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Abstract. This paper proposes a non-linear ordinal logistic regression
method based on the combination of a linear regression model and an
evolutionary neural network with hybrid basis functions, combining Sig-
moidal Unit and Radial Basis Functions neural networks. The process for
obtaining the coefficients is carried out in several steps. Firstly we use an
evolutionary algorithm to determine the structure of the hybrid neural
network model, in a second step we augment the initial feature space
(covariate space) adding the non-linear transformations of the input vari-
ables given by the hybrid hidden layer of the best individual of the evo-
lutionary algorithm. Finally, we apply an ordinal logistic regression in
the new feature space. This methodology is tested using 10 benchmark
problems from the UCI repository. The hybrid model outperforms both
the RBF and the SU pure models obtaining a good compromise between
them and better results in terms of accuracy and ordinal classification
error.

Keywords: Artificial neural networks · Hybrid basis functions ·
Proportional odds model · Evolutionary algorithms · Ordinal
classification · Ordinal regression

1 Introduction

Artificial Neural Networks (ANNs) are a very flexible modelling technique based
on biological neural systems, whose computing power is developed using an adap-
tive learning process. Properties and characteristics of ANNs have made them a
common tool when successfully solving high complexity problems from different
areas, e.g. medical diagnosis, financial data modelling, predictive microbiology,
remote sensing, analytical chemistry... For some of these problems, items have
to be classified into naturally ordered classes. They are traditionally handled by
conventional methods intended for classification of nominal classes, where the
order relation is ignored. This kind of supervised learning problems are referred
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to as ordinal regression, where an ordinal scale is used to label the examples.
Therefore, in ordinal classification problems, the goal is to learn how to classify
examples in the correct class. But one should take into account that the higher
distance between predicted and real labels is (with respect to the ordinal scale),
the more the misclassification error should be penalised.

In general, Logistic Regression (LR) is a simple and useful classification pro-
cedure, although it poses problems when applied to real-problems, where, fre-
quently, we cannot make the assumption of additive and purely linear effects of
the covariates. As suggested by [13], an obvious way to generalise the linear logis-
tic regression is to replace the linear predictors with structured non-parametric
models such as an additive model of basis function. In this paper, we extend the
ideas introduced in [12], where a combination of LR and Neural Networks mod-
els was used to solve nominal classification problems. We present an adaptation
of the corresponding algorithm to tackle ordinal classification combined with an
ordinal ANN model with hybrid basis functions.

As exposed in [19], the motivation for studying hybrid basis functions for
neural networks comes from many different branches. Biological neural systems
are built from a large diversity of neuron types. We can also think about com-
putational efficiency; neural networks with high diversity performs better [7].
That leads us to a third motivation, the reduction of complexity in the neural
network; adding diversity to a neural network allows the number of nodes (and
links) to be reduced [25].

One of the first models specifically designed for ordinal classification, and the
one our model is built on, is the Proportional Odds Model (POM) [20], which is
basically an ordinal logistic regression. This model is based on the assumption
of stochastic ordering in the input space, and the use of thresholds to split the
projected input space into different ordered classes. We propose a hybrid neural
network ordinal model using a combination of projection functions (sigmoidal
unit, SU) and kernel functions (radial basis function, RBF) in the hidden layer of
a feed-forward neural network [11]. An evolutionary algorithm is adapted to train
this model and applied for learning the model architecture, link weights and node
typology. In order to obtain further conclusions, the hybrid basis neural network
proposed is compared to its corresponding pure models: SU and RBF neural
networks. A mixture of different kinds of basis functions [11] is an interesting
alternative, which could be able to take advantage from the benefits of each one.
Our proposal follows the idea of augmenting the vector of inputs with non-linear
covariates obtained by the neural network hybrid hidden layer, and then, use
the POM in this new space of derived input features.

The estimation of the coefficients is carried out in several steps. In a first step,
an evolutionary algorithm [27] (EA) is applied to design the structure and train
the weights of a hybrid SURBF neural network [5,15] (SURBFNN). Evolutionary
computation has been widely used in the late years to evolve NN architectures
and weights. There have been many applications for parametric learning [22] and
for both parametric and structural learning [1,17,26]. This evolutionary process
determines the number of neurons in the model and the corresponding variables,
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which will be the new covariates in the non-linear LR model. The best model in
the last generation is used for that purpose. In a second step, we augment the
input space adding the SURBF non-linear covariates to the linear ones. That led
us to add a third step, where we perform a local optimization algorithm using
the new input covariates, with a maximum likelihood method for ordinal LR,
based on the structure of the POM.

The rest of the paper is organized as follows. Section 2 introduces the hybrid
neural networks. In Sect. 3, the neural network model for ordinal regression is
explained. Section 4 presents the algorithm developed in order to obtain the coef-
ficients for the hybrid model. Section 5 includes the experiments: experimental
design, information about the datasets and results of the experiments. Finally,
in Sect. 6, we present the conclusions of the paper.

2 Hybrid Artificial Neural Networks

Different types of neural networks are being used today for classification pur-
poses, including neural networks based on a sigmoidal basis (SU), radial basis
function (RBF) [15] and a class of multiplicative basis functions, called the prod-
uct unit (PU) [18,23]. The combination of different basis functions in the hidden
layer of a neural network has been proposed as an alternative to traditional
neural networks [16]. We use RBF neurons and SU neurons according to Cohen
and Intrator insights [7], based on the duality and complementary properties
of projection-based functions (SU and PU) and kernel typology (RBF). These
models have also been theoretically justified by Donoho [8], who demonstrated
that any continuous function can be decomposed into two mutually exclusive
functions, such as radial (RBF) and crest ones (SU and PU). In this way, RBF
neurons contribute to a local recognition model [4], while SU neurons contribute
to a global recognition one [18]. Their combination results in a high degree of
diversity because the submodels differ from one another.

3 Proposed Neural Network Model

The POM model [20], as the majority of existing ordinal regression models, can
be represented in the following general form:

C(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1, if f(x, θ) ≤ β1
0

C2, if β1
0 < f(x, θ) ≤ β2

0

· · ·
CJ , if f(x, θ) > βJ−1

0 ,

(1)

where β1
0 < β2

0 < · · · < βJ−1
0 (this will be the most important constraint in

order to adapt the nominal classification model to ordinal classification), J is
the number of classes, x is the input pattern to be classified, f(x, θ) is a ranking
function and θ is the vector of parameters of the model. Indeed, the analysis of
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Eq. (1) uncovers the general idea presented in [20]: patterns, x, are projected to
a real line by using the ranking function, f(x, θ), and the biases or thresholds,
βj
0, are separating the ordered classes.

We are using an adaptation of the POM to artificial neural networks. This
adaptation is based on two elements: the first one is a second hidden linear layer
with only one node whose inputs are the non-linear transformations of the first
hidden layer. The task of this node is to project the values into a line, to make
them have an order. After this one node linear layer, an output layer is included
with one bias for each class, whose objective is to set the optimum thresholds to
classify the patterns in the class they belong to.

The structure of our model is presented in Fig. 1 which has two main parts.
The lower one shows the SURBFNN model, where x = (x1, ... , xk), is the vector
of input variables and k is the number of variables in the database. ω = (ω1,10,
... , ω1,m1k, ω2,10, ... , ω2,m2k) is the matrix of weights of the connections from
the input nodes to the hidden layer SU nodes (ω1,10, ... , ω1,m1k) and to the
RBF ones (ω2,10, ... , ω2,m2k) and B are the nodes in the hybrid hidden layer,
m1 is the number of nodes of the first type and m2 is the number of nodes of
the second type, SU and RBF respectively in our case, and “1” is the bias of the
layer, which takes part in the calculations.

The upper part of the figure shows a single node in the second hidden layer of
the model, which is the one that performs the linear transformation of the POM
model. Its result, f(x,θ), is connected, together with a second bias, to the output
layer, where J is the number of classes, and β0

0 , ... , βJ−1
0 are the thresholds for

the different classes. These J−1 thresholds are able to separate the J classes, but
they have to fulfil the order constraint shown in the figure. Finally, the output
layer obtains the outputs of the model, fj(x,θ, βj

0), for j ∈ {1, . . . , J − 1}. These
outputs are transformed using the function of the POM model, which transforms
them into a probability (gj(x,θ, βj

0)). This is the probability that each pattern
has to belong to the different classes, and the class with the greatest probability
is the one selected by the NN to be the class of the pattern.

4 Estimation of the Coefficients

The methodology proposed is based on the combination of an EA and an ordinal
maximum likelihood optimization method. Figure 2 represents the different steps
of the algorithm and the models obtained for the experiments. The different steps
of the algorithm are now explained:

Step 1: We apply and EA to find the basis functions (SUs and RBFs):

B(x,W) = {B1,1(x,wm1), . . . , B1,m1(x,w2), . . . , B2,1(x,w2), . . . , B2,m2(x,wm2)}

corresponding to the non-linear part of the hybrid logistic regression model pre-
sented in this paper. The NN model for the EA is presented in Fig. 1. The EA
begins with a random initial population, and each iteration the population is
updated using a population-update algorithm [9]. The population is subject to
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Fig. 1. Neural Network model for ordinal classification

operations of mutation and replication with ordinal constraints. Crossover is not
used because of its disadvantages in evolving NNs [1].

Step 2: We perform a transformation of the input space, including the non-linear
transformations of the inputs obtained by the EA in Step 1:

H : Rk → R
k+m

(x1, x2, . . . , xk) → (x1, x2, xk, . . . , z1, z2, . . . , zm),

where z1 = B1(x,w1), z2 = B2(x,w2), . . . , zm = Bm(x,wm).

Step 3: We apply an ordinal maximum likelihood optimization method in the
new input space obtained in step 2. The optimization of the maximum likelihood
is performed using a gradient descent algorithm called iRProp+ [14], which opti-
mises the non-linear ordinal logistic regression for a defined number of epochs.
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SURBFOrdLR

Fig. 2. Steps in the proposed methodology. The different models associated with this
methodology are presented in a double squared box

5 Experiments

In order to analyse the performance of the proposed models, ten datasets have
been tested, their characteristics being shown in Table 1. The collection of
datasets is taken from the UCI [2] and the mldata.org [21] repositories. The
experimental design was conducted using 10 random holdout procedures.

Three different neural networks have been compared: RBFOrdLR is the LR
combined with the hidden nodes of an evolutionary RBFNN, SUOrdLR is the
same model with SU functions on its hidden layer, finally SURBFOrdLR is the
LR combined with both SU and RBF from the hybrid hidden layer of an evolu-
tionary neural network. We also compare the results against the original POM
model, SVOREX [6] and SVR [24], which is an ordinal regression transformed
into an standard regression, changing the ordinal labels (C1, C2, . . .), for numbers
(0, 1/(Q − 1), 2/(Q − 1), . . . , Q).

All the parameters of the algorithm are common to these ten problems. The
main parameters of the algorithm are: number of generations: 100; population
size: 250; mutation percentage: 10%; minimum number of hidden nodes: 4; max-
imum number of hidden nodes: 14.

In order to set up the minimum number of hidden neurons, a preliminary
experiment was done with one partition of each dataset. A 5-fold cross-validation
(using only the training split) was done and repeated with the following mini-
mum number of hidden nodes, {1, 2, 4, ..., 20}. We concluded that the optimum

https://www.mldata.org
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minimum number of hidden nodes was 4 and we added 10 nodes for the maxi-
mum, in order to give the EA some freedom to optimise the NN.

The idea of having a small population size and a small number of generations
is to give less importance to the evolutionary algorithm because its computa-
tional time is much higher than the optimisation of the non-linear ordinal logistic
regression. After finishing the EA, we took the SURBF hidden layer from the
best model in the last generation to augment the input space and applied a
gradient descent algorithm with 1000 epochs to optimise the non-linear ordinal
logistic regression model.

Table 1. Characteristics of the ten datasets used for the experiments: number of
instances (Size), inputs (#In.), classes (#Out.) and patterns per-class (#PPC)

Dataset Size #In. #Out. #PPC

Bondrate 57 37 5 (6,33,12,5,1)

Balance 625 4 3 (288,49,288)

Contact-lenses 24 6 3 (15,5,4)

Car 1728 21 4 (1210,384,69,65)

ESL 488 4 9 (2,12,38,100,116,135,62,19,4)

LEV 1000 4 5 (93,280,403,197,27)

Newthyroid 215 5 3 (30,150,35)

Pasture 36 25 3 (12,12,12)

Squash-stored 52 51 3 (24,24,4)

SWD 1000 10 4 (32,352,399,217)

The following two measures have been used for comparing the models:

– CCR: The Correct Classification Rate (CCR) is the rate of correctly classified
patterns: CCR = 1

n

∑N
i=1Jy∗

i = yiK, where yi is the true label, y∗
i is the

predicted label and J·K is a Boolean test which is 1 if the inner condition is
true and 0 otherwise.

– MAE: The Mean Absolute Error (MAE) is the average deviation (number
of categories) in absolute value of the predicted class from the true class [3]:
MAE = 1

n

∑N
i=1 e(xi), where e(xi) = |O(yi)−O(y∗

i )| is the distance between
the true and the predicted ranks, O(Cj) = j. This is a way of evaluating the
ordering performance of the classifier.

Table 2 shows the mean test value and standard deviation of the correct
classified rate (CCR) and the mean absolute error (MAE) over the 10 models
obtained.

To determine the statistical significance of the rank differences observed for
each method in the different datasets, we have carried out a non-parametric
Friedman test [10] with the ranking of CCR and MAE of the best models
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Table 2. Generalization results obtained for benchmark datasets

CCR(%) MAE CCR(%) MAE

Func Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Bondrate Balance

SURBFOrdLR 56.66 ± 5.94 0.5467 ± 0.0883 96.43 ± 1.87 0.0388 ± 0.0225

RBFOrdLR 54.00 ± 5.97 0.5667 ± 0.0864 95.09 ± 1.87 0.0535 ± 0.0217

SUOrdLR 52.66 ± 5.08 0.5600 ± 0.0922 96.17 ± 1.57 0.0414 ± 0.0314

POM 34.44 ± 1.94 0.9467 ± 0.6868 90.55 ± 1.85 0.1067 ± 0.0208

SVOREX 54.66 ± 8.04 0.6222 ± 0.1181 99.78 ± 8.19 0.0021 ± 0.0081

SVR 54.22 ± 9.20 0.5933 ± 0.1424 83.52 ± 1.47 0.1679 ± 0.0188

Contact-lenses Car

SURBFOrdLR 65.00 ± 5.54 0.4800 ± 0.0883 93.12 ± 2.60 0.0721 ± 0.0307

RBFOrdLR 65.00 ± 5.97 0.4167 ± 0.0864 88.37 ± 2.72 0.1254 ± 0.0335

SUOrdLR 63.33 ± 5.08 0.4000 ± 0.0922 90.92 ± 1.72 0.0949 ± 0.0200

POM 61.66 ± 1.94 0.5333 ± 0.6868 15.74 ± 3.06 1.4505 ± 0.5482

SVOREX 64.44± 8.04 0.4833 ± 0.1181 98.78 ± 2.24 0.0125 ± 0.0132

SVR 68.33 ± 9.20 0.3778 ± 0.1424 97.30 ± 1.12 0.0270 ± 0.0110

ESL LEV

SURBFOrdLR 73.19 ± 2.39 0.2278 ± 0.0276 62.49 ± 2.16 0.4032 ± 0.0295

RBFOrdLR 72.21 ± 2.74 0.2893 ± 0.0304 64.40 ± 2.21 0.4260 ± 0.0309

SUOrdLR 71.55 ± 2.32 0.2975 ± 0.0344 60.92 ± 3.73 0.4204 ± 0.0428

POM 70.54 ± 3.36 0.3103 ± 0.0380 62.33 ± 2.79 0.4093 ± 0.0303

SVOREX 70.98 ± 2.37 0.3019 ± 0.0209 62.45 ± 2.37 0.4105 ± 0.0227

SVR 70.38 ± 3.40 0.3117 ± 0.0298 62.48 ± 2.69 0.4086 ± 0.0288

Newthyroid Pasture

SURBFOrdLR 96.60 ± 1.30 0.0314 ± 0.0130 71.11 ± 5.94 0.2889 ± 0.0883

RBFOrdLR 95.37 ± 1.57 0.0462 ± 0.1573 66.66 ± 5.97 0.3444 ± 0.0864

SUOrdLR 96.29 ± 2.76 0.0370 ± 0.0276 66.66 ± 5.08 0.3333 ± 0.0922

POM 96.22 ± 2.21 0.3277 ± 0.0221 49.62 ± 1.94 0.5818 ± 0.6868

SVOREX 96.48 ± 3.02 0.0351 ± 0.0462 65.18 ± 8.04 0.3333 ± 0.1181

SVR 95.55 ± 6.04 0.0322 ± 0.0604 66.29 ± 9.20 0.3222 ±
Squash-stored SWD

SURBFOrdLR 66.92 ± 5.94 0.3604 ± 0.0883 58.88 ± 1.40 0.4302 ± 0.0154

RBFOrdLR 66.15 ± 5.97 0.3584 ± 0.0864 58.36 ± 1.23 0.4348 ± 0.0145

SUOrdLR 65.38 ± 5.08 0.3615 ± 0.0922 57.20 ± 1.80 0.4528 ± 0.0167

POM 38.20 ± 1.94 0.8121 ± 0.6868 56.78 ± 2.95 0.4501 ± 0.0304

SVOREX 62.56 ± 8.04 0.3667 ± 0.1181 56.78 ± 2.66 0.4464 ± 0.0339

SVR 61.28 ± 9.20 0.3692 ± 0.1424 56.52 ± 2.06 0.4513 ± 0.0316

The best result is shown in bold and the second best in italics

as the test variables. For CCR, the test shows that the effect of the method
used for classification is statistically significant at a significance level of 10 %, as



Overcoming the linearity of Ordinal Logistic Regression 309

the confidence interval is C0(0, F0.10 = 1.97) and the F-distribution statistical
value is F ∗ = 6.78 /∈ C0. For MAE, the test concludes the same, obtaining
C0(0, F0.10 = 1.97) as confidence interval and F ∗ = 4.73 /∈ C0 as F-distribution
variable. Consequently, we reject the null-hypothesis stating that all algorithms
perform equally in mean ranking for both variables.

Based on this rejection, the Holm post-hoc test is used to compare all classi-
fiers to each other using both CCR and MAE. The results of the Holm test for
α = 0.10 can be seen in Table 3, using the corresponding p and α

′
Holm values.

From the results of this test, it can be concluded that SURBFOrdLR obtains a
significantly higher ranking of CCR and MAE when compared to the remaining
methods, which justifies the proposed method in this paper. As MAE is a metric
that needs to be minimised the best ranking is the higher one.

Table 3. Comparison of p-Value and α
′

for the Holm post-hoc non-parametric tests
in CCR and MAE with a α = 0.1 (SURBFOrdLR is the control method)

Algorithm Mean
CCR
Rank

p-ValueCCR α
′
CCR Mean

MAE
Rank

p-ValueMAE α
′
MAE

SURBFOrdLR 1.60 – – 5.20 – –

RBFOrdLR 3.25 0.04860 0.05000 3.80 0.01683 0.02500

SUOrdLR 3.45 0.02702 0.03333 3.30 0.02315 0.03333

POM 5.35 0.00001 0.02000 1.75 0.00004 0.02000

SVOREX 3.25 0.04860 0.10000 3.55 0.04860 0.10000

SVR 4.10 0.00281 0.02500 3.40 0.03144 0.05000

6 Conclusions

This work proposes to improve an ordinal linear logistic regression model and
transform it into a non-linear one. To this end, the linear model is extended
with non-linear covariates from the outputs of the hidden neurons of a hybrid
SURBFNN. These neural network models are trained using an evolutionary algo-
rithm that optimizes both its architecture and weights.

Moreover, the coefficients of the ordinal logistic regression model, consisting
of the initial covariates and the SURBF non-linear outputs, are estimated by a
gradient descent algorithm that tries to optimize the maximum likelihood.

Experiments show that this hybrid approach is promising and generally
improves accuracy and order quality, performing better than the correspond-
ing pure models. The model also obtains competitive results when compared to
state-of-the-art ordinal classification algorithms.
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N.: Evolutionary product unit based neural networks for regression. Neural Netw.
19(4), 477–486 (2006)

19. Maul, T.: Early experiments with neural diversity machines. Neurocomputing 113,
136–48 (2013)

20. McCullagh, P.: Regression models for ordinal data (with discussion). J. Roy. Stat.
Soc. 42(2), 109–142 (1980)

21. PASCAL: Pascal (pattern analysis, statistical modelling and computational learn-
ing) machine learning benchmarks repository (2011). http://mldata.org/

22. van Rooij, A.J.F., Jain, L.C., Johnson, R.P.: Neural Networks Training Using
Genetic Algorithms. Series in Machine Perception and Artificial Intelligence, vol.
26. World Scientific, Singapore (1996)

23. Schmitt, M.: On the complexity of computing and learning with multiplicative
neural networks. Neural Comput. 14, 241–301 (2001)

24. Smola, A., Scholkopf, B.: A tutorial on support vector regression. Stat. Comput.
14(3), 199–222 (2004)

25. Soltesz, I.: Diversity in the Neuronal Machine: Order and Variability in Interneu-
ronal Microcircuits. Oxford University Press, New York (2002)

26. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks.
IEEE Trans. Neural Netw. 8, 694–713 (1997)

27. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

http://mldata.org/

	Overcoming the Linearity of Ordinal Logistic Regression Adding Non-linear Covariates from Evolutionary Hybrid Neural Network Models
	1 Introduction
	2 Hybrid Artificial Neural Networks
	3 Proposed Neural Network Model
	4 Estimation of the Coefficients
	5 Experiments
	6 Conclusions
	References


