data with
annotated anatomic landmarks, visual tracking and optionally the values obtained
from a position sensor can be sent to the tablet device.

known frame markers in the image scene (Sect. 2.3). Finally, the augmented view
is generated on the tablet device (Sect. 2.4). Practical implementation details are
given in Sect. 2.5.

2.1 Heart Detection in the Ultrasound Data

The relative position of the patient’s heart with regards to the ultrasound probe
can be determined by fitting a deformable model to the 3D ultrasound volumes.
The approach proposed by Orderud et al. is employed [7], in which a Kalman
based tracker is used. The measurement vector for the Kalman filter is a set of
edge detections equally spread on the surface of the left ventricle, whereas the
state vector consists of a set of control points defining the shape of a Doo-Sabin
subdivision model. Figure 2 shows the principle of the Kalman tracker with the
following equations giving the measurement update:

x̂k = xk + P̂kH
TR−1vk (1)

P̂−1
k = P

−1

k + HTR−1H (2)

with x̂k the updated state estimate, H includes the edge measurements, R repre-
sents the measurement covariance matrix, P̂ the updated error covariance matrix
and P̂kH

TR−1 the Kalman gain that assimilates the edge related measurements.
It has to be noted that only one iteration per volume is performed to limit the
computational complexity. Several edge detectors are supported by the frame-
work, however in our case the step edge detector gave the most reliable results.
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Fig. 2. Kalman filter processing chain including the prediction and update stages. [7]

The quality of the model fit is also computed by analyzing the number of
edge outliers (locations where the edge detection failed) divided by the total
number of edges:

Nfit = 1.0 − Noutliers

Nedges
(3)

Three anatomic landmarks are defined in the model’s (u, v) parametric space,
these are the left ventricle’s apex, base and the middle of the outflow tract as
seen in Fig. 3.b. If a fit of good quality is available the position of the anatomic
landmarks relative to the ultrasound probe is computed and denoted LVA, LVB

and LVOT respectively.

2.2 Model Deformation

A geometric model representing the outer layer of the heart has been created
to match the end-diastolic phase. As visible in Fig. 3.a this is the most com-
mon depiction of the heart in anatomy textbooks and therefore familiar to
medical students. The positions of the three anatomic landmarks computed by
the tracking algorithm have been identified manually on the generic model and
are labeled as HA, HB and HOT . The vectors defining the long axis of the
tracked and generic heart model are be defined as:

−→
M long axis = LVB −LVA and−→

H long axis = HB − HA.
In order to add the virtual heart model to the scene, it needs to be spatially

aligned and temporally deformed according to the data present in the ultrasound
volumes. The global 3D pose transformation matrix aligning the heart model to
the tracked model is given by:

MDM = Tapex ∗ Slong axis ∗ Routflow ∗ Rlong axis (4)

with Rlong axis the rotation matrix overlaying the vector
−→
H long axis over−→

M long axis computed with the Rodrigues formula:

Rlong axis = I + K ∗ sin(θ) + K2 ∗ (1 − cos(θ)) (5)
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Fig. 3. (a.) Anatomic heart model. (b.) Fitted deformable model (yellow contour) at
end diastole(ED) and end systole(ES), the position of the three anatomic landmarks
is also indicated. (c.) Magnitude of Mlong axis over several heart cycles for a healthy
volunteer, which is used for deforming the heart model (Color figure online).

with I the identity matrix, θ the angle between
−→
M long axis and

−→
H longaxis and

K of the form:

K =

⎡

⎢
⎢
⎣

0 −uz uy 0
uz 0 −ux 0

−uy ux 0 0
0 0 0 1

⎤

⎥
⎥
⎦ (6)

where −→u (x, y, z) is the unit vector corresponding to
−→
M longaxis. Similarly Routflow

is the rotation matrix that rotates the heart model around its long axis until
HOT and MOT coincide. Finally, Slong axis scales the heart mesh to fit with
the tracked mesh (i.e. the length of

−→
H longaxis matches the length of

−→
M longaxis),

while Tapex is a translation to align HA and LVA.
As mentioned the heart model is static and represents only the end diastolic

case, therefore a simplified kinematic model approximating the movement of
the outer layer of the heart and matching the movement of the left ventricle
extracted from the ultrasound data is implemented. Assuming that the apex of
the heart remains stationary and the volume of the heart is nearly constant, the
local deformation pattern of a vertex with regards to its position at time t0 can
be approximated as follows:

V = V0 − ΔAB
(V0 − HA) · −→

M longaxis

||−→M longaxis||2
−→u (7)

with · the dot product and ||−→v || the magnitude of the vector. ΔAB is:

ΔAB = max(||−→M long axis||) − ||−→M long axis|| (8)

A typical pattern for ΔAB is shown in the Fig. 3.c and correlates well with the
motion of the heart’s mitral plane (AV plane). The local movement of each vertex
is represented as a translation matrix and is denoted MLD for convenience.
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2.3 Patient and Probe Visual Tracking

To generate a consistent augmented view the position of the patient and of the
ultrasonic probe with regards to the real world image acquired with the tablet’s
camera are required. We opted to use the Vuforia framework for frame marker
tracking purposes. The position of two fiduciary markers, one attached to the
patient and one attached to the probe are located in the 3D space of the tablet’s
camera.

Vuforia assumes that the camera is located at the origin and looks down
on the Z axis. The pose of each visible marker with regards to the camera
is obtained from Vuforia as a 4× 4 homogeneous matrix and denoted MV M
(Model View Matrix). To obtain the position of the a marker in the camera
image the perspective projection matrix is needed, this is computed as:

PPM =

⎡

⎢
⎢
⎢
⎣

tan−1(FOVx

2 ) 0 0 0
0 tan−1(FOVy

2 ) 0 0
0 0 −Zfar+Znear

Zfar−Znear
− 2∗Zfar∗Znear

Zfar−Znear

0 0 −1 0

⎤

⎥
⎥
⎥
⎦

(9)

with FOVx and FOVy the field of view of the tablet’s camera along x and y
computed by Vuforia based on the camera calibration matrix and Znear, Zfar,
which represent the position of the near and far clipping planes along the Z axis.

Vuforia is also able to generate an augmented view by adding a set of geo-
metric objects to the camera image, however we chose to retrieve the camera
image stream from Vuforia and implement a custom augmentation scheme as
described below.

2.4 Augmented View Generation

A customized version of VES/Kiwi, the embedded visualization toolbox from
Kitware Inc., has been implemented for augmentation purposes. VES is a set
of libraries that conveniently links VTK and OpenGL ES 2.0. By default the
standard VTK camera model is implemented, however we extended VES to add
support for the Vuforia camera model. Each of the elements in the scene has its
custom OpenGL ES vertex and fragment shaders. A set of uniform values can
be passed along to each object.

The augmented virtual scene is composed of the camera image, an ultrasound
image plane, a triangle mesh with custom vertex deformation representing the
high level anatomic heart model and a set of triangle meshes denoting anatomic
structures of the heart (in our case the left ventricle and the simplified model of
the outflow tract).

The position of each vertex V (x, y, z, 1) in the augmented scene is given by:

gl Position = V AR ∗ PPM ∗ MV M ∗ MCM ∗ V ; (10)

with PPM and MV M as described before, MCM being a model calibration
matrix giving the relative position of a scene element with regards to the origin of
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its corresponding frame marker. And V AR, the view aspect ratio matrix which
gives the relationship between the camera and the view-port of the device.

The heart model deformation described in Sect. 2.2 has been also imple-
mented in the vertex shader. Since each vertex on the heart model undergoes a
different deformation for each time frame this is a convenient approach. Assum-
ing the position of a vertex at t0 is V0, it position at time t is:

V = MLD ∗ MDM ∗ V0; (11)

with MDM a model deformation matrix that aligns the heart model to the
segmented deformable mesh and MLD a local deformation based on the position
of the vertex along the apex to base axis.

The fragment shaders corresponding to scene elements are as follows. Tex-
ture lookup tables are used for the camera plane and the ultrasound image.
Additionally, the camera image can be rendered semi-transparent or an ellip-
tic region near the heart cut away to increase depth perception. The geometric
meshes have a standard Gouraud shader attached, while the heart mesh has
a normal map texture in addition to the color texture. As such fine geometric
details are preserved despite the low resolution of the mesh, which is compu-
tationally beneficial. Clipping of the mesh with the ultrasound plane is also
supported.

2.5 Implementation Details

The Kalman filter is implemented as a custom plugin on the ultrasound scanner
and the resulting segmented mesh, anatomic landmarks, tracking score and the
ultrasound image plane corresponding to the 0◦ elevation direction for each
volume are sent to the tablet device via a TCP-IP socket.

Both an Android and an iOS application for augmentation purposes were
created. They share the same native code and act as a wrapper on top of it
to handle user input and the interface calls to Android and iOS respectively.
Support for the tablet’s front and back camera has been added. A Nexus 10
Samsung tablet has been used during the echo-lab tests.

Initially the heart frame marker is placed in a position as close as possible
to the true position of the heart. However once 3D ultrasound data is available
the MCM matrix for the heart model is updated to correctly place the heart
with regards to the position of the frame maker. The MCM matrix for the
probe containing the offset from the center of the frame maker to the center
point on the probe’s surface is computed empirically and is kept constant for
all experiments. To avoid undesirable augmentation results given by poor input
data, a threshold value of 20 % is applied to the tracking score Nfit in Eq. 3. If
the tracking score for the current frame is below the threshold no augmentation
is performed.
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Fig. 4. (a.) Setup for evaluating the accuracy of Vuforia for visual marker tracking.
Scatter plots for the distance along the Z axis (b.) and the angle along the Y axis (c.)

3 Experimental Results

3.1 Frame Maker Tracking Accuracy

The feasibility of Vuforia for frame marker tracking purposes was evaluated in
an in-vitro study. Both the depth and rotational accuracy of the system were
tested by placing a frame marker at 15, 20, 30, 60, 100 cm along the Z axis and
at three different Y axis angles (0◦ and ±30◦) under ambient lighting. The value
ranges for depth and elevation angle were chosen since they correspond well with
the typical ranges of our application. The setup used for evaluation as well as
the angle and distance scatter plots are presented in the Fig. 4. For each distance
and angle the test was repeated 5 times. The tracking accuracy is consistently
good over the entire range of depth values with the error mean and standard
deviation of −0.31 cm ± 0.38 cm. The mean angle error and standard deviation
are −0.05◦ ± 1.77◦, 2.91◦ ± 0.29◦ and −3.39◦ ± 0.15◦ for an Y axis angle of 0◦,
−30◦ and 30◦ respectively. These values are reasonable when compared to the
2◦ elevation resolution of the cardiac probe.

3.2 In-vivo Laboratory Scanning

Figure 5.a illustrates a typical scanning scenario in the ultrasound lab. A Vivid
E9 ultrasound scanner (GE Vingmed, Norway) has been used to acquire 3D
apical views of the left ventricle. The tests were done without ECG triggering,
during normal breathing or at end expiratory breath-hold.

Depending on the depth and the sector angle a volume rate between 6 and
12 frames per second was achievable. Scanning was performed on three healthy
volunteers, by an experienced echocardiographer. Deformable model fitting was
successful for all cases and model fitting times were 5 ms per 3D volume. The
update frame rate for VES was set at 60 frames/second. The system functioned
in real-time and no significant latency between the ultrasound data shown on
the scanner and the image present on the tablet was observed.
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Fig. 5. (a.) Echo-lab setup for scanning a healthy volunteer. (b.) Screen capture from
the tablet device illustrating the augmented view. (c.) Alternative augmentation that
give a more accurate depth perception.

A sample augmented view, captured on the tablet device is presented in
Fig. 5.b, whereas an improved augmented view of the heart model is shown is
Fig. 5.c.

4 Discussion and Conclusion

The work presented an augmented reality framework that fuses an existing
anatomical model of the heart with ultrasound images acquired in real time.
The system was presented to an experienced cardiologist, and was deemed help-
ful for inexperienced users and students learning echocardiography. In contrast
to other approaches it requires inexpensive hardware and it is portable since it is
implemented on a tablet device. A highly informative view can be presented to
the user allowing for easier correlation between cardiac anatomy and the acquired
ultrasound image. By implementing the mesh deformation and augmentation on
the tablet’s GPU, a much faster response time to user interactions is attainable.
Furthermore, the movement of the patient, probe and tablet’s camera are con-
tinuously tracked and the augmented view is updated accordingly to maintain
a consistent visualization, thus eliminating the need of manual alignment.

Vuforia was deemed accurate enough for tracking purposes, however the val-
idation of the visual tracking accuracy was only an in-vitro study. Testing Vufo-
ria’s accuracy against an optical or magnetic tracker is planned.

Additionally, the system can receive a stream of data from a position sensor,
which is, for example, attached to the probe. Integrating data from the position
sensor was not used for this study. However it is of interest. Using such a sensor
is beneficial to correct for rotation errors which increase once the angle between
the frame maker and the camera is bigger than 30◦ or when the optical markers
are not visible to the tablet’s camera. Another problem that became apparent
during scanning is that sometimes the probe does not face the tablet’s camera.
One solution would be to use marker-less tracking and instead cover the entire
surface of the probe with a non repeating pattern. Vuforia has support for this
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and early trials are underway. This would allow for 360◦ probe tracking and
more flexibility during the acquisition.

Further extensions to the current prototype are envisioned. These include
new applications such as fetal scanning or teaching tools for minimally invasive
surgery. However, it is equally interesting to extend the prototype to work with
2D ultrasound images, the standard images obtained with portable scanners.
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