
A Time Efficient Approach for Distributed
Feature Selection Partitioning by Features

L. Morán-Fernández(B), V. Bolón-Canedo, and A. Alonso-Betanzos

Laboratory for Research and Development in Artificial Intelligence (LIDIA),
Computer Science Department, University of A Coruña, 15071 A Coruña, Spain

laura.moranf@udc.es

Abstract. With the advent of high dimensionality, feature selection has
become indispensable in real-world scenarios. However, most of the tradi-
tional methods only work in a centralized manner, which —ironically—
increase the running time requirements when they are applied to this
type of data. For this reason, we propose a distributed filter approach
for vertically partitioned data. The idea is to split the data by features
and apply a filter at each partition performing several rounds to obtain
a final subset of features. Different than existing procedures to com-
bine the partial outputs of the different partitions of data, we propose a
merging process according to the theoretical complexity of these feature
subsets instead of classification error. Experimental results tested in five
datasets show that the running time decreases considerably. Moreover,
regarding the classification accuracy, our approach was able to match,
and in some cases even improve, the standard algorithms applied to the
non-partitioned datasets.

1 Introduction

In the last few years, there has been an increase in the size of datasets in all fields
of application. The advent of this type of high dimensional datasets has posed a
big challenge for machine learning researchers, since it is difficult to deal with a
high number of input features due to the curse of dimensionality [14]. The scaling
up problem appears in any algorithm when the data size increases beyond the
capacity of the traditional data mining algorithms, damaging their classification
performance and efficiency. This problem can affect negatively in some other
aspects such as excessive storage requirements, increase of time complexity and,
finally, it affects generalization accuracy, introducing noise and overfitting. To
confront the problem of the high number of features it is natural —and per-
haps essential— to investigate the effects of the application of feature selection.
Feature selection methods have received an important amount of attention in
the classification literature, where three kinds of algorithms have generally been
studied: filter, wrapper and embedded methods. The main difference between the
first two is that a wrapper makes use of the algorithm that will be employed to
build the final classifier, while a filter method does not. The embedded meth-
ods generally use classification learning models, and then an optimal subset of
c© Springer International Publishing Switzerland 2015
J.M. Puerta et al. (Eds.): CAEPIA 2015, LNAI 9422, pp. 245–254, 2015.
DOI: 10.1007/978-3-319-24598-0 22



246 L. Morán-Fernández et al.

features is built by the classification algorithm. So, the interaction with the clas-
sifier required by wrapper and embedded methods comes with an important
computational burden.

The use of an adequate feature selection method can lead to an improvement
of the inductive learner, either in terms of learning speed, generalization capacity
or simplicity of the induced model. However, we will have to deal with a scala-
bility problem if we apply these techniques to large datasets. The advantages of
feature selection come at a certain price, as the search for a subset of relevant
features introduces an extra layer of complexity to the modeling task. This new
layer increases the memory and running time requirements, making these algo-
rithms very inefficient when applied to problems that involve very large datasets.
Ironically, standard feature selection becomes impracticable on large datasets,
which are the ones that would benefit most from its application.

Trying to overcome the drawbacks mentioned above, over the last years many
distributed methods have been developed instead of the traditional centralized
approaches. The first reason is that, with the advent of network technologies,
data is being increasingly available already distributed in multiple locations, and
it is not economic or legal to gather it in a single location. And, second, when
dealing with large amounts of data, most existing feature selection methods are
not expected to scale well, and their efficiency may significantly deteriorate or
even become inapplicable. Therefore, a possible solution might be to distribute
the data, run a feature selection method on each subset of data and then combine
the results. There are two main techniques for partitioning and distributing data:
by samples (horizontally), and by features (vertically). Most of the distributed
feature selection methods have been used to scale up datasets that are too large
for batch learning in terms of samples [2,6,7,18]. While not so common, there
are some other developments which distribute the data by features [16,17].

In our previous work [5], we presented a methodology for distributing the
data vertically which combined the partial feature subsets based on improve-
ments in the classification accuracy. Although the experiments showed that the
execution time was considerably shortened whereas the performance was main-
tained or even improved compared to the standard algorithms applied to the
non-partitioned datasets, the drawback of this methodology was that it was
dependent on the classifier. In order to overcome this issue, we proposed in [4] a
new framework for distributing the feature selection process by samples which
performed a merging procedure to update the final feature subset according to
the theoretical complexity of these features, by using data complexity measures
[13] instead of the classification error. In this way, we provided a framework for
distributed feature selection which not only was independent of the classifier,
but also reduced drastically the computational time needed by the algorithm,
thus paving the way for its application in high dimensional datasets.

To examine the research problem in detail, this paper will be focused on
the vertically distributed approach making use of data complexity measures.
The experimental results from five different datasets demonstrate than our new
proposal shows important savings in running times, as well as matching —and
in some cases even improving— the classification accuracy.



A Time Efficient Approach for Distributed Feature 247

2 Distributed Feature Selection

The methodology that we propose in this work consists in a distributed frame-
work for feature selection by partitioning the data vertically, i.e., by features.
Basically, the distributed algorithm adopts the following 3-step experimental
framework: (1) partition of the training datasets, (2) application of the distrib-
uted algorithm to the subsets of features in several “rounds” and (3) combination
of the results into a single subset of features. The repetition of the process in
several rounds ensures that we have gathered enough information for the com-
bination step to be useful, since each feature in the vector of votes can only
take values 0 or 1 for each round, so we would not have enough data to decide
which features form the final subset. The algorithm for the whole methodology
is detailed in Algorithm 1.

For each round, we start by dividing the data D without replacement —as
usually happens in real world when different features are collected on different
locations— by randomly assigning groups of t features to each partition. Then,
the chosen filter is applied to each partition separately and the features selected
to be removed receive a vote. At this point, a new round is performed leading to
a new partition of the dataset and another iteration of voting is accomplished
until reaching the predefined number of rounds. Finally, the features that have
received a number of votes above a certain threshold are removed. Notice that
the maximum number of votes is the number of rounds r.

In order to calculate the threshold of votes to employ, an automatic method
was used. In [9], the authors recommend that the selection of the number of
votes must take into account two different aspects: the training classification
error and the percentage of features retained. Both values must be minimized to
the extent possible, by minimizing the fitness criterion e[v]:

e[v] ← α × error + (1 − α) × featPercentage, (1)

where α is a parameter with value in the interval [0, 1]. It measures the
relative relevance of error and featPercentage values. Different values can be
used if the researcher is more interested in reducing the storage requirements or
the error. For this work, it was set to α = 0.75, giving more influence to the
classification error. At the end, the features with the number of votes above the
obtained threshold are removed from the final subset of features S. This subset
will be used in the training and test sets in order to obtain the final classification
accuracy.

The problem with this approach is that, by involving a classifier in the process
of selecting the optimal threshold, it makes our methodology dependent on the
classifier chosen. Moreover, in some cases the time necessary for this task was
higher than the time required by the feature selection process, even without
distributing the data, which introduced an important overhead in the running
time. Trying to overcome these issues, we propose to modify the function for
calculating the threshold of votes by making use of data complexity measures.
These measures are a recent proposal to represent characteristics of the data



248 L. Morán-Fernández et al.

which are considered difficult in classification tasks beyond estimates of error
rates [13]. The rationale for this decision is that we assume that good candidate
features would contribute to decrease the complexity and must be maintained.
Since our intention is to propose a framework that could be independent of
the classifier and applicable to both binary and multiclass datasets, among the
existing complexity measures, the Fisher discriminant ratio was chosen. Fisher’s
multiple discriminant ratio for C classes is defined as:

f =

∑c
i=1,j=1,i �=j pipj(μi − μj)2

∑c
i=1 piσ2

i

, (2)

where μi,σ2
i , and pi are the mean, variance, and proportion of the ith class,

respectively. In this work we will use the inverse of the Fisher ratio, 1/f , where a
small complexity value represents an easier problem. Therefore, the new formula
for calculating e[v] is defined as:

e[v] ← α × 1/f + (1 − α) × featPercentage (3)

Thus, the fundamental goals that we expect to achieve with the new formu-
lation of Eq. (1) are a reduction in time to calculate the threshold and, also, a
classifier-independent method.

3 Materials and Methods

In order to examine the effect of the proposed distributed framework for feature
selection by partitioning the data vertically, we use five benchmark datasets,
which are described in Table 1 depicting their main characteristics (number of
features, number of training and test samples and number of classes). In this
work the common partition 2/3 for training and 1/3 for testing was used.

Table 1. Summary of datasets’ main characteristics

Dataset Features Samples Classes Download

Training Test

Isolet 617 6238 1236 26 [3]

Madelon 500 1600 800 2 [3]

Mnist 717 40000 20000 2 [3]

Breast 24481 78 19 2 [1]

Lung 12600 136 68 5 [19]

It must be noted that the proposed framework explained above can be used
with any feature selection method, although the use of filters is recommended
since they are faster that other methods. In this work, five different filters were
involved, all of them are implemented in the Weka [10] environment:



A Time Efficient Approach for Distributed Feature 249

Algorithm 1. Pseudo-code for the proposed distributed methodology

Data: D(m×n+1) ← labeled training dataset with m samples and n input features

X ← set of features, X={x1, ..., xn}
s ← number of submatrices of D with m samples and t features
V ← vector of votes
r ← number of rounds (5 in this experimentation)
α ← 0.75

Result: S ← subset of features \S ⊂ X
//* Obtaining a vector of votes for discarding features *//

1. initialize the vector of votes V to 0, |V |=n
2. for each round do
3. Split D into s disjoint submatrices with m samples and t features
4. for each submatrix do
5. apply a feature selection algorithm
6. F ← features selected by the algorithm
7. E ← features eliminated by the algorithm \E ∪ F = X
8. increment one vote in vector V for each feature in E
9. end

10. end
//* Obtaining a threshold of votes, Th, to remove a feature *//

11. minVote ← minimum threshold considered (1)
12. maxVote ← maximum threshold considered (number of rounds, r)
13. for v ← minVote to maxVote with increment 1 do
14. Fth ← subset of selected features (number of votes < v)
15. 1/f ← inverse of Fisher ratio computed on training dataset D using only

features in Fth

16. featPercentage ← percentage of features retained
(

|Fth|
|X| × 100

)

17. e[v] ← α × 1/f + (1-α) × featPercentage
18. end
19. Th ← min(e), Th is the value which minimizes the function e
20. S ← subset of features after removing from X all features with a number of votes

≥ Th

– Correlation-based Feature Selection (CFS) is a simple multivariate filter
algorithm which measures the goodness of feature subsets according to the
usefulness of individual features for predicting the class label along with the
level of intercorrelation among them [11].

– The Consistency-based Filter (CONS) evaluates the worth of a subset
of features by the level of consistency in the class values when the training
samples are projected onto the subset of features [8].

– The INTERACT algorithm [20] is based on symmetrical uncertainty (SU).
It consists of two major parts. In the first part, the features are ranked in



250 L. Morán-Fernández et al.

descending order based on their SU values. In the second part, features are
evaluated one by one starting from the end of the ranked feature list. The
authors stated that this method can effectively reduce the number of fea-
tures, and maintain or improve predictive accuracy in dealing with interacting
features.

– Information Gain [12] is one of the most common attribute evaluation meth-
ods. The univariate filter provides an ordered ranking of all the features which
requires a threshold.

– ReliefF [15] is an extension of the original Relief algorithm that adds the
ability of dealing with multiclass problems and is also more robust and capable
of dealing with incomplete and noisy data. This method may be applied in all
situations, has low bias, includes interaction among features and may capture
local dependencies which other methods miss.

While the first three methods return a feature subset, the other two are
ranker methods, so we need to establish the number of selected features. In this
paper we have opted for retaining the p top features, being p the number of
features selected by CFS, since it is a widely-used method and, among the three
subset methods chosen, it is the one which usually selects the largest number of
features. To test the adequacy of our proposal, four different classifiers, belonging
to different families, were selected: C4.5, naive Bayes, kNN and SVM. Notice that
two of them are linear (naive Bayes and SVM using a linear kernel) whilst the
other two are non-linear (C4.5 and kNN).

4 Experiments and Analysis

This section presents the results over the datasets described in Table 1, com-
paring three different approaches: the centralized standard approach (C), the
distributed approach which merges the partial subsets of features by taking
classification error into account (“D-Clas”) and, last, the distributed approach
proposed in this work, which combines the partial outputs using data complex-
ity measures (“D-Comp”). We will discuss the experimental results in terms of
number of selected features, classification accuracy and runtime. In the case of
the first three datasets (Isolet, Madelon and Mnist), we have opted for divid-
ing the datasets in 5 packets, so that each packet will contain 20 % of features,
without replacement. For the microarray datasets (Breast and Lung), the data
is split by assigning groups of t features to each subset, where the number of
features t in each subset is half the number of the samples, to avoid overfitting.
In this manner, the considered datasets will have enough features to lead to a
correct learning.

Figure 1(a) displays the average number of features selected by the five filters
for the three different approaches. The full number of features for each dataset is
shown in parenthesis. As we can see, the number of features selected by distrib-
uted methods is larger than those selected by the centralized approaches. This is
caused by the fact that, with the vertical partition, the features are distributed



A Time Efficient Approach for Distributed Feature 251

(a) Number of features (b) Classification accuracy

Fig. 1. Number of features and classification accuracy for the different approaches

across the packets and it is more difficult to detect redundancy between features
if they are in different partitions.

In terms of classification accuracy, Table 2 shows the best result for each
dataset and classifier in bold face, whilst the best result for each dataset and
approach is presented in Fig. 1(b). As we can see, the best results were obtained
by our distributed approach (“D-Comp”) for Isolet and Mnist, whilst for Mad
elon, Breast and Lung it matches the best classification accuracy achieved by the
other approaches. However, the important conclusion is that by distributing the
data there is not a significant degradation in classification accuracy. It is worth
mentioning the case of Mnist dataset, in which the test classification accuracy
improves from 0.89 (centralized approach combined with kNN classifier and IG
filter) to 0.97 (“D-Comp” approach with kNN classifier for both INT and CONS
filters). This is probably due to the higher number of features selected by the
filters in the “D-Comp” approach, which turn out to be more appropriate (see
Fig. 1(a)).

Finally, Table 3 shows the runtime required by the feature selection methods
for both centralized and distributed approaches. Notice that in the two distrib-
uted approaches (“D-Clas” and “D-Comp”), the feature selection stage at each
packet of data is the same, so the time required will be referred as “D” for both
of them. Also, in the distributed approach, considering that all the subsets can
be processed at the same time, the time displayed in the table is the maximum
of the times required by the filter in each subset generated in the partitioning
stage. In these experiments, all the subsets were processed in the same machine,
but the proposed algorithm could be executed in multiple processors. The lowest
time for each dataset is highlighted in bold face.

As expected, the time required by the distributed methods is drastically
reduced for all datasets and filters if compared with that of the centralized
approach, in some cases from 9434 s to 0.29 (Lung dataset with CFS filter).
Notice that, the larger the dataset, the larger the reduction in time.

Moreover, for the distributed approaches, it is necessary to take into account
the time required to calculate the threshold to combine the partial outputs of
features. As was mentioned in Sect. 2, the distributed approach “D-Clas” makes



252 L. Morán-Fernández et al.

Table 2. Test classification accuracy

Isolet Madelon Mnist Breast Lung

C
4.
5

CFS
C 0.81 0.75 0.85 0.68 0.78
D-Clas 0.81 0.75 0.86 0.59 0.81
D-Comp 0.83 0.80 0.89 0.74 0.84

INT
C 0.77 0.78 0.85 0.79 0.78
D-Clas 0.78 0.78 0.87 0.64 0.86
D-Comp 0.80 0.79 0.91 0.74 0.75

Cons
C 0.54 0.78 0.85 0.68 0.84
D-Clas 0.75 0.77 0.85 0.65 0.81
D-Comp 0.76 0.81 0.92 0.79 0.76

IG
C 0.79 0.80 0.87 0.53 0.87
D-Clas 0.80 0.78 0.89 0.75 0.82
D-Comp 0.82 0.72 0.88 0.74 0.82

ReliefF
C 0.79 0.83 0.86 0.74 0.88
D-Clas 0.80 0.81 0.89 0.64 0.88
D-Comp 0.81 0.76 0.90 0.54 0.82

N
B

CFS
C 0.72 0.70 0.72 0.37 0.93
D-Clas 0.74 0.70 0.73 0.49 0.95
D-Comp 0.74 0.72 0.74 0.37 0.96

INT
C 0.67 0.70 0.70 0.37 0.94
D-Clas 0.65 0.69 0.76 0.52 0.94
D-Comp 0.74 0.70 0.75 0.37 0.94

Cons
C 0.40 0.70 0.72 0.37 0.85
D-Clas 0.60 0.70 0.74 0.46 0.88
D-Comp 0.64 0.70 0.73 0.37 0.91

IG
C 0.70 0.70 0.69 0.37 0.88
D-Clas 0.71 0.70 0.71 0.39 0.88
D-Comp 0.70 0.70 0.73 0.37 0.91

ReliefF
C 0.65 0.70 0.70 0.84 0.88
D-Clas 0.70 0.70 0.70 0.82 0.92
D-Comp 0.69 0.67 0.60 0.84 0.91

Isolet Madelon Mnist Breast Lung

kN
N

CFS
C 0.56 0.69 0.86 0.63 0.96
D-Clas 0.58 0.72 0.91 0.57 0.96
D-Comp 0.57 0.76 0.94 0.79 0.96

INT
C 0.47 0.73 0.85 0.53 0.94
D-Clas 0.53 0.73 0.85 0.57 0.96
D-Comp 0.45 0.78 0.97 0.86 0.96

Cons
C 0.40 0.70 0.72 0.47 0.84
D-Clas 0.57 0.74 0.96 0.59 0.93
D-Comp 0.41 0.89 0.97 0.74 0.94

IG
C 0.54 0.78 0.89 0.68 0.96
D-Clas 0.56 0.79 0.94 0.65 0.95
D-Comp 0.53 0.66 0.94 0.79 0.97

ReliefF
C 0.57 0.89 0.89 0.74 0.96
D-Clas 0.59 0.89 0.96 0.74 0.94
D-Comp 0.58 0.74 0.95 0.74 0.94

SV
M

CFS
C 0.82 0.65 0.80 0.68 0.94
D-Clas 0.84 0.65 0.82 0.67 0.96
D-Comp 0.85 0.66 0.83 0.79 0.99

INT
C 0.73 0.65 0.78 0.74 0.94
D-Clas 0.80 0.65 0.78 0.67 0.94
D-Comp 0.79 0.66 0.85 0.74 0.94

Cons
C 0.30 0.65 0.74 0.32 0.79
D-Clas 0.76 0.66 0.80 0.61 0.92
D-Comp 0.69 0.66 0.86 0.79 0.97

IG
C 0.81 0.66 0.79 0.79 0.96
D-Clas 0.83 0.65 0.80 0.73 0.96
D-Comp 0.83 0.68 0.80 0.79 0.97

ReliefF
C 0.82 0.66 0.75 0.63 0.96
D-Clas 0.84 0.66 0.77 0.70 0.97
D-Comp 0.85 0.68 0.80 0.68 0.97

Table 3. Runtime (seconds) for the feature selection methods tested

Isolet Madelon Mnist Breast Lung

CFS C 250 36 1787 7969 9434

D 40 18 287 0.47 0.29

INT C 196 40 3145 179 135

D 46 16 225 0.68 1.12

Cons C 368 52 6163 14.35 8.11

D 58 16 225 0.33 0.45

IG C 171 41 1451 1.88 1.99

D 42 15 273 0.61 0.24

ReliefF C 533 62 30413 3.95 5.05

D 190 26 5522 0.70 0.26

use of a classifier to establish this threshold. Therefore, the time required by this
method depends highly on the classifier, whilst with the distributed approach
“D-Comp” the time is independent of the classifier. Table 4 depicts the average
runtime on all datasets for each filter and distributed approach, as well as the
speed up values, which indicate the performance improvement of the approach



A Time Efficient Approach for Distributed Feature 253

Table 4. Runtime (seconds) for obtaining the threshold of votes

Method D-Clas D-Comp SpeedUp

C4.5 NB kNN SVM Average

CFS 149.67 85.2 171.3 641.41 261.90 2.33 112.41

INT 92.33 67.66 153.47 607.52 230.25 1.51 152.48

Cons 82.25 59.10 96.77 625.45 215.89 0.97 222.57

IG 101.10 76.23 132.54 576.87 222.44 2.19 101.59

ReliefF 114.20 101.45 149.76 989.75 338.79 2.27 149.25

“D-Comp” with respect to the average time of the four approaches “D-Clas”.
It is easy to notice that the time required to find the threshold in the proposed
distributed approach “D-Comp” is notable lower than the approach “D-Clas”,
specially with the ReliefF filter, in which in some cases the time was reduced
from 989.75 s to only 2.27.

5 Final Remarks

This paper presents a new methodology for distributed feature selection over
vertically partitioned data. Typical procedures make use of classification algo-
rithms to combine the partial outputs obtained from each partition. However,
these approaches present two important drawbacks: (1) the method is depen-
dent on the classifier and (2) it is necessary to add an extra running time in
the process of merging the partial results from the different partitions. Trying to
overcome these issues, we have designed a new approach based on a complexity
data measure which is independent of the classifier and does not consume so
much time in the merging stage.

In light of the results obtained using five datasets, we can conclude that the
distributed approach proposed in this work (“D-Comp”) performs successfully,
since the classification accuracy matches and, in some cases, is even better than
the use of the original feature selection algorithms over the whole datasets. In
terms of execution time, we are able to reduce it significantly with respect to the
distributed approach “D-Clas”, being this fact (together with the independence
from any classifier) the most important advantage of our method.

As future research, we plan to test the scalability properties of the proposed
method by increasing the size of the datasets and modifying the number of
packets. Moreover, another interesting line of research might be to deal with
disjoint partitions, as well as the use of other complexity measures.

Acknowledgements. This research has been economically supported in part by the
Ministerio de Economı́a y Competitividad of the Spanish Government through the
research project TIN 2012-37954, partially funded by FEDER funds of the European
Union; and by the Conselleŕıa de Industria of the Xunta de Galicia through the research
project GRC2014/035. V. Bolón-Canedo acknowledges support of the Xunta de Galicia
under postdoctoral Grant code ED481B 2014/164-0.



254 L. Morán-Fernández et al.

References

1. Technology agency for sciency and research. Kent ridge bio-medical dataset repos-
itory. http://datam.i2r.a-star.edu.sg/datasets/krbd/

2. Ananthanarayana, V.S., Subramanian, D.K., Murty, M.N.: Scalable, distributed
and dynamic mining of association rules. In: Prasanna, V.K., Vajapeyam, S.,
Valero, M. (eds.) HiPC 2000. LNCS, vol. 1970, p. 559. Springer, Heidelberg (2000)

3. Bache, K., Linchman, M.: UCI machine learning repository. University of
California, Irvine, School of Information and Computer Sciences (2013). http://
archive.ics.uci.edu/ml/. Accessed January 2015

4. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A distributed fea-
ture selection approach based on a complexity measure. In: International Work
Conference on Artificial Neural Networks (2015, in press)

5. Bolón-Canedo, V., Sánchez-Maroño, N., Cerviño-Rabuñal, J.: Toward parallel fea-
ture selection from vertically partitioned data. In: European Symposium on Arti-
ficial Neural Networks, Computacional Intelligence and Machine Learning (2014)

6. Chan, P.K., Stolfo, S.J.: Toward parallel and distributed learning by meta-learning.
In: AAAI workshop in Knowledge Discovery in Databases, pp. 227–240 (1993)

7. Das, K., Bhaduri, K., Kargupta, H.: A local asynchronous distributed privacy
preserving feature selection algorithm for large peer-to-peer networks. Knowl. Inf.
Syst. 24(3), 341–367 (2010)

8. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intel.
151(1), 155–176 (2003)

9. de Haro Garćıa, A.: Scaling data mining algorithms. Application to instance and
feature selection. Ph.D. thesis, Universidad de Granada (2011)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

11. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis,
The University of Waikato (1999)

12. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning.
Comput. Sci. 98, 181–191 (1998)

13. Ho, T.K., Basu, M.: Data Complexity in Pattern Recognition. Springer, London
(2006)

14. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample
performance. IEEE Trans. Patter Anal. Mach. Intel. 19(2), 153–158 (1997)

15. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182.
Springer, Heidelberg (1994)

16. McConnell, S., Skillicorn, D.B.: Building predictors from vertically partitioned
data. In: Procededings of the 2004 Conference of the Centre for Advanced Studies
on Collaborative Research, pp. 150–162. IBM Press (2004)

17. Skillicorn, D.B., McConell, S.M.: Distributed prediction from vertically partitioned
data. J. Parallel Distrib. Comput. 68(1), 16–36 (2008)

18. Tsoumakas, G., Vlahavas, I.: Distributed data mining of large classifier ensembles.
In: Proceedings Companion Volume of the Second Hellenic Conference on Artificial
Intelligence, pp. 249–256 (2002)

19. Vanderbilt University. Gene expression model selector. http://www.gems-system.
org/

20. Zhao, Z., Liu, H.: Searching for interacting features. IJCAI 7, 1156–1161 (2007)

http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.gems-system.org/
http://www.gems-system.org/

	A Time Efficient Approach for Distributed Feature Selection Partitioning by Features
	1 Introduction
	2 Distributed Feature Selection
	3 Materials and Methods
	4 Experiments and Analysis
	5 Final Remarks
	References


