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Abstract. The primary characteristic of interval temporal logic is that
intervals, rather than points, are taken as the primitive ontological enti-
ties. Their computational behaviour is generally bad, and several
restrictions have been considered in order to define decidable and com-
putationally affordable temporal logics based on intervals. In this paper
we take inspiration from Golumbic and Shamir’s coarser interval alge-
bras, which generalize the classical Allen’s Interval Algebra, in order to
define two previously unknown variants of Halpern and Shoham’s logic
(HS). We prove that one of them (denoted here by HS7) is still generally
undecidable, while the other one (HS3) becomes, perhaps surprisingly,
PSPACE-complete, at least in the finite case.

1 Introduction

Time intervals, rather than time points, are regarded in interval temporal logics
as the primitive ontological entities, and the truth of formulae is defined accord-
ingly. These logics can be applied in many fields, such as hardware and real-time
system verification, language processing, constraint satisfaction and planning,
among others [1,12,20,21]. Moreover, interval temporal logics have been con-
sidered as the basis for temporal extensions of Description Logic [2-4,22]. The
most influential interval temporal logic is probably Halpern and Shoham’s Modal
Logic of Allen’s Relations (HS) [15], and it is well-known that the satisfiability
problem for HS, interpreted over most interesting classes of linearly ordered sets
is (highly) undecidable.

The different strategies that have been used to obtain fragments of HS that
perform better can be summarized as follows: (i) limiting the set of modalities
that are included in the language; (i) interpreting the language over semanti-
cally incomplete linear structures; (i) limiting the nesting of temporal modal-
ities; (iv) restricting the applicability of boolean operators and/or relaxing the
semantics of the modal operators. The few fragments or variants of HS that have
© Springer International Publishing Switzerland 2015

J.M. Puerta et al. (Eds.): CAEPIA 2015, LNAI 9422, pp. 105-115, 2015.
DOI: 10.1007/978-3-319-24598-0_10



106 E. Munoz-Velasco et al.

been proven to be decidable show complexities that range from NP-complete to
NExpPTIME-complete, EXPSPACE-complete, and even non-primitive recursive;
undecidability is still the rule even when sub-propositional fragments are con-
sidered [7-11,18].

Allen’s Interval Algebra (IA) [1] can be seen as the backbone of HS: modal
operators in the HS repository can be mapped one-by-one over Allen’s interval
relations. In [14] Golumbic and Shamir propose to reduce the set of binary rela-
tions between intervals by defining coarser relations that correspond to logical
disjunctions of Allen’s relations. In this way, two natural coarser algebras emerge,
namely A7 and TA3. The former encompasses seven relations, by preserving the
original relations before,after, and equal to, by joining meets and overlaps into a
single relation (and similarly for their inverse ones), and by joining during, starts,
and finishes into a single relation (and, again, similarly for their inverse ones).
The latter encompasses only three relations: the original before and after, plus
a relation (intersects) that can be viewed as the disjunction of all the remaining
ones (and therefore is the inverse of itself and includes equality). In this work
we propose two fragments of HS based on the same idea: HS7 retains from HS
the modal operators that correspond to before and after, and includes new ones
corresponding each to one of the relations of IA7, except equality; similarly, HS3
features three modal operators, one for each of IA3’s binary relation. These log-
ics can be naturally applied to the same fields as full HS; moreover they reflect
the idea underlying the standard SQL:2011 [16], where interval relations are not
necessarily Allen’s ones (for example, later is interpreted as the disjunction of
Allen’s meets and later). We prove here that while (not surprisingly) HS7 is
still undecidable when interpreted over every interesting class of linearly ordered
sets, HS3 becomes PSPACE-complete at least in the finite case. Given the gener-
ally bad computational behaviour of interval logics (e.g., in the universe of the
syntactical fragments of HS, the decidable ones account for around 10 % of the
expressively different ones - see, for example, [7]) this result strikes out as an
interesting exception. While the PSPACE-hardness of HS3 holds in all consid-
ered cases, its decidability in the infinite cases is an open problem, although our
exploratory analysis suggests that PSPACE-membership of HS3 in the finite case
should be transferrable to the infinite cases as well.

2 Preliminaries

Let D = (D, <) be a strict (i.e., irreflexive) linearly ordered set. A strict interval
(resp., non-strict interval) over D is an ordered pair [z,y], where z,y € D and
x <y (resp., z < y). In the recent literature, the strict semantics, where only
strict intervals are considered, is usually adopted. This conforms to the definition
of interval adopted by Allen in [1], but differs from the one given by Halpern and
Shoham in [15]. If we exclude the identity relation, there are 12 different rela-
tions between two intervals in a linear order, often called Allen’s relations [1]:
the six relations R4 (adjacent to), Ry (later than), Rp (begins), R (ends),
Rp (during), and Ro (overlaps), depicted in Fig. 1, and their inverses, that is,
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HS modalities Allen’s relations Graphical representation
(4) (@, YRl y] & y = ! —
(L) [z,y|RL[z', ¢y ] &y <’ ) ]
(B) o,y Rplr Y] & x=a",y <y H :

(E) [z,y|Rele’ Y] S y=y z <a ‘Hy
(D) [z,y|Rp[z, ¥ &z <2’y <y ]
(0) [z,9]Rola’,y | &z <2’ <y <y —
HS3/HS7 Semantics
(AO) (A0) = (4) v (0)
(DBE) (DBE) = (D) Vv (B) V (E)
(1) (I) = (A) v (A) v (O) v (O) V (DBE) v (DBE)

Fig. 1. Allen’s interval relations, the corresponding HS modalities, and the semantic
definitions HS3/HS7 modalities.

R+ = (Rx)™ ', foreach X € {A, L, B, E,D,O}. We interpret interval structures
as Kripke structures, with Allen’s relations playing the role of the accessibil-
ity relations. Thus, we associate a universal modality [X] and an existential
modality (X) with each Allen relation Rx. For each X € {A,L,B,E,D,O},
the transposes of the modalities [X] and (X) are the modalities [X] and (X),
corresponding to the inverse relation R+ of Rx. Halpern and Shoham’s logic
HS [15] is a multi-modal logic with formulae built from a finite, non-empty set
AP of atomic propositions (also referred to as proposition letters), the classical
propositional connectives, and a pair of modalities for each Allen relation:

pu=L]pl-wleVelere ] (X)e]| (X)e,

where p € AP and X € {A, L, B, E, D,O}. The other propositional connectives
and constants (e.g., —, and T), as well as the dual modalities (e.g., [A]p =
—(A)—¢), can be derived in the standard way. Well-formed HS3-formulae can
be obtained by the above grammar when X € {L, I}, while HS;-formulae are
defined under the restriction that X € {L, AO, DBE}.

The semantics of (HS and) both HS3 and HS7 is given in terms of interval
models M = (I(D), V), where D is a linear order, I(D) is the set of all (strict)
intervals over D, and V is a valuation function V : AP — 2'P) which assigns to
each atomic proposition p € AP the set of intervals V(p) on which p holds. The
truth of a formula on a given interval [z, y] in an interval model M is defined by
structural induction on formulae; propositional letters and Boolean connectives
are treated in the standard way, while the semantic rules for the modal operators
can be immediately deduced from Fig. 1. Formulae of HS, and therefore of HS3
and HS7, can be interpreted over a class of interval models (built on a given class
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of linear orders). Among others, we mention the following classes of (interval
models built on important classes of) linear orders: (i) the class of all linear
orders Lin; (ii) the class of (all) dense linear orders Den, that is, those in which
for every pair of distinct points there exists at least one point in between them
(e.g., Q and R); (iii) the class of (all) discrete linear orders Dis, that is, those
in which for every pair of distinct points there are only finitely many points in
between them; (iv) the class of (all) finite linear orders Fin, that is, those having
only finitely many points; (v) the classes built on standard sets such as N, Z, Q,
etc. Given a class C, and given D € C, one can alternatively think of a HS-model
as a compass structure G = (I, L), where intervals [z, y] are seen as points (z,y)
in the half-plane D x D identified by the constraint x < y; in this view, one
may think of £ as an eztended labeling £ : D x D — 264%) where Cl(y) is the
set of all sub-formulae of a given formula ¢, and L£(z,y) denotes the subset of
Cl(yp) of precisely those formulae that are true at the interval [x,y] (including
propositional letters). Modal operators are then immediately interpreted in a
geometric way (e.g., the modality (B), (B) correspond to moving on a vertical
line in the plane, while (E), (E) correspond to moving on a horizontal line). Such
an interpretation (see, e.g. [19]) works nicely also for fragments of HS such as
HS;3 and HS7; we will alternately use compass structures and interval models in
the rest of the paper.

In this paper we focus on the decidability of the satisfiability problem for both
HS3 and HS;. The relative expressive power of HS, HS3, and HS; is unknown,
but partial results seem to indicate that it holds HS3 < HS; < HS (< is read as is
strictly less expressive than). As a matter of fact, we can easily prove that HS3 <
HS in the finite case: a simple counterexample based on bisimulation (cfr. [13])
proves that, for example, (B) cannot be expressed in HS3. Recent results [9,18]
for the ABBA fragment of HS gives us a partial result concerning the satisfiability
problem for HS3: it turns out that HS3< ABBA (the modal operators (L) and
(L) are immediately expressed in terms of (A) and (A), while the operator (I)
can be obtained by means of a combination of the modalities in ABBA). Since
ABBA is decidable, but not primitive recursive, in the finite case [18] as well
as in the cases of Den,Q [9], so is HS3;. Here we prove that its satisfiability
problem is in fact PSPACE-complete (a much stronger result) in the finite case
and PSPACE-hard in all other classes. Similarly, we know that the HS7-modality
(DBE) is enough to obtain undecidability in the finite/discrete case, as well as
the cases of N and Z [17]; based on existing results, though, the status of HS;
interpreted in Lin, Q or Den is unknown. We prove here that, not surprisingly,
it is undecidable when interpreted on each of the mentioned classes of linearly
ordered sets; our proof also applies to all cases already covered from [17].

3 Decidability and Hardness Results for HS3

In this section, we first prove that the satisfiability problem for HS3 is PSPACE-
hard, regardless of the class of linearly ordered sets on which it is interpreted.
PSpaCE-hardness is proven via a (logspace) reduction from the classical
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Quantified Boolean Formula (QBF) satisfiability problem, shown to be PSPACE-
hard in [23]. A Quantified Boolean formula is an expression of the form 6 =
Q1p1 - .. Qupnf, where f is a formula of propositional logic and, for all 1 < i < n,
Q; is either V or 3. We can assume without loss of generality that the formula 6
is closed (i.e., every variable in f is quantified).

Theorem 1. The satisfiability problem for HS3 over Fin, Dis,Den, N, Z,Q, and
Lin is PSPACE-hard.

Proof (Sketch). Let 8 = Q1p1...Qn pnf be a given closed Quantified Boolean
formula. We build a HSs-formula &y such that @y is satisfiable over a linear
order if and only if € is true. Given 6, we define Py = {i : 1 < i < n,Q; = V};
the formula @y, that uses an universal operator defined as [G|¢ = [I][I]®, is the
conjunction of the following formulae:

G](A1§i§n+1(h’i - /\1§i§n+1mﬁhi)) N [G](/\1§i§n(hi = (I){(Dhit1))
Dhy N[GLf NG Niep, (hi = (D)D) (Rigr Api) AT (hiva A —pi)))
Gl No<icn((hi Api1) —

I] /\1<]<z (U]=hy — [I](Vi+1§j§n+l hj = pi-1)))

Gl Nacicn((hi A =piz1) —

I] /\19971([ J=h; — (1] \/i+1§j§n+1 hj — —pi-1)))

Each h; (1 < i < n) represents the node in the (6-)tree in which we choose the
value of the variable p; (see Fig. 2). Assuming that € has at least one proposition,
(I)hy (in ¢9) forces that hy holds somewhere, and, then, we force the existence
of a choice for each proposition (¢1); intervals representing choices are not pair-
wise intersecting (¢1), giving rise to a tree-like structure. For each universally
quantified variable, we have intervals, in the correct sub-tree, that witness both
the false and the true value for it (¢2). Values are propagated in the correct sub-
trees (@3, ¢4) in such a way that the interval labeled with A, is also labeled
with the chosen truth values for each proposition, so to serve as a witness for
the satisfiability of #: in particular, if some of the h,1-labeled intervals do not
satisfy f, then [G]f is not satisfied either. Notice that this particular result holds
also for the fragment of HS3 with the sole operator (I). O

1Tl
—~

S S S
< N =

Now, we prove that the satisfiability problem for HS3 is decidable in PSPACE
in the particular case of finite linear orders, giving us a completeness result in
this case. While transferring such a result to other discrete classes is a purely
technical problem, for the non-discrete ones it might require a deeper analysis.

Theorem 2. The satisfiability problem for HS3 over Fin is PSPACE-complete.

Proof (Sketch). Let ¢ be an HS3 formula, and G = (D, £) be a compass structure
for it. We prove that if |D| is greater than a certain limit (that will be obtained
below) then there exists a compass structure G’ = (D', £') for ¢ with |D'| < |DJ.
The contraction method obtained in this way can be iterated in order to obtain
a model whose cardinality is less than or equal to the given limit. Since one can
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(b 7k 5, P4
ha, p1
4,P3 / @ /
o h3p2 p1/0 p1/1
l°h4ﬁp3 \/ \4
o hs, -p p
ha " pQ/‘l/ 1 l\pf/o

ha, —p1 —p1, pa p1, —p2
%hzl,p:s p3/0 p3/1 p3/0 p3/1
hs, —pa / \ / \«

° h37p2 —P1,pP2,7pP3  TP1,P2,P3  P1, P2, P33 P1, P2, P3
haips pa/l l pa/0 l pa/1 l pa/0 l
hs, pa
—P1,P2, —P1,DP2, b1, P2, P1, P2,
—P3,P4 P3, P4 —P3,P4 P3, P4

Fig. 2. A tree-model for 0 = Vp1IpaVpsIpa(p1 Vp2) A(—p1V—p2) A(p3Vpa) A(—psV—pa)
(right-hand side) and its embedding into a compass structure (left-hand side).

design an algorithm that only keeps trace of a constant number of horizontal lines
(later referred to as rows) of a structure at the same time, finite satisfiability
can be checked in PSPACE. The intuitive idea of the contraction procedure is as
follows: (i) we describe a row of the compass structure in such a way that the
number of different descriptions is bounded; (i) whenever the cardinality of the
model is grater that the limit, then there must be two different rows y; < yo
with the same description; (%ii) a smaller (contracted) model can be obtained by
keeping the part of the original model below row y;, and suitably reconstructing
the rest of the model using the part of the original model above row ys, thus
eliminating the portion of the model y; and yo.

Given G = (D,L£) that satisfies ¢, for a point (z,y) we can define
Reayp(@,y) = (1), 1), (T, [T | (D, (114, (D, [T € L(z,y)}; clearly,
we have that |Req,7(z,y)| < |¢|. Now, given an element y € D, let Req,7(y) =
{Req;z(z,y) : 0 <z < y}. Since (I) and (L) are transitive, |Req,7(y)| < |¢| and
its elements may be arranged in a sequence Ry C ... C R|req,(y)|- The num-
ber of possible different chains Req,7(y) is bounded by |p[l#l = 2lellee(l¥]) Let
county : Req;7(y) — {1,...,|¢|} be a function such that for each R € Req;7(y)
we have county(R) = min(2 - [¢| + 1, |{z : Req,7(z,y) = R}|). Observe that
for any given Req,7(y) we may have (2 - |p| + 1)l¥l = 2lelloe(Zlel+1) possible
count, functions. To each y we associate a minimal set W, C {0,...,y} that
satisfies: (i) for all ¢ € Cl(p) such that there exists 0 < z < y and y' > y
with ¢ € L(z,y’) there exists 2’ € W, and y' > y such that ¢ € L(2’,y'), and
(i) for every 0 < 2’ < y and 3" > y with v € L(z”,y"), we have " < ¢y or
(iii) for every 0 < 2" < y and y” > y with ¢ € L(z",y"), we have " > 2/
Now, if Ry, = {¢ : J2Fy(0 <z <y Ay >y Ay € L(x,9))}, we have that
|Rw, | < |¢|, and, thus, the number of possible Ryy, is bounded by 2%!¢l. Let f,, :
Req;7(y) — {0,...,y} such that, for every R € Req,7(y), Req;7(fy(R),y) =R
and Req;7(fy(R)+1,y) # R. Similarly to Req,7(x,y), for every point (x,y) we
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can also define Reqyr (z,y) = {{L), [L]y | (L), L] € L(z,y)}. Let us observe
that for every 0 < z,z’ <y, we have Reqr(z,y) = Reqr(z',y) and thus we can
simply identify with Reqr,(y) = Reqr(x,y) for some 0 < z < y. It is easy to see
that |Reqr(y)| < |¢|. Notice that Reqr(y) is a set of sub-formulae of ¢, while
Req;7(y) is a set of sets of sub-formulae of ¢ whose cardinality cannot exceed
|| At this point, for each y we let row(y) = (Reqr(y), Req,z(y), county, Ryy,).
Taking into account the number of different component of each row(y), we have
that the possible values for row(y) is roughly bounded by

|| - 2lellos(lel) . glelloglel+1) . glel — || . 2l¢l(oslel+1)+og(lph+1)

If |D| exceeds such a limit, then there must exist two rows y; < yo with row(y;) =
row(yz). Thus, we can define a non-decreasing function g : {0,...,y1} — {0,...,
ya} such that: (i) for every € {0, ..., y1} we have Req,7(z,y) = Regq,z(z, g(x)),
and (i) Wy, C Img(g). Let A = yo — y1; we can finally build the compass
structure G’ = (I, £') with |D’| = |D| — A, where £’ is defined as follows: (i)
L'(z,y) = L(x,y) for every 0 < z < y < w1, (i1) L' (z,y) = L(xz + A,y + A)
for every y3 < x < y < |D/|, and (i) L'(z,y) = L(g(x),y + A) for every
<z <y <y<I[D|

The above proof, usually called small model theorem, provides the necessary
insights for developing a PSPACE decision procedure for HS3 over Fin. First
observe that each formula ¢ may be rewritten into an equi-satisfiable formula
¢ = pV{I)eV(L)p: it is easy to see there exists a compass structure G = (D, £)
for ¢ if and only if there exists a compass structure G’ = (D, L’) for ¢’ with
¢ € £(0,1). Then, we may assume w.l.o.g. that ¢ = ¢’V (I)¢' V (L)¢' for some
formula ¢’. A non-deterministic procedure can be designed that works as follows
(where ¢ is the formula to be checked for satisfiability):

1. A counter y is initialized to the value 0. Let F' be an atom with F N {(I)y €
Cl(¢)} =0 and p € F - if such an atom does not exist we answer NO (unsat-

isfiable) - and let row(y) = ({(L)6, (L} € F}, {{I)%, [T, (D), [T} €
F}}, county, {¢ : (I)y € F}) where count, ({(I)v, [I|Y, (L)y, L] € F}) = 1;
2. We generate a row row(y+1) = (Reqr(y+1), Req;z(y+1), county 1, Ry, )
which is compatible with row(y) = (Reqr(y), Req;z(y), count,, Ryy, ) - if such
a row does not exist we answer NO, and if Reqr(y + 1) N {(L)y € Cl(p)} =
Ry, ., = we answer YES;
3. Ify+1 = |g| - 2l¢l0oeClel+D)+log(eD)+1) 4 1 we answer NO, and, otherwise, we

update y to y + 1 and we go back to step 2.

It is easy to see that such a procedure may be implemented in polynomial
space. As a matter of fact, the procedure requires to store only the counter
for y and at most two rows at the same time; therefore, it suffices to prove that
they can be represented in polynomial space w.r.t. |p|. Since y cannot exceed
2lel(og2lel+1)+log(leD+1) we have that |¢|(log(2|¢| + 1) 4 log(|p|) + 1) bits are
enough to represent it. Since |Req,7(y)| = |Dom(count,)| < |p|, we have that
count,, takes |¢|?(log(2|p| + 1) + log(|¢]) 4 1) bits to be represented. Finally, we
have that |Reqr,(F)| < |¢|, that |Req;1(y)| < |¢|, that each element in Req,7(y)
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requires || bits to be represented, and that Ryy, requires 2- || bits to be repre-
sented. Summing up, we need (log(2|¢|+1)+1log(|¢]) +1)(2]p|+1) +2|¢* +4|¢|
bits to handle the whole computation correctly, and thus the satisfiability of HS3
over Fin is in PSPACE, as we claimed. a

4 Undecidability Results for HS;

In this section we show that the satisfiability problem for HS; interpreted in
any of the classes Dis, Den,N,Z, Q, and Lin is undecidable (recall that Dis, N
and Z were already covered by the results in [17]). Undecidability is proven via
a reduction [6] from the so-called Octant Tiling Problem (OTP). This is the
problem of establishing whether a given finite set of tile types 7 = {t1,...,tn}
can tile the second octant of the integer plane O = {0 < ¢ < j}. For every
tile type t; € T, let right(t;), left(t;), up(t;), and down(t;) be the colors of
the corresponding sides of ¢;. To solve the problem, one must find a function
f: O — T such that right(f(n,m)) = left(f(n + 1,m)) and up(f(n,m)) =
down(f(n,m + 1)). By exploiting an argument similar to the one used in [5] to
prove the undecidability of the Quadrant Tiling Problem, it can be shown that
the Octant Tiling Problem is undecidable too. Notice that the OTP, as well as
our reduction, is unrelated to interpreting models as compass structures (as we
did in the previous section).

Theorem 3. The satisfiability problem for HS; over Dis, Den,N,Z,Q, and Lin
is undecidable.

Proof (Sketch). Given an instance 7 of the OTP, where 7 is a finite set of
tiles types, we build an HS7-formula @7 in such a way that @7 is satisfiable if
and only if 7 tiles O, assuming, here, that the underlying linear order presents
at least one infinite ascending chain. We set the tiling framework by forcing
the existence of an infinite chain of wnit intervals (or, simply, units, denoted
by the propositional letter u). Let us define an universal modality as [G]¢ =
¢AAX€{L,A07DBE}([X]QSA[Y]@, alanguage L = {*}UT, and let us identify each

tile ¢1,...,tx with a propositional letter whose symbol is used in the reduction.
First, we have:

¢1 =ug A x A /\Z:O,l[G](ul — <AO>U([+1) mod 2) A [G}(u — (’LLO Vv ul))

¢2 = [Gl(u — ((DBE)T A [DBE]-u)) A[G]((ug Auy) — 1)

63 = Ni_o[G)(w — [DBEJu)) -

¢4 = [G](u — [DBEJW) A [G]((w A [AO]~u) — up) A [G]((u" A [AO]~u) — ue)
¢5 = [G](up — [AO]-u) A [G](ue — [AO]-u)

Assuming that M, [z, y] IF ¢1 A...Ad5 we can prove that there exists an infinite
sequence ¢ < y = yo < y1 < ... such that: (i) for each i > 0, M, [y;, yi+1] IF u;
(i1) if [z,t] # [yi, yit1], for each ¢ > 0, then M, [z,¢] IF —u, unless ¢ < z or z > y;
for each i € N; (i) for each ¢ > 0, every interval of the type [y;, 2], 2 < Yit1,
satisfies up(and at least there exists one interval of this type), and every interval
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of the type [z, vyi+1], 2 > yi, satisfies u. (and at least there exists one interval of
this type). Now, consider the following formulae:

b6 = C1 A N1 [GI(CL — (A0)C111) moa 2) N[GI(C < (Co v Ch))
¢7 = Nio 1 [GI(C1 — [DBE|C)) A[G]((Co A Cp) — L)

ds = [G)(C — (JAO]—ue A [AO]—up)) A [G(C — ([DBE]-C A {(DBE)T))

¢o =[Gl(u = Ve $) NGI N, e sps (s A 8" — L)

b10 = (AO)((A0)(V_, __y t: A (AOY)) A [G)((u A {A0)C) — (AO)%)

d11 = [G]((u A (AO)C) — (AO)x) A [G](x — ((AO)C Vv <AO>CL

12 = [G]((u A =%) = (AO)Corr) A [G]((u A = % AJAO]—=%) — (AO)Corr)

$13 = [G]((u A = % AN(AO)x) — [AO](Corr — (A0)(u A [AO](u — —x))))

14 = [G](Corr — [AO]-wu,) A [G](Corr — [AO]—uy) A [G](x — [AO]=Corr)

¢15 = [G)(Corr — ([DBE]-Corr A [DBE]-C A [DBE]-C A =C)
Formulae from ¢g to ¢15, in conjunction with the above observations, imply the
existence of an infinite sequence of indexes ko < ki < ... such that yo = y,

and: (i) for each j > 0, M, [y, yx,,,] IF C; if [2,t] # [y, Yr,,.], for each
j >0, then M, [z,t] IF =C, unless t < x or z > y; for each ¢ € N. Moreover, these
formulae guarantee that: (i) each u-interval of the type [y;, y;+1] satisfies precisely
one letter from L; (4i) the C-interval [yk,,yk,] is composed by exactly three
units; (4i) each C-interval of the type [yx,,yx;,,] is such that both its first unit
[Yk, > Yr;+1) and its last unit [yx, ., 1, yr,,,] satisfies *; (i) no other interval [z, ]
satisfies * unless t < x or z > y; for each ¢ € N. In the context of the structure
above described, every level of the octant (C-interval) is composed by an integer
number of units, the first one and the last one of which are the only *-intervals.
We can therefore refer to the m-th —*-interval of a level as the m-th tile of that
level, and we are therefore interested in connecting the m-th tile of a given level
with the m-th tile of the next one. This is taken care of by means of requirements
from ¢12 to ¢14, which allow us to prove that: (%) for each i,j > 0, if the interval
[Yk;+is Yk, +i+1] 15 @ —+-interval, then the point yx; 441 starts a Corr-interval;
(ii) for each 4,5 > 0, if the interval [yg,1i41, Yk, +i+2] is a -x-interval, then the
point y;4; ends a Corr-interval; (iii) for each j > 0 the points y;, yr, 1, and
Yk, —2 do not finish any Corr-interval; (iv) by a simple combinatorial argument,
every tile of a level is connected (via Corr) to its corresponding tile of the next
one, and, if the level is not the first one and the tile is not the last one of the
level, the tile is also connected to the corresponding one of the preceding level;
(v) finally, as a consequence of the above points, every level features precisely as
many tiles as the preceding level plus one. To conclude, the following constraints:

P16 = /\i:l,...,N[G] (ti = [AO](Corr — <AO>(\/j=1,...,N|up(t,-)=down(tj) ti))
P17 = /\i:l,w,N[G]((ti A [AO]—%) — [AO](Vj:l,.H,N\right(ti):left(tj) t;))

allow us to prove that: (i) for each pair [y;, ¥it1], [Vit1,Yite] of —*-intervals,
if [y;,yir1] satisfies ¢, € T and [y;11,yi+2] satisfies t; € T then right(t,) =
left(ts); (i) for each interval [y;,y;] satisfying Corr, if [y;—1,y;] satisfies t, € T
and [y;,y;4+1] satisfies t; € 7 then up(t,) = down(ts). O
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Table 1. A summary of the results of this paper (denoted by [t.p.]).

Fin Dis Den N VA Q Lin
HS | Und [15] Und [15] Und [15] Und [15] Und [15] Und [15] Und [15]
HS7 | Und [17] Und [17] Und [t.p.] Und [17] Und [17] Und [t.p.] Und [t.p.]
HS3 | PSpace-c [t.p.] | PSpacE-h [t.p.] | PSPacE-h [t.p.] | PSPACE-c [t.p.] | PSPACE-c [t.p.] | PSPACE-h [t.p.] | PSpracE-h [t.p.]
NPR [9] NPR [9]

5 Conclusions

In this paper we studied two previously unknown variants of Halpern and
Shoham’s logic (HS), inspired by Golumbic and Shamir’s interval algebras, which
generalize the classical Allen’s Interval Algebra with coarser interval relations.
While HS7 (the finest of them) is still generally undecidable, HS3 (the coarsest of
them) becomes PSPACE-complete in the finite case and, at least, PSPACE-hard
in the other cases (Tablel). Decidability in the infinite cases is still an open
problem (via embedding we only know that it is decidable, but not primitive
recursive - NPR, over Den and Q), although our exploratory analysis of these
cases suggests that HS3 should be PSPACE-complete regardless of the class in
which it is interpreted.
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