
Experiences of Using the OpenMP Accelerator
Model to Port DOE Stencil Applications

Pei-Hung Lin1(B), Chunhua Liao1, Daniel J. Quinlan1, and Stephen Guzik2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, USA

{lin32,liao6,dquinlan}@llnl.gov
2 Mechanical Engineering Department, Colorado State University, Fort Collins, USA

stephen.guzik@colostate.edu

Abstract. The Department of Energy has a wide range of large-scale,
parallel scientific applications running on cutting-edge high-performance
computing systems to support its mission and tackle critical science chal-
lenges. A recent trend in these high-performance computing systems is
to add commodity accelerators, such as Nvidia GPUs and Intel Xeon
Phi coprocessors, into computer nodes so we can achieve increased per-
formance without exceeding the limited power budget. However, it is
well-known in the high-performance computing community that porting
existing applications to accelerators is a difficult task given the numerous
set of unique hardware features and the general complexity of software.
In this paper, we share our experiences of using the OpenMP Accel-
erator Model to port two stencil applications to exploit Nvidia GPUs.
Introduced as part of the OpenMP 4.0 specification, the OpenMP accel-
erator model provides a set of directives for users to specify semantics
related to accelerators so that compilers and runtime systems can auto-
matically handle repetitive and error-prone accelerator programming
tasks, including code transformations, work scheduling, data manage-
ment, reduction, and so on. Using a prototype compiler implementation
based on the ROSE source-to-source compiler framework, we report the
problems we encountered during the porting process, our solutions, and
the obtained performance. Productivity is also evaluated. Our experience
shows that the existing OpenMP Accelerator Model can effectively help
programmers leverage accelerators. However, complex data types and
non-canonical control structures can pose challenges for programmers to
productively apply accelerator directives.
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1 Introduction

The Department of Energy (DOE) has a wide range of large-scale, parallel
scientific applications to support its mission and tackle critical research and
development challenges in multiple science disciplines. Many of these scientific
applications have a lifespan of multiple decades so it is essential to port them
to current mainstream high-performance computing (HPC) systems deployed in
DOE in a timely fashion. A recent trend in the HPC systems is to add com-
modity accelerators, such as Nvidia GPUs and Intel Xeon Phi coprocessors, into
computer nodes so we can achieve increased performance within a limited power
budget. However, it is well-known in the HPC community that porting existing
applications to accelerators is a difficult task given the numerous unique set of
hardware features of accelerators and the complexity of software.

Although low-level programming models, such as CUDA [2] and OpenCL [10],
can often help deliver competitive performance for certain applications, they are
not productive porting solutions for large-scale parallel applications due to the
extreme and comprehensive changes required in the original source code. On
the other hand, high-level programming models such as OpenMP 4.0 [14] and
OpenACC [4] provide language annotations in the form of directives and clauses
for users to incrementally specify the semantics for porting to an accelerator.
Compilers and runtime systems then automatically take care of repetitive and
error-prone code transformations, thread scheduling, data management, and so
on. Therefore, it is more productive for users to use high-level directive-based
programming models to test the feasibility and profitability of using accelerators.

The OpenMP Accelerator Model, introduced as part of the OpenMP 4.0
specification, is a representative high-level directive-based programming model
aimed to simplify the programming for accelerators. In a previous study [12], we
created a prototype compiler for the OpenMP Accelerator Model and obtained
an early assessment. We extend our work by applying the model to port two non-
trivial DOE scientific applications: lattice-Boltzmann method and Compressible
Navies-Stokes equation. Both applications conduct a stencil computation, an
important category of scientific computing done in DOE facilities. However,
they have very different stencil sizes so they represent a spectrum of stencil
applications. However, they represent a spectrum of stencil applications by their
difference in stencil sizes. Our goal is to discover problems developers may face
when using the OpenMP Accelerator Model to port real applications. We also
share our solutions to the problems, including suggestions to improve the pro-
gramming model itself. Our contributions include: (1) providing the first study
using the OpenMP Accelerator Model in OpenMP 4.0 to port non-trivial scien-
tific applications, (2) illustrating the obstacles for porting real applications and
possible solutions and workarounds, and (3) suggesting improvements, including
new language features, of the OpenMP Accelerator Model to increase expres-
siveness and performance for accelerators.

The remainder of this paper is organized as follows. Section 2 gives an overview
of the accelerator support in the OpenMP 4.0 specification. Section 3 describes
the two applications. Porting experiences and performance results are given in
Sect. 4. Section 5 summarizes related work and Sect. 6 presents the conclusion and
future work.



Experiences of OpenMP Accelerator for DOE Stencil Applications 47

2 OpenMP 4.0’s Accelerator Support

OpenMP is a representative high-level directive-based programming model orig-
inally designed to address shared-memory programming. Starting from OpenMP
4.0, it has a set of language directives and runtime routines aimed at simplifying
the programming for accelerators. Collectively, the accelerator support is often
called the OpenMP Accelerator Model. The OpenMP accelerator model assumes
that a computation node has a host device connected with one or multiple target
devices. A target device, which can be any logical execution engine defined by
an implementation, has threads that behave almost the same as threads on the
host device. The OpenMP memory model is extended so that the code region
has its own data environment. A device appears to have an independent memory,
although it is allowed to share memory among devices.

The execution model is host-centric: a host device “offloads” data and code
regions to accelerators for execution. In particular, the target construct is intro-
duced for specifying a computation and the associated data to be offloaded to a
device. Initially, only a single thread starts on a device to run an implicit task
region. This single thread can fork more threads later when it encounters par-
allel constructs. Data-mapping attributes, specified using the map clause, define
how variables are handled for the device data environments. Data mapping often
involves data movement as host and device are commonly in different memory
spaces in modern accelerator architectures. To avoid repetitive creation and can-
cellation of device data environments, the target data directive defines a device
data region, in which multiple target regions can share the same device data.

Accelerators are often massively parallel architecture devices that support
many concurrent threads with a hierarchical organization. OpenMP 4.0 provides
the teams and distribute constructs to manage a two-level thread hierarchy. teams
creates a league of thread teams, and the master thread of each team executes the
region. distribute is closely nested in a teams region to share work among master
threads of teams. Other features in the OpenMP accelerator model include a tar-
get update directive to make specified items in the device data environment consis-
tent with their original list items, a target declare directive to specify the variables
or functions to be mapped to a device, some combined constructs to simplify the
programming, and an environment variable (OMP DEFAULT DEVICE) to indi-
cate the default device number, and a set of runtime library routines to set and
detect information related to accelerators.

3 Applications

Stencil computations are used in many large DOE scientific applications to solve
partial differential equations on structured grids. In this paper, we chose two
stencil applications, one using the lattice-Boltzmann method (LBM) and the other
solving the compressible Navier-Stokes equation (CNS), to represent non-trivial
scientific applications. The chosen LBM and CNS algorithms have very different
stencil sizes (0-point vs. 25-point) leading to different computational character-
istics. The LBM method operates in a streaming mode; memory is read once to
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perform the computation in the 0-point grid site. In the CNS method, mem-
ory from a grid site is repeatedly used in all the stencils that include that grid
site. Hence, effective caching is extremely important. With effective caching, the
arithmetic intensity (FLOPS per unit byte) can be quite high. The performance
of the LBM algorithm is often limited by bandwidth whereas the performance
of the CNS algorithm is often limited by arithmetic resources. These different
characteristics can lead to different implementation strategies when porting the
applications to a GPU device. We list a high level comparison between two
applications in Table 1.

Table 1. Comparison between LBM and CNS applications

Language AMR library Stencil Components Lines in codes

LBM C++ Chombo 0-point 19 4670 (12879 w/Chombo code)

CNS Fortran90 BoxLib 1D: 9-point 11 1242 (25967 w/BoxLib code)

3D: 25-point

In the LBM, hydrodynamics are described by a discrete kinetic equation for a
single-particle distribution function [5].

fi(j + eiΔt, t + Δt) = f̂i(j, t)
︸ ︷︷ ︸

Streaming

= fi(j, t) + Lik

(

fk(j, t) − f
eq
k (j, t)

)

︸ ︷︷ ︸

Collision

. (1)

The chosen LBM application uses Chombo [6], a parallel adaptive mesh refine-
ment (AMR) library used to solve partial differential equations. The domain
size selected in the experiment is a 643 Cartesian grid structure partitioned into
boxes, each of size 323. A total of 8 boxes cover the problem domain and 8000
time steps are performed in a single experiment. Figure 1 shows the pseudo code
for the LBM computation. In the experimental setup, a loop in the application
iterates over 8 boxes and performs computations to update the grid cells in each
box (represented in line 8). Parallelization can be applied to the loop over boxes
(line 8) or loops over grid cells (line 11 and line 16). Multi-level parallelization
is feasible only if it is supported in the implementation.

The CNS algorithm is based on finite-difference methods and the equations
are:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

∂ρu

∂t
+ ∇ · (ρuu) + ∇p = ∇ · τ , (3)

∂ρE

∂t
+ ∇ · [(ρE + p)u] = ∇ · (λ∇T ) + ∇ · (τ · u), (4)

where ρ is the density, u is the velocity, p is the pressure, E is the specific energy
density (kinetic energy plus internal energy), τ is the viscous stress tensor, λ
is the thermal conductivity, and T is the temperature. The problem domain in
CNS is represented by BoxLib [1], an AMR library very similar to Chombo. The
domain size of the CNS experiment is 643 and partitioned into “Fabs” (Fortran
array boxes), each of size 323. 50 time steps are performed and 5 output files are
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1 fi(cells , 19, boxes) = initial data;
2 fiUpdate(cells , 19, boxes) = 0;
3 U(grid , 4, boxes );
4 Macroscopic(U, fi);
5 for (int iTS = 0; iTS != nTimeStep; ++iTS)
6 {
7 int iBox;
8 for (every box)
9 {

10 { // Advance function
11 for (every cell)
12 Collision(fi, U);
13 Exchange(fi);
14 BC(fi);
15 Stream(fiUpdate , fi);
16 for (every cell)
17 Macroscopic(U, fiUpdate );
18 swap(fi , fiUpdate );
19 }
20 }
21 }

Fig. 1. LBM algorithm pseudo-code

1 fi(cells , 19, boxes) = initial data;
2 fiUpdate(cells , 19, boxes) = 0;
3 U(grid , 4, boxes );
4 Macroscopic(U, fi);
5 for (int iTS = 0; iTS != nTimeStep; ++iTS)
6 {
7 int iBox;
8 for (every box)
9 {

10 { // Advance function
11 for (every cell)
12 Collision(fi, U);
13 Exchange(fi);
14 BC(fi);
15 Stream(fiUpdate , fi);
16 for (every cell)
17 Macroscopic(U, fiUpdate );
18 swap(fi , fiUpdate );
19 }
20 }
21 }

Fig. 2. CNS application pseudo-code

generated during the computation. An outer loop iterates over all available Fabs
in the “multi-Fab” data structure (shown in line 5 in Fig. 2). Similar to the LBM,
multi-level parallelization is applicable if it is supported in the implementation.

4 Porting to GPUs

Our porting process starts with obtaining baseline performance of OpenMP ver-
sions of the applications. We incrementally add additional accelerator directives
and clauses to show the programming effort and performance impact. In partic-
ular, we experiment with directives and clauses for data reuse, loop collapsing,
loop scheduling and hierarchical thread mapping.

The hardware platform has 132 GB memory, two 8-core Intel E5-2670 CPUs,
and two Nvidia K20x GPUs. We use a prototype implementation of the OpenMP
Accelerator Model, HOMP (Heterogeneous OpenMP) [12], which is built on the
ROSE source-to-source compiler infrastructure [15] developed at Lawrence Liv-
ermore National Laboratory. The built-in OpenMP implementation in ROSE
supports OpenMP 3.0 directives for C, C++ and a subset of Fortran. Leverag-
ing ROSE’s flexibility to experiment with new language extensions, HOMP adds
the OpenMP accelerator support [12], including parsing and code transforma-
tions for target, target data, map and so on. HOMP generates CUDA code for the
growing demands in GPU programming. The original OpenMP runtime library
(referred to as XOMP) for ROSE has been extended to support thread config-
uration, loop scheduling, data management, reduction and many other required
operations on GPUs. We use the GNU Compiler Collection (gcc-4.4.6), Nvidia
6.0 SDK, nvcc compiler, and the Nvidia Visual Profiler [3] in this study.

4.1 Baseline Performance on CPU and GPU

The default setup in the LBM application has OpenMP directives inserted into the
loop for boxes (line 8 in Fig. 1). The OMP NUM THREADS environment variable
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Fig. 3. LBM CPU baseline performance Fig. 4. CNS CPU baseline performance

is set to 8 to assign at most 8 OpenMP threads to update the 8 boxes in the
loop. We assign at most 8 OpenMP threads to update the 8 boxes in the loop.
Each OpenMP thread will then update 323 cells inside a box, a strategy that
works well for boxes of this size [13]. The OpenMP parallel region terminates
at the end of the loop to form an implicit synchronous barrier between time
steps. Figure 3 shows the CPU’s serial and parallel performance. The parallel
execution with 8 OpenMP threads delivers a 6.76× speedup compared to the
serial execution on the testing system.

The CNS application by default has OpenMP directives at the loops for grid
cells (line 9, 11, and 13 in Fig. 2). These loops are 3-level nested loops that
iterate through the cubical structure in a Fab. The whole application consists of
14 such OpenMP parallel loops. In the configured testing case, loop iterations in
the outermost loop are evenly distributed into 8 OpenMP threads for 8 boxes.
Figure 4 shows the comparison between serial and parallel execution using 8
threads. The parallel execution delivers a 5.42× speedup on the testing machine.

Before the porting, we discovered a few obstacles to adding OpenMP accel-
erator directives. We had to modify a subset of code from both applications to
make the porting feasible. For example, the current HOMP only supports C/C++
input code to generate CUDA code for the GPU. We used a Fortran-to-C trans-
lator implemented in ROSE to translate the functions in the CNS into C language
versions for the porting. In the LBM application, several variables used in the target
loops were not mappable by the OpenMP 4.0 specification because they are part
of other C++ class objects. We copied those variables to temporary variables and
mapped the temporary variables as a workaround. The baseline implementations
on the GPU simply reuse the OpenMP parallel directives without any optimiza-
tion involved. Minimal OMP target and OMP map directives are used to identify
the target region and data to be mapped onto the device.

For the LBM application, the location of OpenMP directives in the CPU
implementation is not an ideal start location for the GPU implementation since
it contains multiple kernels in the loop body. Using an incremental approach,
we ported individual kernels first and moved the OpenMP directives to the loca-
tions of loops to the grid cells inside Collision, Macroscopic and Stream functions
(shown at line 11, 15 and 16 in Fig. 1). These three functions consume the major-
ity of execution time (47 % in Collision, 40 % in Stream and 7 % in Macroscopic)
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Fig. 5. LBM performance on GPU

Fig. 6. CNS performance on GPU

on the parallel CPU execution. The GPU baseline implementation for the CNS
application has OpenMP directives inserted into 1 loop in the ctoprim function,
3 loops in the hypterm function, and 7 loops in the diffterm function. Those
are the same locations that have OpenMP directives in the parallel CPU imple-
mentation. Diffterm function takes the greatest portion (34 %) portion of total
execution in the CNS application. Hypterm and ctoprim take 24 % and 13 %,
respectively.

The baseline GPU performance in both applications were not competitive
compared to their corresponding CPU version performance (shown in Figs. 5
and 6). After inspection with the Nvidia Visual Profiler [3], we found that the
baseline GPU implementations have extremely low achieved GPU occupancy
(<2 %). The baseline GPU implementations have extremely low achieved GPU
occupancy (<2 %). This is due to the nested loops, identified by the OpenMP
directives, which have only small loop iteration sizes in their outermost loop.
The translated CUDA codes exploit at most 40 GPU threads to perform the
computation and result in low parallelism and performance. The next step in
porting was to improve the GPU utilization by increasing the parallelism.
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4.2 Increasing Parallelism

Achieving high parallelism is the key for a GPU device to get high computing
performance. In addition to optimizing applications for high parallelism, the
porting process needs to take into account that the maximum parallelism in the
real execution is subject to certain CUDA limitations. These are the limitations
for K20X GPU used in this paper:

– At most 1024 threads in a thread block.
– At most 64 warps (32 threads/warp) in a SMX.
– A thread can have up to a 63 register usage.
– Each SM has up to 48 KB shared memory shared by multiple thread blocks.

We describe two feasible approaches to increasing parallelism for the chosen
applications.

The first approach is loop collapsing. Loop collapsing is a transformation that
converts multiple perfectly nested loops into a single loop. Compared to the orig-
inal outermost loop, the collapsed loop has a larger iteration size with potential
to expose higher parallelism. We apply the directive #pragma omp for collapse (n)
to perform loop collapsing. However, loop structure in the LBM application has
statements between the nested loops and does not form a perfectly nested loop.
Collapsing non-perfectly nested loops is not allowed by the OpenMP specifica-
tion. After reviewing the nested loop structure, we manually moved statements
between loops in LBM application into the innermost loop body since this change
causes no side effect and can form a perfectly nested loop. After collapsing, we
could exploit more GPU threads to perform parallel execution on the collapsed
loop. Therefore, more GPU threads could be assigned to perform parallel execu-
tion on the collapsed loop. The XOMP runtime incorporates the CUDA runtime
to maximize the utilization of the GPU threads. Compared with the baseline
GPU implementations, there are about 5× and 10× speedups delivered for the
LBM and CNS applications respectively (shown in Figs. 5 and 6).

The second option to increase parallelism is to use the multi-dimensional
thread structure supported in CUDA. In the LBM application, we can seamlessly
allocate 32× 32 threads to a thread block and have 32 thread blocks mapped to
the outermost loop. This can achieve 100 % occupancy in the execution if only 32
registers are given to each GPU thread. But there are only two concurrent thread
blocks in the setup due to the limitation in the allowed warp number. In the CNS
application, we can have the same allocation if ghost cells are not involved in
the computation. Otherwise, the loop iteration size becomes 40 (32 and 4 ghost
cells on both sides) in the three-level nested loop. To fulfill the CUDA limitation
discussed earlier, we allocate only 40 threads in a thread block and have multiple
thread blocks mapped to the loop iteration space. 16 concurrent thread block
are allowed in executions, and it is also the maximum allowed number in this
GPU model. This configuration has lower theoretical occupancy (50 %) and the
computation is inefficient due to the usage of partial-warp. The performance
is reported in histograms marked with multi-dim threadblock in Figs. 5 and 6.
Compared with the collapsing variants, a 1.5× speedup is achieved in the LBM
application but a marginal difference is shown for the CNS application.
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4.3 Loop Scheduling

OpenMP supports multiple loop scheduling policies, including static, dynamic,
guided, auto, and runtime. For regular loops running on CPUs, statically and
evenly dividing loop iterations among threads using a schedule(static) clause
(referred to as static-even schedule in this paper) often leads to the best per-
formance with minimal scheduling overhead. On the GPU, we need to perform
coalesced memory access for high performance. The static-even schedule will have
one GPU thread accessing multiple successive words in memory and lead to mul-
tiple memory transactions. A round-robin scheduling using schedule(static,1) will
fulfill the need to perform coalesced memory access on the GPU device. We apply
the round-robin schedule and compare only the kernel execution times in the CNS
application. Round-robin scheduling delivers the highest (76 %) improvement in
one kernel in the hypterm function and an average of 26.4 % improvement for
all kernels. Performance reports show modest improvement for total execution
time in the CNS application (1 %) and a larger improvement in the the LBM appli-
cation (2.8×). The performance analysis reports high overhead due to memory
movement between the host and device memories.

4.4 Exploiting Memory Hierarchy

Nvidia GPUs provide multiple specialized memories, including on-chip software
controllable cache shared within a thread block (referred to as shared memory)
and constant memory accessible by all threads for read-only global data. The
current OpenMP 4.0 lacks support to exploit the specialized memories. We pro-
pose to extend the OpenMP Accelerator Model to have a cache clause to allow
users to hint such opportunities. The clause has a form of cache (var list), in
which each variable listed can be further prepended by an optional const mod-
ifier. For example cache (array1[0:10], const array2[5:10]) tells the compiler that
there are two arrays which should be cached in the memory hierarchy of the
accelerator. One of the arrays is a read-only subarray. Similar to the map clause,
the cache clause can only be used with target or target data directives. Variables
shown in the cache clause must also show up in the map clause affecting the same
code region. With this clause, compilers translate the code to exploit either the
shared memory or the constant memory of GPUs.

After evaluating the two applications, the LBM gained more benefits from the
constant memory than the shared memory. We can store many constant coeffi-
cients, stride distances, and an array storing discrete velocity directions and an
array storing weights in the constant memory space. Figure 7 extracts the compar-
ison (execution time includes memory copying overhead) with only two kernels in
the LBM application to demonstrate the performance with constant memory usage.
A 1.32× speedup is achieved for the overall execution time from the implementa-
tion with constant memory. Higher speedups, from 1.74× to 2.44×, were observed
in the execution times for these three functions individually.

On the other hand, the CNS has relatively low constant data referenced by
multiple functions. But the CNS application uses a 25-point stencil in the 3D
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Table 2. Shared memory usage and GPU occupancy

Shared memory report

Kernel Size/block (byte) Threads/block Occupancy

Hypterm original 1920 40 50 %

Tiled 2 iterations 3840 80 56 %

Tiled 3 iterations 5760 120 50 %

Tiled 4 iterations 7680 160 47 %

Diffterm original 3520 40 41 %

Tiled 2 iterations 7040 80 28 %

Tiled 3 iterations 10620 120 25 %

Tiled 4 iterations 14080 160 23 %

Fig. 7. LBM with constant memory Fig. 8. CNS with shared memory

computation. Stencil data can therefore be stored in the shared memory space
to gain the benefit of the fast memory. We used shared memory for six kernels
(3 in Hypterm and 3 in Diffterm) in the GPU implementation for the CNS appli-
cation. Table 2 shows the details of the required shared memory size, thread
assignment and the achievable highest GPU occupancy. This implementation
doesn’t deliver higher performance compared to our earlier implementation with
the best performance (shown in Fig. 8) due to a much lower GPU occupancy.
To increase the active thread number in each thread block, loop tiling can be
performed in the loop for the second dimension in the 3D nested loop. We can
exploit more GPU threads after loop tiling but it also proportionally increases
the required shared memory size for each thread block. Table 2 also shows the
changes in GPU occupancy by tiling both kernels with different tiled sizes.
The GPU occupancy will be limited by the allowed 48KB shared memory size.
We conclude that exploiting shared memory in our implementation for the CNS
application does not improve performance. It would require other optimizations
to achieve efficient shared memory usage.
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4.5 Reducing Memory Movement Between Host and Device

We observed several variables and arrays are copied repetitively to the GPU’s
memory in different kernels. Using target data directives with map clauses can
usually reduce repetitive memory allocations and transferring. However, we
found that this is not a trivial task for the two chosen applications due to lan-
guage restrictions. OpenMP 4.0 defines a set of restrictions for variables listed
in the map clause, such as (1) data must have a complete type for C/C++, (2)
a variable that is part of another variable (e.g. a field of a struct) is not allowed
unless it is an array element or array section, (3) C++ class types mapped must
not contain static data or virtual members, and (4) pointer types are allowed
but the memory block to which the pointer refers to is not mapped. Chombo
(used in the LBM application) and BoxLib (used in the CNS application) share a
data structure called Fortran array box (Fab). Fab is a structure of arrays that
can store multiple components and it provides a high-level data abstraction.
Information, such as loop bounds, stencil size, and a data pointer to the compo-
nent array, is packaged inside the Fab. Members in Fab contain primitive arrays,
scalar variables, and some static data. An ideal strategy in the porting process
is to copy the entire Fab structure to the GPU’s memory space. However, the
Fab structure is not mappable according to OpenMP 4.0. A workaround task is
to extract and store all the members of Fab in primitive arrays. Then the tem-
porary arrays can be mapped and copied to the GPU memory. This will involve
a significant code modification in the porting process.

4.6 Manual Tuning for GPU Performance

We provide manual implementations for both applications to evaluate the achiev-
able performance through manual performance tuning. We manually implement
the chosen applications with the CUDA language and consider the possibilities
to involve OpenMP 4.0 standards and compiler transformations to automate the
process. The manual implementations serve as a reference to study the transfor-
mation obstacles in the design of the OpenMP accelerator model. Several manual
optimizations require good understanding in the application design to perform
code modifications and they are not implemented as automatic transformations
in this study.

The manually-tuned GPU implementation for the LBM application signifi-
cantly simplifies the Fab structure, restructures the code, and consolidates all
the memory copying. Other optimizations include hand-tuned kernels (including
BoxLib’s exchange function), exploiting constant memory, and several code mod-
ifications specifically for the GPU implementation. A simplified Fab structure
on GPU code is designed to store only the essential data members in the CPU’s
Fab structure. Data is allocated and copied to GPU memory once and reused by
all the kernels listed in the pseudo code in Fig. 1. This optimized implementation
delivers the best performance between the CPU’s and GPU’s implementations
(shown in Fig. 5).



56 P.-H. Lin et al.

The manual tuning processes for the CNS application minimize memory copy-
ing between the host and device, exploit efficient usage of shared memory, and
maximize GPU occupancy. A 43 thread block is chosen based on the ghost cell
size in the computation to avoid the partial warp usage. The code was modified to
have only minimal memory transfers between host memory and device memory.
All initialized data stored in the Fab data structure is copied to the device memory
before the computation. There are infrequent data movements which send only a
subset of computed data back to the host memory for boundary exchange per-
formed by the BoxLib library and visualization dumps. The manual code delivers
the best GPU performance with about 6× speedup compared to the best imple-
mentation with the OpenMP accelerator model (shown in Fig. 6). However, the
delivered performance is not superior to the performance on the CPU due to over-
heads in allocating, copying and freeing memory on the GPU. Eliminating that
overhead for the CNS application, the GPU execution time for the three kernels is
at a comparable level to the CPU execution time.

4.7 Productivity

We briefly discuss the productivity benefit by using the OpenMP accelerator
model. We choose the line number as the metric to evaluate the gain in produc-
tivity. Table 3 lists the essential information for the study. The number of accel-
erator directives inserted, lines in source code being ported, lines in the trans-
formed code on the CPU (host code), and the line of the generated CUDA code
on the GPU (device code), are collected in the table. Besides the code generated
by the HOMP compiler, each runtime function packs a series of low-level CUDA
function calls and additional codes to perform the designated task. Without the
runtime support, manual implementation needs to perform the same series of
CUDA function calls repetitively. For both transformed host and device codes,
Table 3 lists two counts with and without including the line numbers packaged
by the runtime functions. The count with lines performed in the runtime func-
tions provides an estimation for the code size in a manual implementation. As
shown in the table, using a few lines of directives can essentially save the efforts
of writing hundreds or even thousands of lines of generated code. Accelerator

Table 3. Productivity study using lines of code (LOC)

Functions Source LOC Directives Host LOC Device LOC Ratio (LOC/directives)

A B A B A B

LB collision 45 2 57 464 48 58 52.5 261.0

LB macroscopic 46 2 52 421 45 55 48.5 238.0

LB stream 21 2 53 460 35 45 44.0 252.5

CNS ctoprim 14 2 27 205 30 40 28.5 122.5

CNS hypterm 57 6 81 793 123 153 34.0 157.7

CNS diffterm 82 14 335 2647 206 276 38.6 208.8

A: Lines of code without counting in runtime;

B: Line sof code with counting in runtime
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directives supported by the OpenMP 4.0 can greatly simplify the porting process
and improve productivity. On the other hand, programming using the OpenMP
accelerator model does require additional domain knowledge, analysis, or opti-
mization to achieve high performance on the target platform. Occasional manual
code changes are needed also to workaround some language restrictions or expose
more parallelism. However, the efforts of learning low-level CUDA or OpenCL
would be more significant.

5 Related Work

Many previous studies [8,9,11,17] have evaluated the performance and produc-
tivity of OpenACC using a range of kernels or applications. For example, Wienke
et al. [17] presented their experiences with OpenACC using two real-world appli-
cations. OpenACC helped them reach 80 % of the best-effort OpenCL version
in a moderately complex simulation kernel. They reported that the inability to
exploit local memory of the GPUs could contribute to the loss of performance of
other complex OpenACC applications. Herdman et al. [8] used a hydrodynamics
mini-application to compare OpenACC, OpenCL and CUDA. They found that
OpenACC was extremely viable but their OpenCL and CUDA versions were
not optimized. Hoshino et al. [9] used both kernels and a real-world compu-
tational fluid dynamics applications to compare CUDA and OpenACC. They
reported that some complex Fortran data types such as arrays of derived types
and derived types with variable-length arrays are not supported by OpenACC,
but extensively used in the code.

The application experience of using the OpenMP accelerator support is
rare due to the lack of compiler support. Dietrich et al. [7] presented an app-
roach to measure the performance of applications utilizing OpenMP offloadings.
Their focus is at performance analysis on the Intel Xeon Phi coprocessor. Silva
et al. [18] compared OpenACC and OpenMP for accelerator computing. A set
of parallel programming patterns, not real applications, were used to compare
language features. No performance experiments were done due to the lack of
compiler support. Unat et al. [16] presented a domain-specific OpenMP-like pro-
gramming model for stencil methods. For small kernels, they realized up to
80 % of the performance of optimized CUDA versions. Our work provides the
first study of the performance and programmability of the OpenMP accelerator
model using the HOMP compiler [12]. OpenACC [4] provides a cache (var list)
directive to support cache memory on accelerators. However, this directive may
only appear inside loops. By contrast, our proposed cache() is a clause which can
be used with one or multiple code regions. Besides leveraging the highest level
of cache, the additional const modifier in our design can support the read-only
semantics to exploit constant memory.

6 Discussion and Future Work

We have found that the OpenMP Accelerator Model is a productive approach
for porting existing applications to GPUs. The porting strategy can be straight-
forward. Users should prepare a baseline OpenMP version running on CPUs.
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Then the target directive can be inserted around parallel regions. There are only
a limited set of accelerator directives and clauses in OpenMP 4.0 to improve
parallelism, scheduling, and data reuse, among others. So a strategy is to incre-
mentally apply them and check the effect by performance analysis tools.

However, real applications pose unique challenges to effectively apply
directive-based programming models. (1) A scientific application often has com-
plex data types which may not be supported by the language specifications.
A common workaround is to manually copy a portion of the complex data
object into a variable of a simpler, supported type. (2) An application may have
non-perfectly nested loops, which can be a candidate for collapsing after simple
transformations. One possible way to improve productivity is to extend the col-
lapse(n) clause to accept a flag, like collapse(n:force), to force collapsing across
multiple non-perfectly nested loops when applicable. Compilers could enforce a
transformation to form a perfectly nested loop, but users have to ensure the
correctness of the code movements. (3) Large-scale DOE applications usually
leverage many third-party libraries to increase productivity. Porting such an
application may involve a challenging task to port the underlying libraries. (4)
In an ideal world, users should be able to simply insert directives into existing
codes to port to new platforms. However, non-trivial code restructuring may
be needed to expose the right granularity of parallelism. (5) Our attempt to
exploit special caches on GPUs generated some interesting results. Using con-
stant memory for LBM resulted in significant performance improvements. On the
other hand, using shared memory for CNS does not deliver higher performance in
our study. The intuitive implementation to exploit special caches on GPUs may
degrade the performance. Additional analysis and optimization support will be
helpful to achieve good performance on GPU devices.

Our future research directions are in the following: (1) testing extensions to
port complex data types and non-canonical control structures (e.g. non-perfectly
nested loops). (2) using more scientific applications to find improvements to the
directive-based programming models, (3) further investigation of ways of exploit-
ing shared memory for better performance in real applications, and (4) exploring
extensions to express semantics related to managing multiple accelerator devices.
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