Evaluating the Impact of OpenMP 4.0
Extensions on Relevant Parallel Workloads

Raul Vidal, Marc Casas®), Miquel Moret$, Dimitrios Chasapis, Roger Ferrer,
Xavier Martorell, Eduard Ayguadé, Jesis Labarta, and Mateo Valero

Barcelona Supercomputing Center (BSC),
Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
marc.casas@bsc.es

Abstract. OpenMP has been for many years the most widely used
programming model for shared memory architectures. Periodically, new
features are proposed and some of them are finally selected for inclusion
in the OpenMP standard. The OmpSs programming model developed
at the Barcelona Supercomputing Center (BSC) aims to be an OpenMP
forerunner that handles the main OpenMP constructs plus some extra
features not included in the OpenMP standard. In this paper we show the
usefulness of three OmpSs features not currently handled by OpenMP
4.0 by deploying them over three applications of the PARSEC bench-
mark suite and showing the performance benefits. This paper also shows
performance trade-offs between the OmpSs/OpenMP tasking and loop
parallelism constructs and shows how a hybrid implementation that com-
bines both approaches is sometimes the best option.

1 Introduction and Motivation

OpenMP has been for many years the most popular programming model for
shared memory architectures. The OmpSs programming model [5] developed at
the Barcelona Supercomputing Center aims to be an OpenMP forerunner that
handles the main OpenMP constructs plus other features not included in the
OpenMP standard. OmpSs is based on #pragma annotations and its seman-
tics are almost identical to the OpenMP standard. For these reasons, a code in
OmpSs that uses only the features included in the OpenMP standard is equiv-
alent to its OpenMP counterpart. It is not straightforward to make the choice
on which OmpSs features should be adopted by the OpenMP standard and how
these new features would interact with the already existing ones.

This paper brings some light to the above mentioned dilemmas by pursuing
two goals: The first is to show the usefulness of three OmpSs features not cur-
rently handled by OpenMP 4.0 by using them to accelerate three well known
applications of the PARSEC benchmark suite [3,4]. Secondly, this paper shows
performance trade-offs between the OmpSs/OpenMP tasking and loop paral-
lelism constructs (e.g. #pragma omp for) and proposes a hybrid implementation
that combines both kinds of constructs to maximize performance. More precisely,
this paper deploys the following OmpSs features:

© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 60-72, 2015.
DOI: 10.1007/978-3-319-24595-9_5

Evaluating the Impact of OpenMP 4.0 Extensions 61

— the multi-dependencies feature, which allows to specify different data-
dependence scenarios in a single #pragma annotation, significantly increas-
ing programmability.

— runtime support for NUMA-aware scheduling of tasks, which schedules them
on the cores closest to the data the task accesses.

— the concurrent clause, which relaxes task synchronization and allows increased
overlap of task creation with remaining computations.

Three applications of the PARSEC benchmark suite are considered in this
paper: Facesim, Fluidanimate and Streamcluster. New OmpSs versions of these
applications are used to show the potential of the new features. The concur-
rent clause is applied to Facesim and Fluidanimate to reduce synchronization
penalties. The multi-dependencies clause is deployed in the Fluidanimate code to
express complex data-dependencies that allow barrier removal without increas-
ing the programming burden. Runtime support for NUMA-aware scheduling is
deployed in the Streamcluster code. Finally, the performance trade-offs between
tasking constructs and simpler forms of loop parallelism are analyzed in the
Facesim code.

The rest of this paper is organized as follows: Sect.2 describes the three
applications studied in this paper and the proposed parallelization strategies,
Sect. 3 presents the evaluation in terms of performance and programmability,
while Sect.4 describes the related work. Finally, Sect.5 summarizes the main
conclusions of this work.

2 Application Parallelization

2.1 Facesim

Description. Facesim animates a human face by simulating its movements. It
employs a 3D model composed of a tetrahedral mesh representing the flesh of
the face and two triangulated surfaces which model the bones of the head: the
cranium and the jaw. The physical forces and motions in the model are computed
frame by frame to produce the animation. Facesim uses the Newton’s method
for solving the system of equations that models the motion. The system is stored
in a sparse matrix formed by two one-dimensional arrays: dX_full and R_full,
defining the left-hand and right-hand sides of the equation system, respectively.
The total number of nodes is equivalent to the arrays’ size. The nodes are the
vertices of the tetrahedrons the mesh is composed of. Each tetrahedron shares the
nodes with its neighbors and for each node the force contributions are computed.
A parallel conjugate gradient method is used in each step of the Newton’s method
to solve its associated linear system and find the displacement of the nodes in the
current frame which is added to a separate array storing the current positions
of the nodes.

PARSEC Pthreads Parallelization. In the Pthreads parallelization provided
by the PARSEC benchmark suite, the mesh is split into a number of partitions

62 R. Vidal et al.

i
1]

il
|

.Update Position Based State DAdd Velocity Independent Forces

.Update Collision Penalty Forces .Add Force Differential

Fig. 1. Facesim UPBS, UCPF, AFD and AVIF parallel execution using the same time
scale. Beginning of a frame. The OmpSs trace (top) exhibits no barriers. The original
Pthreads trace (bottom) makes extensive use of barriers and UCPF routine is serialized.

equal to the number of threads available. It has a queuing system in which work
units are queued to be processed by the team of threads the system spawns
upon initialization. There is a master thread which executes the code of the
application. When it reaches a parallel region, it calls the queuing system to
create work units in a loop and waits in a barrier outside of the loop for the
team of threads to finish. The work units are created by means of an ad-hoc
scheduling library written in C which manages the team of threads.

Facesim’s parallel computations are grouped in three major parallel ker-
nels. Two of them generate the linear system associated with each iteration
of Newton’s method and the third one solves it.

— Update State: Updates velocities, force directions and material properties
which depend on the current positions of the mesh. Update State is com-
puted with two functions: Update Position Based State (UPBS) and Update
Collision Penalty Forces (UCPF).

— Add Forces: Comes after Update State. Computes force contributions for each
node. This kernel is actually computed with two functions: Add Velocity Inde-
pendent Forces (AVIF) and Add Force Differential (AFD).

— Conjugate Gradient (CG): This iterative method is set up to do a maximum
of 200 iterations. The CG methods performs two reduction operation per
iteration.

UPBS and CG are the most time consuming routines. There are several
barriers in this application per iteration of Newton’s method: One at the end of
Update State, two from Add Forces and three within each CG iteration.

Taskification Strategy. With respect to Facesim we consider three different
approaches. The first one exclusively uses tasking clauses with dependencies
when necessary. The second one uses loop parallelism clauses, like the omp for
construct. Finally, the third combines task and loop parallelism.

Evaluating the Impact of OpenMP 4.0 Extensions 63

for each partition
#pragma omp task depend(in:variable)
taskfunctionl ();

#pragma omp task depend(inout:variable)
faketask ();

for each partition
#pragma omp task depend(in:variable)
taskfunction2 ();

Fig. 2. An additional task is used to create an anti-dependency. This is in fact a
synchronization point since the taskfunction2 tasks run after all the taskfunctionl
finish.

for each partition
#pragma omp task concurrent(variable)
taskfunctionl ();

for each partition
#pragma omp task in(variable)
taskfunction2 ();

Fig. 3. The concurrent clause is equivalent to an inout dependency on wariable, but
allows the tasks to operate concurrently on it.

The taskification concerning the first two phases of Facesim, Update State and
Add Forces, is achieved by removing barriers and expressing control dependen-
cies between the different subroutines. Such control dependencies are expressed
by using a data dependency on a sentinel variable. As such, once the task that
has the sentinel as an output parameter finishes, it passes the control flow to
tasks that have the same sentinel as an input. In the Update State phase, UPBS
and UCPF subroutines run concurrently and a task is generated per domain
partition. With respect to the Add Forces phase, AFD and AVIF subroutines
concerning a particular partition start right after the UPBS task operating over
that same partition has finished. This is expressed by using task dependency
semantics in OmpSs/OpenMP 4.0, removing a barrier synchronization from the
original code. With respect to the implementation that uses the #pragma omp
for construct, it mimics the Pthreads parallelization and uses barrier synchro-
nization to handle parallelism. Figure 1 compares the parallel execution of these
two phases in the original code (trace at the bottom) and the taskified code
(top). All barriers are removed in the latter case, allowing subroutines to over-
lap and, as a consequence, the CG iteration starts much earlier. Also, thanks to
specifying data dependencies, the UCPF routine is not serialized in the taskified
version of the code.

With respect to the third phase of Facesim, CG, the tasking OmpSs/OpenMP
versions contain specific code to relax the synchronization points and allow some
degree of overlap between task creation and computation. In case of OpenMP, we
add an additional task to create an anti-dependency to make sure the synchro-
nization is respected while task creation is overlapped with it. In Fig. 2 we show
how this approach is implemented. Although there are features in OpenMP 4.0

64 R. Vidal et al.

that allow alternative implementations, like the taskgroup construct, they can
be used to implement a synchronization point but not to overlap task creation
with synchronization. In the case of OmpSs we use the concurrent clause which
is equivalent to an inout dependency, but allows tasks to operate concurrently
on this data dependency. Figure3 shows how the concurrent clause is used.
Tasks that have an input or output dependency on wariable respect it and do
not overlap their execution with the concurrent tasks.

The implementation that uses loop parallelism adds the corresponding
#pragma omp parallel for construct and uses static scheduling. A global
parallel region for the CG iterations wraps the external loop. Inside of it, a
single construct is used to update variables after the three parallel loops of
each CG iteration.

Finally, in the hybrid approach, loop parallelism is used to handle the fine
grain parallelism required by the C'G phase, while the parallelism required by
other routines is expressed in terms of tasks, as this combination showed the
best performance results. Each one of these three approaches is implemented
using OpenMP 4.0 and OmpSs, which means that we have 6 different version of
Facesim in addition to the baseline Pthreads code.

2.2 Fluidanimate

Description. This application simulates incompressible fluid interactive ani-
mation, using the Smoothed Particle Hydrodynamics (SPH) method [11]. Each
iteration of Fluidanimate involves running 8 different routines which are respon-
sible for actions like rebuilding the spatial index, computing fluid densities and
forces at given points, handling fluid collisions or updating particle locations.

Original Parallelization. The fluid surface is partitioned into N segments and
there is one thread per segment. N is equal to the number of cores the application
runs on. The kernels are parallelized and separated by barriers. When a particu-
lar thread runs a particular kernel, it takes care of all the computations involving
its grid segment. For each iteration of the algorithm, the Pthreads implementa-
tion requires 8 barriers to make sure the execution of each kernel starts once the
previous kernel computations have finished. That is required because each thread
needs the previous kernels’ computations on its grid segment and its neighbors
to be finished once the execution of the new kernel finishes. Threads may have
to update values belonging to neighbor segments, which requires the use of locks
to avoid data races.

Taskification Strategy. Several different taskification strategies are consid-
ered: OmpSs Trivial, OmpSs Finer Task, OmpSs Multi-Dependencies and OmpSs
without Barriers.

The OmpSs Trivial task-based implementation follows the same approach as
Pthreads. Every time the application starts a new iteration, a task is created for
each kernel and segment. Since the kernels are separated by barriers, only tasks
related to the same kernel are allowed to run concurrently. Accesses to foreign
grid segments are controlled by locks.

Evaluating the Impact of OpenMP 4.0 Extensions 65

OmpSs Finer Tasks: The main difference between this strategy and the
OmpSs Trivial consists in the number of tasks created. In the trivial version, a
single task is created for each kernel and segment, meaning that a maximum of
N tasks, N being the number of partitions, can run concurrently. For the OmpSs
trivial version, N is equal to the number of cores the application runs on. In case
of the OmpSs Finer Tasks implementation, we increase the number of segments
to four times the number of cores. By doing this, we split the work into four
times more pieces than the previously presented versions, which implies that the
OmpSs runtime has more flexibility to balance the load between two barriers.

if (segment in corner)
#pragma omp task in(neighborhood[0], ..., neighborhood[3])

else if (segment in boundary)
#pragma omp task in(neighborhood[0], ..., neighborhood[5])

else if (internal segment)
#pragma omp task in(neighborhood[0], ..., neighborhood [8])

Fig. 4. Fluidanimate code handling multiple dependency scenarios by using one
#pragma per scenario.

#pragma omp task in({ neighborhood[j] , j=0:neighborhood.size () })

Fig. 5. Fluidanimate code where multiple dependency scenarios are handled by a single
#pragma annotation.

#pragma omp task dependence_-type ({ item_list[j], j=0:item_list.size() })

Fig. 6. Generic #pragma annotation with multi-dependencies. The dependencies are
defined over a list of items, which has a dynamically defined size.

OmpSs multi-dependencies: This strategy consists of removing all barriers
between the 8 different routines of each iteration. For each routine and partition
we generate a set of tasks and we specify dependencies between them to make
sure the previous routine has finished its pass over a segment and its neighbors
when a task starts operating over this particular segment. The number of task
dependencies is defined by its segment’s position over the grid. If the segment is
located on one of the four corners of the square grid, the total number of task
input dependencies is 4. If the segment is located at the border, the dependencies
are 6 and if it is an internal segment, its corresponding task has 9 input depen-
dencies. Figure 4 shows the code required in OpenMP 4.0 to handle this scenario
where the number of dependencies is variable. Of course, a #pragma omp task

66 R. Vidal et al.

annotation is required in each case, implying that 3 different annotations are
required for each of the 8 different routines each iteration of Fluidanimate is
composed of, which ends up increasing the number of pragma annotations to 24.

To avoid such programming hardship, OmpSs has support to handle this
complexity using a single high-level pragma annotation. In Fig. 6 there is generic
#pragma annotation with multi-dependencies in OmpSs. The dependencies are
defined over a list of items, which has a dynamically defined size. Figure 5 illus-
trates how the multi-dependency feature is used in the Fluidanimate source
code. The only requirement is to generate a data-structure for each segment
that lists all the neighbors. The size of this data structure changes depending on
the number of neighbors and it is used to figure out the number of dependencies
at runtime. The number of tasks considered by the OmpSs multi-dependencies
strategy is the same as OmpSs Finer Tasks.

OmpSs without Barriers: This strategy includes all the improvements of the
OmpSs Finer Tasks and the OmpSs multi-dependencies techniques plus the
removal of the barrier between different iterations. Since computations of differ-
ent iterations cannot be overlapped, the barrier between iterations is replaced by
a concurrent clause, as is done in Facesim between the different CG iterations.

2.3 Streamcluster

Description. Streamcluster solves an online clustering problem. It takes a
stream of points and then groups them in a predetermined number of centers.
The program spends up to 90 % of the time in a function called Pgain, where
points are assigned to existing centers using the Euclidean distance. Also Pgain
calculates whether opening a new center is advantageous or not. If opening the
new center lowers the cost of the current clustering, then the center is opened and
points that are closer to this center than to previously created centers are reas-
signed to the new center. Pgain is executed a predefined number of iterations,
obtaining new centers.

Original Parallelization. The Pthreads parallelization is very simple: the large
array containing all the points to cluster is broken into chunks of constant size
(200,000 points in our experiments). Each chunk is then processed in parallel
in a number of partitions equal to the number of threads. A barrier synchro-
nization is added to make sure that all threads finished processing all the points
before a new chunk is processed. Streamcluster provides its own barrier imple-
mentation to synchronize threads. Once all the chunks of the stream of points
are processed, a final pass to cluster the centers found on the different chunks is
done. Streamcluster is a memory intensive application as it continuously reads
data from memory. In the original parallelization, the data structures that store
these points are allocated before creating the different threads and reused in
each chunk processing. As a consequence, this application suffers scalability dif-
ficulties in NUMA machines.

Taskification Strategy. In the case of Streamcluster we develop two tasking
versions, one in OmpSs and the other in OpenMP. We focus on the function

Evaluating the Impact of OpenMP 4.0 Extensions 67

Pgain of this code as the program spends the majority of its execution time in it.
While the Pthreads version of Pgain makes use of a dynamically allocated array
per thread to store the partial cost computations and performs a reduction of all
these costs over a global array after the parallel work, the tasking implementation
does not need the global array and uses a local one per task. With atomic
synchronization the local arrays of costs are updated. These changes simplify
the code and minimize the time spent in index table computations.

Also, additional changes are made in the OmpSs code to taskify memory
allocation and exploit the NUMA aware scheduling that the OmpSs runtime
system performs for systems with multiple sockets. This scheduler tries to ensure
that tasks execute in the sockets where their data structures have been allocated,
reducing the cost of accessing memory. To do so, a few API calls to schedule
tasks in specified NUMA spaces are added to the code. Figure 7 depicts how to
use this API. OpenMP 4.0 has some environment variables to specify either on
which cores the threads should be placed (OMP_PLACES) or whether threads can
be moved between cores (OMP_PROC_BIND), however it does not have the feature
of doing that in a per task basis.

for each partition p

{

nanos_current_socket (socket of partition p) ;
#pragma omp task out(dest[kl:k2],points[kl:k2])

nanos_current_socket (socket of partition p);
#pragma omp task in(points[kl:k2])

}

Fig. 7. The NUMA-aware scheduling API specifies the socket where tasks run. In this
way, the programmer can force tasks to run in the socket where the data they access
is allocated.

3 Evaluation

The evaluation is performed on an IBM System X server iDataPlex dx360 M4,
composed of two 8-core Intel Xeon E5-2670 processors at 2.6 GHz with 20 MB
of shared last-level cache and with hyperthreading disabled. There is 32 GB of
DDR3 RAM at 1.6 GHz.

The OpenMP implementation used is the GNU OpenMP (GOMP) included
with gee 4.9.1. We also used the OmpSs programming model [5] and its associated
toolflow: Nanos++ runtime system (version 0.7.5), Mercurium source-to-source
compiler (version 1.99.6), and gcc 4.9.1 as the back-end compiler. To analyze
the behavior of the benchmarks, we used the Extrae instrumentation package
(version 2.5) and the Paraver trace viewer (version 4.5) [10].

68 R. Vidal et al.

3.1 Performance Evaluation

While the PARSEC benchmark suite provides different input sets, the experi-
ments shown in this paper make use of the largest set, the ‘native’ input. All the
benchmarks are executed with 1, 2, 4, 8 and 16 threads, mapping one thread per
core. Figure8 shows the measured speedups of all the applications and strate-
gies considered. The speedups are computed taking the execution time of the
Pthreads implementations of Facesim, Fluidanimate and Streamcluster avail-
able in the PARSEC benchmark suite running on 1 thread. The left hand side of
Fig. 8 shows the speedups of each one of the 7 parallelization strategies consid-
ered for Facesim: Pthreads, loop parallelism using OpenMP and OmpSs, tasking
using OpenMP and OmpSs and the hybrid approaches combining tasking and
loop parallelism. The best performing version is OmpSs Hybrid, which shows a
speedup of 11.4x when run on 16 cores, closely followed by OpenMP Hybrid and
the OmpSs and OpenMP loop parallelism strategies which have a speedup of
10.7x, 10.7x and 10.9x. The two parallel strategies that exclusively use a tasking
approach show a speedup of 9.8x and 9.4x when run on 16 cores, significantly
less than the hybrid and loop parallelism approaches. The hybrid approaches are
the most well suited as they combine the benefits of barrier substitution by task
dependencies, the low overheads of loop parallelism when tasking provides no
benefit and the locality of the static scheduling performed by the CG routine.

In case of Fluidanimate, results are shown at the center of Fig. 8. The Pthreads
and the OmpSs trivial versions have identically poor performance, achieving
speedups below 8x when they run on 16 cores. If the granularity of the tasks
is reduced, the speedup reaches 8x when run on 16 cores. The OmpSs Multi-
dependencies strategy of removing all the barriers that separate the 8 internal
routines of each iteration and replacing them by task dependencies provides
significant benefits and allows the speedup to be slightly above 9x when 16 cores
are used. Finally, if the barrier that separates the different iterations is removed,
the application scales up to 10.1x on 16 cores.

Streamcluster performs similarly on all of its versions when 1, 2, 4 and 8 cores
are considered. When the two 8-cores sockets are used, NUMA effects bring load

facesim fluidanimate streamcluster
12
4
Lcodt
10 et 4
¢ 4
,“’ . ; A ;
8 e . ,'/;“ .
B B .2 <
. e 1 s
E - " Riow A
) K Py - A
& ’o/ Pthreads —&— /V /
4 3/ OmpSs Tasks - -4 - | A Pthreads —&— |
I/ OpenMP Tasks Pthreads —=— OmpSs - -& -
OmpSs Loops = =» - OmpSs Trivial = -4 - OpenMP - -a -
2 OpenMP Loops - -> -+ E OmpSs Finer - =»-- - OmpSs finer grain = =» - -
OmpSs Hybrid - -+ - OmpSs Multideps - -+ - P! OpenMP finer grain = =» -
OpenMP Hybrid ==+ - OmpSs without Barriers OmpSs NUMA aware - -+ -
0 1 | h 1 | | 1 N h h L I | | | h 1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads number of threads

Fig. 8. Speedups of the different benchmarks and their tested versions

Evaluating the Impact of OpenMP 4.0 Extensions 69

5000
4500 + Pthreads s -
2 4000 |- Best OmpSs mmmmm
o 3500 - Best OpenMP mmmmm |
O 3000 |- -
S 2500 |
@ 2000 |- .
< 1500 - —
— 1000 -
500 + —

0

Facesim Fluidanimate Streamcluster
Benchmarks

Fig. 9. Lines of code of the different benchmarks and their different versions

imbalance, which undermines the performance of the Pthreads implementation.
The OpenMP and OmpSs implementations partially correct this load imbalance
and achieve a speedup close to 9x on 16 cores. These load balancing benefits
increase if finer grain tasks are considered, achieving scalabilities close to 10x on
16 cores. The fine grain versions make use of 5 tasks per thread, while the original
OpenMP/OmpSs version use just 1 task per thread. Finally, the NUMA aware
scheduling feature of the OmpSs runtime system provides further improvements
reaching a speedup of 11.1x.

3.2 Programmability

Ease of use, portability and versatility are of paramount importance when decid-
ing whether to use a programming model or not. It is difficult to quantify the
above statement, but we can provide some insight on how easy it is to use such
task-based models compared to Pthreads in terms of lines of code (LOC). LOC
for the selected benchmarks is as follows: Facesim has 35,000 LOC, Fluidanimate
3,000 LOC, and Streamcluster 1,500 LOC.

Figure 9 shows the LOC of our task-based implementations compared to the
original Pthreads implementations considering only files that are relevant to the
parallel implementation, i.e. files that contain calls to Pthreads or task invoca-
tions, atomic primitives, etc. In this case, we only show the LOC of the best
performing version of our OmpSs and OpenMP codes. The other versions have
very similar number of LOC, with less than 3.5 % variation with respect to the
best performing one.

On one hand, using OpenMP/OmpSs to parallelize applications allowed to
reduce the size of the original code base in the case of Facesim (25 % less LOC)
and Streamcluster (20% less LOC). This is achieved by means of removing
unnecessary barrier implementations and thread scheduling facilities. It also
allowed to express more parallelism in all applications, whether allowing to paral-
lelize originally sequential sections or by allowing more tasks to run concurrently.

70 R. Vidal et al.

This is the case with Fluidanimate, where a more advanced parallelization
strategy is performed without significantly increasing the number of LOC (less
than 4 %).

On the other hand, sometimes specifying dependencies might not be easy
depending on the accessed data structure. For example, irregular and dynamic
data structures are difficult to handle with current data dependencies. Also, very
fine-grain tasks and an excess of dependency annotations can cause performance
degradation due to runtime overheads. Designing future architectures driven by
the runtime of the target parallel applications can be a suitable solution to reduce
some of these overheads [12].

4 Related Work

In this paper we apply several parallelization strategies available in OpenMP 4.0
and OmpSs to three applications of the PARSEC benchmark suite. Similarly,
the KASTORS suite [13] uses the OpenMP 4.0 task dependency constructs to
extend the Cholesky and QR decompositions from the PLASMA library [9]. Also,
the KASTORS suite provides a parallelized Poisson equation based kernel and
extends the SparseLU and Strassen benchmarks from the Barcelona OpenMP
Tasks Suite [6]. The main improvement of the work presented in this paper is that
we do not only use the tasking features available in OpenMP 4.0 but also suggest
and evaluate new ones. In contrast, the mentioned KASTORS approach [13]
suggests new features, different from the ones proposed in this paper, but does
not evaluate them.

Besides OpenMP 4.0 and OmpSs, other programming models and runtime
system handle task-based parallelism. For example, the StarPU task program-
ming library [2] provides a runtime system and an API to handle task-level
parallelism. StarPU has been successfully used to implement important numer-
ical routines [1] on heterogeneous environments, although its capabilites do not
outperform OpenMP 4.0. Other approaches reproduce the OmpSs vision to tar-
get specific research issues, like the Distributed asyncHronous Adaptive Resilient
Management of Applications (DHARMA) [8]. DHARMA is a task programming
model designed with resilience as a primary focus. It is a data-flow approach that
uses work-over-decomposition. Also, the Open Community Runtime (OCR) [7]
initiative aims at creating a standard task-based runtime system. Very simple
micro-kernels are publicly available to validate this approach.

5 Conclusions

In this paper we demonstrate the usefulness of three OmpSs features not cur-
rently available in the OpenMP 4.0 specification. The first one is the concurrent
clause, which can be used to relax synchronization by overlapping task creation
with computation. The second is the possibility to handle multiple dependency
scenarios in a single #pragma annotation and the third one is the NUMA-aware
scheduling feature available in the OmpSs runtime system. Each one of these

Evaluating the Impact of OpenMP 4.0 Extensions 71

three features provides significant improvements in terms of scalability and pro-
grammability. Additionally, this paper provides a comparison in terms of per-
formance of task parallelism against loop parallelism and shows how combining
them is sometimes the best option. We expect to provide more examples in the
future to further motivate the need for OpenMP extensions and to strengthen
the position of OmpSs as an OpenMP forerunner.

The importance of features like the ones discussed in this paper and, in
general, of the task parallelism provided by OpenMP and OmpSs is increasing
with the emergence of massivelly parallel and heterogeneous hardware, which
will certanly require task clauses to allow programmers to handle large amounts
of concurrency.

Acknowledgments. This work has been partially supported by the European
Research Council under the European Union’s 7th FP, ERC Grant Agreement number
321253, by the Spanish Ministry of Science and Innovation under grant TIN2012-
34557 and by the HIPEAC Network of Excellence. It has been also supported by the
Severo Ochoa Program awarded by the Spanish Government (grant SEV-2011-00067)
M. Moreto has been partially supported by the Ministry of Economy and Competi-
tiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M.
Casas is supported by the Secretary for Universities and Research of the Ministry of
Economy and Knowledge of the Government of Catalonia and the Co-fund programme
of the Marie Curie Actions of the 7th R&D Framework Programme of the European
Union (Contract 2013 BP_B 00243).

References

1. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Roman, J.,
Thibault, S., Tomov, S.: Dynamically scheduled Cholesky factorization on mul-
ticore architectures with GPU accelerators. In: Symposium on Application Accel-
erators in High Performance Computing (SAAHPC), Knoxville, USA (2010)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863-874.
Springer, Heidelberg (2009)

3. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: char-
acterization and architectural implications. In: The 17th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pp. 72-81 (2008)

4. Bienia, C., Li, K.: Parsec 2.0: a new benchmark suite for chip-multiprocessors.
In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and
Simulation, June 2009

5. Duran, A., Ayguad, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Process. Lett. 21(02), 173-193 (2011)

6. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: International Conference on Parallel Processing (ICPP), pp. 124-131
(2009)

72

7

10.

11.

12.

13.

R. Vidal et al.

. Knauerhase, R., Sarkar, V.: The open community runtime and its use in systems
research. In: Tutorial: International Conference on Architectural Support for Pro-
gramming Languagues and Operating Systems (ASPLOS) (2013)

. Kolla, H., et al.: DHARMA: distributed asynchronous adaptive resilient manage-
ment of applications. In: Minisymposia on Resilience in Numerical Simulations
and Algorithms at Extreme Scale. SIAM Conference on Computational Science
and Engineering (2015)

. Kurzak, J., Luszczek, P., YarKhan, A., Faverge, M., Langou, J., Bouwmeester,

H., Dongarra, J.: Multithreading in the plasma library. In: Multicore Computing;:

Algorithms, Architectures, and Applications, p. 119 (2013)

Labarta, J., Gimenez, J.: Performance analysis: from art to science. In: Parallel

Processing for Scientific Computing, Chap. 2, pp. 9-32. SIAM (2006)

Miiller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive

applications. In: Proceedings of the 2003 ACM SIGGRAPH /Eurographics Sympo-

sium on Computer Animation (SCA), pp. 154-159 (2003)

Valero, M., Moreto, M., Casas, M., Ayguade, E., Labarta, J.: Runtime-aware archi-

tectures: a first approach. Int. J. Supercomput. Frontiers Innovations 1(1), 29-44

(2014)

Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage,

O., Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS

benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,

Miiller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16-29. Springer, Heidel-

berg (2014)

	Evaluating the Impact of OpenMP 4.0 Extensions on Relevant Parallel Workloads
	1 Introduction and Motivation
	2 Application Parallelization
	2.1 Facesim
	2.2 Fluidanimate
	2.3 Streamcluster

	3 Evaluation
	3.1 Performance Evaluation
	3.2 Programmability

	4 Related Work
	5 Conclusions
	References

