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Abstract. Along with the proliferation of the Smart Grid, power load
disaggregation is a research area that is lately gaining a lot of popularity
due to the interest of energy distribution companies and customers in
identifying consumption patterns towards improving the way the energy
is produced and consumed (via e.g. demand side management strategies).
Such data can be extracted by using smart meters, but the expensive cost
of incorporating a monitoring device for each appliance jeopardizes sig-
nificantly the massive implementation of any straightforward approach.
When resorting to a single meter to monitor the global consumption of
the house at hand, the identification of the different appliances giving
rise to the recorded consumption profile renders a particular instance of
the so-called source separation problem, for which a number of algorith-
mic proposals have been reported in the literature. This paper gravitates
on the applicability of the Ant Colony Optimization (ACO) algorithm to
perform this power disaggregation treating the problem as a Constraint
Satisfaction Problem (CSP). The discussed experimental results utilize
data contained in the REDD dataset, which corresponds to real power
consumption traces of different households. Although the experiments
carried out in this work reveal that the ACO solver can be successfully
applied to the Non-Intrusive Load Monitoring problems, further work
is needed towards assessing its performance when tackling more diverse
appliance models and noisy power load traces.

Keywords: Non-intrusive load monitoring · Ant colony optimization ·
Power consumption disaggregation

1 Introduction

Smart meters lie at the core of the Smart Grid ecosystem by providing the dis-
tribution operator with fine-grained information about the energy consumption
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of the house, facility, industry or whatever energy consumer it monitors. The
knowledge that can be extracted from these data can be used for a wide variety
of purposes. As to mention, depending on the regulatory context power distrib-
ution companies or energy dealers could extract energy consumption patterns of
their clients by analyzing their daily traces, and consequently propose personal-
ized contracts taking into account these patterns. Moreover, companies could use
these data to predict, or estimate, the future power demand of a specific area
or building, which calls for inherent opportunities in short-term demand side
management schemes. But benefits do not fall only on the side of the energy dis-
tributor. Customers could take advantage from the data extracted by the smart
meters as well: this data allow users to timely know their power consumption and
what appliances have generated this consumption, towards eventually changing
their consumption habits.

The main problem underlying beneath this last hypothesized utility of dis-
sagregating the power profile registered by the meter is the way these data can be
obtained. One possible way consists of deploying a metering device per installed
appliance. However, the costs associated with this approach are much higher
than that incurred by using only one meter that captures the overall power con-
sumption associated with the house, which makes the former a metering layout
restricted to very particular scenarios.

When using this last approach (i.e. a single meter per house), a procedure
for disaggregating the power signal is required in order to discriminates what
appliances (model, number and on/off time instants) correspond to the observed
consumption. This disaggregation is widely known as Non-Intrusive Load Mon-
itoring (NILM) [13]. Unfortunately, the evergrowing variety of appliances and
the different power consumption modes for a given appliance makes it extremely
difficult to solve NILM problems from a generalistic standpoint, fact that has
unchained a flurry of research on algorithmic approaches to this family of par-
adigms. As such, research works focused on NILM problems can be grouped
in non-supervised and supervised methods. Non-supervised approaches exploit
unlabeled data, hence there is no training process for the identification model.
Most of the related work refer to blind source separation [10], Hidden Markov
Models (HMM) [10,30], or Factorial Hidden Markov Models (FHMM) [6,16].
On the other hand, supervised approaches require a labeled dataset and a train-
ing process to adjust some of the parameters of the model. The application of
supervised approaches to NILM problems mainly concentrates on pattern recog-
nition and optimization tasks [17,22]. Pattern recognition relies mostly on Neural
Networks (NN) [25] or Support Vector Machines (SVM) [18,25]. Likewise hierar-
chical clustering [3,14], fuzzy C-means [4], Self-Organizing Maps (SOM) [28,29]
or Hopfieldś networks [19,20] are among the most popular clustering techniques
used for NILM problems.

Notwithstanding the activity in this area, the application of computational
intelligence algorithms for NILM problems has not been explored in depth yet.
There are several works that instead of applying bio-inspired algorithms to
disaggregate power consumption traces, such techniques optimize part of the
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parameters of the underlying model such as the weights of the NN, or the def-
inition of the clusters that contains the consumption profiles of the different
appliances. In this sense, Particle Swarm Optimization (PSO) [2], Genetic Algo-
rithms (GA) [1,7], Ant Colony Optimization (ACO) algorithms [26] or Honey
Bee Mating Optimization [9] have been used for this purposes.

In this work the application of ACO for NILM problems is studied from a
different perspective. The disaggregation of power consumption can be viewed
as a Constraint Satisfaction Problem (CSP), for whose resolution several ACO
approaches are available. This paper presents an initial study about the perfor-
mance of a new ACO model for complex graph-based problems, which was first
proposed in [11]. The model is described in detail particularly in what regards
to the formulation of the NILM problem as a variant of the CSP. Simulation
results will preliminarily show that the proposed ACO solver excels at disag-
gregating power signatures corresponding to different appliances generated from
real consumption traces.

This paper is structured as follows: first, Sect. 2 shows how CSP problems
can be tackled via ACO, whereas Sect. 3 describes the new ACO model proposed
for the CSP problem modeling the power disaggregation paradigm undertaken
in this manuscript. Section 4 discusses the obtained simulation results over real
datasets and, finally, Sect. 5 ends the paper by drawing concluding remarks and
outlining lines of future research.

2 Solving CSP Problems Using ACO Algorihtms

Nowadays, there is a huge number of problems that can be modeled as Con-
straint Satisfaction Problems (CSP). This family of problems is defined by a
triple {X,D,C}, where X is the set of variables that compose the problem, D
contains the possible values for the variables described in X, and C is a set
of constraints that relate the values of the different variables [8,27]. The NP-
hard complexity featured by CSP problems motivates the widely reported use
of heuristic algorithms for solving them efficiently, among which ACO schemes
outstand prominently.

ACO algorithms are based on the foraging behaviour of ants [5]. Ants take
different decisions during their execution that allow them to build their own solu-
tions to the problem. The utilization of ACO algorithms to solve CSP problems
requires the representation of the problem as a graph, over which the ACO is
executed. This graph, called construction graph, is defined as G = (V,E) where
V represents the nodes of the graph and E is the set of edges that connect
the nodes. Roli et. al. proposed this construction graph for solving CSP prob-
lems in [21], where they established a fully connected graph where nodes are
pairs 〈variable, value〉. There are other different approaches from the one just
described. Examples are the models proposed by Solnon [23,24] and Khan et.
al. [15]. But in all of them, the resulting graph is extremely big due to the high
number of nodes and edges created in the system.
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In this work, a new model proposed in [11] is used to perform the disaggrega-
tion power consumption. This model has been used to solve the N-Queens [11]
problem and the Resource-Constraint Project Scheduling Problem [12].

3 Description of the New Model for CSP Problems

This section describes the model proposed in [11] for solving CSP problems. This
model is composed by three important aspects:

1. Smaller Decision Graph: in this model the decision graph is smaller than then
ones generated in the approaches described in the previous section. This is
due to the fact that in the new model the resulting graph contains a node per
variable involved in the problem (independently of the different values that
can be assigned to this variable).

2. New Ants Behaviour : the behaviour of the ants in the classical approaches
(Roli et al., Solnon and Khan et al.) is simple: ants only travel through the
graph. The action of visiting a node corresponds to an assignment of a value
to a variable, because both (variable and value) are encoded in the node.
In the new approach, ants have a slightly more complex behaviour, because
when the ants arrive to a certain node, they have to select a value for the
corresponding variable taking into account their own local solution and the
different restrictions involved in the problem.

3. The Oblivion Rate Meta-Heuristic: the simplification in the size of the decision
graph entails a fast growth in the number of pheromones created by the ants.
For this reason, a new meta-heuristic has been included in the system for
controlling the number of created pheromones.

This model can be used to solve any CSP problem as the one behind the
NILM problem central to this paper. The rationale for formulating the NILM
problem as a CSP instance lies on the triple 〈X,D,C〉 where, in the NILM case,
X is the set of appliances contained in the house and D denotes the times of
the day at which the different appliances can be turned on. Finally, C limits
that the maximum consumption at an specific time can not exceed the power
consumption registered by the smart meter or, for example, that two different
ovens are not intuitively expected to be used at the same time. Taking into
account this description of the NILM problem as a CSP, the resulting graph
contains a node per appliance. The edges of the graph connects the different
nodes to allow ants to explore the start of different appliances and its compliance
with the metric. Note that by using the classical approach (i.e. to represent that
a single appliance can be turned on at e.g. any minute of a day), a total of 1440
nodes per appliance would be obtained. Nowadays, smart meters that register
the power consumption per seconds are available in the market, and tens of
appliances can be easily found in domestic houses. Consequently, the size of the
resulting graph would be unmanageable.

Ants selects randomly the node their going to visit taking into account
their local solution built so far, the heuristic function of the problem, and the
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pheromones deposited in the graph. In this work, the heuristic function corre-
sponds to the difference between the power registered by the smart meter and the
power consumption generated by the solution built by the ant. More formally,
given the power consumption registered by the smart meter at time t (denoted as
P (t)) and the historic power consumption generated by the ants solution up to
time t (denoted as (S(t)), the heuristic function used in this work favours those
appliances whose power consumption at time t (a(t)) approximates S(t) to P (t),
i.e. P (t) − (S(t) + a(t)) is minimum.

Regarding the Oblivion Rate meta-heuristic, in this initial work there is no
need to control the number of pheromones because in the experimental phase
controlled experiments have been carried out focused on the study about the
applicability of ACO algorithm to solve NILM problems.

4 Experiments and Discussion

This section presents the different experiments carried out in this work. As pre-
viously highlighted, the goal of this work is to test whether the ACO model
proposed in [11] can be applied to NILM problems. To this end, the first step is
to obtain a valid dataset with real measurements. We have selected the REDD
database [16] from the set of open databases available in the Internet. This data-
base stores the power consumption of 6 different houses during 1 month. For each
house, the database contains the power readings of the two power mains and the
individual circuits for the house. The individual circuits (the ones used in this
work) contains the apparent power logged once every three seconds. In this work,
we have used the dataset corresponding to house2, from which we have iden-
tified the individual power consumption for some of the appliances, specifically
the refrigerator, the stove, the dishwasher, the disposal and the kitchen outlets.
Figure 1(a) exemplifies this set of extracted signatures by depicting that obtained
for the dishwasher via a thresholded amplitude gain detection procedure.

Once these individual signatures have been extracted, we have combined
them to create several artificially aggregated power consumption of 20 houses
during 1 day (i.e. 28800 measurements). For the simplicity of this initial study,
we have assumed that there is not more than 1 appliance of each class in the
house. This means that, for example, two refrigerators are not allowed to turn on
at the same time. Each appliance can be turned on a certain maximum number of
times in a day: disposal (2), dishwasher (3), outlets (5) and stove (2). Note that
the refrigerator is assumed to be always on. In this work, we have generated a
synthetic consumption of 20 instead of using the real data provided in the REDD
database, because the goal of this preliminary work is to test the applicability
of the described ACO model to NILM problems. For this reason, we need some
controlled and reduced experiments to understand the practical behaviour of the
system. Figure 1(b) shows one of the produced daily power consumption profiles.

Once we have generated the global power consumption of the houses, the
ACO model is built. As shown in Fig. 2 the decision graph is composed by 6
nodes, each representing one of the 5 different appliances taken into account
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Fig. 1. (a) Evolution of the power consumption of the dishwasher; (b) One of the 20
synthetically generated power consumption profiles.

plus an additional appliance that stands for the initial status of the house when
no appliance is on. Since we are dealing with 5 appliances and 28800 different
timesteps (3 second sampling rate), by using the classical representation and the
previous reasoning the resulting graph would amount up to 144000 nodes and
2.073 × 1010 edges.

Fig. 2. Decision graph created in this work for the NILM problem using the approach
described in [11].

Finally, the ACO algorithm is executed with 100 ants, 200 iterations, evap-
oration rate equal to 0.05, α = 1, β = 2 and 10 repetitions. The evaporation
rate defines the decrease speed of the pheromone values per step to permit bad
solutions to disappear from the graph. Finally, α and β are parameters that
measures the influence of the heuristic value (α) and the pheromones (β) on the
decision process.

The evaluation of the quality of the produced solutions is given by the mean
square error and the precision of the algorithm. The mean square error (MSE)
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measures the different between the registered power consumption P (t) and the
power consumption S(t) furnished by the solution of the ant over the N = 28800
samples measured by the smart meter. The precision is defined as the percentage
of appliances correctly identified. The correct identification of any appliance
results in the identification of the appliance (i.e. the kitchen outlets) but also
the timestep when the appliance is turned on. A precision of 1 means that all
the appliances have been correctly identified. Mathematically speaking:

MSE .=
1
N

N∑

i=1

|P (t) − S(t)|2 (1)

Precision .=
Number of correctly detected appliances

Total number of appliances in the daily profile
(2)

The performed experimental results over the synthetically produced profiles
revealed that the proposed ACO model was able to fully solve 18 out of the
posed 20 disaggregation problems with MSE = 0 and Precision = 1. In general
the system gets the true solution in the early phase of the algorithm (initial
steps). This was expected due to the following conditions:

1. The system operates on a reduced dataset in terms of number of appliances.
2. The global power consumption is generated using the individual signatures

of the appliances and we do not consider different consumption profiles for
the same appliance, nor do we address any variable-length power signature.

3. The global power consumption is generated only for one day (28800 measure-
ments).

4. The generated power consumption is not subject to background noise.

All these characteristics ease significantly the identification of the appliances,
yet still permits to conclude that the proposed ACO model can be applied to
the NILM problem. Furthermore, the obtained results shed light on the practical
applicability of this approach to the NILM problem and its expected performance
when the above assumptions are removed.

5 Concluding Remarks and Future Research

The disaggregation of power consumption profiles is a area that is gaining
momentum in the research community due to the plethora of applications and
benefits for companies and customers stemming from the identification of cus-
tomers’ behavioral profiles in terms of energy consumption. In particular this
paper has focused on the so-called Non-Intrusive Load Monitoring problem,
which can be casted as to find the set of appliances of a certain energy consumer
and their on/off instants based exclusively on its overall measured consumption.

This paper has elaborated on the applicability of the ACO algorithm for
NILM problems. First of all, the problem has been shown to yield a Constraint
Satisfaction Problem (CSP) where the set of variables are the different appli-
ances, the values corresponds to the timestep when the appliances can be turned
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on and the constraint limits the maximum power consumption per timestep. The
ACO model for solving CSP proposed in [11] has been put to practice in this
application scenario. This model creates a decision graph with a node per each
appliance in the house being analyzed.

An individual power consumption signature for each appliance has been
extracted from the selected REDD dataset, from which the power consumption
of 20 different houses during one day has been artificially generated by taking
into account the different appliances. Experimental results reveals that the ACO
model can correctly disaggregate 18 out of 20 power consumptions.

Future work will be devoted to (1) the utilization of real power consump-
tion during a longer time; and (2) the usage of Big Data functionalities (e.g.
SPARK) to implement distributed, computationally efficient versions of the ACO
algorithm aimed at accommodating the disaggregation of concurrently arriving
meter data. Also will be of interest to assess the influence of measurement noise
on the performance of the ACO algorithm and whether the Oblivion Rate meta-
heuristic is needed.
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