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Abstract. This paper presents a novel approach to the operator-based
adaptation of workflows, which is a specific type of transformational
adaptation. We introduce the notion of workflow adaptation operators
which are partial functions transforming a workflow into a successor
workflow, specified by workflow fractions to be inserted and/or deleted.
The adaptation process itself chains adaptation operators during a local
search process aiming at fulfilling the query as best as possible. Further,
the paper presents an algorithm that learns workflow adaptation oper-
ators from the case base automatically, thereby addressing the common
problem of adaptation knowledge acquisition. An empirical evaluation
in the domain of cooking workflows was conducted which demonstrates
convincing adaptation capabilities without a significant reduction of the
workflows’ quality.

Keywords: Process-oriented case-based reasoning · Operator-based
adaptation · Workflows

1 Introduction

Process-aware information systems (PAISs) [7] support the operational busi-
ness of an organization based on models of their processes. PAISs include
traditional workflow management systems as well as modern business process
management systems. In the recent years, the use of workflows has signif-
icantly expanded from the original business area towards new application
fields such as e-science, medical healthcare, information integration, and even
cooking [10,24,25]. Process-oriented case-based reasoning (POCBR) [20] cov-
ers research on case-based reasoning (CBR) for addressing problems in PAISs.
Recent research deals with approaches to support modeling, composition, adap-
tation, analysis, monitoring and optimization of business processes or work-
flows [2,12,13,18,21,22,26]. Workflow adaptation addresses the adaptation of
a retrieved workflow from a repository (case base) to fulfill the specific needs of
a new situation (query). In POCBR, adaptation methods that originate from
case adaptation in CBR are proposed for this purpose. In our previous work we
have investigated case-based adaptation [17], compositional adaptation [22], as
well as the use of generalized cases [23] for adaptation.
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In this paper, we present a novel operator-based approach [3] for adapting
workflow cases represented as graphs. The workflow adaptation operators we
propose in Sect. 3 are partial functions specifying ways of adapting a workflow
towards a successor workflow. Like in STRIPS, the operators are specified by
two workflow sub-graphs, one representing a workflow fraction to be deleted and
one representing a workflow fraction to be added. The adaptation process (see
Sect. 5) transforms a retrieved workflow into an adapted workflow by chaining
various adaptation operators. This process can be considered a search process
towards an optimal solution w.r.t. the query. Most importantly, we also propose
an algorithm to learn such workflow adaptation operators automatically from
the case base, thereby extending previous work on learning adaptation knowl-
edge [4,9,27] towards POCBR (see Sect. 4). Thus, the knowledge acquisition
bottleneck for adaptation knowledge is avoided. Finally, we experimentally eval-
uate our approach in the domain of cooking (see Sect. 6). We can show that with
the learned workflow adaptation operators, a high percentage of the changes
requested for a retrieved workflow can be fulfilled without significantly reducing
the quality of the adapted workflows.

2 Foundations

We now briefly introduce relevant previous work in the field of POCBR.

2.1 Workflows

Broadly speaking, a workflow consists of a set of activities (also called tasks)
combined with control-flow structures like sequences, parallel (AND) or alterna-
tive (XOR) branches, as well as repeated execution (LOOPs). In addition, tasks
exchange certain data items, which can also be of physical matter, depending on
the workflow domain. Tasks, data items, and relationships between the two of
them form the data flow.

We illustrate our approach in the domain of cooking recipes (see example
workflow in Fig. 1). A cooking recipe is represented as a workflow describing
the instructions for cooking a particular dish [24]. Here, the tasks represent the
cooking steps and the data items refer to the ingredients being processed by
the cooking steps. An example cooking workflow for a pasta recipe is illustrated
in Fig. 1. Based on our previous work [2,22,23] we now introduce the relevant
formal workflow terminology.

Definition 1. A workflow is a directed graph W = (N,E) where N is a set
of nodes and E ⊆ N × N is a set of edges. Nodes N = ND ∪ NT ∪ NC can
be data nodes ND, task nodes NT , or control-flow nodes NC . In addition, we
call NS = NT ∪ NC the set of sequence nodes. Edges E = EC ∪ ED can be
control-flow edges EC ⊆ NS × NS, which define the order of the sequence nodes
or data-flow edges ED ⊆ (ND × NS) ∪ (NS × ND), which define how the data
is shared between the tasks.
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Fig. 1. Example of a block-oriented cooking workflow

The control-flow edges EC of a workflow induce a strict partial order on the
sequence nodes S. Thus, we define s1 < s2 for two sequence nodes s1, s2 ∈ S as a
transitive relation that expresses that s1 is executed prior to s2 in W . We further
define n ∈]x1, x2[ iff x1 < n < x2, describing that node n is located between x1

and x2 in W w.r.t. the control-flow edges.
We further denote that two data nodes d1, d2 ∈ ND are data-flow connected

d1 � d2 if there exists a task that consumes data node d1 and produces data
node d2. Moreover, d1 �

+ d2 denotes that d1, d2 ∈ ND are transitively data-flow
connected:

d1 � d2, iff ∃t ∈ NT : ((d1, t) ∈ ED ∧ (t, d2) ∈ ED) (1)

d1 �
+ d2, iff d1 � d2 ∨ ∃d ∈ ND : (d1 � d ∧ d �

+ d2) (2)

2.2 Block-Oriented Workflows

We now restrict the workflow representation to block-oriented workflows [22], i.e.,
workflows in which the control-flow structures form blocks of nested workflows
with an opening and closing control-flow element. These blocks must not be
interleaved.

Definition 2. A block-oriented workflow is a workflow in which the control-flow
nodes NC = NC∗ ∪ NC∗

define the control-flow blocks. Each control-flow block
has an opening node from NC∗ and a related closing node from NC∗

specifying
either an AND, XOR, or LOOP block. These control-flow blocks may be nested
but must not be interleaved and must not be empty.
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Figure 1 shows an example block-oriented workflow, containing a control-flow
block with an opening AND control-flow node A∗ and a related closing AND
control-flow node A∗.

Further, we introduce a terminology of consistent block-oriented workflows.
According to Davenport, “[...] a process is simply a structured, measured set of
activities designed to produce a specific output [...]” [5]. In the following, these
specific workflow outputs are denoted as WO ⊆ ND. In the cooking domain, the
specific output is the particular dish produced, i.e., “pasta dish” in Fig. 1. Hence,
for a consistent workflow, we require that each ingredient must be contained in
the specific output, as otherwise the ingredient as well as the related tasks would
be superfluous.

Definition 3. A block-oriented workflow is consistent, iff each produced ingre-
dient is contained in the specific output of the workflow. Thus, each ingredi-
ent must be transitively data-flow connected to the specific output WO, i.e.,
∀d ∈ ND∃o ∈ WOd �

+ o.

2.3 Semantic Workflow Similarity

To support retrieval and adaptation of workflows, the individual workflow ele-
ments are annotated with ontological information, thus leading to a semantic
workflow [2]. In particular, all task and data items occurring in a domain are
organized in taxonomy, which enables the assessment of similarity among them.
We deploy a taxonomy of cooking ingredients and cooking steps for this purpose.
In our previous work, we developed a semantic similarity measure for workflows
that enables the similarity assessment of a case workflow w.r.t. a query workflow
[2].

The core of the similarity model is a local similarity measure for semantic
descriptions simΣ : Σ2 → [0, 1]. In our example domain the taxonomical struc-
ture of the data and task ontology is employed to derive a similarity value that
reflects the closeness in the ontology. It is combined with additional similarity
measures that consider relevant attributes, such as the quantity of an ingre-
dient used in a recipe (see [2] for more details and examples). The similarity
simN : N2 → [0, 1] of two nodes and two edges simE : E2 → [0, 1] is then
defined based on simΣ applied to their assigned semantic descriptions. The sim-
ilarity sim(QW,CW ) between a query workflow QW and a case workflow CW
is defined by means of an admissible mapping m : Nq ∪ Eq → Nc ∪ Ec, which is
a type-preserving, partial, injective mapping function of the nodes and edges of
QW to those of CW . For each query node and edge x mapped by m, the sim-
ilarity to the respective case node or edge m(x) is computed by simN (x,m(x))
and simE(x,m(x)), respectively. The overall workflow similarity with respect to
a mapping m, named simm(QW,CW ) is computed by an aggregation function
(e.g. a weighted average) combining the previously computed similarity values.
The overall workflow similarity is determined by the best possible mapping m

sim(QW,CW ) = max{simm(QW,CW ) | admissible mapping m}.
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This similarity measure assesses how well the query workflow is covered by the
case workflow. In particular, the similarity is 1 if the query workflow is exactly
included in the case workflow as a subgraph. Hence, this similarity measure is
not symmetrical.

2.4 Partial Workflows and Streamlets

We aim at reusing workflow parts within the representation of adaptation oper-
ators. Therefore, we now introduce the definition of partial workflows according
to Müller and Bergmann [22] and the new definition of so-called streamlets.

Definition 4. For a subset of tasks NT
p ⊆ NT , a partial workflow Wp of a block-

oriented workflow W = (N,E) is a block-oriented workflow Wp = (Np, Ep∪EC+
p )

with a subset of nodes Np = NT
p ∪NC

p ∪ND
p ⊆ N . ND

p ⊆ ND is defined as the set
of data nodes that are linked to any task in NT

p ,i.e., ND
p = {d ∈ ND|∃t ∈ NT

p :
((d, t) ∈ ED ∨(t, d) ∈ ED)}. NC

p ⊆ NC is the maximum set of control-flow nodes
such that Wp is a correct block-oriented workflow. Wp contains a subset of edges
Ep = E ∩ (Np × Np) connecting two nodes of Np supplemented by a set EC+

p

of additional control-flow edges that retain the execution order of the sequence
nodes, i.e., EC+

p = {(n1, n2) ∈ NS
p × NS

p |n1 < n2∧ � ∃n ∈ NS
p : ((n1, n) ∈

EC
p ∨ (n, n2) ∈ EC

p ∨ n ∈]n1, n2[)}.
In general, control-flow nodes are part of a partial workflow if they construct

a workflow w.r.t. the block-oriented workflow structure. The additional edges
EC+

p are required, to retain the execution order s1 < s3 of two sequence nodes
if for s1, s2, s3 ∈ S holds s2 ∈]s1, s3[ but s2 �∈ Np. Figure 2 illustrates a partial
workflow Wp of the workflow W given in Fig. 1. One additional edge is required
in this example, depicted by the double-line arrow since “grate” and “add” are
not linked in W .

Based on Definition 4, we now introduce streamlets that represent a partial
workflow constructed by all tasks linked to a certain data node d ∈ ND. Hence,
a streamlet describes the partial workflow comprising the tasks processing a
certain data node d. Thus, it is the smallest fraction of a workflow regarding
d. Streamlets will become the smallest fraction of a workflow to be modified by
workflow adaptation operators.

Definition 5. A streamlet Wd = (Nd, Ed) for data d ∈ ND in workflow W is
defined as a partial workflow for the subset of tasks connected to d, i.e. {t ∈
NT |(t, d) ∈ ED ∨ (d, t) ∈ ED}. The data node d is referred to as the head data
node of Wd. Further, let the tasks in Wd that do not produce d be defined as
anchor tasks Ad for d, i.e., Ad = {t ∈ NT

d | � ∃(t, d) ∈ ED
d }.

An example streamlet is illustrated in Fig. 2. In general, anchor tasks (see
double-lined rectangle, task node “add”) are those tasks that consumes the head
data node (see double-lined circle, data node “garlic”) but that do not produce
it. Hence, these tasks mark the positions where the head data node is linked into
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Fig. 2. Example of a streamlet W ′

the overall workflow and used as an input to other tasks (e.g. after adding garlic
it is used together with the seafood sauce as part of the pasta dish). Please note
that a streamlet may contain more than one anchor, e.g., salt can be added to
the boiled water and to the pasta sauce.

3 Workflow Adaptation Operators

In CBR, we usually distinguish between substitutional, transformational, and
derivational adaptation approaches [4,27]. Substitutional and transformational
adaptation approaches make use of adaptation knowledge represented as adap-
tation rules or adaptation operators. Adaptation rules describe how differences
between the problem description in the query and the retrieved case (rule’s pre-
condition) can be compensated by certain changes of the solution in the retrieved
case (rule’s conclusion). Adaptation operators [3] however, do not explicitly rep-
resent differences between query and retrieved case, but they are partial func-
tions specifying ways of adapting a case towards a successor case. The adaptation
process in CBR transforms a retrieved case into an adapted case by chaining var-
ious adaptation operators. Consequently, workflow adaptation is performed by
applying chains of adaptation operators W

o1→ W1
o2→ . . .

on→ Wn to the retrieved
workflow W , thereby computing the adapted workflow Wn. This process can be
considered a search process towards an optimal solution w.r.t. the query.

3.1 Definition of Workflow Adaptation Operators

For applying operator-based adaptation to POCBR, a notion of workflow adap-
tation operators is required defining them as partial functions that transform
workflows. We loosely follow the representation idea of STRIPS operators and
define an adaptation operator by specifying an insertion and a deletion stream-
let. Operator preconditions are not explicitly specified, but result implicitly from
those streamlets. In a nutshell, a workflow adaptation operator, if applicable,
removes the deletion streamlet from the workflow and adds the insertion stream-
let instead. In Fig. 3 an example of an operator is shown, specifying that in a
cooking workflow prawns can be replaced by tuna, while at the same time the
preparation step chop needs to be replaced by drain. Besides operators that
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exchange workflow streamlets, they could also just insert or just delete a stream-
let of a workflow. We now give a formal definition of workflow adaptation oper-
ators, specifying their representation and operational semantics.

Definition 6. Let W be the set of all consistent block-oriented workflows. A
workflow adaptation operator is a partial function o : W �→ W transforming a
workflow W ∈ W into an adapted workflow o(W ) ∈ W. The adaptation operator
o is specified by an insertion streamlet oI and a deletion streamlet oD, each
of which can also be empty. Based on the presence of the two streamlets, we
distinguish three types of adaptation operators.

– An insert operator consists only of an insertion streamlet with the anchor
tasks Ad. The application of o to W inserts oI into W except for the anchor
tasks Ad at the positions of the best matching anchor tasks Ad. The operator
is only applicable (precondition A) iff in W tasks matching Ad exist and if the
resulting workflow is consistent.

– A delete operator consists only of a deletion streamlet oD with the head data
node d and the anchor tasks Ad. The application of o to W deletes the stream-
let Wd from W except for the anchor tasks Ad. The operator is only applicable
(precondition B) iff there exists a workflow streamlet Wd in W which is suffi-
ciently similar to oD and if the resulting workflow after deletion is consistent.

– An exchange operator consists of an insertion and a deletion streamlet. The
application of o to W deletes oD from W (except for the anchor tasks) and
subsequently inserts oI (except for the anchor tasks) at the position of the
best matching anchor tasks. The operator is only applicable iff both previously
defined preconditions A and B are fulfilled and if the resulting workflow after
deletion and insertion is consistent.

The conditions of identical head node and the minimum similarity between
the streamlet and the deletion streamlet serve as a precondition to check whether
the streamlet Wd is similar enough to the deletion streamlet. This ensures that
operators are only applied if a similar streamlet is present in the workflow. For
the insertion, a matching anchor is needed to ensure that the streamlet can be
added to a suitable position of the workflow merging in the right data node.

An example of a workflow exchange adaptation operator o is given in Fig. 3.
The head data nodes are marked by a double-circled data object, i.e., tuna or
prawns, respectively. Further, the anchor tasks are marked by double-lined rec-
tangles. These anchor tasks are used during adaptation, to identify the position
of the streamlet within the entire workflow, i.e., the position at which the inser-
tion streamlet is inserted. Hence, the example adaptation rule describes that
prawns can be exchanged by tuna, if in W a streamlet Wd similar to oD is
present. This also enforces that tasks have to be changed as well, because the
chop task also has to be exchanged by a drain task.

3.2 Details of the Operator Application

We now give some more details about how operators are applied, making the
previous definition more precise. The space limitation prevents us from a detailed
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Fig. 3. Example adaptation operator

description of the algorithm. Hence, we illustrate our approach primarily by an
example application of the exchange operator shown in Fig. 3 to the workflow
given in Fig. 1.

To determine the applicability of a delete or exchange operator o for a work-
flow W , the definition requires that there exists workflow stream Wd in W for
the head node d of oD that is sufficiently similar to the deletion streamlet oD.
We implement this condition by a similarity threshold ΔS , i.e., we require that
sim(Wd, oD) ≥ ΔS . Further, we require that the output data nodes of the anchor
tasks of oD are the same as the output data nodes of the mapped tasks in W ,
ensuring that the data node d is removed from the same successive data nodes
(e.g. see “seafood sauce” in Fig. 3). To remove the streamlet Wd from W (see
Fig. 4 for an example) a partial workflow is constructed, containing all tasks of
W except of the non-anchor tasks contained in Wd, i.e., NT \ (NT

d \ Ad).
To add the insertion streamlet oI to W , tasks in W must be identified that

match the anchor tasks Ad of oI . For this purpose, the partial workflow con-
structed from oI for the anchor tasks Ad is considered. This partial workflow
contains the anchor tasks as well as all connected data nodes. To match the
anchor, the similarity between this partial workflow and W is determined. If
this similarity exceeds the threshold ΔS , the matching tasks in W are deter-
mined by the computed admissible mapping function. Further, we require that
the output data nodes of the anchor tasks Ad are the same as the output data
nodes of the mapped tasks in W . After a successful anchor mapping, the inser-
tion streamlet is added at the position of the best matching anchor. This means

Fig. 4. Streamlet Wd removed from W
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Fig. 5. Streamlet RI added to W

that all edges, tasks (except of anchors), and data nodes (if not already present)
of oI are inserted into the workflow W . Then, the inserted streamlet oI is con-
nected with an additional control-flow edge that link the tasks of the streamlet
into the workflow in front of the best matching anchor in W . In the illustrated
scenario, the streamlet oI is inserted in front of the first “add” task (see Fig. 5).
In the special case that the insertion streamlet contains more than one anchor,
the streamlet is split. To this end, for each anchor, the tasks are determined that
belong to this anchor, i.e., previous tasks (w.r.t. to control-flow edges), which are
transitively data flow connected until another anchor is reached. The procedure
is then applied for each part of the split streamlet.

4 Automatic Learning of Workflow Adaptation Operators

The basic idea behind the automatic learning of workflow adaptation operators
(see Algorithm 1) is to explore the knowledge already present in the case base
[4,9,27]. To achieve this, pairs of similar workflows in the case base are com-
pared, i.e., a query workflow Wq and a case workflow Wc that have a similarity
value higher than a given threshold ΔW , i.e. sim(Wq,Wc) ≥ ΔW . The adap-
tation operators are then constructed from the differences in the data nodes
between those two workflows. Hence, they describe which data nodes have to be
exchanged, inserted or deleted in order to transform the set of data nodes ND

q to
ND

c . The differences are determined by accessing the mapping produced during
the similarity computation (see Sect. 2.3). More precisely, the data nodes of a
query workflow are mapped to those of the case workflow. Mapped data nodes
are then assumed to be replaceable data nodes. However, only mappings are
regarded between data nodes that have a similarity value higher than a thresh-
old ΔD. This ensures that data nodes that are not similar to each other are
not considered as replaceable. For each mapping, two streamlets are constructed
based on the corresponding query data node and case data node. We thereby
assume that these two streamlets can be exchanged by each other, i.e., the query
streamlet represents the deletion streamlet and the case streamlet represents the
insertion streamlet. For the remaining data nodes (the ones with no mapping
with a similarity value larger than ΔD), insert or delete operators are created.
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Algorithm. LEARN OPERATORS(CB);
Input: Case base CB
Output: Set of operators operators
operators = ∅;
forall the Wq ∈ CB do

forall the {Wc ∈ CB|sim(Wq, Wc) ≥ ΔW ∧ Wq �= Wc} do
forall the d ∈ ND

q do
Init operator o;
o.insert = ∅;
o.delete = construct streamlet(Wq, d);
if sim(d, m(d)) ≥ ΔD then

o.insert = construct data streamlet(Wc, d);
operators = operators ∪ {o};

forall the {d ∈ ND
c | � ∃d′ ∈ ND

q : (m(d′) = d ∨ sim(d′, d) ≥ ΔD)} do
Init operator o;
o.delete = ∅;
o.insert = construct streamlet(Wc, d);
operators = operators ∪ {o};

return operators

Algorithm 1: Learning algorithm of workflow adaptation operators

Although, the operators describe how to transform the set of data nodes ND
q

to ND
c the workflow streamlet also contains information about how to exchange

delete, or insert tasks or control-flow nodes. This is because identical data nodes
that are mapped can possibly be processed differently, i.e., different task nodes
are used in their streamlets to process this data.

5 Workflow Adaptation Using Adaptation Operators

We now present the adaptation procedure in more detail. After the retrieval of
a most similar workflow W the user might want to adapt it according to his or
her preferences.

5.1 Change Request

Following the retrieval, a change request C is defined by specifying sets of tasks
or data nodes that should be added Cadd or removed Cdel from workflow W .
The change request can be either acquired manually from the user after the
workflow is presented or it can be automatically derived based on the difference
between the query and the retrieved case. As the tasks and data nodes are
taxonomically ordered (see Sect. 2.3), the change request can also be defined by
a higher level concept of the taxonomy in order to define a more general change
of the workflow. For example, a change request specified as “DELETE meat”
ensures that the adapted recipe is a vegetarian dish. We define the change request
fulfilment F(C,W ) → [0, 1] for a change request C and a workflow W = (N,E)
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as the number of desired nodes contained plus the number of undesired nodes
not contained in relation to the size of the change request:

F(C,W ) =
|N ∩ Cadd| + |Cdel \ N |

|Cadd| + |Cdel| (3)

5.2 Adaptation Procedure

The goal of the adaptation procedure is to maximize the value of F(C,W ).
Therefore, it uses a kind of a hill climbing local search algorithm in order to
optimize the change request fulfillment F(C,W ). Basically, the general idea
of the adaptation is that for each streamlet Wd in the retrieved workflow an
applicable operator o is searched and applied to the workflow W , if its applica-
tion increases the change request fulfillment. This leads to a chain of adaptation
operators. During this search process, the change request, i.e., the set Cadd is
updated according to the applied operator. This ensures that nodes which were
already inserted are not inserted again by subsequent operators.

Prior to the search, a partial order of data nodes is constructed w.r.t. their
usage in the workflow. More precisely, data nodes are ordered with respect to
which data is used first in the control-flow of the workflow, i.e., as input of a task.
During adaptation this partial order is traversed starting with the data node
used first in the workflow. For each streamlet Wd in the retrieved workflow W at
most one applicable adaptation exchange or delete operator o is selected which
maximizes F(C, o(W )). Further, delete operators must not remove a desired
node. Operators with the highest similarity between the streamlet Wd of W
and the deletion streamlet oD are preferred during selection, aiming at selecting
the best possible operator. Afterwards, insert operators are applied to further
improve change request fulfillment. Therefore, we select insert operators whose
insertion streamlet oI contains at least one desired but not an undesired node.
Insert operators whose head node of oI is already in W are disregarded. The
adaptation process terminates, if no further insert operator can be applied which
improves the change request fulfillment.

6 Evaluation

The described approach on operator-based workflow adaptation has been imple-
mented as component of the CAKE framework [1]. To demonstrate its usefulness,
the approach is experimentally evaluated to analyze whether the workflows can
be improved regarding the change request fulfillment (Hypothesis H1) and to val-
idate whether the adapted workflows are of an acceptable quality (Hypothesis
H2). As only workflow operators are applied leading to a consistent workflow,
the resulting workflows are consistent, which was checked and confirmed in order
to validate the correctness of the implementation.

H1. The operator-based workflow adaptation considerably improves the change
request fulfillment of a workflow.

H2. The operator-based workflow adaptation does not significiantly reduce the
quality of workflows.
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6.1 Evaluation Setup

We manually constructed 60 pasta recipe workflows from the textual recipe
descriptions on www.studentrecipes.com with an average size of 25 nodes and
64 edges [23]. Altogether, they contain 162 different ingredients and 67 tasks.
For ingredients and tasks, a taxonomy was manually constructed. The extracted
workflows, contained AND, XOR, as well as LOOP structures. The repository of
60 workflows was split into two data sets: One repository containing 10 arbitrary
workflows (referred to as query workflows) and a case base containing the remain-
ing 50 workflows. For the learning algorithm, we set the parameter ΔW = 0 as
the case base only contained pasta workflows and thus only similar recipes. Fur-
ther, we chose the threshold ΔD = 0.5 in order to only create exchange operators
if the corresponding head data nodes have been mapped with a similarity of at
least 0.5. In total 9416 workflow adaptation operators (1504 exchange, 4460
insert, 3452 delete operators) were learned from the workflows in the case base.
For each query workflow QWi we retrieved the most similar workflow CBWi

from the case base (referred to as case base workflow) and automatically gener-
ated a change request for CBWi by determining the set of nodes to be added
and deleted in order to arrive at QWi. A change request “DELETE prawns”, for
example, means that the case base workflow CBWi uses prawns while the query
workflow QWi does not1. We executed the proposed operator-based adaptation
method for each of the 10 workflows CBWi using the corresponding change
request. Thus, 10 adapted workflows are computed. During adaptation we chose
a similarity threshold between the deletion streamlet and streamlet in the work-
flow ΔS as 0.5 in order to only apply operators if at least half of the workflow
elements are identical. In average, 8.9 operators (1.6 exchange, 2.8 insert, 4.5
delete operators) had been applied in order to adapt a workflow.

6.2 Experimental Evaluation and Results

To verify hypothesis H1 we computed the average change request fulfillment
of the 10 adapted workflows which stands at 69,4 %. As the change request was
rather large (in average 22,6 nodes) and not any combination can be represented
by the automatically learned adaptation operators a change request of 100 % is
not to be expected. Hence, Hypothesis H1 is confirmed.

To evaluate Hypothesis H2 a blinded experiment was performed involving 5
human experts. The experts rated the quality of the 10 case base worklows (work-
flow before adaptation) and the 10 corresponding adapted workflows. These 20
workflows were presented in random order, without any additional information.
Thus, the experts did not know whether the workflow was an original workflow
from the case base or an adapted workflow. The experts were asked to assess the
quality of each workflow based on 3 rating items on a 5 point Lickert scale (from
1=very low to 5=very high). The rating items comprised the culinary quality
1 The change request only contained ingredients and preparation steps present in the

workflows from the case base and no ingredients that are used as mixtures of multiple
ingredients (e.g., vegetable mix).

www.studentrecipes.com
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Table 1. Item rating assessment

Better case base
workflows

Better adapted
workflows

Equal

Correctness of preparation 23 11 16

Culinary quality 21 12 17

Plausibility of preparation order 19 13 18

Aggregated quality 27 16 7

of the recipe, the correctness of the preparation (e.g. slice milk would violate
the correctness), and the plausibility of the preparation order. Additionally, we
computed an aggregated quality using the three rating items.

The ratings from the 5 experts of all 10 workflow pairs were compared, lead-
ing to 50 ratings. We define that one item was rated better for a workflow
if it was scored with a higher value than the corresponding item of the com-
pared workflow. Based on this, we conclude that a workflow has a higher aggre-
gated quality, if more of its items were rated better than those of the compared
workflow.

The results for each rating item in isolation and for the aggregated quality
assessment are given in Table 1. It shows the number of workflows for which the
case base workflow or the adapted workflow is better, as well as the number of
workflows which were equally rated. In 23 out of 50 rated workflow pairs, the
adapted workflow was rated of higher or equal quality (concerning the aggregated
quality), whereas 27 case base workflows were rated higher. Thus, in 46 % of the
assessments, the adaptation produced workflows with at least the same qual-
ity compared to the corresponding workflow from the case base. Additionally,
Table 2 illustrates the average rating difference on the items of all 50 workflow
pairs. In total, the items of each case base workflow are rated 1.1 higher than
those of the adapted workflow, which means the single items were rated about
0.37 times better than the corresponding item of the adapted workflow. Thus,
the experts rated the items and hence the quality of the case base workflows
only slightly higher. This has also been proved by a paired t-test on the aggre-
gated quality, which showed that the quality difference between the case base
workflows and the adapted workflows is statistically not significant (p = 0.19).
Altogether, Hypothesis H2 is confirmed.

Further, we asked the experts to give textual explanations in case of bad
quality ratings. We identified three major reasons for quality degradations caused
by the adaptation process and we sketched first ideas to overcome them.

1. It must be ensured that some components should occur only once (e.g. a
sauce). This could be achieved by a few general operators that have to be
defined manually.

2. After the removal of an input data object from a task the name of the output
produced by the task might have to be changed (e.g. removing meat from
a mixture doesn’t produce a meat mixture anymore). To identify the best
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Table 2. Average differences on item ratings

Correctness of preparation 0.46

Culinary quality 0.44

Plausibility of preparation order 0.20

Average per item 0.37

Average per workflow 1.1

suitable output name, outputs from similar tasks with similar input data
could be employed.

3. The application of insert operators may also insert new data objects, e.g.
ingredients that usually have to be processed before they are used (e.g. bolog-
nese sauce). However, this information was not always included (e.g. a packet
sauce could be used instead). To remedy this shortcoming, insert operators
processing the desired data can be searched and included into the workflow.

7 Conclusions and Related Work

We presented a novel approach to operator-based adaptation of workflows,
including a new representation for workflow adaptation operators, an algorithm
for learning such operators, and a search-based process for applying the opera-
tors in order to address a specified workflow change request.

The major challenge of adaptation in case-based reasoning is the acquisition
bottleneck of adaptation knowledge. Hence, various approaches for learning and
applying of adaptation knowledge for cases represented as attribute-values have
been proposed [4,8,9,14,16]. Only litte work is published that addresses this
problem for more complex case representations (e.g., [15]), or for POCBR in
particular. In POCBR, related work was presented by Minor et al. [18]. They
propose a workflow adaptation approach which transform workflows by apply-
ing a single adaption case that can be acquired automatically [19]. In our own
previous work, we introduced a compositional workflow adaptation method [22]
which identifies subcomponents of a workflow, called streams. In contrast to
this, the operators proposed here represent smaller subcomponents with a higher
granularity. Further, the operator-based adaptation not only exchanges similar
components, but inserts, deletes or exchanges different components of the work-
flow. Moreover, in this paper we propose to learn operators from pairs of similar
workflows, while in compositional adaptation each single case is decomposed into
streams. Dufour-Lussier et al. [6] presented a compositional adaptation approach
for processes, requiring additional adaptation knowledge.

Our evaluation showed that the presented approach is promising for the
purpose of workflow adaptation. However, the expert evaluation revealed some
shortcomings on the quality of the adapted cases. Hence, we sketched ways how
to overcome these which we will expore in the future. Future work will also inves-
tigate generalization [23] to improve the applicability of the learned adaptation
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operators. Moreover, an extension by operators exchanging a data node with
multiple data nodes and vice versa is planned. We will also investigate methods
to control the retention of learned adaptation operators, as already proposed by
Jalali and Leake [11] for adaptation rules. Further, we plan to perform compar-
isons of the different adaptation approaches we already proposed [17,22,23] and
other related work (e.g., [18]). Finally, we aim at integrating them into a more
comprehensive formal framework.
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