Parallelization Methods for Hierarchical
SMP Systems

Larry Meadows™), Jeongnim Kim, and Alex Wells

Intel Corporation, Hillsboro, OR, USA
{lawrence.f.meadows, jeongnim.kim,alex.m.wells}@intel.com

Abstract. We discuss several parallelization methods for multi-level
hierarchical SMP systems using a stencil-based finite difference code.
Performance comparisons and suggestions for OpenMP runtime improve-
ments are provided.

Keywords: Stencil - Nested parallelism - Runtime support

1 Introduction

Modern symmetric multi-processors (SMPs) have multiple levels of memory hier-
archy and multiple levels of parallelism. In this paper we explore various methods
to exploit those multiple levels including OpenMP, nested OpenMP, OpenMP 4
teams/distribute, and a higher-level C++ template library called SIMD build-
ing blocks (SBB). Additionally we explore various methods of load balancing
including manual load balancing and the OpenMP collapse clause. As a result
of these experiments we offer suggestions for OpenMP implementors.

We use the diffusion test code from [1]. Our work shows alternatives to the
plesiochronous barriers used in Chap. 5 of [2], some of which may be more under-
standable to and usable by most OpenMP programmers.

2 The Test Code

The diffusion test code (hereafter referred to as just diffusion) is a simple 7-point
stencil code in three dimensions, shown in Fig. 1.

The diffusion kernel is memory bandwidth bound. To see this we can compute
the ratio of floats (or doubles) accessed to floating point operations. Each itera-
tion has 7 loads, 1 store, 7 multiplies, and 6 adds. There are thus 13 floating point
operations and 8 memory accesses, resulting in a ratio of about 2.5 bytes/flop
(single precision). As an example, the current generation Intel® Xeon Phi™™
coprocessor’ has a peak floating point performance on the order of 1000E9
flops/second and a memory bandwidth on the order of 170E9 bytes/second,

! Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.
and/or other countries.
© Springer International Publishing Switzerland 2015

C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 247-259, 2015.
DOI: 10.1007/978-3-319-24595-9_18

248 L. Meadows et al.

N; ++z)

for (int z = 0; z <
= y < N; ++y)

for (int y = 0;
for (int x =

0; x < N; ++x)

£2[z] [y] [x] cc x £1[z] [yl[x] +
cw * f1[z] [y] [x-1] +
ce * f1[z] [yl [x+1] +
cn * £f1[z][y-11[x] +
cs * f1[z] [y+1]1[x] +
cu * f1[z-11[yl[x] +
cd * f1[z+1] [yl [x];

Fig. 1. Diffusion psuedocode

which is only about 0.17 bytes/flops, far less than required. Thus, our optimiza-
tion efforts are focused on memory optimizations.

There are two memory optimizations: achieving maximum memory band-
width from the processor, and exploiting reuse by tiling for cache. The former
is largely done by the compiler, though we do use non-temporal stores (which
are particularly helpful on the Intel® Xeon Phi™ coprocessor. The latter is
accomplished in different ways depending on the particular code version.

Reuse occurs because of the +1 subscript arithmetic. For the contiguous
(unit-stride) X dimension, the reuse occurs automatically (spatial reuse). For
the Y and Z dimensions, the current iteration reuses two elements from the
previous iteration (temporal reuse); Y becomes ¥ — 1, and Y 4 1 becomes Y.
The key is to tile the loops so that the previous elements from the Y and Z loops
remain in cache.

3 SIMD Building Blocks

SIMD Building Blocks (SBB) is a C++11 template library providing concepts
of Containers, Accessors, Kernels, and Engines to abstract out different aspects
of creating an efficient data parallel (SIMD + threading) program. The Con-
tainers encapsulate the memory data layout of an Array of “Plain Old Data”
objects. Kernels represent the work inside a loop body and use Accessors with
an array subscript operator (just like C4++ arrays) to read from or write to the
objects in the Containers. Engines visit a Kernel over an iteration space. Since
these concepts are abstracted out, multiple concrete versions can exist and can
encapsulate best known methods, thus avoiding common pitfalls in generating
efficient SIMD code.

For example, when speaking of efficient SIMD code, the terms “Array Of
Structures” (AOS) and “Structure Of Arrays” (SOA) are often used. In order
to utilize SIMD load/store instructions, the data must be in a SOA so that a
vector register can be loaded with the same data members, instead of having to
emit instructions to load each data lane separately or having to perform a gather
over AOS data. However most object oriented code uses data in an AOS format.

Parallelization Methods for Hierarchical SMPSystems 249

Changing one’s algorithms to work with SOA is cumbersome and difficult to
maintain. With SBB, one can use an SoaContainer < Object > and the data
will be stored in memory as SOA, but a kernel just sees an instance Object.
This allows kernels to just work with the Objects and implement their algorithm
and leave the complexities of SOA and data alignment to the container. SBB
provides multi-dimensional 2d and 3d containers as well, with the added benefit
of handling address calculation of multiple index variables through an accessor
with multiple array subscript operators (just like a 2d or 3d c++ array). This
often yields simpler kernel code.

Likewise the Engines abstract out iteration. Engines can be declared to gen-
erate scalar or SIMD code, to run single threaded, or with Intel® Threading
Building Blocks (Intel® TBB), or with OpenMP threading. When an Engine
runs a Kernel, it is given an iteration space and blocking size. The concrete
engine can then divide the iteration space up into blocks and execute the Kernel
over the blocks. 2d and 3d Engines are provide good cache blocking behavior
out of the box. Switching threading models is as easy as changing a typedef and
users can choose to make their own Engines that fit in SBB’s framework (e.g., a
team based threading Engine that uses threads on the same core to cooperatively
work on the same block, as described in the next section).

4 Nested Threading

Intel® Xeon® processors and the Intel® Xeon Phi™ coprocessor consist of
multiple cores. Each core has multiple hardware thread contexts, often called
hyperthreads or simultaneous multi-threading (SMT) threads. The thread con-
texts each have their own register sets and other state but share all of the
execution units and caches on the core.

In many cases it is helpful to have a two-level nested parallel structure that
corresponds to the hardware threading structure. The outer level corresponds to
the cores, and the inner level corresponds to the hardware threads within a core.
The outer level determines the data decomposition (implicitly or explicitly),
which in turn determines the data that resides in a particular core’s caches. The
inner level threads then cooperate on the data residing in the shared caches. This
often reduces cache pressure since decomposition is per core, not per thread, and
can lead to substantial speedups.

5 Code Variants

The following subsections describe the code variants used in the performance
study. All of the codes use a common inner loop expressed in an inline function.
The code for the inner loop is shown in Fig. 9 near the end of the paper.

The code in Fig.9 incorporates some improvements from [2], namely align-
ment, streaming stores, and special treatment of the two boundary elements.

250 L. Meadows et al.

The latter improves vectorization efficiency and allows the alignment optimiza-
tion by computing the Oth and nx-1th elements incorrectly as part of a vector
operation, and then correcting the results with a scalar operation.

Note: the SBB implementation does not use the inline function. SBB tem-
plates take care of alignment and streaming stores, and handle the boundary
elements with explicit halo regions.

5.1 Baseline

The baseline version is a modified version of the optimized code from [1]. An
outline of the code is shown in Fig. 2. The outer loop is a timestep loop. Each
iteration computes the stencil on the entire iteration space. There are two copies
of the stencil array; one acting as an input array, and the other acting as an
output array. The arrays are switched at the end of each timestep. A barrier is
needed to ensure that all the threads have finished storing to the current output
array before switching the two arrays.

#pragma omp parallel
for (int i = 0; i < count; ++i)
{
define YBF 4
define ZBF 4
pragma omp for collapse(2) nowait
for (int yy = 0; yy < ny; yy += YBF)
for (int zz = 0; zz < nz; zz += ZBF) {
int ymax = yy + YBF;
int zmax zz + YBF;
for (int z = zz; z < zmax; z++) {
for (int y = yy; y < ymax; y++) {
diffusion_x_loop(fi_t, f2_t, nx, ny, nz, y, z,
cc, cw, ce, cn, cs, ct, cb);

}
}
3
#pragma omp barrier
REAL *xt = f1_t;
fi_t = f2_t;
f2_t = t;

Fig. 2. Diffusion baseline

The Y and Z loops are tiled into 4x4 blocks. The 4x4 blocking factor was
empirically determined using SBB and then back-ported to the various diffusion
implementations. This loop nest is then collapsed and distributed amongst the
threads. The inner loop is vectorized (see Fig.9).

Parallelization Methods for Hierarchical SMPSystems 251

Note that in the baseline case, the load balance and data distribution are
implicitly determined by the threads executing the collapsed for loop. We explore
various other methods to improve load balance and data distribution in the
implementations that follow.

#pragma omp parallel
{
int z0, ze, yO0, ye;
// compute Y and Z begin and end points yO0,ye,z0,ze

for (int i = 0; i < count; ++i) {
for (int yy = yO; yy < ye; yy += YBF)
for (int zz = z0; zz < ze; zz += ZBF)
{
int z1 = zz + ZBF;
int y1 = yy + YBF;
for (int y = yy; y < yi; y++) {
for (int z = zz; z < z1; z++) {
diffusion_x_loop(fi_t, f2_t, nx, ny, nz, y, z,
cc, cw, ce, cn, cs, ct, cb);

}

#pragma omp barrier
REAL *t = f1_t;

fi_t = f2_t;
f2_t = t;
}
} // parallel

Fig. 3. Diffusion 2d decomposition

5.2 Hand Decomposed

The hand decomposed version of diffusion is very similar to the baseline version,
except that the blocks are distributed by hand. An outline of the code is in
Fig. 3. We begin by obtaining the thread number mythread, and then compute
our position in the Z and Y dimensions. Our position in the Y dimension is
mod(mythread,nHT') and our position in the Z dimension is mythread/nHT
(using integer division) where nHT is the number of threads per core: 2 for the
Intel® Xeon® processor and 4 for the Intel® Xeon Phi™ coprocessor. Then we
distribute the blocks in each dimension as evenly as possible. Finally, there are
two nested outer loops (equivalent to the collapsed loops in the baseline code)
that iterate over the Z and Y blocks, and two nested inner loops that iterate
over the elements in each block.

One advantage of this hand decomposition is that a core always has all the
Y blocks for each Z block. The collapsed loop might split some blocks between

252 L. Meadows et al.

threads, since it distributes the full Z % Y iteration space without regard to the
original loop nesting.

One disadvantage of this decomposition is that the load balance is not always
as good. For example, consider a problem size of 512 and a 60-core Intel® Xeon
Phi® part. There are 512/4 or 128 blocks in each dimension. The number of
threads in the Z dimension is 60, so the first 8 cores will each get 3 blocks of Z,
and the last 52 will get 2 blocks of Z. Thus 52 of the cores will have 2/3 as much
work to do as the other 8 cores.

In the collapsed case, there are 512*512/4 or 65536 iterations divided amongst
240 threads, resulting in 1092 or 1093 iterations per thread; the load imbalance
is far less severe.

5.3 Nested Parallelism

As stated earlier, it is often useful to have the threads within a core cooperate
on a single block of data residing in that core’s caches. Nested OpenMP seems to
be a good choice for this. Because current implementations of nested OpenMP
have relatively high overhead, we placed the inner parallel region further out
in the code than might have been desirable (this is explained more in the next
section). This led to the code in Fig. 4.

#pragma omp parallel
// compute decomposition in Z
#pragma omp parallel for

for (int yy = 0; yy < ny; yy += ybf)
for (int zz = z0; zz < ze; zz += zbf)

{
int zl1 = zz + zbf;
if (z1 > nz) zl1 = nz;
int y1 = yy + ybf;
if (y1 > ny) yil = ny;
for (int z = zz; z < z1; z++) {
for (int y = yy; y < y1; y++) {
diffusion_x_loop(fi_t, f2_t, nx, ny, nz, y, z,
cc, cw, ce, cn, cs, ct, cb);
}
}
}
} // parallel

Fig. 4. Nested OpenMP

The parallel region enclosing the code in Fig.4 computes its piece of the Z
dimension just as described in the section on hand decomposition. Then the

Parallelization Methods for Hierarchical SMPSystems 253

inner parallel for divides the blocks in the Y dimension so that each thread is
working on 1/4 (or 1/2 for the processor) of the Y elements, but only on the Z
elements for that core.

The cache footprint for each core for the Intel® Xeon Phi™ coprocessor is
thus NY * NZ/60 * N X x4 bytes, which is over 8 MB for the 512% problem and
thus far too large for L2. It would probably be better to tile the Y loop again,
or to attempt the solution shown in the next section.

for (int z = zz+ymythread; z < zl1; z+=nHTs) {
for (int y = yy; y < yil; y++) {
diffusion_x_loop(fi_t, f2_t, nx, ny, nz, y, z,
cc, cw, ce, cn, cs, ct, cb);

Fig. 5. Hand nested inner loops

5.4 Hand Nested

In the hand nested case, we divide the Z dimension as before, but we use a trick
to ensure that the hardware threads on a core cooperate on the same block of
data. The outer loops are the same as those in Fig. 4, but the inner loops are
different as shown in Fig. 5. Here nHTs is the number of threads per core and
ymythread is the thread number within the core. We divide the work amongst
the threads by assigning the Z iterations round-robin to the threads (note that
each thread gets only one iteration on the coprocessor).

So that threads that finish early don’t race ahead to the next block, we follow
the code above with a core barrier. This barrier is not required for correctness.
The core barrier uses two 4-byte words. Each thread sets its byte in the first
word, then waits until all the bytes are set. It then does the same for the second
word. The value set by a thread toggles between 0 and 1 every time the barrier is
encountered, thus removing any need for re-initialization. Two words are needed
in case of back-to-back barriers (an alternate formulation using only one word is
available but somewhat more complicated). The core barrier is quite fast (under
200 clocks) since all the threads on the core share a cache. The core barrier is
also described in [3].

The hand nested code is really the code we want to use with nested OpenMP,
but the overhead of nested OpenMP is too high. Again looking at the 5122 case,
the computation performed by the tile loop in Fig. 4 is 4x4+512/16 or 512 vector
loop iterations (in other words, 16 calls to diffusion_x_loop). Using reference
data we can compute the cost of a loop iteration as roughly between 5000 and
15000 clock cycles. Currently nested OpenMP overheads are greater than 500
clocks for fork-join of a nested parallel region, making nested OpenMP unusable
at such fine granularity.

254 L. Meadows et al.

5.5 Crew and Teams

Finally we experimented with two different lower-overhead implementations.
Crew is a very lightweight experimental nested threading model for OpenMP
that exists in the Intel® C++ Composer XE compiler. Crew creates one OpenMP
thread per core, and one extra thread for each additional hyperthread (3 extra
threads for the coprocessor). The notation #pragma intel_crew parallel for
then causes the main thread and the additional threads to divide the work for the
following loop; however, no nested OpenMP regions are created and a dynamic
scheduling policy is used. The lack of nested OpenMP overhead greatly reduces
the overhead for nested parallelism.

Teams are designed for device code, but using #pragma device if (0) causes
the code to be executed on the host. Creation of teams involves less overhead than
nested OpenMP. Unfortunately, there is a need for a barrier of all of the threads
in the team at each timestep, and the current definition of the teams construct
does not allow a barrier. Thus the answers from the teams implementation are
incorrect.

In both the crew case and the teams case, we parallelized the same loop as
in the nested OpenMP case (rather than our preferred loop as was done in the
hand nested case). Otherwise the code looks the same as the OpenMP nested
code.

We ran the crew experiments only on the Intel® Xeon Phi™ coprocessor,
and the teams experiments only on the Intel® Xeon® processor. The results are
included for completeness.

5.6 SBB

The SBB version in Fig. 6 uses template programming to generate multiple ver-
sions of the same diffusion kernel (diffusion0dd) by varying Containers (AOS,
SOA, Tiled), Accesors (YBF, ZBF), and Engines (OpenMP, TBB). Here, we
present a set of data generated using Soa3dContainer and OpenMP engine and
YBF =ZBF = 4. Essentially, this SBB version is the same as the baseline version.
In fact, the optimal block sizes of the baseline code are “auto-tuned” based on
the extensive SBB data. C++ 11 features (auto, lambda functions) and predfined
SBB_ macros faciliate compact and efficient codes that can be easily incorporate
into the existing C++ applications.

6 Performance Experiments

We used two different systems for our experiments. The Intel® Xeon® system
is a dual socket E5-2697 v3 (formerly code-named Haswell) @ 2.60 GHz. Each
socket has 14 cores with two hardware cores per thread. The Intel® Xeon Phi™
system is a BIPRQ-7110 P/X @ 1.10 GHz. We used 60 of the 61 cores, each with
four hardware threads.

Tables 1 and 2 contains the raw data (in GFlops/Second) for the two sys-
tems. Figures 7 and 8 show the performance in charts. The data in the charts is

Parallelization Methods for Hierarchical SMPSystems 255

//containers: SOA for 3D with +-1 Halo regions
const int StencilHaloSize = 1;
using Container=sbb::Soa3dContainer<float, StencilHaloSize, Allocator>;

Container inputContainer(nx,ny,nz);
Container outputContainer(nx,ny,nz);

//iterator space
sbb: :Block3dBounds iterationSpace;
iterationSpace.dl.set(StencilHaloSize,nx-StencilHaloSize);// for d2 & d3

//block size
sbb: :Block3dSize blockSize;
blockSize.dl=nx; blockSize.d2=YBF; blockSize.d3=ZBF;

auto in = inputContainer.access();
auto out = outputContainer.access();

//Define 2 kernels
//"0dd" that reads from "in" and writes to "out"
SBB_KERNEL_BEGIN(diffusion0dd)
SBB_NON_TEMPORAL_BEGIN
SBB_ITER_D321_BEGIN(z, y, x)
{
float result = ccx in[z][y][x] + cw* in[z] [y][x-1] + ...;
out[z] [yl [x] = result;

}
SBB_ITER_END
SBB_NON_TEMPORAL_END
SBB_KERNEL_END
// "Even" that reads from "out" and writes to "in"

sbb: :OpenMp3dEngine<sbb: :VectorCode> the3dEngine;

for(int i=0; i<count; ++i)

{
the3dEngine.run(diffusionOdd, iterationSpace, blockSize);
the3dEngine.run(diffusionEven, iterationSpace, blockSize);

}

Fig. 6. SBB diffusion code

normalized to the memory bandwidth (Stream Triad) for the platform: 108 GB/s
and 158 GB/s, respectively.

On the Intel® Xeon® coprocessor, the hand-nested code is clearly the best
except in the 2563 case, where it is still competitive. One surprise is how well
the nested version performs.

256 L. Meadows et al.

Xeon
1.4+ [collapse [hand nest M OMP nest
[2d decomp [teams [SBB

1.2¢
1.0f
0.8+
0.6
0.4
0.2+
0.0

224 256 448 512

N

Fig. 7. Intel® Xeon® processor normalized performance

Xeon Phi

14+ [collapse [hand nest [OMP nest
[2d decomp [EEE crew [SBB
1.2¢ —

1.0

0.8

0.6

0.4}

0.0

256 480

N

Fig. 8. Intel® Xeon Phi™ coprocessor normalized performance

Parallelization Methods for Hierarchical SMPSystems 257

static inline void
diffusion_x_loop(const REAL *f1_t, REAL *f2_t,
int nx, int ny, int nz,
int y, int z,
REAL cc, REAL cw, REAL ce, REAL cn, REAL cs, REAL ct, REAL cb)

int x;

int ¢, w, e, n, s, b, t;

const REAL *restrict pc;

= 0;

= x +y * (nx + NXP_DELTA) + z * (nx + NXP_DELTA) * ny;
=c-1;

=c+ 1;

(y ==0) ? c: c- (nx + NXP_DELTA) ;
=(y==mny - 1) ? c : c + (nx + NXP_DELTA);

= (z==0) ? c: c - (nx + NXP_DELTA) * ny;
=(z==nz-1) ? c : ¢ + (nx + NXP_DELTA) * ny;
pc = &f1_t[cl;

poc = &f2_t[c];

__assume_aligned(pc, CACHE_LINE_SIZE);

. oTn B 0o = 0 X
]

#pragma simd
for (x = 0; x < N_REALS_PER_CACHE_LINE; ++x)
poclx] = cc * pclx] +
cw * pw[x] + ce * pelx] +
cs * ps[x] + cn * pn[x] + ct * ptlx] + cb * pb[x];
// element 0
poc[0] = cc * pc[0] +
cw * pc[0] + ce * pe[0] +
cs * ps[0] + cn * pn[0] + ct * pt[0] + cb * pb[0];
pragma vector nontemporal
pragma simd
for (x = N_REALS_PER_CACHE_LINE; x < nx; x++)
{
poclx] = cc * pclx] +
cw * pwlx] + ce * pel[x] +
cs * pslx] + cn * pn[x] + ct * pt[x] + cb * pb[x];
}
// element nx-1
poc[nx-1] = cc * pc[nx-1] +
cw * pwlnx-1] + ce * pclnx-1] +
cs * ps[nx-1] + cn * pn[nx-1] +
ct * pt[nx-1] + cb * pb[nx-1];

Fig. 9. Diffusion inner loop

258 L. Meadows et al.

Table 1. Intel® Xeon® processor Table 2. Intel® Xeon Phi™ coprocessor
(GF/Sec) (GF/Sec)

224 | 256 448 | 512 240 |256 480 512

Collapse 83.2/109.1| 62.1| 81.9 Collapse 171.8 1 147.0 1924 |162.7
2d decomp | 117.7| 99.8|101.4| 90.6 2d decomp | 180.9 | 120.2 | 187.1 |137.8
Hand nest |133.3| 98.6|135.8 | 126.7 Hand nest |162.9 1 120.3 | 207.0 | 159.2

Teams 88.41105.2103.8| 91.2 Crew 169.3 | 113.31193.0 |153.1
OMP nest | 101.7 | 117.0 | 103.5 | 105.2 OMP nest | 87.7| 66.0| 120.4| 87.3
Sbb 83.9 75.9| 76.4| 78.0 Sbb 165.0 | 163.5 | 185.0 |180.0

On the Intel® Xeon Phi™ coprocessor, the hand nested version is still most
competitive. One pleasant surprise is how well the original blocked and collapsed
version performs; this is nice because it is relatively easy to write compared to
the others. This data also demonstrates the strength of SBB. For users that are
comfortable with C++ template libraries, SBB is an excellent choice that also
enables easy experimentation with different containers and blocking factors.

7 Conclusions and Future Work

Nested OpenMP is a natural way to exploit hardware with two-level thread-
ing, but the overhead is currently prohibitive for very fine grained threading,
especially on the current generation of the Intel® Xeon Phi™ coprocessor.
Alternatives such as hand nesting are possible, but can be tricky to write and
to maintain, and may not be portable (especially with respect to performance).

Some of the performance issues with nested OpenMP are inherent in the
OpenMP specification (thread teams, various query functions, ICVs, etc.) and
it would be beneficial to consider changes or additions to the specification to
make nested parallelism more lightweight. Other performance issues are related
to quality of implementation. Hopefully this paper gives more impetus to the
developers to improve their implementations.

Some of the OpenMP requirements can be relaxed when using OpenMP 4.0
teams, but currently those have restrictions (most importantly, that they need
to be used in a device region) that make them unsuitable for general use. Making
teams more general is a possible alternative to loosening the requirements for
nested OpenMP.

One problem with picking diffusion for this paper is that there isn’t enough
work in the stencil. Real codes (e.g., various oil and gas codes) have far more
complex stencils. Our experience has shown that in these cases, nested threading
and blocking have much greater impact.

With the exception of SBB, none of these codes address load balancing,
which is significant when the problem size doesn’t match the number of cores
and threads available. This is clearly evident in the 2563 and 5123 problems run

Parallelization Methods for Hierarchical SMPSystems 259

on the Intel® Xeon Phi™ coprocessor, where SBB is the best performer. More
work is needed to create a pure OpenMP dynamically scheduled code that still
has good cache locality. Attempts using OpenMP tasking did not achieve good
performance. We attribute this to high overhead when creating OpenMP tasks.

There are a few anomalies in the data: core threading on the Intel® Xeon®
processor is poor for the 2563 problem; nested parallelism on the Intel® Xeon
Phi™ coprocessor is far worse than on the processor; SBB performance is worse
on the processor than on the coprocessor; tiled/collapsed code performs reason-
ably well on the coprocessor but not as well on the processor. We are investigating
these issues.

SBB is a useful alternative for C++ programmers and is reasonably easy to
use compared to some of the more complicated techniques.

References

1. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Morgan Kauffman, Boston (2013)

2. Dempsey, J.: High performance parallelism perls. In: Jeffers, J., Reinders, J. (eds.)
Pesiochronous Phasing Barriers, pp. 87-115. Morgan Kauffman, Boston (2015)

3. Briggs, J., et al.: Separable projection integrals for higher-order correlators of the
cosmic microwave sky: acceleration by factors exceeding 100. Cornell University
Library. http://arxiv.org/abs/1503.08809

http://arxiv.org/abs/1503.08809

	Parallelization Methods for Hierarchical SMP Systems
	1 Introduction
	2 The Test Code
	3 SIMD Building Blocks
	4 Nested Threading
	5 Code Variants
	5.1 Baseline
	5.2 Hand Decomposed
	5.3 Nested Parallelism
	5.4 Hand Nested
	5.5 Crew and Teams
	5.6 SBB

	6 Performance Experiments
	7 Conclusions and Future Work
	References

