
Keywords-To-SPARQL Translation for RDF
Data Search and Exploration

Katerina Gkirtzou1(B), Kostis Karozos2, Vasilis Vassalos2,
and Theodore Dalamagas1

1 “Athena” Research Center, GR, Maroussi, Greece
{kgkirtzou,dalamag}@imis.athena-innovation.gr

2 Athens University of Economics and Business, GR, Athens, Greece

Abstract. Linked Data is the most common practice for publishing and
sharing information in the Data Web. As new data become available,
their exploration is a fundamental step towards integration and interop-
erability. However, typical search methods as SPARQL queries require
knowing both the SPARQL syntax and the vocabulary used in the data.
For this reason, keyword-based search has been proposed, allowing an
intuitive way for searching an RDF dataset. In this paper, we present
a novel approach for keyword search on graph-structured data, and in
particular temporal RDF graph, i.e. RDF data that involve temporal
properties. Our method, instead of providing answers directly from the
RDF data graph, automatically generates a set of candidate SPARQL
queries that try to capture users information need as expressed by the
keywords used. To support temporal exploration, our method is enriched
with temporal operators allowing the user to explore data within prede-
fined time ranges. To evaluate our approach, we perform an effectiveness
study using two real-world datasets.

Keywords: Keyword search · Graph data · RDF · Linked Data

1 Introduction

More and more corporate, scientific, governmental and user-generated datasets
break the walls of traditional “private” management within their production site,
are published and become available for potential data consumers. The Linked
Data (LD) is the most common practice for publishing, sharing and manag-
ing information in the Data Web, offering new ways of data integration and
interoperability. The main concept in LD is that all resources published on the
Web are uniquely identified by a Uniform Resource Identifier (URI), and typed
links between URIs, also identified by URIs, are used to semantically connect
resources1. LD is implemented with the RDF2 technology: (a) RDF is used for
the representation and modeling of structured and semi-structured data on the
Web and (b) RDF links are used to interlink data from different data sources.
1 http://www.w3.org/TR/ld-bp/.
2 http://www.w3.org/RDF/.

c© Springer International Publishing Switzerland 2015
S. Kapidakis et al. (Eds.): TPDL 2015, LNCS 9316, pp. 111–123, 2015.
DOI: 10.1007/978-3-319-24592-8 9

http://www.w3.org/TR/ld-bp/
http://www.w3.org/RDF/


112 K. Gkirtzou et al.

The RDF representation is a set of statements about resources. Such state-
ments are known as triples. A triple is an expression of the form subject pred-
icate object. The subject refers to a resource to be described, the predicate is
usually a term from existing vocabularies, while the object can either be a literal
(i.e., string) or another resource. A set of RDF triples can also be represented
by a directed labelled graph, known as the RDF data graph. The most com-
mon way for searching an RDF data graph is the SPARQL query language [9].
SPARQL queries involve conjunctions and disjunctions of triple patterns which
are matched on the RDF data graph. However, the use of SPARQL requires,
apart from knowing its syntax, also the knowledge of the RDF schema used to
model the data. For this reason, keyword-based search has been proposed in
bibliography, allowing an intuitive way for searching an RDF dataset.

In this paper, we present a novel approach for keyword search on graph-
structured data, and in particular RDF graph. Our method, instead of provid-
ing answers directly from the RDF data graph, generates automatically a set
of candidate SPARQL queries that try to capture users information needs as
expressed by the keywords used. Our approached is tailored to temporal RDF
data, i.e. RDF data that involve temporal properties. To this end, our method
is enriched with temporal operators allowing the user to explore data within
predefined time ranges. To evaluate our approach, we perform an effectiveness
study using two real-world datasets.

2 Problem Definition

We assume that the user wants to explore of a dataset using a user query language
QU , while the system supports queries only in a specified system query language
QS different from QU . To deal with this case, a transformation from QU to QS is
required. We focus on datasets modeled in RDF graph form, defined as follows:

Definition 1. An RDF data graph G is a tuple (V,E,L) where:

– V is a finite set of vertices. V is defined as the disjoint union VE ∪ VC ∪ VV ,
where VE is a set of vertices representing RDF entities, VC is a set of vertices
representing RDF classes and VV is a set of vertices representing literals.

– E ⊆ V ×V is a finite set of order pairs (v1, v2), called edges, where v1, v2 ∈ V .
– L : {V ∪ E} → L is a function assigning ∀v ∈ V and ∀(v1, v2) ∈ E a label

from alphabet L. The alphabet L is defined as the disjoint union LE ∪ LC ∪
LV ∪ LR ∪ LA ∪ {type, subclass}, where LE is a set of labels for the RDF
entities, LC is a set of labels for the RDF classes, LV is a set of labels for the
literals, LR is a set of labels for the inter-entities properties, LA is a set of
labels for the entity-to-attribute properties. The following restrictions apply:

• L(v) ∈ LE if and only if v ∈ VE,
• L(v) ∈ LC if and only if v ∈ VC ,
• L(v) ∈ LV if and only if v ∈ VV ,
• L((v1, v2)) ∈ LR if and only if v1, v2 ∈ VE,
• L((v1, v2)) ∈ LA if and only if v1 ∈ VE and v2 ∈ VV ,



Keywords-To-SPARQL Translation for RDF Data Search and Exploration 113

1520000TAMIM2620000IM

hsa

Homo Sapiens

hsa-mir-147a

18

Hairpin

NAME

hsa-mir-147

Mature

Species

ENSG...965

GeneAC008069.3

2

Transcript ENST...594

Interaction

0.61...591

name

n
am

e

change

name
versio

n

ty
pe

typ
e

type

ty
pe

typ
e

n
a
m
e

ch
ro
m
os
om

e

hasTarget score

h
a
sM

a
tu

re

produceMature

ty
p
e

species
sp
ec
ies

species

p
ro

d
u
c
e
sT

ra
n
sc
rip

t

Fig. 1. An RDF subgraph from the DIANA dataset. If v ∈ VE then it has oval shape, if
v ∈ VC a diamond shape and if v ∈ VV a rectangle shape. Also, dotted edges represent
entity-to-attribute properties, while solid edges represent inter-entities properties.

• L((v1, v2)) = type if and only if v1 ∈ VE and v2 ∈ VC ,
• L((v1, v2)) = subclass if and only if v1, v2 ∈ VC .

We consider two predefined types of edges, type and subclass, that have a
special interpretation within RDF schema. The former states that an RDF entity
is an instance of an RDF class, while the latter states class hierarchy [3]. The
URIs of RDF entities define the set LE , while the URIs of RDF class and RDF
properties define the sets LC and LR ∪ LA, respectively. Finally, all literal data
values define LV . Figure 1 shows an RDF data subgraph for the DIANA dataset
(see Sect. 6). The oval shape vertex MI0000262 represents an RDF entity of the
RDF class Hairpin. The entity’s name is hsa-mir-147a and it is related with the
entity MIMAT0000251 of the RDF class Mature via the property producesMature.

In our scenario, the user query language QU is defined as a set of keywords
K = {k1, k2, . . . , kn}, while the system supports a query language QS that pro-
duces conjuctive SPARQL queries. These queries can also be viewed as graph
patterns defined as follows:
Definition 2. A graph pattern GQ on an RDF data graph G = (V,E,L) is a
tuple (VQ, EQ,LQ) where:
– VQ is a finite set of vertices. VQ is defined as the disjoint union VV AR ∪VCL ∪

VV AL, where VV AR is a set of vertices representing variables, VCL ⊆ VC is a
set of vertices representing RDF classes and VV AL ⊆ VV is a set of vertices
representing literals.

– EQ ⊆ VQ × VQ is a finite set of order pairs (v1, v2), where v1, v2 ∈ VQ.
– LQ : {VQ ∪ EQ} → LQ is a function assigning ∀v ∈ VQ and ∀(v1, v2) ∈ EQ

a label from alphabet LQ. The alphabet LQ is defined as the disjoint union
LV AR ∪ LC ∪ LV ∪ LR ∪ LA ∪ {type}, where LV AR is a set of labels for the
variables. The following restrictions apply:



114 K. Gkirtzou et al.

• LQ(v) ∈ LV AR if and only if v ∈ VV AR,
• LQ(v) ∈ LC if and only if v ∈ VCL,
• LQ(v) ∈ LV if and only if v ∈ VV AL,
• LQ((v1, v2)) ∈ LR if and only if v1, v2 ∈ VV AR,
• LQ((v1, v2)) ∈ LA if and only if v1 ∈ VV AR and v2 ∈ {VV AL ∪ VV AR},
• LQ((v1, v2)) = type if and only if v1 ∈ VV AR and v2 ∈ {VCL ∪ VV AR}.

Given an RDF data graph G and a graph pattern GQ, answers are con-
structed by mapping the variables VV AR ∈ GQ to vertices V ∈ G such that
the substitution of variables in the graph pattern would yield a subgraph of G.
Considering the above definitions, the problem is defined as follows:

Problem. Given an RDF data graph G and a set of keywords K = {k1, k2, . . . ,
kn}, we want to compute a ranked list of graph patterns GQ given a ranking
function R. The transformation of the keywords to graph pattern can be seen as
a mapping fuction µ(K) = GQ, where each keyword ki will match to L \ LE .

3 Indexing RDF Graph Data

To assist the construction of graph patterns GQ for a given set of keywords, we
use two types of indices: (i) a term index and (ii) a schema-guide graph.

3.1 Term Index

A term index, given a keyword ki, returns a set of matches from the RDF data
graph G, Mi = {m|m ∈ G = (V,E,L)}, along with other necessary information
to assist query formation. More specifically, if m ∈ LA, i.e. matches to a label
of an entity-to-attribute property, then in the RDF data graph G exists at least
one e ∈ VE , v ∈ VV and c ∈ VC such that (e, v) ∈ E with L((e, v)) = m and
(e, c) ∈ E with L((e, c)) = type. In the index, we also keep the labels of the RDF
classes c of the entities e that are subjects to the entity-to-attribute property
with label m. Similarly, if m ∈ LR, i.e. matches to a label of an inter-entities
property, then in G exists at least one es, eo ∈ VE , es �= eo and cs, co ∈ VC such
that (es, eo) ∈ E with L((es, eo)) = m, (es, cs) ∈ E with L((es, cs)) = type and
(eo, co) ∈ E with L((eo, co)) = type. In the index, we also keep the labels of the
pairs of the RDF classes 〈cs, co〉 of the entities es, eo that are subjects and objects
of the inter-entities property with label m, respectively. Finally, if m ∈ VV , i.e. a
literal, then in the RDF graph G exists at least one e ∈ VE , c ∈ VC such that
a = (e,m) ∈ E and (e, c) ∈ E with L((e, c)) = type. It is possible that the same
literal is met in multiple entities e of the same or even different classes c under
both the same property or different properties a. To keep the index minimal, we
keep one entry per property a for a given literal m, grouping only the labels of
the RDF classes c. Table 1 shows analytically the information provided by the
term index depending on the type of the matched element m.



Keywords-To-SPARQL Translation for RDF Data Search and Exploration 115

Table 1. The information of the term index by the type of the matched element m.

Matched element Term Index Structure Notation

m ∈ LA [m, {L(c1), . . . ,L(cn)}] ci ∈ VC and L(ci) ∈ LC

m ∈ LR [m, {〈L(cs1),L(co1)〉, . . . , 〈L(csn),
L(con)〉}]

csi , coi ∈ VC and L(csi),
L(coi) ∈ LC

m ∈ VV [m,L(a), {L(c1), . . . ,L(cn)}] L(a) ∈ LA, ci ∈ VC and
L(ci) ∈ LC

3.2 Schema-Guide Graph

The schema-guide graph is an aggregated representation of the RDF data graph.
It is used to guide the query computation process and it is defined as follows:

Definition 3. A schema-guide graph GSCM of an RDF graph G = (V,E,L) is
a tuple (VSCM , ESCM ,LSCM ) where:

– VSCM is a finite set of vertices defined as the disjoint union VC ∪ {Thing},
– ESCM ⊆ VSCM × VSCM is a finite set of order pairs (v1, v2), where v1, v2 ∈

VSCM and
– LSCM : {VSCM ∪ ESCM} → LSCM is a function assigning ∀v ∈ VSCM and

∀e ∈ ESCM a label from alphabet LSCM , which is defined as the disjoint union
LC ∪ LR ∪ {Thing, subclass}. The following restrictions apply:
• LSCM (v) ∈ LC if and only if v ∈ VC ,
• LSCM (v) = Thing if and only if v = Thing,
• LSCM ((v1, v2)) ∈ {LR, subclass} if and only if v1, v2 ∈ VC .

Every vertex c ∈ VC of the schema-guide graph GSCM represents all the
entities vertices e ∈ VE ⊂ V of the RDF data graph G that have RDF type c and
LSCM (c) ∈ LC . On the other hand, vertex Thing ∈ VSCM with LSCM (Thing) =
Thing represents all entities vertices e ∈ VE ⊂ V of the RDF data graph G that
have no given type. Similarly, an edge (c1, c2) ∈ ESCM of the schema-guide

addHairpinParent

removeHairpinParent

PaperMirnaConnection

PaperMeshConnection

Mature

Hairpin Gene

Paper KeggGeneConnection

Kegg

Interaction

Transcript

Species
hasM

atur
e

hasMature

hasHairpin
hasHairpin

hasMirna

ha
sM

irn
a

hasPaper

hasPaper inPublica
tion

or
p

er
ut

a
Ms

e
c

u
d

has
Kegg

producesTranscript
sp
ec
ie
s

species

species

producesHairpin

hasMature

h
asT

arget

hasGene

SNP

MicrotANN
microtANN
microtCDS

MicrotCDS

lncPredicted

lncPrediction

Fig. 2. The schema-guide graph of DIANA dataset.



116 K. Gkirtzou et al.

graph GSCM represents all edges (e1, e2) ∈ E where e1, e2 ∈ VE of the data
graph G if and only if (e1, c1) ∈ E with L((e1, c1)) = type and (e2, c2) ∈ E with
L((e2, c2)) = type. In this case, LSCM ((c1, c2) = L((e1, e2)) ∈ LR. Finally, the
edge (c1, c2) ∈ ESCM with L((c2, c2)) = subclass represents class hierarchy.

Figure 2 shows an example of the schema-guide graph for the DIANA dataset.
Note that vertices here represent all RDF entities from the RDF graph of a
specific type rather than specific RDF entity. For example vertex MI0000262
in Fig. 1 is represented by vertex Hairpin in Fig. 2. Similarly, the property
producesMature between the RDF entities MI0000262 and MIMAT0000251 in
Fig. 1 is represented by the abstract edge producesMature between vertex
Hairpin and vertex Mature in Fig. 2.

4 Query Pattern Graph

To compute the graph patterns as a response to use keyword-based queries,
we perform the following steps: (1) for each keyword ki ∈ K we retrieve all its
matches Mi on the RDF data graph, (2) we calculate all possible combinations of
the matched elements C = M1 × . . . × Mn = {c = (m1, . . . ,mn)|mi ∈ Mi,∀i =
1, . . . , n}, (3) for each combination c = (m1, . . . ,mn) ∈ C that contains one
matched element mi per keyword ki, we create an augmented schema-guide
graph GAUG, (4) for each augmented schema-guide graph GAUG, we generate
the graph query pattern GQP which is used to form a SPARQL query and
(5) we rank each query pattern graph GQP based on a ranking function R.

4.1 Augmented Schema-Guide Graph

The augmented schema-guide graph is used as a data guide for the query pattern
formation and it is defined as follows:

Definition 4. An augmented schema-guide graph GAUG of an RDF data graph
G = (V,E,L) is a tuple (VAUG, EAUG,LAUG) where:

– VAUG is a finite set of vertices defined as the disjoint union VC ∪VV AL ∪VU ∪
{Thing}, where VV AL ⊆ VV is a set of vertices representing literals and VU

is a set of vertices representing unknown literal values,
– EAUG ⊆ VAUG × VAUG is a finite set of order pairs (v1, v2), where v1, v2 ∈

VAUG and
– LAUG : {VAUG ∪ EAUG} → LAUG is a function assigning ∀v ∈ VAUG and

∀e ∈ EAUG a label from an alphabet LAUG, defined as the disjoint union
LC ∪ LV ∪ LR ∪ LA ∪ {Thing, subclass}. The following restrictions apply:
• LAUG(v) ∈ LC if and only if v ∈ VC ,
• LAUG(v) ∈ LV if and only if v ∈ VV AL,
• LAUG(v) = ∅ if and only if v ∈ VU ,
• LAUG(v) = Thing if and only if v = Thing,
• LAUG((v1, v2)) ∈ {LR ∪ subclass} if and only if v1, v2 ∈ VC ,
• LAUG((v1, v2)) ∈ LA if and only if v1 ∈ VC and v2 ∈ {VV AL ∪ VU}.



Keywords-To-SPARQL Translation for RDF Data Search and Exploration 117

Given a set (m1, . . . ,mn) ∈ C, we construct the augmented schema-guide
graph GAUG from the schema-guide graph GSCM as follows:

– If mi ∈ LV , add an edge (c, vmi
) and a vertex vmi

with LAUG(vmi
) = mi.

The newly inserted edge (c,mi) will be attached to the proper c ∈ VC ∪
Thing vertex and labelled LAUG(c, vmi

) = L(a), according to the information
provided by term index for mi.

– If mi ∈ LA, add an edge (c, v) and a vertex v. The newly inserted edge (c, v)
will be attached to the proper c ∈ VC ∪ {Thing} vertex and will be labelled
as LAUG(c, v) = L(c) ∈ LA, while the newly inserted vertex v ∈ VU will not
be labelled.

– If mi ∈ LR or mi ∈ LC , do nothing as they are already part of the schema-
guide graph GSCM .

4.2 Query Pattern Graph Formulation

Definition 5. The Query Pattern Graph GQP is the minimal connected sub-
graph of the augmented schema-guide graph GAUG such that it includes all the
matched elements mi ∈ c and there exists no other query pattern graph G′

QP

such that C(G′
QP ) < C(GQP ) for a given cost function C.

In our framework, we define the cost function as the average pairwise distance
between the matched elements mi, in other words C(GQP ) =

∑
dist(mi,mj)

∀i, j = 1, . . . , n and i �= j. In order to minimize the cost function for every pair
of matched elements (mi,mj) i �= j, we calculate their shortest path in GAUG.
Note that during the shortest path calculations we ignore the directionality of
the edges. Moreover, since a matched element mi, i.e. a source or sink of the
shortest path algorithm, can also be an edge, then the distance between two
matched elements counts the number of both vertices and edges that needs to
traverse across the augmented summary graph GAUG. Finally, we combine all the
pairwise shortest path forming a connected subgraph, the Graph Query Pattern
GQP . Note that the GQP is a “compressed” form of graph pattern GQ. Each
node v ∈ {VC ∪{Thing}} from GQP is a hypernode that corresponds to a single
subtree G′

Q ⊂ GQ which contains two vertices v1, v2 ∈ G′
Q, where v1 ∈ VV AR

and v2 ∈ VC connected with an edge (v1, v2) with label type. Any edge e initially
attached to hypernode v can be attached to vertex v1.

4.3 Query Mapping

The next step is to translate the query pattern graph GQP into a SPARQL
query. Remember that GQP = (VQP , EQP ,LQP ) is a subgraph of the augmented
schema-guide graph GAUG and it is also a compressed form of a graph pattern
GQ, thus some of its elements have known fixed values and some need to be
associated with variables. More specifically, vertices v ∈ VC∪VU represent generic
RDF elements and need to be associated with variables. Note also that the labels
of the vertices can be used as constants in the triple patterns, while the labels
of the edges as predicates. Given these observations, to produce conjunctive
SPARQL queries for every graph element ∈ GQP we perform:



118 K. Gkirtzou et al.

addHairpinParent

removeHairpinParent

PaperMirnaConnection

PaperMeshConnection

Mature

Hairpin Gene

Paper KeggGeneConnection

Kegg

Interaction

Transcript

Species
hasM

atur
e

hasMature

hasHairpin
hasHairpin

hasMirna

ha
sM

irn
a

hasPaper

hasPaper inPublica
tion

or
p

er
ut

a
Ms

e
c

u
d

has
Kegg

producesTranscript
sp
ec
ie
s

species

species

producesHairpin

hasMature

h
asT

arget

hasGene

SNP

MicrotANN
microtANN
microtCDS

MicrotCDS

lncPredicted

lncPrediction

MIMAT0000251 NAME

cha
ng

e
accession

Fig. 3. One of the 6 possible Augmented schema-guide graph for the keywords
MIMAT0000251, name and hasTarget in the DIANA dataset.

– if v ∈ {VU ∪ VV AL}, then associate the vertex v with a new variable var(v),
– if v ∈ VC , then associate the vertex v with a new variable var(v) and produce

the triple pattern var(v) rdf:type LQP (v), where LQP (v) ∈ LC .
– if (s, o) ∈ E from vertex s ∈ VC to vertex o ∈ VC represents an inter-

entities property where LQP ((s, o)) ∈ LR, then produce the triple pattern
var(s) LQP (e) var(o),

– if (s, o) ∈ E from vertex s ∈ VC to vertex o ∈ VV AL represents an entity-to-
attribute property where LQP (o) ∈ LV and LQP ((s, o)) ∈ LA, then produce
the triple pattern var(s) LQP ((s, o)) var(o). FILTER(var(o) = LQP (o)) and

– if (s, o) ∈ E from vertex s ∈ VC to vertex o ∈ VU represents an entity-
to-attribute property, such that LQP ((s, o)) ∈ LA, then produce the triple
pattern var(s) LQP ((s, o)) var(o).

Finally, all produced queries are ranked based on a given ranking function R.
In our framework, we provide three different ranking functions (a) the number
of triplet patterns, (b) the average shortest path distance and (c) the longest
shortest path distance. The former works on the SPARQL form of the generated
query, while the latter two work on the query pattern graph GQP . Note that
the smaller the score of the ranking function R for a given query, the higher
the ranking position. The idea behind this is based on the assumption known
as “Locality of Information”, meaning that the information required by the user
can be modelled in terms of entities which are closely related [11].

4.4 Example

Let’s assume that the user is interested in exploring the DIANA dataset and has
provided the following as keywords: MIMAT0000251, name, hasTarget. Given
the subgraph depicted in Fig. 1, the keywords match to the following elements:
(a) MIMAT0000251 to the literal MIMAT0000251 that is connected via the prop-
erty accession met only with RDF entities of Mature type, (b) name to the



Keywords-To-SPARQL Translation for RDF Data Search and Exploration 119

literal NAME that is connected via the property change met with RDF entities of
type either Mature and to the entity-to-attribute property name met with enti-
ties of type Hairpin, Mature, Species and Gene, resulting in 5 possible matches,
(c) hasTarget to the inter-entities property hasTarget met with subject of type
Interaction and object of type Transcript.

Overall we have 1 × 5 × 1 = 5 possible combinations of the keywords to
matched elements, that would result to 5 possible queries. Let’s consider one
combination, where the name keyword matches to the literal “NAME”. Figure 3
shows the augmented schema-guide graph GAUG for this combination. From this
GAUG we calculate the shortest paths between all pairs of matched elements and
since we have 3 keywords, we need to calculate of

(
3
2

)
= 3 shortest paths. We then

combine them into a single connected component, generating the Query Pattern
graph GQP shown in Fig. 4. Note that the extra node Transcript is attached
to the property hasTarget in order to form a complete triple pattern, although
it is not part of neither of the previous calculated shortest paths. Finally, the
GQP is mapped to the SPARQL query shown in Fig. 5.

Fig. 4. The Query Pattern Graph
extrapolated from the Augmented
Schema-Guide Graph of Fig. 3. In red
we depict the matched elements (Color
figure online).

Fig. 5. The generated SPARQL query
from the Query Pattern Graph of
Fig. 4.

5 Temporal Operators

When working with diachronic data, querying should also involve temporal con-
straints. In our method, we support the following three temporal operators: (a)
at (b) before and (c) after. The first one can be used to retrieve data at a
specific time point, while the other two can be used to define a time window con-
straint. The temporal operators are used as follows: property operator:value,
where property is the temporal entity-to-attribute property that the selected



120 K. Gkirtzou et al.

Table 2. Aggregated statitics for the datasets of AI4B and DIANA.

Dataset # Triples # Classes # Properties # Unique String Values

AI4B 2, 7 × 106 15 148 6.350

DIANA 4, 6 × 109 16 76 613.408

temporal operator will be applied and value is a desired value. For example, if
the user provides as input “paper let7a year after:2006”, she wants to retrieve
publications related with miRNAs named “let7a” published after 2006.

When a temporal operator is used in a query, we consider the selected tem-
poral property as an extra keyword and proceed to the construction of the query
pattern graph GQP and its mapping to SPARQL as described in Sect. 4. There
are only two small differences. The first one is that when we construct the aug-
mented schema-guide graph GAUG, we add, apart from the temporal property
itself, an extra node representing the desired value provided by the user. The
second difference is that when we translate the temporal entity-to-attribute prop-
erty (recall that it will be represented as an edge (s, o) within GQP from vertex
s ∈ VC to vertex o that represents the selected value) we produce the follow-
ing triplet var(s) LQP (e) var(o). followed by (a) FILTER(var(o) = LQP (o)),
when the at temporal operator is used, (b) FILTER(var(o) ≤ LQP (o)) when the
before temporal operator is used and (c) FILTER(var(o) ≥ LQP (o)), when the
after temporal operator is used.

6 Evaluation

We evaluated our proposed keyword search method using two RDF datasets, the
AI4B3 and the DIANA4. The AI4B dataset contains information about biomass
products, while the diachronic DIANA dataset contains aggregated information
of the miRNA world from well-known biology databases that change and evolve
throughout their lifespan. Table 2 shows detailed information about the charac-
teristics of the two datasets. The implementation of the presented method for
the DIANA dataset is available at http://snf-624527.vm.okeanos.grnet.gr:8080/
KeywordSearchDiana/. Finally, our approach has also been incorporated in the
collaborative platform LinkZoo [7].

To evaluate our approach we perform an effectiveness study. We have asked
our collaborators to provide keyword queries along with a natural language
description of the required information. We have aggregated 20 queries in total,
15 for the DIANA (Q1-Q15) and 5 for the AI4B (Q16-Q20). An example
query is “‘Alzheimer’s disease’ mature version at:18” and the corresponding
description is “Retrieve all mature miRNAs of miRBase version 18 that are
related with Alzheirmer’s disease”. All queries used in the evaluation can be
found at https://web.imis.athena-innovation.gr/redmine/projects/lodgov/wiki/
Deliverable2 4 Evaluation.
3 http://snf-629975.vm.okeanos.grnet.gr:8897/ai4b/sparql.
4 http://leonardo.imis.athena-innovation.gr:8891/diana/sparql.

http://snf-624527.vm.okeanos.grnet.gr:8080/KeywordSearchDiana/
http://snf-624527.vm.okeanos.grnet.gr:8080/KeywordSearchDiana/
https://web.imis.athena-innovation.gr/redmine/projects/lodgov/wiki/Deliverable2_4_Evaluation
https://web.imis.athena-innovation.gr/redmine/projects/lodgov/wiki/Deliverable2_4_Evaluation
http://snf-629975.vm.okeanos.grnet.gr:8897/ai4b/sparql
http://leonardo.imis.athena-innovation.gr:8891/diana/sparql


Keywords-To-SPARQL Translation for RDF Data Search and Exploration 121

The effectiveness is calculated by the Reciprocal Rank metric defined as
RR = 1/r, where r is the ranking position of the query that corresponds
to the provided natural language description. To further assist our collabora-
tors in the evaluation process, we provide also a natural language description
of the generated SPARQL queries by incorporating the verbalization system
SPARQL2NL [8]. Figure 6 shows the Reciprocal Rank we have calculated for
our three ranking functions. In the 17 out of 20 queries, we got an RR of 1
meaning that we were able to get the information requested by the users.

Fig. 6. Reciprocal Rank of different ranking functions on DIANA and AI4B datasets.

7 Related Work

The keyword search problem over structured data, either tree structured [4,6] or
graph structured [1,2,5], is a problem that has widely been explored. These works
involve the following basic steps: (a) mapping the keyword elements to structured
data elements (b) connect the keyword elments by searching for substructures
on the data, and (c) return as output the retrieved substructures given a scoring
function. Contrary to the previous approaches, Tran et al. [10] proposed a differ-
ent solution for the keyword search problem. Instead of computing the answers
directly on the data, they compute structured queries allowing the user to choose
the appropriate one. The advantages of this process are the valuable information
provided by the queries allows better comprehension of the retrieved results and
the exploitation of the existing query optimization techniques. Our approach
keywords-to-sparql queries follows [10] approach, but enriches the information
stored within indices and also uses a different exploratory method. More specif-
ically, in comparison with Tran et al.’s keyword index our term index maintains
also information about RDF classes and inter-entities properties allowing to effi-
ciently track possible matches of keywords under a uniform space, while our



122 K. Gkirtzou et al.

augmented schema-guide graph allows also the encoding of temporal properties.
Furthermore, we create multiple augmented schema-guide graphs one per key-
words combination and use the notion of shortest paths to create a query pattern
graph.

8 Conclusion

In this paper, we have presented a novel method for keyword search on data mod-
eled under the RDF graph representation. Our approach can also be applied to
generic graph-structured data if a schema can be extracted. Contrary to the
most common approaches found in bibliography for the keyword search prob-
lem, where answers are directly computed from the data, our algorithm generates
structured queries driven by the schema of the data. This leverages a two-fold
advantage. Firstly, it provides valuable information to the user in terms of com-
prehension of the data. Secondly, it profits from the system optimization in
order to extrapolate the required results. Furthermore, our method is enriched
with temporal operators allowing a more efficient and deeper exploration of the
diachronic data within predefined time points. We have evaluated our approach
under an effectiveness study using two real datasets and we have achieved an
excellent performance capturing the information requested by the users.

Acknowledgements. This study has been supported by LODGOV project, Research
Programme ARISTEIA (EXCELLENCE), General Secretariat for Research and Tech-
nology, Ministry of Education, Greece and the European Regional Development Fund.

References

1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using BANKS. In: ICDE, pp. 431–440 (2002)

2. Bikakis, N., Giannopoulos, G., Liagouris, J., Skoutas, D., Dalamagas, T., Sellis,
T.: RDivF: diversifying keyword search on RDF graphs. In: Aalberg, T.,
Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds.) TPDL 2013.
LNCS, vol. 8092, pp. 413–416. Springer, Heidelberg (2013)

3. Brickley, D., Guha, R.V.: RDF Schema 1.1 W3C Recommendation, 25 February
2014. www.w3.org/TR/rdf-schema/

4. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: a semantic search engine
for XML. In: VLDB, pp. 45–56 (2003)

5. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: SIGMOD, pp. 305–316 (2007)

6. Kimelfeld, B., Sagiv, Y.: Finding and approximating Top-k answers in keyword
proximity search. In: PODS, pp. 173–182. ACM (2006)

7. Meimaris, M., Alexiou, G., Gkirtzou, K., Papastefanatos, G., Dalamagas, T.: RDF
resource search and exploration with LinkZoo. In: DATA. p. (2015) (to appear)

8. Ngonga Ngomo, A.C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, I
Don’T Speak SPARQL: Translating SPARQL Queries into Natural Language. In:
WWW, pp. 977–988 (2013)

www.w3.org/TR/rdf-schema/


Keywords-To-SPARQL Translation for RDF Data Search and Exploration 123

9. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008). http://www.w3.org/TR/rdf-sparql-query/

10. Tran, D.T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (RDF) data. In: ICDE (2009)

11. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 523–536. Springer, Heidelberg (2007)

http://www.w3.org/TR/rdf-sparql-query/

	Keywords-To-SPARQL Translation for RDF Data Search and Exploration
	1 Introduction
	2 Problem Definition
	3 Indexing RDF Graph Data
	3.1 Term Index
	3.2 Schema-Guide Graph

	4 Query Pattern Graph
	4.1 Augmented Schema-Guide Graph
	4.2 Query Pattern Graph Formulation
	4.3 Query Mapping
	4.4 Example

	5 Temporal Operators
	6 Evaluation
	7 Related Work
	8 Conclusion
	References


