
Christian Terboven · Bronis R. de Supinski
Pablo Reble · Barbara M. Chapman
Matthias S. Müller (Eds.)

 123

LN
CS

 9
34

2

11th International Workshop on OpenMP, IWOMP 2015
Aachen, Germany, October 1–2, 2015
Proceedings

OpenMP:
Heterogenous Execution
and Data Movements

Lecture Notes in Computer Science 9342

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Christian Terboven • Bronis R. de Supinski
Pablo Reble • Barbara M. Chapman
Matthias S. Müller (Eds.)

OpenMP:
Heterogenous Execution
and Data Movements
11th International Workshop on OpenMP, IWOMP 2015
Aachen, Germany, October 1–2, 2015
Proceedings

123

Editors
Christian Terboven
RWTH Aachen University
Aachen
Germany

Bronis R. de Supinski
Lawrence Livermore National Laboratory
Livermore, CA
USA

Pablo Reble
RWTH Aachen University
Aachen
Germany

Barbara M. Chapman
University of Houston
Houston
USA

Matthias S. Müller
RWTH Aachen University
Aachen
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24594-2 ISBN 978-3-319-24595-9 (eBook)
DOI 10.1007/978-3-319-24595-9

Library of Congress Control Number: 2015950929

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

OpenMP is a widely accepted, standard application programming interface (API) for
high-level shared-memory parallel programming in Fortran, C, and C++. Since its
introduction in 1997, OpenMP has gained support from most high-performance
compiler and hardware vendors. Under the direction of the OpenMP Architecture
Review Board (ARB), the OpenMP specification has evolved up to the release of
version 4.0. This version includes several new features like accelerator support for
heterogeneous hardware environments, an enhanced tasking model, user-defined
reductions, and thread affinity to support binding for performance improvements on
non-uniform memory architectures. As indicated in its recently released comment draft,
version 4.1 will refine the support for accelerators and expand the constructs to express
irregular parallelism and data dependencies.

The evolution of the standard would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. OpenMP is important
both as a programming model for single multicore processors and as part of a hybrid
programming model for massively parallel, distributed memory systems built from
multicore or manycore processors. Since most of the growth in parallelism in exascale
systems is expected to arise within a node, these systems will increase the significance
of OpenMP, which offers important features to exploit that capability.

The community of OpenMP researchers and developers in academia and industry is
united under cOMPunity (www.compunity.org). This organization has held workshops on
OpenMP around the world since 1999: the European Workshop on OpenMP (EWOMP),
the North American Workshop on OpenMP Applications and Tools (WOMPAT), and the
Asian Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted
annual audiences from academia and industry. The International Workshop on OpenMP
(IWOMP) consolidated these three workshop series into a single annual international
event that rotates across Asia, Europe, and the Americas. The first IWOMPworkshop was
organized under the auspices of cOMPunity. Since that workshop, the IWOMP Steering
Committee has organized these events and guided development of the series. The first
IWOMP meeting was held in 2005, in Eugene, Oregon, USA. Since then, meetings have
been held each year, in Reims, France, Beijing, China, West Lafayette, USA, Dresden,
Germany, Tsukuba, Japan, Chicago, USA, Rome, Italy, Canberra, Australia, and Salva-
dor, Brazil. Each workshop has drawn participants from research and industry throughout
the world. IWOMP 2015 continued the series with technical papers, tutorials, and
OpenMP status reports. The IWOMP meetings have been successful in large part due to
the generous support from numerous sponsors.

The cOMPunity website (www.compunity.org) provides access to the talks given at the
meetings and to the photos of the activities. The IWOMPwebsite (www.iwomp.org) provides
information on the latest event. This book contains the proceedings of IWOMP 2015.

http://www.compunity.org
http://www.compunity.org
http://www.iwomp.org

The workshop program included 19 technical papers, two keynote talks, and advanced
tutorials on OpenMP. All technical papers were peer reviewed by at least three different
members of the Program Committee.

October 2015 Christian Terboven
Bronis R. de Supinski

Pablo Reble

VI Preface

Organization

Program Committee Co-chairs

Christian Terboven RWTH Aachen University, Germany
Bronis R. de Supinski LLNL, USA

Tutorials Chair

Michael Klemm Intel, Germany

Publication Chair

Pablo Reble RWTH Aachen University, Germany

Local Chair

Matthias S. Müller RWTH Aachen University, Germany

Local Organization

Agnes Ramalho-Mendes RWTH Aachen University, Germany
Marco Carboni RWTH Aachen University, Germany

Program Committee

Eduard Ayguadé BSC and Universitat Politecnica de Catalunya, Spain
Mark Bull EPCC, University of Edinburgh, UK
Jacqueline Chame ISI, USC, USA
Nawal Copty Oracle Corporation, USA
Luiz DeRose Cray Inc., USA
Alejandro Duran Intel, Spain
Nasser Giacaman University of Auckland, New Zealand
Chunhua Liao LLNL, USA
Kent Milfeld TACC, USA
Bernd Mohr Jülich Supercomputing Center, Germany
Philippe Navaux UFRGS, Brazil
Stephen Olivier Sandia National Laboratories, USA
Jairo Panetta ITA, Brazil
Vinod Rebello UFF, Brazil
Alistair Rendell Australian National University, Australia
Mitsuhisa Sato University of Tsukuba, Japan

Seetharami Seelam IBM Research, USA
Dirk Schmidl RWTH Aachen University, Germany
Thomas R.W. Scogland LLNL, USA
Eric Stotzer Texas Instruments, USA
Priya Unnikrishnan IBM Toronto Laboratory, Canada
Ruud van der Pas Oracle Corporation, USA

IWOMP Steering Committee

Steering Committee Chair

Matthias S. Müller RWTH Aachen University, Germany

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC and Universitat Politecnica de Catalunya, Spain
Mark Bull EPCC, University of Edinburgh, UK
Barbara Chapman University of Houston, USA
Bronis R. de Supinski LLNL, USA
Rudolf Eigenmann Purdue University, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Kalyan Kumaran Argonne National Laboratory, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, USA
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel, USA
Ruud van der Pas Oracle, USA
Matthijs van Waveren CompilaFlows, France
Michael Wong OpenMP CEO, IBM, Canada
Weimin Zheng Tsinghua University, China

VIII Organization

Contents

Applications

PAGANtec: OpenMP Parallel Error Correction for Next-Generation
Sequencing Data . 3

Markus Joppich, Dirk Schmidl, Anthony M. Bolger, Torsten Kuhlen,
and Björn Usadel

Composing Low-Overhead Scheduling Strategies for Improving
Performance of Scientific Applications. 18

Vivek Kale and William D. Gropp

Exploiting Fine- and Coarse-Grained Parallelism Using a Directive
Based Approach . 30

Arpith C. Jacob, Ravi Nair, Alexandre E. Eichenberger,
Samuel F. Antao, Carlo Bertolli, Tong Chen, Zehra Sura,
Kevin O’Brien, and Michael Wong

Accelerator Applications

Experiences of Using the OpenMP Accelerator Model to Port DOE
Stencil Applications. 45

Pei-Hung Lin, Chunhua Liao, Daniel J. Quinlan, and Stephen Guzik

Evaluating the Impact of OpenMP 4.0 Extensions on Relevant
Parallel Workloads . 60

Raul Vidal, Marc Casas, Miquel Moretó, Dimitrios Chasapis,
Roger Ferrer, Xavier Martorell, Eduard Ayguadé, Jesús Labarta,
and Mateo Valero

First Experiences Porting a Parallel Application to a Hybrid Supercomputer
with OpenMP 4.0 Device Constructs . 73

Alistair Hart

Tools

Lessons Learned from Implementing OMPD: A Debugging Interface
for OpenMP . 89

Joachim Protze, Ignacio Laguna, Dong H. Ahn, John DelSignore,
Ariel Burton, Martin Schulz, and Matthias S. Müller

http://dx.doi.org/10.1007/978-3-319-24595-9_1
http://dx.doi.org/10.1007/978-3-319-24595-9_1
http://dx.doi.org/10.1007/978-3-319-24595-9_2
http://dx.doi.org/10.1007/978-3-319-24595-9_2
http://dx.doi.org/10.1007/978-3-319-24595-9_3
http://dx.doi.org/10.1007/978-3-319-24595-9_3
http://dx.doi.org/10.1007/978-3-319-24595-9_4
http://dx.doi.org/10.1007/978-3-319-24595-9_4
http://dx.doi.org/10.1007/978-3-319-24595-9_5
http://dx.doi.org/10.1007/978-3-319-24595-9_5
http://dx.doi.org/10.1007/978-3-319-24595-9_6
http://dx.doi.org/10.1007/978-3-319-24595-9_6
http://dx.doi.org/10.1007/978-3-319-24595-9_7
http://dx.doi.org/10.1007/978-3-319-24595-9_7

False Sharing Detection in OpenMP Applications Using OMPT API 102
Millad Ghane, Abid M. Malik, Barbara Chapman,
and Ahmad Qawasmeh

Exception Handling with OpenMP in Object-Oriented Languages 115
Xing Fan, Mostafa Mehrabi, Oliver Sinnen, and Nasser Giacaman

Extensions

On the Algorithmic Aspects of Using OpenMP Synchronization
Mechanisms II: User-Guided Speculative Locks . 133

Barna L. Bihari, Hansang Bae, James Cownie, Michael Klemm,
Christian Terboven, and Lori Diachin

Using Transactional Memory to Avoid Blocking in OpenMP
Synchronization Directives: Don’t Wait, Speculate! 149

Lars Bonnichsen and Artur Podobas

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 162
Mahwish Arif and Hans Vandierendonck

Compiler and Runtime

Enabling Region Merging Optimizations in OpenMP. 177
Thomas R.W. Scogland, John Gyllenhaal, Jeff Keasler, Rich Hornung,
and Bronis R. de Supinski

Towards Task-Parallel Reductions in OpenMP . 189
Jan Ciesko, Sergi Mateo, Xavier Teruel, Xavier Martorell,
Eduard Ayguadé, Jesús Labarta, Alex Duran, Bronis R. de Supinski,
Stephen Olivier, Kelvin Li, and Alexandre E. Eichenberger

OpenMP 4.0 Device Support in the OMPi Compiler 202
Alexandros Papadogiannakis, Spiros N. Agathos,
and Vassilios V. Dimakopoulos

Energy

Application-Level Energy Awareness for OpenMP 219
Ferdinando Alessi, Peter Thoman, Giorgis Georgakoudis,
Thomas Fahringer, and Dimitrios S. Nikolopoulos

Evaluating the Energy Consumption of OpenMP Applications
on Haswell Processors . 233

Bo Wang, Dirk Schmidl, and Matthias S. Müller

X Contents

http://dx.doi.org/10.1007/978-3-319-24595-9_8
http://dx.doi.org/10.1007/978-3-319-24595-9_9
http://dx.doi.org/10.1007/978-3-319-24595-9_10
http://dx.doi.org/10.1007/978-3-319-24595-9_10
http://dx.doi.org/10.1007/978-3-319-24595-9_11
http://dx.doi.org/10.1007/978-3-319-24595-9_11
http://dx.doi.org/10.1007/978-3-319-24595-9_12
http://dx.doi.org/10.1007/978-3-319-24595-9_13
http://dx.doi.org/10.1007/978-3-319-24595-9_14
http://dx.doi.org/10.1007/978-3-319-24595-9_15
http://dx.doi.org/10.1007/978-3-319-24595-9_16
http://dx.doi.org/10.1007/978-3-319-24595-9_17
http://dx.doi.org/10.1007/978-3-319-24595-9_17

Parallelization Methods for Hierarchical SMP Systems. 247
Larry Meadows, Jeongnim Kim, and Alex Wells

Supporting Indirect Data Mapping in OpenMP . 260
Thomas R.W. Scogland, Jeff Keasler, John Gyllenhaal, Rich Hornung,
Bronis R. de Supinski, and Hal Finkel

Author Index . 273

Contents XI

http://dx.doi.org/10.1007/978-3-319-24595-9_18
http://dx.doi.org/10.1007/978-3-319-24595-9_19

Applications

PAGANtec: OpenMP Parallel Error Correction
for Next-Generation Sequencing Data

Markus Joppich1,2,3(B), Dirk Schmidl1, Anthony M. Bolger2, Torsten Kuhlen1,
and Björn Usadel2

1 JARA – High-Performance Computing, IT Center, RWTH Aachen University,
Aachen, Germany

{schmidl,kuhlen}@itc.rwth-aachen.de
2 Institute for Botany and Molecular Genetics, RWTH Aachen University,

Aachen, Germany
{bolger,usadel}@bio1.rwth-aachen.de

3 Institute for Informatics, Ludwig-Maximilians-Universität Munich,
Munich, Germany

joppich@bio.ifi.lmu.de

Abstract. Next-generation sequencing techniques reduced the cost of
sequencing a genome rapidly, but came with a relatively high error rate.
Therefore, error correction of this data is a necessary task before assem-
bly can take place. Since the input data is huge and error correction is
compute intensive, parallelizing this work on a modern shared-memory
system can help to keep the runtime feasible. In this work we present
PAGANtec, a tool for error correction of next-generation sequencing
data, based on the novel PAGAN graph structure. PAGANtec was par-
allelized with OpenMP and a performance analysis and tuning was done.
The analysis led to the awareness, that OpenMP tasks are a more suit-
able paradigm for this work than traditional work-sharing.

1 Introduction

The field of biological research has changed with the availability of (short-
read) next-generation sequencing (NGS). In contrast to former techniques, NGS
reduces the costs of sequencing a genome from $100 million to $10,000 [9]. How-
ever, the length of the sequenced fragments is cut from roughly 1000 bp down to
several hundreds or less. Putting the produced small fragments together is called
assembly, genome assembly when the genome is being reconstructed, or tran-
scriptome assembly if the transcriptome is targeted. It is referred to as de novo
assembly if performed without referencing previously resolved sequences [13].

There exist mainly two approaches to solve the assembly problem: the
overlap-layout-consensus approach (finding a Hamiltonian path) and the k -mer
based, de-Bruijn graph-like approach (finding one of many Eulerian paths). Both
are computationally expensive approaches which have been tackled by the high
performance computing (HPC) community [4,7,16].

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-24595-9 1

4 M. Joppich et al.

The assembly task becomes even more complex if the input reads contain
erroneous information, since errors blow-up the assembly graph structure signif-
icantly. NGS techniques typically produce higher error rates than older sequenc-
ing techniques. Therefore, error removal is a critical step in making the assem-
bly problem more tractable. Common approaches include trimming of reads to
remove parts of the biological preparation or bad-quality bases from a read [3],
at the cost of information loss. Still certain errors can not be removed from the
reads by trimming. Thus, the need for special error reduction and correction
techniques is imposed and tackled [10,11,20].

The PAGAN framework [2] uses a novel graph structure to preserve the actual
read information of the sequence. These additional information are crucial for a
higher accuracy and precision during assembly and error correction compared to
former techniques. In this work, we present the implementation of an error cor-
rection tool for de novo transcriptome assemblies, PAGANtec. Since these error
correcting algorithms are compute intensive and work on huge graph structures,
performance is an important goal for the development. We parallelized the algo-
rithms with OpenMP tasks and undertook them a performance investigation
leading to an optimized version of the parallelization. Besides improving assem-
blies, PAGANtec delivers insight into how bioinformatics can profit from HPC,
and how OpenMP can be applied in this area.

2 Related Work

First the most commonly applied graph structure for assembly will be intro-
duced, together with error correction methods. Upon this, possible error scenar-
ios in NGS reads and their effects on the graph are mentioned. Finally general
parallelization strategies will be discussed.

2.1 k-mer Graph and Error Correction

The input of any assembly are the reads retrieved from the biological sequencing
experiment. Usually these are in the range of 75 bp up to 300 bp for Illumina
platforms. A read is a word/sequence Σl over the alphabet Σ = {A, T,C,G},
where A,T,C,G denote the four nucleotides deoxyribonucleic acid (DNA) is made
of. Its length l is expressed in base-pairs (bp).

Here we focus on techniques based on the k -mer-graph. Therefore, reads
are first decomposed into the set of all unique k -mers (subsequences of length
k), which is also called the k -mer-spectrum. For creating the k -mer-graph, the
unique k -mers represent the graph’s nodes, and edges are drawn if two k -mers
follow each other in any read sequence.

If a read contains errors, this can manifest in any of the following three
characteristics [13]: a spur or tip, marking an alternative ending of a path through
the graph, a bubble, essentially marking an alternative path (and thus sequence),
or a tangle, making it impossible to understand which path to go within the
graph.

PAGANtec: OpenMP Parallel Error Correction 5

While the last is mainly endured due to repeated sections within the graph,
the former two must be handled by error correction approaches, as these make
the graph structure unnecessarily complicated. Here it must be understood, that
a single base error in a read can make up to k new k -mers, which must be stored
and traversed for assembly!

Error correction algorithms try to correct reads such that fewer tips or bub-
bles form, making the assembly finally more tractable. In general there are three
classes of error correction algorithms, which are reviewed in [19]. Here the focus
is on k -mer-spectrum based approaches.

Once the k -mer-spectrum has been created for all reads, reads are categorized
into solid and insolid reads, if all k -mers in a read occur at least a few times,
or not, respectively. Insolid reads are tried to be converted into solid reads
by substituting insolid k -mers by solid ones with a minimum number of edit
operations. Quake [10] and Reptile [20] are two examples for programs using
this approach, which also incorporate the quality scores of the reads. SEECER
[11] uses a k -mer-spectrum based approach, and incorporates hidden Markov
Models. These tools however fail, if reads do not occur at the same frequency
for any postion, like in a transcriptomic context.

Early programs like CUDA-EC [17] prove that using the k -mer-spectrum is
parallelizable on the graphical processing unit (GPU), but misleadingly assume
that always the complete data fits into the device’s memory. More recent
approaches like DecGPU [12] employ a hybrid CUDA- and message-passing
interface (MPI)-based approach allowing the distribution of the workload.

2.2 Parallelization Options

The massive amounts of data produced by NGS techniques, especially for assem-
bly, pose several problems. These have to be processed in a finite amount of time,
requiring the need for parallelization and HPC-techniques, while keeping the
amounts of data processable by current computers. Since the amount of input
data can go into the hundreds of GB, this is challenging.

There exist several paradigms to achieve concurrency. Only few assemblers
rely on MPI implementations, because the distribution of the read information is
hard to realize. Besides ABySS for example [18], more recently, the Meraculous
assembler based on MPI single-sided communication [7], and Trinity (MPI) [4]
have been presented.

Many assemblers and error correctors use threading to distribute their work
among the cores of a computer [9]. Here, the shared address space does not force
users to distribute the read data.

Using GPUs for general purpose tasks can be found in an increasing amount
of programs. New hardware generations, as the Tesla K80 [14], offer up to 24
GB of RAM on a card with 4992 CUDA cores. However, this platform is only
suitable if the task fits the architecture and into the memory of these accelerators
[17].

6 M. Joppich et al.

High-memory multi-core machines are widely available in the community,
being commonly used for assembly purposes. Furthermore, with OpenMP an
incremental parallelization is easily possible, it is a widely accepted industry
standard [5] and available in most linux distributions. PAGANtec’s correction
filters would need to process each node, making a later incremental paralleliza-
tion a conclusive step. Thus, OpenMP has been chosen for parallelization in this
work.

3 PAGANtec Architecture

PAGAN transcriptome error correction (PAGANtec) corrects NGS-reads for
transcriptome assemblies. Within a single read, the majority of errors occurs
at the ends of reads [11], but errors within reads exist, too. Thus, error locations
can be divided into several categories: an error is either located at the begin-
ning of a read, within the read, or at the end of a read. It is important to note
that the first and last case can be handled as one. Thus one must only distin-
guish between errors at the outer ends of a read and in-line errors. The filters,
correcting special types of errors, specifically apply for these cases (Fig. 1).

Errors in the last bases of a sequence create short tips at the end of s-mers.
The second class consists of errors which are not on the leading or trailing tails
of a read, thus are within the reads. These errors are called in-line errors, and
cause deviations in the graph structure.

3.1 Graph Structure

The Probabilistic Algorithm for Genome Assembly for Next-generation Data
(PAGAN) graph consists of s-mers (nodes) (Fig. 2), implicitly linking each other
(edges) by adding the route tail sequence to the sequence of the s-mer. The
similarity property is maintained, if for each link from s-mera using route r to
s-merb there exists a connection from b to a with the complemented route tail
sequence r. An s-mer may contain several route entries, each representing a read
going through this s-mer. Route entries can be collapsed into routes.

A central element for PAGANtec is the flow concept. A flow is a collection of
reads which traverse the graph in a common manner. The number of contained
reads gives the width of a flow. Here, flows are created around s-mers to find
the skeleton/main routes within the graph.

3.2 Correction Strategies

In general, an error can be identified as only a few reads supporting this path or
flow through the graph. Seldom used edges in the graph are a result of erroneous
reads and PAGANtec finds such edges to correct errors. The most practical idea
for applying corrections is to first take the read out of the graph, and re-insert
its corrected form. Since the corrections can involve several nodes, this would
require extensive locking to avoid data-races when the algorithm is parallelized.

PAGANtec: OpenMP Parallel Error Correction 7

Fig. 1. The principle of PAGANtec
corrections is to map any erroneous
(red) reads back onto the main skeleton
of the graph. Errors can be identified as
weak routes leaving the main flow, the
strong routes (Colour figure online).

Fig. 2. PAGAN terminology explained
for one s-mer. Each s-mer contains
routes, which again contain route-
width-many route entries which going
from prefix- to suffix-side or vice-versa.

As a consequence, saving the changes in memory and applying them to the reads,
after all s-mers have been processed, has been identified as the most versatile
option. In certain cases, when only a few s-mers are effected by an error, a direct,
on-line correction can be performed (Fig. 1, green background).

When an error occurs within a read (e.g. bubble structure), there are two
possible scenarios (Fig. 1). The error can occur at the outer edges of a read, then
a long tip structure, spanning multiple s-mers, is formed (blue background) or
it is placed in the interior of a read, such that the error-prone read folds back
onto the main flow, forming a bubble structure (red background). In both cases
the correction is buffered and applied at a later stage to the graph. This concept
is employed by the inline error filter.

All correction filters have a similar structure, requiring the complete graph
structure as well as s-mers for correction (Algorithm 1). The outer for -loop,
in which all s-mers are processed, seems to be an ideal candidate for OpenMP
parallelization.

Algorithm 1. Loop structure in PAGANtec correction filters
Require: graph is a valid PAGAN graph, smers contains the s-mers to be processed
Ensure: Each s-mer has been processed
1: function applyFilter(graph, smers)
2: for smer ∈ smers do
3: for route ∈ smer do
4: for route entry ∈ route do
5: correctRouteEntry(graph, route entry)
6: end for
7: end for
8: end for
9: end function

8 M. Joppich et al.

3.3 Correcting Errors

The FilterTips algorithm is used to correct errors which occur at the ends of a
read (Fig. 1, green background). We correct these errors first for two reasons: the
corrections made here are directly available in the graph and thus may support
any following correction, e.g. by creating stronger flows. Secondly, when the
ends are already corrected, it is more likely that bubble structures can form and
therefore valid corrections are easier to find.

The principle of this algorithm is described in Fig. 3. Weak routes are iden-
tified in a first step, before it is checked whether this weak route is at the start
or end of a read. If so, the attempt to find a correction is initiated.

Fig. 3. Correction process of the top route in the presented s-mer. The tail AT makes
the top route a weak route.

Therefore, possible candidates for correction must be found. A set of possi-
ble candidates is retrieved by calculating the flow through the s-mer. Then all
retrieved flows are compared to the actual read sequence. The best matching
flow is used for correction.

A naive way to apply a correction in this filter is to simply replace the tail
sequence of the erroneous tail with the correct version (Fig. 3(b)). This however
has to be done with care in order to not violate the similarity property. Recalling
that reads can start or end either explicitly or implicitly (referred s-mer does not
exist), two cases have to be considered. First, the s-mer referred to by following
the corrected tail does not exist. Then no action is required, and the read is
corrected after changing the tail. Second, the s-mer referred to by following the
corrected tail exists (Fig. 3(b)). Then an explicit ending has to be added to the

PAGANtec: OpenMP Parallel Error Correction 9

next s-mer (Fig. 3(c)). The current s-mer GGAGG has to be linked to the next
one, AGGGT.

In contrast to tip filtering, long tip filtering is only applied to tails which are
longer than any of the strong tails. Even if an error is in the part covered by
shorter tails, these tails can not be used for correction, as these might not be
from the same context.

Modifications made by the long tip filter are not saved directly in the graph.
If these were saved in the graph as explained for tip filtering, in some cases
more than two s-mers must be changed to maintain the similarity property. As
this would require a lot of locking during linking, dramatically increasing the
overhead, such corrections are stored in a separate hash-map and are applied
when writing the reads to disk again.

The final stage of the error correction process is the inline error filter. This
filter is responsible to find and correct any error within a read which forms either
a tip or a bubble. Any remaining errors from the example case are thus a target
of this filter (Fig. 1, blue/red background).

Even if an error is located inside a read, tips at both ends of variable length
can be created. This especially happens if the remaining sequence is too short to
form a bubble, or in case multiple errors prevent the building of a bubble (Fig. 1,
blue background). Again, first weak routes are found and possible corrections,
flows, for these are then calculated. If a suitable correction, in the context of
both the up- and downstream sequence, is found, a patch for this correction is
stored and applied to the read, when writing the reads to disks (as previously).
This is done because online manipulations of the graph are not possible.

4 Parallelization

In order to interpret NGS-data, the processing requires a lot of memory and
time. Thus parallelization is an important aspect in the PAGANtec framework.

Here, an interconnected graph structure needs to be processed. A topologi-
cally oriented parallelization would be beneficial to exploit the ccNUMA archi-
tecture and distributed memory in general. However, the existence of enough
connected regions in the graph is not guaranteed and finding those components
would require a massive amount of computational effort beforehand. Therefore
a NUMA-aware data-distribution can not be applied here. Not having any large
matrices to process, like in numerics, the parallelization has to start at high-level
constructs. The presented PAGANtec framework uses two different approaches
for parallelization, both based on the s-mer-arrays processed by the filters.

For tip filtering, the outer for -loop, which applies the correction filter to
each s-mer is optimal for this purpose. Using the #pragma omp parallel for
construct, the filter’s workload can be distributed among all available threads
(Algorithm 2). With one exception, the link creation, the calculations performed
in this filter are s-mer specific and thus there is no interference with other s-
mers, preventing data races or race conditions. If the next s-mer exists, a link
to this s-mer must be established (Fig. 3(c)) requiring an exclusive lock for this
s-mer to be obtained.

10 M. Joppich et al.

Algorithm 2. FOR work-sharing construct implementation
1: function applyFilter(graph, smers)
2: # pragma omp parallel for schedule(dynamic)

3: for smer ∈ smers do
4: for route ∈ smer do
5: for route entry ∈ route do
6: correctRouteEntry(graph, route entry)
7: end for
8: end for
9: end for

10: end function

Attempting a correction while potentially another thread is changing routes
within this s-mer is dangerous, possibly causing a loss of data integrity, and thus
must be prohibited. If the next s-mer does not exist, no link must be established
and any changes may be made directly without requiring a lock. If the next s-
mer exists, it must be ensured that only one thread at a time changes an s-mer
(Algorithm 3). It has been observed, that this locking is a possible bottleneck
and even might lead to a deadlock, if two nodes try to fix tips in each other.
Therefore, only if the lock is obtained, the new tail can be copied over and a
link can be formed, because there is no risk of a data race. If the lock is not
obtained, two cases are distinguished. If another thread locked the next s-mer
for error correction, a dead-lock could occur, and thus no changes are attempted
to be applied. The correction operation is aborted. If the lock is not obtained and
another thread has the next s-mer locked for link creation, it is waited until the
lock can be acquired. Similarly, if a lock is acquired for correction, it is checked
that no other thread is currently holding a lock. However, there is no queuing
system for operations.

Algorithm 3. Link Creation in FilterTips
1: function attemptLinkCreation(graph, route)
2:
3: nextSmer ← getNextSmer(current s-mer, graph, route)
4: if nextSmer ∈ graph then
5: � If locked by another thread for correction, skip. If locked for linking, wait.
6: if getSmerLock(nextSmer) then
7: createLink(graph, route, nextSmer)
8: end if
9: else

10: � Next s-mer does not exist
11: createLink(graph, route, nextSmer)
12: end if
13: end function

PAGANtec: OpenMP Parallel Error Correction 11

For the long tips and inline filter, the analysis of the contained routes is
independent of other s-mers. Storing the corrections in a hash-map, however,
has to be thread-safe. Thus, while inserting a correction corresponding to the s-
mers hash, the vector containing the correction has to be locked for this purpose.

4.1 Performance Analysis

Here we focus on the performance analysis after stating that no memory leaks
have been found in PAGANtec using Valgrind and Intel Inspector XE 2013.
To track performance issues, Intel VTune Amplifier XE 2013 [8] has been used.
Among the features of this tool are hotspots and concurrency analysis as well as
readouts from hardware performance counters.

Fig. 4. Performance analysis of the task-optimised version of PAGANtec (cluster-
tuning [15]). The different stages of the 3 correction runs can be identified. While
loading the graph and performing tip filtering, a high overhead rate is seen (red ticks)
(Colour figure online).

Analysing the output of the performance analysis (Fig. 4), the three iterations
of the error correction can be clearly seen. Each iteration first loads the graph
into memory, followed by the filters for tips, with a high spin and overhead rate,
the long tips and inline errors. Finally the corrected reads are written to disk.

Regarding the high spin and overhead rate, it has been analysed that this
results mainly from the frequency of s-mers being locked and unlocked during
route creation (load graph) and correction (tips). The exclusive access to an
s-mer can not be circumvented. The long tip filter does not show significant
problems and thus is not discussed here.

Most interestingly, the inline filter, using pragma omp parallel for paral-
lelisation, shows a major load imbalance, forcing many threads to wait for only
one thread to finish. It can be concluded that this behaviour is neither due to
dead-locks or other unwanted side-effects, but is a true load balancing prob-
lem. Changing the scheduling strategy from static to dynamic tries to distribute
chunks with uneven workload better among all threads. Still, chunks with over-
proportionally large amounts of work being processed very late pose a threat for
load balancing and build up a major load imbalance (Fig. 5). In fact, even on a
small 25 %-portion of the full dataset, the schedule(static) version takes 4.6

12 M. Joppich et al.

Fig. 5. CPU usage per thread for the
0.25-dus18 sample (for parallelized,
dynamic schedule) with 24 threads on
cluster-tuning [15]. Load imbalances
can be noticed.

Fig. 6. CPU usage of the 0.25-dus18
sample (task parallelized) with 24
threads on cluster-tuning [15]. In com-
parison to Fig. 5, less severe load imbal-
ances are seen.

times as long as the schedule(dynamic) version. Also the guided scheduling
performs worse than dynamic.

Considering that multi-core machines usually have many, but relatively weak,
cores, load imbalances pose big problems on such architectures. Thus, the
#pragma omp parallel for construct turns out to be insufficient for paral-
lelization, because it does not allow fine-grained enough parallelism when needed.
Even though a single s-mer can be handled by a single thread (e.g. schedule
(dynamic,1)), this would be applied to s-mers with many route entries (poten-
tially high workload) and only few route entries (potentially low workload). Even
though the dynamic scheduling is well improved over static scheduling, still load
imbalances can be observed - possibly occurring due to s-mers taking consider-
ably longer than others and being worked on only at the end.

The inner loops should not be directly used for parallelism as these show a
high variance in workload, often too small to justify the parallelization overhead.
OpenMP also offers the #pragma omp task construct for more flexibility by
defining the workloads explicitly. The code for applying the filter to the s-mers
has been changed such that s-mer-chunks of equal size are created (Algorithm
4 without inner task creation). Analysing the load imbalance further, it could
be determined that few s-mers take significantly longer to process due to flow
creation. To avoid this, the task creation has been amended to create a new task,
whenever the current selection of s-mers exceeds a fixed number of routes. This
could finally reduce the load imbalance, however could not resolve it.

The standard technique for resolving load imbalances is to first process the
most expensive tasks, and the smaller tasks at the end. This is not applicable
here for two reasons: first, it is unknown beforehand how much work each chunk
actually will contain. The width of all routes is an indicator, but even s-mers

PAGANtec: OpenMP Parallel Error Correction 13

Algorithm 4. TASK work-sharing construct implementation
1: function applyFilter(graph, smers)
2: #pragma omp parallel

3: #pragma omp single

4: � For each chunk of |smervec| s-mers with less than 2000 route entries
5: for each smervec ⊆ smers ∧ |routeentries(smervec)| ≤ 2000 do
6: #pragma omp task untied firstprivate(smervec) � Outer task
7: for route ∈ smer do
8: for each entries ⊆ route ∧ |routeentries(entries)| ≤ 400 do
9: #pragma omp task untied firstprivate(entries) � Inner task

10: {
11: correctRouteEntries(graph, entries)
12: }
13: end for
14: end for
15: end for
16: end function

with many routes could contain only strong routes, not needing any correction.
Secondly, this approach would require a sorting of the tasks. Creating first all
tasks, then sorting these by workload is not feasible due to memory limitations.
Thus, being able to control task scheduling while creating tasks could be ben-
eficial for problems like the presented one. The experimental research compiler
Mercurium with OmpSs offers priorities for tasks already [1,6], which would be
highly welcome for the here presented purposes in OpenMP, too. While gcc and
icc successfully compile PAGANtec, we have not yet succeeded to compile using
Mercurium. Thus we could not evaluate this hypothesis.

With OpenMP 4.0 depend clauses have been introduced. These allow a con-
trolled flow of the program, e.g. all tasks requiring x as input wait until all
existing tasks outputting x have finished. Since only already existing tasks are
considered, this does not help in prioritizing tasks - here we want to dynamically
put one task before all the rest. In fact, most OpenMP implementations use a
first-in-first-out (FIFO)-like mechanism for choosing the next task to work on,
such that any large task already begins before any small, following tasks.

Because the inline filter does not change the graph immediately, but collects
changes, the parallelism can be propagated to different levels. In addition to
the for-loop over s-mers, the loop over route entries can be used as another
parallelism level (Algorithm 4). In general, the width of a single route is too low
to either apply a parallel for or a task on it directly. Certain s-mers have routes
containing several hundred route entries. Usually many of these are weak routes
and thus are processed by the correction filter. Following this, a high route entry
count is an indication for a high workload. Therefore, using the task construct,
a task is created for every l = 500 route entries (empirically determined). By
doing so, the load imbalance could be further reduced (Figs. 4 and 6), but still
not completely resolved.

14 M. Joppich et al.

0

1000

2000

0 5 10

Used Threads

R
un

tim
e

[s
]

Fig. 7. Runtime (task parallelized) of
the 0.25-dus18 dataset on the 12 core
Intel Xeon CPU.

0

2

4

6

0 5 10

Used Threads

S
pe

ed
up

Fig. 8. Measured speedup (task par-
allelized) of the 0.25-dus18 dataset on
the 12 core Intel Xeon CPU showing a
dent after 6 threads.

0.0

0.3

0.6

0.9

0 5 10

Used Threads

E
ffi

ci
en

cy
 [%

]

Fig. 9. Measured efficiency (task par-
allelized) of the 0.25-dus18 dataset on
the 12 core Intel Xeon CPU. Efficiency
only reaches about 50 % on 12 threads.

0

5

10

15

20

0.25 0.50 0.75 1.00

Input dataset fraction

T
im

e
[h

]

OpenMP pragma
omp for
omp task

Fig. 10. Comparison of the wall clock
times (32 threads on a BCS node
[15]) on different fractions of the dus18
dataset. For large inputs, the optimised
task-version version shows improved
performance.

A performance gain between 1 and 2 could be achieved for the low-level
task -based parallelism (Fig. 10) over the simple for -based version - at runtimes
of 14 h or more a dramatic change. It can be noticed that with increasing size
of the input dataset, the improved parallelism version profits more from the
optimization. This is caused by the aforementioned long processing time for
certain s-mers due to the complex graph structure.

The speedup sn = Tn

T1
and efficiency en = sn

n are calculated based on the
overall runtime (Figs. 7, 8 and 9) on a system with an Intel Xeon X5690 12 core
CPU. While the speedup of the total program is linear with the used number
of threads, it is still significantly below the ideal speedup. The efficiency only
reaches about 50 %. This may have several reasons. The graph loading is parallel,

PAGANtec: OpenMP Parallel Error Correction 15

but still has a significant impact on the overall performance: even when run on
all threads, the average CPU usage is less than maximally possible (Fig. 4) -
similar to tip filtering, a high locking rate produces this problem. On the other
hand, accessing the graph structure is not memory-friendly.

First it can be seen that the function responsible for finding the s-mer data-
structure is responsible for 30% of offcore responses, and also being the function
with the highest count for this event. This suggests that both writing into this
data-structure during graph creation as well as retrieval is a possible area of
improvement, as threads from several cores need to access data from other cores.
Additionally the flow finding function is of interest. From performance analysis
it is known that this function is responsible for about 60% of the total runtime.
Also more than 20% of retired memory instructions are recorded here. This is no
surprise since here all s-mers associated to the current flow must be retrieved -
in case of contained errors, possibly multiple times. Furthermore approximately
40% of all retired instructions are memory instructions. Possible further opti-
mizations thus should target memory operations for graph accesses. A cycles per
instruction (CPI) rate of 1.168 reported by Intel Amplifier underlines that the
hardware could be exploited better.

Focusing on the workload per (outer) task (Algorithm 4), first it can be stated
that most tasks process several hundred s-mers (Fig. 11). Still 871 out of 13, 267
total tasks process less or equal to 5 s-mers. Of these, 694 tasks only process
a single s-mer but do not create any inner tasks. Of all outer tasks, 45 also
create inner tasks. 42 of these tasks only process a single s-mer (red triangle,
Fig. 12). It can also be seen that for most tasks the execution is significantly
below 1s (median 0.0222 s), with a maximum execution time of 347 s. For those
tasks creating inner tasks, the total runtime is in the 100–300 s range. Without
the creation of these tasks, the runtime would be longer, thus explaining the

0

250

500

750

0 200 400 600 800

Number of s−mers per Task (n=13,267)

co
un

t

Fig. 11. Histogram of created tasks in
inner for-loop per outer task (task par-
allelized) in the 0.25-dus18 dataset on
the 12 core Intel Xeon CPU.

0

3000

6000

9000

−4 −2 0 2

log10 Time [s]

R
ou

te
 e

nt
rie

s
pe

r
Ta

sk

Fig. 12. Runtime versus number of
route entries contained in outer task
(task parallelized) in the 0.25-dus18
dataset on the 12 core Intel Xeon CPU
(circle: 0 inner tasks, triangle: ≥ inner
tasks) (Color figure online)

16 M. Joppich et al.

improvement in load balancing over the outer-task-only version. This shows,
that the route entry count is a good indicator for chunk creation and further
fine-grained work distribution (inner tasks).

5 Conclusion

We have presented PAGANtec, a read error correction for de novo transcriptome
assembly. Using OpenMP a speedup of 6 at 12 threads has been achieved. We
could show that OpenMP provides a good platform for an incremental paral-
lelization strategy, especially making use of the OpenMP task construct.

As limitation of the pragma-based OpenMP, here especially customization
problems could be identified. A big class of problems in bioinformatic applica-
tions involves graph-like data structures with an uneven load balance. It has been
determined that for -based parallelism does not permit for general coarse-grained
parallelism and fine-grained parallelism when needed. This is possible using
OpenMP task -based parallelism. However, the default, FIFO-based, scheduling
technique for OpenMP tasks does not provide the flexibility needed for schedul-
ing. Expected to be expensive tasks should be prioritizable on construction,
such that large pieces are computed first, reducing the risk of load imbalances
a lot. The newly available depend clause is too limited for these purposes. A
performance increase of up to factor 2 by choosing a manual task -parallelism
underlines the importance of better customization possibilities. A customized
scheduling may finally resolve the described load imbalance.

Also, extensive random accesses and locking patterns, common in graph-
based problems as presented here, reduce the effect of the parallelization. Here,
especially the tip filtering requires locks to prevent simultaneous transactions
on a single s-mer. OpenMP inbuilt locking mechanisms, eventually also making
use of transactional memory, available as a pragma-based directives, would be
beneficial for this kind of program. Other memory related problems must be
tackled, but do not originate from using OpenMP.

OpenMP proves to be versatile enough to be successfully applied to bioinfor-
matic problems and especially the task-construct enables the usage of OpenMP
also on non-standard HPC data-structures, such as indirectly linked graphs.
Nonetheless, making use of good work-sharing heuristics as well as standard
OpenMP techniques and fine-grained parallelism, which requires more architec-
tural work than pragma-based techniques intend to generate, a speedup of 6 on
12 cores could be achieved for PAGANtec.

References

1. Badia, R.M., Martorell, X.: Tutorial OmpSs: single node programming. In: Parallel
Programming Workshop (2013)

2. Bolger, A.M.: PAGAN Framework. Private Communication (2014)
3. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for illumina

sequence data. Bioinformatics 30, 1–7 (2014)

PAGANtec: OpenMP Parallel Error Correction 17

4. Carrier, P., Long, B., Walsh, R., Dawson, J., Sosa, C.P., Haas, B., Tickle, T.,
William, T.: The impact of high-performance computing best practice applied to
next-generation sequencing workflows. Technical report, April 2015. http://biorxiv.
org/content/early/2015/04/07/017665.abstract

5. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

6. Duran, A., Ayguade, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogenous multi-core architec-
tures. Parallel Process. Lett. 21(02), 173–193 (2011)

7. Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D., Yelick, K.: Parallel
De Bruijn Graph Construction and Traversal for De Novo Genome Assembly, pp.
437–448, November 2014

8. Intel: Intel VTune Amplifier XE 2013 (2013). https://software.intel.com/en-us/
intel-vtune-amplifier-xe

9. Kaya, K., Hatem, A., Özer, H.G., Huang, K., Çatalyürek, U.V.: High-performance
computing in high-throughput sequencing. In: Elloumi, M., Zomaya, A.Y. (eds.)
Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Post-
processing of Biological Data, Chap. 43, pp. 981–1002. Wiley, Hoboken (2013)

10. Kelley, D.R., Schatz, M.C., Salzberg, S.L.: Quake: quality-aware detection and
correction of sequencing errors. Genome Biol. 11(11), R116 (2010)

11. Le, H.S., Schulz, M.H., McCauley, B.M., Hinman, V.F., Bar-Joseph, Z.: Probabilis-
tic error correction for RNA sequencing. Nucleic Acids Res. 41(10), e109 (2013)

12. Liu, Y., Schmidt, B., Maskell, D.L.: DecGPU: distributed error correction on mas-
sively parallel graphics processing units using CUDA and MPI. BMC Bioinf. 12,
85 (2011)

13. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation
sequencing data. Genomics 95(6), 315–327 (2010)

14. NVIDIA: Tesla K40 and K80 GPU Accelerators for Servers, December 2014.
http://www.nvidia.com/object/tesla-servers.html

15. RWTH Aachen: RWTH Compute Cluster, May 2015. https://doc.itc.rwth-aachen.
de/display/CC/Hardware+of+the+RWTH+Compute+Cluster

16. Sachdeva, V., Kim, C., Jordan, K., Winn, M.: Parallelization of the trinity pipeline
for De Novo transcriptome assembly. In: 2014 IEEE International Parallel and
Distributed Processing Symposium Workshops, pp. 566–575. IEEE, May 2014

17. Schmidt, B., Müller-Wittig, W.: Accelerating error correction in high-throughput
short-read DNA sequencing data with CUDA. In: 2009 IEEE International Sym-
posium on Parallel and Distributed Processing, pp. 1–8. IEEE, May 2009

18. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I.:
ABySS: a parallel assembler for short read sequence data. Genome Res. 19(6),
1117–1123 (2009)

19. Yang, X., Chockalingam, S.P., Aluru, S.: A survey of error-correction methods for
next-generation sequencing. Briefings Bioinf. 14(1), 56–66 (2013)

20. Yang, X., Dorman, K.S., Aluru, S.: Reptile: representative tiling for short read
error correction. Bioinformatics 26(20), 2526–2533 (2010). (Oxford, England)

http://biorxiv.org/content/early/2015/04/07/017665.abstract
http://biorxiv.org/content/early/2015/04/07/017665.abstract
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.nvidia.com/object/tesla-servers.html
https://doc.itc.rwth-aachen.de/display/CC/Hardware+of+the+RWTH+Compute+Cluster
https://doc.itc.rwth-aachen.de/display/CC/Hardware+of+the+RWTH+Compute+Cluster

Composing Low-Overhead Scheduling Strategies
for Improving Performance of Scientific

Applications

Vivek Kale(B) and William D. Gropp

University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
vivek@illinois.edu

Abstract. Many different sources of overheads impact the efficiency of
a scheduling strategy applied to a parallel loop within a scientific appli-
cation. In prior work, we handled these overheads using multiple loop
scheduling strategies, with each scheduling strategy focusing on mitigat-
ing a subset of the overheads. However, mitigating the impact of one
source of overhead can lead to an increase in the impact of another
source of overhead, and vice versa. In this work, we show that in order
to improve efficiency of loop scheduling strategies, one must adapt the
loop scheduling strategies so as to handle all overheads simultaneously.
To show this, we describe a composition of our existing loop schedul-
ing strategies, and experiment with the composed scheduling strategy
on standard benchmarks and application codes. Applying the composed
scheduling strategy to three MPI+OpenMP scientific codes run on a
cluster of SMPs improves performance an average of 31 % over standard
OpenMP static scheduling.

1 Introduction

Performance of scientific application code can be impacted by how efficiently
iterations of a parallel loop are scheduled to cores. Many different sources of
performance loss impact the efficiency of a scheduling strategy applied to a par-
allel loop, as we will show in Sect. 2. In prior work, we developed multiple loop
scheduling strategies, with each scheduling strategy focusing on mitigating a
subset of the overheads. However, mitigating the impact of one source of perfor-
mance loss can lead to an increase in the impact of another source of performance
loss, and vice versa. In this work, we show that in order to schedule loops effi-
ciently, we need to compose loop scheduling strategies so as to handle multiple
sources of performance loss simultaneously.

Our contribution, in addition to a specific composite scheduling strategy,
is a guide to combining scheduling strategies to handle multiple sources of the
overhead together, to handle the circumstances and challenges posed by an appli-
cation and architecture. Such a scheduling strategy can be beneficial to improve
performance of scientific applications on clusters of multi-cores, and can be ben-
eficial in the context of next-generation, e.g., exascale, clusters of SMPs.

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 18–29, 2015.
DOI: 10.1007/978-3-319-24595-9 2

Composing Low-Overhead Scheduling Strategies 19

In the sections that follow, we discuss implementation of a scheduling strat-
egy composition containing many different scheduling techniques implemented
up to this point. We show results for different scientific application codes, i.e.,
two CORAL benchmarks and one particle simulation application code, using
different types of scheduling strategies. Finally, we conclude the paper through
a discussion of scheduling techniques and the scheduling strategy composition
in the context of running applications on next-generation architectures.

2 Scheduling Strategies

Consider a common structure of scientific applications: outer iterations, e.g.,
timesteps, which enclose inner iterations that typically loop over data arrays.
For these codes, load balancing of the computational work across cores of a node
is necessary for obtaining high performance. Load balancing can be attained
through the use of OpenMP loop scheduling strategies. However, there are mul-
tiple sources of performance loss in parallel scientific applications, and different
schedulers affect these sources differently.

Figures 1 and 2 show the sources of performance loss through a breakdown
of execution times for widely used loop scheduling strategies applied to two
different application codes: a Barnes-Hut code (left) with non-uniform iteration
times, i.e., load imbalance across iterations, and a NAS LU code (right) with
uniform iteration times. NAS LU can still benefit from dynamic load balancing
within a node because such load balancing can deal with imbalances caused by
noise, which are amplified in synchronous MPI codes [7]. The performance data
are for a node of a cluster of Intel Xeon 16-core processors. The execution time
breakdown is shown as a stacked bar graph in Fig. 1. Thread idle time is labeled
as ‘idle’ and cost of synchronization is labeled as ‘dq’. We measure the time
each thread waits at the barrier, and use the average over threads as the cost of
thread idle time. We estimate the cost of synchronization by using hpcToolkit to
obtain the time spent in the omp lock() function. The computation time, labeled
‘comp’, is calculated by dividing the sequential execution time by the number
of threads. The remaining execution time is attributed to data movement and
labeled as ‘dm’. Note that this breakdown may not be exact, but it gives us an
adequate estimate to understand the impact of overheads to the efficiency of the
scheduling strategies. For obtaining the cache misses, we used PAPI counters
PAPI L2 TCM and PAPI L3 TCM for the L2 and L3 cache misses, respectively. We
measured cache misses for each OpenMP parallel loop for thread 0. In Fig. 2,
the L3 cache misses are shown.

Using static scheduling for these codes makes data movement small and elimi-
nates synchronization overhead, but does not mitigate load imbalance. For Barnes-
Hut, the thread idle time is 21 % of the total execution time. For NAS LU, idle time
shown is small, but not negligible, at 2.8 %. Using dynamic scheduling improves
load balance almost completely, but dynamic scheduling still causes data move-
ment and synchronization overhead. Also, the synchronization overhead is still
noticeable at 5.9 % when dynamic scheduling is applied to the two codes.

20 V. Kale and W.D. Gropp

(a) (b)

Fig. 1. Breakdown of execution time for NAS LU and n-body code.

Finally, guided scheduling can reduce synchronization overhead. However, guided
scheduling still incurs data movement across cores, as is seen by the large number
of cache misses for Barnes-Hut and NAS LU in Fig. 2.

We have identified three challenges to obtaining good performance using
dynamic load balancing within a node: (1) cost of load imbalance due to load
imbalances from the application or system noise, (2) data movement overhead,
and (3) synchronization overheads from runtimes. None of the scheduling strate-
gies examined was able to handle all sources of performance loss. This challenge
provides motivation for developing a new set of scheduling strategies.

To handle all 3 challenges, one could intelligently blend static and dynamic
scheduling strategies, where the first k loop iterations are scheduled statically
across threads, and the remaining n−k loop iterations are scheduled dynamically
across threads [4]. The parameter k is experimentally tuned. We define n−k

n as
the dynamic fraction fd. Correspondingly, the static fraction fs = 1 − fd. We
refer to this scheduling strategy as hybrid static/dynamic scheduling. Figure 3a
shows loop iterations scheduled statically across 4 cores during one invocation
of a threaded computation region. Figure 3b shows the corresponding diagram
for the hybrid static/dynamic scheduling strategy.

The 4th bars from the left in Fig. 1a and b show the execution time for
NAS LU and Barnes-Hut when the hybrid static/dynamic scheduling strategy,
labeled besf, is used. The hybrid static/dynamic scheduling strategy is the best

(a) (b)

Fig. 2. L3 cache misses for different OpenMP scheduling strategies.

Composing Low-Overhead Scheduling Strategies 21

1

2
3

4

T
hreads

Tp

(a) Static Schedule

1

2
3

4

T
hreads

t1q
(1 − fd) · Tp

(b) Hybrid Schedule

Fig. 3. Diagram of threaded computation region with different schedules applied to it.

performing of the four scheduling strategies shown. The reason is that data
movement overhead is reduced significantly compared to the dynamic scheduling
scheme, but the scheduling scheme does enough dynamic scheduling to handle
the cost of load imbalance. Using hybrid static/dynamic scheduling for NAS
LU does not improve performance significantly over OpenMP static scheduling,
but it does not degrade performance either. The hybrid static/dynamic schedul-
ing strategy reduces thread idle time for NAS LU, rather than increasing it.
Although NAS LU seems efficient with static scheduling, consider the situation
when it is running on a machine with significant OS noise, i.e., the interference
created by OS daemons. In this situation, amplification of noise across MPI
processes can cause large performance degradation, and dynamic scheduling of
loop iterations can potentially mitigate this impact of noise [7].

As we will see in the next section, different circumstances, including architec-
tural/OS and application charactersistics, require different scheduling techniques
to modify the above basic hybrid static/dynamic scheduling strategy. We next
show what those techniques are and how to compose the techniques into a single
effective scheduler.

3 Techniques for Composing Scheduling Strategies

In the context of the problem listed in the previous section, we design a schedul-
ing strategy that can handle the many different sources of performance loss and
the inefficiencies of the scheduling strategies. We first give a description of each
of the elemental scheduling strategies, which are based on existing scheduling
strategies from prior work; the existing scheduling strategies are adapted from
the perspective of composing the scheduling strategies together. We then show
a composition of the scheduling strategies described.

3.1 uSched

This scheduling strategy is designed to mitigate the impact of transient events
such as OS noise as well as application-induced imbalances. uSched first mea-
sures its parameters such as iteration time and noise duration [7]. It then uses a
model-guided determination of the dynamic fraction (considering both applica-
tion imbalance and imbalance due to noise) to determine a reasonable baseline
value of the static fraction fs, as described in [7]. After this, we conduct an

22 V. Kale and W.D. Gropp

exhaustive search in a small neighborhood around fs. We try different static
fractions in the range [fs − 0.05, fs + 0.05]. This increment can be adjusted by
the application programmer and requires knowledge of iteration granularity. The
resulting static fraction is fstuned

, which is the static fraction used for uSched.
This is the static fraction used for all nodes.

3.2 slackSched

This scheduling strategy is an optimization over uSched, as described in prior
work [7]. It uses a distinct static fraction for each node based on MPI slack.
MPI slack is the deadline that each process has to finish its work, before this
process extends the applications critical path thereby increasing the cost of appli-
cation execution. Because of the way collective calls are implemented in MPI,
the slack is different on different processors. We use the call-path method [7,12]
for predicting the slack for each collective call. In the context of the scheduling
strategy composition that we want to do, the scheduling strategy is put together
and works as follows:

1. On each process, start with the static fraction fs obtained in uSched.
(a) On each process, retrieve that process’s invocation of the last MPI collec-

tive, where the invocation of the last MPI collective is retrieved through
the callsite slack-prediction method, as shown in prior work [7].

(b) Given the identifier of the last the MPI collective call invoked, estimate
that collective call’s slack value from the history of slack values stored
by the slack-conscious runtime. The slack estimate is based on the slack
value recorded in the previous MPI collective invocation, as is done in
prior work [7].

2. On each process, adjust its dynamic fraction based on the slack value. This
adjustment is done using a performance model and theoretical analysis
described in prior work [7].

3.3 vSched

This scheduling strategy is based on prior work [8]. The motivation of this
scheduling strategy is to improve the spatial locality in the dynamically sched-
uled iterations. In the above schedulers, the dynamically allocated iterations are
grouped at the end of the iteration space. Here, we stagger them, so as to keep the
iterations executed by a thread contiguous as much as possible. Let p denote the
number of cores on one multi-core node. Let t denote the thread with thread ID t.
Let n be the number of loop iterations of an OpenMP loop. The static iterations
assigned to each thread are from �n·t

p � to �n·(t+fs)
p �, while dynamic iterations

associated with thread t are from �n·(t+fs)
p � + 1 to �n·(t+1)

p � − 1. In the context
of the scheduling strategy composition that we want to do, we implement this
scheduling strategy by starting with the hybrid static/dynamic scheduling strat-
egy, and then apply the staggering of iterations to this hybrid static/dynamic
scheduling strategy.

Composing Low-Overhead Scheduling Strategies 23

3.4 ComboSched

The comboSched scheduling strategy is vSched, i.e., locality-optimized schedul-
ing, with slackSched, i.e., slack-conscious scheduling, added into it. In other
words, one optimization over uSched, slackSched, is composed with another opti-
mization over uSched, vSched, to form the comboSched scheduling strategy. The
comboSched scheduling strategy is put together and works as follows:

1. Stagger the iterations, as specified in vSched.
2. Start with the static fraction obtained from the uSched scheduling strategy.
3. Specify the queue to steal from in the vSched scheduling strategy.
4. On each process, adjust its dynamic fraction based on the slack value, as

described in slackSched.

In summary, we described a series of scheduling strategies, and showed the
design of a scheduling strategy composition using the features of these scheduling
strategies. We next show code transformation needed to use the scheduling strat-
egy composition and assess performance of the application of these scheduling
strategies and the scheduling strategy composition to three application codes.

4 Code Transformation

Below, we show the changes to a simple MPI+OpenMP code needed to use our
scheduling strategy. Figure 4 shows an application program containing a basic
OpenMP loop. Figure 5 shows the same application code containing the OpenMP
loop transformed to use our composed scheduler. The macro functions used for
invoking our library’s loop scheduling strategies are defined at lines 5–7 of Fig. 5,
and the parameter value ‘strat’ of the macro function indicates the scheduling
strategy to be used from our library. The sds parameter value in the macro
functions’ invocations at lines 24 and 27 specifies the staggered static/dynamic
scheduling strategy of our library, i.e., the vSched strategy described in Sect. 3.
The implementation changes needed for the composition are done within our
macro-invoked scheduler. The record struct variable is used to store informa-
tion about previous invocations of the threaded computation region in lines
25 and 26, and necessary for the slack-conscious scheduling strategy, i.e., the
slackSched strategy described in Sect. 3. Our scheduling strategy could equiva-
lently be implemented in an OpenMP runtime and offered as an OpenMP loop
schedule.

5 Results

With the above composition of schedulers, the question we ask is: does our com-
position of the schedulers and adjustment of the scheduler parameters help pro-
vide further performance improvement than each of the schedulers in isolation?

To answer the above, we experimented with three different MPI+OpenMP
application codes. The first application code is Rebound [11], an MPI+OpenMP

24 V. Kale and W.D. Gropp

Fig. 4. Code with OpenMP loop.

Fig. 5. Code transformed to use composed scheduling strategy.

n-body simulation that simulates bio-molecular interactions. The second appli-
cation code is the CORAL SNAP code [13], regular mesh code which has com-
putation used in the context of heat diffusion. The third application code is the
CORAL miniFE code [6], an MPI+OpenMP finite element code involving com-
putation on an unstructured mesh used in the context of earthquake simulations.

Composing Low-Overhead Scheduling Strategies 25

We performed the experiments on Cab, an Intel Xeon cluster with 16 cores per
node, 2.66 GHz clock speed, a 32 KB L1 data cache, a 256 KB L2 cache, 24 MB
shared L3 cache, the TOSS operating system, an InfiniBand interconnect with
a fat-tree network topology. We ran each application code with 1 MPI process
per node and 16 OpenMP threads per MPI process.

Figure 6 shows the results for the MPI+OpenMP n-body code Rebound [11]
run on Cab, with different schedulers applied to this code. In this code, every
particle loops through its neighborhood of particles to calculate forces applied
to it, identifying the position in the next application timestep; there is geometric
locality in this application. This geometric locality is reflected by the order in
which the particles are organized in the tree. For example, nearby particles tend
to interact with the same sets of particles with a few exceptions. Therefore, the
vSched strategy of keeping nearby iterations on the same thread in the dynamic
section provides performance benefits. The slackSched benefits are the generic
benefits of reducing the dynamic fraction and its associated overheads. The ben-
efits are not as large for other applications because of its relatively large grain
size of each iteration. For Rebound at 1024 nodes, the comboSched improves
performance 45 % over OpenMP static scheduling. The percent gains of each of
the scheduling strategies are significant even at low node counts. Specifically,
at 2 nodes, performance improves 35 % over OpenMP static scheduling when
we apply only uSched to the Rebound code. Using slackSched on Rebound gets
limited gains of 5.6 % over the uSched scheduling strategy. Using vSched, perfor-
mance improves 8.5 % over uSched. This is likely because vSched can take advan-
tage of the geometric locality in this application. Using the comboSched strategy,
which combines slackSched and vSched, the Rebound code gets an overall 44 %
performance gain over the OpenMP static scheduled version of Rebound.

Figure 7 shows the results for miniFE [6] run on Cab, with different schedulers
applied to miniFE. Here, iteration-to-iteration spatial locality is relatively low
because of indirect access caused by the unstructured mesh; for unstructured
meshes, the spatial locality across iterations is not as strong as looping over a 1-D
array. However, with reasonable variable ordering of mesh elements, there is still
a significant amount of spatial locality that vSched exploits. Because of imperfect
data partitioning of the problem across nodes, moderate load imbalances across
nodes exist. Due to the law of large numbers, the imbalances across cores are
larger at larger number of nodes. Thus, dynamic or guided scheduling by itself
should be able to provide significant performance gains. Consider the results for
miniFE running at 1024 nodes of Cab. The vSched scheduling strategy gets 15 %
performance improvement over OpenMP static scheduling, while the slackSched
gets 19 % performance gain over OpenMP static scheduling. The comboStrat gets
23 % performance improvement over OpenMP static scheduling, and also gets
9.0 % performance improvement over OpenMP guided scheduling. By putting
together vSched and slackSched, we are able to improve performance further, to
make our scheduling methodology perform better than guided. The benefits of
vSched and slackSched are not completely additive. Composing the scheduling
strategies along with tuning of parameters could increase performance benefits,
and could yield better performance for the comboSched.

26 V. Kale and W.D. Gropp

Fig. 6. Rebound (n-body): Performance improvement obtained over OpenMP static
scheduling.

Figure 8 shows the results for the regular mesh code SNAP [13] run on Cab,
with different schedulers applied to the SNAP code. The regular mesh compu-
tation has no application load imbalance; the only load imbalance during appli-
cation execution is that due to noise. Note that the regular mesh computation
has inherent spatial locality (because the computation’s sweep operation works
on contiguous array elements). At 1024 nodes of Cab, performance improves
10 % over OpenMP static with slackSched, and we get a reasonable performance
gain of 16 % over static scheduling with vSched. The comboSched scheduler gets
19 % performance improvement over OpenMP static scheduling. This result of
comboSched specifically helps to show that the optimizations of vSched and
slackSched composed in comboSched do not cancel out each other’s performance
benefits.

Fig. 7. miniFE (finite element): Performance improvement obtained over OpenMP
static scheduling.

Composing Low-Overhead Scheduling Strategies 27

Fig. 8. SNAP (regular mesh): Performance improvement obtained over OpenMP static
scheduling.

6 Related Work

The work in [1,9,10] attends to outer iteration locality by dynamically scheduling
the loop iterations so that each core tends to get the same inner loop iterations
over successive outer iterations. In contrast, our strategy sets aside iterations that
are scheduled statically without the locking overhead to maintain outer iteration
locality. The problem of amplification and the phenomenon of MPI slack arise
only in the context of a cluster of multiprocessors, and are absent from older work
which was focused on shared memory machines. Also, hybrid programming with
MPI and pthreads/OpenMP did not exist at the time of the work. Zhang and
Voss [14] present scheduling techniques based on runtime measurements, but the
techniques are designed specifically for the problems arising out of simultaneous
multi-threading (hyperthreads). For example, the techniques involve runtime
decisions about whether the number of threads should be equal to the number
of cores, or equal to the number of hyperthreads.

Loop iterations are a form of independent tasks. Several programming models
support creation of independent tasks directly. One of the primary shortcomings
of work-stealing [5] is that work-stealing incurs overhead due to the cost of
coherence cache misses, which depend on the number of cores and the shared
memory interconnect of the node architecture [2]. In contrast, our work focuses
on reducing coherence cache misses. Scalable work-stealing [3] can be beneficial
in a distributed memory context, but it mainly focuses on steals across a large
number of nodes. Our work is focused on within-node scheduling, and to that
extent is orthogonal to scalable work stealing.

7 Conclusions

In this work, we identified a number of scheduling strategies, each with different
features. We expect many of the features of the scheduling strategies to be rel-
evant for running parallel applications on current and future clusters of SMPs.

28 V. Kale and W.D. Gropp

We then provided a guide for composing these scheduling strategies together. Our
results showed on average 31 % performance improvements over static scheduling
for three scientific applications.

Many unknown circumstances will likely exist when running applications on
next-generation supercomputers, e.g., exascale machines. The composition of
existing scheduling strategies, as well as the invention of new scheduling strate-
gies inspired by specific circumstances of current and future clusters of SMPs,
could help ensure that the approach remains viable for these next-generation
supercomputers.

Acknowledgements. This material is based in part upon work supported by the
Department of Energy, National Nuclear Security Administration, under Award Num-
ber DE-NA0002374. This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy award
DE-FG02-13ER26138/DE-SC0010049.

References

1. Bull, J.M.: Feedback guided dynamic loop scheduling: algorithms and experiments.
In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, p. 377.
Springer, Heidelberg (1998)

2. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, pp. 99–105, Lund, Sweden
(1999)

3. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scal-
able work stealing. In: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, SC 2009, pp. 53:1–53:11, Portland, OR,
USA. ACM (2009)

4. Donfack, S., Grigori, L., Gropp, W.D., Kale, V.: Hybrid static/dynamic scheduling
for already optimized dense matrix factorizations. In: IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2012, Shanghai, China (2012)

5. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. SIGPLAN Not. 33(5), 212–223 (1998)

6. Heroux, M.: MiniFE documentation. http://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-bench
marks/minife/

7. Kale, V., Gamblin, T., Hoefler, T., de Supinski, B.R., Gropp, W.D.: Abstract:
Slack-Conscious Lightweight Loop Scheduling for Improving Scalability of Bulk-
synchronous MPI Applications, November 2012

8. Kale, V., Randles, A.P., Kale, V., Gropp, W.D.: Locality-optimized scheduling
for improved load balancing on SMPs. In: Proceedings of the 21st European MPI
Users’ Group Meeting Conference on Recent Advances in the Message Passing
Interface, vol. 0, pp. 1063–1074. Association for Computing Machinery (2014)

9. Markatos, E.P., LeBlanc, T.J.: Using processor affinity in loop scheduling on
shared-memory multiprocessors. In: Proceedings of the 1992 ACM/IEEE Confer-
ence on Supercomputing, Supercomputing 1992, pp. 104–113, Los Alamitos, CA,
USA. IEEE Computer Society Press (1992)

http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/

Composing Low-Overhead Scheduling Strategies 29

10. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and miti-
gating work time inflation in task parallel programs. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2012, pp. 65:1–65:12, Salt Lake City, UT, USA. IEEE Computer
Society Press (2012)

11. Rein, H., Liu, S.F.: REBOUND: an open-source multi-purpose N-body code for
collisional dynamics. Astron. Astrophys. 537, A128 (2012)

12. Rountree, B., Lowenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch,
T.: Adagio: making DVS practical for complex HPC applications. In: Proceedings
of the 23rd International Conference on Supercomputing, ICS 2009, pp. 460–469,
Yorktown Heights, NY, USA. ACM (2009)

13. Talamo, A.: Numerical solution of the time dependent neutron transport equation
by the method of the characteristics. J. Comput. Phys. 240, 248–267 (2013)

14. Zhang, Y., Voss, M.: Runtime empirical selection of loop schedulers on hyper-
threaded SMPs. In: Proceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2005), vol. 01, pp. 44.2, Washington, DC,
USA. IEEE Computer Society (2005)

Exploiting Fine- and Coarse-Grained Parallelism
Using a Directive Based Approach

Arpith C. Jacob1(B), Ravi Nair1, Alexandre E. Eichenberger1,
Samuel F. Antao1, Carlo Bertolli1, Tong Chen1, Zehra Sura1,

Kevin O’Brien1, and Michael Wong2

1 IBM T.J. Watson Research Center, 1101 Kitchawan Rd.,
Yorktown Heights, NY, USA

{acjacob,nair,alexe,cbertol,chentong,zsura,caohmin}@us.ibm.com
2 IBM Software Group, Toronto, ON, Canada

michaelw@ca.ibm.com

Abstract. Modern high-performance machines are challenging to pro-
gram because of the availability of a wide array of compute resources that
often requires low-level, specialized knowledge to exploit. OpenMP is an
effective directive-based approach that can effectively exploit shared-
memory multicores. The recently introduced OpenMP 4.0 standard
extends the directive-based approach to exploit accelerators. However,
programming clusters still requires the use of other specialized languages
or libraries.

In this work we propose the use of the target offloading constructs to
program nodes distributed in a cluster. We introduce an abstract model
of a cluster that defines a clique of distinct shared-memory domains
that are manipulated with the target constructs. We have implemented
this model in the LLVM compiler with an OpenMP runtime that sup-
ports transparent offloading to nodes in a cluster using MPI. Our initial
results on HMMER, a widely used Bioinformatics tool, show excellent
scaling behavior with a small constant-factor overhead as compared to a
baseline MPI implementation. Our work raises the intriguing possibility
of a natural progression of a program compiled for serial execution, to
parallel execution on a multicore, to offloading onto accelerators, and
finally extendible with minimal additional effort onto a cluster.

1 Introduction

Modern computers are difficult to program because of the use of a broad spec-
trum of compute resources such as SIMD, SIMT, light and heavyweight mul-
ticores, accelerators such as GPUs, clusters, and even rented cloud platforms
that may all need to be exploited for high performance. It is difficult and time
consuming for the average programmer to reason about fine- and coarse-grained
parallelism suitable for these resources and then express this parallelism using
low-level language extensions or libraries. Many languages have been introduced
to address some of these challenges, including X10 [2], Fortress, Chapel [1], Co-
array Fortran [12], and UPC [5], but none have gained widespread acceptance.
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 30–41, 2015.
DOI: 10.1007/978-3-319-24595-9 3

Exploiting Fine- and Coarse-Grained Parallelism 31

Fig. 1. Comparative performance of light and heavyweight nodes on the Graph500
benchmark. The trend lines are extrapolated from Fig. 12 of Koggee [8].

To illustrate why this is a problem Fig. 1 shows performance of the Graph500
breadth-first search benchmark as a function of node count, illustrated as trend
lines extrapolated from Fig. 12 of Kogge [8]. Curves for light and heavyweight
nodes are depicted. Heavyweight cores provide maximum compute performance
in a single node using 16 or more cores clocked at a high rate, sharing coherent,
high-bandwidth memory. They are the easiest to program and suitable for a
large number of applications. In contrast, lightweight nodes use simpler cores
with lower-bandwidth memory that consume less power. As a consequence, they
are better able to scale to thousands of nodes in a system.

Figure 1 shows that the best heavyweight single-node implementation is
equivalent in performance to a large multiple of lightweight nodes. It is obviously
beneficial to first exploit the compute resources and high-bandwidth communi-
cation through shared-memory in a single node and only move to a lightweight
cluster when the organization’s data requirements explode. However, an actor
may unnecessarily commit early on to a cluster solution due to perceived “big
data” needs or to simply scale early software development investment.

To program clusters, frameworks such as Hadoop using the MapReduce
model have become popular but it includes considerable overheads. This may be
required for fault-tolerance in large-scale clusters but is inefficient for most users.
Indeed, there is evidence that MapReduce is commonly used for datasets less
than 100 GB in size [16], and with several times this size available as RAM in
a single node1, it may be prudent to first exhaust single-node solutions. Conse-
quently, what is desired is a software solution that can exploit compute resources
in a single node but seamlessly scale to multiple nodes as data size increases.

OpenMP is a directive-based parallel programming standard for shared-
memory multicores. The introduction of offloading constructs in the OpenMP 4.0

1 For example, the IBM PowerR© System E880 is configurable up to 16 TB. See http://
www-03.ibm.com/systems/power/hardware/e880/.

http://www-03.ibm.com/systems/power/hardware/e880/
http://www-03.ibm.com/systems/power/hardware/e880/

32 A.C. Jacob et al.

standard extends directive-based programming to accelerators within a node that
may have non-coherent, disjoint memory. The goal of this work is to extend the
offloading model to the wider scope of a cluster so as to avoid the use of low-level
libraries like MPI. This raises the intriguing possibility of a single program that
may be compiled for serial execution, parallel execution on a multicore, offloaded
to accelerators, and finally extended with minimal additional effort to a cluster.

The rest of this paper is organized as follows. Section 2 first discusses past
efforts that use OpenMP to program clusters. Section 3 summarizes the offload-
ing model of OpenMP 4.0 and in Sect. 4 we describe our model for using these
constructs to program a cluster of nodes. Section 5 describes the implementation
of our model in the LLVM compiler and we present preliminary results in Sect. 6.
Section 7 discusses extensions to the model and implementation that we plan to
explore in the future before we conclude in Sect. 8.

2 Related Work

Existing work implements OpenMP 3.1 and prior versions on distributed
machines by translating shared-memory programs onto a Software Distributed
Shared Memory (SDSM) runtime [7,13] or directly to MPI [11]. An SDSM run-
time that transparently keeps memory consistent between nodes was first used
in TreadMarks [7] to execute OpenMP programs and was later incorporated into
Intel’s Cluster OMP [6]. These solutions exploit the relaxed consistency model
of OpenMP to cache memory locally and improve performance but problems
remain due to memory sharing overheads and frequent global synchronization.
Static compiler analyses aim to eliminate barriers and aggressively privatize
shared variables but the fine-grained communication pattern of OpenMP 3.1 is
a fundamental mismatch for distributed machines.

The distinguishing feature of our work is our abstraction of a machine as a
clique of shared-memory domains. Rather than forcing the abstraction of a single
shared-memory domain onto a distributed cluster and using compiler analyses
to bridge the semantic gap, we rely on an expressive yet simple programming
abstraction that is closer to the underlying machine.

Our work is the first to use OpenMP 4.0 offload constructs to program dis-
tributed systems. We exploit these constructs to represent our model of disjoint
domains of shared memory. Target directives are used to partition a program
into distinct regions, each of which can then exploit shared-memory semantics
via the standard suite of OpenMP 3.1 constructs. Data mapping clauses allow
the user to bridge shared-memory domains via explicit data movement. Our
model is easy to comprehend and it allows the user to effectively exploit coarse-
and fine-grained parallelism.

3 Background: OpenMP Accelerator Model

The OpenMP 4.0 specification [15] significantly extends the capability of a direc-
tive based programming approach to exploit coarse-grained parallelism within a

Exploiting Fine- and Coarse-Grained Parallelism 33

node. It introduces an execution and data model for an abstract accelerator that
enables a programmer to exploit heterogeneous cores using device directives.
A node is assumed to contain a host device, typically a multicore processor,
attached to one or more accelerators termed target devices.

The programming model is host-centric and allows offloading of execution
control to the device. Code regions to be offloaded, including functions, are
explicitly identified using the target directive. The target region accepts standard
OpenMP directives and uses the fork-join paradigm to exploit cores within the
accelerator.

The accelerator memory model defines a data environment for the host and
target devices. To support both shared- and distributed-memory systems the
standard specifies that the programmer may not make any assumptions regard-
ing data sharing between devices. The user is required to explicitly migrate data
between the two environments and the standard provides the target data, declare
target, and target update directives for this purpose.

Listing 1.1. Matrix-matrix multiply offloaded to a target device for acceleration.

1 double A[P][R], B[R][Q], C[P][Q];

2

3 void main() {
4 // Initialize arrays

5

6 // Offload loop nest for acceleration onto device #1

7 #pragma omp target map(to: A[0:P][0:R], B[0:R][0:Q]) map(tofrom: C[0:P][0:R]) device(1)

8 // Execute iterations of loop i in parallel on 16 accelerator cores

9 #pragma omp parallel for num threads(16)

10 for (int i=0; i<P; i++)

11 for (int j=0; j<Q; j++)

12 for (int k=0; k<R; k++)

13 C[i][j] += A[i][k] ∗ B[k][j]

14

15 // Computed array C is available on the host

16 }

Listing 1.1 shows an OpenMP 4.0 program offloading matrix-matrix multiply
onto an accelerator. The target directive first establishes a data environment on
the device with three arrays A, B, and C before ofloading the computation.
Upon completion, the array C is transferred back to the host.

The user is required to guarantee a program free of data races that may
otherwise arise due to concurrent execution on devices. These relaxed definitions
allow the standard to support a wide spectrum of accelerators including GPUs,
FPGAs, DSPs, and PiM devices.

4 An Offloading Model for a Cluster

While not originally defined with node-level parallelism in mind, the flexibility
of the OpenMP accelerator model raises the intriguing possibility of exploiting

34 A.C. Jacob et al.

coarse-grained parallelism across nodes in a cluster. In particular, the assumption
in the model that the device data environments may be distinct allows the
possibility of more efficient execution on a cluster. We start by first defining an
offloading model to program a cluster.

4.1 Definitions

Shared-Memory Domain. An implementation defined logical realm with storage
accessible through a global address space by one or more processors within it.
Data may be cached by processors but the model assumes that caches are kept
coherent.

Host Domain. The shared-memory domain on which a program starts execution.

Target Domain. One or more shared-memory domains other than the Host onto
which code and data may be offloaded.

4.2 Execution Model

The execution model defines a clique of one or more shared-memory domains
laid out in a multi-level tree hierarchy. A program begins with a single thread
of execution on some implementation defined domain called the Host. All other
domains in the clique are inactive at startup and must be expressly activated by
the Host.

When the initial thread on the Host encounters a parallel worksharing con-
struct it may spawn additional threads and distribute work for parallel execu-
tion on processors within the same shared-memory domain. When a thread on
a domain encounters a target construct (or in general, a target boundary) there
is a transfer of data and control from one shared-memory domain to another.

Fig. 2. A clique of shared-memory domains laid out on general-purpose microprocessors
and accelerators realized as a multi-level tree hierarchy by the offload model. Domains
communicate via messages on a hierarchical network and optionally via files on a
shared disk.

Exploiting Fine- and Coarse-Grained Parallelism 35

The thread offloads code and data to the Target domain and program control is
transferred to an initial thread on the Target. The original thread waits at the
end of the construct until control is returned from the Target. The Target thread
executes in its distinct shared-memory domain and may co-opt other threads for
parallel execution on the processors within the domain.

4.3 Memory Model

As mentioned previously, in our memory model every domain has a distinct data
environment with storage coherently addressable by all processors contained
within it. Since every domain has an independent address and storage space,
variables declared on the Host are only addressable by that domain, and those
declared on a Target are only addressable by the Target domain. Domain-private
variables are shared across processors within the same domain and follow the
relaxed consistency model of traditional OpenMP.

Data sharing between domains is explicitly controlled by the programmer.
Any Host variable may be mirrored across domains on one or more Targets
through a synchronous operation called “mapping”. Mapping creates a distinct
Corresponding copy on a particular target for an Original variable on the host.
Code within the Host and a Target domain may only access and modify the Origi-
nal and Corresponding values respectively. Original and Corresponding variables
may only be synchronized at target boundaries. Outside the explicit movement
of data between domains at target boundaries there is no mechanism to address
storage across domains.

Mapping is first and foremost a naming operation that assigns a common
identifier to distinct storage locations on the Host and one or more Target
domains. In addition, it is a data transfer operation that moves data between
the Host and one or more Targets (or vice versa).

Mapping points and the direction of the mirroring are explicitly specified by
the user. Host local variables are mapped at these well defined interfaces identi-
fied through user-specified directives. For example, data is typically transferred
to a Target before its invocation and back to the Host upon completion of work.
Host global variables that are explicitly mapped to target domains are mirrored
at program startup before any user code executes.

The kinds of programs that work well under these assumptions include those
that can partition data (such as an array or a set of files) into distinct subsets
across target domains.

5 Implementation

We have implemented our offloading model for clusters within LLVM [10], a
powerful open-source intermediate representation and optimizer, coupled with
Clang [3], a frontend for C/C++ based languages. A recent joint effort by several
players has been adding full OpenMP support in Clang [14]. We have extended
this implementation to provide offloading support for the accelerator model.

36 A.C. Jacob et al.

Fig. 3. Compiler generated fat binary containing offloaded code for a GPU and a Clus-
ter (labeled CPU) target. Offloading support is provided by a generic target library and
device-specific modules. Non-offloaded OpenMP code is supported by our lomp library.

Briefly, support for the offloading directives are added in the parser and
semantic analyzer. Each target region is outlined into a standalone function.
Next, the driver calls the host and one or more target toolchains to obtain distinct
object files. Finally, the linker links the host object file into the executable and
embeds the target object “as is”, resulting in a fat binary.

Figure 3 illustrates the fat binary with included offloading code generated for
the GPU and a cluster node.

5.1 Runtime Support

In order to generate the behavior defined in the OpenMP specification, the com-
piler interfaces with a series of runtime libraries for host and target regions.
The design provides distinct support for offloading and non-offloading OpenMP
directives. We use the IBM lightweight OpenMP (lomp) runtime [4] for par-
allelization of the non-offloaded host code. Offloading support is provided by a
target agnostic library coupled with low-level device-specific plugins. The former
is labeled libomptarget in Fig. 3, while the plugins for the two targets shown in
the figure are labeled GPU and CPU offload.

Target Agnostic Offloading Library. The offloading runtime library is com-
pletely target agnostic allowing Clang to move the complexity of offloading away
from the compiler. This library calls low-level functions in the plugins to allocate
memory on a device and transfer data between the host and the target. It also
manages the address mapping between Original and Corresponding variables
and tracks data references for safe de-allocation. Finally, the library initializes
a target device with offloaded code using the plugins, prepares parameters, and
initiates execution of the kernel.

Target Specific Plugins. The target agnostic library triggers actions on tar-
get devices supported by a set of device-specific plugins. These plugins have a
pre-determined interface and are located and loaded at runtime by the target
agnostic component. They are used to drive low-level actions on the device.

Exploiting Fine- and Coarse-Grained Parallelism 37

We have implemented a plugin for clusters on top of MPI. Upon program
startup every shared-memory domain is activated and all target domains enter
an event loop awaiting communication from the host via MPI messages. The
host can direct each domain to allocate, de-allocate, and transfer data via MPI.

Recall that a target regions are outlined in functions and linked together into
an elf object embedded in the fat binary. At program startup the host transfers
the object to every potential device and is immediately loaded by the event loop
on the target domains. When the host encounters a target region it sets up the
data environment on the specified device and directs the event loop to execute
the function.

Since multiple threads on the host may concurrently offload to distinct tar-
gets, the plugin requires an MPI library that supports thread safe execution.

Target Specific Runtime Libraries. The offloaded device code will itself have
OpenMP directives and therefore requires runtime library support implemented
for the device. Since we are offloading to general-purpose CPUs, standard lomp
is sufficient for this purpose.

6 Preliminary Results

To illustrate the application of our programming model we have accelerated
an important Bioinformatics application, HMMER2, on a cluster. The applica-
tion finds homologs of a protein family by comparing its Hidden Markov Model
(HMM) representation against a database of protein sequences. A typical search
compares tens of thousands of HMMs against tens of millions of sequences and
is a compute-intensive task. In this work we offload this search to nodes within a
cluster. This benchmark exhibits the typical master-slave programming pattern.

The latest release of HMMER includes code to parallelize the search across
nodes within a cluster using traditional MPI. We have summarized the code
and illustrated the flow of control initiated via MPI messages in Fig. 4. The
master and the worker nodes iterate over each query HMM in lock step. For
each query, the database is partitioned into blocks that are offloaded to the next
available worker dynamically to avoid load imbalance. Once the entire database
is processed the master implements a barrier to synchronize across all workers,
before finally requesting and receiving their results. The code is low level and
the control flow is fairly involved.

Our implementation of this same search routine is illustrated in Fig. 5.
A master thread on the host iterates over each query HMM sequentially. We
use the parallel for directive to start num devices threads on the host multi-
core, one for each node in the cluster. Each of these threads operates in parallel,
offloading data and execution control to its associated node. Unlike traditional
OpenMP where threads are used for compute, we are using them as I/O threads
to facilitate parallel offloading. Another approach is to use asynchronous target

2 HMMER 3.1b2: http://hmmer.org.

http://hmmer.org

38 A.C. Jacob et al.

Fig. 4. Pseudocode illustrating a search procedure from HMMER that is currently
implemented using traditional MPI.

Fig. 5. HMMER search pseudocode implemented using our proposed abstraction.

offloading with the nowait clause of OpenMP 4.1, in which case only a single
host thread is necessary.

The worksharing construct implicitly partitions the database across nodes
by distributing iterations of the DB loop across host threads. The OpenMP
dynamic schedule transparently achieves the desired load balancing. Data move-
ment is achieved using map clauses and implicit barrier after the parallel pragma
transparently synchronizes across all workers. The combination of the 3.1 par-
allelization pragma with the cluster enabled offloading construct helps realize a
much simpler program.

We note that our current implementation is more involved due to a known
limitation of the map clause. The standard does not specify the handling of deep
copy of structures with pointers, which is required to map the query structure
onto the target device. Deep copy is necessary to map the variable in the map
clause and all data referenced by fields within the variable (it is being considered
for addition to the Accelerator model). One way around this limitation is to
manually pack and unpack the structure across the device boundary. Our current
implementation instead maps a query identifier to each target, which then reads
the query data from a shared disk.

Exploiting Fine- and Coarse-Grained Parallelism 39

102

103

104

 0 10 20 30 40 50 60 70

E
xe

cu
tio

n
tim

e
(s

ec
s)

Domains (MPI ranks)

MPI
static

dynamic
dynamic-dataopt

Fig. 6. Comparison of HMMER with stock MPI against the implementation in this
work.

To measure performance we run our experiments on a four-node IBM Power
8 R© S824 cluster. A node has four sockets, each with six cores and eight hardware
threads per core running at a maximum clock frequency of 3.3 GHz. We use
the Open MPI 1.8.5 library compiled with multithreaded support and the LSF
cluster management tool to closely pack MPI ranks, 16 per node.

We compiled HMMER for this cluster, enabling stock MPI support, disabling
multithreaded execution, and without SIMD. In our experiment we use HMMER
to compare a single query HMM against a database of 3.9 M sequences. We
selected an appropriate database block size to ensure repeated invocation of
target devices to simulate realistic conditions. In our experiments we vary the
number of MPI ranks from 2 to 64. We run each experiment several times and
select the minimum execution time.

Figure 6 compares execution time (log scale) using HMMER+MPI against
our implementation. We see good scaling behavior that is comparable to the
low-level MPI implementation. Using a dynamic instead of a static schedule to
offload the database consistently gives superior performance, reducing runtime
by over 50% in some cases. We are able to achieve this performance using simple
directives applied to a serial program. The complexity of balanced work schedul-
ing across worker nodes, message passing to transfer data, manage control flow,
and synchronize across nodes is completely hidden behind high-level OpenMP
abstractions.

We observe a constant factor overhead in our implementation beyond 4 ranks.
Currently we have not optimized data communication between the host and tar-
get devices. For example, if there are repeated invocations of a target device
it may be possible for the runtime to reuse memory on the device that was
previously allocated. As shown by the curve labeled dynamic-dataopt, we can
eliminate some of this overhead by establishing a persistent device data environ-
ment using the target data directive.

40 A.C. Jacob et al.

We are investigating the reason for the performance degradation of dynamic-
dataopt with 56 and 64 ranks. We believe this may be due to unbalanced work-
load partitioning of coarser database partitions that was selected to reduce
offloading overhead.

7 Discussion

Rich and efficient data sharing. The standard accelerator model in OpenMP 4.0
implies that data sharing between the host and a device is specified exclusively
via the map clause. While this is likely to be the only method for co-processors
like GPUs, in our case we can also exploit a networked filesystem to share data.
This also allows the programmer to exploit the bandwidth of a large number of
distributed disks.

Exploiting cores in a node. It is possible to naturally extend the implementation
in Fig. 5 to exploit multicores in a target node. We may use a nested parallel for
worksharing directive to dynamically distribute database sequences in the block
assigned to a target across its cores.

Nested target regions. The current standard does not define the semantics of
nested target regions. These may be useful, however, to model a co-processor
such as a GPU within a node in a cluster. Additional semantics, for example,
the scope of “global” variables will have to be clarified. Compiling nested target
regions is also more challenging, likely requiring recursive calls in the driver and
nested containers within the generated fat binary.

Exploiting resources in a cloud. There is no requirement in our model that
the clique of shared-memory domains be on the same homogeneous cluster. Our
model can be used to offload computation onto rented nodes on one or more cloud
platforms to seamlessly scale compute and data requirements from a personal
device such as a mobile phone or a laptop, to an organization’s cluster, and
finally a large-scale cloud platform.

Beyond offloading. Our proposed model uses well-defined offloading semantics
that are easy to reason about for a programmer. However, more powerful exten-
sions may be desired. In particular, arbitrary communication between any two
target devices may be useful for the expert programmer but this is unlikely to
be generally friendly.

One direction we plan to explore is the asynchronous update of variables
on the host (and the target) initiated by the device. This will allow the sup-
port of the parameter-server model [9], which tolerates asynchronous updates of
parameter variables for efficient execution of many machine learning algorithms.

Exploiting Fine- and Coarse-Grained Parallelism 41

8 Conclusions

In this work we have introduced an abstract model to represent a cluster, and
OpenMP 4.0 target directives to implement a simple directive-based approach
to programming a distributed machine. We have implemented this idea in the
LLVM compiler with a runtime that transparently offloads execution via MPI.

Initial results on a bioinformatics application shows good scaling behavior.
Compared to an MPI based approach, high-level OpenMP abstractions in our
implementation completely hide the complexity of balanced work scheduling
across worker nodes, message passing for data transfer, control flow manage-
ment, and synchronization across nodes. We have identified a number of possi-
ble optimizations to improve performance and directions to extend the presented
model.

The application we have considered for acceleration is fully data parallel,
though it requires dynamic workload balancing. In the future it would be inter-
esting to study applications that require more frequent communication and syn-
chronization with the host.

References

1. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. J. High Perf. Comput. Appl. 21(3), 291–312 (2007)

2. Charles, P., et al.: X10: An object-oriented approach to non-uniform cluster com-
puting. In: Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 519–538 (2005)

3. Clang: A C language family frontend for LLVM. http://clang.llvm.org
4. Eichenberger, A.E., O’Brien, K.: Experimenting with low-overhead OpenMP run-

time on IBM Blue Gene/Q. IBM J. Res. Dev. 57(1/2), 8:1–8:8 (2013)
5. El-Ghazawi, T., Smith, L.: UPC: Unified parallel C. In: Supercomputing (2006)
6. Hoeflinger, J.P.: Extending OpenMP to clusters (2006)
7. Hu, Y., Lu, H., Cox, A.L., Zwaenepoel, W.: OpenMP for networks of SMPs. J.

Parallel Distrib. Comput. 60(12), 1512–1530 (2000)
8. Kogge, P.M.: Performance analysis of a large memory application on multiple archi-

tectures. In: Conference on Partitioned Global Address Space Programming Models
(2013)

9. Li, M., et al.: Scaling distributed machine learning with the parameter server. In:
Operating Systems Design and Implementation, pp. 583–598, October 2014

10. The LLVM Compiler Infrastructure. http://llvm.org
11. Millot, D., Muller, A., Parrot, C., Silber-Chaussumier, F.: STEP: a distributed

OpenMP for coarse-grain parallelism tool. In: Eigenmann, R., de Supinski, B.R.
(eds.) IWOMP 2008. LNCS, vol. 5004, pp. 83–99. Springer, Heidelberg (2008)

12. Numrich, R.W., Reid, J.: Co-array fortran for parallel programming. SIGPLAN
Fortran Forum 17(2), 1–31 (1998)

13. Ojima, Y., Sato, M., Harada, H., Ishikawa, Y.: Performance of cluster-enabled
OpenMP for the SCASH software distributed shared memory system. In: Cluster
Computing and the Grid, pp. 450–456, May 2003

14. OpenMP Application Program Interface. http://www.openmp.org/
15. OpenMP, A.R.B.: OpenMP version 4.0, May 2013
16. Rowstron, A., et al.: Nobody ever got fired for using hadoop on a cluster. In:

Workshop on Hot Topics in Cloud Data Processing, pp. 2:1–2:5 (2012)

http://clang.llvm.org
http://llvm.org
http://www.openmp.org/

Accelerator Applications

Experiences of Using the OpenMP Accelerator
Model to Port DOE Stencil Applications

Pei-Hung Lin1(B), Chunhua Liao1, Daniel J. Quinlan1, and Stephen Guzik2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, USA

{lin32,liao6,dquinlan}@llnl.gov
2 Mechanical Engineering Department, Colorado State University, Fort Collins, USA

stephen.guzik@colostate.edu

Abstract. The Department of Energy has a wide range of large-scale,
parallel scientific applications running on cutting-edge high-performance
computing systems to support its mission and tackle critical science chal-
lenges. A recent trend in these high-performance computing systems is
to add commodity accelerators, such as Nvidia GPUs and Intel Xeon
Phi coprocessors, into computer nodes so we can achieve increased per-
formance without exceeding the limited power budget. However, it is
well-known in the high-performance computing community that porting
existing applications to accelerators is a difficult task given the numerous
set of unique hardware features and the general complexity of software.
In this paper, we share our experiences of using the OpenMP Accel-
erator Model to port two stencil applications to exploit Nvidia GPUs.
Introduced as part of the OpenMP 4.0 specification, the OpenMP accel-
erator model provides a set of directives for users to specify semantics
related to accelerators so that compilers and runtime systems can auto-
matically handle repetitive and error-prone accelerator programming
tasks, including code transformations, work scheduling, data manage-
ment, reduction, and so on. Using a prototype compiler implementation
based on the ROSE source-to-source compiler framework, we report the
problems we encountered during the porting process, our solutions, and
the obtained performance. Productivity is also evaluated. Our experience
shows that the existing OpenMP Accelerator Model can effectively help
programmers leverage accelerators. However, complex data types and
non-canonical control structures can pose challenges for programmers to
productively apply accelerator directives.

LLNL-CONF-670941. This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This work was also supported by the National Science Foun-
dations Computer Research Infrastructure program under Award No. CNS-1205708.
The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer International Publishing Switzerland 2015 (outside the US)
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 45–59, 2015.
DOI: 10.1007/978-3-319-24595-9 4

46 P.-H. Lin et al.

1 Introduction

The Department of Energy (DOE) has a wide range of large-scale, parallel
scientific applications to support its mission and tackle critical research and
development challenges in multiple science disciplines. Many of these scientific
applications have a lifespan of multiple decades so it is essential to port them
to current mainstream high-performance computing (HPC) systems deployed in
DOE in a timely fashion. A recent trend in the HPC systems is to add com-
modity accelerators, such as Nvidia GPUs and Intel Xeon Phi coprocessors, into
computer nodes so we can achieve increased performance within a limited power
budget. However, it is well-known in the HPC community that porting existing
applications to accelerators is a difficult task given the numerous unique set of
hardware features of accelerators and the complexity of software.

Although low-level programming models, such as CUDA [2] and OpenCL [10],
can often help deliver competitive performance for certain applications, they are
not productive porting solutions for large-scale parallel applications due to the
extreme and comprehensive changes required in the original source code. On
the other hand, high-level programming models such as OpenMP 4.0 [14] and
OpenACC [4] provide language annotations in the form of directives and clauses
for users to incrementally specify the semantics for porting to an accelerator.
Compilers and runtime systems then automatically take care of repetitive and
error-prone code transformations, thread scheduling, data management, and so
on. Therefore, it is more productive for users to use high-level directive-based
programming models to test the feasibility and profitability of using accelerators.

The OpenMP Accelerator Model, introduced as part of the OpenMP 4.0
specification, is a representative high-level directive-based programming model
aimed to simplify the programming for accelerators. In a previous study [12], we
created a prototype compiler for the OpenMP Accelerator Model and obtained
an early assessment. We extend our work by applying the model to port two non-
trivial DOE scientific applications: lattice-Boltzmann method and Compressible
Navies-Stokes equation. Both applications conduct a stencil computation, an
important category of scientific computing done in DOE facilities. However,
they have very different stencil sizes so they represent a spectrum of stencil
applications. However, they represent a spectrum of stencil applications by their
difference in stencil sizes. Our goal is to discover problems developers may face
when using the OpenMP Accelerator Model to port real applications. We also
share our solutions to the problems, including suggestions to improve the pro-
gramming model itself. Our contributions include: (1) providing the first study
using the OpenMP Accelerator Model in OpenMP 4.0 to port non-trivial scien-
tific applications, (2) illustrating the obstacles for porting real applications and
possible solutions and workarounds, and (3) suggesting improvements, including
new language features, of the OpenMP Accelerator Model to increase expres-
siveness and performance for accelerators.

The remainder of this paper is organized as follows. Section 2 gives an overview
of the accelerator support in the OpenMP 4.0 specification. Section 3 describes
the two applications. Porting experiences and performance results are given in
Sect. 4. Section 5 summarizes related work and Sect. 6 presents the conclusion and
future work.

Experiences of OpenMP Accelerator for DOE Stencil Applications 47

2 OpenMP 4.0’s Accelerator Support

OpenMP is a representative high-level directive-based programming model orig-
inally designed to address shared-memory programming. Starting from OpenMP
4.0, it has a set of language directives and runtime routines aimed at simplifying
the programming for accelerators. Collectively, the accelerator support is often
called the OpenMP Accelerator Model. The OpenMP accelerator model assumes
that a computation node has a host device connected with one or multiple target
devices. A target device, which can be any logical execution engine defined by
an implementation, has threads that behave almost the same as threads on the
host device. The OpenMP memory model is extended so that the code region
has its own data environment. A device appears to have an independent memory,
although it is allowed to share memory among devices.

The execution model is host-centric: a host device “offloads” data and code
regions to accelerators for execution. In particular, the target construct is intro-
duced for specifying a computation and the associated data to be offloaded to a
device. Initially, only a single thread starts on a device to run an implicit task
region. This single thread can fork more threads later when it encounters par-
allel constructs. Data-mapping attributes, specified using the map clause, define
how variables are handled for the device data environments. Data mapping often
involves data movement as host and device are commonly in different memory
spaces in modern accelerator architectures. To avoid repetitive creation and can-
cellation of device data environments, the target data directive defines a device
data region, in which multiple target regions can share the same device data.

Accelerators are often massively parallel architecture devices that support
many concurrent threads with a hierarchical organization. OpenMP 4.0 provides
the teams and distribute constructs to manage a two-level thread hierarchy. teams
creates a league of thread teams, and the master thread of each team executes the
region. distribute is closely nested in a teams region to share work among master
threads of teams. Other features in the OpenMP accelerator model include a tar-
get update directive to make specified items in the device data environment consis-
tent with their original list items, a target declare directive to specify the variables
or functions to be mapped to a device, some combined constructs to simplify the
programming, and an environment variable (OMP DEFAULT DEVICE) to indi-
cate the default device number, and a set of runtime library routines to set and
detect information related to accelerators.

3 Applications

Stencil computations are used in many large DOE scientific applications to solve
partial differential equations on structured grids. In this paper, we chose two
stencil applications, one using the lattice-Boltzmann method (LBM) and the other
solving the compressible Navier-Stokes equation (CNS), to represent non-trivial
scientific applications. The chosen LBM and CNS algorithms have very different
stencil sizes (0-point vs. 25-point) leading to different computational character-
istics. The LBM method operates in a streaming mode; memory is read once to

48 P.-H. Lin et al.

perform the computation in the 0-point grid site. In the CNS method, mem-
ory from a grid site is repeatedly used in all the stencils that include that grid
site. Hence, effective caching is extremely important. With effective caching, the
arithmetic intensity (FLOPS per unit byte) can be quite high. The performance
of the LBM algorithm is often limited by bandwidth whereas the performance
of the CNS algorithm is often limited by arithmetic resources. These different
characteristics can lead to different implementation strategies when porting the
applications to a GPU device. We list a high level comparison between two
applications in Table 1.

Table 1. Comparison between LBM and CNS applications

Language AMR library Stencil Components Lines in codes

LBM C++ Chombo 0-point 19 4670 (12879 w/Chombo code)

CNS Fortran90 BoxLib 1D: 9-point 11 1242 (25967 w/BoxLib code)

3D: 25-point

In the LBM, hydrodynamics are described by a discrete kinetic equation for a
single-particle distribution function [5].

fi(j + eiΔt, t + Δt) = f̂i(j, t)
︸ ︷︷ ︸

Streaming

= fi(j, t) + Lik

(

fk(j, t) − f
eq
k (j, t)

)

︸ ︷︷ ︸

Collision

. (1)

The chosen LBM application uses Chombo [6], a parallel adaptive mesh refine-
ment (AMR) library used to solve partial differential equations. The domain
size selected in the experiment is a 643 Cartesian grid structure partitioned into
boxes, each of size 323. A total of 8 boxes cover the problem domain and 8000
time steps are performed in a single experiment. Figure 1 shows the pseudo code
for the LBM computation. In the experimental setup, a loop in the application
iterates over 8 boxes and performs computations to update the grid cells in each
box (represented in line 8). Parallelization can be applied to the loop over boxes
(line 8) or loops over grid cells (line 11 and line 16). Multi-level parallelization
is feasible only if it is supported in the implementation.

The CNS algorithm is based on finite-difference methods and the equations
are:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

∂ρu

∂t
+ ∇ · (ρuu) + ∇p = ∇ · τ , (3)

∂ρE

∂t
+ ∇ · [(ρE + p)u] = ∇ · (λ∇T) + ∇ · (τ · u), (4)

where ρ is the density, u is the velocity, p is the pressure, E is the specific energy
density (kinetic energy plus internal energy), τ is the viscous stress tensor, λ
is the thermal conductivity, and T is the temperature. The problem domain in
CNS is represented by BoxLib [1], an AMR library very similar to Chombo. The
domain size of the CNS experiment is 643 and partitioned into “Fabs” (Fortran
array boxes), each of size 323. 50 time steps are performed and 5 output files are

Experiences of OpenMP Accelerator for DOE Stencil Applications 49

1 fi(cells , 19, boxes) = initial data;
2 fiUpdate(cells , 19, boxes) = 0;
3 U(grid , 4, boxes);
4 Macroscopic(U, fi);
5 for (int iTS = 0; iTS != nTimeStep; ++iTS)
6 {
7 int iBox;
8 for (every box)
9 {

10 { // Advance function
11 for (every cell)
12 Collision(fi, U);
13 Exchange(fi);
14 BC(fi);
15 Stream(fiUpdate , fi);
16 for (every cell)
17 Macroscopic(U, fiUpdate);
18 swap(fi , fiUpdate);
19 }
20 }
21 }

Fig. 1. LBM algorithm pseudo-code

1 fi(cells , 19, boxes) = initial data;
2 fiUpdate(cells , 19, boxes) = 0;
3 U(grid , 4, boxes);
4 Macroscopic(U, fi);
5 for (int iTS = 0; iTS != nTimeStep; ++iTS)
6 {
7 int iBox;
8 for (every box)
9 {

10 { // Advance function
11 for (every cell)
12 Collision(fi, U);
13 Exchange(fi);
14 BC(fi);
15 Stream(fiUpdate , fi);
16 for (every cell)
17 Macroscopic(U, fiUpdate);
18 swap(fi , fiUpdate);
19 }
20 }
21 }

Fig. 2. CNS application pseudo-code

generated during the computation. An outer loop iterates over all available Fabs
in the “multi-Fab” data structure (shown in line 5 in Fig. 2). Similar to the LBM,
multi-level parallelization is applicable if it is supported in the implementation.

4 Porting to GPUs

Our porting process starts with obtaining baseline performance of OpenMP ver-
sions of the applications. We incrementally add additional accelerator directives
and clauses to show the programming effort and performance impact. In partic-
ular, we experiment with directives and clauses for data reuse, loop collapsing,
loop scheduling and hierarchical thread mapping.

The hardware platform has 132 GB memory, two 8-core Intel E5-2670 CPUs,
and two Nvidia K20x GPUs. We use a prototype implementation of the OpenMP
Accelerator Model, HOMP (Heterogeneous OpenMP) [12], which is built on the
ROSE source-to-source compiler infrastructure [15] developed at Lawrence Liv-
ermore National Laboratory. The built-in OpenMP implementation in ROSE
supports OpenMP 3.0 directives for C, C++ and a subset of Fortran. Leverag-
ing ROSE’s flexibility to experiment with new language extensions, HOMP adds
the OpenMP accelerator support [12], including parsing and code transforma-
tions for target, target data, map and so on. HOMP generates CUDA code for the
growing demands in GPU programming. The original OpenMP runtime library
(referred to as XOMP) for ROSE has been extended to support thread config-
uration, loop scheduling, data management, reduction and many other required
operations on GPUs. We use the GNU Compiler Collection (gcc-4.4.6), Nvidia
6.0 SDK, nvcc compiler, and the Nvidia Visual Profiler [3] in this study.

4.1 Baseline Performance on CPU and GPU

The default setup in the LBM application has OpenMP directives inserted into the
loop for boxes (line 8 in Fig. 1). The OMP NUM THREADS environment variable

50 P.-H. Lin et al.

Fig. 3. LBM CPU baseline performance Fig. 4. CNS CPU baseline performance

is set to 8 to assign at most 8 OpenMP threads to update the 8 boxes in the
loop. We assign at most 8 OpenMP threads to update the 8 boxes in the loop.
Each OpenMP thread will then update 323 cells inside a box, a strategy that
works well for boxes of this size [13]. The OpenMP parallel region terminates
at the end of the loop to form an implicit synchronous barrier between time
steps. Figure 3 shows the CPU’s serial and parallel performance. The parallel
execution with 8 OpenMP threads delivers a 6.76× speedup compared to the
serial execution on the testing system.

The CNS application by default has OpenMP directives at the loops for grid
cells (line 9, 11, and 13 in Fig. 2). These loops are 3-level nested loops that
iterate through the cubical structure in a Fab. The whole application consists of
14 such OpenMP parallel loops. In the configured testing case, loop iterations in
the outermost loop are evenly distributed into 8 OpenMP threads for 8 boxes.
Figure 4 shows the comparison between serial and parallel execution using 8
threads. The parallel execution delivers a 5.42× speedup on the testing machine.

Before the porting, we discovered a few obstacles to adding OpenMP accel-
erator directives. We had to modify a subset of code from both applications to
make the porting feasible. For example, the current HOMP only supports C/C++
input code to generate CUDA code for the GPU. We used a Fortran-to-C trans-
lator implemented in ROSE to translate the functions in the CNS into C language
versions for the porting. In the LBM application, several variables used in the target
loops were not mappable by the OpenMP 4.0 specification because they are part
of other C++ class objects. We copied those variables to temporary variables and
mapped the temporary variables as a workaround. The baseline implementations
on the GPU simply reuse the OpenMP parallel directives without any optimiza-
tion involved. Minimal OMP target and OMP map directives are used to identify
the target region and data to be mapped onto the device.

For the LBM application, the location of OpenMP directives in the CPU
implementation is not an ideal start location for the GPU implementation since
it contains multiple kernels in the loop body. Using an incremental approach,
we ported individual kernels first and moved the OpenMP directives to the loca-
tions of loops to the grid cells inside Collision, Macroscopic and Stream functions
(shown at line 11, 15 and 16 in Fig. 1). These three functions consume the major-
ity of execution time (47 % in Collision, 40 % in Stream and 7 % in Macroscopic)

Experiences of OpenMP Accelerator for DOE Stencil Applications 51

Fig. 5. LBM performance on GPU

Fig. 6. CNS performance on GPU

on the parallel CPU execution. The GPU baseline implementation for the CNS
application has OpenMP directives inserted into 1 loop in the ctoprim function,
3 loops in the hypterm function, and 7 loops in the diffterm function. Those
are the same locations that have OpenMP directives in the parallel CPU imple-
mentation. Diffterm function takes the greatest portion (34 %) portion of total
execution in the CNS application. Hypterm and ctoprim take 24 % and 13 %,
respectively.

The baseline GPU performance in both applications were not competitive
compared to their corresponding CPU version performance (shown in Figs. 5
and 6). After inspection with the Nvidia Visual Profiler [3], we found that the
baseline GPU implementations have extremely low achieved GPU occupancy
(<2 %). The baseline GPU implementations have extremely low achieved GPU
occupancy (<2 %). This is due to the nested loops, identified by the OpenMP
directives, which have only small loop iteration sizes in their outermost loop.
The translated CUDA codes exploit at most 40 GPU threads to perform the
computation and result in low parallelism and performance. The next step in
porting was to improve the GPU utilization by increasing the parallelism.

52 P.-H. Lin et al.

4.2 Increasing Parallelism

Achieving high parallelism is the key for a GPU device to get high computing
performance. In addition to optimizing applications for high parallelism, the
porting process needs to take into account that the maximum parallelism in the
real execution is subject to certain CUDA limitations. These are the limitations
for K20X GPU used in this paper:

– At most 1024 threads in a thread block.
– At most 64 warps (32 threads/warp) in a SMX.
– A thread can have up to a 63 register usage.
– Each SM has up to 48 KB shared memory shared by multiple thread blocks.

We describe two feasible approaches to increasing parallelism for the chosen
applications.

The first approach is loop collapsing. Loop collapsing is a transformation that
converts multiple perfectly nested loops into a single loop. Compared to the orig-
inal outermost loop, the collapsed loop has a larger iteration size with potential
to expose higher parallelism. We apply the directive #pragma omp for collapse (n)
to perform loop collapsing. However, loop structure in the LBM application has
statements between the nested loops and does not form a perfectly nested loop.
Collapsing non-perfectly nested loops is not allowed by the OpenMP specifica-
tion. After reviewing the nested loop structure, we manually moved statements
between loops in LBM application into the innermost loop body since this change
causes no side effect and can form a perfectly nested loop. After collapsing, we
could exploit more GPU threads to perform parallel execution on the collapsed
loop. Therefore, more GPU threads could be assigned to perform parallel execu-
tion on the collapsed loop. The XOMP runtime incorporates the CUDA runtime
to maximize the utilization of the GPU threads. Compared with the baseline
GPU implementations, there are about 5× and 10× speedups delivered for the
LBM and CNS applications respectively (shown in Figs. 5 and 6).

The second option to increase parallelism is to use the multi-dimensional
thread structure supported in CUDA. In the LBM application, we can seamlessly
allocate 32× 32 threads to a thread block and have 32 thread blocks mapped to
the outermost loop. This can achieve 100 % occupancy in the execution if only 32
registers are given to each GPU thread. But there are only two concurrent thread
blocks in the setup due to the limitation in the allowed warp number. In the CNS
application, we can have the same allocation if ghost cells are not involved in
the computation. Otherwise, the loop iteration size becomes 40 (32 and 4 ghost
cells on both sides) in the three-level nested loop. To fulfill the CUDA limitation
discussed earlier, we allocate only 40 threads in a thread block and have multiple
thread blocks mapped to the loop iteration space. 16 concurrent thread block
are allowed in executions, and it is also the maximum allowed number in this
GPU model. This configuration has lower theoretical occupancy (50 %) and the
computation is inefficient due to the usage of partial-warp. The performance
is reported in histograms marked with multi-dim threadblock in Figs. 5 and 6.
Compared with the collapsing variants, a 1.5× speedup is achieved in the LBM
application but a marginal difference is shown for the CNS application.

Experiences of OpenMP Accelerator for DOE Stencil Applications 53

4.3 Loop Scheduling

OpenMP supports multiple loop scheduling policies, including static, dynamic,
guided, auto, and runtime. For regular loops running on CPUs, statically and
evenly dividing loop iterations among threads using a schedule(static) clause
(referred to as static-even schedule in this paper) often leads to the best per-
formance with minimal scheduling overhead. On the GPU, we need to perform
coalesced memory access for high performance. The static-even schedule will have
one GPU thread accessing multiple successive words in memory and lead to mul-
tiple memory transactions. A round-robin scheduling using schedule(static,1) will
fulfill the need to perform coalesced memory access on the GPU device. We apply
the round-robin schedule and compare only the kernel execution times in the CNS
application. Round-robin scheduling delivers the highest (76 %) improvement in
one kernel in the hypterm function and an average of 26.4 % improvement for
all kernels. Performance reports show modest improvement for total execution
time in the CNS application (1 %) and a larger improvement in the the LBM appli-
cation (2.8×). The performance analysis reports high overhead due to memory
movement between the host and device memories.

4.4 Exploiting Memory Hierarchy

Nvidia GPUs provide multiple specialized memories, including on-chip software
controllable cache shared within a thread block (referred to as shared memory)
and constant memory accessible by all threads for read-only global data. The
current OpenMP 4.0 lacks support to exploit the specialized memories. We pro-
pose to extend the OpenMP Accelerator Model to have a cache clause to allow
users to hint such opportunities. The clause has a form of cache (var list), in
which each variable listed can be further prepended by an optional const mod-
ifier. For example cache (array1[0:10], const array2[5:10]) tells the compiler that
there are two arrays which should be cached in the memory hierarchy of the
accelerator. One of the arrays is a read-only subarray. Similar to the map clause,
the cache clause can only be used with target or target data directives. Variables
shown in the cache clause must also show up in the map clause affecting the same
code region. With this clause, compilers translate the code to exploit either the
shared memory or the constant memory of GPUs.

After evaluating the two applications, the LBM gained more benefits from the
constant memory than the shared memory. We can store many constant coeffi-
cients, stride distances, and an array storing discrete velocity directions and an
array storing weights in the constant memory space. Figure 7 extracts the compar-
ison (execution time includes memory copying overhead) with only two kernels in
the LBM application to demonstrate the performance with constant memory usage.
A 1.32× speedup is achieved for the overall execution time from the implementa-
tion with constant memory. Higher speedups, from 1.74× to 2.44×, were observed
in the execution times for these three functions individually.

On the other hand, the CNS has relatively low constant data referenced by
multiple functions. But the CNS application uses a 25-point stencil in the 3D

54 P.-H. Lin et al.

Table 2. Shared memory usage and GPU occupancy

Shared memory report

Kernel Size/block (byte) Threads/block Occupancy

Hypterm original 1920 40 50 %

Tiled 2 iterations 3840 80 56 %

Tiled 3 iterations 5760 120 50 %

Tiled 4 iterations 7680 160 47 %

Diffterm original 3520 40 41 %

Tiled 2 iterations 7040 80 28 %

Tiled 3 iterations 10620 120 25 %

Tiled 4 iterations 14080 160 23 %

Fig. 7. LBM with constant memory Fig. 8. CNS with shared memory

computation. Stencil data can therefore be stored in the shared memory space
to gain the benefit of the fast memory. We used shared memory for six kernels
(3 in Hypterm and 3 in Diffterm) in the GPU implementation for the CNS appli-
cation. Table 2 shows the details of the required shared memory size, thread
assignment and the achievable highest GPU occupancy. This implementation
doesn’t deliver higher performance compared to our earlier implementation with
the best performance (shown in Fig. 8) due to a much lower GPU occupancy.
To increase the active thread number in each thread block, loop tiling can be
performed in the loop for the second dimension in the 3D nested loop. We can
exploit more GPU threads after loop tiling but it also proportionally increases
the required shared memory size for each thread block. Table 2 also shows the
changes in GPU occupancy by tiling both kernels with different tiled sizes.
The GPU occupancy will be limited by the allowed 48KB shared memory size.
We conclude that exploiting shared memory in our implementation for the CNS
application does not improve performance. It would require other optimizations
to achieve efficient shared memory usage.

Experiences of OpenMP Accelerator for DOE Stencil Applications 55

4.5 Reducing Memory Movement Between Host and Device

We observed several variables and arrays are copied repetitively to the GPU’s
memory in different kernels. Using target data directives with map clauses can
usually reduce repetitive memory allocations and transferring. However, we
found that this is not a trivial task for the two chosen applications due to lan-
guage restrictions. OpenMP 4.0 defines a set of restrictions for variables listed
in the map clause, such as (1) data must have a complete type for C/C++, (2)
a variable that is part of another variable (e.g. a field of a struct) is not allowed
unless it is an array element or array section, (3) C++ class types mapped must
not contain static data or virtual members, and (4) pointer types are allowed
but the memory block to which the pointer refers to is not mapped. Chombo
(used in the LBM application) and BoxLib (used in the CNS application) share a
data structure called Fortran array box (Fab). Fab is a structure of arrays that
can store multiple components and it provides a high-level data abstraction.
Information, such as loop bounds, stencil size, and a data pointer to the compo-
nent array, is packaged inside the Fab. Members in Fab contain primitive arrays,
scalar variables, and some static data. An ideal strategy in the porting process
is to copy the entire Fab structure to the GPU’s memory space. However, the
Fab structure is not mappable according to OpenMP 4.0. A workaround task is
to extract and store all the members of Fab in primitive arrays. Then the tem-
porary arrays can be mapped and copied to the GPU memory. This will involve
a significant code modification in the porting process.

4.6 Manual Tuning for GPU Performance

We provide manual implementations for both applications to evaluate the achiev-
able performance through manual performance tuning. We manually implement
the chosen applications with the CUDA language and consider the possibilities
to involve OpenMP 4.0 standards and compiler transformations to automate the
process. The manual implementations serve as a reference to study the transfor-
mation obstacles in the design of the OpenMP accelerator model. Several manual
optimizations require good understanding in the application design to perform
code modifications and they are not implemented as automatic transformations
in this study.

The manually-tuned GPU implementation for the LBM application signifi-
cantly simplifies the Fab structure, restructures the code, and consolidates all
the memory copying. Other optimizations include hand-tuned kernels (including
BoxLib’s exchange function), exploiting constant memory, and several code mod-
ifications specifically for the GPU implementation. A simplified Fab structure
on GPU code is designed to store only the essential data members in the CPU’s
Fab structure. Data is allocated and copied to GPU memory once and reused by
all the kernels listed in the pseudo code in Fig. 1. This optimized implementation
delivers the best performance between the CPU’s and GPU’s implementations
(shown in Fig. 5).

56 P.-H. Lin et al.

The manual tuning processes for the CNS application minimize memory copy-
ing between the host and device, exploit efficient usage of shared memory, and
maximize GPU occupancy. A 43 thread block is chosen based on the ghost cell
size in the computation to avoid the partial warp usage. The code was modified to
have only minimal memory transfers between host memory and device memory.
All initialized data stored in the Fab data structure is copied to the device memory
before the computation. There are infrequent data movements which send only a
subset of computed data back to the host memory for boundary exchange per-
formed by the BoxLib library and visualization dumps. The manual code delivers
the best GPU performance with about 6× speedup compared to the best imple-
mentation with the OpenMP accelerator model (shown in Fig. 6). However, the
delivered performance is not superior to the performance on the CPU due to over-
heads in allocating, copying and freeing memory on the GPU. Eliminating that
overhead for the CNS application, the GPU execution time for the three kernels is
at a comparable level to the CPU execution time.

4.7 Productivity

We briefly discuss the productivity benefit by using the OpenMP accelerator
model. We choose the line number as the metric to evaluate the gain in produc-
tivity. Table 3 lists the essential information for the study. The number of accel-
erator directives inserted, lines in source code being ported, lines in the trans-
formed code on the CPU (host code), and the line of the generated CUDA code
on the GPU (device code), are collected in the table. Besides the code generated
by the HOMP compiler, each runtime function packs a series of low-level CUDA
function calls and additional codes to perform the designated task. Without the
runtime support, manual implementation needs to perform the same series of
CUDA function calls repetitively. For both transformed host and device codes,
Table 3 lists two counts with and without including the line numbers packaged
by the runtime functions. The count with lines performed in the runtime func-
tions provides an estimation for the code size in a manual implementation. As
shown in the table, using a few lines of directives can essentially save the efforts
of writing hundreds or even thousands of lines of generated code. Accelerator

Table 3. Productivity study using lines of code (LOC)

Functions Source LOC Directives Host LOC Device LOC Ratio (LOC/directives)

A B A B A B

LB collision 45 2 57 464 48 58 52.5 261.0

LB macroscopic 46 2 52 421 45 55 48.5 238.0

LB stream 21 2 53 460 35 45 44.0 252.5

CNS ctoprim 14 2 27 205 30 40 28.5 122.5

CNS hypterm 57 6 81 793 123 153 34.0 157.7

CNS diffterm 82 14 335 2647 206 276 38.6 208.8

A: Lines of code without counting in runtime;

B: Line sof code with counting in runtime

Experiences of OpenMP Accelerator for DOE Stencil Applications 57

directives supported by the OpenMP 4.0 can greatly simplify the porting process
and improve productivity. On the other hand, programming using the OpenMP
accelerator model does require additional domain knowledge, analysis, or opti-
mization to achieve high performance on the target platform. Occasional manual
code changes are needed also to workaround some language restrictions or expose
more parallelism. However, the efforts of learning low-level CUDA or OpenCL
would be more significant.

5 Related Work

Many previous studies [8,9,11,17] have evaluated the performance and produc-
tivity of OpenACC using a range of kernels or applications. For example, Wienke
et al. [17] presented their experiences with OpenACC using two real-world appli-
cations. OpenACC helped them reach 80 % of the best-effort OpenCL version
in a moderately complex simulation kernel. They reported that the inability to
exploit local memory of the GPUs could contribute to the loss of performance of
other complex OpenACC applications. Herdman et al. [8] used a hydrodynamics
mini-application to compare OpenACC, OpenCL and CUDA. They found that
OpenACC was extremely viable but their OpenCL and CUDA versions were
not optimized. Hoshino et al. [9] used both kernels and a real-world compu-
tational fluid dynamics applications to compare CUDA and OpenACC. They
reported that some complex Fortran data types such as arrays of derived types
and derived types with variable-length arrays are not supported by OpenACC,
but extensively used in the code.

The application experience of using the OpenMP accelerator support is
rare due to the lack of compiler support. Dietrich et al. [7] presented an app-
roach to measure the performance of applications utilizing OpenMP offloadings.
Their focus is at performance analysis on the Intel Xeon Phi coprocessor. Silva
et al. [18] compared OpenACC and OpenMP for accelerator computing. A set
of parallel programming patterns, not real applications, were used to compare
language features. No performance experiments were done due to the lack of
compiler support. Unat et al. [16] presented a domain-specific OpenMP-like pro-
gramming model for stencil methods. For small kernels, they realized up to
80 % of the performance of optimized CUDA versions. Our work provides the
first study of the performance and programmability of the OpenMP accelerator
model using the HOMP compiler [12]. OpenACC [4] provides a cache (var list)
directive to support cache memory on accelerators. However, this directive may
only appear inside loops. By contrast, our proposed cache() is a clause which can
be used with one or multiple code regions. Besides leveraging the highest level
of cache, the additional const modifier in our design can support the read-only
semantics to exploit constant memory.

6 Discussion and Future Work

We have found that the OpenMP Accelerator Model is a productive approach
for porting existing applications to GPUs. The porting strategy can be straight-
forward. Users should prepare a baseline OpenMP version running on CPUs.

58 P.-H. Lin et al.

Then the target directive can be inserted around parallel regions. There are only
a limited set of accelerator directives and clauses in OpenMP 4.0 to improve
parallelism, scheduling, and data reuse, among others. So a strategy is to incre-
mentally apply them and check the effect by performance analysis tools.

However, real applications pose unique challenges to effectively apply
directive-based programming models. (1) A scientific application often has com-
plex data types which may not be supported by the language specifications.
A common workaround is to manually copy a portion of the complex data
object into a variable of a simpler, supported type. (2) An application may have
non-perfectly nested loops, which can be a candidate for collapsing after simple
transformations. One possible way to improve productivity is to extend the col-
lapse(n) clause to accept a flag, like collapse(n:force), to force collapsing across
multiple non-perfectly nested loops when applicable. Compilers could enforce a
transformation to form a perfectly nested loop, but users have to ensure the
correctness of the code movements. (3) Large-scale DOE applications usually
leverage many third-party libraries to increase productivity. Porting such an
application may involve a challenging task to port the underlying libraries. (4)
In an ideal world, users should be able to simply insert directives into existing
codes to port to new platforms. However, non-trivial code restructuring may
be needed to expose the right granularity of parallelism. (5) Our attempt to
exploit special caches on GPUs generated some interesting results. Using con-
stant memory for LBM resulted in significant performance improvements. On the
other hand, using shared memory for CNS does not deliver higher performance in
our study. The intuitive implementation to exploit special caches on GPUs may
degrade the performance. Additional analysis and optimization support will be
helpful to achieve good performance on GPU devices.

Our future research directions are in the following: (1) testing extensions to
port complex data types and non-canonical control structures (e.g. non-perfectly
nested loops). (2) using more scientific applications to find improvements to the
directive-based programming models, (3) further investigation of ways of exploit-
ing shared memory for better performance in real applications, and (4) exploring
extensions to express semantics related to managing multiple accelerator devices.

References

1. BoxLib. https://ccse.lbl.gov/BoxLib/
2. CUDA Zone - The resource for CUDA developers. http://www.nvidia.com/cuda
3. Nvidia visual profiler. https://developer.nvidia.com/nvidia-visual-profiler
4. OpenACC: Directives for Accelerators. http://www.openacc-standard.org/
5. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev.

Fluid Mech. 30, 329–364 (1998)
6. Colella, P., Graves, D.T., Keen, N., Ligocki, T.J., Martin, D.F., McCorquodale, P.,

Modiano, D., Schwartz, P., Sternberg, T., Straalen, B.V.: Chombo software pack-
age for amr applications - design document. Technical report, Lawrence Berkeley
National Laboratory (2009)

https://ccse.lbl.gov/BoxLib/
http://www.nvidia.com/cuda
https://developer.nvidia.com/nvidia-visual-profiler
http://www.openacc-standard.org/

Experiences of OpenMP Accelerator for DOE Stencil Applications 59

7. Dietrich, R., Schmitt, F., Grund, A., Schmidl, D.: Performance measurement for
the OpenMP 4.0 offloading model. In: Lopes, L., Žilinskas, J., Costan, A., Cascella,
R.G., Kecskemeti, G., Jeannot, E., Cannataro, M., Ricci, L., Benkner, S., Petit, S.,
Scarano, V., Gracia, J., Hunold, S., Scott, S.L., Lankes, S., Lengauer, C., Carretero,
J., Breitbart, J., Alexander, M. (eds.) Euro-Par 2014, Part II. LNCS, vol. 8806,
pp. 291–301. Springer, Heidelberg (2014)

8. Herdman, J., Gaudin, W., McIntosh-Smith, S., Boulton, M., Beckingsale, D.,
Mallinson, A., Jarvis, S.: Accelerating hydrocodes with OpenACC, OpeCL and
CUDA. In: 2012 SC Companion: High Performance Computing, Networking, Stor-
age and Analysis (SCC), pp. 465–471, November 2012

9. Hoshino, T., Maruyama, N., Matsuoka, S., Takaki, R.: CUDA vs OpenACC: per-
formance case studies with Kernel benchmarks and a memory-bound CFD appli-
cation. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pp. 136–143, May 2013

10. Khronos OpenCL Working Group: The OpenCL Specification - Version 1.0. Tech-
nical report, The Khronos Group (2009)

11. Levesque, J.M., Sankaran, R., Grout, R.: Hybridizing S3D into an exascale appli-
cation using OpenACC: an approach for moving to multi-petaflops and beyond.
In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC 2012, pp. 15:1–15:11. IEEE Computer
Society Press, Los Alamitos, CA, USA (2012)

12. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early experiences
with the OpenMP accelerator model. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg (2013)

13. Olschanowsky, C., Guzik, S.M.J., Loffeld, J., Hittinger, J., Strout, M.M.: A study
on balancing parallelism, data locality, and recomputation in existing PDE solvers.
In: The International Conference for High Performance Computing, Networking,
Storage and Analysis (2014)

14. OpenMP Architecture Review Board: The OpenMP API Specification for Parallel
Programming. http://www.openmp.org/

15. Quinlan, D.J., et al.: ROSE compiler project. http://www.rosecompiler.org/
16. Unat, D., Cai, X., Baden, S.B.: Mint: realizing CUDA performance in 3D stencil

methods with annotated C. In: Proceedings of the International Conference on
Supercomputing, ICS 2011, pp. 214–224. ACM, New York, NY, USA (2011)

17. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC — first experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012)

18. Wienke, S., Terboven, C., Beyer, J.C., Müller, M.S.: A pattern-based comparison of
OpenACC and OpenMP for accelerator computing. In: Silva, F., Dutra, I., Santos
Costa, V. (eds.) Euro-Par 2014 Parallel Processing. LNCS, vol. 8632, pp. 812–823.
Springer, Heidelberg (2014)

http://www.openmp.org/
http://www.rosecompiler.org/

Evaluating the Impact of OpenMP 4.0
Extensions on Relevant Parallel Workloads

Raul Vidal, Marc Casas(B), Miquel Moretó, Dimitrios Chasapis, Roger Ferrer,
Xavier Martorell, Eduard Ayguadé, Jesús Labarta, and Mateo Valero

Barcelona Supercomputing Center (BSC),
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

marc.casas@bsc.es

Abstract. OpenMP has been for many years the most widely used
programming model for shared memory architectures. Periodically, new
features are proposed and some of them are finally selected for inclusion
in the OpenMP standard. The OmpSs programming model developed
at the Barcelona Supercomputing Center (BSC) aims to be an OpenMP
forerunner that handles the main OpenMP constructs plus some extra
features not included in the OpenMP standard. In this paper we show the
usefulness of three OmpSs features not currently handled by OpenMP
4.0 by deploying them over three applications of the PARSEC bench-
mark suite and showing the performance benefits. This paper also shows
performance trade-offs between the OmpSs/OpenMP tasking and loop
parallelism constructs and shows how a hybrid implementation that com-
bines both approaches is sometimes the best option.

1 Introduction and Motivation

OpenMP has been for many years the most popular programming model for
shared memory architectures. The OmpSs programming model [5] developed at
the Barcelona Supercomputing Center aims to be an OpenMP forerunner that
handles the main OpenMP constructs plus other features not included in the
OpenMP standard. OmpSs is based on #pragma annotations and its seman-
tics are almost identical to the OpenMP standard. For these reasons, a code in
OmpSs that uses only the features included in the OpenMP standard is equiv-
alent to its OpenMP counterpart. It is not straightforward to make the choice
on which OmpSs features should be adopted by the OpenMP standard and how
these new features would interact with the already existing ones.

This paper brings some light to the above mentioned dilemmas by pursuing
two goals: The first is to show the usefulness of three OmpSs features not cur-
rently handled by OpenMP 4.0 by using them to accelerate three well known
applications of the PARSEC benchmark suite [3,4]. Secondly, this paper shows
performance trade-offs between the OmpSs/OpenMP tasking and loop paral-
lelism constructs (e.g. #pragma omp for) and proposes a hybrid implementation
that combines both kinds of constructs to maximize performance. More precisely,
this paper deploys the following OmpSs features:
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 60–72, 2015.
DOI: 10.1007/978-3-319-24595-9 5

Evaluating the Impact of OpenMP 4.0 Extensions 61

– the multi-dependencies feature, which allows to specify different data-
dependence scenarios in a single #pragma annotation, significantly increas-
ing programmability.

– runtime support for NUMA-aware scheduling of tasks, which schedules them
on the cores closest to the data the task accesses.

– the concurrent clause, which relaxes task synchronization and allows increased
overlap of task creation with remaining computations.

Three applications of the PARSEC benchmark suite are considered in this
paper: Facesim, Fluidanimate and Streamcluster. New OmpSs versions of these
applications are used to show the potential of the new features. The concur-
rent clause is applied to Facesim and Fluidanimate to reduce synchronization
penalties. The multi-dependencies clause is deployed in the Fluidanimate code to
express complex data-dependencies that allow barrier removal without increas-
ing the programming burden. Runtime support for NUMA-aware scheduling is
deployed in the Streamcluster code. Finally, the performance trade-offs between
tasking constructs and simpler forms of loop parallelism are analyzed in the
Facesim code.

The rest of this paper is organized as follows: Sect. 2 describes the three
applications studied in this paper and the proposed parallelization strategies,
Sect. 3 presents the evaluation in terms of performance and programmability,
while Sect. 4 describes the related work. Finally, Sect. 5 summarizes the main
conclusions of this work.

2 Application Parallelization

2.1 Facesim

Description. Facesim animates a human face by simulating its movements. It
employs a 3D model composed of a tetrahedral mesh representing the flesh of
the face and two triangulated surfaces which model the bones of the head: the
cranium and the jaw. The physical forces and motions in the model are computed
frame by frame to produce the animation. Facesim uses the Newton’s method
for solving the system of equations that models the motion. The system is stored
in a sparse matrix formed by two one-dimensional arrays: dX full and R full,
defining the left-hand and right-hand sides of the equation system, respectively.
The total number of nodes is equivalent to the arrays’ size. The nodes are the
vertices of the tetrahedrons the mesh is composed of. Each tetrahedron shares the
nodes with its neighbors and for each node the force contributions are computed.
A parallel conjugate gradient method is used in each step of the Newton’s method
to solve its associated linear system and find the displacement of the nodes in the
current frame which is added to a separate array storing the current positions
of the nodes.

PARSEC Pthreads Parallelization. In the Pthreads parallelization provided
by the PARSEC benchmark suite, the mesh is split into a number of partitions

62 R. Vidal et al.

Fig. 1. Facesim UPBS, UCPF, AFD and AVIF parallel execution using the same time
scale. Beginning of a frame. The OmpSs trace (top) exhibits no barriers. The original
Pthreads trace (bottom) makes extensive use of barriers and UCPF routine is serialized.

equal to the number of threads available. It has a queuing system in which work
units are queued to be processed by the team of threads the system spawns
upon initialization. There is a master thread which executes the code of the
application. When it reaches a parallel region, it calls the queuing system to
create work units in a loop and waits in a barrier outside of the loop for the
team of threads to finish. The work units are created by means of an ad-hoc
scheduling library written in C which manages the team of threads.

Facesim’s parallel computations are grouped in three major parallel ker-
nels. Two of them generate the linear system associated with each iteration
of Newton’s method and the third one solves it.

– Update State: Updates velocities, force directions and material properties
which depend on the current positions of the mesh. Update State is com-
puted with two functions: Update Position Based State (UPBS) and Update
Collision Penalty Forces (UCPF).

– Add Forces: Comes after Update State. Computes force contributions for each
node. This kernel is actually computed with two functions: Add Velocity Inde-
pendent Forces (AVIF) and Add Force Differential (AFD).

– Conjugate Gradient (CG): This iterative method is set up to do a maximum
of 200 iterations. The CG methods performs two reduction operation per
iteration.

UPBS and CG are the most time consuming routines. There are several
barriers in this application per iteration of Newton’s method: One at the end of
Update State, two from Add Forces and three within each CG iteration.

Taskification Strategy. With respect to Facesim we consider three different
approaches. The first one exclusively uses tasking clauses with dependencies
when necessary. The second one uses loop parallelism clauses, like the omp for
construct. Finally, the third combines task and loop parallelism.

Evaluating the Impact of OpenMP 4.0 Extensions 63

for each p a r t i t i o n

for each p a r t i t i o n

Fig. 2. An additional task is used to create an anti-dependency. This is in fact a
synchronization point since the taskfunction2 tasks run after all the taskfunction1

finish.

for each p a r t i t i o n

for each p a r t i t i o n

Fig. 3. The concurrent clause is equivalent to an inout dependency on variable, but
allows the tasks to operate concurrently on it.

The taskification concerning the first two phases of Facesim, Update State and
Add Forces, is achieved by removing barriers and expressing control dependen-
cies between the different subroutines. Such control dependencies are expressed
by using a data dependency on a sentinel variable. As such, once the task that
has the sentinel as an output parameter finishes, it passes the control flow to
tasks that have the same sentinel as an input. In the Update State phase, UPBS
and UCPF subroutines run concurrently and a task is generated per domain
partition. With respect to the Add Forces phase, AFD and AVIF subroutines
concerning a particular partition start right after the UPBS task operating over
that same partition has finished. This is expressed by using task dependency
semantics in OmpSs/OpenMP 4.0, removing a barrier synchronization from the
original code. With respect to the implementation that uses the #pragma omp
for construct, it mimics the Pthreads parallelization and uses barrier synchro-
nization to handle parallelism. Figure 1 compares the parallel execution of these
two phases in the original code (trace at the bottom) and the taskified code
(top). All barriers are removed in the latter case, allowing subroutines to over-
lap and, as a consequence, the CG iteration starts much earlier. Also, thanks to
specifying data dependencies, the UCPF routine is not serialized in the taskified
version of the code.

With respect to the third phase of Facesim, CG, the tasking OmpSs/OpenMP
versions contain specific code to relax the synchronization points and allow some
degree of overlap between task creation and computation. In case of OpenMP, we
add an additional task to create an anti-dependency to make sure the synchro-
nization is respected while task creation is overlapped with it. In Fig. 2 we show
how this approach is implemented. Although there are features in OpenMP 4.0

64 R. Vidal et al.

that allow alternative implementations, like the taskgroup construct, they can
be used to implement a synchronization point but not to overlap task creation
with synchronization. In the case of OmpSs we use the concurrent clause which
is equivalent to an inout dependency, but allows tasks to operate concurrently
on this data dependency. Figure 3 shows how the concurrent clause is used.
Tasks that have an input or output dependency on variable respect it and do
not overlap their execution with the concurrent tasks.

The implementation that uses loop parallelism adds the corresponding
#pragma omp parallel for construct and uses static scheduling. A global
parallel region for the CG iterations wraps the external loop. Inside of it, a
single construct is used to update variables after the three parallel loops of
each CG iteration.

Finally, in the hybrid approach, loop parallelism is used to handle the fine
grain parallelism required by the CG phase, while the parallelism required by
other routines is expressed in terms of tasks, as this combination showed the
best performance results. Each one of these three approaches is implemented
using OpenMP 4.0 and OmpSs, which means that we have 6 different version of
Facesim in addition to the baseline Pthreads code.

2.2 Fluidanimate

Description. This application simulates incompressible fluid interactive ani-
mation, using the Smoothed Particle Hydrodynamics (SPH) method [11]. Each
iteration of Fluidanimate involves running 8 different routines which are respon-
sible for actions like rebuilding the spatial index, computing fluid densities and
forces at given points, handling fluid collisions or updating particle locations.

Original Parallelization. The fluid surface is partitioned into N segments and
there is one thread per segment. N is equal to the number of cores the application
runs on. The kernels are parallelized and separated by barriers. When a particu-
lar thread runs a particular kernel, it takes care of all the computations involving
its grid segment. For each iteration of the algorithm, the Pthreads implementa-
tion requires 8 barriers to make sure the execution of each kernel starts once the
previous kernel computations have finished. That is required because each thread
needs the previous kernels’ computations on its grid segment and its neighbors
to be finished once the execution of the new kernel finishes. Threads may have
to update values belonging to neighbor segments, which requires the use of locks
to avoid data races.

Taskification Strategy. Several different taskification strategies are consid-
ered: OmpSs Trivial, OmpSs Finer Task, OmpSs Multi-Dependencies and OmpSs
without Barriers.

The OmpSs Trivial task-based implementation follows the same approach as
Pthreads. Every time the application starts a new iteration, a task is created for
each kernel and segment. Since the kernels are separated by barriers, only tasks
related to the same kernel are allowed to run concurrently. Accesses to foreign
grid segments are controlled by locks.

Evaluating the Impact of OpenMP 4.0 Extensions 65

OmpSs Finer Tasks: The main difference between this strategy and the
OmpSs Trivial consists in the number of tasks created. In the trivial version, a
single task is created for each kernel and segment, meaning that a maximum of
N tasks, N being the number of partitions, can run concurrently. For the OmpSs
trivial version, N is equal to the number of cores the application runs on. In case
of the OmpSs Finer Tasks implementation, we increase the number of segments
to four times the number of cores. By doing this, we split the work into four
times more pieces than the previously presented versions, which implies that the
OmpSs runtime has more flexibility to balance the load between two barriers.

Fig. 4. Fluidanimate code handling multiple dependency scenarios by using one
#pragma per scenario.

Fig. 5. Fluidanimate code where multiple dependency scenarios are handled by a single
#pragma annotation.

Fig. 6. Generic #pragma annotation with multi-dependencies. The dependencies are
defined over a list of items, which has a dynamically defined size.

OmpSs multi-dependencies: This strategy consists of removing all barriers
between the 8 different routines of each iteration. For each routine and partition
we generate a set of tasks and we specify dependencies between them to make
sure the previous routine has finished its pass over a segment and its neighbors
when a task starts operating over this particular segment. The number of task
dependencies is defined by its segment’s position over the grid. If the segment is
located on one of the four corners of the square grid, the total number of task
input dependencies is 4. If the segment is located at the border, the dependencies
are 6 and if it is an internal segment, its corresponding task has 9 input depen-
dencies. Figure 4 shows the code required in OpenMP 4.0 to handle this scenario
where the number of dependencies is variable. Of course, a #pragma omp task

66 R. Vidal et al.

annotation is required in each case, implying that 3 different annotations are
required for each of the 8 different routines each iteration of Fluidanimate is
composed of, which ends up increasing the number of pragma annotations to 24.

To avoid such programming hardship, OmpSs has support to handle this
complexity using a single high-level pragma annotation. In Fig. 6 there is generic
#pragma annotation with multi-dependencies in OmpSs. The dependencies are
defined over a list of items, which has a dynamically defined size. Figure 5 illus-
trates how the multi-dependency feature is used in the Fluidanimate source
code. The only requirement is to generate a data-structure for each segment
that lists all the neighbors. The size of this data structure changes depending on
the number of neighbors and it is used to figure out the number of dependencies
at runtime. The number of tasks considered by the OmpSs multi-dependencies
strategy is the same as OmpSs Finer Tasks.

OmpSs without Barriers: This strategy includes all the improvements of the
OmpSs Finer Tasks and the OmpSs multi-dependencies techniques plus the
removal of the barrier between different iterations. Since computations of differ-
ent iterations cannot be overlapped, the barrier between iterations is replaced by
a concurrent clause, as is done in Facesim between the different CG iterations.

2.3 Streamcluster

Description. Streamcluster solves an online clustering problem. It takes a
stream of points and then groups them in a predetermined number of centers.
The program spends up to 90 % of the time in a function called Pgain, where
points are assigned to existing centers using the Euclidean distance. Also Pgain
calculates whether opening a new center is advantageous or not. If opening the
new center lowers the cost of the current clustering, then the center is opened and
points that are closer to this center than to previously created centers are reas-
signed to the new center. Pgain is executed a predefined number of iterations,
obtaining new centers.

Original Parallelization. The Pthreads parallelization is very simple: the large
array containing all the points to cluster is broken into chunks of constant size
(200,000 points in our experiments). Each chunk is then processed in parallel
in a number of partitions equal to the number of threads. A barrier synchro-
nization is added to make sure that all threads finished processing all the points
before a new chunk is processed. Streamcluster provides its own barrier imple-
mentation to synchronize threads. Once all the chunks of the stream of points
are processed, a final pass to cluster the centers found on the different chunks is
done. Streamcluster is a memory intensive application as it continuously reads
data from memory. In the original parallelization, the data structures that store
these points are allocated before creating the different threads and reused in
each chunk processing. As a consequence, this application suffers scalability dif-
ficulties in NUMA machines.

Taskification Strategy. In the case of Streamcluster we develop two tasking
versions, one in OmpSs and the other in OpenMP. We focus on the function

Evaluating the Impact of OpenMP 4.0 Extensions 67

Pgain of this code as the program spends the majority of its execution time in it.
While the Pthreads version of Pgain makes use of a dynamically allocated array
per thread to store the partial cost computations and performs a reduction of all
these costs over a global array after the parallel work, the tasking implementation
does not need the global array and uses a local one per task. With atomic
synchronization the local arrays of costs are updated. These changes simplify
the code and minimize the time spent in index table computations.

Also, additional changes are made in the OmpSs code to taskify memory
allocation and exploit the NUMA aware scheduling that the OmpSs runtime
system performs for systems with multiple sockets. This scheduler tries to ensure
that tasks execute in the sockets where their data structures have been allocated,
reducing the cost of accessing memory. To do so, a few API calls to schedule
tasks in specified NUMA spaces are added to the code. Figure 7 depicts how to
use this API. OpenMP 4.0 has some environment variables to specify either on
which cores the threads should be placed (OMP PLACES) or whether threads can
be moved between cores (OMP PROC BIND), however it does not have the feature
of doing that in a per task basis.

Fig. 7. The NUMA-aware scheduling API specifies the socket where tasks run. In this
way, the programmer can force tasks to run in the socket where the data they access
is allocated.

3 Evaluation

The evaluation is performed on an IBM System X server iDataPlex dx360 M4,
composed of two 8-core Intel Xeon E5-2670 processors at 2.6 GHz with 20 MB
of shared last-level cache and with hyperthreading disabled. There is 32 GB of
DDR3 RAM at 1.6 GHz.

The OpenMP implementation used is the GNU OpenMP (GOMP) included
with gcc 4.9.1. We also used the OmpSs programming model [5] and its associated
toolflow: Nanos++ runtime system (version 0.7.5), Mercurium source-to-source
compiler (version 1.99.6), and gcc 4.9.1 as the back-end compiler. To analyze
the behavior of the benchmarks, we used the Extrae instrumentation package
(version 2.5) and the Paraver trace viewer (version 4.5) [10].

68 R. Vidal et al.

3.1 Performance Evaluation

While the PARSEC benchmark suite provides different input sets, the experi-
ments shown in this paper make use of the largest set, the ‘native’ input. All the
benchmarks are executed with 1, 2, 4, 8 and 16 threads, mapping one thread per
core. Figure 8 shows the measured speedups of all the applications and strate-
gies considered. The speedups are computed taking the execution time of the
Pthreads implementations of Facesim, Fluidanimate and Streamcluster avail-
able in the PARSEC benchmark suite running on 1 thread. The left hand side of
Fig. 8 shows the speedups of each one of the 7 parallelization strategies consid-
ered for Facesim: Pthreads, loop parallelism using OpenMP and OmpSs, tasking
using OpenMP and OmpSs and the hybrid approaches combining tasking and
loop parallelism. The best performing version is OmpSs Hybrid, which shows a
speedup of 11.4x when run on 16 cores, closely followed by OpenMP Hybrid and
the OmpSs and OpenMP loop parallelism strategies which have a speedup of
10.7x, 10.7x and 10.9x. The two parallel strategies that exclusively use a tasking
approach show a speedup of 9.8x and 9.4x when run on 16 cores, significantly
less than the hybrid and loop parallelism approaches. The hybrid approaches are
the most well suited as they combine the benefits of barrier substitution by task
dependencies, the low overheads of loop parallelism when tasking provides no
benefit and the locality of the static scheduling performed by the CG routine.

In case of Fluidanimate, results are shown at the center of Fig. 8. The Pthreads
and the OmpSs trivial versions have identically poor performance, achieving
speedups below 8x when they run on 16 cores. If the granularity of the tasks
is reduced, the speedup reaches 8x when run on 16 cores. The OmpSs Multi-
dependencies strategy of removing all the barriers that separate the 8 internal
routines of each iteration and replacing them by task dependencies provides
significant benefits and allows the speedup to be slightly above 9x when 16 cores
are used. Finally, if the barrier that separates the different iterations is removed,
the application scales up to 10.1x on 16 cores.

Streamcluster performs similarly on all of its versions when 1, 2, 4 and 8 cores
are considered. When the two 8-cores sockets are used, NUMA effects bring load

Fig. 8. Speedups of the different benchmarks and their tested versions

Evaluating the Impact of OpenMP 4.0 Extensions 69

Fig. 9. Lines of code of the different benchmarks and their different versions

imbalance, which undermines the performance of the Pthreads implementation.
The OpenMP and OmpSs implementations partially correct this load imbalance
and achieve a speedup close to 9x on 16 cores. These load balancing benefits
increase if finer grain tasks are considered, achieving scalabilities close to 10x on
16 cores. The fine grain versions make use of 5 tasks per thread, while the original
OpenMP/OmpSs version use just 1 task per thread. Finally, the NUMA aware
scheduling feature of the OmpSs runtime system provides further improvements
reaching a speedup of 11.1x.

3.2 Programmability

Ease of use, portability and versatility are of paramount importance when decid-
ing whether to use a programming model or not. It is difficult to quantify the
above statement, but we can provide some insight on how easy it is to use such
task-based models compared to Pthreads in terms of lines of code (LOC). LOC
for the selected benchmarks is as follows: Facesim has 35,000 LOC, Fluidanimate
3,000 LOC, and Streamcluster 1,500 LOC.

Figure 9 shows the LOC of our task-based implementations compared to the
original Pthreads implementations considering only files that are relevant to the
parallel implementation, i.e. files that contain calls to Pthreads or task invoca-
tions, atomic primitives, etc. In this case, we only show the LOC of the best
performing version of our OmpSs and OpenMP codes. The other versions have
very similar number of LOC, with less than 3.5 % variation with respect to the
best performing one.

On one hand, using OpenMP/OmpSs to parallelize applications allowed to
reduce the size of the original code base in the case of Facesim (25 % less LOC)
and Streamcluster (20 % less LOC). This is achieved by means of removing
unnecessary barrier implementations and thread scheduling facilities. It also
allowed to express more parallelism in all applications, whether allowing to paral-
lelize originally sequential sections or by allowing more tasks to run concurrently.

70 R. Vidal et al.

This is the case with Fluidanimate, where a more advanced parallelization
strategy is performed without significantly increasing the number of LOC (less
than 4 %).

On the other hand, sometimes specifying dependencies might not be easy
depending on the accessed data structure. For example, irregular and dynamic
data structures are difficult to handle with current data dependencies. Also, very
fine-grain tasks and an excess of dependency annotations can cause performance
degradation due to runtime overheads. Designing future architectures driven by
the runtime of the target parallel applications can be a suitable solution to reduce
some of these overheads [12].

4 Related Work

In this paper we apply several parallelization strategies available in OpenMP 4.0
and OmpSs to three applications of the PARSEC benchmark suite. Similarly,
the KASTORS suite [13] uses the OpenMP 4.0 task dependency constructs to
extend the Cholesky and QR decompositions from the PLASMA library [9]. Also,
the KASTORS suite provides a parallelized Poisson equation based kernel and
extends the SparseLU and Strassen benchmarks from the Barcelona OpenMP
Tasks Suite [6]. The main improvement of the work presented in this paper is that
we do not only use the tasking features available in OpenMP 4.0 but also suggest
and evaluate new ones. In contrast, the mentioned KASTORS approach [13]
suggests new features, different from the ones proposed in this paper, but does
not evaluate them.

Besides OpenMP 4.0 and OmpSs, other programming models and runtime
system handle task-based parallelism. For example, the StarPU task program-
ming library [2] provides a runtime system and an API to handle task-level
parallelism. StarPU has been successfully used to implement important numer-
ical routines [1] on heterogeneous environments, although its capabilites do not
outperform OpenMP 4.0. Other approaches reproduce the OmpSs vision to tar-
get specific research issues, like the Distributed asyncHronous Adaptive Resilient
Management of Applications (DHARMA) [8]. DHARMA is a task programming
model designed with resilience as a primary focus. It is a data-flow approach that
uses work-over-decomposition. Also, the Open Community Runtime (OCR) [7]
initiative aims at creating a standard task-based runtime system. Very simple
micro-kernels are publicly available to validate this approach.

5 Conclusions

In this paper we demonstrate the usefulness of three OmpSs features not cur-
rently available in the OpenMP 4.0 specification. The first one is the concurrent
clause, which can be used to relax synchronization by overlapping task creation
with computation. The second is the possibility to handle multiple dependency
scenarios in a single #pragma annotation and the third one is the NUMA-aware
scheduling feature available in the OmpSs runtime system. Each one of these

Evaluating the Impact of OpenMP 4.0 Extensions 71

three features provides significant improvements in terms of scalability and pro-
grammability. Additionally, this paper provides a comparison in terms of per-
formance of task parallelism against loop parallelism and shows how combining
them is sometimes the best option. We expect to provide more examples in the
future to further motivate the need for OpenMP extensions and to strengthen
the position of OmpSs as an OpenMP forerunner.

The importance of features like the ones discussed in this paper and, in
general, of the task parallelism provided by OpenMP and OmpSs is increasing
with the emergence of massivelly parallel and heterogeneous hardware, which
will certanly require task clauses to allow programmers to handle large amounts
of concurrency.

Acknowledgments. This work has been partially supported by the European
Research Council under the European Union’s 7th FP, ERC Grant Agreement number
321253, by the Spanish Ministry of Science and Innovation under grant TIN2012-
34557 and by the HiPEAC Network of Excellence. It has been also supported by the
Severo Ochoa Program awarded by the Spanish Government (grant SEV-2011-00067)
M. Moreto has been partially supported by the Ministry of Economy and Competi-
tiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M.
Casas is supported by the Secretary for Universities and Research of the Ministry of
Economy and Knowledge of the Government of Catalonia and the Co-fund programme
of the Marie Curie Actions of the 7th R&D Framework Programme of the European
Union (Contract 2013 BP B 00243).

References

1. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Roman, J.,
Thibault, S., Tomov, S.: Dynamically scheduled Cholesky factorization on mul-
ticore architectures with GPU accelerators. In: Symposium on Application Accel-
erators in High Performance Computing (SAAHPC), Knoxville, USA (2010)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

3. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: char-
acterization and architectural implications. In: The 17th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pp. 72–81 (2008)

4. Bienia, C., Li, K.: Parsec 2.0: a new benchmark suite for chip-multiprocessors.
In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and
Simulation, June 2009

5. Duran, A., Ayguad, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Process. Lett. 21(02), 173–193 (2011)

6. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: International Conference on Parallel Processing (ICPP), pp. 124–131
(2009)

72 R. Vidal et al.

7. Knauerhase, R., Sarkar, V.: The open community runtime and its use in systems
research. In: Tutorial: International Conference on Architectural Support for Pro-
gramming Languagues and Operating Systems (ASPLOS) (2013)

8. Kolla, H., et al.: DHARMA: distributed asynchronous adaptive resilient manage-
ment of applications. In: Minisymposia on Resilience in Numerical Simulations
and Algorithms at Extreme Scale. SIAM Conference on Computational Science
and Engineering (2015)

9. Kurzak, J., Luszczek, P., YarKhan, A., Faverge, M., Langou, J., Bouwmeester,
H., Dongarra, J.: Multithreading in the plasma library. In: Multicore Computing:
Algorithms, Architectures, and Applications, p. 119 (2013)

10. Labarta, J., Gimenez, J.: Performance analysis: from art to science. In: Parallel
Processing for Scientific Computing, Chap. 2, pp. 9–32. SIAM (2006)

11. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive
applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (SCA), pp. 154–159 (2003)

12. Valero, M., Moreto, M., Casas, M., Ayguade, E., Labarta, J.: Runtime-aware archi-
tectures: a first approach. Int. J. Supercomput. Frontiers Innovations 1(1), 29–44
(2014)

13. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage,
O., Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Heidel-
berg (2014)

First Experiences Porting a Parallel Application
to a Hybrid Supercomputer with OpenMP4.0

Device Constructs

Alistair Hart(B)

Cray Exascale Research Initiative Europe, JCMB, King’s Buildings,
Edinburgh EH9 3FD, UK

ahart@cray.com

Abstract. In this paper we describe the process of porting the Nek-
Bone mini-application to run on a Cray XC30 hybrid supercomputer
using OpenMP device constructs, as introduced in version 4.0 of the
OpenMP standard and implemented in a pre-release version of the Cray
Compilation Environment (CCE) compiler. We document the process
of porting and show how the performance evolves during the addition
on the 66 constructs needed to accelerate the application. In doing so,
we provide a user-centric introduction to the device constructs and an
overview of the approach needed to port a parallel application using
these. Some contrasts with OpenACC are also drawn to aid those wish-
ing to either implement both programming models or to migrate from
one to the other.

1 Introduction

High Performance Computing (HPC) node architectures are becoming increas-
ingly complex as systems evolve towards exascale performance. There are many
more cores (processors) per node, more threads per processor and a return in
the use of wide “single instruction multiple data” (SIMD) vectors.

Heterogeneous (or “hybrid”) node designs are also now common, as evidenced
by the biannual Top500 listing of the world’s fastest supercomputers: 75 systems
on the November 2014 list used accelerators1 [1].

It is difficult to program hybrid nodes to achieve an acceptable fraction of
the available performance. More importantly, it is also difficult to develop (and
then maintain) applications that are performance portable. By this, we mean
that the application can be built and then executed on a wide variety of HPC
architectures with only minimal changes. This is important, given that large
applications are, at a given time, typically run on a variety of HPC platforms,
and that these applications often outlive many generations of HPC procurements
(and even, sometimes, developers).
1 We use the term “accelerator” generically to cover technologies including GPUs
(e.g. from Nvidia or AMD) and coprocessors (such as the Intel Xeon Phi “Knights
Corner” coprocessor).

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 73–85, 2015.
DOI: 10.1007/978-3-319-24595-9 6

74 A. Hart

Heterogeneous node architectures offer two significant challenges. First,
developers must use a bespoke programming model that allows the use of the
accelerator. Secondly, hybrid nodes introduce a diverse memory space with, typ-
ically, the CPU and accelerator(s) on a node having separate memory spaces.
Given the relatively slow (high latency, low bandwidth) connection between the
memory spaces and the (consequent) lack of automatic synchronisation between
them, developers are forced to explicitly manage the memory spaces and data
transfers.

The OpenACC standard introduced a high-level, directive-based program-
ming models for accelerators [2]. This has been very successfully used for some
large production-quality applications, e.g. the turbulent combustion code S3D [3]
and the numerical weather prediction code COSMO [4]. The OpenMP standard
[5] now offers a comparable programming model, through the device constructs
introduced in version 4.0 of the standard.

Directive-based programming models are attractive as developers do not need
to re-write their code in a low-level language. The existing code (written in
Fortran, C or C++) is augmented through directives and, optionally, calls to a
runtime Application Program Interface (API). The directives are non-executable
comments or pragmas that instruct a suitably-enabled compiler to offload certain
computational tasks to the accelerator and to manage the data synchronisation
between the diverse memory spaces. Alternatively, if support for the directives
is disabled (or a non-accelerating compiler is used), the code can be built and
executed on the CPU.

Given the relative newness of the OpenMP4.0 standard, there are currently
no widely-available compilers that offer support for the device constructs. There
is thus a lack of experience in the HPC community in using this programming
model. In this paper, we have access to a pre-release version of the Cray Com-
pilation Environment that supports use of the OpenMP constructs. We use this
to port a parallel application to run almost entirely on the accelerator.

The aim of this paper is not to demonstrate the performance that can
be achieved with accelerators and we only discuss performance tuning briefly.
Rather, we seek to document the process of porting a representative application
to act as a vademecum for developers as and when the device constructs are
supported in released compilers.

A good programming environment is key to a successful port to accelerators.
In addition to the compiler, this should include runtime information systems and
profiling tools. As part of the documentation in this paper, we present informa-
tion gained from a selection of these and show how it guides the application
development work.

The application we consider in this paper is the NekBone mini-application,
which seeks to capture the computational workload of the Nek5000 computa-
tional fluid dynamics (CFD) application originally developed by Paul Fisher from
Argonne National Laboratory [6]. The code uses the spectral element method.
The simulated problem is divided into a set of “elements”. The physical quanti-
ties in each element are represented as a set of spectral modes (akin to a Fourier

First Experiences Porting a Parallel Application to a Hybrid Supercomputer 75

decomposition), with the number of modes in the set being N . This is fixed for
the duration of the simulation and is typically between 8 and 20, depending on
the level of accuracy required.

The computational workload is dominated by combinations of these spectral
modes. This translates to matrix-matrix combinations, where the rank of the
matrix is N . These combinations are repeated independently for every element.
Whilst optimised Basic Linear Algebra Subroutines (BLAS) libraries exist, these
are typically optimised for large-rank matrices and do not provide an API that
will perform a (large) number of independent (small) multiplications simultane-
ously. For this reason, neither NekBone nor Nek5000 make use of these libraries.

Like Nek5000, NekBone is parallelised using domain decomposition, dividing
the set of elements across a set of processing elements. Message passing is then
used to ensure that the elements on each domain boundary remain consistent
with their neighbours at each timestep of the simulation.

The NekBone code is written in Fortran and contains roughly 11,000 lines, of
which 80 % are executable code (i.e. not comments, blank lines nor directives).
The domain decomposition is carried out using the Message Passing Interface
(MPI) API. For this work, we use a simplified version of the communication layer
[7] that was developed as part of the EPiGRAM project [8]. An OpenACC port
of the NekBone code was developed as part of the CRESTA project [9]. As this
paper aimed to document the porting process “from scratch”, we did not refer to
this during this work. In general, however, porting from OpenACC to OpenMP
device constructs is quite straightforward and we highlight the similarities and
difference between the programming models in this paper.

The work described in this paper was carried out on a Cray XC30 hybrid com-
puter. Each node comprised a single 12-core Intel Xeon E5-2695v2 (Ivybridge)
CPU (with a clock frequency of 2.4 GHz and turbo enabled) and an Nvidia K40s
GPU. The nodes were integrated together using the Cray Aries interconnect.

A pre-release version of the Cray Compilation Environment (CCE) compiler
was used for this work, which provided preliminary support for the OpenMP4.0
device constructs. The performance results in this paper should therefore be
seen as indicative and liable to change when a suitable released version of the
compiler becomes available. This does not affect the conclusions of this paper.

The structure of this paper is as follows. In Sect. 2, we give an overview of the
OpenMP device constructs. We give a high-level overview of the porting process
in Sect. 3, before applying this to the NekBone code in Sect. 4. Finally, we draw
some conclusions in Sect. 5.

2 OpenMP Device Constructs

Device constructs were introduced in OpenMP4.0 and are described in Sect. 2.9
of the Standard. They provide a mechanism for offloading (i.e. accelerating)
computational tasks (“kernels”) from the “host” (typically a CPU) to one or
more “devices” (usually locally attached accelerators). In this Section, we give a
brief introduction to the device constructs from the perspective of an application
developer.

76 A. Hart

Fig. 1. Accelerating a matrix-matrix multiplication loopnest with the target construct.
Optionally, map clauses may be used to scope arrays in the data environment.

The computational tasks to be executed on the device are typically loopnests.
As a start, three nested directives are required, as shown in Fig. 1.

The target construct indicates that the loopnest should be offloaded to the
device. It also creates a device data environment, that we discuss in Sect. 2.1.

The teams construct creates a “league” of threadteams and the master thread
of each team executes the region. The combination of target and teams is
broadly equivalent to the parallel directive in OpenACC (up to a few technical
details), and shares the same prescriptive behaviour; the region will always be
offloaded (unlike the more descriptive kernels directive in OpenACC). The
“league of threadteams” is analogous to the “gangs of workers” in OpenACC
and to the “grid of threadblocks” in CUDA.

Finally, the distribute construct arranges the distribution (“scheduling”)
of the loop iterations over the threads. This role is played by the loop directive
in OpenACC.

All three constructs have optional clauses. We will discuss those for target
in Sect. 2.1. The main use of clauses on the teams construct is to declare private
and reduction variables for this loopnest. The use of these is identical to that
in “traditional” OpenMP or, indeed, in OpenACC. Developers familiar with
OpenACC should note that scalars within a loopnest are shared by default in
OpenMP, compared to private in OpenACC. The num teams and thread limit
clauses are primarily used for performance tuning and are generally not used
during early application porting.

The private clause can be added to the distribute construct to give finer-
grained control over privatisation of variables within a loopnest. The collapse
and dist schedule clauses can also be used for tuning, but we do not address
them here.

First Experiences Porting a Parallel Application to a Hybrid Supercomputer 77

2.1 Data Regions

When a loopnest is offloaded to the device, it will require data to process. In
the first instance, this data will reside in the host memory. Before the offloaded
kernel is executed, memory will need to be allocated in the device memory and
(as necessary) data copied from the host to the device. After the kernel finishes
executing, data may need to be transferred back to the host before the device
memory is freed.

The target construct defines a “data region” (also known as “data envi-
ronment”) that implements this. By default, the OpenMP-enabled runtime will
allocate and free appropriate device memory on the boundaries of the construct.
The compiler will also examine the data use within the kernel and arrange appro-
priate data movements at the construct boundaries. For example, a shared array
that is used in a read-only fashion will be copied to the device before the kernel
executes, but need not be copied back afterwards.

The user can replicate or alter the default behaviour using explicit map clauses
on the target construct, with “map-types” used to specify the data movements.
Read-only arrays use map-type to, and write-only arrays from. Arrays that read
and written have map-type tofrom. Finally, scratch arrays that are only used
within the loopnest require no data movement and use map-type alloc.

It is, of course, very inefficient to move data at the boundaries of every target
construct. Instead, we should seek to hold the data on the device for as long as
possible, processing it with multiple kernels. The target data construct pro-
vides a mechanism for this, allowing users to define a region of their application.
Specified arrays will be resident on the device for the entirety of this region, with
map clauses used to specify the data movement at the construct boundaries.

The target data construct does not accelerate any code within the specified
region, so it is usual that the region will contain one or (usually) more target
constructs. It may also span unaccelerated code that executes on the host, which
may include calls to subprograms.

Users should note that, unlike with the target construct, the compiler will
not automatically scope any shared arrays present in a target data construct.
All relevant arrays must be explicitly specified using map clauses (as in Ope-
nACC).

Within a data region, there are separate copies of the shared arrays in the
host and device memories with no automatic synchronisation of data. If syn-
chronisation is required (e.g. to move buffers to the CPU for MPI exchange, or
to print values for debugging), this is done using the target update construct.
To move data from the host memory to that of the device, the device clause
is used; to move in the opposite direction, the host clause is used. The clauses
take arguments that are either whole arrays or array slices.

Data regions can be nested, either within a single routine or further down
the calltree. When entering an inner data region, if relevant shared variables
are already present in the device memory then this version will be used and no
further memory allocation or data transfer will occur. Similarly, the memory
will remain allocated on exiting the inner data region without data transfers.

78 A. Hart

Fig. 2. Traced profile of NekBone executing on the CPU, showing routines taking 5%
or more of the runtime.

The OpenMP map-types therefore behave like the OpenACC data clauses that
start with present or . There is no equivalent of the OpenACC present clause.
The OpenMP runtime system maintains a table of memory addresses that are
resident on the device. It is not expected that there is any significant overhead
in checking the present table, so developers can employ multiple levels of data
region nesting if it aids the porting process.

3 A High Level View of the Porting Method

Having described the relevant constructs in Sect. 2, it is useful to sketch out a
method for applying them to an application, as we do for NekBone in Sect. 4.

It is important to work incrementally, adding one directive construct at a
time and testing the code. Correctness checks should be implemented in the
code wherever possible, e.g. residual values in solvers or array checksums. It is
advisable that these are double precision, even if the relevant parts of the code
are single precision. These should be compared at every stage, but noting that it
is impossible to always have bit-wise identical answers when executing the code
on different architectures (e.g. CPU and GPU).

As the code may need to be run many times, it is useful to work with a small
testcase. This should, however, exercise all parts of the code that are needed
in the production-sized problem. It is very likely that the performance of the
code will decline during the early stages of porting, due to the data movements
between the separate memory spaces. Performance should then increase once sig-
nificant parts of the application calltree are ported and data locality is improved.

It is advisable to use a version control system (VCS) that allows the appli-
cation developer to archive the source code at each stage of the porting process.
Application output and basic performance information can then be included in
each commit message. If the code then executes incorrectly with a new testcase,
it is easy to “wind back” the porting process to see where the error was first
introduced.

First Experiences Porting a Parallel Application to a Hybrid Supercomputer 79

Given this incremental approach, the user should start at the “leaves” of the
application calltree, i.e. routines that do not call any further routines. Where
there are many leaf routines, the user should begin with those that take signif-
icant time in the application profile. As porting proceeds, minimisation of data
movement may well require the acceleration of further leaf routines, but these
should be addressed as the need arises.

Fig. 3. Function Calltree View of the profile of NekBone executing on the host, showing
routines taking 5% or more of the runtime. The indentation levels on the left hand
side show the depth of the calltree.

Each of the selected leaf routines should be addressed in turn. Within a
given leaf routine, each loopnest should generally be accelerated using a target

80 A. Hart

construct. Exceptions are loopnests that do not reference large data arrays or
loopnests that must be executed serially. Serial loopnests must remain on the
CPU and are likely to be a serious bar to performance, given the associated data
synchronisation costs. Where possible, these loops should be rewritten using a
parallelisable algorithm and then accelerated.

When introducing target constructs, the compiler can be left to automat-
ically scope the arrays and determine the appropriate map clauses. This infor-
mation is reported in the compiler feedback. It is very useful for what follows,
however, if the user introduces explicit map clauses for the most-significant (usu-
ally the largest) data arrays. This scoping (i.e. selecting the correct map-type
for a given array) can either be done by hand, or based on the compiler feedback
before the map clauses are introduced, as shown in Fig. 1.

3.1 Fusing Local Data Regions

As described before, most of the effort in a successful accelerator port is spent
in ensuring data locality. This is done by introducing progressively-larger data
regions that span increasing amounts of the application calltree.

The first stage in this is to work within a given leaf routine. Each target
construct has an implicit data region. The aim is (usually) to introduce a single,
explicit data region that spans all the executable code in this routine. This data
region is incrementally constructed by fusing neighbouring data regions (implicit
or explicit).

Fig. 4. Inclusive and exclusive time in loops, as measured by CrayPAT

Once the significant leaf routines have been accelerated, the developer should
now move up the calltree one level and establish data regions in the parent
routines that call these leaves.

The first step is to establish a data region around each call to an accelerated
leaf routine. The map clauses for this are easily constructed from those on the
single data region inside the leaf routine. If the parent routine calls further leaf
routines (which reference the most-significant data arrays), these should also be
accelerated as above. Even if the calls to these routines take little time, they

First Experiences Porting a Parallel Application to a Hybrid Supercomputer 81

Fig. 5. The number of device constructs present in the code as a function of VCS
commit number.

should still process the device-resident copies of the arrays to maintain data
locality and avoid data synchronisation overheads.

If the parent routine contains additional loopnests, these should be acceler-
ated wherever possible. Finally, the same process of data region fusing should
be repeated until a single data region spans the entire parent routine. Once this
is achieved, the developer can now take a further step up the calltree and repeat
the process.

This process should continue until the application port is complete. This
might be when the entire application is executing on the accelerator(s). Alter-
natively, it might be when the outermost data region is outside the main com-
putational structure in the code, for instance the timestep loop. In some cases it
might be when all accelerator-suitable code is ported, and data movement costs
are minimised but perhaps not eliminated.

4 Porting NekBone

The method described in Sect. 3 was used to port the NekBone application. The
porting was carried out on a Cray XC30 system using a pre-release version of
the Cray Compilation Environment (CCE).

The NekBone source code supplies some testcases. Testcase “example1” was
used to test the code during the porting process. This simulates a problem
with 32 elements per MPI rank and a spectral order of N = 10. Both of these
numbers are relatively small, which will make it hard to gain full performance
from the targetted GPU architecture. Production-sized problems will, however,

82 A. Hart

Fig. 6. The time spent in accelerator kernels and data synchronisation as a function
of VCS commit number.

Fig. 7. The relative performance of the application as a function of VCS commit num-
ber. The baseline is that for after introducing the first target construct.

First Experiences Porting a Parallel Application to a Hybrid Supercomputer 83

have many more elements. This problem was run using 8 MPI ranks, distributed
as one rank per node (giving a ratio of one MPI rank per GPU).

The git VCS was used, with around 60 separate commits as device constructs
were progressively added to the code. The commit log messages included the
program runtime output and basic profiling information to track progress.

The first task was to generate an application profile and calltree for the
application to identify the most significant leaf nodes. This was done using
the Cray Performance Analysis Toolkit (CrayPAT). The code was instrumented
to trace all the user routines using the command pat build -u. The profile
in Fig. 2 shows that routine mxmf2 generic() dominates the runtime, imple-
menting matrix-matrix multiplication for the spectral decomposition. Command
pat report -O calltree was then used to generate the calltree view of the pro-
file, seen in Fig. 3, providing a plan for accelerating the application. In both cases,
the CrayPAT API has been used to restrict profiling to the timestep loop.

Porting thus began in mxmf2 generic() a single target construct as shown
in Fig. 1.

As noted before, the multiplied matrices are small. This can be confirmed
through loop-level profiling of the application. With CCE, the code is recom-
piled with flag -h profile generate and profiled with CrayPAT as before. The
results in Fig. 4 show a mean tripcount of only 14 to 18 for these loops.

Porting then proceeded as described in Sect. 3. A single data region was
easily added and tested) around the call to the ported routine in mxm(). Further
data regions were then established in local grad3() and local grad3 t(). The
latter routine also called add2s2(), so this also had to be ported. The advantage
of the map clause present or semantic is that this is correct even for calls to
this routine from other, so far unported, parts of the application calltree. If the
OpenACC present clause were used, by contrast, the routine would need to be
cloned before acceleration.

Extending the data regions into routine ax() required porting sync xyz() and
its child routines. These implement the MPI halo exchange. With OpenMP4.0,
calls to MPI routines must reference buffers in host memory, so update clauses
were required to synchronise these buffers between host and device after packing
(and before unpacking) on the device. We would hope that future versions of
the OpenMP standard would support an equivalent of the OpenACC host data
directive that allows direct MPI transfers between device memories on different
nodes (as well as interoperability with CUDA libraries).

In porting routine maskit(), a loopnest was encountered that was not easily
parallelised. To proceed with the port, the decision was made to temporarily exe-
cute it on the host, with update constructs needed to synchronise the data. This
impacted performance, as shown by the runtime commentary, which in CCE is
activated (without recompilation) using the CRAY ACC DEBUG environment vari-
able. Setting this to 2, we see a transfers of the form:

ACC: copy to host ‘w’ (8000 bytes)

This is done 32 times per timestep. This, and the associated transfer of
another array accounted for 64 % of the data transfers.

84 A. Hart

The total porting process took around 3 days, and around 60 commits to
the VCS. The number of constructs added to the code is shown as a function of
the commit number in Fig. 5. The fluctuations downward indicate the removal
of some redundant inner data regions. In Fig. 6 we show how the time spent
per node in accelerator kernels increases as the port proceeds and more target
constructs are introduced. The time spent in data transfers generally reduces
as data regions are widened. The upward spike corresponds to the first stage in
porting the halo transfer leaf routines.

Finally, in Fig. 7 we show how the performance of the application improves
as the port proceeds (relative to that when we add the first target construct).
The plateau does not indicate wasted effort, but rather that the chosen testcase
is too small to properly exercise the accelerator. If the process was repeated with
a larger local problem size, we would expect to see an upward trend.

5 Conclusions

In this paper, we have presented some first experiences in porting a parallel
application to run on accelerated nodes of an HPC system using the OpenMP
device constructs.

As well as introducing the constructs, we have described an algorithm for
porting a real application, showing the steps that a developer should follow and
indicating how appropriate tools can be used to provide feedback to guide the
porting process.

We have demonstrated this method by porting the parallel NekBone applica-
tion, applying 66 device construct structures to accelerate around 11,000 lines of
Fortran code. This average rate of 1 construct per 170 lines fits with anecdotal
experience using OpenACC, where large codes typically required 1 directive per
150 to 250 lines of code. Of these 66 constructs, 25 were used to define offloaded
kernels, and the remainder to define and synchronise the data environment.

The development process took around three days and was split into approx-
imately 60 incremental stages. Each stage usually involved adding or modifying
one device construct. We showed how application evolved over these stages, both
in terms of performance and number of constructs.

The port of NekBone is by no means complete, with one final, tricky loopnest
to parallelise and accelerate. There is also substantial room for performance
tuning, although the fundamental multiplication of 10× 10 matrices does not fit
well with the warp size of 32 on current Nvidia GPUs.

As the OpenMP standard evolves, further performance improvements should
be possible, such as the use of direct MPI communications between device mem-
ory spaces on different nodes.

In conclusion, however, the OpenMP device constructs provide a rich and rel-
atively complete programming model for porting large scale applications to accel-
erators in a performance-portable manner. Compiler development is in progress
and, at least with the Cray Compilation Environment, already offer a robust
and efficient implementation of the constructs.

First Experiences Porting a Parallel Application to a Hybrid Supercomputer 85

Acknowledgments. This work was supported in part by the European Commission
through the EPiGRAM project (grant agreement no. 610598).

References

1. The Top500 list. http://www.top500.org
2. The OpenACC standard. http://www.openacc.org
3. Levesque, J.M., Sankaran, R., Grout, R.: Hybridizing S3D into an exascale appli-

cation using OpenACC: an approach for moving to multi-petaflops and beyond. In:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC 2012), Article 15, p. 11. IEEE Computer Society
Press, Los Alamitos, CA, USA (2012)

4. Fuhrer, O.: Proceedings of CUG2014 (May 2014, Lugano, Switzerland). https://
cug.org/proceedings/cug2014 proceedings/includes/files/inv108.pdf

5. The OpenMP standard. http://www.openmp.org
6. The Nek5000 project. https://nek5000.mcs.anl.gov/index.php/Main Page
7. Markidis, S., Ivanov, I., Akhmetova, D., Laure, E., Gong, J., Schlatter, P.,

Henningson, D., Fischer, P.: Proceedings of EASC2015 (April 2015, Edinburgh,
UK). http://www.easc2015.ed.ac.uk/program-archive/slides/s18Ivanov.pdf

8. The EPiGRAM project. http://www.epigram-project.eu
9. The CRESTA project. http://www.cresta-project.eu

http://www.top500.org
http://www.openacc.org
https://cug.org/proceedings/cug2014_proceedings/includes/files/inv108.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/inv108.pdf
http://www.openmp.org
https://nek5000.mcs.anl.gov/index.php/Main_Page
http://www.easc2015.ed.ac.uk/program-archive/slides/s18Ivanov.pdf
http://www.epigram-project.eu
http://www.cresta-project.eu

Tools

Lessons Learned from Implementing OMPD:
A Debugging Interface for OpenMP

Joachim Protze1,2,3, Ignacio Laguna3(B), Dong H. Ahn3, John Del Signore4,
Ariel Burton4, Martin Schulz3, and Matthias S. Müller1,2

1 RWTH Aachen University, 52056 Aachen, Germany
2 JARA – High-Performance Computing, 52062 Aachen, Germany

{protze,mueller}@itc.rwth-aachen.de
3 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

{lagunaperalt1,ahn1,schulzm}@llnl.gov
4 Rogue Wave Software, Bolder, CO 80301, USA

{ariel.burton,john.delsignore}@roguewave.com

Abstract. With complex codes moving to systems of increasing
on-node parallelism using OpenMP, debugging these codes is becom-
ing increasingly challenging. While debuggers can significantly aid pro-
grammers, existing ones support OpenMP at a low system-thread level,
reducing their effectiveness. The previously published draft for a stan-
dard OpenMP debugging interface (OMPD) is supposed to enable the
debuggers to raise their debugging abstraction to the conceptual levels
of OpenMP by mediating the tools and OpenMP runtime library. In this
paper, we present our experiences and the issues that we have found on
implementing an OMPD library prototyp for a commonly used OpenMP
runtime and a parallel debugger.

1 Introduction

OpenMP is becoming increasingly popular as a portable programming model
for on-node parallelism as programmers desire to port their codes to its sim-
ple directive-based API. This trend, however, is presenting great challenges
to debugging. As OpenMP enables easy mapping of tasks to a wide range
of resources—more cores, wider simultaneous multithreading (SMT), single-
instruction/multiple-data (SIMD) units and accelerators like GPUs and
co-processors—reasoning about the OpenMP program’s state when debugging
can quickly overwhelm programmers.

A parallel debugger is an effective aid to guide programmers in inspecting
the state of parallel programs. Programmers can follow through source lines and
easily examine the state of key variables at arbitrary points in execution. While

Part of this work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
(LLNL-CONF-671193).
The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer International Publishing Switzerland 2015 (outside the US)
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 89–101, 2015.
DOI: 10.1007/978-3-319-24595-9 7

90 J. Protze et al.

today’s debuggers support debugging of OpenMP programs at a low system-
thread level, they do not allow debugging at the level that programmers con-
ceive the high-level programming model abstractions. For example, no existing
debugger provides support, such as stepping a logically-related group of threads
together (which requires identifying the teams of threads that are at the same
OpenMP parallel nesting level), displaying the conceptual stack trace of a thread
(e.g., by splicing the trace of a thread to that of the master thread and to iden-
tify and omit the trace belonging to the OpenMP runtime itself), and showing
the state in which an OpenMP thread could be in.

To effectively aid programmers, debuggers must raise their debugging
abstraction to the conceptual level of OpenMP. Constructing the conceptual
state requires, however, that the debuggers are able to extract at runtime rele-
vant information from the OpenMP’s runtime system. An existing approach that
is used in commercial debuggers, such as TotalView [6] or Allinea DDT [1], is
to build the knowledge necessary to interact with each runtime directly into the
debugger. While useful, it has led to limited support in terms of use cases and
of compiler and runtime implementations of the OpenMP language. A standard
interface approach, in which debuggers can extract the relevant state from any
OpenMP runtime system, can lead to a much better solution.

In this paper, we report on our early analysis and experiences with OMPD,
the standard OpenMP debug interface recently proposed by the OpenMP Tools
Committee [4]. As much as we desire OMPD to serve as the general interface,
we have found that it presents obstacles and challenges as we implement it for
the Intel OpenMP Runtime, a popular OpenMP runtime library, as well as for
TotalView and GDB, widely used debuggers. Thus, we discuss modifications
to the current specification needed to overcome our issues. We hope that our
experiences will shed light on the effective OpenMP debugging path to other
debugger and OpenMP runtime implementers.

Fig. 1. Overview of the workflow of OMPD: (1) the debugger requests information
about OpenMP (e.g., the state of an OpenMP thread, parallel region, task, etc.) via
an OMPD API function call; (2) OMPD calls back the debugger to request information
of the OpenMP runtime (e.g., the value of a symbol in the runtime); (3) the debugger
gets this information from the runtime.

A Debugging Interface for OpenMP 91

In the rest of the paper, we first summarize prior work, and then describe the
OMPD interface and its functional architecture. Next, we illustrate some of the
important use cases that OMPD can enable. Then, we discuss the problems that
we have encountered with the current specification of OMPD and propose our
suggested modifications. Finally, we describe future challenges and conclude.

2 Prior Work

Previous work has proposed portable debugging interfaces for parallel runtime
libraries, such as for MPI [3] and threads [7]. The key mechanism to provid-
ing portability is the encapsulation of the debugging API in a loadable library,
which forms the bridge between debuggers and runtime systems. This library is
dependent on the internal implementation details of a particular runtime and is
loaded by the debugger to request information from that runtime. Upon initial-
ization, the debugger registers hooks with this library to provide the necessary
functionality to access the target process (e.g., using the trace interface). When
the debugger then calls the debugging API implemented by this library, it uses
these hooks to extract information from the target process and then uses its
knowledge about internal information to interpret it and return it to the debug-
ger. This decouples debugging functionality implemented by the debugger from
implementation dependent runtime information.

Crownie and Gropp used this design to implement an interface that allows a
debugger to obtain the information necessary to display the contents of MPI
message queues [3]. The same concept has been used in the libthread db
library [7], an interface for monitoring and inspecting thread-related aspects of
multithreaded programs. Similar thread debugging interfaces have been imple-
mented on other systems such as Tru64, IRIX, AIX and Linux.

Crownie et al. proposed DMPL [2], an interface to help a debugger understand
the internals of the OpenMP runtime using the aforementioned library-based
design. The focus of this interface is to allow a debugger obtain information
about shared and private variables of OpenMP parallel regions.

More recently, the OpenMP Tools Committee proposed OMPD [4], a general
interface to debug OpenMP programs. OMPD extends the functionality proposed
in DMPL and covers a wider range of debugging use cases—from examining the
state of OpenMP threads and tasks, to allowing the debugger to place break-
points at the beginning and end of parallel regions. We describe these use cases
later in this paper.

3 The OpenMP Debugging Interface

Tools targeting OpenMP need access to state information within the OpenMP
runtime to improve their ability to deal with OpenMP abstractions and to pro-
vide information to users at that level of abstraction. This is true for both
performance and debugging tools, although, different requirements apply.

92 J. Protze et al.

3.1 OMPT: A Runtime Interface for OpenMP Tools

The standard way to provide state information from a runtime is a set of addi-
tional API functions exposed by the runtime. The recently proposed OMPT
interface [5], which has also been published by the OpenMP ARB as an official
white paper, takes this approach and offers both state query functions and call-
back functionality for relevant events. This can be used by performance tools
to examine the state of the runtime, identify parallel regions and tasks, and
to assemble call stacks to offer users a view without interwoven runtime stack
frames.

3.2 Why Distinguish OMPD from OMPT?

In general, the information offered by OMPT is also required by debuggers.
However, debuggers access information in a fundamentally different way: they
access and debug a process externally from a different process. This is commonly
referred to as “third-party access”, which makes a pure runtime library API
approach difficult. In particular, calling a function in the target process’s runtime
has the following problems:

– It may not be possible at all, for example, it is not possible to call a function
in a target core file. Some target architectures, such as GPUs, may not permit
the debugger to call functions at all.

– It is unreliable since the target process or thread may have corrupted itself to
the point where calling a function causes a crash (e.g., a SIGSEGV). Also, it
assumes that the function being called in the target is asynchronously reen-
trant.

– It may change the process and thread state and may have unintended side
effects.

– It is relatively expensive and may scale poorly, as each call requires many
low-level operations to read/write target memory and registers, continue exe-
cution, handle breakpoint traps, and cleanup the process.

OMPD therefore intends to expose the same information as available from
OMPT or from the OpenMP APIs directly, but without the need to run in
the process of the application and the runtime. As shown in Fig. 1, the OMPD
runtime is loaded by the debugger and resides in the debugger process. The
OMPD library supports the debugger in getting the right information out of the
runtime library.

Note that an OpenMP library does not necessarily need to implement OMPT
to provide OMPD. We therefore propose to use a distinct namespace for each
of the two interfaces and do not reuse type names from the OMPT interface
for OMPD (even if they offer similar or identical semantics). For example, the
header file ompd.h should not depend on ompt.h. Nevertheless, OpenMP runtime
implementers may choose to implement a common internal state tracking for
OMPT and OMPD.

A Debugging Interface for OpenMP 93

3.3 The OMPD Architecture

As illustrated in Fig. 1, the OMPD library is loaded by the debugger. Whenever
the debugger calls an OMPD API function, the library needs to get informa-
tion from the OpenMP runtime library (e.g., reading values from the runtime
library’s memory). To maintain a clear separation of concerns, this function-
ality is not provided (i.e., reimplemented) by the OMPD library; rather the
debugger exposes functions for the OMPD library to access the address space
of the target process. As the debugger loads the OMPD library, the debugger
registers these functions as callback functions with the OMPD library, so the
library can access the functions. Using these debugger callback functions, the
OMPD library accesses the memory space of the target process, which contains
the needed OpenMP state information. It then uses its constructed knowledge
of the runtime system and OpenMP objects to return the requested information
to the debugger. Section 5 focuses on the set of callback functions defined for
OMPD.

Special issues emerge when the debugger process runs on an architecture dif-
ferent from where the target application with the OpenMP runtime library is
run. Examples for this situation include debugging on a system like IBM Blue
Gene/Q or Cray systems, where the compute nodes have a different architecture
from the front-end nodes, or in a hybrid system combining CPUs with acceler-
ators such as GPUs. We will address some of these issues in Sects. 6 and 7.

4 Use Cases of OMPD

OpenMP-aware debuggers must enable a programmer to debug the program
at the level of OpenMP programming abstractions. Tools must be capable of
making the relevant program state visible without revealing unnecessary imple-
mentation details. OMPD must be designed and implemented to empower tools
to serve this purpose. In this section, we present some of the capabilities that
an OpenMP-aware debugger can provide and how OMPD can be used to help
the debugger provide these capabilities. They are the representative use cases
that cannot easily be supported without the help of a standard runtime debug
interface.

4.1 OpenMP-Aware Stack Trace

One of the most important debugging views of a thread is its stack trace. For
OpenMP programs, however, the raw stack trace of a thread has proven to be
inadequate because it often contains too much detail on the underlying OpenMP
runtime implementation while not fully capturing its high-level semantics.

Let’s take an example of a basic construct in OpenMP: a parallel region.
Listing 1.1 shows a minimal code example. For each thread that arrives at the
begin of the parallel region, a team of threads are created, which will execute
in parallel the block following the omp parallel pragma. Listing 1.2 shows how

94 J. Protze et al.

1 {
2 // code before parallel region
3 #pragma omp parallel
4 {
5 // parallel region code
6 }
7 // code after parallel region
8 }

Listing 1.1. Parallel region is the basic OpenMP constuct

1 void parallel_region_block()
2 {
3 // parallel region code
4 }
5 [...]
6 {
7 // code before parallel region
8 omprt_run_parallel(parallel_region_block);
9 // code after parallel region

10 }

Listing 1.2. Simplified source-to-source translation of pragma omp parallel

this omp parallel pragma can be translated. This source-to-source translation
represents how a compiler could realize the occurrence of this high-level OpenMP
pragma into a low-level mechanism.

The function omprt run parallel in this example is implemented within
the OpenMP runtime library and is responsible for creating the team of threads
and for making these threads execute the function being passed as a function
argument. This is a commonly used technique although each runtime may use a
distinct function name for omprt run parallel: main. omp fn is used in GNU
OpenMP while .omp microtask. is used in the Intel OpenMP Runtime.

For an execution of the code that has been translated according to this
scheme, at least two distinct stack traces can result. The master thread, which is
the thread that created the team, will have a stack trace shown in Listing 1.3. A
stack trace for any other team member (or slave) thread is shown in Listing 1.4.
Note that this is a simplified example for illustration purpose only. Depend-
ing on the runtime implementation, the stack trace might appear much more
obfuscated.

There are two main problems with the representation shown in this example.
First, the slave thread stack trace lacks the history about the parallel-region
context. Listing 1.4 provides no clue that parallel region block originated

in parallel_region_block () from file:3
in omprt_internal () from libopenmp
in omprt_run_parallel () from libopenmp
in block () from file:8

Listing 1.3. Stack trace of the master thread pausing at a breakpoint on line 3 of
Listing 1.2

A Debugging Interface for OpenMP 95

in parallel_region_block () from file:3
in omprt_internal () from libopenmp
in start_thread () from libpthread
in clone () from libc

Listing 1.4. Stack trace for a team member pausing at a breakpoint on line 3 of
Listing 1.2

in #omp parallel from file:5 @ T3
in block () from file:3 @ T1

Listing 1.5. Stack trace as it shoud be provided for team member thread 3

from the parallel region or called from within block. Even if the raw stack trace
of a system-level thread includes a thread creation history, often this would
not help either. Most runtime implementations manage thread pools and reuse
threads across teams so the history information could be mixed up.

More importantly, from a programmer’s perspective, this raw representation
of a stack trace is inadequate: most programmers do not want to see all the
runtime internal indirections in the stack trace. Instead, an abstraction at the
conceptual level of the programmer’s model, as shown in Listing 1.5, is more
insightful. To provide such a high-level representation, however, the debugger
needs to fetch the following information from a runtime debug interface: (1) the
hierarchy of parallel contexts; (2) the entry and exit points of the runtime to
unroll the parallel-region creation of the master thread and to remove runtime
library functions from the stack trace.

For this purpose, OMPD provides the function ompd get enclosing
parallel handle, which allows a debugger to unroll the hierarchy of parallel
contexts. We will describe this OMPD function in details in Sect. 6, and a mod-
ification to the current specification, which we need to improve this workflow.

4.2 Stepping in and Out of a Parallel Region

Another common use case when working with a debugger is stepping through
the execution, entering, and leaving functions. For the example in Listing 1.1 the
user would expect to reach line 5 when stepping in, and line 7 when stepping out
of the parallel region. This is the behavior when the code is compiled without
OpenMP enabled. However, with OpenMP and without special handling by the
debugger, a single step would end up in the OpenMP runtime library. Instead,
the debugger must again hide the implementation details of the runtime library,
moving forward to the reentry point in the application.

To enable this, OMPD must supply entry point information at the right
place. When entering the parallel region, the region is not created yet, so the
information is unavailable. The expectation is that, at some point between enter-
ing the runtime and leaving the runtime, the information about the entry point
to the application is available. The debugger then needs to stop the execution

96 J. Protze et al.

of the target only when this information becomes available, extract the infor-
mation and continue to the entry point. Thus, OMPD must provide breakpoint
information to the debugger so that it can be notified via a breakpoint event
only when the information is available. We will discuss in Sect. 6 how OMPD
should provide the breakpoint information.

5 OMPD Callback Interface

Here we describe the callback functions that a debugger needs to provide to the
OMPD library to enable the library to gather information from the application.
We carefully reduce the set of callback functions to a minimum and discuss where
we see issues with the set provided by the current OMPD document [4].

5.1 Functions for Operating System Interaction

A lesson learned from prior debugging libraries is that a library that is loaded
by a debugger should not rely on system memory management, but instead use
debugger-provided memory management. Using the primitive memory manage-
ment callback functions ompd alloc memory and ompd free memory, the library
gives the debugger control over its memory management. This allows the debug-
ger to use its own custom implementation of memory management (e.g., mal-
loc/free vs. new/delete).

Similarly it is best practice to use the debugger’s output routines for out-
put that is produced by the library. This way the debugger can redirect the
output in its usual way, for example to stderr or to a log file. The callback
function ompd print string provides a simple interface to print strings using
the debugger’s output stream.

The current OMPD proposal defines a function to resolve an error code to
a string. As the error codes are specified in the interface, the string should be
constant and well defined. Consequently, there is no reason why the error string
should be provided by the debugger. Thus we propose to remove this callback
function.

5.2 Resolving Structures for Target Architecture

In general, we cannot assume that the OMPD library and the OpenMP runtime
operate on the same architecture. On the other hand, we do not want to see
multiple OMPD libraries that are specialized built for each target architecture.
For these reasons, the library needs a way to get the sizes of target types at
runtime. The debugger knows about the target architecture, so we assume a
debugger should be able to provide size information for primitive types that are
defined in the C standard with an architecture and compiler dependent size. The
OMPD callback function ompd sizeof prim ttype is defined to return a vector
of sizes for the types char, short, int, long, long long, and the pointer type
void *.

A Debugging Interface for OpenMP 97

The draft of the OMPD interface suggests functions to resolve application
specific structs and functions to get sizes and offsets for structure elements. This
approach is in general not applicable as most runtime libraries are delivered in
a stripped format with removed type information. On the other hand, the infor-
mation about structure sizes and member offsets cannot be calculated within
the OMPD library when the application is executed on a different architecture.
Further, an OMPD library should be able to handle OpenMP runtime libraries
built for different architectures, so the OMPD library needs to get the informa-
tion about structure sizes and offsets from the targeted runtime library.

The pthread debugging interface [7] does not use callbacks for resolving types
either. The approach for the pthread library is to include all necessary sizes and
offsets in the runtime library—they can be calculated during initialization of the
library and can be fetched by reading the value of integer global symbols. For the
pthread library, this is implemented using preprocessor macros to transparently
provide and access the sizes when new symbols are added to structures. An
OMPD library implementation might use a similar macro approach or just put
all the needed offsets in the code. While our proposed change to OMPD does
not specify how structure offsets and sizes are calculated by OMPD, it omits the
callbacks for structure type and member lookups.

5.3 Access Application Memory

The API function ompd tsymbol addr lookup is used to identify the base address
for any basic symbol in the address space of the application respectively the
OpenMP runtime library. We will discuss implications of the access to thread
local or accelerator address space in Sect. 5.4.

Based on the address of a symbol and offsets for elements, the OMPD library
will use the memory access functions ompd read tmemory and ompd write
tmemory to read and write values in target memory. We propose to use an addi-
tional argument to specify the primitive type for the access and replace the
size argument with a count argument that specifies the number of array items.
With this information, the debugger might perform endianness conversion for a
memory access.

The current OMPD callback interface suggests a function to convert the endi-
anness of memory, which is read from the target memory before. This function
misses an argument to specify the primitive type for the conversion or misses
the argument to express the count of values. A reason for having a dedicated
function for read and type conversion is that reading from the target memory
can have a quite high latency. Reads of multiple values from a struct in the tar-
get memory would have the latency for every read. The debugger might cache
the memory page and reduce the latency. On the other hand, we expect just the
read of single values or vectors of values since this is the amount of information
returned in the API functions.

We propose to specify the primitive type instead of a size, to give the debugger
the possibility to distinguish pointer from integer values. The return type for
pointer reads should be ompd taddr t.

98 J. Protze et al.

5.4 Debugger’s Context Argument

Most API and callback functions include a context pointer. For the debugger
the context pointer identifies on which target process, thread, or address space
the callback function is supposed to operate. The debugger provides the context
pointer when calling an API function. The OMPD library must pass the context
pointer back to the debugger as an argument to most of the callback functions.

In general, the OMPD library should not assume that a context pointer
is valid after the API call returned. The state of the target application might
change or the debugger might use the handle in another way. The key question is:
where does an OpenMP implementation store the values to answer the OMPD
API function call? Thus, what context is needed to answer the question?

For OMPT, the answer is simple: the API function is called in a thread
context, thus the function must be answered with information available in this
thread’s context. For SMP systems, an OMPD library should be able to answer
API function calls with knowledge from the corresponding thread. Thus, the
debugger must provide the right thread context with each API function call.

The current version of the tools interface did not consider the target construct
and the use of OpenMP with accelerators. The information might be stored on
the thread that initiated the target region or in the thread on the accelerator.
The debugger cannot know where the information is stored. Nevertheless, the
debugger needs to provide the context pointer to interact with the right address
space. OMPD needs a callback function to request the right context, so that
for example, it can navigate from an accelerator context to a process context in
search for accelerator-thread information.

6 OMPD API Function Specifications

In this section, we describe high-level problems we expect with the OMPD API
specification as proposed in the first technical report on OMPT [4].

6.1 Providing Information on Compatible Runtime Library

The technical report does not specify a way to tell the debugger how to find a
compatible OMPD library for a runtime library. It suggests that the OpenMP
runtime might provide a list of filename strings that identify the locations of all
the compatible OMPD library implementations. This approach will fail when
we think of heterogeneous systems with running the application on one archi-
tecture and operation system, and debugging on another platform. For exam-
ple, we cannot expect that the runtime library on the compute nodes would
carry the OMPD path information on the login nodes. Our proposal is to give a
unique name to each OMPD library in terms of the version and optional archi-
tecture information corresponding to the runtime library. The debugger would
then attempt to find this OMPD library in the systems library path.

A Debugging Interface for OpenMP 99

6.2 API Specification for Breakpoints

As described in Sect. 4.2, OMPD needs to provide breakpoint information for all
the cases where control gets transferred to the OpenMP runtime, especially for
entering and leaving parallel regions and tasks.

The current OMPD specification has a structure containing four pointers
to code locations where the debugger might set breakpoints to get notified of
the entering and leaving event of parallel regions and tasks. However, the four
locations might be insufficient to cover general cases. A runtime library might
have multiple implementations of handling parallel regions for various corner
cases; or an OpenMP implementation does not outline the parallel region as
shown in our Listing 1.2 but inlines the runtime code. In the latter case, a
breakpoint for every parallel region is necessary.

Another fundamental issue is that this approach is not extensible. For exam-
ple, there might be a need for a new breakpoint for the target construct. Chang-
ing this struct, however, will break compatibility between interface versions.

From the debugging perspective, it’s more scalable to have a constant symbol
for all parallel processes and threads than collecting addresses from all processes
to place breakpoints.

For all these reasons, we propose to specify the names of dummy breakpoint
functions, which need to be called by the OpenMP runtime to trigger the events.
The dummy function is an empty function, but the runtime library needs to make
sure that the compiler does not optimize out the function call. The debugger then
sets the breakpoints to these functions within the runtime whenever needed:

1 void ompd_break_pre_parallel (){}
2 void ompd_break_post_parallel (){}
3 void ompd_break_pre_task (){}
4 void ompd_break_post_task (){}

Extending this list would not break compatibility with the previous interface.

6.3 Missing Function to Identify Master

When creating a stack trace as described in Sect. 4.1, the debugger needs to
resolve the parent thread for a parallel region. The OpenMP standard has the
function ompd get anchestor thread num to get the parent thread for the par-
allel region.

We propose to add the function ompd get anchestor thread with a signa-
ture like in Listing 1.6 to the OMPD API. The signature is aligned to the API
functions currently in the interface. We think, using the thread handle instead
of the thread number is more consistent in case of the OMPD API.

7 Future Challenges

Although the OMPD API currently supports OpenMP 3.0 specification, when
extended for the current 4.0 version of OpenMP, it will face a new set of chal-
lenges. In particular, the target construct whereby the application outsources

100 J. Protze et al.

1 EXTERN ompd_rc_t ompd_get_anchestor_thread(
2 ompd_context_t *context , /* IN: debugger handle for the target */
3 ompd_parallel_handle_t parallel_handle , /* IN: handle for a parallel

region */
4 ompd_thread_handle_t *parent_thread_handle /* OUT: handle for parent

thread */
5);

Listing 1.6. Proposed signature for ompd get anchestor thread

its calculations to an accelerator will present technical challenges. In this section,
we discuss how we prepare the current OMPD interface for the necessary future
accelerators’ support.

7.1 Context Pointer for Accelerators

In Sect. 5.4, we touched upon the topic of the meaning of a context pointer with
respect to accelerators. We already discussed the need for a callback function
to switch the context to the right location. When this callback is provided, an
OMPD API function for an accelerator will first use this callback to switch the
context from the accelerator thread context to the process thread context. As
such switching would be necessary for each API call, it might be more efficient
and cleaner to introduce a single API call thereby the OMPD library can specify
the required context.

7.2 Addressing Accelerator Threads

Another potential issue is the specification of ompd osthread handle. The han-
dle is important to build a mutual understanding on the low-level thread between
the debugger and the OMPD library. The handle can be used when OMPD
cannot determine whether or not a thread is an OpenMP thread by fetching a
thread-local-storage (TLS) variable. On a runtime system that provides OpenMP
thread personality through a TLS variable, we do not believe this handle is nec-
essary. With accelerators, it is unlikely that all of the OpenMP runtimes will
provide OpenMP personality via TLS. In many cases, the OpenMP thread run-
ning on an accelerator will be identified using the osthread handle. However, the
current specification of the osthread handle will break compatibility if extended
with accelerator support. Thus, we propose to use a flat struct that contains only
an int to specify the kind of thread and an uint64 t for the specific thread han-
dle. The values for the kinds of threads need to be defined in the interface.

7.3 Return Codes

All API and callback functions are specified to return an error code. The cur-
rent specification provides one common set of error codes. If a callback function
returns an error, and the API function fails, the debugger is interested in this
error code. The set of error codes for callback functions should be a subset of
error codes for API function calls.

A Debugging Interface for OpenMP 101

8 Conclusions

In this paper, we described some of the issues that we experienced during imple-
menting an OMPD library prototype. We proposed some changes to the OMPD
technical report for both the callback and the API interface. The changes on the
callback interface affect the ability of endianness conversion and type lookup.
The proposed changes on the API interface concern the matching of compat-
ible OpenMP runtime library and OMPD library versions and the specifica-
tion of debugger breakpoints. We proposed to add a function to get the master
thread in a parallel region. Finally, we highlighted certain aspects of the interface
which will likely break compatibility between interface versions when extended
for accelerator support in the future.

References

1. Allinea Software: Allinea DDT. http://www.allinea.com/products/ddt. Accessed 16
May 2015

2. Cownie, J., Del Signore, J., de Supinski, B.R., Warren, K.: DMPL: an OpenMP
DLL debugging interface. In: Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716,
pp. 137–146. Springer, Heidelberg (2003)

3. Cownie, J., Gropp, W.D.: A standard interface for debugger access to message queue
information in MPI. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI
1999. LNCS, vol. 1697, pp. 51–58. Springer, Heidelberg (1999)

4. Eichenberger, A., et al.: OMPT and OMPD: OpenMP Tools Application Pro-
gramming Interfaces for Performance Analysis and Debugging. Technical report,
OpenMP.org, May 2013. http://openmp.org/mp-documents/ompt-tr.pdf. Accessed
15 May 2015

5. Eichenberger, A., et al.: OpenMP Technical Report 2 on the OMPT Interface.
Technical report, OpenMP.org, March 2014. http://openmp.org/mp-documents/
ompt-tr2.pdf. Accessed 15 May 2015

6. Rogue Wave Software: TotalView R© Graphical Debugger (2015). http://www.
roguewave.com/products/totalview.aspx. Accessed 16 May 2015

7. Inc., Sun Microsystems. man pages section 3: Threads and realtime library functions.
User documentation, May 2002. https://docs.oracle.com/cd/E19683-01/816-0216/
816-0216.pdf. Accessed 15 May 2015

http://www.allinea.com/products/ddt
http://openmp.org/mp-documents/ompt-tr.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://www.roguewave.com/products/totalview.aspx
http://www.roguewave.com/products/totalview.aspx
https://docs.oracle.com/cd/E19683-01/816-0216/816-0216.pdf
https://docs.oracle.com/cd/E19683-01/816-0216/816-0216.pdf

False Sharing Detection in OpenMP
Applications Using OMPT API

Millad Ghane, Abid M. Malik(B), Barbara Chapman, and Ahmad Qawasmeh

Computer Science Department, University of Houston, Houston, TX, USA
{mghane2,ammalik3,bchapman,arqawasm}@uh.edu

http://www2.cs.uh.edu/~hpctools

Abstract. Writing a parallel shared memory application that scales well
on the future multi-core processors is a challenging task. The contention
among shared resources increases as the number of threads increases.
This may cause a false sharing problem, which can degrade the perfor-
mance of an application. OpenMP Tools (OMPT) [2]- a performance tool
APIs for OpenMP- enables performance tools to gather useful perfor-
mance related information from OpenMP applications with lower over-
head. In this paper, we propose a light-weight false sharing detection
technique for OpenMP programming model using OMPT. We show that
the OMPT framework has the ability to detect unique patterns that can
be used to build a quality detection model for false sharing in OpenMP
programs. In this work, we treat the false sharing detection problem as
a binary classification problem. We develop a set of OpenMP programs
in which false sharing can be turned on and off. We run these programs
both with and without false sharing and collect a set of hardware per-
formance event counts using OMPT. We use the collected data to train
a binary classifier. We test the trained classifier using the NAS Parallel
Benchmark applications. Our experiments show that the trained classi-
fier can detect false sharing cases with an average accuracy of around
90 %.

Keywords: OpenMP · OpenMP Tools API · False sharing · Machine
learning · Performance events

1 Introduction

With the wide-spread deployment of multi-core processors, many applications
are being modified to enable them to utilize the hardware fully. OpenMP is
a popular choice for programming shared memory systems. OpenMP offers a
simple means to parallelize a computation so that programmers can focus on
their algorithm rather than on managing multiple threads. The simplicity of
OpenMP also masks some potential problems from the programmer. One of
them is a well-known false sharing problem [9]. Current false sharing detection
techniques [9,11] rely on tracing the data movement across multiple cores. This
requires heavy instrumentation and excessive data gathering and analysis. Thus,
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 102–114, 2015.
DOI: 10.1007/978-3-319-24595-9 8

False Sharing Detection in OpenMP Applications Using OMPT API 103

they incur a high overhead. This high overhead limits the scalability of these tools
which is important for the future exascale computing [11].

In this work, we treat false sharing as a binary classification problem and use
a decision tree to build a classifier for detecting false sharing in a given OpenMP
code. The performance of a classifier depends on the features that are used to rep-
resent instances. For false sharing, memory behaviour is important information.
Using OMPT [2], we look for the unique memory signatures within the OpenMP
parallel regions generated by the false sharing effect. We use supervised learning
to train a decision tree classifier with a set of sample OpenMP kernels - with
and without false sharing. We apply our trained classifier to the NAS Parallel
Benchmark programs. In more than 90 % of the cases, our light-weight classifier
correctly identified the false sharing problems.

Our contributions are as follows:

1. Use of OMPT API for collecting unique dynamic patterns that can be used
to build cost models for various OpenMP performance issues. In this work,
we use unique memory patterns to detect false sharing problems in OpenMP
codes.

2. A light-weight machine learning based methodology that can detect false
sharing in a given OpenMP code. The approach is independent of the compiler
and OpenMP runtime library.

3. Our experimental results show that our approach is robust and has good
accuracy in detecting false sharing in real OpenMP applications.

This paper is organized as follows: Sect. 2 gives an overview of the false
sharing problem and motivation behind the work. Section 3 describes the related
work in this area. Section 4 briefly talks about the OMPT framework. Section 5
gives our approach and methodology. Section 6 talks about our experimental
results and analysis. Section 7 gives the conclusion and future line of action.

2 Motivation

When a core on a multicore processor modifies data that is currently shared by
the other cores, the cache coherence mechanism has to invalidate all copies in
the other cores. An attempt to read this data by another core, shortly after the
modification, has to wait for the most recent value in order to guarantee the
data consistency among cores. This degrades the performance. In false sharing,
multiple processor cores access different data elements that reside in the same
cache line. A write operation to a data element in the cache line will invalidate
all the data in all copies of the cache line stored in other cores. A successive
read by another core will incur a cache miss, and it will need to fetch the entire
cache line from either the main memory or the updating core’s private cache to
make sure that it has the up-to-date version of the cache line. Poor scalability of
multi-threaded programs can occur if the invalidation and subsequent read to the
same cache line happen very frequently. How bad is the scalability? Fig. 1 shows
a code snippet of an OpenMP program that exhibits the false sharing problem.

104 M. Ghane et al.

Fig. 1. OpenMP codelet with false sharing problem

Table 1. Execution time of OpenMP code from Fig. 1

Code version 1-thread 2-thread 4-thread 8-thread

Without padding 0.503 3.763 3.961 4.432

With padding 0.503 0.263 0.137 0.078

Its performance is inversely proportional to the number of threads as shown in
Table 1 because of the false sharing effect. Mitigating the false sharing effect
through the PADDING variable can lead to an astonishing 57× performance
improvement for this code.

3 Related Work

Detecting false sharing accurately requires complete information on memory
allocation and memory (read and write) operations from each thread. Previous
work [3,13] has developed approaches for memory analysis that use memory
tracing and cache simulation. The main drawback of this approach is within
the memory tracing part, which can incur very large overheads. A memory
shadowing technique was used [23] in an attempt to minimize the overhead
of tracking the changes to the data state. Work by [12,13] also use information
from the hardware performance monitoring unit to support performance analy-
sis. HPCToolkit [12], and Memphis [15] use the sampling result from AMD IBS
(Instruction-Based Sampling) to generate data centric information. Intel PTU
(Performance Tuning Unit) [4] utilizes event-based sampling to identify the data
address and function that is likely to experience false sharing. Several attempts
have been made to eliminate the false sharing problem. For example, careful
selection of runtime scheduling parameters, such as chunk size and chunk stride,
when distributing loop iterations to threads has been used to prevent false shar-
ing [1]. Proposed data layout optimization solutions include array padding [8]
and memory alignment methods [20]. A runtime system called SHERIFF [10]

False Sharing Detection in OpenMP Applications Using OMPT API 105

performs both detection and elimination of false sharing in C/C++ applica-
tions parallelized using the Pthreads library. PREDATOR [11] is a predictive
software-based false sharing detector that generalizes from a single execution
to precisely predict false sharing that is latent in the current execution. DAR-
WIN [22] introduces a dynamic framework to help application developers detect
instances of false sharing as well as identify the data objects in an OpenMP code
that cause the problem. Our work is similar to the work [7] which is specific to
the Pthreads library. However, our approach is for OpenMP programming model
and independent of the compiler and OpenMP runtime library.

4 OMPT- Application Programming Interface for Tools

OMPT is an Application Programming Interface (API) that enables portable
tools to collect performance analysis information of OpenMP programs. The
design of OMPT takes advantage of two prior OpenMP tools APIs: the POMP
API [16] and the Collector API [6]; hence OMPT supports trace-based measure-
ments and asynchronous sampling provided in the POMP API and the Collec-
tor API respectively, and specifies interfaces for applying blame shifting logic
to resource synchronization. The OMPT interface can be implemented either
entirely in the compiler or entirely in the OpenMP runtime system, as well as
using a hybrid compiler/runtime option. Our implementation of the OMPT API
was completely in the OpenMP runtime. Figure 2 describes the interaction of an
OpenMP program with a performance analysis tool through the OMPT API.

The basic layout of the OMPT framework is given in Fig. 2(a). The design of
the OMPT API consists of mutually exclusive states describing each OpenMP
thread, defined callback events representing the entry and exit for commonly
used pragmas, and a set of API calls that can be used by tools to acquire
information from the OpenMP runtime. A performance tool requests notification
of a specific event by passing the name of the event to be tracked as well as a
callback function to be invoked by the OpenMP runtime each time the event
occurs. Figure 2(b) gives an example of an execution of the OpenMP code shown
in the figure, while OMPT is enabled. Two events, begin implicit barrier and

(a) OMPT interaction with OpenMP (b) Events in an OpenMP program
IPATPMOgnisuyrarbilemitnur

Fig. 2. Working of the OMPT framework.

106 M. Ghane et al.

end implicit barrier, are encountered by each thread in the parallel region. The
functionality of the callback functions, associated with these events, is controlled
by a performance tool. OMPT also provides data structures, populated by the
runtime, that include the parallel region identifier, wait identifiers and stack
frame data. For a runtime to comply with the OMPT specification, state support
is required along with the mandatory events. Please refer to the work proposed
in [2] for complete and detailed information on the OMPT API.

5 Our Approach

This section describes our methodology in detail.

5.1 OMPT for Capturing Unique Patterns

A parallel region in an OpenMP program can be broken down into different
events. For example, a typical OpenMP program may consist of creation of
physical threads at the beginning of a parallel region, execution of the job by
each thread, and threads waiting at barriers at the end of the parallel region.
In Fig. 3(a), Point A,B,C,D,E and F represent OpenMP events that can be
captured through OMPT API. Point A is the Fork Event, and Point F repre-
sents the Join Event. Point B,C,D and E can be any event depending upon the
OpenMP directive being used to expose parallelism. Previous work does perfor-
mance modeling by collecting information at the coarse level, i.e., using Point A
and F [22]. However, OMPT allows a user to collect information at the fine level
with respect to the intermediate events, i.e., using Point B,C,D and E. The
basic idea behind our approach is that if we can record certain features between
the OpenMP events, they can be used as patterns to characterize an OpenMP
kernel for various cost modeling techniques. The work [17] by our group shows
that such signatures exist for OpenMP kernels for energy and power. Figure 3(b)
gives an energy signature (rate of change of energy between the OpenMP events)
of the Strassen application. We observe the same behavior in the OpenMP appli-
cations similar to the Strassen application. We use the same logic to find the
memory signatures that detect false sharing in a given OpenMP program.

Cache invalidation is an important memory behavior. Many tools use it for
false sharing detection [22]. Table 2 gives cache invalidation pattern for the code
in Fig. 1. Point A and D represent Fork and Join events respectively. Point B
indicates the event when all the threads have been created. Point C represents
the event when the first thread hits the synchronization barrier. We observe that
there is a pattern in the rate of cache invalidation between these events–number
of cache invalidation between the events divided by the time between the events–
in the OpenMP codes showing false sharing with the same number of threads.
We did a statistical analysis on these patterns collected from OpenMP kernels.
False sharing was injected manually. We observed low variance in values for these
patterns.

False Sharing Detection in OpenMP Applications Using OMPT API 107

(a) Point B,C,D and E are fine (b) Energy pattern for the Strassen
level OpenMP events. Point A and F application using OMPT [17].

are coarse level OpenMP events.

Fig. 3. OpenMP Execution Model

Table 2. Cache invalidation pattern for the code in Fig. 1

Code version 1-thread 2-thread 4-thread 8-thread

time (sec.) 0.503 3.763 3.961 4.432

cache invalidation 4,284 89,466 100,884 130,013

rate of invalidation→ A and B - 2350 3561 5779

rate of invalidation→ B and C - 23870 44445 57843

rate of invalidation → C and D - 4350 5521 7722

5.2 Hardware Performance Information

We developed a tool to monitor a group of events within an OpenMP program
using OMPT. The tool helps in capturing memory patterns for false sharing.

The data set between the OpenMP events is hardware performance infor-
mation that is collected by running various OpenMP programs. In modern
processors, Performance Monitoring Unit (PMU) can count hardware events
per thread. The counter values can be retrieved using performance tools (e.g.,
Intel PTU, PERF) or APIs (e.g., libpfm, PAPI) [5]. For our work, we use the
PAPI library to access these hardware performance counters and extract val-
ues. Tools like Intel PTU and PERF analyze the whole program and show the
results for the lifetime of a given application. For our work, PAPI is a better
choice as we are interested in studying the behavior of a specific section of a
given OpenMP code and not the whole program. For information collection, we
follow the following steps:

1. After creating physical threads, hardware counters for each event are initiated
for each thread.

2. Each time an OpenMP event begins, the current values of related hardware
counters are read and stored.

108 M. Ghane et al.

3. Each time an OpenMP event ends, the hardware counter values are read and
stored again.

4. The difference in values are calculated and stored.

The above steps are repeated for each parallel region we encounter during
our experimentation. All feature values are normalized to make it independent
of data and program size. We talk about the data normalization approach in
Sect. 6.

5.3 Binary Classifier for False Sharing Detection

The basic idea behind our prediction method is to build a binary classifier
using a set of hardware performance features collected using OMPT. We col-
lect the data using Source Code Repository (OmpSCR) [18]. OmpSCR consists
of OpenMP applications written in C, C++, and Fortran. For our training pur-
pose, we changed the source codes of OpenMP applications in a way that we can
have two running modes; (1) with false sharing, and (2) without false sharing.
For the false sharing mode, we change the directives and source code of a pro-
gram to ensure cache invalidation and bad performance. For example, instead
of accessing matrices in a row-wise order in a C source code, the for-loops are
changed in a way that the accesses are made in a column-wise order. The work [7]
adopts the same methodology for building a data set for detecting false shar-
ing in PThread programs using machine learning. To ensure the generality of
our approach, we change the input data size (big or small) and the number of
threads (4, 8, 16, 24). In short, we run a program in two running modes for each
data set and number of threads. This helps us in generating training and testing
cases for our classifiers. We build a separate classifier for each number of threads.

5.4 Feature Selection

Selecting the best features for a classifier is an important research topic in the
area of artificial intelligence. An extensive research literature is available on
optimal feature selection problem. In our case, features are hardware-dependent
performance events. We have many hardware events for any platform, and not all
of them are important or relevant to capture unique patterns for the false sharing
detection problem. We collect 227 hardware features that can be categorised
into five groups; features related to (1) resource stalls, (2) cache accesses (data
and instruction cache), (3) memory accesses, (4) translation lookaside buffers,
and (5) intra- and inter-processor communications. Our list contains all the
potential events that can help in finding patterns related to false sharing. If all
the hardware features are used to build a classifier, it may result in overfitting,
i.e., you might have good accuracy during the training phase, but the trained
classifier might perform poorly on unseen test cases. Therefore, it is important
to select the best or optimal number of features that can give an acceptable
performance during the training and testing phases. For our work, we use the
C4.5 decision tree algorithm [14] for building a binary classifier. The algorithm

False Sharing Detection in OpenMP Applications Using OMPT API 109

uses Information Gain (IG) criterion to sort the available features. The feature
with the highest IG value is selected as the root node. Features with low IG
values are adjusted at the lower levels or depths of the tree, i.e., away from
the root node. For our work, we first build a tree by using all the available
hardware features. This results in a huge tree as the decision tree algorithm
tries to improve its performance by reusing the features. We select the features
up to certain level or depth to build a new smaller tree with better accuracy and
precision. We discuss this in detail in Sect. 6.

6 Experimentation and Results

This section discusses our experimentation and results.

6.1 Training Phase

We use the J48 Decision Tree from the WEKA Package [14] to build four binary
classifiers, i.e., one for each number of threads. The J48 tree is an implemen-
tation of the C4.5 decision tree. We use 64-bit Intel Xeon E5-2640 processor
working at 2.5GHz on two sockets as our computing framework. Each socket has
six cores with two hyper-threading. Therefore, we have a total of 24 threads.
The machine has 32KB/core L1 cache, 256KB/core L2 cache, 13MB/CPU L3
cache (as the last level cache), 64GB memory as RAM, and ×86 64 GNU/Linux
3.10.14 as the operating system. We use the Intel Compiler Beta 16 suite as
the infrastructure to compile applications. We use the Intel OpenMP Runtime
Library that supports OMPT API.

The training data set is collected by running programs from the OmpSCR
package. Each program is executed with different number of threads, data sizes
and two false sharing modes. During the execution of each program, our tool
collects data for all the parallel regions and stores it in a file to be processed
after the program is done. The value of each feature is recorded between two
consecutive OpenMP events. These values are combined together to build an
instance for each program run. Let VXY be a vector that contains all fea-
ture values between the two consecutive OpenMP event X and Y . For Fig. 3,
< VAB , VBC , VCD, VDE , VEF , CLASS > is a complete feature vector for the
OpenMP kernel between Point A and B. The CLASS variable is true when
the kernel is run in the false sharing mode, and its value is false when it is run
without the false sharing mode. When a program terminates, there is a file con-
taining data for each number of threads that can be used to build a classifier for
each number of threads.

Limitation of Our Approach: Nested parallelism is a common situation in
real OpenMP applications. Consider a recursive function that uses OpenMP
directives. If recursive call happens to be inside a parallel region, you are implic-
itly executing a parallel region inside another one. We are not covering this

110 M. Ghane et al.

condition in this work. For nested parallelism, our tool collects the results for
the top-level parallel region, and no performance monitoring is done for the
children.

Feature Selection: Size of a feature vector plays a significant role in the preci-
sion/accuracy of a decision tree. Using more features may lead to a good accuracy
but it may result in over-fitting with unseen test cases. Figure 4(a) shows the
trade-off between accuracy and number features for the four threads classifier
(to detect false sharing in OpenMP code with four number of threads). The
horizontal axis represents number of levels traversed down in the decision tree
from the root node. The vertical axis shows the precision of the decision tree
using the number of features upto the corresponding level. The arrows in the
figure represent number of unique features upto that specific level. For example,
we have 90 % precision when we use 11 features upto level five of the decision
tree. We have a total 227 number of features. With full features, we are able to
achieve 95.4 % precision. We get the same accuracy by using 14 features that
can be captured upto level six in the decision tree. Figure 4(b) gives the top 14
hardware features upto level six from our work.

Normalization of Data: Normalization of features’ values plays an important
part in defining the accuracy of a classifier. We use two types of normalization:
(1) each feature value is divided by the total number of instructions in a given
OpenMP kernel, and (2) manually discritization of the feature values. For the
second type, we determine the range of each feature value and divide it into five
classes. If the feature value is within 20 % of maximum value then it is in Class
A. If the value is between 20 % and 40 % then it belongs to Class B. If the value
is between 40 % and 60 %, then it is in Class C. If the value is between 60 % and
80 %, then it is in Class D. If the value is between 80 % and 100 %, then it is in
Class E.

We use the 10-fold cross validation to test the performance of classifiers dur-
ing the training phase. We use 21 and 84 hardware features with both normal-
ization strategies. Figure 5 shows the results. Overall, the accuracy ranges from
50 % to 97 %. The classifiers for four and eight threads have better accuracy than
16 and 24 threads classifiers. Also, manual discritization strategy gives better
performance.

6.2 Validation of the Approach

We validated our classifier using real applications. For our work, we use OpenMP
benchmark applications from the NAS Parallel Benchmark [19]. The NAS Par-
allel Benchmark is a set of applications designed for performance evaluation of
supercomputers. They are maintained by the NASA Advanced Supercomputing
Division, and the source codes are developed in the C and Fortran languages.
Programs in these benchmarks are highly optimized for less false sharing events.
For our experimentation, we manually injected false sharing in the source.

False Sharing Detection in OpenMP Applications Using OMPT API 111

)b()a(

Fig. 4. (a) Performance trade-off for the four-thread classifier using different features
at different levels. (b) Top 14 hardware features.

Fig. 5. Performance of the four classifiers. (a) Data set normalization using maximum
number of instructions (b) Manual normalization of data set.

Fig. 6. Performance of the four classifiers using NAS Parallel. (a) Data set normaliza-
tion using maximum number of instructions (b) Manual normalization of data set.

112 M. Ghane et al.

Figure 6 shows the accuracy of the four classifiers using unseen applications
from the NAS Parallel Benchmark. The accuracy ranges from 49 % to 90 % for
the classifiers trained on the dataset normalized using maximum instruction
size. The accuracy ranges from 77 % to 90 % for the classifiers trained on the
data that was discretized manually. The classifiers for four and eight number of
threads give good accuracy as compared to the classifiers for 16 and 24 number
of threads.

7 Conclusion and Future Work

OMPT - a performance tool API for OpenMP- enables performance tools to
gather useful performance information from OpenMP applications with low over-
head and to map this information back to a user-level view of applications. In
this paper, we show that the OMPT API can be used to track unique patterns
or signatures in OpenMP kernels. These unique patterns can be used to develop
models for OpenMP performance issues. In this paper, we developed a detec-
tion model for false sharing by treating it as a binary classification problem. We
used the unique signatures collected by OMPT to train a binary classifier. We
used J48 decision tree learning approach that trained itself using the informa-
tion collected using OMPT. We used mini-programs and OpenMP Source Code
Repository (Omp-SCR) to build a classifier and tested it using the NAS Paral-
lel Benchmark applications. The results showed that the accuracy of our model
ranges from 70 % to 90 %.

For the future work, we are planning to refine the information. We are also
planning to look into other classification and regression methods that can be used
to build more robust and accurate detection models for false sharing. The main
issue with the current dynamic false sharing tools is scalability. These tools use
instrumentation technique to collect necessary information for prediction false
sharing. This instrumentation phase is responsible for the major overhead. We
believe that our machine learning approach can be used to select the appropriate
parallel regions for instrumentation and can help in reducing the overhead.

Acknowledgments. The authors would like to thank their colleagues in the HPC-
Tools group at the University of Houston for their extensive collaboration to make this
work a reality. We would also like to thank Nagendra Kaushik Katta for proofreading
the final draft of the paper. This work is supported by the National Science Foundation
under grant CCF-1148052.

References

1. Chow, J.-H., Sarkar, V.: False sharing elimination by selection of runtime schedul-
ing parameters. In: Proceedings of the 1997 International Conference on Parallel
Processing (1997)

False Sharing Detection in OpenMP Applications Using OMPT API 113

2. Eichenberger, A., Mellor-Crummey, J., Schulz, M., Copty, N., DelSignore, J.,
Dietrich, R., et al.: OMPT and OMPD: OpenMP tools application programming
interfaces for performance analysis and debugging. In: International Workshop on
OpenMP (IWOMP 2013) (2013)

3. Gunther, S.M., Weidendorfer, J.: Assessing cache false sharing effects by dynamic
binary instrumentation. In: Proceedings of the Workshop on Binary Instrumenta-
tion and Applications (WBIA 2009), New York (2009)

4. Intel Corporation.: Avoiding and Identifying False Sharing Among Threads (2010)
5. Intel Corporation.: Intel Performance Tuning Utility 4.0 User Guide (2011)
6. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for profil-

ing. Sun Microsystems, Inc., OpenMP ARB White Paper. http://www.compunity.
org/futures/omp-api.html

7. Jayasena, S., Amarasinghe, S., Abeyweera, A., Amarasinghe, G., De Silva, H.,
Rathnayake, S., Meng, X., Liu, Y.: Detection of false sharing using machine learn-
ing. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC 2013), New York (2013)

8. Jeremiassen, T.E., Eggers, S.J.: Reducing false sharing on shared memory multi-
processors through compile time data transformations. In: SIGPLAN (1995)

9. Liu, T., Berger, E.: SHERIFF: precise detection and automatic mitigation of false
sharing. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, pp. 3–18 (2011)

10. Liu, T., Berger, E.: Sheriff: Detecting and Eliminating False Sharing. Technical
report, University of Massachusetts, Amherst, Massachusetts (2010)

11. Liu, T., Tian, C., Hu, Z., Berger, E: PREDATOR: predictive false sharing detec-
tion. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, New York (2014)

12. Liu, X., Mellor-Crummey, J.: Pinpointing data locality problems using datacen-
tric analysis. In: 2011 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 171–180 (2011)

13. Marathe, J., Mueller, F., de Supinski, B.R.: Analysis of cache-coherence bottle-
necks with hybrid hardware/software techniques. ACM Trans. Archit. Code Optim.
(TACO) 3, 390–423 (2006). New York

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

15. McCurdy, C., Vetter, J.: Memphis: finding and fixing numa-related performance
problems on multi-core platforms. In: 2010 IEEE International Symposium on
Performance Analysis of Systems Software (ISPASS), pp. 87–96 (2010)

16. Mohr, B., Malony, A.D., Hoppe, H.-C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A performance monitoring interface for OpenMP. In: Proceedings of the
Fourth European Workshop on OpenMP, Rome, Italy (2002)

17. Nandamuri, A., Malik, A.M., Qawasmeh, A., Chapman, B.M.: Power and energy
footprint of openMP programs using OpenMP runtime API. In: Proceedings of the
2nd International Workshop on Energy Efficient Supercomputing (E2SC 2014), pp.
79–88. IEEE Press, Piscataway (2014)

18. OpenMP Source Code Repository. http://www.pcg.ull.es/ompscr/
19. NAS Parallel Benchmark Applications. http://www.nas.nasa.gov/publications/

npb.html#url
20. Torrellas, J., Lam, H.S., Hennessy, J.L.: False sharing and spatial locality in mul-

tiprocessor caches. IEEE Trans. Comput. 43, 651–663 (1994)
21. Weaver, V.: The Unofficial Linux Perf Events Web-Page (2013). http://web.eece.

maine.edu/vweaver/projects/perf events/

http://www.compunity.org/futures/omp-api.html
http://www.compunity.org/futures/omp-api.html
http://www.pcg.ull.es/ompscr/
http://www.nas.nasa.gov/publications/npb.html#url
http://www.nas.nasa.gov/publications/npb.html#url
http://web.eece.maine.edu/vweaver/projects/perf_events/
http://web.eece.maine.edu/vweaver/projects/perf_events/

114 M. Ghane et al.

22. Wicaksono, B., Tolubaeva, M., Chapman, B.: Detecting false sharing in OpenMP
applications using the DARWIN framework. In: Proceedings of International Work-
shop on Languages and Compilers for Parallel Computing (2011)

23. Zhao, Q., Koh, D., Raza, S., Bruening, D., Wong, W., Amarasinghe, S.: Dynamic
cache contention detection in multi-threaded applications. In: Proceedings of the
7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE 2011), pp. 27–38 (2011)

Exception Handling with OpenMP
in Object-Oriented Languages

Xing Fan(B), Mostafa Mehrabi, Oliver Sinnen, and Nasser Giacaman

Department of Electrical and Computer Engineering, The University of Auckland,
Auckland, New Zealand

fxin927@aucklanduni.ac.nz

Abstract. OpenMP has become increasingly prevalent due to the sim-
plicity it offers to elegantly and incrementally introduce parallelism.
However, it still lacks some high-level language features that are essential
in object-oriented programming. One such mechanism is that of excep-
tion handling. In languages such as Java, the concept of exception han-
dling has been an integral aspect to the language since the first release.
For OpenMP to be truly embraced within this object-oriented commu-
nity, essential object-oriented concepts such as exception handling need
to be given some attention. The official OpenMP standard has little
specification on error recovery, as the challenges of supporting exception-
based error recovery in OpenMP extends to both the semantic specifi-
cations and related runtime support. This paper proposes a systematic
mechanism for exception handling with the co-use of OpenMP direc-
tives, which is based on a Java implementation of OpenMP. The concept
of exception handling with OpenMP directives has been formalized and
categorized. Hand in hand with this exception handling proposal, a flex-
ible approach to thread cancellation is also proposed (as an extension on
OpenMP directives) that supports this exception handling within paral-
lel execution. The runtime support and its implementation are discussed.
The evaluation shows that while there is no prominent overhead intro-
duced, the new approach provides a more elegant coding style which
increases the parallel development efficiency and software robustness.

1 Introduction

Even though the evolution of OpenMP has made it increasingly comprehensive
for shared-memory applications, the framework still has some way to go before
it is widely used for general software development. In particular, the current
OpenMP standard lacks support for essential programming features such as
mechanisms for error recovery. As a matter of fact, OpenMP is mainly used
for compute-intensive applications that are deterministic and less error-prone,
such as batch-like, or numerical and scientific computations. For other kinds of
parallel programs (such as server-side applications [10], games [7], desktop and
mobile platform software [13]), which are typically interaction-based, handling
unexpected situations is essential for robustness.

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 115–129, 2015.
DOI: 10.1007/978-3-319-24595-9 9

116 X. Fan et al.

Exception handling is an error recovery mechanism which enables programs
to anticipate and recover from abnormal situations and consequently avoid any
abrupt termination of applications. Compared with other error handling approa-
ches (e.g. error code based, callback function based [4]), exception-based recovery
is more compliant with object-oriented principles, due to its support for user-
defined exceptions. In object-oriented languages, useful information about an
error is typically stored in an instance of an Exception class. Moreover, it is lex-
ically clearer and more flexible to directly surround code that could potentially
throw exceptions in try-catch-finally blocks. OpenMP does not provide rich sup-
port for object-oriented exception handling in parallel environments. If anything,
considering that a parallelized application is likely to introduce more potential
problems than that in a sequential application, this lack of support for excep-
tion handling makes it especially difficult to write robust object-oriented parallel
code using the OpenMP approach. This is especially important to recognize in
an object-oriented language such as Java, where exception handling is an inte-
gral part of the language. As Android and multi-core mobile devices continue
their dominance, the relevance of parallel programming is evermore relevant
and presents another opportunity for OpenMP to embrace this community of
developers.

In this paper, an in-depth examination for exception handling in an OpenMP
environment has been proposed. The contributions of this paper can be divided
into three parts. First, the categorization and formalization of object-oriented
exception handling in OpenMP parallel regions. Second, the concept of flexible
thread cancellation is proposed, which provides a better approach for manag-
ing the control flow of a program, as well as facilitating exception handling
on threads. Finally, the usability and performance are evaluated through an
OpenMP implementation for Java [12].

2 Related Work

Although the official OpenMP standard does not have a comprehensive error
handling mechanism at the moment, several error handling models have been
proposed for OpenMP. Gatlin [4] initially classifies error handling into three
categories based on exception, callback function and error-code. Exception-based
error handling is widely used in object-oriented languages such as C++ and Java,
but combining this mechanism with parallelization approaches in OpenMP has
not been studied in depth so far. On the contrary, error recovery models that are
based on callback functions are widely used in different domains, but they seem
to be too complicated to use. Low level languages such as C and Fortran mainly
use this approach to handle errors, as these languages lack proper exception
handling mechanisms. For this category, Duran et al. [3] introduces a model
for error recovery in OpenMP that is based on callback functions. The model
proposes a mechanism for registering callback functions using the onerror clause
to specify a function that is called in case of a specific error. Moreover, Wong
et al. [14] discussed the necessity of error-handling models in OpenMP. However

Exception Handling with OpenMP in Object-Oriented Languages 117

they argue that the model must support exception-unaware languages (e.g. C and
Fortran), thus their model does not include the semantics of exception throwing
and try-catch blocks.

3 Problem Overview

In this section, we itemize the obstacles towards efficient and robust exception
handling programming with the help of some code snippet examples.

3.1 Current Situation

Although it may be possible to handle exceptions thrown within OpenMP par-
allel regions, it is rather counter-intuitive, demanding and confusing to correctly
implement since the semantics are evaded in the OpenMP standard. According
to the specifications of OpenMP 4.0 [1], when an exception is thrown inside a
parallel region, the only restriction is that the exception should be caught and
handled within the same region and by the same thread. Therefore, a parallel
region surrounded by a try-catch block does not comply with OpenMP specifi-
cations (see Fig. 1a). Moreover, we also cannot guarantee that a try-catch block
within a parallel region will function as it is expected, due to some semantic
defects within OpenMP specifications [8]. For example, Fig. 1b shows a try-catch
block embedded inside an OpenMP parallel region. Although this syntax may
get through an OpenMP compiler, it has a potential runtime bug. In this par-
ticular case, when an exception occurs before the barrier, the control flow of
the encountering thread will jump to the catch block. This jump will skip the
barrier directive, while the other threads that do not encounter an exception
end up halting indefinitely at the barrier synchronization. This is similar to
the reason why OpenMP standard strictly follows the Single Entry, Single Exit
(SESE) principle as [8] indicated. Although there are already some static analy-
sis techniques proposed such as [9] which is designed for checking the validation
of barriers, it still lacks the consideration onto exception handling semantics.

3.2 Problem Definition

The current situation of using try-catch blocks suggests that programmers
encounter difficulties due to programming inconveniences and pitfalls of OpenMP
error handling. Lacking a standard and consistent error handling mechanism in
OpenMP makes programmers struggle in writing robust and efficient OpenMP
code. The major consequence of the lack of exception handling mechanisms in
OpenMP hinders the widespread use of OpenMP in object-oriented languages,
since there is no clear OpenMP conformity with contemporary software design
paradigms. Generally, error handling in OpenMP needs to be improved in three
major aspects: (a) The semantics for checking whether catching an exception can
cause other problems. (b) Convenient and flexible mechanisms for controlling or
canceling execution within parallel environments. (c) A reliable runtime support
for the default behavior of parallel executions when they encounter uncaught
exceptions.

118 X. Fan et al.

Fig. 1. (a) Try-catch mechanism that does not syntactically and semantically conform
with the OpenMP specification; (b) Syntactically conforms with OpenMP specification,
but semantically it has a defect.

4 Cancellations

Before discussing exception handling within OpenMP parallel regions, it is help-
ful to discuss the significance of cancellation in a parallel context. In sequential
programming, canceling execution at a certain part in the code is easily achieved
by using the supported programming language keywords (e.g., break to cancel
a loop, or return to cancel execution within a method). Because there is only
one control flow, cancellation in sequential code simply means canceling the
current scope of execution. In an OpenMP parallel region, such a cancellation
keyword is lexically in a sequential program but semantically executing in par-
allel (the OpenMP philosophy that the original sequential code is intact when
the OpenMP compiler directives are ignored). In this parallel context, does a
cancellation indicate the termination for a single thread in the parallel region
(i.e. the one encountering the cancellation), or it would it indicate termination
of all threads participating within the current parallel environment? Therefore,
when converting sequential code to parallel code, extra directives are needed to
convey the programmer’s intentions. This type of directive should be flexible and
easy enough to express programming logic, while still respecting the OpenMP
approach of maintaining lexically sequential code.

OpenMP 4.0 standard has added some directives related to region cancella-
tion [1]. According to the cancel directive, programmers are allowed to cancel
the innermost parallel/for/sections/taskgroup region where the cancel directive
appears. This specification provides an approach to stop execution of a par-
allel region, with the combination of cancellation point directive, which allows
for user-defined cancellation points. The net effect of this directive is that it
results in stopping the entire parallel execution. The cancel directive lacks the
ability to stop a single thread locally without interfering with the execution of
other threads. This would be useful when a thread encounters an exception and
cannot recover from it, so it may be desirable to only stop execution of that cur-
rent thread (since it no longer needs to continue its assigned workload), without
canceling the entire parallel execution. Using a break-statement goes against

Exception Handling with OpenMP in Object-Oriented Languages 119

OpenMP standards (since it is oblivious to OpenMP barriers). The status quo
makes it difficult for programmers to specify the control flow of a parallel exe-
cution, and confines the use of exception handling when exceptions happen in a
parallel execution.

Cancellation directive. In order to support a more flexible thread canceling mech-
anism, and to better support the OpenMP exception handling model, the official
cancel directive is extended. This extension is achieved by adding a thread-
affiliate-clause, which can be global, indicating the cancellation of the entire
thread group (the current OpenMP definition), or local, merely indicating the
cancellation for the current thread encountering the directive. The optional if
clause, signaling that the cancellation is active only when the condition inside the
if statement holds true, remains unchanged. Figure 2 demonstrates the extended
syntax of the cancel directive. We however propose an additional optional clause,
neglect exception, for constructs parallel, for, sections and taskgroup. This is under
the consideration for the simplification of parallel exception handling, which will
be explained in Sect. 5.3.

Fig. 2. Extended cancellation directive

The extended cancel directive expands the control over a group of threads.
That is, by combining different clauses, programmers can express customized
behaviors of the parallel control flow. Figure 3 visualizes the cancel directive
with the combinations of different clauses. Black nodes indicate the cancella-
tion triggering points. A thread with black node is the cancellation triggering
thread. If a thread encounters a cancellation directive with the local property, it
will only stop executing the innermost OpenMP construct thread-locally. After-
wards, the thread resumes when all other threads within the parallel execution
reach the next statement following the canceled region. On the other hand, if
the cancellation is a global cancellation, the triggering thread will set a global
cancellation flag. Other threads check this cancellation flag at next cancellation
checking points (indicated by white nodes). Afterwards, all threads resume from
the next statement after the cancellation region.

The cancel directive can be used for two purposes. First, programmers can
explicitly use this directive to express parallel control flow. Second, it works as
an implicit operation when an exception happens within a parallel execution.
The latter is explained in more detail in Sect. 5.3.

120 X. Fan et al.

Cancellation triggering point

Cancellation checking point

 (a) (b) (c) (d)

Fig. 3. Different uses of cancel directive. (a) cancel parallel local Only single thread
quits the innermost parallel region; (b) cancel parallel global Entire thread group quits
current parallel region; (c) cancel for local Single thread quits current worksharing for-
loop, but continues when other threads finish this for-loop iteration; (d) cancel for global
All threads quit current worksharing for-loop and continue with following statement.

5 Exception Handling

In this section we demonstrate the exception handling model. In order to ensure
the robustness and flexibility, several limitations and extensions are discussed.
The discussion is categorized into two parts: Local exception handling and global
exception handling.

5.1 Overview of Categorization

In proposing a comprehensive model for parallel exception handling, we discuss
different categories of exception handling in order to set up a standard for using
exception handling with OpenMP directives to prevent unexpected execution
behaviors. There are two kinds of exception handling scenarios that would be
useful in an OpenMP environment. One involves handling exceptions within
a single thread, while the other involves exception handling across a group of
threads:

Local Exception Handling: This means an exception is handled by the same
thread that threw the exception in the parallel region. A successful local handling
must ensure that the procedure of error recovery does not influence with the
execution of other threads. A local exception handling try-catch block does not
surround the entire parallel region, but is rather handled internally within the
parallel region.

Global Exception Handling: A global exception means an exception poten-
tially influences the entire parallel region. If an exception in a parallel region
is not caught by its throwing thread, or handling this exception causes another

Exception Handling with OpenMP in Object-Oriented Languages 121

exception to be thrown, then the exception will affect the entire parallel execu-
tion. The OpenMP standard does not categorize this behavior, since it insists
it should never occur. Lexically, the try-catch block for handling of these types
of exceptions would surround the parallel region in which the exception might
happen. An uncaught global exception will make the entire parallel execution
stop. If this exception is still not caught afterwards, the entire program will stop
as well.

5.2 Local Exception Handling

Local exception handling ensures that errors are recovered inside their local
threads, and the local threads continue working/progressing. In order to avoid
an unexpected execution behavior (examples in Sect. 3.1), this type of handling
requires two conditions to be met: (a) Any potential exception inside a try-catch
block does not interfere with other thread’s execution; (b) Any operation inside
a catch/finally block does not affect the entire parallel region’s progress.

Technically, as a legal local exception handling, the entire exception handling
region requires there is no OpenMP synchronization point present, in either of
the try-catch or finally blocks. Furthermore, it should be ensured that (a) there is
no exception re-throwing or (b) if exception re-throwing happens, the re-thrown
exceptions need to be handled by another legal local handling.

With regards to parallel synchronization points in the parallel region, usually
represented by various OpenMP directives, this can be categorized into two
groups:

Control-flow Synchronization Point: A control-flow synchronization point
is defined as a point where a thread cannot evolve until it is synchronized with
other threads in the corresponding parallel region. A typical control-flow synchro-
nization point is the barrier directive. Other directives, may contain an implicit
barrier if the nowait clause is not specified. Those directives include for, section
and single. If there is a control-flow synchronization point inside the try block,
there is a risk of not being reached by one of the threads when this thread
encounters an exception.

Thread-Context Switching Boundary: The attribute of source code changes
when encountering a thread-context switching boundary. In an OpenMP parallel
region, there are mainly three types of source code regions: (a) Code regions to be
executed by every thread at the same time; (b) Code regions to be executed only
by one specified thread (e.g. master) or non-specified thread (e.g. single); (c) Code
regions to be executed by every thread, but the executions need serialization (e.g.
critical). Thread-context switching boundary works as a dividing line to change
this thread-context property. Notice sometimes a control-flow synchronization
point is also a thread-context switching boundary, such as for. If a try block
contains several OpenMP code blocks which represent different thread-contexts,
it is easy to cause an ambiguous exception handling semantic and unexpected
runtime behavior. So avoiding thread-context switching boundaries inside a local
exception handling try-catch block is a better programming practice.

122 X. Fan et al.

According to this limitation, a robust compiler should be able to throw a
warning to inform programmers if the OpenMP source code does not conform
with local exception handling rules. This warning reminds programmers to dou-
ble check the code whether the exception handling could cause any side effect.

5.3 Global Exception Handling

Global exception means an exception is emitted from a parallel region and it
is not handled thread-locally. It indicates an unexpected behavior occurred and
escaped from within the parallel execution. If this exception is not handled by
its local thread, this exception will be forwarded to the parallel region. Because
a thread-locally-uncaught exception could influence the correctness of parallel
execution, this exception changes its property and becomes a global exception
and handling this type of exception is defined as global exception handling.

Global Exception Catch Procedure. In a sequential program, if an excep-
tion happens, it needs to be handled by the encountering thread. If the thread
cannot find a matching catch block, the program will stop with throwing an
unhandled exception. However, in parallel execution, if an exception happens in
a thread, it is not always necessary to stop the parallel execution. Programmers
can specify the behavior when an exception happens. That is, to handle it by
the encountering thread, to expose it to the parallel environment, or to stop the
encountering thread only.

Figure 4 shows the flowchart for the case of an exception within an OpenMP
parallel execution. When a parallel program is executing, if it encounters an
exception, it first checks whether a local exception handler is defined. If yes,
this exception will be handled using the thread-local approach, and then the
encountering thread continues processing. Notice that it is possible to throw
another exception from the handling code (i.e. catch or finally block), in which
case the program continues looking for another local handler until the exception
cannot be handled locally. If a thread encounters an exception and this excep-
tion is not handled locally, the default behavior will be cancel parallel global,
which triggers the cancellation of that parallel region. In another situation a
program may encounter a cancel directive. As discussed in Sect. 4 (Cancellation
directive), cancel directives can also be used for deliberate control-flow stops.
Therefore, execution stops due to OpenMP cancellation are not always regarded
as exceptions.

Exception Neglecting. In some cases, it is not desirable to stop the entire
parallel processing once an exception is exposed to the parallel environment.
Programmers may want the remaining threads keep executing even if one or
more threads fail within the thread group. This can be achieved by explicitly
declaring a local cancellation at the end of local exception handling code to
make the encountering thread stop locally. However, If there is no other recovery
operations within the handling code, the semantic can be simplified by using

Exception Handling with OpenMP in Object-Oriented Languages 123

Encounter
an exception

User-code
exception

Switch
exception type

OpenMP
cancel directive

Fatal
runtime error

Thread-local
handling

Exception
rethrowing

Continue
normal execution

Cancel parallel global

Stop parallel region
& Handle exception

Exception
registered

Checkup
exception registration

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

No

Parallel
runtime exception

Yes

Fig. 4. Flowchart of exception handling within OpenMP parallel region

neglect exception clause after the corresponding OpenMP construct. When an
exception happens and it is registered by the exception neglecting mechanism, it
will not trigger the parallel or worksharing execution cancellation. Instead, only
the encountering thread will stop. In the meanwhile, since it is possible that some
works distributed by the stopping thread is not finished, for the compensation,
a dynamic work redistribution is run when the thread stopping happens.

Figure 5c shows a code example which uses the neglect exception clause to
simplify the programming logic. Inside the parallel region, an infinite loop is
executed. For each loop iteration, firstly one of the thread inside thread group
collects requests from the network sockets. Afterwards, a series of requested are
processed by the thread group. During the worksharing process, exceptions could
happen. But only some types of the exception are handled thread-locally. Other
unexpected exceptions (e.g. OutOfMemoryException) could still escape from the
local thread. Under this circumstance, using neglect exception clause followed by
a more general exception type (Exception) enables the parallel execution ignore
the exceptions which are exposed to the parallel environment. After an automatic
work redistribution (if necessary), the parallel execution keeps processing.

Source Code Simplification. Due to the lack of specifications for paral-
lel exception handling, a conventional traverse-parallel-region exception han-
dling solution would have to use predefined references (or pointers) to store

124 X. Fan et al.

the exceptions that happen in a parallel region. That is, programmers have to
manually store exceptions that could possibly occur in a parallel region, and
then invoke a global cancellation directive to stop the parallel execution when
handling that exception. Thus, a parallel region must be followed by a series
of inspections to test whether any of the specified exceptions have happened.
The source code for such a manual approach is quickly tainted with multiple
try-catch blocks, especially when programmers want to catch several potential
exceptions in a parallel region.

Fig. 5. Source code complexity comparison between (a) without and (b) with exception
runtime support; (c) A demo code using neglect exception clause to simplify the recovery
procedure when uncaught exception happens inside a parallel region.

The source code can be easily simplified using new exception handling seman-
tics with OpenMP directives. Try-catch block can directly surround a parallel
region without code re-factoring (See Fig. 5). The compiler source-to-source gen-
eration and runtime support will do all the routines in the background. This
improvement makes the source code more elegant and more compliant with
object-oriented design patterns.

Using exception neglecting mechanism also enables programmers to easily
sustain the continuation of parallel processing when certain thread inside the
thread group fails. Because remedy operations are automatically done by the
underlying runtime support, programmers liberate from arduous works of con-
verting sequential code to robust parallel code.

6 Implementation

This section discusses about the implementation of enhanced exception handling
support. The aforementioned concepts and proposals are implemented through a

Exception Handling with OpenMP in Object-Oriented Languages 125

source-to-source compiler and its runtime support. This section mainly explains
some noticeable issues with regard to the runtime implementation.

6.1 Adaptable Synchronization Barrier

The extended OpenMP cancellation directive allows the cancellation of single
thread without stopping the entire parallel execution. Since a stopped thread
could influence the following synchronization procedure of other remaining
threads, it requires an on-the-fly thread consensus number adjustment when
a local thread cancellation happens.

The requirement is achieved by implementing an adaptable synchronization
barrier. Different from traditional cyclic barrier, adaptable barrier has the extra
interfaces decreaseConsensus() and increaseConsensus() which enables the
barrier to readjust consensus number when a thread quits or joins the thread
group. Every thread local cancellation invokes decreaseConsensus() before real
thread stopping, and the synchronization consensus number decreases from n to
n − 1. The same, if a canceled thread rejoin the thread group, the interface
increaseConsensus() is invoked and the synchronization consensus number
related to this thread group increased from n to n + 1.

6.2 Dynamic Work Redistribution

As mentioned before, in order to ensure all remaining worksharing chunks are
processed if a thread cancels its works in an OpenMP worksharing group, work
redistribution is required. We adopt the similar way as Parallel Iterator [5] does.
More specifically, if a thread quits from a worksharing execution, all its remaining
allocated iterations are released. If there are still other threads working, then
they share these remaining iterations (after those threads complete their normal
iterations) using a dynamic schedule with chunk size 1.

If multiple threads attempt to exit from a local cancellation, then all of them
will succeed except the last thread. Because if there is only one thread, the
worksharing construct is at risk of half finish. Under this circumstance, if the
last thread cancels from the parallel execution, an extra exception is thrown out
to indicate the total fail of parallel execution.

6.3 Exception from Synchronization Regions

There is the possibility that an exception thrown from a critical region. A legal
local-exception handling could be available to catch it, as long as it does not
break the rule as Sect. 5.2 discussed. Otherwise, this exception exposes to the
parallel region. In order to avoid a deadlock, from the implementation level, it
should release the lock resource when the exception escapes from the critical
region. In the Java implementation, a finally block is sufficient to ensure this,
which always makes the lock to be released when quitting the critical region.
Whereas considering the implementation for C++, which does not support finally
keyword, RAII [11] is the suitable technique to ensure the life cycle of lock
resources to be confined inside a certain lexical scope.

126 X. Fan et al.

6.4 Global Exception Throwing

Different from exception handling in sequential execution, in a parallel environ-
ment, two or more exceptions may happen at the same time. If those exceptions
are not caught thread-locally, then multiple exceptions are exposed to the par-
allel region. Considering one global exceptions is thrown from one thread, but
before other threads reach the nearest cancellation points, another global excep-
tion happens from another thread. If there is no consensus about which global
exception should be handled, the entire parallel environment is in the risk of
inconsistency and unexpected behavior may happen.

So in order to ensure the exception handling consistency, it is important
to guarantee that when multiple global exceptions happen, all the exception
exposures to the parallel region should be linear [6] and immediately visible to
any other threads within the thread group. This is implemented by endowing
each parallel region an exception slot, on which the data can be modified using
the compare-and-set (CAS) operation. If more than one threads throw exceptions
at the same time, the CAS operation ensures that only one exception is set to
the exception slot. The thread which succeeds on CAS operation will trigger the
cancellation flag and all other threads which fail to register their exceptions will
only end in thread cancellations.

7 Evaluation

In this section, we evaluate the new exception handling mechanism in the new
OpenMP version that we have implemented for Java.

7.1 Usability

According to aforesaid concepts, the compiler does the semantic check to see
whether programmers made a legal local thread exception handling in a parallel
region. This could prevent the unexpected bugs such as the example shown
in Fig. 1b. Also, the runtime support ensures that even if an exception is not
handled inside the parallel region, the execution will stop the entire parallel
execution instead of causing a deadlock (example showed in Fig. 1a).

Generally, since the compiler and its runtime help to do most of the cor-
rectness checking and underground operations, programmers are able to write
robust parallel code with less coding (Fig. 5) and effort.

7.2 Performance

With regard to performance evaluation, we mainly focus on whether the excep-
tion handling support degrades the performance even though no exception hap-
pens during the parallel execution. The possible overhead can arise from two
aspects: (a) either the try-catch guarding on the parallel region, or (b) the explicit
cancellation checking points the programmer added into the parallel region.

Exception Handling with OpenMP in Object-Oriented Languages 127

According to the EPCC benchmarks [2], we develop the similar benchmarks
to measure the OpenMP synchronization overheads of Java version. In the bench-
marks, the parallelization overhead is defined as Tp − Ts/p, in which Tp is the
parallel execution time on p processors and Ts indicated the sequential execution
time of the same program with the same working load. The benchmark was run
on a dedicated 16-core 2.4 GHz SMP machine with 64 GB memory, and Java
HotSpot 64-Bit Server VM is used. In order to achieve a consistent and more
accurate evaluation on the JVM, each benchmark case was run n (varies between
different cases) times and before each benchmark case a n/10 times warmup is
executed. Figure 6 illustrates the absolute time of synchronization overhead of
parallel, for, and barrier respectively, before introducing the support of exception
handling.

Fig. 6. Absolute time of synchronization overhead in a Java version of OpenMP

After the implementation of aforementioned exception handling support, two
types of execution time were measured. The first is the parallel execution guarded
with a try-catch block (TC). The second, in addition to the try-catch guarding,
an extra cancellation checking point (CCP) is added. As a reference, the exe-
cution time without any exception handling is regarded as the baseline and the
overhead differences are computed against it.

Figure 7 shows the benchmark result categorized by different types of direc-
tives. The overhead deviation of TC and TC&CCP is depicted. We notice that
the overall average overhead is around 0.15 % and the worst case happens with
barrier directive on TC and the overhead is 3.65 % higher than non-exception-
handling one. However, in many of the cases, the overhead is negative which
means the execution time of TC or TC&CCP is faster. This phenomenon may
be attributed to the operating system scheduling which has a much greater
impact on the execution time, so the overhead of exception-handling support
does not introduce a noticeable impact on execution time.

128 X. Fan et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TC

TC & CCP
−2.75%

−2.5%

−2.25%

−2%

−1.75%

−1.5%

−1.25%

−1%

−0.75%

−0.5%

−0.25%

0%

0.25%

0.5%

0.75%

1%

1.25%

1.5%

1.75%

2%

omp for

O
ve

rh
ea

d

Threads
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TC

TC & CCP
−2.25%

−2%

−1.75%

−1.5%

−1.25%

−1%

−0.75%

−0.5%

−0.25%

0%

0.25%

0.5%

0.75%

1%

1.25%

1.5%

omp parallel
O

ve
rh

ea
d

Threads
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TC
TC & CCP

−2%

−1.75%

−1.5%

−1.25%

−1%

−0.75%

−0.5%

−0.25%

0%

0.25%

0.5%

0.75%

1%

1.25%

1.5%

1.75%

2%

2.25%

2.5%

2.75%

3%

3.25%

3.5%

3.75%

omp barrier

O
ve

rh
ea

d

Threads

Fig. 7. Overhead evaluations of different OpenMP directives

8 Conclusion

The ability to use exception handling mechanisms in OpenMP would be a power-
ful feature from a software engineering point of view. The OpenMP specification
lacks the integration of exception handling in object-oriented languages. In this
paper, a combination of exception handling and parallel programming (based on
OpenMP directives) is discussed. A proposal on the semantics, and the runtime
to support this semantics, is discussed. Programmers will gain a better program-
ming experience when writing robust high-level parallel code with OpenMP.
Evaluations suggest that the new approach provides an elegant exception han-
dling mechanism in OpenMP, without causing any performance degradation.

References

1. OpenMP Architecture Review Board: OpenMP application program interface 4.0,
July 2013

2. Bull, M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, vol. 8, p. 49 (1999)

3. Duran, A., Ferrer, R., Costa, J.J., González, M., Martorell, X., Ayguadé, E.,
Labarta, J.: A proposal for error handling in OpenMP. Int. J. Parallel Program.
35(4), 393–416 (2007)

4. Su Gatlin, K.: OpenMP 3.0 feature: error detection capability, May 2005. http://
www.nic.uoregon.edu/iwomp2005/Talks/gatlin-panel.pdf

5. Giacaman, N., Sinnen, O., Akeila, L.: Object-oriented parallelisation: improved
and extended parallel iterator. In: 2008 14th IEEE International Conference on
Parallel and Distributed Systems, ICPADS 2008, pp. 113–120. IEEE (2008)

6. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

7. Knafla, B., Leopold, C.: Parallelizing a real-time steering simulation for com-
puter games with OpenMP. In: Parallel Computing: Architectures, Algorithms,
and Applications (2008)

8. Münchhalfen, J.F., Hilbrich, T., Protze, J., Terboven, C., Müller, M.S.: Classifica-
tion of common errors in OpenMP applications. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 58–72. Springer, Heidelberg (2014)

http://www.nic.uoregon.edu/iwomp2005/Talks/gatlin-panel.pdf
http://www.nic.uoregon.edu/iwomp2005/Talks/gatlin-panel.pdf

Exception Handling with OpenMP in Object-Oriented Languages 129

9. Saillard, E., Carribault, P., Barthou, D.: Static validation of barriers and work-
sharing constructs in OpenMP applications. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 73–86. Springer, Heidelberg (2014)

10. Salva, S., Delamare, C., Bastoul, C.: Web service call parallelization using OpenMP.
In: Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.)
IWOMP 2007. LNCS, vol. 4935, pp. 185–194. Springer, Heidelberg (2008)

11. Stroustrup, B.: The Design and Evolution of C++. Pearson Education India (1994)
12. Vikas, Giacaman, N., Sinnen, O.: Pyjama: OpenMP-like implementation for Java,

with GUI extensions. In: Proceedings of the 2013 International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores, PMAM 2013,
pp. 43–52. ACM, New York (2013)

13. Vikas, Scott, T., Giacaman, N., Sinnen, O.: Using OpenMP under android. In:
Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol.
8122, pp. 15–29. Springer, Heidelberg (2013)

14. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B.R.,
Churbanov, A.: Towards an error model for OpenMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol.
6132, pp. 70–82. Springer, Heidelberg (2010)

Extensions

On the Algorithmic Aspects of Using OpenMP
Synchronization Mechanisms II: User-Guided

Speculative Locks

Barna L. Bihari1, Hansang Bae2, James Cownie2, Michael Klemm2,
Christian Terboven3(B), and Lori Diachin1

1 Lawrence Livermore National Laboratory, Livermore, USA
{bihari1,diachin2}@llnl.gov

2 Intel Corporation, Santa Clara, USA
{hansang.bae,james.h.cownie,michael.klemm}@intel.com

3 RWTH Aachen University, Aachen, Germany
terboven@itc.rwth-aachen.de

Abstract. In this paper we continue our investigations started in [8] into
the effects of using different synchronization mechanisms in OpenMP-
threaded iterative mesh optimization algorithms. We port our test code
to the IntelR© XeonR© processor (former codename “Haswell”) by employ-
ing a user-guided locking API for OpenMP [4] that provides a general and
unified user interface and runtime framework. Since the IntelR© Transac-
tional Synchronization Extensions (TSX) provide two different options
for speculation — Hardware Lock Elision (HLE) and Restricted Transac-
tional Memory (RTM) — we compare a total of four different run modes:
(i) HLE, (ii) RTM, (iii) OpenMP critical, and (iv) “unsynchronized”.
As we did in [8], we find that either speculative execution option always
outperforms the other two modes in terms of their convergence char-
acteristics. Even with their higher overhead, the TSX options are very
competitive when it comes to runtime performance measured with the
“time-to-convergence” criterion introduced in [8].

1 Introduction

While transactional memory (TM) has been around for over two decades [13],
and despite the many different implementations in both software and hardware
that have been offered over the years, it has yet to become a mainstream mech-
anism for thread synchronization. This is partly due to the fact that any rea-
sonable TM runtime performance strongly depends on specialized hardware,
typically achieved through modifications to the L1 and/or L2 caches. So far,
two major vendors, IBM* and Intel, provide hardware transactional memory
(HTM); IBM on multiple machine series and Intel on Intel R© Xeon R© proces-
sors [14]. Despite the availability of HTM platforms, support for TM has not yet
made it into the OpenMP API specification [21] (though a proposal for user-
guided locks seems likely to be adopted into OpenMP 4.1). As a consequence,
for those intending to write identical code for a range of systems, the elegance
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 133–148, 2015.
DOI: 10.1007/978-3-319-24595-9 10

134 B.L. Bihari et al.

and promised efficiency of TM is compromised by its lack of portability between
different platforms.

Over three years ago IBM offered the first production-quality TM comprising
BG/Q hardware and a TM runtime [12] that delivered features such as multiple
rollback capability and smart heuristics in its software stack, but without bur-
dening the user with and exposing all the details of the underlying algorithms.
To use TM, the user only needed to insert directives, call runtime libraries, and
tune environmental variables.

Intel platforms offer a more versatile and potentially more efficient TM capa-
bility — Intel R© Transactional Synchronization Extensions (TSX) — with two
options: Hardware Lock Elision (HLE) and Restricted Transactional Memory
(RTM). However, the system does not come with a complete runtime library
that would be readily usable with RTM: the programmer has to provide a non-
transactional fall-back path which would have code to eventually acquire the
lock that was elided. For most non-expert developers, some of whom maintain
or modify legacy code, this is a major drawback, as each transaction (e.g., at
least once in each for loop with race conditions) would require several lines of
code to be able to use the new hardware features. A more ambitious customer
may develop a home-grown library of the different transactional backup paths,
but at the cost of some non-trivial time and effort.

An attractive solution to this “missing software dilemma” was introduced
in [4] where a library of user-guided locks was proposed as an extension of
the existing OpenMP lock API. The interfaces proposed in that paper (which
are identical to those used here aside from naming details) seem likely to be
adopted by the OpenMP language committee to become part of the OpenMP 4.1
API specification later in 2015, at which point the OpenMP API will provide a
portable, architecture-independent interface to the hardware transactional mem-
ory features of modern processors. The purpose of this paper is not to explore the
interface design issues (which were explored in [4]) but to provide another demon-
stration that the use of hardware transactional memory can improve application
performance.

The API enables the use of HLE and RTM, and also includes other lock hints
which can be used as either real alternatives to TSX, or to tune lock-synchronized
code by using different lock implementations in the absence of TM. At the user
level, the complete package is now comparable with IBM’s system, with the
added benefit that it is implemented in the open-source Intel [15] and LLVM* [3]
OpenMP runtime libraries, allowing potential modifications by an expert user.

Given this background and the availability of another major vendor’s HTM
system (i.e., Intel TSX), we continue our experimentation with threaded mesh
optimization where potential race conditions exist. Both the hardware and the
software are very different from the IBM environment used in our previous
work [8], thus our intent is to experimentally test and verify that the princi-
ples detailed in [8] still hold. That is, in a shared-memory environment does
a threaded iterative algorithm benefit from using TM to dynamically update

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 135

variables that have dependencies? We find the answer through extensive exper-
imentation on the same code used in [8] but run in the Intel environment. The
results are quite encouraging: we find similar trends to those of [8] and the same
conclusions do remain true.

The rest of this paper is organized as follows. Section 2 provides background,
Sect. 3 presents an overview of Intel TSX as well as the user-guided lock library
as it relates to our experimentation, while Sect. 4 gives a brief review of the
algorithm and the role we expect TM to play in it. We present our experimental
results in Sect. 5, where we compare three different flavors of synchronizations,
as well as a completely unsynchronized version of the code. We also show TM
statistics and runtime performance using the new metric introduced in [8]. In
Sect. 6 we conclude with a brief review of our results.

2 Related Work

As elaborated on in [8], to our knowledge mesh optimization codes (see e.g., [18]
and the references therein) have had neither the need nor the priority to address
the issue of synchronization when threading their iterative algorithms. This is
partly due to the fact that these methods are quite stable and almost any reason-
able ordering or threading technique will eventually converge, albeit at different
convergence rates. The only distantly related work (but still within the realm of
iterative schemes) that we are aware of is that of [5] where threading was system-
atically studied and divergence was actually observed in the context of multigrid
smoothers which are more sensitive to cell-ordering than mesh smoothers. This
gave us an additional hint and incentive that in some cases thread synchroniza-
tion may have an effect beyond the raw efficiency of iterative methods and may
actually impact the correctness of the solution itself.

Related to our work on user-guided speculative locks, there are other lock
interfaces that include support for speculative locks. The POSIX thread library
[10] contains support for different kinds of locks including speculative locks as
part of glibc [17,20], and Threading Building Blocks (TBB) [2] provides the
speculative spin mutex type which uses TSX if the hardware supports it.
These interfaces also allow programmers to write a critical section that runs
speculatively, but enabling it via the OpenMP API is a more convenient solution
for OpenMP application writers.

IBM introduced a series of machines such as Blue Gene/Q [23], zEnterprise
EC12 [16], and POWER8 [19], all of which implement transactional memory.
Application writers can use their C/C++ compilers to leverage the TM feature
by annotating the code and/or inserting calls to intrinsic functions [11], but this
lacks cross-platform portability. Although there is a proposal for new OpenMP
constructs to support transactional memory [9,24], this approach is fundamen-
tally different from lock-based programming and complements our proposal from
a different angle.

136 B.L. Bihari et al.

3 User-Guided Locking API with TSX

For completeness, we briefly review Intel TSX and show how it can be used in
an OpenMP application that is compiled and linked with the Intel (or LLVM)
OpenMP runtime.

3.1 Intel Transactional Synchronization Extensions

Intel Transactional Synchronization Extensions (TSX) are new capabilities intro-
duced in the Intel Xeon processor series which was formerly known as “Haswell”.
TSX is widely supported in the current series, formerly known as “Broadwell” [1].
The extensions provide support for transactional execution while using cache-
coherence protocols to detect memory access conflicts. On a transactional abort,
the architectural state of the processor is restored to that at the start of the
transaction (all transactional memory writes are discarded, and register state
is restored). At transaction commit, all transactional writes become atomically
visible to other cores.

By using Intel TSX it is possible to execute multiple dynamic instances of
a critical region simultaneously, with the required mutual exclusion enforced by
the hardware when conflicting memory accesses occur between these instruction
streams. This allows code written with a single coarse lock to behave as if it
were implemented with fine-grain reader-writer locks at cache-line granularity.

Intel TSX provides two different interfaces to speculation: Hardware Lock
Elision (HLE) and Restricted Transactional Memory (RTM). In both cases,
speculation is implemented in the coherence protocol of the processor caches.
Since the cache protocol keeps track of the states of individual cache lines, the
hardware can use this information to detect conflicting memory accesses and to
abort the speculative execution in the cores executing the threads that suffered
the conflicts.

HLE is a backwards binary-compatible interface that can be added to an
existing lock by tagging the lock and unlock instructions with instruction pre-
fixes that are ignored on processors without TSX support. It requests that the
processor executes the protected critical region speculatively. If the speculation
fails, the processor rolls back and executes the critical section non-speculatively.
HLE preserves all of the semantics of existing locks, such that the lock value
read inside the critical section appears to be locked, as it would be if there were
no speculation.

RTM adds new instructions to put the processor into the speculative execu-
tion state, to commit the speculative state, and explicitly to abort speculation.
With RTM the user has to provide a non-speculative execution path, since no
lock is visible to the hardware. User code can detect speculation failure and may
choose to retry speculation, but must ultimately provide a way of executing the
critical region non-speculatively, since there is no architectural guarantee that
speculation will make forward progress.

As some operations (inter alia any ring transition that enters the kernel) can-
not be executed speculatively and will cause the speculation to abort, blindly

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 137

converting all critical regions in a program to use speculative locks will likely
be counterproductive. If a large amount of speculative work has been performed
before the abort, discarding it becomes prohibitively expensive. Consider a lock
used to serialize output, for instance, in which effort may be expended to for-
mat data before the write system call is made. If this is done within speculative
execution, the formatting work will all be lost and will have to be repeated
in the non-speculative backup. Therefore, it is hard for the runtime system to
determine which locks should be speculated without information from the pro-
grammer (who should know what code will be executed in the critical region).
This observation motivated our previous proposal for hinted locks [4].

3.2 Using the User-Guided Locking API

The Intel/LLVM OpenMP runtime library contains lock implementations that
use HLE and RTM. Programmers can select the lock implementation either glob-
ally through an environment variable or selectively via an OpenMP extension [4].

The OpenMP extension was proposed to overcome one of the disadvantages of
the OpenMP 4.0 lock API. The key feature of the new API is to give application
writers the ability to choose a hint on a per-lock basis and to pass information to
the runtime about the estimated degree of lock contention. As a result, users gain
fine-grained control of the OpenMP runtime and can optimize their applications
by adjusting the lock implementation for each lock if desired.

The proposed API is available in the latest release of Intel’s open-source
OpenMP runtime [15], and can be enabled at build time. Two additional lock
initialization functions are provided to pass extra information to the runtime:

void kmp_init_lock_hinted(omp_lock_t*, kmp_lock_hint_t)
void kmp_init_nest_lock_hinted(omp_nest_lock_t*, kmp_lock_hint_t)

User-selectable hints (of type kmp lock hint t) are defined as an enumera-
tion:

typedef enum kmp_lock_hint_t {
kmp_lock_hint_none,
kmp_lock_hint_uncontended, // Optimize for an uncontended lock
kmp_lock_hint_contended, // Optimize for a contended lock
kmp_lock_hint_nonspeculative, // Do not use hardware speculation
kmp_lock_hint_speculative, // Use HLE hardware speculation
kmp_lock_hint_adaptive, // Adaptively use RTM speculation

} kmp_lock_hint_t;

Programmers can use these hints together with the additional initialization
routines to tag a lock with a hint. The example code in Fig. 1 shows how to use
the new API to speculatively execute a critical region that is protected through
the OpenMP lock API. After the lock has been initialized and the hint has been

138 B.L. Bihari et al.

Fig. 1. Using user-guided locks in the Intel OpenMP runtime.

bound to the lock, the standard lock routines of OpenMP acquire and release
the lock as usual. This simplifies the task of changing the code to use a specific
type of lock; only the initialization of a lock needs to be located and not all the
places where the lock is claimed and released. The runtime system uses the hint
to choose the lock implementation for this particular lock, and, in this case, to
use a speculative lock.

4 Applying Intel TSX to the Test Code

We will now briefly introduce the algorithm under investigation and then show
how Intel TSX can be applied to its efficient thread synchronization.

4.1 A Brief Review of the Algorithm

In our experiments we use the same simple C++ mesh smoothing algorithm
of [8] that takes the same initially distorted mesh as input and produces a final
converged mesh as output. The main for loop accomplishing the averaging oper-
ation is symbolically represented by the equation:

x(n+1)
i =

1
Ni

Ni∑

j=1

x(m)
j (1)

where x is a 2- or 3-D vector, n is the current (old) iteration, n+ 1 is the latest
(new) iteration, Ni is the number of connected vertices for grid point i, and m
can refer to either n or n+1 depending on whether or not that point has already
been updated or not. Figure 2 shows the relevant code section, as modified to
run with our user-guided locking API on the Intel Xeon processor.

In order to avoid write-after-read (WAR) race conditions in Fig. 2, the code
needs to protect the entire section that includes both “Step 1” and “Step 2”, and
not just the update operations of “Step 2”. The omp set lock and omp unset
lock routines delimit the entire transaction, which is also placed in a block for
ease of reading. Note that this is essentially the same simple construct as that
for the IBM BG/Q TM runtime, and, apart from the lock initialization, the code
of Fig. 2 is identical to that of [8].

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 139

Fig. 2. Simple Laplacian mesh smoothing algorithm.

The OpenMP language provides the critical construct for the purposes of
simple coarse-grain locking, which would be the obvious choice here. However,
because it does not yet support hints to change the behavior of critical from
regular lock acquire/release to speculation, we emulate this functionality by using
the API for user-guided locks. We use the lock hints to run in two additional
modes, called speculative or HLE, as well as adaptive or RTM (see Sect. 3.2).

Note that if we restrict the critical region in Fig. 2 to the coordinate update
in “Step 2” only, no conflicts exist since each thread only updates the points that
it owns. However, the neighboring coordinates might change during “Step 1” so
the result could depend significantly on whether old or new data is being used
during the update. In other words, we have a write-after-read (WAR) conflict
for which we cannot use #pragma omp atomic. Thus, we will not compare HLE
or RTM with atomic as we did in some of our prior experiments in [9,22].

4.2 The Role of TSX

As seen in [8], the BG/Q TM system made a substantial difference to the
quality of the solution we obtained because of the way the updates were done

140 B.L. Bihari et al.

dynamically. With Intel’s TSX system, we also expect to see a difference, espe-
cially since now we actually have two options to properly synchronize the critical
code section of Fig. 2.

HLE When HLE is requested, the system tries to elide the lock and exe-
cute the critical region without requiring any communication through the lock.
However, the TSX-enabled hardware is able to detect conflicting operations.
If a conflict occurs, the system will execute the protected code section non-
transactionally, that is, without elision and with an acquire/release cycle for the
lock. When such a retry happens (often referred to as a “rollback”) the code will
essentially be serialized and forward progress is ensured, albeit with lower effi-
ciency. In terms of the usual TM terminology, only one rollback is allowed with
HLE. Once that happens, HLE becomes equivalent to #pragma omp critical.

RTM With RTM, the lock protecting the transactional region is also elided
at first. Upon a conflict — detected by the hardware as with HLE — the trans-
action aborts and reverts to the fallback instruction address provided by the
programmer. This provides a great deal of flexibility to handle the abort, as well
as the implied responsibility to provide a code sequence that guarantees forward
progress. In our work, we took advantage of the OpenMP extensions of [4] in
order to benefit from the hardware-assisted RTM. As mentioned in Sect. 3.2, and
further explained in [4], the basic system-provided RTM software interface was
built into the “adaptive” option. The adaptive lock has some additional features,
such as the environment variable KMP ADAPTIVE LOCK PROPS=M,N that allows M
number of maximum retries, and a “maximum badness” of N. The latter parame-
ter is used to attempt to work out whether or not even to try RTM at all, since
transactions that have previously failed may only have a slight chance of succeed-
ing in the future and may not be worth the higher overhead of new speculative
attempts, hence the name “adaptive.” The adaptive lock also collects statistics
related to the successes and different failure modes of the speculation. Because
of all these additional features, the “adaptive” lock is naturally more expensive
than its “speculative” counterpart, but it can potentially yield a higher quality
result as multiple rollbacks typically mean multiple updates and, therefore, more
accurate neighbor coordinates for the current mesh point.

As was the case with BG/Q [8], the way the hardware detects memory con-
flicts and how the software handles them will significantly affect the overall
behavior of the algorithm itself. In our experiments, for example, there were
many instances of multiple retries while computing one location, where RTM
turned out to be quite useful, while for others HLE with its low overhead was
sufficient to handle low conflict-probability cases. Indeed, the choice for handling
of the critical section will have a profound influence on the algorithm and the
solution quality itself. The right choice of synchronization method will likely be
made by weighing quality against cost.

5 Experimental Results

We now present some computational experiments using the algorithm described
above. As in [8], the original Cartesian mesh cells from which the currently used

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 141

unstructured cells were obtained are 1 × 1 non-dimensional units in size. They
are then disturbed by a random factor in the range of (−0.5, 0.5), the largest
distortion that still guarantees no initial mesh-line cross-overs. During the runs
we vary the number of threads (1, 2, 4, 8, 16, 32, and 64) and use the three
coarse-grain synchronization modes HLE, RTM, and critical as well as unsync
which has no synchronization at all.

As this is a follow-on study of [8], we use the same single kernel described
earlier for the evaluation on this new TM-enabled platform. Since both the usage
of TM for mesh optimization and the concept of user-guided speculative locks are
relatively new ideas, we feel it is important to study them thoroughly in simple
scenarios such as 2-D meshes before moving to real application codes. Moreover,
we make an explicit effort both in running the code and in presenting the results
to provide a fair comparison between two very different computer architectures
from two different vendors. The question of general benefits of speculative locks
for scientific computing remains, as it should, an ongoing quest and the current
work is but a small component of that effort.

For the evaluation, we use Intel R© Parallel Studio XE for C++ (version
16.0.0.056 Beta) running on an Intel R© Xeon R© E5-2698v3 (2.3 GHz base fre-
quency, 64 GB DDR3 at 2133 MHz), with Intel R© Turbo Boost Technology
enabled, Intel R© Hyper-Threading on, as well as Intel TSX enabled. Our sys-
tem runs Red Hat* Enterprise Linux* Server release 6.6 (Santiago), with kernel
version 2.6.32-504.16.2. While Turbo mode being on all the time might have
sped up the cores for low thread counts, we felt it was important to present the
results for as realistic of a scenario as a real user would have run it in.

We now analyze the convergence, some TM characteristics, and the overall
performance of the results.

5.1 Convergence

Convergence is measured in terms of the l1 norm of the difference between the
current iteration and the exact solution which is known. The error e(n) at time
n is defined by:

e(n) =
1
M

M∑

i=1

|x(exact)
i − x(n)

i | (2)

where (n) denotes the current iteration counter, M is the number of interior
(non-boundary) vertices, and xi is the coordinate vector of point i. The (exact)
superscript denotes the solution of the mesh optimization problem, which is
known a-priori for our simple problem.

We use the serial solution (which is the same as executing a single thread) as
our reference in all plots. Figure 3 shows that convergence rates with 2 threads
exhibit little difference between HLE and critical, which are close to each other,
while unsync is the slowest to converge, RTM being in between. As explained
in [8], the serial version will have the least error on all thread counts as the
points will always see the most recent update possible.

142 B.L. Bihari et al.

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
)

Errors, 2 threads, 1600 X 1600 mesh

HLE
RTM
Critical
Unsync
Serial

Fig. 3. Convergence on 2 threads.

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
)

Errors, 4 threads, 1600 X 1600 mesh

HLE
RTM
Critical
Unsync
Serial

Fig. 4. Convergence on 4 threads.

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
)

Errors, 8 threads, 1600 X 1600 mesh

HLE
RTM
Critical
Unsync
Serial

Fig. 5. Convergence on 8 threads.

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
)

Errors, 16 threads, 1600 X 1600 mesh

HLE
RTM
Critical
Unsync
Serial

Fig. 6. Convergence on 16 threads.

On the other hand, Figs. 4, 5, and 6 show RTM overtaking the others, with
critical performing the worst on 8 and 16 threads. On low thread counts critical’s
relatively good performance may be due to the fact that there are fewer conflicts,
but if there are any conflicts, critical will actually “wait” for updated neighbor
information to come in, and will end up using more recent data which is not
the case for higher thread counts which are closer to a Jacobi iteration. The
convergence improvement of RTM with thread count is due to the consistent
and frequent updates of the neighbors, some of which are multiple updates of
the same location, as we will see in the next subsection. While HLE can only
have a single TM-assisted update of a given mesh point, it also performs well
and is expected to be faster than RTM.

As we increase the thread count to 32 (Fig. 7), HLE gets closer to RTM, and at
64 threads (Fig. 8) HLE actually performs the best. Hyperthreading may provide
one explanation for this behavior since it effectively halves the available cache
per thread when two threads are sharing the same L1 and L2 caches thereby

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 143

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
)

Errors, 32 threads, 1600 X 1600 mesh

HLE
RTM
Critical
Unsync
Serial

Fig. 7. Convergence on 32 threads.

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
)

Errors, 64 threads, 1600 X 1600 mesh

HLE
RTM
Critical
Unsync
Serial

Fig. 8. Convergence on 64 threads.

potentially creating many false conflicts without the expected update-benefit.
While both RTM and HLE catch conflicts using the same hardware mechanism,
HLE will serialize the loop on the first failure of speculation, and, as mentioned
earlier, serial is known to have the best possible convergence characteristics.

5.2 Transactional Memory Statistics

Results for threaded code with memory conflicts, with or without TM, are always
timing-sensitive. Therefore, we typically repeat the same outer loop dozens or
hundreds of times — as we did in e.g., [6,7,9] — and run it well past convergence.
We thus obtain some statistical averages as well as the iteration-dependent vari-
ation of the TM statistics. The statistics for the RTM case are obtained from
the kmp print speculative stats() utility provided by the user-guided lock
runtime. At each iteration we observe the number of retries (“soft failures”) that
have occurred, the grand total at the end of the run, as well as several other
diagnostic numbers such as “non-speculative acquires” (i.e., the number of times
the code was serialized) and “hard failures”; the difference of these two numbers
is the number of times speculation was not even attempted by the “adaptive”
lock. For example, Fig. 9, shows the cumulative statistics for a particular iteration
on 16 threads, which reveals, among other things, that many transactions had
multiple retries since their number (“soft failures”) was greater than the num-
ber of the transactions themselves (“total critical sections”), yet 99.7 % of these
attempts eventually succeeded with very few (0.3 %) serializations. Beyond these
salient indicators, even more detailed TM-related information can be obtained
from snapshots like Fig. 9, however we are not using them in this study.

Plotting the number of retries in Fig. 10, we see a relatively large (one order
of magnitude) spread in the number of conflicts from iteration to iteration on
64 threads, but small oscillations on low to moderate thread counts (2 to 32
threads). This may be due to the fact that the Haswell node this was run on has

144 B.L. Bihari et al.

Fig. 9. Example of the speculative lock statistics output for the RTM (“adaptive” lock)
case run on 16 threads.

0 20 40 60 80 100

10
5

10
6

10
7

Iteration number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts vs. iteration number

2 th
4 th
8 th
16 th
32 th
64 th

Fig. 10. RTM retries per iteration on
1600 × 1600 mesh on 2 through 64
threads.

1 2 4 8 16 32 64
10

6

10
7

10
8

10
9

Total conflicts vs. number of threads

Number of threads

N
um

be
r

of
 c

on
fli

ct
s

Fig. 11. Total number of RTM
retries on 1600 × 1600 mesh on 2
through 64 threads.

32 cores, and at 64 threads hyperthreading may have created some anomalies
and false conflicts. For all the other thread counts, the iteration-to-iteration
volatility is much smaller than that observed on the BG/Q (see [8]).

Figure 11 shows the total number of conflicts over 100 iterations for all thread
counts. We observe a monotonic increase in the number of total conflicts as the
number of threads increases to 8, with some drop at 16 and 32 threads, and
another sharp increase at 64 threads, which will most likely contribute to some
slowdown for RTM at that thread count affecting overall performance.

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 145

5.3 Performance Measurement

Finally, we use the performance measure introduced in [8] to define “run time
per quality” t

(n)
q (loosely speaking “time to convergence”), assuming q(n) is the

inverse of the error e(n) defined by Eq. (2):

t(n)q =
t(n)

q(n)
= t(n)e(n). (3)

We use this measure to gauge whether one or both of the TSX options provides
some benefit when their well-known overhead is balanced against their superior
convergence behavior. Indeed, for an iterative scheme, the convergence rate is
one of the most important indicators. That is, even though some methods may be
more expensive on a per-step basis, if they converge faster they may end up being
more efficient overall since fewer iterations are needed to achieve convergence,
and the time to solution can actually be shorter. This reasoning can also be
generalized to almost all numerical methods, an example of which is the recently
renewed interest in high-order methods.

For this study, we again run the code in four different modes (HLE, RTM,
critical, and unsync), and to iteration n = 17. The inclusion of unsync in the
study is for information purposes only since, strictly speaking, it is an incorrect
parallel program due to the data races.

We find that both HLE and RTM outperform critical by one or two orders of
magnitude on all except 2 threads (Fig. 12). Moreover, RTM yields significantly
better time-per-quality than unsync on 2, 4, and 8 threads, and is the same on
16 and 32 threads. On the other hand, HLE outperforms unsync on 2, 4, and
64 threads. At 64 threads HLE is significantly more efficient than even RTM.
Indeed, at 64 threads there are an order of magnitude more retries than on all

1 2 4 8 16 32 64

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

Time per quality vs. number of threads

Number of threads

T
im

e
pe

r
qu

al
ity

: t
q

HLE
RTM
Critical
Unsync

Fig. 12. Time per quality on a 1600 × 1600 mesh on up to 64 threads.

146 B.L. Bihari et al.

other thread counts (see Figs. 10 and 11). With RTM there could be multiple
retries on the same variable and each retry comes with its own overhead cost,
providing at least a partial explanation for the difference between HLE and RTM
at 64 threads. As alluded to earlier, it is possible that the extra retires are a result
of the use of hyper-threading, which is only used in this 64 thread experiment.
Overall, however, we see that one of the TSX options meets or beats unsync at
every thread count, with HLE being the overall best at 64 threads.

6 Conclusions and Future Work

We continued to study different OpenMP synchronization constructs using the
iterative Laplacian mesh-smoothing algorithm of [8] and the user-guided locking
API of [4] on the Intel R© Xeon R© processor. We again concentrated on evaluating
the specialized TSX hardware offered by this platform as well as the open source
library developed as a user interface to it. Using the new figure of merit intro-
duced in [8], we concluded not only that both TSX options compared favorably
with OpenMP critical — an expected result — but also that they outper-
formed even a completely unsynchronized version of the code when measured by
the recently introduced “time-to-convergence” criterion. In all of our tests the
best performance is provided by one of the two speculative execution options.

Despite these encouraging results, much more experimentation is needed to
expose the limitations of speculative locks for mesh optimization. To this end,
we hope to extend this study to more complicated and fully three-dimensional
meshes, as well as to potentially create another addition to our user-guided spec-
ulative lock arsenal: locks that are “pure RTM” and thus have lower overhead
since they would not attempt to adaptively decide whether to speculate or not.

Acknowledgments. The authors thank Trent E. D’Hooge of Livermore Computing
for his assistance with our inquiries and in accommodating our runs on the local com-
pute nodes.

Intel and Xeon are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands are the property of their respective owners.
Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to http://www.intel.
com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These opti-
mizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any opti-
mization on microprocessors not manufactured by Intel. Microprocessor-dependent

http://www.intel.com/performance
http://www.intel.com/performance

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 147

optimizations in this product are intended for use with Intel microprocessors. Cer-
tain optimizations not specific to Intel microarchitecture are reserved for Intel micro-
processors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

References

1. Intel ARK. http://ark.intel.com
2. Intel R© Threading Building Blocks. https://www.threadingbuildingblocks.org
3. LLVM. http://www.llvm.org
4. Bae, H., Cownie, J., Klemm, M., Terboven, C.: A user-guided locking API for

the OpenMP* application program interface. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 173–186. Springer, Heidelberg (2014)

5. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Multigrid smoothers for
ultraparallel computing. SIAM J. Sci. Comput. 33, 2864–2887 (2011)

6. Bihari, B.L.: Applicability of transactional memory to modern codes. In: Inter-
national Conference on Numerical Analysis and Applied Mathematics 2010
(ICNAAM 2010) Conference Proceedings, pp. 1764–1767. APS, Rodos (2010)

7. Bihari, B.L.: Transactional memory for unstructured mesh simulations. J. Sci.
Comput. 54, 311–332 (2012)

8. Bihari, B.L., Wong, M., de Supinski, B.R., Diachin, L.: On the algorithmic aspects
of using OpenMP synchronization mechanisms: the effects of transactional memory.
In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2014. LNCS, vol. 8766, pp. 115–129. Springer, Heidelberg (2014)

9. Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A case for includ-
ing transactions in OpenMP II: hardware transactional memory. In: Chapman,
B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol.
7312, pp. 44–58. Springer, Heidelberg (2012)

10. Drepper, U., Molnar, I.: The native POSIX thread library for Linux. Technical
report, Redhat (2003)

11. IBM Compiler Group: IBM XL C/C++ for Blue Gene/Q, V12.1 Compiler Refer-
ence (2012)

12. Haring, R.A., Ohmacht, M., Fox, T.W., Gschwind, M.K., Satterfield, D.L., Sug-
avanam, K., Coteus, P.W., Heidelberger, P., Blumrich, M.A., Wisniewski, R.W.,
Gara, A., Chiu, G.L.-T., Boyle, P.A., Christ, N.H., Kim, C.: The IBM blue gene/Q
compute chip. IEEE Micro 32(2), 48–60 (2013)

13. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 51(2), 289–300 (1993)

14. Intel Corporation: Intel R© Architecture Instruction Set Extensions Programming
Reference. Document number 319433–014 (2012)

15. Intel Corporation: Intel R© OpenMP* Runtime Library (2015). http://www.
openmprtl.org/

16. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and imple-
mentation for IBM system Z. In: 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 25–36, December 2012

17. Kleen, A.: Lock Elision in the GNU C library. LWN.net 12(1), (2013). http://lwn.
net/Articles/534758/

18. Knupp, P.: Hexahedral and tetrahedral mesh shape optimization. Intl. J. Numer.
Meth. Engr. 58, 319–332 (2003)

http://ark.intel.com
https://www.threadingbuildingblocks.org
http://www.llvm.org
http://www.openmprtl.org/
http://www.openmprtl.org/
http://lwn.net/Articles/534758/
http://lwn.net/Articles/534758/

148 B.L. Bihari et al.

19. Le, H.Q., Guthrie, G.L., Williams, D.E., Michael, M.M., Frey, B.G., Starke, W.J.,
May, C., Odaira, R., Nakaike, T.: Transactional memory support in the IBM
power8 processor. IBM J. Res. Dev. 59(1), 8:1–8:14 (2015)

20. Miller, D.: The GNU C Library version 2.18 is now available. Announcement on the
info-gnu mailing list (2013). http://lists.gnu.org/archive/html/info-gnu/2013-08/
msg00003.html

21. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.0 (2013). http://www.openmp.org/

22. Schindewolf, M., Gyllenhaal, J., Bihari, B.L., Wang, A., Schulz, M., Karl, W.:
What scientific applications can benefit from hardware transacional memory? In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2012 (2012)

23. Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J.N., Barton, C., Silvera, R.,
Michael, M.: Evaluation of blue gene/Q hardware support for transactional mem-
ories. In: PACT (2012)

24. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.:
A case for including transactions in OpenMP. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 149–160. Springer, Heidelberg (2010)

http://lists.gnu.org/archive/html/info-gnu/2013-08/msg00003.html
http://lists.gnu.org/archive/html/info-gnu/2013-08/msg00003.html
http://www.openmp.org/

Using Transactional Memory to Avoid Blocking
in OpenMP Synchronization Directives

Don’t Wait, Speculate!

Lars Bonnichsen1(B) and Artur Podobas2

1 Technical University of Denmark, Lyngby, Denmark
lfbo@dtu.dk

2 KTH Royal Institute of Technology, Stockholm, Sweden
podobas@kth.se

Abstract. OpenMP applications with abundant parallelism are often
characterized by their high-performance. Unfortunately, OpenMP
applications with a lot of synchronization or serialization-points perform
poorly because of blocking, i.e. the threads have to wait for each other. In
this paper, we present methods based on hardware transactional mem-
ory (HTM) for executing OpenMP barrier, critical, and taskwait

directives without blocking. Although HTM is still relatively new in the
Intel and IBM architectures, we experimentally show a 73 % performance
improvement over traditional locking approaches, and 23 % better than
other HTM approaches on critical sections. Speculation over barriers can
decrease execution time by up-to 41 %. We expect that future systems
with HTM support and more cores will have a greater benefit from our
approach as they are more likely to block.

1 Introduction

Parallel applications use synchronization to coordinate asynchronous threads.
Synchronization is not free. Depending on the structure of the parallel applica-
tion, how much parallelism it exposes, and how the work is distributed among
threads, the idle time spent blocked while synchronizing can be high–time that
should be spent attempting to perform useful work.

Transactional Memory (TM) is a method for reducing the time threads are
blocked. Rather than waiting for a lock to be acquired, the thread enters a
transaction and attempts to execute the protected code without a lock. Should
a data-race occur between transactions, some are aborted and re-executed. Using
transactions instead of regular locking scheme can improve performance [3,19]
and even power-consumption [15].

Hardware Transactional Memory (HTM) has recently been adopted by hard-
ware manufacturers in architectures such as Intel Haswell and IBM Power8
[7,11]. Hardware implementations reduce the overhead that comes with their
software counter parts, making HTM appealing to use in frameworks that sup-
port fine-grained parallelism- frameworks such as OpenMP.

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 149–161, 2015.
DOI: 10.1007/978-3-319-24595-9 11

150 L. Bonnichsen and A. Podobas

This paper explores how HTM can be used to reduce blocking in OpenMP
synchronization directives. We reveal implementation details, discuss where and
why it works and quantify the performance gains that can be achieved. We
speculate on critical sections and barriers, where other speculative approaches
are well established, as well as speculating across taskwaits.

We contribute with the following:

– Methods for executing barriers, critical sections and taskwait specula-
tively, without blocking:
• The speculative method for critical sections is more resistant to contention

than prior work.
• Unlike existing speculative methods for barriers, our methods do not

require non-transactional memory accesses within transactions.
– An evaluation of aforementioned methods on a series of microbenchmarks and

the Barcelona OpenMP Task-Suite, explaining why and when they work.

The paper has the following structure: Sect. 2 describes how to speculate crit-
ical sections, taskwaits and barriers, and Sect. 3 evaluates the performance the
methods. Section 4 describes limitations of the methods, and how they relate to
prior work and current extension proposals for OpenMP. Finally Sect. 5 concludes
the paper.

2 Avoiding Blocking in OpenMP

This section describes how use HTM to minimize blocking time in locks, barriers,
and taskwaits. We access HTM capabilities through three functions:

tbegin(LABEL) Start a transaction. If the transaction fails, it will roll back all
its changes and go to the label LABEL.

tend() Commit the transaction, atomically revealing its changes to all other
threads.

tabort() Force the transaction to fail.

The functions correspond to the subset of TM capabilities in IBM Power8 and
Intel Haswell processor architectures.

2.1 Critical Sections

Critical sections are typically used to update shared variables in parallel code,
for instance updating counters or data structures. Critical sections acts as a
serialization point, where only one thread can execute the protected region at
any one time. Figure 1 shows an example where three threads encounter a critical
section. The threads acquire the critical section’s lock before entering the critical
section. Thread0 acquires the lock first, which traditionally means that Thread1

and Thread2 will have to block until the lock is released. With lock elision,
threads can speculatively ignore the lock acquisition, and avoid blocking.

Using TM to Avoid Blocking in OpenMP Synchronization Directives 151

1 #pragma omp parallel num_threads(3)
2 {
3 #pragma omp critical
4 work ();
5 }

Time-line

Thread0

Thread1

Acquire Releasework()

Existing OpenMP

Speculative

Example Source-Code

Thread2

Acquire Releasework()

Acquire Releasework()

Thread0

Thread1

Acquire Releasework()

Thread2

Acquire Releasework()

Acquire Releasework()

Time-line

Fig. 1. Code and timelines for computation with 3 threads using a critical section,
illustrating the difference between the existing OpenMP approach and our speculative
version.

Listing 1 illustrates our lock implementation, which supports lock elision,
and truncated exponential backoff [2]. To avoid blocking, lock elision attempts
to use transactions rather than regular locks: Instead of acquiring a lock, we
start a transaction (Line 4), and commit the transaction instead of releasing
the lock (Line 21). If the transaction fails repeatedly, we fall back to using a
test-and-set lock (Lines 8 and 23), and we do not let any transactions commit if
the lock is held (Line 20). Lock elision follows normal lock semantics: successful
transactions appear to execute atomically while the lock is released and failed
transactions have no visible side effects.

Multiple transactions can execute a single critical section in parallel as long
as the transactions succeed. Unfortunately, transactions do not always succeed.
Transactions are less likely to succeed if the lock is held frequently. When trans-
actions fail repeatedly, they fall back to using the underlying traditional lock,
creating a harmful feedback loop known as the lemming effect [8]: once a few

1 void acquireLock(lockVar) {

2 backoff ();

3 for(int a=0; a<3; a++) {

4 FOR:tbegin(ERR); return;

5 ERR:if(tAborted ()) goto FOR;

6 if(tCannot ()) break;

7 }

8 if(tryLock (& lockVar))

9 return;

10 delay = min(delay + 1, 0);

11 acquireLock ();

12 }

13

14 __thread unsigned delay;

15 // Wait U(0;a<<delay) cycles
16 void backoff ();

17

18 void releaseLock(lockVar) {

19 if(isInTransaction ()) {

20 if(isLocked ()) tabort ();

21 tend ();

22 } else {

23 unlock(lockVar);

24 }

25 delay = max(delay - 1, b);

26 }

Listing 1. Lock with lock elision (bright orange) and exponential backoff (green).

152 L. Bonnichsen and A. Podobas

lemmings jump off a cliff (transactions fail), the other lemmings will follow suit.
If a few consecutive transactions fall back to the underlying lock, then all con-
current transactions will most likely fail, and possibly fall back to using the
underlying lock.

To mitigate the lemming effect, we do not count aborted transactions
(Line 5), and we use a truncated exponential backoff variant, which is high-
lighted green in Listing 1. We use a truncated exponential backoff with a slot
size a = 1024 processor cycles, and a truncation of b = 28+�log2 t�, where t is the
number of threads. Each thread has a delay variable (Line 14), which indicates
how contended the lock is. Before acquiring the lock, threads must backoff (wait)
for a number of clock cycles sampled randomly from 0 to 2delay, unless delay
is 0 (Line 2). Our lock implementation is largely based on another form of lock
elision called Speculative Lock Removal (SLR) [1]. Our technique differs from
SLR in how we mitigate the lemming effect.

2.2 Barrier/Taskwait

Barriers are typically used to orchestrate parallel computations with multiple
stages, computations such as linear algebra solvers or image processing with
multiple stages or filters. A thread that reaches a barrier must block until
all threads arrive at the barrier. Figure 2 illustrates a computation with three
threads (Thread0...2) using a barrier. Thread2 is the last thread to reach the bar-
rier, which traditionally means that the other threads (Thread0 and Thread1)
have to wait. With barrier elision, threads can optimistically speculate beyond
the barrier to avoid blocking.

Listing 2 illustrates the barrier elision: Instead of blocking for the arrival of
the remaining threads (Line 3), we start a transaction (Line 6). At the next
synchronization point, we check if the other threads arrived after the barrier
(Line 19); committing the transaction if all threads arrived (Line 21), and abort-
ing otherwise (Line 20).

1 #pragma omp parallel num_threads(3)
2 {
3
4 pre_barrier();
5
6 #pragma omp barrier
7
8 post_barrier();
9 }

Time-line

Thread
0

Thread1

pre_barrier()

Existing OpenMPExample Source-Code

Thread2

pre_barrier()

Barrier

post_barrier()

post_barrier()

Speculative

pre_barrier() post_barrier()

Time-line

Thread0

Thread1

pre_barrier()

Thread2

pre_barrier()

Barrier

pre_barrier() post_barrier()

post_barrier()

post_barrier()

Fig. 2. Code and timeline illustrating the benefits of speculative execution over existing
approaches for barrier synchronization.

Using TM to Avoid Blocking in OpenMP Synchronization Directives 153

1 #pragma omp parallel
 #pragma omp master
2 {
3
4 #pragma omp task
5 T0();
6
7 #pragma omp task
8 T1();
9
10 #pragma omp taskwait
11
12 after();
13 }

Time-line

Thread0

Thread1

Spawn (T0)

Existing OpenMPExample Source-Code

Thread
2

Execute (T1)

Speculative

Execute (T0)

Spawn (T1) taskwait after()

Time-line

Thread0

Thread
1

Spawn (T0)

Thread2

Execute (T1)

Execute (T0)

Spawn (T1) taskwait after()

Fig. 3. Code and timelines illustrating the benefits of speculative execution existing
approaches for taskwait synchronization.

The transaction will commit only if it was data-race free and all threads
reached the barrier. This ensures that the transaction will appear to execute
atomically after all threads reach the barrier.

The barrier in Listing 2 is simplified to emphasize barrier elision. The list-
ing’s barrier is usable only once and does not synchronize with tasks, whereas
our implementation uses sense reversing barriers preceded by taskwait synchro-
nization.

Taskwait synchronization cause threads to block until all children tasks fin-
ish, as illustrated by Fig. 3. We elide taskwait synchronization in the same way
as barriers: Attempt to speculate beyond a taskwait if the thread cannot fetch
a ready task, and either commit or abort the transaction at the next synchro-
nization.

Our mechanism can speculate across one barrier or taskwait, theoretically
halving the makespan. Ideally, the critical path before and after the synchro-
nization can run in parallel, which would halve the makespan.

1 void barrier_wait(count) {

2 fetch_and_add (&count , 1);

3 while(count != num_threads) {

4 while(task_schedule ()) {}

5 spec_val = num_threads;

6 tbegin(RETRY);

7 spec_adr = &count;

8 return;

9 RETRY: {}

10 }

11 }

12 __thread unsigned* spec_adr;

13 __thread unsigned spec_val;

14

15 // Called by synchronization
16 void handle_spec () {

17 if(spec_adr == 0)

18 return;

19 if(* spec_adr != spec_val)

20 tabort ();

21 tend ();

22 }

Listing 2. Single use barrier with speculative support (highlighted lines).

154 L. Bonnichsen and A. Podobas

Table 1. Experimental machine

Processor Name Intel Xeon E3–1276 v3

Processor Configuration 4 cores, 2 hyper-threads/core, 3.6 GHz

Processor Caches 4× 32 kB L1D, 4× 256 kB L2, 8 MB L3

Compiler GCC 5.1.0

Operating System Ubuntu Server 14.04.1 LTS

Kernel 3.17.0-031700-generic

Table 2. Task-parallel benchmarks and inputs. We used default cutoffs.

Benchmark Input-Set

Alignment prot.100.aa

Fibonacci 48

Floorplan input.20

Health large.input

nQueens 13× 13 chessboard

Sort 134,217,728 elements

Strassen 4096× 4096 matrix size

SparseLU 50× 50 matrix, 100× 100 submatrix

UTS tiny.input

3 Evaluation

This sections describes the evaluation methodology we used and the results
achieved using our proposed implementation.

3.1 Experimental Setup

We implemented our speculative methods, described in Sect. 2, in the OpenMP
runtime TurboB�LYSK [17]. We evaluated our implementation on the Intel
Haswell-based system outlined in Table 1.

Speculative execution across taskwaits in task-parallel benchmarks was
evaluated using BOTS [10] with tied tasks. The input sets used are given in
Table 2. For all the executions we used wall clock time as a metric for perfor-
mance. Speed-up was calculated by normalizing the performance to the single-
thread version. All task-parallel benchmark were executed 30 times, taking the
median to represent the common execution case. Cache-statistics were obtained
using Linux Perf. L3 cache statistics only include transactions that were not
aborted.

Evaluation of speculation across omp critical directives was done using a
microbenchmark that randomly inserts or removes elements from a shared map.
We compared the traditional omp critical implementations that use locks, a

Using TM to Avoid Blocking in OpenMP Synchronization Directives 155

Fig. 4. Source code and performance for the critical section microbenchmark.

generic software lock elision technique and our improved software-elision tech-
nique with and without backoff. The performance metric is the number of map
modifications successfully completed per second.

Evaluation of speculation across omp barrier directives was done using
a microbenchmark that randomly synchronize with all other threads. The
microbenchmark is intentionally optimistic to show the performance improve-
ments that speculation can give in barriers. The performance metric is the
improvement (decrease) in execution time.

3.2 Results

Critical Section Performance. Evaluation of our proposed critical section
implementation (see Sect. 2.1) was performed using a common map microbenc-
mark [6,9,16], illustrated in Fig. 4a. A team of threads concurrently operate on
left-leaning red-black tree (GCC’s STL map), which initially contains 217 key-
value pairs. Half of the operations are insert operations and the other half are
remove operations, both using uniformly random keys from [0; 218 − 1]. After
the threads have operated on the tree for 2 s, we record how many operations
completed in that time. The tree is protected by a critical section.

Figure 4b shows the sum of the threads throughput for different lock imple-
mentations. We evaluate the lock implementation used in GOMP, plain SLR [1],
our SLR variant without backoff, and finally our SLR with backoff.

Traditional locking will suffer from a serialization bottleneck because all work
in the benchmark is contained within the critical sections. Using lock elision
enables the benchmark to scale, but it suffers from the previously mentioned
lemming effect: When a few transactions fail, more transaction will quickly fol-
low. Our SLR variant reduces the lemming effect somewhat by not counting
failed transactions (Listing 1 line 5) and by combining it with exponential back-
off the performance degrades more gracefully than the other approaches.

156 L. Bonnichsen and A. Podobas

Fig. 5. Source code and performance for the barrier microbenchmark.

Other variations of this microbenchmark, with different map implementations
or distributions of operations, can scale significantly better than this evaluation.
We chose this evaluation because it illustrates that there are both benefits (scal-
ing) and disadvantages (the lemming effect) to lock elision.

Barrier/Taskwait Elision. We evaluate elision of barrier and taskwait syn-
chronization on BOTS, as well as a microbenchmark which illustrates the best
case scenario for barrier elision. The microbenchmark is illustrated in Fig. 5.
A team of threads repeatedly enter a barrier. Only half of the threads will have
any work to do in between the barriers, and each thread alternates between
having work to do and not.

Figure 5 illustrates the performance improvement from speculating across
the barriers, and the success rate of the speculations, i.e. the ratio of successful
transactions to attempted transactions, The performance improvement is 41 % at
2 threads and the highest success rate is 45 % percent at 4 threads. Presumably,
the speculations are less successful when using more than 4 threads, because the
additional threads are hyperthreads. On Intel architectures, using hyperthreads
reduces the performance of the threads’ siblings, making the siblings less likely
to reach the speculated barriers before the speculation finishes.

Figure 6 shows the speed-up performance with and without speculation
enabled for the BOTS benchmarks. Both the speculative and non-speculative
versions follow the trend of linearly scaling up to the number of cores in the
system. The performance is degraded when hyper-threading is in use due to the
contention for each core’s resources. There are no significant differences between
the two versions in terms of absolute performance. Only SparseLU gain consis-
tently (and marginally) from speculative execution.

Figure 7a-b show memory characteristics and performance of the specula-
tive cases normalized against the non-speculative version. Enabling speculation
across taskwaits thrashes the level-1 cache significantly– all benchmarks under
test experiences this to some extent. Marginal improvements in the last-level
cache performance can be seen for the four-thread scenario, where the SparseLU

Using TM to Avoid Blocking in OpenMP Synchronization Directives 157

Fig. 6. Speed-up on the BOTS benchmarks with and without speculation.

Fig. 7. Speculation and performance deviation statistics of the BOTS benchmark suite
when enabling speculative execution with four-threads (a,c) and eight-threads (b,d).

benchmark experiences up-to 7 % decrease in last-level cache misses. Overall,
compute-bound benchmark that uses heavy divide-and-conquer strategies (e.g.
nQueen and Fibonacci) seem to most receptive to negative memory effects when
speculating – fortunately, these are benchmarks that cause few last-level cache
misses.

Figure 7c-d shows the total number of taskwaits encountered and the total
number of taskwait speculations that successfully committed or failed. The divide-
and-conquer compute-bound benchmark rarely offers any chance for speculation.

158 L. Bonnichsen and A. Podobas

1 void (* functionPtr)();

2 #pragma omp parallel

3 {

4 #pragma omp master

5 functionPtr = puts;

6 #pragma omp barrier

7 functionPtr ();

8 }

Listing 3. A potentially uninitialized function pointer.

For example, even though the nQueen benchmark offers around 1200 barriers
and taskwaits, most of them will fail– only 1 speculation managed to successfully
retire. Strassen is the most generous application and manages successfully specu-
late more than it fails but with no benefits on execution time. SparseLU is also well
behaved, allowing between 10 % (4 threads) to 20 % (8 threads) of speculations to
succeed, yielding marginal performance improvements up to 1 %.

Our results on BOTS are quite small, in most benchmarks the impact on
running time is well below 1 %. BOTS is a benchmark suite for evaluating of
OpenMP run-time systems on systems with tens or hundreds of cores, whereas
we our evaluation is limited to a 4 core system. As a consequence, all of the bench-
marks expose plenty of parallelism, and the threads hardly ever block. Future
system will likely benefit more from speculating over taskwaits and barriers, as
threads will be less likely to find work.

4 Limitations and Related Work

Our synchronization elision techniques operate on the following principle: Con-
tinue executing speculatively when you would traditionally block for events, but
check that the event occurred before committing. In other words, we defer block-
ing until the transactional commit.

This principle is also used for prior work on lock and barrier-elision [1,12,20],
but it is not entirely correct: The principle assumes that the application code
does not commit transactions started by the OpenMP runtime, or change the
OpenMP runtimes data. This may seem like a small and reasonable limita-
tion, but seemingly innocent application code, such as Listing 3, can violate the
requirement.

Threads which elide synchronization risk calling uninitialized function point-
ers (Line 7). An uninitialized function pointer can point to anything, including
the OpenMP library code, data or unmapped memory. If the function pointer
points to a transactional commit instruction, then the user code will commit
transactions started by the OpenMP runtime, which will violate the synchro-
nization, and may cause the application to crash.

Similar problems can occur when executing C++ virtual methods, or JIT
compiled code, or when writing to uninitialized pointers. We have been able to
reproduce the problem in a controlled setting, but we have not seen it occur

Using TM to Avoid Blocking in OpenMP Synchronization Directives 159

in the wild. The problem could be avoided by extending OpenMP with clauses
which indicate whether synchronization directives can be speculated.

Recently, a lot of effort has gone into proposals for extending OpenMP with
TM support. Bae et al. [3] proposed clauses which specify locking strategies,
as hints: The hints include specifying that locks and locks and critical sections
should use lock elision if possible. For our purposes, their hints could be extended
to all OpenMP directives.

Wong et al. [21] proposed two new directives: synchronized, a transactional
version of critical sections, and transaction. The transaction directive pro-
vides transactional execution, with defined semantics for C++ exceptions, for
transaction-safe code. Transaction-safe code must follow some mild restrictions,
such that it can be executed speculatively by both HTM and STM implementa-
tion.

OpenTM [4] is a programming interface that extends OpenMP with spec-
ulative capabilities. They propose (primarily) three new directives that sup-
port speculation: omp transfor and omp transsection and omp speculation.
They also support nested speculations.

Pyla et al. [18] provides a framework for exploiting coarse-grained parallelism
in OpenMP. They introduce regions where speculations take place (speculative
regions), which can also be nested (speculation within speculation). They pro-
pose a directive (speculate) to simplify using them.

Miloš et al. [13,14] gives an overview where in OpenMP speculations can
be used. They introduce a new clause, transaction, that can be coupled with
existing directives to provide speculation. They show how to proposed direc-
tives would interact with Nebelung (a STM-based run-time system) and Mer-
curium [5] and evaluate their strategy on a set of synthetic benchmarks and a
Gauss-Seidel application.

5 Conclusion

In this paper, we have shown how exploit HTM to perform speculations on some
of the most frequently used directives in OpenMP. We use HTM to speculatively
avoid blocking in critical sections, barriers, and taskwaits, transparently to the
programmer. The speculative execution of critical sections handles contention
better than Speculative Lock Removal (SLR) without sacrificing scaling. Avoid-
ing blocking of taskwaits and barriers can improve performance by up to 41 %
on a microbenchmark which traditionally blocks most of the time, but it does
not improve the performance of 4 core system significantly on the Barcelona
OpenMP Task Suite (BOTS). We expect that future systems with more cores
will benefit further from our approach, as they are more likely to block.

Acknowledgments. This article presents the result of a research and development
work carried out in the European collaborative project PaPP (Portable and Predictable
Performance on Heterogeneous Embedded Manycores) funded jointly by the ARTEMIS
Joint Undertaking and national governments under the Call 2011 Project Nr. 295440.

160 L. Bonnichsen and A. Podobas

References

1. Afek, Y., Levy, A., Morrison, A.: Software-improved hardware lock elision. In:
PODC, pp. 212–221. ACM (2014)

2. Anderson, T.E.: The performance of spin lock alternatives for shared-money mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

3. Bae, H., Cownie, J., Klemm, M., Terboven, C.: A user-guided locking API for
the OpenMP* application program interface. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 173–186. Springer, Heidelberg (2014)

4. Baek, W., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The opentm
transactional application programming interface. In: 16th International Conference
on Parallel Architecture and Compilation Techniques, PACT 2007, pp. 376–387.
IEEE (2007)

5. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
mercurium: a research compiler for openmp. In: Proceedings of the European Work-
shop on OpenMP, vol. 8 (2004)

6. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
PPoPP, pp. 329–342. ACM (2014)

7. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust archi-
tectural support for transactional memory in the power architecture. In: ISCA, pp.
225–236. ACM (2013)

8. Dice, D., Lev, Y., Moir, M., Nussbaum, D., Olszewski, M.: Early experience with
a commercial hardware transactional memory implementation. Sun Microsystems,
Inc., Technical report (2009)

9. Drachsler, D., Vechev, M.T., Yahav, E.: Practical concurrent binary search trees
via logical ordering. In: PPoPP, pp. 343–356. ACM (2014)

10. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp
tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in openmp. In: International Conference on Parallel Processing, ICPP 2009, pp.
124–131. IEEE (2009)

11. Intel: Programming with Intel Transactional Synchronization Extensions, June
2014

12. Mart́ınez, J.F., Torrellas, J.: Speculative synchronization: applying thread-level
speculation to explicitly parallel applications. In: ACM SIGOPS Operating Sys-
tems Review, vol. 36, pp. 18–29. ACM (2002)

13. Milovanović, M., Ferrer, R., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E.,
Valero, M.: Nebelung: execution environment for transactional openmp. Int. J.
Parallel Prog. 36(3), 326–346 (2008)

14. Milovanović, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E.,
Labarta, J., Valero, M.: Transactional memory and OpenMP. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 37–53. Springer, Heidelberg (2008)

15. Moreshet, T., Bahar, R.I., Herlihy, M.: Energy reduction in multiprocessor systems
using transactional memory. In: Proceedings of the 2005 International Symposium
on Low Power Electronics and Design, ISLPED 2005, pp. 331–334. IEEE (2005)

16. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: PPoPP,
pp. 317–328. ACM (2014)

Using TM to Avoid Blocking in OpenMP Synchronization Directives 161

17. Podobas, A., Brorsson, M., Vlassov, V.: TurboB�LYSK: scheduling for improved
data-driven task performance with fast dependency resolution. In: DeRose, L., de
Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014.
LNCS, vol. 8766, pp. 45–57. Springer, Heidelberg (2014)

18. Pyla, H.K., Ribbens, C., Varadarajan, S.: Exploiting coarse-grain speculative par-
allelism. In: ACM SIGPLAN Notices, vol. 46, pp. 555–574. ACM (2011)

19. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 187–197. ACM (2006)

20. Sato, T., Ohno, K., Nakashima, H.: A mechanism for speculative memory accesses
following synchronizing operations. In: Proceedings of the 14th International Par-
allel and Distributed Processing Symposium, IPDPS 2000, pp. 145–154. IEEE
(2000)

21. Wong, M., Ayguadé, E., Gottschlich, J., Luchangco, V., de Supinski, B.R.,
Bihari, B., other members of the WG21 SG5 Transactional Memory Sub-Group:
Towards transactional memory for OpenMP. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 130–145. Springer, Heidelberg (2014)

A Case Study of OpenMP Applied
to Map/Reduce-Style Computations

Mahwish Arif(B) and Hans Vandierendonck

Queen’s University Belfast, Belfast, UK
{m.arif,h.vandierendonck}@qub.ac.uk

Abstract. As data analytics are growing in importance they are also
quickly becoming one of the dominant application domains that require
parallel processing. This paper investigates the applicability of OpenMP,
the dominant shared-memory parallel programming model in high-
performance computing, to the domain of data analytics. We contrast
the performance and programmability of key data analytics benchmarks
against Phoenix++, a state-of-the-art shared memory map/reduce pro-
gramming system. Our study shows that OpenMP outperforms the
Phoenix++ system by a large margin for several benchmarks. In other
cases, however, the programming model is lacking support for this appli-
cation domain.

Keywords: OpenMP · Map/reduce · Reduction

1 Introduction

Data analytics (a.k.a. “Big Data”) are increasing in importance as a means for
business to improve their value proposition or to improve the efficiency of their
operations. As a consequence of the sheer volume of data, data analytics are
heavily dependent on parallel computing technology to complete data processing
in a timely manner.

Numerous specialized programming models and runtime systems have been
developed to support data analytics. Hadoop [2] and SPARK [22] implement the
map/reduce model [6]. GraphLab [10], Giraph [1] and GraphX [20] implement
the Pregel model [12]. Storm [3] supports streaming data. Each of these systems
provides a parallel and distributed computing environment built up from scratch
using threads and bare bones synchronization mechanisms. In contrast, the high-
performance computing community designed programming models that simplify
the development of systems like the ones cited above and that provide a good
balance between performance and programming effort. It is fair to ask if anything
important was overseen during this decades-long research that precluded the
use of these parallel programming languages in the construction of these data
analytics frameworks.

This paper addresses the question whether HPC-oriented parallel pro-
gramming models are viable in the data analytics domain. In particular, our
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 162–174, 2015.
DOI: 10.1007/978-3-319-24595-9 12

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 163

study contrasts the performance and programmability of OpenMP [14] against
Phoenix++ [17], a purpose-built shared-memory map/reduce runtime. The
importance of these shared-memory programming models in the domain of data-
analytics increases with the emergence of in-memory data analytics architectures
such as NumaQ [7]. To program against Phoenix++, the programmer needs to
specify several key functions, i.e., the map, combine and reduce functions, and
also select several container types used internally by the runtime. We have found
that the programmer needs to understand the internals of Phoenix++ quite well
in order to select the appropriate internal containers. Moreover, we conjecture that
the overall tuning and programming effort is such that the programming effort is
not much reduced in comparison to using a programming model like OpenMP.

We evaluate the performance and programmability of OpenMP for data ana-
lytics by implementing a number of commonly occurring map/reduce kernels
in OpenMP. Experimental performance evaluation demonstrates that OpenMP
can easily outperform Phoenix++ implementations of these kernels. The highest
speedup observed was around 75 % on 16 threads. We furthermore report on the
complexity of writing these codes in OpenMP and the issues we have observed.
One of the key programmability issues we encountered is the lack of support for
user-defined reductions in current compilers. Moreover, the OpenMP standard
does not support parallel execution of the reduction operation, a feature that
proves useful in this domain. This drives us to design the program and its data
structures around an efficient way to perform the reduction.

In the remainder of this paper we will first discuss related work (Sect. 2). Then
we discuss the map/reduce programming model and the Phoenix++ implemen-
tation for shared memory systems (Sect. 3). We subsequently discuss the imple-
mentation of a number of map/reduce kernels in OpenMP (Sect. 4). Experimental
evaluation demonstrates the performance benefits that OpenMP bring (Sect. 5).
We conclude the paper with summary remarks and pointers for future work
(Sect. 6).

2 Related Work

Phoenix is a shared-memory map-reduce runtime system. Since its inception [16]
it has been optimized for the Sun Niagara architecture [21] and subsequently
reimplemented to avoid inefficiencies of having only key-value pairs available as
a data representation [17].

Several studies have improved the scalability of Phoenix. TiledMR [4] improves
memory locality by applying a blocking optimizing.Mao et al. [13] stress the impor-
tance of huge page support and multi-core-aware memory allocators. Others have
optimized the map/reduce for accelerators. Lu et al. [11] optimize map-reduce for
the Xeon Phi and attempt to apply vectorization in the map task and the compu-
tation of hash table indices. De Kruijf et al. [9] and Rafique et al. [15] optimize the
map/reduce model for the Cell B.E. architecture.

While the map-reduce model is conceptually simple, a subtly undefined aspect
of map-reduce is the commutativity of reductions [19]. This aspect of the pro-
gramming model is most often not documented, for instance in the Phoenix

164 M. Arif and H. Vandierendonck

systems [16,17,21]. However, executing non-commutative reduction operations on
a runtime system that assumes commutativity can lead to real program bugs [5]
even in extensively tested programs [19]. OpenMP assumes reductions are com-
mutative [14].

There has been effort to use OpenMP style semantics for programming
data-analytics and cloud-based applications. OpenMR [18] implements OpenMP
semantics on top of map-reduce runtime for cloud-based implementation. The
motivation is to port OpenMP applications to the cloud as well as reduce the
programming effort. Jiang et al. [8] introduce OpenMP annotations to a domain-
specific language for data-analytics, R, to facilitate the semi-automatic paral-
lelization of R and thus reduce the parallel programming effort.

3 Map-Reduce Programming Model

The map-reduce programming model is centered around the representation of
data by key-value pairs. For instance, the links between internet sites may be
represented by key-value pairs where the key is a source URL and the value is a
list of target URLs. The data representation exposes high degrees of parallelism,
as individual key-value pairs may be operated on independently.

Computations on key-value pairs consist, in essence, of a map function and a
reduce function. The map function transforms a single input data item (typically
a key-value pair) to a list of key-value pairs (which is possibly empty). The reduce
function combines all values occurring for each key. Many computations fit this
model [6], or can be adjusted to fit this model.

3.1 Phoenix++ Implementation

The Phoenix++ shared-memory map-reduce programming model consists of
multiple steps: partition, map-and-combine, reduce, sort and merge (Fig. 1). The
partition step partitions the input data in chunks such that each map task can
operate on a single chunk. The input data may be a list of key-value pairs read
from disk, but it may also be other data such as a set of HTML documents. The
map-and-combine step further breaks the chunk of data apart and transforms
it to a list of key-value pairs. The map function may apply a combine function,
which performs an initial reduction step of the data. It has been observed that
making an initial reduction is extremely important for performance as it reduces
the intermediate data set size [17].

It is key to performance to store the intermediate key-value list in an appro-
priate format. A naive implementation would hold these simply as lists. However,
it is much more efficient to tune these to the application [17]. For instance, in
the word count application the key is a string and the value is a count. As such,
one should use a hash-map indexed by the key. In the histogram application, a
fixed-size histogram is computed. As such, the key is an integer lying in a fixed
range. In this case, the intermediate key-value list should be stored as an array of

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 165

Fig. 1. Schematic overview of Phoenix++ runtime system

integers. For this reason, we say the map-and-combine step produces key-value
data structures, rather than lists.

The output of the map-and-combine step is a set of key-value data structures,
one for each worker thread. Let KV-list j = 0, . . . , N −1 represent the key-value
data structure for the j-th worker thread. These N key-value data structures
are subsequently partitioned in M chunks such that each chunk with index
i = 0, . . . ,M − 1 in the intermediate key-value list j holds the same range of
keys. All chunks i are then handed to worker thread N , which reduces those
chunks by key. This way, the reduce step produces M key-value lists, each with
distinct keys.

Finally, the resulting key-value lists are sorted by key (an optional step) and
they are subsequently merged into a single key-value list.

Phoenix++ allows the programmer to specify a map function, the inter-
mediate key-value data structure, a combine function for that data structure,
the reduce function, a sort comparison function and a flag whether sorting is
required.

3.2 OpenMP Facilities for Map/Reduce-Style Computations

Map/reduce, viewed as parallel pattern, is fairly easy to grasp and encode in a
variety of parallel programming languages. OpenMP offers multiple constructs to
encode the map phase using parallel loops as illustrated in Fig. 2. A parallel for
loop applies when a large data set can be partitioned by considering the iteration
domain of a for loop. Alternatively, if the partitioning requires a more complex
evaluation, then task spawn construct inside a for loop may be more appropriate.
An example encountered in our study is word count. Although the file contents
are stored in an array, the boundaries of the partitions must be aligned with
word boundaries, which is most easily achieved using the task construct.

The most recent OpenMP 4.0 [14] standard introduced support for user-
defined reductions (UDRs), which allows to specify reductions of variables of

166 M. Arif and H. Vandierendonck

Fig. 2. Generic OpenMP code structures for the map phase.

a wide range of data types with little programming effort. Unfortunately, few
OpenMP compilers currently fully support user-defined reductions. This strongly
limits the programmability aspect of this study, although we can expect this
situation to improve with the availability of user-defined reductions. Hence the
implementation and performance of the reduce phase in OpenMP depends on
the data type of the reduction object. More importantly, complex OpenMP 4.0
UDRs may not be evaluated in parallel, a feature that is important for reductions
on collections, which are common in data analytics workloads. For example, if
each thread produces a same-sized array which must then be reduced element-
wise, then UDRs allow to specify this but the execution of the reduction will
be sequential. The fast way to reduce a set of arrays is, however, by assigning
each section of the arrays to a thread and have all threads reduce their section
in parallel. Reductions on more complex data structures such as hash tables
are even harder to parallelise, even with UDR support, whereas a sequential
approach results in poor performance.

4 OpenMP Implementations

We have ported seven map/reduce benchmarks from the Phoenix++ system to
OpenMP. We describe the main characteristics of these benchmarks and the
main issues encountered in porting them.

4.1 Histogram

The histogram benchmark processes a bitmap image to compute the frequency
counts of values (in the range of 0–255) for each of its RGB components. The
map phase is parallelized using the OpenMP for work-sharing construct. Each
thread is statically assigned a subset of the pixels in the image and computes a
histogram over this subset. These per-thread results are then reduced to compute
the histogram of the whole image. However, due to lack of OpenMP support for
user-defined reductions (UDR) in our compiler, we had to find ways to reduce the
results without using locks or critical sections (which incur significant execution
time overhead). We defined a shared array as large as the histogram array times
the number of threads i.e. for a 24-bit image, (256×3)×#threads bytes. During

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 167

the map phase, each thread stores its results to the array assigned to it based
on its thread id. Once the map phase is completed, the results are reduced in a
second OpenMP for loop where each thread reduces a section of the histogram.
E.g., for 16 threads, each thread reduces a slice of 16 × 3 values.

4.2 Linear Regression

Linear Regression computes the values a and b to define a line y = ax+b that
best fits an input set of coordinates. Firstly, five statistics are calculated (such
as sum of squares) on the input coordinates. We have used the parallel for
construct to distribute the work among the threads. The per-thread statistics
are reduced using the reduction clause. Secondly, a and b are computed using
the five statistics collected in the first step.

4.3 K-Means Clustering

This benchmark implements a clustering algorithm which groups input data
points in k clusters. The assignment of a data point to a cluster is made based on
its minimum distance to the cluster mean. The assignment algorithm is invoked
iteratively until it converges, i.e., no further changes are made to the cluster
assignment. As long as the assignment algorithm has not converged, the cluster
means are also recalculated iteratively.

Both the assignment and mean calculation steps have been separately paral-
lelized with the parallel for construct.

4.4 Word Count

The word count benchmark counts the frequency of occurrence of each word in a
text file. This is a stereo-typical example of a map/reduce type benchmark. For
the map phase, we have used OpenMP tasks. A team of threads is first created
with the OpenMP parallel construct. Then one of the threads is designated
to iteratively calculate the input partitions and spawn the tasks for the other
threads to work on. Each thread completes its word counting task for the assigned
partition, and then becomes available to operate on another partition.

Here again we faced difficulty due to the absence of UDR support. We thus
defined a vector of hash tables and each thread stored its results in separate hash
tables. After all the threads have finished working, the results are sequentially
reduced in a global hash table. Parallelizing this reduction in a similar way as
histogram is challenging, due to the difficulty of isolating slices in each of the hash
tables that hold corresponding ranges of keys. Although it is not impossible to
solve this issue, it clearly impacts the programmability of OpenMP for workloads
like these.

4.5 String Match

String match takes as input a set of encrypted keys and a text file. The text
file is then processed to see which set of words were originally encrypted to

168 M. Arif and H. Vandierendonck

Fig. 3. OpenMP code for String Match

produce the encrypted keys. This benchmark is parallelized using OpenMP tasks
(Fig. 3). A single thread, from a team of threads, partitions the input file on word
boundaries. It spawns a task to handle each partition independently. A reduction
phase is not required for this benchmark.

4.6 Matrix Multiply

It computes a matrix C which is a product of two input matrices A and B.
We have parallelized a simple matrix multiplication algorithm with the parallel
for construct and the collapse clause to increase the available parallelism. Each
thread calculates a subset of elements C(i,j). Moreover, we swapped the order
of the two inner loops to improve the data locality.

4.7 Principal Component Analysis

This benchmark implements two stages of the statistical Principal Component
Analysis algorithm. It takes as input a matrix which is a collection of column
vectors. In the first stage, per-coordinate means are calculated along the rows
and work is distributed among the threads with the loop scheduler. In the second
stage, the co-variance matrix is calculated along with a total sum of co-variance.
This loop nest is parallelized using the parallel for loop with a reduction clause
for the scalar sum of co-variance. The second loop nest exhibits load imbalance
which we mitigated by changing the granularity of static loop scheduler.

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 169

5 Evaluation

We evaluated the OpenMP and Phoenix++ version 1.0 programs on a dual-
socket Intel Xeon E5-2650 with 8 cores per socket and hyperthreading. The
operating system is CentOS 7.0 and we use the Intel C/C++ compiler v. 14.0.0.
We evaluate the programs on the small, medium and large data sets supplied
with Phoenix++. We pin threads to cores to ensure at most one out of each pair
of hyperthreads is used.

5.1 Analysis

Figures 4 and 5 show the speedup curves for the OpenMP and Phoenix++ imple-
mentations of the 7 map/reduce workloads for 3 inputs with different sizes.
Speedups are normalized to the execution time of a purely sequential code.

Figure 4 shows the performance of benchmarks with low computational inten-
sity, i.e., they perform few operations per byte transferred from memory. The
OpenMP implementation of histogram performs similar to Phoenix++. For
string match, OpenMP is again similar to Phoenix++ except on the large

Fig. 4. Speedup obtained with the OpenMP implementations of the benchmarks in
comparison against the Phoenix++ implementations. Benchmarks with low computa-
tional intensity.

170 M. Arif and H. Vandierendonck

Fig. 5. Speedup obtained with the OpenMP implementations of the benchmarks in
comparison against the Phoenix++ implementations. Benchmarks with high compu-
tational intensity.

input where the OpenMP code gains 15 % advantage. For linear regression, the
Phoenix++ code scales to an 8-fold speedup at best, while the OpenMP code
gains up to 12x. This is possible due to the higher efficiency of the OpenMP
code, which does not use generalized data structures to mimic the emission of
key-value pairs in the map task, or mimic a reduction of key-value pairs.

Two benchmarks with high computational intensity, namely kmeans and pca,
perform markedly better with OpenMP than with Phoenix++ (Fig. 5). In the
case of k-means this is due to a memory allocator issue in Phoenix++, which can
be solved by substituting for a better multi-core-aware memory allocator. PCA
has load imbalance in the iterations of its outer loop. The Phoenix++ runtime
cannot deal with this by itself and also offers no controls to the programmer.

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 171

In contrast, the OpenMP API allows us to fix the load imbalance through setting
the granularity of tasks for the static loop scheduler, which results in a 75 %
speedup.

Phoenix++ obtains excellent scalability on matrix multiply. While we did
not obtain good speedups in our implementation of matrix multiply, we assume
this can be fixed with sufficient locality optimization. Note however that the
Phoenix++ implementation is quite straightforward and does not exhibit any
specific locality optimization.

Finally, word count shows bad scalability when implemented in OpenMP.
While the map phase is trivially parallel using task parallelism, word count
requires a reduction of the per-thread hash tables holding word counts. Paral-
lelizing that reduction is hard but is key to obtaining good performance.

5.2 Coding Style Comparison

We present a comparison of histogram benchmark implementation in both
OpenMP and Phoenix++ (Table 1) to understand the programming effort
required. Phoenix++ library specifies default map, reduce and split function
along with different options for containers and combiners. In most of the cases,
the programmers will need to override the default map and split function to spec-
ify their own map function and distribute the work accordingly. Histogram code
overrides the default map function to emit the distinct range of keys (line 6–10)
for R, G and B components of the image. The selection of container depends
on the cardinality of keys. The histogram implementation below uses an array
container (line 2) since the number of distinct keys (or cardinality) is fixed, in
this case to 768. The definition of MapReduce class also depends on whether
the keys need to be sorted in a particular order or not. From different combiners
provided with Phoenix++ library, histogram uses the sum combiner since the
values for a particular key need to be simply added.

In case of OpenMP, the choice of container to store histogram depends on how
the reduction is to be performed. Since there are fixed number of keys within a
known range, a global array of the size of histogram (i.e., 768) times the number
of available threads is defined. OpenMP for construct (line 12) parallelizes the
map phase by distributing the iterations of the loop among available worker
threads. Each thread then updates the respective histogram buckets based on
its id (line 14–17). Due to absence of UDR support for non-scalars, programmer
needs to write how the reduction is to be performed on the array. For this
benchmark, a separate global array histo has been used to store the results of
reduction performed on histo shared array (line 22–25).

5.3 Implications to OpenMP

The implementation of most of the benchmarks was straightforward and lead to
the results shown fairly easily. Obtaining excellent performance was easy espe-
cially in those cases where the reduction variable consisted of a small number of
scalars. Whenever the reduction variable became more complex (e.g., an array

172 M. Arif and H. Vandierendonck

Table 1. Coding Style Comparison for histogram benchmark implementation in
Phoenix++ (left) and OpenMP(right)

in histogram or a hash table in word count), much of the programming effort
became focused on how to efficiently perform the reduction, which required par-
allel execution of the combine step of the reduction. The Intel compiler we have
used currently does not support user defined reductions (UDR). We expect that
UDR support will simplify the programming effort substantially. However, it is
unlikely that UDRs will deliver sufficient performance as the OpenMP specifi-
cation does not allow parallel execution of a reduction, e.g., OpenMP pragma’s
within combine functions are disallowed [14]. This is a potential area of improve-
ment for OpenMP.

The matrix multiplication problem demonstrates that OpenMP may require
substantially higher effort than Phoenix++ to tune the performance of an appli-
cation. Even though it is evident what parallelism is present in matrix multiply,
exploiting this in OpenMP requires significant effort, while a straightforward
implementation in Phoenix++ gives fairly good results.

6 Conclusion

This paper has evaluated the performance and programmability of OpenMP
when applied to data analytics, an increasingly important computing domain.
Our experience with applying OpenMP to map/reduce workloads shows that the

A Case Study of OpenMP Applied to Map/Reduce-Style Computations 173

programming effort can be quite high, especially in relation to making the evalua-
tion of the reduction step efficient. For most benchmarks, however, OpenMP out-
performs Phoenix++, a state-of-the-art shared-memory map/reduce runtime.

To simplify the programming of these workloads, OpenMP will need to sup-
port much more powerful reduction types and support parallel execution of the
reduction. User-defined reductions, currently unavailable to us, promise ease of
programming but parallel execution of reductions is not supported.

Acknowledgment. This work is supported by the European Community’s Seventh
Framework Programme (FP7/2007–2013) under the ASAP project, grant agreement
no. 619706, and by the United Kingdom EPSRC under grant agreement EP/L027402/1.

References

1. Apache Giraph. http://giraph.apache.org/
2. Apache Hadoop. http://hadoop.apache.org/
3. Apache Storm. http://storm.apache.org/
4. Chen, R., Chen, H.: Tiled-mapreduce: efficient and flexible MapReduce processing

on multicore with tiling. ACM Trans. Archit. Code Optim. 10(1), 3:1–3:30 (2013).
http://doi.acm.org/10.1145/2445572.2445575

5. Csallner, C., Fegaras, L., Li, C.: New ideas track: testing Mapreduce-style pro-
grams. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE 2011, pp.
504–507. ACM, New York (2011). http://doi.acm.org/10.1145/2025113.2025204

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation, OSDI 2004, vol. 6, p. 10. USENIX Association, Berkeley (2004).
http://dl.acm.org/citation.cfm?id=1251254.1251264

7. Eadline, D.: Redefining scalable OpenMP and MPI price-to-performance with
Numascale’s NumaConnect (2014)

8. Jiang, L., Patel, P.B., Ostrouchov, G., Jamitzky, F.: OpenMP-style parallelism in
data-centered multicore computing with R. SIGPLAN Not. 47(8), 335–336 (2012).
http://doi.acm.org/10.1145/2370036.2145882

9. de Kruijf, M., Sankaralingam, K.: MapReduce for the Cell broadband engine archi-
tecture. IBM J. Res. Dev. 53(5), 10:1–10:12 (2009)

10. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in
the cloud. Proc. VLDB Endow. 5(8), 716–727 (2012). http://dx.doi.org/10.14778/
2212351.2212354

11. Lu, M., Zhang, L., Huynh, H.P., Ong, Z., Liang, Y., He, B., Goh, R., Huynh, R.:
Optimizing the MapReduce framework on Intel Xeon Phi coprocessor. In: 2013
IEEE International Conference on Big Data, pp. 125–130, October 2013

12. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, pp. 135–146. ACM, New York (2010). http://doi.acm.org/10.1145/
1807167.1807184

http://giraph.apache.org/
http://hadoop.apache.org/
http://storm.apache.org/
http://doi.acm.org/10.1145/2445572.2445575
http://doi.acm.org/10.1145/2025113.2025204
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://doi.acm.org/10.1145/2370036.2145882
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184

174 M. Arif and H. Vandierendonck

13. Mao, Y., Morris, R., Kaashoek, F.: Optimizing MapReduce for multicore archi-
tectures. Technical report. MIT-CSAIL-TR-2010-020, MIT Computer Science and
Artificial Intelligence Laboratory (2010)

14. The OpenMP Application Program Interface, version 4.0 edn., July 2013
15. Rafique, M., Rose, B., Butt, A., Nikolopoulos, D.: CellMR: a framework for sup-

porting MapReduce on asymmetric Cell-based clusters. In: IEEE International
Symposium on Parallel Distributed Processing, IPDPS 2009, pp. 1–12, May 2009

16. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
MapReduce for multi-core and multiprocessor systems. In: Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer Architecture,
HPCA 2007, pp. 13–24. IEEE Computer Society, Washington, DC (2007). http://
dx.doi.org/10.1109/HPCA.2007.346181

17. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++: modular MapReduce for shared-
memory systems. In: Proceedings of the Second International Workshop on MapRe-
duce and Its Applications, MapReduce 2011, pp. 9–16. ACM, New York (2011).
http://doi.acm.org/10.1145/1996092.1996095

18. Wottrich, R., Azevedo, R., Araujo, G.: Cloud-based OpenMP parallelization using
a MapReduce runtime. In: 2014 IEEE 26th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), pp. 334–341,
October 2014

19. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., Zhou, L.:
Nondeterminism in MapReduce considered harmful? An empirical study on non-
commutative aggregators in MapReduce programs. In: Companion Proceedings
of the 36th International Conference on Software Engineering, ICSE Companion
2014, pp. 44–53. ACM, New York (2014). http://doi.acm.org/10.1145/2591062.
2591177

20. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient dis-
tributed graph system on spark. In: First International Workshop on Graph
Data Management Experiences and Systems, GRADES 2013, pp. 2:1–2:6. ACM,
New York (2013). http://doi.acm.org/10.1145/2484425.2484427

21. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: scalable MapReduce on
a large-scale shared-memory system. In: Proceedings of the 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), IISWC 2009, pp. 198–
207. IEEE Computer Society, Washington, DC (2009). http://dx.doi.org/10.1109/
IISWC.2009.5306783

22. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud 2010, p. 10. USENIX Association,
Berkeley (2010). http://dl.acm.org/citation.cfm?id=1863103.1863113

http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1109/HPCA.2007.346181
http://doi.acm.org/10.1145/1996092.1996095
http://doi.acm.org/10.1145/2591062.2591177
http://doi.acm.org/10.1145/2591062.2591177
http://doi.acm.org/10.1145/2484425.2484427
http://dx.doi.org/10.1109/IISWC.2009.5306783
http://dx.doi.org/10.1109/IISWC.2009.5306783
http://dl.acm.org/citation.cfm?id=1863103.1863113

Compiler and Runtime

Enabling Region Merging Optimizations
in OpenMP

Thomas R.W. Scogland(B), John Gyllenhaal, Jeff Keasler, Rich Hornung,
and Bronis R. de Supinski

Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
scogland1@llnl.gov

Abstract. Maximizing the scope of a parallel region, which avoids the
costs of barriers and of launching additional parallel regions, is among
the first recommendations in any optimization guide for OpenMP. While
clearly beneficial and easily accomplished for code where regions are
visibly contiguous, regions often become contiguous only after compiler
optimization or resolution of abstraction layers. This paper explores
changes to the OpenMP specification that would allow implementations
to merge adjacent parallel regions automatically, including the removal of
issues that make the transformation non-conforming and the addition of
hints that facilitate the optimization. Beyond simple merging, we explore
hints to fuse workshared loops that occur in syntactically distinct paral-
lel regions or to apply nowait to such loops. Our evaluation shows these
changes can provide an overall speedup of 2–8× for a microbenchmark,
or 6% for a representative physics application.

1 Introduction

That OpenMP programs should minimize the number of synchronization points
and parallel regions is well known optimization guidance. The region’s team of
threads must be initialized when it begins and joined when it ends, each entailing
costly synchronizations, especially when a team spans multiple sockets. Reducing
these costs can significantly improve performance, especially for programs com-
posed of many short parallel regions. Traditional OpenMP benchmarks contain
only tens of regions, but as target directives and performance portable abstrac-
tion layers become the norm, parallelism is becoming finer grained as a necessity.
As the number of regions grows from tens to hundreds or thousands, the over-
head of constructing and tearing down parallel regions is becoming increasingly
important. In the common case, manually merging contiguous parallel regions
with no intervening serial code is trivial. However, many cases where this opti-
mization would be worthwhile are not evident to the programmer because the

This material is based upon work supported by the U.S. Department of Energy
(LLNL-CONF-670944).
The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer International Publishing Switzerland 2015 (outside the US)
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 177–188, 2015.
DOI: 10.1007/978-3-319-24595-9 13

178 T.R.W. Scogland et al.

regions are obscured behind function calls or library abstractions. Further, the
OpenMP specification implicitly forbids the merging of parallel regions.

While the OpenMP specification does not explicitly allow region merging,
a few simple changes would allow it while preserving the semantics of parallel
regions. Even with those adjustments however, some cases for which merging
is desired would not be facilitated without hints on the parallel constructs that
they can be merged safely. This paper proposes the necessary changes to allow
region merging, and extensions to the parallel construct to control merging and
to generate more efficient code. Specifically, we make the following contributions:

– Specification changes to allow merging of adjacent parallel regions;
– Syntax to guide region merging and synchronization of merged regions;
– Evaluation of region merging benefit with several OpenMP runtimes.

The remainder of the paper is composed as follows. Section 2 describes
the proposed optimizations along with the proposed clauses to support them.
Section 3 presents our evaluation. Section 4 presents related work.

2 Region Merging and Control

The overhead of starting a thread team has been considered a key performance
issue for nearly as long as OpenMP has existed. Recently, however, users have
begun to interact with OpenMP and other threading models from higher levels
of abstraction. These abstraction levels support portable parallel frameworks
across multiple threading models or target devices, including C++ frameworks
like RAJA [6] and Kokkos [1], where there may be thousands of unseen parallel
regions. When using these frameworks, programmers may not even be aware
that an OpenMP parallel region exists in their code.

For example, in Fig. 1, the parallel for is conditionally applied in a library
header. While the user could simply fuse the loops of this trivial example, more
complex cases can make the source level fusion undesirable or hard to detect
by eye. Even if the loops cannot be fused, however, the parallel regions could
be if they were accessible. After the template instantiation and inlining passes
of the compiler, the function is transformed to the one that Fig. 2 shows. Since
no user ever sees this code, a compiler optimization pass is the only option to
merge the regions short of contorting the abstraction to fit OpenMP’s fork/join
model. While code using C++ lambdas, or Apple’s C blocks, in this way is not
yet common, the benefits of such abstractions are numerous so we expect the
use of lambdas will soon be common in a wide range of applications.

Even without a higher-level abstraction, cases for which source code merg-
ing is difficult or impossible can arise from functions or libraries that contain
OpenMP regions, such as the example that Fig. 3 shows. The two calls into
mutate all do not visibly create OpenMP parallel regions at the call-site but,
after an inlining pass, as in Fig. 4, region merging is clearly desirable.

The rest of this section first discusses the validity of region merging under
the current OpenMP specification. We then detail the additional clauses that we

Enabling Region Merging Optimizations in OpenMP 179

Fig. 1. A C++ lambda abstraction over OpenMP

Fig. 2. Lambda code after the templates are inlined

propose to assist compilers in making appropriate and efficient decisions when
considering regions for merging.

2.1 Region Merging Validity in OpenMP

Continuing the example in Fig. 3, we define the effect of merging the two regions
to produce the version of the code in Fig. 5. Since the loop construct ends with
an implicit barrier, the memory access ordering and synchronization semantics of
the merged version remain identical to the original. However, the specification
of parallel regions creates a few key differences. First, the number of threads

180 T.R.W. Scogland et al.

Fig. 3. Function call indirection

Fig. 4. Regions after inlining

in a parallel region must be computed according to a specific algorithm in the
specification. The algorithm is sufficiently flexible that merged regions could
provide no more apparent threads than specified in a num threads clause on the
construct. Compilers could fail to merge regions with different sizes in the general
case, but even regions with different numbers of threads could be merged by using
techniques that effectively idle threads for part of the merged region or by using
the fewest number of threads requested. In cases with complex nested parallelism,
a program could observe the difference in behavior, but the worst result would
be over- or under-subscription if the program conforms to the specification. We
also recommend that the data environment, be only minimally constructed and
destructed, honoring privatization but only constructing and destructing outer
scope variables at the outermost boundaries of the region. Scopes inside the
region would honor their construct/destruct pattern as normal.

In addition to the algorithm to calculate the number of threads, the specifi-
cation explicitly states that tasks are joined and executed and only the master
thread continues execution of the enclosing task region after the join operation.
For a case such as Fig. 4, one could reasonably argue that eliminating the join, as
in Fig. 5, does not create an observable difference despite not temporarily return-
ing to master-only execution. Fundamentally, neither this rule nor the selection

Enabling Region Merging Optimizations in OpenMP 181

Fig. 5. Regions after merging

of the number of threads make region merging necessarily non-conforming, but
they do obscure whether the transformation is conforming. Thus, the specifica-
tion arguably already allows it. However, we suggest that the OpenMP specifica-
tion explicitly state that region-merging and similar transformations that result
in well-defined semantically consistent behavior are conforming. Additionally we
recommend providing defined semantics for tasks, specifically a taskwait at the
merging point would be reasonable.

2.2 Syntax Extensions to Support Merging

For regions that are lexically back-to-back, possibly after simple transformations
such as inlining as in Fig. 3, the compiler can easily determine that the merging
transformation is both possible and desirable. However, slightly more compli-
cated scenarios, with serial code between the regions, can still benefit from a
slightly more advanced transformation, although the extent to which it should
be applied is less clear. For this reason, we propose additional clauses for the
parallel construct to guide optimization.

First, we propose a new mergeable clause. While we could apply this clause
to other constructs, we first limit the proposal to the parallel construct and
the combined or composite constructs for which it is logically the outermost con-
struct. This clause indicates that the compiler should fuse, or merge, the current
region with the next construct in the translation unit, and as with the clause
of the same name on the task construct also asserts that the region may not
create a data environment as a parallel region normally would. It is a descriptive
clause (i.e., it is a hint); merging is not required for conformance. However, if
another parallel region can be reached then ideally the compiler will merge the
two constructs into a single parallel region, even across serial code. This merge
transformation would result in code such as that shown in Fig. 6.

182 T.R.W. Scogland et al.

Fig. 6. A merged pair of regions with an embedded serial section

This transformation encapsulates the serial region in a master region, which
ensures that it only runs on a single thread. While a single region might be
more efficient, the master region ensures that the same thread executes the
code as in the untransformed case, preserving correctness in the presence of
thread local state. This transformation does have some drawbacks. We must
insert barriers after the first loop region and after the master region in order
to preserve the original semantics. However, in our example, the serial region
has no dependence on the results of the first loop, so we could theoretically
omit the first barrier. In order to support this potentially common use case, we
propose that the parallel and parallel loop constructs accept the nowait
clause. If we include this clause on the first construct in the source code that
corresponds to our example, the compiler should apply the nowait clause to the
first loop construct of the transformed code. The nowait clause is a contract to
the compiler that nothing between that loop and the end of the next OpenMP
construct that does not have a nowait clause depends on results of the loop.
Further exploration into the safety and ergonomics of this construct are advised,
it may be worthwhile for example to require a receiving construct on a subsequent
region for the nowait to take effect for example.

Our proposal still requires an explicit barrier after the master region, which
our example also does not require. We cannot apply a clause to the first construct
to remove this barrier because its semantic meaning would involve dependencies
of the second parallel loop construct in the original code. We have considered
support for a third clause that addresses dependence on the code preceding a
region, however, it would need to identify data dependences within the region
explicitly or otherwise limit its scope. We leave this issue for future proposals
due to its complexity and potentially limited applicability.

Enabling Region Merging Optimizations in OpenMP 183

Table 1. Evaluated systems. Note: Power8 tests were conducted in little-endian mode

Name Processor OMP runtimes Cores Threads/Core

BlueGene/Q IBM PowerPC A2 default, LOMP1/2 16 4

RZMerl Intel Xeon E5-2670x2 Intel, GNU 8 2

RZAlastor Intel Xeon E5-2680x2 Intel 10 2

RZMist IBM Power8x2 GNU 12 8

Mic Intel Xeon Phi 7120P Intel 61 4

3 Results and Evaluation

This section presents results for manually merged parallel regions of represen-
tative OpenMP applications in the context of four hardware platforms and five
OpenMP runtime libraries. We base our microbenchmark on CLOMP [2], which
we modify into two new variants that specifically target the overhead of OpenMP
region setup and synchronization. The first variant, referred to as CLOMPK,
has its inner-loop composed of ten back-to-back parallel loop regions that use
a function call to update independent values. The second, CLOMPKS, inter-
poses dependent serial work between each of the parallel loop regions. To pro-
vide a representative application for testing, we also investigate a version of the
LULESH [7] benchmark that has been parallelized with the RAJA [6] template
library. All results are presented in terms of speedup over an OpenMP execution
of the code with no (manual) merging or annotation applied on the same number
of cores unless otherwise noted. Table 1 lists the test environment that we use
for our evaluation. Notably, we test two versions of a custom low-overhead light-
weight OpenMP runtime designed for minimum region startup latency called
LOMP [5]. Version 1, or LOMP1 as we refer to it elsewhere, has been in produc-
tion use for a number of years, but does not offer full support for all OpenMP
constructs. LOMP2 is an updated version with full support for OpenMP 3 con-
structs, but is still under evaluation and development.

3.1 Back to Back Regions

Figure 7 shows results for CLOMPK, which is the best case that does not include
any serial code between the ten parallel loop regions. In order to explore the
space, we tested four different levels of merging in addition to the un-merged
baseline. The merging factor in the figure refers to the number of merged regions
at a given level, so two refers to running five parallel regions each containing two
workshared loops. Since ten does not divide evenly by three, the three case is
actually distributed as 3×3×4. In nearly all cases, basic parallel region merging
improves performance, often substantially. Merging pairs of regions gains 2–5 %
in most cases, although notably it loses approximately 2 % with BlueGene/Q’s
default OpenMP runtime. When merging into groups of three or more, basic
parallel merging always improves performance, from a 15 % speedup for some
cases on BG/Q to over 2× with the GNU OpenMP runtime on Power8.

184 T.R.W. Scogland et al.

Fig. 7. Performance of back-to-back microbenchmark (CLOMPK): parallel region
merging (PARA); loop barrier elimination (NOWAIT); and loop fusion (LOOP).

In principle, the nowait option only removes the implicit barrier between
parallel loop regions, so it should always improve performance. On all of the
Linux-based platforms, including the Intel Xeon Phi accelerator, adding nowait
provides the expected benefit, producing as much as a 5× speedup over the
baseline on Power8. However, the BG/Q default and LOMP1 results suggest
that adding the nowait clause can result in more complicated side-effects. With
the BG/Q default runtime, it results in a slowdown of as much as 75 %. With
LOMP1, it remains faster than the baseline, but is a slowdown compared to
parallel region merging. With LOMP2, however, the nowait option provides
benefits on BG/Q similarly to the Linux-based platforms. The overall runtimes
also track this trend, with LOMP1 outperforming default, and LOMP2 outper-
forming LOMP1 in overall runtimes with nowait.

Since each iteration of each of the loops is dependent only on the value pro-
duced by the same iteration in the previous loop, we can fuse the loop regions
into one loop region. While we do not expect most compilers to implement this
optimization, it is valid for back-to-back loop regions that use the static schedule
and no cross-iteration dependences. This optimization provides significant per-
formance benefit on BG/Q, achieving as much as a 2× more speedup in one case,
but only slightly outperforms the nowait option on the Linux-based platforms.

Enabling Region Merging Optimizations in OpenMP 185

Fig. 8. Performance of intervening serial code microbenchmark (CLOMPKS): parallel
region merging (PARA); and loop barrier elimination (NOWAIT).

3.2 Parallel Regions with Intervening Serial Regions

Using the merge directive discussed in Sect. 2.2, users can request that compiler
merge consecutive parallel regions even with intervening serial code. As previ-
ously discussed, parallel region merging is performed with the serial code encap-
sulated in a master region followed by an additional barrier directive. Figure 8
shows results with this optimization, using the untransformed code, including
the intervening serial region as the baseline. The serial regions essentially pre-
vent the loop fusion optimization so we omit the LOOP variant. As expected in
a case with additional serial overhead, as well as the barriers required to protect
the master region, the speedups are not as large as with the back-to-back tests.
Notably, both the default BG/Q OpenMP runtime and the Intel MIC OpenMP
runtime lose performance in some cases. Specifically the BG/Q results for 16
threads slow down by as much as 25 %, and on 64 threads by as much as 80 %
for the use of nowait. This pathological weakness of the default BG/Q OpenMP
runtime is not shared by the LOMP runtimes on the same platform. In fact, even
with the default runtime as much as a 10 % speedup is achieved in the 64 thread
case with basic parallel region merging. Other runtimes behave approximately
as they do for the back-to-back case. The largest benefits are a speedup of 2.25×
for the GOMP runtime on rzmist, the IBM Power8 system.

186 T.R.W. Scogland et al.

RZAlastor RZMerl

79

80

81

82

83

84

155

160

165

170

2 40 2 40

Total OpenMP regions

R
un

tim
e

(s
ec

on
ds

)

Fig. 9. LULESH runtime with the original 40 regions, or merged into two large regions.
Median time at the center lines, box to the first and third quartile.

3.3 Lulesh

Lulesh is a representative application for shock hydrodynamics that serves as a
widely available and comparable algorithm for programming model evaluation.
It is also composed of a significant number of parallel loop regions, many of which
can be fused into larger parallel regions. Figure 9 shows results of four runs each
of the original code, which has forty distinct parallel regions with a version in
which we manually merged the forty regions into two larger regions. As each
of the forty regions performed a large amount of work, the overall application
speedup is not as large as for the microbenchmarks, but the median speedup
remains slightly above 5 % on RZAlastor and over 6 % on RZMerl. Given that
these results apply the optimization to a realistic and reasonably optimized code,
5 % is a significant improvement.

4 Related Work

The synchronization, thread launching and scheduling overheads inherent in
multi-threaded programming models have been topics of research and discus-
sion since the concept of threading came into being. OpenMP is no exception;
the EPCC benchmark suite [3] was published in 1999. At the time, launching
a parallel region was approximately as costly as executing a barrier across all
threads inside the region. Later work by Müller [8] found that parallel region
launch was still as expensive, and recommended merging regions to be as com-
prehensive as possible. This work also asserts that both the SGI native compilers
and the PGI compiler of the time merge contiguous parallel regions based on
their performance results. Our tests, discussed in Sect. 3, show that this opti-
mization does not take place in several current compilers.

Enabling Region Merging Optimizations in OpenMP 187

Attempts have been made to construct OpenMP compiler and runtime
environments that reduce the overhead of launching a parallel region. Eichen-
berger [5] proposed a lightweight OpenMP runtime, called LOMP, designed to
cut the overhead to as much as possible on BG/Q while following the OpenMP
specification. Some of the optimizations applied included caching thread con-
texts, distributing region setup to the thread team, the use of low-overhead
sleep and wake primitives and creating fast-paths for parallel launches using
default parameters. Overall, this work decreased the cost of launching a team
of threads across the system, and especially re-entering the region later, but
region launch still takes thousands of cycles, and barriers remain a bottleneck.
We further evaluate the original LOMP runtime, as well as an updated version,
LOMP2, in Sect. 3.

One compiler that does support region merging is craycc from the Cray
Compiling Environment [4]. It offers the -h threadn flag, which when set to a
value of two or higher instructs the compiler to attempt to merge, to expand, or
otherwise to transform parallel regions. The option documentation implies that
these optimizations break strict conformance with the OpenMP specification,
which may be why other compilers do not perform parallel region merging.

5 Conclusion

In this paper we re-affirm the common wisdom that merging nearby, and espe-
cially contiguous, OpenMP regions improves performance. Further, we identify
situations in which regions become contiguous as a result of compiler optimiza-
tion or evaluation of code at compile time, making the optimization require
compiler support. OpenMP as a rule does not require a compiler to perform
analysis of the correctness of transformations, and our recommended specifica-
tion changes maintain that property by ensuring that proper synchronization
remains wherever it may be expected. The extended clauses, mergeable and
nowait, for parallel regions make this possible while giving the user greater con-
trol over the interpretation of a parallel region and the following serial code, if
any. Our evaluation shows that for a realistic representative application, region
merging can achieve a 5 % speedup over the original, and as much as 5× in
microbenchmarks. In summary, parallel region merging is an effective optimiza-
tion with a significant benefit to include in OpenMP compilers.

References

1. Kokkos. http://trilinos.org/packages/kokkos/
2. Bronevetsky, G., Gyllenhaal, J., de Supinski, B.R.: CLOMP: accurately character-

izing OpenMP application overheads. In: Eigenmann, R., de Supinski, B.R. (eds.)
IWOMP 2008. LNCS, vol. 5004, pp. 13–25. Springer, Heidelberg (2008)

3. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, vol. 8, p. 49 (1999)

http://trilinos.org/packages/kokkos/

188 T.R.W. Scogland et al.

4. Cray. craycc manual page. http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;
id=sw releases-j4spa4zu-1396361754;idx=man search;this sort=title;q=;
type=man;title=Cray%20Compiling%20Environment%20%28CCE%29%208.
3%3a%20C/C%2b%2b/Fortran%20Compiler%20Man%20Pages

5. Eichenberger, A.E., O’Brien, K.: Experimenting with low-overhead OpenMP run-
time on IBM Blue Gene/Q. IBM J. Res. Dev. 57(1/2), 8:1–8:8 (2013)

6. Hornung, R., Keasler, J.: The RAJA portability layer: overview and status. Techni-
cal report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2014)

7. Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., Devito, Z., Haque,
R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz, M., Still, C.H.: Exploring
traditional and emerging parallel programming models using a proxy application. In:
International Parallel and Distributed Processing Symposium, pp. 919–932 (2013)

8. Müller, M.: Some simple OpenMP optimization techniques. In: Eigenmann, R., Voss,
M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104, pp. 31–39. Springer, Heidelberg (2001)

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-j4spa4zu-1396361754;idx=man_search;this_sort=title;q=;type=man;title=Cray%20Compiling%20Environment%20%28CCE%29%208.3%3a%20C/C%2b%2b/Fortran%20Compiler%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-j4spa4zu-1396361754;idx=man_search;this_sort=title;q=;type=man;title=Cray%20Compiling%20Environment%20%28CCE%29%208.3%3a%20C/C%2b%2b/Fortran%20Compiler%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-j4spa4zu-1396361754;idx=man_search;this_sort=title;q=;type=man;title=Cray%20Compiling%20Environment%20%28CCE%29%208.3%3a%20C/C%2b%2b/Fortran%20Compiler%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-j4spa4zu-1396361754;idx=man_search;this_sort=title;q=;type=man;title=Cray%20Compiling%20Environment%20%28CCE%29%208.3%3a%20C/C%2b%2b/Fortran%20Compiler%20Man%20Pages

Towards Task-Parallel Reductions in OpenMP

Jan Ciesko1, Sergi Mateo1,2(B), Xavier Teruel1, Xavier Martorell1,2,
Eduard Ayguadé1,2, Jesús Labarta1,2, Alex Duran3, Bronis R. de Supinski4,

Stephen Olivier5, Kelvin Li6, and Alexandre E. Eichenberger6

1 Barcelona Supercomputing Center, Barcelona, Spain
{jan.ciesko,sergi.mateo,xavier.teruel,xavier.martorell,

eduard.ayguade,jesus.labarta}@bsc.es
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 Intel Iberia Corporation, Madrid, Spain
alejandro.duran@intel.com

4 Lawrence Livermore National Laboratories, Livermore, USA
bronis@llnl.gov

5 Sandia National Laboratories, Livermore, USA
slolivi@sandia.gov

6 IBM Corporation, New York, USA
kli@ca.ibm.com, alexe@us.ibm.com

Abstract. Reductions represent a common algorithmic pattern in many
scientific applications. OpenMP∗ has always supported them on parallel
and worksharing constructs. OpenMP 3.0’s tasking constructs enable
new parallelization opportunities through the annotation of irregular
algorithms. Unfortunately the tasking model does not easily allow the
expression of concurrent reductions, which limits the general applicability
of the programming model to such algorithms. In this work, we present
an extension to OpenMP that supports task-parallel reductions on task
and taskgroup constructs to improve productivity and programmability.
We present specification of the feature and explore issues for program-
mers and software vendors regarding programming transparency as well
as the impact on the current standard with respect to nesting, untied
task support and task data dependencies. Our performance evaluation
demonstrates comparable results to hand coded task reductions.

Keywords: OpenMP · Task · Reduction · Recursion

1 Introduction

Migrating applications to multi-core and many-core architectures is a challeng-
ing but necessary step to achieve scalable performance on modern systems.
Thus, parallel programming models such as OpenMP [7] have gained popularity
through concepts and tools to introduce portable concurrency in a broad range
of algorithms with relatively little programming effort. This work proposes a task
redutcion extension to OpenMP that supports a yet wider class of algorithms.

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 189–201, 2015.
DOI: 10.1007/978-3-319-24595-9 14

190 J. Ciesko et al.

A reduction is an iterative update of a variable var, defined as:

iter : var = op(var, expression),

where op is an associative function and var does not occur in expression. Typ-
ically, a for-loop (bounded loop) or while-loop (unbounded loop) iteratively or
recursively defines the iteration space.

For-loops have a constant iteration space. OpenMP supports their concurrent
execution through worksharing constructs. The iterations space of while-loops
and recursions is dynamic, which prohibits efficient use of worksharing con-
structs. OpenMP 3.0 added support for these irregular algorithms through the
task directive. In this formulation, loop iterations and recursive calls create task
instances of the enclosed code, typically the loop body.

While for-loops and while-loops can be efficiently parallelized through work-
sharing constructs or tasks, reductions within them require special attention.
A closer look reveals that the reduction operation represents a read-modify-
write sequence that is not atomic so that its parallel execution introduces data
races.

Figure 1 shows while-loop reductions over a linked list that avoid data races
by introducing locks or by applying techniques like thread-privatization. Pro-
gramming model support would eliminate the required boilerplate code. Even
though manual implementations are viable solutions, they are error prone and
require the programmer to select a specific implementation, which may be inef-
ficient on a given architecture or incur unnecessary memory overheads.

OpenMP needs a solution that supports task reductions and minimizes the
effect on unrelated constructs. It should comprehensively define the scope of the
reduction and a data context for the private reduction variable.

2 Related Work

OpenMP supports reductions on parallel and worksharing constructs through
the reduction clause. It implies data privatization of the reduction variable
that removes race conditions by replacing accesses to the original variable with
accesses to per-thread private copies. Each copy is initialized with the operation’s
identity and is reduced to the original variable at the end of the construct.

While the specification does not yet support task reductions, prior work has
explored them for OpenMP [3] and OmpSs [1]. These papers discussed different
scenarios in which to use task reductions and compared the results with manual
transformations that use atomics. This general approach could specify the task
reduction scope through the taskgroup, taskwait or barrier constructs or task
dependences on the reduction variable. This paper extends that work.

Intel(R) Cilk(TM) [5] coordinates the view of a variable of a task and its
descendants through hyperobjects [4]. A reduction operation can combine these
views when a descendant task finishes execution. This mechanism targets a mul-
tilevel task hierarchy. We target the task hierarchy within a taskgroup region.

Towards Task-Parallel Reductions in OpenMP 191

Fig. 1. Different versions of a while-loop reduction over a linked list

The X10 [2] programming model supports task reductions through phaser-
accumulators [8,9]. Focused on the Partitioned Global Address Space environ-
ment, X10’s phaser-accumulators can send and receive results from different
activities and combine them in a point-to-point pattern.

3 Discussion

We propose to extend the taskgroup and task constructs to support task reduc-
tions. Prior work identified taskgroup construct as a possible scope of the
reduction [3]. We prefer this choice since it does not affect other OpenMP mecha-
nisms (e.g., barriers) and the taskgroup structured block defines a clear reduction
scope.

We extend the taskgroup and task construct with the clauses reduction and
in reduction respectively. The in reduction clause declares a task as a partic-
ipant in the computation of var that was previously declared in an enclosing
taskgroup reduction clause with the same reduction-identifier. We deliberately
use the in reduction clause instead of reusing the reduction clause in order to
stress the differences in behavior to the programmer. The reduction clause in the
taskgroup construct follows its current specification for other constructs. Alter-
natively, the in reduction clause on a task construct defines an access pattern
(an update operation) to one of those copies. Figure 2(a) illustrates our proposal
for the previous example.

192 J. Ciesko et al.

Fig. 2. Examples of our proposal

3.1 Updates of a Reduction Variable Outside a Reduction Context

Programmers must consider that an update of the original reduction variable
occurs just after the taskgroup region and that accesses to that outside of the
taskgroup may create a race condition. Figure 2(b) shows code that updates
the reduction variable both inside and outside a taskgroup reduction. The task
created in line 8 can be executed concurrently with the taskgroup reduction
update occurring at the end of the taskgroup created in lines 11–12. This sit-
uation may also occur when multiple taskgroup reductions are working with
the same variable simultaneously. The programmer must provide proper syn-
chronization to avoid this situation. This requirement is analogous to existing
restrictions on reductions:

To avoid race conditions, concurrent reads or updates of the original list
item must be synchronized with the update of the original list item that
occurs as a result of the reduction computation (line 20, p. 170 [7]).

3.2 Over-Specifying the Reduction Identifier

The declaration of the reduction identifier in the in reduction clause could be
inferred from the taskgroup context and thus could be omitted to minimize
the potential for programming errors. However, vendor feedback indicates that
omitting the identifier could limit compiler optimizations, or at least introduce
some additional overhead (i.e., registering the reduction inside the runtime) to
perform these optimizations. OpenMP vendors may use the identifier to combine
a local-copy of a reduction variable with the original/thread-copy (depending
on the implementation approach), which specification of the identifier in the
in reduction clause would facilitate. Thus, we choose to require it.

Towards Task-Parallel Reductions in OpenMP 193

3.3 Supporting Untied Tasks

Untied tasks can be suspended at a task scheduling point and later resumed on
a different thread. Without proper handling, a task might resume execution on
a different thread but still continue using the thread-private copy of the thread
that started its execution, which could create a race condition. Tied tasks do not
encounter this issue since they execute entirely on one thread even if they are
suspended at some point. Thus, they can safely use that thread’s copy as they
will not be suspended while accessing it.

Several solutions could support untied reduction tasks. First, an implemen-
tation could not migrate any task (e.g., treat it as tied) if it is involved in a
reduction even though it is declared as untied. This approach is simple but elim-
inates the potential benefit of untied task migration.

Alternatively, an implementation could introduce an additional local variable
for each untied reduction task. This task-local variable must be initialized to
the identity. A reference to the local variable would replace all references to
the reduction variable inside the untied task. Finally, at the end of the task,
the partial result stored in the task-local variable would be combined with the
thread-private copy of the thread that finalizes the task. This approach supports
tasks that migrate among threads at the cost of an additional task-local copy
that must be initialized and an additional partial reduction per untied task.

Finally, the compiler could generate a request for the thread-private copy
after each possible task scheduling point, thus supporting the use of the thread-
private copy. The reduction task would then always access the thread-private
copy of the thread that is executing it. This approach supports tasks that migrate
among threads at the cost of repeatedly obtaining the thread-private location.

We recommend that the following be implementation defined:

– Whether untied tasks involved in reductions can migrate;
– The number of private copies that are created for a task reduction.

The number of private copies could be defined as the number of tasks that
participate in the reduction. Our recommendation thus allows an implementation
to choose any of the above solutions (or a hybrid of them). Untied tasks could
migrate and the number of private copies could be anything between the number
of threads to the number of tasks.

Evaluating Support for Untied Tasks: We use two benchmarks to evaluate
the choice of supporting untied tasks by not migrating them or by introducing
a new local copy per task. The first performs a reduction over a scalar. The
performance of both versions is equivalent since the extra overhead introduced
in the task-local approach is small in scalar reductions and the benchmark is
well-tuned to obtain good performance using tasks so the extra overhead of the
task-local version is insignificant compared to the task granularity.

Our second benchmark, Array Sum UDR (since it has a User Defined Reduc-
tion) reduces an array of structs to a unique struct. This struct has a static array

194 J. Ciesko et al.

Fig. 3. Array Sum UDR benchmark results

of TS integers. The UDR’s initializer sets every element of the struct to zero and
its combiner adds the values of the two arrays. We choose this benchmark since
it increases the cost to allocate and to initialize the extra copy and to perform
its associated reduction.

Figure 3 shows the relative performance of the task-local version compared
against the untied-as-tied version, with different number of threads and fixing
the total number of integers to N = 109. The relative performance is computed
dividing the execution time of an approach by the execution time of another.

The overhead of the task-local version increases with TS, the size of the
static array. The differences among the different relative perfomances require
further analysis and it’s deferred to future work. Thus, the task-local approach
is reasonable for scalar reductions but may incur excessive overhead for array
reductions or UDRs; implementations could define values based on the type of
the reduction.

3.4 Supporting Nested Taskgroups

Nested taskgroup reductions can be defined either over different list items or
the same ones, as Fig. 4 shows. If the nested taskgroup defines a reduction over
a different list item (Fig. 4(a)), the runtime registers a new reduction that is
independent of the ongoing outermost taskgroup reduction. Thus, the runtime
creates a new set of thread-private copies to compute the reduction.

Fig. 4. Nested taskgroup reduction scenarios

Towards Task-Parallel Reductions in OpenMP 195

Two alternatives exist if the nested taskgroup reduction is over the same
list item (Fig. 4(b)). The first uses the same approach as when the list item is
different: register a new reduction. The second alternative reuses the same set
of private copies for both reductions. With this approach, we cannot reduce the
private copies at the end of the nested taskgroups reductions: the final reduction
must be computed at the end of the outer taskgroup region, counter to current
reductions semantics that compute the reduction at the end of the construct
that has the reduction clause.

3.5 Cancellation, Dependencies and Merged Tasks

Cancellation implies the value of the reduction variable is unspecified since we
cannot guarantee how far the computation of the reduction has progressed. The
programmer must anticipate this behavior.

The specification of a dependency (using the task depend clause) over a reduc-
tion variable might introduce a conceptually misleading situation. The program-
mer might intend a dependency over the original variable or the private copy in
the data context of the taskgroup reduction. We could explicitly restrict the use
of the in reduction clause and depend clause over the same variable. However
the current OpenMP specification does not restrict similar cases. A dependency
over a private variable produces a similar situation where the OpenMP specifi-
cation does not provide clarification about the interaction between data-sharing
attributes and dependencies.

A merged task that participates in a reduction does not have a data environ-
ment. Thus, it must use the parent’s data environment that includes the private
copy of the reduction variable. Since the parent environment for a reduction
task can only be either a taskgroup reduction or another reduction task environ-
ment, the use of the corresponding private copy1 in the parent region is always
guaranteed. Thus, this case also does not require additional specification.

4 Syntax Additions

This section describes the syntax of our proposal. We update the syntax of the
taskgroup construct to:

#pragma omp taskgroup [clause[[,]clause]...] new-line
structured-block

where clause is:

reduction(reduction-identifier: list)

We also modify the reduction clause description to cover taskgroup regions. Once
the scope of a reduction is defined, we must identify tasks within the taskgroup
1 This case may involve multiple private copies due to support for untied tasks.

196 J. Ciesko et al.

that participate in the computation. Thus, we extend the clauses allowed on a
task construct to include:

in reduction(reduction-identifier : list)

We add a section for the in reduction clause and modify the description of the
reduction clause to specify the semantics of references to the list items that we
discussed in the previous section. The section on the in reduction clause includes
this restriction:

– The task to which the in reduction clause is applied on a list-item must be
closely nested in a taskgroup region to which a reduction clause is applied on
the same list-item.

5 Evaluation

This section compares the performance of our prototype implementation of our
proposed taskgroup reduction with manual implementations that Fig. 1 shows.

5.1 System Environment

We obtained our results on MareNostrum III and the Knight system located
at the Barcelona Supercomputing Center. Each Marenostrum III node con-
tains two 8-core Intel Xeon E5-2670 CPUs running at 2.6 GHz with 20 MB L3
cache and 32 GB of main memory organized as two NUMA nodes. Each Knight
node includes an Intel Xeon Phi coprocessor with C0 silicon and board version
C0PRQ-7120 (61 cores at 1238095 Khz, 16 GB of GDDR Memory at 5.5 GT/sec,
300W TDP), driver v3.4-1, MPSS v3.4 and flash v2.1.02.0390).

Applications on Marenostrum and Knight were compiled using the Mer-
curium source-to-source compiler v1.99.82 (using GCC v4.7.2 and Intel(R) C
Compiler 15.0.2 as the back-end/native compiler respectively). In both cases
the compiler optimization level was -O3, and the parallel runtime used in all
experiments was based on the Nanos++ RTL v0.9a3.

5.2 Benchmark Descriptions

Array Sum: This algorithm takes a single array of N integers as an operand and
computes the sum of its elements. We create a task for each TS elements.

Dot Product: The dot product algorithm is a simple operation on two vector
operands of N elements. The result is the sum of the products of their compo-
nents. We create a task for each TS elements.

2 mcxx 1.99.8 (git 538d492).
3 nanox 0.9a (git master 10f6134).

Towards Task-Parallel Reductions in OpenMP 197

NQueens: This application computes the number of placements of N chess queens
on a NxN chessboard such that none of them can attack any other. This imple-
mentation uses a Branch and Bound algorithm following a recursive pattern,
taskified and using the final clause to control task granularity.

Unbalanced Tree Search (UTS): This benchmark computes the number of
nodes in an implicitly defined unbalanced tree [6]. The program begins with
a single tree node and an initial seed that is used to generate a sequence of
pseudo-random numbers. For each node, the next value in the sequence is used
to sample a parameterized probablity distribution to determine the number of
children for a given node. This algorithm creates an unpredictably unbalanced
workload that makes the use of a cut-off value in the final clause difficult.

5.3 Performance Results on Intel Xeon Processors

In this section we evaluate the performance of our proposal against the perfor-
mance of manual versions of the benchmarks on Intel Xeon processors.

Figure 5 shows the performance results of the Array Sum and Dot Product
benchmarks. Both benchmarks exhibit similar behavior in which performance
drops levels off with higher thread counts. In this case, scalability is limited by
memory bandwidth. In Array Sum, bandwidth saturation starts with 12 threads
(with a 10x speed-up), while for Dot Product this effect becomes visible with
6 threads (reaching a speedup of 5x). These two different phases (scale and
saturate) have a counterpart in the relative performance (the green dashed line
in the figure). For all thread counts with Array Sum, the performance reaches at
least 94 % of the performance of the manual version. For larger thread counts, the
differences between the implementations become smaller because task execution
time shifts towards the computation as the algorithm saturates the memory
bandwidth and reduces the importance of reduction performance. For the Dot
Product benchmark, the relative speedup is between 95 % and 100 %. For both
benchmarks, gains in maintainability and portability easily compensate for the
slight differences in relative performance.

(a) Array Sum (b) Dot Product

Fig. 5. Array Sum and Dot Product benchmarks results

198 J. Ciesko et al.

(a) NQueens Global (b) NQueens Local

Fig. 6. NQueens benchmark results

Figure 6 shows the results for the NQueens benchmark. For this application
we have implemented two versions: one that reduces over a global variable (sub-
figure a) and another that reduces over a local variable (subfigure b). We explore
these two versions primarily because the global version only registers one reduc-
tion in the whole program while the local version registers a new reduction at
each recursive level. When reducing over a global variable, speedup is essen-
tially linear and relative performance is close to 100 %. When the reduction is
performed over a local variable, we compare our proposal against two different
manual versions. The first one is the regular transformation presented previously
whereas the second version optimizes the code when in a final task. The prob-
lem with the regular transformation is that we are still allocating, intializing
and reducing an array of NUM THREADS elements even if we are going to use
just one element. Thus, the optimized versions makes use of the omp in final()
runtime service to avoid this extra overhead. Despite comparing our proposal
against the manual optimized version, the scalability and the relative perfor-
mance of our version is still better.

Figure 7 shows the results of executing the UTS benchmark with configura-
tions that vary the number of created tasks from 50 k to 1 M tasks. All configura-
tions achieve essentially linear speedup (subfigure a), and relative performance is
between 96 % and 99 % for programmability issues again more than compensate.

(a) UTS, Scalability (b) UTS, Relative Performance (%)

Fig. 7. Unbalance Tree Search benchmark results

Towards Task-Parallel Reductions in OpenMP 199

5.4 Performance Results on Intel Xeon Phi Coprocessors

In this section we evaluate the performance of our proposal against the perfor-
mance of manual versions on a Intel Xeon Phi coprocessor.

Fig. 8. Array Sum benchmark results on Xeon Phi

Figure 8 shows that our approach scales slightly better than the manual ver-
sion of Array Sum. The relative performance line shows that the performance
of our proposal is at least 10 % better than the performance of the manual ver-
sion in almost all cases. While not shown in the figure, the exceptions is when
we use all 60 cores and more than 2 threads per core, in which case our app-
roach underperforms and does not scale well due to cache problems and more
contention when we increase the number of threads.

(a) NQueens Global (b) NQueens Local

Fig. 9. NQueens benchmark results on Xeon Phi

Figure 9 shows the results of the NQueens benchmark on the Xeon Phi. For
the global version of the NQueens, the scalability and the relative performance
between our approach and the manual version are identical. For the local version,
the scalability and the relative performance of our proposal is equivalent to the
manual optimized version and far better than the nonoptimized one.

200 J. Ciesko et al.

6 Conclusions and Future Work

In this paper we have presented a proposal to support task-parallel reductions
in OpenMP that extends the taskgroup and task constructs with reduction and
in reduction clauses. We find that the taskgroup construct provides a convenient
data environment for reductions and the scope of the reduction is clearly defined
by the deep synchronization at the end of the taskgroup region. The in reduction
clause for the task construct associates tasks with a reduction declared in a
taskgroup construct. This approach does not impact barriers or other task syn-
chronization constructs. We explored implementation options to support nested
taskgroups and untied tasks, which demonstrate that implementors can explore
a range of implementations and optimizations. Our performance results demon-
strate that the approach incurs little overhead compared to manual versions
currently required and it may provide small performance benefits in some spe-
cific cases like recursive benchmarks. Most importantly, it significantly reduces
boilerplate code that programmers must currently use to implement reductions
manually.

In the future, we continue our work in this area by conducting more analysis
and evaluation. Apart from that, we plan to provide a draft of the OpenMP
specification to the OpenMP committee.

Acknowledgments. This work has been developed with the support of the grant
SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Government and
by the Spanish Ministry of Science and Innovation (contracts TIN2012-34557, and
CAC2007-00052) by the Generalitat de Catalunya (contract 2014-SGR-1051) and the
Intel-BSC Exascale Lab collaboration project.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

Also the authors would like to thank the OpenMP community for their substantial
contribution to this work.

Intel, Xeon, Xeon Phi and Many Integrated Core are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

∗Other brands and names are the property of their respective owners.

References

1. Barcelona Supercomputing Center.: OmpSs Specification, 25 April 2014. http://pm.
bsc.es/ompss-docs/specs

2. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: SIGPLAN Notices, vol. 40(10), pp. 519–538 (2005)

3. Ciesko, J., Mateo, S., Teruel, X., Beltran, V., Martorell, X., Badia, R.M.,
Ayguadé, E., Labarta, J.: Task-parallel reductions in OpenMP and OmpSs. In:
DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2014. LNCS, vol. 8766, pp. 1–15. Springer, Heidelberg (2014)

http://pm.bsc.es/ompss-docs/specs
http://pm.bsc.es/ompss-docs/specs

Towards Task-Parallel Reductions in OpenMP 201

4. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other Cilk++
hyperobjects. In: Proceedings of the Twenty-First Annual Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2009, pp. 79–90. ACM, New York
(2009)

5. Leiserson, C.E.: The Cilk++ concurrency platform. In: Proceedings of the 46th
Annual Design Automation Conference, DAC 2009, pp. 522–527. ACM, New York
(2009)

6. Olivier, S., Huan, J., Liu, J., Prins, J.F., Dinan, J., Sadayappan, P., Tseng, C.-W.:
UTS: an unbalanced tree search benchmark. In: Almási, G.S., Caşcaval, C., Wu, P.
(eds.) KSEM 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007)

7. OpenMP Architecture Review Board.: OpenMP Application ProgramInterface Ver-
sion 4.0, July 2013

8. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In: ICS 2008: Pro-
ceedings of the 22nd Annual International Conference on Supercomputing, pp. 277–
288. ACM, New York (2008)

9. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phaser accumulators: a new
reduction construct for dynamic parallelism. In: IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2009, pp. 1–12. IEEE, Rome, May 2009

OpenMP 4.0 Device Support
in the OMPi Compiler

Alexandros Papadogiannakis, Spiros N. Agathos,
and Vassilios V. Dimakopoulos(B)

Department of Computer Science and Engineering, University of Ioannina,
P.O. Box 1186, 45110 Ioannina, Greece

{apapadog,sagathos,dimako}@cse.uoi.gr

Abstract. OpenMP 4.0 represents a major upgrade in the language
specifications of the standard. Important constructs for the exploitation
of simd parallelism, the support for dependencies among tasks and the
ability to cancel the operations of a team of threads have been added.
What is arguably the most important addition, however, is the intro-
duction of the device model. A variety of computational units, such as
gpus, dsps and general or special purpose accelerators are viewed as
attached devices, where portion of a unified application code can be
offloaded for execution. In this work we present the infrastructure for
device support in the ompi research compiler, one of the few compilers
that currently implement the new device directives. We discuss the nec-
essary compiler transformations and the general runtime organization.
For the first time, special emphasis is placed on the important problem
of data environment handling. In addition, we present a prototype imple-
mentation on the popular Parallella board which exploits the dual-core
arm host processor and the 16-core Epiphany accelerator of the system.

1 Introduction

OpenMP, the de facto standard for shared-memory programming, has been
recently augmented with new directives that target arbitrary accelerator devices
[18]. In the spirit of OpenACC [17], OpenMP 4.0 provides a higher level directive-
based approach; it allows the offloading of portions of the application code onto
the processing elements of an attached accelerator while the main part executes
on the general-purpose host processor. In contrast, programming models such as
OpenCL [13] and cuda [14] provide efficient but rather primitive mechanisms for
an application to exploit the hardware capabilities of gpgpus and other devices.
Such models project the heterogeneity of hardware directly onto software, forc-
ing different programming styles and multiple code modules to accommodate
each of the devices that is to be utilized.

Modern architectures present a mix of different processor organizations and
memory hierarchies within the same system. Systems as small as a personal

S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY).

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 202–216, 2015.
DOI: 10.1007/978-3-319-24595-9 15

OpenMP 4.0 Device Support in the OMPi Compiler 203

workstation may pack many compute cores in a socket, and/or combine gen-
eral purpose multicore cpus with accelerator devices such as gpgpus, dsps and
specialized, application-specific fpgas. Given the multiplicity of devices and the
diversity of their architectures, the real challenge is to provide programming
models that allow the programmer to extract satisfactory performance while
also keeping his/her productivity at high levels. OpenMP 4.0 strives to play
a major role in this direction, letting the programmer blend the host and the
device code portions in a unified and seamless way.

Although support for the OpenMP 4.0 device model has been slow to be
adopted by both compiler and device vendors, it is gaining momentum. Cur-
rently, the Intel icc compiler [12,16] and GNU C Compiler, gcc (as of the
latest version [11]) support offloading directives, with both of them only target-
ing Intel Xeon Phi as a device. gcc offers a general infrastructure to be tai-
lored and supplemented by device manufacturers. Preliminary support for the
OpenMP target construct is also available in the rose compiler. Chunhua et
al. [8] discuss their experiences on implementing a prototype called homp on top
of the rose compiler, which generates code for cuda devices. A discussion about
an implementation of OpenMP 4.0 for the llvm compiler is given by Bertolli
et al. [5] who also propose an efficient method to coordinate threads within an
nvidia gpu. Finally, in [15] the authors present an implementation on the TI
Keystone II, where the dsp cores are used as devices to offload code to.

In this work we present an infrastructure for device support in the context of
the ompi OpenMP compiler [9], currently one of the few compilers that imple-
ment the OpenMP 4.0 directives for offloading code onto a device. We discuss
the necessary compiler transformations and the general runtime organization,
emphasizing the important problem of data environment handling. To the best of
our knowledge, this is the first time this problem is given detailed consideration in
the open literature; we present novel runtime structures to address it efficiently.
While we deal mostly with the device-agnostic parts of the infrastructure, we
also discuss our experiences with a concrete implementation on the highly popu-
lar Parallella board [2]. It is the first OpenMP implementation for this particular
system, and supports the concurrent execution of multiple independent kernels.
In addition, it allows OpenMP directives in each offloaded kernel, supporting
dynamic parallelism within the system coprocessor.

The paper is organized as follows. In Sect. 2 we give the necessary background
material. We present the compiler transformations in Sect. 3, while the corre-
sponding runtime issues are discussed in Sect. 4. We then describe our prototype
implementation for the Parallella board in Sect. 5. Finally, Sect. 6 concludes this
work.

2 Background

One of the goals of version 4.0 of the OpenMP API [18] was to provide a
state of the art, platform-agnostic model for heterogeneous parallel program-
ming by extending its widely accepted shared-memory paradigm. The extensions

204 A. Papadogiannakis et al.

introduced are designed to support multiple devices (accelerators, coprocessors,
gpgpus, etc.) without the need to create separate code bases for each device.
Portions of the unified source code are simply marked by the programmer for
offloading to a particular device; the details of data and code allocations, map-
pings and movements are orchestrated by the compiler. The execution model is a
host-centric one: execution starts at the host processor, which is also considered
a device, until one of the new constructs is met; this may cause the creation of
a data environment and the execution of a specified portion of code on a given
device.

The target directive is used to transfer control flow to a device. The code
in the associated structured block (kernel) is offloaded and executed directly on
the device, while the host task waits until the kernel finishes its execution. Each
target directive may contain its own data environment which is initialized when
the kernel starts and freed when the kernel ends its execution. In order to avoid
repetitive creation and deletion of data environments, the target data directive
allows the definition of a data environment which persists among successive
kernel executions. Furthermore, the programmer may use the target update
directive between successive kernel offloads to explicitly update the values of
variables shared between the host and the device.

The execution of an OpenMP program has a set of initial device data envi-
ronments (that is, a set of variables associated with a given code region), one for
each available device. The data environment can be manipulated through map
clauses within target data and target directives. These clauses determine how
the specified variables are handled within the data environment. Finally, the vari-
ables declared within declare target directives are also allocated in the global
scope of the target device, and their lifetime equals the program execution time.

The original and the corresponding variables, have common name, type and
size but the task that executes in the context of a device data environment, refers
to the corresponding variable instead of the original one. Data environments can
be nested and a corresponding variable of a device data environment is inherited
by all enclosed data environments. This means that a variable can not be re-
mapped during the definition of nested data environments.

3 Compiler Transformations

The ompi compiler [9] is a lightweight OpenMP C infrastructure, composed of a
source-to-source compiler and a flexible, modular runtime system. The input of
the compiler is C code annotated with OpenMP pragmas and the output is an
intermediate multithreaded code augmented with calls to the runtime system. A
native compiler is used to generate the final executable. ompi is an open source
project and targets general-purpose smps and multicore platforms. It adheres
to V3.1 of the OpenMP specifications, but support for V4.0 is under way. In
addition to the device constructs presented here, initial implementations exist
for the cancellation constructs, the taskgroup construct and task dependencies.

The main transformation step of ompi for parallel, task and target direc-
tives is outlining. A new function is created, containing the transformed body,

OpenMP 4.0 Device Support in the OMPi Compiler 205

and the construct is replaced by a runtime call with the new function and a
struct as parameters. The struct contains any variables declared before the con-
struct but used in the body of the construct, and is initialized according to the
data-sharing attribute clauses. In the following sections, we will use the code in
Fig. 1 as an example in order to illustrate the transformation details.

When outlining a target region, we store a copy of the outlined function
along with any other outlined functions that may occur during the transforma-
tion of its body (e.g. when having a parallel region inside the target), in a
global list. After the main transformation phase of the code, we use the infor-
mation stored in that list to produce kernel files, one for each target construct.

3.1 Target Data

According to the specifications, if a variable that appears in a map clause, already
exists in the device data environment, no new space should be allocated and no
assignments should occur. Since the device clause is an arbitrary expression and
there is no restriction on the device clause of nested target data directives,
the compiler is unaware of the devices that a variable has already been mapped
on. For example, there could be a target data that adds variable a in device 1
and then another target data with the same variable that does not contain a
device clause, and therefore will use the default device which, however, can be
changed during execution.

To overcome this subtle problem we inject calls to the runtime for creating,
initializing and finalizing environments with variables that appear in map clauses,
regardless of whether they have appeared or not in an enclosing target data
directive, and let the runtime handle it, as described in Sect. 4.1. In Fig. 1, this
occurs for variables x and y in lines 12 and 13.

When transforming the target data directive, a start and an end call are
injected before and after the body of the directive. If the directive is nested
in another target data directive, the latter data environment is passed in the
start call (Fig. 1, line 10). For each variable, depending on the map type, an
alloc (for alloc/from maps) or an init (for to/from maps) call is inserted at the
start of the body (Fig. 1, lines 12–13). If the variable is from/tofrom a finalize
call is inserted at the end of the body (Fig. 1, lines 28–29).1

3.2 Target

Each target directive is outlined similarly to parallel and task directives,
albeit with different handlers for the variables. We create a new data environ-
ment, as if the construct was a target data one (lines 8–13 in Fig. 1). All vari-
ables that have already appeared in any enclosing data environment are inserted
in the new one. Pointers to these variables are then placed in the devdata-struct,
which will be passed to the outlined function. The pointers are initialized using
runtime calls to get the address of the variables on the device space (lines 20–21).

1 Similar calls are used when transforming target update directives.

206 A. Papadogiannakis et al.

Original code:

#pragma omp target data map(x,y)

#pragma omp target map(from: x) device (2)

x=y=z=1;

Transformed code:

1 { // start target data
2 _devid = -1; // default device
3 _ddenv = _start_ddenv(NULL , _devid , ..);
4 _initvar (&x, sizeof(x), _ddenv , _devid);
5 _initvar (&y, ..);
6
7 { // start target
8 _devid = 2; // requested device
9 _ddenv_prev = _ddenv;

10 _ddenv = _start_ddenv(_ddenv_prev , _devid , ..);
11
12 _allocvar (&x, ..); // ignored if default device is 2
13 _initvar (&y, ..); // ditto
14
15 struct __dd__ {
16 int (* x);
17 int (* y);
18 int z;
19 } * _devdata = _devdata_alloc(_devid , sizeof(struct __dd__));
20 _devdata ->x = get_vaddress (&x, ..); // request address @device
21 _devdata ->y = get_vaddress (&y, ..);
22 _devdata ->z = z; // optimized
23
24 ort_offload_kernel(_kernelFunc0_ , _devdata , ..); // kernel code
25
26 z = _devdata ->z;
27
28 _finvar (&x, _ddenv);
29 _finvar (&y, _ddenv);
30
31 _end_ddenv(_ddenv);
32 } // end target
33
34 _finvar (&x, _ddenv);
35 _finvar (&y, _ddenv);
36 _end_ddenv(_ddenv);
37 } // end target data

Fig. 1. Compiler transformation example.

As an optimization, if a variable does not appear in any enclosing target data
directive, space for the variable is created directly within the devdata-struct,
instead of using a pointer (line 22).

In our example, the kernel body (x=y=z=1;) has been moved to an outlined
function kernelFunc0 (); the actual execution of the kernel occurs in line 24,
where the runtime call is given the function name and the devdata-struct.

3.3 Declare Target

When the compiler encounters a declare target region, it stores any contained
functions, function prototypes and variables in appropriate lists, and marks them

OpenMP 4.0 Device Support in the OMPi Compiler 207

in the symbol table. The body of the directive is left as is during the main
transformation phase of the code. Any declared variables within the declare
target region are ignored during the transformation of the target directive.

Host Code. The transformation for the declare target constructs occurs
after the normal transformation phase ends, where all the declared variables
have already been marked. A new static function is created in every source
file for registering the declared variables with the runtime. For each initialized
variable, a separate static variable is also created, using the same initializer. This
is needed by the runtime when the initialization of the declared variable takes
place on the available devices.

The above function is called whenever a target update or a target direc-
tive is met, which uses one of the declared variables. This guarantees that
the runtime registers all these variables before they are actually used. In addi-
tion, precautions are taken so that the operation is completed only once and
is not subject to concurrent invocations. Finally, the declared variables, which
are used in a target region, are placed in a separate struct and are given to
the runtime at offload time; in the example of Fig. 1, this struct would be an
additional argument to the offloading call in line 24.

Kernel Code. For each target directive we produce a separate kernel file.
The code of a kernel starts with the declared function prototypes. All variables
declared in declare target regions are converted to pointers. Then, we trans-
form the declared functions and the outlined function of the target directive,
replacing any occurrences of the declared variables by pointers.

Moreover, a wrapper function is created, which is the first function called
by the runtime library of the device. The wrapper serves two purposes; first it
initializes the pointers for the declared variables from the struct passed in the
offload function, and second, it calls the actual outlined kernel function.

4 Runtime Support

The runtime system of ompi has been extended to support part of the new fea-
tures of OpenMP 4.0. Except for the new runtime functions and environmental
variables, the existing worksharing infrastructure was updated to support the
cancellation directives. In addition, the tasking infrastructure adds preliminary
support for the taskgroup functionality, as well as for task dependencies.

Regarding the new device model, ompi is organized as a collection of modules
which implement support for accelerators. The core module which coordinates
OpenMP execution on the host is a largely unmodified version of the V3.1 run-
time of ompi; it is only augmented with functionality needed for the coordination
of devices, and with a device interface that acts as glue between the host and
the other device modules. On the other hand, new device modules are created,
with each of them responsible for the manipulation of a particular device. Each

208 A. Papadogiannakis et al.

module is divided into two parts; the first part is executed on the host and the
second is executed on the device, accompanying the offloaded kernels.

4.1 Data Environment Handling

The host device needs a bookkeeping mechanism in order to store and retrieve
information regarding the variables that constitute the data environments. This
information is used when the host accesses these variables for reading or writing,
for example during the mapping of a variable, before/after the execution of a
kernel, and when the target update directive is used. This information is also
used during the initialization phase of a kernel. Because of the arbitrary nesting
of data environments, and the possibility of multiple devices, the bookkeeping
cannot be statically handled at compile time. In what follows, we present our
runtime solution to this non-trivial problem.

To allow the host to have fast access to information regarding the variables
involved in a data environment, we utilize a special mechanism based on typical
separately-chained hash tables (ht). It works approximately as a functional-
style compiler symbol table [4], albeit operated by the runtime. A sequence of
nested data environments in the source program produces a dynamic sequence
of hts with entries for the mapped variables. The information stored on each
entry includes the id of the device which the mapping refers to, and a pointer
to the actual storage space of the variable. The hash function takes as input
the original variable address combined with the device number and returns the
corresponding bucket. Collisions are handled through separate chaining.

1 int a, b;

2

3 #pragma omp target data map(a) // DE1
4 #pragma omp parallel num_threads (2)

5 {

6 int c;

7 #pragma omp target data map(b) // DE2^(1), DE2 ^(2)
8 #pragma omp target map(a, c) // DE3^(1), DE3 ^(2)
9

10 }

Fig. 2. Nested device data environments created by a team of threads.

We present our mechanism through two illustrative examples; detailed analy-
sis follows right after. In Fig. 2 we show a code snippet where in line 3 a data
environment (de1) is created with the mapping of variable a. Then a team of
two threads is created on the host device and each thread defines a separate data
environment (de2(1) and de2(2)) which includes the variables a and b. Finally,
each thread offloads a code block, while at the same time creates a new data

OpenMP 4.0 Device Support in the OMPi Compiler 209

Fig. 3. Hash table sequence for code in Fig. 2. Solid yellow, dashed blue and mixed
black arrows denote allocations and definitions made at lines 3, 7 and 8, respectively
(Color figure online).

environment (de3(1) and de3(2)) which includes the variables a and c. All the
mappings in the example refer to the default device.

The sequence of hts for the above example is given in Fig. 3. The result of
line 3 is the creation of de1 which stores only one entry, that for variable a.
The creation of the thread team does not affect the bookkeeping mechanism,
and both threads can access the data of de1 without the need of locks. Line
7 defines de2(1) and de2(2) (one for each thread); this causes the creation of
new hts, both of which are created as copies of the previous ht. As a result,
each thread retains access to the enclosing data environment. The mapping of
variable b adds a new entry for de2(1) and de2(2) and the addition of a pointer
from the ht to this entry. Similarly, in line 8 we have the creation of new hts
that handle de3(1) and de3(2), respectively, as copies of the previous two hts.
In the case of the second thread, variable c is hashed onto bucket 12, which is a
free bucket. In contrast, variable c of the first thread caused a collision (hashed
onto bucket 5), resulting in a chain between the variables c and b.

An additional complication arises by the possible presence of multiple devices,
where a data environment may be nested within another environment that refers
to a different device, as can be seen in the code of Fig. 4. In this example, in
line 3, a data environment is defined for device 1 (de4), with variable d. Then,
de5 is created in line 4 for device 2 that includes variables d and e. Finally, de6
is created in line 5 for device 1 and a block of code is offloaded for execution.

210 A. Papadogiannakis et al.

1 int d, e, f;

2

3 #pragma omp target data map(d) device (1) // DE4
4 #pragma omp target data map(d, e) device (2) // DE5
5 #pragma omp target map(f) device (1) // DE6
6 {

7 e = d++; // implicit mapping of variable e
8 ... // in device 1
9 }

Fig. 4. Nested device data environments created for two different devices.

Fig. 5. Hash table sequence for code in Fig. 4. Solid yellow, dashed blue and mixed
black arrows denote allocations and definitions made at lines 3, 4 and 5, respectively
(Color figure online).

Notice that d is already mapped through de4 while there is an implicit mapping
for variable e on device 1. The corresponding sequence of hts is shown in Fig. 5.
In de4 there is only one entry for d on device 1. The ht for de5 starts with a
copy of de4; entries for variables d and e are then added in buckets 19 and 27,
correspondingly. Notice that because d now refers to device 2, the hash function
results to a different bucket than the one used for device 1. Finally, de6 starts as
a copy of de5 and has two entries added for variables f and e. Since d is already
present in the data environment of device 1, no further actions are required.

Details of the Mechanism. The data handling mechanism is operated by the
host, resides in the host address space, and is independent from any attached
devices. The hts allow for efficient variable insertion and look-up operations.
Each time a nested data environment is created, a new ht is initialized as a
copy of the ht used by the enclosing data environment, as in functional-style
symbol tables; destruction of the data environment requires a single memory
deallocation for the corresponding ht. If a team of threads is created within a

OpenMP 4.0 Device Support in the OMPi Compiler 211

target data region, separate hts are created, when needed, for each thread;
this completely eliminates mutual exclusion problems.

In addition, we employ a further optimization. When initializing a new data
environment for a particular device, the compiler informs the runtime about
the maximum possible number of variables added to the environment. This is
calculated statically during the analysis of the program; an exact number is not
possible to derive because the devices the environments refer to are given by
full expressions and can only be calculated at runtime, in the general case. In
practice, only variables not already mapped on this device are actually inserted
in the ht. Because of this information, the runtime is able to acquire memory for
the ht and the entries in a single allocation request (this explains why in Figs. 3
and 5 the hts and the corresponding entries lie within the same rectangle). This
also has the desirable side-effect of increased data locality, as the hash table and
the entry information reside on the same memory block.

The space requirements of the presented mechanism have an upper bound of
O(L · K + n), where L stands for the maximum number of alive data environ-
ments, K is the size of a hash table (derived from the static compiler information
discussed above) and n is the total number of variables that are mapped in all
data environment definitions. In a program that defines a total of E data environ-
ments, exactly Θ(E) of memory allocations and deallocations are made, which
include the memory required for the ht and the memory used for the entries.
With a load factor at most equal to 1, the average time for an insertion or a
lookup is Θ(1).

5 The Epiphany Accelerator as a Device

The Parallella-16 board [2] is a popular 18-core credit card-sized computer and
comes with standard peripheral ports such as usb, Ethernet, hdmi, gpio, etc.
The computational power of the board comes from its two processing modules.
The main (host) processor is a dual-core arm Cortex A9 with 512 KiB shared
L2 cache, built within a Zynq 7010 or 7020 SoC. The other is an Epiphany 16-
core chip which is used as a co-processor. The board has 1 GiB of ddr3 ram,
addressable by both the arm cpu and the Epiphany. The former runs Linux OS
and uses virtual addresses, whereas the latter does not have an OS and uses a
flat, unprotected memory map.

Two versions of the Epiphany co-processor are actually available: the Epipha-
ny-16 (with 16 cores and a 4×4 mesh NoC) and the Epiphany-64 (with 64 cores
and an 8 × 8 mesh). Although our discussion here holds for both versions, we
refer mostly to the first one since it is the one widely available. Each Epiphany
core (ecore) is a 32-bit superscalar risc cpu, clocked at 600 MHz, capable of
performing single-precision floating point operations, and equipped with 32 KiB
local scratchpad memory and two dma engines. The arm and the Epiphany
use a 32 MiB portion of the system ram as shared memory which is physically
addressable by both of them. All common programming tools are available for the
arm host processor. For the Epiphany, a Software Development Kit (esdk [1])

212 A. Papadogiannakis et al.

is available, which includes a C compiler and runtime libraries for both the
host (ehal) and the Epiphany (elib). Furthermore, OpenCL is provided by the
coprthr sdk [6]. The latter also provides a threading api similar to posix.

5.1 Runtime Organization

In this section we will briefly describe the key features of the runtime module
that implements the support of the Epiphany accelerator as an OpenMP 4.0
device, based on the esdk. More details are available in [3]. The module consists
of two parts; one executed by the host cpu and one executed by the ecores.

The Host Part. The communication between the Zynq and the ecores occurs
through the shared memory portion of the system ram. The shared memory is
logically divided in two sections: The first section has a fixed size of 4 KiB, and is
used transparently by ompi for kernel coordination and manipulation of parallel
teams created within the Epiphany. The second part is used for storing the
kernel data environments and part of the tasking infrastructure of the Epiphany
OpenMP library.

In order to be able to control the ecores independently through ehal calls,
the initialization phase creates 16 workgroups, one for each of the available
Epiphany cores and puts them to the idle state for energy and thermal efficiency.
For offloading a kernel, the first idle core is chosen and the precompiled kernel
object file is loaded to it for immediate execution. Due to the high overheads
of the esdk when offloading kernels to different workgroups, we developed an
optimized low-level offload routine to assist the creation of OpenMP teams.
We support multiple, independent kernels, executing concurrently within the
Epiphany. Because the current version of ehal does not provide a way for an
ecore to notify directly the host for kernel completion, a special region of the
shared memory is designated for synchronization with the ecores.

For the target teams directive special care is taken regarding the choice of
the ecores which will execute the associated kernel. In order to keep intra-team
NoC traffic localized, the team masters are placed as if a spread thread affinity
policy was in effect for them. For example, if all ecores are idle and the creation
of 4 teams is requested, then the ecores with ids 0, 3, 12 and 15 (the ones in
the four corners on the 4 × 4 grid) will be activated.

OpenMP Within the Epiphany. Supporting OpenMP within the device side
presents many challenges due to the lack of dynamic parallelism and the limited
local memory of each ecore. Regarding the former, when a kernel is offloaded to
a specific ecore, the core executes its sequential part until a parallel region
is encountered. Because only the host can activate other ecores, the master
core contacts the host, requesting the activation of a number of cores. A copy
of the same kernel is then offloaded to the newly activated cores. During the
parallel code execution all synchronization between the cores occurs through
their fast local memories. When the region completes, the cores return to the

OpenMP 4.0 Device Support in the OMPi Compiler 213

idle, power saving state, while the master core informs the host thread about
the termination of the parallel team.

The small scratchpad memory makes it impossible to fit sophisticated
OpenMP runtime structures alongside the application data. To support the
worksharing constructs of the OpenMP, the infrastructure originally designed
for the host was trimmed down so as to minimize its memory footprint; this is
linked and offloaded with each kernel. The coordination among the participat-
ing ecores utilizes structures stored in the local memory of the team master.
The esdk provides mechanisms for locks and barriers between the ecores but
they assume that the synchronized cores belong to same workgroup. Since in
our runtime each ecore constitutes a different workgroup, we were forced to
modify all these mechanisms. Finally, our tasking infrastructure is based on a
blocking shared queue stored in the local memory of the master ecore, while
the corresponding task data environments are stored in the shared memory.

5.2 Experiments

We have conducted a number of tests in order to measure the efficiency of
our offloading mechanisms alongside the space and timing performance of the
OpenMP runtime within the Epiphany accelerator. Our board is the Parallella-
16 SKUA101020 and we use esdk 5.13.9.10. To examine the memory overhead
of our Epiphany-resident runtime, we created a set of simple OpenMP programs
to compare with the size of the kernels produced when the native elib is used.
In the case of an empty kernel, containing only a single assignment ompi incurs
a 4.5 KiB overhead as compared to the kernel created by the native elib. In
other scenarios which involved a team of 16 cores and complex OpenMP func-
tionality, up to 10 KiB more than a similar elib-based kernel were needed. We
are currently optimizing the runtime memory footprint even more.

In order to measure the OpenMP construct overheads within the Epiphany,
we created a modified version of the epcc microbenchmark suite [7] where their
basic routines are offloaded through target directives. In Fig. 6 we plot a sample
of the synchronization benchmark results. While most results are quite satisfac-
tory, our initial prototype employs a non-optimized barrier, which also has a
direct impact on the overheads of the for construct. We are currently optimiz-
ing its behavior. Sample results for the tasking benchmark are given in Fig. 7.
The noticeable cases are those of the Taskwait and Master task tests. The con-
tention on our simple lock-based shared task queue is quite high in these tests
and shows up vividly in the case of 16 threads. Our implementation can be
further improved, but at this point we strive mostly for functional correctness.

Finally, we include performance results for a few simple OpenMP applica-
tions. In Fig. 8 we plot timing results for a typical iterative computation of
π = 3.14159, based on the trapezoid rule with 2,000,000 intervals, and using a
kernel which spawns a parallel team of 1 to 16 threads. While the scalability is
almost ideal, the serial execution is quite slow; the reason is that the Epiphany
does not support double-precision numbers natively and the ecore floating point

214 A. Papadogiannakis et al.

Fig. 6. EPCC synchronization results Fig. 7. EPCC tasking results

Fig. 8. Pi computation Fig. 9. Nqueens(12)

unit does not implement division. In Fig. 9 we present the performance of a mod-
ified version of the Nqueens task benchmark, taken from the Barcelona OpenMP
Tasks Suite (BOTS) [10]. This application computes all solutions of the n-queens
placement problem on an n×n chessboard, so that none of the queens threatens
any other. Due to the severe memory limitations of the Epiphany, we considered
the manual cut-off version of the benchmark, where the nested production of
tasks stops at a given depth. The figure shows the timing results for 12 queens,
and a cut-off value of 2 (144 tasks produced). As it can be seen, with the addition
of ecores we obtain an almost linear speedup.

6 Discussion and Current Status

We presented the infrastructure of the ompi compiler related to the new OpenMP
4.0 device model. We put an emphasis on the efficient handling of data environ-
ments both from the compiler and the runtime sides, because the specifications
allow considerable freedom in the way data environments can be nested. Our
infrastructure is used to support OpenMP within the popular Parallella board,
where we treat the Epiphany-16 as an accelerator device, attached to a dual-core
arm host processor, allowing the dynamic creation of parallel teams within the
device itself. We are currently focused on optimizing our system, and supporting
additional OpenMP 4.0 functionality.

OpenMP 4.0 Device Support in the OMPi Compiler 215

From our experimentation with the Parallella board, it became clear that
offloaded kernels should not make use of sophisticated OpenMP features, in
devices with limited resources. We also observed that a major overhead is the
time needed to offload a kernel. If the computation is structured in a way where
kernels are repeatedly offloaded, to operate on different data each time, then it
is questionable whether the application will experience significant performance
gains. For such scenarios, we believe that support of resident kernels may bring
considerable improvements. A kernel would be offloaded only once, while at spe-
cific points the host would communicate new data (through target updates) for
the kernel to operate on. Of course, this would also require new synchronization
mechanisms between the kernel and the host task, which could be part of future
OpenMP extensions.

Acknowledgment. The authors would like to thank Adapteva for providing them
with a Parallella-16 board through the Parallella University Program.

References

1. Adapteva: Epiphany SDK reference Manual, September 2013
2. Adapteva: Parallella Reference Manual, September 2014
3. Agathos, S.N., Papadogiannakis, A., Dimakopoulos, V.V.: Targeting the parallella.

In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp.
662–674. Springer, Heidelberg (2015)

4. Appel, A.W.: Modern Compiler Implementation in C. Cambridge University Press,
Cambridge (1999)

5. Bertolli, C., Antao, S.F., Eichenberger, A.E., O’Brien, K., Sura, Z., Jacob, A.C.,
Chen, T., Sallenave, O.: Coordinating GPU threads for OpenMP 4.0 in LLVM. In:
Proceedings of LLVM-HPC 2014, New Orleans, Louisiana, pp. 12–21, November
2014

6. Brown Deer Technology, LLC: COPRTHR API Reference (2014)
7. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:

Proceedings of 1st EWOMP, Lund, Sweden, pp. 99–105, September 1999
8. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early experiences

with the OpenMP accelerator model. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg (2013)

9. Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler for
OpenMP V. 2.0. In: Proceedings of EWOMP 2003, Aachen, Germany, pp. 5–11,
September 2003

10. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: Proceedings of ICPP 2009, Vienna, Austria, pp. 124–131, September
2009

11. GNU: GCC 5 Release Series. https://gcc.gnu.org/gcc-5/changes.html
12. Intel Corporation: User and Reference Guide for the Intel C++ Compiler 15.0,

OpenMP* Support. https://software.intel.com/en-us/node/522679
13. Khronos OpenCL Working Group: The OpenCL Specification Version: 1.2, Novem-

ber 2012

https://gcc.gnu.org/gcc-5/changes.html
https://software.intel.com/en-us/node/522679

216 A. Papadogiannakis et al.

14. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-
on Approach, 2nd edn. Morgan Kaufmann, San Francisco (2012)

15. Mitra, G., Stotzer, E., Jayaraj, A., Rendell, A.P.: Implementation and optimization
of the OpenMP accelerator model for the TI keystone II architecture. In: DeRose,
L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP
2014. LNCS, vol. 8766, pp. 202–214. Springer, Heidelberg (2014)

16. Newburn, C., Deodhar, R., Dmitriev, S., Murty, R., Narayanaswamy, R., Wiegert,
J., Chinchilla, F., McGuire, R.: Offload Compiler Runtime for the Intel Xeon PhiTM

Coprocessor. In: Proceedings of ISC 2013, Leipzig, Germany, pp. 239–254, June
2013

17. OpenACC: The OpenACC Application Programming Interface, V. 2.0, June 2013
18. OpenMP ARB: OpenMP Application Program Interface V4.0, July 2013

Energy

Application-Level Energy Awareness
for OpenMP

Ferdinando Alessi1, Peter Thoman1(B), Giorgis Georgakoudis2,
Thomas Fahringer1, and Dimitrios S. Nikolopoulos2

1 University of Innsbruck, Innsbruck, Austria
{petert,tf}@dps.uibk.ac.at

2 Queen’s University of Belfast, Belfast, UK
{g.georgakoudis,d.nikolopoulos}@qub.ac.uk

Abstract. Power, and consequently energy, has recently attained first-
class system resource status, on par with conventional metrics such as
CPU time. To reduce energy consumption, many hardware- and OS-
level solutions have been investigated. However, application-level infor-
mation - which can provide the system with valuable insights unattain-
able otherwise - was only considered in a handful of cases. We introduce
OpenMPE, an extension to OpenMP designed for power management.
OpenMP is the de-facto standard for programming parallel shared mem-
ory systems, but does not yet provide any support for power control. Our
extension exposes (i) per-region multi-objective optimization hints and
(ii) application-level adaptation parameters, in order to create energy-
saving opportunities for the whole system stack. We have implemented
OpenMPE support in a compiler and runtime system, and empirically
evaluated its performance on two architectures, mobile and desktop. Our
results demonstrate the effectiveness of OpenMPE with geometric mean
energy savings across 9 use cases of 15 % while maintaining full quality
of service.

1 Introduction

Mobile computing devices such as laptops, tablets and smartphones are becom-
ing more widespread. The performance that these devices offer is increasing at
a steady pace, with octa-core processors powering contemporary smartphones.
Mobile systems are even being considered as low-cost energy-efficient candidates
for HPC [19]. However, mobility comes at a price: energy is a scarce resource
on these devices, especially with power-hungry media consumption constituting
a major use case. Furthermore, mobile computing is not the sole field where
energy is increasingly relevant - the tremendous increase in power consumption
by performance-oriented servers has made power budgeting unavoidable in HPC
as well.

Several solutions have been proposed to address the energy problem on dif-
ferent levels. On the hardware level, energy-driven circuit design and features
such as multiple available dynamic voltage and frequency scaling (DVFS) lev-
els are widely employed. Proposed energy-aware OSes exploit these operating
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 219–232, 2015.
DOI: 10.1007/978-3-319-24595-9 16

220 F. Alessi et al.

modes according to actual and predicted device load, in some cases with addi-
tional knowledge provided by the application itself [22]. On the user level, frame-
works have been introduced to implement content adaptation policies based on
resource availability [2] and more generally to define a power management strat-
egy steering multi-mode operating devices [14]. While system-level approaches
have been explored to a certain extent, we believe there still exists a lot of room
for improvement on the application level since no power management interface
that can be considered complete, generic and easy to use has been proposed
so far.

To fill this gap we propose a dedicated API for application-level energy aware-
ness – and, more generally, multi-objective optimization. Rather than designing
a completely new interface, we opt for extending OpenMP API [16], the de-
facto standard for parallel shared-memory computing. Our choice is driven by
the inherent parallelism of modern architectures, which exposes opportunities to
save energy requiring close interaction with the parallel runtime system.

This paper explores application-level energy saving opportunities through the
specification, implementation and evaluation of OpenMPE – an OpenMP exten-
sion for Energy. OpenMPE adds new directives and clauses to enable per-region
customization of multiple optimization objectives and tunable parameters. We
provide three major contributions:

– A novel API for application-level energy-aware programming, allowing pro-
grammers to expose energy saving opportunities through (i) characterizing
application behavior by providing a semantic region structure, (ii) setting per-
code region multi-objective goals and constraints, and (iii) exposing
application-level tunable parameters.

– A compilation and runtime system supporting OpenMPE. The runtime sys-
tem exploits opportunities exposed by programmers through several tech-
niques such as dynamic voltage and frequency scaling, dynamic concurrency
throttling (DCT), and application-level content adaptation.

– An empirical evaluation of the effectiveness of OpenMPE. A video codec ref-
erence implementation is enriched with OpenMPE and benchmarked on a
desktop and mobile platform.

The rest of this paper is organized as follows: Sect. 2 motivates the proposed
research work. Section 3 introduces OpenMPE, and Sect. 4 presents a compiler
and runtime prototype implementation. To demonstrate the validity of our exten-
sion, experimental results are shown in Sect. 5. Related work and our conclusions
are presented in Sects. 6 and 7, respectively.

2 Motivation

In this section we illustrate the three main considerations that motivate our
proposed OpenMPE extensions.

Firstly, single-objective optimization is no longer sufficient. While execution
time was the main and only concern in the past, with the advent of mobile plat-
forms and the currently unsustainable energy consumption of supercomputers,

Application-Level Energy Awareness for OpenMP 221

new objectives must be considered as well. With OpenMPE, energy and power
are also raised to first-class resources, forming a total of four, potentially con-
flicting, goals with the inclusion of quality of service. Furthermore, our generic
design is extendable for any additional objectives which might become relevant
in the future.

A second observation concerns phase detection, which is still generally hard
without application-level support. Different program regions have different
requirements and applying the same optimization strategies without distinc-
tion can deteriorate optimization goals such as execution time and energy use.
Consequently, correctly identifying program phases is a main concern for dynam-
ically adaptable systems. Many solutions have been proposed so far to detect
and predict program behavior automatically, both online and offline, yet cur-
rent techniques still suffer from overhead and misclassification [4]. Therefore, we
believe that allowing developers to easily expose program phases directly at the
application level is the most practical approach.

1
6
0
0

1
5
0
0

1
4
0
0

1
3
0
0

1
2
0
0

1
1
0
0

1
0
0
0

9
0
0

8
0
0

1
2
0
0

1
1
0
0

1
0
0
0

9
0
0

8
0
0

7
0
0

6
0
0

5
0
0

0

1

2

3

Cluster switch

CPU frequency [MHz]

A
v
g

p
ow

er
[W

]

10

15

20

25

F
ra

m
e

ra
te

[F
P

S
]

Fig. 1. Average power consumption of a video decoder at various DVFS levels

Thirdly and most crucially, application semantics are not derivable by under-
lying layers. Functional constraints and goals are only known by the application
programmer. For example, in soft real-time use cases, the time constraints are
unknown to underlying layers unless explicitly communicated. As such, devel-
opers have access to important information that is unattainable by runtime and
operating systems: in this paper we demonstrate how beneficial it can be to
forward such application-level knowledge to underlying layers.

As a concrete example of this issue, Fig. 1 illustrates the average power con-
sumption of a video decoder executed at multiple CPU frequencies. This data
was collected on a mobile development board (detailed in Sect. 5) where two
heterogeneous CPU clusters coexist. Points to the left of the “Cluster switch”

222 F. Alessi et al.

line depict the results when using all 4 low power cores, while the ones to the
right use the high power cores. As the frequency is lowered, the average power
decreases but the same occurs for the frame rate achieved by the application:
only the performance-oriented cluster can maintain an optimal frame rate (of
24 FPS for the given video), down to a minimum of 1100 MHz. Clearly, this
frame rate threshold should be taken into account by DVFS algorithms, but the
desired framerate is semantic information only known at the application level.

As a side rationale, ease of use cannot be disregarded while designing an
application-level interface. Our choice for a minimal directive-based API exten-
sion is intended to address this point.

3 OpenMPE

OpenMPE is based on OpenMP 4 and extends it for multi-objective optimiza-
tion. Preserving the execution and memory models, directives and API functions
defined in the base OpenMP language, OpenMPE adds one new construct and
two clauses as listed in Table 1. Both clauses may annotate the parallel, for,
task and region constructs.

Explicit regions Since OpenMP addresses parallel computing, it allows marking
code regions for parallelization, worksharing and synchronization. While adding
clauses to existing constructs would be sufficient to achieve our goals for such
regions, for completeness we also offer the possibility to delineate code regions
independently of parallelization purposes, by introducing the region construct.
The region construct defines a region encompassing the subsequent single-entry-
single-exit language block. This construct supports both OpenMPE clauses, and
its syntax is specified in Table 1.

Multi-objective optimization goals By means of this clause, programmers can
instruct the system about multi-objective optimization goals in terms of execu-
tion time, power, energy and quality of service for a specific code region: the

Table 1. OpenMPE constructs and clauses

Constructs
// Definition of an explicit region
#pragma omp region [objective(...)] [param(...)]

structured-block

Clauses
// Specification of a multi−objective optimization goal
objective(weights : constraints)
// Specification of a tunable parameter
param(var, [range(value-range:quality-range) | enum(values, size:quality-range)])

Application-Level Energy Awareness for OpenMP 223

compiler and runtime system are guided by the objective clause in their trans-
formation and resource allocation policies.

Objectives can be expressed through a set of weights or constraints with the
following syntax:

weights = f1 ∗ P1 + f2 ∗ P2 + · · · + fN ∗ PN

constraints = {Pi < ci; constraints} | ∅

where ci ∈ R, fi ∈ R and
∑i<=N

i=1 fi = 1.0. Pi can be any of the non-functional
parameters associated with the given region of execution: T (execution time),
P (power consumption), E (energy consumption) or Q (quality of service). The
unit for ci is, respectively, seconds, watts, joules, or a pure integer value. While
estimating performance in terms of execution time, power and energy consump-
tion is straight-forward, quality of service requires a specific definition. We define
the quality of service delivered by a code region indirectly by its degradation, as
an integer value between 0 and ∞ where 0 is the best achievable.

Some usage examples of the objective clause are:

1 #pragma omp ... objective(E)
2 #pragma omp ... objective(0.8∗E+0.2∗T)
3 #pragma omp ... objective(T : P<p)

On line 1 the programmer instructs the OpenMPE system to attempt minimizing
the energy consumption for executing the binding region. Instructed with line
2, the system performs a weighted optimization between energy and time, with
0.8 as the weighting factor for energy and 0.2 for time. Processing line 3, the
system tries to achieve the minimum run time possible while staying below a
given power consumption p (specified in watts in double precision floating point
– p can be a dynamically evaluated expression).

Tunable application parameters The param clause specifies tunable parameters
affecting the behavior of the program which are not introduced by the compiler
or hardware platform but are inherent in user code. Its syntax specifies a base
language variable storing the tunable parameter and either (i) range specified as
a lower bound expression, upper bound expression and step, all three expressions
of the same type as the variable, (ii) enum specified as a base language array
storing elements of the same type as the variable and the size of the array,
or (iii) if the variable type is boolean, no range or enum expressions need to
be specified. Each of these specifications can optionally be enriched with an
expression defining the mapping between possible values for the variable and
quality-of-service ratings, evaluated by the system to achieve Q objectives.

Some usage examples of the param clause are:

1 #pragma omp ... param(rate, range(24, 74, 10))
2 #pragma omp ... param(rate, range(24, 74, 10: 5, 0, −1))
3 #pragma omp ... param(name, enum(names array, names len)

224 F. Alessi et al.

The example on line 1 specifies that the base language variable rate can assume for
the binding code region any value val which satisfies val = 24+ i ∗ 10; val <= 74
where i ∈ N . Line 2 enriches the semantics of line 1 with a mapping to quality
weights: a rate of 24 has an associated quality metric of 5, 34 maps to quality 4
and so on up to value 74 with quality 0 (the best possible). With line 3, the value of
the variable name for the binding code region is picked by the OpenMPE runtime
system among the first names len elements of the array names array.

4 Compilation and Runtime System

This section outlines a reference implementation of OpenMPE, built upon the
Insieme project [12]. It comprises two central components, the Insieme Compiler
and the Insieme Runtime System (Insieme RS). To implement OpenMPE, these
were modified by extending (1) the compiler frontend to process OpenMPE
clauses and directives, (2) both the Insieme internal representation and encoding
of meta-information statically collected by the compiler to reflect OpenMPE
semantics, (3) the compiler backend to forward OpenMPE meta-information to
the runtime system, (4) the runtime system framework to acquire OpenMPE
information and achieve defined multi-objective goals through an optimization
algorithm, and (5) the runtime system instrumentation facilities according to
the requirements of the optimization algorithm.

Source-to-source compilation The Insieme compiler is a source-to-source com-
piler for C/C++ which supports OpenMP. Source code is translated into an
internal representation (IR), optimizations are performed, and it is converted
back to C. Figure 2 depicts the compilation process.

#pragma omp
parallel
objective(

0.6*E +
0.3*T +
0.1*P: Q<4)

fun();

C & OpenMPE

Frontend
merge(parallel
(job([1-inf],
fun)));

INSPIRE
E:0.6
T:0.3
P:0.1
Q:0-3

Backend

variants = {
fun,.6,.3,.1
};

rt mer(rt par(
&variants[0]

));

C

C
om

pi
le
r

1
2
3
4
5
6
7

1
2
3
4
5
6
7

void rt par(...)
{
eopt conf();
...
eopt eval();

}

R
un
tim

e
Sy
st
em01101101101

01010101011
10110111010
01101011010
11100111111
11000011101
1100001 ...

Binary

GCC

Fig. 2. OpenMPE compilation workflow

Application-Level Energy Awareness for OpenMP 225

To integrate OpenMPE directives into Insieme, we directly translate region
and param directives into IR constructs, while the objective clause is handled as
meta-information annotating IR nodes. The compiler backend was extended to
convert this representation into suitable Insieme RS calls and meta-information
into appropriate C data structures.

Runtime system Insieme RS is an execution framework complementing the
Insieme Compiler. Its application model is based on low-overhead user-level task
processing and scheduling enriched by the availability of a large set of meta-
information. It features a powerful instrumentation infrastructure capable of
collecting per-region performance data from a variety of architectures and APIs,
including PAPI, Intel RAPL – taking care of potential overflow issues – and an
interface specifically designed for the mobile system described in Sect. 5.

Within the scope of OpenMPE, the runtime system is also responsible for
achieving per-region multi-objective goals specified by programmers. An addi-
tional module, the e-optimizer , was introduced for this purpose. Its task is the
(re)configuration of available optimization knobs based on collected performance
data to fulfill defined per-region objectives. In this implementation, we consider
as optimization knobs system-level features such as DVFS and DCT as well as
OpenMPE tunable parameters exposed via the param clause.

iteration iteration counter
done true if a definitive configuration has been identified
best conf best configuration found so far
best perf data performance data for the best configuration
curr conf current configuration
THRESHOLD iterations before hill climbing

1: if !done then
2: if iteration++ < THRESHOLD then
3: curr conf = random selection()
4: else
5: (curr conf, done) = hill climbing()
6: end if
7: else
8: curr conf = best conf
9: end if

10: annotated task()
11: if !done and get curr perf data() > best perf data

and constraints are satisfied(get curr perf data()) then
12: best perf data = get curr perf data()
13: best conf = curr conf
14: end if

Fig. 3. The e-optimizer algorithm

226 F. Alessi et al.

The e-optimizer , outlined in Fig. 3, is an online optimizer, exploiting the fact
that objective enriched code regions are typically executed several times. For
one, the objective clause augments constructs such as for which semantically
require multiple executions. Moreover, many applications iterate over those con-
structs, as is the case for the benchmark described in Sect. 5. This structure
provides an opportunity to evaluate different configurations for the same task
in a single program execution. To this end, e-optimizer configuration and eval-
uation function calls are inserted at the beginning and end of each code region
representing a task annotated with multi-objective goals. During the configura-
tion phase, a configuration of optimization knobs is selected, including a specific
CPU frequency, number of threads to employ and a set of values for the possible
param variables. During the evaluation phase, performance data is collected and
stored for the previous configuration and region. After a given task has been
executed a threshold number of times, the e-optimizer picks the best configura-
tion fulfilling the defined goals among the ones evaluated. This configuration is
subsequently refined by a multi-dimensional hill climbing over all optimization
knobs until a definitive solution is found. Configurations are initially selected
randomly for two main reasons: (a) it is not trivial to determine how different
values for a specific knob will affect energy consumption (reducing core fre-
quency will reduce power consumption but execution time will increase) and (b)
to mitigate the issue of local optima which might occur in a pure hill-climbing
approach.

5 Evaluation

To demonstrate the effectiveness of OpenMPE, we have annotated an existing
real-world application with our proposed API. We subsequently employed our
reference OpenMPE compiler and runtime system, and analyzed the energy con-
sumption of the resulting program on two distinct hardware architectures. The
results obtained with our implementation are compared to the same application
parallelized with plain OpenMP and compiled by GCC.

Hardware setup For our experiments we use systems representative of two device
classes, mobile and desktop. The mobile system is an ODROID XU+E developer
board based on a Samsung Exynos 5 Octa (5420) SoC, implementing the ARM
big.LITTLE architecture comprising a Cortex-A15 quad-core and a Cortex-A7
quad-core. Either one of the clusters can be active at a time and both offer
DVFS, with 9 frequencies available for the Cortex-A15 and 8 for the Cortex-A7.
The board is equipped with current and voltage sensors to individually measure
power consumptions of both core clusters, memory and gpu.

The desktop system is an Intel i7-3770k Ivy Bridge quad-core offering 16
frequency settings. For this system, energy estimations are collected from the
Intel RAPL interface. In terms of software infrastructure, the Exynos board
runs Linux kernel version 3.4.75, while the Ivy Bridge system uses 3.11.0. GCC
4.8.3 was employed as the backend compiler and for comparison purposes on
both systems.

Application-Level Energy Awareness for OpenMP 227

Benchmark application To evaluate our proposal we choose an application from
the benchmark suite MediaBench II [8]. Among the available options we selected
tmndec, a video decoder based on the ITU H.263 standard. Although more recent
codecs are available in the suite, their far greater complexity would add major
engineering and parallelization effort to our study while not providing significant
new insight. We optionally enable vertical and horizontal deposterization filters
in order test our proposal on additional load scenarios.

1 #pragma omp parallel for schedule(dynamic)
2 for (int y=0; y<rows; y+=2)
3 for (int x=0; x<cols 2; x++) { ... }

Listing 1.1. tmndec main loop parallelized using a dynamic schedule

1 #pragma omp parallel for schedule(dynamic)
objective(E : T<1/f rate; Q<3) param(scaling, range(1:8:1))

2 for (int y=0; y<rows; y+=2∗scaling)
3 for (int x=0; x<cols 2; x+=scaling) {
4 ...
5 if(scaling > 1) { ... }
6 }

Listing 1.2. tmndec with multi-objective goals and tunable parameter

Since tmndec is a purely sequential implementation, as a first step we par-
allelize it via OpenMP. The application features a central two-level nested loop
which accounts for video frame decoding: thus, it was a prime target for opti-
mization (Listing 1.1).

Semantically, this code region needs to be executed sufficiently fast such that
the application can still achieve its target frame rate. A constraint of this type
is easily expressible through OpenMPE as shown in Listing 1.2. The weights
expression of the objective hints at a minimization of energy consumption
without regard for power or time, while the constraints expression guarantees
that a specific frame rate f rate is maintained.

Finally, we introduce content-adaptation by the OpenMPE param clause and
a constraint on the quality of service. With the addition of the subsampling factor
scaling it is possible to adjust the resolution – and thus quality – of the decoded
video. As shown in Listing 1.2, the param clause indicates that the variable scaling
can assume any integral value in range [1,8] at runtime. Subsampling is enabled
accordingly on line 5. The addition of the quality constraint (Q<3) prevents the
optimizer from choosing scaling factors which significantly degrade quality – a
user-adjustible variable could be employed in real-world scenarios.

Experimental results We performed experiments using two resolutions, 704×576
(4CIF) and 1408×1152 (16CIF), and for each of them we used three load vari-
ants: (i) full (horizontal and vertical) deposterization, (ii) a single vertical depos-
terization pass, and (iii) no filter at all. On the mobile system only the 4CIF
resolution was tested, while both were explored on the desktop system for a total
of 6 configurations. For comparison purposes, the ondemand cpufreq governor

228 F. Alessi et al.

[17], default for most Linux systems, was also evaluated for each configuration.
It sets the CPU frequency based on OS-level CPU usage tracking, without access
to application-level information.

The e-optimizer search phase is generally very short (around 20 frames, less
than a second) and will not significantly impact performance in production sce-
narios. However, for our testing, the insufficient temporal resolution of the energy
measurement hardware provided by our mobile system required us to evaluate
the otherwise single execution of each OpenMPE code region in groups, with
a resulting expansion of the e-optimizer search time. A longer, realistic video
playback scenario would still mitigate this initial loss of performance but would
also dramatically increase the experiment duration. For this reason, the data
collected from our experiments and shown in Fig. 4 is limited to the final 3000
frames of a 12000 frames video.

double filter single filter no filter
0

20

40

60

80

23
.9

1

23
. 9

23
.9

23
.8

8

23
.9

23
.9

223
.8

9

23
.8

8

23
.9

1

23
.9

1

23
.9

1

23
.9

E
ne

rg
y

[j]

cpufreq ondemand
OMPE DVFS
OMPE +DCT
OMPE +param

(a) Mobile platform, 704x576 resolution

double filter single filter no filter
0

200

400

600

800

1,000

1,200

24 24

24

24

24 24

24 24

24

24

24 24

E
ne

rg
y

[j]

(b) Desktop platform, 704x576

double filter single filter no filter
0

200

400

600

800

1,000

1,200

1,400

24

24

24

24

24

24

24

24

24

24 24

24

E
ne

rg
y

[j]

(c) Desktop platform, 1408x1152

Fig. 4. Energy consumption of tmndec with different optimization knobs and filtering
applied; frame rate achieved noted on top of each bar

Application-Level Energy Awareness for OpenMP 229

When discussing the results presented in Fig. 4, we would first like to note
that despite the energy savings it achieves, our system maintains a quality of
service (FPS, as indicated by the numbers on each bar in the chart) on par with
the reference governor in all scenarios. Some observations can be made across
both platforms and are related to the features of this particular benchmark
application: (1) allowing the e-optimizer to use DCT capabilities (+DCT) does
not add to energy gains for this testing scenario. This is due to the fact that both
systems provide an ample variety of DVFS frequencies, and that the algorithm
features nearly linear parallel scaling. (2) the addition of content-adaptation
(+param) is not effective when no filters are applied, as in such cases the overall
computational load is very small. (3) the geometric mean of the energy savings
achieved by our system using all of its capabilities compared to the baseline,
across all 9 scenarios, is 15 %.

On the mobile system we observe a large range of findings from an energy
point of view, with our system performing significantly better than the onde-
mand governor for the full filter configuration, saving up to 77 % energy, while
managing about 20 % energy savings in the single filter case and performing
on par with no filtering. This range of effectiveness is related to the relative
CPU load incurred in the various scenarios: in the very low-load no-filtering sce-
nario, the default governor is able to determine that the lowest CPU frequency
is sufficient because of the long sleep periods of the application, bringing its
performance up to par with our approach.

On the desktop system achieving an optimal frame rate is not an issue and
our implementation generally performs better than the cpufreq governor with
energy savings up to 31 %. Once again, the only exception is the 704×576 res-
olution scenario with no filtering: due to the comparatively light computational
load of this configuration, both approaches detect that the lowest possible fre-
quency setting is sufficient. It is interesting to note that even though the range
of available frequencies is larger on the desktop system, they offer a smaller
gain in terms of energy savings compared to the mobile system. This is evident
from Fig. 4c: the desktop system is capable of maintaining an optimal frame rate
with each of the available frequencies, but the energy savings with DVFS, while
significant, are comparatively minor remaining between 12 % and 18 %.

6 Related Work

Proposed solutions for energy and power management range from the lowest to
the upper levels of the system stack involved: hardware-, system software- and
application-based approaches have been investigated over the last decade.

At the hardware level, energy savings can be achieved through low-power
circuit design [1] or providing different operational modes for a particular com-
ponent [9].

At the system software level, studies range from energy-oriented operating
systems [5,15,18], over compilers [11,21] to runtime systems [10,20]. Interactions
between OpenMP and energy consumption have also been investigated. A pure

230 F. Alessi et al.

OpenMP runtime that applies DVFS and DCT according to predicted perfor-
mance of application phases has been proposed [3], and this concept was also
generalized to hybrid MPI/OpenMP programming [13]. However, none of these
works consider application-level knowledge for power management.

At the application level, Odyssey [6,7] is one of the first projects to demon-
strate the benefits of content adaptation for a reduced energy profile. In this
work, the user provides a goal for battery duration to the operating system that,
assessing the system status, informs the application about a target quality for the
output. A multimedia oriented operating system is proposed with Grace OS [22].
With starting time and duration of tasks provided by applications, Grace OS
determines a system-wide CPU voltage and frequency. A more generic approach
is evaluated within Anole [2]. This proposed framework updates the application
about the current energy status of the device and the application can then adapt
its behavior in an arbitrary manner. Notifications about energy availability are
forwarded to the operating system as well: hardware and service adaptation can
then be offered through ad-hoc modules. A different triggering strategy charac-
terizes the Chameleon interface [14]. A compliant application does not react to
energy events, rather it can monitor processor load and set a desired speed.

Even though some of these studies pro pose power management interfaces with
application-level involvement, they differ substantially from our work. Previous
work focuses on dynamic objectives and overall system load, while we opt for high-
lighting per-application-region static energy saving opportunities to the underly-
ing levels of the system. The OpenMPE API, compared to prior work, is:

– less intrusive and easier to integrate, since we provide a minimal directive-
based interface,

– more expressive, since it is possible to directly specify energy constraints
(power budgeting) and arbitrary tunable parameters (content adaptation),

– more generic, as user-defined multi-objective goal functions and constraints
across an existing, easily extensible set of four metrics are supported,

– more flexible, since the OpenMPE specification does not prescribe or restrict
the optimization techniques applied by the runtime system, and

– up-to-date, since we inherently deal with parallel codes in the parallel archi-
tecture era by basing our approach on OpenMP.

7 Conclusion and Future Work

This paper describes an extension to OpenMP, OpenMPE, which provides two
novel features: multi-objective goals and constraints and application adaptation.
These features allow our interface to address the issue of energy consumption and
power budgeting, fundamental on modern mobile and HPC systems. Application
programmers know the non-functional requirements and adaptation opportuni-
ties of each code region, and with OpenMPE they can conveniently provide this
knowledge to all underlying layers. We have developed a compiler and associated
runtime system for OpenMPE which are able to perform system- and program-
level adjustments to achieve specified multi-objective goals while respecting given

Application-Level Energy Awareness for OpenMP 231

constraints. Experimental results demonstrate energy savings up to 77 % are fea-
sible with this prototype implementation.

In the future, more extensive evaluation of the OpenMPE API would be
desirable, targeting several applications. Furthermore, analysis and refinement
of the system’s interaction with external load is an important goal.

Acknowledgments. This research has been partially funded by the FWF Austrian
Science Fund under contract I01079 (GEMSCLAIM).

References

1. Chandrakasan, A.P., et al.: Low-power CMOS digital design. IEEE J. Solid State
Circuits 27(4), 473–484 (1992)

2. Chen, H., et al.: Anole: a case for energy-aware mobile application design. In: 2012
41st International Conference on Parallel Processing Workshops (ICPPW), pp.
232–238 (2012)

3. Curtis-Maury, M., et al.: Prediction models for multi-dimensional power-
performance optimization on many cores. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (PACT 2008),
pp. 250–259. ACM, Toronto, Ontario, Canada (2008)

4. Dhodapkar, A.S., Smith, J.E.: Comparing program phase detection techniques. In:
Proceedings of the 36th IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 36). IEEE Computer Society, Washington, DC, USA (2003)

5. Flautner, K., et al.: Automatic performance setting for dynamic voltage scaling.
Wirel. Netw. 8(5), 507–520 (2002)

6. Flinn, J., Satyanarayanan, M.: Energy-aware adaptation for mobile applications.
In: Proceedings of the Seventeenth ACM Symposium on Operating Systems Prin-
ciples (SOSP 1999), pp. 48–63. ACM, Charleston, South Carolina, USA (1999)

7. Flinn, J., Satyanarayanan, M.: Managing battery lifetime with energy-aware adap-
tation. ACM Trans. Comput. Syst. 22(2), 137–179 (2004)

8. Fritts, J.E., et al.: MediaBench II video: expediting the next generation of video
systems research. Microprocess. Microsyst. 33(4), 301–318 (2009)

9. Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd.,
Toshiba Corp., Advanced Configuration and Power Interface Specification (ACPI).
Specification Revision 5.0. (2013)

10. Hsu, C.-H., Feng, W.-C.: A power-aware run-time system for high-performance
computing. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomput-
ing (SC 2005), pp. 1. IEEE Computer Society, Washington, DC, USA (2005)

11. Hsu, C.-H., Kremer, U.: The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. In: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (PLDI 2003),
pp. 38–48. ACM, San Diego, California, USA (2003)

12. Jordan, H., et al.: A multi-objective auto-tuning framework for parallel codes. In:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC 2012), pp. 10:1–10:12. IEEE Computer Society
Press, Salt Lake City, Utah (2012)

13. Li, D., et al.: Hybrid MPI/OpenMP power-aware computing. In: 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)

232 F. Alessi et al.

14. Liu, X., et al.: Chameleon: application-level power management. IEEE Trans. Mob.
Comput. 7(8), 995–1010 (2008)

15. Lorch, J.R., Smith, A.J.: Operating system modifications for task-based speed
and voltage. In: Proceedings of the 1st International Conference on Mobile Sys-
tems, Applications and Services (MobiSys 2003), pp. 215–229. ACM, San Francisco,
California (2003)

16. OpenMP Architecture Review Board. OpenMP Application Program Interface.
Specification Version 4.0. (2013)

17. Pallipadi, V., Starikovskiy, A.: The ondemand governor. In: Proceedings of the
Linux Symposium, vol. 2, pp. 215–230 (2006)

18. Pettis, N., et al.: Automatic run-time selection of power policies for operating
systems. In: Proceedings of the Design, Automation and Test in Europe (DATE
2006), vol. 1, pp. 1–6 (2006)

19. Rajovic, N., et al.: Supercomputing with commodity CPUs: are mobile SoCs ready
for HPC? In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC 2013), pp. 40:1–40:12. ACM,
Denver, Colorado (2013)

20. Rountree, B., et al.: Adagio: making DVS practical for complex HPC applications.
In: Proceedings of the 23rd International Conference on Supercomputing (ICS
2009), pp. 460–469. ACM, Yorktown Heights, NY, USA (2009)

21. Qiang, W., et al.: Dynamic-compiler-driven control for microprocessor energy and
performance. IEEE Micro 26(1), 119–129 (2006)

22. Yuan, W., Nahrstedt, K.: Practical voltage scaling for mobile multimedia devices.
In: Proceedings of the 12th ACM International Conference on Multimedia (MUL-
TIMEDIA 2004), pp. 924–931. ACM, New York, NY, USA (2004)

Evaluating the Energy Consumption
of OpenMP Applications on Haswell Processors

Bo Wang1,2,3(B), Dirk Schmidl1,2,3, and Matthias S. Müller1,2,3

1 IT Center, RWTH Aachen University, 52074 Aachen, Germany
{wang,schmidl,mueller}@itc.rwth-aachen.de

2 Chair for High Performance Computing, RWTH Aachen University,
52074 Aachen, Germany

3 JARA - High-Performance Computing, Schinkelstraße 2, 52062 Aachen, Germany

Abstract. Modern processors contain a lot of features to reduce the
energy consumption of the chip. The gain of these features highly depends
on the workload which is executed. In this work, we investigate the energy
consumption of OpenMP applications on the new Intel processor gener-
ation, called Haswell. We start with the basic chip characteristics of the
chip before we look at automatic energy optimization features. Then, we
investigate the energy consumed by load unbalanced applications and
present a library to lower the energy consumption for iteratively recur-
ring imbalance patterns. Here, we show that energy savings of up to 20 %
are possible without any loss of performance.

1 Introduction

Energy consumption has become an essential factor in high-performance com-
puting (HPC) systems. For computing centers the power consumption is one of
the major factors in the running costs of HPC systems and the processor chip
(host processor or accelerator) is the main consumer of power. Therefore, many
energy-saving opportunities are integrated in modern chips, such as automatic
power gating, clock gating, and dynamic voltage and frequency scaling(DVFS).
The latest Intel Xeon architecture, codenamed Haswell, extends some of those
features and contains more advanced features in this direction.

The impact of all these features depends on the workload. For applications
like the Linpack benchmark, where caches and compute units of the processor
are fully utilized, nearly no processor energy saving is possible without any loss
of performance is possible. For many application codes, when the CPU cannot
be used as efficiently, e.g. because the memory bandwidth is the bottleneck or
when the amount of parallelism is not sufficient to constantly utilize all cores,
modern chips can reduce their power consumption.

OpenMP applications can have imbalanced load, which causes some threads
in a certain period of time to have no work to do. In this case, using differ-
ent runtime configurations of OMP WAIT POLICY, i.e. passive waiting and active
waiting, leads to varying varied energy consumption. This variation indicates an
opportunity to save energy.
c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 233–246, 2015.
DOI: 10.1007/978-3-319-24595-9 17

234 B. Wang et al.

DVFS is a well-explored technology for energy saving that has already been
automated and is employed by Linux through so-called governors. However, this
kind of engagement is not specialized for OpenMP applications. The energy
consumption can be further lowered by a customized use of DVFS.

In this work, we investigate the power consumption of the Haswell processor
while running OpenMP programs. Thereby, we analyze the efficiency of the
automatic features provided by the hardware, the operating system and by the
OpenMP runtime. Furthermore, we investigate whether more energy savings
could be achieved by the user controlling the clock frequency directly. We use
several kernel benchmarks, which are compute- or memory-bound and have a
good or bad load balance, to identify application characteristics, which influence
the efficiency of the energy saving features. Finally, we present and evaluate
our ENAW library, which can be used to reduce the energy consumption of an
imbalanced OpenMP application with iterative imbalance patterns.

The rest of this work is structured as follows: In Sect. 2 we give an overview
of related works. Then we present the new energy-saving features of the Haswell
processor and analyze the energy consumption with automatic control of those
features in Sect. 3. In Sect. 4, we explore the opportunities for the user to further
optimize the energy savings. Finally, we conclude our work in Sect. 5.

2 Related Works

After the Intel Haswell processor has been released in 2014, the performance
features of the new processor have been investigated in works like [4] and [14].
In contrast to these papers, we focus on the energy efficiency in combination
with the performance features for OpenMP applications.

Previously, other studies have been done that optimize the energy consump-
tion of processors. Those studies concentrate on different applications or prob-
lems: [15] and [13] optimize the energy efficiency with an acceptable performance
loss, whereas [5] investigates the energy consumption problems of HPC applica-
tions theoretically. We investigate the energy consumption of OpenMP applica-
tions and implement a library that improves the energy efficiency of an OpenMP
application without any performance loss.

Works of [8] and [9] concentrate on similar problems to ours. They explored
how to adjust the CPU for a light loaded thread waiting in a barrier that is
executed repeatedly. [8] can be completely replaced by using OMP WAIT POLICY.
[9] investigated primarily different predictors for the waiting time of a thread in
a barrier. We study different kinds of applications using the last-value predictor.
Moreover, the experiments in [8] and [9] were performed on older processors with
energy efficiency features widely different from those of the Haswell processors.

Dynamic concurrency throttling (DCT) [12] is another relevant method
beside DVFS that can be used to optimize the energy consumption. However,
this work does not employ this approach.

DCT and DVFS can also be used with MPI applications [2] and with hybrid
applications [7] where OpenMP and MPI are utilized simultaneously.

Evaluating the Energy Consumption of OpenMPApplications 235

3 Basic Characteristics

3.1 Energy-Saving Features of Haswell

The new Intel processor, codenamed Haswell, is equipped with lots of features
for lowering the used power. It allows p-states on a per core basis, separate
frequency scaling for AVX units and uncore frequency scaling, which allows to
scale the clock frequency of the uncore part of a chip independently from the
frequencies of the cores.

The most important feature should be the fully integrated voltage regula-
tor (FIVR) [2]. This feature consists of multiple VRs that are split up into two
stages. A single first stage VR located on the motherboard converts the PSU
or battery voltage to the input voltage of the processor die. Within the second
stage, each processor domain, such as cores, uncore, and graphics unit, has its
independent VR with individual voltages. Together with the Power Control Unit
(PCU) [3], FIVR enables:

– independent voltage and frequency for each domain as needed;
– a deeper sleep state in which a standby domain consumes less energy;
– turbo boost a domain that is heavily loaded with a higher priority by throttling

other domains. At the same time, the overall power and thermal are also kept
within limits.

Another improvement is the energy-efficient turbo, which prevents turbo
boosts that do not significantly increase the performance. That is especially
useful for memory-bound applications whose performance depends mainly on
bandwidth of the main memory rather than on the CPU speed.

3.2 Load-Dependent Behavior

First, we determined the margin in which the power consumption of the proces-
sor can reside. We measured the power consumption of the processor in (a) idle
mode, (b) for a memory-bound application (the Stream benchmark) and (c) for a
compute-bound benchmark, which calculates multiple times the sine and cosine
of register variables. The benchmarks produce a uniform load within a given
time interval and run multi-threaded on all cores of the system. The energy con-
sumption is measured by reading model specific registers (MSRs) for the RAPL
(running average power limiting) counters that are part of the Haswell proces-
sor. The average power consumption in watts was calculated as energy/runtime.
Figure 1 shows the resulting average power consumption during the benchmark
runs on both Haswell chips in our two-socket test system with 36 cores.

In idle mode (Fig. 1a), the processors consume between 35 and 41 watts. The
power consumption is independent of the clock frequency of the cores. This is
because the processor can shut down the cores by putting them into C1 or deeper
C-states. When the cores are not operating, the clock frequency is irrelevant. But
we learn that the system will never use less than 35 watts running the Haswell
chips.

236 B. Wang et al.

Fig. 1. Power consumption of a Haswell processor (Intel Xeon E5-2699 V3) for different
workloads (idle/memory-bound/compute-bound)

With the compute-bound benchmark running, it can be observed (Fig. 1b),
that the frequency influences the power consumption. In total about 190 watts
are consumed when running at 2.3 GHz, about 10 watts for the memory and
180 watts for the CPU cores. At lower clock frequencies the cores coume less
energy, down to 110 watts for frequency of 1.2 GHz. The memory consumes con-
stantly about 10 watts, independent of the core frequency.

With the memory-bound Stream benchmark the behavior is similar (Fig. 1c).
The memory consumes a roughly constant amount of energy whereas the energy
consumption of the cores shrinks drastically with the core frequencies. However,
the energy consumption of the memory is much higher than it is for the compute-
bound benchmark because of its activities.

In comparison to the Haswell processor, the previous models (Sandy Bridge
processor, shown in Fig. 1d) have variable memory energy consumption. Here,
the energy consumption of the memory shrinks by about 30 % when the clock
frequency is reduced.

This information gives us only an upper and a lower bound of the sys-
tem’s power consumption for different types of applications. More interesting
of course is the energy consumption per task. Therefore, the runtime of bench-
marks Stream and a compute-bound benchmark were measured and Fig. 2 shows

Evaluating the Energy Consumption of OpenMPApplications 237

Fig. 2. Energy consumption and performance with frequency scaling.

the relative performance as the inverse of the runtime and energy consumption
compared to the test at the highest frequency without Turbo Boost enabled.

It can be observed, that the improvements in the Haswell design work fine,
especially for memory-bound applications. For the stream benchmark on Haswell
the runtime is not influenced by the core frequency, since the uncore part has an
independent frequency, as described in Sect. 3.1. Having a constant performance
and a lower power consumption for lower frequency, leads to a relative energy
consumption of about 80 % when the cores run at 1.2 GHz instead of 2.3 GHz. On
the SandyBridge micro architecture, the performance for the benchmark went
down with lowering frequency.

For the compute-bound kernel on both architectures, the performance went
down when the clock frequency was reduced. This slightly increases the energy
consumption on Haswell to 108 % the original one due to the increased runtime.
On Sandy Bridge, the energy consumption stays roughly at 100 % because the
longer runtime is fully compensated by the energy savings at the lower clock
frequency.

Although the memory bandwidth is not affected by the changing clock fre-
quency if all cores are used, the latency of a single memory access changes.
We measured the memory latency with a pointer chasing benchmark. Figure 3
shows the memory latency for all available core frequencies. Obviously, the mem-

238 B. Wang et al.

Fig. 3. Latency for a memory access at different clock frequencies on the Haswell
system.

ory latency goes up when the clock frequency goes down, from 27 ns at 2.3 GHz
to 44 ns at 1.2 GHz. The reason is a single memory access involves the core and
the L1 and L2 caches and all those components are clocked down. For the band-
width measurement, techniques like prefetching and out-of-order execution can
hide the latency. For latency bound codes, i.e. codes where the prefetcher can
not predict the memory access pattern, the core clock frequency influences the
memory access time and thus the overall performance.

We did further tests on our system, similar to the tests done in [4]. The mem-
ory bandwidth with different numbers of active threads and different frequencies
was measured and the results are shown in Fig. 4. It can be observed that when
using a few threads, the core frequency has a serious influence on the memory
bandwidth. However, that doesn’t occur when many cores are employed.

Fig. 4. Memory bandwidth using 2.3 GHz and 1.2 GHz with different number of cores

Although both Haswell and Sandy Bridge processors have the Turbo Boost
feature, we decided to turn it off in our work due to its hard to predict behavior.

4 Optimization Steps

4.1 Wait Strategies

So far, we investigated the energy consumption and the performance of Haswell
with kernel tests. For memory-bound applications energy saving could be achieved

Evaluating the Energy Consumption of OpenMPApplications 239

by scaling down the clock frequency without any performance loss, while for
compute-bound applications doing so results in increased runtime. Several metrics
have been developed already to determine if energy saving is worth the increased
overhead, like the energy-delay metric in [6]. Those metrics are not subject of this
work, since we want to save energy without any loss of performance. That benefits
all metrics.

If we want to achieve means that no part of a serial program should be slowed
down. However, for parallel programs it means that no part of the critical path
should become slower. Non-critical path can get slowed down, as long as they
do not become critical.

Many OpenMP programs synchronize at implicit or explicit barriers. The
critical path is determined by the slowest thread arriving the barrier. All other
threads have to wait inside the barrier before execution can continue. The
OpenMP standard defines a runtime variable, OMP WAIT POLICY that controls
waiting threads. OMP WAIT POLICY=passive lets waiting threads be removed
from the cores. These cores either become available to do other work or idle. With
OMP WAIT POLICY=active cores stay occupied by the waiting threads. Only, no
real work besides spinning is being done.

We implemented a simple compute-bound benchmark to investigate the energy
consumption using passive and active waiting policies at different frequencies. In
our measurements, we started 36 threads distributed over two sockets (T0-T17 on
socket 0 and T18-T35 on socket 1) with a load imbalance as illustrated in Fig. 5.
T0-T17 finish their work within 9.35 s while T18-T35 are busy for 24.51 s. There-
fore, T0-T17 have to wait 15.16 s at the barrier.

The energy consumption and the runtime of T18-T35 are constant. The
energy consumption of T0-T17 varies with the waiting policy; see the first two
lines in Table 1. Using passive waiting, energy can be reduced by more than 35 %.
At the same time, the runtime does not change.

Fig. 5. Illustration of the load-unbalanced benchmark

So far, using the passive waiting is beneficial. However, this benefit vanishes
as the time before running into a barrier become shorter, i.e. the time from the
program start to a barrier or from a barrier to the next barrier become shorter.
The passive waiting causes serious increase of runtime and energy consumption;
see Fig. 6. That is because the thread context is flushed on entering the barrier

240 B. Wang et al.

Table 1. Energy consumption using active and passive waiting at different frequencies

Wait policy Clock frequency Energy (J) Relative energy

Active 2.3 GHz 2079.68 100 %

Passive 2.3 GHz 1338.02 64.37 %

Active 1.2 GHz 1283.35 61.71 %

Passive 1.2 GHz 1167.29 56.13 %

and has to be restored before execution can continue after the barrier. This
overhead is high when the runtime is short.

Fig. 6. Overhead caused by the passive waiting compared to the active waiting.

We would like to reduce the energy consumption further using DVFS. There
are two ways to utilize DVFS:

1. We clock down T0-T17 while they are waiting in the barrier, while T18-T35
are running always with the same frequency, i.e. 2.3 GHz.

2. We clock down T0-T17 already at the beginning, while T18-T35 are run-
ning always with the maximum clock speed. T0-T17 can be clocked down
to 1.2 GHz without becoming critical threads, because their runtime is only
extended to 17.9 s and that is still shorter than 24.51 s.

The first idea is effective only if active waiting is employed. Furthermore, it can
not be more energy efficient than the passive waiting.

The second idea can reduce the energy consumption effectively, independent
of which waiting policy is used; see the last two lines in Table 1. Together with
the passive waiting, our benchmark consumes the least energy. More than 45 %
of the energy can be saved.

Using passive waiting, the energy consumption is reduced up to 8 % if the
frequency is scaled from 2.3 GHz to 1.2 GHz; see the second and the fourth
line in Table 1. That differs from the measurement whose result is presented in
Fig. 2a. The runtime is increasing as the frequency is being scaling down. Here
the runtime is constant determined by T18-T35.

Evaluating the Energy Consumption of OpenMPApplications 241

4.2 Iterative Clock Adjustment

Based on the second idea described in Sect. 4.1, we have implemented a solution
for general OpenMP applications. The challenge here is of course to determine a
priori the clock frequency, which will lead to an evenly balanced load. This can
only be done if the compute time can be determined in advance by the input
data or if the load is repeated frequently during execution, e.g. if load balance
and work stay the same in every iteration of an iterative algorithm.

For such a case we implemented a framework that controls the clock frequency
of all cores. The framework is based on the OpenMP Pragma and Region Instru-
mentor (Opari)[11]. Opari inserts library calls before and after most OpenMP
directives, including barriers.

This allows us to:

– measure the runtime of all threads during one iteration;
– calculate the performance relative to the slowest thread and
– reduce the clock frequency by the fraction of time a thread was waiting in the

barrier.

After several iterations, the energy-aware optimization library (called ENAW
for the rest of this work) reaches a steady state, where all clock frequencies are
adjusted and do not change in following iterations, as long as the load does not
change.

The implementation takes care of the following constrains:

– overheads of a DVFS operation in terms of runtime and energy consumption
are taken into account when the new frequency is being calculated in order
to avoid increasing runtime and energy consumption of the whole program.
Especially, a DVFS operation is avoided if the same frequency is required by
two consecutive barrier regions.
The overheads are hardware-specific. The runtime overhead is measured using
[10], while the energy consumption overhead is measured by repeated execut-
ing DVFS operations from the lowest to the highest frequency and vice versa.

– if the calculated frequency is between two available core frequencies, the higher
one is always chosen so to avoid increasing the runtime.

– frequencies of sibling threads of a core are scheduled simultaneously to prevent
disturbance.

An optimal frequency is calculated by each waiting thread in each iteration
step. However, the frequency is set only if it is beneficial. Overheads due to the
calculations are low compared to that of the DVFS operations.

How much energy can be saved using ENAW depends on the individual
workloads. It could save a lot of energy for OpenMP applications with serious
load imbalance where only one thread should run with the highest frequency
while all other threads can be slowed down.

242 B. Wang et al.

4.3 Evaluation

We evaluate ENAW using two benchmarks: one is the already described com-
pute intensive benchmark calculating sine and cosine of variables kept in CPU
registers, called sin cos for the rest of this paper; the other one is a sparse
matrix-vector multiply (SMXV) kernel as it is used in many iterative solvers
like GMRES or CG solvers. There, the matrix-vector multiplication is often the
hotspot of every iteration.

We compare runtime, energy consumption and power of benchmarks using
ENAW with the default OpenMP runtime configuration, i.e. using passive
waiting.

Sin Cos. Since practical applications have varying load balances, from perfectly
balanced to extremely imbalanced, energy investigations with different loads of
sin cos should be interesting.

For an OpenMP application, a load imbalance occurs if threads reach a bar-
rier after different duration. We use this duration variation to calculate the load
imbalance, defined as:

lbl =
n−1∑

i=0

(
ti

tcritical
) (1)

lbl is for load balance level. i is a thread ID from 0 to n−1 where n is the number
of used threads. ti and tcritical are duration of thread i and of the critical thread
to the barrier as both are running at the highest frequency.

lbl depends on how many threads are used and how is the load imbalance.
For tests with a constant number of threads, the lower is lbl, the more serious is
the load imbalance. lbl = 1 only one thread is loaded, all other threads do not
get any work to do. lbl = n means that the load is distributed evenly through
all threads.

We do tests with sin cos. The total amount of work to be done is consistent
and thread 0 is always the critical thread. The load can be manipulated to
produce different lbl, where 1 ≤ lbl ≤ 36 using 36 threads on our test platform.
During the tests, we measure the runtime, the energy consumption and the
power and compare these values using the ENAW with values measured without
ENAW. The results of our tests presented in Fig. 7 are calculated using (Eq. 2):

ENAW runtime

Default runtime
,
ENAW energy consumption

Default energy consumption
,
ENAW power

Default power
(2)

As Fig. 7 illustrates, the most energy saving occurs at lbl = 18, 19, where
the minimal frequency is set for threads T1 to T35. With a bigger lbl, the
load is more balanced and a higher frequency must be set for T1 to T35 to
ensure the runtime limit is not exceeded. With smaller lbl, the load is even more
imbalanced. However, no lower frequency is available. DVFS cannot be more
effective. Furthermore, the idle time of T1...T35 gets longer and DVFS has no
effect at all.

Evaluating the Energy Consumption of OpenMPApplications 243

Fig. 7. Effectiveness of ENAW on sin cos with different load balance levels

Figure 7 shows that by using ENAW energy can be saved; at the same time
the runtime limit is rarely exceeded and the power is reduced.

SMXV. We use the SMXV implementation that is parallelized with OpenMP
and distributes the rows of the matrix by the means of the static parallel loop
scheduling (The scheduling strategy can be easily changed.). During a measure-
ment the SMXV kernel will be called iteratively. Typically, the workload to the
kernel does not change through the iterations. Therefore, the load balance does
not change too. That leads to a repeating load imbalance if the matrix structure
is unbalanced, since the number of non-zeros per thread, note the number of
rows determines the computational load. We executed the kernel with and with-
out our ENAW library attached with an imbalanced matrix structure extracted
from a flow-solver. The lbl of the workload amounts to 21.85 with 36 threads.
Thread T0 is the critical thread. Other threads are loaded individually. The low-
est available frequency could be set on less than 6 threads, if ENAW would be
used.

In contrast to sin cos is the SMXV kernel memory-bound. For evaluation,
measurements with SMXV were set with a different number of threads instead
of different lbl as shown in Fig. 7.

During the tests, we used two different binding strategies in order to check
whether ENAW has different effects. Figure 8 shows the results of our tests with
the SMXV kernel. Values are computed using Formula 2. Using ENAW, energy
consumption and power are lowered in all cases, up to nearly 20 %. The critical
runtime is rarely exceeded, except when running with a few threads, in which
case the memory bandwidth is throttled dramatically as the core clock is scaled
down, see Fig. 4. This seriously impacts the performance of the critical thread.

With close binding, more than half of the measurements using ENAW takes
less runtime than without ENAW. Lowering the core clock frequency of non-
critical threads frees memory bandwidth for the critical thread. As a result the
SMXV kernel is accelerated.

So far, we have evaluated ENAW against measurements with static schedul-
ing, i.e. with load imbalance. If we switch the base measurement to using dynamic

244 B. Wang et al.

Fig. 8. Effectiveness of ENAW on SMXV with different numbers of threads

scheduling, the load balance is improved significantly. Could using ENAW still
be beneficial? We do further tests where we measure the power, the energy con-
sumption and the runtime as we have done before. However, we compare ENAW
with the dynamic scheduling using Formula 3 The results from our measurements
are shown in Fig. 9.

ENAW runtime

Dynamic runtime
,
ENAW energy consumption

Dynamic energy consumption
,
ENAW power

Dynamic power
(3)

Fig. 9. Comparing ENAW to using dynamic scheduling.

With close binding, ENAW is not beneficial given less than 29 threads are
used. Up to this point, the program runs faster with dynamic scheduling. After
this point, the runtime get longer due to lots of remote memory accesses and
data synchronizations.

With spread binding, although runs with few threads using dynamic schedul-
ing are beneficial, the benefit is removed very quickly by the dramatic increasing

Evaluating the Energy Consumption of OpenMPApplications 245

of remote memory accesses, more dramatic than with the close binding. There-
fore, ENAW outperforms the dynamic scheduling with 21 threads ore more.

5 Conclusion

The feature of Haswell that makes the uncore frequency independent of the
core frequency allows better energy saving. For a memory-bound application,
nearly 20 % of energy could be saved by scaling down core frequencys, without
losing any performance. However, this energy-saving method does not work for
compute-bound applications, if those applications are serial or parallel with bal-
anced workloads, since both the runtime and the relative energy consumption
are increased.

For imbalanced workloads, tests have shown that passive waiting threads
are put into a sleep state, consuming nearly no energy. This significantly saves
energy compared to active waiting. Clocking down cores that wait in a barrier
turned out to not be profitable compared to the passive waiting mode.

Moreover, if the load imbalance occurs in several iterations with the same
imbalance pattern, our ENAW library can be used to clock down non-critical
threads. The new frequency is calculated and adjusted as low as possible to save
more energy, but also as high as necessary to avoid an increase of the overall
runtime. This library enables energy saving independent of whether applications
are compute-bound or memory-bound. For our synthetic sin cos benchmarks
with varying lbl, it always saves energy, up to 9 %. For our sparse matrix-vector
multiply kernel, it saves more aggressively, up to 20 %. The power consumption
can also be reduced by 20 %.

Acknowledgement. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under grant number 01IH13001D (Score-E).

References

1. Burton, E., Schrom, G., Paillet, F., Douglas, J., Lambert, W.J., Radhakrishnan,
K., Hill, M.J.: FIVR—Fully integrated voltage regulators on 4th generation Intel R©
CoreTM SoCs. In: Applied Power Electronics Conference and Exposition (APEC),
2014 Twenty-Ninth Annual IEEE, pp. 432–439. IEEE (2014)

2. Freeh, V.W., Pan, F., Kappiah, N., Lowenthal, D.K., Springer, R.: Exploring the
energy-time tradeoff in MPI programs on a power-scalable cluster. In: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium,
pp. 4a–4a. IEEE (2005)

3. Gunther, S., Deval, A., Burton, T., Kumar, R.: Energy-efficient computing: power
management system on the nehalem family of processors. Intel Technol. J. 14(3),
50 (2010)

4. Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An
energy efficiency feature survey of the intel haswell processor (2015)

246 B. Wang et al.

5. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power
properties of modern multi-core chips via simple machine models. Practice and
Experience, Concurrency and Computation (2014)

6. Horowitz, M., Indermaur, T., Gonzalez, R.: Low-power digital design. In: IEEE
Symposium on Low Power Electronics, Digest of Technical Papers, pp. 8–11. IEEE
(1994)

7. Li, D., De Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D.S.: Hybrid
MPI/OpenMP power-aware computing. In: 2010 IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)

8. Li, J., Martinez, J.F., Huang, M.C.: The thrifty barrier: energy-aware synchroniza-
tion in shared-memory multiprocessors. In: IEE Proceedings-Software, pp. 14–23.
IEEE (2004)

9. Liu, C., Sivasubramaniam, A., Kandemir, M., Irwin, M.J.: Exploiting barriers to
optimize power consumption of CMPs. In: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp. 5a–5a. IEEE (2005)

10. Mazouz, A., Laurent, A., Pradelle, B., Jalby, W.: Evaluation of CPU frequency
transition latency. Comput. Sci. Res. Dev. 29(3–4), 187–195 (2014)

11. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a perfor-
mance tool interface for OpenMP. J. Supercomput. 23(1), 105–128 (2002)

12. Porterfield, A.K., Olivier, S.L., Bhalachandra, S., Prins, J.F.: Power measurement
and concurrency throttling for energy reduction in OpenMP programs. In: IEEE
27th International Parallel and Distributed Processing Symposium Workshops and
PhD Forum (IPDPSW), pp. 884–891. IEEE (2013)

13. Schöne, R., Hackenberg, D.: On-line analysis of hardware performance events for
workload characterization and processor frequency scaling decisions. In: Proceed-
ings of the 2nd ACM/SPEC International Conference on Performance Engineering,
pp. 481–486. ACM (2011)

14. Schöne, R., Molka, D., Werner, M.: Wake-up latencies for processor idle states on
current x86 processors. Comput. Sci. Res. Dev. 30(2), 219–227 (2014)

15. Weissel, A., Bellosa, F.: Process cruise control: event-driven clock scaling for
dynamic power management. In: Proceedings of the 2002 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 238–246.
ACM (2002)

Parallelization Methods for Hierarchical
SMP Systems

Larry Meadows(B), Jeongnim Kim, and Alex Wells

Intel Corporation, Hillsboro, OR, USA
{lawrence.f.meadows,jeongnim.kim,alex.m.wells}@intel.com

Abstract. We discuss several parallelization methods for multi-level
hierarchical SMP systems using a stencil-based finite difference code.
Performance comparisons and suggestions for OpenMP runtime improve-
ments are provided.

Keywords: Stencil · Nested parallelism · Runtime support

1 Introduction

Modern symmetric multi-processors (SMPs) have multiple levels of memory hier-
archy and multiple levels of parallelism. In this paper we explore various methods
to exploit those multiple levels including OpenMP, nested OpenMP, OpenMP 4
teams/distribute, and a higher-level C++ template library called SIMD build-
ing blocks (SBB). Additionally we explore various methods of load balancing
including manual load balancing and the OpenMP collapse clause. As a result
of these experiments we offer suggestions for OpenMP implementors.

We use the diffusion test code from [1]. Our work shows alternatives to the
plesiochronous barriers used in Chap. 5 of [2], some of which may be more under-
standable to and usable by most OpenMP programmers.

2 The Test Code

The diffusion test code (hereafter referred to as just diffusion) is a simple 7-point
stencil code in three dimensions, shown in Fig. 1.

The diffusion kernel is memory bandwidth bound. To see this we can compute
the ratio of floats (or doubles) accessed to floating point operations. Each itera-
tion has 7 loads, 1 store, 7 multiplies, and 6 adds. There are thus 13 floating point
operations and 8 memory accesses, resulting in a ratio of about 2.5 bytes/flop
(single precision). As an example, the current generation Intel R© Xeon PhiTM

coprocessor1 has a peak floating point performance on the order of 1000E9
flops/second and a memory bandwidth on the order of 170E9 bytes/second,

1 Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.
and/or other countries.

c© Springer International Publishing Switzerland 2015
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 247–259, 2015.
DOI: 10.1007/978-3-319-24595-9 18

248 L. Meadows et al.

for (int z = 0; z < N; ++z)

for (int y = 0; y < N; ++y)

for (int x = 0; x < N; ++x)

f2[z][y][x] = cc * f1[z][y][x] +

cw * f1[z][y][x-1] +

ce * f1[z][y][x+1] +

cn * f1[z][y-1][x] +

cs * f1[z][y+1][x] +

cu * f1[z-1][y][x] +

cd * f1[z+1][y][x];

Fig. 1. Diffusion psuedocode

which is only about 0.17 bytes/flops, far less than required. Thus, our optimiza-
tion efforts are focused on memory optimizations.

There are two memory optimizations: achieving maximum memory band-
width from the processor, and exploiting reuse by tiling for cache. The former
is largely done by the compiler, though we do use non-temporal stores (which
are particularly helpful on the Intel R© Xeon PhiTM coprocessor. The latter is
accomplished in different ways depending on the particular code version.

Reuse occurs because of the ±1 subscript arithmetic. For the contiguous
(unit-stride) X dimension, the reuse occurs automatically (spatial reuse). For
the Y and Z dimensions, the current iteration reuses two elements from the
previous iteration (temporal reuse); Y becomes Y − 1, and Y + 1 becomes Y.
The key is to tile the loops so that the previous elements from the Y and Z loops
remain in cache.

3 SIMD Building Blocks

SIMD Building Blocks (SBB) is a C++11 template library providing concepts
of Containers, Accessors, Kernels, and Engines to abstract out different aspects
of creating an efficient data parallel (SIMD + threading) program. The Con-
tainers encapsulate the memory data layout of an Array of “Plain Old Data”
objects. Kernels represent the work inside a loop body and use Accessors with
an array subscript operator (just like C++ arrays) to read from or write to the
objects in the Containers. Engines visit a Kernel over an iteration space. Since
these concepts are abstracted out, multiple concrete versions can exist and can
encapsulate best known methods, thus avoiding common pitfalls in generating
efficient SIMD code.

For example, when speaking of efficient SIMD code, the terms “Array Of
Structures” (AOS) and “Structure Of Arrays” (SOA) are often used. In order
to utilize SIMD load/store instructions, the data must be in a SOA so that a
vector register can be loaded with the same data members, instead of having to
emit instructions to load each data lane separately or having to perform a gather
over AOS data. However most object oriented code uses data in an AOS format.

Parallelization Methods for Hierarchical SMPSystems 249

Changing one’s algorithms to work with SOA is cumbersome and difficult to
maintain. With SBB, one can use an SoaContainer < Object > and the data
will be stored in memory as SOA, but a kernel just sees an instance Object.
This allows kernels to just work with the Objects and implement their algorithm
and leave the complexities of SOA and data alignment to the container. SBB
provides multi-dimensional 2d and 3d containers as well, with the added benefit
of handling address calculation of multiple index variables through an accessor
with multiple array subscript operators (just like a 2d or 3d c++ array). This
often yields simpler kernel code.

Likewise the Engines abstract out iteration. Engines can be declared to gen-
erate scalar or SIMD code, to run single threaded, or with Intel R© Threading
Building Blocks (Intel R© TBB), or with OpenMP threading. When an Engine
runs a Kernel, it is given an iteration space and blocking size. The concrete
engine can then divide the iteration space up into blocks and execute the Kernel
over the blocks. 2d and 3d Engines are provide good cache blocking behavior
out of the box. Switching threading models is as easy as changing a typedef and
users can choose to make their own Engines that fit in SBB’s framework (e.g., a
team based threading Engine that uses threads on the same core to cooperatively
work on the same block, as described in the next section).

4 Nested Threading

Intel R© Xeon R© processors and the Intel R© Xeon PhiTM coprocessor consist of
multiple cores. Each core has multiple hardware thread contexts, often called
hyperthreads or simultaneous multi-threading (SMT) threads. The thread con-
texts each have their own register sets and other state but share all of the
execution units and caches on the core.

In many cases it is helpful to have a two-level nested parallel structure that
corresponds to the hardware threading structure. The outer level corresponds to
the cores, and the inner level corresponds to the hardware threads within a core.
The outer level determines the data decomposition (implicitly or explicitly),
which in turn determines the data that resides in a particular core’s caches. The
inner level threads then cooperate on the data residing in the shared caches. This
often reduces cache pressure since decomposition is per core, not per thread, and
can lead to substantial speedups.

5 Code Variants

The following subsections describe the code variants used in the performance
study. All of the codes use a common inner loop expressed in an inline function.
The code for the inner loop is shown in Fig. 9 near the end of the paper.

The code in Fig. 9 incorporates some improvements from [2], namely align-
ment, streaming stores, and special treatment of the two boundary elements.

250 L. Meadows et al.

The latter improves vectorization efficiency and allows the alignment optimiza-
tion by computing the 0th and nx-1th elements incorrectly as part of a vector
operation, and then correcting the results with a scalar operation.

Note: the SBB implementation does not use the inline function. SBB tem-
plates take care of alignment and streaming stores, and handle the boundary
elements with explicit halo regions.

5.1 Baseline

The baseline version is a modified version of the optimized code from [1]. An
outline of the code is shown in Fig. 2. The outer loop is a timestep loop. Each
iteration computes the stencil on the entire iteration space. There are two copies
of the stencil array; one acting as an input array, and the other acting as an
output array. The arrays are switched at the end of each timestep. A barrier is
needed to ensure that all the threads have finished storing to the current output
array before switching the two arrays.

#pragma omp parallel

for (int i = 0; i < count; ++i)

{

define YBF 4

define ZBF 4

pragma omp for collapse(2) nowait

for (int yy = 0; yy < ny; yy += YBF)

for (int zz = 0; zz < nz; zz += ZBF) {

int ymax = yy + YBF;

int zmax = zz + YBF;

for (int z = zz; z < zmax; z++) {

for (int y = yy; y < ymax; y++) {

diffusion_x_loop(f1_t, f2_t, nx, ny, nz, y, z,

cc, cw, ce, cn, cs, ct, cb);

}

}

}

#pragma omp barrier

REAL *t = f1_t;

f1_t = f2_t;

f2_t = t;

}

Fig. 2. Diffusion baseline

The Y and Z loops are tiled into 4×4 blocks. The 4×4 blocking factor was
empirically determined using SBB and then back-ported to the various diffusion
implementations. This loop nest is then collapsed and distributed amongst the
threads. The inner loop is vectorized (see Fig. 9).

Parallelization Methods for Hierarchical SMPSystems 251

Note that in the baseline case, the load balance and data distribution are
implicitly determined by the threads executing the collapsed for loop. We explore
various other methods to improve load balance and data distribution in the
implementations that follow.

#pragma omp parallel

{

int z0, ze, y0, ye;

// compute Y and Z begin and end points y0,ye,z0,ze

...

for (int i = 0; i < count; ++i) {

for (int yy = y0; yy < ye; yy += YBF)

for (int zz = z0; zz < ze; zz += ZBF)

{

int z1 = zz + ZBF;

int y1 = yy + YBF;

for (int y = yy; y < y1; y++) {

for (int z = zz; z < z1; z++) {

diffusion_x_loop(f1_t, f2_t, nx, ny, nz, y, z,

cc, cw, ce, cn, cs, ct, cb);

}

}

#pragma omp barrier

REAL *t = f1_t;

f1_t = f2_t;

f2_t = t;

}

} // parallel

Fig. 3. Diffusion 2d decomposition

5.2 Hand Decomposed

The hand decomposed version of diffusion is very similar to the baseline version,
except that the blocks are distributed by hand. An outline of the code is in
Fig. 3. We begin by obtaining the thread number mythread, and then compute
our position in the Z and Y dimensions. Our position in the Y dimension is
mod(mythread, nHT) and our position in the Z dimension is mythread/nHT
(using integer division) where nHT is the number of threads per core: 2 for the
Intel R© Xeon R© processor and 4 for the Intel R© Xeon PhiTM coprocessor. Then we
distribute the blocks in each dimension as evenly as possible. Finally, there are
two nested outer loops (equivalent to the collapsed loops in the baseline code)
that iterate over the Z and Y blocks, and two nested inner loops that iterate
over the elements in each block.

One advantage of this hand decomposition is that a core always has all the
Y blocks for each Z block. The collapsed loop might split some blocks between

252 L. Meadows et al.

threads, since it distributes the full Z ∗ Y iteration space without regard to the
original loop nesting.

One disadvantage of this decomposition is that the load balance is not always
as good. For example, consider a problem size of 512 and a 60-core Intel R© Xeon
Phi R© part. There are 512/4 or 128 blocks in each dimension. The number of
threads in the Z dimension is 60, so the first 8 cores will each get 3 blocks of Z,
and the last 52 will get 2 blocks of Z. Thus 52 of the cores will have 2/3 as much
work to do as the other 8 cores.

In the collapsed case, there are 512*512/4 or 65536 iterations divided amongst
240 threads, resulting in 1092 or 1093 iterations per thread; the load imbalance
is far less severe.

5.3 Nested Parallelism

As stated earlier, it is often useful to have the threads within a core cooperate
on a single block of data residing in that core’s caches. Nested OpenMP seems to
be a good choice for this. Because current implementations of nested OpenMP
have relatively high overhead, we placed the inner parallel region further out
in the code than might have been desirable (this is explained more in the next
section). This led to the code in Fig. 4.

#pragma omp parallel

{

// compute decomposition in Z

...

#pragma omp parallel for

for (int yy = 0; yy < ny; yy += ybf)

for (int zz = z0; zz < ze; zz += zbf)

{

int z1 = zz + zbf;

if (z1 > nz) z1 = nz;

int y1 = yy + ybf;

if (y1 > ny) y1 = ny;

for (int z = zz; z < z1; z++) {

for (int y = yy; y < y1; y++) {

diffusion_x_loop(f1_t, f2_t, nx, ny, nz, y, z,

cc, cw, ce, cn, cs, ct, cb);

}

}

}

} // parallel

Fig. 4. Nested OpenMP

The parallel region enclosing the code in Fig. 4 computes its piece of the Z
dimension just as described in the section on hand decomposition. Then the

Parallelization Methods for Hierarchical SMPSystems 253

inner parallel for divides the blocks in the Y dimension so that each thread is
working on 1/4 (or 1/2 for the processor) of the Y elements, but only on the Z
elements for that core.

The cache footprint for each core for the Intel R© Xeon PhiTM coprocessor is
thus NY ∗NZ/60 ∗NX ∗ 4 bytes, which is over 8 MB for the 5123 problem and
thus far too large for L2. It would probably be better to tile the Y loop again,
or to attempt the solution shown in the next section.

for (int z = zz+ymythread; z < z1; z+=nHTs) {

for (int y = yy; y < y1; y++) {

diffusion_x_loop(f1_t, f2_t, nx, ny, nz, y, z,

cc, cw, ce, cn, cs, ct, cb);

}

}

Fig. 5. Hand nested inner loops

5.4 Hand Nested

In the hand nested case, we divide the Z dimension as before, but we use a trick
to ensure that the hardware threads on a core cooperate on the same block of
data. The outer loops are the same as those in Fig. 4, but the inner loops are
different as shown in Fig. 5. Here nHTs is the number of threads per core and
ymythread is the thread number within the core. We divide the work amongst
the threads by assigning the Z iterations round-robin to the threads (note that
each thread gets only one iteration on the coprocessor).

So that threads that finish early don’t race ahead to the next block, we follow
the code above with a core barrier. This barrier is not required for correctness.
The core barrier uses two 4-byte words. Each thread sets its byte in the first
word, then waits until all the bytes are set. It then does the same for the second
word. The value set by a thread toggles between 0 and 1 every time the barrier is
encountered, thus removing any need for re-initialization. Two words are needed
in case of back-to-back barriers (an alternate formulation using only one word is
available but somewhat more complicated). The core barrier is quite fast (under
200 clocks) since all the threads on the core share a cache. The core barrier is
also described in [3].

The hand nested code is really the code we want to use with nested OpenMP,
but the overhead of nested OpenMP is too high. Again looking at the 5123 case,
the computation performed by the tile loop in Fig. 4 is 4∗4∗512/16 or 512 vector
loop iterations (in other words, 16 calls to diffusion x loop). Using reference
data we can compute the cost of a loop iteration as roughly between 5000 and
15000 clock cycles. Currently nested OpenMP overheads are greater than 500
clocks for fork-join of a nested parallel region, making nested OpenMP unusable
at such fine granularity.

254 L. Meadows et al.

5.5 Crew and Teams

Finally we experimented with two different lower-overhead implementations.
Crew is a very lightweight experimental nested threading model for OpenMP
that exists in the Intel R© C++ Composer XE compiler. Crew creates one OpenMP
thread per core, and one extra thread for each additional hyperthread (3 extra
threads for the coprocessor). The notation #pragma intel crew parallel for
then causes the main thread and the additional threads to divide the work for the
following loop; however, no nested OpenMP regions are created and a dynamic
scheduling policy is used. The lack of nested OpenMP overhead greatly reduces
the overhead for nested parallelism.

Teams are designed for device code, but using #pragma device if(0) causes
the code to be executed on the host. Creation of teams involves less overhead than
nested OpenMP. Unfortunately, there is a need for a barrier of all of the threads
in the team at each timestep, and the current definition of the teams construct
does not allow a barrier. Thus the answers from the teams implementation are
incorrect.

In both the crew case and the teams case, we parallelized the same loop as
in the nested OpenMP case (rather than our preferred loop as was done in the
hand nested case). Otherwise the code looks the same as the OpenMP nested
code.

We ran the crew experiments only on the Intel R© Xeon PhiTM coprocessor,
and the teams experiments only on the Intel R© Xeon R© processor. The results are
included for completeness.

5.6 SBB

The SBB version in Fig. 6 uses template programming to generate multiple ver-
sions of the same diffusion kernel (diffusionOdd) by varying Containers (AOS,
SOA, Tiled), Accesors (YBF, ZBF), and Engines (OpenMP, TBB). Here, we
present a set of data generated using Soa3dContainer and OpenMP engine and
YBF = ZBF = 4. Essentially, this SBB version is the same as the baseline version.
In fact, the optimal block sizes of the baseline code are “auto-tuned” based on
the extensive SBB data. C++ 11 features (auto, lambda functions) and predfined
SBB macros faciliate compact and efficient codes that can be easily incorporate
into the existing C++ applications.

6 Performance Experiments

We used two different systems for our experiments. The Intel R© Xeon R© system
is a dual socket E5-2697 v3 (formerly code-named Haswell) @ 2.60 GHz. Each
socket has 14 cores with two hardware cores per thread. The Intel R© Xeon PhiTM

system is a B1PRQ-7110 P/X @ 1.10 GHz. We used 60 of the 61 cores, each with
four hardware threads.

Tables 1 and 2 contains the raw data (in GFlops/Second) for the two sys-
tems. Figures 7 and 8 show the performance in charts. The data in the charts is

Parallelization Methods for Hierarchical SMPSystems 255

//containers: SOA for 3D with +-1 Halo regions

const int StencilHaloSize = 1;

using Container=sbb::Soa3dContainer<float, StencilHaloSize, Allocator>;

Container inputContainer(nx,ny,nz);

Container outputContainer(nx,ny,nz);

//iterator space

sbb::Block3dBounds iterationSpace;

iterationSpace.d1.set(StencilHaloSize,nx-StencilHaloSize);// for d2 & d3

//block size

sbb::Block3dSize blockSize;

blockSize.d1=nx; blockSize.d2=YBF; blockSize.d3=ZBF;

auto in = inputContainer.access();

auto out = outputContainer.access();

//Define 2 kernels

//"Odd" that reads from "in" and writes to "out"

SBB_KERNEL_BEGIN(diffusionOdd)

SBB_NON_TEMPORAL_BEGIN

SBB_ITER_D321_BEGIN(z, y, x)

{

float result = cc* in[z][y][x] + cw* in[z][y][x-1] + ...;

out[z][y][x] = result;

}

SBB_ITER_END

SBB_NON_TEMPORAL_END

SBB_KERNEL_END

// "Even" that reads from "out" and writes to "in"

...

sbb::OpenMp3dEngine<sbb::VectorCode> the3dEngine;

for(int i=0; i<count; ++i)

{

the3dEngine.run(diffusionOdd, iterationSpace, blockSize);

the3dEngine.run(diffusionEven, iterationSpace, blockSize);

}

Fig. 6. SBB diffusion code

normalized to the memory bandwidth (Stream Triad) for the platform: 108 GB/s
and 158 GB/s, respectively.

On the Intel R© Xeon R© coprocessor, the hand-nested code is clearly the best
except in the 2563 case, where it is still competitive. One surprise is how well
the nested version performs.

256 L. Meadows et al.

Fig. 7. IntelR© XeonR© processor normalized performance

Fig. 8. IntelR© Xeon PhiTM coprocessor normalized performance

Parallelization Methods for Hierarchical SMPSystems 257

static inline void

diffusion_x_loop(const REAL *f1_t, REAL *f2_t,

int nx, int ny, int nz,

int y, int z,

REAL cc, REAL cw, REAL ce, REAL cn, REAL cs, REAL ct, REAL cb)

{

int x;

int c, w, e, n, s, b, t;

const REAL *restrict pc; ...

x = 0;

c = x + y * (nx + NXP_DELTA) + z * (nx + NXP_DELTA) * ny;

w = c - 1;

e = c + 1;

n = (y == 0) ? c : c - (nx + NXP_DELTA);

s = (y == ny - 1) ? c : c + (nx + NXP_DELTA);

b = (z == 0) ? c : c - (nx + NXP_DELTA) * ny;

t = (z == nz - 1) ? c : c + (nx + NXP_DELTA) * ny;

pc = &f1_t[c]; ...

poc = &f2_t[c];

__assume_aligned(pc, CACHE_LINE_SIZE);

...

#pragma simd

for (x = 0; x < N_REALS_PER_CACHE_LINE; ++x)

poc[x] = cc * pc[x] +

cw * pw[x] + ce * pe[x] +

cs * ps[x] + cn * pn[x] + ct * pt[x] + cb * pb[x];

// element 0

poc[0] = cc * pc[0] +

cw * pc[0] + ce * pe[0] +

cs * ps[0] + cn * pn[0] + ct * pt[0] + cb * pb[0];

pragma vector nontemporal

pragma simd

for (x = N_REALS_PER_CACHE_LINE; x < nx; x++)

{

poc[x] = cc * pc[x] +

cw * pw[x] + ce * pe[x] +

cs * ps[x] + cn * pn[x] + ct * pt[x] + cb * pb[x];

}

// element nx-1

poc[nx-1] = cc * pc[nx-1] +

cw * pw[nx-1] + ce * pc[nx-1] +

cs * ps[nx-1] + cn * pn[nx-1] +

ct * pt[nx-1] + cb * pb[nx-1];

}

Fig. 9. Diffusion inner loop

258 L. Meadows et al.

Table 1. IntelR© XeonR© processor
(GF/Sec)

224 256 448 512

Collapse 83.2 109.1 62.1 81.9

2d decomp 117.7 99.8 101.4 90.6

Hand nest 133.3 98.6 135.8 126.7

Teams 88.4 105.2 103.8 91.2

OMP nest 101.7 117.0 103.5 105.2

Sbb 83.9 75.9 76.4 78.0

Table 2. IntelR© Xeon PhiTM coprocessor
(GF/Sec)

240 256 480 512

Collapse 171.8 147.0 192.4 162.7

2d decomp 180.9 120.2 187.1 137.8

Hand nest 162.9 120.3 207.0 159.2

Crew 169.3 113.3 193.0 153.1

OMP nest 87.7 66.0 120.4 87.3

Sbb 165.0 163.5 185.0 180.0

On the Intel R© Xeon PhiTM coprocessor, the hand nested version is still most
competitive. One pleasant surprise is how well the original blocked and collapsed
version performs; this is nice because it is relatively easy to write compared to
the others. This data also demonstrates the strength of SBB. For users that are
comfortable with C++ template libraries, SBB is an excellent choice that also
enables easy experimentation with different containers and blocking factors.

7 Conclusions and Future Work

Nested OpenMP is a natural way to exploit hardware with two-level thread-
ing, but the overhead is currently prohibitive for very fine grained threading,
especially on the current generation of the Intel R© Xeon PhiTM coprocessor.
Alternatives such as hand nesting are possible, but can be tricky to write and
to maintain, and may not be portable (especially with respect to performance).

Some of the performance issues with nested OpenMP are inherent in the
OpenMP specification (thread teams, various query functions, ICVs, etc.) and
it would be beneficial to consider changes or additions to the specification to
make nested parallelism more lightweight. Other performance issues are related
to quality of implementation. Hopefully this paper gives more impetus to the
developers to improve their implementations.

Some of the OpenMP requirements can be relaxed when using OpenMP 4.0
teams, but currently those have restrictions (most importantly, that they need
to be used in a device region) that make them unsuitable for general use. Making
teams more general is a possible alternative to loosening the requirements for
nested OpenMP.

One problem with picking diffusion for this paper is that there isn’t enough
work in the stencil. Real codes (e.g., various oil and gas codes) have far more
complex stencils. Our experience has shown that in these cases, nested threading
and blocking have much greater impact.

With the exception of SBB, none of these codes address load balancing,
which is significant when the problem size doesn’t match the number of cores
and threads available. This is clearly evident in the 2563 and 5123 problems run

Parallelization Methods for Hierarchical SMPSystems 259

on the Intel R© Xeon PhiTM coprocessor, where SBB is the best performer. More
work is needed to create a pure OpenMP dynamically scheduled code that still
has good cache locality. Attempts using OpenMP tasking did not achieve good
performance. We attribute this to high overhead when creating OpenMP tasks.

There are a few anomalies in the data: core threading on the Intel R© Xeon R©

processor is poor for the 2563 problem; nested parallelism on the Intel R© Xeon
PhiTM coprocessor is far worse than on the processor; SBB performance is worse
on the processor than on the coprocessor; tiled/collapsed code performs reason-
ably well on the coprocessor but not as well on the processor. We are investigating
these issues.

SBB is a useful alternative for C++ programmers and is reasonably easy to
use compared to some of the more complicated techniques.

References

1. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Morgan Kauffman, Boston (2013)

2. Dempsey, J.: High performance parallelism perls. In: Jeffers, J., Reinders, J. (eds.)
Pesiochronous Phasing Barriers, pp. 87–115. Morgan Kauffman, Boston (2015)

3. Briggs, J., et al.: Separable projection integrals for higher-order correlators of the
cosmic microwave sky: acceleration by factors exceeding 100. Cornell University
Library. http://arxiv.org/abs/1503.08809

http://arxiv.org/abs/1503.08809

Supporting Indirect Data Mapping
in OpenMP

Thomas R.W. Scogland1(B), Jeff Keasler1, John Gyllenhaal1, Rich Hornung1,
Bronis R. de Supinski1, and Hal Finkel2

1 Lawrence Livermore National Laboratory, Livermore, USA
tscogland@llnl.gov

2 Argonne National Laboratory, Lemont, USA

Abstract. Code-passing abstractions based on lambdas and blocks are
becoming increasingly popular to capture repetitive patterns that are
amenable to parallelization. These abstractions improve code mantain-
ability and simplify choosing from a range of mechanisms to implement
parallelism. Several frameworks that use this model, including RAJA
and Kokkos, employ OpenMP as one of their target parallel models.
However, OpenMP inadequately supports the abstraction since it fre-
quently requires information that is not available within the abstraction.
Thus, OpenMP requires access to variables and parameters not directly
supplied by the base language. This paper explores the issues with sup-
porting these abstractions in OpenMP, with a particular focus on device
constructs and the aggregation and passing of OpenMP state through
base language abstractions. We propose mechanisms to improve support
for these abstractions and also to reduce the burden of duplication in
existing OpenMP applications.

1 Introduction

Abstraction is a critical part of computer programming. The languages and
libraries that we use, even basic constructs such as functions, are all examples
of abstraction. Abstraction allows us to hide the complexity of actions behind
simple facades, and to concentrate effort on higher level concepts. While lambda
expressions, closures and other forms of general “code passing” mechanisms have
been integral parts of functional languages such as LISP and Haskell for many
years, they have not been available in mainstream systems programming lan-
guages until recently. The C++11 standard [4] introduced support for lambda
expressions that was expanded in C++14 [5]. Further, the growing support for
C blocks in Objective-C suggests a path for their support in C as well. Frame-
works such as RAJA [3], Kokkos [1] and Grand Central Dispatch [7] employ
these mechanisms to abstract the implementation and management of paral-
lelism away from the use of that parallelism in user code.

This material is based upon work supported by the U.S. Department of Energy
(LLNL-CONF-671602).
The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer International Publishing Switzerland 2015 (outside the US)
C. Terboven et al. (Eds.): IWOMP 2015, LNCS 9342, pp. 260–272, 2015.
DOI: 10.1007/978-3-319-24595-9 19

Supporting Indirect Data Mapping in OpenMP 261

OpenMP [6] provides a programming model that abstracts the specifics of
threaded programming on a variety of platforms across the C, C++ and Fortran
languages. It provides high-level constructs to represent parallel regions, work-
sharing, synchronization, ordering, and atomicity as well as data sharing and
dependencies. Using lambda expressions to wrap around these constructs seems
natural.

Take an example like the C blocks parallel loop function in Fig. 1. It effec-
tively abstracts the specific annotation on the loop out of the user code, which
allows a library or header to switch between OpenMP or Cilk+ to parallelize
the loop. However, interfaces such as these create a challenge for specifying data
sharing attributes and data mapping. Clauses to support reductions, variable pri-
vatization, and perhaps most notably data mapping for device constructs rely
on the user listing variables explicitly as part of the construct at compile time
and they do not offer mechanisms for static polymorphism. Because OpenMP
constructs are composed of pre-processor directives, some of which are actually
evaluated after pre-processing and template expansion, they cannot exploit base
language mechanisms for passing information like reduction variables or map-
types through a language abstraction like a lambda. Further, C++ lambdas
and C blocks are intentionally opaque objects, so the code that they are passed
cannot inspect their details in order to glean the information.

void parallel_for_all(size_t start,

size_t end,

void (^fun)(size_t i)){

#if defined(USE_OPENMP)
#pragma omp parallel for

for(size_t i=start; i < end; ++i)

#elif defined(USE_CILK)
cilk_for(size_t i=start; i < end; ++i)

#endif
{ fun(i);

} }

void add_arrays(double *a, double *b, size_t N){

parallel_for_all(0, N,

^(size_t i) {

a[i] += b[i];

});

}

Fig. 1. An example parallel loop function using C blocks

Traditional OpenMP parallelization works well for simple examples such as
that in Fig. 1. Implicit data sharing rules easily combine with the base language
code passing mechanism to handle most use cases correctly. Variable privatiza-
tion for example is provided by declaring a local variable inside the scope of the

262 T.R.W. Scogland et al.

block, and sharing provided by simply using the captured value. Issues can arise
with reductions or more complicated decisions for features such as loop schedules
but the required information is usually needed for the base language abstrac-
tion. OpenMP 4.0 device constructs and their support for mapping array sections
create new challenges. The code in Fig. 2 shows a desirable abstraction using a
C++11 lambda with templates to abstract over a target region in OpenMP or
OpenACC [2]. However, neither of these parallelization mechanisms have mech-
anisms to make the arrays available on the device within the abstraction. As
noted in the comment, the arrays must be explicitly listed in map clauses, which
is impossible since the variables effectively do not exist where they must be
listed. While data mapping clauses are our primary focus, there is a general lack
of support for passing state through the base language to OpenMP constructs,
and lack of support for aggregation of constructs that should be addressed as
well. It is equally impossible to externally select the reduction operator or vari-
able to use in a template lambda function for example.

template<typename FunT, typename It>

void target_forall(It begin, It end, FunT fun){

#if defined(USE_OMP)
#pragma omp target teams distribute parallel for
// need to list map(tofrom: a[begin:end-begin]) map(to: b[begin:end-begin])
// unfortunately, they do not exist here
#elif defined(USE_OPENACC)
#pragma acc kernels loop
// need to list copy(a[begin:end-begin]) copyin(b[begin:end-begin])
#endif

for(It i = begin; i < end; ++i){

fun(i);

} }

void add_arrays(double *a, double *b, size_t N){

target_forall(0, N,

[&](size_t i) {

a[i] += b[i];

});

}

Fig. 2. An example target loop function using C++ lambdas

With the growing popularity of these abstraction models, OpenMP needs
mechanisms to pass information through base language constructs. Otherwise,
each instance that uses one of the abstractions must anticipate the parallelization
mechanism within the abstraction, thus breaking the advantages that it offers.
This paper explores the challenges of supporting abstractions like lambdas, pro-
poses adjustments and extensions to OpenMP to support abstraction of target
regions, and discusses extensions that generally support abstraction models.

Supporting Indirect Data Mapping in OpenMP 263

The remainder of the paper is structured as follows. Section 2 provides back-
ground on the behavior of the map clause and the device data environment in
OpenMP 4.0. Section 3 proposes adjustments to the handling of map clauses to
support abstraction better. Section 4 presents a preliminary design for a general
mechanism to pass OpenMP information through base language mechanisms.

2 The OpenMP 4.0 Data Environment

OpenMP 4.0 introduces the concept of target devices and their associated data
environments into the programming model. While those data environments may
share storage with host memory, they can also be completely disjoint. Thus,
OpenMP now supports a limited form of potentially distributed memory pro-
gramming that expands the requirements and functionality of its data sharing
and data motion constructs substantially. The original data sharing attributes,
such as private, shared, are still available within device environments but pro-
grams must map data into the device data environment. While default mapping
rules support many implicit mappings, dynamic arrays or other pointer-based
structures require explicit mappings. This section details the OpenMP 4.0 mem-
ory mapping interface, its use, defaults, and interactions.

2.1 Mapping Syntax

The map clause of the target and target data constructs maps data from the
host data environment, which is the system memory space as viewed from the
encountering thread, into the device data environment, which is the memory
space that is visible on the target device. In other environments, copy-based
constructs are common for this task, but OpenMP has carefully specified that the
operation does not require copying, which allows systems in which the host and
device share memory to avoid unnecessary allocations and copies. Nonetheless,
mapping requires a concept of directionality to ensure that data can be copied
for environments that do not support a shared memory between the host and
the target device. Figure 3 shows the syntax of the map clause.

map([map-type:] list-item[, list-item...])
map-type: alloc | to | from | tofrom
list-item: <variable-name>[array-section]
array-section: [<start>:]<length>

Fig. 3. The options and syntax of the map clause

Despite its few options, the map syntax can specify a wide variety of cases.
The map-type specifies which direction a value should be copied in if copies are
necessary. Specifically alloc specifies that no copies are ever necessary, to copies

264 T.R.W. Scogland et al.

to the device at the beginning of the region, from copies back from the device
at the end of the region and tofrom copies in both directions. Each list item
specifies the variable to be mapped and, if it is an array section, the offset and
number of elements to map. For C and C++, OpenMP 4.0 includes array section
syntax that lists the element from which to begin the mapping and how many
elements to make available starting from that point. For Fortran, OpenMP uses
the base language syntax. Any variable listed without an array section is treated
as a scalar, and the default behavior for any variable accessed in a device region
that is not specified in a map clause is to treat it as though it had been listed as
a scalar with a map type of tofrom. For C and C++, the mapping of dynamic
arrays or their sections is composed of two parts. A pointer is mapped into the
device data environment with map-type alloc and an array of the specified
size is mapped in with the map-type specified. The new pointer in the device
data environment is then set to point to the mapped array. These steps allow
manipulation of the pointer on the device and multiple disjoint mappings of an
array.

void omp4_foo(double *arr, int len, double arg){

#pragma omp target map(from: arr[0:len]) \
map(to:len)

// map(alloc: arr)
// map(tofrom: arg)
{

// arr = arr_data_array;
arr[len - 1] = arg * arg;

len = 5;

}

}

Fig. 4. A simple example of data mapping

Figure 4 shows a simple mapping example, which explicitly specifies two map-
pings. The map clause maps the array arr as an array section and len as a scalar.
The construct results in four separate mappings occuring, with two implicit map-
pings shown in comments. The array arr has an implicitly mapped pointer at
global scope to hold a pointer to the device data that the first map clause explic-
itly maps. The mapping will copy the elements between 0 and len− 1 of arr in
the device data environment back to the host, if necessary. Both len and arg
are mapped as scalars. The value of len is explicitly mapped to the device data
environment so it will be the same value as in the host data environment at the
start of the region. The assignment to len in the target region makes its value
in the host data environment unspecified after the target region executes since
it may share storage with the version with the device environment version. The
scalar value of arg is implicitly mapped tofrom the device data environment
since it is not listed in a map clause.

Supporting Indirect Data Mapping in OpenMP 265

2.2 Presence

If the host and device environments share storage then mapping has no cost.
However, if they do not share storage then it can entail a significant allocation
and copying costs. Thus, applications require a method to reduce the frequency
of mapping. The target data construct adds variables to the device data envi-
ronment across a region of host code. That region can include target regions,
which use the already mapped data rather than transferring it repeatedly. Effec-
tively, mapped variables are added to a presence table that is consulted whenever
a variable is mapped, re-using the existing version if one is found. Thus, a vari-
able can be logically mapped at each code location that requires it while allowing
it to be transferred only once in an outer scope.

The presence table semantically lists mappings between host variables and
their device-side counterparts. It is not as simple as a hash table or direct-
mapped array because applications can map multiple sub-arrays of larger arrays
through different pointers. Thus, implementations must perform a range-based
search over the table to support all features of OpenMP 4.0. Nonetheless, a
user model of a table that maps the address of a variable to its device-side
counterpart if one exists generally suffices. For scalars, a presence check is that
simple. However, array sections are handled in two phases. First, the address of
the host pointer, &arr in the example above, is checked for presence and then the
address of the array, arr, is searched then assigned into the device side pointer
found or allocated in the first part.

3 Map Refinements

OpenMP needs to provide mechanisms that allow the user to map the data
elements used inside abstractions such as the lambda expression in Fig. 2. The
mechanism must support type abstraction but must not require the variable
name within the lambda expression in order to be consistent with the base
language construct. At first thought, the target data construct seems to provide
a solution. However, annotating the lexical scope that contains the use of the
abstraction may be difficult or impossible. Thus, these abstraction mechanisms
require the TR3 unstructured data mapping constructs, target enter data and
target exit data, that map data without requiring an enclosing lexical scope.
Since they can map data for dynamically encountered target regions and reduce
the number of times items are mapped, they may seem like an ideal solution.
Unfortunately, the mechanism does not solve the problem due to the mapping
defaults and how the presence table mechanism is specified.

Figure 5 shows unstructured data mapping of the data that the abstraction
layer in Fig. 2 requires, after inlining of the template code and the lambda func-
tion. The example may appear correct since both a and b are appropriately
mapped by the target enter data region and i is automatically privatized by
the target construct. Unfortunately, as discussed in Sect. 2, the default map-
ping for variables not listed in a map clause is equivalent to listing them in
map(tofrom: <var>). Thus, the variables will be mapped to and from the device

266 T.R.W. Scogland et al.

void init_arrays(double *a, double *b, size_t N){

#pragma omp target enter data map(to: a[0:N])\
map(to: b[0:N])

}

void release_arrays(double *a, double *b, size_t N){

#pragma omp target exit data map(from: a[0:N])\
map(release: b[0:N])

}

void add_arrays_inlined(double *a, double *b, size_t N){

init_arrays(a,b,N);

double * inner_a = a, *inner_b = b;

#pragma omp target teams distribute parallel for
for(size_t i = 0; i < N; ++i){

inner_a[i] += inner_b[i];

}

release_arrays(a,b,N);

}

Fig. 5. Unstructured data mapping example

data environment as desired. However, all unlisted variables are treated as scalars
rather than array sections or references. Since array sections are mapped in two
parts, and the presence check works on each of them independently, the desired
behavior would result if the addresses of the pointers, in this case &inner a and
&inner b, matched those of the originally mapped pointers, &a and &b. Since
inlining typically uses temporaries, the host pointers would be mapped instead
of finding the already mapped array sections. If the host and device data envi-
ronments do not share memory, then memory errors or segmentation faults are
likely when the array accesses are performed. Thus, we propose two changes for
OpenMP variable mapping. The first adjusts the presence check used for array
sections. In the second, the default mapping depends on the type of the variable.
We detail both changes in the following subsections.

3.1 Data only Array Sections

Since array sections are mapped in two parts, a presence check can fail for an
array section even if it is present when it is accessed through a copy of the pointer
other than the one used to map it. This issue may seem minor, except that C and
C++ pass function parameters by value. Thus, a target data construct used in
a function does not map the variable of the calling function. Thus, init arrays
does not map the variables of add arrays inlined. Thus, unstructured data
constructs can map function parameters and stack-based local variables to the
device. The device copies can then become unreachable when the host variables
cease to exist. Further, passing another function a pointer to mapped data as
an argument creates a new copy of that pointer, and the presence check inside
the sub-function fails. The second phase of the presence check can rectify the

Supporting Indirect Data Mapping in OpenMP 267

situation if the array section is explicitly mapped. However, that solution again
requires the variable name within the abstraction.

We propose one step mapping semantics for array sections. These semantics
do not implicitly map the pointer variable or add it to the presence table. Instead,
they only add the base address of the array section and its associated offset and
length to the presence table. An application must explicitly map the pointer in
order to modify it on the device. Thus, the presence check for a function called
with an array argument will find the array. These semantics have the poten-
tially beneficial side-effect of allowing pointers to array sections to be passed as
parameters to kernel function implementations of target regions in programming
models such as CUDA and OpenCL. Alternatively, we could retain the double
presence check for pointer and reference types, but reverse the order such that
the value of the pointer is first checked for presence, and its address is checked
only if that fails. While this option is heavier-weight, it is closer to the current
semantics. Neither of these solutions addresses the implicit behavior, which we
require since the abstraction mechanism prevents naming the variable explicitly.

3.2 Type-Based Implicit Mappings

The default tofrom mapping has the closest semantics to the shared data shar-
ing attribute, which is the default for most variables for other OpenMP con-
structs. The tofrom map-type ensures that the device data environment has the
host value initially and that changes in the target region are propagated back.
However, the additional implicit behavior that treats pointers, as well as other
scalars, as value types causes problems for nested mappings of array sections. We
propose that the default be split between two different groups of variable types,
the value types and the reference types. The reference type class includes pointers
and C++ references. The value type class includes scalars and structures.

We then can specify that the default for any reference type is a minimal array
section including the address pointed to by the variable. The explicit equiva-
lent would be map(alloc:<var>[:0]). These semantics essentially assume that
implicit mappings of reference types follow a previous explicit mapping of an
array section that the variable references. Thus, these semantics are closest to
those for Fortran array types, given that C and C++ lack the dope vectors that
support implicit array mapping. These semantics ensure that pointers and refer-
ences are always checked for presence by the address that they hold rather than
their own address, unless they are explicitly mapped as value types. Combining
this change with the adjustment to the mapping of array sections allows the code
in Fig. 5 to work as expected without explicitly annotating the target region.

We can also consider whether the existing default is appropriate for value
types. As previously mentioned, tofrom is the closest to the shared data sharing
attribute. However, OpenMP includes a range of implicit and predetermined
data sharing attributes that reflect the expected use of variables. For example,
loop iteration variables of loop constructs are private. The tofrom mapping can
imply significant overhead for value types. For example, allocating and initiating
a small variable in the global memory space of some devices, such as GPUs,

268 T.R.W. Scogland et al.

entails significant overhead, which the current default requires since the variables
must have globally modifiable state between all threads on the target. Semantics
similar to firstprivate could entail lower overhead and provide similar benefits
to our proposed array section changes. Overall, we suggest the specification of
default mapping attributes based on the expected use of the variable similarly to
the predetermined and implicitly determined data sharing attributes. A default
clause for device constructs could also be useful.

4 Clause Grouping and Binding

Our proposed solutions in the previous section address finding mapped values in
the device data environment without listing the variables on a construct. That
can be sufficient to address mapping in target regions, but does not solve the
more general problem of defining or passing OpenMP state through abstractions.
In this section, we propose a general solution that can declare re-usable groups
of clauses and methods for binding those groups to constructs. This extension to
the OpenMP name space that currently supports user-defined reductions would
better support abstraction within OpenMP, thus reducing its verbosity and the
need for replicated code.

#pragma omp declare group <binding clause> [<binding clause>...]\

[<general clause>...]

clause: name(<group name>)

bind_all(<construct name>)

bind_type(<variable type>)

general clause: any valid OpenMP clause

New general clauses: bind_groups([<action>:]<group name>[,<group name>...])

bind_types(<type or var>[,<type or var>])

action: merge (default) | inherit | exclude | override

Fig. 6. The options and syntax of the declare group construct

The basic construct provides an OpenMP-visible name to a group of related
clauses. This standalone construct, which we call declare group and present
in Fig. 6, can specify any number of clauses and accepts any clause that can
be specified on any construct in OpenMP. The only clauses that apply to it,
however, are the name, bind all and bind type clauses. The bind all clause
of the declare group construct takes a list of construct types, such as target,
parallel or target teams distribute. The declared clauses are then applied
to every instance of the listed construct types that are in the same lexical scope
as the declare group construct, or a sub-scope thereof.The name clause creates
a name for that group of clauses that can be referenced later to control the inclu-
sion, or exclusion, of the clause group with a bind group clause. The <type>
argument to bind group specifies how clauses are incorporated from the group:

Supporting Indirect Data Mapping in OpenMP 269

merge pulls in all clauses from the group, and merges them with those specified
on the construct, two conflicting clauses will result in an error; inherit pulls in
all clauses from the group, but allows them to be overridden by clauses specified
directly on the construct; exclude causes a group to be excluded from the con-
struct even if it would have been bound to the construct by a bind all on the
group’s definition; finally override includes all clauses, but allows the clauses in
the group to override clauses specified directly on the construct. For cases where
override precedence is required, it is defined be in simple left-to-right order of the
specification in the clause list of the construct. If any of the clauses do not apply
that construct, then the behavior is unspecified. For order-dependent clauses,
the order is preserved from the original declare group construct.

#pragma omp declare group name(privs)\
firstprivate(a,b,c,d,e,f,g,a1,b1,c1...)

void foo(){

#pragma omp declare group bind_all(parallel) name(par) \
default(none) if(use_threads)

#pragma omp parallel bind_group(privs)
...

#pragma omp parallel bind_group(privs)
...

#pragma omp parallel
...

#pragma omp parallel bind_group(privs)
...

#pragma omp parallel bind_group(exclude: par)
...

}

Fig. 7. Group binding

Figure 7 provides an example of applying clause groups to simplify a complex
set of constructs. The first declare group construct has only one clause, but
it is a voluminous list of variables that should be firstprivate on several
constructs, but not on all. While ideally this usage would never be necessary, it
is not uncommon to see many constructs with such long lists repeatedly specified
in a code. Our proposal provides a convenient shorthand. While one could argue
that C99 macros, if fully supported, implement the same functionality, the second
declare group offers more. Since it is inside the function, and is specified to bind
to all parallel regions, it applies to all of the regions in that function, except
the last from which it is specifically excluded, factoring out the specification of
the conditional clause and default data sharing.

This relatively simple extension addresses many issues of clause duplication.
However, it does not obviously address the more general issue of being able

270 T.R.W. Scogland et al.

to write polymorphic OpenMP, where a library writer can provide users an
abstraction that allows their arguments to supply information to construct an
OpenMP construct dynamically at compile time. In order to discuss how it can
be used to help address header-based libraries and other such abstractions, we
will discuss an example. The code depicted in Fig. 8 is a straightforward OpenMP
function, summing all elements of two arrays into a single sum variable.

double sum_two_arrays(double *a, double *b, size_t N){

double sum;

#pragma omp parallel for reduction(+:sum)
for(int i=0; i<N; i++) {

sum += a[i] + b[i];

}

return sum;

}

Fig. 8. A simple reduction function

Now, lets say that a library writer wants to write an abstract for all reduce
function that uses OpenMP underneath. This may sound like a toy, many libraries
implement reduction operations, but reductions are exceptionally difficult to
implement in a performance-portable manner, so allowing higher-level abstrac-
tions to rely on OpenMP optimized reductions could be a significant benefit for
library writers. It will need to take a range of values, and somehow populate both
the operator and the variable parameters of the reduction clause at compile time.
Using C99 macros, it can be done as depicted in Fig. 9.

#define FOR_ALL_REDUCE(iter, start, end, operator, variable) \
_Pragma(omp parallel for reduction(operator:variable)) \
for(int iter=(start); iter<(end); iter++)

double sum_two_arrays(double *a, double *b, size_t N){

double sum;

FOR_ALL_REDUCE(i, 0, N, +, sum){

sum += a[i] + b[i];

}

return sum;

}

Fig. 9. A macro reduction wrapper

Now we have a general wrapper that will do a reduction on a single variable.
The real challenge begins when multiple reductions, or other variable listing

Supporting Indirect Data Mapping in OpenMP 271

effects are required but invisible in the abstraction. Take the example back in
Fig. 2, while the previous section described a means of supporting the mapping
behavior, there remains no way to reasonably support a reduction in the context
of a variable captured into a C++11 lambda.

We provide an additional clause for a wide range of OpenMP constructs, sim-
ilar to the bind group clause. This bind types clause allows the declare group
construct to bind clause groups to variable type names, either by being placed
in their type definition or as an extra clause that modifies an existing type.
Thus, we can use the type system of the base language to pass information to
OpenMP. Note that binding to a type name, rather than the type itself, allows
us to bind behavior to a typedef or using declaration that doesn’t actually create
a new base-language type per-se. Figure 10 shows an example of our preliminary
proposal for this functionality.

// Library header
typedef double ReducSum;

#pragma omp declare group bind_type(ReducSum) reduction(+:omp_self)

template<typename FunT, typename It, class ... Types>

void target_forall(It begin, It end, FunT fun, Types ... args){

#pragma omp parallel for bind_types(args...)
for(It i = begin; i < end; ++i){

fun(i, args...);

} }

// User code
void add_arrays(double *a, double *b, size_t N){

ReducSum sum;

target_forall(0, N,

[&](size_t i, ReducSum& c_inner) {

c_inner += a[i] + b[i];

}, sum);

}

// Post-expansion and variadic template inlining result
void add_arrays(double *a, double *b, size_t N){

double sum;

#pragma omp parallel for reduction(+:sum)
for(size_t i = 0; i < N; ++i){

size_t _i = i, &c_inner = sum;

c_inner += a[_i] + b[_i];

}

}

Fig. 10. Binding a clause group to a type

272 T.R.W. Scogland et al.

Conceptually, the declare group construct annotates the ReducSum type
with the necessary information for OpenMP to generate the proper reduction
for the wrapped code, expanding omp self to the variable from which the clause
was extracted on the construct. Thus, nearly any OpenMP information could be
passed as part of aggregate types, and have that information passed by existing
base language mechanisms. The bigger challenge is to declare a cross-language
mechanism to handle this process. In the example we use C++ because it sup-
ports definition of an abstract function that not only takes arbitrary types, but
can identify the types independently of out-of-bound information, something C
variadic functions cannot do. We are continuing to explore this direction for a
broader solution in future work.

5 Conclusion

This paper has explored the challenges inherent in supporting lambda or block
based abstractions in OpenMP. We find that as currently specified, many of
the important features of the newest standard, notably device constructs, do
not support interfaces that such abstraction layers can use. The map interface
in particular poses a significant challenge. We propose adjustments to mapping
semantics and defaults that will both address this issue and simplify existing
code. Beyond the mapping support, we also explore the issue of reducing clause
duplication in OpenMP code and passing of clauses through native mechanisms.
The ability to define clause groups along with binding specifications could elimi-
nate significant duplication required in OpenMP applications currently. Attach-
ing the same information to the type system of the base language would allow
OpenMP information to be passed through abstraction layers for a more general
solution to the abstraction support problem.

References

1. Kokkos. http://trilinos.org/packages/kokkos/
2. OpenACC 2.0 application programming interface specification, June 2013. http://

www.openacc.org/sites/default/files/OpenACC%202%200.pdf
3. Hornung, R., Keasler, J.: The RAJA portability layer: overview and status. Techni-

cal report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2014)
4. ISO/IEC: Iso international standard iso/iec 14882:2011 - information technology

- programming langugages - c++ (2011). http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=50372

5. ISO/IEC: Iso international standard iso/iec 14882:2014 - information technol-
ogy - programming langugages - c++ (2011). http://www.iso.org/iso/home/store/
catalogue ics/catalogue detail ics.htm?csnumber=64029

6. OpenMP ARB: OpenMP 4.0 specification, June 2013. http://www.openmp.org/
mp-documents/OpenMP4.0.0.pdf

7. Sakamoto, K., Furumoto, T.: Grand central dispatch. In: Proceedings of Multi-
threading and Memory Management for iOS and OS X, pp. 139–145. Springer (2012)

http://trilinos.org/packages/kokkos/
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64029
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64029
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Author Index

Agathos, Spiros N. 202
Ahn, Dong H. 89
Alessi, Ferdinando 219
Antao, Samuel F. 30
Arif, Mahwish 162
Ayguadé, Eduard 60, 189

Bae, Hansang 133
Bertolli, Carlo 30
Bihari, Barna L. 133
Bolger, Anthony M. 3
Bonnichsen, Lars 149
Burton, Ariel 89

Casas, Marc 60
Chapman, Barbara 102
Chasapis, Dimitrios 60
Chen, Tong 30
Ciesko, Jan 189
Cownie, James 133

de Supinski, Bronis R. 177, 189, 260
DelSignore, John 89
Diachin, Lori 133
Dimakopoulos, Vassilios V. 202
Duran, Alex 189

Eichenberger, Alexandre E. 30, 189

Fahringer, Thomas 219
Fan, Xing 115
Ferrer, Roger 60
Finkel, Hal 260

Georgakoudis, Giorgis 219
Ghane, Millad 102
Giacaman, Nasser 115
Gropp, William D. 18
Guzik, Stephen 45
Gyllenhaal, John 177, 260

Hart, Alistair 73
Hornung, Rich 177, 260

Jacob, Arpith C. 30
Joppich, Markus 3

Kale, Vivek 18
Keasler, Jeff 177, 260
Kim, Jeongnim 247
Klemm, Michael 133
Kuhlen, Torsten 3

Labarta, Jesús 60, 189
Laguna, Ignacio 89
Li, Kelvin 189
Liao, Chunhua 45
Lin, Pei-Hung 45

Malik, Abid M. 102
Martorell, Xavier 60, 189
Mateo, Sergi 189
Meadows, Larry 247
Mehrabi, Mostafa 115
Moretó, Miquel 60
Müller, Matthias S. 89, 233

Nair, Ravi 30
Nikolopoulos, Dimitrios S. 219

O’Brien, Kevin 30
Olivier, Stephen 189

Papadogiannakis, Alexandros 202
Podobas, Artur 149
Protze, Joachim 89

Qawasmeh, Ahmad 102
Quinlan, Daniel J. 45

Schmidl, Dirk 3, 233
Schulz, Martin 89
Scogland, Thomas R.W. 177, 260
Sinnen, Oliver 115
Sura, Zehra 30

Terboven, Christian 133
Teruel, Xavier 189
Thoman, Peter 219

Usadel, Björn 3

Valero, Mateo 60
Vandierendonck, Hans 162
Vidal, Raul 60

Wang, Bo 233
Wells, Alex 247
Wong, Michael 30

274 Author Index

	Preface
	Organization
	Contents
	Applications
	PAGANtec: OpenMP Parallel Error Correction for Next-Generation Sequencing Data
	1 Introduction
	2 Related Work
	2.1 k-mer Graph and Error Correction
	2.2 Parallelization Options

	3 PAGANtec Architecture
	3.1 Graph Structure
	3.2 Correction Strategies
	3.3 Correcting Errors

	4 Parallelization
	4.1 Performance Analysis

	5 Conclusion
	References

	Composing Low-Overhead Scheduling Strategies for Improving Performance of Scientific Applications
	1 Introduction
	2 Scheduling Strategies
	3 Techniques for Composing Scheduling Strategies
	3.1 uSched
	3.2 slackSched
	3.3 vSched
	3.4 ComboSched

	4 Code Transformation
	5 Results
	6 Related Work
	7 Conclusions
	References

	Exploiting Fine- and Coarse-Grained Parallelism Using a Directive Based Approach
	1 Introduction
	2 Related Work
	3 Background: OpenMP Accelerator Model
	4 An Offloading Model for a Cluster
	4.1 Definitions
	4.2 Execution Model
	4.3 Memory Model

	5 Implementation
	5.1 Runtime Support

	6 Preliminary Results
	7 Discussion
	8 Conclusions
	References

	Accelerator Applications
	Experiences of Using the OpenMP Accelerator Model to Port DOE Stencil Applications
	1 Introduction
	2 OpenMP 4.0's Accelerator Support
	3 Applications
	4 Porting to GPUs
	4.1 Baseline Performance on CPU and GPU
	4.2 Increasing Parallelism
	4.3 Loop Scheduling
	4.4 Exploiting Memory Hierarchy
	4.5 Reducing Memory Movement Between Host and Device
	4.6 Manual Tuning for GPU Performance
	4.7 Productivity

	5 Related Work
	6 Discussion and Future Work
	References

	Evaluating the Impact of OpenMP 4.0 Extensions on Relevant Parallel Workloads
	1 Introduction and Motivation
	2 Application Parallelization
	2.1 Facesim
	2.2 Fluidanimate
	2.3 Streamcluster

	3 Evaluation
	3.1 Performance Evaluation
	3.2 Programmability

	4 Related Work
	5 Conclusions
	References

	First Experiences Porting a Parallel Application to a Hybrid Supercomputer with OpenMP 4.0 Device Constructs
	1 Introduction
	2 OpenMP Device Constructs
	2.1 Data Regions

	3 A High Level View of the Porting Method
	3.1 Fusing Local Data Regions

	4 Porting NekBone
	5 Conclusions
	References

	Tools
	Lessons Learned from Implementing OMPD: A Debugging Interface for OpenMP
	1 Introduction
	2 Prior Work
	3 The OpenMP Debugging Interface
	3.1 OMPT: A Runtime Interface for OpenMP Tools
	3.2 Why Distinguish OMPD from OMPT?
	3.3 The OMPD Architecture

	4 Use Cases of OMPD
	4.1 OpenMP-Aware Stack Trace
	4.2 Stepping in and Out of a Parallel Region

	5 OMPD Callback Interface
	5.1 Functions for Operating System Interaction
	5.2 Resolving Structures for Target Architecture
	5.3 Access Application Memory
	5.4 Debugger's Context Argument

	6 OMPD API Function Specifications
	6.1 Providing Information on Compatible Runtime Library
	6.2 API Specification for Breakpoints
	6.3 Missing Function to Identify Master

	7 Future Challenges
	7.1 Context Pointer for Accelerators
	7.2 Addressing Accelerator Threads
	7.3 Return Codes

	8 Conclusions
	References

	False Sharing Detection in OpenMP Applications Using OMPT API
	1 Introduction
	2 Motivation
	3 Related Work
	4 OMPT- Application Programming Interface for Tools
	5 Our Approach
	5.1 OMPT for Capturing Unique Patterns
	5.2 Hardware Performance Information
	5.3 Binary Classifier for False Sharing Detection
	5.4 Feature Selection

	6 Experimentation and Results
	6.1 Training Phase
	6.2 Validation of the Approach

	7 Conclusion and Future Work
	References

	Exception Handling with OpenMP in Object-Oriented Languages
	1 Introduction
	2 Related Work
	3 Problem Overview
	3.1 Current Situation
	3.2 Problem Definition

	4 Cancellations
	5 Exception Handling
	5.1 Overview of Categorization
	5.2 Local Exception Handling
	5.3 Global Exception Handling

	6 Implementation
	6.1 Adaptable Synchronization Barrier
	6.2 Dynamic Work Redistribution
	6.3 Exception from Synchronization Regions
	6.4 Global Exception Throwing

	7 Evaluation
	7.1 Usability
	7.2 Performance

	8 Conclusion
	References

	Extensions
	On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms II: User-Guided Speculative Locks
	1 Introduction
	2 Related Work
	3 User-Guided Locking API with TSX
	3.1 Intel Transactional Synchronization Extensions
	3.2 Using the User-Guided Locking API

	4 Applying Intel TSX to the Test Code
	4.1 A Brief Review of the Algorithm
	4.2 The Role of TSX

	5 Experimental Results
	5.1 Convergence
	5.2 Transactional Memory Statistics
	5.3 Performance Measurement

	6 Conclusions and Future Work
	References

	Using Transactional Memory to Avoid Blocking in OpenMP Synchronization Directives
	1 Introduction
	2 Avoiding Blocking in OpenMP
	2.1 Critical Sections
	2.2 Barrier/Taskwait

	3 Evaluation
	3.1 Experimental Setup
	3.2 Results

	4 Limitations and Related Work
	5 Conclusion
	References

	A Case Study of OpenMP Applied to Map/Reduce-Style Computations
	1 Introduction
	2 Related Work
	3 Map-Reduce Programming Model
	3.1 Phoenix++ Implementation
	3.2 OpenMP Facilities for Map/Reduce-Style Computations

	4 OpenMP Implementations
	4.1 Histogram
	4.2 Linear Regression
	4.3 K-Means Clustering
	4.4 Word Count
	4.5 String Match
	4.6 Matrix Multiply
	4.7 Principal Component Analysis

	5 Evaluation
	5.1 Analysis
	5.2 Coding Style Comparison
	5.3 Implications to OpenMP

	6 Conclusion
	References

	Compiler and Runtime
	Enabling Region Merging Optimizations in OpenMP
	1 Introduction
	2 Region Merging and Control
	2.1 Region Merging Validity in OpenMP
	2.2 Syntax Extensions to Support Merging

	3 Results and Evaluation
	3.1 Back to Back Regions
	3.2 Parallel Regions with Intervening Serial Regions
	3.3 Lulesh

	4 Related Work
	5 Conclusion
	References

	Towards Task-Parallel Reductions in OpenMP
	1 Introduction
	2 Related Work
	3 Discussion
	3.1 Updates of a Reduction Variable Outside a Reduction Context
	3.2 Over-Specifying the Reduction Identifier
	3.3 Supporting Untied Tasks
	3.4 Supporting Nested Taskgroups
	3.5 Cancellation, Dependencies and Merged Tasks

	4 Syntax Additions
	5 Evaluation
	5.1 System Environment
	5.2 Benchmark Descriptions
	5.3 Performance Results on Intel Xeon Processors
	5.4 Performance Results on Intel Xeon Phi Coprocessors

	6 Conclusions and Future Work
	References

	OpenMP 4.0 Device Support in the OMPi Compiler
	1 Introduction
	2 Background
	3 Compiler Transformations
	3.1 Target Data
	3.2 Target
	3.3 Declare Target

	4 Runtime Support
	4.1 Data Environment Handling

	5 The Epiphany Accelerator as a Device
	5.1 Runtime Organization
	5.2 Experiments

	6 Discussion and Current Status
	References

	Energy
	Application-Level Energy Awareness for OpenMP
	1 Introduction
	2 Motivation
	3 OpenMPE
	4 Compilation and Runtime System
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Evaluating the Energy Consumption of OpenMP Applications on Haswell Processors
	1 Introduction
	2 Related Works
	3 Basic Characteristics
	3.1 Energy-Saving Features of Haswell
	3.2 Load-Dependent Behavior

	4 Optimization Steps
	4.1 Wait Strategies
	4.2 Iterative Clock Adjustment
	4.3 Evaluation

	5 Conclusion
	References

	Parallelization Methods for Hierarchical SMP Systems
	1 Introduction
	2 The Test Code
	3 SIMD Building Blocks
	4 Nested Threading
	5 Code Variants
	5.1 Baseline
	5.2 Hand Decomposed
	5.3 Nested Parallelism
	5.4 Hand Nested
	5.5 Crew and Teams
	5.6 SBB

	6 Performance Experiments
	7 Conclusions and Future Work
	References

	Supporting Indirect Data Mapping in OpenMP
敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⴀ㘀瀀�
	1 Introduction
	2 The OpenMP 4.0 Data Environment
	2.1 Mapping Syntax
	2.2 Presence

	3 Map Refinements
	3.1 Data only Array Sections
	3.2 Type-Based Implicit Mappings

	4 Clause Grouping and Binding
	5 Conclusion
	References

	Author Index

