
Eyke Hüllermeier
Mirjam Minor (Eds.)

 123

LN
AI

 9
34

3

23rd International Conference, ICCBR 2015
Frankfurt am Main, Germany, September 28–30, 2015
Proceedings

Case-Based Reasoning
Research
and Development

Lecture Notes in Artificial Intelligence 9343

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Eyke Hüllermeier • Mirjam Minor (Eds.)

Case-Based Reasoning
Research
and Development
23rd International Conference, ICCBR 2015
Frankfurt am Main, Germany, September 28–30, 2015
Proceedings

123

Editors
Eyke Hüllermeier
Institut für Informatik
Universität Paderborn
Paderborn
Germany

Mirjam Minor
Institut für Informatik
Goethe-Universität Frankfurt
Frankfurt/Main
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-24585-0 ISBN 978-3-319-24586-7 (eBook)
DOI 10.1007/978-3-319-24586-7

Library of Congress Control Number: 2015949320

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume comprises the papers presented at ICCBR 2015, the 23rd International
Conference on Case-Based Reasoning (http://www.iccbr.org/iccbr15), which took
place at the Forschungskolleg Humanwissenschaften of Goethe University Frankfurt in
Bad Homburg, Germany, during September 28–30, 2015. There were 37 submissions
from 15 countries spanning North and South America, Europe, and Asia. Each one was
reviewed by three Program Committee members. The committee accepted 16 papers
for oral presentation and 10 papers for poster presentation at the conference.

The International Conference on Case-Based Reasoning is the pre-eminent inter-
national meeting on case-based reasoning (CBR). Previous ICCBR conferences have
been held in Sesimbra, Portugal (1995), Providence, USA (1997), Seeon Monastery,
Germany (1999), Vancouver, Canada (2001), Trondheim, Norway (2003), Chicago,
USA (2005), Belfast, UK (2007), Seattle, USA (2009), Alessandria, Italy (2010),
London, UK (2011), Lyon, France (2012), Saratoga Springs, USA (2013) and most
recently in Cork, Ireland (2014).

The first day of ICCBR featured topical workshops on current aspects of CBR
including case-based agents, e-CBR: building cyberinfrastructure for the CBR com-
munity, experience and creativity, CBR in the health sciences, and computer cooking.
The Doctoral Consortium involved presentations by 12 graduate students in collabo-
ration with their respective senior CBR research mentors. The first day also hosted the
Computer Cooking Contest, the aim of which is to promote the use of AI technologies
such as case-based reasoning, information extraction, information retrieval, and
semantic technologies.

The second and third day consisted of scientific paper presentations on theoretical
and applied CBR research as well as invited talks from two distinguished scholars:
Qiang Yang, the head of the Computer Science and Engineering (CSE) department at
Hong Kong University of Science and Technology (HKUST), where he is a New
Bright Endowed Chair Professor of Engineering, and Michael M. Richter, Professor of
Computer Science at the University of Kaiserslautern, Germany, until 2003 and
presently Adjunct Professor at University of Calgary, Canada. Qiang Yang gave a
keynote address on advances in transfer learning where target problem domains are
complex and have fewer data to work with than a source domain. The keynote talk of
Michael M. Richter was devoted to case-based reasoning and stochastic processes. The
presentations and posters covered a wide range of CBR topics of interest both to
researchers and practitioners including advanced retrieval, plans, processes, scalability,
adaptability, maintenance, recommender systems, and robotics.

Many people helped make ICCBR 2015 a success. Eric Kübler and Jenny Quasten,
Goethe University Frankfurt am Main, Germany, served as local organizers with Eyke
Hüllermeier, University of Paderborn, and Mirjam Minor, Goethe University Frankfurt
am Main, Germany, as program co-chairs. We would like to thank Joseph
Kendall-Morwick, Capital University, USA, who acted as a workshop chair. Our

http://www.iccbr.org/iccbr15

thanks also go to Nirmalie Wiratunga, The Robert Gordon University, UK, and Sarah
Jane Delany, Dublin Institute of Technology, Ireland, for organizing the Doctoral
Consortium. We thank Emmanuel Nauer, LORIA, France, and David Wilson, Uni-
versity of North Carolina at Charlotte, USA, who were responsible for the Computer
Cooking Competition. We thank Pascal Reuss, Stiftung Universität Hildesheim, Ger-
many, who served as a publicity chair. We want to acknowledge the support of the
team of the conference venue Forschungskolleg Humanwissenschaften. We are also
very grateful to all our funding providers, which at the time of printing included the
National Science Foundation, the International Joint Conference on Artificial Intelli-
gence, the Goethe University Frankfurt am Main, Empolis Information Management
GmbH, and LORIA.

We thank the Program Committee and the additional reviewers for their timely and
thorough participation in the review process. We appreciate the time and effort put in
by the local organizers. Finally, we acknowledge the support of EasyChair in the
submission, review, and proceedings creation processes, and we thank Springer for its
continued support in publishing the proceedings of ICCBR.

July 2015 Eyke Hüllermeier
Mirjam Minor

VI Preface

Organization

Program Chairs

Eyke Hüllermeier University of Paderborn, Germany
Mirjam Minor Goethe University Frankfurt, Germany

Local Organization

Eric Kübler Goethe University Frankfurt, Germany
Jenny Quasten Goethe University Frankfurt, Germany

Workshop Chair

Joseph Kendall-Morwick Capital University, USA

Doctoral Consortium Chairs

Nirmalie Wiratunga The Robert Gordon University, UK
Sarah Jane Delany Dublin Institute of Technology, Ireland

Computer Cooking Chairs

Emmanuel Nauer Université de Lorraine, France
David Wilson University of North Carolina at Charlotte, USA

Publicity Chair

Pascal Reuss Stiftung Universität Hildesheim, Germany

Program Committee

Agnar Aamodt NTNU, Norway
David W. Aha Naval Research Laboratory, USA
Klaus-Dieter Althoff DFKI/University of Hildesheim, Germany
Kerstin Bach Verdande Technology, USA
Derek Bridge University College Cork, Ireland
Isabelle Bichindaritz State University of New York at Oswego, USA
Ralph Bergmann University of Trier, Germany
William Cheetham GE Global Research, USA
Alexandra Coman Northern Ohio University, USA
Amélie Cordier LIRIS, France

Susan Craw The Robert Gordon University, UK
Sarah Jane Delany Dublin Institute of Technology, Ireland
Belen Diaz-Agudo Universidad Complutense de Madrid, Spain
Michael Floyd Knexus Research, USA
Mehmet H. Göker Salesforce, USA
Ashok Goel Georgia Institute of Technology, USA
Pedro González Calero Complutense University of Madrid, Spain
Joseph Kendall-Morwick Capital University, USA
Deepak Khemani Indian Institute of Technology, India
Luc Lamontagne Laval University, Canada
David Leake Indiana University, USA
Jean Lieber LORIA - Inria Lorraine, France
Ramon Lopez De Mantaras IIIA - CSIC, Spain
Cindy Marling Ohio University, USA
Stewart Massie The Robert Gordon University, UK
Lorraine McGinty University College Dublin, Ireland
David McSherry University of Ulster, UK
Alain Mille LIRIS, France
Stefania Montani Università Piemonte Orientale, Italy
Emmanuel Nauer Université de Lorraine, France
Santiago Ontañón Drexel University, USA
Miltos Petridis CEM, Brighton University, UK
Enric Plaza IIIA - CSIC, Spain
Luigi Portinale Universitá Piemonte Orientale, Italy
Ashwin Ram PARC, USA
Juan Recio-Garcia Complutense University of Madrid, Spain
Michael Richter University of Calgary, Canada
Thomas Roth-Berghofer University of West London, UK
Jonathan Rubin PARC, USA
Antonio Sánchez-Ruiz Complutense University of Madrid, Spain
Barry Smyth University College Dublin, Ireland
Frode Soermo Verdande Technology, USA
Ian Watson University of Auckland, New Zealand
Rosina Weber Drexel University, USA
David Wilson University of North Carolina at Charlotte, USA
Nirmalie Wiratunga The Robert Gordon University, UK

Additional Reviewers

Xavier Ferrer Arran
Pascal Reuss

VIII Organization

Contents

Case Base Maintenance in Preference-Based CBR. 1
Amira Abdel-Aziz and Eyke Hüllermeier

Learning to Estimate: A Case-Based Approach to Task Execution
Prediction. 15

Bryan Auslander, Michael W. Floyd, Thomas Apker, Benjamin Johnson,
Mark Roberts, and David W. Aha

Case-Based Policy and Goal Recognition . 30
Hayley Borck, Justin Karneeb, Michael W. Floyd, Ron Alford,
and David W. Aha

Adapting Sentiments with Context . 44
Flávio Ceci, Rosina O. Weber, Alexandre L. Gonçalves,
and Roberto C.S. Pacheco

Aspect Selection for Social Recommender Systems 60
Yoke Yie Chen, Xavier Ferrer, Nirmalie Wiratunga, and Enric Plaza

Music Recommendation: Audio Neighbourhoods to Discover Music in the
Long Tail. 73

Susan Craw, Ben Horsburgh, and Stewart Massie

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 88
Dustin Dannenhauer and Héctor Muñoz-Avila

Evaluating a Textual Adaptation System . 104
Valmi Dufour-Lussier and Jean Lieber

Visual Case Retrieval for Interpreting Skill Demonstrations 119
Tesca Fitzgerald, Keith McGreggor, Baris Akgun,
Andrea Thomaz, and Ashok Goel

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 134
Michael W. Floyd, Michael Drinkwater, and David W. Aha

Top-Down Induction of Similarity Measures Using Similarity Clouds 149
Thomas Gabel and Eicke Godehardt

Improving Case Retrieval Using Typicality . 165
Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

http://dx.doi.org/10.1007/978-3-319-24586-7_1
http://dx.doi.org/10.1007/978-3-319-24586-7_2
http://dx.doi.org/10.1007/978-3-319-24586-7_2
http://dx.doi.org/10.1007/978-3-319-24586-7_3
http://dx.doi.org/10.1007/978-3-319-24586-7_4
http://dx.doi.org/10.1007/978-3-319-24586-7_5
http://dx.doi.org/10.1007/978-3-319-24586-7_6
http://dx.doi.org/10.1007/978-3-319-24586-7_6
http://dx.doi.org/10.1007/978-3-319-24586-7_7
http://dx.doi.org/10.1007/978-3-319-24586-7_8
http://dx.doi.org/10.1007/978-3-319-24586-7_9
http://dx.doi.org/10.1007/978-3-319-24586-7_10
http://dx.doi.org/10.1007/978-3-319-24586-7_11
http://dx.doi.org/10.1007/978-3-319-24586-7_12

CBR Meets Big Data: A Case Study of Large-Scale Adaptation Rule
Generation . 181

Vahid Jalali and David Leake

Addressing the Cold-Start Problem in Facial Expression Recognition. 197
Jose L. Jorro-Aragoneses, Belén Díaz-Agudo, and Juan A. Recio-García

Flexible Feature Deletion: Compacting Case Bases by Selectively
Compressing Case Contents . 212

David Leake and Brian Schack

A Case-Based Approach for Easing Schema Semantic Mapping 228
Emmanuel Malherbe, Thomas Iwaszko, and Marie-Aude Aufaure

Great Explanations: Opinionated Explanations for Recommendations. 244
Khalil Muhammad, Aonghus Lawlor, Rachael Rafter, and Barry Smyth

Learning and Applying Adaptation Operators in Process-Oriented
Case-Based Reasoning . 259

Gilbert Müller and Ralph Bergmann

Fault Diagnosis via Fusion of Information from a Case Stream. 275
Tomas Olsson, Ning Xiong, Elisabeth Källström, Anders Holst,
and Peter Funk

Argument-Based Case Revision in CBR for Story Generation. 290
Santiago Ontañón, Enric Plaza, and Jichen Zhu

CBR Model for Predicting a Building’s Electricity Use: On-Line
Implementation in the Absence of Historical Data . 306

Radu Platon, Jacques Martel, and Kaiser Zoghlami

Modelling Hierarchical Relationships in Group Recommender Systems 320
Lara Quijano-Sánchez, Juan A. Recio-García, and Belen Díaz-Agudo

Semi-automatic Knowledge Extraction from Semi-structured and
Unstructured Data Within the OMAHA Project. 336

Pascal Reuss, Klaus-Dieter Althoff, Wolfram Henkel, Matthias Pfeiffer,
Oliver Hankel, and Roland Pick

Evidence-Driven Retrieval in Textual CBR: Bridging the Gap Between
Retrieval and Reuse. 351

Gleb Sizov, Pinar Öztürk, and Agnar Aamodt

Maintaining and Analyzing Production Process Definitions
Using a Tree-Based Similarity Measure . 366

Reinhard Stumptner, Christian Lettner, Bernhard Freudenthaler,
Josef Pichler, Wilhelm Kirchmayr, and Ewald Draxler

X Contents

http://dx.doi.org/10.1007/978-3-319-24586-7_13
http://dx.doi.org/10.1007/978-3-319-24586-7_13
http://dx.doi.org/10.1007/978-3-319-24586-7_14
http://dx.doi.org/10.1007/978-3-319-24586-7_15
http://dx.doi.org/10.1007/978-3-319-24586-7_15
http://dx.doi.org/10.1007/978-3-319-24586-7_16
http://dx.doi.org/10.1007/978-3-319-24586-7_17
http://dx.doi.org/10.1007/978-3-319-24586-7_18
http://dx.doi.org/10.1007/978-3-319-24586-7_18
http://dx.doi.org/10.1007/978-3-319-24586-7_19
http://dx.doi.org/10.1007/978-3-319-24586-7_20
http://dx.doi.org/10.1007/978-3-319-24586-7_21
http://dx.doi.org/10.1007/978-3-319-24586-7_21
http://dx.doi.org/10.1007/978-3-319-24586-7_22
http://dx.doi.org/10.1007/978-3-319-24586-7_23
http://dx.doi.org/10.1007/978-3-319-24586-7_23
http://dx.doi.org/10.1007/978-3-319-24586-7_24
http://dx.doi.org/10.1007/978-3-319-24586-7_24
http://dx.doi.org/10.1007/978-3-319-24586-7_25
http://dx.doi.org/10.1007/978-3-319-24586-7_25

Case-Based Plan Recognition Under Imperfect Observability 381
Swaroop S. Vattam and David W. Aha

Author Index . 397

Contents XI

http://dx.doi.org/10.1007/978-3-319-24586-7_26

Case Base Maintenance
in Preference-Based CBR

Amira Abdel-Aziz1 and Eyke Hüllermeier2(B)

1 Department of Mathematics and Computer Science,
University of Marburg, Marburg, Germany

amira@mathematik.uni-marburg.de
2 Department of Computer Science,

University of Paderborn, Paderborn, Germany
eyke@upb.de

Abstract. In preference-based CBR (Pref-CBR), problem solving expe-
rience is represented in the form of contextualized preferences, namely,
preferences between candidate solutions in the context of a target prob-
lem to be solved. Since a potentially large number of such preferences
can be collected in the course of each problem solving episode, case
base maintenance clearly becomes an issue in Pref-CBR. In this paper,
we therefore extend our Pref-CBR framework by another component,
namely, a method for dynamic case base maintenance. The main goal of
this method is to increase efficiency of case-based problem solving, by
reducing the size of the case base, while maintaining performance. To
illustrate the effectiveness of our approach, we present a case study in
which Pref-CBR is used for the repetitive traveling salesman problem.

1 Introduction

In the recent years, we have been working toward a methodological framework
for case-based reasoning on the basis of formal concepts and methods for rea-
soning with preferences [1,2,10]. Deviating from the common representation of
experiences in terms of problem/solution tuples (x,y), preference-based CBR
(or Pref-CBR for short) proceeds from weaker “chunks of information” y �x z,
namely, preferences between competing solutions “contextualized” by problems:
y is (likely to be) more preferred than z as a solution for x.

Problem solving in Pref-CBR is realized as a search process, in which candi-
date solutions are iteratively improved. In each step, the current best solution y
is compared with another, slightly modified/adapted solution z, and the better
one is retained. Since a single comparison is assumed to be costly, the number
of adaptation steps is limited. Nevertheless, each step gives rise to a piece of
information y �x z. Therefore, a single case eventually consists of a problem x
together with a set of (pairwise) preferences over solutions (instead of merely a
single solution, like in conventional CBR).

It is clear that simply storing each encountered problem along with a set
of associated preferences is not advisable, especially since a case base of that
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 1–14, 2015.
DOI: 10.1007/978-3-319-24586-7 1

2 A. Abdel-Aziz and E. Hüllermeier

type may quickly become too large and hamper efficient case retrieval; besides,
many of the preferences collected in a problem solving episode will be redundant
to some extent. In CBR, this problem has been addressed by methods for case
base maintenance [11,18]. Such methods seek to maintain the problem solving
competence of a case base thanks to case base editing strategies, including the
removal of misleading (noisy) or redundant cases. Case base maintenance (CBM)
proved essential to guarantee the efficiency and performance of CBR systems.
According to the aforesaid, it might be even more critical for preference-based
than for conventional CBR.

In this paper, we therefore address the problem of case base maintenance
in Pref-CBR. To this end, we develop a CBM strategy that extends our Pref-
CBR framework so far. Despite being inspired by existing CBM techniques for
conventional CBR, our strategy is specifically tailored to our framework and
exploits properties of the underlying preference-based representation of problem
solving experience.

The remainder of the paper is organized as follows. Related work on case base
maintenance is briefly recalled in Sect. 2. By way of background, and to assure
a certain level of self-containedness, we also recall the essentials of Pref-CBR in
Sect. 3. Our approach to case base maintenance for Pref-CBR is then detailed
in Sect. 4. To illustrate the effectiveness of this approach, Sect. 5 presents a case
study using the (repetitive) traveling salesman problem as a problem solving
domain. The paper ends with some concluding remarks and an outlook on future
work in Sect. 6.

2 Related Work

To increase efficiency while maintaining the competence of a case base, several
CBR methods implement strategies that focus on choosing which cases to delete
from the case base. The simplest strategy is random deletion, which is initiated
once a given limit of the size of the case base is exceeded [21]; obviously, this
method guarantees a bound on the size but no preservation of the competence
of the case base. A more principled approach is utility deletion, where the utility
of a case is measured by its performance benefits (e.g., given by Minton’s utility
metric); cases with negative utility are removed [20]. There are other methods
such as footprint deletion and footprint utility deletion, which specify the cases
to be deleted based on their competence contributions [19]. The cases are cate-
gorized into pivotal, spanning, support and auxiliary; pivotal cases have highest
effect on competence, while auxiliary cases have lowest effect [13]. Modifying the
idea of coverage (set of target problems a case can solve) and reachability (the
set of cases that can provide a solution for a target problem) of a case as intro-
duced in [19], cases are identified by their coverage and reachability values based
on rough set theory for categorizing data in [17], and accordingly relevance of
each case is extracted.

Other maintenance methods focus more on an increase in efficiency, in terms
of memory storage size and computation time of solving problems [8]. This

Case Base Maintenance in Preference-Based CBR 3

increase in efficiency could in return cause some degradation in performance.
One well-known method is based on the condensed nearest neighbor (CNN) rule
by [9], where a subset of the case base is selected, which should perform almost
as well as the original case base in classifying new cases. CNN was then extended
by selective nearest neighbor (SNN); any case in the original case base must be
closer to a case in the formed subset belonging to the same class, than to any
case in the original case base belonging to a different class [16]. Reduced edited
nearest neighbor (RENN) method further extends CNN by removing noisy cases,
which have a different class than the majority of their nearest neighbors; it is
computationally more expensive than CNN [5] though. Also described in [5],
the blame based noise reduction (BBNR) method deletes cases that cause other
cases to be misclassified. A case base can also be reduced as explained by [15],
where a subset of the case base is formed in which selection of cases is based on
some “justifications”. These justifications are being output from using a (lazy)
machine learning method; this selection procedure resembles the competence
selection of cases in [21], but in the former the selection of cases is based on the
justifications rather than the competence.

Additionally, adaptation-guided case base maintenance methods base the
selection of cases to be retained in the case base on both their value in solving
problems and on their value in generating new adaptation rules; these adapta-
tion rules contribute to the knowledge for later problem solving [11]. Complexity-
informed maintenance is another method presented in [4]; it provides redundancy
reduction and offers a compromise between a smaller case base and greater accu-
racy. Case complexity enables varying levels of aggressiveness in redundancy and
error reduction maintenance algorithms, thus compromising between amount of
reduction and correspondingly level of performance. The higher the aggressive-
ness, the more reduction in case base size and correspondingly the lower the
performance level.

The previously listed methods are used to either increase the efficiency of
the case-based reasoning system while maintaining its competence, or having
a trade-off between an increase in the level of efficiency and a decrease in the
level of performance. The case base is maintained when a certain size limit is
reached, or by setting periodic time slots for the maintenance to be performed.
As pointed out by [14], to tackle performance problems of a CBR system, the
goal would be to update the existing case base while maintaining problem solving
competence. This is also the goal of our method, which is specifically designed
for the Pref-CBR problem solving framework.

3 Preference-Based CBR in a Nutshell

In this section, we briefly recall the basics of Pref-CBR, which is essential for
understanding our CBM strategy to be introduced in the next section. For fur-
ther details of Pref-CBR, we refer to [1,2,10].

4 A. Abdel-Aziz and E. Hüllermeier

3.1 Basic Setting and Notation

Let a problem space X and a solution space Y be given. We assume X to be
equipped with a similarity measure SX : X × X → R+ or, equivalently, with
a (reciprocal) distance measure ΔX : X × X → R+. Thus, for any pair of
problems x,x′ ∈ X, their similarity is denoted by SX(x,x′) and their distance
by ΔX(x,x′). Likewise, we assume the solution space Y to be equipped with a
similarity measure SY or, equivalently, with a (reciprocal) distance measure ΔY .

In preference-based CBR, problems x ∈ X are not associated with single
solutions but rather with preferences over solutions, that is, with elements from
a class of preference structures over the solution space Y. Here, we assume this
class to consist of all linear order relations � on Y, and we denote the relation
associated with a problem x by �x. More precisely, we assume that �x has a
specific form, which is defined by an “ideal” solution1 y∗ ∈ Y and the distance
measure ΔY : The closer a solution y to y∗ = y∗(x), the more it is preferred;
thus, y �x z iff ΔY (y,y∗) < ΔY (z,y∗). In conjunction with the regularity
assumption that is commonly made in CBR, namely, that similar problems tend
to have similar (ideal) solutions, this property legitimates a preference-based ver-
sion of this assumption: Similar problems are likely to induce similar preferences
over solutions.

3.2 Case-Based Inference

The key idea of preference-based CBR is to exploit experience in the form of
previously observed preferences, deemed relevant for the problem at hand, in
order to support the current problem solving episode; like in standard CBR,
the relevance of a preference will typically be decided on the basis of problem
similarity, i.e., those preferences will be deemed relevant that pertain to similar
problems. An important question that needs to be answered in this connection
is the following: Given a set of observed preferences on solutions, considered
representative for a problem x0, what is the underlying preference structure
�x0 or, equivalently, what is the most likely ideal solution y∗ for x0?

We approach this problem from a statistical perspective, considering the true
preference model �x0 associated with the query x0 as a random variable with
distribution P(· |x0), where P(· |x0) is a distribution Pθ(·) parametrized by
θ = θ(x0) ∈ Θ. The problem is then to estimate this distribution or, equivalently,
the parameter θ on the basis of the information available. This information
consists of a set D of preferences of the form y � z between solutions.

The basic assumption underlying nearest neighbor estimation is that the con-
ditional probability distribution of the output given the input is (approximately)
locally constant, that is, P(· |x0) ≈ P(· |x) for x close to x0. Thus, if the above
preferences are coming from problems x similar to x0 (namely, from the near-
est neighbors of x0 in the case base), then this assumption justifies considering

1 The solution y∗ could be a purely imaginary solution, which may not exist in prac-
tice.

Case Base Maintenance in Preference-Based CBR 5

D as a representative sample of Pθ(·) and, hence, estimating θ via maximum
likelihood (ML) inference by

θML = arg max
θ∈Θ

Pθ(D). (1)

An important prerequisite for putting this approach into practice is a suitable
data generating process, i.e., a process generating preferences in a stochastic way.
Our data generating process is based on the idea of a discrete choice model as
used in choice and decision theory. More specifically, we assume the logit model
of discrete choice:

P(y � z |y∗) =
1

1 + exp
(

− β
(
ΔY (z,y∗) − ΔY (y,y∗)

)) (2)

Thus, the probability of observing the (revealed) preference y � z depends on
the degree of suboptimality of y and z, namely, their respective distances to the
ideal solution, ΔY (y,y∗) and ΔY (z,y∗): The larger the difference ΔY (z,y∗) −
ΔY (y,y∗), i.e., the less optimal z in comparison to y, the larger the probability
to observe y � z. The coefficient β can be seen as a measure of precision of
the preference feedback. For large β, P(y � z) converges to 0 if ΔY (z,y∗) <
ΔY (y,y∗) and to 1 if ΔY (z,y∗) > ΔY (y,y∗); this corresponds to a deterministic
(error-free) information source. The other extreme case, namely β = 0, models
a completely unreliable information source reporting preferences at random.

The probabilistic model outlined above is specified by two parameters: the
ideal solution y∗ and the (true) precision parameter β∗ ∈ R+. Depending on
the context in which these parameters are sought, the ideal solution might be
unrestricted (i.e., any element of Y is an eligible candidate), or it might be
restricted to a certain subset Y0 ⊆ Y of candidates.

Now, to estimate the parameter vector θ∗ = (y∗, β∗) ∈ Y0 ×R
∗ from a given

set D = {y(i) � z(i)}N
i=1 of observed preferences, we refer to the maximum

likelihood estimation principle. Assuming independence of the preferences, the
likelihood of θ = (y, β) is given by

�(θ) = �(θ | D) =
N∏

i=1

P
(
y(i) � z(i) | θ

)
. (3)

The ML estimation θML = (yML, βML) of θ∗ is given by the maximizer of (3):

θML =
(
yML, βML

)
= arg max

y∈Y0, β∈R+
�(y, β) (4)

The problem of finding this estimation in an efficient way is addressed in [10].

3.3 CBR as Preference-Guided Search

Case-based inference as outlined above realizes a “one-shot prediction” of a
promising solution for a query problem, given preferences in the context of sim-
ilar problems encountered in the past. In a case-based problem solving process,

6 A. Abdel-Aziz and E. Hüllermeier

this prediction may thus serve as an initial solution, which is then adapted step
by step. An adaptation process of that kind can be formalized as a search process,
namely, a traversal of a suitable space of candidate solutions [3].

In the spirit of preference-based CBR, we implement case-based problem
solving as a search process that is guided by preference information collected in
previous problem solving episodes. To this end, we assume the solution space Y

to be equipped with a topology that is defined through a neighborhood structure:
For each y ∈ Y, we denote by N (y) ⊆ Y the neighborhood of this candidate
solution. The neighborhood is thought of as those solutions that can be pro-
duced through a single modification of y, e.g., by applying one of the available
adaptation operators to y.

Our case base CB stores problems xi together with a set of preferences
P(xi) that have been observed for these problems. Thus, each P(xi) is a set of
preferences of the form y �xi

z, which are collected while searching for a good
solution to xi.

We conceive preference-based CBR as an iterative process in which problems
are solved one by one. In each problem solving episode, a good solution for a
new query problem is sought, and new experiences in the form of preferences are
collected. In what follows, we give a high-level description of a single problem
solving episode:

(i) Given a new query problem x0, the K nearest neighbors x1, . . . ,xK of
this problem (i.e., those with smallest distance in the sense of ΔX) are
retrieved from the case base CB, together with their preference information
P(x1), . . . ,P(xK).

(ii) This information is collected in a single set of preferences P, which is consid-
ered representative for the problem x0 and used to guide the search process.

(iii) The search for a solution starts with an initial candidate y• ∈ Y, for example
the “one-shot prediction” (4) based on P, and iterates L times. Restricting
the number of iterations by an upper bound L accounts for our assumption
that an evaluation of a candidate solution is costly.

(iv) In each iteration, a new candidate yquery in the neighbourhood of y• is
determined, based on (4) with Y0 = N (y•), and given as a query to an
(external) information source, which we refer to as the “oracle”. Thus, the
oracle is asked to compare yquery with the current best solution y•. The
preference reported by the oracle is memorized by adding it to the preference
set P0 = P(x0) associated with x0, as well as to the set P of preferences
used for guiding the search process. Moreover, the better solution is retained
as the current best candidate.

(v) When the search stops, the current best solution y• is returned (as an
approximation of y∗), and the case (x0,P0) is added to the case base.

The preference-based guidance of the search process is realized in (iii) and (iv).
Here, our case-based inference method is used to find the most promising candi-
date among the neighborhood of the current solution y•, based on the preferences
collected in the problem solving episode so far. By providing information about

Case Base Maintenance in Preference-Based CBR 7

which of these candidates will most likely constitute a good solution for x0, it
(hopefully) points the search into the most promising direction.

4 Case Base Maintenance for Pref-CBR

Most methods for case base maintenance make use of two important criteria for
case addition or removal, namely, noise and redundancy. A “noisy” case is a case
that differs significantly from its (nearby) neighbors and, therefore, violates the
regularity assumption underlying CBR. Retrieving such a case and using it to
solve a new problem should obviously be avoided, whence it should better not
be stored in the case base. A redundant case, on the other side, is very similar
to its neighbors and, therefore, does hardly provide additional information, at
least if enough other cases have already been stored. Such cases can often be
removed to reduce the size of the case base without compromising performance.

In Pref-CBR, a case does not only contain a single solution, like in conven-
tional CBR, but rather a set of preferences. Thus, instead of either retaining or
removing a complete case, there is in principle the possibility to retain or remove
a part of a case, simply by retaining or removing a part of the pairwise prefer-
ences. In fact, as will be seen later on, both noise and redundancy can occur on
the level of a single case as well as on the level of the case base.

First of all, however, one should clarify what noise and redundancy may
actually refer to in the context of Pref-CBR. In fact, it is important to note
that a piece of information is not noisy or redundant per se. First, it can only
be noisy or redundant when being considered jointly with other information.
Moreover, what also needs to be taken into consideration is the way in which
the information will be (re-)used: What is the influence of the information on
future problem solving episodes?

4.1 Noise and Redundancy in Pref-CBR

To answer this question, recall the key idea and basic inference principle of Pref-
CBR: An observed preference y � z provides a kind of “directional hint” in the
solution space Y:2 It suggests moving toward those solutions y∗ for which the
probability P(y � z |y∗) in (2), is large, hence making y∗ likely as a solution for
the problem at hand, and away from those solutions for which the probability of
observing this preference is small. Likewise, a whole set of preferences P suggest
moving toward those solutions for which the combined likelihood (3) is large, and
away from those solutions for which this likelihood is small. Roughly speaking,
the likelihood function combines the individual hints into a single one.

Now, we propose the following distinction between noise and redundancy on
the level of a single case and the level of the case base.
2 The notion of “direction” should not be taken literally. In fact, the mathematical

structure of Y will normally not allow for defining a direction in a geometrical sense.

8 A. Abdel-Aziz and E. Hüllermeier

– Intra-case Redundancy: Pairwise comparisons collected during a prob-
lem solving episode can obviously be redundant to some extent, in particular
because the same solutions will be shared among many of these comparisons.
Moreover, as we just explained, each comparison y � z provides a directional
hint in the solution space. Therefore, two preferences can also be redundant
in the sense of suggesting similar directions.

– Intra-case Noise: According to (2), preference feedback is correct only with a
certain probability. Thus, even if unlikely, one may thoroughly observe y � z
although P(y � z |y∗) < P(z � y |y∗). According to what we just said,
a preference of that kind will guide the search in the wrong direction and,
therefore, could be considered as “noise”.

– Inter-case Redundancy: Instead of looking at a single preference, we now
look at the whole set of preferences P = P(x) that have been collected for a
problem x, because this is the information to be reused later on. Again, as
explained above, these preferences provide a “directional hint” in the solution
space. Therefore, just like in the case of individual preferences, two sets of
preferences P and P ′ can be redundant in the sense of suggesting similar
directions in the solution space. Note that this type of redundancy is likely
to occur for two problems having similar ideal solutions y∗. Yet, even in that
case the preferences are not necessarily redundant, because they might have
been collected in different parts of the solution space.

– Inter-case Noise: Just as a case may appear redundant in the context of
other cases, it can be noisy in the sense that its preferences are inconsistent
with those of the others. Here, inconsistency means that the preferences sug-
gest very different directions in the solution space.

4.2 Maintenance Strategies

Our general maintenance strategy is incremental and essentially consists of decid-
ing, for each new case (x0,P0) produced, whether or not that case should be
stored—and perhaps which parts thereof. To this end, each of the aforementioned
types of noise and redundancy have to be handled in a proper way.

As already explained, the similarity or discrepancy between preferences or
sets of preferences depends on the similarity or dissimilarity of the “directional
hints” they provide. But how to quantify the latter? The direction suggested
to the search process is a local property that depends on the current search
state in Y—as such, it is difficult to quantify in a single value. Reasoning on
a more global level, the arguably most appropriate way to compare two sets of
preferences P1 and P2 is to compare the respective globally optimal solutions
yML
1 and yML

2 , i.e., the likelihood estimates (3) with Y0 = Y. Such a comparison
could easily be done using ΔY . However, finding the global likelihood maximizer
might be very costly—this is why our search procedure is local. Besides, when
comparing single preferences as a special case, the likelihood is often unbounded.
In the following, we therefore propose approximate strategies that circumvent
these difficulties and that are computationally more efficient.

Case Base Maintenance in Preference-Based CBR 9

Intra-case Redundancy: Consider a case (x,P), and let y• denote the solu-
tion the problem solving process ended up with—again, recall that y• will in
general differ from y∗(x), either because the latter was not reached or because
it may not even exist. Now, consider a single preference y � z in P. How
redundant is that preference? To answer this question, we should compare the
likelihood function (3) with and without the preference, i.e., the functions �(· | P)
and �(· | P ′) with P ′ = P \ {y � z}. Of course, comparing the functions globally
is very difficult. Moreover, as explained above, we may not be able to compare
their respective global maximizers either. What we could do, for example, is
checking whether or not the locally restricted optimum in the neighborhood of
y• would change, i.e., whether the local optimum for P is the same as the opti-
mum for P ′. If not, then y � z has an important influence and should certainly
not be removed.

Intra-case Noise: As explained earlier, we consider a preference y � z as noise
if P(y � z |y∗) < 1/2. This property cannot be checked, however, because y∗ is
not known. Yet, using y• as a proxy, we could at least check P(y � z |y•) < 1/2.

Inter-case Redundancy: Consider two cases (x0,P0) and (x1,P1) with solu-
tions y•

0 and y•
1, respectively. How redundant are these cases or, more specifi-

cally, how redundant is the new case (x0,P0) with respect to the previous case
(x1,P1)? Again, for the reasons explained above, a comparison of the likelihood
functions �(· | P0) and �(· | P1) or their maximizers may not be feasible. Instead,
we again refer to the actually found solutions y•

0 and y•
1 as surrogates of these

maximizers. More specifically, we compare the probability (3) of the preferences
P0 under the associated (ML) parameters (y•

0, β) with the probability under
(y•

1, β), i.e., when replacing y•
1 by y•

0. If

�(y•
1, β | P0)

�(y•
0, β | P0)

≥ t (5)

for a threshold t > 0, this indicates that the preferences P0 are not only hinting
at y•

0 but also at y•
1 (just like P1), which in turn can be interpreted as a sign

of redundancy. Moreover, since not only the preferences but also the solutions
themselves are reused, we additionally require

ΔY (y•
0,y

•
1) ≤ v (6)

for a second threshold v ≥ 0. If both conditions are met, (x0,P0) is considered
redundant with respect to (x1,P1).

Inter-case Noise: We just gave two conditions which, in conjunction, suggest
the similarity (and hence the potential redundancy) of two cases. It is natural,
then, to consider the cases as dissimilar if the opposite of at least one of the
conditions holds, i.e., if either the ratio in (5) is smaller than some (small)

10 A. Abdel-Aziz and E. Hüllermeier

threshold or the distance in (6) is larger than some threshold. If a new case
(x0,P0) is dissimilar in this sense to all of its neighbors, we may consider it as
being exceptional or at least non-representative.

4.3 Method

As a first step, we realized a “light” version of the above approach to main-
tenance in Pref-CBR by implementing the strategy for inter-case redundancy.
More specifically, our strategy consists of the following steps:

– Given a new problem x0 ∈ X to be solved, Pref-CBR is used to find a solution
y•
0 ∈ Y. In addition to the solution itself, Pref-CBR returns a set of preferences

P0 (see [1] for a detailed description of the problem solving process on the level
of pseudo-code).

– To decide whether the new case should be stored, the K nearest neighbors of
x0 are retrieved from the current case base: (x1,P1), . . . , (xK ,PK).

– The two criteria (5) and (6) are checked for (x0,P0) and each of the cases
(xi,Pi), i = 1, . . . , K.

– If the criteria are fulfilled for at least one of the K cases, (x0,P0) is considered
redundant and not stored; otherwise, it is added to the case base CB.

Note that this strategy has three parameters, namely, the number of neighbours
K and the thresholds t and v in (5–6).

5 Case Study

We conducted an experimental study with the traveling salesman problem
(TSP), i.e., with TSP instances as problems and tours as candidate solutions.
Needless to say, our ambition is not to develop new state-of-the-art solvers for
this NP-hard optimization problem—obviously, our completely generic problem
solving framework cannot compete with specialized TSP solvers. Nevertheless,
combinatorial optimization problems such as TSP provide an interesting test
bed for Pref-CBR:

– In practice, such problems often need to be solved repeatedly (imagine, for
example, a conveyance planning a tour every day), suggesting a reuse of pre-
vious solutions [12]; interestingly, the TSP problem has already been tackled
by means of CBR by other authors [6,7].

– The solution space Y is non-trivial but typically equipped with a natural
structure, on which reasonable distance measures ΔY can be defined.

– One of the key assumptions of Pref-CBR, namely, that the optimality of a
solution cannot be guaranteed, is often fulfilled—this is due to the hardness
of such problems, calling for heuristic approximations.

– Nevertheless, a comparison between two candidate solutions is often possible.
In TSP, for example, a preference between two tours can easily be created by
computing and comparing their lengths3.

3 Actually, we could even create more than a qualitative preference, because the numer-
ical values of the solutions (lengths of the tours) are known as well. This is indeed
additional information we are not exploiting in this application.

Case Base Maintenance in Preference-Based CBR 11

Another assumption of Pref-CBR, namely that a comparison is costly (and hence
the number of adaptations and queries to the oracle limited), is admittedly not
fulfilled in the case of TSP. Yet, one can easily imagine practically relevant
generalizations of the problem for which this assumption applies. For example,
suppose we replace a precise evaluation criterion such as length of a tour by
a more “soft” criterion such as comfort or convenience. Then, to compare two
candidates, it may indeed be necessary to practically try both of them (e.g.,
to walk a hiking tour), which might be time-consuming and involve input of a
human expert (playing the role of the “oracle” then). In such cases, comparing
two candidates qualitatively may also be simpler than rating them individually.

5.1 Setting

The components of our Pref-CBR setting are specified as follows:

– The problem space X is the set of all subsets x ⊂ X of size |x| = 30, where
X ⊂ R

2 is a randomly created reference set of 75 points on the plane; each
point can be thought of as the location of a city.

– The distance ΔX(x,x′) between two problems is defined in terms of the aver-
age squared distance between points in an optimal geometric superposition
of the two point sets. This measure is computed using the “Procrustes Rota-
tion” method, which is implemented in the “vegan” library of R4, subsequent
to an optimal assignment of the points that is obtained by solving the linear
assignment problem with Euclidean distance as a cost measure.

– Solutions are represented as permutations specifying the order of cities/points
in a tour. Thus, Y is the set of all permutations of {1, . . . , 30}. This space is
equipped with a local neighbourhood structure by connecting each solution
y with 200 “perturbations” of this solution, each of which is obtained by
randomly switching the position of a small number (2, 4 or 6) of points.

– To define the distance ΔY (y,y′) between two solutions, each solution is first
mapped to a feature vector with the following entries: path length, mean
distance between each city to its nearest neighbors, standard deviation of
distances of each city to its nearest neighbor. Then, the corresponding feature
vectors are compared in term of their Euclidean distance.

– The parameters of Pref-CBR were set as follows: number of nearest neighbors
K = 17, number of adaptation steps L = 40.

5.2 Experiment

In our experimental study, we compared Pref-CBR with and without case base
maintenance. As additional baselines, we included a two random deletion poli-
cies, one that removes each newly observed case with a fixed probability (RCD)
of 1/2, and one that removes individual preferences with the same fixed prob-
ability (RPD). We generated a sequence of 200 instances of the TSP problem
4 http://cran.r-project.org/web/packages/vegan/index.html.

http://cran.r-project.org/web/packages/vegan/index.html

12 A. Abdel-Aziz and E. Hüllermeier

50 100 150

1.
3

1.
4

1.
5

1.
6

1.
7

Pref−CBR for TSP

query

se
ar

ch
 im

pr
ov

em
en

t
Pref−CBR without maintenance
Pref−CBR with maintenance(v=.2, 70/190)
Pref−CBR with maintenance(v=.12, 105/190)
Pref−CBR with maintenance(v=.04, 150/190)
Pref−CBR RPD(190/190, 50% of preferences)
Pref−CBR RCD(99/190)

Fig. 1. Performance of Pref-CBR with and without maintenance on TSP data.

0 50 100 150

0
50

10
0

15
0

Pref−CBR for TSP

query

ca
se

 b
as

e
si

ze

Pref−CBR without maintenance
Pref−CBR with maintenance(v=.2, 70/190)
Pref−CBR with maintenance(v=.12, 105/190)
Pref−CBR with maintenance(v=.04, 150/190)
Pref−CBR RPD(190/190, 50% of preferences)
Pref−CBR RCD(99/190)

Fig. 2. Case base size for Pref-CBR search with and without maintenance of TSP data.

Case Base Maintenance in Preference-Based CBR 13

(using the “tspmeta” library in R), giving rise to the same number of problem
solving episodes. Each time a solution has been produced, we measure perfor-
mance by computing the ratio between the corresponding tour length and the
optimal tour length found by the “cheapest insertion” TSP solver. Since the
sequence of performance values thus produced is rather noisy, we average over a
larger number of repetitions of this experiment to produce smoother curves.

These curves are shown in Fig. 1, both for Pref-CBR without mainte-
nance and Pref-CBR with maintenance and different values of the parameter v
(while the threshold t was fixed to 1). Moreover, Fig. 2 shows the evolution of
the size of the case base. As can be seen, the desired effect is indeed achieved:
The size of the case base is significantly reduced while performance is maintained
(in contrast to the random deletion policies). Moreover, the larger v, the stronger
the tendency to delete cases. Thus, this parameter can be used to control the
size of the case base.

6 Summary and Outlook

This paper extends our framework of preference-based CBR by a method for
dynamic case base maintenance. The main goal of this method is to increase
efficiency of case-based problem solving while maintaining performance. The
effectiveness of our approach was illustrated in a case study with the traveling
salesman problem.

So far, the implementation of our maintenance method includes only a part of
the strategies discussed in Sect. 4, namely, a strategy for handling what we called
inter-case redundancy. For future work, we therefore plan to extend this method
by incorporating additional strategies for handling intra-case redundancy as well
as intra- and inter-case noise.

References

1. Abdel-Aziz, A., Cheng, W., Strickert, M., Hüllermeier, E.: Preference-based CBR:
a search-based problem solving framework. In: Delany, S.J., Ontañón, S. (eds.)
ICCBR 2013. LNCS, vol. 7969, pp. 1–14. Springer, Heidelberg (2013)

2. Abdel-Aziz, A., Strickert, M., Hüllermeier, E.: Learning solution similarity in
preference-based CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS,
vol. 8765, pp. 17–31. Springer, Heidelberg (2014)

3. Bergmann, R., Wilke, W.: Towards a new formal model of transformational adap-
tation in case-based reasoning. In: Prade, H. (ed.) ECAI-98, 13th European Con-
ference on Artificial Intelligence, pp. 53–57 (1998)

4. Craw, S., Massie, S., Wiratunga, N.: Informed case base maintenance: a complex-
ity profiling approach. In: Proceedings AAAI-2007, Twenty-Second National Con-
ference on Artificial Intelligence, 22–26 July 2007, Vancouver, British Columbia,
Canada, pp. 1618–1621 (2007)

5. Cummins, L., Bridge, D.: On dataset complexity for case base maintenance. In:
Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 47–61. Springer,
Heidelberg (2011)

14 A. Abdel-Aziz and E. Hüllermeier

6. Cunningham, P., Smyth, B., Hurley, N.: On the use of CBR in optimisation prob-
lems such as the TSP. Technical report TCD-CS-95-19, Trinity College Dublin,
Department of Computer Science (1995)

7. Erfani, H.: Integrating case-based reasoning, knowledge-based approach and TSP
algorithm for minimum tour finding. J. Appl. Math. Islam. Azad Univ. Lahijan
3(9), 49–59 (2006)

8. Gates, G.W.: The reduced nearest neighbor rule. IEEE Trans. Inf. Theor. 18(3),
431–433 (1972)

9. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theor. 14(3),
515–516 (1968)

10. Hüllermeier, E., Schlegel, P.: Preference-based CBR: first steps toward a method-
ological framework. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol.
6880, pp. 77–91. Springer, Heidelberg (2011)

11. Jalali, V., Leake, D.: Adaptation-guided case base maintenance. In: Proceedings
AAAI, National Conference on Artificial Intelligence (2014)

12. Kraay, D.R., Harker, P.T.: Case-based reasoning for repetitive combinatorial opti-
mization problems, part I: framework. J. Heuristics 2, 55–85 (1996)

13. Lawanna, A., Daengdej, J.: Hybrid technique and competence-preserving case dele-
tion methods for case maintenance in case-based reasoning. Int. J. Eng. Sci. Tech-
nol. 2(4), 492–497 (2010)

14. Lupiani, E., Juarez, J.M., Palma, J.: Evaluating case-base maintenance algorithms.
Knowl. Based Syst. 67, 180–194 (2014)

15. Ontañón, S., Plaza, E.: Justification-based selection of training examples for case
base reduction. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 310–321. Springer, Heidelberg (2004)

16. Salamó, M., Golobardes, E.: Rough sets reduction techniques for case-based rea-
soning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080,
pp. 467–482. Springer, Heidelberg (2001)

17. Salamo, M., Golobardes, E.: Hybrid deletion policies for case base maintenance. In:
Proceedings of FLAIRS-2003, pp. 150–154 (2003). Enginyeria Arquitectura, and
La Salle

18. Smiti, A., Elouedi, Z.: Overview of maintenance for case based reasoning systems.
Int. J. Comput. Appl. 32(2), 49–56 (2011)

19. Smyth, B., Keane, T.: Remembering to forget. In: Mellish, C.S. (ed.) Proceed-
ings International Joint Conference on Artificial Intelligence, pp. 377–382, Morgan
Kaufmann (1995)

20. Smyth, B.: Case-base maintenance. In: del Pobil, A.P., Mira, J., Ali, M. (eds.)
Tasks and Methods in Applied Artificial Intelligence. LNCS, vol. 1416, pp. 507–
516. Springer, Heidelberg (1998)

21. Zhu, J., Yang, Q.: Remembering to add: competence-preserving case-addition poli-
cies for case-base maintenance. In: Proceedings IJCAI-99, 16th International Joint
Conference on Artificial Intelligence, pp. 234–239. Morgan Kaufmann Publishers
Inc, San Francisco, CA, USA (1999)

Learning to Estimate:
A Case-Based Approach to Task Execution Prediction

Bryan Auslander1(✉), Michael W. Floyd1, Thomas Apker2, Benjamin Johnson3,
Mark Roberts3, and David W. Aha2

1 Knexus Research Corporation, Springfield, VA, USA
{bryan.auslander,michael.floyd}@knexusresearch.com

2 Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory (Code 5514), Washington, DC, USA

{thomas.apker,david.aha}@nrl.navy.mil
3 NRC Postdoctoral Fellow,

Naval Research Laboratory (Code 5514), Washington, DC, USA
{benjamin.johnson.ctr,mark.roberts.ctr}@nrl.navy.mil

Abstract. A system that controls a team of autonomous vehicles should be able
to accurately predict the expected outcomes of various subtasks. For example,
this may involve estimating how well a vehicle will perform when searching a
designated area. We present CBE, a case-based estimation algorithm, and apply
it to the task of predicting the performance of autonomous vehicles using simu‐
lators of varying fidelity and past performance. Since there are costs to evaluating
the performance in simulators (i.e., higher fidelity simulators are more computa‐
tionally expensive) and in deployment (i.e., potential human injury and deploy‐
ment expenses), CBE uses a variant of local linear regression to estimate values
that cannot be directly evaluated, and incrementally revises its case base. We
empirically evaluate CBE on Humanitarian Assistance/Disaster Relief (HA/DR)
scenarios and show it to be more accurate than several baselines and more efficient
than using a low fidelity simulator.

1 Introduction

Humanitarian Assistance/Disaster Relief (HA/DR) missions can occur without warning
and require a rapid response to minimize damage and preserve human life. Additionally,
they often occur in remote areas (e.g., an avalanche site) or dangerous locations (e.g.,
flooded towns, cities damaged by earthquakes, active wildfires), so it may be difficult
for human relief workers to safely assist. Instead, autonomous vehicles can be used in
place of, or in collaboration with, humans to allow for quicker and safer deployments.

We present Case-Based Estimator (CBE), a utility component of a larger HA/DR
system that assigns autonomous vehicles to search areas in disaster zones. CBE estimates
the performance of numerous vehicle-zone pairings and allows a human operator or auto‐
mated mission manager to make informed decisions about how best to allocate the vehi‐
cles. Missions vary in their properties (i.e., type of disaster, location, terrain, type of
vehicles, size of relief team). Thus, CBE may lack knowledge about how the autono‐
mous vehicles will perform and must instead rely on simulators with varying fidelity.

© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 15–29, 2015.
DOI: 10.1007/978-3-319-24586-7_2

However, given the real-time nature of HA/DR missions there may not be time to eval‐
uate every vehicle-zone pairing in every simulator. Instead, CBE will need to use infor‐
mation from the lower fidelity, less computationally expensive simulators to predict
performance on the higher fidelity simulators and select a subset of vehicle-zone pairs to
examine in more detail. This process employs regression to estimate the performance in
successively higher fidelity simulators and allows the decision maker (e.g., Operator or
automated mission planner) to make informed decisions on which tasks to assign to vehi‐
cles. We report an empirical study in which CBE yields more accurate results than lower
fidelity simulators and outperforms unfiltered regression approaches.

In this paper we describe CBE and how it uses data from simulators (introduced in
Sect. 3) of varying fidelity to predict the performance of autonomous vehicles.
Section 2 examines related work in the areas of case-based estimation and agent
deployment. Section 3 describes the HA/DR domain. Section 4 briefly summarizes our
HA/DR command system. Section 5 focuses on how we use CBR to estimate the
performance of autonomous HA/DR vehicles. We evaluate our approach in Sect. 6,
followed by a discussion of our results in Sect. 7 and concluding remarks in Sect. 8.

2 Related Work

Our current work focuses on online numeric prediction; we compute a linear regression
equation from a subset of the most similar cases’ outcomes using an online algorithm.
This is an example of locally weighted regression (LWR) (Cleveland and Devlin 1988),
and in particular of algorithms that compute local estimates of the regression surface
(Atkeson et al. 1997a). These popular algorithms have a long history of use in, for
example, robotics control tasks (Atkeson et al. 1997b). Many variants have been
examined in the CBR literature, including in the context of case-based reinforcement
learning techniques (e.g., Aha and Salzberg 1993; Gabel and Riedmiller 2007;
Molineaux et al. 2008). Given a problem , LWR algorithms identify the set of ’s
k-nearest neighbors and compute a linear or nonlinear regression equation from ’s
(numeric) solution values. These are often similarity-weighted, where the most similar
neighbors exert more influence on the derivation of the equation. This equation is then
used to predict a solution value for . Our algorithm, CBE, computes a simple
unweighted linear regression model to make predictions, but where the value of k is
not fixed (it varies depending on which cases exceed a similarity threshold). We have
found it to perform well in our application, and leave the investigation of other LWR
methods for future work. There are also similarities to two-stage retrieval models such
as MAC/FAC in Forbus et al. (1995). It uses a simple similarity metric to identify a
subset of cases to evaluate with a more comprehensive structural analysis. This is
similar to CBE, which uses a function based estimate of simulation performance to
retrieve promising candidates for further evaluation using more rigorous simulation
models.

CBR has previously been studied for robotics applications. For example, Likhachev
et al. (2002) use CBR to learn parameter settings for the behavior-based control of a
ground robot in environments that change over time. While they focus on motion control
for a single robot, we instead focus on the high-level control of robot teams. Ros et al.

16 B. Auslander et al.

(2009) focus on action selection for RoboCup soccer, and use a sophisticated represen‐
tation and reasoning method. However, this body of research focuses on motion planning
for relatively short-term behaviors, whereas we focus on longer duration plans that are
monitored by a goal reasoning (GR) module (see Sect. 4).

GR agents that employ CBR techniques have been used for other control tasks, such
as formulating the goals for team coordination (Jaidee et al. 2013), predicting the
behavior of hostile agents (Borck et al. 2015), and recognizing the plans of an agent’s
teammates (Gillespie et al. 2015). However, in contrast to these other integrations, our
focus is on predicting the outcomes of a plan executed by a set of robots.

In (Auslander et al. 2014) we described a CBR algorithm that sets the parameter
values of complex HA/DR plans involving a heterogeneous set of unmanned autono‐
mous vehicles that search multiple Areas of Interest (AOI). We represented cases using
a similar problem, solution, outcome tuple. Our algorithm found solution parameter
settings that performed well by adapting similar cases and using their outcome metrics
to vote on parameter settings. When executing plans generated using our case-based
algorithm on problems with high uncertainty, it outperformed plans generated using
baseline approaches. In this paper, we instead focus on a complementary problem: esti‐
mating similar outcomes given a problem and solution parameter settings. These two
approaches can potentially be combined in the future to improve parameter setting by
estimating the performance of a proposed solution.

Finally, CBR has previously been studied for military applications, including
disaster response. For example, Abi-Zeid et al. (1999) studied incident prosecution,
including real time support for situation assessment in search and rescue missions. Their
ASISA system uses CBR to select hierarchical information-gathering plans for situation
assessment. Muñoz-Avila et al.’s (1999) HICAP instead uses conversational CBR to
assist operators with refining tasks in support of noncombatant evacuation operations.
SiN (Muñoz-Avila et al. 2001) is an extension that integrates a planner to automatically
decompose tasks where feasible. However, while these systems use planning modules
to support rescue operations, they do not predict the outcomes of a given plan’s execu‐
tion, nor focus on coordinating robot team behaviors.

3 Humanitarian Assistance/Disaster Relief Operations

HA/DR operations (O’Connor 2012) are performed by several countries in response to
events such as Hurricane Katrina (August 2005), the Haiti earthquake (January 2010),
and Typhoon Haiyan (November 2013). Before any personnel can begin operations,
information about the Area of Operations must be acquired (e.g., locations of survivors,
infrastructure condition, viable ingress points, and evacuation routes). This information
will also need to be continuously updated as the situation develops. Each Area of Oper‐
ation is composed of one or more Areas of Interest that need to be searched.

Current operations employ remotely controlled drones and human-piloted helicop‐
ters to gather this information. We are developing methods for deploying a heteroge‐
neous team of autonomous unmanned vehicles with appropriate sensor platforms to
automate much of this process, so as to reduce time and cost. This should enable

Learning to Estimate 17

responders to perform critical tasks more quickly for HA/DR operations. Independently
of which system is used, an Operator given a list of missions must be able to prioritize
which missions should be planned for and scheduled.

We focus on a method for comparing potential mission outcomes to enable the
Operator or mission planner to select which missions to perform. These missions can
be automatically generated from our goal reasoning system or provided by opera‐
tors. This module’s task is to provide estimates of the outcome metrics, which can
be used to make more informed decisions on what to dispatch. This may yield better
plans.

We use three simulations of varying fidelity in the CBE: an inexpensive func‐
tion-based approach, a quick low fidelity simulator, and a slower high fidelity simu‐
lation. The first can estimate a metric without simulation (e.g., by computing the
path a vehicle might take and dividing the path length by the vehicle’s speed to
estimate time required). To ensure efficiency, these estimates do not account for
important factors such as wind and fuel levels, but they do provide instant, initial
results.

Our low fidelity simulation is MASON (Luke et al. 2005), a discrete-event multi‐
agent simulator that models all physics behaviors and physicomimetics control
(Martinson et al. 2011). MASON models the physical movements of generic agents
acting in the environment. However, it lacks specific physical models of its actors
and does not account for detailed problem factors such as the effects of wind.
MASON’s low fidelity allows it to more quickly generate results, but these are likely
to be less accurate because it does not model all features.

Open AMASE (Duquette 2009) is the highest fidelity simulation we use, and in
this paper we use it as a substitute for a real-world environment. This simulation
models small tactical unmanned aircraft systems (STUAS) using a kinematic flight
dynamics model that includes environmental effects (e.g., wind) on performance.
AMASE also has facilities for modelling the field of view of cameras mounted on the
STUAS based on the vehicles’ six degree of freedom pose. This allows AMASE to
calculate a metric for coverage defined as the area the sensor observed at a specified
resolution. The lower fidelity models cannot produce this metric, and instead assume
the paths followed produced full coverage. Figure 1 displays an example problem
using both real-world data and AMASE’s representation.

4 Situated Decision Process

To intelligently act in domains like HA/DR, a team of autonomous agents must
continually monitor, evaluate, and dispatch new tasks or goals. To this end, we have
designed a system architecture called the Situated Decision Process (SDP) (Roberts
et al. 2015). In the SDP, a centralized Mission Manager subsystem assigns primitive
goals to teams of autonomous agents, based on the input of an Operator and the
vehicles’ observations during execution. Intelligent, autonomous evaluation and
selections of goals or tasks during execution requires rapid, accurate estimation of
multiple scenario parameters.

18 B. Auslander et al.

In HA/DR scenarios, the vehicles must quickly react to changes in the perceived
environment, as well as to changes to the Operator’s inputs. Doing so requires the
rapid evaluation of such changes; it requires the ability to predict the effect of
performing tasks more quickly than can be simulated with high fidelity and with
more accuracy than can be achieved with low fidelity. This led us to consider using
CBR to quickly and accurately estimate the parameter settings used by the Mission
Manager to intelligently evaluate the utility of the vehicles’ goals and tasks.

At the individual vehicle and sub-team level, CBE’s estimates can be used in
motivators for goal selection in a goal reasoning algorithm (Wilson et al. 2013). This
would help us implement the situated portion of the SDP by permitting decision
making on vehicles without direct access to the Mission Manager. This enables
vehicles to choose predictable actions that should provide locally optimal results.

5 Case-Based Performance Estimation

To provide the data necessary for the Mission Manager to make informed decisions
about its various vehicle deployment options, we use the CBE to evaluate mission
options in HA/DR scenarios. We describe its case representation in Sect. 5.1 and
case similarity metric in Sect. 5.2. The CBR algorithm and knowledge acquisition
technique are presented in Sect. 5.3.

Fig. 1. Left: Representation of a problem set using OpenStreetMap data. Right: Same problem
shown in AMASE with tracks for the airport region.

Learning to Estimate 19

Table 1. CBE’s case representation

5.1 Case Representation

We represent a case as a problem and the set of all outcomes when
that problem is evaluated using models of different fidelity. In this paper, we use three
models of increasing complexity: an evaluation function, a low fidelity simulator
(MASON), and a high fidelity simulator (AMASE). Similarly, we are also interested in
estimating the performance when using the simulators (e.g., if the simulator is
unavailable or computationally expensive). As such, the case contains the outcomes
generated by the evaluation function (), the low fidelity simulator (), and the high
fidelity simulator (), and estimates of the low and high fidelity simulations

.
Table 1 provides detail on this representation. A problem is composed of a problem

description and proposed solution. The problem description is further divided into four
features that characterize an aerial search task. Total Area of AOI is the total size of the area
of interest (AOI) (i.e., the area being searched) in square meters. The Distance to the AOI
is a measure of how far the search vehicle would have to travel to reach the center of the
area. This becomes important as the trip time becomes a significant cost of the operation.
Wind Speed is a measure of the magnitude of the wind in meters per second. Wind is a
large source of error between the low and high fidelity simulations and tracking it enables
a system to separate cases by the wind magnitude. Wind Direction is a measure of the
alignment of the wind relative to the search area; it is a value in [0°, 90°].

A solution represents the configuration of the search vehicles that will be assigned
to the search area (e.g., vehicle types, the number of vehicles, sensor configurations).
Here we focus on problems where a single vehicle of a fixed type is assigned to perform
the search. (See (Auslander et al. 2014) for more complex solutions.)

Initially, each case contains only the problem description with unknown values for
each outcome. As more information is obtained (i.e., evaluating the problem using the
evaluation function or one of the simulators, or estimating the outcomes), it is added to

20 B. Auslander et al.

the case. Only promising problems identified from the performance estimates are eval‐
uated at the higher, more computationally expensive fidelities, so not all cases will have
values for all outcomes. All outcomes have measurements for the search duration
(seconds) and search energy (joules), while search coverage (percent of area observed
with sensors) can be measured only by the high fidelity simulator and is therefore only
contained in its outcomes. The estimated values may be continually overwritten, if new
data becomes available that modifies these values, while the data obtained from simu‐
lation is recorded only once. The estimates serve as an inexpensive temporary meas‐
urement until the actual simulation is run; they are no longer used after the actual values
are known.

5.2 Case Similarity

Case similarity is calculated using a weighted comparison of the problem features
in two problems. Given two problems and , the similarity metric (Eq. 1) calcu‐
lates a similarity between 0 and 1. Each problem contains features, and each
feature is given a weight (maxValue(i) and minValue(i) represent the maximum
and minimum value the feature can take). In CBE, there are four problem
features: Total Area of AOI, Distance to AOI, Wind Speed, and Wind Direction. Total
Area of AOI and Distance to AOI are assigned weights of 2.0, whereas other features
are assigned weights of 1.0 to enable better separation of regions of varying sizes and
locations. A weighted approach is used to allow more flexibility in discriminating
among cases (e.g., emphasizing the geometric properties of the domain).

(1)

5.3 Performance Estimation Algorithm

CBE (Algorithm 1) enables a computationally inexpensive and accurate evaluation
of potential configurations provided by the Mission Manager. Evaluating each poten‐
tial configuration in the simulators can be expensive. Thus, CBE allows the Mission
Manager to provide feedback about which configurations should be evaluated in
more detail. To begin with, CBE receives a set of problems representing
possible missions under consideration from the Mission Manager (MM). For each
problem , it retrieves a similar case from case base using

, which examines all cases in that are above similarity to
 using from Eq. 1 and returns the most similar case with a known (i.e., prefer‐

ence is given to cases with more known values). If no above-threshold cases have a
known , the most similar case is returned. If no cases are above threshold, a null
value is returned. If a case is retrieved, CBE uses it. Otherwise, CBE evaluates
using the evaluation function (i.e., computing) and creates a new case (the values
for all other outcomes are set to null). The retrieved or created case is then added to
a set of cases to be further evaluated.

Learning to Estimate 21

If the problem’s MASON and AMASE values are not known (i.e., the problem has
never been evaluated in the simulators), CBE then estimates the MASON and AMASE
values (i.e., and). The resulting cases are then sent to the Mission Manager
for filtering because it is best able to choose what problems and metrics to optimize over
given the overall mission context.

The Mission Manager returns a subset of cases () for further evaluation. For each
of these cases, if the actual MASON outcome values are not known, it is run in the
MASON simulator and its corresponding values are revised. Afterward, the estima‐
tion routine is run again to generate new estimations for the AMASE outcome values
and the resulting subset is returned to the Mission Manager. Not shown in Algorithm 1
is once the Mission Manager has filtered the set of problems a subset of these are picked
to be deployed based on the Mission Manager’s criteria. The resulting AMASE outcome

22 B. Auslander et al.

values are subsequently stored in the case (i.e., as) if the case did not previously have
AMASE outcome values. If AMASE outcome values already exist (e.g., for a repeated
surveillance task), rather than ignore the data a new case is created from the current
problem. Its MASON outcome values are also computed to ensure no cases have
AMASE outcome values without MASON outcome values.

The functions and are implemented
using a linear regression algorithm for each outcome attribute. For MASON, the linear
regression function takes the form . Similarly, the AMASE regression
function is of the form These regression algorithms are trained using
cases that are above similarity to the current case and have known (for MASON
regression) or (for AMASE regression) values. This similarity threshold ensures the
regression functions are generated using only data from similar problems, helping isolate
problems into clusters.

This is an online learning algorithm for estimation, with data acquired every time
the estimation system is run. For each problem, a new case can potentially be generated.
As the Operator selects problems to evaluate further, the MASON and AMASE outcome
metrics are added to the cases. As more values are known, the algorithm will have more
data to use for regression and should increase estimation accuracy.

6 Empirical Study

We empirically tested the following hypotheses:

H1: CBE’s estimate of a problem’s outcome approaches the actual outcome when
evaluated using the high fidelity simulation over time.
H2: CBE provides more accurate estimates than the evaluation function and low
fidelity simulator.
H3: CBE is more computationally efficient than the low fidelity simulator as the
number of cases increases.
H4: CBE’s filtered regression approach yields more accurate predictions than a non-
filtered regression.

In the following sections we describe the evaluation methods, algorithms tested and
metrics used.

6.1 Empirical Method

An objective of these tests is to verify that CBE accurately predicts the performance of
a configuration when run on a high fidelity simulation. Thus, our ideal performance
baseline is provided by the high-fidelity AMASE.

Problem sets were generated using a custom PostGIS system (Roberts et al. 2015).
Each problem was formed by choosing a random airport from the OpenStreetMaps data
set (Geofabrik 2014) and finding five random buildings within a 3–5 km radius of the
airport. Each of these six locations is given a buffer region of 300 meters around their
perimeters and the result is the search area to use in a given problem. Each search area

Learning to Estimate 23

is also assigned a random wind speed between 0–20 meters per second. The six search
areas (i.e., airport and five nearby buildings) are stored as a search and rescue (S&R)
problem. We repeated this 100 times to obtain 100 S&R problems. Problem features
(e.g., Distance to AOI, Wind Direction) are derived from these problems at run time.

Each S&R problem was used to create a problem set that contains potential vehicle
assignments for the problem. In CBE, only one vehicle assignment was used (i.e., the
STUAS with default camera configuration). Future work will evaluate other vehicles
and configurations as parameters, such as the use of static cameras and multiple vehicles.
All problems in the problem set were run in AMASE to obtain ground truth data (i.e.,
how well that vehicle will perform when assigned to search a specific region).

A problem set run consists of giving an entire problem set to CBE and comparing
its estimates to the known ground truth. Because we cannot know what the Mission
Manager seeks at this level of abstraction, since it could be a human or intelligent
subsystem, our method for selecting a subset of cases to run on MASON randomly
selects 4 of the 6 cases. Similarly, when the final estimates are returned, 2 randomly
selected problems (among the 4 selected) will be evaluated in AMASE.

A test run consists of randomly ordering the 100 problem sets and sequentially giving
them as input to CBE, simulating 100 sequential uses of CBE. At the end of the 100
runs there will be 200 fully evaluated cases. We repeated this process 50 times and
aggregated the results. All regression calculations were computed using WEKA’s linear
regression implementation (Hall et al. 2009).

6.2 Algorithms and Baselines Tested

We used the following algorithms and baselines to evaluate CBE. Each was run using
the same evaluation problems presented in identical orderings.

• CBE: We set to allow discrimination between building searches and airport
searches. We set so that cases are reused only when they are highly similar
to the problem.

• Func: Results obtained from running the estimation function on each problem.
• MASON: Results obtained by running MASON on each problem.
• FuncReg: Results obtained using linear regression to estimate AMASE’s outcomes

using problem features and the function estimate. This uses all available AMASE
data for regression (i.e., not only data from similar problems, as with the CBR
approach).

• MASONReg: Similar to FuncReg, but problem features and MASON outcomes are
used to estimate AMASE outcomes. This also uses all available AMASE data for
regression.

FuncReg and MASONReg use all data that is available to perform linear regression.
For example, for the 100th input problem set 198 cases are used (since two AMASE
outcomes are determined from each of the previous 99 input sets) while the 1st problem
set will have no known AMASE outcomes. When any algorithm is unable to predict an
AMASE outcome (i.e., no data to perform regression) a default error of 200 % is used.
The Func and MASON baselines serve to show that using the values from only the lower

24 B. Auslander et al.

fidelity simulators is inferior to using a mapping function such as the regression approach
of CBE.

6.3 Results and Analysis

We now describe whether our results support our hypotheses:

H1: Fig. 2 displays results showing support for H1. It graphs the mean error of CBE
over 50 runs after it has calculated its kth AMASE outcome estimate (100 problem
sets with two estimates per set). As the number of problems evaluated increases, the
error decreases and eventually converges to approximately error, which is an
improvement over our low fidelity estimate as shown in H2. The graph shows the
error when predicting Duration. Although not shown, Energy converges similarly.

H2: Fig. 2 also displays the performance of baselines MASON and Func. CBE consis‐
tently outperforms the evaluation function and eventually outperforms MASON giving
support to H2. Table 2 confirms this; using a paired t-test we found that CBE significantly
outperforms Func for Energy and Duration. It also significantly outperforms MASON
overall for Energy and for Duration over the final 75 % of problems (i.e., after learning).

H3: CBE requires fewer problems to be evaluated than if every problem is evalu‐
ated in MASON (only 4 of 6 are evaluated in MASON, so 67 % of the evaluations).
Reducing necessary simulations runs is a large reduction in run time considering
that, for an example run of an 18 min real world mission, the MASON simulation can
take 35 s while AMASE takes 95 s. Additionally, setting an appropriate value for
can influence how often MASON is used by CBE. If there is a case that is similar to
an input problem, that problem does not need to be evaluated in MASON if the case
has a recorded MASON outcome. In the current evaluation about 23 cases per test
run were found to be similar enough to an input problem to be reused. If the Mission
Manager wanted evaluations for all of those problems (i.e., they were among the 4
of 6 selected for MASON evaluation), that would result in 23 fewer MASON eval‐
uations out of 400. However, the Mission Manager may not require evaluations for
any of those problems and would instead evaluate other problems, resulting in no
additional improvements. Reducing to 0.98 increases this to 107 reuses. This
hypothesis has some support, but further exploration of parameters is warranted to
find optimal values for this domain.

H4: Support of H4 is shown in Fig. 3 which graphs the results of CBE versus the two
full regression approaches (i.e., they use all the cases), which begin with no data for the
first two AMASE estimates and as such default to 200 % error. This accounts for the
highest error in the first two AMASE estimates. In contrast, CBE uses the estimation
function and MASON estimates, accounting for a lower initial error. For the remaining
AMASE estimates, all three algorithms converge towards approximately 20 % error.
Although CBE does not appear to converge faster, its errors are never as large as the
initial regression models. This could be due to case reuse or the filtering of non-similar
cases in the regression calculation.

Learning to Estimate 25

Fig. 2. Graph plotting percent error for CBE and the baseline algorithms across the 200 problems
on 50 runs.

Fig. 3. The error of CBE and the regression algorithms for 200 problems over 50 runs.

Shown in Fig. 3, CBE’s performance is better than or equal to the other algorithms.
In the comparison of the 50 test run averages, CBE significantly outperformed both
alternatives using a paired t-test; see Table 2. Table 3 displays the mean number of times,
across all 50 runs, that CBE recorded lower error than the other algorithms. Additionally,
it shows the mean reduction in absolute error when using CBE across all test runs.

26 B. Auslander et al.

Table 2. Results of t-tests (p < value) showing CBE’s improvement vs. other algorithms

CBE vs Duration Energy
Func 0.00000 0.00000

MASON 0.34228 (0.0 after 25% of the cases) 0.00000
FuncReg 0.00137 0.00446

MASONReg 0.00062 0.00130

Table 3. Improvement of CBE versus the regression algorithms

CBE vs

Duration Energy

Improvements Mean Error Reduction # Improvements Mean Error Reduction

FuncReg 54.69% 5.05% 54.05% 2.75%
MASONReg 55.09% 5.33% 55.03% 2.97%

7 Discussion

The results in Sect. 6 clearly indicate the benefits of CBE, which recorded a 5 % reduction
in Duration error and an almost 3 % reduction in Energy error. The reason for Energy’s
lower improvement could be differences with how the low and high fidelity simulators
are modelling recharging. In MASON a vehicle is supposed to remain still while
recharging, while AMASE (which was built to model fixed wing aircraft) does not
restrict movement as much while recharging. Future versions of these simulators will
address these discrepancies and also implement a procedure for returning to base and
landing to increase scenario realism.

We expect that further improvements to performance will be found as more discrim‐
inating problem features are identified. For example, another type of vehicle would yield
entirely new data clusters as Energy burn rates, and flight profiles would differ. As more
data is collected over time the accuracy of the algorithms should increase and require
fewer simulation runs.

8 Conclusion

Most CBR systems that estimate functions, such as cost, attempt to find a similar case
and adapt their solution. We report on a novel online hybrid algorithm that can reuse
prior learned values from similar problems and creates new estimates for others. For the
scenarios in the domain we examine, the Case-Based Estimator (CBE) produced more
accurate estimates from less data than two other regression algorithms.

One of the next steps from these results is to combine the benefits of this approach
with the parameter selection approach from our previous investigation (Auslander et al.
2014). Benefits may include improving suggested solutions by estimating their actual
outcomes. Beyond this there are many ways to improve the CBE algorithm. One of the
most promising directions would be the exploration of non-linear regression models.

Learning to Estimate 27

It is likely that some of our problem features are not independent, and a model that
considers co-variance information may return more accurate results. We expect there to
be tradeoffs in performance with these new models (e.g., additional computational
resources required for increased training samples).

Over time the amount of data in the case base will become sufficiently large to
necessitate the use of case-base maintenance techniques. While in general the accuracy
of regression algorithms will increase given more data, improvements may also accrue
by removing anomalous cases. In addition, as more data is obtained it may be possible
to be more discriminative in case selection by increasing and . Future research may
identify ways to scale these parameters with the data.

Acknowledgements. Thanks to OSD ASD (R&E) for sponsoring this research.

References

Abi-Zeid, I., Yang, Q., Lamontagne, L.: Is CBR applicable to the coordination of search and rescue
operations? A feasibility study. In: Althoff, K.-D., Bergmann, R., Branting, L. (eds.) ICCBR
1999. LNCS (LNAI), vol. 1650, pp. 358–371. Springer, Heidelberg (1999)

Aha, D.W., Salzberg, S.L.: Learning to catch: applying nearest neighbor algorithms to dynamic
control tasks. In: Proceedings of the Fourth International Workshop on Artificial Intelligence
and Statistics, Ft. Lauderdale, FL, pp. 363–368 (1993, Unpublished)

Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11(1–5), 11–73
(1997a)

Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning for control. Artif. Intell. Rev.
11(1–5), 75–113 (1997b)

Auslander, B., Apker, T., Aha, D.W.: Case-based parameter selection for plans: coordinating
autonomous vehicle teams. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol.
8765, pp. 32–47. Springer, Heidelberg (2014)

Borck, H., Karneeb, J., Alford, R., Aha, D.W.: Case-based behavior recognition in beyond visual
range air combat. In: Proceedings of the Twenty-Eighth Florida Artificial Intelligence
Research Society Conference, pp. 379–384. AAAI Press, Hollywood, FL (2015)

Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis
by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988)

Duquette, M.: Effects-level models for UAV simulation. In: Proceedings of the AIAA Modeling
and Simulation Technologies Conference. AIAA, Chicago, IL (2009)

Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: A model of similarity-based retrieval. Cogn. Sci.
19, 141–205 (1995)

Gabel, T., Riedmiller, M.: An analysis of case-based value function approximation by
approximating state transition graphs. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS (LNAI), vol. 4626, pp. 344–358. Springer, Heidelberg (2007)

Geofabrik: OpenStreetMap data extracts (2014). http://download.geofabrik.de/index.html
Gillespie, K., Molineaux, M., Floyd, M.W., Vattam, S.S., Aha, D.W.: Goal reasoning for an

autonomous squad member. In: Aha, D.W. (ed.) Goal Reasoning: Papers from the ACS
Workshop, Atlanta, GA (2015). www.cc.gatech.edu/~svattam/goal-reasoning

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

28 B. Auslander et al.

http://download.geofabrik.de/index.html
http://www.cc.gatech.edu/%7esvattam/goal-reasoning

Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Case-based goal-driven coordination of multiple
learning agents. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp.
164–178. Springer, Heidelberg (2013)

Likhachev, M., Kaess, M., Arkin, R.: Learning behavioral parameterization using spatio-temporal
case-based reasoning. In: Proceedings of the International Conference on Robotics and
Automation, pp. 1282–1289. IEEE Press, Washington, DC (2002)

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation
environment. Simulation 81(7), 517–527 (2005)

Martinson, E., Apker, T., Bugajska, M.: Optimizing a reconfigurable robotic microphone array.
In: Proceedings of the International Conference on Intelligent Robots and Systems, pp.
125–130. IEEE Press, San Francisco, CA (2011)

Molineaux, M., Aha, D.W., Moore, P.: Learning continuous action models in a real-time strategy
environment. In: Proceedings of the Twenty-First Florida Artificial Intelligence Research
Conference, pp. 257–262. AAAI Press, Coconut Grove, FL (2008)

Muñoz-Avila, H., Aha, D., Breslow, L., Nau, D.: HICAP: an interactive case-based planning
architecture and its application to noncombatant evacuation operations. In: Proceedings of the
Ninth National Conference on Innovative Applications of Artificial Intelligence, pp. 879–885.
AAAI Press, Orlando, FL (1999)

Muñoz-Avila, H., Aha, D., Nau, D., Weber, R., Breslow, L., Yaman, F.: SiN: integrating case-
based reasoning with task decomposition. In: Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, pp. 999–1004. Morgan Kaufmann, Seattle, WA
(2001)

O’Connor, C.: Foreign humanitarian assistance and disaster-relief operations: lessons learned and
best practices. Nav. War Coll. Rev. 65(1), 152–160 (2012)

Roberts, M., Apker, T., Johnson, B., Auslander, B., Wellman, B., Aha, D.W.: Coordinating robot
teams for disaster relief. In: Proceedings of the Twenty-Eighth Florida Artificial Intelligence
Research Society Conference, pp. 366–371. AAAI Press, Hollywood, FL (2015)

Ros, R., Arcos, J., Lopez de Mantaras, R., Veloso, M.: A case-based approach for coordinated
action selection in robot soccer. Artif. Intell. 173, 1014–1039 (2009)

Wilson, M., Molineaux, M., Aha, D.W.: Domain-independent heuristics for goal formulation. In:
Proceedings of the Twenty-Sixth Florida Artificial Intelligence Research Society Conference,
pp. 160–165. AAAI Press, St. Pete Beach, FL (2013)

Learning to Estimate 29

Case-Based Policy and Goal Recognition

Hayley Borck1(B), Justin Karneeb1, Michael W. Floyd1,
Ron Alford2,3, and David W. Aha3

1 Knexus Research Corporation, Springfield, VA, USA
{hayley.borck,justin.karneeb,michael.floyd}@knexusresearch.com

2 ASEE Postdoctoral Fellow, Washington, DC, USA
3 Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory (Code 5514), Washington, DC, USA

{ronald.alford.ctr,david.aha}@nrl.navy.mil

Abstract. We present the Policy and Goal Recognizer (PaGR), a case-
based system for multiagent keyhole recognition. PaGR is a knowledge
recognition component within a decision-making agent that controls sim-
ulated unmanned air vehicles in Beyond Visual Range combat. PaGR
stores in a case the goal, observations, and policy of a hostile aircraft,
and uses cases to recognize the policies and goals of newly-observed hos-
tile aircraft. In our empirical study of PaGR’s performance, we report
evidence that knowledge of an adversary’s goal improves policy recog-
nition. We also show that PaGR can recognize when its assumptions
about the hostile agent’s goal are incorrect, and can often correct these
assumptions. We show that this ability improves PaGR’s policy recogni-
tion performance in comparison to a baseline algorithm.

Keywords: Policy recognition · Intelligent agents · Goal reasoning ·
Air combat

1 Introduction

The World War I and World War II dogfighting style of air combat is mostly
obsolete. The modern capabilities of aircraft instead facilitate a longer range
style of combat deemed Beyond Visual Range (BVR) combat. In this paper,
we focus on how an Unmanned Aerial Vehicle (UAV) may participate in BVR
combat operations. In BVR combat, significant time between maneuvers allows
a UAV more time to plan its reactions. Accurately recognizing the actions and
plans of other agents greatly reduces the complexity for planning in adversarial
multi-agent systems [1]. However, long-range aerial observations are generally
restricted to the basic telemetry data returned by radar (i.e., position and speed).
This makes accurately recognizing an opponent’s actions difficult [2].

In previous work, we described a reasoning system called the Tactical Bat-
tle Manager (TBM), which uses goal reasoning [3,4], policy recognition [5], and
automated planning techniques to control a UAV in a simulated BVR environ-
ment. The existing policy recognition system, like most, uses observations to
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 30–43, 2015.
DOI: 10.1007/978-3-319-24586-7 3

Case-Based Policy and Goal Recognition 31

directly predict the tactics of the opposing agents. However, the choice of tac-
tic (or plan) for an agent is driven by its over-arching mission (or goal), which
cannot be directly observed. For example in a defensive mission, maintenance of
stealth and prevention of losses may drive the enacted policies of the agent. In
contrast, aggressiveness and firing missiles at opponents may be more important
in an offensive mission.

In this paper, we introduce the Policy and Goal Recognizer (PaGR; Sect. 4),
which leverages agent goals in an attempt to improve policy recognition accu-
racy. PaGR is given a mission briefing, which includes the details of the upcoming
mission such as the expected capabilities of the hostiles and their expected goal.
PaGR’s cases contain the goal, observations, and policy of a hostile agent. Dur-
ing the mission, the goal and current observations are used in the similarity
calculation to retrieve a newly-observed agent’s predicted policy. Our experi-
ments in a simulated BVR environment (Sect. 5), involving 2v2 scenarios (i.e.,
2 allied agents vs. two hostile agents), show that case retrieval is significantly
more accurate when goal information is employed.

However, mission briefings may not be accurate, and our experiments also
show that making incorrect assumptions about an adversary’s goal may neg-
atively impact retrieval performance. To counteract inaccurate goal assump-
tions, PaGR leverages past observations to recognize when there is a discrepancy
between the goals provided by the mission briefing and the actual goals of the
hostiles. Once a discrepancy is recognized, PaGR then attempts to predict a goal
that more correctly describes, and thus predicts, hostile agent intentions. Our
experiments show that goal revision can reduce most of the negative impacts
from incorrect briefings.

We begin with a discussion of related work (Sect. 2), followed by a description
of the TBM (Sect. 3). We then describe PaGR (Sect. 4) and our empirical study
of it (Sect. 5), and finish with a discussion of future work (Sect. 6) and conclusions
(Sect. 7).

2 Related Work

Plan, activity, and intent recognition has been an active field of research in AI
in recent years [6]. Our system endeavors to recognize the tactics of opposing
agents. We define an agent’s tactics as a sequence of actions it performs as part
of a mission scenario, with the possibility it will switch tactics during a scenario.
In this sense, an adversarial agent uses a plan to perform a tactic while having
the autonomy to change tactics as necessary (e.g., because a previous tactic was
unsuccessful, as countermeasures against another agent, it changed its goals).

Vattam et al. [7] use action sequence graphs to perform case-based plan
recognition in situations where actions are missing or noisy. Ontanón et al. [8] use
case-based reasoning (CBR) to model human driving vehicle control behaviors
and skill level to reduce teen crash risk. Their CBR system predicts the next
action the driver would take given the current environment state. However, these
systems cannot identify plans that were previously identified incorrectly and
refine the plan recognition process.

32 H. Borck et al.

Fagundes et al. [9] focus on determining when it is appropriate or necessary
to interact with agents to gain more information about their plan. Their system
implements symbolic plan recognition via feature decision trees to determine if
an agent should interact with other agents in multiagent scenarios. Unlike the
BVR domain, they assume full observability of other agents. Similar to Fagundes
et al., we have shown previously that acting intelligently via automated planning
significantly reduces the time it takes to classify agent behaviors in single-agent
scenarios [10]. Although we do not perform active recognition in this paper, we
extend its recognition system by adding an agent goal to the case.

Laviers and Sukthankar [11] present an agent that learns team plan repair
policies by recognizing the plans of the opposing American football team.
Molineaux et al. [12] also study plan recognition in this domain; their system uses
recognized plans to aid in case-based reinforcement learning. Similarly, human
activity recognition [13] has been used to recognize a senior citizen’s activity
and adapt an agent to be more helpful when assisting the senior. These efforts
are similar to our own in that they attempt to revise the model of other agents.
However, unlike our agent in the BVR domain, these recognition agents have
access to perfect information.

Single-agent keyhole plan recognition can be expanded to multiagent
domains, but has been shown to be a much more difficult problem [14]. Zhou and
Li [15] show that multi-agent plan recognition can be performed in a partially
observable environment by representing team plans as a weighted maximum
satisfiability problem. However, their algorithm’s runtime is proportional to the
amount of missing information which could prove problematic in a real-time
combat domain like BVR. As such, we instead determine the probability of each
tactic being used. Our system can then assume that a specific tactic is being
used or perform exploratory actions that will help differentiate between possible
tactics.

Plan recognition can also assist in behavior or intent recognition. Geib and
Goldman [16] describe the need for plan and intent recognition in intrusion detec-
tion systems. Their system operates in a partially observable environment with
a single adversarial agent. They use a probabilistic plan recognizer that reasons
about observed actions, generates hypotheses about the adversary’s goals, and
retrieve plans from a plan library. Their system operates under the assumption
that an attacker targets the agent’s system. In our work, we instead use plan
recognition to identify an adversary’s plans and the target of those plans (e.g.,
is the hostile attacking the agent or one of its teammates).

Corchado et al. [17] present an agent that encodes the belief-desire-intention
(BDI) model in a CBR context. Their agent uses its current beliefs and desires
(the problem) to select its intentions (the solution). This is similar to our own
work in that it explicitly encodes the desires of an agent in cases. However, our
cases are created from observations of adversarial agents, so they may contain
erroneous or incomplete information about beliefs, desires, or intentions.

Uncertainty about the quality (e.g., due to sensing errors) or complete-
ness (e.g., due to partial observability and hidden internal information) of

Case-Based Policy and Goal Recognition 33

observed information has been a focus of CBR systems that learn by observation
[18–20]. These systems learn to perform a task by observing an expert, either
with or without the expert’s knowledge and assistance. In our system, we are not
trying to replicate an agent’s behavior but instead use observations to identify
the agent’s behavior and use this to guide our agent’s decision making process.

Traces of a user’s behavior have been used as cases in trace-based reasoning
[21] and episodic reasoning [22] systems. These systems store a sequence of the
user’s past actions, or both past actions and past environment states. This allows
the systems to reason over the current problem, the problem’s evolution over
time, and the solutions that have been applied to the problem. These systems
differ from our own in that we do not have direct knowledge of the observed
agent’s action but must instead infer them from observable data.

3 Tactical Battle Manager

PaGR will serve as a component in the Tactical Battle Manager (TBM;
Fig. 1), a system we are developing for collaborative pilot-UAV interaction and
autonomous UAV control. During experimentation and testing the pilot is mod-
eled by using a static policy (see Sect. 5). In its current state, the TBM contains,
among other components, a goal reasoning component (Goal Management Sys-
tem), a planning and prediction component (Planning System), and a policy
recognition component (Policy Recognizer in Knowledge Updater).

The goal reasoning (GR) component chooses between competing goals. In the
TBM a goal is a list of weighted desires. Each desire has an agitation function
that is updated based on the world state at each update cycle. The more a desire

Fig. 1. The Tactical Battle Manager (TBM) architecture.

34 H. Borck et al.

is agitated, the more urgently the agent wants to alleviate the symptoms (i.e.,
perform actions that reduce agitation). The GR component is not the focus of
this paper. In our evaluations, a static goal is used by the UAV. In the future,
the UAV will use observations, recognized hostile policies, and goals provided by
PaGR to revise the current goal.

Our planner is an extension of a simple plan library planner [23]. The Plan-
ning System chooses a policy from a fixed set of eight candidates, which are
either one of four basic movements (listed immediately below) or one of these
four movements where the agent also fires a missile.

– Pure Pursuit: An agent flies directly at a target.
– Drag: An agent flies directly away from a target.
– Beam: An agent flies at a 90◦ offset to a target.
– Crank: An agent flies at the maximum offset but tries to keep its target

observable in radar.

The missile-firing variants of these policies are: ShootPursuit, ShootDrag, Shoot-
Beam, and ShootCrank. While these policies are simple, they encompass a range
of real-world BVR combat tactics as described by our subject matter experts.

The planner uses the Plan Execution Predictor (PEPR) [24] to generate
potential future states for all eight policies (i.e., what would happen if the UAV
used each of those policies). These policies are then ranked by the weighted desire
agitation over the duration of the prediction (i.e., how well the UAV’s goals are
met), and the highest-ranked policy is returned. For example, if the current goal
has a highly weighted safety desire, the planner will favor policies that do not put
the agent in danger (i.e., Drag). If the safety desire is only somewhat agitated,
the planner may choose a safe policy that also satisfies its other desires, such as
ShootBeam.

Since the outcome of our policies (and thus desire agitation) depends on the
actions of the other agents, the planner needs to have accurate information about
the policies of opposing agents. PaGR provides this information.

4 Policy and Goal Recognition for BVR Combat

PaGR uses a three-part case structure to effectively recognize the goal and policy
of other agents in a scenario. In our previous work on the Case-Based Behavior
Recognizer (CBBR) system [2], cases were partitioned into two parts: observa-
tions of the agent and the agent’s policy. PaGR adds a third part, the agent’s
goal. Case similarity is computed using either the observations and the goal,
or just the observations (i.e., when trying to revise the goal). A typical CBR
cycle generally consists of four steps: retrieval, reuse, revision, and retention.
Currently, PaGR implements only the retrieval and reuse steps.

4.1 Case Representation

Each case in PaGR represents a hostile agent and its potential interactions with
one agent of the friendly team in the scenario. During case authoring, we created

Case-Based Policy and Goal Recognition 35

Table 1. Example Case within PaGR

Component Representation

Goal A list of weighted desires

- 0.25 Aggressive Posture

- 0.50 Safety

- 0.25 Fire Weapon

Observations A set of features discretized from the observable world state

- 1.00 FacingTarget

- 0.45 TargetRange

- 0.15 InDanger

Policy A set of ungrounded actions

- Fire Missile

- Fly Drag

a case for each pair of friendly and hostile aircraft in the scenario based on their
interactions. We will later use these cases to determine the most likely target of
a hostile agent.

A case C = 〈G,O,Π〉 has three components (see Table 1). First, the goal G
is a list of the weighted desires of the agent. Second, the observations O of the
position and heading of the hostile agent are recorded. These observations are
then projected onto features such as FacingTarget (the relative bearing to
the target), TargetRange (a normalized distance between the agent and its
target), and InDanger (whether the agent is in the weapon range of the target).
Each feature, normalized to between 0 and 1, represents how much the feature is
currently exhibited by the observations. For example, FacingTarget will be 1
if the hostile agent is directly facing the target but closer to 0.5 if it is facing the
target at a 90◦ angle. Finally, a policy Π is recorded as a sequence of ungrounded
actions that define an air combat tactic. We use policies rather than plans,
which have grounded actions, to help PaGR overcome the missing information
that is prevelant in this domain. As stated previously, which parts of the case
represent the problem and which represent the solution change depending on
PaGR’s current task (i.e., policy identification or updating goal assumptions).
The possible observational features are listed below:

1. Facing Target
2. Closing on Target
3. Target Range
4. Within a Target’s Weapon Range
5. Has Target within Weapon Range
6. Is in Danger
7. Is moving with respect to Target

36 H. Borck et al.

4.2 Similarity and Retrieval

The similarity and retrieval steps of PaGR are relatively straightforward. Dur-
ing the recognition of a policy, similarity is calculated between the goal and
observations of the current query q and those of each case c in the case base CB.

The similarity of two observations is defined as the average distance of the
matching features (Eq. 1), where σ(wf , qf , cf) is the weighted distance between
two values for feature f and N is the set of time step features.

simo(q, c) =

∑
fεN σ(wf , qf , cf)

|N | (1)

The similarity of two goals is defined as the distance of the weights of the
desires that define the goal. If a desire is missing (e.g., q has desire f ∈ D but c
does not) then it is treated as having a weight of 0 (Eq. 2).

simg(q, c) =

∑
fεD(wf , qf , cf)

|D| (2)

The similarity between two cases is then defined as the weighted average of
the observation and goal similarities (Eq. 3).

sim(q, c) = wo × simo(q, c) + wg × simg(q, c), (3)

where wo + wg = 1. Using this equation for case similarity, PaGR retrieves a
set of cases Cq, where each case in the set has a similarity greater than a given
threshold parameter τr. If no cases were retrieved over the threshold, the policy
is marked as unknown and system continues until the next timestep to repeat
the retrieval process with more information. After it retrieves Cq, PaGR returns
a normalized ratio of the policies in the cases of Cq that represents their relative
frequencies with respect to their case weights generated during pruning. We
interpret this as a probability distribution, so that given a policy p with a ratio
of 0.7, there is a 70 % chance that this is the policy being executed.

4.3 Pruning Strategy

We perform a limited amount of case base maintenance (CBM) on our case
library. In particular, we prune cases in a manner that is similar to the strat-
egy we used in our previous work [10], although now designed for our revised
three-part case structure. As we have done previously, our pruning algorithm
merges similar cases that have the same policy while maintaining their overall
importance. That is, whenever two cases with the same policy have a similarity
over a certain threshold τπ, we merge them and increment an associated counter.
After all similar cases have been merged, an additional sweep is made over the
(now pruned) case base. Each case has its weight normalized with respect to all
cases sharing its policy. This prevents over-abundant cases from overpowering
less common ones during retrieval. The resulting case base is smaller than the
original but preserves the differences between prominent and atypical cases.

Case-Based Policy and Goal Recognition 37

4.4 Using PaGR in BVR Mission Scenarios

Before each simulated 2v2 scenario is run, a mission briefing is given to the UAV
for use by PaGR. This mission briefing includes details on the expected goal of
the hostiles, and a case base (described in Sect. 4.1). For example, one of the
mission briefings used in our experiments informs the UAV that all encountered
enemy aircraft will have highly aggressive goals and do not care about their own
safety.

During the simulation, PaGR can be configured to use the expected goal in
one of three ways: (1) ignore it (a baseline approach), (2) use the given expected
goal during case retrieval, or (3) perform goal revision and, during retrieval, use
whatever goal it thinks is most likely being pursued.

PaGR performs goal revision by searching for the goal that best explains all
prior observations. For each such observation, PaGR retrieves all the cases Cq

whose similarity is above τr (ignoring their goals). Just as with policy retrieval,
PaGR creates a probability distribution over the retrieved goals. These distrib-
utions are averaged over the duration of the scenario. During goal revision, the
goal with the highest average probability is used as the new mission-briefing goal
and is used for retrieving future policies.

5 Empirical Study

In our empirical study we examine the following hypotheses:

H1: Using an agent’s goal during retrieval will increase PaGR’s policy recogni-
tion accuracy.

H2: PaGR can effectively determine a goal discrepancy through observation.
H3: If given an incorrect goal, PaGR can revise it to increase policy recognition

accuracy.

5.1 Scenarios

We created three scenarios and five mission briefings to test PaGR. Creation
of the scenarios and briefings were guided by subject matter experts. These
briefings specify goals for the opposing agents aircraft with varying levels of
aggressiveness, namely:

– HighlyAggressive: Approach directly and fire.
– Aggressive: Approach indirectly and fire.
– SafetyAggressive: Fire at range and leave.
– Observe: Approach indirectly but do not fire.
– Safety: Do not approach.

All our 2v2 scenarios involve two blue allied aircraft flying into an airspace
with two red hostile aircraft approaching from various angles (Fig. 2). The blue
aircraft are governed by a static HighlyAggressive policy; they fly directly

38 H. Borck et al.

Fig. 2. Base 2v2 scenarios with friendlies in blue and hostiles in red. Lightened areas
represent the radar observation cones of a single aircraft (other cones are not shown)
(Color figure online).

at their target and attempt to shoot a missile when in range. We run PaGR on
only one of the blue aircraft (representing the UAV). We chose to not use a full
TBM to control the second blue aircraft while testing PaGR so that the results
would not be influenced by the TBM’s other components. The red aircraft are
controlled by a simplified version of the TBM; they are given a static goal from
the mission briefing to use with the plan library planner, and do not invoke
PaGR. The red aircraft mark all opposing agents as using a basic policy that
continues the current heading and speed for the purposes of prediction. Thus,
in a given mission, the red aircraft will react to the blue aircraft using the goal
weights specified in the mission briefing.

To create a large pool of test scenarios, we applied a random perturbation 33
times to each of the 15 〈scenario, mission briefing〉 pairs, which yields a total of
495 variants. This scenario perturbation step modifies the headings and positions
for each agent individually in the scenario within bounds to generate random but
valid scenarios. By “valid”, we mean that one of the agents will eventually come
within radar range of another agent. The mission briefings and scenarios were
created to encompass a set of real-world scenarios as described by our subject
matter experts.

5.2 Empirical Method

We used a stratified k-fold cross validation strategy, where k = 10, and split the
variants evenly across each fold. For each (test) fold, a case base was created
using the other (training) folds and pruned as described in Sect. 4.3. Finally,
all variants contained within the current testing fold were run for evaluation
purposes. Section 5.3 describes the experiments and algorithms used to test our
hypotheses.

Case-Based Policy and Goal Recognition 39

To test hypothesis H1, that using goals improves PaGR’s policy recognition
accuracy, we tested PaGR in the following conditions.

1. Correct Goal: This was the ideal case for PaGR; it was given a correct goal
from the mission briefing and never tried to change it. Additionally, when
performing case retrieval it weighted goal similarity at 20 % (wg = 0.2) and
observations at 80 % (wo = 0.8). Preliminary tests showed that the specific
value for goal weighting had little impact on overall recognition as long as
wg ∈ [15%, 25%].

2. No Goal: In this condition, PaGR did not use goals during recognition. That
is, during case retrieval, it weighted goal similarity at 0 %, meaning it used
only observations to recognize policies.

3. Incorrect Goal: This tests PaGR in its worst-case scenario. This configura-
tion was identical to the Correct Goal condition except it was always given
an incorrect goal.

4. Revised Goals: We used this condition to test H2 and H3. PaGR was given
an incorrect goal, but in addition to the normal policy retrieval recognition,
PaGR ran an additional retrieval using only observations. However, rather
than returning a policy, it returns a probability distribution of goals. PaGR
averages this probability across the entire scenario executed so far and checks
whether the current goal is the most probable. If not, it reports a discrepancy
that triggers goal recognition of a recognized goal.

To calculate the results of these runs, we computed the percentage of recogni-
tion attempts that PaGR returned the actual policy being enacted by the target
agent. We averaged these values for each policy across all variants.

5.3 Results

Figure 3 displays the average results for each of the 8 policies and their average
(Overall). The results support H1; in all cases where PaGR was given a cor-
rect goal, it performed at least as well as when it was run without using goals
and in many instances it performed better. In the two cases where the systems
performed similarly (Drag and ShootDrag), the policies are easily recognizable
given the observations as they are the only plans that involve completely facing
away from the target. We conducted an independent samples t-test to compare
the results for the Correct Goal and No Goal conditions for all the policies.
This yields p values in the range of 10−5 to 10−9 for all policies except Drag
and ShootDrag. When run in the Incorrect Goal condition, PaGR performs far
worse than the No Goal condition.

The results for our second experiment are displayed in Fig. 4, where the blue
bars denote PaGR’s ability to recognize that a given goal is incorrect and the
red bars denote that it also identifed the hostile agent’s true goal (i.e., the most
probable goal was the true goal). PaGR’s discrepancy recognition is high; it
almost always correctly identifies when the current goal is incorrect given the
observations. This lends some support to H2. Figure 4 also shows that some true
goals are easier for PaGR to recognize than others.

40 H. Borck et al.

Fig. 3. Average policy recognition accuracy results from our first experiment showing
the policy recognition accuracy of PaGR tested in three conditions

Fig. 4. Goal recognition accuracy results. The mission briefing goal is recognized as
being incorrect (blue bars) if goal revision selects any other goal to replace it. The goal
is correctly revised (red bars) if PaGR selects the true goal (Color figure online).

Finally, to test hypothesis H3 we re-ran the Revised Goals condition used
to test H2, except this time we allowed PaGR to replace the current goal with
the most probable goal based on its averaged observations. Figure 3 displays the
Revised Goals results. PaGR’s recognition probability when using goal revision
is almost equivalent to when using the Correct Goal condition. At first glance
these results may seem confusing because the Correct Goal recognition scores
are not nearly high enough to always revise the goal correctly. Often times it
seems that PaGR confuses two similar goals, such as HighlyAggressive and
Aggressive. However, because these two goals can often lead to similar policies,
PaGR’s overall correct recognition is high. A t-test comparing the Revised Goals
and No Goal results yields p scores in the same range as we found for hypothesis
H1. Therefore, this lends some support for hypothesis H3.

Case-Based Policy and Goal Recognition 41

6 Future Work

In Beyond Visual Range air combat a hostile agent will often try and disguise
their actions or true intent. Therefore, in future work we plan to extend PaGR
to recognize deceptive agents in BVR scenarios. We also plan to integrate PaGR
into the TBM. Leveraging PaGR’s ability to accurately predict hostile policies
and goals should increase the TBM’s ability to effectively reason about goals and
plans. We also plan to investigate how active techniques for policy recognition
could impact PaGR’s results in comparison to our prior work on active behavior
recognition [10]. Finally, we plan to show that using PaGR allows for overall
improvements to mission performance in longer and more complex scenarios,
compared to using no recognition system (or an alternative recognition system).

7 Conclusions

In this paper we presented the Policy and Goal Recognizer (PaGR). We tested
PaGR in simple 2v2 Beyond Visual Range air combat scenarios, where one of
the two friendly vehicles uses PaGR. We found that using PaGR’s prediction
of a hostile agent’s goal increases its policy recognition accuracy (as compared
to when using only its observations). In our scenarios, PaGR can effectively
determine whether the mission briefing provided the correct goal for a hostile
agent. We also found that, when using the same case structure and information
used for policy recognition, PaGR can revise incorrect goal information and use
goals that better fit the observations, which increases policy recognition accuracy.

Acknowledgements. Thanks to OSD ASD (R&E) for supporting this research.
Thanks also to our subject matter experts for their many contributions and to the
reviewers for their helpful comments.

References

1. Carberry, S.: Techniques for plan recognition. User Model. User-Adap. Inter.
11(1–2), 31–48 (2001)

2. Borck, H., Karneeb, J., Alford, R., Aha, D.W.: Case-based behavior recognition
in beyond visual range air combat. In: Proceedings of the Twenty-Eighth Inter-
national Florida Artificial Intelligence Research Society Conference. AAAI Press
(2015)

3. Muñoz-Avila, H., Jaidee, U., Aha, D.W., Carter, E.: Goal-driven autonomy with
case-based reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 228–241. Springer, Heidelberg (2010)

4. Molineaux, M., Klenk, M., Aha, D.W.: Goal-driven autonomy in a navy strategy
simulation. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence. AAAI Press (2010)

5. Borck, H., Karneeb, J., Alford, R., Aha, D.W.: Case-based behavior recognition
to facilitate planning in unmanned air vehicles. In: Vattam, S.S., Aha, D.W., eds.:
Case-Based Agents: Papers from the ICCBR Workshop, Technical report. Univer-
sity College Cork, Cork, Ireland (2014)

42 H. Borck et al.

6. Sukthankar, I.G., Goldman, R., Geib, C., Pynadath, D., Bui, H.: An introduction
to plan, activity, and intent recognition. In: Sukthankar, I.G., Goldman, R., Geib,
C., Pynadath, D., Bui, H. (eds.) Plan, Activity, and Intent Recognition. Elsevier
(2014)

7. Vattam, S.S., Aha, D.W., Floyd, M.: Case-based plan recognition using action
sequence graphs. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol.
8765, pp. 495–510. Springer, Heidelberg (2014)

8. Ontañón, S., Lee, Y.-C., Snodgrass, S., Bonfiglio, D., Winston, F.K., McDonald,
C., Gonzalez, A.J.: Case-based prediction of teen driver behavior and skill. In:
Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 375–389.
Springer, Heidelberg (2014)

9. Fagundes, M.S., Meneguzzi, F., Bordini, R.H., Vieira, R.: Dealing with ambiguity
in plan recognition under time constraints. In: Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems, pp. 389–396. ACM
Press (2014)

10. Alford, R., Borck, H., Karneeb, J., Aha, D.W.: Active behavior recognition in
beyond visual range combat. In: Proceedings of the Third Conference on Advances
in Cognitive Systems, Cognitive Systems Foundation (2015)

11. Laviers, K., Sukthankar, G.: A real-time opponent modeling system for Rush Foot-
ball. In: Proceedings of the Twenty-Second International Joint Conference on Arti-
ficial Intelligence, pp. 2476–2481. AAAI Press (2011)

12. Molineaux, M., Aha, D.W., Sukthankar, G.: Beating the defense: using plan recog-
nition to inform learning agents. In: Proceedings of the Twenty-Second Interna-
tional Florida Artificial Intelligence Research Society Conference, pp. 337–343.
AAAI Press (2009)

13. Levine, S.J., Williams, B.C.: Concurrent plan recognition and execution for human-
robot teams. In: Twenty-Fourth International Conference on Automated Planning
and Scheduling. ACM Press (2014)

14. Banerjee, B., Lyle, J., Kraemer, L.: The complexity of multi-agent plan recognition.
Auton. Agent. Multi-Agent Syst. 29(1), 40–72 (2015)

15. Zhuo, H.H., Li, L.: Multi-agent plan recognition with partial team traces and plan
libraries. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, pp. 484–489. AAAI Press (2011)

16. Geib, C.W., Goldman, R.P.: Plan recognition in intrusion detection systems. In:
Proceedings of the DARPA Information Survivability Conference, pp. 46–55. IEEE
Press (2001)

17. Corchado, J.M., Pavón, J., Corchado, E., Castillo, L.F.: Development of CBR-
BDI agents: a tourist guide application. In: Funk, P., González Calero, P.A. (eds.)
ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 547–559. Springer, Heidelberg (2004)

18. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution
for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

19. Rubin, J., Watson, I.: On combining decisions from multiple expert imitators for
performance. In: Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence, pp. 344–349. AAAI Press (2011)

20. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitat-
ing RoboCup players. In: Proceedings of the Twenty-First International Florida
Artificial Intelligence Research Society Conference, pp. 251–256. AAAI Press
(2008)

Case-Based Policy and Goal Recognition 43

21. Zarka, R., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A.: Similarity
measures to compare episodes in modeled traces. In: Delany, S.J., Ontañón, S.
(eds.) ICCBR 2013. LNCS, vol. 7969, pp. 358–372. Springer, Heidelberg (2013)

22. Sánchez-Marré, M., Cortés, U., Mart́ınez, M., Comas, J., Rodŕıguez-Roda, I.: An
approach for temporal case-based reasoning: episode-based reasoning. In: Muñoz-
Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476.
Springer, Heidelberg (2005)

23. Borrajo, D., Roub́ıčková, A., Serina, I.: Progress in case-based planning. ACM
Comput. Surv. 47(2), 1–39 (2015)

24. Jensen, B., Karneeb, J., Borck, H., Aha, D.: Integrating AFSIM as an internal
predictor. Technical report AIC-14-172, Naval Research Laboratory, Navy Center
for Applied Research in Artificial Intelligence, Washington, DC (2014)

Adapting Sentiments with Context

Flávio Ceci1(&), Rosina O. Weber2, Alexandre L. Gonçalves1,
and Roberto C.S. Pacheco1

1 Federal University of Santa Catarina, Florianopolis, SC, Brazil
flavio.ceci@unisul.br, a.l.goncalves@ufsc.br,

pacheco@egc.ufsc.br
2 Drexel University, Philadelphia, PA, USA

rosina@drexel.edu

1 Introduction and Background

Sentiment analysis is a valuable application of text classification because of the high
volume of crowdsourced online content [1]. The typical texts targeted by sentiment
analysis systems consist of opinions about an entity (e.g., individual, product, service).

The value of sentiment analysis goes beyond classifying the polarity of a document;
it resides in providing the aspects of the entity being reviewed and the sentiment
associated with these aspects, which is known as aspect-level sentiment analysis (e.g.,
[2, 3]). For example, the value of the analysis of the opinion “The flash recovery time is
ridiculously slow, but that I can live with, the 4 out of every 5 pictures that come out
blurry I cannot” is not that its overall sentiment is negative, but it is that flash recovery
time and blurry pictures are both negative aspects. Consumers are interested in the
sentiment associated to aspects of multiple opinions to make decisions about products,
organizations or people [1, 3]. To be useful, systems should thus aggregate information
contained in multiple opinions. Furthermore, the literature [1] tells us that users prefer
structured visualizations that summarize opinions over textual summaries.

Figure 1 shows the application context where a user is interested in opinions about
a product x. A filter F(x) produces n opinions pi on product x (i = 1,.., n) and submits
each opinion pi as new case ci. Cases are pairs P, S where the problem P is an opinion
pi and a solution S is a triple S(ti, aij, C) where ti are sentiment trees, aij are m (j = 1,..,
m) polarized aspects, and C is the global polarization of the opinion. The case-based
sentiment analysis module produces individual solutions that are aggregated into one
resulting structured summary in response to the user’s request. Figure 2 shows an
example of a structured review produced from ten sentiment trees. In this paper, we
limit our discussion to the case-based module.

Despite vast amounts of training data available for document-level analysis,
training data for phrase- or aspect-level analysis is usually not available and needs to be
manually annotated (e.g., [4]). Document-level training data comes from the web (e.g.,
Epinions.com, Amazon.com) where customers write reviews and select a score in a
five-star scale. The requirement to analyze individual aspects and the lack of training
data at the aspect-level are both limitations of supervised methods.

© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 44–59, 2015.
DOI: 10.1007/978-3-319-24586-7_4

http://epinions.com
http://amazon.com

Unsupervised methods typically use phrases or terms that bear sentiment. The usual
approach to determine document-level polarity is to compare positive versus negative
sentiment bearing excerpts, phrases, or words and assign the polarity of the document
based on the majority or a threshold. There are variations of how to identify these
excerpts or phrases but they commonly rely on lexicons of sentiment bearing (or
opinion) words [2, 5], such as adjectives (e.g., great) and adverbs (e.g., effectively).
A sentiment lexicon (we use the one from [5] in this paper) and an entity-specific
sentiment ontology [6] provide all necessary elements to create a visual summary of the
aspects of opinions.

Wilson et al. [4] refer to the polarity of a term in a lexicon as its prior polarity,
suggesting that it may vary with the context and thus a contextual polarity may need to
be verified. Contextual polarity may be domain-dependent. For example, the word
unpredictable can be used positively in the domain of movie reviews but negatively to
describe car handling [1]. It may also be domain-independent, such as the expression
perfect mess that replaces the polarity of the positive perfect with negative [7]; this

Fig. 1. User request is answered with a structured summary of reviews for product x.

Fig. 2. Structured summary from ten reviews for Canon Digital Rebel XT.

Adapting Sentiments with Context 45

form uses context from adjacent words and creates a contextual lexicon that perma-
nently defines terms like perfect mess as bearing negative sentiment.

In this paper, we explore an impermanent form of contextual polarity that is purely
context-dependent, and thus needs to be assessed in each different context (i.e.,
opinion), and does not permanently change the polarity of the terms. The polarity of
these words depends solely on the author’s discourse and are independent of domain.
We target two forms of impermanent contextual polarity. The first form includes
regular expressions that may be used with either positive or negative sentiment, such as
the adjective expensive that can be used positively as in without the need to buy an
expensive camera, or negatively as in it is too expensive for what it gives.

The second form targets expressions referred to as thwarted-expectations, a lin-
guistic pattern where authors use terms with sentiment that is opposite to the overall
intended sentiment to prepare the reader with an expectation that is suddenly contrasted,
creating emphasis. See example from [1] p. 13, “This film should be brilliant. It sounds
like a great plot, the actors are first grade, and the supporting cast is good as well, and
Stallone is attempting to deliver a good performance. However, it can’t hold up.”

Our proposed treatment to contextual polarity for thwarted-expectations is to revert
the prior polarity of sentiment bearing words for two reasons. First because this leads to
the correct interpretation, and second because we contend that authors never intend to
include the aspects of the expectation for any other reason but to create the expectation.
In other words, in the example above, it was never the intention of the author to point
out that the actors were first grade or the plot was great, except to create the expec-
tation. We thus interpret first grade as a term bearing negative sentiment.

The next section presents related work. Section 3 describes our method to analyze
aspect-level sentiments within the case-based reasoning (CBR) methodology including
the use of singular value decomposition (SVD) to represent patterns for contextual
polarity. Section 4 evaluates it. Section 5 discusses negation, and Sect. 6 concludes.

2 Related Work

The main resource used in sentiment analysis is a sentiment lexicon [2, 5]. Lexicons are
usually domain-independent and can be expanded to fit a target domain, which can be
done automatically by searching for domain-specific confirmation of polarity via lin-
guistic constructs on a corpus [8]. For example, assuming that the word elegant bears
positive sentiment, and we do not know the sentiment of the word light in a domain, a
phrase describing an aspect as light and elegant suggests light in this domain is
positive, whereas a phrase light but elegant would suggest light is negative. Lexicons
can also be expanded from a set of domain-specific seed words using sources like
WordNet [1].

Ontologies are used in aspect-level sentiment analysis (e.g., [9]) as sources of
associations between aspects and target products. They retain information such as that a
part of a camera is the lens and a case is an accessory. They sometimes need to be
learned or expanded from data (e.g., [6]) or sources like WordNet (e.g., [9]).

46 F. Ceci et al.

The work in this paper uses opinions from two domains (Fig. 3), cameras and
movies (more in Sect. 4.1). The ontology for cameras is expanded from the ontology in
[6]. The ontology for the domain of movies is based on movieontology.org [21].

Contextual polarity modifies prior polarities recorded in sentiment lexicons based
on context. This may require manual annotation of single phrases [4, 10]. Like in this
paper, [7] uses document-level polarization for learning contextual polarities.

Singular value decomposition (SVD) [11] represents a semantic space revealing
strongly associated terms based on their occurrence in a corpus. SVD has been used
before for cross-domain sentiment classification [3, 12] but not for contextual polarity.

Supervised methods such as Naïve Bayes and support vector machines (SVM) are
considered top performers in topical text classification [13]. These methods do not
perform as accurately in sentiment classifications because of its subjectivity, but they
are still among the most accurate [3] together with variations of deep learning [14]. For
this reason, we use Naïve Bayes and SVM as references of accuracy and use unsu-
pervised methods that enable the generation of a structured summary [3].

Most recent work in CBR and sentiment analysis typically uses opinions to produce
recommendations of the reviewed products [15, 16, 18, 19]. Authors in [17] use
information from reviews to help users write comprehensive reviews. More recently,
[15] explored other sources of data to improve the quality of their resulting recom-
mendations. Chen et al. [18] also explore aspect-level analysis for recommendation,
ranking aspects and user preferences. CBR was proposed for cross-domain sentiment
analysis [20] where each case includes resources for analyzing sentiment in each
domain.

3 Case-Based Sentiment Analysis

Case-based sentiment analysis is an unsupervised algorithm to generate sentiment
trees for textual opinions. We incorporate sentiment analysis within the CBR meth-
odology so previous solutions, when available, are reused, adapted, and learned.
Cases are pairs (P, S) where the problem P is an opinion pi and a solution S is a triple S
(ti, aij, C) composed of a sentiment tree ti, aij polarized aspects, and a global

Fig. 3. Partial view of ontologies for the camera and movie domains used in this paper.

Adapting Sentiments with Context 47

http://movieontology.org

polarization C. Figure 4
depicts how the senti-
ment analysis module
is incorporated into the
CBR methodology. For
a new opinion (i.e.,
query), if there is an
existing solved prob-
lem (i.e., opinion) with
a similarity score above
a threshold θ, its solu-
tion (i.e., sentiment tree
with polarized aspects
and global polarization)
is reused; when no
similar cases are avail-
able, a new sentiment
tree is produced
through aspect-level

sentiment analysis. Solved cases are adapted for contextual polarity (i.e., that may
revert the polarity of some aspects, adapting the tree and its polarity) and then retained
for further reuse.

3.1 Text Processing

New cases are textual opinions such as, “This case will protect your camera but has no
place for spare battery or even a extra memory card. It only has a spring clip to fasten

it to a belt or bag there is no belt loop
or other handle strap. There are other
cases available with better features for
less money.” This text is processed for
(1) to generate a new tree (Sect. 3.2)
and (2) to reuse a tree (Sect. 3.3). For
both purposes, the text is subject to the
steps of tokenization, part-of-speech
(POS) tagging, selection of aspects,
and of sentiment words, in this order
of precedence, as they all use the
results from the immediately preceding
step. Tokenization and POS tagging

produce the tokens in Fig. 5 for the last sentence of the example above.
Now we describe the selection of aspects and of sentiment words. Aspects are

mentioned in opinions as nouns. To identify them, we use target-specific ontologies
(Sect. 2) and select the noun tokens that occur in the ontologies as aspects of each

Fig. 5. Last sentence of the example opinion after
tokenization and POS tagging.

Fig. 4. Case-based sentiment analysis (solution is abbreviated as
tree).

48 F. Ceci et al.

product (e.g., an aspect of a camera is lens). Thus, this step recognizes the token cases
as a concept because cases is in the ontology as an accessory of camera.

To identify sentiment words, the input consists of the vector’s terms that occur in
the chosen sentiment lexicon [5]. The polarization of the sentiment words is transferred
to the aspects by association. Aspects are associated to sentiment words by proximity in
the sentence. In the example above, the concept cases is associated with sentiment
words better and available, both having positive sentiment. If an aspect has no sen-
timent word in close proximity then it receives no polarization and is removed from the
vector. Only aspects that have a sentiment word associated remain in the vector. The
resulting vector from the example above consists of the tokens: other, cases, bag, extra,
battery, spare, camera, features, only, even, available. These tokens and their
respective labels are the input to generate new trees and queries for similarity
assessment.

3.2 Generating a New Tree

When opinions are initially acquired and there are
no existing cases to reuse, a new sentiment tree is
generated from scratch to each opinion. Once a set
of cases is acquired, new sentiment trees are
generated.

The generation of a new tree uses the labeled
tokens as exemplified above that result from the
processing described in the previous section. The
new tree uses the associations between the aspects
and target object. The aspects receive a polariza-
tion based on the sum of polarities of the sentiment

words associated with them, where positive polarity is +1 and negative is -1. The global
polarization of the target object is given by the simple majority of the sum of polarities
of sentiment words. Figure 6 shows the resulting tree for the example above with global
polarity positive, which does not coincide with the original polarity from the author’s
score.

3.3 Similarity Assessment, Retrieval, and Reuse

The queries (i.e., case prob-
lems) are the tokens result-
ing from the processing
described in Sect. 3.1; they
are represented in inverse
document frequency vectors
without labels. The similar-
ity is computed by the
cosine between the vectors.

Fig. 6. New tree (e.g., solution)
generated from the tokens for exam-
ple opinion from Fig. 5.

Fig. 7. Reused solution from most similar opinion.

Adapting Sentiments with Context 49

A candidate case is retrieved if there is one with similarity score equal or higher than a
threshold θ; the highest scoring case is retrieved when more than one satisfies the
criterion.

The value of the similarity threshold is computed for each set of opinions. The
threshold θ is defined as the average of the similarity scores obtained by the most
similar case when submitting all opinions by removing one at a time in a leave-one-out
fashion. The values used in this paper are 0.43 for cameras and 0.18 for movies.

When a similar case is available, its complete solution is reused, that is, its tree with
its polarized aspects and global polarization. The most similar case to the opinion of the
example above has a similarity score of 0.47. This is above the threshold of 0.43 for the
domain of cameras, and thus its solution is reused. Figure 7 shows the reused solution
that has a negative global polarization, which does coincide with the original polarity
from the author’s score. This example illustrates how the reuse of a similar solution can
improve overall accuracy (see Sect. 4.4, H2, Table 4) despite introducing noise.

3.4 Contextual Polarity Assessment

To assess contextual polarity, first the patterns of the data are learned to capture the
context of sentiment words in positive and negative opinions. Our approach assumes
that words with one prior polarity, say negative, are expected to occur in negative
opinions, that is, in opinions whose global polarity is the same as the prior polarity of
the word. We refer to the sentiment words that occur in opinions with both global
polarities as ambivalent; these sentiment words are candidates for contextual polarity.

Four term-document matrices are created, two for each domain, one for positive
and one for negative opinions. Ambivalent words are in rows and sentiment words in
columns. The value associating a sentiment and an ambivalent word describes the
number of times the sentiment term occurs in the context of an ambivalent word. This
context is given by a window of five terms to the right and five terms to the left from a
vector of all and only the sentiment words occurring in an opinion. The SVD process
generates, respectively, two vectors for each ambivalent word, one for positive and one
for negative opinions. These vectors represent the space where an ambivalent word
occurs in each context. To determine the contextual polarity of an ambivalent word, we
compare the context of sentiment words where the ambivalent word occurs and
compare it to the positive and negative context vectors. The ambivalent word is
assigned the polarity from the vector with the majority of overlapping words from the
comparison.

Fig. 8. Sentiment tree before and after adaptation via contextual polarity assessment.

50 F. Ceci et al.

Figure 8 shows the example from the opinion, “Sure my canon sd-30 is super cute
and I get lots of compliments on how small and sexy it is, but heaven forbid you want to
take pictures with it! This camera cannot take pictures in low light at all! Every picture
I’ve taken at parties has been out of focus, which adds up to a lot of hazy photos of
great memories. I took it back to the camera shop and the guy said I had the setting
right but “yeah, they don’t work well in low light” Well if I needed a bright sunny day
for every shot I could make a pinhole camera out of a cardboard box! The pictures it
takes in daylight are nice. But anyone who wants a tiny little camera like this is
planning on putting it in their pocket and taking it to parties! I got the Sony Cybershot
10.1 and it takes GREAT pictures in low light. Later, Canon.” The words of this
opinion after processing (Sect. 3.1) are in Fig. 8, where the right-side shows, in red, the
terms that change polarity. These changes resulted from the comparison between the
vectors as described above. For example, all the words in both vectors (1) and (2) for
the word cute (below), produced from SVD, overlap with words of the context where
cute occurs.

The negative vector has more overlapping words and thus the final polarity is
negative.

Cute
!

Positive vector¼ like, work, great, nice, wellf g: ð1Þ

Cute
!

Negative vector¼ like, work, bright, right, great, nice, heaven, super, wellf g: ð2Þ

This result is expected because, as stated earlier, we contend that the author of this
opinion did not intend to mention the terms cute and sexy positively but merely to
create a thwarted-expectation.

4 Experimental Design

Although our proposed methods improve aspect-level sentiment analysis, we demon-
strate our results using document-level accuracy because improvements in aspect-level
analysis ultimately impacts accuracy of documents.

4.1 Data

The proposed method and its contributions are not intended to be domain-independent,
so we use two domains given that accuracy varies depending on domain [1]. We use
data from the domains of cameras and movies, which are sufficiently distinct to
demonstrate the difficulty of sentiment analysis in different domains. The domain of
cameras is easier than the domain of movies. Opinions on cameras are objective [3]
because cameras have the tangible purpose of taking pictures, mentioning facts about
aspects such as lenses and picture quality. Opinions on movies, contrarily, include
subjective expressions from emotions [3], given it is an entertainment product. The
latter poses particular challenge to prior polarity of sentiment words [7].

Adapting Sentiments with Context 51

The opinions from both domains come from the Multi-Domain Sentiment Dataset
[12]. There are 1443 camera opinions, 726 positive and 717 negative. The 1991
opinions about movies refer to DVD movies, 996 positive and 995 negative. Positive
opinions are the ones original authors assigned a 4 or 5 in a five-star scale. Analo-
gously, negative opinions received a score of 1 or 2 stars. We present the results for
each subset of positive and negative opinions also separately. This facilitates our
analyses because methods impact each subset differently, as it will be shown.

4.2 Evaluation and Metrics

We compute average accuracy via leave-one-out cross validation (LOOCV) (e.g., [22]).
Statistical significance is tested with McNemar’s [23] with ρ = 0.05. Significant results
are shown in bold. TP, TN, FP, and FN stand for true and false positives and negatives;
average accuracy for negative and positive opinions defined as:

Accuracy Negative ¼ TN
TN þ FP

Accuracy Positive ¼ TP
TPþ FN

4.3 Methods for Comparison

We compare the case-based approach (Sect. 3) against two methods. We define as
baseline the results from the processing and generation of a new tree reuse or adap-
tation. Our goal is to improve aspect-level sentiment analysis from these results.
Table 1 presents the performance of the baseline on the two domains of cameras and
movies.

As references of accuracy we implement Naïve Bayes and SVM using LightSide
(http://lightsidelabs.com). We used as input the same texts used in the processing
(Sect. 3.1) from the two data sets (Sect. 4.1), and the polarities from authors’ scores.
We used the default settings that include unigrams, and a rare threshold of five (i.e.,
minimum required occurrences of a term in the corpus). The tool does not provide the
representation or code of the classifier, just its functionality to produce results, which
are summarized in Table 2.

Performance of the baseline and supervised methods shown in Tables 1 and 2
demonstrate the importance of analyzing results separately for positive and negative
opinions, and for each domain. Aggregating the results may conceal important
weaknesses of methods under study. Next we present proposed studies.

Table 1. Average accuracy of baseline for domains of cameras and movies.

Positive opinions Negative opinions All

Camera 0.915 0.537 0.727
Movies 0.807 0.670 0.739

52 F. Ceci et al.

http://lightsidelabs.com

4.4 Studies

We demonstrate four hypotheses, comparing the case-based approach against the
baseline and supervised methods. Two hypotheses for positive and two for negative
sets.

H1. Positive opinions polarized with CBR will produce statistically significant
higher average accuracy than polarization obtained by the baseline for both domains.

H1 is disproved because CBR produced higher average accuracy with statistical
significance only in the domain of movies (Table 3). The difference produced in the
domain of cameras is negligible. In the domain of movies, CBR shows an increase of
7 % in true positives. Detailed analysis reveals that this was caused mostly by adap-
tation, where 90 cases had their global polarity swapped moving them into the class of
true positives.

The statistically significant increase in average accuracy and the observation that it
occurs during adaptation suggests the benefit of our approach for contextual polarity. It
is reasonable that contextual polarity produces more significant impact in the domain of
movies given its more subjective nature.

H2. Negative opinions polarized with CBR will produce statistically significant
higher average accuracy than polarization obtained by the baseline for both domains.

H2 is demonstrated in both domains (Table 4). In the domain of cameras, CBR
increases the number of correctly polarized opinions in 25 %, with 95 cases receiving
correct polarization. Detailed analysis reveals that this improvement was not caused by
adaptation, but from reuse. The example in Sect. 3 illustrates this situation where a
correct polarization has a potentially problematic side effect of producing structured
summaries with artificial aspects that did not belong in the original opinion.

In the domain of movies, the 14 % increase in correctly polarized opinions are
caused mostly by adaptation via contextual polarity. This confirms the result in positive
opinions for the domain of movies, where contextual polarity is expected to impact
given the subjectivity of this domain.

Table 2. Average accuracy of Naïve Bayes and SVM for domains of cameras and movies.

Domain Method Positive opinions Negative opinions All

Camera Naïve Bayes 0.854 0.837 0.845
SVM 0.820 0.872 0.845

Movies Naïve Bayes 0.825 0.748 0.787
SVM 0.788 0.783 0.786

Table 3. Average accuracy for baseline and CBR for positive opinions for both domains.

Method Positive
opinions
Camera Movies

Baseline 0.915 0.807
CBR 0.931 0.864

Adapting Sentiments with Context 53

H3. Positive opinions polarized with CBR will produce statistically significant
higher average accuracy than polarization obtained by Naïve Bayes and SVM for both
domains.

H3 is demonstrated in both domains (Table 5). All results are statistically signifi-
cant. For the domain of cameras, CBR produce respectively 9 % and 14 % more true
positives than Naïve Bayes and SVM, both results are statistically significant. In the
domain of movies, differences are small but significant. These results meet our goal of
reaching the levels of accuracy of supervised methods while keeping the ability to build
a structured summary with the polarity of aspects.

H4. Negative opinions polarized with CBR will produce statistically significant
higher average accuracy than polarization obtained by Naïve Bayes and SVM for both
domains.

In the domain of cameras, CBR is inferior to both supervised methods at the 20 %
level, with statistical significance. In the domain of movies, there are no statistically
significant differences (Table 6).

Table 4. Average accuracy for baseline and CBR for negative opinions for both domains.

Method Negative
opinions
Camera Movies

Baseline 0.537 0.670
CBR 0.669 0.767

Table 5. Average accuracy of Naïve Bayes and SVM compared to CBR for positive opinions.

Method Positive
opinions
Camera Movies

Naïve Bayes 0.854 0.825
SVM 0.820 0.788
CBR 0.931 0.864

Table 6. Average accuracy for Naïve Bayes and SVM compared to CBR for negative opinions.

Method Negative
opinions
Camera Movies

Naïve Bayes 0.837 0.748
SVM 0.872 0.783
CBR 0.669 0.767

54 F. Ceci et al.

4.5 Discussion

The studies show that our goal to improve accuracy of a sentiment analysis approach
that can produce the structured summary with polarities of individual aspects exem-
plified in Fig. 1 was attained. We demonstrate statistically significant increments in
accuracy at the document-level through aspect-level analysis. These improvements in
accuracy originate from reuse and from adaptation through contextual polarity.

The total number of textual opinions that moved from the false into the positive
categories over the baseline were 376. The total number of opinions whose classifi-
cation became correct through reuse was 142, 38 %; through adaptation was 234
opinions, 62 %.When only looking at the reuse step, 80 % of improvements occurred in
the domain of cameras against 20 % in the domain of movies. The improvements from
adaptation were 86 % in the domain of movies and 14 % in the domain of cameras.

Solution reuse, as implemented (i.e., roughly 1/3 of the improvements), may change
aspects of an opinion introducing a form of noise in the final structured summary,
which we do not currently evaluate. Further studies are needed to determine how
worthwhile this is. This is important because it is in the core of the value of using CBR.
An alternative would be to create a tree that adds aspects to the existing tree instead of
replacing it. This is aligned with the intuition that authors may not express all aspects
that are relevant about a product. This is a limitation of online reviews also explored by
[15].

Improvements originating from adaptation via contextual polarity do not impose
any limitations. The fact that contextual polarity has produced more improvements in
the domain of movies confirms its suitability to subjective domains where polarity can
be context-dependent. Adaptation through contextual polarity is currently implemented
as a step that is divorced from reuse, bringing up the question of whether it needs to be
incorporated into CBR. In the form it is implemented now, the main advantage of
implementing it within CBR is that contextual polarities can be learned and this may
benefit future cases, although this was not evaluated.

When compared to Naïve Bayes and SVM, CBR was more accurate in positive
opinions in both domains. The reasons for this performance are likely to originate from
the focus on aspects. It is important to note that the case-based approach can be
implemented in an unsupervised fashion, but the results shown in this paper use
supervised methods both when defining the threshold for similarity assessment and
when learning patterns for contextual polarity.

The inferiority of CBR in negative opinions in the domain of cameras may be partly
explained by the fact that it does not treat negation whereas the supervised methods
indirectly do. We will return to the discussion of negation in the next section.

5 Negation

The studies in Sect. 4 demonstrate contributions to sentiment analysis via CBR. Our
ultimate goal is a method that can produce a structured aspect-level summary (Fig. 1)
with accuracy comparable to supervised methods. For this reason, we used the same

Adapting Sentiments with Context 55

data as input to the supervised methods (i.e., SVM and Naïve Bayes) that we used in
the case-based method. In order to use exactly the same data, we chose not to treat
negation in our CBR approach. Neither did we expand the ontology or lexicon used.

Negation is consensually described as an important issue to address in sentiment
analysis (e.g., [1, 3, 4]). We did not include it because these methods are typically ad
hoc and could be misconstrued as a change in the data leading to biased results.

We believe that lack of treatment for negation can explain the difficulty of the
case-based approach to produce better accuracy in the subsets of negative opinions.
This is an assumption that relies on the notion that negative opinions may include more
negative expressions, that is, expressions that include polarity shifters through negation
such as It wasn’t really funny, or This product doesn’t add any benefit.

Next, we show the results we obtain when we treat negation. We identify terms that
we consider as sentiment shifters such as don’t and isn’t. Then, we search for sentiment
words in a window of four words in each direction from the shifter. If a sentiment word
is found, then we change its polarity from negative to positive and vice versa.

When we compare performance without and with treating negation, results in
positive subsets are negligible; we will not thus show results for positive subsets. The
following Tables 7 and 8 show comparisons of results without treating versus treating
negation for subsets of negative opinions.

In the domain of cameras, CBR is more accurate when negation is treated than
when it is not treated to polarize negative opinions with statistical significance
(Table 7). The average accuracy increases about 11 %, producing 56 new correct
polarizations.

In the domain of movies, when negation is treated, CBR produces a small but
statistically significant increment in average accuracy (Table 8) than when negation is
not treated. The average accuracy increases about 3 %, producing 23 new correct
polarizations.

It is important to note that these results shall be interpreted cautiously in com-
parison to supervised methods because this treatment of negation is not implemented
when adopting Naïve Bayes or SVM. This is because we treat negation after

Table 7. Average accuracy for the domain of cameras without and with negation.

Cameras Negative opinions
Method Without negation With negation

Baseline 0.537 0.671
CBR 0.669 0.748

Table 8. Average accuracy for the domain of movies without and with negation.

Movies Negative opinions
Method Without negation With negation

Baseline 0.670 0.696
CBR 0.767 0.790

56 F. Ceci et al.

identifying sentiment bearing words whose polarity is swapped. These supervised
methods do not allow the same opportunity.

6 Conclusions, Limitations, and Future Work

In this paper, we described a case-based sentiment analysis approach that targets
aspect-level methods in the CBR methodology. The main contribution of this paper is
the approach to assess contextual polarity in the adaptation step of the CBR method-
ology. The results show statistically significant improvements in document-level
accuracy obtained by enhancements in aspect-level sentiment analysis. Data and other
resources used in this paper are available to be reproduced at https://dl.
dropboxusercontent.com/u/3025380/iccbr2015/site/index.html.

Our approach to contextual polarity differs from previous works (e.g., [4]) in that
we do not need to manually annotate phrases; we rely on the author-generated scores. It
is also different from [7] because our approach is impermanent in that it allows one
expression to change polarity in each different context whereas theirs builds a per-
manent lexicon for a contextual 1-word window.

As an implementation of the CBR methodology, this work has not yet explored the
potential of various similarity measures. Our studies have shown that the reuse of
solutions is sometimes more accurate than producing new solutions from scratch, but
this may introduce noise in the final structured summary that is the ultimate application,
as shown in Fig. 1.

Within the sentiment analysis application, our work has room for improvements in
expanding ontologies and sentiment lexicons, in using other POS from the opinions
such as verbs, in including compound expressions. Our example in Sect. 3, for
example, fails to recognize heaven forbid as one expression. The implemented
approach is not exploring sub-aspects of batteries such as battery weight and life. We
do not incorporate, for example, a way to derive aspects from adjectives such as the
occurrence of the adjective expensive leading to the creation of the aspect price [3]. We
do not address comparative opinions [3] or sarcasm [2, 3], nor do we analyze the
potential of our proposed SVD method to address those forms.

Although our work is not supervised, it does contain two elements that rely on
some form of training. One is the contextual polarity approach that relies on the
polarization of opinions. The other is the definition of the retrieval threshold.

In future work, within CBR, we will explore other measures of similarity assess-
ment, and the implementation of contextual polarity within reuse. We will also
implement negation so it does not interfere with contextual polarity.

We evaluated our contributions using author-generated document-level scores even
if our contributions targeted aspect-level sentiment. We shall next evaluate our work
with excerpts that have been annotated for aspects and sentiments. In terms of the data,
we only used two domains. We shall test generalizability of our proposed contributions
for more domains. We also plan to better cleanse the data to remove duplicates. Finally,
given that our approach to contextual polarity relies on assessing similarity, we shall
investigate the benefits of improving its quality using contexts as cases.

Adapting Sentiments with Context 57

https://dl.dropboxusercontent.com/u/3025380/iccbr2015/site/index.html
https://dl.dropboxusercontent.com/u/3025380/iccbr2015/site/index.html

References

1. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2,
1–135 (2008)

2. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4),
82–89 (2013)

3. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1),
1–167 (2012)

4. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an exploration of
features for phrase-level sentiment analysis. Comput. Linguis. 35(3), 399–433 (2009)

5. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Gehrke, J., DuMouchel, W.
(eds.) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 168–177. ACM, New York (2004)

6. Wei, W., Gulla, J.A.: Sentiment learning on product reviews via sentiment ontology tree. In:
Hajic, J. (ed.) Proceedings of the 48th Annual Meeting of the ACL, pp. 404–413.
Association for Computational Linguistics, Stroudsburg (2010)

7. Weichselbraun, A., Gindl, S., Scharl, A.: Extracting and grounding context-aware sentiment
lexicons. IEEE Intell. Syst. 28(2), 39–46 (2013)

8. Hatzivassiloglou, V., McKeown, K.: Predicting the semantic orientation of adjectives. In:
Cohen, P.R., Wahlster, W. (eds.) Proceedings of the 35th Annual Meeting of the ACL and
Eighth Conference of the European Chapter of the ACL, pp. 174–181. Association for
Computational Linguistics, Stroudsburg (1997)

9. Carenini, G., Ng, R., Pauls, A.: Multi-document summarization of evaluative text. In:
McCarthy, D., Wintner, S. (eds.) Proceedings of the European Chapter of the Association for
Computational Linguistics, pp. 305–312. Association for Computational Linguistics,
Stroudsburg (2006)

10. Ghazi, D., Inkpen, D., Szpakowicz, S.: Prior and contextual emotion of words in sentential
context. Comput. Speech Lang. 28(1), 76–92 (2014)

11. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1998)

12. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders:
domain adaptation for sentiment classification. In: Bosch, A., Zaenen, A. (eds.) Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 440–447.
Association for Computational Linguistics, Stroudsburg (2007)

13. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine
learning techniques. In: Hajic, J., Matsumoto, Y. (eds.) Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), vol. 10,
pp. 79–86. Association for Computational Linguistics, Stroudsburg, PA (2002)

14. Bespalov, D., Qi, Y., Bai, B., Shokoufandeh, A.: Sentiment classification with supervised
sequence embedding. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part I. LNCS, vol. 7523, pp. 159–174. Springer, Heidelberg (2012)

15. Dong, R., O’Mahony, M.P., Smyth, B.: Further experiments in opinionated product
recommendation. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765,
pp. 110–124. Springer, Heidelberg (2014)

16. Dong, R., Schaal, M., O’Mahony, M.P., McCarthy, K., Smyth, B.: Opinionated product
recommendation. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969,
pp. 44–58. Springer, Heidelberg (2013)

58 F. Ceci et al.

17. Dong, R., Schaal, M., O’Mahony, M.P., McCarthy, K., Smyth, B.: Mining features and
sentiment from review experiences. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013.
LNCS, vol. 7969, pp. 59–73. Springer, Heidelberg (2013)

18. Chen, Y.Y., Ferrer, X., Wiratunga, N., Plaza, E.: Sentiment and preference guided social
recommendation. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765,
pp. 79–94. Springer, Heidelberg (2014)

19. Vasudevan, S.R., Chakraborti, S.: Enriching case descriptions using trails in conversational
recommenders. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765,
pp. 480–494. Springer, Heidelberg (2014)

20. Ohana, B., Delany, S.J., Tierney, B.: A case-based approach to cross domain sentiment
classification. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 284–
296. Springer, Heidelberg (2012)

21. Bouza, A.: MO – the Movie Ontology. http://movieontology.org
22. Devroye, L., Wagner, T.J.: Distribution-free inequalities for the deleted and hold-out error

estimates. IEEE Trans. Inf. Theor. 25(2), 202–207 (1979)
23. McNemar, Q.: Note on the sampling error of the difference between correlated pro-portions

or percentages. Psychometrika 12(2), 153–157 (1947)

Adapting Sentiments with Context 59

http://movieontology.org

Aspect Selection for Social
Recommender Systems

Yoke Yie Chen1(B), Xavier Ferrer2,3, Nirmalie Wiratunga1, and Enric Plaza2

1 IDEAS Research Institute, Robert Gordon University, Aberdeen, Scotland
{y.y.chen,n.wiratunga}@rgu.ac.uk

2 Artificial Intelligence Research Institute (IIIA-CSIC),
Spanish National Research Council (CSIC),
Campus UAB, Bellaterra, Catalonia, Spain

3 Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
{xferrer,enric}@iiia.csic.es

Abstract. In this paper, we extend our previous work on social recom-
mender systems to harness knowledge from product reviews. By mining
product reviews, we can exploit sentiment-rich content to ascertain user
opinion expressed over product aspects. Aspect aware sentiment analysis
provides a more structured approach to product comparison. However,
aspects extracted using NLP-based techniques remain too large and lead
to poor quality product comparison metrics. To overcome this problem,
we explore the utility of feature selection heuristics based on frequency
counts and Information Gain (IG) to rank and select the most useful
aspects. Here an interesting contribution is the use of top ranked prod-
ucts from Amazon to formulate a binary classification over products to
form the basis for the supervised IG metric. Experimental results on three
related product families (Compact Cameras, DSLR Cameras and Point
& Shoot Cameras) extracted from Amazon.com demonstrate the effec-
tiveness of incorporating feature selection techniques for aspect selection
in recommendation task.

Keywords: Social recommenders · Online reviews · Feature selection

1 Introduction

Recommender systems provide a ranked list of products to assist user purchase
needs. With content-based systems, products similar to those that have been
liked by the user are ranked higher [7]. Central to this is the ability to establish
similarity between the target ‘liked’ product and the rest. How to best represent
products to achieve effective product comparison is an area of interest to Case-
Based Reasoning (CBR) in the context of recommender systems [12]. Increas-
ing effort is being focused on incorporating knowledge from product reviews
into product representation. In particular, the rich information embedded in
product reviews permits recommender systems to learn implicit preferences of

c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 60–72, 2015.
DOI: 10.1007/978-3-319-24586-7 5

Aspect Selection for Social Recommender Systems 61

users by considering product aspects (also called features) mentioned in product
reviews [1].

Our previous work proposed a social recommender system using two social
media knowledge sources: online product reviews and purchase preferences. As
a result, recommendation was improved by the combination of aspect based
sentiment analysis with preference knowledge [2]. More importantly, we showed
that recommendations generated based on aspect-based sentiment analysis to
be far superior to one that is agnostic of aspects. However, most NLP-based
aspect extraction techniques rely on POS tagging and syntactic parsing which
are known to be less robust when applied to informal text [10]. As a result,
it is not unusual to have a large numbers of spurious content to be extracted
incorrectly as aspects. Methods to infer aspect importance and thereafter rank
them for selection are needed to achieve a manageable aspect subset size.

Feature selection is known to enhance accuracy in supervised learning tasks
such as text classification by identifying redundant and irrelevant features [15].
In this paper, we address the problem of selecting important aspects using fea-
ture selection heuristics. Specifically, we explore two feature selection approaches
to evaluate aspect usefulness: Information Gain (IG) and aspect frequency. In
our solution, we capitalise on top ranked products from Amazon to formulate
a binary classification over products to form the basis for the supervised IG
metric. In addition, we investigate the transferability of selected aspects from
a particular product family (e.g. Compact Cameras) to other related product
families (e.g. DSLR Cameras and Point & Shoot Cameras).

The rest of the paper is organised as follows: In Sect. 2 we present related
research. Next we describe the process of aspect extraction and feature selection
heuristics in Sect. 3. Finally, evaluation results are presented in Sect. 4 followed
by conclusions in Sect. 5.

2 Related Works

Recent work in social recommender systems utilise sentiment analysis as key fea-
tures for product representation. An interesting idea here is to compare products
not simply on the basis of sentiment polarity (i.e. positive or negative sentiment
scores) but on the basis of similar sentiment over product aspects. This then
requires aspects to be extracted from the product reviews before they can be
associated with polarity scores [4,6]. Fundamental to this comparison is the rel-
evance of the product aspects extracted from online reviews.

Frequency of aspects is commonly used as a heuristic to select genuine aspects
from product reviews [4,5]. This frequency score can further be combined with
sentiment scores to bias these rankings when the task involves opinionated con-
tent [16]. Similarly, frequency can also be combined with similarity knowledge
whereby aspects that contribute most to product similarity computations are
considered more relevant than those that do not [11].

Unlike frequency-based heuristics, supervised selection heuristics have been
successfully employed to reduce dimensionality and achieve significant gains in

62 Y.Y. Chen et al.

accuracy for text classification [14]. In this paper we explore how the supervised
Information Gain (IG) heuristic can be adopted in the context of social recom-
menders to reduce the dimensionality of product aspects. Whilst Vargas-Govea
et al. [13] have also used a supervised selection method in the context of seman-
tic based restaurant recommender systems, they did so to identify influential
contextual features using user rating values as the class label. Unlike with typi-
cal classification tasks where class labels are explicitly defined, in our work the
notion of class and its boundaries need to be considered carefully to enable the
application of IG for aspect selection.

3 Review Based Product Recommendation

Central to a social recommender system is the source of opinionated content in
the form of product reviews. As depicted in Fig. 1, this source can be harnessed
to generate a product ranking using the following three steps:

1. Extract product aspects from reviews and quantify the strength of sentiment
over these aspects within the range of [-1,1];

2. Select aspects according to a selection heuristic; and
3. Generate recommendations using evidence from sentiment based strategies.

3.1 Aspect Extraction from Product Reviews

Grammatical extraction rules [8] are used to identify a set of candidate aspect
phrases from sentences. These rules operate on dependency relations in parsed

Fig. 1. Overview of social recommender process.

Aspect Selection for Social Recommender Systems 63

DP = set of dependency pattern rules
{

dp1 : amod(N,A) → 〈N,A〉,
dp2 : acomp(V,A) + nsubj(V,N) → 〈N,A〉,
dp3 : cop(A, V) + nsubj(A,N) → 〈N,A〉,
dp4 : dobj(V,N) + nsubj(V,N ′) → 〈N,V 〉,
dp5 : 〈h,m〉 + nn(h,N) → 〈N + h,m〉,
dp6 : 〈h,m〉 + nn(N,h) → 〈h + N,m〉

}

Fig. 2. Extraction rules.

sentences1. Figure 2 lists the rules that we have employed in this work. The rule
conclusions contain the constructs that form the extracted aspect following rule
activation. Here N is a noun, nn is a compound-noun, A an adjective, V a
verb, h a head term, m a modifier. Candidate phrases include 〈h,m〉, 〈N,A〉,
〈N,V 〉, 〈h+N,m〉 and 〈N +h,m〉. For each candidate, non-noun (N) words are
eliminated and the remainder forms the set of aspects. See [2] for the detailed
definition of grammatical relations and its application.

3.2 Aspect Selection

Aspects extracted are not equally important and therefore are subjected to
selection-based dimensionality reduction. Let P be a set of products, A a set
of aspects that appear in online reviews, R. A product p is represented as−→x = {x1,x|A|} where x is binary valued and corresponds to the presence
or absence of an aspect a ∈ A. The aim of feature selection is to reduce |A|
to a smaller aspect subset size n by selecting aspects according to the score
assigned by the feature selection technique. The selected aspects then form a
new aspect vector

−→
x′ and a corresponding reduced aspect set A’ for product p,

where A′ ⊂ A and |A′| ≤ |A|. The algorithm used to rank aspects for selection
is shown in Algorithm 1. Here S = {p1, ..., pw} denotes the sample of products
for training purpose.

Algorithm 1. Aspect Selection
n = aspect subset size
for each a ∈ A do

Calculate aspect score using S
end for
Sort aspects based on frequency or IG scores
A′ = {a1,, an}
return A′

1 Sentences are parsed using the Stanford Dependency parser [3].

64 Y.Y. Chen et al.

Aspect Selection by Frequency. Frequency of extracted aspects is calcu-
lated according to the number of times an aspect occurs over the set of reviews.
Accordingly aspects are ranked based on their FrequencyRank scores com-
puted as follows:

FrequencyRank(ai) =
f(ai)∑A
j=1 f(aj)

(1)

where FrequencyRank(ai) returns the relative frequency of an aspect ai
appearing in reviews R. Here frequent occurrence of aspects in online reviews is
perceived as important. However, frequency based approaches have a tendency
to select general aspects such as “camera” and “quality”, which fail to provide
sufficient context for product comparisons (see Table 3). Instead of relying simply
on frequency, what is required here is a heuristic that can identify aspects that
have strong discriminative power. One such strategy is discussed next which
measure the discriminative power of an aspect in discriminating between top
ranked and non-top ranked products.

Aspect Selection with Information Gain. Features that are able to dis-
criminate between classes are considered important in text classification [15].
Using this same principle, here aspects which are able to discriminate between
top-ranked and non-top ranked products are deemed important for recommen-
dation. In the absence of predefined class labels, we use a product ranking bench-
mark to derive class labels whereby a rank position is used as a class boundary
to separate top ranked products from the rest of the products. Here we use a
binary class such that c is either 0 meaning that the product is in the top ranked
set; or is 1 meaning it is not among the top ranked products. In this way, each
product in the product sample, S, can be assigned a binary label. Accordingly
we rewrite the product notation as a pair (−→x , c) where c is a binary class label
for p. Essentially, increasing the rank position that derives the class boundary
for products will lead to a skewed class distribution; resulting in a decrease of
the number of products belonging to c = 0 whilst increasing the size of class c=1.
Given this supervised context, the discriminative power of an aspect a given the
classes is computed as follows:

IG(X,C) =
∑

x∈0,1

∑
c∈0,1

P (X = x,C = c).log2
P (X = x,C = c)

P (X = x).P (C = c)
(2)

3.3 Aspect Sentiment Scoring

Given a target query product and its set of similar products we can rank these
based on their sentiment (positive and negative) scores. Essentially such a prod-
uct score is an aggregation of sentiment scores over the selected subset of aspects.

score(pi) =

∑|A′|
j=1 SentiScore(pi, aj)

|A′| (3)

Aspect Selection for Social Recommender Systems 65

Where the sentiment of the product pi is associated with individual aspects aj
and |A′| is the aspect set for product pi. Here, SentiScore of an aspect is derived
from product reviews using SmartSA [9] and is computed as:

SentiScore(pi, aj) =

|Ri
j |∑

m=1

SentiScore(rm)

|Ri
j |

(4)

where Ri
j is a set of reviews for product pi related to aspect aj and rm ∈ Ri

j .

4 Evaluation

The primary aim of our evaluation is to study the impact of aspect selection on
recommendation quality. To do this, we evaluate how well the recommendation
system works in practice on Amazon.com data. We conveniently use Amazon’s
product Star-Ratings as the benchmark ranking to derive a comparison metric
based on rank improvement. A secondary aim is to explore the transferability of
the aspects learned from a particular product family (e.g. Compact cameras) to
other related product families (e.g. DSLR cameras and Point & Shoot cameras).

4.1 Amazon Datasets

We crawled 1179 Amazon products during September 2014 from three different
Amazon Digital Cameras categories: Compact (compact), DSLR (dslr) and
Point & Shoot (pas). The products extracted contain more than 100,000 different
user generated reviews. Since we are not focusing on the cold-start problem, we
use 1st January 2010 and less than 15 reviews as the pruning factor for the three
product families. Finally, any synonymous products are united leaving us data
for 98 compact, 102 dslr and 93 pas products (see Table 1).

The aspect extraction algorithm described in Sect. 3.1 extracted 300–450
unique aspects for compact, dslr and pas. On average, each product is defined
by 220 different aspects, with standard deviations of 110, 115 and 86 aspects for
compact, dslr and pas cameras respectively. Importantly, more than 50 % of
the products shared at least 100 different aspects with other products of the
same family, whilst almost 30 % shared more than 150 aspects (more than 200
for compact) on average. The fact that there are many shared aspects between
products of the same family is reassuring for product comparison.

4.2 Evaluation Metrics

In the absence of a manual qualitative estimate of recommendation or access
to user specific purchase trails, we derived approximations from the Amazon
data we have crawled. For this purpose, using a leave-one-out methodology, the
average gain in rank position of recommended products over the left-out query

66 Y.Y. Chen et al.

Table 1. Statistics of Amazon compact, DSLR and PAS camera datasets

Category Compact DSLR PAS

No. of Products 98 102 93

No. of Reviews 6349 7451 11,202

Aspects Mean (Std. Dev.) 267.25 (110.28) 226.78 (115.40) 186.39 (86.72)

No. of Different aspects 424 438 308

product is computed relative to a benchmark product ranking for each of the
three product families.

RankImprovement%(RI) =

n=3∑
i=1

benchmark(Pq) − benchmark(Pi)

n ∗ |P − 1| (5)

where n is the size of the retrieved set and benchmark returns the position on the
benchmark list. Greater average gains in rank position over the query product
would lead to a higher RI. For instance, assume the query product is ranked 40th
on the benchmark list of 81 unique products P, and the recommended product
is ranked 20th on this list, then the recommended product will have a relative
benchmark RI of 25 %.

We generated three benchmark lists according to Amazon’s Star-Ratings of
the three product families we crawled. In cases where two or more products had
the same Star-Ratings, the products were ordered by the number of comments.

4.3 Ranking Strategies

The retrieval set of a query product consists of products that share a similar
number of k aspects such that higher values of k denote lower number of products
retrieved. This retrieval set is ranked using the sentiment-based recommendation
strategies presented in Sect. 3.3. Central to this strategy is the selection of aspects
using the following feature selection methods:

– Base: recommend using aspect sentiment analysis with all aspects (see Eq. 3);
– FrequencyRank (FR): same as Base but only considering a subset of

aspects selected by FR (see Eq. 1);
– InformationGain (IG): same as Base but only considering a subset of

aspects selected by IG (see Eq. 2).

The experiments were performed using 5 fold cross validation. To assess the
transferability of the important aspects learned from different product families,
we apply the selected aspects learned from a particular family to other two
related product families when ranking the products.

Aspect Selection for Social Recommender Systems 67

4.4 Recommendation Performance Using IG

The objective of using feature selection techniques is to exploit important aspects
generated by these techniques to rank products. We assess the effect of IG
on recommendation performance by manipulating class sizes and aspect subset
sizes. Figure 3 shows the performance of each product family in terms of average
RI on benchmark Star-Rating with increasing class size. Here, the average RI is
computed using different k shared aspects where k ranges from 0 to 240 (Note
from Sect. 3.2 that class size relates to the top products rank position being
used to create a class boundary separation). The results show that a small class
size leads to better performance. For instance, Fig. 3 shows the performance
of compact improves from 5 % to 10 % but starts to fall after 10 %. Similar
observations can be made on dslr and pas where their performance starts to
drop after 15 %.

Fig. 3. Average RI for all products at different class size

Figure 4 presents the average RI for all product families when selecting
aspects at different aspect subset size using IG at class size 10%. In general, the
average RI of all product families is at its best when 90 aspects were selected
and remains constant for n > 90. It is interesting to note that when n < 90,
products are compared using a smaller number of aspects. For example, only
40 % of pas and compact contain more than 25 aspects in the aspect subset
size of 50. This explains the fluctuations in average RI for both families when
considering low values of n. Based on the observations in both experiments, from
this point onwards we use fixed aspect subset size n = 90 and a class size of 10 %
for the rest of the experiments.

4.5 Comparison of Feature Selection Techniques

The graphs in Figs. 5, 6 and 7 illustrate the results of our comparison using RI
at increasing k number of shared aspects. An overall view of these graphs shows
that IG performs best for all three product families. However, we observed that

68 Y.Y. Chen et al.

Fig. 4. Average RI for all products at different aspect subset size

the RI of IG is 15 % more than Base on average, obtaining an absolute RI of
more than 40 % for pas family. This means that for every query product over a
set of 90 products, we are able to recommend a better product ranked 40 posi-
tions higher on average. It is also worth pointing out that the performance of
FR improves the recommendations of all three categories at 5 % on average com-
pared to Base. These results show that selecting a subset of aspects which are
important provides a significant improvement on recommendation performance.

4.6 Similarity of Product Families

In Table 2, we studied the similarity of product aspects between the three related
product families by computing the Jaccard similarity coefficient between the
sets of aspects of each family. Furthermore, we created a ranking of frequent
aspects for each family (see Table 3) and applied Spearman rank correlation
coefficient to compare those ranked lists of aspects. As it can be observed, dslr
and compact share a similar set of aspects with a 0.72 Jaccard coefficient (even
higher when considering top 20 products), whilst the set of aspects used in

Fig. 5. RI with aspect selection on
dslr.

Fig. 6. RI with aspect selection on pas.

Aspect Selection for Social Recommender Systems 69

Fig. 7. RI with aspect selection on compact.

Table 2. Aspect similarity for different camera families

All Aspects
DSLR+Comp DSLR+PAS Comp+PAS

Jacc. 0.72 0.58 0.61
Spear. 0.87 0.75 0.76

Top 20 Aspects

Jacc. 0.81 0.60 0.66
Spear. 0.80 0.62 0.64

Table 3. Top 10 most frequent aspects by product families

Compact DSLR PAS

Camera Camera Camera

Lens Use Picture

Use Lens Use

Focus Picture Photo

Picture Video Video

Quality Focus Quality

Image Time Zoom

Time Shoot Battery

Photo Image Time

Shoot Quality Shot

pas is slightly different (with a Jaccard coefficient of 0.58 between dslr and
pas, and 0.61 between compact and pas). Furthermore, the Spearman rank
correlation coefficient value shows that the aspects shared between families have
similar frequency values. For instance, aspect lens in compact is the second
most frequent aspect whilst it occupies the third position in dslr (both families
have a 0.87 Spearman rank correlation).

70 Y.Y. Chen et al.

4.7 Transferability of Aspects

In Table 2, we observed that the product aspects from three related product
families have some degree of similarity. Here, we assess the transferability of
the aspects by observing if important aspects learned from one product family
are able to improve recommendation performance on other product families.
Figures 8, 9 and 10 show the RI for three product families using FR and IG in
aspect selection. Here pas FRdslr indicates that the results presented correspond
to the FR strategy for pas using dslr selected aspects. Similarly, pas IGdslr

indicates pas results using dslr aspects selected by IG.

(a) pas (b) compact

Fig. 8. RI using transferred aspects from dslr

(a) dslr (b) compact

Fig. 9. RI using transferred aspects from pas

(a) dslr (b) pas

Fig. 10. RI using transferred aspects from compact

Aspect Selection for Social Recommender Systems 71

The benefit of aspects transferability can be observed when FR is used in
aspect selection. For instance, Figs. 9a and 10b show FR provides significant
improvements in recommendation for dslr and pas respectively. Furthermore,
we observed that compact FRdslr (Fig. 8b) obtains similar RI to compact
FRcompact (Fig. 7), indicating the selected aspects of both families are simi-
lar. This result is expected given high aspects correlation between the frequent
aspects of dslr and compact. The result obtained using IG is mixed. One
explanation for its poor performance is that the product families do not share
similar subset of aspects, resulting in a drop in RI of IG in Figs. 8b and 10a.
This indicates that aspects selected by IG are domain-dependent as they provide
little benefits to other product families.

The high transferability of the aspects using FR suggests that general aspects
are suitable to be used in recommending cameras products. However, we observed
that not all product families benefit from the transfer of aspects. For instance,
compact does not benefit from aspects learned from other product families.
Essentially, best results are achieved when domain-dependent aspects are learned
using IG in pas and compact (see Figs. 6 and 7).

5 Conclusion

In this paper we extended our previous work on social recommender systems
to harness knowledge from product reviews, and explored the utility of the fre-
quency based approach and supervised Information Gain to rank and select the
most useful aspects for recommendation. The benefits are demonstrated in a real-
istic recommendation setting using benchmarks generated from Star-Rating. We
confirmed that aspect selection using feature selection techniques help improve
recommendations of the three datasets; the best results are obtained using Infor-
mation Gain when considering only a small subset of aspects. On the other
hand, we presented how the aspects selected by the frequency based aspect selec-
tion technique is transferable between product families and that leads to better
recommendation performance. However, better results are achieved when using
domain-dependent aspects. Our results show that Information Gain is promis-
ing in identifying important aspects and improve recommendations, but further
work is needed to explore other feature selection techniques such as mutual
information and the Chi-squared statistic.

Acknowledgments. This research has been partially supported by AGAUR Schol-
arship (2013FI-B 00034) and NASAID (CSIC Intramural 201550E022).

References

1. Chen, L., Chen, G., Wang, F.: Recommender systems based on user reviews: the
state of the art. User Model. User-Adap. Interact. 25(2), 99–154 (2015)

2. Chen, Y.Y., Ferrer, X., Wiratunga, N., Plaza, E.: Sentiment and preference guided
social recommendation. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS,
vol. 8765, pp. 79–94. Springer, Heidelberg (2014)

72 Y.Y. Chen et al.

3. De Marneffe, M., MacCartney, B., Manning, C., et al.: Generating typed depen-
dency parses from phrase structure parses. In: Proceedings of Language Resources
and Evaluation Conference, pp. 449–454 (2006)

4. Dong, R., Schaal, M., OMahony, M., McCarthy, K., Smyth, B.: Opinionated prod-
uct recommendation. In: International Conference on Case-Based Reasoning (2013)

5. Hu, M., Liu, B.: Mining and summarising customer reviews. In: Proceedings of
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2004, pp. 168–177 (2004)

6. Huang, J., Etzioni, O., Zettlemoyer, L., Clark, K., Lee, C.: Revminer: an extrac-
tive interface for navigating reviews on a smartphone. In: Proceedings of the 25th
Annual ACM Symposium on User Interface Software And Technology, pp. 3–12.
ACM (2012)

7. Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems:
State of the art and trends. In: Ricci, R., Rokach, L., Shapira, B., Kantor, P.B.
(eds.) Recommender Systems Handbook, pp. 73–105. Springer US, New York
(2011)

8. Moghaddam, S., Ester, M.: On the design of lda models for aspect-based opinion
mining. In: Proceedings International Conference on Information and Knowledge
Management, CIKM 2012 (2012)

9. Muhammad, A., Wiratunga, N., Lothian, R., Glassey, R.: Contextual sentiment
analysis in social media using high-coverage lexicon. In: Bramer, M., Petridis,
M. (eds.) Research and Development in Intelligent Systems, pp. 79–93. Springer,
Switzerland (2013)

10. Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.:
Improved part-of-speech tagging for online conversational text with word clusters.
In: Association for Computational Linguistics (2013)

11. Ronen, R., Koenigstein, N., Ziklik, E., Nice, N.: Selecting content-based features for
collaborative filtering recommenders. In: Proceedings of the 7th ACM Conference
on Recommender Systems, pp. 407–410. ACM (2013)

12. Smyth, B.: Case-based recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg
(2007)

13. Vargas-Govea, B., González-Serna, G., Ponce-Medellın, R.: Effects of relevant con-
textual features in the performance of a restaurant recommender system. ACM
RecSys 11 (2011)

14. Wiratunga, N., Koychev, I., Massie, S.: Feature selection and generalisation for
retrieval of textual cases. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004.
LNCS (LNAI), vol. 3155, pp. 806–820. Springer, Heidelberg (2004)

15. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. In: ICML, vol. 97, pp. 412–420 (1997)

16. Zha, Z.-J., Jianxing, Y., Tang, J., Wang, M., Chua, T.-S.: Product aspect ranking
and its applications. IEEE Trans. Knowl. Data Eng. 26(5), 1211–1224 (2014)

Music Recommendation: Audio Neighbourhoods
to Discover Music in the Long Tail

Susan Craw(B), Ben Horsburgh, and Stewart Massie

School of Computing Science and Digital Media,
Robert Gordon University, Aberdeen, UK

{s.craw,s.massie}@rgu.ac.uk
http://www.rgu.ac.uk/dmstaff/craw-susan-massie-stewart

Abstract. Millions of people use online music services every day and
recommender systems are essential to browse these music collections.
Users are looking for high quality recommendations, but also want to
discover tracks and artists that they do not already know, newly released
tracks, and the more niche music found in the ‘long tail’ of on-line music.
Tag-based recommenders are not effective in this ‘long tail’ because rel-
atively few people are listening to these tracks and so tagging tends to
be sparse. However, similarity neighbourhoods in audio space can pro-
vide additional tag knowledge that is useful to augment sparse tagging.
A new recommender exploits the combined knowledge, from audio and
tagging, using a hybrid representation that extends the track’s tag-based
representation by adding semantic knowledge extracted from the tags of
similar music tracks. A user evaluation and a larger experiment using
Last.fm user data both show that the new hybrid recommender provides
better quality recommendations than using only tags, together with a
higher level of discovery of unknown and niche music. This approach of
augmenting the representation for items that have missing information,
with corresponding information from similar items in a complementary
space, offers opportunities beyond content-based music recommendation.

Keywords: Recommender systems · Novelty and serendipity · Knowl-
edge extraction · CBR similarity assumption

1 Introduction

Long tail marketing techniques have a sales model based upon promoting less
popular products in the ‘long tail’ as shown in Fig. 1. It is most effectively
employed by online retailers, so is very relevant for online music services. There-
fore music recommenders should not overlook or ignore recommendations in this
‘long tail’. A track that is not often listened to may be a niche recommendation
that offers serendipity and an opportunity to discover new music. These recom-
mendations encourage sales in this important area of the online music market.

Query-by-example music recommenders have access to different representa-
tions for items: audio representations like texture (timbre), harmony, rhythm;
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 73–87, 2015.
DOI: 10.1007/978-3-319-24586-7 6

74 S. Craw et al.

Fig. 1. Long tail of recommendation Fig. 2. Recommendation with
sparse tags

meta-data such as track title, artist, year, etc; and semantic information such as
social tagging from on-line music services. Many state-of-the-art recommender
systems make use of social tagging [1]. These tags can provide useful seman-
tic information for recommendation including genres, topics, opinions, together
with social, contextual and cultural information. However, not all tracks within
a collection are tagged equally: popular tracks tend to have more tags describing
them, and niche tracks may have no tags at all.

Figure 2 illustrates the effect of tag sparseness on recommenders. When the
query has few tags the tag-based recommendations have poor quality, and an
audio recommender that is not affected by tags provides better recommenda-
tions. Conversely, tag-based recommenders cannot reliably identify good rec-
ommendations if they have few tags. This diagram motivates the idea for a
hybrid recommender that combines tag and audio representations. Hybrid rec-
ommenders typically merge representations, or combine the processes of sub-
recommenders. Our approach is different, because it augments existing tags
when necessary. It exploits the similarity assumption of case-based reasoning
to extract additional tag knowledge from audio neighbourhoods. It extends the
notion of recommendation, that “similar tracks will be good recommendations”,
to “similar tracks will have useful tagging”. It injects novelty and serendipity
into its recommendations, since it is not biased against sparsely tagged tracks
in the ‘long tail’.

In the rest of this paper we first review relevant literature in music recom-
mendation and serendipity. Section 3 introduces our music dataset and describes
the tag and audio representation for tracks. Our new recommender that com-
bines knowledge extracted from audio neighbourhoods with existing tagging is
presented in Sect. 4. Its performance for accuracy and novelty in a user trial and
a system-centric evaluation is discussed in Sects. 5 and 6.

2 Related Work

One advantage that content-based recommendation has over collaborative filter-
ing is that it does not suffer from ‘cold start’ where user data is not available,

Music Recommendation: Audio Neighbourhoods to Discover Music 75

nor from the ‘grey sheep’ problem [2], where users with niche tastes are excluded
because no similar users exist. Instead, content-based recommendation has the
potential to recommend any track within a collection to a user. The main disad-
vantage of content-based recommenders is that they rely entirely on the strength
of each track’s representation. If the representation is weak, then it is difficult to
define meaningful similarity, and the quality of recommendations will be poor.
The two core approaches used to represent music tracks are audio content and
tags. However, audio content representation is weak, and does not provide high
quality recommendations. When tag-based features are used, high quality rec-
ommendations can be made, and these have been shown to provide better quality
recommendations than collaborative filtering methods [3].

Tags come directly from users and are most commonly generated socially, via
user collaboration, and so a wealth of social and cultural knowledge is available to
describe tracks. However, this also means that tagging is not evenly distributed,
and a popularity bias in music listening habits further skews the distribution of
tags [4]. New and niche tracks are in the popularity ‘long tail’ of Fig. 1, so few
people are listening to them, so few/no people are tagging them, so these tracks
have few/no tags, so tag-based recommenders do not recommend them, so few
people are listening to them, etc.

The Million Song Dataset [5] includes a Last.fm contribution containing a
tagged dataset1 and the tagging of this reference dataset is typical. It contains
almost 950 k tracks tagged with more than 500 k unique tags, and on average
each tagged track has 17 tags, but 46 % of tracks do not have any tags at all.
The 25 k most tagged tracks each has 100 tags, but this number very quickly
drops off in a ‘long tail’ similar to Fig. 1. Halpin et al. found similar tagging ‘long
tails’ in the various del.icio.us sites they investigated [6].

Auto-tagging is designed to overcome sparse social tagging [7]. A popular
approach learns tags that are relevant to a track from a Gaussian Mixture Model
of the audio content [8]. While this approach may guarantee a certain degree of
tagging throughout a collection, humans are not involved with the association
of tags with tracks, and thus it is likely that erroneous tags will be propagated
to many tracks. It is also easy to learn common tags which co-occur often, but
runs the risk of excluding more niche tags, which may be most appropriate for
tracks with few tags. Track similarity has also been used for auto-tagging style
and mood [9]. Here tag vectors of similar tracks are aggregated, and the most
frequently occurring tags are propagated. The advantage of this method is that
there is no attempt to correlate content directly with tags, or presume that
tagging must fit any prior distribution. Instead it exploits consensus of human
tagging. We take inspiration for our pseudo-tagging from this approach, but the
way we use pseudo-tags recognises that they are not ‘real’ tags [10].

Hybrid representations that combine tag and audio representations can also
cope with sparse tagging. Levy & Sandler [11] create a code-book from clustered
audio content vectors, and these muswords are used as the audio equivalent of
tags. Concepts are extracted using Latent Semantic Analysis (LSA) from the

1 http://labrosa.ee.columbia.edu/millionsong/lastfm.

http://labrosa.ee.columbia.edu/millionsong/lastfm

76 S. Craw et al.

combined representation of tags and muswords. In previous work we concate-
nated tag and texture representations, before extracting latent concepts [12].

Taste in music is highly subjective, and so generating novel and serendip-
itous recommendations is particularly important, and challenging. Kaminskas
& Bridge’s [13] exploration of serendipity notes the trade-off in standard rec-
ommender approaches between quality and serendipity. The Auralist [14] and
TRecS [15] hybrid recommenders address this trade-off by amalgamating sub-
recommenders with differing priorities including quality, serendipity and novelty.
In both systems, special novelty and serendipity recommenders influence choice.

3 Music Collection

Our music collection was created from a number of CDs that contain different
genres, a range of years, and many compilation CDs to keep the collection diverse
[16]. This dataset includes 3174 tracks by 764 separate artists. The average
number of tracks per artist is 4, and the most common artist has 78 tracks. The
tracks fall into 11 distinct super-genres: Alternative (29 %), Pop (25 %), Rock
(21 %), R&B (11 %); and Dance, Metal, Folk, Rap, Easy Listening, Country and
Classical make up the remaining 14 % of the collection. We now describe two
standard music representations applied to this dataset: one based on the tagging
of Last.fm users; and a texture representation built from audio files.

Music tracks often have tag annotations on music services. Last.fm is used
by millions of users, and their tagging can be extracted using the Last.fm API2.
When a user listens to a track, they may decide to tag it as ‘rock’. Each time
a unique user tags the track as ‘rock’, the relationship of the tag to the track
is strengthened. A track’s tag vector t = < t1 t2 . . . , tm > contains these
tag frequencies ti, and m is the size of the tag vocabulary. Last.fm provides
normalised frequencies for the tags assigned to each track, with the most frequent
tag for a track always having frequency 100. A total of m = 5160 unique tags
are used for our music collection in the Last.fm tagging. On average each track
has 34 tags with a standard deviation of 24.4, and the most-tagged track has
99 tags. The tagging is realistically sparse: 3 % of the tracks have no tags at all;
there are 24 % with fewer than 10 tags; and 42 % with fewer than 20 tag.

Texture (timbre) is one of the most powerful audio-based representations for
music recommendation [17]. We use the MFS Mel-Frequency Spectrum texture
[18], available through the Vamp audio analysis plugin system3. MFS is a musi-
cal adaptation of the well-known Mel-Frequency-Cepstral-Coefficients (MFCC)
texture [19]. Figure 3 illustrates the main stages in transforming audio tracks into
MFS (and MFCC) vectors, and demonstrates the relationship between MFS and
MFCC. Audio waveforms, encoded at 44.1 kHz, are first split into windows of
length 186 ms, and each window is converted into the frequency domain using
a Discrete Fourier Transform (DFT). Each frequency spectrum computed has
a maximum frequency of 22.05 kHz, and a bin resolution of 5.4 Hz. Next, each
2 www.last.fm/api.
3 www.vamp-plugins.org/download.html

www.last.fm/api
www.vamp-plugins.org/download.html

Music Recommendation: Audio Neighbourhoods to Discover Music 77

Windowing

Mel-Frequency
Warping

DFT

DCT Log

audio frame

frequency
spectrum

mel-
spectrum

MFCC MFS

Fig. 3. Extraction of MFS and MFCC

window is discretised into a feature vector, based on the mel-scale [20]. We use
40 mel filters, the granularity found to be best for aggregation-based recom-
mender models [18]. A mean feature vector MFS is computed for each track and
these are used to construct a track-feature matrix. Latent Semantic Indexing
(LSI) is used to discover musical texture concepts, and each track is projected
into this texture space to create its MFS-LSI texture vector.

4 Hybrid Recommenders

Query-by-track recommender systems Tag and Audio may be defined using
standard vector cosine similarity with these tag-based and texture vector rep-
resentations. However, each individually can be problematic. Tag can give good
recommendations but cannot recognise recommendations that have few or no
tags, and cannot retrieve good recommendations for poorly tagged queries. Audio
does not suffer this problem because all tracks have audio data, but does not
offer the same performance as Tag with well-tagged tracks. Our two new hybrid
recommenders are designed to reduce the semantic gap between audio content
and tags, and allow recommendation quality to be improved when tracks are
under-tagged. They take advantage of tagging, but also exploit similarity neigh-
bourhoods in the audio space to learn pseudo-tags. These hybrid query-by-track
recommenders are defined by standard tag-based representations and cosine sim-
ilarity retrieval.

4.1 Learning Pseudo-Tags

Pseudo-tagging is different from other hybrid representations that combine tag-
and audio-based representations. Instead, pseudo-tags are extracted from the
tags of tracks that have similar audio content, and these pseudo-tags are used
within a tag-based representation.

The first step to generating pseudo-tags for a track is to find tracks that
are similar to this track. A k nearest-neighbour retrieval using cosine similarity
in the musical texture MFS-LSI space identifies the K most similar tracks. A
rank-based weighted sum of the tag vectors t(1) ... t(K) for these K retrieved
tracks are used to learn the pseudo-tag vector p = < p1 p2 . . . pm >:

78 S. Craw et al.

pi =
K∑

k=1

(1 − k − 1
K

)ti(k) (1)

where ti(k) is the frequency of the ith tag in the tag vector of the kth nearest
neighbour track4 Retrieved tracks from lower positions have less influence and
so the retrieval list is restricted to K = 40 neighbours for our experiments.

Our Pseudo-Tag recommender retrieves tracks using cosine similarity of these
pseudo-tag vectors. The pseudo-tag representation reduces sparsity in tag-based
representations because audio neighbourhoods of tracks are unlikely to be uni-
formly sparsely tagged. The advantage of using pseudo-tags over audio content
directly is that factors such as context and opinions will also be present in the
pseudo-tag representation, inherited from the neighbourhoods.

4.2 Augmenting Tags with Pseudo-Tags

Pseudo-tag vectors are useful when a track has few tags, but can influence the
representation too much if the track is already well-tagged. In particular, the
pseudo-tag vector has ignored any tag information that may be associated with
the track itself, and includes all tags that are associated with any of the track’s
neighbours. Our Hybrid recommender uses a tag representation that augments
any existing tags for a track by merging the track’s learned pseudo-tag vector p.
with its tag vector t.

A pseudo-tag vector p is much less sparse (fewer zero frequencies) than a
tag vector t because p has been aggregated from tag vectors belonging to a
number of tracks in the neighbourhood of t’s track. The first step in creating
the hybrid tag/pseudo-tag representation selects the number of pseudo-tags P
to be included, so that it balances the number of existing tags T ; i.e. non-zero
frequencies in t. We experimented with different values of P = 0, 10, 20, ...100.
The solid dark line in Fig. 4 shows the best performing number of pseudo-tags
P for tracks with different numbers of tags T grouped into tag buckets of size
10. Under-tagged tracks need higher numbers of pseudo-tags, and well-tagged
tracks use fewer; this is consistent with intuition. The dark dashed line is the
line-of-best-fit through these data points. We select the number of pseudo-tags
retained based on an approximation of this line: P = 100 − T for our dataset.

The vector of selected pseudo-tags p̃ is created by retaining the P highest
frequencies in p and zeroing the rest. Next, an influence weighting α determines
the influence of the selected pseudo-tags p̃ on the hybrid vector h4:

hi = αp̃i + (1 − α)ti (2)

Experiments similar to those for P , alter the weighting α from 0 to 0.5 in steps
of 0.1. The grey lines and secondary axis in Fig. 4 show the best weighting and
dashed line-of-best-fit, estimated as α = 0.5 ∗ (1 − T/100).
4 All tag-based vectors t, t(k), p, p̃, and h are routinely normalised as unit vectors

before use. For clarity, normalisation has been omitted from Eqs. (1) and (2).

Music Recommendation: Audio Neighbourhoods to Discover Music 79

Fig. 4. Number of pseudo-tags and weighting for hybrid

The Hybrid recommender uses representation h to retrieve tracks. For well-
tagged tracks, the tag vector dominates h, and the Hybrid recommender benefits
from the strengths of tag-based recommendation. Weakly-tagged tracks are aug-
mented by the inclusion of pseudo-tags in h. The Pseudo-Tag representation is
a variant of Hybrid, where the weighting α is 1, and all pseudo-tags are used.

5 User Evaluation

A user evaluation was undertaken to test the quality of recommendations with
real users, but also to measure the level of discovery of new tracks in the rec-
ommendations. The two new hybrid recommenders Pseudo-Tag and Hybrid are
included in the experiments to see the effect of replacing or augmenting tags
with learned pseudo-tags. The Tag recommender is also included as a baseline.

5.1 Design of User Evaluation

The selection and presentation of the query and recommendations are designed
to avoid bias, and the screen provides the same information for every query. The
user is shown a query track and the top five recommended tracks from a single
recommender. Each track has its title, artist, and a play button that allows the
user to listen to a 30 s mid-track sample. The recommender is chosen randomly,
and the top five recommendations are presented in a random order. Each query
track is selected at random from either a fixed pool or the entire collection, with
50:50 chance. The pool contains 3 randomly selected tracks for each of the 11
genres in the collection. The 33 pool tracks will be repeated more frequently,
whereas the other tracks are likely to be used at most once. Users evaluate as
many queries as they choose, without repetition.

A user gives feedback on the quality of each of the recommendations by
moving a slider on a scale between very bad (0) to very good (1). Each slider
is positioned centrally on the scale initially, and records feedback in 1

1000 ths. To
capture feedback on each track’s novelty, the user also selects from 3 options:

80 S. Craw et al.

knows artist & track ; knows artist only ; or knows neither. When feedback for a
query is complete, the user presses submit to save slider values and novelties for
its 5 recommendations.

5.2 User Participation

The on-line user evaluation was publicised through social media and mailing lists.
It was available for 30 days and a total of 132 users took part, evaluating a total
of 1444 queries. There were 386 queries where all 5 recommendations scored 500,
suggesting that the user clicked submit without moving any of the sliders. These
were discarded, and the remaining 1058 valid queries provide explicit feedback
on their recommendations. On average users evaluated recommendations for 6.24
queries, and the most active user scored 29 queries.

Prior to providing feedback, each user completed a questionnaire to indicate
their gender, age, daily listening hours, and musical knowledge: none for no
particular interest; basic for lessons at school, reads music magazine/blogs, etc.;
or advanced for play instrument, edit music on computer, professional musician,
audio engineer, etc. Each user also selects any genres they typically listen to.
Figure 5 contains a summary of the questionnaire data, showing there is a good
spread across age, gender, and knowledge, and that the musical interests align
well with the genres in the pool and collection overall.

Fig. 5. Profile of user group

5.3 Results for Recommendation Quality

We calculate recommendation quality Q for a query-recommendation pair q, r
by aggregating the individual scores by a user u, across all users U providing
feedback for this query’s recommendations. We then use a Q@N average of the
top N recommendations rn to evaluate the recommendations for query q.

Q(q, r) =
1

|U |
∑
u∈U

scoreu(q, r) Q@N(q) =
1
N

N∑
n=1

Q(q, rn) (3)

Music Recommendation: Audio Neighbourhoods to Discover Music 81

Fig. 6. Recommendation quality from user evaluation

Figure 6 shows the Q@N values averaged across all pool queries in the user
evaluation. We focus on pool queries, approximately 47 % of all queries, since
non-pool queries are typically evaluated by only a single user. The error bars
indicate 95 % confidence and are included to give a sense of separation for the
graphs. They show quite high variability because of the following: a user pro-
vides feedback on the recommendations of a single recommender for each of
their queries, there are a relatively small number of queries, and each user gives
feedback on only a subset of these.

The Hybrid recommender provides higher quality recommendations than Tag
and Pseudo-Tag by augmenting existing tags used by Tag with some of the
pseudo-tags from Pseudo-Tag. The small improvement of Hybrid over Tag shows
that augmenting the tags with pseudo-tags does not damage recommendation.
Sparsely tagged tracks gain from additional pseudo-tags, although pseudo-tags
on their own are not so good for recommending. It appears that the adaptive
balancing of existing tags with pseudo-tags from the audio neighbourhood is
helpful. The equivalent figure for all queries is similar, but it has the Hybrid and
Tag graphs slightly closer together, and a larger separation from Pseudo-Tags.

In general, the Q@N drops slowly as N increases, so tracks later in the
recommender’s list gradually decrease in quality as expected. Remember that
the recommendations are presented in a random order so there is no user bias
towards tracks higher up the list. It is not clear why the top recommendation by
Pseudo-Tag is poorer than those that are ranked lower, but possibly users are
not good at ranking accurately recommendations that are generally poor.

5.4 Results for Discovery with Quality

We are interested in recommenders that offer new and niche tracks as serendip-
itous recommendations whilst retaining the all-important quality of recommen-
dation. Here we explore the novelty of recommendations in the user evaluation
by analysing the user replies about knowing the track.

One interesting observation from the user evaluation is the confirmation that
users give higher feedback to recommendations that they know, and slightly
higher ratings to tracks where they know the artist. Figure 7 shows the average

82 S. Craw et al.

Fig. 7. Quality by what is known

score for recommendations from users according to the user’s knowledge of the
artist and track.

Figure 8 captures the quality and novelty of all recommendations in the user
evaluation. The location and spread of the clusters for Hybrid (black), Tag (grey)
and Pseudo-Tag (white) demonstrate well the trade-off between quality and nov-
elty. Good quality recommenders are higher; and those suggesting more recom-
mendations that are unknown are towards the right, so best recommenders that
combine novelty with quality are towards the top right. The individual points in
the clusters show the score@N and % unknown tracks for different N = 1..5. For
hybrid the top point with highest quality is N = 1; larger Ns have increasingly
lower quality. For Tag and Pseudo-Tag the isolated point to the left is N = 1;
the other 4Ns are very tightly clustered.

Hybrid achieves quality recommendations and is able to suggest unknown
tracks; it recommends novel tracks 50–55 % of the time. Although Tag has com-
parable quality it is significantly poorer for novel recommendations. Only 30–
40 % of its recommendations are unknown because Tag tends to recommend
well-tagged tracks and these are also often well-known. Hybrid and Pseudo-Tag
are comparable for novelty since they each exploit the tags inherited from neigh-
bouring tracks. However, quality is also important, and Hybrid gives significantly
better recommendations – despite the users’ quality bias towards known tracks!

6 Evaluation Using Last.fm User Data

A larger system centric evaluation has also been undertaken using leave-one-out
testing on the whole music collection. We use the socialSim score that defines
the recommendation quality Q as the association between the numbers liking
and listening to tracks q and r:

Q(q, r) = socialSim(q, r) =
likers(q, r)

listeners(q, r)
=est

likers(q, r)
listeners(q) · listeners(r)

(4)

Music Recommendation: Audio Neighbourhoods to Discover Music 83

where likers(q, r) and listeners(t) are available through the Last.fm API (see [21]
for details). This evaluation uses socialSim@N averaged over all tracks q in the
collection. Notice that tag data used in the recommenders is distinct from user
data underpinning socialSim, although both are extracted from Last.fm.

Figure 9 contains the quality results for Hybrid, Tag and Pseudo-Tag as in
the user evaluation, now for N = 1..10 recommendations. Results for an Audio
recommender based on MFS-LSI texture are also included as a purely audio-
based baseline; it was omitted from the user evaluation, to reduce the number of
very poor recommendations presented to users for feedback. The 95 % error bars
are much more compressed now because of the very large set of queries from
leave-one-out testing, and the combined opinions of very many Last.fm users.

The overall findings confirm those from the user evaluation: Hybrid and Tag
are comparable, with Hybrid having a tendency to give higher quality recom-
mendations. Pseudo-Tag is significantly poorer and, as expected, Audio is much
poorer still. Compared to Fig. 6, the recommendation quality drops more quickly
for all three recommenders, and continues decreasing as N increases. With users,
later recommendations did not dilute the quality of earlier ones, but since a user
rated all 5 recommendations at the same time perhaps less variation between a
query’s recommendations is natural. Also, we have seen that whether a track is
known or not affects a user’s score, and the system-centric evaluation does not
suffer the effect of individual subjectivity. The placing of the Hybrid and Tag
graphs is slightly higher than with users, and there is a significantly increased
gap between Pseudo-Tag and Tag. However, exact values are not really com-
parable. There is a prevalence of zeros in the socialSim score when there is no
evidence of likers in user data, but users may give less pessimistic ratings for

Fig. 8. Balance between quality and novelty from user evaluation

84 S. Craw et al.

poor recommendations when responding to real queries, and Q is unlikely to
generate 0; i.e. all users scoring 0 for a recommendation.

The notion of novelty is difficult to capture from user data. Instead we intro-
duce an artificial measure that exploits the link between tracks that are well-
known and the level of tagging. Recommendations with few tags will be classed
as novel and the % of novel recommendations will measure novelty. Figure 10
has quality replicated from Fig. 9, and novelty is the % of recommendations
with fewer than 30 tags; i.e. those whose tags have been augmented with 70–
100 pseudo-tags and 35–50 % weighting with tags. Again the advantage from
combined quality and novelty for Hybrid over Tag is clear. The points in each
cluster, showing quality and novelty with differing numbers of recommendations,
are for N = 1..10 with N = 1 being the top point, with larger N strictly in order
below. Hybrid gives a better level of discovery of tracks with relatively few tags
although this tendency is not significant for N ≤ 5.

What happens with a more demanding criterion for novelty than 30 tags?
The quality-novelty scatter for discovery involving fewer tags is a little more
overlapping on the novelty axis, as shown in Fig. 11 for the discovery of tracks
with fewer than 20 tags. Hybrid and Tag are now comparable for novelty, with
a tendency for Hybrid to be better for N > 5.

In Figs. 10 and 11, only the novelty values change for different levels of tag-
ging, and the heights of the points on the quality scale are identical in both
figures. Hybrid and Tag are clearly recommending different tracks because of
the significant quality gains for Hybrid’s use of pseudo-tags in these figures.
With an overall frequency in the dataset of 54 % for < 30 tags, and 42 % for
< 20 tags, the discovery rates in these figures indicate fair treatment of the ‘long
tail’.

Fig. 9. Recommendation quality from last.fm user data

Music Recommendation: Audio Neighbourhoods to Discover Music 85

Fig. 10. Quality and discovery from system-centric evaluation (30 tags)

Fig. 11. Quality and discovery from system-centric evaluation (20 tags)

7 Conclusions

Tags introduce a blur between the classical notion of a recommender being either
content-based or collaborative filtering. In the strict sense tags are content, but
because they are created collaboratively, recommendations made based on tags
are influenced by other users, which classical content-based systems are not. As
a result tag-based recommenders offer some of the advantages of collaborative
filtering, but also suffer some of their disadvantages. Collaborative user tagging
provides semantics including contextual, social and cultural information that
allow tag-based recommenders to take advantage of this information when mak-
ing recommendations. However, this also means that tag-based recommenders
are affected by under-tagging of new and niche tracks that are in the ‘long
tail’ of music tracks. There is a reinforcement loop whereby tracks that are not

86 S. Craw et al.

listened to often, do not get tagged frequently, so have relatively few tags, and
so do not get recommended. The combination of the ‘long tail’ of music tracks
and the popularity bias of tagging means that there is also a ‘long tail’ of tag-
ging of tracks. These are precisely the tracks that one wishes to include in a
recommender that will introduce serendipity and novelty for users.

We have developed a Hybrid recommender that learns pseudo-tags for tracks
with fewer tags so that the tagging ‘long tail’ is removed, and a tag-based rec-
ommender does not face the sparseness of user tagging. Pseudo-tags are related
to audio since they are learned from tracks that are similar in the audio space,
but they also capture semantics that users have given to neighbouring tracks.
Further the weighting and selection of pseudo-tags allows only the most popular
tags to be inherited from the musical neighbourhood. Finally the balancing of
tags with pseudo-tags ensures that user-generated tags are used, and are most
influential, whenever they are available.

The user trial and larger off-line evaluation demonstrate that Hybrid is effec-
tive in bridging the semantic gap between user tagging and audio. The semantic
knowledge extracted from audio neighbourhoods is useful in improving the qual-
ity of Hybrid recommendations over those from the Tag recommender. These
evaluations also explored the novelty of recommendations. Importantly the user
trial results were based on responses about whether the track, or track and
artist, were unknown, and there is a significant separation between the Hybrid
cluster for ‘novelty with quality’ compared to Tag. The off-line evaluation gave
consistent findings, but its tagging criterion for novelty is artificial, and for more
sparsely tagged tracks, Hybrid’s novelty advantage is less.

Our interest is in recommenders that offer serendipity whilst maintaining
good recommendations. Hybrid indeed achieves this, without introducing a spe-
cialised serendipity recommender. Augmenting pseudo-tags has even increased
recommendation quality. This approach of augmenting a weak representation
with equivalent knowledge from neighbourhoods in a complete representation
may be useful in related recommendation tasks; e.g. extracting pseudo-captions
to improve image retrieval, learning pseudo-ratings for collaborative filtering. We
have focused on pseudo-tags to improve recommendation but it could be inter-
esting to understand inconsistencies between tags and pseudo-tags that indicate
possible malicious tagging and shilling attacks.

References

1. Nanopoulos, A., Rafailidis, D., Symeonidis, P., Manolopoulos, Y.: MusicBox: per-
sonalized music recommendation based on cubic analysis of social tags. IEEE
Trans. Audio Speech Lang. Process. 18(2), 407–412 (2010)

2. Barragáns-Mart́ınez, A.B., Costa-Montenegro, E., Burguillo, J.C., Rey-López, M.,
Mikic-Fonte, F.A., Peleteiro, A.: A hybrid content-based and item-based collabo-
rative filtering approach to recommend TV programs enhanced with singular value
decomposition. Inf. Sci. 180(22), 4290–4311 (2010)

3. Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Pro-
ceedings of Latin American Web Conference, pp. 32–41 (2007)

Music Recommendation: Audio Neighbourhoods to Discover Music 87

4. Celma, O., Cano, P.: From hits to niches?: Or how popular artists can bias music
recommendation and discovery. In: Proceedings of 2nd Netflix-KDD Workshop,
pp. 1–8 (2008)

5. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song
dataset. In: Proceedings 12th International Society for Music Information Retrieval
Conference, pp. 591–596 (2011)

6. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tag-
ging. In: Proceedings of 16th International Conference on World Wide Web, pp.
211–220 (2007)

7. Bertin-Mahieux, T., Eck, D., Mandel, M.: Automatic tagging of audio: the state-of-
the-art. In: Wang, W. (ed.) Machine Audition: Principles, Algorithms and Systems,
pp. 334–352. IGI Global, Hershey (2010)

8. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and
retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process.
16(2), 467–476 (2008)

9. Sordo, M., Laurier, C., Celma, O.: Annotating music collections: How content-
based similarity helps to propagate labels. In: Proceedings of 8th International
Conference on Music Information Retrieval (ISMIR) (2007)

10. Horsburgh, B., Craw, S., Massie, S.: Learning pseudo-tags to augment sparse tag-
ging in hybrid music recommender systems. Artif. Intell. 219, 25–39 (2015)

11. Levy, M., Sandler, M.: Music information retrieval using social tags and audio.
IEEE Trans. Multimedia 11(3), 383–395 (2009)

12. Horsburgh, B., Craw, S., Massie, S., Boswell, R.: Finding the hidden gems: recom-
mending untagged music. In: Proceedings of 22nd International Joint Conference
in Artificial Intelligence, pp. 2256–2261. AAAI Press (2011)

13. Kaminskas, M., Bridge, D.: Measuring surprise in recommender systems. In: Pro-
ceedings of ACM RecSys Workshop on Recommender Systems Evaluation: Dimen-
sions and Design (2014)

14. Zhang, Y.C., Séaghdha, D.Ó., Quercia, D., Jambor, T.: Auralist: introducing
serendipity into music recommendation. In: Proceedings of the 5th ACM Inter-
national Conference on Web Search and Data Mining, pp. 13–22 (2012)

15. Hornung, T., Ziegler, C.N., Franz, S., Przyjaciel-Zablocki, M., Schatzle, A.,
Lausen, G.: Evaluating hybrid music recommender systems. In: Proceedings of
IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intel-
ligent Agent Technology, vol. 1, pp. 57–64. IEEE (2013)

16. Horsburgh, B.: Integrating content and semantic representations for music recom-
mendation. PhD thesis, Robert Gordon University (2013)

17. Celma, O.: Music Recommendation and Discovery: The Long Tail, Long Fail, and
Long Play in the Digital Music Space. Springer, Heidelberg (2010)

18. Horsburgh, B., Craw, S., Massie, S.: Music-inspired texture representation. In:
Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 52–58.
AAAI Press (2012)

19. Mermelstein, P.: Distance measures for speech recognition, psychological and
instrumental. Pattern Recogn. Artif. Intell. 116, 91–103 (1976)

20. Stevens, S., Volkmann, J., Newman, E.: A scale for the measurement of the psy-
chological magnitude pitch. J. Acoust. Soc. Am. 8, 185–190 (1937)

21. Craw, S., Horsburgh, B., Massie, S.: Music recommenders: User evaluation without
real users? In: Proceedings of the 24th International Joint Conference in Artificial
Intelligence, pp. 1749–1755. AAAI Press (2015)

Goal-Driven Autonomy with
Semantically-Annotated Hierarchical Cases

Dustin Dannenhauer(B) and Héctor Muñoz-Avila

Department of Computer Science and Engineering,
Lehigh University, Bethlehem 18015, USA

dtd212@lehigh.edu

Abstract. We present LUiGi-H a goal-driven autonomy (GDA) agent.
Like other GDA agents it introspectively reasons about its own expec-
tations to formulate new goals. Unlike other GDA agents, LUiGi-H
uses cases consisting of hierarchical plans and semantic annotations of
the expectations of those plans. Expectations indicate conditions that
must be true when parts of the plan are executed. Using an ontol-
ogy, semantic annotations are defined via inferred facts enabling LUiGi-
H to reason with GDA elements at different levels of abstraction. We
compared LUiGi-H against an ablated version, LUiGi, that uses non-
hierarchal cases. Both agents have access to the same base-level (i.e.
non-hierarchical plans), while only LUiGi-H makes use of hierarchical
plans. In our experiments, LUiGi-H outperforms LUiGi.

1 Introduction

Goal-driven autonomy (GDA) is a goal reasoning method in which agents intro-
spectively examine the outcomes of their decisions and formulate new goals as-
needed. GDA agents reason about their own expectations of actions by compar-
ing the state obtained after executing actions against an expected state. When
a discrepancy occurs, GDA agents formulate an explanation for the discrepancy
and based on this explanation, new goals are generated for the agent to pursue.

Case-based reasoning (CBR) has been shown to be an effective method in
GDA research. CBR alleviates the knowledge engineering effort of GDA agents
by enabling the use of episodic knowledge about previous problem-solving expe-
riences. In previous GDA studies, CBR has been used to represent knowledge
about the plans, expectations, explanations and new goals (e.g. [1–3]). A com-
mon trait of these works is a plain (non-hierarchical) representation for these
elements. In this work we propose the use of episodic GDA knowledge in the
form of hierarchical plans that reason on stratified expectations and explana-
tions modeled with ontologies. We conjecture that hierarchical representations
enable modeling of stronger concepts thereby facilitating reasoning of GDA ele-
ments beyond object-level problem solving strategies on top of the usual (plain)
plan representations.

To test our ideas we implemented a new system, which we refer to as LUiGi-H
and compared it against a baseline that uses plain GDA representations: LUiGi.
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 88–103, 2015.
DOI: 10.1007/978-3-319-24586-7 7

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 89

Crucially, both LUiGi-H and its baseline LUiGi include the same primitive plans.
That is, they have access to the same space of sequences of actions that define
an automated player’s behavior. Hence, any performance difference between the
two is due to the enhanced reasoning capabilities; not the capability of one
performing actions that the other couldn’t. For planning from scratch, HTN
planning has been shown to be capable of expressing strategies that cannot be
expressed in STRIPS planning [4]. But in this work, plans are not generated from
scratch (our systems don’t even assume STRIPS operators); instead, plans are
retrieved from a case library so those expressiveness results do not apply here.

It is expected that LUiGi-H will require increased computation time to reason
over the state in order to compute higher level expectations. We test the perfor-
mance of both LUiGi-H and LUiGi on the real-time strategy game: Starcraft.
Hence, both systems experience a disadvantage if the computation time during
reasoning (i.e. planning, discrepancy detection, goal-selection, etc.) is too large.
Increased computation time manifests as a delay in the issuing of macro-level
strategy (i.e. changing the current plan) to the game-interfacing component of
the agent. This will become more clear in Sect. 5 where we discuss the architec-
ture of both agents. In our results LUiGi-H outperforms LUiGi demonstrating
that it can take advantage of the case-based hierarchical knowledge without
incurring periods of inactivity from running time overhead.

2 Example

We present an example in the real-time strategy game Starcraft. In Starcraft,
players control armies of units to combat and defeat an opponent. In our example
and experiments we concentrate on macro-level decisions; low-level management
is performed by the underlying default game controller.

Figure 1 shows a hierarchical plan or h-plan used by LUiGi-H. This plan,
and every plan in the case base, is composed of the primitive actions found in
Table 1 at the lowest level of the h-plan (we refer to the lowest level as the 0-level
plan). This h-plan achieves the Attack Ground Surround task. For visualization
purposes we divide the h-plan into two bubbles A and B. Bubble A achieves the
two subtasks Attack Ground Direct (these are the two overlapping boxes) while
Bubble B achieves the Attack Units Direct task. For the sake of simplicity we
don’t show the actual machine-understandable representation of the tasks. In
the representation the two Attack Ground Direct tasks would only differ on the
parameters (one is attacking region A while the other one is attacking region B
as illustrated in Fig. 2).

Bubble A contains the two Attack Ground Direct tasks, each of which is
composed of the actions: Produce Units, Move Units, and Attack Units. Bubble
B contains the task Attack Units Direct which is composed of the actions: Move
Units, Attack Units. This h-plan generates an Attack Ground Surround plan for
each region surrounding the enemy base. In the example on the map shown in
Fig. 2, this happens to be two regions adjacent to the enemy base, therefore the
plan contains two Attack Ground Direct that are executed concurrently.

90 D. Dannenhauer and H. Muñoz-Avila

Fig. 1. High Level Plan: AttackGround-
Surround

Fig. 2. AttackGroundSurround on
map Volcanis

Once the execution of both Attack Ground Direct tasks are completed, the
agent’s units will be in regions adjacent to the enemy base. At this point, the
next task Attack Units Direct is executed, which moves the units into the enemy
base and attacks. Reasoning using a more abstract plan such as this one requires
representing the notion of surrounding. This is only possible because of LUiGi-
H’s use of more complex expectations. Specifically, the expectation labeled E1-0
in Fig. 1 represents the condition that all regions that were attacked are under
control (Table 2). In the ontology, the explicit notion of Region Surrounded can
be inferred for a region if all of that region’s adjacent regions are controlled by
the agent (represented by Control Region). In this example there are only two
Attack Ground Direct because there are only two adjacent regions to the enemy
base). In Fig. 1 each ellipse contains the expectation for its corresponding task.
For the primitive tasks or actions, the expectations are as shown in Table 1. For
the expectations of tasks at higher levels in the plan, such as for Attack Ground
Direct, the expectation indicates that our units are successfully located in regions
adjacent to the enemy base. Only after this expectation is met, then the agent
proceeds to Attack Units Direct task (denoted by B in Fig. 1).

3 Goal Driven Autonomy

Goal-driven autonomy consists of a four step cycle. First, a goal is selected by
the Goal Manager and sent to the planner. While the plan is being executed,
the Discrepancy Detector checks to see if the plan’s expectations are met before
and after actions are being executed. If a discrepancy is found, the discrepancy is
sent to the Explanation Generator and the system comes up with an explanation,
which is then sent to the Goal Formulator to create new goal(s). Finally those
goals are sent to the Goal Manager and the cycle is repeated again.

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 91

Table 1. Primitive Actions and Corresponding Expectations

Action Pre-expectations Post-expectations

Produce units 1. Control home base 1. Our player has the given
units requested

Move units 1. Control home base 1. Our units are within a given
radius of the destination

Attack units None 1. We control the given region

Attack worker units None 1. We control the given region

Table 2. High Level Expectations used in Attack Ground Surround

Expectation Description

E1-0 Control all of the regions from Attack Ground Direct

E1-1 Control region from Attack Direct

E2-0 Control same region as in E1-1

Discrepancy detection plays an important role as the GDA cycle will not
begin the process of considering a new goal unless an anomaly occurs. In the
domain of Starcraft, the state is very large (on the order of thousands of atoms).
The baseline LUiGi system solved the problem of mapping expectations to prim-
itive plan actions such as Produce Units, Move Units, and Attack Units by using
an ontology. Using the ontology, abstract concepts are inferred from the current
state and are used as expectations (i.e. the enemy controls region A). The state
is updated as the agent pperceives it (i.e. taking into account fog of war: partial
observability of the state). This is done to restrict the size of the state while still
maintaining the ability to infer necessary concepts which serve as higher level
expectations. The ontology is discussed in more detail in Sect. 5.3.

The Discrepancy Detector uses the ontology to reason over the state and
compares current inferred facts to the expectations of the current plans’ actions
to determine if there is a discrepancy. The Explanation Generator provides an
explanation for the discrepancy. The Goal Formulator generates a new goal based
on the explanation. The Goal Manager manages which goals will be achieved
next.

The crucial difference between LUiGi and LUiGi-H is that LUiGi performs
the GDA cycle on level-0 plans. That, is on the primitive tasks or actions such
as Produce Units and their expectations (e.g. Have Units). In contrast, LUiGi-
H reasons on expectations at all echelons of the hierarchy. The next sections
describe details of the inner workings of LUiGi-H.

4 Representation Formalism and Semantics of h-plans

LUiGi-H maintains a library of h-plans. h-plans have a hierarchical structure
akin to plans used in hierarchical task network (HTN) planning but, unlike

92 D. Dannenhauer and H. Muñoz-Avila

plans in HTN planning, h-plans are annotated with their expectations. In HTN
planning only the concrete plan or level-0 plan (i.e. the plan at the bottom of the
hierarchy) has expectations as determined by the actions’ effects. This tradition
is maintained by existing goal-driven autonomy systems that use HTN planners.
For example, [5] uses the actions’ semantics of the level-0 plans to check if the
plans’ expectations are met but does not check the upper layers. Our system
LUiGi-H is the first goal-driven autonomy system to combine expectations of
higher echelons of a hierarchical plan and case-based reasoning.

These h-plans encode the strategies that LUiGi-H pursues (e.g. the one shown
in Fig. 1). Each case contains one such an h-plan including its corresponding
expectations. We don’t assume the general knowledge needed to generate HTN
plans from scratch. Instead, we assume a CBR solution, whereby these h-plans
have been captured in the case library. For example, they are provided by an
expert as episodic knowledge. This raises the question about how we ensure the
semantics of the plans are met; HTN planners such as SHOP guarantee that HTN
plans correctly solve the planning problems but require the knowledge engineer to
provide the domain knowledge indicating how and when to decompose tasks into
subtasks (i.e. methods). In addition, the STRIPS operators must be provided.
In our work, we assume that the semantics of the plans are provided in the form
of expectations for each of the levels in the h-plan and an ontology Ω that is
used to define these expectations.

We define a task to be a symbolic description of an activity that needs to
be performed. We define an action or primitive task to be a code call to some
external procedure. This enables us to implement actions such as “scorched
earth retreat U to Y ”(telling unit U to retreat to location Y while destroying
any bridge or road along the way) and the code call is implemented by a complex
procedure that achieves this action while encoding possible situations that might
occur without worrying about having to declare each action’s expectations as
(preconditions, effects) pairs. This flexibility is needed for constructing complex
agents (e.g. an Starcraft automated player) where a software library is provided
with such code calls but it would be time costly and perhaps infeasible to declare
each procedure in such library as an STRIPS operator. We define a compound
task as a task that it is not defined through a code call (e.g. compound tasks
are decomposed into other tasks, each of which can be compound or primitive).

Formally, an h-plan is defined recursively as follows.

Base Case. A level-0 plan π0 consists of a sequence of primitive tasks. Each
primitive task in a level-0 plan is annotated with an expectation. Example: In
Fig. 1 the level-0 plan consists of 8 actions: the produce, move, attack sequence
is repeated twice (but with different parameters; parameters are not shown for
simplicity) followed by the move and attack actions. Each task (shown as a
rectangle) has an expectation (shown as an ellipse).

The base case ensures that the bottom level of the hierarchy consists exclu-
sively of primitive tasks and hence can be executed.

Recursive Case. Given a plan πk of level k (with k ≥ 0), a level-k + 1 plan,
πk+1 consists of a sequence of tasks such for each task t in πk+1 either:

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 93

(d1) t is a task in πk, or
(d2) t is decomposed into a subsequence t1...tm of tasks in πk. Example: In

Fig. 1, the task Attack Ground Direct is decomposed into the produce, move,
attack primitive tasks.

Conditions (d1) and (d2) ensure that each task t in level k + 1 either also
occurs in level k or it is decomposed into subtasks at level k.

Finally, we require that each task t in the πk+1 plan to be annotated with
an expectation et such that:

(e1) if t meets condition (d1) above, then t has the same expectation et for
both πk and πk+1.

(e2) if t meets condition (d2) above, then t is annotated with an expectation
et such that et |=Ω em, where em is the expectation for tm. That is, em can be
derived from et using the ontology Ω or loosely speaking, et is a more general
condition that em. Example: The condition control region can be derived from
condition E1-0 (Table 2).

An h-plan is a collection π0, π1, ..., πn such that for all k with (n−1) ≥ k ≥ 1,
then πk+1 is a plan of level (k+1) for πk. Example: the plan in Fig. 1 consists of 3
levels. The level-0 plan consists of 8 primitive tasks starting with produce units.
The level-1 plan consists of 3 compound tasks: Attack ground direct (twice) and
attack unit direct. The level-2 plan consists of a single compound task: Attack
Ground surround.

A case library consists of a collection hp1, hp2, ..., hpm where each hpx is an
h-plan.

GDA with h-plans. Because LUiGi-H uses h-plans the GDA cycle is adjusted
as follows: discrepancies might occur at any level of the hierarchy of the h-plan.
Because each task t in the h-plan has an expectation et, then the discrepancy
might occur at any level-k plan. Thus the cycle might result in a new task at
any level k. This in contrast to systems like HTNbots-GDA where discrepancies
can only occur at level-0 plans. When a discrepancy occurs for a task t in a
level k-plan, an explanation is generated for that discrepancy, and a new goal
is generated. This new goal repairs the plan by suggesting a new task repairing
t while the rest of the k-level plan remains the same. At the top level, say n,
this could mean retrieving a different h-plan. This provides flexibility to do local
repairs (e.g. if unit is destroyed, send a replacement unit) or changing the h-plan
completely.

Execution of Level-0 Plans. The execution procedure works as follows: each
action ti in the level-0 plan is considered for execution in the order that it
appears in the plan. Before executing an action the system checks if the action
requires resources from previous actions. If so it will only execute that action
if those previous actions’ execution is completed. For example, for the level-0
plan in Fig. 1, the plan will begin executing both Produce Units but not Move
Units since they share the same resource: the units that the former produced are
used by the latter. The other levels of the h-plan are taken into account when
executing the level-0 plan. For example, the action Move Units in the portion B
of the plan will not be executed until all actions in the portion A are completed

94 D. Dannenhauer and H. Muñoz-Avila

because the compound task Attack Units Direct occurs after the compound task
Attack Ground Direct. As a result of this simple mechanism, some actions will
be executed in parallel while still committing to the total order of the h-plan.

5 A Hierarchical Case-Based GDA System

Our LUiGi-H system combines CBR episodic and hierarchical task network
(HTN) representation to attain a GDA system that reasons with expectations,
discrepancies and explanations at varied level of abstraction.

Figure 3 shows an overview of LUiGi-H. It consists of two main components:
the Controller and the Bot. The Controller is the main component of the system
and it is responsible for performing the GDA cycle (shown under the box “GDA
Cycle”), planning, and reasoning with the ontology.

The Bot is in charge of executing and monitoring the agent’s actions. In
our experiments LUiGi-H plays Starcraft games. Communication between the
Controller and the Bot are made with TCP/IP sockets and file share systems.

Fig. 3. LUiGi-H Overview

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 95

5.1 Basic Overview of LUiGi-H’s Components

Here we give a brief overview of each component before going into more detail
for the Planner in Sect. 5.2 and the Ontology in Sect. 5.3.

The Planner. As explained in Sect. 4, an expert-authored case base is composed
of h-plans that encode high-level strategies. Actions are parametrized, for exam-
ple, the action Produce Units takes a list of pairs of the form (unit-type, count)
and the bot will begin to produce that number of units of each type given. All
expectations for tasks in the current h-plan are inferred using the ontology Ω,
which include all facts in the current state and new facts inferred from the rules
in the ontology.

Ontology: The ontology contains entities, relations, and axioms used to infer new
facts about the current state of game. It is refreshed every n frames of the Star-
craft match, and contains facts such as regions, unit data (health, location, etc.),
player data (scores, resources, etc.). The ontology is represented as a semantic
web ontology.

Bot: Component that directly interfaces with Starcraft to issue game commands.
This component dumps game state data that is loaded into the ontology and
listens for actions from the Goal Reasoner.

Game State Dumper: Component within the Starcraft Plan Executor that out-
puts all of the current game state data to a file which is then used to populate
the ontology of the State Model of the controller.

Plan Action Listener: The bot listens for actions from the controller, and as soon
as it receives an action it begins executing it independently of other actions. It
is the job of the controller to ensure the correct actions are sent to the bot. The
bot only has knowledge of how to execute individual actions.

5.2 Planner

While actions in a level-0 plan are the most basic tasks in the context of the
h-plans, these actions encode complex behavior in the context of the Starcraft
games. For example, Produce Units takes multiple in-game commands to create
the desired number and type of units (i.e. 5 Terran Marines). These include
commands to to harvest the necessary resources, build required buildings, and
issue commands to build each unit. Each action is parametrized to take different
arguments. This allows general actions to be used in different situations. For
example, Produce Units is used to produce any kind of units, while Move Units
is used to move units to any region.

5.3 Ontology

One of the main benefits of using an ontology with GDA is the ability to provide
formal definitions of the different elements of a GDA system. The ontology uses

96 D. Dannenhauer and H. Muñoz-Avila

Table 3. Plans

Name Description Actions

Attack

Ground

Direct

Produce ground units and attack the enemy base

directly

Produce Units (marine, x)

Move Units (enemy base)

Attack Units (enemy base)

Attack Air

Direct

Produce air units and attack the enemy base directly Produce Units (marine, x)

Move Units (enemy base)

Attack Units (enemy base)

Attack Both

Direct

Produce air and ground units and attack the enemy

base directly

Produce Units (marine, x)

Produce Units (wraith, x)

Move Units (enemy base)

Attack Units (enemy base)

Attack Air

Sneak

Fly units directly to nearest corner of the map in

regards to the enemy base before sending to

enemy base

Produce Units (wraith, x)

Move Units (nearest corner)

Move Units (enemy base)

Attack Worker Units (enemy base)

Rush Defend

Region

Take all units from a previous plan and defend the

home base

Acquire Units (unit ids list)

Move Units (home base)

Attack Region (home base)

Attack

Ground

Surround

Calculates the location of each region surrounding

the enemy base, send units to that location, and

then attacks the enemy

Attack Ground Direct (adj. regions)

Attack Ground Direct (enemy base)

Attack Air

Surround

Calculates the location of each region surrounding

the enemy base, send units to that location, and

then attacks the enemy

Attack Air Direct (adj. regions)

Attack Air Direct (enemy base)

Attack And

Distract

Attack directly with ground units while at the same

time attacking from behind with air units which

focus specifically on killing worker units

Attack Ground Direct (enemy base)

Attack Air Sneak (enemy base)

facts as its representation of atoms. Facts are 〈subject, predicate, object〉 triples.
A fact can be an initial fact (e.g. 〈unit5, hasPosition, (5,6)〉 which is directly
observable) or an inferred fact (e.g. 〈player1, hasPresenceIn, region3〉). We use
an ontology to represent high-level concepts such as controlling a region. By
using a semantic web ontology, that abides by the open-world assumption, it is
technically not possible to infer that a region is controlled by a player, unless full
knowledge of the game is available. Starcraft is one such domain that intuitively
seems natural to abide by the open world assumption because of the fog of
war. That is, a player can vie only the portion of the map where it has units
deployed. As a result, we can assume local closed world for the areas that are
within visual range of our own units. For example, if a region is under visibility
of our units and there are no enemy units in that region, we can infer the region
is not contested, and therefore we can label the region as controlled. Similarly,
if none of our units are in a region, then we can infer the label of unknown for
that region.

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 97

The following are formal definitions for a GDA agent using a semantic web
ontology:

– State S: collection of facts
– Inferred State Si: S ∪ { facts inferred from reasoning over the state with

the ontology}
– Goal g: a desired fact g ∈ Si

– Expectation x: one or more facts contained within the Si associated with
some action. We distinguish between primitive expectations, xp, and com-
pound expectations, xc. xp is a primitive expectation if xp ∈ S and xc is a
compound expectation if xc ∈ (Si − S). (Si − S) denotes the set difference of
Si and S, which is the collection of facts that are strictly inferred.

– Discrepancy d: Given an inferred state Si and an expectation, x, a discrep-
ancy d is defined as:

1. d = x if x �∈ Si, or
2. d = {x} ∪ Si if {x} ∪ Si is inconsistent with the ontology

– Explanation e: Explanations are directly linked to an expectation. For prim-
itive expectations, such as xp = (player1, hasUnit, unit5) the explanation is
simply the negation of the expectation when that expectation is not met: ¬xp.
For compound expectations, xc (e.g. expectations that are the consequences
of rules or facts that are inferred from description logic axioms), the explana-
tion is the trace of the facts that lead up to the relevant rules and/or axioms
that cause the inconsistency.

5.4 Discussion

LUiGi-H is composed of two major components, the controller and the bot. The
controller handles the goal reasoning processes while the bot interfaces with the
game directly. The controller and bot operate separately from each other, and
communicate via a socket and file system. There are two methods of data transfer
between the controller and the bot. First, every n frames the bot dumps all visible
gamestate data to the controller via a file (visible refers to the knowledge that
a human player would have access to; the bot does not have global knowledge).
The controller then uses this data to populate a semantic web ontology, in which
to reason about the game to infer more abstract conclusions (these are used
in discrepancy detection). The other method of data transfer is the controller
sending messages to the bot which happens via a socket. Both the bot and
controller run as completely different processes, use their own memory, and are
written in different languages (bot is c++ and controller is java).

The controller’s perspective of the game is different than the bot’s in a few
ways. The controller’s game state data is only updated when the Pellet reasoner
finishes. The Pellet reasoner is one of a few easily available reasoners for semantic
web ontologies. However, the controller’s game state data includes more abstract
notions such as “I control region x right now”. The controller also knows all
current actions being executed. As a result, the controller has a overall view of
the match but at the loss of some minute details, such as the exact movements

98 D. Dannenhauer and H. Muñoz-Avila

of every unit at every frame of the game. This level of detailed information
is perceived by the bot but at cost of only having a narrow, instant view of
the game. The bot receives actions from the controller, it only receives a single
action per plan at a time (when that action finishes, successfully or not, the
bot requests the next action of the plan). The bot can execute multiple actions
together independently, without knowing which action is going to come next. If
the controller decides an action should be aborted while the bot is executing it,
it sends a special message to the bot instructing it to stop executing that action.

6 Empirical Evaluation

In order to demonstrate the benefit of h-plans, we ran LUiGi-H against the base-
line LUiGi. Matches occurred on three different maps: Heartbreak Ridge, Chal-
lenger, and Volcanis. Heartbreak Ridge is one of the most commonly used maps
for Starcraft (it is one of the maps used in AIIDE’s annual tournament), while
Challenger and Volcanis are commonly played maps. Data was collected every
second, and the Starcraft match was run at approximately 20 frames per second
(BWAPI1 function call of setLocalSpeed(20)). The performance metrics are:

– kill score. Starcraft assigns a weight to each type of unit, representing the
resources needed to create it. For example, a marine is assigned 100 points
whereas a siege tank is assigned 700 points.2 The kill score is the differ-
ence between the weighted summation of units that LUiGi-H killed minus
the weighted summation of units that LUiGi killed.

– razing score. Starcraft assigns a weight to each type of structure, represent-
ing the resources needed to create it. For example, a refinery3 is assigned 150
points whereas a factory4 is assigned 600 points. The razing score is the differ-
ence between the weighted summation of structures that LUiGi-H destroyed
minus the weighted summation of structures that LUiGi destroyed.

– total score. The total score is the summation of the kill score plus the razing
score for LUiGi-H minus the summation of the kill score plus the razing score
for LUiGi.

In addition to these performance metrics, the unit score is computed. The
unit score is the difference between the total number of units that LUiGi-H
created minus the total number of units that LUiGi created. This is used to
assess if one opponent had an advantage because it created more units. This
provides a check to ensure that a match wasn’t won because one agent produced
more units than another.
1 Brood War API: github.com/bwapi/bwapi.
2 These values come from the Starcraft game engine.
3 A refinery is a building that allows to harvest gas, a resource needed to produce

certain kinds of units. For instance, 100 gas units are needed to produce a single
siege tank.

4 A factory is building that allows the production of certain kinds of units such as
siege tanks provided that the required resources have been harvested.

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 99

Fig. 4. LUiGi-H vs. LUiGi on Heartbreak Ridge

We show our results in Fig. 4 below.5

The red dashed line shows the kill score, the blue dot-dashed line shows the
unit score and the green dotted line is the razing score. The total score, which is
the sum of the kill score and razing score is shown as the unbroken cyan line. All
lines show the difference in cumulative score of LUiGi-H vs. LUiGi. A positive
value indicates LUiGi-H has a higher score than LUiGi.

From Fig. 4 we see that LUiGi-H ended with a higher total score than LUiGi,
starting around the 400 second mark. In Fig. 4, the difference in the blue dot-
dashed line (unit score) shows that in this match the LUiGi system produced
far many more units than the LUiGi-H system. Despite producing significantly
fewer units LUiGi-H system outperformed LUiGi as can be seen by the total
score line (cyan unbroken). LUiGi-H scored much higher on the kill score, but
less on the razing score. A qualitative analysis revealed that LUiGi had slightly
more units end game, shown in the graph by the much higher unit score (blue dot
dashed), which caused its razing score to be higher than LUiGi-H. We expect
that as the unit score approaches zero, LUiGi-H will exhibit higher kill and
especially razing scores. LUiGi-H won both this match and the match shown in
Fig. 5, on the map Challenger.

Figure 5 shows LUiGi-H vs. LUiGi on the Challenger map. LUiGi-H produces
slightly more units in the beginning but towards the end falls behind LUiGi. This
graph shows a fairer matchup in unit strength. Both the razing score and kill
score show LUiGi-H outperforming the ablation: LUiGi.

LUiGi-H used h-plans with multiple levels of expectations which allowed
a more coordinated effort of the primitive actions of a plan. In the situation
where LUiGi-H and LUiGi were executing plans composed of the same primi-
tive actions, in the event of a discrepancy, LUiGi-H would trigger discrepancy

5 We plot results for a single run because difference in scores between different runs
were small.

100 D. Dannenhauer and H. Muñoz-Avila

Fig. 5. LUiGi-H vs. LUiGi on Challenger

detection that would reconsider the broader strategy (the entire h-plan of which
the primitive actions were composed from) while LUiGi would only change plans
related to the single level-0 plan that was affected by the discrepancy. This allows
LUiGi-H more control in executing high level strategies, such as that depicted
in the example in Fig. 1.

A non-trivial task in running this experiment was ensuring that each bot
produced roughly the equivalent strength of units (shown in the graph as unit
score). While we were unable to meet this ideal in our experiments precisely,
including the unit score in the graphs helps identify the chances that a win was
more likely because of sheer strength vs. strategy.

We leave out the result from Volcanis due to a loss from a delay due to the
reasoning over the ontology. The average time taken by each agent to reason over
the ontology is about 1–2 seconds. This is the crucial part of the discrepancy
detection step of the GDA cycle. A delay in the reasoning means that discrepancy
detection will be delayed. During the match on Volcanis, at the first attack by
LUiGi on LUiGi-H the reasoning hangs and causes discrepancy detection to
respond late and fail to change goals before a building is destroyed. This causes
LUiGi-H a big setback in the beginning of the match and results in a loss of the
game. This issue is due to the fact that at any given point in time there are a few
hundred atoms in the state (and thus ontology), with greater numbers of atoms
during attacks (because the agent now has all the atoms of its enemy units
which it can now see). Optimizing the ontology for both reasoning and state
space is one possibility for future improvement: an improvement in reasoning
time would increase the rate of discrepancy detection. This also demonstrates
that even though the GDA cycle is being performed every few seconds while the
bot is issuing a few hundred actions per minute, GDA is still beneficial due to
the ability to generate and reason about high level strategies.

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 101

7 Related Work

To the best of our knowledge, LUiGi-H is the first agent to use episodic hier-
archical plan representation in the context of goal-driven autonomy where the
agent reasons with GDA elements at different levels of abstraction. Nevertheless
there are a number of related works which we will now discuss.

Other GDA systems include LUiGi [1], GRL [2] and EISBot [3]. As with all
GDA systems, their main motivation is for the agents to autonomously react to
unexpected situations in the environment. From these, the most closely related
is LUiGi as it uses ontologies to infer the expectations. However, none of these
GDA systems, including LUiGi, uses h-plan representations.

The most closely related works are the one from [5] and [6–8], which describe
the HTNbots and the ARTUE system respectively. Both HTNBots and ARTUE
uses the HTN planner SHOP [9]. SHOP is used because it can generate plans
using the provided HTN domain knowledge. This HTN domain knowledge
describes how and when to decompose tasks into subtasks. Once the HTN plan
is generated, HTNBots and ARTUE discard the k-level plans (k ≥ 1) and focus
their GDA process on the level-0 plans (i.e. the sequence of actions or primi-
tive tasks). That is expectations, discrepancies, explanations, all reason at the
level of the actions. There are two main difference versus our work. First, in our
work we don’t require HTN planning knowledge. Instead, LUiGi-H uses episodic
knowledge in the form of HTN plans. Second, LUiGi-H reasons about the expec-
tations, discrepancies and explanations at all levels of the HTN plan; not just at
the level 0. As our empirical evaluation demonstrates, reasoning about all levels
of the HTN plans results in better performance of the GDA process compared
to a GDA process that reasons only on the level-0 plans.

Other works have proposed combining HTN plan representations and CBR.
Included in this group are the PRIAR [10] Caplan/CbC system [11], Process
manufacturing case-based HTN planners [12] and the SiN system [13]. None of
these systems perform GDA. They use CBR as a meta-level search control to
adapt HTN plans as in PRIAR or to use episodic knowledge to enhance partial
HTN planning knowledge as in SiN.

Compared to other Starcraft game playing agents, to the best of our knowl-
edge, LUiGi-H is the first that plays Starcraft using general plan actions. This
enables the use of different groups of units to carry out individual attacks as
part of a more complex macro-level strategy at the regional level (e.g. the Attack
Ground Surround plan from Table 3). Previous Starcraft bots6 attack or defend
using all units which generally results in giant armies battling one another. Our
work is a step towards improving the strategic macro level combat of Starcraft
game playing agents.

6 from AIIDE and CIG competitions.

102 D. Dannenhauer and H. Muñoz-Avila

8 Conclusion

In this paper, we presented LUiGi-H, a GDA agent that combine CBR episodic
knowledge, h-plan knowledge and ontological information enabling it to reason
about the plans, expectations, discrepancies, explanations and new goals at dif-
ferent levels of abstraction.

We compared LUiGi-H against an ablated version, LUiGi. Both agents use
the same case base for goal formulation and have access to the same level-0 plans.
In our experiments, LUiGi-H outperforms LUiGi demonstrating the advantage
of using episodic hierarchical plan representations over non-hierarchical ones
for GDA tasks. We noted one match where LUiGi-H lost because of a delay in
ontology reasoning time that caused discrepancy detection to respond too slowly
to an attack on LUiGi-H’s base.

For future work, we will explore using case-based learning techniques to
acquire the h-plans automatically from previous problem-solving experiences.
Specifically, we envision a situation in which LUiGi-H starts with no h-plans
and learns these plans from multiple starcraft matches against different oppo-
nents. This will in turn allows us to test LUiGi-H versus the highly optimized
(and hard-coded) entries in the Starcraft competition.

Acknowledgement. This work is funded in part by NSF grant 1217888.

References

1. Dannenhauer, D., Muñoz-Avila, H.: LUIGi: a goal-driven autonomy agent reason-
ing with ontologies. In: Advances in Cognitive Systems (ACS 2013) (2013)

2. Jaidee, U., Muñoz-Avila, H.: Modeling unit classes as agents in real-time strategy
games. In: Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (2013)

3. Weber, B.: Integrating learning in a multi-scale agent. Ph.D thesis, University of
California, Santa Cruz, June 2012

4. Erol, K., Hendler, J., Nau, D.S.: HTN planning: Complexity and expressivity. In:
AAAI 94, pp. 1123–1128 (1994)

5. Muñoz-Avila, H., Aha, D.W., Jaidee, U., Klenk, M., Molineaux, M.: Applying goal
driven autonomy to a team shooter game. In: FLAIRS Conference (2010)

6. Molineaux, M., Klenk, M., Aha, D.W.: Goal-driven autonomy in a navy strategy
simulation. In: AAAI (2010)

7. Molineaux, M., Aha, D.W.:P Learning models for predicting surprising events. In:
Advances in Cognitive Systems Workshop on Goal Reasoning (2013)

8. Shivashankar, V., Alford, R., Kuter, U., Nau, D.: Hierarchical goal networks and
goal-driven autonomy: going where AI planning meets goal reasoning. In: Goal
Reasoning: Papers from the ACS Workshop, pp. 95 (2013)

9. Nau, D., Cao, Y., Lotem, A., Muñoz-Avila, H.: SHOP: Simple hierarchical ordered
planner. In: Proceedings of the 16th International Joint Conference on Artificial
intelligence, vol. 2, pp. 968–973. Morgan Kaufmann Publishers Inc. (1999)

10. Kambhampati, S., Hendler, J.A.: A validation-structure-based theory of plan mod-
ification and reuse. Artif. Intell. 55(2), 193–258 (1992)

Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases 103

11. Muñoz, H., Paulokat, J., Wess, S.: Controlling a nonlinear hierarchical planner
using case replay. In: Haton, J.-P., Manago, M., Keane, M.A. (eds.) EWCBR 1994.
LNCS, vol. 984. Springer, Heidelberg (1995)

12. Chang, H.-C., Dong, L., Liu, F.X., Lu, W.F.: Indexing and retrieval in machining
process planning using case-based reasoning. Artif. Intell. Eng. 14(1), 1–13 (2000)

13. Muñoz-Avila, H., Aha, D.W., Nau, D.S., Weber, R., Breslow, L., Yaman, F.: Inte-
grating case-based reasoning with task decomposition. Technical report, DTIC
Document, Sin (2001)

Evaluating a Textual Adaptation System

Valmi Dufour-Lussier1,2(B) and Jean Lieber2,3,4

1 Université de Moncton, Campus de Shippagan, New-Brunswick, Canada
vdl@umcs.ca, lieber@loria.fr

2 Université de Lorraine, LORIA, 54506 Vandœuvre-lès-Nancy, France
3 CNRS, 54506 Vandœuvre-lès-Nancy, France

4 Inria, 54602 Villers-lès-Nancy, France

Abstract. This paper presents a CBR method to retrieve and adapt
processes represented as instruction texts, as well as the evaluation
methodology that we developed to evaluate it. The evaluation process is
user-based, blind and comparative. It is less labour intensive than most
existing approaches and is more open to a variety of possible solutions
to the same query, among other benefits. It also makes it possible to
evaluate separately the textual adaptation process and the underlying
formal adaptation process. Craqpot, a CBR system that adapts recipe
texts, using a case-based process to extract domain knowledge on the fly,
is presented and evaluated. We show that it generates recipes of good
quality and texts of acceptable quality.

Keywords: Adaptation · Evaluation · Textual case-based reasoning ·
Process-oriented case-based reasoning

1 Introduction

Textual [26] and process-oriented [18] case-based reasoning are two fields of
case-based reasoning (CBR) that tend to use unconventional case structures.
They have therefore required the development of specific retrieval techniques,
which are rather well established nowadays. Adaptation, on the other hand, has
been more problematic. In textual CBR, it has mostly been limited to selecting
and aggregating parts of textual cases. Different techniques have been proposed
recently to make a deeper level of adaptation possible in process-oriented CBR.

We propose Craqpot, a CBR system that retrieves and adapts processes
represented as instruction texts. In this system, cases are recipe texts associated
with a formal case structure. The structure consists in a network of temporal
constraints on events, represented using a qualitative algebra based on Allen’s
interval calculus [3]. When a user makes a query, a case is retrieved, and both
the text and the formal structure are adapted. In order to evaluate the quality
of those adaptations, we have made Craqpot available as a Facebook appli-
cation that offers a helpful service to users while encouraging them to provide
evaluations.

c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 104–118, 2015.
DOI: 10.1007/978-3-319-24586-7 8

Evaluating a Textual Adaptation System 105

In Sects. 2 and 3, a short introduction to adaptation in textual and process-
oriented case-based reasoning is given, and existing evaluation frameworks are
discussed. Section 4 presents Craqpot, and Sect. 5 details how the domain
knowledge that is needed for the adaptation is “simulated”. The evaluation
methodology is presented in Sects. 6 and 7 presents the results. Concluding
remarks and future work are shown in Sect. 8.

2 Adapting Textual Cases

The CBR community recognises that significant knowledge is available in a tex-
tual format and, consequently, that being able to exploit this text can be a great
help in deploying CBR applications. There has been a significant interest since
the very beginning of CBR in systems which use texts as cases. This interest
has been expressed, among other things, by a series of workshops on textual
CBR at the 1998 AAAI conference, as well as at International and European
CBR Conference from 2005 to 2007. Most work in textual CBR has focused on
retrieval, but a few have taken an interest in trying to reuse texts.

2.1 Principles

The problem of text reuse in textual case-based reasoning has been addressed
in different manners. In [1], textual solutions are reused by identifying small
chunks of text to be reused from different solutions and aggregating them, which
can be seen as a type of compositional adaptation. An inverse approach is also
possible, in which a text is reused in whole but parts that should be modified
are identified [14].

Another way is to use a natural language generation system following the
adaptation of the underlying formal representation of the textual solution [13].
The approach we propose is based on regeneration, that is starting from existing
text or text fragments and making linguistic changes therein. We are aware of
only one other system that uses a similar approach, which is CookIIS [21],
which performs string substitutions based on ingredient substitutions in recipe
texts.

2.2 Evaluation

The part of a textual adaptation system responsible for selecting parts of a case
text to be reused as part of a solution text can be evaluated. The typical way to
evaluate such a system is to annotate manually the sentences that are expected
to be reused in the answer to test queries, then compare the actual result of the
system with the expected result, computing a precision and a recall score.

On the other hand, other aspects of textual adaptation have not really been
evaluated before. In particular, we are aware of no prior work that aimed at
evaluating actual text quality, nor at evaluating the quality of the text adaptation
separately from the quality of the underlying adaptation mechanism.

106 V. Dufour-Lussier and J. Lieber

3 Adapting Procedural Cases

More often, in CBR, the temporal aspect is taken into account by consider-
ing sequences of events, sometimes integrating relative or absolute time stamps
[8,15,25]. The most advanced work in this respect is that of process-oriented CBR
(PO-CBR), in which cases are often made of activities structured using workflows.
In CBR, workflows are usually expressed in a graph-based formal language, such
as the one described in [19], to make retrieval and adaptation possible. Again,
retrieval has received substantial research interest, but little work has been done
on the adaptation of procedures.

3.1 Principles

Arguably the first approach to workflow adaptation was case-based adaptation:
adaptation cases, which are combinations of a source case, a change request
and the resulting case, are used as a source of adaptation knowledge [16].
A somewhat similar approach identifies small workflow parts from the case base
that attain specific goals, and uses this to make substitutions of parts of the
retrieved workflow [20].

3.2 Evaluation

Most evaluation work in procedural adaptation is manual: either test queries
are provided along with the expected result, or users are asked to evaluate the
quality of the result. This is labour intensive and requires the intervention of
both domain experts and of people familiar with the formalism used.

An alternative, automatic approach is to compare the various parts of the
solution with the case base, the expectation being that if a generated workflow
part describes a feasible activity, it is likely to occur naturally in a large enough
case base [17].

4 CRAQPOT

In this section, we present our own approach to textual and procedural adapta-
tion and its software implementation, named Craqpot— the Case-based Rea-
soning Adaptor of Qualitative Procedures Over Texts— which provides an inter-
face to obtain recipes in response to any query. As its case base, Craqpot uses
the recipe database published for the 2nd Computer Cooking Contest.1 The
processes for case acquisition, for retrieval, for formal case adaptation and for
textual adaptation are all implemented as separate modules, and will therefore
be presented individually in the following subsections.
1 http://www.wi2.uni-trier.de/shared/eccbr/ccc09/.

http://www.wi2.uni-trier.de/shared/eccbr/ccc09/

Evaluating a Textual Adaptation System 107

4.1 Case Acquisition

The cases are provided as unannotated text, and so their formal counterpart
must be extracted to make adaptation possible. This is the case acquisition step,
which is detailed in [11]. Our approach is based on natural language processing,
and therefore goes through much of the same main steps as any other natural
language understanding system:

– Identifying word, clause and sentence boundaries. This task is performed using
hand-crafted regular expressions.

– Identifying the part-of-speech of each word, i.e. finding verbs, nouns, etc. This
task is performed by a Brill tagger [5], a semi-supervised machine learning tool
trained on a small set of annotated recipes.

– Performing syntactic analysis. This is done using a chunker, which is a parser
using a regular grammar, implemented using regular expressions, which is not
able to compute a complete parse tree, but can find noun and prepositional
phrases. Those are sufficient to identify verb complements, which correspond
to action parameters.

This is not the only possible approach: for instance, in [23], satisfying results
are obtained over the same type of texts, using information extraction. Both
approaches are efficient with instruction texts but would require adjustments
to give good results with different types of text. Another important and diffi-
cult step is resolving anaphoras i.e. associating words from the text with the
objects they are referring to. To this end, we implemented certain ideas from
dynamic semantics, wherein actions expressed in the text are considered as cre-
ating, transforming and removing objects.

Once all the relevant linguistic information has been identified in a text,
annotation rules are used to translate it into workflow patterns or, more inter-
estingly in our case, in qualitative constraints between events—cooking actions
and states— expressed using the qualitative algebra INDU [22], an extension of
Allen interval calculus [3]. The 9 annotation rules used in this implementation
are detailed in [9].

As an example, the following INDU constraints would be part of a simplified
formal case representation of the recipe shown in Fig. 1:

cook rice ?= 18 min Rice cooks for 18 min.
cook mushrooms ?= 2 min Mushrooms cook for 2 min.

cook mushrooms {f>} cook rice Mushrooms start cooking after rice and
finish at the same time.

(1)

Because case acquisition from text is not perfect, it is essential to evaluate it
separately to interpret the overall evaluation results of the system, because any
error at this stage will correspond to a decrease in the solution quality further
down the road.

108 V. Dufour-Lussier and J. Lieber

Fig. 1. A simple mushroom risotto recipe.

4.2 Retrieval

While it could in theory rely on an approach inspired by adaptation-guided
retrieval [24], in practice Craqpot relies on a reimplementation of Tuuur-
bine [12], a generic, ontology-guided case-based inference engine, using Wiki-
Taaable2 [4,7] as its knowledge base. Our evaluation framework is based on
the comparison of different adaptation approaches all using the same retrieval
engine, so retrieval should not have a strong influence on the evaluation results.

4.3 Case Adaptation

When a solution to a user query cannot be retrieved from the case base, adapta-
tion is required, which in Craqpot begins with a substitution. If, for instance,
the user wants a recipe for a carrot risotto and the case base does not con-
tain one, the mushroom risotto recipe of Fig. 1 may be retrieved. The system
will then adapt the retrieved recipe by replacing mushrooms with carrots, and
making whichever modifications are necessary to the instructions to obtain a
satisfactory result— for instance, adding the carrots earlier during the cooking
because otherwise they would be too crunchy— as described into more details
in [10].

Intuitively, this is done by finding the conjunction of the retrieved recipe
modified by the necessary ingredient substitutions and of the domain knowledge
that is available about the new ingredients— for instance, their required cooking
time, which may be represented as

cook carrots ?= 20 min Carrots cook for 20 min. (2)

Because a qualitative algebra is used, metric information must be specified with
additional knowledge:

2 min ?< 18 min 2 min are shorter than 18.
18 min ?< 20 min 18 min are shorter than 20.

(3)

Whenever adaptation is actually necessary, though, this will be because there
is a contradiction between the retrieved recipe and the domain knowledge, and
2 http://wikitaaable.loria.fr.

http://wikitaaable.loria.fr

Evaluating a Textual Adaptation System 109

so there will be no conjunction. In the example given, replacing mushrooms with
carrots will expose a contradiction between “cook mushrooms carrots ?= 2 min”
from (1) and “cook carrots ?= 20 min” from (2).

The workaround is to use belief revision theory [2] to make minimal modifi-
cations to the recipe in such a way that it becomes consistent with the domain
knowledge, an approach that has already been used successfully for adaptation
in CBR [6]. In the example this would, among other things, replace the last
constraints of (1) with

cook mushrooms carrots {fi>} cook rice Carrots start cooking before
rice and finish at the same time.

(4)

The implementation of a belief revision operator is a search algorithm that
looks through the possible interpretations of the set of qualitative constraints
that come from the domain knowledge to find those closest to the constraints
of the source case. A set of constraints has an exponential amount of possible
interpretations with respect to the number of intervals used in the case repre-
sentation, therefore the search takes exponential time. We were able, though, to
implement an approximation algorithm that reuses modified constraint satisfac-
tion problem algorithms algorithms to obtain satisfactory results in polynomial
time.

4.4 Text Adaptation

Once the formal constraints have been adapted, the text must be modified to
reflect the changes. The easiest solution, given that annotation rules exist that
associate linguistic features to algebraic constraints, would be to use the inverse
of those rules: given a constraint change, find the set of linguistic features that
would have generated this constraint, and change the actual linguistic features
of the text to reflect those. If the set of annotation rules were a bijection between
the set of sets of possible linguistic features and the possible algebraic relations,
this would be straightforward. But it is not, and therefore specific strategies are
used to make approximate changes in text, with the objective always being to
make the smallest possible changes, to limit the risk of introducing mistakes or
diminishing the quality of the text.

Additionally, the implementation favours moving events such that they
appear in the text in the order in which they begin, which minimises changes
inside the sentences at the expense of maximising the movement of whole
sentences.

With respect to the change described in (4), Craqpot makes the following
modifications:

110 V. Dufour-Lussier and J. Lieber

Observe that, because a qualitative algebra is used, it is not possible for the sys-
tem to know, and therefore indicate, that the rice should be added two minutes
after the carrots. This is a tradeoff for the algorithmic feasibility of the approach.

5 Simulating Domain Knowledge

One benefit of revision-based adaptation is that it can use whichever amount of
domain knowledge is available. If no domain knowledge is available at all, the
system will still work but give a result equivalent to null-adaptation. If complete
domain knowledge is available, the system will give a result equivalent to a classic
planning system. Any intermediary level of available domain knowledge will be
used to improve the results of the adaptation.

The acquisition of domain knowledge for a case-based reasoning application
falls outside the scope of this work. On the other hand, in order to get meaningful
adaptation from Craqpot that makes it possible to evaluate the system, some
quantity of knowledge is needed. We have therefore created a system to simulate
domain knowledge on the fly.

While it would have been possible, for instance, to consider that the domain
knowledge about the cooking of carrots is the disjunction of all the ways that
carrots are cooked in our recipe base, this would have given little constrained
knowledge, resulting in limited adaptations. For instance, we may have a recipe
for a carrot salad in which the cooking time is 0 min, and one for a soup in
which the cooking time is 60 min, which would suggest that any cooking time
between 0 and 60 min is acceptable, with the effect that the mushroom risotto
recipe would not be modified at all. We considered it would be more relevant for
an evaluation of adaptation to use highly constrained knowledge, which requires
a high adaptation effort.

Therefore, we have developed a system for on-the-fly extraction of relevant
domain knowledge. This method can be seen as an additional retrieval stage,
during which more cases are retrieved to be used in guiding adaptation. Given
a recipe Source and a substitution p � q, a new recipe KnowledgeSource con-
taining q is retrieved, such that ingredient q in this recipe is treated as much as
possible in a similar way as ingredient p in Source.

For instance, if the user requests a carrot risotto recipe and a mushroom
risotto recipe is retrieved, the system will attempt to retrieve some recipe with
carrot and obtain carrot knowledge from it. Suppose that three recipes with
carrots exist: a soup recipe in which carrots are cooked for one hour until they
decompose in the broth, a salad recipe in which carrots are shredded and used
raw, and a Asian recipe for sauteed pasta and vegetables. The system will retrieve
the recipe in which carrots are cooked in the way most similar to how mushrooms
are cooked in the mushroom risotto, which will be the Asian recipe. The way
the carrot is used in this recipe, e.g. how it is cut and how long it is cooked, will
become the carrot knowledge used to perform this adaptation, which is referred
to in (2).

In our implementation, the distance function used is a Hamming distance:
the distance between the recipe Source containing ingredient p and a candidate

Evaluating a Textual Adaptation System 111

KnowledgeSource recipe containing ingredient q is the amount of actions applied
to p in Source that are not applied to q in the KnowledgeSource candidate,
plus the amount of actions applied to q in the KnowledgeSource candidate that
are not applied to p in Source. An unweighted Hamming distance was chosen
because it makes the retrieval engine simple, but a different distance function
may be desirable if not all actions or action substitutions are considered to be
of equivalent importance.

Using this type of overly constrained domain knowledge can affect the out-
come of the adaptation both positively and negatively. For instance, if the carrot
recipe most similar to the mushroom risotto is in fact a carrot soup, it may be
that our domain knowledge will demand for carrots to be cooked for one hour,
and the adaptation result will suffer from this. On the other hand, the alterna-
tive, under-constrained approach could result in accepting a two-minute cooking
time for carrots on the basis, for instance, of a carrot salad recipe in which
carrots are not cooked at all.

6 Evaluation Framework

This section presents the evaluation methodology we propose for adaptation in
textual CBR. It is a comparative, blind, user-based approach: a user makes a
query, and is shown a result obtained from one of various different adaptation
techniques available. They are then asked to evaluate the result based on a set
of criteria.

This type of evaluation is less time-consuming than an evaluation based on
combinations of test queries and expected results, and we also think it is more
accurate because it does justice to the creativity of the system, which may be
able to provide results that did not occur to the designers of the test cases
yet fully satisfy the users. With respect to user-based evaluation of workflow
adaptation systems, it is also very advantageous in that the users need not be
fluent in the formalism underlying the adaptation in order to be able to evaluate
the system. As all user-based evaluation methodologies though, this evaluation
is by definition a black box type evaluation: while we can know, for a given
query–result pair, whether it gave satisfaction to the user, there is no automatic
way to determine what went wrong in case it doesn’t.

In the next subsections, the evaluation interface, the compared methods, and
the evaluation criteria are shown.

6.1 Interface

A new user first needs to create an account, which is automatic if they are
accessing the application from Facebook. They can then immediately make a
query, as shown in Fig. 2.

112 V. Dufour-Lussier and J. Lieber

Fig. 2. Craqpot query interface.

6.2 Presentation of the Adaptation Methods

A method is selected randomly between the two control methods and the
experimental method, and the query is processed with this method. If process-
ing fails— which is theoretically possible only with the retrieval method—
processing is transferred to another method.

The system has access to two control methods to answer requests:

– A retrieval-only method that performs no adaptation and fails when it is
not possible to find a recipe that corresponds exactly to the query. Since
Craqpot uses the same textual case base, the retrieval system defines the
maximum possible scores that could be obtained in text and recipe quality:
our proposal is not expected to adapt recipes in such a way that the result is
better than the original.

– A method based on a reimplementation of CookIIS text adaptation, which
performs a smart string replacement [21]. This provides a baseline: given the
simplicity and efficiency of CookIIS text adaptation, our proposal would be
difficult to justify if it did not offer better quality.

Applying the query from the running example (a carrot risotto) to the
retrieval-only method would fail—the query would then be handled by one of
the other methods. Applying the same to the CookIIS method would work, but
the instructions would only be modified insofar as the word “mushrooms” would
be replaced with the word “carrots”, resulting in a two minute cooking time for
carrots: “Meanwhile, slice the mushrooms carrots. Add them two minutes before
the end.”

6.3 Evaluation Questions

The result is then presented to the user, as shown in Fig. 3. The user has no way
of knowing which method was used to process their query.

Before the user can make a new query, they are asked to tell how much they
agree with the following statements:

– “This recipe seems tasty.” We postulate that this provides the most relevant
indicator to evaluate the quality of the content adaptation of the recipe—
independantly of the way it is written.

Evaluating a Textual Adaptation System 113

Fig. 3. Craqpot response and evaluation interface. This screenshot shows a recipe
that was adapted by the CookIIS method.

– “This text is well written.” We postulate that this provides the most relevant
indicator to evaluate the quality of the textual adaptation of the recipe.

– “This recipe fits my query.” We postulate that this provides a general indicator
as to whether the adaptation approach used was appropriate.

Users rate their degree of agreement on a 4-point Likert scale— where 1 indicates
strong disagreement and 4 indicates strong agreement.

The hypotheses we made are:

H1 Craqpot and CookIIS will output lower text and recipe quality, and lower
fitness—i.e. lower score on the third criterion—than simple retrieval.

H2 Craqpot will output higher recipe quality than CookIIS.
H3 Craqpot and CookIIS will output a similar text quality.
H4 Craqpot will leave its users with a better impression that the answer fits

the query than CookIIS.

We postulate H1 because of the inherent risk of automatic adaptation, H2

because Craqpot, unlike CookIIS, integrates domain knowledge, H3 because

114 V. Dufour-Lussier and J. Lieber

the risk of adaptation is mitigated by finer linguistic processing, and H4 because
the adaptation is less superficial. The null hypothesis H0 is that all three systems
are comparable and any difference in score would be the result of chance.

7 Results

Raw results based on 9 users performing 50 queries are shown in Fig. 4. Wilcoxon
signed-rank tests were performed for each criterion to compare methods pairwise
and measure the probability that the observed differences in scores are the result
of chance. The resulting p-values thresholds are shown in Table 1. It is commonly
assumed that p-values between .05 and .1 offer a weak presumption against H0,
whereas p-values below .05 offer a strong presumption against H0. Values below
.01 offer a very strong presumption.

Table 1. Significance of the pairwise method comparisons. For instance, “< .05” at
the intersection of “Retrieval” and “CookIIS” below “Text quality” means that the
difference in text quality between the retrieval and the CookIIS method has a prob-
ability p ≤ 5 % of being due to chance. The table is arranged in such a way that the
system named in the row header systematically gives better results than the one named
in the column header.

Text quality Recipe quality Fitness

CookIIS Craqpot CookIIS Craqpot CookIIS Craqpot

Retrieval < .05 < .1 < .01 < .05 < .001 > .5

Craqpot > .5 < .5 < .001

In all three indicators, retrieval ranked first, and Craqpot ranked second. As
expected, Craqpot’s and CookIIS overall performance is worse than simple
retrieval, partially validating H1. This is mitigated, though, by the fact that
simple retrieval was able to process only 46 % of the queries assigned to it.
In recipe quality, retrieval performed significantly better than Craqpot and
strongly significantly better than CookIIS, but the score difference between
Craqpot and CookIIS, while important, was not significant: the exact p-value
is .30. This indicates a 30 % chance that Craqpot’s better scores with respect
to CookIIS were the effect of chance, and therefore H2 is not supported by the
results. Further evaluations may change this. In text quality, retrieval performed
strongly significantly better than Craqpot and very strongly significantly better
than CookIIS. Although the evaluations surprisingly show that Craqpot did
better than CookIIS, the difference is not statistically significant, confirming
H3. In fitness, Craqpot performed just as well as retrieval, and both methods
were very strongly significantly better than CookIIS, confirming H4.

The few available evaluations make it possible to claim that H3 and H4 are
verified, and that H1 is partially verified. H2 is not verified but more evaluations
will be necessary.

Evaluating a Textual Adaptation System 115

Fig. 4. Detailed user evaluations.

8 Conclusion

We have presented Craqpot, a CBR system that retrieves and adapts processes
represented as instruction texts and the evaluation methodology we developed
to evaluate it.

116 V. Dufour-Lussier and J. Lieber

The evaluation approach we propose has many benefits with respect to exist-
ing approaches used in textual and process-oriented CBR. Compared to sets of
queries–expected results that are often used, it is much less labour-intensive to
put in place, and it gives value to creative solutions proposed by a system. Addi-
tionally, because we provide the results as text, we can rely on domain experts
that are not fluent in the formalism to provide evaluations. Yet, we are able to
obtain a separate evaluation for the textual and for the underlying formal case
adaptation. Certain details about the evaluation process are specific to the adap-
tation of processes, but we believe with further work it would be easy to redefine
our methodology in a more generic way for various textual CBR applications.

The evaluation results for our application, Craqpot, were mostly satisfac-
tory, although more evaluations would be needed to obtain stronger statistical
significance. There are many benefits from developing Craqpot as a Facebook
application that have been left as future work: for instance, the possibility of
using the user’s timeline in order to advertise for the application, and even
obtain multiple evaluations for the same query, using the different methods, by
appealing to their network.

We also proposed a system based on case-based retrieval for on-the-fly extrac-
tion of relevant knowledge. This system made it possible to evaluate our applica-
tion without having to specify complete domain knowledge. We also think that,
given further study to make it more generic, this approach could actually be
developed into a fully adequate way of integrating the experience of many cases
in order to adapt a source case.

References

1. Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case
retrieval reuse net (CR2N): an architecture for reuse of textual solutions. In:
McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 14–28.
Springer, Heidelberg (2009)

2. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530
(1985)

3. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

4. Badra, F., Cojan, J., Cordier, A., Lieber, J., Meilender, T., Mille, A., Molli, P.,
Nauer, E., Napoli, A., Skaf-Molli, H., Toussaint, Y.: Knowledge acquisition and
discovery for the textual case-based cooking system WikiTaaable. In: Delany, S.J.
(ed.) ICCBR 2009 Workshop Proceedings, pp. 249–258 (2009)

5. Brill, E.: A simple rule-based part of speech tagger. In: Workshop on Speech and
Natural Language, Association for Computational Linguistics, pp. 112–116 (1992)

6. Cojan, J., Lieber, J.: Applying belief revision to case-based reasoning. In: Prade, H.,
Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current
Trends, pp. 133–161. Springer, Heidelberg (2014)

Evaluating a Textual Adaptation System 117

7. Cordier, A., Dufour-Lussier, V., Lieber, J., Nauer, E., Badra, F., Cojan, J.,
Gaillard, E., Infante-Blanco, L., Molli, P., Napoli, A., Skaf-Molli, H.: Taaable:
a case-based system for personalized Cooking. Studies in Computational Intel-
ligence. In: Successful Case-based Reasoning Applications. Springer, Heidelberg
(2013, in press)

8. Dojat, M., Ramaux, N., Fontaine, D.: Scenario recognition for temporal reasoning
in medical domains. Artif. Intell. Med. 14(1–2), 139–155 (1998). Selected Papers
from AIME 1997

9. Dufour-Lussier, V.: Spatial-temporal qualitative reasoning from textual cases.
Ph.D. thesis, Université de Lorraine (2014)

10. Dufour-Lussier, V., Le Ber, F., Lieber, J., Martin, L.: Adapting spatial and tem-
poral cases. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp.
77–91. Springer, Heidelberg (2012)

11. Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition
from texts for process-oriented case-based reasoning. Inf. Syst. 40, 153–167 (2014)

12. Gaillard, E., Infante-Blanco, L., Lieber, J., Nauer, E.: Tuuurbine: a generic CBR
engine over RDFS. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol.
8765, pp. 140–154. Springer, Heidelberg (2014)

13. Gervás, P., Hervás, R., Recio-Garćıa, J.A.: The role of natural language genera-
tion during adaptation in textual CBR. In: 4th Workshop on Textual Case-Based
Reasoning: Beyond Retrieval (ICCBR 2007), pp. 227–235 (2007)

14. Lamontagne, L., Lee, H.-H.: Textual reuse for email response. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 242–
256. Springer, Heidelberg (2004)

15. Ma, J., Knight, B.: A framework for historical case-based reasoning. In:
Ashley, K.D., Bridge, D.G. (eds.) Case-Based Reasoning Research and Develop-
ment. LNCS, vol. 2689, pp. 246–260. Springer, Heidelberg (2003)

16. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of
workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176,
pp. 421–435. Springer, Heidelberg (2010)

17. Minor, M., Islam, M.S., Schumacher, P.: Confidence in workflow adaptation. In:
Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 255–268.
Springer, Heidelberg (2012)

18. Recio-Garćıa, J.A., Minor, M., Montani, S.: Process-oriented case-based reasoning.
Inf. Syst. 40, 103–105 (2014)

19. Minor, M., Schmalen, D., Bergmann, R.: XML-based representation of agile work-
flows. In: Bichler, M., Hess, T., Krcmar, H., Lechner, U., Matthes, F., Picot, A.,
Speitkamp, B., Wolf, P. (eds.) Multikonferenz Wirtschaftsinformatik, pp. 439–440.
GITO, Berlin (2008)

20. Müller, G., Bergmann, R.: Workflow streams: a means for compositional adaptation
in process-oriented CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS,
vol. 8765, pp. 315–329. Springer, Heidelberg (2014)

21. Newo, R., Bach, K., Hanft, A., Althoff, K.D.: On-demand recipe processing based
on CBR. In: ICCBR 2010 Workshop Proceedings, pp.209–218 (2010)

22. Pujari, A.K., Kumari, G.V., Sattar, A.: INDU: an interval & duration network. In:
Foo, N. (ed.) Advanced Topics in Artificial Intelligence. Lecture Notes in Computer
Science, vol. 1747, pp. 291–303. Springer, Heidelberg (1999)

23. Schumacher, P., Minor, M., Schulte-Zurhausen, E.: On the use of anaphora reso-
lution for workflow extraction. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Inte-
gration of Reusable Systems. Advances in Intelligent Systems and Computing, vol.
263, pp. 151–170. Springer, Cham (2014)

118 V. Dufour-Lussier and J. Lieber

24. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity
assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

25. Sánchez-Marré, M., Cortés, U., Mart́ınez, M., Comas, J., Rodŕıguez-Roda, I.: An
approach for temporal case-based reasoning: episode-based reasoning. In: Muñoz-
Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476.
Springer, Heidelberg (2005)

26. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. Knowl.
Eng. Rev. 20(3), 255–260 (2005)

Visual Case Retrieval for Interpreting
Skill Demonstrations

Tesca Fitzgerald(B), Keith McGreggor, Baris Akgun,
Andrea Thomaz, and Ashok Goel

School of Interactive Computing, Georgia Institute of Technology,
30332 Atlanta, Georgia

{tesca.fitzgerald,bakgun3,athomaz,goel}@cc.gatech.edu,
keith.mcgreggor@venturelab.gatech.edu

Abstract. Imitation is a well known method for learning. Case-based
reasoning is an important paradigm for imitation learning; thus, case
retrieval is a necessary step in case-based interpretation of skill demon-
strations. In the context of a case-based robot that learns by imitation,
each case may represent a demonstration of a skill that a robot has previ-
ously observed. Before it may reuse a familiar, source skill demonstration
to address a new, target problem, the robot must first retrieve from its
case memory the most relevant source skill demonstration. We describe
three techniques for visual case retrieval in this context: feature match-
ing, feature transformation matching, and feature transformation match-
ing using fractal representations. We found that each method enables
visual case retrieval under a different set of conditions pertaining to the
nature of the skill demonstration.

Keywords: Visual case retrieval · Case-based agents · Imitation
learning

1 Introduction

Learning by imitation is a well-researched methodology, both in human cogni-
tion and in cognitive robotics [2,18,26]. Robot learning by demonstration is an
approach which aims to enable imitation by having the robot receive a demon-
stration of a skill from a human teacher. The robot perceives the workspace and
objects involved in completing the skill during the demonstration, while also
recording the actions required to complete the skill. At a later time, the robot
may be asked to repeat the learned skill in the same or in a new workspace.

Case-based reasoning is an important paradigm for learning by imitation
(e.g. [6,7]). In the case-based approach to imitation, the robot would (i) store
the observed skill demonstrations as cases in a case memory, (ii) given a new,
related problem, retrieve the most similar case from the case memory, (iii) adapt
the demonstrated actions from the retrieved case to the new problem, and (iv) exe-
cute the adapted actions to address the new problem. We refer to the first two steps

c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 119–133, 2015.
DOI: 10.1007/978-3-319-24586-7 9

120 T. Fitzgerald et al.

of this approach as skill demonstration interpretation. Note that a necessary step
in skill demonstration interpretation is for the robot to recall the skill demonstra-
tion most similar to the current configuration of objects. Thus, in this paper, we
focus solely on this task of case retrieval to enable case-based interpretation of skill
demonstrations in the context of interactive robot learning by imitation. The goal
of case retrieval in this context is to return a source case demonstrating the same
skill as shown in a new, uncategorized skill demonstration.

A critical question in case-based interpretation is that of case representation.
A case of a previously observed skill should be represented such that, given a
new skill demonstration, it is feasible for the robot to recognize the similarity
between the two. In the rest of this paper, we make the following contributions:

1. Propose three visual representations for skill demonstration cases, with cor-
responding source case retrieval algorithms.

2. Present experiments testing each representation on skill demonstrations pro-
vided in a table-top environment.

3. Test the effectiveness of Fractal reasoning on real-world images perceived
during skill demonstrations.

4. Compare the efficacy of the three case retrieval methods by providing an
analysis of situations in which each method performs better than the others.

2 Background

Case-based reasoning is a cognitively inspired paradigm for reasoning and learn-
ing [1,11–13,22,23]; Thagard [25] views case-based reasoning as a paradigm for
modeling human cognition. In case-based reasoning, new problems are addressed
by retrieving and adapting solutions to similar problems stored as cases in a
case memory. In case-based reasoning, (a) learning is incremental, (b) learning
is problem-specific in that the robot adapts the most similar case to address
the current problem, and (c) learning is lazy, meaning that the robot learns the
abstraction only when needed.

Ontanon et al. [19] studied case-based learning from demonstration in the
context of online case-based planning in real-time strategy games. While an
important domain for case-based reasoning, games do not offer the low-level
challenges of perception and action to the same degree that interactive robots
immediately pose. Floyd, Esfandiari and Lam [7] describe a case-based method
for learning soccer team skills by observing spatially distributed soccer team
plays. Ros et al. [24] present a case-based approach to action selection in robot
soccer. More recently, Floyd and Esfandiari [6] describe a preliminary scheme for
separating domain-independent case-based learning by observation from domain-
dependent sensors and effectors on a physical robot.

We seek to use visual case-based reasoning to recognize that a new target
demonstration, such as the overhead view of a box-closing skill shown in the top
row of Fig. 1, is similar to skill demonstrations previously stored in the robot’s
memory, such as the related box-closing demonstrations shown in the bottom two

Visual Case Retrieval for Interpreting Skill Demonstrations 121

Fig. 1. Similar box-closing skill demonstrations

rows of Fig. 1. Visual case-based reasoning has been previously studied in tasks
ranging from interpreting line drawings [5,28] to image interpretation [8,20]
in domains ranging from molecular biology [4,10] to design [3,9,28]. Perner,
Hold and Richter [21] provide a review of some of these applications. Techniques
for visual case retrieval in these applications range from heuristic [9] to graph
matching [5] to constraint satisfaction [28]. Images in these applications typically
are static and often discrete (e.g., in the form of line drawings). In contrast,
images in case-based interpretation of skill demonstrations are dynamic and
continuous, requiring the development of new techniques for visual case retrieval.

The first column of Fig. 1 depicts the observed initial states of three demon-
strations of the same skill, and the second column depicts the corresponding final
states. As Fig. 1 illustrates, our current focus is on case-based interpretation of
skill demonstrations in a table-top learning environment. Our aim is to first
develop approaches for case-based interpretation, leaving the task of perception
in cluttered, occluded, messy, or poorly-lit environments to future work.

We first approach the problem of case-based skill interpretation using a Frac-
tal representation [17]. Instead of encoding the features detected within visual
scenes, the Fractal method encodes the visual transformations between initial
and final states of a skill demonstration. We wanted to use the Fractal method
because it allows automatic adjustment of the level of spatial resolution for eval-
uating similarity between two sets of images. While the Fractal method has been
applied to geometric analogies on intelligence tests, it has not yet been applied
to real-world images such as those a robot would perceive. To fully evaluate the
Fractal method for case-based interpretation, we chose to compare it to a base-
line method which uses the Scale-Invariant Feature Transform (SIFT) algorithm
to select image features. The SIFT algorithm identifies features regardless of the
image’s scale, translation, or rotation [14,15] and is widely used for computer
vision tasks in robotics research.

122 T. Fitzgerald et al.

Fig. 2. Analogical pouring skill demonstrations

3 Problem Characterization

We refer to a source case as a skill demonstration that has been provided to the
robot and is stored in the robot’s case memory. Thus, we use the terms demon-
stration, skill demonstration, and case interchangeably. Each demonstration is
defined as d = <p, a>, where p encodes the problem the demonstration seeks
to address and a encodes the demonstrated action. We focus on representing
demonstrations that illustrate only one action label (e.g. “pouring”, “opening”,
“stacking”). The list of observed objects, o, and the list of observed features of
the objects (color, size, etc.), f , are also elements of the demonstration repre-
sentation. A skill demonstration then consists of the following elements:

– The problem description p = <o, f, v>, where o and f are as described above,
and v is a set of parameters (e.g. initial object locations, initial end-effector
position)

– The action model a = {j0, j1, . . . , ji} encoding the robot’s end-effector posi-
tion at each time interval i.

The case-based interpretation process uses the problem descriptions of
sources cases in memory as input, such as the demonstrations shown in the
first two rows in Fig. 1, and a target problem, such as the third row in Fig. 1,
and maps the target problem to the most similar case in memory. Case-based
interpretation is completed by evaluating the similarity between the visual rep-
resentations of the target problem and the source cases, i.e., on o and f , and the
visual transformations in them, and does not require semantic information that
specifies the demonstrated action label.

We define a visual transformation as the tuple <Si, Sf , T>, where Si is an
overhead view of the initial state (the first column of images in Fig. 1), Sf is the
observed goal state that is reached following the skill completion (the second

Visual Case Retrieval for Interpreting Skill Demonstrations 123

column of images in Fig. 1), and T is the visual relation, or transformation,
between the two images Si and Sf .

4 Algorithms

4.1 Fractal Method

Our first approach uses fractal representations to encode the visual transforma-
tion function T between two images [16], and is expressed as the set of opera-
tions that occur to transform the initial state image Si into the final state image
Sf . Thus, the transformation function T encodes a set of sub-transformations
between Si and Sf . The Fractal method evaluates similarity at several levels
of abstraction, allowing automatic adjustment of the level of spatial resolution.
The similarity between two image transformations can be determined using the
ratio model:

sim(T, T ′) = f(T ∩ T ′)/f(T ∪ T ′)

In this model, T encodes the first set of image transformations, T ′ encodes the
second set of image transformations, and f(x) returns the number of features in
the set x [16,27]. Thus, f(T ∩T ′) returns the number of transformations common
to both transformation sets, and f(T ∪ T ′) returns the number of transforma-
tions in either set. The following process encodes a visual transformation as a
fractal [16]:

1. The initial state image is segmented into a grid containing a specified number
of partitions, S = {s0, s1, . . . , sp}, where p is determined by the abstraction
level n.

2. For each sub-image s ∈ S, the destination image is searched for a sub-image
d such that for some transformation k ∈ K, k(s) is most similar to d.

3. The transformation k and shift c, the mean color-shift between d and k(s),
are used to create a fractal code fs.

4. The resulting fractal is defined by F = {f0, f1, . . . , fp}
This encoding process is repeated for multiple values of n, resulting in an

encoding of the transformation at n levels of abstraction, where n is derived
from the images’ pixel dimensions. Here, we partition each 300 px by 180 px
image at n = 7 levels of abstraction. A code is defined by the tuple

<<sx, sy>,<dx, dy>, k, c>

where:

– sx and sy are the coordinates of the source sub-image
– dx and dy are the coordinates of the destination sub-image
– k ∈ K represents the affine transformation between the source and destination

sub-images where K = { 90 ◦ clockwise rotation, 180 ◦ rotation, 270 ◦ clockwise
rotation, horizontal reflection (HR), vertical reflection (V R), identity (I) }. k
is the transformation that converts sub-image s into sub-image d minimally,
while requiring minimal color changes.

124 T. Fitzgerald et al.

– c is the mean color-shift between the two sub-images

A set of fractal features is derived as combinations of different aspects of each
fractal code. While the fractal code does describe the transformation from a
section of a source image into that of a target image, the analogical matching
occurs on a much more robust set of features than merely the transformation
taken by itself. The illustrations which visualize the fractal representation there-
fore demonstrate only those transformations, and not the features.

4.2 SIFT Feature-Matching

The SIFT algorithm selects keypoint features using the following steps [14].
First, candidate keypoints are chosen. These candidates are selected as interest
points with high visual variation. Candidate keypoints are tested to determine
their robustness to visual changes (i.e., illumination, rotation, scale, and noise).
Keypoints deemed “unstable” are removed from the candidate set. Each keypoint
is then assigned an orientation invariant to the image’s orientation. Once each
keypoint has been assigned a location, scale, and orientation, a descriptor is
allocated to each keypoint, representing it in the context of the local image.

Our second approach to source demonstration retrieval using SIFT features
is based on feature-matching. The target skill demonstration is represented by
the image pair (Si, Sf). Using the SIFT algorithm, features are extracted from
each image and matched to features from the initial and final states of source
skill demonstrations. Each feature consists of the 16× 16 pixel area surround-
ing the feature keypoint. A brute-force method is used to determine that two
features match if they have the most similar 16× 16 surrounding area. The
source demonstration sharing the most features with the target demonstration
is retrieved using the following process:

1: Let D be a set of source skill demonstration images
2: c ← null; m ← 0
3: Ui ← SIFT features extracted from Si

4: Uf ← SIFT features extracted from Sf

5: for each demonstration d ∈ D do
6: Ci ← SIFT features extracted from di
7: Cf ← SIFT features extracted from df
8: T ← (Ui ∩ Ci) ∪ (Uf ∩ Cf)
9: If size(T) > m, then: m ← size(T), c ← d

10: end for
11: return c

Figure 3(e) illustrates a retrieval result, where the left-side image is Si and the
right-side image is the di selected with the highest number of matching SIFT
features.

Visual Case Retrieval for Interpreting Skill Demonstrations 125

4.3 SIFT Feature-Transformation

Our final approach to source demonstration retrieval via the SIFT algorithm
serves as an intermediate method which incorporates aspects of the Fractal
method’s emphasis on visual transformations, while adopting the same feature
selection strategy as the previous SIFT feature-matching method. This approach
focuses on the transformation of SIFT features between a demonstration’s ini-
tial and final states. Rather than retrieve a source demonstration based on the
explicit features it shares with the target demonstration, this approach retrieves
a source demonstration according to the similarities between its feature transfor-
mations and those of the transformations observed in the target demonstration.

Each feature of the demonstration’s Si is matched to its corresponding feature
in Sf , as shown in Fig. 3(b). This method uses the same features and feature-
matching method as in the feature-matching approach described previously. We
define each SIFT feature transformation as the tuple

<<sx, sy>, θ, l>

where sx and sy are the coordinates of the feature in the initial state, θ is the
angular difference between the feature location in the initial and final states,
and l is the distance between the feature location in the initial and end state
images. Each feature transformation occurring between Si and Sf in the target
demonstration is compared to each transformation occurring between Si and
Sf in each source skill demonstration. The difference between two SIFT feature
transformations is calculated by weighting the transformations’ source location
change, angular difference, and distance.

Each comparison is performed over seven blurring levels, which serves to
reduce the number of irrelevant or noisy features comparably to the Fractal
method’s usage of multiple abstraction levels. At each blur level, a normalized
box filter kernel is used to blur the target and source demonstrations’ visual
states, with the kernel size increasing by a factor of two at each level. The SIFT
feature-transformation method retrieves a source demonstration as follows:

1: Let D be a set of source skill demonstration images
2: c ← null; m ← 0; x ← 0
3: for each demonstration d ∈ D do
4: n ← 0
5: while n < maximum abstraction level do
6: Blur Si, Sf , di, and df by a factor of 2n

7: Ui ← SIFT features extracted from Si

8: Uf ← SIFT features extracted from Sf

9: Tu ← getTransformations(Ui ∩ Uf)
10: Ci ← SIFT features extracted from di
11: Cf ← SIFT features extracted from df
12: Tc ← getTransformations(Ci ∩ Cf)
13: for each transformation tu ∈ Tu do
14: Find tc ∈ Tc that minimizes diff (tu, tc)

126 T. Fitzgerald et al.

15: end for
16: x ← 0
17: for each transformation tu ∈ Tu do
18: x ← x + diff (tu, tc)
19: end for
20: If c is null or x < m, then: c ← d, m ← x
21: n ← n + 1
22: end while
23: end for
24: return c

5 Experiment

Each approach was used to retrieve a source skill demonstration for three test
sets of target demonstrations. Each skill demonstration is a pair of two recorded
keyframe images depicting the initial state and end state of a box-closing or cup-
pouring skill performed by a human participant, as shown in Figs. 1 and 2. Nine
participants demonstrated the two skills, and were recorded using an overhead
camera above the tabletop workspace. Participants indicated the initial and final
states verbally, and were asked to remove their hands from view when the initial
and final states were recorded. Each participant’s demonstration set consisted
of nine demonstrations per skill, each skill being performed at the orientations
shown in Figs. 1 and 2.

We evaluated the algorithms on three test sets, each representing retrieval
problems of a different difficulty level. In the aggregate set, a source demon-
stration is retrieved for two participants’ demonstrations (two skills each per-
formed with two objects at three configurations, resulting in a total of 12 target
demonstrations) from a library of 48 source demonstrations, which included 24
demonstrations of each skill. All box-closing and pouring demonstrations used
the same two boxes and two pouring objects, respectively, shown in the first
two rows of Figs. 1 and 2. In the individual set, a source skill demonstration was
retrieved for each of 54 target demonstrations (27 per skill). Within each partic-
ipant’s demonstration set, the target demonstration was compared to the other
demonstrations by the same participant. As a result, a source was retrieved for
each target demonstration from a library containing two source demonstrations
of the same skill and three of the opposite skill. As in the aggregate test set,
demonstrations used the same two boxes and two pouring objects.

In the analogical set, a source demonstration was retrieved for each of 161
target demonstrations (80 box-closing, 81 pouring). Within each participant’s
demonstration set, the target demonstration was compared only to other demon-
strations performed by the same participant. Unlike the previous test sets, tar-
get demonstrations were compared to source demonstrations involving different
objects, as in Figs. 1 and 2. As a result, demonstrations involving a third kind of
box and pouring object were introduced, shown in the last row of Figs. 1 and 2. A
source demonstration was retrieved for each target demonstration from a library

Visual Case Retrieval for Interpreting Skill Demonstrations 127

Table 1. Source Case Retrieval Results

Test set Fractal SIFT feature-matching SIFT feature-transformations

Aggregate 100 % 100 % 91.7 %

Individual 87 % 100 % 35.2 %

Analogical 65.3 % 93.8 % 84.5 %

containing six source demonstrations of the same skill and nine of the opposite
skill. One box-closing demonstration was incomplete and could not be included
in the test set; as a result, 17 target demonstrations were compared to one fewer
box-closing demonstration. The purpose of the analogical test set was to test
each retrieval method’s ability to retrieve a source skill demonstration, despite
containing a different set of objects than the target demonstration.

6 Experimental Results

Table 1 lists the overall accuracy of each method when applied to each test set.
Since the aggregate test contained a large set of source demonstrations and was
most likely to contain a demonstration similar to the target problem, we expected
that this test set would be the easiest test set for any of the three methods to
address.

6.1 Detailed Analysis

While the experimental results provide useful information about the accuracy of
the three methods, it is useful to also analyze the strengths of each method.

Case Study: Fractal Method Success. First, we analyze an example in
which only the Fractal method retrieved an appropriate source demonstration.
Figure 3(a) depicts the target problem demonstration, which the Fractal method
correctly matched to the source demonstration shown in Fig. 3(d). The Fractal
method offers both a decreased susceptibility to noise as well as a plethora of
fractal features over which to calculate a potential match (beyond the transfor-
mation itself).

The SIFT feature-matching method incorrectly classified Fig. 3(a) as a pour-
ing skill demonstration, due to the many features matched between the target
demonstration and pouring demonstration’s final states. Features of the demon-
strator’s hand were incorrectly matched to features of the pouring instrument,
as shown in Fig. 3(e). The SIFT feature-transformation method also incorrectly
classified the demonstration as a pouring skill demonstration. Figure 3(b) illus-
trates the feature transformations used to represent the target problem. Each
feature in the initial state was matched to the single feature identified in the
final state. Thus, the resulting feature transformations did not properly repre-
sent the skill being performed, which led to the retrieval of an incorrect source
demonstration (see Fig. 3(c)).

128 T. Fitzgerald et al.

(a) Target Problem (b) SIFT Feature-Transformation Repre-
sentation

(c) SIFT Feature-Transformation Result (d) Fractal Method Result

(e) SIFT Feature-Matching Result

Fig. 3. Case study 1: retrieval method results

We conclude that the Fractal method can be applied to source retrieval
problems in which the visual transformation, rather than keypoint features, are
indicative of the skill being performed. The Fractal method is also applicable to
demonstrations that include some clutter, such as the demonstrator’s hand or
other objects unrelated to the skill being performed. This case study also demon-
strates that the feature-matching method is sensitive to clutter. Additionally, the
feature-transformation method is less effective in classifying demonstrations in
which there are few features in the initial or final state, or in which there is
a poor correspondence between features matched between the initial and final
state images. As an example, the feature-transformation method would perform
poorly given a demonstration of a book-closing skill, where initial-state SIFT fea-
tures detected on the inside pages of the book cannot be matched to final-state
SIFT features on the cover of the book.

Case Study: SIFT Transformation Success. In the next case, only the SIFT
feature-transformation method retrieved an appropriate source demonstration
for the target problem shown in Fig. 4(a). The SIFT feature transformation
method retrieves visually analogical source demonstrations by identifying visual
transformations at multiple abstraction levels. The transformations in Fig. 4(c)
were deemed similar to those in the target problem. Features in the initial and
final states were matched correctly, which is why this method was able to succeed.

The Fractal method incorrectly retrieved the source demonstration shown in
Fig. 4(d) due to its emphasis on visual transformations independent of features,
and thus is less effective in distinguishing between skills that have similar visual
transformations. The more similar the visual transformations, the more common
and therefore the less salient are the Fractal method’s generated features derived

Visual Case Retrieval for Interpreting Skill Demonstrations 129

(a) Target Problem (b) SIFT Feature-Transformation Repre-
sentation

(c) SIFT Feature-Transformation Result (d) Fractal Method Result

(e) SIFT Feature-Matching Result

Fig. 4. Case study 2: retrieval method results

from those transformations. The Fractal method chose this source demonstration
due to the similarity between the movement of the box lid from one part of
the target demonstration image to another, and the movement of coffee beans
from one part of the source demonstration image to another. The SIFT feature-
matching method also returned an incorrect source demonstration in this case,
as it erroneously matched features of the target demonstration’s initial state to
features of a pouring instrument (see Fig. 4(e)).

This case study teaches us that the feature-transformation method is best
applied to situations in which there are a large number of features in both the
initial and final state images, and the two sets of features have been mapped
correctly. Additionally, we find that the Fractal method is less effective in distin-
guishing between skills that have similar visual transformations. Finally, this case
study demonstrates how the feature-matching method relies on having a correct
mapping between features of the target demonstration and features extracted
from a potential source demonstration.

Case Study: SIFT Feature-Matching Success. In the final case study,
only the feature-matching method retrieved the correct source demonstration to
address the target problem shown in Fig. 5(a). This method correctly corresponds
features between the target problem and source demonstration’s initial and final
state features. The initial state feature mapping is shown in Fig. 5(e).

Just as in the first case study, the feature-transformation method does not
retrieve the correct source demonstration because there are not enough features
in the final state image. All features in the source demonstration’s initial state
are mapped to the single feature in the final state image, causing the feature
transformations to poorly reflect the skill being performed. The Fractal method

130 T. Fitzgerald et al.

(a) Target Problem (b) SIFT Feature-Transformation Repre-
sentation

(c) SIFT Feature-Transformation Result (d) Fractal Method Result

(e) SIFT Feature-Matching Result

Fig. 5. Case study 3: retrieval method results

retrieves an incorrect source demonstration due to its emphasis on the visual
transformation between the two states, without any weight to the objects being
moved. In this example, the Fractal method determined the movement of the
box lid to be analogical to the movement of coffee beans from the left side of the
image to the right side, as shown in Fig. 5(d).

Thus, the feature-matching method is most effective when there is a correct
correspondence between features of the target problem and matching features
in the potential source demonstration, and there are enough features in both
demonstrations to represent the objects being used. As it turns out, even our
analogical test set used objects that were similar enough for feature-matching to
achieve the highest success rate (e.g., even after switching from pouring coffee
beans to white beans, black flecks made them look enough like coffee beans to
match). We expect that for analogical images with less object feature correspon-
dence, this result would dramatically change.

The feature-matching method performed best on each test set. However, we
anticipate that this method would not perform well on skill demonstrations in
which irrelevant features are present, such as clutter or the demonstrator’s hand.
Additionally, this method would mistake skill demonstrations with the same
feature set; block-sorting and block-stacking demonstrations could be performed
using the same objects, and thus the two demonstrations would be matched as
a result of having the same set of features.

6.2 Discussion

Several variables may affect the accuracy of each skill interpretation method. The
Fractal method is affected by the heuristic used to select the abstraction level at

Visual Case Retrieval for Interpreting Skill Demonstrations 131

which two demonstrations should be compared. We currently use the heuristic of
summing the similarity scores that are calculated at multiple abstraction levels.
However, this heuristic may negatively impact the Fractal method’s overall accu-
racy if skill types are most accurately classified at a certain abstraction level.
Additionally, the SIFT feature-transformation method is affected by the scoring
function used to determine the similarity of two transformations. The weight
values applied to the angular difference, change in transformation distance, and
change in start location between two feature transformations will impact how
accurately the method can determine the similarity between visual feature trans-
formations. These two variables, the abstraction-level selection heuristic and the
transformation similarity metric, may become the focus of future work.

7 Conclusion

We have explored visual case retrieval for case-based interpretation of skill
demonstrations as a precursor to case-based robot learning by imitation. We have
presented three methods for this task: SIFT feature-matching, SIFT feature-
transformation, and Fractal feature-transformation. Although the general SIFT
algorithm is widely used for computer vision tasks, the use of fractal and SIFT
features in case-based skill interpretation is new insofar as we know.

No single method works best for all case-based skill interpretation problems.
Rather, each method discussed in this paper is best suited for a particular type
of problem. The feature-matching method is best suited for interpretation prob-
lems in which enough visual features can be extracted to identify the skill and
no clutter is present. The SIFT feature-transformation method is most effective
in problems where many features can be extracted from the demonstrations,
and correspondences between features can be identified correctly. Finally, the
Fractal method is most effective in identifying skills in which the visual transfor-
mation should be emphasized, rather than features of the demonstration images
themselves. This suggests the use of a multi-strategy technique for visual case
retrieval in the domain of interpreting skill demonstrations.

Acknowledgments. This material is based upon work supported by the United
States’ National Science Foundation through Graduate Research Fellowship Grant
#DGE-1148903 and Robust Intelligence Grant #1116541. Any opinion, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI commun. 7(1), 39–59 (1994)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

132 T. Fitzgerald et al.

3. Cheetham, W., Graf, J.: Case-based reasoning in color matching. In: Leake, D.B.,
Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 1–12. Springer, Heidelberg
(1997)

4. Davies, J., Goel, A.K., Nersessian, N.J.: A computational model of visual analogies
in design. Cogn. Syst. Res. 10(3), 204–215 (2009)

5. Ferguson, R.W., Forbus, K.D.: GeoRep: a flexible tool for spatial representation of
line drawings. In: AAAI/IAAI, pp. 510–516 (2000)

6. Floyd, M.W., Esfandiari, B.: A case-based reasoning framework for developing
agents using learning by observation. In: 2011 23rd IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 531–538. IEEE (2011)

7. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitat-
ing robocup players. In: FLAIRS Conference, pp. 251–256 (2008)

8. Grimnes, M., Aamodt, A.: A two layer case-based reasoning architecture for med-
ical image understanding. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS,
vol. 1168, pp. 164–178. Springer, Heidelberg (1996)

9. Gross, M.D., Do, E.Y.L.: Drawing on the back of an envelope: a framework for
interacting with application programs by freehand drawing. Comput. Graph. 24(6),
835–849 (2000)

10. Jurisica, I., Glasgow, J.: Applications of case-based reasoning in molecular biology.
AI Mag. 25(1), 85 (2004)

11. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)
12. Leake, D.B.: Case-Based Reasoning: Experiences, lessons and future directions.

MIT press, Menlo Park (1996)
13. Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,

Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., et al.: Retrieval, reuse, revision
and retention in case-based reasoning. Knowl. Eng. Rev. 20(03), 215–240 (2005)

14. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp.
1150–1157. IEEE (1999)

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

16. McGreggor, K., Goel, A.: Fractal analogies for general intelligence. In: Bach, J.,
Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 177–188. Springer,
Heidelberg (2012)

17. McGreggor, K., Kunda, M., Goel, A.: Fractals and ravens. Artif. Intell. 215, 1–23
(2014)

18. Meltzoff, A.N.: Imitation and other minds: the “like me” hypothesis. Perspectives
on Imitation: From Neuroscience to Social Science, vol. 2, pp. 55–77 (2005)

19. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution
for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

20. Perner, P.: An architecture for a CBR image segmentation system. Eng. Appl.
Artif. Intell. 12(6), 749–759 (1999)

21. Perner, P., Holt, A., Richter, M.: Image processing in case-based reasoning. Know.
Eng. Rev. 20(3), 311–314 (2005)

22. Richter, M.M., Weber, R.: Case-Based Reasoning. Springer, Heidelberg (2013)
23. Riesbeck, C., Schank, R.: Inside Case-Based Reasoning. Lawrence Erlbaum Asso-

ciates, Hillsdale (1989)
24. Ros, R., Arcos, J.L., De Mantaras, R.L., Veloso, M.: A case-based approach for

coordinated action selection in robot soccer. Artif. Intell. 173(9), 1014–1039 (2009)

Visual Case Retrieval for Interpreting Skill Demonstrations 133

25. Thagard, P.: Mind: Introduction to Cognitive Science. MIT press, Cambridge
(2005)

26. Tomasello, M., Kruger, A.C., Ratner, H.H.: Cultural learning. Behav. Brain Sci.
16(03), 495–511 (1993)

27. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)
28. Yaner, P.W., Goel, A.K.: Analogical recognition of shape and structure in design

drawings. Artif. Intell. Eng. Des. Anal. Manuf. 22(02), 117–128 (2008)

Improving Trust-Guided Behavior Adaptation
Using Operator Feedback

Michael W. Floyd1(B), Michael Drinkwater1, and David W. Aha2

1 Knexus Research Corporation, Springfield, VA, USA
{michael.floyd,michael.drinkwater}@knexusresearch.com
2 Navy Center for Applied Research in Artificial Intelligence,

Naval Research Laboratory (Code 5514), Washington, DC, USA
david.aha@nrl.navy.mil

Abstract. It is important for robots to be trusted by their human team-
mates so that they are used to their full potential. This paper focuses
on robots that can estimate their own trustworthiness based on their
performance and adapt their behavior to engender trust. Ideally, a robot
can receive feedback about its performance from teammates. However,
that feedback can be sporadic or non-existent (e.g., if teammates are
busy with their own duties), or come in a variety of forms (e.g., different
teammates using different vocabularies). We describe a case-based algo-
rithm that allows a robot to learn a model of feedback and use that model
to adapt its behavior. We evaluate our system in a simulated robotics
domain by showing that a robot can learn a model of operator feedback
and use that model to improve behavior adaptation.

Keywords: Inverse trust · Behavior adaptation · Adaptable autonomy

1 Introduction

Robots can be valuable members of teams if they provide the team with addi-
tional skills, reduce task load, or minimize potential risks to humans. In some
scenarios, the robots’ contributions could be vital to achieving team goals or
successfully completing missions. We focus on semi-autonomous robots that can
be issued high-level commands by an operator (e.g., “move to the river”, “patrol
for threats”). However, for the operator to use the robot to its full potential it
needs to trust the robot. A lack of trust could result in unnecessarily monitoring
the robot’s actions, underutilizing the robot, or not using it at all [1].

We have previously examined how a robot can evaluate its trustworthiness
using an inverse trust metric and adapt its behavior in an effort to engender
trust [2]. Unlike traditional trust metrics that can be used to measure a robot’s
trust in its operator, an inverse trust metric estimates how much trust the oper-
ator has in the robot. Our inverse trust metric uses the robot’s performance to
estimate trust and measures general trends in trustworthiness (i.e., increasing,
decreasing, remaining constant). Behavior adaptation is performed using case-
based reasoning (CBR) and allows the robot to adapt to changes in operators,
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 134–148, 2015.
DOI: 10.1007/978-3-319-24586-7 10

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 135

missions, or contexts. However, our earlier approach assumes that no explicit
feedback is provided by the operator so only observable indicators of the robot’s
performance are used. Although such an assumption is beneficial in scenarios
where the operator does not have time to provide explicit feedback, it limits the
robot’s ability to use this information when it is available.

In this paper we describe an extension of our previous work, which only used
implied feedback (i.e., the operator allowed the robot to complete a task or inter-
rupted it), to allow the robot to utilize explicit operator feedback. No assump-
tions are made about the format of feedback so it is applicable when feedback
comes in different modes (e.g., text, gestures, interface commands) or expres-
sions (e.g., synonymous phrases, different languages). Similarly, no assumptions
are made about the frequency of feedback. The robot uses case-based reasoning
to learn a model for what the various pieces of feedback mean and uses that
model to assist in behavior adaptation (e.g., if the operator says “go faster” the
robot should increase its speed).

The remainder of this paper describes how a robot can learn a model of oper-
ator feedback and use that feedback to adapt its behavior. In Sect. 2, we provide
a summary of our previous work on how a robot can adapt its behavior in an
attempt to be a more trustworthy member of a team. Section 3 provides a dis-
cussion of related work. Section 4 describes the type of feedback that an operator
can give to the robot, and Sect. 5 presents an approach for learning the meaning
of feedback and using feedback to improve behavior adaptation. In Sect. 6, we
evaluate our approach using scenarios from a simulated robotics domain. They
indicate that the robot can use a learned feedback model to improve its behavior
adaptation performance. Concluding remarks are discussed in Sect. 7.

2 Trust-Based Behavior Adaptation

The robot receives high-level commands from the operator (e.g., “move to
the building”, “patrol for threats”, “transport supplies to the hospital”) and
autonomously performs the tasks it is assigned. As the robot performs these
tasks, it can control and modify its behavior by changing modifiable compo-
nents. Each modifiable component i represents a single aspect of the robot’s
behavior and the robot is responsible for selecting a value mi for that compo-
nent from the set Mi of possible values (mi ∈ Mi). For example, the robot
could select a parameter value from a set of possible values, an algorithm to use
from a set of path planning algorithms, or data to use from a set of alternative
data sources. Without loss of generality, we assume that the possible values are
totally ordered, with an ordering relation between each pair of values (mj

i ≺ mk
i ,

where mj
i ,m

k
i ∈ Mi).

If the robot has n modifiable components, its current behavior B is a tuple
containing the currently selected value for each modifiable component (B =
〈m1,m2, . . . , mn〉). In our work, the robot modifies its behavior in an attempt to
increase its trustworthiness. Unlike traditional trust metrics [3] where the robot
measures its trust in another agent, an inverse trust metric [2] is used to estimate

136 M.W. Floyd et al.

how much trust an agent has in the robot. Since inverse trust is measured from
the robot’s perspective, only observable indicators of human-robot trust can
be used (i.e., none of the human’s internal reasoning information). The robot
estimates its trustworthiness based on when it successfully completes assigned
tasks, when it fails to complete assigned tasks, and when it is interrupted while
performing a task.

The inverse trust metric evaluates the trustworthiness of the current behavior
B and tracks trends in trust over time. If the robot has received c commands,
the metric will include information from each of those commands. Successfully
completed commands will increase the trust estimate, and failed commands or
interruptions will decrease the estimate (cmdi ∈ {−1, 1}, with a weight wi based
on the command’s relative importance):

TrustB =
c∑

i=1

wi × cmdi

The robot updates this value as more commands are issued and compares it to
two thresholds: the trustworthy threshold (τT) and the untrustworthy threshold
(τU). If the estimate reaches the trustworthy threshold (TrustB ≥ τT), the
robot concludes it has found a sufficiently trustworthy behavior but continues
to estimate trust in case there is a change in operator, mission, or goals. If
the estimate reaches the untrustworthy threshold (TrustB ≤ τU), the robot
concludes its behavior is untrustworthy and should be changed. Otherwise (τU <
TrustB < τT), the robot continues to monitor the trust estimate until it is more
confident about its trustworthiness.

When the untrustworthy threshold is reached, the robot changes its behavior
from B to a new behavior B′ and begins measuring the trustworthiness of that
behavior (i.e., TrustB′). The behavior that was found to be untrustworthy, along
with the time t it took to reach the untrustworthy threshold, are stored as an
evaluated pair E (E = 〈B, t〉).

As the robot evaluates more behaviors, it maintains a set of previously evalu-
ated behaviors Epast that contains all of the behaviors it has found to be untrust-
worthy (Epast = {E1, E2, . . . }). These previously evaluated behaviors represent
the search path the robot has taken while searching for a trustworthy behavior
Bfinal. In a CBR context, the previously evaluated behaviors are the problem
and the final behavior is the solution. We use the following case representation:

C = 〈Epast, Bfinal〉
When the robot successfully finds a trustworthy behavior, it creates a new case
and stores it in its case base. The motivation for using this case representation is
that two operators who find similar behaviors untrustworthy in a similar amount
of time may find similar behaviors to be trustworthy. When the robot needs to
adapt its behavior (i.e., the trust metric reaches the untrustworthy threshold), it
compares the behaviors it has previously evaluated (Epast) to each of the cases. If
a case is sufficiently similar and its final behavior has not already been evaluated
as untrustworthy, the robot switches to use that case’s final behavior.

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 137

If no cases are sufficiently similar, the robot performs a random walk. This
form of behavior adaptation finds the evaluated behavior that took the longest
to be labeled as untrustworthy and modifies that behavior. This works under the
assumption that the behavior that took the longest to reach the untrustworthy
threshold was the closest to being trustworthy, so a slight modification could
make it more trustworthy. A more detailed description of case creation, case
retrieval, case-based behavior adaptation, and random walk behavior adaptation
can be found in [2].

Our previous work only accounted for implied feedback (i.e., successes, fail-
ures, and interruptions). The primary contribution of this paper is extending
our previous work to allow for explicit feedback from the operator.

3 Related Work

Kaniarasu et al. [4] have also examined an online, performance-based estimate
of operator trust. Their measure tracks only negative factors (e.g., how often
the robot is warned of poor performance, or the operator manually controls the
robot), so it can identify only decreases in operator trust. To also track increases
in trust, they extended their measure to incorporate performance information
from the operator at regular intervals [5] (e.g., the operator provides the robot
feedback about its performance every 30 s). However, this approach is unable to
track trust for any periods where explicit feedback in unavailable. Saleh et al.
[6] estimate operator trust using a set of expert-authored rules. Since the rules
could be different for each operator, mission, or context, this measure requires
an expert redefine the rules whenever a change occurs.

In case-based reasoning, research has focused on traditional trust rather than
inverse trust, and has generally been examined in the context of agent collab-
oration [7] or recommendation systems [8]. Case provenance [9] also deals with
trust but focuses on the trustworthiness of a case’s source rather than the trust-
worthiness of an agent or system.

Our work on inverse trust is related to learning a user’s preferences. The
ability to incorporate a user’s preferences has been examined in areas such
as learning interface agents and preference-based planning [10]. Learning inter-
face agents build a model of a user by watching the user perform a task (e.g.,
e-mail sorting [11] or schedule management [12]) and later assisting the user
in performing that task. Similarly, preference-based planners can learn a user’s
planning preferences by observing the user perform a planning task [13]. In our
work, these demonstration-based approaches would be equivalent to the opera-
tor manually controlling the robot and performing the task. This would not be
practical in time-sensitive situations or when the operator does not have a fully
constructed plan for how a task should be performed.

Both user preferences and feedback play an important role in human-in-the-
loop CBR systems, such as conversational case-based reasoning systems [14].
These interactions tend to be in the form of dialogs between the user and the
system, whereas in our work interactions are one-sided (i.e., information is passed

138 M.W. Floyd et al.

only from the operator to the robot) and sporadic. Conversational recommender
systems [15] use feedback to refine a model of the user and iteratively improve
the recommendations that are provided. Similarly, feedback can also be used to
tailor what questions to ask a user [16], thereby influencing what feedback will
be provided in the future. Whereas our system is designed to work in a variety
of tasks and missions, these approaches focus on a single task (i.e., recommen-
dation).

The meaning of explicit operator feedback is learned by the robot by deter-
mining a relationship between its behavior when the feedback was received and
its final trustworthy behavior. Relationships are similar to compound critiques
[17] in recommender systems in that they represent the changes that should be
made to a set of features. More generally, learning behavior relationships is sim-
ilar to rule-induction [18]. The primary difference between these approaches and
our own is that behavior relationships are generated using two data points (e.g.,
the behavior when feedback was received and the trustworthy behavior), rather
than a full or partial subset of observations.

4 Operator Feedback

The primary methods used by the operator to interact with the robot are issuing
commands and interrupting (i.e., implied feedback). However, the operator can
also provide additional information to the robot in the form of explicit feedback.
For the remainder of this paper, when referring to feedback we mean explicit
feedback rather than implied feedback.

Feedback is provided at the operator’s discretion, so no assumptions are
made about when it will occur or how often it will be provided. The frequency
of feedback is operator-specific (i.e., some operators prefer to provide more feed-
back) but is also influenced by the operator’s workload. For example, an operator
would likely have less time to provide feedback to the robot during an emergency
situation. In the extreme case, the robot would not receive any feedback from
the operator.

For a robot that supports multimodal interaction, feedback can be provided
by any of the available modes (e.g., written text, speech, gestures, user interface
commands). This allows the operator to provide the same feedback in a variety
of ways. For example, the operator can tell the robot to stop by saying the word
“stop”, making a hand gesture, or pressing a keyboard button. Similarly, the
operator can provide the same feedback in a variety of ways using a single mode
of interaction (e.g., “go faster”, “speed up”, “get going”, saying it in other lan-
guages). The robot could use computational semantics or machine translation to
group similar utterances, but this might not be feasible due to the robot’s com-
putational constraints. Similarly, the robot would need a method for grouping
similar pieces of feedback from different modalities.

In some domains, the format of feedback can be formally defined such that
the robot has a prior model of what feedback it can receive and what each
piece of feedback means. However, this requires the operator to be aware of the

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 139

format and structure its feedback accordingly. It would be difficult to enforce
this requirement if the robot is expected to interact with a variety of operators
with minimal training (e.g., a robot that is part of an ad-hoc team or a mass-
produced consumer robot). Even if the operator is fully aware of how to correctly
provide feedback, the format might limit how expressive the feedback can be.
This would make it difficult to provide feedback if the team encounters new
environments, new tasks, or unforeseen events. Instead, we will examine how the
robot can learn a model of operator feedback without any prior knowledge about
the frequency, format, or modality of feedback.

Each time feedback is provided by the operator, the robot stores a pair F
containing the feedback f and the behavior B that was being used by the robot
when the feedback was received (F = 〈f,B〉). This representation encodes the
circumstances under which the operator decided to provide feedback (i.e., how
the robot was behaving) as well as the information the operator was trying to
convey to the robot (i.e., the feedback). This makes the assumption that the
operator’s feedback is a direct response to how the robot is currently behaving.
If the operator provides feedback about a previous behavior (e.g., “You were
driving too slowly five minutes ago.”), this encoding will erroneously attribute
that feedback to the current behavior. However, we anticipate that such delayed
feedback will be relatively rare compared to feedback about the current behavior
or delayed feedback that is still valid for the current behavior (e.g., the robot
was driving slowly five minutes ago and is still driving slowly).

Over the course of operation, the robot will maintain a set Freceived of
received feedback (Freceived ⊆ F , where F is the set of all possible feedback
items). This set, which will be empty initially, will be extended when the robot
receives a new feedback item (Freceived =

⋃n
i=1 Fi, where n is the number of

feedback items received).

5 Feedback Model

We have described how the robot can record feedback but not how it can leverage
that information. This section will present methods that allow the robot to learn
from feedback and use that feedback in an attempt to improve its behavior
adaptation performance.

5.1 Learning the Feedback Model

Since the meaning of feedback is initially unknown to the robot, it needs to
learn a feedback model. The feedback items themselves do not provide enough
information to build the model because they capture only what the robot’s
behavior was at the time the feedback was received. The robot also needs to
know what it should have done in response to the feedback. Since feedback
is received while searching for a trustworthy behavior, when the robot finds a
trustworthy behavior it can use that behavior to build its feedback model.

140 M.W. Floyd et al.

The feedback model is structured as a case base that contains guidelines for
how the robot should adapt its behavior in response to feedback. We refer to
this case base as the feedback base to differentiate it from the case base used for
case-based behavior adaptation. A case FR is defined as:

FR = 〈f,R, cnt〉

Each case contains a piece of feedback f , a relationship R, and a frequency count
cnt. The relationship represents guidelines for how the robot should adapt its
behavior in response to the feedback. For any pair of behaviors (e.g., the behavior
when feedback was received and a final trustworthy behavior), the relationship
encodes how the two behaviors differ (relation : B × B → R, where B is the
set of all behaviors and R is the set of all relationships). More specifically, the
relationship encodes how the modifiable components of each behavior differ.
A relationship can be determined for each pair of modifiable components (rel :
Mi ×Mi → O,O = {≺,
,=}). The relationship Rij between two behaviors Bi

and Bj contains the relationship between each of their modifiable components
(|Bi| = |Bj | = |Rij |, Rij = 〈rel(Bi.m1, Bj .m1), rel(Bi.m2, Bj .m2), . . . 〉).

Consider an example where the robot has two modifiable components: its
speed and its object padding (how far it attempts to stay away from obstacles
when planning its movement). If the robot receives the feedback “go faster” while
using a speed of 1 meter/second and a padding of 0.5 meters (B1 = 〈1, 0.5〉),
and eventually finds a behavior with a speed of 5 meters/second and a padding
of 0.5 meters (B2 = 〈5, 0.5〉) to be trustworthy, the relationship will show the
speed increased and the padding remained constant (R12 = 〈≺,=〉).

The cnt value stores the number of times that feedback f resulted in the
relationship R being observed. The motivation for storing this value is that it
is possible to observe unnecessary relationships or erroneous relationships. An
unnecessary relationship would occur if the robot changed one or more modifi-
able components when it did not need to (e.g., in an attempt to go faster the
robot changed both its speed and its padding), whereas an erroneous relationship
would occur when the operator gives incorrect feedback (e.g., telling the robot
to go faster when it is already driving fast enough). We make the assumption
that correct relationships, even if they contain unnecessary modifications, will
occur more frequently than erroneous relationships. Using this case definition,
the feedback can be thought of as the problem, the relationship as the solution,
and the frequency count a measurement of the quality of a relationship.

Algorithm 1 shows the process the robot uses to refine its feedback model.
The algorithm is used at the end of a search when the robot has found a trust-
worthy behavior (this is also when it creates and stores behavior adaptation
cases). It receives as input the set of received feedback items Freceived, the trust-
worthy behavior Bfinal that was found, and its feedback base FeedbackBase.
The algorithm iterates through each of the feedback items (line 1) and checks
to see if the behavior when feedback was received differs from the final behavior
(line 2). This check is performed to ensure the robot stores only cases when feed-
back required it to adapt its behavior (i.e., it would never store the relationship

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 141

〈=,=,=, . . . 〉). If the behaviors differ, the relationship between the behaviors is
computed (line 3). If the feedback base already contains a case with that feed-
back and relationship, the frequency count for that case is increased (line 5–8).
Otherwise, a new case is created and added to the feedback base (lines 9–11).
Once all feedback items have been processed, the set is emptied (line 12) and
can again be extended as new feedback is received.

Algorithm 1. Process the feedback items received during a search

Function: processFeedback(Freceived, Bfinal, FeedbackBase);

1 foreach Fi ∈ Freceived do
2 if Fi.B �= Bfinal then
3 Ri ← relation(Fi.B,Bfinal);
4 exists ← false ;
5 foreach FRj ∈ FeedbackBase do
6 if FRj .f = Fi.f and FRj .R = Ri then
7 FRj .cnt ← FRj .cnt + 1;
8 exists ←true ;

9 if !exists then
10 FRnew ← 〈Fi.f, Ri, 1〉;
11 FeedbackBase ← FeedbackBase ∪ FRnew;

12 Freceived ← ∅;

5.2 Using the Feedback Model

We have previously described how the robot stores the feedback it receives
(Sect. 4) and will now describe how the robot uses the feedback model it has
learned to adapt its behavior. Algorithm 2 is called when the operator provides
the robot with feedback. A new feedback item is created from the received feed-
back and current behavior (line 1), and is stored in the set of feedback items
(lines 2). The algorithm iterates through all feedback relationships in the feed-
back base (line 5) and stores the most frequent feedback relationship for the
given feedback (lines 6–8). This is because there can be multiple feedback rela-
tionships for each type of feedback, so only the best relationship (i.e., the one
with the highest frequency value) is used. If no feedback relationship is found
(i.e., the feedback base is empty or no relationship has been found for that feed-
back yet), the robot does not change its behavior (lines 9–10). However, if a
feedback relationship is found, then the robot uses the applyRelationship(. . .)
function to modify its behavior.

The applyRelationship(. . .) function does the following:

1. The current behavior Bcurr is stored along with its current trust estimate
TrustBcurr

and evaluation time tcurr. These are stored because behavior

142 M.W. Floyd et al.

Algorithm 2. Receive feedback from the operator

Function: receiveFeedback(f , Bcurr, Freceived, FeedbackBase) returns Bnew;

1 Fnew ← 〈f,Bcurr〉;
2 Freceived ← Freceived ∪ Fnew;
3 bestFrequency ← 0;
4 Rbest ← ∅;
5 foreach FRi ∈ FeedbackBase do
6 if FRi.f = f and FRi.cnt > bestFrequency then
7 bestFrequency ← FRi.cnt;
8 Rbest ← FRi.R;

9 if Rbest = ∅ then
10 return Bcurr;

11 return applyRelationship(Bcurr, Rbest);

adaptation is triggered by feedback, not by the behavior being labelled as
trustworthy or untrustworthy. Since the feedback can result in unnecessary
behavior changes (e.g., erroneous feedback or incorrect feedback relation-
ships), this allows the robot to continue evaluating the behavior at a later
time.

2. A new behavior Bnew is selected under the conditions that it has not already
been found to be untrustworthy (∀Ei ∈ Epast, Ei.B �= Bnew) and it satisfies
the relationship Rbest. Ideally, the new behavior will satisfy the entire rela-
tionship (relation(Bcurr, Bnew) = Rbest). However, if no behaviors meet the
entire relationship (e.g., the relationship requires decreasing the robot’s speed
but the speed is already at its minimum value), Bnew will be a behavior that
partially satisfies the relationship.

3. If the new behavior has already been partially evaluated (i.e., its trust esti-
mate and time were previously stored in Step 1), the trust estimate and
evaluation time are loaded. This allows the robot to continue its previous
evaluation of the behavior and avoids spending longer than necessary evalu-
ating behaviors.

The feedback process works under the assumption that errors, either in
the feedback provided by the operator or in the feedback model learning, are
unavoidable. However, the relationships’ frequency counts are used to reinforce
correct relationships while ignoring poor relationships. For example, consider the
situation where feedback is received, a relationship is selected, and applying the
relationship results in a trustworthy behavior being found. Since the feedback
is stored (lines 1–2 of Algorithm 2), the robot will generate the relationship
again when it processes the feedback items (using Algorithm 1). This increases
the relationship’s frequency count and can increase the chance that it is used
again in the future (i.e., that it will have the highest frequency count for that
feedback). Similarly, if applying a relationship does not result in a trustwor-
thy behavior being found, the robot will continue to adapt its behavior until a

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 143

trustworthy behavior is found (e.g., using further feedback, case-based adap-
tation, or random walk adaptation). When feedback items are eventually
processed, a different relationship will likely be generated and have its frequency
count increased. Since the unsuccessful relationship does not increase its fre-
quency count it may be less likely to be used in the future (i.e., it may no longer
have the highest frequency for that feedback).

6 Evaluation

In this section, we evaluate our claim that learning a feedback model and
using operator feedback can improve the performance of behavior adaptation.
Case-based behavior adaptation has previously been found to allow a robot to
efficiently locate a trustworthy behavior [2]. However, it requires using the sig-
nificantly less efficient random walk behavior adaptation to acquire cases. Since
the robot starts with an empty case base and learns cases during deployment,
random walk behavior adaptation serves as a bottleneck. We focus on evaluat-
ing the improvements the feedback model provides compared to random walk
adaptation. Our evaluation tests the following hypotheses:

H1: Learning and using a feedback model will demonstrate improved per-
formance compared to random walk behavior adaptation.
H2: The performance improvement will increase as the model learns from
feedback.

6.1 eBotworks Simulator

We use the eBotworks simulator [19] for our evaluation. eBotworks allows
autonomous agents to control simulated robotic vehicles while interacting with
human operators using a variety of command modalities (e.g., speech, text, user
interface commands). This simulator was selected based on its built-in agent
design framework, autonomy modules (e.g., natural language command inter-
pretation and path planning), and experimentation and data collection capa-
bilities. Additionally, eBotworks allows for non-deterministic environments and
noisy sensory inputs.

In our evaluation, the robot is a wheeled unmanned ground vehicle (UGV)
operating in an urban environment that is composed of ground features (e.g.,
paved roads, grass), objects (e.g., houses, vehicles, road barriers, traffic cones),
and other agents (e.g., humans, other robots). The scenario we use in the evalu-
ation involves the robot receiving commands from an operator to patrol between
an initial location and a goal location. While patrolling, the robot continuously
scans for suspicious objects. If a suspicious object is found, the robot moves
toward it and uses its sensor for detecting explosives to determine if the object
is a threat or harmless. After classifying each suspicious object, the robot con-
tinues patrolling.

In this scenario, the robot has four modifiable components of its behav-
ior: speed, padding, scan time, and scan distance. Speed, measured in meters

144 M.W. Floyd et al.

per second, controls how quickly the robot moves through the environment,
while padding, measured in meters, controls how far the robot attempts to
stay away from obstacles when planning its path (i.e., lower padding makes
it more likely to bump into objects). Scan time, measured in seconds, is how
much time the robot spends scanning each suspicious object, and scan distance,
measured in meters, is how close the robot gets to suspicious objects while scan-
ning. Longer scan times and smaller scan distances increase the probability that
the robot will successfully classify objects as threats or harmless. The possi-
ble values for each modifiable component are: Mspeed = {0.5, 1.0, . . . , 10.0},
Mpadding = {0.1, 0.2, . . . , 2.0}, Mscantime = {0.5, 1.0, . . . , 5.0}, Mscandistance =
{0.25, 0.5, . . . , 1.0}.

6.2 Experimental Conditions

Our study uses simulated operators that issue natural language commands to
the robot and monitor its performance. The simulated operators were selected
to represent a subset of the control strategies of human operators, and each
operator’s preferences influence when the robot is able to complete a task and
when it is interrupted. The operators evaluate the robot based on how quickly
the task is completed, how safely it is completed, and how well it identifies and
correctly classifies suspicious objects. Two simulated operators are used: speed-
focused and detection-focused. The speed-focused operator prefers the task to
be completed quickly (i.e., 95% probability of interrupting if the robot exceeds
120 s) and correctly (i.e., 100% probability of interrupting if the robot misses a
suspicious object or incorrectly classifies it), with less focus on safety (i.e., 5%
probability of interrupting if the robot hits an obstacle). The detection-focused
operator prefers the task be completed correctly, but is less concerned with speed
(i.e., 5% probability of interrupting if the robot exceeds 120 s) or safety.

The operators can give four types of natural language feedback in the fol-
lowing categories: speed feedback, safety feedback, false positive feedback (i.e.,
classifying a harmless object as a threat), and false negative feedback (i.e., miss-
ing a suspicious object or classifying a threat as harmless). Each category of
feedback has three synonymous pieces of feedback that the operators can use
interchangeably and with equal probability (e.g., “go faster”, “speed up”, “get
going”). Although we use a simulated operator, this is done to represent that
human operators may not use a fixed vocabulary for feedback. Every time an
operator interrupts the robot it can, with probability pf , give the robot feedback.

For each feedback probability pf ∈ {0.00, 0.05, 0.10, . . . , 1.00}, we perform
50 experimental trials and start from an initially empty feedback base (i.e., the
robot has no feedback model at the start of the first trial with each feedback prob-
ability). At the start of each trial the robot is assigned a random initial behavior
and a random operator (both with uniform distribution). A trial concludes when
the robot successfully finds a trustworthy behavior or has evaluated all possible
behaviors. Each trial is composed of numerous experimental runs. At the start of
each run the environment is reset, the robot is placed at the start position, and

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 145

Fig. 1. Mean number of behaviors evaluated before a trustworthy behavior is found
using a variety of feedback probabilities.

six suspicious objects are placed in the environment (their appearance and loca-
tion are randomly selected each run). Between 0 and 3 of the objects (inclusive)
are selected randomly to be threats while the remaining objects are harmless. A
run concludes when the robot successfully completes the assigned tasks, fails, or
is interrupted. At the end of a trial the robot updates its trust estimate and may
adapt its behavior (either using random walk behavior adaptation or based on
feedback). The robot stores and uses feedback (Algorithm 2) at the end of any
run where feedback is provided, and updates the feedback base (Algorithm 1)
at the end of each trial where a trustworthy behavior is found.

Since we are assessing how using feedback improves random walk behavior
adaptation, which is used by case-based behavior adaptation to acquire cases, the
robot uses only random walk adaptation. The robot uses a trustworthy threshold
of τT = 5.0 and an untrustworthy threshold of τU = −5.0. These thresholds were
selected to allow some fluctuation between increasing and decreasing trust while
still identifying trustworthy and untrustworthy behaviors quickly.

6.3 Results

The mean number of behaviors that were evaluated before a trustworthy behav-
ior was found is shown in Fig. 1. The results are further divided into the mean
for the first 25 trials and last 25 trials. When comparing the results when no
feedback model is learned or used (i.e., pf = 0.0) to when feedback is used (i.e.,
pf > 0.0), using feedback results in a statistically significant improvement (using
a paired t-test with p < 0.001). This provides evidence that hypothesis H1 is
supported.

Figure 1 also shows evidence that when feedback is used the performance
increases in later trials. When pf > 0.0, the performance in the last 25 trials
(i.e., when the robot has had time to build a feedback model) is an improvement
over the first 25 trials (i.e., when the model is empty or still being refined).
Figure 2 examines this further by displaying the running mean (i.e., the value
for trial N is the mean of the first N trials) using four feedback probabilities
(pf ∈ {0.00, 0.05, 0.50, 1.00}). In early trials, performance is poor because the
feedback model is still being learned. The differences in performance in the first

146 M.W. Floyd et al.

Fig. 2. Running mean number of behaviors evaluated over 50 trials.

trials is because each of those trials starts at a random behavior, some of which
are further from a trustworthy behavior than others. However, regardless of their
early performance, all evaluations that used feedback (i.e., all but pf = 0.0) had
a mean that decreased as the number of trials increased. The improvement occurs
because the robot refines its feedback model over time and improves its ability
to adapt in response to feedback. This shows support for hypothesis H2.

6.4 Discussion

Even when feedback is relatively rare (e.g., pf = 0.05), the robot can still improve
its performance significantly. Additionally, there is no statistically significant
difference in performance when pf values between 0.15 and 1.0 are used. This
indicates that this approach does not require near-constant feedback, but can
perform well using moderate amounts of feedback. Similarly, since feedback is
most important when the robot needs to do random walk behavior adaptation,
the robot could request additional feedback when case-based behavior adaptation
fails. This would be beneficial because it would not only improve the robot’s
ability to acquire additional behavior adaptation cases but would also inform
the operator that a period of sub-optimal behavior should be expected (i.e.,
using random walk behavior adaptation to acquire cases rather than the more
efficient case-based behavior adaptation).

At the end of the evaluation, the feedback bases contained between 81 and 309
feedback cases (mean of 175.25), with the majority of cases having low frequency
counts (i.e., their relations were rarely found for their feedback item). The cases
with the highest frequency counts tended to contain the relationships we would
expect given the feedback. However, some cases with high frequency counts
displayed unexpected relationships. For example, with speed-related feedback
the relationships often indicated that speed should be increased and padding
decreased. This relationship arises because lower padding allows the robot to
navigate through narrow pathways and make tighter turns, ultimately increas-
ing its speed.

Improving Trust-Guided Behavior Adaptation Using Operator Feedback 147

7 Conclusions

In this paper, we presented an extension of our work on trust-guided behavior
adaptation to allow for the incorporation of explicit operator feedback. Since
the robot learns the feedback model, it does not require that the operator limits
feedback to a fixed vocabulary (e.g., the operator can use synonyms for feed-
back). Similarly, behavior adaptation is not dependent on feedback so feedback
is used only when it is available. Our approach is beneficial because it does not
require a predefined feedback model but learns one over time. This model is con-
tinuously refined and updated as more information becomes available, improving
the robot’s response to feedback over time. However, a limitation of our app-
roach is that new feedback is incorporated into the feedback model only after a
trustworthy behavior is found. Until that point, the robot can use feedback to
adapt but cannot refine the feedback model.

We evaluated our approach in a simulated robotics environment where the
robot was responsible for patrolling an urban environment, identifying suspicious
objects, and classifying them as threats or harmless. Our results indicate that
by learning a feedback model and using it to assist in behavior adaptation the
robot can significantly improve its behavior adaptation performance. Although
the robot did not initially have a feedback model, it quickly learned one and
used it to improve future performance.

One area of future work we plan to address is using the feedback base to allow
the robot to explain its reasoning behind behavior adaptation. In this sense, the
robot would search for similar solutions to its proposed solution (i.e., the rela-
tionship between the current behavior and the new behavior) and retrieve their
associated problems (i.e., what feedback the operator might have been consider-
ing). This adds transparency between the robot and operator by providing infor-
mation about the robot’s reasoning process and can further increase trust [20].
We also plan to investigate how the robot can reason about its goals and the
team’s goals to ensure they compliment each other, and to detect any unexpected
goal changes. Additionally, we plan to evaluate our trust-guided behavior adap-
tation approach in a series of user studies.

Acknowledgments. Thanks to the Naval Research Laboratory and the Office of
Naval Research for supporting this research.

References

1. Oleson, K.E., Billings, D.R., Kocsis, V., Chen, J.Y., Hancock, P.A.: Antecedents
of trust in human-robot collaborations. In: Proceedings of the 1st International
Multi-disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision Support, pp. 175–178 (2011)

2. Floyd, M.W., Drinkwater, M., Aha, D.W.: How much do you trust me? Learning
a case-based model of inverse trust. In: Lamontagne, L., Plaza, E. (eds.) ICCBR
2014. LNCS, vol. 8765, pp. 125–139. Springer, Heidelberg (2014)

148 M.W. Floyd et al.

3. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

4. Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Potential measures for detect-
ing trust changes. In: 7th International Conference on Human-Robot Interaction,
pp. 241–242 (2012)

5. Kaniarasu, P., Steinfeld, A., Desai, M., Yanco, H.A.: Robot confidence and trust
alignment. In: 8th International Conference on Human-Robot Interaction, pp. 155–
156 (2013)

6. Saleh, J.A., Karray, F., Morckos, M.: Modelling of robot attention demand in
human-robot interaction using finite fuzzy state automata. In: International Con-
ference on Fuzzy Systems, pp. 1–8 (2012)

7. Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based
web search. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR
2008. LNCS (LNAI), vol. 5239, pp. 89–103. Springer, Heidelberg (2008)

8. Tavakolifard, M., Herrmann, P., Öztürk, P.: Analogical trust reasoning. In: Ferrari,
E., Li, N., Bertino, E., Karabulut, Y. (eds.) IFIPTM 2009. IFIP AICT, vol. 300,
pp. 149–163. Springer, Heidelberg (2009)

9. Leake, D.B., Whitehead, M.: Case provenance: the value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol.
4626, pp. 194–208. Springer, Heidelberg (2007)

10. Baier, J.A., McIlraith, S.A.: Planning with preferences. AI Mag. 29(4), 25–36
(2008)

11. Maes, P., Kozierok, R.: Learning interface agents. In: 11th National Conference on
Artificial Intelligence, pp. 459–465 (1993)

12. Horvitz, E.: Principles of mixed-initiative user interfaces. In: 18th Conference on
Human Factors in Computing Systems, pp. 159–166 (1999)

13. Li, N., Kambhampati, S., Yoon, S.W.: Learning probabilistic hierarchical task net-
works to capture user preferences. In: 21st International Joint Conference on Arti-
ficial Intelligence, pp. 1754–1759 (2009)

14. Aha, D.W., McSherry, D., Yang, Q.: Advances in conversational case-based rea-
soning. Knowl. Eng. Rev. 20(3), 247–254 (2005)

15. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender
systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp.
276–290. Springer, Heidelberg (2003)

16. Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conver-
sational strategies. In: 20th ACM Conference on Hypertext and Hypermedia, pp.
73–82 (2009)

17. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of
compound critiques in conversational recommender systems. In: De Bra, P.M.E.,
Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg
(2004)

18. Quinlan, J.R.: Generating production rules from decision trees. In: 10th Interna-
tional Joint Conference on Artificial Intelligence, pp. 304–307 (1987)

19. Knexus Research Corporation: eBotworks (2015). http://www.knexusresearch.
com/products/ebotworks.php. Accessed 6 May 2015

20. Kim, T., Hinds, P.: Who should I blame? Effects of autonomy and transparency on
attributions in human-robot interaction. In: 15th IEEE International Symposium
on Robot and Human Interactive Communication, pp. 80–85 (2006)

http://www.knexusresearch.com/products/ebotworks.php
http://www.knexusresearch.com/products/ebotworks.php

Top-Down Induction of Similarity Measures
Using Similarity Clouds

Thomas Gabel(B) and Eicke Godehardt

Faculty of Computer Science and Engineering,
Frankfurt University of Applied Sciences, 60318 Frankfurt am Main, Germany

{tgabel,godehardt}@fb2.fra-uas.de

Abstract. The automatic acquisition of a similarity measure for a CBR
system is appealing as it frees the system designer from the tedious task
of defining it manually. However, acquiring similarity measures with some
machine learning approach typically results in some black box representa-
tion of similarity whose magic-like combination of high precision and low
explainability may decrease a human user’s trust in the system. In this
paper, we target this problem by suggesting a method to induce a human-
readable and easily understandable – and thus potentially trustworthy –
representation of similarity from a previously learned black box-like rep-
resentation of similarity measures. Our experimental evaluations support
the claim that, given some highly precise learned similarity measure, we
can induce a less powerful, but human-understandable representation of
it while its corresponding level of accuracy is only marginally impaired.

1 Introduction

Similarity measures represent an integral part of a CBR system, but providing
an accurate and suitable definition of these functions represents a difficult task
for any designer of a case-based application. A natural way out of this problem is
to cast the task as a function learning problem and, instead of defining similarity
measures by hand, to apply some machine learning algorithm to generate use-
ful similarity measures. Different such learning techniques exist, each of which
comes up with its own model for representing the learned function. A common
characteristic of various machine learning methods is, however, that the models
learned represent black boxes from the user’s perspective.

A substantial portion of the success and the acceptance of CBR systems by
users can be tributed to the fact that case-based systems do inherently gener-
ate trust. The solutions suggested by a CBR system always relate to previous
experience and the reasons why a specific solution is proposed to a user are, in
general, easily explainable and, hence, perceived to be trustworthy.

If machine learning techniques are employed for the acquisition of highly
accurate similarity measures and if, in doing so, these measures become repre-
sented by some black box machine learning model, then understandability and
traceability of the CBR inference process are reduced and, as a consequence, the
trustworthiness of the system is impaired. This is exactly the point we want to
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 149–164, 2015.
DOI: 10.1007/978-3-319-24586-7 11

150 T. Gabel and E. Godehardt

address in the context of this paper. We first propose a powerful machine learning
approach based on neural networks for learning high-quality, but black box-like
similarity measures (Sect. 2). In a second step, we capture the essence of these
neural network-based similarity measures in so-called similarity clouds and uti-
lize these to induce easily interpretable similarity measures that are represented
using some established human-readable formalism (Sect. 3). Finally (Sect. 4), we
evaluate our approach in the context of a large number of benchmark application
domains and, in so doing, analyze the trade-off made between a highly accurate
black-box representation and a mapping to a human-readable, but probably less
powerful representation of similarity measures.

2 Neural Similarity Measures

Artificial neural networks are known for their excellent performance in different
areas of machine learning. Specifically, multi-layer perceptron neural networks
have been shown to be universal function approximators [12]. Recent advances in
the training of so-called “deep architectures” have once more boosted the atten-
tion to neural network-based learning architectures for high-dimensional input
data [11]. Thus, employing neural networks for the representation of similarity
measures seems to be a natural choice. While neighboring research communi-
ties have frequently addressed the topic of representing distance or similarity
measures with neural networks (cf. Sect. 2.4) the core CBR community and con-
ferences have paid comparatively little attention to that topic so far.

2.1 Multi-layer Perceptron Neural Networks

A multi-layer perceptron is an artificial neural network whose units (perceptrons)
are connected in an acyclic graph. All of its neurons are arranged in layers that
are disjoint from one another in that there are no connections among units
within the same layer and that two successive layers are fully connected with
one another. Data is propagated through the network (forward propagation)
by providing inputs to the network’s first layer (input layer) and, subsequently,
calculating the activations of all neurons in all successive layers (hidden layers)
till the final, so-called output layer. For a given training set

P = {(xp, tp)|p ∈ {1, . . . , |P|}} (1)

of training patterns (xp, tp) with input vectors xp = (xp
1, . . . , x

p
m) ∈ R

m and tar-
get values tp = (tp1, . . . , t

p
n) ∈ R

n, a multi-layer perceptron can be trained using
the back-propagation algorithm which essentially performs a gradient descent-
based adaptation of the net’s connection weights such that the error

E =
∑|P|

p=1

∑n

i=1
(tpi − opi)

2

is minimized where op denotes the net’s output under input of pattern xp [19].

Top-Down Induction of Similarity Measures Using Similarity Clouds 151

When training neural networks, the resilient propagation update rule (Rprop
[17]) has frequently been shown to provide robust and convincing results. Rprop
is a batch method which calculates the gradient of the error as in standard
back-propagation, but which does not use the magnitude of the gradient, but
its direction for determining the weight change. To this end, the step length of
a weight change is calculated by a simple heuristic that is stored separately for
each connection weight. If the direction of the gradient has been the same in
successive update steps, then the step width is incremented, if the sign of the
gradient changes, however, the step width is decremented. An appealing feature
of Rprop is that it introduces relatively few parameters and that the setting of
these parameters has been shown to be quite robust with respect to the results
obtained. When training neural networks within this work, we stick to the use
of Rprop with its default parameter setting published in [17].

2.2 Supervised Training of Neural Net-Based Similarity Functions

In the remainder of this paper we focus on case characterizations with m describ-
ing attributes A1, . . . , Am and an additional solution attribute As. While the
methods we present are generic enough to accommodate complex solutions
(e.g. object-oriented or multi-dimensional ones), we will specifically focus on
the case where the solution can be represented by a single value, e.g. by a class
label from a finite set DAs

= {g1, . . . , gk} in classification tasks or by a numeric
value in regression tasks. More importantly, in what follows we will use the
notation c = (cp, cs) when speaking about case c and, in doing so, emphasize the
distinction between the case’s problem and solution part.

2.2.1 Utility Feedback and Case Order Feedback
In [21], a framework for learning similarity measures is described which we have
used for our research repeatedly in the previous years. Its core ideas are that

1. some “similarity teacher” provides information (utility feedback) about the
desired order of cases as it should result from a retrieval for a given query

2. and some machine learning module employs that information in order to
learn an improved similarity measure – ideally one which matches perfectly
the feedback the similarity teacher has specified.

Concerning 2, we have worked with gradient-based feature weighting techniques
[21] as well as with evolutionary algorithms [20]. Within this paper, we focus on
neural methods to learn and represent the similarity measure.

2.2.2 Solution Similarity
During the retrieval phase of a CBR application, the similarity between a query
q and several cases c must be determined in order to find the most similar cases.
To this end, the similarity is calculated between q and the problem part cp of
cases c = (cp, cs) using some function Sim : M × M → [0, 1] where M denotes

152 T. Gabel and E. Godehardt

the set of all problem descriptions (in our case M ⊂ R
m). One established way

for obtaining utility feedback in the form of the desired case retrieval order for
some query is to employ a solution similarity measure [22]. The idea here is to
define an additional similarity measures sims : As × As → [0, 1] for the cases’
solution parts, i.e. for the solution attribute As. Then, the similarity assessments
received from sims can be used to generate the training data for optimizing the
similarity measure simp := Sim for the cases’ problem parts. If, for example, the
similarity between the solutions of two cases is very different from the similarity
between their problem parts, then this may indicate that simp is poorly defined.

The solution similarity measure may either be a rather simple, distance-based
syntactical similarity measure or a more sophisticated one defined by an expert.
The fundamental assumption, however, is that it is in general by far easier to
settle on a similarity measure for the cases’ solution part than to define an
appropriate similarity measure for the problem part on the basis of which the
retrieval will be carried out. Instead, the former one ought to be used to learn
the latter one. Based on these assumptions, we can rewrite our definition of a
training set (cf. Eq. 1) such that it contains pairs of cases as input values and
the solution similarities of those case pairs as targets.

Definition 1 (Case-Based Training Pattern). Given two cases c and d each
of which consists of a problem and solution part (c = (cp, cs) and d = (dp, ds)),
we define a case-based training pattern as a triple (cp, dp, sims(cs, ds)) where
sims is the solution similarity measure and sims(cs, ds) the target value.

Matching this definition with the notion of Eq. 1, where the training set is
P = {(xp, tp)|p = 1, . . . , |P|} we can say that each xp corresponds to a pair of
case problem parts (cp, dp) and the target value tp corresponds to a solution
similarity value sims(cs, ds). On top of this, we define the full training pattern
set PCB for a given case base CB as

PCB = {((cp, dp), sims(cs, ds))|∀c, d ∈ CB, c �= d}. (2)

If we assume case problem parts to be made up of m (numerically represented)
attributes, then the space of the supervised learning problem is 2m-dimensional.

2.2.3 Classification Tasks
A special case arises in classification domains. Here, the utility of a case c for a
given query q is either zero or one, depending on the real class membership of
q, i.e. on whether it matches c’s class or not. The solution similarity is then

sims(cs, ds) =

{
1 if cs = ds

0 else.
(3)

Therefore, the resulting utility feedback cannot be said to be very “substantial”,
since for any case c ∈ CB two sets of training examples can be generated – one
with maximal utility, the rest with zero. In previous work [7], we found that

Top-Down Induction of Similarity Measures Using Similarity Clouds 153

learning similarity measures given such “knowledge-poor” training information
is only of limited success, when using evolutionary optimization techniques. In
this paper, we demonstrate, however, that this kind of feedback is suitable when
learning and representing similarity measures with artificial neural networks.

2.3 Exemplary Results

Throughout this paper, we employ the data set on the evaluation of car values,
taken from the UCI Machine Learning Repository [14], as explanatory example.
In Sect. 4 we will present results for a larger selection of application domains.

The car data set consists of 1728 cases describing six features of cars like their
maintenance costs, number of doors, and others (see Fig. 1, right). The solution
attribute denotes the index for one out of four classes denoting how good (or
acceptable) the car is. We split the data set into a train and independent test
set using 5-fold cross-validation. Each time we trained a multi-layer perceptron
neural network on the basis of a training set which was made up of |PCB | ≈
1.9 million training examples according to Eq. 2 where we employed a solution
similarity as given by Eq. 3. The network was made up of an input layer wit
12 inputs, two hidden layers with 13 neurons each using sigmoidal activation
functions and a single output neuron with linear activation. We trained the
network for 2000 epochs of Rprop and tested its performance on the independent
test data set). The results shown in Fig. 1 correspond to the progress of the
average classification error that results from a nearest neighbor classification on
the basis of some knowledge-poor default similarity measure Simdef (its accurate
definition will be given in Sect. 3.1) as well as the neural network-based similarity
measure (SimNN). Using Simdef an average error of 24.1 ± 2.4% is obtained,
whereas SimNN yields an average error of 7.2% with a standard deviation of
1.0% within a 5-fold cross-validation.

Fig. 1. Classification error of the neural similarity measure SimNN compared to the
knowledge-poor default similarity measure for the car evaluation domain.

2.4 Related Work on and Discussion of Neural Similarities

Neural networks are an established tool within machine learning. In this section,
we point to related work that is of highest relevance to the first part of this

154 T. Gabel and E. Godehardt

paper insofar as it focuses on the combination of neural net-based and case-
based approaches and on the use of neural networks for assessing similarity.

In [6], Dieterle and Bergmann target the regression task of internet domain
appraisal. They employ knowledge-intensive similarity measures in conjunction
with a neural network for a form of feature weighting. Interestingly, their trained
networks receive (feature-specific) local similarity values as inputs and produce
an estimate of the target value (numeric solution attribute) as output. While
their approach to obtaining target values from some kind of solution similarity
measure is similar to what we described in Sect. 2.2, a core difference is that in
our approach the network represents a similarity measure in itself, i.e. a function
that produces a similarity value from [0, 1], whereas in [6] the network generates
a prediction of the solution.

The approach described in Sect. 2.2 is highly related to the work of Maggini
et al. on similarity neural networks [15]. These authors train a multi-layer per-
ceptron that is used as a similarity measure for a k-nearest neighbor retrieval.
Input to the net are the two full case representations of query and case, output is
a single scalar similarity value from [0, 1] which is similar to our approach. This
work differs from ours in that they do not use the notion of utility feedback and
solution similarity, but instead employ so-called pairwise constraints to generate
the training data set. This is also related to the work of Hüllermeier et al. [13]
who, however, do not focus on neural network-based architectures when learning
or representing similarity measures. Additionally, Maggini et al. make use of a
specialized, sophisticated network topology which, for example, also ensures the
resulting similarity measure to be symmetric (a restriction we do not desire). By
contrast, in this work we understand the utilization of neural networks as a use-
ful and easy-to-use standard tool and therefore stick with established standards
and defaults to the largest degree possible.

While the papers mentioned so far are of high relevance to our work, there
exists also a number of further pieces of work on hybrid approaches using CBR
methods and neural networks. These include applications for case adaptation
[9], sequential case-based decision-making [25], as well as for case retrieval [16].

Discussion: Given the well-known generalization and approximation capa-
bilities of neural networks, their usage for representing similarity measures in
CBR appears highly attractive, but it misses two important facts. First, neural
networks are black boxes and as those are completely untransparent to the user.
While this issue may often seem acceptable to researchers, it quite as often repre-
sents a no-go for industrial applications where decision-makers and stakeholders
critically scrutinize the decisions or recommendations of any AI-based system,
specifically those involving subsymbolic approaches like neural networks. Second,
the solutions and outputs of a neural network are not at all self-explaining. So,
while a similar case or a set of cases represent actual episodical experience and,
in doing so, generate trust by a potential (re-)user, neural networks completely
fail to do so. These issues are, however, not new and have been acknowledged by
other authors as well, e.g. [6] complain about the lack of transparency of neural
similarity measures.

Top-Down Induction of Similarity Measures Using Similarity Clouds 155

3 Similarity Measure Induction with Similarity Clouds

The discussion at the end of the preceding section represents the point of depar-
ture for the remainder of this paper. We proceed on the assumption that some
neural similarity SimNN has been trained on the basis of a training data set
PCB with the method described in Sect. 2. While SimNN may yield excellent
performance (in terms, for example, of classification or regression accuracy), it
is a black box. To this end, it is our goal to extract the essence of the knowledge
encoded in the trained network SimNN into a human-readable and understand-
able similarity measure SimHR. In so doing, of course, we want to lose as little
of SimNN ’s capabilities as possible.

3.1 The Local-Global Principle

In what follows, we are going to model similarity measures using the so-called
local-global principle [4] which disassembles the overall similarity calculation into

1. local similarity measures simi : DAi
× DAi

→ [0, 1] used to compute similar-
ities between values of individual attributes Ai with domain DAi

,
2. feature weights wi used to express the importance of individual attributes,
3. an amalgamation function used to combine local similarities and feature

weights. Here, we stick to a weighted average calculation of similarity

Sim(q, c) =
∑n

i=1 wi · simi(qi, ci)∑n
i=1 wi

(4)

With respect to local similarity measures, we focus on the following two
commonly used representation formalisms for numeric and symbolic data types.

Definition 2 (Similarity Table and Similarity Function). Let S be a sym-
bolic attribute with a defined list of allowed values DS = {v1, . . . , vd}. A d × d-
matrix with entries xi,j ∈ [0, 1] representing the similarity between the query
value qS = vi and the case value cS = vj is called similarity table for DS.

Let N be a numeric attribute with a value range of DN = [Dmin
N ,Dmax

N]. A
difference-based similarity function simN : DN × DN → [0, 1] is defined as to
compute a similarity value based on the difference between the case value cN = dx
and query value qN = dy with dx, dy ∈ DN , i.e. it calculates simN (qN , cN) =
f(qN − cN) for some function f : [Dmin

N − Dmax
N ,Dmax

N − Dmin
N] → [0, 1].

So, a knowledge-poor default similarity measure Simdef is defined to be made
up of identical weights for all features (wi = 1 for 1 ≤ i ≤ n) as well as default
local similarity measures. These are defined as

simN,def : DN × DN → [0, 1]
(q, c) 	→ f(q − c) with f(x) = 1 − |x|

Dmax
N −Dmin

N

156 T. Gabel and E. Godehardt

for a numeric attribute N with domain range [Dmin
N ,Dmax

N], and as

simS,def : DS × DS → [0, 1] with (q, c) 	→
{

1 if q = c

0 else

for a symbolic attribute S with domain DS .

3.2 Similarity Clouds

The central concept on the basis of which our similarity induction procedure is
based is the similarity cloud.

Definition 3 (Similarity Cloud). Let a case c be described by m attributes
Ai (1 ≤ i ≤ m) such that c = (c1, . . . , cm). For a given case base CB and neural
similarity measure SimNN a similarity cloud SCi for attribute Ai is defined as

SCi : CB × CB × DAi
→ [0, 1] with (q, c, v) 	→ simNN (q, cv)

where case cv = (cv1, . . . , c
v
n) is defined such that cvj =

{
v if j = i

cj else
.

So, a similarity cloud is defined for a given set of cases and a specific attribute.
It provides access to the neural net-based similarity for any combination of a
query (from CB) and a full range of cases (also from CB) where the latter,
however, have been “modified” such they take all possible values from domain
DAi

. The similarity cloud thus captures not just the similarities between any
pair of cases from CB, but also the variations in similarity along the domain of
attribute Ai (i.e. fluctuations, if that attribute value is altered).

Fig. 2. Visualization of an excerpt of the similarity clouds for three of the attributes of
the car domain (left A0, middle A2, and right A5) which show average, little and high
variability and yield corresponding feature weights. See the text for a full explanation.

In Fig. 2, we attempt to visualize parts of similarity clouds for the car eval-
uation domain introduced in Sect. 2.3. While the x and y axes correspond to
queries and cases taken from the case base, respectively, we use the z values to

Top-Down Induction of Similarity Measures Using Similarity Clouds 157

plot the minimal (solid, μi) as well as maximal (dashed, νi) similarity values
from the cloud for three exemplary attributes, where

μi(q, c) = min
v∈DAi

SCi(q, c, v) and νi(q, c) = max
v∈DAi

SCi(q, c, v).

The volume between μi and νi corresponds to the variability in neural similarity,
when varying the value of attribute Ai. This volume is actually filled with a large
number of similarity data points which, when watched in 3D, conveys the impres-
sion of a cloud (hence, the name “similarity cloud”). For clarity, however, the
visualization shows only min and max values for each query-case combination.

3.3 Feature Weighting Using Similarity Clouds

Within this section, our goal is to derive feature weights wi for SimHR. We
employ a fixed amalgamation scheme (according to Eq. 4) as well as fixed local
default similarity measures as specified in Sect. 3.1. Thus, the method introduced
subsequently relies solely on the modification of the feature weights.

The variability of the similarity within the similarity cloud mentioned and
visualized above represents changes in the overall (global) similarity between
queries and cases. Therefore, it is an indicator of the respective feature’s impor-
tance for the overall similarity assessment. Based on this observation we derive
feature weights from the variability in the similarity cloud as follows.

Definition 4 (Similarity Cloud-Based Feature Weight). Let SCi be the
similarity cloud for case base CB and attribute Ai. If Ai is a discrete attribute,
we let D := DAi

, otherwise (i.e. if Ai is numeric) we discretize DAi
equidistantly

according to D := { j
S (Dmax−Dmin)+Dmin|j = 0, . . . , S}. The similarity cloud-

based feature weight wi is then defined as

wi =
1

|CB|2
∑

c∈CB

∑
q∈CB

√√√√∑
v∈D

((∑
u∈D

SCi(q, c, u)
|D|

)
− SCi(q, c, v)

)2

The induced feature weight of an attribute essentially corresponds to the
average standard deviation of neural similarity when altering the value of the
attribute considered. In Fig. 2, samples of the standard deviation of neural sim-
ilarity are visualized at the bottom of the plots using colored map views. As
can be seen, for attribute A2 there is very little variability (almost all samples
are black) corresponding to a low feature weight, whereas for A5 there are much
higher variations which correspond to a significantly higher value of w5.

3.4 Induction of Local Similarity Measures Using Similarity Clouds

In the following, we aim at the induction of local similarity measures from sim-
ilarity clouds. We cover both types of local measures specified in Definition 2.

158 T. Gabel and E. Godehardt

Symbolic Attributes: For a symbolic attribute with DAi
= {v1, . . . , vs} we fill the

similarity table simi which contains an entry for each combination (vq, vc) of the
query’s and case’s ith attribute value. For a specific combination of v, w ∈ DAi

we assume that simi(v, w) is low, if the neural similarity SimNN (q, c) for some
query q and case c with ci = v changes “a lot”, if we modify ci’s value and set it
from v to w. Clearly, the notion “a lot” needs to be formalized. To this end, we
utilize the concept of a similarity cloud, which already captures this information,
and define the following scoring function.

Definition 5 (Cloud-Based Local Distance Scoring). Given a symbolic
attribute Ai and two values v, w ∈ DAi

as well as the attribute’s similarity cloud
SCi, the cloud-based local distance scoring δ is defined as

δ(v, w) =
∑

q∈CB

∑
c∈CB

(SCi(q, c, v) − SCi(q, c, w))2.

For given v, w ∈ DAi
, the scoring function from Definition 5 considers all

pairs of cases from CB. In so doing, the value of attribute i is, however, altered
to be v and w, respectively, and the squared differences in the corresponding
neural network-based similarities are summed up.

While the scores we obtain from Definition 5 represent a local distance func-
tion and may be utilized for determining a query’s nearest neighbor, our emphasis
is on inducing an easily human-interpretable similarity measure representation
from the similarity cloud. Therefore, we apply the following normalization and
transformation from a distance to a compatible similarity measure.

Definition 6 (Cloud-Based Local Similarity Table). Given a cloud-based
local distance scoring function δ : DAi

× DAi
→ R we induce a local similarity

table for attribute Ai according to

simi : DAi
× DAi

→ [0, 1] with (v, w) 	→ 1.0 − δ(v, w) − δmin(v)
δmax(v) − δmin(v)

where δmin(v) = minw∈DAi
δ(v, w) and δmax(v) = maxw∈DAi

δ(v, w).

When normalizing the induced local similarity measure according to Definition 6
we gain better interpretability, but lose information about the relevance of
individual attributes. So, the induction of local similarity measures should be
used in conjunction with the feature weighting method presented in Sect. 3.3.

Numeric Attributes: For attributes Ai with a numeric domain DAi
= [Dmin

Ai
,

Dmax
Ai

] and, thus, for the induction of a difference-based similarity function we
proceed in a similar manner. Essentially, we iterate over all query-case combina-
tions from the case base, i.e. over all q, c ∈ CB, and measure the variability of the
neural similarity, if we alter the value of the ith attribute in q and c, respectively,
such that the difference qi − ci takes some specific difference value s.

Top-Down Induction of Similarity Measures Using Similarity Clouds 159

Of course, handling that infinite number of possible real-valued differences
is numerically infeasible, which is why our goal is to come up with a similar-
ity function that is represented by a set S of sampling points (i.e. a finite
set of possible real-valued differences) that are distributed equidistantly over
[Dmin

Ai
− Dmax

Ai
,Dmax

Ai
− Dmin

Ai
]. This approach is not new and has been success-

fully applied in [20]. When calculating the local similarity with such a sampled
similarity function, the similarity is interpolated linearly between the two neigh-
boring sampling points of qi − ci. For the purpose of representing simi it is
therefore sufficient to provide a mapping from S to [0, 1], i.e. it is sufficient to
specify simi as simi : S → [0, 1]. Based on this observation we define:

Definition 7 (Cloud-Based Sampled Distance Scoring). Let Ai denote a
numeric attribute, SCi the attribute’s similarity cloud, and S denote the set of
sampling points (with |S| assumed to be odd). Then,

D′
Ai

:=

{
Dmin

Ai
+ 2k

Dmax
Ai

− Dmin
Ai

|S| − 1
| 0 ≤ k ≤ |S| − 1

2

}

represents a discretization of DAi
on the basis of which we compute the cloud-

based sampled distance scoring ε according to

ε : S → R with s 	→
∑

v∈D′
Ai

∑
w∈D′

Ai

{
δ(v, w) if v − w = s

0 else

where δ(v, w) is calculated according to Definition 5.

Similarly to the case of symbolic attributes we induce the sampled similarity
function by applying a normalization and transformation from a distance to a
compatible similarity measure.

Definition 8 (Cloud-Based Sampled Similarity Function). Given a
cloud-based sampled distance scoring function ε : S → R we induce a local sampled
similarity function for an attribute Ai with numeric domain according to

simi : S → [0, 1] with s 	→ 1.0 − ε(s) − minx∈S ε(x)
maxx∈S ε(x) − minx∈S ε(x)

.

3.5 Exemplary Results

We return to our explanatory example introduced in Sect. 2.3 and apply the
similarity measure induction procedure presented above to induce both, feature
weights and local similarity measures for the car evaluation domain. The left
chart of Fig. 3 compares the classification errors of Simdef , SimNN as well as
induced similarity measures SimHR (with only weights and only local measures
induced from SimNN as well as the combination of both). The numbers indi-
cate the general effectiveness of the approach, since the high accuracy of the
neural similarity can be preserved when inducing a similarity measure that is
represented according to the local-global principle.

160 T. Gabel and E. Godehardt

Fig. 3. Results of the similarity measure induction procedure applied to the car domain.

Another interesting question is whether the resulting measure SimHR is easy
to read and understand. To this end, the central chart shows the normalized
feature weights induced for the car evaluation domain. Please note how the
weight of w0, w2 and w5 (buying price, number of doors, car safety) correspond
to the visualization of the attribute’s corresponding similarity clouds in Fig. 2.
Additionally, the right part of Fig. 3 visualizes the local similarity tables for
attributes A0 and A3 (buying price, persons to carry).

3.6 Related Work on Feature Weighting and Similarity Learning

Feature weighting and similarity measure learning have a long history in case-
based reasoning. Wettschereck and Aha [24] provide an overview on various
early approaches. Recent approaches that go beyond pure feature weighting and
instead aim at learning full similarity measure representations include neighbor-
hood component analysis [8], large margin nearest neighbor classifiers [23] and
various similarity-based classifiers reviewed by Chen et al. [5]. Another line of
research on similarity learning focuses on exploiting binary pairwise information
about similarity or dissimilarity, so-called pairwise constraints or preferences.
This stream of research includes work on kernel-based learning methods [2], the
boosting variant DistBoost [10], solution similarity learning in preference-based
CBR [1], relevant component analysis [3] as well as similarity learning from case-
order feedback [21]. A contrasting feature of the work presented in this paper
compared to the pieces of related work mentioned here as well as in Sect. 2.4 is
that we aim at learning a human-understandable and easily interpretable simi-
larity measure which may increase trust by the users of the system. To this end,
our work bears also some relatedness to the research field on explanations and
case-based reasoning [18].

4 Experimental Results

In order to empirically evaluate the approach proposed in this paper we selected
a batch of data sets from the UCI Machine Learning Repository. These included
both, 14 classification and 5 regression tasks. For each domain, we split the data
randomly into a training set Strain and a test set Stest within a 5-fold cross
validation. In each learning run we successively applied the following steps:

Top-Down Induction of Similarity Measures Using Similarity Clouds 161

1. Create a case base CB from Strain.
2. Evaluate the performance of the default similarity measure Simdef

(cf. Sect. 3.1) for all queries from Stest.
3. Train a neural network-based similarity measure SimNN as described in

Sect. 2 and evaluate it on all queries from Stest.
4. Induce feature weights wi from SimNN according to the procedure presented

in Sect. 3.3, create a similarity measure SimHR,w which employs the induced
weights in combination with default local similarity measures.

5. Induce local similarity measures from SimNN according to the techniques
described in Sect. 3.4, create a similarity measure SimHR,l which uses those
induced local measures in combination with default weights (wi = 1∀i).

6. Create a similarity measure SimHR which uses both, induced feature weights
as well as local measures (4 + 5) and evaluate it on all queries from Stest.

Speaking about the evaluation of similarity measures, we perform k-nearest
neighbor classification/regression and report the average classification or regres-
sion accuracy on Stest and the corresponding standard deviation. Throughout all
experiments we set k = 1 for better comparability. This value might be optimized
for each application domain and thus yield superior overall results.

Fig. 4. Visualization of the performance of the considered similarity measures when
used for classification/regression in various domains.

Results: As can be seen in Fig. 4, the quality of the learned neural similarity
measure varies substantially over the domains considered. Averaging over all
those domains the classification/regression error of the neural similarity measure
is 39.2 % lower than the error made by default similarity measures (Table 1).

The neural measure, SimNN , as well as the knowledge-poor default similar-
ity measure Simdef represent, informally speaking, the upper and lower limit
of what we can expect from the similarity induction technique proposed in this
paper. On the one hand, we can observe that each induced measure is at least as
performant as the default measure – which is a minimal goal from an evaluation
perspective, because otherwise the entire approach would be rendered point-
less. On the other hand, we can observe that in almost all cases the induced

162 T. Gabel and E. Godehardt

Table 1. Overview of experimental results per domain. The task column distinguishes
classification (C, with number of classes in brackets) from regression (R) tasks.

Domain |CB| #Attributes Task Classification/Regression error on Stest using

discr num Simdef SimNN SimHR,w SimHR,l SimHR

balancescale 625 4 0 C(3) .394 ± .068 .093 ± .043 .440 ± .022 .184 ± .024 .182 ± .024

car 1728 6 0 C(4) .241 ± .024 .072 ± .010 094. ± .019 .046 ± .009 .039 ± .010

cmc 1473 9 0 C(3) .553 ± .024 .501 ± .026 .531 ± .015 .557 ± .033 .546 ± .022

ecoli 336 0 7 C(8) .200 ± .036 .179 ± .085 .197 ± .022 .182 ± .029 .182 ± .032

glass 214 0 9 C(2) .200 ± .069 .162 ± .049 .176 ± .082 .152 ± .073 .176 ± .062

hayes-roth 132 4 0 C(3) .315 ± .074 .254 ± .084 .300 ± .063 .185 ± .079 .146 ± .074

heart 270 8 5 C(2) .226 ± .033 .211 ± .084 .185 ± .029 .207 ± .033 .204 ± .037

iris 150 0 4 C(3) .027 ± .028 .033 ± .024 .027 ± .028 .020 ± .018 .020 ± .018

mammograph 830 4 0 C(2) .318 ± .036 .207 ± .027 .312 ± .039 .312 ± .041 .312 ± .041

monks2 432 6 0 C(3) .491 ± .058 .188 ± .119 .535 ± .039 .007 ± .016 .014 ± .031

pima 768 0 8 C(2) .327 ± .020 .273 ± .027 .333 ± .024 .299 ± .033 .312 ± .026

tictactoe 958 9 0 C(2) .325 ± .034 .024 ± .016 .154 ± .034 .101 ± .078 .054 ± .080

userknowl 258 0 5 C(4) .149 ± .063 .067 ± .033 .047 ± .022 .098 ± .024 .051 ± .018

wholesale 440 0 6 C(3) .445 ± .040 .282 ± .034 .441 ± .029 .411 ± .044 .427 ± .038

bupa 345 0 5 R 2.26 ± .27 1.32 ± .66 2.13 ± .26 2.18 ± .18 2.17 ± .17

housing 506 2 11 R 2.58 ± .11 2.13 ± .31 2.32 ± .16 2.47 ± .20 2.13 ± .04

machines 209 0 6 R 49.5 ± 10.1 35.2 ± 6.5 47.7 ± 10.6 51.9 ± 10.9 50.7 ± 9.5.

servo 167 4 0 R .661 ± .139 .271 ± .063 .511 ± .199 .205 ± .046 .207 ± .048

yacht 308 0 6 R 3.78 ± .310 0.55 ± .059 2.73 ± .367 3.83 ± .421 2.66 ± .765

Average of Error Relative to Simdef 100.00% 60.84% 82.44% 69.98% 63.86%

human-readable similarity measure brings about almost as good results as the
neural ones with only minor impairments, which are actually to be expected
since SimNN is the input to the similarity clouds and, thus, to the entire induc-
tion procedure. Despite this, there are also some notable exceptions where the
induced measures even outperform SimNN . Summarizing, from the 19 domains
considered, there are 11 domains in which the resulting system’s performance
using SimHR is approximately equivalent or even superior to SimNN , 4 domains
where the performance of the induced measures is somewhere in between SimNN

and Simdef , and finally 4 domains where the induced measures’ performance is
rather close the performance of the default measure. Averaging over all domains,
the average classification/regression error of the induced measures, when com-
pared to the error made by Simdef , is reduced by 17.6 % if only weights are
induced, by 30.0 % if only local measures are induced, and by 36.1 % if both
approaches are combined, whereas SimNN lowered that error by 39.2 % as stated
above. This, in conjunction with the fact, that the induced similarity measures
are easily understandable for humans and domain experts, clearly stresses the
usability of our approach.

Top-Down Induction of Similarity Measures Using Similarity Clouds 163

5 Conclusion

In this paper, we have presented an approach that induces a similarity measure
according to the local-global principle from a previously learned neural network-
based representation of similarity. In so doing, we aimed at generating a human-
readable representation of similarity which is likely to be accepted and trusted
more by human users of the CBR system. We evaluated this approach on a large
set of classification and regression domains from the UCI Repository and found
that the induction procedure generates similarity measures that yield levels of
accuracy that are only slightly inferior to the accuracy of the neural network-
based templates.

References

1. Abdel-Aziz, A., Strickert, M., Hüllermeier, E.: Learning solution similarity in
preference-based CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS,
vol. 8765, pp. 17–31. Springer, Heidelberg (2014)

2. Baghshah, M., Shouraki, S.: Semi-supervised metric learning using pairwise con-
straints. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), San Francisco, USA, pp. 1217–1222 (2009)

3. Bar-Hillel, A., Hertz, T.: Shental, weinshall: learning a mahalanobis metric from
equivalence constraints. J. Mach. Learn. Res. 6, 937–965 (2005)

4. Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-oriented
matching: a new research direction for case-based reasoning. In: Proceedings of
the 9th German Workshop on Case-Based Reasoning (GWCBR) (2001)

5. Chen, Y., Garcia, E., Gupta, M., Rahimi, A., Cazzanti, L.: Similarity-based clas-
sification: concepts & algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

6. Dieterle, S., Bergmann, R.: A hybrid CBR-ANN approach to the appraisal of
internet domain names. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS,
vol. 8765, pp. 95–109. Springer, Heidelberg (2014)

7. Gabel, T., Stahl, A.: Exploiting background knowledge when learning similarity
measures. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 169–183. Springer, Heidelberg (2004)

8. Goldberger, J., Roweis, S., Hinton, G.: Salakhutdinov: Neighborhood Component
Analysis. In: Neural Information Processing Systems 18 (NIPS), pp. 513–520 (2005)

9. Henriet, J., Leni, P.-E., Laurent, R., Roxin, A., Chebel-Morello, B., Salomon, M.,
Farah, J., Broggio, D., Franck, D., Makovicka, L.: Adapting numerical represen-
tations of lung contours using case-based reasoning and artificial neural networks.
In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 137–151.
Springer, Heidelberg (2012)

10. Hertz, T., Bar-Hillel, A., Weinshall, D.: Boosting margin-based distance functions
for clustering. In: Proceedings of the International Conference on Machine Learning
(ICML), New York, USA, pp. 393–400 (2004)

11. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313, 504–507 (2006)

12. Hornick, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359–366 (1989)

164 T. Gabel and E. Godehardt

13. Hüllermeier, E., Cheng, W.: Preference-based CBR: general ideas and basic prin-
ciples. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), Beijing, China, pp. 3012–3016 (2013)

14. Lichman, M.: UCI Machine Learning Repository (2013). archive.ics.uci.edu/ml
15. Maggini, M., Melacci, S., Sarti, L.: Learning from pairwise constraints by similarity

neural networks. Neural Netw. 26, 141–158 (2012)
16. Main, J., Dillon, T.S.: A hybrid case-based reasoner for footwear design. In: Althoff,

K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
pp. 497–509. Springer, Heidelberg (1999)

17. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In: Proceedings of the IEEE International Con-
ference on Neural Networks (ICNN), San Francisco, USA, pp. 586–591 (1993)

18. Roth-Berghofer, T.R.: Explanations and case-based reasoning: foundational issues.
In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155,
pp. 389–403. Springer, Heidelberg (2004)

19. Rumelhart, D., Hinton, G.: Learning representations by back-propagating errors.
Nature 323, 533–536 (1986)

20. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 537–551.
Springer, Heidelberg (2003)

21. Stahl, A., Gabel, T.: Optimizing similarity assessment in case-based reasoning.
In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI
2006). AAAI Press, Boston (2006)

22. Stahl, A., Schmitt, S.: Optimizing retrieval in CBR by introducing solution sim-
ilarity. In: Proceedings of the International Conference on Artificial Intelligence
(IC-AI 2002). CSREA Press, Las Vegas (2002)

23. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor
classification. J. Mach. Learn. Res. 10, 207–244 (2009)

24. Wettschereck, D., Aha, D.: Weighting features. In: Proceedings of the 1st Interna-
tional on Case-Based Reasoning (ICCBR), London, UK, pp. 347–358 (1995)

25. Zehraoui, F., Kanawati, R., Salotti, S.: CASEP2: hybrid case-based reasoning sys-
tem for sequence processing. In: Funk, P., González Calero, P.A. (eds.) ECCBR
2004. LNCS (LNAI), vol. 3155, pp. 449–463. Springer, Heidelberg (2004)

http://archive.ics.uci.edu/m

Improving Case Retrieval Using Typicality

Emmanuelle Gaillard1,2,3(B), Jean Lieber1,2,3,
and Emmanuel Nauer1,2,3

1 Université de Lorraine, LORIA, 54506 Vandœuvre-lès-Nancy, France
{Emmanuelle.Gaillard,Jean.Lieber,Emmanuel.Nauer}@loria.fr

2 CNRS, 54506 Vandœuvre-lès-Nancy, France
3 Inria, 54602 Villers-lès-nancy, France

Abstract. This paper shows how typicality can be used to improve the
case retrieval of a case-based reasoning (CBR) system, improving at the
same time the global results of the CBR system. Typicality discriminates
subclasses of a class in the domain ontology depending of how a subclass
is a good example for its class. Our approach proposes to partition the
subclasses of some classes into atypical, normal and typical subclasses in
order to refine the domain ontology. The refined ontology allows a finer-
grained generalization of the query during the retrieval process. The
benefits of this approach are presented according to an evaluation in the
context of Taaable, a CBR system designed for the cooking domain.

Keywords: Typicality · Ontology refinement · Case retrieval · Cooking

1 Introduction

This paper shows how typicality can be used to improve the case retrieval of
a case-based reasoning (CBR) system, improving at the same time the global
results of the system.

Usually, CBR systems store knowledge in four different knowledge containers
including the domain knowledge container [1]. In many CBR systems (e.g. [2]),
the domain knowledge relates to an ontology composed of a hierarchy of classes
facilitating the retrieval process guided by similarity measures. When using such
a hierarchical structure, no difference is made between subclasses at the same
level (i.e. directly subsumed by the same class). However, in natural categoriza-
tion, some subclasses of a class are better examples than other ones for their
subsuming class. These subclasses are considered as the most typical subclasses
of the class. For example, it can be argued that the Apricot class is a more typ-
ical subclass of the StoneFruit class than the Avocado class, which is atypical.

In CBR systems using a case retrieval process based on generalization of the
query (e.g. Taaable [2]) no difference is made between subclasses belonging to
the same class. The generalization of a typical class B into a class A will retrieve
cases linked to typical subclasses of A as well as cases linked to atypical classes of
A. For example, in a CBR system using an ontology of the cooking domain, the
generalization of Peach into StoneFruit will retrieve cases linked to any kind
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 165–180, 2015.
DOI: 10.1007/978-3-319-24586-7 12

166 E. Gaillard et al.

Fig. 1. Ontology reorganization based on typicality where an edge B → A means B � A.
In this illustration, for A, B1 and B2 are typical, B3, B4 and B5 are normal (and not
typical), and B6 and B7 are atypical.

of StoneFruit, including Apricot which is considered as a typical stone fruit,
as well as cases linked to Avocado which is considered as an atypical stone fruit.

In this paper, we propose to exploit the typicality of subclasses with respect
to their direct subsuming class. The idea is to divide a set of classes subsumed by
the same class into three subsets: the atypical classes, the normal classes and the
typical classes, and to use these three sets to reorganize the ontology as shown
in Fig. 1. The refined ontology allows a finer-grained generalization of the query
during the retrieval process.

The contribution of the approach is shown experimentally by comparing
results of two systems, CBRstd and CBRtyp, using the same inference engine on
the same set of queries. CBRstd will use a domain ontology Ostd which is not
refined according to typicality, while CBRtyp will use the Otyp domain ontology,
which is Ostd refined thanks to typicality.

The paper is organized as follows: Section 2 introduces the context of appli-
cation and gives the motivation of this work. Section 3 presents the state of
the art about typicality and its use in knowledge modeling. Section 4 describes
the typicality-based approach we propose to refine a domain ontology. Section 5
presents the evaluation methodology. The results are discussed in Sect. 6 and
conclusions are presented in Sect. 7.

2 Context and Motivation

2.1 The TAAABLE Use-Case

Taaable [2] is a CBR system in the cooking domain which retrieves and creates
new recipes by adaptation. Taaable, like classical CBR systems, uses a case
base (a set of cooking recipes) to retrieve and adapt, using domain knowledge,
the cases that are the most similar to the user constraints.

The domain knowledge . The domain knowledge (DK) is an ontology composed
of a set of atomic classes into several hierarchies (food, dish type, localization, etc.)
organized according to the subsumption relation. Given two classes A and B of this
ontology, A subsumes B, denoted by B � A, if the set of instances of B is included

Improving Case Retrieval Using Typicality 167

in the set of instances of A. For instance, Apricot � StoneFruit, means that all
apricots are stone fruits.

Case base . The case base is a set of recipes. Each recipe R in the case base
is represented by its index denoted by idx(R) which is a conjunction of classes
of the domain ontology. For example, idx(R1) = TartDish ∧ PieCrust ∧ Leek ∧
GoatCheese ∧ Cream ∧ Egg ∧ Salt ∧ Pepper is the index of a tart recipe whose
ingredients are pie crust, leek, goat cheese, cream, egg, salt and pepper.

Query . In Taaable, a query is composed of a set of (user) constraints. Formally,
a query, denoted by Q, is also a conjunction of classes. For example, Qex =
TartDish∧ Zucchini∧ Parmesan means that the user searches for tart recipes
with zucchini and parmesan.

Case retrieval . The retrieval process consists in searching cases that best match
the query. If an exact match exists, the corresponding cases are returned. Oth-
erwise, the query is relaxed using a generalization function Γ composed of one-
step generalizations, which transforms Q (with a minimal cost) until at least one
recipe of the case base matches Γ (Q).

A one step-generalization is denoted by γ = B � A, where A and B are
classes and B � A belongs to the domain ontology. Each one-step generalization
is associated to a cost denoted by cost(B � A). The generalization Γ of Q is a
composition of one-step generalizations γ1, γ2, . . . γn: Γ = γn ◦ . . . ◦ γ2 ◦ γ1,
with cost(Γ) =

∑n
i=1 cost(γi). How this cost is computed is detailed in [2].

In the space of generalization functions Γ , the least costly generalization such
that at least one case matches Γ (Q) is searched. For Qex, Taaable produces Γ =
Parmesan � Cheese ◦ Zucchini � Vegetable and so Γ (Qex) = TartDish ∧
Cheese ∧ Vegetable, which matches idx(R1).

Taaable returns all the adapted cases that match the generalized query. It
may occur that a user of Taaable wants to find other cases, less similar than
the ones retrieved in the first-step generalization. In this case, the user may
trigger the system again to resume the generalization process which will search
for the next least costly generalization for which new cases are returned. The
generalization process is also automatically resumed when a given number of
results is requested and the first generalizations do not return enough results.

Adaptation . The result of the case retrieval process is a set of recipes that match
the generalized query Γ (Q). The adaptation process consists of a specialization
of the generalized query produced by the retrieval step. For example, accord-
ing to Γ (Qex), to R1, and to DK, the system proposes to replace GoatCheese
with Parmesan in R1 because Cheese of Γ (Qex) subsumes both GoatCheese
and Parmesan. In the same way, Leek has to be replaced with Zucchini in R1
because Vegetable of Γ (Qex) subsumes both Leek and Zucchini. In Taaable,
the adapted cases matching one generalized query are not ranked. For example,
R2 such that idx(R2) = TartDish ∧ PieCrust ∧ Carrot ∧ GoatCheese ∧ Egg ∧
Salt ∧ Pepper is also retrieved by Γ (Qex) and adapted by replacing Carrot
with Zucchini and GoatCheese with Parmesan. R1 and R2, with their respective
adaptations, are returned with no preference ranking.

168 E. Gaillard et al.

2.2 Motivation

Let Olive � StoneFruit and Apricot � StoneFruit be elements of the domain
ontology. Olive and Apricot are two sibling classes which have different levels of
typicality for the subsuming concept StoneFruit; apricot is usually considered
as a more typical stone fruit than olive. Let Qex = Peach ∧ TartDish be a new
example query. If no recipe matches exactly Qex, let Γ = Peach � StoneFruit
be the generalized function produced during the retrieval process. Let R1 and
R2 be two recipes such that id(R1) = TartDish∧PieCrust∧Apricot∧Almond∧
Butter and id(R2) = TartDish∧PieCrust∧Olive∧Tomato∧OliveOil. These
two recipes match Γ (Qex) and the adaptation process proposes to “Replace
apricots with peaches” in R1 and to “Replace olives with peaches” in R2. The
two adaptations involve sibling classes: Apricot and Olive. These two results
are presented without ranking preference to the user. The objective of our work
is to favor the replacement of a typical stone fruit with another typical stone fruit
and more generally to replace food requested in Q by another food according
to their typicality closeness, assuming that the more typical two foods are, the
more similar they are.

3 State of the Art

This section presents some theories about the use of typicality in knowledge
models in general and then in CBR systems, in particular.

3.1 Concept and Classification Models Based on Typicality

A concept is a mental representation of a class whose main function is to classify
knowledge of a domain. Smith and Medin [3] present three main types of classi-
fication models: the classical view, the exemplar view and the probabilistic view.
The classical view taken from Aristotle, argues that all instances of a concept
share common properties which are necessary and sufficient to define the con-
cept. The exemplar-based view and the probabilistic view are more flexible and
based on “natural” concepts. Using the notion of family resemblance in classes,
Beckner [4] defines the notion of polythetic classes, that contrasts with the notion
of monothetic classes where members of a class share all the defined necessary
and sufficient properties. Members of a polythetic class share a large set of com-
mon but not necessary properties, and properties are shared by a majority of
members of the class. For example, for the Bird class, the property “can fly” is a
property shared by many members, but not shared by all the members, since an
ostrich, which is a bird, does not have this property. However, the feature “can
fly” is characteristic for Bird. In this way, a member of Bird is typical (i.e. is
a good example) of Bird, if this member has this characteristic feature. Such a
member is called a prototype of Bird. The notion of typicality is related here to
the idea that not all the members of a class are “good” (or characteristic) exam-
ples. For the psychologists Rosch and Mervis [5], the typicality of an instance of

Improving Case Retrieval Using Typicality 169

a class A depends on its similarity with other instances of A and on dissimilarity
with instances of the other classes. For Rosch and Mervis, a whale is considered
to be atypical of the class Mammal, not just because a whale is not very similar to
other mammals, but also because a whale shares common properties with types
of fish. Barsalou [6], for his part, argues that the typicality of an instance of a
class depends on its similarity with other instances and how frequently people
have experienced the instance as a member of a class. A degree of typicality may
be associated to a pair (i, C) where i is an instance of a class C. The most typical
instance(s) of a class is/are its prototype(s).

The probabilistic view, based on prototypicality theory, assumes that a class
is represented by a single abstract prototype. The properties shared by the
instances of a class are more or less characteristic, and each property is associ-
ated with a weight. The degree of typicality of an instance of a class depends
on its similarity with the prototype represented by a property vector [7]. For
example, for the Bird class, the property vector could be (can fly, can sing,
has feathers, is oviparous) and each property is associated with a weight
between 0 and 1. In the probabilistic view, a class has a unique prototype.

The exemplar-based representation [8,9] is more flexible since it may be repre-
sented by multiple prototypes which are real examples of the class. For example,
Robin and Swallow can be considered to be the most representative subclasses
of the Bird class.

Other theories have studied the typicality notion. In [10], fuzzy classes are
described with attributes where values are typical or not. For two classes A and B,
such that B � A, three types of specialization from A to B are proposed: typical,
normal and atypical, depending on the comparison of typical and not typical
values of A and B attributes.

3.2 Typicality in CBR

Typicality is a notion that has already been used in CBR systems. Founded on
the theory of typicality [11], Weber-Lee et al. [12] use typicality to select the
best case in a set of similar cases during the retrieval process. Retrieved cases
are gathered into clusters using a geometrical fuzzy clustering algorithm; the
Most Typical Value measure is used in order to compute the best case.

While [12] uses a measure of typicality in order to retrieve the best case,
Protos [9], an exemplar-based learning system, uses typicality knowledge which
is a part of the domain knowledge. In Protos, an example is a case. The domain
knowledge and cases are represented in a single structure: a category structure.
The category structure is a semantic network where nodes consist of categories
which are the features and the exemplars (the retained cases), and edges are
explanations acquired from an expert triggered by a classification failure. Protos
classifies a new problem described with features by searching the closest case in
two major steps. The first step consists in retrieving the most similar category by
tracking links which associate categories and features. The second step consists
in choosing the best case according to edges describing prototype links and

170 E. Gaillard et al.

difference links. Protos retrieves first the most typical case of the most similar
category.

4 Refining the Ontology According to Typicality

Considering the class A as the root of the hierarchy to refine, our approach
consists in dividing a set of classes Bi, such that Bi � A, into three subsets: the
atypical classes, the normal classes and the typical classes. These subsets will
be exploited to refine the domain ontology used by the CBR system in order to
take into account typicality during the query generalization.

4.1 Computing the Class Typicality

Typicality acquisition. The degree of typicality of a subclass in a class consists
in measuring how a subclass is a good example with respect to its class. Some
psychologists propose to acquire the degree of typicality according to cognitive
tasks or questionnaires. In [13], a class name is given to participants of the
experiment, for example Fruit, and participants have to list subclasses of this
class. The most often cited subclasses are the most typical for the class. Rosch
[14] has given a class name to participants of her experiment, such as for example,
Fruit, in addition to a list of subclasses, such as Apple, Mango or Avocado and
subjects have to rate on a 7-point scale, how a subclass is a good example for
its class.

In this paper, the acquisition of the typicality degree is based on Rosch’s
work. An online questionnaire has been created, where participants must provide
a rating about how they consider each Bi as being a good example of A. The
statements to evaluate are of the form “Is Bi a good example of A?” A 3 smiley
face rating scale is used, where numerical scores are associated on each face:
unhappy face = −1, neutral face = 0, and happy face = 1. For each Bi, the
average of the numerical scores associated to the user ratings is computed and
is considered as the typicality degree of Bi with respect to A. The typicality
degree of Bi with respect to A is denoted by typ(Bi, A) ∈ [−1, 1]. This typicality
degree will be used to assign each Bi to one among the three typical, normal and
atypical class subsets.

Typicality subset assignment. The assignment of Bi, where Bi � A, to one of
the three (typical, normal and atypical) subsets consists first in partitioning the
subclasses Bi into two sets: the set of atypical subclasses and the set of non
atypical subclasses, according to typ(Bi, A).

If typ(Bi, A) < 0,

then Bi is atypical for A.

else Bi is non atypical for A.

Improving Case Retrieval Using Typicality 171

Table 1. Average of the typicality scores for the subclasses of the StoneFruit,
PomeFruit and Berry classes. In each table, ST is the set of typical subclasses, SN
is the set of normal subclasses and SA is the set of atypical subclasses, according to
the typicality subsets assignment procedure (evaluation with 14 users).

StoneFruit

ST Apricot 1.00
Mirabelle 1.00

Peach 1.00
Cherry 0.92

SN Date 0.42
Litchi 0.17
Mango 0.08

SA Avocado −0.17
Olive −0.25

PomeFruit

ST Apple 0.67
Pear 0.50

SN Grape 0.33
Lemon 0.17
Melon 0.08

SA Orange −0.17
Pumpkin −0.58
Tomato −0.58
Pepper −0.67

Cucumber −1.00

Berry

ST Blackberry 1.00
Blueberry 1.00
Raspberry 1.00
RedCurrant 0.67

SN Strawberry 0.17

SA Grape −0.33
Kiwi −0.92

Second, the set of non atypical subclasses is also divided in two sets: the set
of normal subclasses and the set of typical subclasses.1

If typ(Bi, A) ≥ 0 (i.e. Bi is non atypical for A),
then if typ(Bi, A) < 0.5

then Bi is normal for A.

else Bi is typical for A.

Let typicalClasses(A), normalClasses(A), and atypicalClasses(A) be
respectively the set of the typical classes of A, the set of the normal classes
of A, and the set of the atypical classes of A.

Table 1 presents in three sub-tables, the average of the acquired typicality
scores for the subclasses of StoneFruit, PomeFruit (i.e., fruits with pips) and
Berry. Each table of Table 1 is divided in three sets: ST = typicalClasses(A),
SN = normalClasses(A), and SA = atypicalClasses(A). For example, Avocado
is an atypical stone fruit because typ(Avocado, StoneFruit) = −0.17 < 0, Mango
is a normal stone fruit because 0 ≤ typ(Mango, StoneFruit) = 0.08 < 0.5, and
Apricot is a typical stone fruit because typ(Apricot, StoneFruit) = 1 ≥ 0.5.

4.2 Refinement of the Ontology by Taking into Account Typicality

Refining the ontology consists in adding intermediate classes in the initial hier-
archy in order to obtain a finer-grained hierarchy, involving a more accurate
1 Another way to determine the three sets of typicality is to cluster the values of
typ(Bi, A). The clustering method could, for example, use the k-means approach
with k = 3. Some tests have been run to do so and they show only a little difference
with the choice of the thresholds 0 and 0.5. Moreover, for the evaluation we present,
this small threshold shifts do not impact the results.

172 E. Gaillard et al.

Fig. 2. Initial part of the ontology related to StoneFruit.

Fig. 3. Refined part of the ontology related to StoneFruit.

retrieval. In our approach, the ontology refinement is based on typicality.
A class A of the ontology is refined like this: TypicalA � NormalA � A where
A directly subsumes Bi ∈ atypicalClasses(A), NormalA directly subsumes Bi ∈
normalClasses(A), and TypicalA directly subsumes Bi ∈ typicalClasses(A).
For example, let us consider the part of the ontology related to StoneFruit as
the part of the ontology to refine (see Fig. 2). According to Table 1, Mirabelle,
Peach, Apricot and Cherry are some typical subclasses of StoneFruit, Date,
Litchi and Mango are some normal subclasses of StoneFruit, and Olive and
Avocado are some atypical subclasses of StoneFruit. Applying our refinement
procedure to StoneFruit produces the new ontology presented in Fig. 3. Two
new classes (NormalStoneFruit and TypicalStoneFruit), in bold, have been
added.

The underlying hypotheses we make is that the CBR system results are
improved when:

– (H1): for a query about a typical ingredient X, the results in which X replaces
another typical ingredient are better than the results in which X replaces a
normal ingredient, and, in the same way, that results in which X replaces a
normal ingredient are better than the results in which X replaces an atypical
ingredient.

– (H2): for a query about a normal ingredient X, the results in which X replaces
another normal or typical ingredient are better than the results in which X
replaces an atypical ingredient.

We do not make any hypothesis for a query about atypical ingredients because
we think there is no reason to prefer to replace an atypical ingredient (e.g.
Tomato) with another atypical ingredient (e.g. Orange) rather than by a normal
ingredient (e.g. Lemon) or a typical ingredient (e.g. Apple). Consequently, no

Improving Case Retrieval Using Typicality 173

additional class is added for structuring the atypical classes (atypical subclasses
are directly subsumed by PomeFruit).

According to the refined ontology, when an atypical stone fruit (e.g. Avocado)
is first generalized during the case retrieval process into StoneFruit, all cases
linked to stone fruits will be retrieved, regardless to their atypical, normal or
typical status. When a normal stone fruit (e.g. Mango) is generalized
into NormalStoneFruit, all the cases linked to NormalStoneFruit or
TypicalStoneFruit will be retrieved. Finally, the first generalization of a typi-
cal stone fruit (e.g. Peach) in TypicalStoneFruit which will only retrieve cases
linked to typical stone fruits, for example cases linked to Apricot, and only at
a next step of generalization, cases linked to normal stone fruits.

4.3 Example of TAAABLE Results with and Without Taking into
Account Typicality

The effects of the typicality-based ontology refinement in Taaable are now
illustrated through an example. This example compares CBRstd, a version of
Taaable where the ontology is not refined according to typicality, with CBRtyp,
a version of Taaable where the ontology is refined according to typicality.

Let Qex = TartDish ∧ Peach be the example query. Table 2 presents the
five first results returned by CBRstd and CBRtyp according to Qex. Each result
is composed of a retrieved recipe id, its index and the adaptation proposed by
Taaable.

With the part of the ontology presented in Fig. 2, in which StoneFruit is not
refined, CBRstd returns for Qex the five results presented in Table 2 at the first
generalization step, which is Γ (Qex) = Peach � StoneFruit. In these results,
CBRstd proposes with no preference the recipe adaptations given in the last
column of Table 2. The first adaptation replaces a typical stone fruit, Apricot,
with another typical stone fruit, Peach. The last adaptation replaces an atypical
stone fruit, Olive, with a typical stone fruit, Peach. Thus, these five results are
returned at the same rank without preferring one adaptation from another.

With the refined StoneFruit part of the ontology presented in Fig. 3, CBRtyp

returns the same results but at different steps of generalization (see Table 3).
Peach, a typical stone fruit is first generalized in TypicalStoneFruit, producing
the retrieval of recipes linked to typical stone fruits: R1, linked to Apricot, is
adapted by replacing Apricot with Peach, and R2, linked to Cherry, is adapted
by replacing Cherry with Peach. If the user triggers the system again, Peach
is then generalized (at the second step of generalization) in NormalStoneFruit,
producing the retrieval and adaptation of R3. Finally, the system will only pro-
pose R4 and R5 at the third step of generalization, in which Peach is generalized
in StoneFruit. So, instead of returning at the same level R1, R2, R3, R4 and R5
as CBRstd does, CBRtyp returns first R1 and R2. It is only if the user wants
additional results that R3, and then, R4 and R5 will be displayed.

174 E. Gaillard et al.

Table 2. The results returned by CBRstd and CBRtyp, according to Qex = TartDish∧
Peach, with their respective index and adaptation.

id idx(Ri) Adaptation

R1 TartDish ∧ PieCrust ∧ Apricot ∧ Sugar ∧ ... Apricot � Peach

R2 TartDish ∧ PieCrust ∧ Cherry ∧ Almond ∧ ... Cherry � Peach

R3 TartDish ∧ PieCrust ∧ Mango ∧ Caramel ∧ ... Mango � Peach

R4 TartDish ∧ PieCrust ∧ Avocado ∧ Crab ∧ ... Avocado � Peach

R5 TartDish ∧ PieCrust ∧ Olive ∧ Bacon ∧ ... Olive � Peach

Table 3. Generalization for which CBRstd and CBRtyp return the five first results
detailed in Table 2 for Qex. Γi refers to the ith generalization step.

id Generalization for CBRstd Generalization for CBRtyp

R1 Γ1: Peach � StoneFruit Γ1: Peach � TypicalStoneFruit

R2 Γ1: Peach � StoneFruit Γ1: Peach � TypicalStoneFruit

R3 Γ1: Peach � StoneFruit Γ2: Peach � NormalStoneFruit

R4 Γ1: Peach � StoneFruit Γ3: Peach � StoneFruit

R5 Γ1: Peach � StoneFruit Γ3: Peach � StoneFruit

5 Evaluation Methodology

The objective of the evaluation is to show that refining the ontology according to
typicality improves the user satisfaction about the results returned by the CBR
system. For that, the two versions of Taaable, CBRstd and CBRtyp, are com-
pared in order to test (H1) and (H2). In addition, a more global hypothesis will
also be examined: (H) CBRtyp returns results which better satisfy, in average,
the user than CBRstd.

5.1 Acquiring Evaluations About TAAABLE Results

In order to test (H1), (H2) and (H), a set of queries is submitted to the two
systems. Users who participated to the experiment gave their feedback on the
results returned by the two systems, through a web interface, as illustrated in
Fig. 4. For a given recipe, the possible adaptations are given, but the users do
not know which system produces a given adaptation. For a possible adaptation,
users have to evaluate how much they are satisfied by the new recipe produced.
Each adaptation has been evaluated by at least 3 users. Such an evaluation
allows to know how relevant each result is with respect to a query. This knowl-
edge about the results allows to compare the two systems in the evaluation.
A similar approach is used for comparing information retrieval systems in the
context of TREC (Text Retrieval Conference) [15] or for comparing recom-
mender systems [16].

Improving Case Retrieval Using Typicality 175

Fig. 4. Evaluation interface. The user has to evaluate how she is satisfied with some
adaptations of the same recipe for different queries. In this screenshot proposing one
recipe with three possible adaptations, the user is very satisfied with the substitu-
tion Apricot � Peach, very unsatisfied with Apricot � Avocado and satisfied with
Apricot � Mango.

Many possibilities exist to collect the satisfaction feedback of the user. One of
them is the smiley code system, similar to the Likert scale [17], which is based on
a set of grades, allowing the user to qualify her satisfaction degree. We choose to
use five grades, so that the user has not too many nor too few options to express
her opinion. There are, from left to right, two negative grades (very unsatisfied
and unsatisfied), one neutral grade (neither satisfied nor unsatisfied), and two
positive grades (satisfied, very satisfied). An advantage of this scale is that it can
be easily be turned into a numerical score for a quantitative analysis purpose.
The associated scores are, from left to right, −2, −1, 0, 1 and 2.

5.2 Parameters of the Systems

The two systems are evaluated using aTaaable, a French instance of Taaable,
which draws case-based inferences on knowledge built through the collaborative
aTaaableweb site (http://ataaable.loria.fr).

Data Preparation. To evaluate CBRtyp, refinements of the StoneFruit,
PomeFruit and Berry parts of the ontology have been performed according
to typicality. To obtain typicality ratings, 14 participants have completed the
online questionnaire presented in Sect. 4.1: they were asked to rate the typicality
degree of subclasses of the StoneFruit, PomeFruit and Berry classes. Table 1
presents the average of the typicality scores collected during this experiment.
The results allow to refine the StoneFruit, PomeFruit and Berry refinement
part of the ontology. For example, the refined ontology related to StoneFruit is
presented in Fig. 3.

The case base has been limited to 124 tart recipes that are linked to 138
classes of the food hierarchy of Ostd.

http://ataaable.loria.fr

176 E. Gaillard et al.

Table 4. Average of the satisfaction score for CBRstd and CBRtyp for tart queries
containing typical classes (ST) or normal classes (SN).The last column is the difference
between the satisfaction score averages of CBRstd and CBRtyp, showing that CBRtyp

improves the results for all the queries except two.

Set id Q CBRstd CBRtyp ΔCBRstd/typ

ST 1 TartDish ∧ Apricot 0.88 1.35 0.47

2 TartDish ∧ Mirabelle 1.03 1.29 0.26

3 TartDish ∧ Peach 1.20 1.53 0.33

4 TartDish ∧ Cherry 0.63 0.93 0.30

5 TartDish ∧ Pomme −0.29 0.59 0.88

6 TartDish ∧ Pear −0.40 1.67 2.07

7 TartDish ∧ Blackberry 1.16 1.23 0.07

8 TartDish ∧ Blueberry 0.81 1.14 0.33

9 TartDish ∧ Raspberry 1.44 1.51 0.07

10 TartDish ∧ RedCurrant 0.30 0.63 0.33

SN 11 TartDish ∧ Date 0.18 0.18 0.00

12 TartDish ∧ Litchi −1.00 −0.69 0.31

13 TartDish ∧ Mango −0.33 −0.27 0.06

14 TartDish ∧ Grape −0.57 −0.43 0.14

15 TartDish ∧ Lemon −0.33 −0.26 0.07

16 TartDish ∧ Melon −1.60 −0.96 0.64

17 TartDish ∧ Strawberry 0.82 0.66 −0.16

Queries. The experiment was made on queries about tarts. Each query is com-
posed of TartDish, the dish type, and one ingredient belonging to a PomeFruit,
Berry or StoneFruit subclass, which are the parts of Ostd that have been
refined. In order to evaluate (H1) and (H2), only the ingredients related to
typical and normal classes are used in the queries.

6 Results and Discussion

The 10 first results returned by CBRstd and CBRtyp have been computed for
the 17 possible queries involving a typical or a normal ingredient. Each system
returns 17 × 10 = 170 answers. According to a random choice of cases when too
many cases are retrieved at a given step of generalization, there are 108 common
results between CBRstd and CBRtyp, so 232 different results in total. These
232 results were evaluated by 27 users (disjoint form the set of 14 users who
participated to the data preparation, see Sect. 5.2), providing 1122 ratings.

Improving Case Retrieval Using Typicality 177

Table 5. s relating to the type of adaptation: replacing a typical ingredient with the
typical ingredient of the query (column “T � . . . ”), replacing a normal ingredient
with the typical ingredient of the query (column “N � . . . ”), replacing a typical or a
normal ingredient with the typical ingredient of the query (column “TorN � . . . ”),
and replacing an atypical ingredient with the typical ingredient of the query (column
“A � . . . ”).

id Q T � . . . N � . . . T or N � . . . A � . . .

1 TartDish ∧ Apricot 1.38 1.33 1.33 −1.33

2 TartDish ∧ Peach 1.42 1.47 1.43 −1.00

3 TartDish ∧ Mirabelle 1.38 1.33 1.36 −1.33

4 TartDish ∧ Cherry 1.43 0.53 1.13 −1.11

5 TartDish ∧ Pomme 1.49 −0.24 0.63 −1.01

6 TartDish ∧ Pear 1.59 −1.33 1.06 −1.13

7 TartDish ∧ Blueberry 1.60 0.98 1.08 0.00

8 TartDish ∧ Blackberry 1.68 1.06 1.21 1.11

9 TartDish ∧ Raspberry 1.37 1.65 1.51 1.20

10 TartDish ∧ RedCurrant 0.74 0.33 0.56 0.08

6.1 Validating (H): The Global User Satisfaction

Let s denote the average of user satisfaction scores. Table 4 shows, for each query,
s for CBRstd results and s for CBRtyp results, as well as the difference between
s of the two systems (column ΔCBRstd/typ). CBRtyp improves the results for
15 of the 17 queries. With s = 0.59 for CBRtyp against s = 0.23 for CBRstd,
CBRtyp better satisfies the user on average (difference of 0.36).

To demonstrate that user satisfaction is significantly higher for results of
CBRtyp than for results of CBRstd (H), the Wilcoxon signed-rank test [18] is
used to compare the medians of the user satisfaction scores. With a p-value of
0.0006731 (p < 0.05, stating that the results are significant according to the
hypothesis), the difference in the results of CBRtyp compared to CBRstd is
significant: (H) is supported.

6.2 Validating (H1) and (H2): User Satisfaction Related to the
Adaptation Type

Table 5 gives s for adaptations with typical ingredients (see the table caption for
explanations about the table description). Comparing the columns “T � . . . ”
and “N � . . . ” shows that the results in which a typical ingredient replaces
another typical ingredient are better compared to the results in which a typical
ingredient replaces a normal ingredient. For 8 of the 10 queries, the results are
better for “T � . . . ” and s of “T � . . . ” which is 1.41 is clearly better than
s of “N � . . . ” which is only 0.71. In the same way, comparing the columns

178 E. Gaillard et al.

“T or N � . . . ” and “A � . . . ” shows that the results in which a typical ingre-
dient replaces a typical or a normal ingredient are better compared to the results
in which a typical ingredient replaces an atypical ingredient. For all the queries
the results are better for “T or N � . . . ” and s of “T or N � . . . ” which is 1.13
is clearly better than s of “A � . . . ” which is only −0.45. The p-value for the
comparison of the results of “T � . . . ” and “N � . . . ” (resp. “T or N � . . . ”
and “A � . . . ”) is 0.018. (resp. 0.002531). These p-values indicate that the
results are significant and validate (H1).

Unfortunately, (H2) is not supported by the experiment. First, s for replacing
an atypical ingredient with a normal ingredient is similar to replace a normal
or a typical ingredient with a normal ingredient. Second, we have only 4 queries
providing results that can be used to test (H2). Indeed, for 3 of the 7 queries
about a normal ingredient, the generalization takes place in another part of the
hierarchy because some classes are subclasses of several classes: Date, Lemon,
and Grape have been respectively generalized in DriedFruit, CitrusFruit, and
AtypicalBerry. Such generalizations return adaptations involving ingredients
that are not in the refined parts of the hierarchy, and are not classified as atypical,
normal nor typical.

7 Conclusion

This paper proposes an approach to refine a domain ontology using typicality,
for a more accurate case retrieval. This refinement improves the case retrieval
of a CBR system, improving at the same time the global results of the system.
Subclasses of a class are separated in three sets of classes: atypical, normal and
typical classes. These three sets are used to introduce intermediate classes in
the ontology. The refinement of the ontology allows to generalize the query in a
finer-grained manner. For example, searching for cases related to a given typical
class will give priority to cases related to all the typical classes, and it is the
same for normal classes. The resulting adaptations favor first the introduction
of a typical instance (e.g. the peach the user wants to use, which is a part of
the query) in cases using typical instances (e.g. the apricot in R1), and second,
the introduction of normal instances (e.g. litchis) in cases using normal (e.g. the
mango in R3) or typical instances (e.g. the apricot in R1 or the cherries in R2).

A version of a CBR system, CBRtyp, whose ontology was refined thanks to
typicality was compared to a CBR system, CBRstd, using the ontology before
the refinement. The experiment demonstrates the hypothesis that results of
CBRtyp are more satisfying than results of CBRstd with a significant differ-
ence between user satisfaction of CBRtyp and user satisfaction of CBRstd and
that, for adaptations returned when searching for a typical ingredient, it is bet-
ter to prefer the replacement of this ingredient with a typical one, than with a
normal one, and finally, with an atypical ingredient.

One of the possible extensions is to modulate the number of classes of typ-
icality depending on the part of the ontology to refine. For example, in some
parts of the ontology, the atypical and non atypical classes may be sufficient.

Improving Case Retrieval Using Typicality 179

A limitation of the approach is the consideration of the typicality when one
class can be generalized in two different classes. To manage this, future work
will address the integration of the typicality degree in the similarity measure as
a means of favoring some generalizations rather than others.

References

1. Richter, M.: The knowledge contained in similarity measures. Invited talk at the
International Conference on Case-Based Reasoning (1995)

2. Cordier, A., Dufour-Lussier, V., Lieber, J., Nauer, E., Badra, F., Cojan, J.,
Gaillard, E., Infante-Blanco, L., Molli, P., Napoli, A., Skaf-Molli, H.: Taaable: a
case-based system for personalized cooking. In: Montani, S., Jain, L.C. (eds.) Suc-
cessful Case-based Reasoning Applications-2. SCI, vol. 494, pp. 121–162. Springer,
Heidelberg (2014)

3. Smith, E.E., Medin, D.L.: Categories and Concepts. Cognitive Science Series.
Harvard University Press, Cambridge (1981)

4. Beckner, M.: The Biological Way of Thought. Columbia University Press,
New York (1959)

5. Rosch, E., Mervis, C.B.: Family resemblances: studies in the internal structure of
categories. Cogn. Psychol. 7(4), 573–605 (1975)

6. Barsalou, L.W.: Ideals, central tendency, and frequency of instantiation as deter-
minants of graded structure in categories. J. Exp. Psychol. Learn. Mem. Cogn.
11(4), 629 (1985)

7. Yeung, C.A., Leung, H.: Ontology with likeliness and typicality of objects in con-
cepts. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp.
98–111. Springer, Heidelberg (2006)

8. Medin, D., Schaffer, M.: Context theory of classification learning. Psychol. Rev.
85(3), 207–238 (1978)

9. Bareiss, E.R., Porter, B.E., Wier, C.C.: Protos: an exemplar-based learning appren-
tice. In: Gaines, B.R., Boose, J.H. (eds.) Machine Learning and Uncertain Reason-
ing, pp. 1–13. Academic Press Ltd., London (1990)

10. Dubois, D., Prade, H., Rossazza, J.P.: Vagueness, typicality, and uncertainty in
class hierarchies. Int. J. Intell. Syst. 6(2), 167–183 (1991)

11. Friedman, M., Ming, M., Kandel, A.: On the theory of typicality. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 03(02), 127–142 (1995)

12. Weber-Lee, R., Barcia, R.M., Martins, A., Pacheco, R.C.: Using typicality theory
to select the best match. In: Smith, I., Faltings, B. (eds.) Advances in Case-Based
Reasoning. LNCS, vol. 1168, pp. 445–459. Springer, Heidelberg (1996)

13. Barsalou, L.W., Sewell, D.R.: Contrasting the representation of scripts and cate-
gories. J. Mem. Lang. 24(6), 646–665 (1985)

14. Rosch, E.H.: On the internal structure of perceptual and semantic categories. In:
Moore, T.E. (ed.) Cognitive Development and the Acquisition of Language, pp.
111–144. Academic, New York (1973)

15. Sanderson, M.: Test collection based evaluation of information retrieval systems.
Found. Trends Inf. Retr. 4(4), 247–375 (2010)

16. Quijano-Sánchez, L., Recio Garcia, J.A., Dı́az-Agudo, B.: Using personality to
create alliances in group recommender systems. In: Ram, A., Wiratunga, N. (eds.)
ICCBR 2011. LNCS, vol. 6880, pp. 226–240. Springer, Heidelberg (2011)

180 E. Gaillard et al.

17. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22(140),
1–55 (1932)

18. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

CBR Meets Big Data: A Case Study
of Large-Scale Adaptation Rule Generation

Vahid Jalali(B) and David Leake

School of Informatics and Computing, Indiana University,
Bloomington, IN 47408, USA

{vjalalib,leake}@indiana.edu

Abstract. Adaptation knowledge generation is a difficult problem for
CBR. In previous work we developed ensembles of adaptation for regres-
sion (EAR), a family of methods for generating and applying ensembles
of adaptation rules for case-based regression. EAR has been shown to
provide good performance, but at the cost of high computational com-
plexity. When efficiency problems result from case base growth, a com-
mon CBR approach is to focus on case base maintenance, to compress
the case base. This paper presents a case study of an alternative app-
roach, harnessing big data methods, specifically MapReduce and locality
sensitive hashing (LSH), to make the EAR approach feasible for large
case bases without compression. Experimental results show that the new
method, BEAR, substantially increases accuracy compared to a baseline
big data k-NN method using LSH. BEAR’s accuracy is comparable to
that of traditional k-NN without using LSH, while its processing time
remains reasonable for a case base of millions of cases. We suggest that
increased use of big data methods in CBR has the potential for a depar-
ture from compression-based case-base maintenance methods, with their
concomitant solution quality penalty, to enable the benefits of full case
bases at much larger scales.

Keywords: Case-based reasoning · Ensemble of adaptations for regres-
sion · Locality sensitive hashing

1 Introduction

The growth of digital data is widely heralded. A 2014 article estimates that
“[A]lmost 90 % of the world’s data was generated during the past two years, with
2.5 quintillion bytes of data added each day” [1]. Individual organizations collect
data sets on an unprecedented scale. For example, in 2013, a single health care
network in the U.S. state of California was estimated to have over 26 petabytes
of patient data from electronic health records alone [2]. Big data methods and
resources have changed the practicality of using such large-scale data, with inex-
pensive cloud computing services enabling processing data sets of unprecedented
scale. However, these are not a panacea: making good use of large-scale data
remains a challenge (e.g., [3]).
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 181–196, 2015.
DOI: 10.1007/978-3-319-24586-7 13

182 V. Jalali and D. Leake

Case-based reasoning’s ability to reason from individual examples and its
inertia-free learning make it appear a natural approach to apply to big-data prob-
lems such as predicting from very large example sets. Likewise, if CBR systems
had the capability to handle very large data sets, that capability could facilitate
the application of CBR to large data sources already identified as interesting
to CBR, such as cases harvested from the “experience Web” [4], cases resulting
from large-scale real-time capture of case data from instrumented systems [5],
or cases arising from case capture in trace-based reasoning [6].

However, realizing the potential of CBR to have impact on big data problems
will depend on CBR systems being able to exploit the information in case bases
with size far beyond the scale now commonly considered in the CBR literature.
The case-based reasoning community has long been aware of the challenges of
scaling up CBR to large case bases. The primary response has been case-base
maintenance methods aimed at reducing the size of the case base while pre-
serving competence (e.g., [7,8]). Such methods have proven effective at making
good use of case knowledge within storage limits. However, because compression
methods delete some of the CBR system’s knowledge, they commonly sacrifice
some solution quality.

A key factor in success of CBR when applied to big data is efficient retrieval
of cases. As CBR does not generalize beyond cases, it is extremely important to
the success of a CBR system to be able to find required cases rapidly. In this
paper we illustrate the practicality of applying big-data tools to increase the
speed and scalability of CBR, using MapReduce and Locality Sensitive Hashing
for finding nearest neighbors of the input query.

In previous work, we introduced and evaluated a method for addressing the
classic CBR problem of acquiring case adaptation knowledge with ensembles of
adaptations for regression (EAR) [9]. This work demonstrated the accuracy ben-
efits of EAR [9–12], but also identified important efficiency concerns for large case
bases. This paper presents a case study applying big data methods to address-
ing EAR’s scale-up, leveraging techniques and frameworks well known to the
big data community to enable large-scale CBR. It presents a new algorithm,
BEAR,1 applying the EAR approach in a MapReduce framework. The paper
demonstrates that the use of big data methods substantially extends the size of
case base for which the EAR approach is practical, to case bases of millions of
cases even on a small Amazon Elastic MapReduce (EMR) cluster.2

The paper begins with a discussion of the relationship of big data and CBR,
contrasting the “retain and scale up” approach of big data to the compression-
based focus of case-base maintenance. It next introduces the EAR family of
methods and the two big data methods to be applied, locality sensitive hashing
[13] and MapReduce. With this foundation it introduces BEAR, a realization of
EAR for big data platforms, and presents an experimental evaluation assessing
BEAR’s accuracy for a case base of two million cases. To assess the benefit of
BEAR’s ensemble approach it compares it to a baseline of a big data version
1 Big data ensembles of adaptations for regression.
2 http://aws.amazon.com/elasticmapreduce/.

http://aws.amazon.com/elasticmapreduce/

Case-Based Reasoning Meets Big Data 183

of k-NN, using Locality Sensitive Hashing for implementing nearest neighbor
search. It also shows that BEAR’s approach helps alleviate the accuracy penalty
that can result from using LSH instead of a traditional (exhaustive) approach for
finding nearest neighbors, thus compensating for a potential drawback of using
LSH. To assess the need for big data methods for BEAR’s task and BEAR’s
scaleup potential, it also compares BEAR’s scaleup performance to that of k-
NN using a traditional (exhaustive) approach for finding nearest neighbors.

The evaluation supports the accuracy benefits of BEAR and that the speedup
benefits of big data methods are sufficient to counterbalance the computational
complexity of BEAR’s rule generation and ensemble solution methods. Thus the
use of big data methods may have benefits for CBR beyond simple speedups,
by making practical the use of richer methods which can increase accuracy. Two
million cases is large by the standards of current CBR practice, but true “big
data” CBR will involve much larger data sets. The paper closes with a discussion
of BEAR’s potential for scaleup to such data sets.

2 Scaling CBR to Big Data

Big data has had a transformative effect on data management, enabling many
enterprises to exploit data resources at previously unheard-of data scales. Large
data sets such as electronic medical records collections may naturally be seen
as containing cases; routine data capture in many domains could provide rich
case bases. If cases can be retrieved sufficiently efficiently, CBR is an appealing
method for large-scale reasoning because its lazy learning avoids the overheads
associated with traditional rule mining approaches enables inertia-free adjust-
ments to additional data, without the need for retraining.

However, CBR systems have seldom ventured into the scale of big data. For
example, calculating metrics such as number of visitors or page views for a social
media or e-commerce web site with hundreds of million users is a common practice
at industry, but in current CBR research, experiments with tens of thousands of
cases, or even much fewer, are common. Few CBR projects have considered scales
up to millions of cases [14,15], and to our knowledge, none have explored larger
scales except a few exceptions such as a recent effort to apply big data methods
focused on exact match only, rather than similarity-based retrieval [15].

When CBR research has addressed increased data sizes, the primary focus
has been compression of existing data rather than scale-up. Considerable CBR
research has focused on the efficiency issues arising from case-base growth. As
the case base grows, the swamping utility problem can adversely affect case
retrieval times, degrading system performance [16,17]. Within the CBR com-
munity and the machine learning community studying instance-based learning,
extensive effort has been devoted to addressing the swamping utility problem
for case retrieval with case-base maintenance methods for controlling case-base
growth, with the goal of generating case bases that are compact but retain cov-
erage of as many problems as possible. Methods for developing compact com-
petent case bases include selective deletion (e.g., [7,18]), selective case retention

184 V. Jalali and D. Leake

(e.g., [19–21]), and competence-aware construction of case bases [8,22–25]. Such
methods generally trade off size against accuracy; they aim to retain as much
competence as possible for a given amount of compression. This tradeoff has
been seen as the price of making CBR feasible for domains in which the set of
possible cases is large, but storage and processing resources are limited.

This paper argues that applying big data methods can change this calculus;
that even for case bases on the order of millions of cases, big data methods
can make the best case-base compression strategy no compression at all. If big
data methods can enable CBR scale-up, dramatically increasing the feasibility
of handling very large case bases, compression methods will be required only for
extreme scale case bases—and, even for very large cases, might not be required
at all in practice. Already, it has been observed that for common practical CBR
tasks, even with conventional methods, case base size may not be an issue [26];
big data methods could bring CBR to bear on a new class of problems, at much
larger scale.

3 Foundations of the Proposed Method

The case study in this paper focuses on applying CBR to numerical predic-
tion tasks under big data settings, demonstrating the feasibility of big data
approaches to provide good performance at scales on the order of millions of
cases, with minimal quality loss. The method proposed in this paper builds on
three currents of research. The first, from CBR, is the EAR family of methods
[9] for case-based regression using ensembles of adaptations. The second, from
big data is Locality Sensitive Hashing (LSH), a method for nearest neighbor
search in big data platforms. The third is MapReduce, a popular framework for
parallel processing of data.

3.1 The EAR Family of Methods

The acquisition of case adaptation knowledge is a classic problem for CBR.
A popular approach to this problem, for numerical prediction (regression) tasks,
is to generate adaptation rules automatically from the case base. The EAR family
of methods solves numerical prediction problems using automatically-generated
ensembles of adaptations to adapt prior solutions.

The EAR approach applies to any adaptation generation method, but it has
been tested for a popular case-based rule generation method, the Case Difference
Heuristic, which generates rules based on comparing pairs of cases. Given two
cases A and B, with problem parts Prob(A) and Prob(B), and solution parts
Sol(A) and Sol(B), the case difference heuristic approach assumes that problems
with similar difference in their problem descriptions will have similar differences
in their solutions. For example, for predicting apartment rental prices from a
case base of rental properties and prices, if one apartment’s monthly rent is
$300 more than the rent of an otherwise highly similar apartment, and their
difference is that the more expensive apartment has an additional bedroom, the

Case-Based Reasoning Meets Big Data 185

Algorithm 1. EAR’s basic algorithm
Input:
Q: input query
n: number of base cases to adapt to solve query
r: number of rules to be applied per base case
CB: case base
Output: Estimated solution value for Q

CasesToAdapt ← NeighborhoodSelection(Q,n,CB)
NewRules: ← RuleGenerationStrategy(Q,CasesToAdapt,CB)
for c in CasesToAdapt do

RankedRules ← RankRules(NewRules,c,Q)
V alEstimate(c) ← CombineAdaptations(RankedRules, c, r)

end for
return CombineVals(∪c∈CasesToAdaptV alEstimate(c))

comparison might suggest a general rule: When the previous apartment case has
one bedroom fewer, predict that the new apartment’s rent will be $300 more than
the rent of the previous apartment (We note that many possible rules could be
generated; the choice of rules is outside the scope of this paper).

More precisely, for cases A and B, the case difference heuristic approach
generates an adaptation rule applicable to a retrieved case C and problem P,
for which the difference in problems of A and B is similar to the difference
between the problem of C and P, i.e., for which diff(Prob(C),P) is similar to
diff(Prob(A),Prob(B)). The new rule adjusts Sol(C) to generate a new solution
N, such that diffSol(C),P is similar to diff(Sol(A),Sol(B)). For a more detailed
description, see Hanney and Keane [27].

The results of the case difference heuristic depend on the cases from which
rules are generated; the final results depend on the cases to which they are
applied. The EAR methods estimate the solution of a case by retrieving a set of
similar cases, adjusting their values by applying an ensemble of adaptation rules
and combining the adjusted values to form the final prediction. Algorithm 1
explains the overall approach of EAR. In Algorithm 1, NeighborhoodSelection,
RuleGenerationStrategy, and RankedRules respectively denote methods for
finding nearest neighbors, generating adaptation rules and adaptation retrieval
in EAR4. More details are provided in [9].

EAR has different variations based on the subsets of cases it uses as source
cases for solving input problems and the cases it selects as the basis for building
adaptation rules. Different variants use different combinations of local and global
cases. For example, EAR4, selects cases for both building solution and adaptation
rules from the local neighborhood of the input problem. In this paper we focus
on big data versions of EAR4 a family of EAR methods that generates both
solutions and adaptations from the local neighborhood of the input query.

EAR has been shown to provide significant gains in accuracy over baseline
methods [9]. However, because it depends on multiple case retrievals to generate

186 V. Jalali and D. Leake

adaptation rules for multiple case neighborhoods, its application for large case
bases, using conventional CBR techniques, can be expensive. We have developed
compression-based methods to help alleviate this [11], but like all compression-
based methods, these trade off accuracy for compression. This motivated us to
explore the application of big data techniques to the EAR approach.

3.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [13] was developed to decrease the time com-
plexity of finding nearest neighbors for an input query in d-dimensional Euclid-
ean space. LSH achieves this goal by approximating the nearest neighbor search
process; it uses families of hashing functions for which the probability of collision
is higher for cases which are similar (in terms of their input features). Since the
introduction of LSH, various schemes have been proposed to improve various
aspects of the core method [28–30].

LSH groups similar items into different buckets by maximizing the probability
of collision for similar items. In contrast to nearest neighbor search, LSH does
not require comparing a case with other cases to find its nearest neighbors.
Instead, if an appropriate hashing function is used it is expected that a case
and its nearest neighbors end up in the same bucket. LSH is an approximation
method and it does not guarantee grouping a case and its nearest neighbors into
the same bucket. However, though LSH sacrifices accuracy for efficiency, it has
been demonstrated that LSH can be sufficiently accurate in practice [30].

Previous experiments have studied the performance of k-NN using locality-
sensitive hashing to retrieve nearest neighbors (e.g. [29]), showing that LSH
achieves higher efficiency compared to linear k-NN with the expected loss in
accuracy. In this paper, we explore both the efficiency benefits of LSH for EAR’s
ensemble method, and the ability of EAR’s ensemble method to provide good
performance despite the approximations made by LSH.

3.3 MapReduce

MapReduce is a framework that enables parallel processing of data. The “map”
step reads and filters data. Next, data is distributed among different nodes/
reducers based on a particular field (key) where data is summarized and desired
metrics are calculated for the subset of data in each reducer. Different imple-
mentations of the MapReduce framework are available. A popular open source
implementations of MapReduce framework which is commonly used in indus-
try is Apache Hadoop. Recent work by Beaver and Dumoulin [15] has applied
MapReduce for CBR, but only for retrieval of exact match cases, rather than
for similarity-based retrieval.

Case-Based Reasoning Meets Big Data 187

4 BEAR: A General Approach to Applying EAR Family
Methods to Big Data

4.1 Overview

BEAR (Big-data Ensembles of Adaptations for Regression) is a realization of
the EAR family of case-based regression methods in a big data platform, aimed
at decreasing the cost of finding nearest neighbors, a process for which the com-
putational expense may become serious issue for very large case bases. The EAR
family of methods must identify nearest neighbors at three steps in their process-
ing: to select source cases to adapt, to select candidate cases to build adaptation
rules, and to retrieve adaptation rules. Among these three steps, retrieving adap-
tations is potentially the most challenging, because, for a case base of size n, the
upper bound on the number of possible adaptation rules to generate is O(n2).
However, EAR4 mitigates this by limiting the cases to participate in rule genera-
tion process to the cases in the local neighborhood of the input query. Therefore,
in EAR4 it is likely that source case retrieval will be a more serious resource issue
than the adaptation retrieval.

To overcome the challenges raised by the size of the case/rule base, we have
investigated minimizing the size of the case base [11] and adaptation rule set
[12] to improve performance (in terms of the required computing resources).
Although these methods can be useful for reducing the case/rule base size, the
process of case/rule base size reduction can still be time consuming and costly;
they have not been applied to case bases with more than a few thousands cases.
In contrast to these methods, BEAR aims to mitigate challenges brought by
the size of the case base by leveraging existing frameworks and algorithms for
processing big data to yield accurate estimates rapidly, using locality sensitive
hashing on top of a MapReduce framework.

4.2 BEAR’s Architecture

BEAR consists of two main modules: LSH for retrieving similar cases and EAR
for rule generation and value estimation. The architecture of the system is
designed to work in a MapReduce framework. In the map step cases and queries
are read and hashed to different buckets using LSH. Cases and queries with
identical hashed keys are sent to the same reducer node. In the reduce step two
main activities are done: First, the nearest neighbors of each query (from the
cases in the same reducer) are determined; Next, depending on the selected EAR
method (i.e. EAR4), the adaptation rules are also generated.

For EAR4, which only uses local cases, adaptation rules are only gener-
ated and retrieved within the same bucket (for some other variations of EAR,
e.g. EAR5, which uses global case information, adaptations would be generated
within all buckets and the generated adaptations from different buckets unioned
together to form the rule base from which adaptations are retrieved). The final
estimates are generated by applying an ensemble of adaptation rules for adjusting

188 V. Jalali and D. Leake

Fig. 1. Illustration of global BEAR process flow.

the base cases’ values and combining those adjusted values. Figure 1 summarizes
BEAR’s process for estimating case solutions.

In Fig. 1, circles represent cases in the case base and the square represents
the input query. Cases are hashed and transferred to different reducers based
on their hashed keys. Next, adaptation rules are generated based on the cases
hashed to the same reducer as the input query. Finally EAR4 is used to estimate
the solution of the input query. Depending on the implementation of BEAR,
there could be another step in its process flow (not depicted), using a similarity
measure such as Euclidean distance to filter out cases in the same bucket as the
input query based on a distance threshold or a predefined number of nearest
neighbors.

The use of MapReduce offers the advantage of being able to process multiple
queries simultaneously, enabling, for example, millions of queries to be processed
in parallel. Also, even when single queries are processed sequentially, the use of
MapReduce enables processing the cases in the case base in parallel on multiple
nodes, rather than having to sequentially process all cases to select those whose
LSH hashing keys match that of the query, which would not be scalable.

5 Evaluation

Our evaluation tests the execution time benefits associated with big data meth-
ods for scaled up case-based regression with ensembles of adaptations for regres-
sion, and studies whether BEAR’s use of an ensemble of adaptations improves

Case-Based Reasoning Meets Big Data 189

accuracy compared to applying a non-ensemble approach, when both methods
use LSH for retrieval.

Because LSH is not guaranteed always to retrieve the optimal neighbors,
we expect that using LSH rather than exhaustive search for nearest neighbors
will somewhat degrade overall performance. Consequently, another question is
whether the ensemble of adaptations approach, applied in the context of LSH,
helps to mitigate this drawback.

This involves two types of tests. The first is a test of the accuracy of “tra-
ditional” k-NN, for which neighbors are selected exhastively, compared to that
when LSH is used to select (an approximate set of) neighbors, and when LSH is
used in conjunction with BEAR. The second, is ablation study to determine how
much of the performance of BEAR can be ascribed to its ensemble method, as
opposed to the fact that it uses adaptations, while k-NN does not. For the pur-
poses of this case study, we test for a particular LSH implementation, described
below, which we refer to as LSH1.

Specifically, our experiments address the following questions:

1. Q1: How does the accuracy of BEAR compare to that of a baseline of k-NN
using LSH1 for finding nearest neighbors?

2. Q2: How does the ensemble approach of BEAR increase accuracy compared
to applying single adaptations for adjusting base case values?

3. Q3: How does the accuracy of BEAR using LSH1 compare to that of exhaus-
tive k-NN?

4. Q4: How does execution efficiency of BEAR compare to that of traditional
(non-LSH) k-NN?

5.1 Experimental Design

We evaluated BEAR on four sample domains from the UCI repository [31]:
Automobile (Auto), Auto MPG (MPG), Housing, and electric power consump-
tion (Power). The goal for these domains is respectively to predict the auto price,
fuel efficiency (miles per gallon), property value, and household global minute-
averaged active power (in kilowatts). For all data sets records with unknown
values are removed and feature values are normalized by subtracting feature’s
mean from the value and dividing the result by standard deviation of the fea-
ture’s values. (Cases with missing features could be handled by standard feature
imputation methods, but this is beyond the scope of our experiment.) In addi-
tion, for domains with non-numeric features, only numeric features are used.
The accuracy is measured in term of Mean Absolute Error (MAE) in all exper-
iments and ten-fold cross validation is used for conducting the experiments. For
all domains parameters are tuned using hill climbing. In all experiments BEAR’s
performance is compared with that of an implementation of k-NN based on LSH
which we refer to simply as k-NN from this point forward. Sample domains are
chosen so that they cover both smaller and huge case bases. Table 1 summarizes
the characteristics of the sample domains.

190 V. Jalali and D. Leake

Table 1. Characteristics of the test domains

Domain name # features # cases Avg. cases/solution Sol. sd

Auto 13 195 1.1 8.1

MPG 7 392 3.1 7.8

Housing 13 506 2.21 9.2

Power 7 2,049,280 1.09 1.06

All records and features were used for the Housing (506) domain. Auto,
MPG, and Power contained some records with unknown feature values, which
were removed (46 out of 205 for Auto, 6 out of 398 for MPG and 25979 out
of 2075259 for Power). For all domains only numeric attributes are used in the
experiments to enable the application of p-stable locality sensitive hashing. All
features of MPG and Housing were numeric, but 10 non-numeric features were
removed from Auto and 1 from Power. We note that the numeric features are
not required by the general BEAR method.

We note that LSH is a family of methods. Our implementation of BEAR
uses Apache DataFu, originally introduced in [32], to support locality sensi-
tive hashing. The corresponding class from Apache DataFu used in BEAR is
L2PStableHash, with a 2-stable distribution and default parameter settings. It
is important to note that because the focus of our experiments is primarily the
comparison of BEAR to LHS-based k-NN, and both methods are based on the
same version of LSH, the specific variant chosen is not significant to our results.

It also uses EAR4’s Weka plugin’s code [33], combined with some common
functionality from Weka [34] to generate adaptation, retrieve and apply them
and build the final prediction. The experiments are run on an EMR amazon
cluster with one m3.xlarge master node and ten c3.2xlarge core nodes.

5.2 Experimental Results

Q1: How does the accuracy of BEAR compare to that of a baseline of k-NN
using LSH1 for finding nearest neighbors? To address Q1, we conducted exper-
iments to compare BEAR with k-NN using LSH1. In all experiments BEAR’s
estimations are generated using EAR4 to generate adaptation rules, retrieve
adaptations and build final estimations based on nearest neighbors retrieved
by LSH1. The experiments report estimation error in terms of Mean Absolute
Error. Table 2 summarizes the results for four sample domains. In all domains
BEAR outperforms k-NN by substantial margins. A one side paired t-test with
95 % confidence interval was used to assess the statistical significance of results
achieved by BEAR in the smaller case bases (we excluded the Power domain
from the statistical significance analysis because of the very large size of the
case base). The null hypothesis is that the MAE of BEAR is greater than that
of k-NN. The results of the t-test showed that p<.01, so the improvement of
BEAR over k-NN is significant.

Case-Based Reasoning Meets Big Data 191

Table 2. Accuracy comparison for k-NN and BEAR

Domain name MAE for k-NN MAE for BEAR % improvement over k-NN

Auto 2.04 1.18 42.14 %

MPG 2.62 2.06 21.40 %

Housing 3.73 2.84 23.98 %

Power 0.15 0.10 36.01 %

Fig. 2. BEAR vs. BEAR1

Q2: How does the ensemble approach of BEAR increase accuracy compared to
applying single adaptations for adjusting base case values? To study the effect of
applying an ensemble of adaptations on estimations’ accuracy we implemented
an ablated version of BEAR, BEAR1 in which only one adaptation is applied
to adjust case values. Figure 2 shows the percent of improvement in MAE over
k-NN for BEAR and BEAR1. BEAR1 outperforms k-NN in all domains, but the
improvement is less than that of BEAR over k-NN, which shows the benefit of
ensemble approach of BEAR.

Q3: How does accuracy of k-NN and BEAR using LSH1 compare to that of tra-
ditional k-NN? Because LSH-based retrieval does not guarantee always selecting
the true nearest neighbors to a case, some accuracy penalty may be expected.
However, we hypothesize that BEAR’s ensemble method helps alleviate the asso-
ciated quality degradation. We tested this hypothesis by comparing the per-
formance of traditional k-NN on the Auto, MPG, and Housing domains, with
the previously-described testing scenario (because the relatively large size of the
Power domain made traditional k-NN excessively expensive, we did not compare
performance in the Power domain). MAE of traditional k-NN for auto and mpg
domains was 1.31 and 2.14 respectively, compared to 1.18 and 2.06 for BEAR.
However, in the housing domain, traditional k-NN slightly outperformed BEAR,

192 V. Jalali and D. Leake

with an MAE of 2.68, versus 2.84 for BEAR (approximately a 5 % drop). Thus
BEAR retains accuracy comparable to traditional k-NN.

Q4: How does execution efficiency of BEAR compare to that of traditional k-
NN? Figure 3 shows the run time in seconds of traditional (non-LSH) k-NN
and BEAR on different subsets of the Power domain, ranging from 20,000 to
820,000 randomly selected cases. The recorded run times are the total time
for conducting ten fold cross validation. All experiments were run on a single
machine with 16 GB memory and 2.8 GHz Intel Core i7 processor. Weka’s [34]
IBK package is used as the implementation of k-NN. For smaller case base sizes
(e.g. 20,000 cases) k-NN is quite fast; a ten-fold cross validation test takes on
the order of 1 second. For a case base approximately 31 times larger (615,000
cases) the test takes 4.5 h—approximately 16,000 times longer. When the size
is increased to 820,000 cases, time increases to 21 h.

On the other hand, using LSH and parrallelizing the process over different
nodes enables EAR4 to process same sizes of the case based in significantly less
time. An interesting observation is that for a case base of 20,000 cases it actually
takes less time for k-NN to yield the results than BEAR (it takes k-NN 10 seconds
while takes BEAR 265 seconds). This is because of the communication overhead
of MapReduce framework which makes applying big data techniques less efficient
when applied to small case bases. However, k-NN run time increases very rapidly
compared to BEAR as case base size increases to 205,000 cases, while the run
time of BEAR increases at a much lower rate. Even when the entire power case
base is used (over 2 million cases), BEAR takes less than 20 min to complete
the experimental run on an EMR cluster with the configuration described in
Sect. 5.1. We note that this corresponds to less than .1 second per problem
solved, even on a small cluster. This supports the need to move to big data
methods for practical large-scale CBR.

5.3 Overall Perspective: Scale-Up, Time, Space, and Accuracy

The experiments in this case study illustrate the ability of the BEAR approach,
which combines ensemble adaptations with locality-sensitive hashing, both to
remain efficient for large scale data and to provide substantial accuracy increases
compared to non-ensemble adaptation of cases retrieved by LSH, and for k-NN
using LSH. More generally, it illustrates the potential of CBR’s reasoning capa-
bility (in the form of case adaptation) to provide strong benefits not present in
big data/retrival-only methods. The largest test case base used in our experi-
ments has two million cases, and was run on a small cluster (with ten core nodes).
However, BEAR could easily be applied to substantially larger case bases with
tens or even hundreds of millions of cases, and expected running times compa-
rable to that reported in this paper, by increasing the computational resources
to the level common in industrial settings (e.g. a cluster with hundred nodes or
more).

In many treatments of case-based maintenance in CBR, having/maintaining
a large number of cases is assumed to correspond to degraded retrieval and

Case-Based Reasoning Meets Big Data 193

Fig. 3. Running time of k-NN and BEAR for different sizes of Power domain

processing time, potentially requiring sacrificing information by case deletion.
However, leveraging big data platforms and techniques it is possible to avoid
information loss, and consequently yield more accurate solutions, by retaining
full case bases impractical for conventional methods and using them efficiently.
The ability of big data to integrate both with flexible similarity-based retrieval
and case adaptation is promising for the general ability of much scaled up CBR.
This, in turn, could open the door to very large-scale CBR, with near-instant
retrieval from case bases with millions of cases, plus the potential accuracy ben-
efits of avoiding the need for case-base compression in many domains.

The previous experiments focus on the ability of big data methods to enable
using full case bases. However, given the speed of those methods, for time-critical
tasks it could even be feasible to sacrifice additional space for the sake of time.
As a concrete example, for numerical prediction using BEAR in a domain with
millions of cases (e.g. the Power domain), it would be possible to pre-process
the data to generate the LSH keys for each case and store all cases with their
corresponding hash keys in a NoSQL database. Because, in LSH, each record
can be hashed with a set of hash families, this results in having case bases of
size orders of magnitude greater than the original case base. However, with this
NoSQL design, applying a method such as EAR4 on top of big data meth-
ods could enable processing thousands of queries in a matter of a few seconds
even without MapReduce. Even for millions of queries, using MapReduce for
query processing only and using the NoSQL database for case retrieval, average
response time per query could still be in range of a few milliseconds.

194 V. Jalali and D. Leake

6 Conclusion and Future Directions

In this paper we illustrated the practicality of a big-data version of ensembles of
adaptation for regression, implemented in BEAR, which uses MapReduce and
Locality Sensitive Hashing for finding nearest neighbors of the input query. We
consider the results encouraging for the application of big data methods to the
fuller CBR process, to exploit not only larger case bases but also collections of
adaptation rules, without compression. Such methods might also present oppor-
tunities for CBR approaches to big data problems more generally, as an alter-
native to rule mining. In addition, the BEAR approach improves performance
compared to the big data baseline k-NN with LSH1, and preserves comparable
performance to that of much more costly traditional k-NN.

As future directions, we intend to compare accuracy and speed performance
achieved by case base compression to those of BEAR, to better understand the
tradeoffs between traditional and big data methods for CBR. Given BEAR’s
efficiency, we also intend to extend our methods to test more computationally
expensive variations of the EAR family of methods as the case-base estimator
module in BEAR. For example, generating rules from neighborhoods other than
the local neighborhood of the input query—which requires consideration of many
more cases—and adding contextual considerations in adaptation retrieval, have
produced good small-scale results [10], but with high costs that raised concerns
for their large-scale applicability by conventional CBR methods. The BEAR
framework suggests a path for making practical such case-intensive methods.

Previous CBR research has applied big data methods to CBR when case
retrieval relies on exact match (string-based) retrieval [15]; BEAR enables
similarity-based matching. However, an important problem is how to apply these
techniques to structured cases.

References

1. Kim, G.H., Trimi, S., Chung, J.H.: Big-data applications in the government sector.
Commun. ACM 57(3), 78–85 (2014)

2. Hoover, W.: Transforming health care through big data. Technical report, Institute
for Health Technology Transformation (2013)

3. Greengard, S.: Weathering a new era of big data. Commun. ACM 57(9), 12–14
(2014)

4. Plaza, E.: Semantics and experience in the future web. In: Althoff, K.-D.,
Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol.
5239, pp. 44–58. Springer, Heidelberg (2008)

5. Ontañón, S., Lee, Y.-C., Snodgrass, S., Bonfiglio, D., Winston, F.K., McDonald,
C., Gonzalez, A.J.: Case-based prediction of teen driver behavior and skill. In:
Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 375–389.
Springer, Heidelberg (2014)

6. Cordier, A., Lefevre, M., Champin, P.A., Georgeon, O., Mille, A.: Trace-based rea-
soning - modeling interaction traces for reasoning on experiences. In: Proceedings
of the 2014 Florida AI Research Symposium, pp. 363–368. AAAI Press (2014)

Case-Based Reasoning Meets Big Data 195

7. Smyth, B., Keane, M.: Remembering to forget: a competence-preserving case dele-
tion policy for case-based reasoning systems. In: Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, pp. 377–382. Morgan
Kaufmann, San Mateo (1995)

8. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Althoff, K.-
D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
p. 329. Springer, Heidelberg (1999)

9. Jalali, V., Leake, D.: Extending case adaptation with automatically-generated
ensembles of adaptation rules. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013.
LNCS, vol. 7969, pp. 188–202. Springer, Heidelberg (2013)

10. Jalali, V., Leake, D.: A context-aware approach to selecting adaptations for case-
based reasoning. In: Brézillon, P., Blackburn, P., Dapoigny, R. (eds.) CONTEXT
2013. LNCS, vol. 8175, pp. 101–114. Springer, Heidelberg (2013)

11. Jalali, V., Leake, D.: Adaptation-guided case base maintenance. In: Proceedings
of the Twenty-Eighth Conference on Artificial Intelligence, pp. 1875–1881. AAAI
Press (2014)

12. Jalali, V., Leake, D.: On retention of adaptation rules. In: Lamontagne, L., Plaza,
E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 200–214. Springer, Heidelberg (2014)

13. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing. STOC 1998, pp. 604–613. ACM, New York (1998)

14. Daengdej, J., Lukose, D., Tsui, E., Beinat, P., Prophet, L.: Dynamically creating
indices for two million cases: a real world problem. In: Smith, I., Faltings, B. (eds.)
Advances in Case-Based Reasoning, pp. 105–119. Springer, Berlin (1996)

15. Beaver, I., Dumoulin, J.: Applying mapreduce to learning user preferences in near
real-time. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp.
15–28. Springer, Heidelberg (2013)

16. Francis, A., Ram, A.: Computational models of the utility problem and their appli-
cation to a utility analysis of case-based reasoning. In: Proceedings of the Workshop
on Knowledge Compilation and Speed-Up Learning (1993)

17. Smyth, B., Cunningham, P.: The utility problem analysed: a case-based reason-
ing perspective. In: Proceedings of the Third European Workshop on Case-Based
Reasoning, pp. 392–399. Springer, Berlin (1996)

18. Craw, S., Massie, S., Wiratunga, N.: Informed case base maintenance: a complexity
profiling approach. In: Proceedings of the Twenty-Second National Conference on
Artificial Intelligence, pp. 1618–1621. AAAI Press (2007)

19. Muñoz-Ávila, H.: A case retention policy based on detrimental retrieval. In: Althoff,
K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
pp. 276–287. Springer, Heidelberg (1999)

20. Ontañón, S., Plaza, E.: Collaborative case retention strategies for CBR agents.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 392–406.
Springer, Heidelberg (2003)

21. Salamó, M., López-Sánchez, M.: Adaptive case-based reasoning using retention and
forgetting strategies. Know.-Based Syst. 24(2), 230–247 (2011)

22. Zhu, J., Yang, Q.: Remembering to add: competence-preserving case-addition poli-
cies for case base maintenance. In: Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pp. 234–241. Morgan Kaufmann (1999)

23. Angiulli, F.: Fast condensed nearest neighbor rule. In: Proceedings of the Twenty-
second International Conference on Machine Learning, pp. 25–32. ACM, New York
(2005)

196 V. Jalali and D. Leake

24. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algo-
rithms. Mach. Learn. 38(3), 257–286 (2000)

25. Brighton, H., Mellish, C.: Identifying competence-critical instances for instance-
based learners. In: Instance Selection and Construction for Data Mining, The
Springer International Series in Engineering and Computer Science, vol. 608, pp.
77–94. Springer, Berlin (2001)

26. Houeland, T.G., Aamodt, A.: The utility problem for lazy learners - towards a
non-eager approach. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 141–155. Springer, Heidelberg (2010)

27. Hanney, K., Keane, M.T.: The adaptation knowledge bottleneck: how to ease it
by learning from cases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol.
1266. Springer, Heidelberg (1997)

28. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. VLDB 99, 518–529 (1999)

29. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: IEEE International Conference on Computer Vision ICCV (2009)

30. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG 2004, pp. 253–262. ACM, New York
(2004)

31. Frank, A., Asuncion, A.: UCI machine learning repository (2010) http://archive.
ics.uci.edu/ml

32. Hayes, M., Shah, S.: Hourglass: a library for incremental processing on hadoop. In:
2013 IEEE International Conference on Big Data, pp. 742–752 (2013)

33. Jalali, V., Leake, D.: Manual for EAR4 and CAAR weka plugins, case-based regres-
sion and ensembles of adaptations, version 1. Technical report TR 717, Computer
Science Department. Indiana University, Bloomington (2015)

34. Witten, I., Frank, E., Hall, M.: Data mining: practical machine learning tools and
techniques with Java implementations, 3rd edn. Morgan Kaufmann, San Francisco
(2011)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Addressing the Cold-Start Problem in Facial
Expression Recognition

Jose L. Jorro-Aragoneses(B), Belén Dı́az-Agudo, and Juan A. Recio-Garćıa

Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Madrid, Spain
{jljorro,belend}@ucm.es, jareciog@fdi.ucm.es

Abstract. In our previous research [5] we proposed a CBR approach
to infer the emotional state of the user through the analysis of a picture
taken from the front facing camera of her mobile device. We demon-
strated that different people express emotions with different gestures
and got the best accuracy using a personal case base with self pictures
of the same user. However, in the cold start situation, where pictures
of the querying user are not available, the CBR system uses a generic
case base (GCB) made of pictures of anonymous people. Although the
performance using the GCB was acceptable on average there were sev-
eral users with a very low accuracy. In this paper we compare our GCB
to other reference picture catalogues and evaluate our CBR approach
with state-of-the-art Facial Expression Recognition (FER) algorithms.
Results point out that our approach is only suitable for GCB including
semantically similar users. We use an ontology to group together users
with similar demographic and physiological information: sex, age and
ethnic group. We evaluate our CBR approach with small and specialized
case bases where pictures are semantically similar to the target popu-
lation and demonstrate that it efficiently increases the accuracy in the
cold start situation and minimizes the noise in the case base.

1 Introduction

Emotional tagging of facial expressions is becoming a relevant topic for e-
commerce systems based on mobile devices. These devices include a wide range
of sensors able to capture the emotional state of the user, which is a very valu-
able feedback to infer her willing to consume a concrete product being proposed
by the e-commerce system. This information about the user’s emotional state
has many potential applications and an unmeasurable value from the commercial
point of view. Although modern devices include sensors that can measure several
physiological variables of the user such as heart rate, temperature or even blood
pressure, the front camera is usually the best alternative to infer the emotional
response.

Usage of dynamically enriched information from the user context leads the
system to find better solutions that are adapted to the specific situations. In
our research we have focused on the difficult problem of dynamically acquiring
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 197–211, 2015.
DOI: 10.1007/978-3-319-24586-7 14

198 J.L. Jorro-Aragoneses et al.

the emotional context of the user during a recommendation process. In [5] we
described PhotoMood, a CBR system that uses gestures to identify emotions
in faces, and presented preliminary experiments with MadridLive, a mobile and
context aware recommender system for leisure activities in Madrid. In the exper-
iments, the momentary emotion of a user is dynamically detected from pictures
of the facial expression taken unobtrusively with the front facing camera of the
mobile device.

The emotional state of the user inferred by PhotoMood was used as the
feedback -like or dislike- for our recommender system for leisure activities. This
CBR system uses as queries the pictures of the user taken while she is receiving
recommendations from the system. By comparing these pictures to a case base of
pictures tagged as positive or negative responses, we could infer the user’s opinion
about each activity being proposed. The published results stated that the use of a
personal case base with pictures of the user achieved a higher performance than a
generic case base with pictures from several users. Although a personal case base
is the best alternative, new users have no pictures in the system and, therefore,
the cold-start problem appears. The term cold-start is used in recommender
systems to denote those users with little information in the system. This problem
is very common and requires specific techniques to circumvent it. Due to the
lower performance of the generic case base compared to the personal case base,
we required an alternative approach to tag those users in cold-start. This paper
tries to address this limitation by proposing the use of specific case bases with
a small number of cases that have been semantically annotated and that groups
pictures of users that are semantically similar. we can choose the most suitable
set of cases to get an efficient and precise replacement of the personal case base
for those users in cold-start. This intermediate approach rises the performance
of our facial expression recognition (FER) system and achieves better results
than a generic case base. We have performed an experimental evaluation that
not only validates our proposal but also compares our CBR strategy to other
state-of-the-art algorithms for facial emotion recognition.

Section 2 describes some related work on the FER field research. Next, in
Sect. 3 we explain our previous work, algorithm and results on face emotional
recognition based on the CBR paradigm. Section 4 introduces the cold-start
problem and a first solution using generic case bases. We introduce some of our
tools for visualization and organization of cases bases and we compare our app-
roach with other FER approaches in these generic case bases. Section 5 describes
a solution based on the semantic annotation of generic case bases to obtain spe-
cialized cases that share common gestures with the current query. We use age,
sex and ethnic group as the features to annotate case bases. Experiments show
that results on these specialized case bases are accurate and efficient. Section 6
concludes our work.

2 Related Work

Facial expression recognition (FER) is a research field very active in the area
of computer vision. We can find a general overview of FER algorithms in [18].

Addressing the Cold-Start Problem in Facial Expression Recognition 199

FER algorithms are applied to different domains, such as recognition of students
engagement [21], user experience feedback [13] or different recommender systems
[19,20].

FER algorithms can be classified in several ways, although a common classi-
fication is based on the method to extract facial features [18]. According to this
feature, FER algorithms can divided in two groups: appearance feature extrac-
tion and geometric feature extraction.

Appearance feature extraction consists on extracting changes in the appear-
ance of the face, for example, skin texture. We find many works whose authors
use this technique. Zhen and Zilu [22] use a FER algorithm based on sparse rep-
resentation and Local Phase Quantization (LQP). They based their algorithm on
the LPQ method of textures of images [14]. Other example is Taheri,Patel and
Chellapa [17], where authors use a dictionary-based component separation algo-
rithm (DCS). This method separates the neutral component and from expression
component of an image. In Khanum, Mufti, Javed and Shafiq [7], authors detect
the facial action elements (FAEs) and uses fuzzy logic combined to CBR to
detect the emotion.

The second group of FER algorithms are the geometric feature extraction
ones. It consists on extracting the location of elements of the face. An example
of this type of algorithms is Kotsia and Pitas [8]. It uses the location of some
points to detect deformations in the face and then detect the emotion from this
deformation.

Our algorithm, PhotoMood [5,11], is classified in the geometric feature
extraction. PhotoMood is a CBR system to detect emotions with facial recogni-
tion. In [11], we presented a similarity function based on the external contour of
the mouth. In this paper, we improve the similarity function by adding additional
gestures as it is explained in the following section.

3 PhotoMood: A CBR Approach to Face Emotion
Recognition

This section explains the CBR algorithm implemented in PhotoMood. Photo-
Mood [5,11] analyses the facial expression to detect the user emotion using two
stages:

Image Pre-processing: PhotoMood obtains 46 coordinates of the user’s facial
gestures classified in 8 vectors:

– v1: External outline of mouth.
– v2: Internal outline of mouth.
– v3: Outline of right cheek.
– v4: Outline of left cheek.
– v5: Outline of right eye.
– v6: Outline of left eye.
– v7: Outline of right eyebrow.
– v8: Outline of left eyebrow.

200 J.L. Jorro-Aragoneses et al.

CBR Process: Cases in the case base include pictures of users that have been
annotated with the emotion tag t. From a query of gestures(Q) including
these 8 vectors, the CBR system retrieves the most similar pictures and
reuse their solution to estimate the user’s emotion:

Q = < vq1, . . . , v
q
8 > (1)

C = < Dc,Sc > (2)
where

Dc = < vc1, . . . , v
c
8 > (3)

Sc = {t1, . . . , tm} (4)

The system admits any number of emotions in the solution side of the cases.
The system retrieves the most similar cases using the gesture vectors and
reuse their emotion tags. In the recommender domain we use three tags Like,
Dislike and Surprise, so m=3.

Retrieval. We used a K-Nearest Neighbour algorithm where the similarity value
is computed by weighting the local similarity of each vector vi. Therefore
each pair of vectors < vqi , v

q
i > is compared and the resulting value is

weighted with a value wi that represents the relevance of the correspond-
ing gesture in the global similarity computation:

Sim(Q,Dc) =
8∑

i=1

wi ∗ Simi(v
q
i , v

c
i) (5)

where
8∑

i=1

wi = 1 (6)

We obtain the angle between each pair of points and the horizontal axis.
Following the contour of a gesture, the arctangent between a pair of
points is computed to obtain their angle. Each angle of the query Q
is compared to the corresponding angle of the case Dc producing |vi|
(angle-level) similarity values:

Simi(v
q
i , v

c
i) =

1
|vi|

z∑
j=1

1 −
√

(arctan(p̂qjp
q
l) − arctan(p̂cj , p

c
l))2 (7)

where l = (j + 1) mod z

Reuse. To obtain the solution of the query, the system uses a weighted voting
schema according to the similarity of the retrieves cases. The scoring
function is:

score(ti) =
∑

sim(Q,Dc) ∀ c | Sc = ti (8)

The solution assigned to the query is:

ti = argmax{score(ti), i = 1, . . . ,m} (9)

Addressing the Cold-Start Problem in Facial Expression Recognition 201

Revise. The revise stage is external to the PhotoMood CBR module. The user
will be the responsible to modify the solution if it is wrong.

Retain. The system stores the cases that they were revised by the user.

3.1 Previous Results

In our previous experiments [5], we tested our CBR approach with a a personal
case base (PCB) of self pictures for each querying user, and with a generic case
base (GCB) that contains 300 images of anonymous people that we obtained
with search processes in Google Images1. We concluded that each gesture has
a different importance for each user and we used a Genetic Algorithm (GA) to
calculate the optimal set of weights for each user. Finally, we concluded that
the CBR system behaves better using the personal case base (PCB) and the
personal set of weights (pw) for each user. However, having a personal case base
for each user is not always possible. For example, when we have new users in
cold start. Besides, the computation of a personal set of weights for an user is a
computational expensive process. So, GCBs with very different people have been
characterized and evaluated. Next section describes how different GCBs behave
with different users in the cold start situation.

4 Generic Case Bases as a Solution to the Cold Start
Problem

Cold start is one of the most challenging problems in recommender systems [10].
It is a potential problem in any knowledge based system based on information
about users or items. It appears when the system has not gathered enough infor-
mation. For example, in the domain of product recommendation for new users
the system has no information about users’ preferences in order to make recom-
mendations. Although a relevant research has been conducted in this field the
cold-start problem is far from being solved and many different partial solutions
have been proposed (see [16] for a recent review).

In our previous research [5] we demonstrate that different people show emo-
tions with different gestures and compute the specific set of weights that max-
imize the accuracy of our CBR classifier for each specific user. To do that, we
used a personal case base with self pictures of each user. We have experimented
with different configurations of case bases and sets of weights. As conclusion,
we pointed out that the system obtains the best results using a personal case
base for each user. However, in the cold start situation, where pictures of the
querying user are not available, the system uses a generic case base made of
pictures of anonymous people. Reasonable results were found when tagging two
basic emotions –like and dislike – using 46 feature points organized in 8 gesture
vectors. Experiments got an average precision in GCB of 89.34 % and an average
1 We used Google Image Search with the queries “Happy face”, “Unhappy faces” and

“Surprise faces”.

202 J.L. Jorro-Aragoneses et al.

precision for the personal case base of 92.16 %. Our generic Case Base in these
preliminary experiments consists of 300 images of anonymous people that we
obtained with search processes in Google Images.

Although the performance of the GCB in our previous work was acceptable on
average, there were several users with a very low accuracy. After a comparison of
our GCB with other reference picture catalogues used to evaluate state-of-the-art
FER algorithms, we realised that our approach is only suitable for users similar
to those ones in the case base. For example, the JAFFE [12] dataset contains
pictures of Japanese women. Due to specific facial features of this population
our GCB was unable to correctly classify our previous pictures (from European
people) when used as queries in a cross-validation experiment. Moreover, after
several experimental evaluations we noticed that the Genetic Algorithm used to
optimize the similarity function decreased its performance when applied to large
generic datasets including a wide range of users.

This experimentation with several generic case bases led us to conclude that
the cold-start problem could not be addressed with only one generic case base.
Nevertheless, the use of specialized case bases including pictures semantically
similar to the target population could increase the accuracy of the system. We
use the term semantically similar to denote those features that allows us to
group users with similar facial expressions.

Initially, we tried to apply automatic machine learning approaches -such as
clustering techniques- to obtain these groups of users with similar expressions.
After several experimental evaluations results were unsatisfactory and we con-
cluded that these groups had to be made according to semantic features of the
users. As we will present in following sections we have used the information from
the profiles of the users to map them to a specialized case base through a seman-
tic mapping function based on an ontology. This ontology captures the semantic
similarity between users according to features like age, ethnic group an gender.

Following subsections present this experimental evaluation. First we intro-
duce the results when applying our approach to several reference datasets in
Sect. 4.1. Next, we also compare different state-of-the-art FER algorithms to
our CBR system 4.2. Finally, Sect. 5 presents our semantic approach to exploit
specialized case bases.

4.1 Applying PhotoMood CBR to Reference Datasets

The first solution to the cold-start situation is the use of a GCB including a
large number of pictures of different type of users, in order to cover as much as
possible the solution space of facial expressions. We used 2 different reference
datasets as case bases to evaluate our CBR approach:

1. CK+[6]: It contains 593 images from 123 individuals. These images have been
divided in scenes where each scene contains images from neutral state to any
emotion. The last image of each scene is the peak of the emotion (the image
most representative of the emotion tagged in this scene). We only used the
last image of each user that has been tagged with an emotion. Totally we

Addressing the Cold-Start Problem in Facial Expression Recognition 203

Fig. 1. Confusion matrix of the CK+ (top) and JAFFE (bottom) datasets using Pho-
toMood CBR.

have 327 images (45 angry, 18 contempt, 59 disgust, 25 fear, 69 happiness, 28
sadness and 82 surprise) to use like queries.

2. JAFFE [12]: It contains 213 face images from 10 subjects. These images are
of Japanese women. These pictures are classified in: Neutral (30), Anger (30),
Disgust (29), Fear (32), Happiness (31), Sadness (31) and Surprise (30).

As we explained these datasets are classified in 7 emotions, but PhotoMood
was implemented to detect 3 emotions (like, dislike and surprise). Therefore we
grouped similar emotions (for example sad and fear) to reduce the number of
classes to the ones used by our system. We selected and grouped the emotions
equivalent to those ones in PhotoMood. For the Like tag we included images
tagged with the happy emotion. For the Dislike tag we grouped images whose
tag is a dislike emotion (angry, contempt, disgust, fear and sadness). Finally,
we included the Surprise tag alone as there is not a clear classification (Like or
Dislike).

After several cross-validation evaluations we obtained poor results. We tested
both datasets using leave-one-out and grouping the classes of pictures into the 3
emotions used in PhotoMood (Like, Dislike and Surprise). Results are shown in
Fig. 1 as a confusion matrix. We can observe that there is no clear classification
for any emotion.

In any CBR system there are two possible explanations for this lack of perfor-
mance: (1) the additional knowledge of the system -this is the similarity function-
has deficiencies. And (2) the deficiencies are in the case base. Beginning with
the first possible explanation we developed introspection tools to analyse the
performance of our similarity function. These tools are:

– Visualization of cases grouping. Ideally a good similarity function should
group same class cases together. By using a graph distance visualization tool
we should be able to identify clusters of cases belonging to the same emotion.
This tool is shown in Fig. 2 applied to the CK+ dataset. In this figure each
emotion is represented by a colour. We can observe that there are two clear
clusters where the similarity function is working properly but the center of
the image is too messy, denoting a bad classification.

204 J.L. Jorro-Aragoneses et al.

– Distance matrix. Although the case-base visualization tool is very useful to
informally evaluate the accuracy of the similarity function it depends on the
graph visualization algorithm that tries to layout the cases depending on their
distance. An efficient way to circumvent this drawback is the distance matrix.
This NxN matrix (being N the size of the dataset) shows the similarity of every
pair of cases by using a grey scale. A dark point denotes a high similarity and a
whiter point reflects low similarity. By sorting the axis of the matrix according
to the class (emotion) of the cases we should, ideally, find dark rectangles in the
diagonal of the matrix (corresponding to the similarity of cases from the same
emotion) and white areas in the surroundings. However, when visualizing the
datasets with this technique we did not find this pattern. As we can observe
in Fig. 3 there is only a good classification in the third class (like emotion)
where there is a clear dark rectangle in the diagonal of the matrix and white
areas in its vertical and horizontal sides.

– Similarity function introspection. The disappointing results of the similarity
function led us to consider that it was not properly designed. As we previously
explained it is a weighted average of several local similarities that compares
8 gestures of the user (eyebrow, outline of mouth, etc.). Perhaps this way to
compute the similarity between emotions was not suitable for this domain so
we developed an introspection tool to evaluate the accuracy of the similarity
function for problematic pairs of cases. The resulting tool is shown in Fig. 4.
In this case, pictures being compared belong to different emotions (anger and
disgust). After analysing the accuracy of the similarity function with several
pairs of pictures we concluded that the similarity function was performing
reasonably well.

If the similarity function was performing well the only remaining explanation
for the low accuracy of the CBR system is the other source of knowledge: the case-
base. As we can clearly observe in Fig. 4 pictures are quite similar but classified
with different emotions. No similarity function could distinguish among these
emotions because they deeply depend on the facial expression of the user2. This
analysis supports our premise that the personal case base is the best alternative
to rise the performance of the CBR system. But when the user is in cold-start
and there are no personal pictures we cannot use generic case bases because the
classification deeply depends on the type of user. This is the main reason to
develop an approach based on specialized case bases selected by using semantic
knowledge that is presented in Sect. 5. But before developing such method we
had to completely confirm that the CBR approach was valid by comparing it to
state-of-the-art FER algorithms as described in the following section.

4.2 Comparison of PhotoMood with Other FER Approaches

Section 2 introduced several algorithms that exploit the textures in pictures to
infer the emotional state for the user, i.e. [17,22]. We have compared our CBR

2 We leave aside possible miss-classifications of pictures in the dataset.

Addressing the Cold-Start Problem in Facial Expression Recognition 205

Fig. 2. Visualization of the CK+ dataset. Each colour representing a different emotion
(Color figure online).

Fig. 3. Distance matrix of the CK+ dataset. A1, B2 and C3 areas representing a
pictures of the same emotion.

206 J.L. Jorro-Aragoneses et al.

Fig. 4. Introspection tool to analyse the similarity function. Although similar pictures
denote different emotions: anger (left) and disgust (right).

approach to these algorithms in order to validate our geometric similarity func-
tion. Figure 5 shows the results of this comparison for the CK+ dataset3.

Fig. 5. Comparison with other FER approaches.

According to these results, our approach is similar in performance to state-
of-the-art algorithms. It achieves a higher accuracy for the dislike class, but a
lower performance for other classes. These inconclusive results are rooted in the
low quality of the case base regarding the classification problem being addressed.

We can also compare these algorithms from the functional point of view.
Texture-based algorithms require a large storage as they must store every single
pixel of the picture. In our MadridLive scenario it is not a suitable solution for
devices such as mobile phones with a limited storage capacity. Our approach only
requires to store the 46 points defining the geometry of the gestures. Another
relevant advantage of our CBR approach is related to the alignment of the faces
in the pictures. Texture-based methods usually apply a sparse representation
technique that requires a perfect alignment of every picture. This technique uses
an image overlay training process to create a model representing the emotions
of the user. However, this approach is not applicable in our scenario as it is
impossible to obtain aligned pictures from the front facing camera of a mobile
device. Being our method based on geometrical comparison it does allow to
compare pictures with different face alignments.
3 The accuracy is taken from [9], whereas the DCS-S1 accuracy is obtained from [17].

Addressing the Cold-Start Problem in Facial Expression Recognition 207

Once the CBR approach was validated next Section presents an improvement
to solve the cold-start problem.

5 Use of Semantic Case Bases

After our analysis of the performance of the studied GCBs, we have found several
drawbacks when trying to address the cold-start problem. First, to achieve an
acceptable accuracy, the CBR system requires a large number of pictures that
share gestures with the user query. Besides, to guarantee enough coverage for
different types of users we would need to provide with a very large case base.
The CBR process becomes inefficient and decreases accuracy due to the irrelevant
noisy cases. However, we noticed that it is possible to increase the accuracy of
the CBR system if the case base includes pictures from the same physiological
group than the query user. It means that by using pictures of users with similar
features like age, gender and ethnic group, we could rise the performance of
our FER system. In this section we describe a proposal to solve the cold-start
problem using small and specialized case bases according to the demographic
and physiological features of the users.

Our first approach was the use of automatic clustering algorithms to find
small related groups in GCB. This way we could find groups of pictures from
users with similar features (Fig. 4). However after several experimental evalu-
ations we concluded that this approach led us to generic groups of pictures
meaningless from the point of view of expression recognition.

Our proposal is to manually create these clusters as specialized case bases
that capture semantic features of the user being classified. We evaluate this
proposal to check if the use of semantic case bases improves the accuracy and
the efficiency of the FER system in a cold start situation. It is a two stage
process:

– Find the proper specialized case base for a given user.
– Retrieve and reuse the most similar cases.

This approach requires additional knowledge about the user in order to select
the most suitable specialized case base. MadridLive recommender [5] obtains this
information from the user profile. During registration, users must state their age,
gender and country. By adding additional semantic knowledge the system can
be able to find the proper case base.

If users are described by age, gender and country, and our specialized case
bases are described by the age range, gender and ethnic group of the users in the
pictures there is a small vocabulary gap to be solved. Previous works [15] have
pointed to ontologies as an efficient way to represent the semantic knowledge
required to map between a query and case base description vocabulary. In our
case, ontologies can formalize the additional knowledge required to obtain the
proper case base of pictures for a query described in terms of the age, gender
and country. Figure 6 shows a simplified view of our ontology. It illustrates how
a user from Japan is mapped to a case base for Asiatic people4.
4 We have used the”Geographical Races” taxonomy proposed by Garn [4].

208 J.L. Jorro-Aragoneses et al.

Fig. 6. Semantic annotation of specialized case bases

5.1 Experimental Results

Our approach is based on a semantic characterization of different generic case
bases. We call Semantic Case Base (SCB) to these annotated GCBs. The SCB
that is semantically most similar to the query is used to apply the CBR processes
described in Sect. 3. The hypothesis we want to probe is that the use of a case
base chosen this way repeats higher precision values. Our approach is considered
as a solution to the cold start problem because the precision obtained by this
specialized case base is close to the figures obtained by the user personal case
base.

In the experiments to validate this hypothesis we have created 12 specialized
case bases. Each case base contains images of a set of semantically similar users
according to the following features:

– Age, classified in 2 categories, children (CH) and adults (AD).
– Gender, classified in 2 categories, men (M) and women (W).
– Geographical area, where we distinguish 3 main areas Africa (AF), Asia (AS)

y Europa (EU).

By combining these categories we generated 12 case bases that were popu-
lated using Google Images:

– CHMAF: African male children. 10 Like and 9 Dislike.
– CHMAS: Asian male children. 19 Like and 20 Dislike.
– CHMEU: European male children. 20 Like and 17 Dislike.
– CHWAF: African female children. 21 Like and 16 Dislike.
– CHWAS: Asian female children. 19 Like and 19 Dislike.
– CHWEU: European female children. 20 Like and 20 Dislike.
– ADMAF: African male adults. 19 Like and 19 Dislike.

Addressing the Cold-Start Problem in Facial Expression Recognition 209

Fig. 7. Compare the use of specific case base between the union of case bases.

– ADMAS: Asian male adults. 14 Like and 12 Dislike.
– ADMEU: European male adults. 20 Like and 20 Dislike.
– ADWAF: African female adults. 10 Like and 15 Dislike.
– ADWAS: Asian female adults. 13 Like and 13 Dislike.
– ADWEU: European female adults. 20 Like and 20 Dislike.

In order to evaluate the validity of this approach we compared the perfor-
mance of the system when using the most suitable semantic case base for each
user to the performance when using a generic case base composed of all the
semantic ones (referred as union case base (UCB)). Concretely, we have per-
formed two tests:

– Test 1: Evaluation of every SCB using leave-one-out with cases from UCB.
– Test 2: Individual leave-one-out evaluation of every SCB only taking cases

from itself.

Figure 7 shows the hit ratio when PhotoMood uses GCB and when it uses
each semantic case base SCB. As we can observe the use of SCB always achieves
at least the same performance than a generic case base, although there are many
SCB improving the performance of GCB.

This experiment validates our hypothesis, that was statically confirmed by
Wilcoxon test (p−value < 0.05), and allows us to conclude that the use of seman-
tic case bases provides higher precision values. Besides, this approach solves the
cold start problem as the precision obtained in this specialized case base is close
to the values obtained in the user personal case base.

6 Conclusions

Mobility and context-awareness are two active research directions that open new
potential to CBR systems [1–3]. In this paper we have addressed the cold-start
problem in Facial Expression Recognition (FER). We propose a CBR system
that is able to recognize emotions from pictures taken from the front facing
camera of a mobile device.

In our previous work [5], we have concluded that personal case bases of user’s
pictures increase the performance of our CBR system. However, users in cold-
start do not have enough pictures and an alternative case base must be adopted.

210 J.L. Jorro-Aragoneses et al.

A plausible alternative are generic case bases composed of a large number of
pictures from different users. To explore this approach we have evaluated several
datasets of pictures that are used to benchmark state-of-the-art algorithms for
FER. However, experimental results show that these large and generic datasets
do not achieve an acceptable accuracy. In order to explain these results with the
generic case bases we analysed our CBR process using a set of introspection tools,
developed ad-hoc, that let us explore the best configuration of our similarity
function. After a deep analysis and a concise comparison with other state-of-
the-art FER algorithms, we can conclude that the proposed similarity function
is correct and the only remaining explanation is the low quality of the generic
case bases.

At this point, generic case bases are not an acceptable solution for those
users in cold-start. Although cold-start users do not provide pictures to increase
the performance of the system, they provide semantic information about their
age, gender and country that can be exploited by our CBR system. Our proposal
consists on the use of several specific case bases representing groups of users with
similar features (those ones from the profile), and therefore, similar expressions.
These specific case bases are labelled with semantic information that let the
system choose the most suitable case base for each user according to the profile.
However, there is a vocabulary gap between the descriptions of the profile and
the labelling of the specific case bases that we solve by mean of an ontology.
This ontology provides semantic information about these case bases. By using
the ontology the CBR system chooses a semantic case base for each user that
includes pictures from users with a similar facial expression.

Finally, this paper reports an experimental evaluation of the approach by
comparing the semantic case bases to the generic ones. Results show that these
case bases are a suitable solution for users in cold-start.

References

1. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recom-
mender systems. AI Mag. 32(3), 67–80 (2011)

2. Benou, P., Bitos, V.: Context-aware query processing in ad-hoc environments of
peers. JECO 6(1), 88 (2008)

3. Braunhofer, M., Kaminskas, M., Ricci, F.: Location-aware music recommendation.
IJMIR 2(1), 31–44 (2013)

4. Garn, S.M.: Human Races, 3rd edn. Thomas, Springfield (1971)
5. Jorro-Aragoneses, J.L., Dı́az-Agudo, B., Recio-Garćıa, J.A.: Optimization of a

CBR system for emotional tagging of facial expressions. In: UKCBR (2014)
6. Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression

analysis. In: Proceedings of the Fourth IEEE International Conference on Auto-
matic Face and Gesture Recognition, pp. 484–490 (2000)

7. Khanum, A., Mufti, M., Javed, M.Y., Shafiq, M.Z.: Fuzzy case-based reasoning for
facial expression recognition. Fuzzy Sets Syst. 160(2), 231–250 (2009)

8. Kotsia, I., Pitas, I.: Facial expression recognition in image sequences using geomet-
ric deformation features and support vector machines. IEEE Trans. Image Process.
16(1), 172–187 (2007)

Addressing the Cold-Start Problem in Facial Expression Recognition 211

9. Lee, S.H., Plataniotis, K., Ro, Y.M.: Intra-class variation reduction using training
expression images for sparse representation based facial expression recognition. In:
IEEE Transactions on Affective Computing, p. 1 (2014)

10. Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem
in recommender systems. Expert Syst. Appl. 41(4, Part 2), 2065–2073 (2014).
http://www.sciencedirect.com/science/article/pii/S0957417413007240

11. Lopez-de-Arenosa, P., Dı́az-Agudo, B., Recio-Garćıa, J.A.: CBR tagging of emo-
tions from facial expressions. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014.
LNCS, vol. 8765, pp. 245–259. Springer, Heidelberg (2014)

12. Lyons, M., Akamatsu, S.: Coding facial expressions with gabor wavelets. In: Coding
Facial Expressions with Gabor Wavelets. pp. 200–205 (1998)

13. Novak, D., Nagle, A., Riener, R.: Linking recognition accuracy and user experience
in an affective feedback loop. IEEE Trans. Affect. Comput. 5(2), 168–172 (2014)

14. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase
quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.)
ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008)

15. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A., Sánchez-Ruiz-
Granados, A.: Ontology based CBR with jCOLIBRI. In: Proceedings of the 26th
SGAI International Conference on Innovative Techniques and Applications of Arti-
ficial Intelligence, pp. 149–162. Springer, Cambridge (2006)

16. Son, L.H.: Dealing with the new user cold-start problem in recommender systems:
A comparative review. Information Systems (0) (2014). http://www.sciencedirect.
com/science/article/pii/S0306437914001525

17. Taheri, S., Patel, V., Chellappa, R.: Component-based recognition of facesand
facial expressions. IEEE Trans. Affect. Comput. 4(4), 360–371 (2013)

18. Tian, Y., Kanade, T., Cohn, J.F.: Facial expression recognition. Handbook of Face
Recognition, pp. 487–519. Springer, New York (2011)

19. Tkalcic, M., de Gemmis, M., Semeraro, G.: Personality and emotions in decision
making and recommender systems. In: First International Workshop on Decision
Making and Recommender Systems, pp. 14–18. CEUR (2014)

20. Tkalcic, M., Kosir, A., Tasic, J.: Affective recommender systems: the role of emo-
tions in recommender systems. In: Proceeding of the RecSys 2011 Workshop on
Human Decision Making in Recommender Systems, pp. 9–13. Citeseer (2011)

21. Whitehill, J., Serpell, Z., Lin, Y.C., Foster, A., Movellan, J.: The faces of engage-
ment: Automatic recognition of student engagementfrom facial expressions. IEEE
Trans. Affect. Comput. 5(1), 86–98 (2014)

22. Zhen, W., Zilu, Y.: Facial expression recognition based on local phase quantization
and sparse representation. In: 2012 Eighth International Conference on Natural
Computation (ICNC), pp. 222–225 (2012)

http://www.sciencedirect.com/science/article/pii/S0957417413007240
http://www.sciencedirect.com/science/article/pii/S0306437914001525
http://www.sciencedirect.com/science/article/pii/S0306437914001525

Flexible Feature Deletion: Compacting Case
Bases by Selectively Compressing Case Contents

David Leake(B) and Brian Schack

School of Informatics and Computing, Indiana University,
Bloomington, IN 47408, USA
{leake,schackb}@indiana.edu

Abstract. Extensive research in case-base maintenance has studied
methods for achieving compact, competent case bases. This work has
examined how to achieve good solution performance while limiting the
number of cases retained, using approaches such as competence-based
case deletion. Two fundamental assumptions of such approaches have
been (1) that cases are approximately the same size and (2) that the
only way to affect case base size is by deleting or retaining entire cases.
However, in some domains different cases may contain different amounts
of information, causing widely varying case sizes, and case solutions may
themselves be compressible, with the ability to selectively delete portions
of indices or solutions while still retaining varying levels of usefulness. In
accordance with this more flexible view, this paper proposes a new main-
tenance approach, flexible feature deletion, which removes parts of cases,
enabling compression of the case base by selective—and possibly non-
uniform—size reduction of individual cases. It proposes and evaluates
an initial set of feature deletion strategies. Experimental results support
that when cases have varying size and compressible contents, flexible
feature deletion strategies may enable better system performance than
case-oriented strategies for the same level of compression.

Keywords: Case-base maintenance · Feature reduction · Case deletion ·
Case-base compression

1 Introduction

The performance of case-based reasoning systems depends on the coverage of
their case bases and the quality of their cases. As the number of cases in the
case base grows, increased retrieval costs [1,2] or storage constraints may require
controlling case base size. Extensive case-based reasoning research has aimed to
address this problem through case-base maintenance [3]. A key focus of this
work has been on strategies for selecting cases to retain in the case base to
maximize the competence achieved for a given number of cases. Approaches
include strategies to guide deletion of cases from an existing case base [4], for
determining when to retain a new case during problem-solving (e.g., [5]), and
for ordering addition of cases from a candidate case set (e.g., [6,7]). All of these
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 212–227, 2015.
DOI: 10.1007/978-3-319-24586-7 15

Flexible Feature Deletion 213

strategies treat cases as single units, adding or deleting entire cases. We call such
strategies “per-case” maintenance strategies.

Per-case strategies reflect two common implicit assumptions: (1) that all of
the CBR system’s cases will be of sufficiently uniform size that the size effects
of deletion or addition do not depend on the chosen case, and (2) that the size
of the internal contents of cases cannot be reduced. In domains for which each
case must contain uniform knowledge, so that removal of any case information
would severely impair the ability to use the cases, per-case strategies are the
only appropriate choice. However, in some CBR domains, case contents are more
flexible.

This paper questions the assumption of uniform case size in case-base mainte-
nance, The assumption of uniform size means that, if cases are of different size, it
is not possible, for example, to favor retention of smaller cases when those cases
have comparable coverage. It also questions the assumption of maintenance only
on a per-case basis, proposing that compression strategies can consider not only
case deletion/addition but the deletion of components of particular cases. Rather
than pre-determining a static set of features to be used throughout the life of
the CBR system, the set of features to include in the case base could be adjusted
based on requirements for storage, processing speed, and accuracy. There need
be no requirement that all cases in the case base include the same set of features,
just as there need not be uniform collections of components in the solution parts
of cases, and the solutions need not be represented at the same level of granu-
larity. This paper proposes a new, more flexible maintenance approach in which
selective compression can be done at the level of the contents of individual cases,
by removing selected features from either indexing or solution information. Thus
this can be used to maintain both indexing features and features of a solution.

The motivation for adjusting case contents arises from domains in which
cases are large and can be represented in multiple ways. For example, CBR has
attracted interest for reasoning from imagery such as medical images (e.g., [8]).
From any image, different features may be extracted, at different resolutions,
and the amount of information required to represent different images might vary
dramatically. In diagnostic domains, numerous features may carry information
relevant to the diagnosis, with different pieces relevant to different degrees for
different problems. When CBR is applied to design support, stored designs could
selectively include different subsets of a full design or could include the design
at different levels of detail. In a case-based planner generating highly complex
plans, it is possible to retain the entire plan, or only key pieces, or to preserve
full details for parts of the plans and high-level abstractions for others. Likewise,
when CBR is applied to tasks such as aiding knowledge capture by supporting
concept map construction [9], stored concept map cases could be retained at
different levels of completeness. Exploiting this flexibility requires maintenance
processes that can perform maintenance at a finer-grained level than simple
retention or deletion of cases.

Feature compression is especially appropriate for complex domains in which
cases are large, may contain extensive indexing or solution information, and in

214 D. Leake and B. Schack

which partial information—for either indices or solutions—may still be useful.
Feature compression prompts the question of when to delete an entire case versus
when to achieve comparable space savings by abstracting, deleting, or otherwise
compressing some of the features contained in one or more cases in the case
base. There is no free lunch: Either method may entail accuracy losses, case
deletion by removing what may be the most relevant solution for a problem;
feature maintenance by affecting retrieval accuracy or quality of the solutions.
The interesting question is how these methods compare.

This paper begins by discussing the range of applicability of flexible feature
deletion and its relationship to standard case-base maintenance. It then defines
a set of simple feature deletion strategies and evaluates their performance com-
pared to per-case strategies for three domains, two with cases containing varying
amounts of information and one with uniform size cases. A comparison of compe-
tence as a function of compression supports the value of flexible feature deletion
for domains with variable-size cases.

2 When Feature Deletion is Appropriate

Feature compression is appropriate for a particular class of domains: Those in
which a particular case can be represented with varying levels of information and
still be useful. Even if indexing accuracy is reduced, the retrieved cases will pro-
vide value if they are still adaptable to usable solutions with an acceptable level
of adaptation effort. Even if some poor retrievals result, they may be acceptable
given savings in space; just as per-case maintenance usually involves a tradeoff
of case base compactness against competence, feature deletion does as well.

The range of problems to which the case can be applied, and the reliability
of its application, may vary with the specific information stored. Consequently,
different feature deletion domains will exhibit different tradeoffs between per-
case maintenance strategies and feature-maintenance strategies, as well as dif-
ferent tradeoffs between compression and quality. For some domains, such as a
regression (numerical predication) task, feature deletion may only be possible
for indexing information. In domains for which indexing information is based on
many features, it may be possible to reduce case size by removing information
about the values of some indices. Note that feature deletion of indices contrasts
with the extensive work on selecting indexing vocabularies in the CBR literature,
in that feature maintenance is aimed not at selecting an indexing vocabulary or
maximizing retrieval accuracy, but instead at selectively compressing indexing
information by deleting particular features, potentially from individual cases,
with the recognition that some accuracy loss may result.

The deletion done by feature deletion is not necessarily limited to particular
indexing dimensions (e.g., deleting the “age” attribute from all patient cases),
but alternatively may delete specific attribute values (e.g., deleting the “age”
attribute-value pair for specific patients, or only for a particular range of age
values, such as those patients who fall into a default set for which age is not
considered significant).

Flexible Feature Deletion 215

Feature deletion for indices could be especially relevant to situations in which
extremely rich indexing information is available, such as a case-based agent to
respond in a real-time strategy game, or a prediction system for driver behavior,
for which the situation in which a plan was applied could be described with
extremely rich detail—with fine-grained details which might be helpful to finding
the perfect case, but not essential to finding a good case. Likewise, in a movie
recommender domain, with movies characterized by their list of actors and the
goal of recommending similar movies, a subset of the actors might be sufficient
for good retrievals.

2.1 When to Apply Feature Deletion to Indices

Tasks are potential targets for feature deletion of indices if their cases have large
indexing structures which can be reduced while retaining an acceptable level of
indexing/similarity performance. Specifically, domains are appropriate if:

– Indexing or similarity assessment depends on information about detail-rich
situations from which many features could be generated. If any low-level fea-
tures of the current situation, or of a sequence of situations, might be available
and potentially be relevant to deciding a response. In such domains, due to
the potential for large amounts of indexing information, feature deletion could
have significant effects on case base size.

– Indexing or similarity assessment features are sufficiently closely related that
acceptable accuracy is possible after removal of some features. If features are
closely related—even if they are not redundant—feature removal may have
limited effects on system accuracy, helping to boost the amount of compression
possible per unit of retrieval accuracy loss.

The CBR community has devoted substantial effort to methods for refining the
indices used for cases, as well as on developing methods for assigning weights to
features for similarity assessment. However, work in index/similarity refinement
differs from feature deletion in a key way: The focus of index/similarity refine-
ment is generally increasing retrieval accuracy, rather than compression of case
data. Consequently, research on such methods does not address space/accuracy
tradeoffs. Feature deletion is a primary focus of research on dimensionality reduc-
tion for CBR. However, such deletion is done uniformly across all cases; this work
does not attempt selective deletion of a feature from some cases but not others.

2.2 When to Apply Feature Deletion to Solutions

Feature deletion is useful for domains in which the solution to a single problem
can capture varying levels of information and still be useful. In such domains,
parts of a large or complex solution may be removed or abstracted while still
retaining the usefulness of a case, even if the level of usefulness varies with the
specific information retained.

For example, as previously mentioned, in case-based planning, certain parts
of a plan could be elided or abstracted to reduce storage. When a new planning

216 D. Leake and B. Schack

problem is precisely covered by the retained material, there is no solution qual-
ity or efficiency loss. When it is not, the maintenance may result in increased
adaptation cost to reconstruct the plan, or some competence could be lost—in
weak-theory domains, plan failures could result if adaptation did not generate a
perfect solution. However, partial deletion of case contents might still cause less
competence loss than deletion of an entire case by per-case methods.

Case-based support for concept mapping [9] provides another example. Con-
cept maps [10] are informal two-dimensional visual representations of concepts
and their relationships, representing a particular user’s conceptualization of a
domain. The goal of support systems is to aid humans using electronic tools
to build concept maps, by monitoring the concept map under construction,
retrieving a past concept map relevant to the partial concept map they have
constructed, and using it to suggest extensions to the concept map. Concept
map cases contain rich structures of interconnected concepts, from which dele-
tion of some parts may reduce the range of problems for which suggestions can
be provided, but for which the remaining parts are still useful.

We note that for supporting concept map extension, any part of a concept
map case may be viewed as the index or the solution, depending on which fea-
tures are available as the input problem and the context of the retrieval [11].
Thus in the concept mapping domain, the same feature deletion process can be
seen as simultaneously maintaining indices and solutions.

3 Bundling Features for Deletion

We can consider cases as composed of a set of primitive features which cannot be
further decomposed. In what follows, for simplicity we will consider these to be
attribute–value pairs. However, other representations are possible. Both indexing
and solution information are defined by sets of features. For example, basic
features could be combined to form complex structured cases, from which flexible
feature deletion could remove multiple features corresponding to substructures.

Maintenance approaches for case-base compression can be seen as “bundling”
different types of information together, to treat as a unit. Traditional per-case
maintenance for case-base compression bundles together all features associated
with a particular case and deletes the entirety of features associated with a
particular case. In contrast, feature-bundled maintenance does an orthogonal
bundling, deleting a single feature in all cases for which it appears. Flexible fea-
ture deletion can also apply an “unbundled” approach, simply deleting specific
features from selected individual cases. To distinguish unbundled individual fea-
tures from feature-based bundles, we call the individual features of a specific
case “case-features.” Fig. 1 illustrates the case-bundled, feature-bundled, and
unbundled approaches.

Figure 2 summarizes eleven simple candidate strategies for selecting the next
case or feature to delete, spanning case-bundled, feature-bundled, unbundled,
and hybrid strategies, which we describe in more detail below. Random deletion
strategies are included as a baseline. The simplicity of these strategies enables

Flexible Feature Deletion 217

Fig. 1. Feature selection with case-bundled, feature-bundled, and unbundled strategies.

comparing case-bundled and feature-bundled strategies on an equal footing.
Section 6 discusses future paths for more sophisticated flexible feature deletion
strategies.

Fig. 2. Strategies for selecting the next case, feature, or case-feature to delete

1. Case-Bundled Strategies
Case-bundled strategies follow the traditional CBR compression approach of
removing entire cases, i.e., the bundle of features determined by the case. A
key question for case deletion is the order in which to delete cases. A classic
approach is to consider cases’ coverage as the set of target problems that
a case can solve, and reachability as the set of cases that can solve a given
target problem [7]. Cases with higher coverage are considered more valuable
to preserve; cases with low reachability are considered harder to replace. We
consider simple strategies favoring each criterion. Another simple criterion is
to include removing largest cases first (aiming to maximize size reduction).

2. Feature-Bundled Strategies
Feature-bundled strategies ignore the boundaries of cases, replacing deletion
of cases with deletion of common features across cases. For example, in a

218 D. Leake and B. Schack

movie recommendation domain, one feature might be the presence of a partic-
ular (little-known) individual; if that was unimportant to recommendations,
that feature could be deleted from all cases without impairing recommenda-
tion performance. We consider the baseline strategy of random deletion, a
strategy of removing the most common features (which might be expected to
have the least information content), and an inverse strategy of removing the
rarest features (which might be expected to be useful in fewer instances).

3. Unbundled Strategies
Unbundled strategies ignore the boundaries of both cases and features. Dele-
tion need not be done uniformly on a per-case or per-feature basis; individual
features may be deleted from some cases and retained in others. For example,
in the movie domain, the feature corresponding to a particular actor could be
deleted only from selected cases (e.g., those in which the actor had a walk-
on role). We consider only one basic unbundled strategy, removing random
features of random cases.

4. Hybrid Strategies
We also consider three hybrid strategies, each combining two strategies with
equal weight (weightings could also be tuned). The strategies are Large
Cases / Least Coverage, Rare Features / Least Coverage, and Rare
Features / Large Cases. Combining two case-bundled strategies, as in Large
Cases / Least Coverage, yields a case-bundled strategy, and combining two
feature-bundled strategies yields a feature-bundled strategy. However, combin-
ing two differently-bundled strategies (e.g., Rare Features / Least Coverage)
yields an unbundled strategy in which the scorings of the constituent parts are
used to determine case-features to delete.

We note that different strategies have substantially different computational cost.
Case size and feature rarity can be calculated rapidly because they do not require
problem solving. However, coverage depends on the ability of a case to solve the
problems associated with other cases, so requires more costly testing involving
other cases in the case base.

4 Evaluation

To help understand the relationship of per-case and flexible feature deletion
strategies, we tested the compression/competence tradeoff for the strategies in
Fig. 2, across three domains. Our evaluation addresses two questions:

1. For given compression, how does the retrieval accuracy of the strategies com-
pare?

2. How does the retrieval time change as the number of case-feature pairs
decreases, and does this depend on the retrieval strategy?

We hypothesize that at higher compressions, accuracy will tend to decrease for
all strategies, but that non-case-bundled maintenance strategies will outperform
case-bundled strategies. We also hypothesize that, as the total number of features
decreases, retrieval time will decrease as well, with decreases roughly independent
of strategy used.

Flexible Feature Deletion 219

4.1 Test Data

Tests used three data sets, from movie, legal, and travel domains. Movie data
was drawn from the Internet Movie Database (IMDb)1, in which each case is a
film or television show, and each feature is an actor in that film or show. The
sample contained 100,000 case-feature pairs in 74,720 cases with 38,374 features.

Legal data was extracted from the LegiScan database on the 113th session
of the United States Congress2. Each case is a bill, and each feature is a sponsor
or co-sponsor of a bill. The sample contained 50,000 case-feature pairs in 7,785
cases with 552 features.

Travel data was the CBR Wiki travel package case base3. Each case is a travel
package and features are the types, prices, regions, etc. This case base contains
14,700 case-feature pairs in 1,470 cases, with 2,902 distinct feature-value pairs.

All features for the IMDb and law domains are Boolean; features correspond
to the presence of a particular actor in a film or sponsor of a bill. The features
for the travel domain are key-value pairs, which were treated as Boolean features
based on whether a particular pair was present.

4.2 Indexing and Similarity Criteria

In the experiments, when features were deleted from case content, the corre-
sponding indices were deleted as well, keeping indices and case content synchro-
nized.

Case similarity was calculated by Jaccard similarity of case-features. For cal-
culating competence, problems were considered to be solved successfully if the
system was able to retrieve a case for which the Jaccard similarity of features
exceeded 50 %. Additional tests were run for a scenario assuming minimal shared
coverage, in which cases were considered to cover only with the closest adjacent
case in the original case base, so successful retrieval was defined as the sys-
tem retrieving the same case retrieved during the initial leave-one-out testing.
Results were similar in both conditions. For reasons of space, only the results
for traditional similarity are reported here.

4.3 Hybrid Strategies

The hybrid strategies in the experiments rank cases by summing normalized
scores corresponding to each of their constituent strategies. The score assigned
to a case for Large Cases is the size of that case divided by the size of the
largest case in the case base. The coverage score assigned to a case for Least
Coverage is the coverage of the case divided by the maximal case coverage. The
score for Rare Features is based on the commonality of the feature, defined as
the number of cases that contain that feature divided by the number of cases
containing the maximally common feature in the case base; rarity of a feature f
is 1 − commonality(f).
1 http://www.imdb.com/interfaces
2 https://legiscan.com/
3 http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Case Bases

http://www.imdb.com/interfaces
https://legiscan.com/
http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Case_Bases

220 D. Leake and B. Schack

4.4 Evaluation Procedure

The evaluation first establishes baseline performance by leave-one-out testing
for the entire case base. Next, performance is tested for compression to nine
different case base sizes, ranging from 90 % to 10 % of the case base. For each
test, the entire original case base is used as test problems, and a test problem is
considered solved if there exists in the compressed case base a case (other than
the test case) within the 50 % similarity threshold.

When compressing the case bases, if the desired number of case-feature pairs
does not fall exactly on a boundary between cases, then the single case in which
this division falls is unbundled to delete features within a case.

4.5 Experimental Results

Figures 3, 4 and 5 show accuracy after each round of maintenance. The graphs
compare the eleven strategies across the IMDb, law, and travel domains. For
readability, the graphs are divided into three parts with the same horizontal
and vertical scales. The third graph compares the best four strategies from the
other two graphs. Each type of bundling has a different type of connecting line.
Solid lines indicate case-bundled strategies, dashed lines indicate feature-bundled
strategies, and dotted lines indicate unbundled strategies.

Fig. 3. Competence retention for varying compression levels for the IMDb case base

Figure 3 shows results for the IMDb data, for which the best four strategies
were Large Cases, Rare Features / Large Cases, Rare Features, and Large Cases /

Flexible Feature Deletion 221

Fig. 4. Competence retention for varying compression levels for the law case base

Fig. 5. Competence retention for varying compression levels for the travel case base

222 D. Leake and B. Schack

Least Coverage. Three of the best strategies consider the size of the cases, which
supports having maintenance consider not only the benefit of retaining a case
(its solution coverage) but also its storage cost. Two of the best strategies are
hybrid strategies, and two are non-case-bundled. The worst strategy was Most
Reachability.

Given the established importance of coverage, that Least Coverage is outper-
formed by Large Cases on the IMDb and law data sets might seem surprising,
but this is explained by the substantial case size variation in these domains.
For example, the IMDb case base includes multi-episode soap operas such as
The Bill, which span hundreds of actors but also include numerous relatively
unknown actors who never appear widely.

Figure 4 shows results on the law data, for which the best four strategies were
Large Cases / Least Coverage, Large Cases, Rare Features / Large Cases, and
Most Reachability. Note that these overlap with three of the best strategies on
the IMDb case base but in a different order. The worst strategy was Random
Case-Features. The law data set has a much smaller number of features than
the IMDb data set, and we hypothesize that its features are more likely to
have comparable importance, making random deletion more likely to remove
significant content.

Figure 5 shows results for the travel data. Because all cases are initially the
same size, the strategies Large Cases and Large Cases / Least Coverage do
not apply, so are omitted from the graphs. However, the hybrid strategy Rare
Features / Large Cases is still applicable, because as the Rare Features strategy
deletes features, only cases with those features will be compacted, resulting in
different case sizes. The best strategies were Least Coverage, Random Features,
Random Cases, and Rare Features. That deleting cases with least coverage is
best is consistent with the key role coverage has has been ascribed in case-base
maintenance research. That Random Features is second is surprising, but could
be explained if many features in this domain have comparatively low information
content. Although Rare Features is one of the top four strategies, its performance
is quite poor, which could correspond to rare features tending to be important
for distinguishing relevant cases. As with the other two data sets, two of the
best strategies were non-case-bundled. However, in contrast, none of the best
strategies were hybrid.

4.6 Retrieval Speed

Figure 6 compares the retrieval times after each round of maintenance for each
of the four best strategies for the IMDb case base, for retrieval from a MySQL
database. It also includes Random Case-Features as a baseline. The Average line
shows the mean retrieval time of the five strategies in the graph. All tests were
run on a MacBook Pro with a 2.5 GHz Intel Core i5 processor and 8 GB of RAM.

Random Case-Features, the baseline, gave the best retrieval times, and Rare
Features, the only feature-bundled strategy, gave the worst. Both of the case-
bundled strategies, Large Cases and Large Cases / Least Coverage yield similar
retrieval times, but the two unbundled strategies, Rare Features / Large Cases

Flexible Feature Deletion 223

Fig. 6. Comparison of the retrieval times after each round of maintenance between the
four best strategies on the cinema data set

and Random Case-Features, yield very different retrieval times. Most of the
strategies have a fairly linear decline, but Rare Features declines slowly until the
10,000 case-feature mark where it drops abruptly. Because the retrieval function
uses Jaccard similarity, retrieval time depends on the number of case features in
the intersection between cases. However, the rarest features would seldom fall
into any intersections, which explains why removing them has the least effect on
retrieval time.

5 Related Work

Case-based reasoner maintenance [3] is an active area of CBR research. Much
of this work develops methods to compress the case base, such as competence-
based case deletion [4], deletion methods taking class boundaries into account
by considering local complexity [12], optimizing the tradeoff between size and
accuracy [13], deletion aimed at preserving diversity [14], and strategies for case
retention and forgetting (e.g., [5,15–17]. Such methods differ from flexible feature
deletion that they retain or delete entire cases without adjusting case contents.

Research on maintenance of case contents has generally focused on quality
improvement rather than case base compression (e.g., [18,19]). However, research
on case abstraction research, in aiming to compact the case base by removing
concrete cases subsumed by abstractions [20], can be seen as in the spirit of
replacing cases with more compact versions.

224 D. Leake and B. Schack

Flexible feature deletion applies to indexing features as well as cases. Main-
tenance of indexing features has been extensively studied in CBR, applying
methods such as feature deletion, addition, and reweighting, but again with the
goal of improving retrieval accuracy rather than decreasing the amount of stor-
age required for the indices themselves (e.g., [21–24]). Feature set reduction has
been combined with case selection, to improve accuracy while compressing the
case base [25].

6 Future Research Questions for Feature Deletion

The feature deletion approach raises a rich range of questions for fully exploiting
its potential. A key question is how to develop knowledge-based feature deletion
rules, especially for flexible feature deletion for complex structured cases. Other
questions include how feature deletion strategies should interact with the index-
ing and adaptation knowledge containers, how feature deletion can preserve case
integrity, and how feature deletion should be reflected in case provenance and
explanation.

– Coupling Feature Deletion with Index Maintenance: As case contents are
deleted, the relevance of case indices may change. Consequently, feature dele-
tion may need to be accompanied by index maintenance to assure that as
cases are compressed the system still retrieves the most similar cases. Feature
weight information might be used to suggest features which could be deleted
with limited harm.

– Benefiting from the Relationship of Feature Deletion to Case Adaptation: Fea-
ture deletion can be seen as a form of “before the fact” adaptation of cases, in
which the adaptation is driven not by a new problem to solve, but by a com-
bination of (1) compression goals, and (2) performance goals. Richer feature
deletion methods could draw on a CBR system’s adaptation procedures to
perform operations beyond simple deletion of case components, such as
abstractions or substitutions of alternatives requiring less space. Enabling
such methods requires reasoning about the competence effects of replac-
ing a case with various candidate adapted versions, as well as performance
effects (whether replacing a case with a given compressed version will decrease
problem-solving speed), and the balance to strike between them.

– Maintaining Case Integrity Despite Feature Deletion: Another question is the
relationship of feature deletion to the cohesiveness of a case. From the early
days of CBR, an argument for CBR has been that cases can implicitly capture
interactions among case parts. Deleting portions of a case risks some of that
cohesion, making it a concern to address in feature deletion strategies. That
case adaptation faces the same risks but is effective supports optimism for
some levels of compression, and research on hierarchical CBR has supported
the usefulness of sometimes considering subparts of complete cases individ-
ually. However, how much compression can be done without excessive harm
to case integrity, and how to manage the process to avoid such harm, are
interesting questions.

Flexible Feature Deletion 225

– Reflecting Feature Deletion in Provenance and Explanation: Because feature
deletion results in stored cases which differ from the cases originally captured,
it (like case adaptation) may weaken the ability to justify proposed solutions
by past experience. Likewise, changes from the original cases may make it diffi-
cult to apply provenance-based methods for predicting solution characteristics
such as solution accuracy and trust (e.g., [26]). Addressing these complications
might require maintaining records of case maintenance process as part of the
provenance trace used for explanation, as well as reasoning about (and pre-
senting to users) information about the parts of the case which have been
affected by feature maintenance.

7 Conclusion

This paper has proposed a new case-base maintenance approach, flexible feature
deletion, which questions the assumptions that cases are of uniform size and
that maintenance must treat cases as unitary objects. Flexible feature deletion
enables selective deletion of case contents rather than restricting deletion to
the case level. It has illustrated tasks for which flexible feature deletion may
be desirable, such as domains in which reasoning can be done with different
amounts of information, in which flexible feature deletion enables selectively
compressing different parts of different cases. Its experimental results show that
case-based maintenance may need to change when case contents are non-uniform;
in such settings feature-based strategies may give better accuracy than per-case
strategies, and that total case-base size and retrieval times may not always be
aligned, giving a space/time tradeoff which it may be possible to exploit.

The paper focuses primarily on knowledge-light maintenance strategies.
Interesting future directions are to refine the strategies tested here with addi-
tional knowledge, for example, leveraging case adaptation knowledge, and to
explore when other knowledge-light techniques for compression of cases and fea-
ture bundlings could yield useful maintenance strategies.

References

1. Francis, A., Ram, A.: Computational models of the utility problem and their appli-
cation to a utility analysis of case-based reasoning. In: Proceedings of the Workshop
on Knowledge Compilation and Speed-Up Learning (1993)

2. Smyth, B., Cunningham, P.: The utility problem analysed: a case-based reasoning
perspective. In: Smith, I., Faltings, B. (eds.) EWCBR-1996. LNCS, vol. 1168, pp.
392–399. Springer, Heidelberg (1996)

3. Wilson, D., Leake, D.: Maintaining case-based reasoners: dimensions and direc-
tions. Comput. Intell. 17(2), 196–213 (2001)

4. Smyth, B., Keane, M.: Remembering to forget: a competence-preserving case dele-
tion policy for case-based reasoning systems. In: Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, San Mateo, pp. 377–382,
Morgan Kaufmann (1995)

226 D. Leake and B. Schack

5. Muñoz-Ávila, H.: A case retention policy based on detrimental retrieval. In: Althoff,
K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
pp. 276–287. Springer, Heidelberg (1999)

6. Zhu, J., Yang, Q.: Remembering to add: competence-preserving case-addition poli-
cies for case base maintenance. In: Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pp. 234–241, Morgan Kaufmann (1999)

7. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Althoff, K.-
D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
pp. 329–342. Springer, Heidelberg (1999)

8. Wilson, D., O’Sullivan, D.: Medical imagery in case-based reasoning. In: Perner,
P. (ed.) Case-Based Reasoning on Images and Signals. Studies in Computational
Intelligence, vol. 73, pp. 389–418. Springer, Heidelberg (2008)

9. Leake, D., Maguitman, A., Reichherzer, T.: Experience-based support for human-
centered knowledge modeling. Knowl. Based Syst. 68, 77–87 (2014)

10. Novak, J., Gowin, D.: Learning How to Learn. Cambridge University Press, New
York (1984)

11. Leake, D., Maguitman, A., Reichherzer, T., Cañas, A., Carvalho, M., Arguedas,
M., Brenes, S., Eskridge, T.: Aiding knowledge capture by searching for extensions
of knowledge models. In: Proceedings of the Second International Conference on
Knowledge Capture (K-CAP), New York, pp. 44–53, ACM Press (2003)

12. Craw, S., Massie, S., Wiratunga, N.: Informed case base maintenance: a complexity
profiling approach. In: Proceedings of the Twenty-Second National Conference on
Artificial Intelligence, pp. 1618–1621, AAAI Press (2007)

13. Lupiani, E., Craw, S., Massie, S., Juarez, J.M., Palma, J.T.: A multi-objective
evolutionary algorithm fitness function for case-base maintenance. In: Delany, S.J.,
Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 218–232. Springer, Heidel-
berg (2013)

14. Lieber, J.: A criterion of comparison between two case bases. In: Haton, J.-P.,
Keane, M., Manago, M. (eds.) EWCBR-1994. LNCS, vol. 984, pp. 87–100. Springer,
Heidelberg (1995)

15. Ontañón, S., Plaza, E.: Collaborative case retention strategies for CBR agents.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR-2003. LNCS, vol. 2689, pp. 392–406.
Springer, Heidelberg (2003)

16. Romdhane, H., Lamontagne, L.: Forgetting reinforced cases. In: Althoff, K.-D.,
Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol.
5239, pp. 474–486. Springer, Heidelberg (2008)

17. Salamó, M., López-Sánchez, M.: Adaptive case-based reasoning using retention and
forgetting strategies. Knowl. Based Syst. 24(2), 230–247 (2011)

18. Racine, K., Yang, Q.: Maintaining unstructured case bases. In: Leake, D.B., Plaza,
E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 553–564. Springer, Heidelberg (1997)

19. Salamó, M., López-Sánchez, M.: Rough set based approaches to feature selection
for case-based reasoning classifiers. Pattern Recogn. Lett. 32(2), 280–292 (2011)

20. Bergmann, R., Wilke, W.: On the role of abstraction in case-based reasoning. In:
Smith, I., Faltings, B. (eds.) EWCBR-1996. LNCS, vol. 1168, pp. 28–43. Springer,
Heidelberg (1996)

21. Arshadi, N., Jurisica, I.: Feature selection for improving case-based classifiers on
high-dimensional data sets. In: Proceedings of the Eighteenth International Florida
Artificial Intelligence Research Society Conference (FLAIRS-2005), pp. 99–104,
AAAI Press (2005)

Flexible Feature Deletion 227

22. Fox, S., Leake, D.: Learning to refine indexing by introspective reasoning. In:
Veloso, M., Aamodt, A. (eds.) ICCBR-1995. LNCS, vol. 1010, pp. 431–440.
Springer, Heidelberg (1995)

23. Muñoz-Avila, H.: Case-base maintenance by integrating case-index revision and
case-retention policies in a derivational replay framework. Comput. Intell. 17(2),
280–294 (2001)

24. Zhang, Z., Yang, Q.: Towards lifetime maintenance of case base indexes for con-
tinual case based reasoning. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI),
vol. 1480, pp. 489–500. Springer, Heidelberg (1998)

25. Li, Y., Shiu, S., Pal, S.: Combining feature reduction and case selection in building
CBR classifiers. IEEE Trans. Knowl. Data Eng. 18(3), 415–429 (2006)

26. Leake, D.B., Whitehead, M.: Case provenance: the value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol.
4626, pp. 194–208. Springer, Heidelberg (2007)

A Case-Based Approach for Easing Schema
Semantic Mapping

Emmanuel Malherbe1,2(B), Thomas Iwaszko2, and Marie-Aude Aufaure2

1 Multiposting S.A.S.U, 3 Rue Moncey, 75009 Paris, France
emalherbe@multiposting.fr

2 CentraleSupélec - M.A.S. Laboratory, Grande Voie des Vignes,
92295 Chatenay-Malabry, France

tiwaszko@gmail.com, marie-aude.aufaure@centralesupelec.fr

Abstract. Given two text schemas, how can one map each item from
the first schema to an item of the second one, in order to have the best
semantic correspondence? While this latter criterion has to be defined by
a human, in this paper we present a new application of the Case-Based
Reasoning (or CBR) methodology, that helps the user in finding a good
match thanks to a score function taking into account previous results
(i.e. solved cases). Such a technique makes the schema mapping easier
and less error-prone. The proposed solution is in use in an industrial
context, at the Multiposting firm.

Keywords: Case based reasoning · Schema mapping · Language
processing · Data mining

1 Introduction

Nowadays, business related websites make information about jobs and companies
available to anyone. Such websites that present complex data use specific nomen-
clatures or schemas to structure data and represent it visually. This abundance
of schemas describing a same area of interest raises industrial issues. Indeed,
it becomes increasingly difficult to aggregate data from different sources, or to
understand how distinct schemas are related one to each other. The commu-
nication and cooperation between heterogeneous schemas has become a crucial
issue for applications in the domain of e-recruitment, but also e-business or life
sciences [20].

A possible approach to resolve this issue is to match schemas manually and
pinpoint equivalences between concepts/items. This process is called name-based
schema mapping and focuses only on textual contents and the associated seman-
tic meaning. We want every item of an initial schema to be mapped to an item
of a destination schema. Given an item of an initial schema, the problem is thus
to find its semantic equivalent among the items of the destination schema. At
the Multiposting firm, where employees face the incoherence between schemas
in the e-recruitment domain, this type of problem has to be solved very often.
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 228–243, 2015.
DOI: 10.1007/978-3-319-24586-7 16

A Case-Based Approach for Easing Schema Semantic Mapping 229

Schemas in the e-recruitment domain include descriptions of: contract types, job
locations, job sectors, diploma requirements.

In this paper, we show how by relying on a corpus of schemas that were
matched manually, one can match match new pairs of schemas more easily. In
other words, we show that schema mapping greatly benefits from the use of
Case-Based Reasoning (CBR). The contributions presented in this article are
threefold:

– we formalize the problem of schema-matching and show that it boils down to
multiple independent sub-problems

– we instantiate the CBR process to those sub-problems in order to solve them
and we perform first benchmarks

– we propose changes to improve the CBR system performance

Prior to the Sects. 4, 6, 7 that describe respectively each one of these steps, in
Sect. 2 we present the industrial context; in Sect. 3 we discuss motivations and
the scientific background for this work.

2 Industrial Context

Recruitment websites (such as Monster, Linkedin or Indeed) require recruiters
to fill out many fields based on a specific schema/nomenclature. Those fields
include but are not limited to: job sector, contract type, years of experience,
geographical area. When posting a job offer on n websites, the same kind of task
has to be done n times.

Fig. 1. Example of the schema matching problem: given the text schemas Aexample

in the left-hand side and Bexample in the right-hand side, what is, for each item in
Aexample the best semantic equivalent in schema Bexample?

Multiposting is a firm based in Paris and specialized in on-line recruitment.
Various clients worldwide and its advanced techniques allow the firm to post
about 3 millions announces a year on the Internet. To face the increasing num-
ber of recruitment websites Multiposting aims at helping recruiters by spreading

230 E. Malherbe et al.

their job offer; posting it on several job boards at a time. In order to relief the
recruiter from a redundant and time-consuming task, the firm proposes a unique
interface to be filled once with job offer’s information (description, contract type,
experience required...) specified with respect to the client company nomencla-
tures. To spread the job campaign quickly, Multiposting needs to adapt the
information to all existing job websites including new ones. This is done by
mapping the recruiter’s schema into the website corresponding one, as described
in Fig. 1. By doing so, the recruiter only needs to fill its internal fields (job sector,
contract type, ...), and does not need to fill the specific fields of each recruitment
website.

Multiposting has to constitute and maintain over the years a huge database,
containing numerous semantic equivalences between schemas/nomenclatures of
different websites and companies’ system. Before the tool called smartmap-
ping was developed, the employees of Multiposting used to define equivalences
between schemas manually with no computer assistance at all, item by item. This
manual process was difficult, as dozens of schemas needed to be mapped one to
another each week, due to the constant increase of Multiposting clients and sup-
ported websites. This justifies the effort to design a new semi-automatized tool
for schema mapping. The resulting software tool has been implemented and is
now used daily through an interface presented in Sect. 7.3.

3 Related Work

The problem of schema mapping has received a lot of attention over the past
decade, with the growth of Internet and database integration (Madhavan et al.
[9]), a common application being databases schemas or website XML schemas.
There exists several approaches to schema mapping: to focus on instances, on the
structure of the schema, on the data type constraints, on the description or the
name of the columns. Mapping reuse is also a possibility, as discussed by Rahm
et al. [3,10]. In this case, schemas are linked thanks to a golden standard schema.
However the golden standard approach is time consuming, and can result in a
loss of quality depending on the choice of the golden standard.

Name-based approaches have been proposed by several authors (Shvaiko et al.
[11], Jean-Mary et al [7]). The similarity between names are direct, the similarity
measures uses the n-grams of words, or the Levenshtein distance: it assumes that
names are similar for both schemas, and will not work for two strictly different
words with same meaning that we tackle by our algorithm. The use of WordNet
for extended semantic similarity seems to give good results, as presented by
Manakanatas et al. [18]. They propose a similarity measure by separating names
into tokens, and leverage WordNet similarity between them. They also reuse
already identified mapping, but only when names to be mapped are exactly
the same as for previous mapping, which is very restrictive. Our approach goes
further in the mapping reuse by learning the similarity measure from previous
mappings.

Madhavan et al. [5] proposes to train a machine learning algorithm to learn
the similarity between names; however, it relies on inferring negative cases

A Case-Based Approach for Easing Schema Semantic Mapping 231

(wrong mapping) on every schema mapping of our data-set. This inference would
generate negative cases of uneven quality, and it would lead to tens of millions
of cases for our corpus (see Table 1), whereas our method is much lighter with
200,000 positive cases.

Textual CBR is a sub-field of CBR and relies on texts to gather information
to solve problems (Richter et al. [12]). It often leverage the bag of words (BOW)
representation of documents, such as in Information Retrieval, but differs from
this field as it focuses on solving a problem. A promising alternative to the BOW
is proposed by Dufour-Lussier et al. [13] by extracting structured features from
texts. It requires long documents and is thus inapplicable in the case of schemas,
as the labels are only a few words long.

Textual CBR can have the advantage to gather information from a large
amount of documents, but of uneven quality, requiring a particular focus on the
adaptation of solutions. In the system of Lamontagne et al. [14], the cases are
emails, for a given question they adapt a solution from a retrieved email case by
selecting relevant portions and modify them before giving the final answer. This
approach can’t be extended to schema as names are too short. An alternative for
building a solution is to display ranked suggestions to user and request validation
such as in [19] and in the approach proposed in this paper.

Sani et al. [15] study the terms relatedness, that could be applied to name-
based schema mapping. Their CBR uses a word generalization, based on higher
semantic concepts. There is no existing word generalization for recruitment sec-
tor, when dealing with contract types, job sectors or qualifications. A way to
get this word generalization would be by computing co-occurrences in a relevant
corpus, and could also lead to a higher level co-occurrence computation such as
done by Chakraborti et al. [16]. Again, a relevant corpus for recruitment with
documents mixing contract types, qualification names or job industries does not
exist, leading us to tackle the name-based schema mapping issue by leveraging
a corpus of mappings.

4 Formalizing the Problem of Schema Mapping

Our goal in this section is to give a more formal description of the text schema
mapping problem, using a representation of schemas relying on the vectorization
of documents.

4.1 Prerequisites: Tools for Representing Textual Documents

To represent documents, we use the bag-of-words model described in the text
retrieval literature by Salton et al. [1]. Before computing such a representation,
we process textual documents thanks to common methods, detailed in [4]. We
first remove accents and enforce lowercase, before separating the text into words,
also denoted tokens. We eventually stem these words to keep only the semantic
roots; we used the French stemmer of Porter [21] because the most part of the
real-world data-set we use is in French.

232 E. Malherbe et al.

After processing documents, we use the bag-of-words model with binary
weights, which again is a common technique [1]. This allows us to represent
documents as binary vectors d = (d1, . . . dn), d ∈ {0, 1}n, where n is the number
of words in the vocabulary V . The set V contains every word that occurs in any
of all considered documents.

Using binary weights means that we ignore the number of times a word
occur, we focus only on its appearance/its absence. Thus, for 1 ≤ i ≤ n, di is a
binary value depending on whether the word of V indexed by i appears in the
modeled text or not. From now on, the term document designates such vectors
d ∈ {0, 1}n.

Documents Similarity: As explained in the previous subsection, documents are
vectors representing documents. To compare documents one to another, we com-
pute the cosine similarity often used in the data mining literature [1,4]. We
denote f this similarity function, whose definition is:

f(d, d′) = cos(θ) =
〈d, d′〉

‖d‖ ‖d′‖ ∈ [0, 1] (1)

Where 〈d, d′〉 is the scalar product between two vectors, 〈d, d′〉 =
∑n

i=1 di × d′
i

And ‖d‖ =
√〈d, d〉 the corresponding norm of vector d. The measure f(d, d′)

approaches the percentage of words in common in the two documents.

4.2 Representation of Schemas and Items

We firstly introduce here the notion of item, which is a single entity of the schema
(a node if one considers the schema as an tree). Items are for instance contract
types, job sectors or experience levels.To define an item, we will leverage the
name of the node, which is a textual document. We also consider the name of
the parent node, to capture the hierarchy of the schema. This parent name gives
the semantic context of the item. For clarity, we will only focus on such 2-
level items, but higher levels of the hierarchy could be taken into account, by
considering for instance the name of the grandparent node.An item is thus defined
as a pair of documents a = (a1, a2), constituted by the entity name a1, and the
name a2 of its parent. In the case where there is no parent for the considered
node, the document a2 is equal to the null vector 0, which represents the empty
text.

This definition of items allows to represent a schema as a set of items. For
instance, the left-hand side schema in the Fig. 1 is represented as the following
items set:

Aexample = {(“HTML Integration′′, “IT Department′′),

(“Database Administration′′, “IT Department′′),

(“Administrative and Infrastructure Support′′, “IT Department′′),

(“HR Direction′′, “Management Department′′),

(“Secretary′′, “Management Department′′)

A Case-Based Approach for Easing Schema Semantic Mapping 233

And similarly for the right-hand side schema of Fig. 1:

Bexample = {(“Web Development′′, “Software Engineering′′),
(“Administration′′, “Software Engineering′′),
(“Direction′′, “Management & Administration′′),
(“Sales′′, “Management & Administration′′)},
(“Human Resources′′, “Management & Administration′′)

In this paper, for clarity, schema will equivalently denote the formal schema (on
the top) and the corresponding items set. Thus, Bexample will be referred as a
schema. Schemas will be written in capital letters, such as A, and we can write
a ∈ A where a is an item as defined above.

4.3 Formal Problem Statement

Given two schemas A,B the general problem tackled in this article aims at
associating one by one each item a ∈ A to its “equivalent” item in the schema
B, according to the meaning of a. We solve this global problem by considering
successively the items a ∈ A; thus our schema to schema mapping boils down
to solving several sub-problems, each of them being denoted by a triplet pb =
(a,A,B). Sub-problem pb consists in finding the item in schema B that is the
closest to the meaning of a in schema A. A will be referred as the initial schema
and B as the destination schema. We assume the problem have systematically a
solution: it is not true in theory, but it is an industrial constraint that every item
in A finds an equivalent in B. In practice, the schemas to be mapped describe
similar knowledge and the assumption is verified.

We can compare the problem and its solution (a,A,B, b) to the definition
of mapping by Bouquet et al. [17]. Similarly to them, we will define in Eq. 4 of
Sect. 5 a score that estimate the quality of the mapping, which correspond to
what they refer to a degree of trust to the mapping. On the other hand, it is
worth noticing that contrary to them, we explicit the schemas as part of the
problem, and we consider our problem as asymmetric.

For instance, let us consider the problem of finding a semantic equivalent of
the first item in the left in Fig. 1 among the schema in the right. If we write the
first item as aexample = (“HTML Integration′′, “IT Department′′), this prob-
lem is formalized as pb = (aexample, Aexample, Bexample). The solution of this tar-
get problem would then be (“Web Development′′, “Software Engineering′′).
In the following, we denote bexample this item, where bexample ∈ Bexample.

5 Instantiating the CBR Process to Schema Mapping

To tackle the problem, we use the CBR methodology [2], with a large case base
populated manually (see figures of Table 1). It is important to notice that the
proposed CBR system provides a computer-assisted schema matching and is not
fully automatic.

234 E. Malherbe et al.

Formally, we denote C the case base. A case c ∈ C is simply a pair: c =
(pb, sol) where pb = (a,A,B) describes the mapping of a single element and
sol ∈ B the previously retained solution.

The CBR methodology is applied “as is” with the four standard steps:
Retrieve, Reuse, Revise, Retain. In our case, the last step Retain is easy: it
simply consists in saving the newly constructed case in the base. That’s why
below, we give details only on the three first steps of the CBR methodology.

5.1 The Retrieve Step

First of all, we define a function for comparing two items one to another. Given
two arbitrary items a, a′, the similarity between them is defined such as:

g(a, a′) =
f(a1, a

′
1) + f(a2, a

′
2)

2
∈ [0, 1] (2)

All values computed by this function belong to the interval [0, 1], with 1 cor-
responding to a perfect match. The first term f(a1, a′

1) computes the similarity
between the leaves of each item, whereas the second term compares the parents.

For instance, with items introduced in Sect. 4.3, we have:

g(aexample, bexample) = f(“HTML Integration′′, “Web Development′′)/2

+ f(“IT Department′′, “Software Engineering′′)/2

= 0

This example also shows us the need to go beyond a direct match between
items, which leads here to a zero similarity whereas items’ meanings are related.

Then, to determine what is the useful case for solving a new problem that
occurs, we introduce an inter-problem similarity function. It is simply defined as:

sim(pb, pb′) = g(a, a′) (3)

When we have sim(pb, pb′) = 1, it implies that: a = a′. One notes that this
similarity only takes into account the item a, forgetting schemas A, B when
retrieving useful cases. We will propose similarity functions in the Sect. 7 that
tackle this limit.

Thanks to this function, for every new problem pb′ that occurs, we can deter-
mine which existing case c = (pb, sol) stored in the case base is the most useful to
help us solve pb′, retrieve it and exploit the information provided by its solution,
as explained in the next subsection.

5.2 The Reuse Step

In this step, we want to exploit the most similar case found during the Retrieve
step. However, if we consider a source problem pb′ = (a′, A′, B′), we do not
necessarily have B = B′. Thus, it is not possible to take the corresponding source
solution sol′ as our current solution because sol′ �∈ B; we need an adaptation to
find a solution in B, which constitutes our current possible solutions.

A Case-Based Approach for Easing Schema Semantic Mapping 235

Furthermore, any CBR system aims at improving its “problem solving capac-
ity” over time. In our context, proposing a ready-made solution for each mapping
would likely fail to enhance the system’s performance, because of the fact that
distinguishing a good from a bad mapping is a matter of semantics and it thus
seems not reasonable to fully automatize the schema matching.

As a consequence, the revise step is necessary in our system, but it is greatly
eased by the reuse of retrieved cases: we can compute from them a score function
estimating the relevancy of the possible solutions. To do so, we retrieve not one
but the k most similar cases from the base, in order to use more information to
rank possible mappings. Let us denote C ′ the subset of C that contains the k
most similar cases, with respect to the similarity function g. In our experiments
k = 100 gave satisfying results. For clarity, every case c′ ∈ C ′ will be written
c′ = (pb′, sol′), to differ from the target problem pb.

Given the target problem pb = (a,A,B), a ranking of the possible solutions
b ∈ B can be computed using the score function score(pb, b) ∈ R defined as:

score(pb, b) = max
c′=(pb′,sol′)∈C′ sim

(
pb, pb′)× g

(
b, sol′

)
(4)

The score function returns a value in the interval [0, 1]. The idea is to find
a source problem pb′ similar to pb such that the corresponding solution sol′

is similar to item b - the first similarity being evaluated by the function sim
(problems similarity) and the second one by the function g (items similarity).

5.3 The Revise Step: Ranking Suggestions to the User

Previously, we stated that the user has to input new mapping information con-
tinuously to improve the system over time. That is why our Revise step consists
in asking the right mapping to the user, and most important: make this task as
fast and easy as possible thanks to the previously computed scores. Given the
problem pb = (a,A,B), items b of B are ranked with respect to score(pb, b), and
the user chooses manually which element of B corresponds to a. The ranking of
all elements of B helps a lot, especially when the cardinality of B is big.

6 Review of the First Results

6.1 Experimental Data-Set

As explained in Sect. 2, schemas mapped at Multiposting are nomenclatures of
e-recruitment websites. They are in different languages, mainly French, English,
German, Spanish and Polish. They represent different kinds of information, and
for a good part of them Multiposting employees have manually assigned them to
categories such as “contract type” of “job function”. Moreover, many nomencla-
tures are specialized, such as university degrees, an e-recruitment for managers
or for disabled people. However this diversity of schemas should be handled by
our algorithm, retrieving only useful cases.

Characteristics of our data-set are listed in the Table 1. The schemas are
annotated with 6 different categories. Note that we also have an “unknown”

236 E. Malherbe et al.

Table 1. Characteristic from our data-set, by schema category: number of terms,
average number of items per schema, number of item pairs mapped, of schema pairs
mapped and number of schemas.

Schema category All Contract Study Experience Location Sector Function

Number of terms 99875 713 1736 288 36960 5120 12541

items per schema 87 7 23 7 3152 55 227

Schema mappings 3,356 182 96 71 18 340 691

Item mappings 215,701 1,330 839 629 2,017 19,926 88,581

Schemas concerned 2,257 184 94 69 21 205 296

schema category in our data-set for uncategorized schema. The same table also
gives statistics for the full case base, resulting of the aggregation of all categories.

6.2 Performance Criteria

To evaluate the performance of our CBR approach, and compare the variants, we
used a cross validation on the data-set. The Leave-one-Out Cross Validation is
commonly used for testing a CBR algorithm [6], and in more general for machine
learning algorithms. To cross validate our system, at each fold, we take out a
schema mapping from the case base, and we run the algorithm on the excluded
mapping to see the ranks of the items selected.

From this cross validation, we deduce the relevancy of the suggestions. To do
so we compute the precision at k which is a metric from information retrieval
systems [8]:

precision@k = E(solution is in the k top ranked items) ∈ [0, 1]

This value is computed by counting the number of test mappings for which
the algorithm had the validated suggestion in the top k, divided by the number
of test mappings. One notes that the precision at k increases with k; in our
experiments, we computed precision@k for k = 1..10.

6.3 Evaluation of the First Results

We computed the precision@k from the cross-validation. It is displayed in Fig. 2,
with k as abscissa. From this figure, we can conclude that the case-based rea-
soning applies to our problem; for instance, in 70% of the runs, the validated
mapping has been ranked in the 5 first suggestions. However, the performance
seems still quite low: we note that the algorithm firstly suggested a correct map-
ping in only 36% of the case. As a consequence, we cannot imagine a totally
automatic CBR taking the mapping with highest score(pb) as solution.

Figure 3 shows the precision of the first suggestion, with schemas mappings
grouped with respect to their category. The geographical location and contract

A Case-Based Approach for Easing Schema Semantic Mapping 237

Fig. 2. Precision on top k suggestions for this first approach.

type are the categories with highest precision; these problems are more simple,
it mainly maps synonyms - the location could even be mapped automatically by
taking the first suggestion as semantic equivalent. On the contrary, job sectors
and job functions are more difficult to map: the problem is to find semantic equiv-
alents, that can be synonyms, but also hyponyms or hypernyms, for instance.
As it could be expected, the sectors, which are less precise than functions, are
better suggested by our CBR.

Fig. 3. Precision on the first suggestion, by schema categories.

238 E. Malherbe et al.

7 System Improvements and Extensive Benchmarking

In this section, we explore some improvement and their effect on the system’s
performances. In the previous section, we had to make arbitrary choices concern-
ing the definition of the inter-problem similarity, and the score function used in
the ranking. In the following, we propose more sophisticated definitions in order
to make the CBR system better.

7.1 Alternative Inter-problem Similarity

First of all, let us introduce an operation to compare not only items but whole
schemas one to another. As stated in Sect. 4, we did not exploit the schemas A or
B to define the inter-problem similarity. We denote cat(A) ∈ {0, 1}n the vector
representating the bag-of-words of the text one would obtain by concatenating
all documents of schema. cat(A) conveys thus crucial information, which are the
terms contained in A. For example, with the taxonomies introduced in Fig. 1,
cat(Aexample) is the representation in the vector space of the document:

“HTML Integrator, IT Department, Administrative and Infrastructure Support,

Database Administration, HR Direction, Management Department, Secretary”

and cat(Bexample) is the representation in the vector space of:

“Management & Administration, Software Engineering, Web Development,

Direction, Administration, Sales, Human Resources”

Thanks to this new definition, we can compute by f(cat(A), cat(A′)) how the
two schemas A and A′ are similar by evaluating the terms in common. We then
refine the inter-problem similarity to take into account the schema B, which is
the set of possible solution items:

sim(pb, pb′) = g(a, a′) × f(cat(B), cat(B′)) (5)

This similarity will be referred as “right vocabulary” similarity, because
cat(B) represents the vocabulary of B. The similarity function sim defined in
the first solution (Sect. 4) will now be referred as “no vocabulary” similarity. For
instance, with example problems defined in Sect. 4:

sim(pbexample, pb′example) = g(aexample, bexample) × f(cat(Aexample), cat(Bexample))

= 0 × 0.15

Where right schemas share common terms, Management and
Administration.

Similarly, we can try other variants of this similarity as well:
- a variant that considers the schema A, referred by “left vocabulary” similarity :

sim(pb, pb′) = g(a, a′) × f(cat(A), cat(A′)) (6)

- a variant that considers both schemas A,B, referred by “both vocabularies”
similarity :

sim(pb, pb′) = g(a, a′) × f(cat(A), cat(A′)) × f(cat(B), cat(B′)) (7)

A Case-Based Approach for Easing Schema Semantic Mapping 239

Advantages of Alternative Similarity Functions: Those variants are proposed so
that the system takes into account the context, when performing a text schema
mapping.

The first solution proposed in this article uses a very basic inter-problem
similarity based only on the inter-item similarity g of items a, a′ that we want
to map. This does not take into account the context of problem to be compared
one to another. Indeed, the schemas B,B′ in which we want to find a semantic
equivalent to a, a′ respectively may be totally different even if a and a′ are very
similar.

In practice, this phenomenon occurs when two problems with almost identical
items a, a′ are applied to schemas of items that model documents in different
languages, e.g. English and in French. Similarly, mapping an item to a list of
job sectors, or to a list of university courses are also two very different problems
because of the context, that is the global difference between B and B′.

7.2 Alternative Score Function

Given an item a ∈ A to map, in the end it is the human user that validates/
chooses which item b ∈ B is equivalent. Even though the proposed CBR system
helps, it is still possible that human operators make mistakes.

Since the score function proposed previously (see Eq. 4) is based on the single
case that maximizes inter-problem similarity, a single bad mapping can influence
further responses negatively. In other words, a single flawed case can change score
values dramatically and the system may fail in helping the user in the very long
run. On the other hand, we can hope the best solution b for problem pb to have
several similar cases in the base; we thus proposed to consider not one, but 5
similar cases to define the score used for ranking the solutions. We define an
extended score function, such as:

score′(pb, b) = max
c′=(pb′,sol′)∈C′ sim

(
pb, pb′)× g

(
b, sol′

)

+ 2nd max
c′=(pb′,sol′)∈C′sim

(
pb, pb′)× g

(
b, sol′

)
(8)

+ . . .

+ 5th max
c′=(pb′,sol′)∈C′sim

(
pb, pb′)× g

(
b, sol′

)

Advantages of the New Score Function: This new score function computes a
value considering not only the most similar case, but five most similar cases.

Using several cases at a time, the system becomes a lot less human error-
prone. The new score function return meaningful results, even if a bad mapping
is unintentionally saved along the way.

7.3 Overall Evaluation

Figure 4 shows results when we try variants of similarity measures defined in
Eqs. 3, 5, 6 and 7, with a simple revision step with the scoring function of Eq. 4.

240 E. Malherbe et al.

Fig. 4. Precision of the system using three different inter-problem similarity functions
proposed in Sect. 7.1. The curves for the “no vocabulary” and “left vocabulary” similar-
ities are almost indistinguishable, such as the curves for “right vocabulary” and “both
vocabularies” similarities.

Fig. 5. Precision of the system using two different score functions defined in Sects. 5.3
and 7.2, with and without right vocabulary inter-problem similarity.

At first sight, we see an improvement when the right vocabulary is taken into
account, with more than 10% increase for the accuracy at the first suggestion.
Second, we note that taking into account the left vocabulary is not useful: curve
obtained when the left vocabulary is included in the similarity has exactly the
same shape. Therefore the problem of schema mapping breaks down to sub-
problems that are independent, as we supposed in the first place. The problem
depends more on items that are possible equivalent; on the right vocabulary.

Figure 5 shows results for the extended revision step, with the simple score
function defined in Eq. 4 and with the extended score defined in Eq. 8. We only

A Case-Based Approach for Easing Schema Semantic Mapping 241

Table 2. Average rank of the solution in the computer-assisted system, computed by
cross-validation or on user’s real-world usage.

Evaluation Cross validation User’s usage on new mappings

System Initial system Tuned system Tuned system

Average rank 2.56 2.14 1.72

compared algorithms with simple “no vocabulary” similarity (Eq. 3), and “right
vocabulary” similarity (Eq. 5). In both case, the extended revision step increase
accuracy by about 5% in general. Thus, to take into account several similar
cases seems relevant. This could be because of the poor quality of some cases,
that could lead to biased suggestions.

We decided to implement the system tuned with the alternative score func-
tion and the “right vocabulary” similarity. In the interface, items on the right
side represent the schema B of possible mappings, and are ranked with respect
to score′(pb). In order to ease the visualization, the items are associated to a
color (gradiants of blue) proportional to score′(pb, b)/maxb score

′(pb, b). The
users are satisfied by this tool.

After three months of use they have significantly reduced the time spent on
schema mapping: 62% of items has been mapped by a clic on one of the top
suggestion, 81% on the top 3, whereas in the unranked case the user had to
look at dozens of items (87 on average, see Table 1). We computed the average
rank of the user’s choice, sometimes denoted by mean rank [8]. The results are
presented in Table 2, along with the average rank computed by cross validation
for the initial system described in Sect. 5, and the tuned system proposed in this
section (alternative score and “right vocabulary” similarity). The figures show
how helpful the ranking is, and we evaluate the saving time per item mapping
at 5 seconds. As there are about 30 schema mapped every week with 87 items
per schema on average, the time saved by the employees using our system is
approximately 3 and a half hours every week.

8 Conclusions

In this paper, we proposed a new method for easing text schema mapping based
on the CBR methodology. For this, we defined a novel similarity measure between
two schema mapping problems, taking into account the destination schema and
the hierarchy of items to be mapped. The revise step involves a scoring function
that aims at ranking the solutions for manual validation. The scoring function
we proposed is an improvement for all problems facing a large case base with
some poor quality/flawed cases. Compared to the state of the art of name-based
schema mapping we studied more in depth on learning semantics rules from the
corpus. Moreover, training a baseline model of text mining on document vectors
involved in each problem would be much more computational expensive than
our approach. All the real-world experiments we conducted show the utility of

242 E. Malherbe et al.

storing previous mapped cases and reusing them in a CBR system. The system
is now implemented and used daily by Multiposting’s employees, easing the task
of schema mapping and reducing drastically the time spent on this task.

In our future work, we plan to take automation of the system a step further.
As suggested by accuracy measures on the first solution, the CBR mapping
decisions are not accurate enough to be considered valid every time; however,
we could take the first result automatically in most of the cases, and limit manual
validation only for unsure mappings. By applying a threshold on a confidence
measure that assess how sure is the top ranked item by the CBR, we expect
to automatize half of the mappings by this approach, reducing even more the
human resources dedicated to this task.

References

1. Salton, G., Wang, A., Yang, C.S.: A vector space model for information retrieval.
J. Am. Soc. Inf. Sci. 18(11), 613–620 (1975)

2. Watson, I.: Case-based reasoning is a methodology not a technology. Knowl. Based
Syst. 12(5–6), 303–308 (1999)

3. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th VLDB Conference (2002)

4. Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information
access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)

5. Madhavan, J., Bernstein, P.A., Doan, A.H.: Corpus-based schema matching. In:
ICDE (2005)

6. Gu, M., Aamodt, A.: Evaluating CBR systems using different data sources: a case
study. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006.
LNCS (LNAI), vol. 4106, pp. 121–135. Springer, Heidelberg (2006)

7. Jean-Mary, Y.R., Shironoshita, E.P., Kabula, M.R.: Automatic ontology matching
with semantic verification. J. Web Seman. 7(3), 235–251 (2009)

8. Buttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing
and Evaluating Search Engines. MIT Press, Cambridge (2010)

9. Madhavan, J., Bernstein, P.A.: Generic schema matching, ten years later. In: Pro-
ceedings of the 37th VLDB Conference (2011)

10. Massmann, S., Raunich, S., Aumuller, D., Arnold, P., Rahm, E.: Evolution of the
COMA match system. In: Ontology Matching, p. 49 (2011)

11. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

12. Richter, M.M., Weber, R.O.: Textual CBR. In: Richter, M.M., Weber, R.O. (eds.)
Case-Based Reasoning, pp. 375–409. Springer, Heidelberg (2013)

13. Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition
from texts for process-oriented case-based reasoning. Inf. Syst. 40, 153–167 (2014)

14. Lamontagne, L., Lee, H.-H.: Textual reuse for email response. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 242–
256. Springer, Heidelberg (2004)

15. Sani, S., Wiratunga, N., Massie, S., Lothian, R.: Should Term-Relatedness be used
in text representation? In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS,
vol. 7969, pp. 285–298. Springer, Heidelberg (2013)

A Case-Based Approach for Easing Schema Semantic Mapping 243

16. Chakraborti, S., Wiratunga, N., Lothian, R., Watt, S.N.K.: Acquiring word simi-
larities with higher order association mining. In: Weber, R.O., Richter, M.M. (eds.)
ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 61–76. Springer, Heidelberg (2007)

17. Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., Tessaris, S.: D2. 2.1
Specification of a common framework for characterizing alignment. In: University
of Trento (2004)

18. Manakanatas, D., Plexousakis, D.: A tool for semi-automated semantic schema
mapping: design and implementation. In: DISWEB (2006)

19. Daniels, J., Rissland, E.: What you saw is what you want: using cases to seed
information retrieval. In: Leake, D.B., Plaza, E. (eds.) ICCBR-1997. LNCS, vol.
1266, pp. 325–336. Springer, Heidelberg (1997)

20. Bellashsene, Z., Bonifati, A., Rahm, E., et al.: Schema Matching and Mapping.
Springer, Heidelberg (2011)

21. Porter, M.F.: Snowball: a language for stemming algorithms (2001)

Great Explanations: Opinionated Explanations
for Recommendations

Khalil Muhammad(B), Aonghus Lawlor, Rachael Rafter, and Barry Smyth

Insight Centre for Data Analytics, School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland
khalil.muhammad@insight-centre.org

Abstract. Explaining recommendations helps users to make better
decisions. We describe a novel approach to explanation for recommender
systems, one that drives the recommendation ranking process, while at
the same time providing the user with useful insights into the reason why
items have been recommended and the trade-offs they may need to con-
sider when making their choice. We describe this approach in the context
of a case-based recommender system that harnesses opinions mined from
user-generated reviews, and evaluate it on TripAdvisor hotel data.

Keywords: Recommender systems · Case-based reasoning · Explana-
tions · Opinion mining · Sentiment analysis

1 Introduction

Recommender systems are a familiar part of the digital landscape helping mil-
lions of users make better choices about what to watch, wear, read, and buy. But
generating suggestions is just the start. Explaining recommendations can make
it easier for users to make decisions, increasing conversion rates and leading to
more satisfied users [1–5]. Usually explanations provide a post-hoc rationalisa-
tion for the suggested items. But our work is motivated by a more intimate
connection between recommendations and explanations, which poses the ques-
tion: can the recommendation process itself be guided by structures generated
to explain the suggestions to users?

We describe a case-based hotel recommender based on cases that are mined
from the opinions in user-generated reviews; see also [6–8]. The central contribu-
tion of this work is a technique for generating personalised, feature-based expla-
nations that can be used as part of an explanation interface in a recommender
system but also during recommendation ranking. We provide examples based on
real-world TripAdvisor data and discuss the results of an initial evaluation to
explore the structure and utility of the resulting explanations.

2 Related Work

There is a history of using explanations to support reasoning in intelligent sys-
tems with approaches based on heuristics [9], CBR [10–12], and model-based
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 244–258, 2015.
DOI: 10.1007/978-3-319-24586-7 17

Great Explanations: Opinionated Explanations for Recommendations 245

techniques [13] for example. More recently explanations have been used to sup-
port the recommendation process ([1–5]) by justifying recommendations to users.
Good explanations promote trust and loyalty, increase satisfaction, and make it
easier for users to find what they want.

Early work explored the utility of explanations in collaborative filtering sys-
tems with [1] reviewing different models and techniques for explanation based
on MovieLens data. They considered a variety of explanation interfaces lever-
aging different combinations of data (ratings, meta-data, neighbours, confidence
scores etc.) and presentation styles (histograms, confidence intervals, text etc.)
concluding that most users recognised the value of explanations.

Bilgic and Mooney [14] used keywords to justify items rather than disclosing
the behaviour of similar users. They argued that the goal of an explanation
should not be to “sell” the user on the item but rather to help the user to
make an informed judgment. They found users tended to overestimate item
quality when presented with similar-user style explanations. Elsewhere, keyword
approaches were further developed by [2] in a content-based, collaborative hybrid
recommender capable of providing explanations such as: “Item A is suggested
because it contains features X and Y that are also included in items B, C, and
D, which you have also liked.”; see also the work of [15] for related ideas based
on user-generated tags instead of keywords. Note that this style of explanation
justifies the item with reference to other items, in this case items that the user
had previously liked.

Explanations can also relate one item to others. For example, Pu and Chen
[3] build explanations that emphasise the tradeoffs between items. For example,
a recommended item can be augmented by an explanation that highlights alter-
natives with different tradeoffs such as “Here are laptops that are cheaper and
lighter but with a slower processor” for instance; see also related work by [16].

Here we focus on generating explanations that are feature-based and per-
sonalized (see also [17]), highlighting features that are likely to matter most to
the user. But, like the work of [3,16], our explanations also relate items to other
recommendation alternatives to help the user to better understand the trade-offs
and compromises that exist within a product-space; see also [18]. However, our
work also leverages the opinions in user-generated reviews as its primary source
of item and recommendation knowledge. A unique feature of our approach is
that explanations are not generated purely to justify recommendations but also
to influence their ranking in the recommendation set.

3 Mining Experiential Cases

Our approach is summarised in Fig. 1 which we will describe with reference to
TripAdvisor hotels and reviews. The opinion mining component extracts fea-
tures and sentiments from reviews to produce hotel cases. This also generates
user profiles from the reviews a user has submitted (or, for example, from the
reviews they have previously viewed or marked as useful). The recommendation
engine takes a user query (and profile) and retrieves a set of matching hotels and

246 K. Muhammad et al.

Fig. 1. An overview of the experiential product recommendation architecture.

then, generating explanations for each of these candidates, uses these explana-
tions to rank the hotels for recommendation. It is this combination of opinion
mining and explanation-based ranking that sets this work apart from others.

3.1 Opinion Mining

To identify and extract features from reviews we use the methods of [7,8]; we
will refer to these (e.g. the carpets or the quality of orange juice at breakfast)
as review features. While [7] use these as the basis for case descriptions, we find
that they are less suitable for our needs, especially as the basis of explanations.
For this reason we harness higher-level features available in the meta-data for
hotels and map the review features back to these higher-level features. Since
we will be focusing on TripAdvisor data, we map these review features back to
a set of known amenities (e.g. room quality, bar/restaurant etc.); we refer to
these features as item features. In this way we use this amenity meta-data as
the primary features of our cases while still leveraging the opinions expressed in
reviews to associate sentiment information with these amenities.

Mining Review Features. As with [8] we mine bi-gram features and single-
noun features; see also [19,20]. For example, bi-grams which conform to one of
two basic part-of-speech co-location patterns are considered — a noun followed
by a noun, such as shower screen (NN), or an adjective followed by a noun,
such as twin room (AN) — excluding bi-grams whose adjective is a sentiment
word (e.g. excellent, terrible etc.) in the sentiment lexicon [19]. Separately, single-
noun features are validated by eliminating nouns that are rarely associated with
sentiment words in reviews as per [19], since such nouns are unlikely to refer to
product features; these extracted features are the review features.

Great Explanations: Opinionated Explanations for Recommendations 247

Mapping Review Features to Item Features. Taking all review texts,
we apply k-means clustering, using sentence co-occurence, to associate review
features with item features (amenities). While beyond the scope of this work
suffice it to say that this provides a mapping between review features, such as
orange juice and item features such as breakfast.

Evaluating Feature Sentiment. Again, as per [7], for a review feature fi in a
review sentence Sj , we determine whether there are any sentiment words in Sj .
If not, fi is marked neutral, otherwise we identify the sentiment word wmin with
the minimum word-distance to fi. Next we determine the part-of-speech (POS)
tags for wmin, fi and any words that occur between wmin and fi. The POS
sequence corresponds to an opinion pattern. We compute the frequency of all
opinion patterns recorded after a pass of all reviews; a pattern is valid if it occurs
more than average. For valid patterns we assign sentiment to fi based on the
sentiment of wmin and subject to whether Sj contains any negation terms within
4 words of wmin. If there are no negation terms then the sentiment assigned to
fi in Sj is that of the sentiment word in the sentiment lexicon; otherwise this
sentiment is reversed. If an opinion pattern is not valid then we assign a neutral
sentiment to each of its occurrences within the review set; see [21] for a fuller
description.

Generating Experiential Cases. For each item/hotel Hj we have review
features {f1, ..., fm} mined from reviews(Hj). Each fi is mapped to a item
feature Fi and we aggregate the review feature’s mentions and sentiment scores
to associate them with the corresponding Fi. So F (Hj) is the set of item features
{F1, ..., Fn} of hotel Hj . We can compute various properties of Fi: the fraction
of times it is mentioned in reviews (its importance, see Eq. 1) and the degree to
which it is mentioned in a positive or negative light (its sentiment, see Eq. 2,
where pos(Fi,Hj) and neg(Fi,Hj) denote the number of times that feature Fi

has positive or negative sentiment in reviews for Hj , respectively). Thus, each
hotel can be represented as a case, case(Hj), which aggregates item features,
importance and sentiment data as in Eq. 3.

imp(Fi,H) =
count(Fi,H)∑

∀Fk∈F (Hj)
count(Fk,Hj)

(1)

sent(Fi,Hj) =
pos(Fi,Hj)

pos(Fi,Hj) + neg(Fi,Hj)
(2)

case(Hj) = {[Fi, sent(Fi,Hj), imp(Fi,Hj)] : Fi ∈ F (Hj)} (3)

3.2 The Recommendation Engine

The recommendation engine returns a set of items (hotels) based on some query
and user profile. Previous work has described related approaches to recommen-
dation using opinions and sentiment [6,7] but here we describe a very different

248 K. Muhammad et al.

approach, one that bases recommendation on the ability to generate compelling
explanations. The core of this is a novel approach to generating opinionated
explanations and a way to score these explanations for recommendation rank-
ing. We will discuss this in detail in the next section of this paper.

4 Generating Opinionated Explanations

Before describing our explanation approach it is important to understand the
setting: we assume the target user UT is presented with a set of hotel recommen-
dations {H1...Hk} based on some user query which might include features such
as star rating, price and location, and our task is to generate an explanation
for each Hi. To simplify the explanation process let us say for now that we will
build an explanation that will highlight two types of features: (1) reasons why
they might choose the hotel; and (2) reasons why they might avoid the hotel.

4.1 A Basic Explanation Structure

Our basic explanation comes in two parts. The pro part is a set of (positive)
hotel features that are reasons to choose the hotel. The con part is a set of
(negative) features that can be considered as reasons to avoid the hotel. More
formally, a feature Fi of hotel HT is a pro if and only if it has a majority of
positive sentiments (sent(Fi,HT) > 0.7 in the case of our TripAdvisor data)
and if its sentiment is better than at least one of the alternative hotels, H ′

(that is, betterThan(Fi,HT ,H
′) > 0); see Eqs. 4 and 5. Obviously this does

not guarantee a pro will be a strong reason to choose HT — it might only be
better than a small fraction of the alternatives — but it is a possible reason
to choose the hotel. Likewise a feature is a con if it has a negative sentiment
(sent(Fi,HT) < 0.7) and if it is worse than at least one alternative case; see
Eqs. 6 and 7.

pro(Fi,HT ,H
′) ↔ sent(Fi,HT) > 0.7 ∧ betterThan(Fi,HT ,H

′) > 0 (4)

betterThan(Fi,HT ,H
′) =

∑
Hc∈H′ 1[sent(Fi,HT) > sent(Fi,Hc)]

|H ′| (5)

con(Fi,HT ,H
′) ↔ sent(Fi,HT) <= 0.7 ∧ worseThan(Fi,HT ,H

′) > 0 (6)

worseThan(Fi,HT ,H
′) =

∑
Hc∈H′ 1[sent(Fi,HT) < sent(Fi,Hc)]

|H ′| (7)

Then, we can construct a basic explanation as a set of pros and a set of
cons as in Eqs. 8 and 9; for example, Pros(HT ,H

′) is a set of tuples, each tuple
comprising a pro feature and its betterThan score and likewise for Cons(HT ,H

′)

Pros(HT ,H
′) = {(F, v) : pro(F,HT ,H

′) ∧ v = betterThan(F,HT ,H
′)} (8)

Cons(HT ,H
′) = {(F, v) : con(F,HT ,H

′) ∧ v = worseThan(F,HT ,H
′)} (9)

Great Explanations: Opinionated Explanations for Recommendations 249

4.2 Personalised Explanations

The approach described in Sect. 4.1 treats each hotel feature equally, but in
reality different features will matter to different users. If we wish to create com-
pelling explanations then we will need to focus on those features that matter
to the target user. For this, we assume we have access to user profiles made
up of the same type of features as cases, each with a relative importance value
to reflect the importance (imp) of the feature to the user as in Eq. 10. A more
detailed account of the user profiling is beyond the scope of this work but briefly
we create profiles just as we create hotel cases, as mentioned previously, by min-
ing opinions from the user’s reviews and mapping these review features to item
features. Then we can calculate imp(Fi, U) in a similar manner to how we cal-
culated imp(Fi,H): as the number of occurrences of Fi in Reviews(U) divided
by the total number of feature occurrences in Reviews(U).

Profile(U) = {[Fi, imp(Fi, U)] : Fi ∈ Reviews(U)} (10)

Now we can modify the way we generate the pros (or cons) of an explanation
so that in addition to capturing the feature and its betterThan (or worseThan)
scores we can also include an importance score for the target user UT as in
Eqs. 13 and 14.

pro(F,UT ,HT ,H
′) ↔

sent(F,HT) > 0.7 ∧ betterThan(F,HT ,H
′) > 0 ∧ imp(F,UT) > 0 (11)

con(F,UT ,HT ,H
′) ↔

sent(F,HT) < 0.7 ∧ worseThan(F,HT ,H
′) > 0 ∧ imp(F,UT) > 0 (12)

Pros(UT , HT , H′) =

{(F, v,m) : pro(F,UT , HT , H′) ∧ v = betterThan(F,HT , H′) ∧ m = imp(F,UT)} (13)

Cons(UT , HT , H′) =

{(F, v,m) : con(F,UT , HT , H′) ∧ v = worseThan(F,HT , H′) ∧ m = imp(F,UT)} (14)

In this way, for a target user UT and hotel HT , as well as a set of alter-
native hotels H ′, we can construct an explanation for HT relative to H ′ that
emphasises those pros and cons that matter to UT . An example explanation
structure is shown in Fig. 2, for a user Peter Parker and a Clontarf Castle Hotel
in Dublin. Based on the user’s profile we can see that he is interested in a num-
ber of listed features including Bar/Lounge, Free Breakfast, Airport Transport,
Restaurant, Leisure Centre, Shuttle Bus, Swimming Pool, and Room Service, in
order of decreasing importance score. In Clontarf Castle some of these features
have been positively reviewed in the past (high sentiment scores) and so are

250 K. Muhammad et al.

Fig. 2. An example of a raw explanation structure showing pros and cons that matter
to the user along with associated importance, sentiment, and better/worse than scores.

listed as pros (e.g. Bar/Lounge and Restaurant) while others have been more
negatively reviewed (e.g. Airport Transport and Swimming Pool) and are listed
as cons. In each case we can see the proportion of alternative recommendations
that this hotel is better or worse than with respect to a particular pro or con,
respectively. For example, Clontarf Castle has been reviewed very favourably
for its Free Parking (sentiment of 0.95) and it is better for this than 90 % of
the alternative recommendations. In contrast its Leisure Centre appears to be
lacking (sentiment of only 0.31) and it is worse than 75 % of the alternatives.
Of course there are also some features that matter to the user but that do not
appear in the hotel’s reviews and so these are not in the explanation.

4.3 Compelling Explanations

The explanation structure so far can be made up of a large number of features. In
fact, as we shall see later, in our TripAdvisor dataset basic explanations tend to
include an average of 6–7 pros and 2 or 3 cons. That is a lot of features to present
to the user especially since not all of them will be very compelling. Many of the
pros might be better than only a small fraction of the other recommendations.
One option is to filter features based on how strong a reason they may be to
choose or reject the target hotel case. We define a compelling feature to be one
that has a betterThan (pro) or worseThan (con) score of > 50% instead of just
> 0. Thus, a compelling pro is one that is better than a majority of alternative
recommendations and a compelling con is one that is worse than a majority of
alternatives. A compelling pro may be a strong reason to choose the target hotel;
a compelling cons is a strong reason to avoid it.

We define a compelling explanation as a non-empty explanation which con-
tains only compelling pros and/or compelling cons. For instance, referring back
to Fig. 2, we have marked compelling features with an asterisk after their
name; so, the compelling explanation derived from this basic explanation would
include Bar/Lounge, Free Parking, Restaurant as pros and Airport Transport
and Leisure Centre as cons. These are all features that matter to the user and

Great Explanations: Opinionated Explanations for Recommendations 251

they distinguish the hotel as either better or worse than a majority of alterna-
tives.

4.4 Using Explanations to Rank Recommendations

A unique element of this work is our proposal to use explanations to rank rec-
ommendations. To do this we need to score explanations to reflect how strongly
they are likely to be when convincing the user to choose (or reject) a given hotel;
hotels with the strongest explanations should appear at the top of the ranking.
To do this we use a straightforward scoring function to measure the strength of
an explanation as the weighted sum of its pros minus the weighted sum of its
cons as shown in Eq. 15.

strength(UT ,HT ,H
′) =∑

f∈Pros(UT ,HT ,H′)

betterThan(f,HT ,H
′) × imp(f, UT)−

∑
f∈Cons(UT ,HT ,H′)

worseThan(f,HT ,H
′) × imp(f, UT) (15)

We can consider two versions of this scoring function, one that is applied to
basic recommendations and one that is applied to compelling explanations. In
each case the core calculation remains the same but only the features change. For
example, applying the metric to the compelling features in Fig. 2 we calculate
score of 0.15 based on a pro-score of 0.42 and a cons score of 0.27 (that is,
0.42 − 0.27 = 0.15). Using this scoring function we can now rank-order hotels
for recommendation in descending order of explanation strength.

4.5 Presenting Explanations to the User

So far we have said nothing about how these explanations might be presented
to the user. For completeness, in Fig. 3 we illustrate one example for Clontarf
Castle. The explanation is in the pop-up on the main hotel photo. We show the
compelling version of the explanation with 3 pros and 2 cons.

The pros and cons are ordered based on their importance to the target user.
The horizontal (sentiment) bar next to each shows the relative sentiment asso-
ciated with the feature and beneath each is an indication of the betterThan
or worseThan score, as appropriate. Evidently, Clontarf Castle is superior to
a significant majority of alternatives in terms of its Bar/Lounge, Free Parking,
and Restaurant, all of which are important to the target user, but it loses out
to a majority of alternatives in terms of its Airport Transportation and Leisure
Centre.

The user can request a more detailed explanation to reveal the full set of
explanation features. By hovering over a sentiment bar the user can see a sum-
mary of the opinions extracted from reviews about that feature; this is shown
for the Bar/Lounge feature in Fig. 3. And by clicking on the text that refer-
ences alternatives the user will be brought to a list of the relevant alternatives;

252 K. Muhammad et al.

Fig. 3. An example explanation showing pros and cons that matter to the target user
along with sentiment indicators (horizontal bars) and information about how this item
fares with respect to alternatives.

for example, if the user selected the “worse than 75 % of alternatives” for the
Leisure Centre feature she would be brought to a list of these superior alterna-
tives. In this way explanations also serve as a navigation structure to help users
navigate between these very alternatives. This is just one approach to presenting
explanations to the user and future work will consider interface issues further.

5 Evaluation

There are 4 important aspects to our approach to generating opinionated expla-
nations for recommendation: (i) we separately emphasise the pros and cons of
each item; (ii) we use information about features that matter to the user to
personalise these explanations; (iii) we link the explanation to recommendations
which offer better or worse feature options; (iv) we propose to use these explana-
tion structures for the ranking of recommendations themselves. In combination
we believe that these aspects make for a novel and potentially powerful approach
to explanations for recommender systems and we provide some evaluation data
to support this in what follows.

5.1 Data and Methodology

We use a TripAdvisor dataset as a source of users, reviews, and hotels. This
dataset contains 1,000 users who have each written at least 10 hotel reviews for
2,370 hotels that they had booked. These reviews are used for user profiles. In

Great Explanations: Opinionated Explanations for Recommendations 253

addition we had more than 220,000 reviews by almost 150,000 reviewers available
for the hotel cases.

For each target user UT we select a hotel that they have booked, HB , and col-
lect a set of 10 related hotels from TripAdvisor. These additional hotels are those
that TripAdvisor recommends as related hotels; we understand that TripAdvisor
generates these using a combination of location, similar users, and meta-data.

Our intention is to simulate a typical session in which UT has located a hotel
of interest HB , and a set of alternatives suggested by TripAdvisor. The booked
hotel and the alternatives represent a set of recommendations for UT . For each
such session we generate an explanation for each of the 11 recommended hotels
for UT ; in fact we will generate a basic explanation and a compelling explanation
for each hotel. We analyse various properties of these explanations in addition
to their utility for ranking the hotels for recommendation.

5.2 Pros vs. Cons, Better vs. Worse

First we investigate the number of pros and cons and their betterThan/
worseThan scores. Starting with basic explanations, Fig. 4(a) shows the aver-
age number of pros and cons generated per explanation (left y-axis) and also
the average betterThan/worseThan scores (right y-axis). We can see that on
average we are recommending about 5.8 pros versus only 2.2 cons reflecting the
strong positive bias amongst reviews.

Interestingly we see a significant difference between the average betterThan
score for pros (0.42) compared to the average worseThan score for cons (0.63).
In other words, for a typical hotel, its pros will typically be better than about
42 % of the alternatives in the recommendation session. In contrast, when it
comes to the cons, it is usually the case that the hotel in question does worse
than most of the alternatives in the recommendation session.

Figure 4(b) shows corresponding results for compelling explanations. Inci-
dentally about 97 % of the basic explanations are compelling. Now we can see
that the average number of pros and cons is more balanced; there are 1.76 pros
vs 1.55 cons. The average betterThan and worseThan scores for these explana-
tions are 70 % and 75 %, respectively. These explanations are simpler to interpret

Fig. 4. The average number of pros and cons and the average betterThan and
worseThan scores per explanation for basic explanations and compelling explanations.

254 K. Muhammad et al.

(having fewer features) and more compelling in the sense that their features are
better/worse that a strong majority of alternatives. Intuitively this combination
of simplicity and compellingness should make them effective when it comes to
helping users to decide, be it to accept or reject a given recommendation.

5.3 Using Explanations to Rank Recommendations

Earlier we described how to compute the strength of an explanation as a function
of its pros and cons (see Eq. 15) and we proposed to use this score to rank
hotels for recommendations. To evaluate how well this might work we need a
ground-truth against which to judge our hotel recommendations. We propose
the average rating that is available alongside each TripAdvisor hotel for this; a
similar approach has been used by [6,7].

For each recommendation session we re-rank the recommended hotels (includ-
ing the booked hotel) according to the strength of their basic and compelling
recommendations and note the average position of the booked hotel. Then we
compare the average rating of the booked hotel to the average ratings of the
hotels above and below the booked hotel in the ranking. Ideally we would like
to see all hotels above the booked hotel to have better average ratings and all
hotels ranked below the booked hotel to have lower average ratings.

It noteworthy that we can expect this to be a tough test. After all the user
chose the booked hotel for a reason and so we can expect it to be a highly
rated one, all things being equal. Related to this, it is also worth noting that the
average ratings for hotels in the recommendation sessions tend to be very high —
TripAdvisor is unlikely to suggest poorly rated hotels — and so rating diversity
can be low within sessions providing little opportunity for measurable ranking
improvement. To deal with this we ordered our sessions based on variance of
average user ratings (across the hotels in each session) and selected the top 20 %
(200 sessions) that had the highest average user rating variance.

Fig. 5. A comparison of recommendation ranking results for basic and compelling
explanations, showing only the first 9 rank positions. The solid horizontal lines indicate
the average rank of the booked hotel. In each pair of bars, the green (left) show the
average number of better-rated hotels above and below the booked hotel using our
rankings. And in each pair the red bars (right) show the number of lower rated hotels
above and below the booked hotel.

Great Explanations: Opinionated Explanations for Recommendations 255

The results are shown in Fig. 5 as a bar chart that needs some explana-
tion. First the horizontal lines that bound the charts at the top and the bottom
represent the position of the top ranked hotel (position 1 in the ranking) and
the position of the bottom ranked hotel (position 10 in the ranking). Between
these boundaries there are two separate bar charts for the rankings based on
the strength of: (a) basic explanations; (b) compelling explanations. The hori-
zontal origin-line for each bar-chart is positioned between the top and bottom
boundaries to reflect the average position of the booked hotel in each session.
For basic explanations the booked hotel is ranked on average at position 5.06
and for compelling explanations the booked hotel is ranked a little lower at 5.14.

Next, each bar-chart contains 2 bars to reflect the number of recommenda-
tions that have a higher average rating than the booked hotel (the left-hand bar)
and the number of recommendations with a lower average user rating than the
booked hotel (the right-hand bar). The vertical position of these bars relative to
the origin-line indicates whether these higher or lower rated hotels appear above
or below the booked hotel in the ranking.

For example, for the compelling explanations (Fig. 5(b)) we see: the booked
hotel ranked at position 5.14; an average of 3.21 recommendations above it with
higher average ratings; only 0.63 hotels with higher ratings ranked below it (left-
hand bar). This is good because it means that by ranking hotels by the strength
of their explanations we are able to produce a ranking that tends to push a large
majority (84%) of higher rated hotels above the booked hotel. Next we look
at the bar corresponding to lower rated hotels (right hand bar). Most of these
lower rated hotels (1.70) are ranked below the booked hotel, but some (1.39)
are ranked above. Again this is positive as it means that our explanation-based
ranking tends to rank most of the poorer quality hotels below the booked one,
although sometimes a lower rated hotel is ranked above the booked hotel. The
results are broadly similar when we look at the basic explanations, although
slightly fewer higher ranked hotels appear above the booked hotel.

6 Discussion and Limitations

To sum up, we have described a novel approach to generating explanations for
opinionated recommender systems that can be used not only to help justify
recommendations to users, but also to influence the recommendation ranking.
In the space available we have left out many details and a number of items
remain open for discussion, for example:

1. In our evaluation we base our profiles on reviews that have been authored
by users but this introduces a significant cold-start problem in practice since
most users are not active reviewers. Nevertheless there are many other ways
to generate profiles such as mining opinions from reviews that users have
rated, liked, or simply read. Moreover, even when user profiles remain lacking
in features we could use those features we have to identify similar users and
harness their profiles (and the features that matter to them) when generating
explanations for the target user.

256 K. Muhammad et al.

2. We have also said relatively little about how explanations might be presented
to users, other than by showing one concrete example. Again this is a matter
for future work where we will consider a variety of recommendation inter-
faces and styles, each emphasising different aspects of explanations. It will
be interesting to see which styles users will find most helpful and compelling,
and whether these do in fact support more satisfactory choices.

3. While the evaluation results on ranking are far from conclusive, they do sug-
gest that using explanations for ranking can deliver a high quality ordering
of recommendations. Indeed, when we compute the average rank correlation
between the ground-truth (average TripAdvisor rating) ordering and the basic
or compelling based orderings, we find correlation values of approximately
0.62 indicating a reasonable correlation between our explanation-based rank-
ings and the ground-truth; this is yet another sign that the explanation-based
approach is effective for recommendation ranking.

4. Finally, we have limited our research, thus far, to focusing on hotel reviews
from TripAdvsor. However, there is nothing in the work that suggests this
should be a limitation. In fact earlier work by [6–8] has applied similar opinion
mining techniques to good effect to other types of user reviews such as those
found on Amazon for consumer electronic products.

7 Conclusions

This work builds on recent research in the case-based reasoning community by
bringing together ideas from CBR, opinion mining, and recommender systems.
Its main contribution is a novel approach to explanation that can also be used
to influence recommendation ranking. Rather than relying on similarity as a
proxy for user relevance we base recommendation decisions on the ability to
explain/justify recommendations to the user; this bears a resemblance to the
work [22] which proposed the use of adaptation knowledge as a part of the case
retrieval and ranking process, arguing that adaptability served as a more reliable
metric for retrieval than traditional notions of similarity.

This is very much a work in progress. We have described our approach to
generating explanations and provided some point examples on how such explana-
tions might be used in practice. We analysed the structure of these explanations
based on a TripAdvisor dataset of hotel reviews. We demonstrated that it is fea-
sible to generate compelling explanations as part of the recommendation process,
and that these explanations could be used for effective ranking.

Future work will focus on live-user trials of this approach. This will include
experimenting with different presentation formats for our explanation structures
to investigate whether users find them more or less useful, and whether there is
evidence to suggest that such explanations do lead to better decisions in practice.

Acknowledgments. This work is supported by the Insight Centre for Data Analytics
under grant number SFI/12/RC/2289.

Great Explanations: Opinionated Explanations for Recommendations 257

References

1. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: Explaining collaborative
filtering recommendations. In: Proceedings of The ACM Conference on Computer
Supported Cooperative Work, pp. 241–250, ACM (2000)

2. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Providing justifications in rec-
ommender systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(6),
1262–1272 (2008)

3. Pu, P., Chen, L.: Trust-Inspiring explanation interfaces for recommender systems.
Knowl. Based Syst. 20(6), 542–556 (2007)

4. Coyle, M., Smyth, B.: Explaining search results. In: Proceedings of The 19th
International Joint Conference on Artificial Intelligence, pp. 1553–1555, Morgan
Kaufmann Publishers Inc (2005)

5. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender
systems. AI Mag. 32(3), 90–98 (2011)

6. Dong, R., Schaal, M., O’Mahony, M.P., McCarthy, K., Smyth, B.: Mining features
and sentiment from review experiences. In: Delany, S.J., Ontañón, S. (eds.) ICCBR
2013. LNCS, vol. 7969, pp. 59–73. Springer, Heidelberg (2013)

7. Dong, R., O’Mahony, M.P., Smyth, B.: Further experiments in opinionated product
recommendation. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol.
8765, pp. 110–124. Springer, Heidelberg (2014)

8. Dong, R., Schaal, M., O’Mahony, M.P., Smyth, B.: Topic extraction from online
reviews for classification and recommendation. In: Proceedings of The 23rd Inter-
national Joint Conference on Artificial Intelligence (2013)

9. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project. The Addison-Wesley Series
in Artificial Intelligence, vol. 3. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1984)

10. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case based reasoning perspec-
tives and goals. Artif. Intell. Rev. 24(2), 109–143 (2005)

11. McSherry, D.: Explaining the pros and cons of conclusions in CBR. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 317–330.
Springer, Heidelberg (2004)

12. Doyle, D., Cunningham, P., Bridge, D.G., Rahman, Y.: Explanation oriented
retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 157–168. Springer, Heidelberg (2004)

13. Druzdzel, M.J.: Qualitative verbal explanations in Bayesian belief networks. Artif.
Intell. Simul. Behav. Q. Spec. Issue Bayesian Netw. 94, 43–54 (1996)

14. Bilgic, M., Mooney, R.J.: Explaining recommendations: Satisfaction vs. Promo-
tion. In: Proceedings of Beyond Personalization 2005: A Workshop on the Next
Stage of Recommender Systems Research at The 2005 International Conference
on Intelligent User Interfaces, pp. 13–18 (2005)

15. Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags.
In: Proceedings of The 13th International Conference on Intelligent User Interfaces,
pp. 47–56, ACM Press (2008)

16. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Explaining compound critiques.
Artif. Intell. Rev. 24(2), 199–220 (2005)

17. Tintarev, N., Masthoff, J.: The effectiveness of personalized movie explanations:
an experiment using commercial meta-data. In: Nejdl, W., Kay, J., Pu, P., Herder,
E. (eds.) AH 2008. LNCS, vol. 5149, pp. 204–213. Springer, Heidelberg (2008)

258 K. Muhammad et al.

18. McSherry, D.: Similarity and compromise. In: Ashley, K.D., Bridge, D.G. (eds.)
ICCBR 2003. LNCS, vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

19. Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of
The 19th National Conference on Artificial Intelligence, pp. 755–760, AAAI Press
(2004)

20. Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and
an algorithm for identification in text. Nat. Lang. Eng. 1(1), 9–27 (1995)

21. Moghaddam, S., Ester, M.: Opinion digger: an unsupervised opinion miner from
unstructured product reviews. In: Proceedings of The 19th ACM International
Conference on Information and Knowledge Management, pp. 1825–1828, ACM
Press (2010)

22. Smyth, B., Keane, M.: Adaptation-Guided retrieval: questioning the similarity
assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

Learning and Applying Adaptation Operators
in Process-Oriented Case-Based Reasoning

Gilbert Müller(B) and Ralph Bergmann

Business Information Systems II, University of Trier, 54286 Trier, Germany
{muellerg,bergmann}@uni-trier.de

http://www.wi2.uni-trier.de

Abstract. This paper presents a novel approach to the operator-based
adaptation of workflows, which is a specific type of transformational
adaptation. We introduce the notion of workflow adaptation operators
which are partial functions transforming a workflow into a successor
workflow, specified by workflow fractions to be inserted and/or deleted.
The adaptation process itself chains adaptation operators during a local
search process aiming at fulfilling the query as best as possible. Further,
the paper presents an algorithm that learns workflow adaptation oper-
ators from the case base automatically, thereby addressing the common
problem of adaptation knowledge acquisition. An empirical evaluation
in the domain of cooking workflows was conducted which demonstrates
convincing adaptation capabilities without a significant reduction of the
workflows’ quality.

Keywords: Process-oriented case-based reasoning · Operator-based
adaptation · Workflows

1 Introduction

Process-aware information systems (PAISs) [7] support the operational busi-
ness of an organization based on models of their processes. PAISs include
traditional workflow management systems as well as modern business process
management systems. In the recent years, the use of workflows has signif-
icantly expanded from the original business area towards new application
fields such as e-science, medical healthcare, information integration, and even
cooking [10,24,25]. Process-oriented case-based reasoning (POCBR) [20] cov-
ers research on case-based reasoning (CBR) for addressing problems in PAISs.
Recent research deals with approaches to support modeling, composition, adap-
tation, analysis, monitoring and optimization of business processes or work-
flows [2,12,13,18,21,22,26]. Workflow adaptation addresses the adaptation of
a retrieved workflow from a repository (case base) to fulfill the specific needs of
a new situation (query). In POCBR, adaptation methods that originate from
case adaptation in CBR are proposed for this purpose. In our previous work we
have investigated case-based adaptation [17], compositional adaptation [22], as
well as the use of generalized cases [23] for adaptation.
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 259–274, 2015.
DOI: 10.1007/978-3-319-24586-7 18

260 G. Müller and R. Bergmann

In this paper, we present a novel operator-based approach [3] for adapting
workflow cases represented as graphs. The workflow adaptation operators we
propose in Sect. 3 are partial functions specifying ways of adapting a workflow
towards a successor workflow. Like in STRIPS, the operators are specified by
two workflow sub-graphs, one representing a workflow fraction to be deleted and
one representing a workflow fraction to be added. The adaptation process (see
Sect. 5) transforms a retrieved workflow into an adapted workflow by chaining
various adaptation operators. This process can be considered a search process
towards an optimal solution w.r.t. the query. Most importantly, we also propose
an algorithm to learn such workflow adaptation operators automatically from
the case base, thereby extending previous work on learning adaptation knowl-
edge [4,9,27] towards POCBR (see Sect. 4). Thus, the knowledge acquisition
bottleneck for adaptation knowledge is avoided. Finally, we experimentally eval-
uate our approach in the domain of cooking (see Sect. 6). We can show that with
the learned workflow adaptation operators, a high percentage of the changes
requested for a retrieved workflow can be fulfilled without significantly reducing
the quality of the adapted workflows.

2 Foundations

We now briefly introduce relevant previous work in the field of POCBR.

2.1 Workflows

Broadly speaking, a workflow consists of a set of activities (also called tasks)
combined with control-flow structures like sequences, parallel (AND) or alterna-
tive (XOR) branches, as well as repeated execution (LOOPs). In addition, tasks
exchange certain data items, which can also be of physical matter, depending on
the workflow domain. Tasks, data items, and relationships between the two of
them form the data flow.

We illustrate our approach in the domain of cooking recipes (see example
workflow in Fig. 1). A cooking recipe is represented as a workflow describing
the instructions for cooking a particular dish [24]. Here, the tasks represent the
cooking steps and the data items refer to the ingredients being processed by
the cooking steps. An example cooking workflow for a pasta recipe is illustrated
in Fig. 1. Based on our previous work [2,22,23] we now introduce the relevant
formal workflow terminology.

Definition 1. A workflow is a directed graph W = (N,E) where N is a set
of nodes and E ⊆ N × N is a set of edges. Nodes N = ND ∪ NT ∪ NC can
be data nodes ND, task nodes NT , or control-flow nodes NC . In addition, we
call NS = NT ∪ NC the set of sequence nodes. Edges E = EC ∪ ED can be
control-flow edges EC ⊆ NS × NS, which define the order of the sequence nodes
or data-flow edges ED ⊆ (ND × NS) ∪ (NS × ND), which define how the data
is shared between the tasks.

Learning and Applying Adaptation Operators 261

Fig. 1. Example of a block-oriented cooking workflow

The control-flow edges EC of a workflow induce a strict partial order on the
sequence nodes S. Thus, we define s1 < s2 for two sequence nodes s1, s2 ∈ S as a
transitive relation that expresses that s1 is executed prior to s2 in W . We further
define n ∈]x1, x2[iff x1 < n < x2, describing that node n is located between x1

and x2 in W w.r.t. the control-flow edges.
We further denote that two data nodes d1, d2 ∈ ND are data-flow connected

d1 � d2 if there exists a task that consumes data node d1 and produces data
node d2. Moreover, d1 �

+ d2 denotes that d1, d2 ∈ ND are transitively data-flow
connected:

d1 � d2, iff ∃t ∈ NT : ((d1, t) ∈ ED ∧ (t, d2) ∈ ED) (1)

d1 �
+ d2, iff d1 � d2 ∨ ∃d ∈ ND : (d1 � d ∧ d �

+ d2) (2)

2.2 Block-Oriented Workflows

We now restrict the workflow representation to block-oriented workflows [22], i.e.,
workflows in which the control-flow structures form blocks of nested workflows
with an opening and closing control-flow element. These blocks must not be
interleaved.

Definition 2. A block-oriented workflow is a workflow in which the control-flow
nodes NC = NC∗ ∪ NC∗

define the control-flow blocks. Each control-flow block
has an opening node from NC∗ and a related closing node from NC∗

specifying
either an AND, XOR, or LOOP block. These control-flow blocks may be nested
but must not be interleaved and must not be empty.

262 G. Müller and R. Bergmann

Figure 1 shows an example block-oriented workflow, containing a control-flow
block with an opening AND control-flow node A∗ and a related closing AND
control-flow node A∗.

Further, we introduce a terminology of consistent block-oriented workflows.
According to Davenport, “[...] a process is simply a structured, measured set of
activities designed to produce a specific output [...]” [5]. In the following, these
specific workflow outputs are denoted as WO ⊆ ND. In the cooking domain, the
specific output is the particular dish produced, i.e., “pasta dish” in Fig. 1. Hence,
for a consistent workflow, we require that each ingredient must be contained in
the specific output, as otherwise the ingredient as well as the related tasks would
be superfluous.

Definition 3. A block-oriented workflow is consistent, iff each produced ingre-
dient is contained in the specific output of the workflow. Thus, each ingredi-
ent must be transitively data-flow connected to the specific output WO, i.e.,
∀d ∈ ND∃o ∈ WOd �

+ o.

2.3 Semantic Workflow Similarity

To support retrieval and adaptation of workflows, the individual workflow ele-
ments are annotated with ontological information, thus leading to a semantic
workflow [2]. In particular, all task and data items occurring in a domain are
organized in taxonomy, which enables the assessment of similarity among them.
We deploy a taxonomy of cooking ingredients and cooking steps for this purpose.
In our previous work, we developed a semantic similarity measure for workflows
that enables the similarity assessment of a case workflow w.r.t. a query workflow
[2].

The core of the similarity model is a local similarity measure for semantic
descriptions simΣ : Σ2 → [0, 1]. In our example domain the taxonomical struc-
ture of the data and task ontology is employed to derive a similarity value that
reflects the closeness in the ontology. It is combined with additional similarity
measures that consider relevant attributes, such as the quantity of an ingre-
dient used in a recipe (see [2] for more details and examples). The similarity
simN : N2 → [0, 1] of two nodes and two edges simE : E2 → [0, 1] is then
defined based on simΣ applied to their assigned semantic descriptions. The sim-
ilarity sim(QW,CW) between a query workflow QW and a case workflow CW
is defined by means of an admissible mapping m : Nq ∪ Eq → Nc ∪ Ec, which is
a type-preserving, partial, injective mapping function of the nodes and edges of
QW to those of CW . For each query node and edge x mapped by m, the sim-
ilarity to the respective case node or edge m(x) is computed by simN (x,m(x))
and simE(x,m(x)), respectively. The overall workflow similarity with respect to
a mapping m, named simm(QW,CW) is computed by an aggregation function
(e.g. a weighted average) combining the previously computed similarity values.
The overall workflow similarity is determined by the best possible mapping m

sim(QW,CW) = max{simm(QW,CW) | admissible mapping m}.

Learning and Applying Adaptation Operators 263

This similarity measure assesses how well the query workflow is covered by the
case workflow. In particular, the similarity is 1 if the query workflow is exactly
included in the case workflow as a subgraph. Hence, this similarity measure is
not symmetrical.

2.4 Partial Workflows and Streamlets

We aim at reusing workflow parts within the representation of adaptation oper-
ators. Therefore, we now introduce the definition of partial workflows according
to Müller and Bergmann [22] and the new definition of so-called streamlets.

Definition 4. For a subset of tasks NT
p ⊆ NT , a partial workflow Wp of a block-

oriented workflow W = (N,E) is a block-oriented workflow Wp = (Np, Ep∪EC+
p)

with a subset of nodes Np = NT
p ∪NC

p ∪ND
p ⊆ N . ND

p ⊆ ND is defined as the set
of data nodes that are linked to any task in NT

p ,i.e., ND
p = {d ∈ ND|∃t ∈ NT

p :
((d, t) ∈ ED ∨(t, d) ∈ ED)}. NC

p ⊆ NC is the maximum set of control-flow nodes
such that Wp is a correct block-oriented workflow. Wp contains a subset of edges
Ep = E ∩ (Np × Np) connecting two nodes of Np supplemented by a set EC+

p

of additional control-flow edges that retain the execution order of the sequence
nodes, i.e., EC+

p = {(n1, n2) ∈ NS
p × NS

p |n1 < n2∧ � ∃n ∈ NS
p : ((n1, n) ∈

EC
p ∨ (n, n2) ∈ EC

p ∨ n ∈]n1, n2[)}.
In general, control-flow nodes are part of a partial workflow if they construct

a workflow w.r.t. the block-oriented workflow structure. The additional edges
EC+

p are required, to retain the execution order s1 < s3 of two sequence nodes
if for s1, s2, s3 ∈ S holds s2 ∈]s1, s3[but s2 �∈ Np. Figure 2 illustrates a partial
workflow Wp of the workflow W given in Fig. 1. One additional edge is required
in this example, depicted by the double-line arrow since “grate” and “add” are
not linked in W .

Based on Definition 4, we now introduce streamlets that represent a partial
workflow constructed by all tasks linked to a certain data node d ∈ ND. Hence,
a streamlet describes the partial workflow comprising the tasks processing a
certain data node d. Thus, it is the smallest fraction of a workflow regarding
d. Streamlets will become the smallest fraction of a workflow to be modified by
workflow adaptation operators.

Definition 5. A streamlet Wd = (Nd, Ed) for data d ∈ ND in workflow W is
defined as a partial workflow for the subset of tasks connected to d, i.e. {t ∈
NT |(t, d) ∈ ED ∨ (d, t) ∈ ED}. The data node d is referred to as the head data
node of Wd. Further, let the tasks in Wd that do not produce d be defined as
anchor tasks Ad for d, i.e., Ad = {t ∈ NT

d | � ∃(t, d) ∈ ED
d }.

An example streamlet is illustrated in Fig. 2. In general, anchor tasks (see
double-lined rectangle, task node “add”) are those tasks that consumes the head
data node (see double-lined circle, data node “garlic”) but that do not produce
it. Hence, these tasks mark the positions where the head data node is linked into

264 G. Müller and R. Bergmann

Fig. 2. Example of a streamlet W ′

the overall workflow and used as an input to other tasks (e.g. after adding garlic
it is used together with the seafood sauce as part of the pasta dish). Please note
that a streamlet may contain more than one anchor, e.g., salt can be added to
the boiled water and to the pasta sauce.

3 Workflow Adaptation Operators

In CBR, we usually distinguish between substitutional, transformational, and
derivational adaptation approaches [4,27]. Substitutional and transformational
adaptation approaches make use of adaptation knowledge represented as adap-
tation rules or adaptation operators. Adaptation rules describe how differences
between the problem description in the query and the retrieved case (rule’s pre-
condition) can be compensated by certain changes of the solution in the retrieved
case (rule’s conclusion). Adaptation operators [3] however, do not explicitly rep-
resent differences between query and retrieved case, but they are partial func-
tions specifying ways of adapting a case towards a successor case. The adaptation
process in CBR transforms a retrieved case into an adapted case by chaining var-
ious adaptation operators. Consequently, workflow adaptation is performed by
applying chains of adaptation operators W

o1→ W1
o2→ . . .

on→ Wn to the retrieved
workflow W , thereby computing the adapted workflow Wn. This process can be
considered a search process towards an optimal solution w.r.t. the query.

3.1 Definition of Workflow Adaptation Operators

For applying operator-based adaptation to POCBR, a notion of workflow adap-
tation operators is required defining them as partial functions that transform
workflows. We loosely follow the representation idea of STRIPS operators and
define an adaptation operator by specifying an insertion and a deletion stream-
let. Operator preconditions are not explicitly specified, but result implicitly from
those streamlets. In a nutshell, a workflow adaptation operator, if applicable,
removes the deletion streamlet from the workflow and adds the insertion stream-
let instead. In Fig. 3 an example of an operator is shown, specifying that in a
cooking workflow prawns can be replaced by tuna, while at the same time the
preparation step chop needs to be replaced by drain. Besides operators that

Learning and Applying Adaptation Operators 265

exchange workflow streamlets, they could also just insert or just delete a stream-
let of a workflow. We now give a formal definition of workflow adaptation oper-
ators, specifying their representation and operational semantics.

Definition 6. Let W be the set of all consistent block-oriented workflows. A
workflow adaptation operator is a partial function o : W �→ W transforming a
workflow W ∈ W into an adapted workflow o(W) ∈ W. The adaptation operator
o is specified by an insertion streamlet oI and a deletion streamlet oD, each
of which can also be empty. Based on the presence of the two streamlets, we
distinguish three types of adaptation operators.

– An insert operator consists only of an insertion streamlet with the anchor
tasks Ad. The application of o to W inserts oI into W except for the anchor
tasks Ad at the positions of the best matching anchor tasks Ad. The operator
is only applicable (precondition A) iff in W tasks matching Ad exist and if the
resulting workflow is consistent.

– A delete operator consists only of a deletion streamlet oD with the head data
node d and the anchor tasks Ad. The application of o to W deletes the stream-
let Wd from W except for the anchor tasks Ad. The operator is only applicable
(precondition B) iff there exists a workflow streamlet Wd in W which is suffi-
ciently similar to oD and if the resulting workflow after deletion is consistent.

– An exchange operator consists of an insertion and a deletion streamlet. The
application of o to W deletes oD from W (except for the anchor tasks) and
subsequently inserts oI (except for the anchor tasks) at the position of the
best matching anchor tasks. The operator is only applicable iff both previously
defined preconditions A and B are fulfilled and if the resulting workflow after
deletion and insertion is consistent.

The conditions of identical head node and the minimum similarity between
the streamlet and the deletion streamlet serve as a precondition to check whether
the streamlet Wd is similar enough to the deletion streamlet. This ensures that
operators are only applied if a similar streamlet is present in the workflow. For
the insertion, a matching anchor is needed to ensure that the streamlet can be
added to a suitable position of the workflow merging in the right data node.

An example of a workflow exchange adaptation operator o is given in Fig. 3.
The head data nodes are marked by a double-circled data object, i.e., tuna or
prawns, respectively. Further, the anchor tasks are marked by double-lined rec-
tangles. These anchor tasks are used during adaptation, to identify the position
of the streamlet within the entire workflow, i.e., the position at which the inser-
tion streamlet is inserted. Hence, the example adaptation rule describes that
prawns can be exchanged by tuna, if in W a streamlet Wd similar to oD is
present. This also enforces that tasks have to be changed as well, because the
chop task also has to be exchanged by a drain task.

3.2 Details of the Operator Application

We now give some more details about how operators are applied, making the
previous definition more precise. The space limitation prevents us from a detailed

266 G. Müller and R. Bergmann

Fig. 3. Example adaptation operator

description of the algorithm. Hence, we illustrate our approach primarily by an
example application of the exchange operator shown in Fig. 3 to the workflow
given in Fig. 1.

To determine the applicability of a delete or exchange operator o for a work-
flow W , the definition requires that there exists workflow stream Wd in W for
the head node d of oD that is sufficiently similar to the deletion streamlet oD.
We implement this condition by a similarity threshold ΔS , i.e., we require that
sim(Wd, oD) ≥ ΔS . Further, we require that the output data nodes of the anchor
tasks of oD are the same as the output data nodes of the mapped tasks in W ,
ensuring that the data node d is removed from the same successive data nodes
(e.g. see “seafood sauce” in Fig. 3). To remove the streamlet Wd from W (see
Fig. 4 for an example) a partial workflow is constructed, containing all tasks of
W except of the non-anchor tasks contained in Wd, i.e., NT \ (NT

d \ Ad).
To add the insertion streamlet oI to W , tasks in W must be identified that

match the anchor tasks Ad of oI . For this purpose, the partial workflow con-
structed from oI for the anchor tasks Ad is considered. This partial workflow
contains the anchor tasks as well as all connected data nodes. To match the
anchor, the similarity between this partial workflow and W is determined. If
this similarity exceeds the threshold ΔS , the matching tasks in W are deter-
mined by the computed admissible mapping function. Further, we require that
the output data nodes of the anchor tasks Ad are the same as the output data
nodes of the mapped tasks in W . After a successful anchor mapping, the inser-
tion streamlet is added at the position of the best matching anchor. This means

Fig. 4. Streamlet Wd removed from W

Learning and Applying Adaptation Operators 267

Fig. 5. Streamlet RI added to W

that all edges, tasks (except of anchors), and data nodes (if not already present)
of oI are inserted into the workflow W . Then, the inserted streamlet oI is con-
nected with an additional control-flow edge that link the tasks of the streamlet
into the workflow in front of the best matching anchor in W . In the illustrated
scenario, the streamlet oI is inserted in front of the first “add” task (see Fig. 5).
In the special case that the insertion streamlet contains more than one anchor,
the streamlet is split. To this end, for each anchor, the tasks are determined that
belong to this anchor, i.e., previous tasks (w.r.t. to control-flow edges), which are
transitively data flow connected until another anchor is reached. The procedure
is then applied for each part of the split streamlet.

4 Automatic Learning of Workflow Adaptation Operators

The basic idea behind the automatic learning of workflow adaptation operators
(see Algorithm 1) is to explore the knowledge already present in the case base
[4,9,27]. To achieve this, pairs of similar workflows in the case base are com-
pared, i.e., a query workflow Wq and a case workflow Wc that have a similarity
value higher than a given threshold ΔW , i.e. sim(Wq,Wc) ≥ ΔW . The adap-
tation operators are then constructed from the differences in the data nodes
between those two workflows. Hence, they describe which data nodes have to be
exchanged, inserted or deleted in order to transform the set of data nodes ND

q to
ND

c . The differences are determined by accessing the mapping produced during
the similarity computation (see Sect. 2.3). More precisely, the data nodes of a
query workflow are mapped to those of the case workflow. Mapped data nodes
are then assumed to be replaceable data nodes. However, only mappings are
regarded between data nodes that have a similarity value higher than a thresh-
old ΔD. This ensures that data nodes that are not similar to each other are
not considered as replaceable. For each mapping, two streamlets are constructed
based on the corresponding query data node and case data node. We thereby
assume that these two streamlets can be exchanged by each other, i.e., the query
streamlet represents the deletion streamlet and the case streamlet represents the
insertion streamlet. For the remaining data nodes (the ones with no mapping
with a similarity value larger than ΔD), insert or delete operators are created.

268 G. Müller and R. Bergmann

Algorithm. LEARN OPERATORS(CB);
Input: Case base CB
Output: Set of operators operators
operators = ∅;
forall the Wq ∈ CB do

forall the {Wc ∈ CB|sim(Wq, Wc) ≥ ΔW ∧ Wq �= Wc} do
forall the d ∈ ND

q do
Init operator o;
o.insert = ∅;
o.delete = construct streamlet(Wq, d);
if sim(d, m(d)) ≥ ΔD then

o.insert = construct data streamlet(Wc, d);
operators = operators ∪ {o};

forall the {d ∈ ND
c | � ∃d′ ∈ ND

q : (m(d′) = d ∨ sim(d′, d) ≥ ΔD)} do
Init operator o;
o.delete = ∅;
o.insert = construct streamlet(Wc, d);
operators = operators ∪ {o};

return operators

Algorithm 1: Learning algorithm of workflow adaptation operators

Although, the operators describe how to transform the set of data nodes ND
q

to ND
c the workflow streamlet also contains information about how to exchange

delete, or insert tasks or control-flow nodes. This is because identical data nodes
that are mapped can possibly be processed differently, i.e., different task nodes
are used in their streamlets to process this data.

5 Workflow Adaptation Using Adaptation Operators

We now present the adaptation procedure in more detail. After the retrieval of
a most similar workflow W the user might want to adapt it according to his or
her preferences.

5.1 Change Request

Following the retrieval, a change request C is defined by specifying sets of tasks
or data nodes that should be added Cadd or removed Cdel from workflow W .
The change request can be either acquired manually from the user after the
workflow is presented or it can be automatically derived based on the difference
between the query and the retrieved case. As the tasks and data nodes are
taxonomically ordered (see Sect. 2.3), the change request can also be defined by
a higher level concept of the taxonomy in order to define a more general change
of the workflow. For example, a change request specified as “DELETE meat”
ensures that the adapted recipe is a vegetarian dish. We define the change request
fulfilment F(C,W) → [0, 1] for a change request C and a workflow W = (N,E)

Learning and Applying Adaptation Operators 269

as the number of desired nodes contained plus the number of undesired nodes
not contained in relation to the size of the change request:

F(C,W) =
|N ∩ Cadd| + |Cdel \ N |

|Cadd| + |Cdel| (3)

5.2 Adaptation Procedure

The goal of the adaptation procedure is to maximize the value of F(C,W).
Therefore, it uses a kind of a hill climbing local search algorithm in order to
optimize the change request fulfillment F(C,W). Basically, the general idea
of the adaptation is that for each streamlet Wd in the retrieved workflow an
applicable operator o is searched and applied to the workflow W , if its applica-
tion increases the change request fulfillment. This leads to a chain of adaptation
operators. During this search process, the change request, i.e., the set Cadd is
updated according to the applied operator. This ensures that nodes which were
already inserted are not inserted again by subsequent operators.

Prior to the search, a partial order of data nodes is constructed w.r.t. their
usage in the workflow. More precisely, data nodes are ordered with respect to
which data is used first in the control-flow of the workflow, i.e., as input of a task.
During adaptation this partial order is traversed starting with the data node
used first in the workflow. For each streamlet Wd in the retrieved workflow W at
most one applicable adaptation exchange or delete operator o is selected which
maximizes F(C, o(W)). Further, delete operators must not remove a desired
node. Operators with the highest similarity between the streamlet Wd of W
and the deletion streamlet oD are preferred during selection, aiming at selecting
the best possible operator. Afterwards, insert operators are applied to further
improve change request fulfillment. Therefore, we select insert operators whose
insertion streamlet oI contains at least one desired but not an undesired node.
Insert operators whose head node of oI is already in W are disregarded. The
adaptation process terminates, if no further insert operator can be applied which
improves the change request fulfillment.

6 Evaluation

The described approach on operator-based workflow adaptation has been imple-
mented as component of the CAKE framework [1]. To demonstrate its usefulness,
the approach is experimentally evaluated to analyze whether the workflows can
be improved regarding the change request fulfillment (Hypothesis H1) and to val-
idate whether the adapted workflows are of an acceptable quality (Hypothesis
H2). As only workflow operators are applied leading to a consistent workflow,
the resulting workflows are consistent, which was checked and confirmed in order
to validate the correctness of the implementation.

H1. The operator-based workflow adaptation considerably improves the change
request fulfillment of a workflow.

H2. The operator-based workflow adaptation does not significiantly reduce the
quality of workflows.

270 G. Müller and R. Bergmann

6.1 Evaluation Setup

We manually constructed 60 pasta recipe workflows from the textual recipe
descriptions on www.studentrecipes.com with an average size of 25 nodes and
64 edges [23]. Altogether, they contain 162 different ingredients and 67 tasks.
For ingredients and tasks, a taxonomy was manually constructed. The extracted
workflows, contained AND, XOR, as well as LOOP structures. The repository of
60 workflows was split into two data sets: One repository containing 10 arbitrary
workflows (referred to as query workflows) and a case base containing the remain-
ing 50 workflows. For the learning algorithm, we set the parameter ΔW = 0 as
the case base only contained pasta workflows and thus only similar recipes. Fur-
ther, we chose the threshold ΔD = 0.5 in order to only create exchange operators
if the corresponding head data nodes have been mapped with a similarity of at
least 0.5. In total 9416 workflow adaptation operators (1504 exchange, 4460
insert, 3452 delete operators) were learned from the workflows in the case base.
For each query workflow QWi we retrieved the most similar workflow CBWi

from the case base (referred to as case base workflow) and automatically gener-
ated a change request for CBWi by determining the set of nodes to be added
and deleted in order to arrive at QWi. A change request “DELETE prawns”, for
example, means that the case base workflow CBWi uses prawns while the query
workflow QWi does not1. We executed the proposed operator-based adaptation
method for each of the 10 workflows CBWi using the corresponding change
request. Thus, 10 adapted workflows are computed. During adaptation we chose
a similarity threshold between the deletion streamlet and streamlet in the work-
flow ΔS as 0.5 in order to only apply operators if at least half of the workflow
elements are identical. In average, 8.9 operators (1.6 exchange, 2.8 insert, 4.5
delete operators) had been applied in order to adapt a workflow.

6.2 Experimental Evaluation and Results

To verify hypothesis H1 we computed the average change request fulfillment
of the 10 adapted workflows which stands at 69,4 %. As the change request was
rather large (in average 22,6 nodes) and not any combination can be represented
by the automatically learned adaptation operators a change request of 100 % is
not to be expected. Hence, Hypothesis H1 is confirmed.

To evaluate Hypothesis H2 a blinded experiment was performed involving 5
human experts. The experts rated the quality of the 10 case base worklows (work-
flow before adaptation) and the 10 corresponding adapted workflows. These 20
workflows were presented in random order, without any additional information.
Thus, the experts did not know whether the workflow was an original workflow
from the case base or an adapted workflow. The experts were asked to assess the
quality of each workflow based on 3 rating items on a 5 point Lickert scale (from
1=very low to 5=very high). The rating items comprised the culinary quality
1 The change request only contained ingredients and preparation steps present in the

workflows from the case base and no ingredients that are used as mixtures of multiple
ingredients (e.g., vegetable mix).

www.studentrecipes.com

Learning and Applying Adaptation Operators 271

Table 1. Item rating assessment

Better case base
workflows

Better adapted
workflows

Equal

Correctness of preparation 23 11 16

Culinary quality 21 12 17

Plausibility of preparation order 19 13 18

Aggregated quality 27 16 7

of the recipe, the correctness of the preparation (e.g. slice milk would violate
the correctness), and the plausibility of the preparation order. Additionally, we
computed an aggregated quality using the three rating items.

The ratings from the 5 experts of all 10 workflow pairs were compared, lead-
ing to 50 ratings. We define that one item was rated better for a workflow
if it was scored with a higher value than the corresponding item of the com-
pared workflow. Based on this, we conclude that a workflow has a higher aggre-
gated quality, if more of its items were rated better than those of the compared
workflow.

The results for each rating item in isolation and for the aggregated quality
assessment are given in Table 1. It shows the number of workflows for which the
case base workflow or the adapted workflow is better, as well as the number of
workflows which were equally rated. In 23 out of 50 rated workflow pairs, the
adapted workflow was rated of higher or equal quality (concerning the aggregated
quality), whereas 27 case base workflows were rated higher. Thus, in 46 % of the
assessments, the adaptation produced workflows with at least the same qual-
ity compared to the corresponding workflow from the case base. Additionally,
Table 2 illustrates the average rating difference on the items of all 50 workflow
pairs. In total, the items of each case base workflow are rated 1.1 higher than
those of the adapted workflow, which means the single items were rated about
0.37 times better than the corresponding item of the adapted workflow. Thus,
the experts rated the items and hence the quality of the case base workflows
only slightly higher. This has also been proved by a paired t-test on the aggre-
gated quality, which showed that the quality difference between the case base
workflows and the adapted workflows is statistically not significant (p = 0.19).
Altogether, Hypothesis H2 is confirmed.

Further, we asked the experts to give textual explanations in case of bad
quality ratings. We identified three major reasons for quality degradations caused
by the adaptation process and we sketched first ideas to overcome them.

1. It must be ensured that some components should occur only once (e.g. a
sauce). This could be achieved by a few general operators that have to be
defined manually.

2. After the removal of an input data object from a task the name of the output
produced by the task might have to be changed (e.g. removing meat from
a mixture doesn’t produce a meat mixture anymore). To identify the best

272 G. Müller and R. Bergmann

Table 2. Average differences on item ratings

Correctness of preparation 0.46

Culinary quality 0.44

Plausibility of preparation order 0.20

Average per item 0.37

Average per workflow 1.1

suitable output name, outputs from similar tasks with similar input data
could be employed.

3. The application of insert operators may also insert new data objects, e.g.
ingredients that usually have to be processed before they are used (e.g. bolog-
nese sauce). However, this information was not always included (e.g. a packet
sauce could be used instead). To remedy this shortcoming, insert operators
processing the desired data can be searched and included into the workflow.

7 Conclusions and Related Work

We presented a novel approach to operator-based adaptation of workflows,
including a new representation for workflow adaptation operators, an algorithm
for learning such operators, and a search-based process for applying the opera-
tors in order to address a specified workflow change request.

The major challenge of adaptation in case-based reasoning is the acquisition
bottleneck of adaptation knowledge. Hence, various approaches for learning and
applying of adaptation knowledge for cases represented as attribute-values have
been proposed [4,8,9,14,16]. Only litte work is published that addresses this
problem for more complex case representations (e.g., [15]), or for POCBR in
particular. In POCBR, related work was presented by Minor et al. [18]. They
propose a workflow adaptation approach which transform workflows by apply-
ing a single adaption case that can be acquired automatically [19]. In our own
previous work, we introduced a compositional workflow adaptation method [22]
which identifies subcomponents of a workflow, called streams. In contrast to
this, the operators proposed here represent smaller subcomponents with a higher
granularity. Further, the operator-based adaptation not only exchanges similar
components, but inserts, deletes or exchanges different components of the work-
flow. Moreover, in this paper we propose to learn operators from pairs of similar
workflows, while in compositional adaptation each single case is decomposed into
streams. Dufour-Lussier et al. [6] presented a compositional adaptation approach
for processes, requiring additional adaptation knowledge.

Our evaluation showed that the presented approach is promising for the
purpose of workflow adaptation. However, the expert evaluation revealed some
shortcomings on the quality of the adapted cases. Hence, we sketched ways how
to overcome these which we will expore in the future. Future work will also inves-
tigate generalization [23] to improve the applicability of the learned adaptation

Learning and Applying Adaptation Operators 273

operators. Moreover, an extension by operators exchanging a data node with
multiple data nodes and vice versa is planned. We will also investigate methods
to control the retention of learned adaptation operators, as already proposed by
Jalali and Leake [11] for adaptation rules. Further, we plan to perform compar-
isons of the different adaptation approaches we already proposed [17,22,23] and
other related work (e.g., [18]). Finally, we aim at integrating them into a more
comprehensive formal framework.

Acknowledgements. This work was funded by the German Research Foundation
(DFG), project number BE 1373/3-1.

References

1. Bergmann, R., Gessinger, S., Görg, S., Müller, G.: The collaborative agile knowl-
edge engine cake. In: Proceedings of the 18th International Conference on Sup-
porting Group Work, pp. 281–284, ACM (2014)

2. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Inf. Syst. 40, 115–127 (2014)

3. Bergmann, R., Wilke, W.: Towards a new formal model of transformational adap-
tation in case-based reasoning. In: Prade, H. (ed.) 13th European Conference on
Artificial Intelligence (ECAI 1998), pp. 53–57. John Wiley & Sons (1998)

4. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adaptation
knowledge. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol.
2080, pp. 131–145. Springer, Heidelberg (2001)

5. Davenport, T.: Process Innovation: Reengineering Work Through Information
Technology. Harvard Business Review Press, Boston (2013)

6. Dufour-Lussier, V., Lieber, J., Nauer, E., Toussaint, Y.: Text adaptation using for-
mal concept analysis. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 96–110. Springer, Heidelberg (2010)

7. Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-aware Information Sys-
tems: Bridging People and Software Through Process Technology. Wiley, Hoboken
(2005)

8. Fuchs, B., Lieber, J., Mille, A., Napoli, A.: Differential adaptation: an operational
approach to adaptation for solving numerical problems with CBR. Knowl. Based
Syst. 68, 103–114 (2014)

9. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith,
I.F.C., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer,
Heidelberg (1996)

10. Hung, P., Chiu, D.: Developing workflow-based information integration (WII) with
exception support in a web services environment. In: Proceedings of the 37th
Annual Hawaii International Conference on System Sciences 2004, p. 10 (2004)

11. Jalali, V., Leake, D.: On retention of adaptation rules. In: Lamontagne, L., Plaza,
E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 200–214. Springer, Heidelberg (2014)

12. Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning
approach for the monitoring of business workflows. In: Bichindaritz, I., Montani,
S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 390–405. Springer, Heidelberg (2010)

13. Leake, D.B., Kendall-Morwick, J.: Towards case-based support for e-Science work-
flow generation by mining provenance. In: Althoff, K.-D., Bergmann, R., Minor,

274 G. Müller and R. Bergmann

M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 269–283. Springer,
Heidelberg (2008)

14. Li, H., Li, X., Hu, D., Hao, T., Wenyin, L., Chen, X.: Adaptation rule learning for
case-based reasoning. Concurr. Comput. Pract. Exp. 21(5), 673–689 (2009)

15. Lieber, J., Napoli, A.: Using classification in case-based planning. In: ECAI, pp.
132–136, Citeseer (1996)

16. McSherry, D.: Demand-driven discovery of adaptation knowledge. In: Dean, T.
(ed.) IJCAI, pp. 222–227, Morgan Kaufmann (1999)

17. Minor, M., Bergmann, R., Görg, S.: Case-based adaptation of workflows. Inf. Syst.
40, 142–152 (2014)

18. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of
workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176,
pp. 421–435. Springer, Heidelberg (2010)

19. Minor, M., Görg, S.: Acquiring adaptation cases for scientific workflows. In: Ram,
A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 166–180. Springer,
Heidelberg (2011)

20. Minor, M., Montani, S., Recio-Garcia, J.A.: Process-oriented case-based reasoning.
Inf. Syst. 40, 103–105 (2014)

21. Montani, S., Leonardi, G., Lo Vetere, M.: Case retrieval and clustering for business
process monitoring. In: Proceedings of the ICCBR 2011 Workshops, pp. 77–86
(2011)

22. Müller, G., Bergmann, R.: Workflow streams: a means for compositional adaptation
in process-oriented CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS,
vol. 8765, pp. 315–329. Springer, Heidelberg (2014)

23. Müller, G., Bergmann, R.: Generalization of workflows in process-oriented case-
based reasoning. In: 28th FLAIRS Conference, AAAI, Hollywood (Florida), USA
(2015)

24. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural
knowledge from the web. In: Workshop Proceedings WWW 2012, Lyon, France
(2012)

25. Taylor, I.J., Deelman, E., Gannon, D.B.: Workflows for e-Science. Springer, London
(2007)

26. Weber, B., Wild, W., Feige, U.: CBRFlow: enabling adaptive workflow man-
agement through conversational case-based reasoning. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer,
Heidelberg (2004)

27. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during
case-based problem solving. In: del Pobil, A.P., Mira, J., Ali, M. (eds.) IEA-1998-
AIE. LNCS, vol. 1416, pp. 497–506. Springer, Heidelberg (1998)

Fault Diagnosis via Fusion of Information
from a Case Stream

Tomas Olsson1,2(B), Ning Xiong1, Elisabeth Källström3,
Anders Holst2, and Peter Funk1

1 School of Innovation, Design, and Engineering,
Mälardalen University, Väster̊as, Sweden

{tomas.olsson,ning.xiong,peter.funk}@mdh.se
2 SICS Swedish ICT, Isafjordsgatan 22, Box 1263, 164 29 Kista, Sweden

{tomas.olsson,anders.holst}@sics.se
3 Volvo Construction Equipment, 631 85 Eskilstuna, Sweden

elisabeth.kallstrom@volvo.com

Abstract. This paper presents a novel approach to fault diagnosis
applied to a stream of cases. The approach uses a combination of case-
based reasoning and information fusion to do classification. The app-
roach consists of two steps. First, we perform local anomaly detection
on-board a machine to identify anomalous individual cases. Then, we
monitor the stream of anomalous cases using a stream anomaly detec-
tor based on a sliding window approach. When the stream anomaly
detector identifies an anomalous window, the anomalous cases in the
window are classified using a CBR classifier. Thereafter, the individual
classifications are aggregated into a composite case with a single pre-
diction using a information fusion method. We compare three informa-
tion fusion approaches: simple majority vote, weighted majority vote and
Dempster-Shafer fusion. As baseline for comparison, we use the classifica-
tion of the last identified anomalous case in the window as the aggregated
prediction.

Keywords: Case-based reasoning · Information fusion · Anomaly
detection · Fault diagnosis

1 Introduction

Fault diagnosis is about detecting and identifying problems in machines ide-
ally before they lead to a system failure [1,2]. The type of faults we consider
in this paper is faults of subcomponents that do not immediately impact the
overall function of the system, but can be detected by monitoring the system
using sensors. For instance, a minor oil leakage would not immediately affect the
function of a gear switch or an engine, but would lead to gradual performance
degeneration. Case-based reasoning (CBR) has since the beginning of the field
been used for fault diagnosis in various ways [3,4] and also in combination with
other machine learning and signal processing approaches [5–7]. Traditionally in
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 275–289, 2015.
DOI: 10.1007/978-3-319-24586-7 19

276 T. Olsson et al.

CBR, and other related fields, the focus has been on classifying individual cases,
although there are attempts to make collective classification using the surround-
ing as additional source of information [8].

In the new era of big data, we are no longer looking at individual cases but at
streams of data that are produced on the fly, many times in a speed that cannot
be managed by traditional methods [9,10]. Previously, data streams were mainly
stemming from large on-line services such as Google Inc. and Facebook, but
currently, traditional industrial companies are also investigating new approaches
on how to collect and analyse data generated by their industrial equipment and
machines [11,12].

In a previous paper, we presented a framework for remote fault diagnosis of
heavy-duty machines, where faults were detected on-board the machines using
an anomaly detector and then diagnosed off-board with a CBR approach [13].
However, the diagnosis was only done for individual cases. In another paper, we
have presented a probabilistic approach to aggregating individual anomalies in
order to assess the anomalousness of a group of cases [12]. In the current work,
we propose a new approach to fault diagnosis that builds on top of and combines
the above two approaches, where we are not only looking at individual cases,
but at a stream of cases.

In this paper, we assume that we are monitoring a stream of events with
related segments of sensor signals, such as a series of gear switches as in our pre-
vious paper [13]. Then, the signal segments constitute the individual cases that
a local anomaly detector classifies as normal or anomalous. Further, we assume
that there can be misclassifications, false positives, so that the individual cases
are not reliable as the only source for a diagnosis. For instance, individual gear
switch segments can appear anomalous also without the present of a true fault.
However, if the number of anomalies among the most recent cases increases and
becomes larger than normal, it can be used as an indication of a true fault.
Therefore, we also assume that there is a method that confidently can assess
whether the most recent cases as a group are indeed anomalous [12]. This anom-
alous group of cases is thereafter considered a composite case. Then, the problem
we address is to identify the type of fault that is behind the anomaly. For this
purpose, we apply information fusion approaches to fuse the evidence from the
individual cases in the composite case in order to infer the most likely reasons
for the anomaly.

The paper is organised as follows. Section 2 gives a motivating overview of
the heavy-duty machine diagnosis problem where this approach is meant to be
applied. In Sect. 3, we present our diagnostic framework and the extension to
analysing a stream of cases proposed in this paper. In Sect. 4, the proposed
approach is evaluated on three publicly available data sets used for simulating
streams of data. In Sect. 5, we describe related work. Section 6 ends the paper
with a summary of the work and some conclusions and future work.

Fault Diagnosis via Fusion of Information from a Case Stream 277

2 Background

Improving uptime is important in the heavy-duty construction equipment com-
panies in order to avoid machine failures. Especially important is to avoid major
failures that lead to the machine standing still until the fault is corrected. Then,
the customer looses money while the machine stands still and may also spend
money on repairs if the warranty period is already ended. This altogether leads
to customer dissatisfaction. The heavy-duty construction equipment companies
also spend a lot of money on warranty costs, which tend to negatively affect the
overall profit of the company.

The uptime issues discussed above may be addressed by implementing an
intelligent on-board diagnosis in the heavy-duty machine. In this way early faults
can be addressed well in advance before a major failure occurs. Further, the cur-
rent on-board diagnosis systems use simple rules and maps to carry out diagnosis
and as such, most failures are not easy to diagnose as a result of too many fault
codes generated when there is a failure. Thus, the Engineers and Technicians
may have to spend substantial time to identify the failure.

The transmission and axle are parts of such components whose failures may
result in costly downtime. Thus, monitoring the components in both the trans-
mission and the axle on-board via an intelligent diagnostic method will result in
improved uptime in the heavy-duty machine.

Signals from the transmission that may be of interest to monitor are quanti-
ties that provide information about the torque converter, gears, clutches, bear-
ings, the oil quality in the transmission, and of course the vibration levels. For
the axle, it could be of interest to closely monitor the planetary gears, oil quality
in the axle, the vibration levels, the bearings, and differentials. Thus, monitor-
ing the behaviour of relevant quantities in the transmissions and axles via the
proposed fault diagnosis framework on-board the heavy-duty construction equip-
ment may enhance the on-board diagnosis to prevent machine failure.

3 Diagnostic Framework

In Fig. 1, we show the original diagnostic framework, where there are three com-
ponents: the first two are on-board the machine and the third is off-board the
machine [13]. The first component extracts features from the signals on-board
the machine. Then, the second component assesses whether the extracted fea-
tures are anomalous or not. The third component performs case-based diagnosis
by estimating the severity of the fault. The original framework only supported
individual case diagnosis.

Figure 2 shows the extended framework where we added a fourth component
that performs anomaly detection over a stream of cases. Thus, only the most
recent cases that together indicate an anomaly are now considered for diagnosis
as a composite case. The stream anomaly detector can be located both on-board
the machine or off-board the machine. If located on-board the machine, we would
only send data when an anomaly occurs, so that the communication could be

278 T. Olsson et al.

Fig. 1. The original on-board and off-board fault diagnosis system.

Fig. 2. The extended fault diagnosis framework.

minimised. However, if it is run off-board the machine we can also consider the
individual anomalies from many other machines. In addition, with the proposed
approach, we can use both real-valued anomaly score (higher value for larger
anomalies) and binary-valued anomaly scores (0 for normal or 1 for anomalous
cases). For off-board analysis, binary-valued anomaly scores could also minimise
the communication, but would lead to a less sensitive detector than for real
valued anomaly scores. Nevertheless, in this paper, we only look at a single
machine and we simplify the setup by only using binary anomaly scores.

We use the same (local) anomaly detector as in the previous paper. How-
ever, a difference will be that we need a data stream instead of isolated individ-
ual cases. Thus, in the next section, we will summarise the anomaly detection
methods presented in the previous papers [12,13]. Since fault detection of the
individual cases is not in focus of this paper, we will use the simplest setup tried
in the previous paper for local anomaly detection leaving out the Gaussian mix-
ture model from [13]. The section after that presents the new approach to fusing
the most recent individual cases into an aggregated prediction.

Fault Diagnosis via Fusion of Information from a Case Stream 279

3.1 Local Anomaly Detection and Stream Anomaly Detection

As local anomaly detector, we again use logistic regression trained on both nor-
mal and anomalous cases where we use weight of importance for each case inverse
to the class frequency in order to manage imbalanced data sets [14].

Logistic regression is a probabilistic binary classifier that outputs predictions
as probabilities [15]. Logistic regression is defined as follows for c ∈ [0, 1] and a
feature vector x :

p(c = 1|x) =
1

1 + exp(−ωTx)
p(c = 0|x) =

exp(−ωTx)
1 + exp(−ωTx)

where ω is a weight vector with K+1 weights assuming that x has K+1 features
including an extra feature that is 1 for all cases. Then, the case is classified as
c = 1 if ωTx ≥ 0 and c = 0 otherwise. The ω is found by using L1 regularisation
and maximum likelihood estimation optimised for accuracy.

In addition, we assume that there is a fully functioning stream anomaly detec-
tor called PRAAG (Probabilistic Anomaly Aggregation) that uses the approach
presented in [12], but applied to a sliding window with the most recent cases in a
stream. In short, PRAAG works as follows. Assume that we have a large sliding
window with the N last cases. Then, we have a smaller sliding window with
the m (< N) most recent cases. In addition, for all cases we have an individual
anomaly score that can be used to rank the cases from least anomalous to most
anomalous. Assuming that the anomaly scores are independent and identically
distributed for the normal cases, we can then compute how unlikely the ranking
of the cases is in the most recent window with respect to the ranking of cases in
the large window. We will not go into the details of using PRAAG for analysing
streaming data. However, for the simple case with binary anomalies scores (0
or 1), PRAAG simply computes the probability of observing the number of ones
or more in the small window compared to the fraction of ones in the large window
as defined below.

Definition 1. Let P be the number of ones in the large window, then the prob-
ability of observing k number of ones in the small window of size m by chance
alone is Binomially distributed with p = P

N (the fraction of ones in the large
window):

bin(k; p,m) =
(

m

k

)
pk(1 − p)m−k (1)

Then, as a measure of anomalousness, we compute the probability of observing
k or more number of ones:

Ā(k; p,m) = 1 −
k−1∑
y=0

bin(y; p,m) (2)

As an aggregated anomaly score, we use the negative logarithm of (2). Then,
we assume that only windows less probable than 1 per 1.000.000 are anomalies,
that is, Ā(k; p,m) < 10−6. This results in a very low false detection rate.

280 T. Olsson et al.

3.2 Stream Classification with Case Fusion

In this section, we assume that an anomalous window of the most recent cases
(the small window) has been detected. The anomalous window constitutes a
composite case of the individual cases. Then, the problem is how to identify
the fault type of the composite case without relying only on a single anomalous
case. Alternatively, a ranked list of the most likely faults can be created that
would also work when there are multiple faults. For this purpose, we will give
the problem a generic description to which several methods can be applied.

The composite case is a series of i ∈ {1, 2, . . . ,m} tuples containing a feature
vector xi representing a case and an anomaly score ai. The ai ∈ {0, 1} is com-
puted using the anomaly detector implemented by logistic regression, where 1
means that the case is anomalous and 0 means it is non-anomalous. Then, we use
a method to assign to each case a weight distribution pi(y) ∈ [0, 1] over possible
fault classes y ∈ S, such that

∑
y∈S pi(y) = 1, where the weight measures our

belief or confidence in each class y. If pi(y) = 1, we are fully confident of the
classification while pi(y) = 0 means that we lack confidence in the classification.
A composite case is then a series of tuples E = {(xi, ai, pi)}mi=1.

We estimate pi(y) using a k-nearest neighbour (kNN) classifier approach
using the Manhattan distance metric for each case xi of the composite case. The
attributes are weighted using the maximum information coefficient [15]. Thus,
we also assume we have a case library of a set of individual cases labeled with
a specific fault. As estimate of pi(y), we use the fraction of nearest neighbours
labeled with the same class y. This is a similar setup as we used in [13]. However,
in principle, any prediction method can be used in our approach.

For fusing the weight distributions pi of the composite case E into an aggre-
gated prediction, we use three different approaches: (1) the simple majority vote,
(2) the weighted majority vote [16], and (3) Dempster-Shafer theory based fusion
[17]. As lower bound of the performance, we use the predicted class of the last
detected anomalous individual case in the composite case. In the following, pE is
the fused weight distribution, ŷ is the fused classification of the composite case
computed as the class with maximum weight and S is the set of all classes.

Simple Majority Vote Fusion. The first fusion approach is the simple majority
vote among the individual cases with ai > 0. That is:

ŷ = arg max
c∈S

m∑
i=1,ai>0

I(c = arg max
y

pi(y)) (3)

where I(·) is the indicator function that is 1 when the argument is true or 0 if the
argument is false, and the fused weights are pE(c) =

∑m
i=1,ai>0 I(. . .),∀c ∈ S.

Weighted Majority Vote Fusion. The second fusion approach is the weighted
majority vote among the individual cases with ai > 0. That is:

ŷ = arg max
c∈S

m∑
i=1,ai>0

pi(c) (4)

Fault Diagnosis via Fusion of Information from a Case Stream 281

where the fused weights is the sum of the individual weights so that pE(c) =∑m
i=1,ai>0 pi(c),∀c ∈ S.

Dempster-Schafer Theory Fusion. The Dempster-Schafer theory (D-S theory) is
one of the powerful tools to inference with information under uncertainty [17,18].
This approach is especially useful when a case in the window is classified into
multiple classes with different degrees of confidence.

Obviously the frame of discernment in this context is the set S of all possi-
ble classes. The information that case i in the composite case is classified into
multiple possible classes can be interpreted as the following basic probability
values:

m(c, i) = pi(c) for any c ∈ S (5)

According to D-S theory, the sum of degrees of belief on all subsets is equal to one.
Now we have probabilities (degrees of belief) on single faults, whose summation
can be less than one in the general case. In principle, by definition of the belief
structure, we can distribute the remaining amount on any other subsets. But,
in our context, without any other information, it would be a reasonable practice
to assign the remaining belief (probability mass) to the subset containing all
classes. Thus we can write

m(S, i) = 1 −
∑
∀c

m(c, i) = 1 −
∑
∀c

pi(c) (6)

Equations (5) and (6) can be considered as a basic probability assignment func-
tion, which is induced according to the information of case i as evidence.

Next we attempt to combine the basic probability assignment functions for
individual cases into an overall assessment using the evidence combination rule.
Denote Et ⊆ E as the ordered set of cases in the composite case containing the
individual case 1, 2, . . . , t, so that Em = E.

Let m(c,Et) be the basic probability value to which the hypothesis that the
aggregated class c is supported by the evidences in Et (which also is the fusion
weight for this method). By m(S,Et) we denote the remaining probability mass
unassigned to single class after the t first cases in E have been combined. The
algorithm to fuse case information according to the evidence combination rule
can be formulated in a recursive form as follows:

m(c,Et+1) ∝m(c,Et)m(c, t+1) + m(c,Et)m(S, t+1)+
m(S,Et)m(c, t+1)

m(S,Et+1) ∝m(S,Et)m(S, t+1)
(7)

where we left out a normalising factor (indicated by ∝)

Kt+1 = 1 −
∑

c1,c2∈C
c1 �=c2

m(c1,Et)m(c2, t+1) t = 1, 2, . . . ,m − 1 (8)

We divide the expressions with the normalising factor to make the sum of the
basic probability values induced by the evidences equal to one. To start with the

282 T. Olsson et al.

above recursive form, we have m(c,E1) = m(c, 1) and m(S,E1) = m(S, 1). The
final outcomes of this combination procedure are m(c,E) and m(S,E), which
correspond to the basic probability values after incorporating all cases in the
window as evidences. It bears noting that the probability mass m(c,E) also
represents the degree of belief in class c after considering all individual cases.
Hence the combined degrees of belief are directly given by

βc = m(c,E) ∀c ∈ S (9)

βS = m(S,E) = 1 −
∑
∀c

βc (10)

where βS refers to the degree of belief unassigned to any single class after all
individual cases have been incorporated. Further βc+βS gives the upper bound of
the likelihood for the hypothesis that the aggregated class is c. The lower bound
of the likelihood for c as the aggregated class is reflected by the belief degree βc. In
other words, we obtain the interval [βc, βc+βS] as the estimate of the probability
for class c by using the combination rule in the D-S theory. For simplicity, the
fused weights are also defined as the probability mass pE(c) = m(c,E),∀c ∈ S.

4 Experiments

The proposed approach was evaluated using a combination of public data sets
and simulations. We have used three data sets with multiple classes and more
than one thousand cases from the UC Irvine Machine Learning Repository [19].
The first data set is the Steel plate faults data set with 1941 cases and 7 types
of steel plate faults [20]. The second data set is the Landsat data set with 6435
cases and 6 classes of soil types. The last data set is the Shuttle data set with
58000 cases and 7 classes.1 For each data set, we have selected one or more of
the original classes to be the normal class, and the remaining classes were used
as faults. Table 1 shows a summary of the data sets and which original classes
were used as normal class and fault classes respectively. The numbers do not
always sum up to the total number since only a subset of the classes was used.

Table 1. The data sets with normal and fault cases with corresponding sizes.

Data set Normal class Fault classes #normal cases #fault cases

Steel plate 3, 6, 7 1, 2, 4, 5 1466 475

Landsat 1, 3, 7 2, 4, 5 4399 2036

Shuttle 1 4, 5 45586 12170

The simulations are run according to Algorithm1. We run the simulations
500 times for each class: the normal class and all fault classes. A simulation run
1 Thanks to NASA for allowing us to use the Shuttle data sets.

Fault Diagnosis via Fusion of Information from a Case Stream 283

consists of 999 simulation steps where, in each step, a case is randomly drawn
from the normal class. Then, at step 1000 a fault is injected by sampling every
following step with 50 % probability from a fault class. However, we iterate over
which classes are sampled so that in case of a data set with 3 classes, every
third run uses one of the classes as the currently sampled class. This iteration
also includes sampling from the normal class so we can catch false detections.
The simulation continues additional 1000 steps before a new run is started.
Notice that we do not store any anomaly scores as long as the last m computed
PRAAG scores are less then 10−2 and thus, only store truly non-anomalous
scores. However, we do not ignore any cases before the large window is filled,
that is, after 500 simulation steps. In all runs, we have used a window size of
N = 500 for the large window and a size of m = 50 for the small window.

At the beginning of each run, we randomly split the data into a training set
and a testing set. Since, we want to show that the fusion improves the classifi-
cation performance for a less than perfect anomaly detector, we only train the
anomaly detector on a small subset of the data. In addition, we want to simulate
a stream of data and then, we want to be able to sample from a relatively large
collection of test data. So, for the steel plate data set, we used 90 % for testing
and 10 % for training, and for the other data sets, we used 97 % for testing and
3 % for training. It is also ensured that the fault classes are proportionally dis-
tributed between the partitions. Then, we train the anomaly detector to classify
cases into normal and anomalous cases, while the kNN is trained to classify cases
into the different fault classes without using the normal class. Logistic regres-
sion and the kNN were fine-tuned using 5-fold cross validation, optimised for
accuracy.

As performance measure we use the accuracy of diagnosing the detected
anomalous sliding windows. Accuracy for the information fusion approaches is
defined as the fraction of the simulation runs detected by PRAAG that also was
correctly classified. Thus, even if PRAAG only detected 70 % of the simulation
runs with faults, we can have 100 % accuracy. In addition, although PRAAG
is not in focus of this paper, we also report the precision, recall, the mean
detection delay and number of false detections for the PRAAG algorithm as
a point of reference, including the combined accuracy of the fusion approaches
and PRAAG. In the latter case, the accuracy is computed as the fraction of
correctly classified simulation runs, where PRAAG detects the normal class.
Recall is the fraction of the simulation runs with faults that where accurately
identified as anomalous. Precision is the fraction of the simulation runs identified
as anomalous that actually had a fault. The detection delay is computed as the
number of simulation steps from that a fault was injected until a stream is
identified as anomalous. We exclude undetected windows from the computation.

Table 2 shows the accuracy for the different information fusion approaches.
As can be seen, the baseline approach performs worst for all data sets. The
remaining approaches perform equally well on the Landsat and Shuttle data
with almost perfect accuracy (they are not exactly 100 %). However, for the
Steel plate data set (the smallest data set), the weighted majority vote is best,

284 T. Olsson et al.

Algorithm 1. Pseudocode of the simulation algorithm for classification fusion.
N ← 500 is the number of cases in the large window
m ← 50 is the number of cases in the small window
CLASSES = [Normal, Fault1, Fault2, . . .]
MaxNumOfRuns ← 500 × length(CLASSES)
for simulation run ∈ {1, 2, 3, . . . ,MaxNumOfRuns} do

Randomly split data into a small training set X0, y0 and a large testing set
X1, y1 (fault classes are stratified)

Train Anomaly Detector to classify normal and anomalous cases using X0, y0
Train kNN algorithm to classify faults only using the fault cases in X0,y0
for simulation step ∈ {1, . . . , 2000} do

currentClass ← next class in CLASSES {Repeatedly iterate over classes}
if currentClass = Normal OR step < 1000 OR random() < 0.5 then

Sample x from X1 of class Normal
else

Sample x from X1 of the currentClass
end if
Compute anomaly score a ∈ {0, 1} for case x using AnomalyDetector
Add a to small window (Remove oldest value)
Add a to large window (Remove oldest value)
k ←number of ones in the small window
p ←fraction of ones in the large window
if Ā(k; p,m) < 10−6 then {Check anomalousness of small window}

Classify the small window as ŷ using a fusion approach from Sect. 3.2:
A. Compute pi for each case xi with ai = 1 in the small window using kNN s
B. Apply one of the fusion approaches to all pi to estimate ŷ

end if
if step > N AND

Ā(k; p,m) < 0.01 for all of the m most recent computations then
{Keep only truly non-anomalous cases}
Remove last a from the large window and restore old value

end if
end for

end for

followed closely by the D-S fusion approach, while the simple majority vote is
the worst, but not far behind.

Table 3 shows the performance of the PRAAG algorithm, where we notice
that the recall is not perfect, although there are very few simulation runs with
false detections (only 1 for the shuttle data) and almost perfect precision. The
bad recall is reflected in a lower total accuracy as shown in Table 4.

The mean fraction large and small in Table 3 measures the mean fraction of
ones (individual anomalous) in each window over all simulation runs at time of
detection. With a perfect local anomaly detector, the mean fraction would be
0 (no anomalies) and not larger than 0.5 (50 % probability of a fault class) for
the large and small window respectively. Yet, for the Steel plate data set, the
large window has about 30 % fraction of ones, which is large, indicating that the

Fault Diagnosis via Fusion of Information from a Case Stream 285

Table 2. Accuracy of the information fusion approaches for detected faults.

Fusion approach Steel plate Landsat Shuttle

Last detected case 0.65 0.87 0.97

Simple majority vote 0.87 1.00 1.00

Weighted majority vote 0.91 1.00 1.00

Dempster-Shafer fusion 0.90 1.00 1.00

Table 3. Metrics showing the performance of the PRAAG algorithm.

Metric Steel plate Landsat Shuttle

Precision 1.00 1.00 0.999

Recall 0.7065 0.667 0.999

#false detections 0 0 1

Mean delay 190 ± 363 26.7 ± 17.8 33.0 ± 26.8

Mean fraction, large 0.297 0.056 0.084

Mean fraction, small 0.639 0.276 0.336

local anomaly detector produces many false positives. This is the reason that
the PRAAG recall is low in this case. For the two other data sets, the fraction
in the large window is much smaller. Then, the reason of the bad recall in case
of the Landsat data set can be seen by looking at the recall for each individual
fault (not shown in a table), where the fault class 4 has zero recall while the
two remaining fault classes have 100 % recall. Apparently, the local anomaly
detector is not able to detect the fault class 4. The mean detection delay also
reflects that it is harder to detect the Steel plate data faults, since it takes about
5 or more times longer for the detector to identify the Steel plate faults than the
others. So, the results of both the fusion approaches and the PRAAG algorithm
indicate that the Steel plate data set is harder to predict than the others, which
is probably at least partially due to the smaller number of training cases.

Table 4. Total accuracy of the information fusion approaches for all classes.

Fusion approach Steel plate Landsat Shuttle

Last detected case 0.57 0.69 0.98

Simple majority vote 0.69 0.75 1.00

Weighted majority vote 0.71 0.75 1.00

Dempster-Shafer fusion 0.71 0.75 1.00

The simulation algorithm was implemented in Python using the minepy
library for computing the maximal information coefficient [21], the scikit-learn

286 T. Olsson et al.

machine learning library for logistic regression and the kNN algorithm [14] and
the pyds library for implementing the D-S fusion [22].

5 Related Work

Simple majority vote and weighted majority vote have been used for classifier
fusion in many applications [16,23,24]. The same is true for Dempster-Shafer
based classifier fusion [25,26]. Yet, our work differs in that we consider not
fusing the output from several classifiers, but the outcome of classification for
several individual cases. However, it would be easy to also combine the proposed
approach with the use of several different classifiers as additional sources for
classifications, and thereby, make the diagnosis more robust. Our approach also
resembles multi-sensor fusion applications that also can use similar approaches
[26,27]. The classification of the individual cases can be considered as information
from several sensors.

CBR has been shown to be useful tools for monitoring and diagnostics in var-
ious industrial application domains. Two CBR systems were developed in [28]
to handle the diagnosis issues with cars, employing direct signals and extracted
segment features from signals respectively. Bach et al. [29] used service reports
as inputs to CBR to diagnose vehicles with problems. Another system called
Cassiopee [30] relies on the combination of CBR and decision trees for dealing
with troubleshooting problems of airplane engines. Earlier work in CBR and
information fusion has been performed by Olsson et al. [31], exploring the com-
bination of CBR and information fusion for fault diagnosis in industrial robots.

More recently, Yousuf and Cheetham [32] built a hierarchical CBR system
to diagnose the failure of turbines with multiple root causes. The overall system
consists of reasoning in two levels. The lower level is supported by a set of basic
reasoners (implemented as rule-based or case-based reasoning), which have the
task to produce the confidence values for each of the five most common root
causes. At the upper level, another case-based reasoner is utilised for combining
the individual confidences in order to determine the most possible root cause.

6 Conclusions and Future Work

In this paper, we have proposed an approach for fault diagnosis of a stream of
cases using a combination of statistical anomaly detection using logistic regres-
sion and probabilistic anomaly aggregation (PRAAG), CBR-based diagnosis and
fusion of classified cases in a most recent sliding window. Then, we have com-
pared three approaches to information fusion: simple and weighted majority vote
and Dempster-Shafer fusion. As baseline, we used the classification of the last
detected anomalous individual case. All information fusion approaches were bet-
ter than the baseline but with comparable performance, but in case of the Steel
plate data set, the weighed majority vote was slightly better.

The proposed approach is generic in that any local anomaly detector or
diagnostic classifier can be used in the same approach. We can also replace

Fault Diagnosis via Fusion of Information from a Case Stream 287

PRAAG with another detector that can be used for identifying change in the
output of the local anomaly detector, for instance, ADWIN [33] or EDDM [34].
So, future work includes investigating the PRAAG algorithm for stream anomaly
detection in comparison to other related approaches. Another research direction
is to combine the result of multiple classifiers into the prediction and in that
way, create an ensemble learner [35].

Further, we do not currently have any examples of composite cases, only indi-
vidual cases. However, when the system is taken into use, we can start collecting
instances of composite cases and store them in an additional case base. In order
to support retrieval of composite cases, we will consider a similar approach as we
presented in [36]. In [36], cases were retrieved with respect to the similarity of the
predictive probability distribution over the classes. In the current work, if nor-
malised, the fused weight distributions produced by the fusion methods can be
interpreted as probabilities over the fault classes. Thus, for instance, the distance
between two composite cases E(i),E(j) using the approximate log-prob metric
proposed in [36] is then d(E(i),E(j)) =

∑
c∈S

∣∣ log(pE(i)(c)) − log(pE(j)((c))
∣∣

assuming that
∑

c∈S pE(i) =
∑

c∈S pE(j) = 1. Another approach to representing
composite cases would be to store histograms for each feature of the individual
cases and use a suitable similarity measure for comparing histograms [37].

Finally, the possibility of multiple faults should also be investigated by for
instance looking at multi-label algorithms where the individual cases are labeled
with more than one fault or extend the fusion methods to use the conflicting
classifications among the individual cases to infer multiple faults.

Acknowledgements. This work has been partially supported by the FP7 EU Large
scale Integrating Project SMART VORTEX co-financed by the European Union [38],
the Swedish Knowledge Foundation (KK-stiftelsen) [39] through ITS-EASY Research
School and Swedish Governmental Agency for Innovation Systems (VINNOVA) grant
no 10020, grant no 2012- 01277 and JU grant no 100266.

References

1. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to
Fault Tolerance. Springer, Heidelberg (2006)

2. Bengtsson, M., Olsson, E., Funk, P., Jackson, M.: Technical design of condi-
tion based maintenance systems - a case study using sound analysis and case-
based reasoning. In: 8th International Conference of Maintenance and Realiability,
Knoxville, USA (2004)

3. Kockskamper, K., Traphoner, R., Wernicke, W., Faupcl, B.: Knowledge acquisi-
tion in the domain of cnc’machining centers: the moltke approach. In: EKAW
1989: Third European Workshop on Knowledge Acquisition for Knowledge-Based
Systems, Paris, July 1989, p. 180. AFCET (1989)

4. Althoff, K., Maurer, F., Wess, S., Traphöner, R.: Moltke: an integrated workbench
for fault diagnosis in engineering systems. In: Proceedings of the EXPERSYS 1992,
Paris (1992)

288 T. Olsson et al.

5. Auriol, E., Crowder, R., McKendrick, R., Rowe, R., Knudsen, T.: Integrating case-
based reasoning and hypermedia documentation: an application for the diagnosis
of a welding robot at odense steel shipyard. Eng. Appl. Artif. Intell. 12(6), 691–703
(1999)

6. Yang, B., Han, T., Kim, Y.: Integration of art-kohonen neural network and case-
based reasoning for intelligent fault diagnosis. Expert Syst. Appl. 26(3), 387–395
(2004)

7. Chougule, R., Rajpathak, D., Bandyopadhyay, P.: An integrated framework for
effective service and repair in the automotive domain: an application of association
mining and case-based-reasoning. Comput. Ind. 62(7), 742–754 (2011)

8. Gupta, K.M., Aha, D.W., Moore, P.: Case-based collective inference for maritime
object classification. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol.
5650, pp. 434–449. Springer, Heidelberg (2009)

9. Domingos, P., Hulten, G.: Catching up with the data: research issues in mining
data streams. In: Proceedings of the Workshop on Research Issues in Data Mining
and Knowledge Discovery (2001)

10. Gama, J.: A survey on learning from data streams: current and future trends. Prog.
Artif. Intell. 1(1), 45–55 (2012)

11. Johanson, M., Belenki, S., Jalminger, J., Fant, M., Gjertz, M.: Big automotive data:
Leveraging large volumes of data for knowledge-driven product development. In:
2014 IEEE International Conference on Big Data, pp. 736–741. IEEE (2014)

12. Olsson, T., Holst, A.: A probabilistic approach to aggregating anomalies for unsu-
pervised anomaly detection with industrial applications. In: Proceedings of the
Twenty-Eigth International Florida Artificial Intelligence Research Society Con-
ference, May 2015

13. Olsson, T., Källström, E., Gillblad, D., Funk, P., Lindström, J., H̊akansson, L.,
Lundin, J., Svensson, M., Larsson, J.: Fault diagnosis of heavy duty machines:
automatic transmission clutches. In: Workshop on Synergies between CBR and
Data Mining at 22nd International Conference on Case-Based Reasoning, Septem-
ber 2014

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

15. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cam-
bridge (2012)

16. Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems.
IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)

17. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

18. Smets, P.: Belief functions. In: Smets, P., et al. (eds.) Non-Standard Logics for
automated Reasoning, pp. 253–286. Academic Press, San Diego (1988)

19. Bache, K., Lichman, M.: UCI machine learning repository (2013)
20. Steel Plates Faults Data Set. Source: Semeion, Research Center of Sciences

of Communication, Rome, Italy. www.semeion.it: https://archive.ics.uci.edu/ml/
datasets/Steel+Plates+Faults. Accessed July 2015

21. Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G., Furlanello,
C.: minerva and minepy: a C engine for the MINE suite and its R, Python and
MATLAB wrappers. Bioinformatics 29(3), 407–408 (2013)

22. pyDS: a python library for performing calculations in the dempster-shafer theory
of evidence (2014). https://github.com/reineking/pyds

www.semeion.it
https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
https://github.com/reineking/pyds

Fault Diagnosis via Fusion of Information from a Case Stream 289

23. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

24. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans.
Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)

25. Al-Ani, A., Deriche, M.: A new technique for combining multiple classifiers using
the Dempster-Shafer theory of evidence. J. Artif. Intell. Res. 17, 333–361 (2002)

26. Basir, O., Yuan, X.: Engine fault diagnosis based on multi-sensor information fusion
using Dempster-Shafer evidence theory. Inf. Fusion 8(4), 379–386 (2007)

27. Yang, G.Z., Andreu-Perez, J., Hu, X., Thiemjarus, S.: Multi-sensor fusion. In:
Yang, G.Z. (ed.) Body Sensor Networks, pp. 301–354. Springer, London (2014)

28. Wen, Z., Crossman, J., Cardillo, J., Murphey, Y.: Case-base reasoning in vehicle
fault diagnostics. In: Proceedings of the International Joint Conference on Neural
Networks, vol. 4, pp. 2679–2684. IEEE (2003)

29. Bach, K., Althoff, K.-D., Newo, R., Stahl, A.: A case-based reasoning approach
for providing machine diagnosis from service reports. In: Ram, A., Wiratunga, N.
(eds.) ICCBR 2011. LNCS, vol. 6880, pp. 363–377. Springer, Heidelberg (2011)

30. Heider, R.: Troubleshooting CFM 56–3 engines for the Boeing 737 using CBR and
data-mining. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168,
pp. 512–518. Springer, Heidelberg (1996)

31. Olsson, E., Funk, P., Xiong, N.: Fault diagnosis in industry using sensor readings
and case-based reasoning. J. Intell. Fuzzy Syst. 15(1), 41–46 (2004)

32. Yousuf, A., Cheetham, W.: Case-based reasoning for turbine trip diagnostics.
In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 458–468.
Springer, Heidelberg (2012)

33. Bifet, A., Gavaldá, R.: Learning from time-changing data with adaptive window-
ing. In: Proceedings of the 2007 SIAM International Conference on Data Mining,
Society for Industrial and Applied Mathematics, p. 443 (2007)

34. Baena, M., del Campo, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales, R.: Early
drift detection method. In: Fourth International Workshop on Knowledge Discov-
ery from Data Streams (2006)

35. Maclin, R., Opitz, D.: Popular ensemble methods: an empirical study. J. Artifi.
Intell. Res. 11, 169–198 (1999)

36. Olsson, T., Gillblad, D., Funk, P., Xiong, N.: Explaining probabilistic fault diag-
nosis and classification using case-based reasoning. In: Lamontagne, L., Plaza, E.
(eds.) ICCBR 2014. LNCS, vol. 8765, pp. 360–374. Springer, Heidelberg (2014)

37. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
IEEE Trans. Knowl. Data Eng. 21(11), 1532–1543 (2009)

38. SMART VORTEX: scalable semantic product data stream management for
collaboration and decision making in engineering. http://www.smartvortex.eu/.
Accessed July 2015

39. KK-Stiftelse: Swedish Knowledge Foundation: http://www.kks.se. Accessed July
2015

http://www.smartvortex.eu/
http://www.kks.se

Argument-Based Case Revision
in CBR for Story Generation

Santiago Ontañón1(B), Enric Plaza2, and Jichen Zhu1

1 Drexel University, Philadelphia, PA 19104, USA
santi@cs.drexel.edu, jichen.zhu@drexel.edu

2 IIIA, Artificial Intelligence Research Institute CSIC,
Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia, Spain
enric@iiia.csic.es

Abstract. This paper presents a new approach to case revision in case-
based reasoning based on the idea of argumentation. Previous work on
case reuse has proposed the use of operations such as case amalgama-
tion (or merging), which generate solutions by combining information
coming from different cases. Such approaches are often based on explor-
ing the search space of possible combinations looking for a solution that
maximizes a certain criteria. We show how Revise can be performed by
arguments attacking specific parts of a case produced by Reuse, and how
they can guide and prevent repeating pitfalls in future cases. The pro-
posed approach is evaluated in the task of automatic story generation.

1 Introduction

Case-based reasoning systems are based on the hypothesis that “similar problems
have similar solutions”, and thus new problems are solved by reusing or adapting
solutions of past problems. However, how to reuse or adapt past solutions to new
problems, and how to revise these solutions are some of the least understood
problems in case-based reasoning. There are multiple open problems such as
what knowledge is required for adaptation and how to acquire it [20], the relation
between solution reuse and case retrieval [17], and solution revision [10]. This
paper builds upon previous work on search-based reuse in case-based reasoning,
and specifically on approaches based on amalgam or merge operators [3,12],
where a solution to a given problem is generating by amalgamating the problem
with one or more retrieved cases.

Specifically, in this paper we focus on the following problem: search-based
approaches to case reuse employ some sort of search mechanism over the space
of solutions trying to either maximize or satisfy some evaluation function,
that hopefully captures the quality of the proposed solution. However, in some
domains, such as automated story generation [6] (which we used as our appli-
cation domain), defining an evaluation function that captures the quality of a
solution is a very hard problem. For this reason, we propose a new case revision
approach that integrates argumentation into the case reuse process. Each time
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 290–305, 2015.
DOI: 10.1007/978-3-319-24586-7 20

Argument-Based Case Revision in CBR for Story Generation 291

the case reuse process proposes a solution, this is evaluated against a collection
of arguments that may attack the solution, forcing the case reuse to search for
alternative solutions. We claim that rather than capture how “good” a story
is, it is easier to define a collection of arguments that attack certain negative
aspects of the story. These arguments can be kept for future episodes, to prevent
generating stories that suffer from the same problems.

The remainder of this paper is organized as follows. We first introduce some
background on amalgam-based case reuse, and on argumentation. After that we
present our motivating domain: automatic story generation. Argument-based
revision is then presented, followed by an experimental evaluation. The paper
closes with conclusions and directions for future work.

2 Background

Stories (cases) are represented in the formalism of feature terms [1], and case
reuse is implemented as an amalgam of two feature terms: a source term and
a target term. We will briefly introduce here the basic notions of feature terms
and amalgamation; for more a detailed explanation see [13].

Feature terms are defined by their signature: Σ = 〈S,F ,≤,V〉. S is a finite
set of sort symbols, including ⊥ representing the most general sort (“any”), and
� representing the most specific sort (“none”). ≤ is an order relation inducing a
single inheritance hierarchy in S, where s ≤ s′ means s is more general than or
equal to s′, for any s, s′ ∈ S (“any” is more general than any s which, in turn,
is more general than “none”). F is a set of feature symbols, and V is a set of
variable names. We define a feature term ψ as: ψ:: = X:s [f1

.= Ψ1, · · · , fn
.= Ψn],

where ψ points to the root variable X (that we will note as root(ψ)) of sort s;
X ∈ V, s ∈ S, fi ∈ F , and Ψi is either a variable Y ∈ V, or a set of variables
{X1, ...,Xm}. The set of variables present in a term ψ is noted V ar(ψ); for
instance, the term shown in Fig. 2 has 18 variables, one for each node.

The basic relation over feature terms is subsumption (�), i.e. given two terms
ψ1 and ψ2 we say ψ1 � ψ2 (ψ1 subsumes ψ2) when ψ1 is a generalization of ψ2,
or dually ψ2 is a specialization of ψ1. Subsumption generates a total mapping
m: V ar(ψ1) → V ar(ψ2) satisfying certain conditions such as m(root(ψ1)) =
root(ψ2), or if X.f = Y then m(X).f = m(Y) (formal definition in [13]).

The unification of two terms ψ1 and ψ2, ψ1
 ψ2, is the most general term
subsumed by both and the dual notion of antiunification of two terms ψ1 and
ψ2, ψ1 �ψ2, is the most specific term that subsumes both. There might be more
than one antiunification and more than one unification for two given terms. Also,
although an antiunification always exist, two terms might not unify. After this
summary, we are able to define the amalgam of two terms.

2.1 Amalgam-Based Case Reuse

An amalgam of two terms is a new term that contains parts from these two
terms. For instance, an amalgam of ‘a red French sedan’ and ‘a blue German

292 S. Ontañón et al.

Fig. 1. A diagram of an amalgam A from inputs I1 and I2 where A = Ī1 � Ī2.

minivan’ is ‘a red German sedan’; clearly there are always multiple possibilities
for amalgams, like ‘a blue French minivan’.

In this paper we define an amalgam in a feature term language L as:

Definition 1 (Amalgam). A term A ∈ L is an amalgam of two inputs I1 and
I2, with anti-unification G = I1 � I2, if there exist two generalizations Ī1 and Ī2
such that (1) G � Ī1 � I1 (2) G � Ī2 � I2, and (3) A = Ī1
 Ī2

When Ī1 and Ī2 have no common specialization then trivially A = �, since
their only unifier is “none”. For our purpose we will be only interested in non-
trivial amalgams (those different from �) of the input pair, which we call their
amalgam space. This definition is illustrated in Fig. 1, where the anti-unification
of the inputs is indicated as G, and the amalgam A is the unification of two
concrete generalizations Ī1 and Ī2 of the inputs; for short we call Ī1 and Ī2 the
transfers of amalgam A. Usually we are interested only on maximal amalgams of
two input terms, i.e., those amalgams that contain maximal parts of their inputs
that can be unified. Formally, an amalgam A of inputs I1 and I2 is maximal if
there is no other non-trivial amalgam A′ of inputs I1 and I2 such that A � A′.

In our system, amalgamation is used in the Reuse process to create a new
story, by combining a story from the case base with a target specifying desired
aspects of the story to be generated.

2.2 Argumentation

Computational argumentation, in the abstract framework, consists of a set of
nodes (called arguments, intuitively understood as formulas) and an attack rela-
tion among pairs of nodes. An abstract argumentation framework AF = 〈Q,R〉
is composed by a finite set of arguments Q and an attack relation R among the
arguments [4]. For instance, an attack relation written α � β means that argu-
ment α is attacking argument β. In our previous work [14] on learning by commu-
nication we integrated inductive concept learning with a concrete argumentation
model in the A-MAIL framework (where A-MAIL stands for argumentation-based
multiagent inductive learning). In particular, a case e in the case base could serve
to attack an argument as a counter-example e � β. Here A-MAIL is a concrete
argumentation framework, not abstract like Dung’s, and one main difference is
that while Dung’s assume a finite, known set of arguments we assume an open-
ended set of arguments. As we shall see, using arguments to revise cases during

Argument-Based Case Revision in CBR for Story Generation 293

the CBR cycle is essentially an open-ended process, since more often than not
the knowledge (here in the form of arguments) used to revise cases is external
to the CBR system.

Another difference is that during the Revise process, the case is assumed to be
a concrete, instantiated formula — while in the A-MAIL framework examples and
counterexamples were instantiated, and the other arguments were assumed to
be general formulas. The usual definition of an attack α � β is that α concludes
the opposite of β and β � α (α is a specialization of β). Section 4 introduces the
role of arguments in the Revise process of the CBR cycle.

3 Automatic Story Generation

Compared with the established narrative forms such as prose fiction computer-
generated stories are still in their early stage. Despite the recent progress in
the area, these stories are still fairly rudimental in terms of both the depth of
meanings and the range of their varieties.

Automatic story generation is an interdisciplinary topic focusing on devising
models for algorithmically producing narrative content and/or discourse. Story
generation is an important area for interactive digital entertainment and cultural
production. Built on the age-old tradition of storytelling, algorithmically gener-
ated stories can be used in a wide variety of domains such as computer games,
training and education. In addition, research in story generation may shed light
into the broader phenomena of computational creativity [6].

Different techniques have been studied in story generation, the most com-
mon of which is automated planning. Salient examples of planning-based story
generation systems include Tale-Spin [11], Universe [9] and Fabulist [16]. By
contrast, computational analogy algorithms have not been sufficiently explored
in the domain of story generation. An alternative approach is that of using
case-based or analogy-based approaches. Examples of this alternative approach
are MISTREL [19], MEXICA [15] or the work of Gervás et al. [7], which used
case-based approaches, or SAM [21], which uses computational analogy.

Specifically, in this paper we focus on a case-based approach, and address
the following problem: given a partially specified story (target), and a collection
of fully specified stories (case-base), how can we generate a new story by reusing
one of the cases in the case base (source)? This is an important problem in story-
generation since it would allow for a significant amount of authorial control over
the output of the story generator (controlling the target story), while providing
a fully automated way to suggest completed stories based on the target.

4 Argument-Based Revision

The Revision process in the CBR cycle introduces knowledge that is external to
the CBR system to evaluate and/or improve the outcome of the Retrieve and
Reuse processes. The situation is similar to supervised Machine Learning where

294 S. Ontañón et al.

an external source (called “oracle”) gives new information to the learning sys-
tem on its output; this feedback is used by the learning system to perform credit
and blame assignment on its learnt structures, modify them accordingly, and
increase performance over time (i.e. learn from interacting with the supervisor).
Now, different forms of interacting with the oracle define different modalities of
learning. The most common modality in supervised learning is when, in classifi-
cation tasks, a system predicts as solution a class for an instance, and the oracle
either accepts it as correct or, if not, provides the correct class for that instance.
This modality is common in CBR systems in classification tasks, where the oracle
“revises” the predicted class when the system is wrong and provides the correct
class (thus, the revised case is formed and can be retained in the case base with
the correct solution). However, oracles can provide different information: e.g. an
oracle can provide a yes/no feedback to the system given an instance, but does
not provide the correct answer. In semi-supervised learning approaches, such as
reinforcement learning, the oracle provides a numerical value that estimates how
good is the solution provided by the system.

For CBR systems in more complex tasks than classification, the Revise phase
usually assumes an external oracle (that might be a human expert or a domain
model) that can provide a revised solution that is correct, so the system can
learn. Other approaches, like “critics” in the CHEF system, are able to detect
failures on a recipe and apply repair strategies (e.g. add or remove steps in the
recipe [8]). This approach is based on analyzing the failure of the plan being
executed (in the real world or a simulated world).

The approach we take is to consider the interaction between system and
oracle as a restricted form of dialogue, in which the system provides a tenta-
tive solution and the oracle’s feedback is an argument attacking the parts of
the solution that, according to that oracle, are wrong or unsatisfactory. This is
particularly interesting in creative domains, such as storytelling, in which what
is a “wrong” output (as in classification) or a “failure” (as in executing a plan),
is rather difficult to determine. In the long run, our goal would be to have a
dialogue between system and oracle on the features that are positive or negative
in a particular story being generated. For the purposes of this paper, we focus on
the more simple scenario where (1) the CBR system presents a solution (a story),
(2) the oracle’s feedback is one or several arguments attacking specific aspects or
parts of the story, and (3) the system incorporates arguments (as well as the ones
provided by the oracle in previous cycles) and generates a new solution (story)
that is coherent with most of the previous oracle’s argument. We will presently
define the notions of “argument” and generation of new stories coherent with a
set of arguments.

4.1 Arguments and Attacks

Computational argumentation usually defines an attack relation α � β between
two logical statements α and β. However, our situation is slightly different, in
that we have a story represented as a feature term ψ that is a large and complex
structure, and an argument that will attack not the whole story but a particular

Argument-Based Case Revision in CBR for Story Generation 295

Fig. 2. An example target story used in our experiments (corresponding to the target
in S/T3) represented as a feature term. This describes a situation where a human
named Zack, is in a boat in the middle of the ocean. Zack is taking his fishing gear
because he wants to fish a very large cod he has seen. At the same time, there is a
storm with lightnings.

part of it (in our formalism, a sub-term of ψ). We will discuss the form of
arguments first, and later the attack relation between an argument and an aspect
or part of a story.

Definition 2 (Argument). An argument is a pair (π, α), where π is a term
and α is a logical formula over terms with conjunction, disjunction and negation
(for terms φ, φ′ ∈ L), specifically, α may have one of the following forms: φ, ¬φ,
φ ∨ φ′, and φ ∧ φ′.

Intuitively, an argument (π, α) states that if a story ψ satisfies π (e.g., there is
a dragon as antagonist), then the story must also satisfy α (e.g., only a magical
weapon can kill the dragon). When the story ψ satisfies π but not α then we
say that the argument attacks ψ. Moreover, the attacking argument is retained
by the system, so in subsequent iterations it would prefer stories that satisfy the
argument to those that do not. Therefore, arguments cannot be understood as
constraints, but rather as preferences (sometimes called soft constraints).

In order to define attacks on stories, represented as feature terms, we need
to introduce notation to define subterms of a term. Let V ar(ψ) denote the set
of variables in term ψ; for instance, the term shown in Fig. 2 has 18 variables,
one for each node. Given a variable X ∈ V ar(ψ), the subterm ψX is the term
with root in variable X, intuitively the subgraph reachable from node X. For
instance, in Fig. 2 the variable X1 has a subterm formed by the root X1 and the
features that go to Zack and cod, or if we take the variable P1 then the subterm
is the graph shown in Fig. 2 describing Phase 1 of the story.

296 S. Ontañón et al.

Definition 3 (Pattern Satisfaction). Let π and ψ be terms in L, hereby called
pattern and description respectively. Given a variable X ∈ V ar(ψ), we say a
description ψ satisfies a pattern π through X if π � ψX , we write π �X ψ.

We can now define an attack of an argument (π, α) against a description
ψ; the intuition is that whenever ψ satisfies π then, if ψ does not satisfy the
patterns in the formula α, the argument attacks ψ.

Definition 4 (Attack). An argument (π, α) attacks a description ψ, written
(π, α) � ψ whenever ∃X ∈ V ar(ψ) such that π �X ψ and one of the following
holds:

1. when α = φ and φ ��X ψ holds,
2. when α = ¬φ and φ �X ψ holds,
3. when α = φ ∨ φ′ and φ ��X ψ and φ′ ��X ψ hold,
4. when α = φ ∧ φ′ and φ ��X ψ or φ′ ��X ψ hold.

Each subsumption relation A �X B generates a mapping between V ar(A) and
V ar(B) (as defined in Sect. 2). The mapping generated when testing subsump-
tion of α must respect the mapping generated for π. Moreover, if π subsumes ψ
for more than one mapping, each one of these mappings constitutes a different
attack.

For the purposes of this paper we do not use nested logical connectives; our
arguments use only simple negation, conjunction and disjunctions. The definition
of attack is the converse of satisfaction with respect to the formula α; thus
satisfying φ ∨ φ′ means that either one (φ or φ′) is satisfied in ψ, and then there
is no attack. Because of this, for α = φ ∨ φ′ accomplishing an attack, it means
that neither φ nor φ′ are satisfied in ψ. We will use the notation |a � ψ| to
denote the number of variables in V ar(ψ) that are attacked by the argument
a = (π, α).

For the particular case where an argument wants to express that the formula
α has to be satisfied regardless of any precondition π, we use the notation (⊥, α).

Finally, notice that a new argument (π, α) is retained by the system, and will
be used to generate new stories where the ones that satisfy (are not attacked by)
argument (π, α) are preferred. More generally, given a set of known arguments
Args, the system will generate stories by exploring the space of amalgams and
preferring those that satisfy (are not attacked by) more arguments in Args.

4.2 Argument-Based Revision Algorithm

This section presents a specific Argument-based Revision Algorithm (ARA) that
combines the ideas presented above. Specifically, the algorithm we propose per-
forms a greedy search over the amalgam space, starting with the most general
amalgam possible (the anti unification of the two input terms I1 and I2), and it
specializes it iteratively, employing arguments to determine which of the possible
specializations is the most promising to pursue.

Argument-Based Case Revision in CBR for Story Generation 297

Algorithm 1. ARA(I1, I2, f , Args)

1: t = 0, A0 = A∗ = I1 � I2, Ī
0
1 = Ī02 = A0

2: loop
3: t = t + 1
4: Rt

1 = specializations(Īt−1
1)

5: Rt
2 = specializations(Īt−1

2)
6: C = {I � Īt−1

2 |I ∈ Rt
1} ∪ {Īt−1

1 � I|I ∈ Rt
2}

7: if C = ∅ then
8: return A∗

9: else
10: At = argmaxA∈Cevaluation(A, f,Args)
11: if evaluation(At, f,Args) > evaluation(A∗, f,Args) then A∗ = At

12: Īt1 = At � I1, Ī
t
2 = At � I2

13: end if
14: end loop

ARA is shown in Algorithm 1, and works as follows. Given two terms I1
and I2 (which in our case represent the target case, and the retrieved case), an
evaluation function f and a set of arguments Args:

1. Step 1 initializes the current amalgam, A0, the currently best amalgam A∗

and the current two transfer terms Ī01 and Ī02 to be equal to the antiunification
of the two input terms (the most general amalgam possible).

2. Then, at each iteration t, first ARA finds the set of possible specializations
of the current two transfers (this is done using a refinement operator over
feature terms [13]).

3. Line 6 computes all the possible next amalgams, resulting from unifying the
next specializations with the previous transfer terms.

4. Lines 10–11 select the best amalgam, and line 12 updates the transfer terms
for the next iteration. The way the best amalgam is determined is where
arguments come into play. Each argument a in our framework is assigned a
weight wa. The weight of an argument represents how serious is the issue that
this argument tries to prevent1. Each amalgam is then assessed as follows:

evaluation(A, f,Args) = f(A) −
∑

a∈Args

wa × |a � A|

where:
– f is an evaluation function that provides a basic score for an amalgam.

For example, f could encode things like “larger amalgams are preferable”
by giving higher scores to amalgams with a larger number of variables. In
our experiments, we used the function: f(A) = |A| − k × |V ar(A)|, where
|A| is the size of the term A (number of times we need to specialize ⊥

1 In the experiments shown later we use a hand-fixed weight equal for all arguments;
determining individual weights is discussed in future work.

298 S. Ontañón et al.

using the refinement operator to reach A), and captures the size of the
story, and k = 4 in our experiments. A larger story means that we have
been able to transfer more information from the source and target in the
amalgam, so a general goal is to maximize |A|. The number of variables in
A is |V ar(A)|. When unifying the two transfers, we would like variables of
one transfer to be mapped to variables of the other. If this is not the case,
the number of variables in the resulting amalgam grows. Thus, minimizing
the number of variables in the amalgam has the effect of maximizing the
number of variables from the source that are mapped to the target.

– The final term subtracts the weight of each attacked argument multiplied
by the number of times the argument attacks some subterm with root X
of the story A.

The effect of the ARA algorithm is to find amalgams that strike a balance
between maximizing the evaluation function f , and minimizing the number of
attacking arguments. The next section describes the generation of stories using
amalgams and arguments in an experimental scenario.

5 Experimental Evaluation

In order to evaluate our argument-based revision approach, we prepared an
experimental setup that bypasses case retrieval altogether. Thus, we prepared
four source/target pairs: S/T1, S/T2, S/T3 and S/T4. In order to compare our
results with previous work, we translated the source/target pairs used in our
previous work [21] to the feature term formalism used in the approach presented
in this paper2. Below we provide details on the stories used for evaluation, and
then we provide empirical results illustrating the performance of our approach.

5.1 Dataset

As mentioned above, we represent stories using feature terms [1]. Specifically,
a story is a term composed of a sequence of phases, where a phase represents a
given instant in a story. Each phase contains a set of characters, locations, props,
actions and relations. We separated characters into three groups: the agonist
(protagonist or main character), the antagonist (the main opposing force), and
other characters. Entities that are not characters are classified into locations and
props. For each of these characters and objects, we specify a collection of prop-
erties such as: their relations to other characters, whether they are performing
any action, or their desires, likes and possessions.

Additionally, the high-level structure of each phase is captured by annotating
who is the agonist, the antagonist, and their force relation (inspired in the cog-
nitive linguistics framework of force dynamics [18]). This allows us to represent,

2 The specific source/target pairs used for this experiment can be downloaded from
https://sites.google.com/site/santiagoontanonvillar/software.

https://sites.google.com/site/santiagoontanonvillar/software

Argument-Based Case Revision in CBR for Story Generation 299

Table 1. Properties of the source-target (S/T) pairs used in our study.

Source Target

Phases Fefinements Phases Refinements Surface similarity Structural similarity

S/T 1 4 203 1 73 Low Low

S/T 2 4 203 1 62 Low High

S/T 3 2 90 1 79 High Low

S/T 4 3 134 2 89 High High

in a compact way, the high-level structure of a story. Figure 2 shows an example
story used in our dataset (the target in S/T3).

As mentioned above, we translated the four source/target pairs used in [21]
to feature terms. These four pairs were selected because they represent a variety
of scenarios based on how similar the target is to the source. We distinguish two
types of similarity between stories: surface similarity and structural similarity.
The former refers to whether two stories contain similar concepts (e.g., both
contain a boat and a fish), while the latter refers to whether they have a similar
structure (e.g., both refer to a story where the main character overcame a diffi-
culty and succeeded). Surface similarity can be measured by the percentage of
keywords shared between two stories, and structural similarity is measured by
how much the force dynamics structures representing the stories match.

Table 1 shows some statistics of the stories used in our evaluation. For each
story, we show the size in number of phases, and number of refinements (this
is the number of times we have to apply the specialization refinement operator
to ⊥ to obtain the given story). This shows that target stories in our dataset
tend to be smaller than the source ones (expected, since they are only partially
specified). Additionally, we show which source/target pairs are similar in terms
of surface and structural similarity.

5.2 Experimental Setup

We evaluated our approach in the following way. First, we run our Reuse app-
roach with an empty set of arguments for each of the four source/target pairs.
This gets us a baseline against with which to compare. Then, we iteratively gen-
erated arguments to address all the issues we observed in the solution generated
for S/T1. This resulted in a total of 15 arguments. Using those arguments, we
then report on the performance of the system in generating stories again for
all the four source/target pairs. We did not generate arguments for the other
source/target pairs purposefully, in order to assess the extent to which arguments
generated for one story can be used to improve performance in other stories. To
compare results, we report the value of the evaluation function f for the solution
found, and the number of attacks that the resulting story receives with the 15
arguments we generated. The number of attacks should be seen as a proxy for
the number of syntactic or semantic mistakes that the generated stories contain

300 S. Ontañón et al.

Fig. 3. Four example arguments generated during Revise and used in our experimental
evaluation.

(where a “syntactic mistake” would be something like having a character that is
never specified as agonist, antagonist or other-character, and a “semantic mis-
take” would be something like driving a boat on land). Additionally, we report
subjective impressions on the generated stories. Finally, we compare the results
obtained with those obtained in our previous work with the same source/target
pairs, but with a different algorithm [21].

Figure 3 shows four of the 15 arguments we generated. Specifically, those four
arguments capture the following:

– a1: If a human in the story has a relative, it must also be human.
– a2: If an entity is marked as “stronger” in a phase (a force dynamics annota-

tions), that entity must be the agonist or the antagonist.
– a3: An entity cannot be a relative (parent, son, sibling) of itself.
– a4: An entity cannot be the agonist and the antagonist at the same time.

Notice that those four example arguments are basically capturing things that
could be specified using a stricter ontology. However, having them as arguments,
allows us to be flexible, and allowing violations in a story in some cases. For
example, violating a1 would allow for fantasy stories where a human has a parent
being a magical being; violating a4 would allow for “split-self” stories, where
the main character is both the agonist and the antagonist of the story. Other
arguments capture common sense (e.g., a boat cannot be driven on land), or
story aesthetics (e.g., the location of a story should not change from phase to
phase), but they are not hard constraints, and there are specific stories that do
not comply to one of them. The weight wa of all the arguments was set to 10.

5.3 Results

The left-hand side Table 2 shows the amount of time taken and number of amal-
gams explored generating stories using amalgams, but without argument-based
revision. Automatically quantifying the quality of stories generated using auto-
matic story generation is an open challenge, and thus, in this paper we report

Argument-Based Case Revision in CBR for Story Generation 301

Table 2. Score achieved (result of using the evaluation function f in the final story),
number of attacks that the final story receives from the set of 15 arguments we used,
time taken, and number of amalgams explored in the four story pairs used in our
experiments.

Not using arguments Using arguments

Score Attacks Time Explored Score Attacks Time Explored

S/T1 224 9 43 s 5435 207 3 83 s 5785

S/T2 219 3 232 s 4015 210 2 185 s 4081

S/T3 157 2 7 s 1393 144 2 8 s 1463

S/T4 230 6 21 s 2056 215 1 13 s 1909

the number of attacks received by the stories using the 15 arguments we gener-
ated as a proxy for the number of errors those stories contain (although this is
by no means a reflection of their literary quality, it reflects their coherence). We
will also list a collection of issues or interesting details of each of the generating
stories we observed.

– S/T1: In the resulting story, our system made a series of semantic mistakes:
created a story where the father of one of the characters is a butterfly, and
when the sister of the main character passed away, the main character threw
her into the toilet (since in the source story, a pet fish died and was flushed
down the toilet); and a collection of syntactic mistakes: incorrect force dynam-
ics structure, listed the sister of the main character as a prop, and used a
location in an incorrect place of the story structure.

– S/T2: The resulting story is almost syntactically correct since the stories share
strong structural similarity, however, given that they talk about very disparate
things (they share very little surface similarity), the story is rather surreal. In
the resulting story, there is a fish inside of a flower in a backyard of the main
character (who wants to play a game there); the fish later dies.

– S/T3: In this case, the resulting story is perfectly valid: the main character
wants to fish a giant cod, but he ends up not being able to, since the fishing
gear breaks while pulling the cod out of the ocean. It only contains a couple
of syntactic mistakes.

– S/T4: Source and target here are significant similarity (in one the main char-
acter drives a car up a mountain, and in the other he drives a motor-boat
in a bay). The resulting story is almost correct, except for a few semantic
mistakes: first, in the generated story, a motorboat is driven up a mountain
(which clearly cannot be done), and also the bottom of the mountain is “in
the main character” (which doesn’t make sense), also there appear to be two
motorboats instead of one. The rest of the story is coherent: after driving for
a while, the main character realizes he did not fill the tank, and needs to turn
around.

The right-hand side of Table 2 shows that, obviously, when incorporating the
arguments into the search process, the resulting stories receive fewer attacks,

302 S. Ontañón et al.

since the search process was directed towards parts of the amalgam space con-
taining stories with fewer attacks. For example the output for S/T1 received
only 3 attacks (while the same 15 arguments would generate 9 attacks against
the story generated without taking them into account). Moreover, even if the 15
arguments were generated with S/T1 in mind, other stories also receive attacks,
and thus benefit from these 15 arguments. Also, as the table shows, the time
taken and the number of amalgams explored vary from the case when we do not
use argument-based revision, but do not significantly increase. Looking closely
at the generated stories, we observed the following:

– S/T1: After argument-based revision, all of the semantic mistakes in this story
disappeared, since we provided arguments to address each of them. Only two
small syntactic problems persisted (a prop and a location were used with-
out being defined in their appropriate place in the feature term). Notice that
this illustrates both the strengths and weaknesses of our approach: on the
one hand, it is easy to provide arguments that prevent semantic or syntactic
mistakes, but on the other hand, given that stories are generated by amal-
gamating information from source and target, it is not possible to force the
resulting story to have something that was not present in the source nor target
just by using arguments.

– S/T2: The only aspects that were improved in this story are the syntactic
ones, concerning some minor force dynamic structures. The overall story is
the same as without arguments.

– S/T3: No changes were observed in this story.
– S/T4: Almost all the syntactic and semantic errors were eliminated in this

story: the “bottom of the mountain” is now “in the island”, and not “in the
main character”, and there is a single motorboat instead of two. The only
semantic error that remains is the fact that a motorboat cannot be driven up
a mountain (since we had no argument to address this, as all arguments were
generated just to attack the issues of S/T1).

Comparing the results obtained using argument-based revision with the
results obtained using the same four story pairs by the SAM algorithm [21],
we observed the following. First, our approach is able to transfer much more
information from the source case to the target case. SAM is based on compu-
tational analogy (it uses the SME algorithm [5] internally), and only transfers
elements of the source that are related in some way (via analogical mapping)
to the target. The amalgam-based approach naturally achieves the same result,
but can also transfer information that is not mapped directly to the transfer.
For example, SAM was barely able to transfer any information at all for S/T2,
whereas our approach generates a full story consisting of four phases. Another
example is S/T4 where SAM generated a story that did not have the seman-
tic mistake of driving a motorboat up a mountain (since the mountain was not
transferred to the final story), but had a different semantic mistake: driving a
motorboat after it had ran out of fuel. Additionally, being able to use arguments
to guide the search process provides our new approach a natural way to guide

Argument-Based Case Revision in CBR for Story Generation 303

the generation process toward regions of the amalgam space that contain better
stories.

6 Related Work

We already discussed the use of critics in CBR planning systems [8] and how it
relates to our approach. A related topic is that of critiquing-based recommenders.
The main goal in recommender systems is to acquire, via user feedback, a bet-
ter model of the user preferences: “Critiquing systems help users incrementally
build their preference models and refine them as they see more options” [2].
Probably user-initiated critiquing is the more similar to our approach, where a
user is presented with product features that can be selected as candidates to be
changed. Our approach is different, allowing richer feedback using arguments.
These arguments, in the form of pairs (condition, soft-constraint), are acquired
by the system to improve on its own task, in this domain generating stories, not
for user personalization. Moreover, the arguments are integrated as a driving
force into the search process of generating amalgams of stories during Reuse.

7 Discussion and Future Work

This paper has presented an approach to case revision based on arguments. The
main idea is to generate a collection of arguments that attack specific aspects
of a given solution that we want to prevent. These arguments are kept by the
system to prevent the same aspects from appearing in future solutions (albeit as
soft constraints only). The approach was incorporated into a search-based case
reuse framework and evaluated in a story generation task.

Our results indicate that by generating a small collection of arguments, our
approach was able to generate stories of higher quality, and that the same argu-
ments generated to attack a specific story were successfully used to increase the
quality of a separate set of stories.

Future work includes allowing the system to defend itself against attacking
arguments, by generating counter-arguments based on stories in the case base,
or even arguments that support a specific aspect of a story, rather than attack
it, moving closer to a full-fledged argumentation model, such as in [14]. However,
we’d need a larger case base of stories for achieving a richer dialogue. Moreover,
providing some support in deciding the weights wa used for strengthening the
arguments remains as future work. Eventually, we would like to model the notion
of an audience to which to generated story is generated. Value-based argumen-
tation offers this possibility, by associating arguments to values and modeling
an audience as a partially ordered set of values. The order among values may
help in determining the weights wa for their associated arguments.

Acknowledgements. This research was partially supported by projects CoInvent
(FET-Open grant 611553) and NASAID (CSIC Intramural 201550E022).

304 S. Ontañón et al.

References

1. Carpenter, B.: The Logic of Typed Feature Structures. Cambridge Tracts in Theo-
retical Computer Science, vol. 32. Cambridge University Press, Cambridge (1992)

2. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends.
User Model. User-Adap. Interac. 22(1–2), 125–150 (2012)

3. Cojan, J., Lieber, J.: Belief revision-based case-based reasoning. In: Proceedings of
the ECAI-2012 Workshop SAMAI: Similarity and Analogy-based Methods in AI,
pp. 33–39 (2012)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

5. Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Algo-
rithm and examples. Artif. intell. 41(1), 1–63 (1989)

6. Gervás, P.: Computational approaches to storytelling and creativity. AI Mag.
30(3), 49–62 (2009)

7. Gervás, P., Dı́az-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based
on CBR. J. Knowl.-Based Syst. 18(4–5), 235–242 (2005)

8. Hammond, K.: Explaining and repairing plans that fail. Artificial Intelligence 45,
173–228 (1990)

9. Lebowitz, M.: Creating characters in a story-telling universe. Poetics 13, 171–194
(1984)

10. de Mántaras, L., López, R., McSherry, D., Bridge, D., Leake, D., Smyth, B.,
Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M.T., Aamodt,
A., Watson, I.D.: Retrieval, reuse, revision and retention in case-based reasoning.
Knowl. Eng. Rev. 20(03), 215–240 (2005)

11. Meehan, J.: The Metanovel: writing stories by computer. Ph.D. thesis, Yale
University (1976)

12. Ontañón, S., Plaza, E.: Amalgams: a formal approach for combining multiple case
solutions. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176,
pp. 257–271. Springer, Heidelberg (2010)

13. Ontañón, S., Plaza, E.: Similarity measures over refinement graphs. Mach. Learn.
87(1), 57–92 (2012)

14. Ontañón, S., Plaza, E.: Coordinated inductive learning using argumentation-
based communication. Auton. Agents Multi-Agent Syst. 29(2), 266–304 (2015).
http://dx.doi.org/10.1007/s10458-014-9256-2

15. Pérez y Pérez, R., Sharples, M.: Mexica: A computer model of a cognitive account
of creative writing. J. Exp. Theor. Artif. Intell. 13(2), 119–139 (2001)

16. Riedl, M.: Narrative generation: balancing plot and character. Ph.D. thesis, North
Carolina State University (2004)

17. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity
assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

18. Talmy, L.: Force dynamics in language and cognition. Cogn. Sci. 12(1), 49–100
(1988)

19. Turner, S.R.: A model of creativity. In: The Creative Process: A Computer Model
of Storytelling and Creativity. Lawrence Erlbaum Associates, Hillsdale (1994)

http://dx.doi.org/10.1007/s10458-014-9256-2

Argument-Based Case Revision in CBR for Story Generation 305

20. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during
case-based problem solving. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE
1998. LNCS, vol. 1416, pp. 497–506. Springer, Heidelberg (1998)

21. Zhu, J., Ontañón, S.: Shall I compare thee to another story? - an empirical study
of analogy-based story generation. IEEE Trans. Comput. Intell. AI Games 6(2),
216–227 (2014)

CBR Model for Predicting a Building’s Electricity Use:
On-Line Implementation in the Absence of Historical Data

Radu Platon(✉), Jacques Martel, and Kaiser Zoghlami

Natural Resources Canada, CanmetENERGY, Varennes, Canada
{radu.platon,jacques.martel,kaiser.zoghlami}@nrcan.gc.ca

Abstract. This paper presents the development and on-line implementation of
a case-based reasoning (CBR) model that predicts the hourly electricity consump‐
tion of an institutional building. Building operation measurements and measured
and forecast weather information are used to predict the electricity use for the
next 6 h. The model’s ability to efficiently deal with an initial absence of historical
data and continuously learn as more data becomes available was tested by
emptying the database holding historical data prior to the on-line implementation.
The prediction accuracy was monitored for almost 4 months. The results show
significant improvement as more data becomes available: the initial error, 1 h
following the on-line implementation is close to 44 %, it decreases by almost half
after 16 h, and reaches 12.8 % at the end of the monitored period. This shows the
applicability of a CBR predictive model for new and retrofit buildings where
historical data is not available.

Keywords: Case-based reasoning · Building · Electricity consumption ·
Prediction · Historical data · Continuous learning

1 Introduction

Buildings represent the largest energy consuming sector in the world, being responsible
for more than one-third of total energy consumption and for significant greenhouse gas
emissions [1]. In North America (U.S. and Canada) alone, institutional and commercial
buildings account for 40 % of the total energy consumption [2].

The prediction of energy use in buildings plays a significant role in achieving an
efficient operation and reducing the energy load and the environmental impact. The
prediction of the electricity use enables the optimization of the operation of building
systems in order to reduce consumption, peak demand and costs. It is critical for planning
and optimizing the operation of thermal energy storage devices linked to electrome‐
chanical heating, ventilation and air conditioning (HVAC) systems, and it can identify
periods of excessive consumption in order to improve control strategies.

This paper presents the application of case-based reasoning (CBR) model for
predicting the electricity consumption of buildings in the absence of historical opera‐
tional data. Since CBR models use specific knowledge collected on previously encoun‐
tered situations to solve new situations, historical data is critical for achieving accurate

© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 306–319, 2015.
DOI: 10.1007/978-3-319-24586-7_21

results. However, in the case of new buildings, or retrofit buildings (having undergone
major modifications to the point that previous data is no longer representative of the
current operation), historical data is not available. In this situation, a model able to learn
and improve its predictive accuracy as more data becomes available is required. The
objective of the study described in this paper and the approach used are presented next;
a literature review of building energy prediction follows. The building data and model‐
ling input selection are presented in Sect. 2. The CBR model is presented in Sect. 3, and
its on-line implementation in the absence of historical and its predictive performance
are presented in Sect. 4. Section 5 contains directions for future work, and the conclusion
is presented in Sect. 6.

1.1 Objective and Approach

Sound prediction is required for all buildings, not only those having large amounts
of historical operational data available. A CBR model that predicts ahead of time the
hourly electricity consumption of a Canadian institutional building was developed
and implemented on-line. In order to simulate the case of a building where histor‐
ical data is not available, the database storing measurements was emptied. The
objective of this study was to test the model’s ability to efficiently deal with an
initial absence of historical data and continuously learn as data becomes available.
The prediction horizon was set to 6 h, and the prediction accuracy was monitored for
a period of almost 4 months.

Hourly measurements of the following variables were available:

• variables related to the operation of building systems – chiller, boilers and air
handling units

• building electricity consumption
• weather information – current and forecast values of outside air temperature and

relative humidity
• indoor conditions – air temperature

The modelling inputs were selected amongst all available variables based on
their statistical importance, as determined by a Principal Component Analysis
(PCA); this procedure is explained in the Sect. 2.1 – Selection of Modelling Inputs.

Building operating modes corresponding to office working and non-working hours
were identified and a CBR model corresponding to each operating mode was used in
order to better represent the electricity use profiles.

1.2 Literature Survey

Early reports on predicting building energy consumption include the Great Energy
Predictor Shootout competitions organized by American Society of Heating, Refrig‐
erating and Air-Conditioning Engineers (ASHRAE): artificial neural networks (ANN)
models were among the most accurate for predicting hourly building electricity use,
chilled water load and heating water load [3], and for estimating hourly energy base‐
lines [4]. A review of different methods used for predicting building energy consump‐
tion, including physical and thermodynamic principles, statistical methods and ANN

CBR Model for Predicting a Building’s Electricity Use 307

models, is presented in [5]. ANN models were reported to deliver accurate predic‐
tions for: building energy loads based on characteristics such as the thickness of the
insulation [6]; hourly, daily and monthly energy loads [7–10]; electrical load based
on building end-uses [11]. Adaptive ANN models, re-trained periodically with new
building operational data to handle changes in operating conditions, were shown to
successfully estimate energy use [12]. A comparison between a detailed building
energy simulation and an ANN model is presented in [13].

Some CBR building environment applications can be found in the published litera‐
ture: a decision support model for selecting buildings most suitable to achieve energy
savings [14], data selection for developing a building energy load model [15] and a
thermal comfort evaluation method that uses knowledge based on past experiences [16].
However, very few examples of CBR being used directly for predicting the energy of a
building are reported: a CBR model predicting the electricity use is currently imple‐
mented on-line at a Natural Resources Canada (NRCan) building located near Montreal
[17]; an improved version of this model, using readily available operational data, was
developed for a NRCan building located in Calgary [18].

2 Building Data

A CBR model was implemented on-line at an institutional Canadian facility located in
Calgary (Alberta, Canada). The building has a total floor surface area of almost
17,000 m2 and houses mainly office and storage spaces. The HVAC equipment consists
of 5 dual-duct air handling units (AHU) served by a one chiller and 3 natural gas boilers.
The building heating load dictates the number of boilers functioning at a given time, and
the boiler outlet measurement represents the combined output of all functioning boilers.
There is only one AHU that recirculates indoor air, the other four AHUs supply 100 %
fresh air.

Hourly measurements of the following variables related to the building operation
were available:

• boiler outlet temperature (°C) and flowrate (l/s)
• chiller outlet temperature (°C) and flowrate (l/s)
• hot duct supply air temperatures for 4 AHUs (°C)
• cold duct supply air temperatures for 5 AHUs (°C)
• supply air flowrates for 4 AHUs (%) – the air flow rates were indicated by the speed

at which the fans are operated, in terms of the motor variable frequency drive
percentage

• return air fan flowrate for 1 AHU (%)
• indoor air temperatures of the east and west wings (°C)
• building electricity consumption (kWh)

Weather information – current outside air temperature and relative humidity, as well
as their forecast values for the next 6 h – was also available. The weather forecast is
obtained from an Environment Canada website to which the CBR model connects auto‐
matically on an hourly basis to ensure that the latest available forecast information is
used in the prediction. In all, 25 variables were available.

308 R. Platon et al.

2.1 Selection of Modelling Inputs

The modelling inputs were selected using a PCA-based procedure. PCA is a statistical
modelling technique that identifies correlations between variables and summarizes the
dataset using linear combinations of the variables – the principal components. Each
component contains interrelated variables and accounts for a certain level of the overall
data variability. The components are extracted in decreasing order of importance: the
first component reflects the greatest source of variance in the original data, and each
succeeding component accounts for as much of the remaining variability as possible.
The PCA-based method was carried out on all available variables – except the building
electricity consumption, which is the variable to be predicted – and the relevant variables
were selected according to their statistical significance, in terms of explained overall
variability in the original dataset. Optimal input selection using PCA was extensively
reported in the literature, such as for models of the electricity consumption in residential
dwellings [19] and in office buildings [20].

Following the PCA analysis, 10 of the available variables were deemed relevant and
used as modelling inputs. Weather conditions – outside air temperature and relative
humidity – as well as variables related to heating and cooling plant operation, and AHU
air temperatures were deemed relevant. Measurements of the indoor air temperature
were not deemed relevant, most probably due to the fact that the inside air temperature
does not vary significantly; for example, it remains relatively constant during working
hours to ensure occupant comfort. A detailed description of the procedure used to select
the modelling inputs can be found in [18].

Forecast weather information was also added as input to the model. The modelling
inputs are presented in Table 1.

Table 1. Modellig inputs

Variable and measuring units

IN 1: Measured outside air temperature (°C)

IN 2: Measured outside air relative humidity (%)

IN 3: Forecast outside air temperature (°C)

IN 4: Forecast outside air relative humidity (%)

IN 5: Air handling unit 2 supply hot air temperature unit (°C)

IN 6: Air handling unit 3 supply hot air temperature (°C)

IN 7: West wing air handling unit supply cold air temperature (°C)

IN 8: Air handling unit 4 supply cold air temperature unit (°C)

IN 9: Chiller water outlet temperature (°C)

IN 10: Chiller water outlet flow rate (l/s)

IN 11: Boiler outlet water temperature (°C)

IN 12: Boiler outlet water flow rate (l/s)

CBR Model for Predicting a Building’s Electricity Use 309

2.2 Working and Non-working Hours

Two building operating modes were identified according to the electricity use during
working hours and during non-working hours. The building consumes approximately
80 % more electricity during working hours – 7 AM to 5 PM – than during non-working
hours. The hourly building electricity consumption in 2013 and 2014 for both working
and non-working hours operating modes is shown in Fig. 1 – please note that the gap
observed from March 29th to May 1st 2013 corresponds to a period of time when meas‐
urements were not available.

Fig. 1. Building electricity consumption during working and non-working hours

To appropriately represent the building electricity use profile, a CBR model corre‐
sponding to each operating mode was used. However, the analysis presented in this paper
concentrates only on the model developed using working-hours measurements.

3 CBR Model

The CBR model uses hourly operational measurements and weather information to
predict the electricity consumption of the building for the next 6 h. The CBR prediction
of building electricity use presented in this study is based on the concept that the current
trend of the building electricity consumption can be approximated using past trends
occurring at similar operation and weather conditions.

The present conditions for which the prediction is calculated are stored in the present
case, while past cases contain similar past conditions. The electricity consumption
corresponding to the present case is predicted using consumptions stored in similar past
cases. The present case contains current and past hourly measurements of all the input
variables, except weather forecast; three measurements are stored: one taken at the
present hour, and two corresponding to two prior hours. The forecast weather values –
outside air temperature and relative humidity – for the 6 h following the current hour
are also stored in the present case.

310 R. Platon et al.

Selection of similar past cases starts with the indexing process, where past meas‐
urements taken at conditions similar to the present conditions are identified. The iden‐
tification of past similar measurements is carried out based on the following criteria:

• building operating mode – working or non-working hours
• time of measurement – past measurements taken at the same hour of the day as the

present measurements, as well as measurements taken one hour before and one hour
after: for example, if the prediction is to be carried out today at 2 PM, past measure‐
ments taken at 1, 2 and 3 PM are selected

• outside air temperature – past measurements corresponding to outside air tempera‐
tures within a ± 2°C interval with respect to the present temperature value

Only measurements satisfying the above criteria are selected during the indexing
process, and they become current hours of past cases.

The procedure for arranging the information in past cases is identical to that used
for the present case, with the exception that the values of past building electricity
consumptions following the current hour are included, since these past values will be
used to predict the electricity use of the present case.

Next, for each input variable of a case, the variable similarity between the present
case and its corresponding measurements from past cases is calculated using the Eucli‐
dean distance between present and past measurements. A factor that decreases linearly
as the measurement time is further away from the current hour is used, such that recent
measurements are more significant than older ones. This distance is calculated as
follows:

(1)

where n represents the number of measurements, d(X,X’) is the distance between the
measurements of a variable from the present case to a past case, wi stands for time-
decreasing factor of measurement at time i and xi and x’i represent the measurement at
time i of the variables from the present and past cases, respectively.

Next, the variable similarity is calculated using this distance and minimum and
maximum thresholds – dmin and dmax, respectively. If the distance between two variables
is less than dmin, the variables are considered to be perfectly similar – similarity of 1. If
the distance is superior to dmax the variables are considered not at all similar – similarity
of 0. The dmin and dmax values are usually selected based on expert knowledge of the
building operation. The variable similarity VS varies linearly between 0 and 1:

(2)

CBR Model for Predicting a Building’s Electricity Use 311

Next, the similarity between the present case and each past case is calculated
using the variable similarities previously calculated, along with weights associated
to each input variable. These weights represent the significance of the input vari‐
able in predicting the building electricity use. Having M input variables, the case
similarity CS is calculated as the weighted average of the input variables’ similarities:

(3)

where VSj and wj represent the variable similarity and the weight of the jth variable,
respectively. The weight of each variable was set to 1, since it was assumed all vari‐
ables have the same impact on the building electricity use.

Next, the building electricity consumption corresponding to the present case is
calculated. From all the past cases identified previously, only those having a simi‐
larity value superior to a predetermined threshold are used for prediction. This
threshold was set to 0.8, meaning that past cases with a similarity value less than 0.8
are not considered similar enough with the present case and they will not be used for
prediction. The building electricity consumption of the present case Pt is predicted
as a weighted average of the consumptions from each similar past case:

(4)

where K is number of similar cases, CSk is the similarity of kth case and Yk,t repre‐
sents the electricity consumption of the kth case at time t. One similar past case is
sufficient to carry out the prediction.

An example of a present and past case is shown in Fig. 2:

• the modelling inputs are the variables presented in Table 1 – represented by IN1 to
IN12

• the modelling output is the building electricity consumption, denoted by OUT
• the current hour is 10 AM for both the present and past case
• the outside air temperature (IN1) of the present case is 10°C, and that of the past case

is 11°C (the difference is within the ± 2°C interval used during the indexing process)
• the forecast values of the outside air temperature and humidity (IN3 and IN4) are

available for the 6 h following the current hour
• the electricity consumption values are available in the past case, and they will be used

to predict the consumption of the present case, along with the case similarity value
determined using variable similarities (VS1 to VS12)

312 R. Platon et al.

Fig. 2. Example of a present and past case

4 On-Line Model Implementation and Performance

In order to simulate the case of a building where historical data is not available, the
database storing measurements was emptied before the on-line implementation of the
model. The model’s ability to learn and improve its predictive accuracy as more data
becomes available was monitored.

The model was implemented on-line on January 19th 2015, and the hourly predictions
calculated until April 7th 2015 were analyzed in this study. The predictive performance was
calculated in terms of the Coefficient of Variation of the Root Mean Square Error –
CV(RMSE) – calculated as the square root of the average of the squares of the error for
each observation, normalized to the mean of the measured building electricity consumption.

One hour following the on-line implementation, 1 similar past case is used to carry
out the prediction; the error is high, close to 44 %. However, as more data becomes
available, the case library grows and the error sharply drops: 16 h following the on-line
implementation, the error decreases by half, being close to 22 %. The error continues to
decrease, reaching 12.8 % at the end of the monitored period – 468 h following the on-
line implementation. The error evolution is shown in Fig. 3, and summarized, with
respect to the number of hours following the on-line implementation, in Table 2.

CBR Model for Predicting a Building’s Electricity Use 313

Table 2. Predictive error evolution summary

Date (2015) Number of hours after
on-line implementation

Error

Jan. 19th 1 44.42 %

Jan. 20th 16 22.39 %

Jan. 23rd 39 15.98 %

March 9th 309 14.99 %

March 17th 375 13.97 %

March 27th 452 12.98 %

April 7th 468 12.79 %

To be noted is the fact that despite having almost 4 months’ worth of data, only 468
hourly predictions are generated. This is normal, since this analysis covers only a
building operating mode corresponding to working hours (7 AM to 5 PM) and there are
fewer working-hours than non-working hours in this period.

The error evolution plot presented in Fig. 3 shows small variations in the error values:
the error has a decreasing trend, and suddenly slightly increases before decreasing again.
This is most probably explained by the inherent nature of building measurements that
can vary due to different reasons, such as equipment start-up or shut-down or erroneous
readings from measuring instruments. In case of such variations, the CBR model might
experience difficulties in finding similar past cases. However, the predictive accuracy
clearly shows significant improvement as more data becomes available.

The CBR model performs very well, having an error of 12.8 % error at the end of
the monitored period, which is well within the recommended ASHRAE limits – 30 %
for hourly predictions [21]. This is a very accurate result, considering off-line tests

Fig. 3. Predictive error evolution

314 R. Platon et al.

showed that the error calculated with a case library containing one year’s worth of past
data was approximately 13 % [18].

The prediction is carried out for a 6-hour horizon, and situations might occur when,
at a given hour, similar past cases could not be formed since the current conditions were
not similar enough to those present in the historical dataset. In these situations, the
prediction of the building electricity use is not calculated, but predicted values from the
previous hour are retained. Out of 468 hourly observations recorded during the moni‐
tored period, 57 such situations occurred. The predictive error of these observations is
significantly greater than that of the observations corresponding to situations where the
prediction was calculated each hour: 23.9 % vs. 10.5 %, respectively. This highlights
the importance of having predictions each hour in order to maintain accurate results.
These results are presented in Table 3.

Table 3. Predictive error with respect to the presence of hourly predictions

Observations Number Error

With and without hourly predictions 468 12.79 %

Without hourly predictions only 57 23.86 %

With hourly predictions only 411 10.54 %

5 Future Work

5.1 Hybrid Predictive Approach

The results obtained in this study show that the CBR model has significant capabilities
to deal with an initial absence of historical data and continuously learn and improve as
more data becomes available. This makes it suitable for new and retrofit buildings where
historical data is not available.

However, when using one year’s worth of past data for model development, an ANN
model outperformed this CBR model, having an error almost 50 % lower [18]. Although
being more accurate, ANN models have weak extrapolation capabilities outside the
dataspace used for modelling and they need to be re-calculated when presented with
measurements that are not representative of the general trend of the data used for model‐
ling; moreover, these models require a relatively large amount of data to achieve high
predictive accuracy. CBR models are able to continuously learn from new data auto‐
matically, without having to be re-calculated.

A hybrid approach, combing the strengths of the CBR and ANN modelling methods
will be investigated:

• initially, when a small volume of historical or no data at all is available, a CBR model
would carry out the predictions and continuously learn and improve as more data
becomes available

• later on, as sufficient historical data is available, an ANN will be used to further
improve the predictive accuracy

CBR Model for Predicting a Building’s Electricity Use 315

The size of the dataset required to develop an accurate ANN model will be an
important part of this investigation.

5.2 CBR Model Weights

In this study, the weights of the inputs used in the CBR model were all set to 1, as
it was considered that all the input variables have an equal impact on the prediction
and no a-priori knowledge of these variables is available. However, not all the vari‐
ables might have the same impact on the energy consumption of a building: for
example, weather conditions – temperature and relative humidity – typically play a
major role in the energy use.

The PCA analysis indicated that some variables are more responsible than others
for the overall variability of the dataset; therefore, the weights of the inputs in
the CBR model can be selected to reflect the variable significance as determined by
the PCA procedure. However, the same variable has different coefficients in each
of the principal components (PCs) of the PCA model, and each PC is responsible for
explaining different levels of overall data variability. For example, the outside air
relative humidity has the following coefficients in the first 3 PCs:

• 0.41 in the first PC, which explains 60.4 % of the data variability
• 0.89 in the second PC, which explains 24.3 % of the data variability
• 0.19 the third PC, which explains 8.4 % of the data variability

A procedure for determining the weights of the inputs in the CBR model as a
function of the variable coefficients in each PC as well as the PC’s contribution to
explaining the overall data variability will be investigated.

An approach for optimizing the weights, either through a mathematical proce‐
dure or by using expert knowledge of the building operation, should also be inves‐
tigated.

5.3 On-Line Data Preprocessing

The quality of the data is critical to obtaining accurate predictions. Measurements
not representative of the general trend of the data used for model development might
occur due to a variety of factors, such as sudden changes from a normal operation
regime, measuring instrument malfunctions, database problems, and equipment
start-up or shut-down.

The model might experience predictive difficulties in the presence of such data,
and we consider that it is better not to calculate the prediction in this situation, than
to calculate an erroneous value that might lead to wrong decisions regarding the
operation of the building. As an example, deviations from the general trend of the
boiler water outlet temperatures are shown in Fig. 4.

The development of an automatic procedure to identify on-line deviations will be
investigated.

316 R. Platon et al.

6 Conclusion

This paper presented the application of a CBR model for predicting the hourly electricity
consumption of an institutional building located in Calgary, Canada. The model uses
measurements related to the building operation, as well as measured and forecast
weather information to predict the building electricity consumption for the next 6 h. The
model’s ability to efficiently handle an initial absence of historical data and continuously
learn and improve as more data becomes available was tested: prior to on-line model
implementation, the database holding historical data was emptied. The predictive accu‐
racy was monitored for a period of almost 4 months.

Building operation modes corresponding to working and non-working hours were
identified. In order to appropriately represent the building electricity use profiles, a
predictive model corresponding to each operating mode was used; as the building
consumes significantly more electricity during working hours than during non-working
hours, the study presented in this paper concentrates on the working-hours model.

Results show that the predictive accuracy significantly improves as more data
becomes available:

• the initial error was 44.4 %, but then it decreased to 22.4 % after only 16 h following
the model on-line implementation

• 39 h following the implementation, the error was below 16 %
• after almost 4 months, the error was 12.8 %

The error is well within the recommended ASHRAE limits for hourly predictions,
and represents a very accurate result, since off-line tests showed that the CBR model
had a predictive accuracy of approximately 13 % when one year’s worth of past data
was available.

The results indicate that the CBR predictive model is highly applicable for new and
retrofit buildings, where historical data is not available. A hybrid approach that combines
the strengths of a CBR model – being able to achieve a good predictive performance

Fig. 4. Boiler water temperature (general trend and deviations)

CBR Model for Predicting a Building’s Electricity Use 317

with a small amount of data and continuously learn as more data becomes available –
with the strengths of an artificial neural network model – high predictive accuracy
provided sufficient data is available – were discussed. The need for automatic on-line
detection of erroneous measurements, or measurements not representative of the general
trend of the data used for model development, and the need for optimizing the input
weights of the CBR model were also discussed.

References

1. Transition to Sustainable Buildings. International Energy Agency, Paris (2013)
2. North American Intelligent Buildings Roadmap. Continental Automated Buildings

Association, Ottawa (2011)
3. Kreider, J.F., Haberl, J.S: Predicting hourly building energy use: the great energy predictor

shootout – overview and discussion of results. In: Proceedings of the ASHRAE Annual
Meeting, June 25–29 1994, pp. 1104–1118, Florida (1994)

4. Haberl, J.S., Thamilseran, S.: Great energy predictor shootout II measuring retrofit savings.
ASHRAE J. 40, 49–56 (1998)

5. Zhao, H.-X., Magoules, F.: A review on the prediction of building energy consumption.
Renew. Sustain. Energy Rev. 16, 3586–3592 (2012)

6. Ekici, B.B., Aksoy, U.T.: Prediction of building energy consumption by using artificial neural
networks. Adv. Eng. Softw. 40, 356–362 (2009)

7. Gonzalez, P.A., Zamarreno, J.M.: Prediction of hourly energy consumption in buildings based
on a feedback artificial neural network. Energy Build. 37, 595–601 (2005)

8. Karatasou, S., Santamouris, M., Geros, V.: Modeling and predicting building’s energy use
with artificial neural networks: methods and results. Energy Build. 38, 949–958 (2006)

9. Ucenic, C., Atsalakis, G.: A neuro-fuzzy approach to forecast the electricity demand. In:
Proceedings of the 2006 IASME/WSEAS International Conference on Energy &
Environmental Systems, pp. 299–304, Chalkida, Greece (2006)

10. Escrivá-Escrivá, G., Roldán-Blay, C., Álvarez-Bel, C.: Electrical consumption forecast using
actual data of building end-use decomposition. Energy Build. 82, 73–81 (2014)

11. Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., Alcázar-Ortega, M.: New artificial
neural network prediction method for electrical consumption forecasting based on building
end-uses. Energy Build. 43, 3112–3119 (2011)

12. Yang, J., Rivard, H., Zmeureanu, R.: On-line building energy prediction using adaptive
artificial neural networks. Energy Build. 37, 1250–1259 (2005)

13. Neto, A.H., Fiorelli, F.A.S.: Comparison between detailed model simulation and artificial
neural network for forecasting building energy consumption. Energy Build. 40, 2169–2176
(2008)

14. Hong, T., Koo, C., Jeong, K.: A decision support model for reducing electric energy
consumption in elementary school facilities. Appl. Energy 95, 253–266 (2012)

15. Breekweg, M.R.B., Gruber, P., Ahmed, O.: Development of a generalized neural network
model to detect faults in building energy performance – Part I. In: ASHRAE Transactions,
Atlanta (2000)

16. Kumar, S., Mahdavib, A.: Integrating thermal comfort field data analysis in a case-based
building simulation environment. Build. Environ. 36, 711–720 (2001)

17. Monfet, D., Corsi, M., Choiniere, D., Arkhipova, E.: Development of an energy prediction
tool for commercial buildings using case-based reasoning. Energy Build. 81, 152–160 (2014)

318 R. Platon et al.

18. Platon, R., Dehkordi, V.R., Martel, J.: Hourly prediction of a building’s electricity
consumption using case-based reasoning, artificial neural networks and principal component
analysis. Energy Build. 92, 10–18 (2015)

19. Ndiayea, D., Gabriel, K.: Principal component analysis of the electricity consumption in
residential dwellings. Energy Build. 43, 446–453 (2011)

20. Lam, J.C., Wan, K.W., Cheung, K.L., Yang, L.: Principal component analysis of electricity
use in office buildings. Energy Build. 40, 828–836 (2008)

21. ASHRAE Guideline 14: Measurement of energy and demand savings. In: ASHRAE, Atlanta
(2002)

CBR Model for Predicting a Building’s Electricity Use 319

Modelling Hierarchical Relationships in Group
Recommender Systems

Lara Quijano-Sánchez(B), Juan A. Recio-Garćıa, and Belen Dı́az-Agudo

Universidad Complutense de Madrid, Madrid, Spain
{lara.quijano,jareciog,belend}@fdi.ucm.es

Abstract. Group recommender systems have become systems of great
interest in the CBR community. In previous papers we have described
and validated a social recommendation model that solves different group
recommendation challenges using knowledge from social networks. In
this paper we have run across two identified limitations of our model,
unprofiled users and “hierarchical relations” within a group, and have
proposed and validated CBR solutions for them.

1 Introduction

Recommender systems are tools that provide suggestions to users. These sugges-
tions are aimed at supporting their users in various decision-making processes,
such as what items to buy, what music to listen, or places to visit [19]. Devel-
opment of recommender systems is a multi-disciplinary effort which involves
experts from various fields such as Artificial Intelligence, Case-Based Reason-
ing (CBR), Personalization, Human Computer Interaction, etc. CBR has a long
history of contributing to recommender systems [1,2,11]. Most simply, we can
build a case-based recommender system where the cases represent the items
(e.g. products) and the CBR application recommends cases that are similar to
the user’s partially-described preferences. More interestingly, the cases in the
case base can instead describe recommendation experiences [4], can alleviate the
cold-start problem [15], or can replay previous group behaviour [14].

Up till now, our main line of research has focused on the generation of a set
of recommendations that satisfy a group of users, with potentially competing
interests. To do so, we have reviewed different ways of combining peoples’ per-
sonal preferences and proposed an approach that takes into account the social
behaviour within a group. Our approach, named Social Recommendation Model
(SRM), defines a set of recommendation methods that include the analysis and
use of several social factors such as the personality of group members in con-
flict situations or the trust between them [16,18]. Besides, in order to verify our
SRM we have developed a movie group recommender application, HappyMovie,
in the social network Facebook that helps us to automatically retrieve the social
factors in our SRM and implements our proposal [17].

In the course of developing our SRM , we have uncovered two main limi-
tations related to the different behaviour patterns users have when involved in
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 320–335, 2015.
DOI: 10.1007/978-3-319-24586-7 22

Modelling Hierarchical Relationships in Group Recommender Systems 321

decision-making processes with different group configurations. In this paper we
have run across two identified limitations: (1) Related to HappyMovie’s usability
and therefore to SRM ’s applicability. Our models’ main premise is to improve
group recommendations through the usage of knowledge stored in social net-
works. For this reason, our implementation of SRM , HappyMovie, is embedded
in Facebook. This limits our model to provide recommendations to users that
belong to this social network, leaving users such as children, elderly or in general
people outside this network unprofiled. Besides, people inside Facebook mostly
belong to a limited age range that mainly represents groups of friends. This leaves
for example family outings out of the scope of our system. (2) It is a fact that
users inside different social environments behave differently [3] and have different
hierarchical relations. For example, a parent won’t behave equally when going
to the movies with friends than when taking her/his children. This fact is due to
the hierarchical relations that emerge in any group decision-making process. In
our SRM , we have modelled users social behaviour through the computation of
social factors. However, these factors are computed as a fixed value for each user
(or pair of users). Hence, we fail to capture the different hierarchical relations
each user has across the different groups s/he belongs to.

In order to increase HappyMovie’s usability and our model’s applicability
(limitation (1)), we have defined “prototypical” users that represent those mem-
bers that can’t, don’t or won’t have a profile inside a social network. Preferences
and social knowledge for these unprofiled users in the group are retrieved and
reused, in a certain group context, from a case base CBusr of prototypical users
and a case base CBgrp of groups’ social behaviour. Regarding limitation (2),
in this paper we propose the use of an additional social factor related to “hier-
archical relations” within a group: dominance factor du,u′ . This factor can be
static (i.e. family relationships) or situation-dependent (i.e. someone decides the
movie when it is her/his birthday). In order to better model users’ different
behaviour patterns across different group configurations, we retrieve and reuse
a group’s “hierarchical relations” from an extension of our social behaviour case
base CBgrp. We believe that it is natural to use CBR approaches because, in
leisure domains, similar events recur: the same group (perhaps with some small
variations) repeats activities together; and some age, gender and hierarchy dis-
tributions will tend to recur too (e.g. two adults with two children, or several
friends in the same age range).

The paper runs as follows. Section 2 summarises our previous research, that
is, our Social Recommendation Model (SRM) [16,18]; Sect. 3 presents some iden-
tified limitations of our SRM and some solutions in a case base fashion to them;
Sect. 4 presents a case study where we verify the improvement of group recom-
mendation results when including our case base approaches and Sect. 5 concludes
and presents some ideas for future work.

2 Social Recommendation Model

The task of making group recommendations is quite challenging as it has to
present a set of interesting products not only to a single person but to a group

322 L. Quijano-Sánchez et al.

of people whose concerns are not always compatible. Our approach considers
that the real satisfaction of a group regarding a group recommendation cannot
be accurately estimated using the simple aggregation of its members’ individual
preferences. Thus, considering people as social entities that relate with each other
allows the better estimation of their individual satisfaction regarding the result
of the recommendation and, therefore, improves the global group satisfaction.
To address this issue, we have focused our line of work on modelling groups
social dynamics by capturing human affective and social processes [16–18], a
task which is novel to group recommenders research. To do so, we introduce two
main social factors: personality and trust.

In order to model how easily influenced a user is in a decision-making process
we use a personality test (the TKI test [22]) to obtain different user profiles
(personality values pu

1) that interact differently in conflict situations. According
to Thomas-Kilmann’s study [22] users that present a low personality value (pu <
0.4) are considered cooperative, which reflects highly tolerant people, meaning
that even if the selected item is not the one of their choice, it is good enough
for them if the group selects it. On the other hand users that present a high
personality value (pu > 0.6) are considered assertive, which reflects more selfish
people, meaning that other people’s choices do not satisfy them.

The second factor that we introduce, trust, measures closeness between group
members as in how much users can mutually influence each other. Its computa-
tion consists of a novel technique of eliciting information from users connected
through Social Networks. This trust factor represents the tie strength between
users. We have studied several social factors that affect users in order to calculate
the tie strength between them. The analyzed factors (which follow the literature
regarding tie strength elicitation [7]) are: number of common friends, intensity
of the relationship, duration of the relationship and pictures in common. The
concrete process followed to compute the trust factor2, tu,u′ , in our approach is
fully detailed in [17].

Our SRM proposes a variation of traditional preference aggregation
approaches [13], where before aggregating users individual predicted ratings
(r̂u,i) we modify them with users’ personality and trust [16,18]. Hence, our SRM
can be defined as the set of methods that follow Eq. 1:

r̂Ga,i =
⊔

∀u,u′∈Ga∧u�=u′
SocialFunction(r̂[u|u′],i , p[u|u′] , tu,u′ , sf(u, u′)) (1)

1 pu represents user u’s predominant behavior according to her/his TKI evaluation
[22]. It fits within a range of (0,1], 0 being the reflection of a very cooperative
person and 1 the reflection of a very assertive one. This value is computed through
a compulsory personality test in HappyMovie as detailed in [17].

2 This factor fits within a range of (0,1], 0 being the reflection of a person someone is
not close to and 1 the reflection of a person someone is really close to.

Modelling Hierarchical Relationships in Group Recommender Systems 323

where r̂Ga,i is the estimated rating for a given item i and active group Ga. �
represents any possible aggregation function to be used3. pu represents users
personality, [u|u′] reflects that this factor is applied in the SocialFunction for
users u or u′, tu,u′ represents users tie strength relationships and, sf , is a set of
different social factors {fs1, .., fsn} that can be included or not, depending on
whether we want to further apply more social factors or not.

We have devised several recommendation methods based on Eq. 1. For exam-
ple, the Delegation-Based Recommendation method (DBR) [16] or the Influence-
Based Recommendation method (IBR) [18]. The other main contribution of our
work has been the instantiation of our model in a real-life scenario, the social
network Facebook. As a result we have built HappyMovie [17], which provides
a group recommendation for a group of people who wish to go to the cinema
together.

3 Limitations of Our SRM

With our SRM we have been able to improve the recommendation outcome
of traditional preference aggregation approaches [16–18]. The key factor in the
success of our SRM is the inclusion of social factors. These social factors define
each person (our users involved in the recommendation process) as a poten-
tially influenced component of a social community (or group) determined by the
environment. In our SRM (and therefore in HappyMovie), each social factor is
computed just once, for each user or pair of users, and stays fixed throughout all
possible group recommendations and configurations. Besides, groups of users are
formed through the creation of events in Facebook. This fact limited our model to
the premise that the groups to be recommended were formed by Facebook users,
that is, mostly groups of friends performing joint activities. A completely differ-
ent situation would be family group recommendation processes, where some of
the members (elder or kids) might not have Facebook accounts. In order to solve
this limitation (limitation (1)) there is a need to extend HappyMovie’s usability.
Besides, in family outings, age difference (elder, kids) considerably varies the
possible activities, the different priorities that must be taken into account when
trying to satisfy the different group members and the different hierarchies that
users have inside a group. However, our SRM fails to model the different weights
and priorities that users inside a group have depending on their group configura-
tion. In order to solve this limitation (limitation (2)) we study how the different
social factors (personality and trust) vary inside different group configurations.

After this discussion of the limitations of our model, we believe that a neces-
sary step in the improvement of our SRM should be the analysis of group behav-
iour according to group hierarchies and the increase of HappyMovie’s usability
(and hence of SRM ’s applicability) by being able to include in the system’s
group representation those users that are unprofiled inside the social network.
3 There are several techniques for individual preferences aggregation [12], being least
misery (where the minimum is taken), most pleasure (where the maximum is taken)
and average satisfaction (where the average is taken) the most common ones.

324 L. Quijano-Sánchez et al.

We believe that these problems can be ideally solved using a CBR approach.
Next, we present our solution to each of the identified limitations. To do so we
will introduce two complementary CBR systems, CBusr and CBgrp, that solve
limitation (1) by inferring unprofiled users’ missing information4 (Sects. 3.1 and
3.2) and an extension of CBgrp that solves limitation (2) (Sect. 3.3) by including
“hierarchical relations” in SRM .

3.1 Representation of unprofiled users

When studying the problem of including in the group configuration users that
do not have Facebook profiles (limitation (1)), a simple solution could be hav-
ing a case base CBusr of real users where each case Cusr ε CBusr models a
different user that can be used as a prototype for unprofiled users. In order to
retrieve from CBusr the case Cusr, that represents v, the most similar user to
an unprofiled user u that needs to be added to an active group Ga requesting a
recommendation, we must acknowledge the fact the user u itself has no access to
the group recommender application (because s/he does not have a social network
account). Therefore, it must be another user u′ ε Ga that includes her/him in
the group and provides the information about u. Note that a person’s knowledge
about others is limited, specially if related to sensible information. Therefore, we
only request demographic information such as the age or gender of the unprofiled
user. Next, we need to infer the missing information that our SRM needs for
the recommendation process. This information is retrieved from CBusr to model
the unprofiled user and consists of users’ personality (pu) and preferences (ru,i).
Hence, each case needs to have the following structure: Cusr = 〈Dusr, Susr〉,
where the description part is defined as Dusr = 〈idc , u.age, u.gender〉 and the
solution part is defined as Susr = 〈pu, ru,i〉. In them:

– idc is a case identification number, used to distinguish the case from others,
but otherwise not used by the CBR system CBusr.

– The problem description Dusr part of the case comprises the demographic
information of each user: user u’s age (u.age) and user u’s gender (u.gender);

– The solution Susr part of the case contains the social information of each user:
user u’s personality (pu) and user u’s preferences (ru,i);

Due to the little information we request as part of Dusr
5, a lot of users fit

in the description part of the case. This forces us to create different prefixed
models that serve as general solutions. To do so, we divide users in CBusr by
4 That is: users’ personality (pu) and individual preferences (ru,i) that are obtained

through tests in HappyMovie and users’ trust with each other (tu,u′) that is auto-
matically computed through user’s personal information stored in Facebook profiles
(see [17] for HappyMovie’s functionality details).

5 This is done for obvious reasons: (1) user u′, inscribing in the group the unprofiled
user u, is not able to provide the system with concrete values representing user’s
u personality and preferences. (2) We believe it will not be adequate or practi-
cal/possible to ask at this point to user u to start answering the needed tests.

Modelling Hierarchical Relationships in Group Recommender Systems 325

gender and age ranges of <12, [12–18), [18–30), [30–40), [40–50) and >506. Then,
when a solution Susr is needed we compute for unprofiled user u’s corresponding
age range and gender a prototype user as the average of the personality and
preferences tests results of the users in CBusr that fit description Dusr (provid-
ing us with pu and the set of ru,i, i ε HappyMovie’s preferences test catalogue
of movies). Users in CBusr are HappyMovie’s users and children (that have
answered the tests outside the application) of friends, colleagues and family.
CBusr has the following age ranges and number of users:

Age range Number of males Number of females

<12 10* 10*

[12–18) 11* 18*

[18–30) 112 41

[30–40) 7* 9*

[40–50) 4* 5*

>50 3 4

Note that the prototypes keep refining the more users our system has. For
example prototypes of cells with an * in the user distribution table have been
updated after the experiment carried out in Sect. 4. A trend we have found when
processing users answers to the given tests is that the standard deviation in users
answers for both female and male users grew bigger the older the users were (with
an increase of ∼0.116). This translates into the conclusion that children have
less deviation on their preferences and they all have quite similar preferences
on movies. Adults have more variation on their ratings, more experience, more
defined tastes and different personal preferences. Besides, another observed fact
is that, even if the preferences test should reflect individual preferences, parents
have a clear tendency of filling the test taking into account their children’s
preferences, foreseeing that the whole family will go to the cinema together.

Note that, at this point, the system has all the personal information needed
by SRM about users in groups, both the ones that do have a profile in Facebook
and the ones that do not. This information includes users’ personality pu and
users’ individual preferences ru,i. However, there is one important factor missing
in our model’s unprofiled users, trust factor (tu,u′). As we have said before our
SRM automatically computes tu,u′ by extracting social information from users
profiles in the social network (see Sect. 2). However, now that we have introduced
“prototypical” users, the trust factor between unprofiled users and: profiled users
and/or other unprofiled users is missing. Next, we explain how we compute it
and how we later extend this approach to help us better model users different
behaviour patterns inside different group configurations.
6 These ranges could be of course extended and have been selected as representations

of the main stages of life.

326 L. Quijano-Sánchez et al.

3.2 Inferring Interpersonal Trust for Unprofiled Users

To estimate the trust of an unprofiled user we have developed a second CBR
system, CBgrp, that stores the information about the social relationships among
group members. Cases inside CBgrp are defined as follows: Cgrp = 〈Dgrp, Sgrp〉,
where the description part is defined as Dgrp = 〈idc , U〉 and the solution part is
defined as Sgrp = 〈V, T 〉. In them:

– idc is a case identification number, used to distinguish the case from others,
but otherwise not used by the CBR system CBgrp;

– The problem description Dgrp part of the case comprises the composition of
each group. Group compositions are defined as the set of users U containing
users’ demographical and social information, that is both the information
used and retrieved from the approach explained above, the CBusr case base.
Therefore for each user u in the group description U we have her/his gender
u.gender, age range u.age, personality pu and preferences ru,i;

– The solution Sgrp of the case contains a graph representing the trust among
users: Users in the group (V = {v1, ..., vn}) are the vertices of the graph and
the trust among users is represented as a list of edges
T = {〈v, v′, tv,v′〉} ∀v, v′ ∈ V ;

We use Cgrp, that represents the most similar group to Ga in our case base
CBgrp, to retrieve the trust factor information that may be missing if Ga has
“prototypical” users (see Fig. 1). For each Ga we retrieve the case Cgrp ε CBgrp

that is most similar according to the group composition. In order to retrieve
the most similar group we have designed an algorithm that pairs each user u
in Ga with the one that plays the most similar role in the retrieved group Gc.
This algorithm is a variance of the ones described in [14] and [15]. We have
altered the original definitions for two reasons: (1) In [14] the goal was to find
the pairing that maximized total similarity, meaning that a person in Ga might
not be paired with the person who is most similar in Gc, it just optimized total
similarity. In [15], gsim definition did pair each user with its most similar user,
however, the mapping was not bijective, meaning we did not prevent two or more
people from Ga being associated with the same user Gc. As in this paper we do

Fig. 1. Group retrieval: retrieve the missing trust values from the most similar user.

Modelling Hierarchical Relationships in Group Recommender Systems 327

wanted to pair each user with its most similar user and also needed the mapping
to be bijective (because we want to later infer the “hierarchical relations” within
that group, hence we need each user to paired with the one that played the
most similar role, Sect. 3.3), we have used [15]’s gsim definition but using [14]’s
bijective mapping. (2) In [15] the group Ga had the complete graph of trust
values in the problem description part of the case, this means that tu,v was used
as part of the case definition and not as part of the solution and therefore it
was used in the user similarity computation usim. Here we have reused usim
without taking the tu,v similarity into account. Next we describe our similarity
metric.

We denote the group similarity by gsim. It is a form of graph similarity
where users are nodes, which we provide (Dgrp); trust relationships and roles
inside the group are weighted edges which we retrieve (Sgrp). In our definition
of group similarity, we pair each user from the active group Ga with exactly
one user from the group in the case Gc and vice versa. In other words, we will
be finding a bijection from Ga to Gc. This raises a problem when comparing
groups of different sizes, where a bijection is not possible. In such situations,
we could simply say that gsim(Ga, Gc) = 0. However, we did not want to do
this. It might force the system to retrieve unsuitable cases. Consider a case base
that just happens to contain many families of four (two adults, two children), no
families of five, but many parties of five friends. If the active group is a family of
five (two adults, three children), it is surely not appropriate to prevent retrieval
of families of four and only retrieve parties of five friends. To enable comparisons,
this is the point, prior to computing similarity, that we insert additional virtual
users into either Ga or Gc, whichever is the smaller, in order to make the groups
the same size.

Now, we can define the group similarity measure. Consider any pair of equal-
sized groups, G and G′ and a bijection, f : G �→ G′. We will map members of
G to G′, and so for any u ∈ G, we can compute the similarity, usim, to his/her
most similar partner v ∈ G′, obtaining a tuple < u, v >. We will do this for each
user and his/her partner, and take the average:

gsim(G,G′, f) =̂
∑

u∈G usim(u,G, f(v∗, G′))
|G| (2)

where
v∗ =̂ arg maxv∈G′usim(u,G, v,G′) (3)

The definition of gsim (Eq. 2) uses usim, the similarity between a person u in
one group G and a person v in another group G′, which we have not yet defined.
We make use of their ratings, age, gender and personality values. Specifically,
we combine local similarities into a global similarity. The local similarities are
as follows. For the users’ ratings, we use the Pearson correlation [9] (ρ[0,1]). For
gender, we use an equality metric (eq(x, y)) and for ages and personalities, we
use the range-normalized difference (rn diffattr (x, y)):

eq(x, y) =̂
{

1 if x = y
0 otherwise rn diffattr (x, y) =̂ 1 − |x − y|

rangeattr

328 L. Quijano-Sánchez et al.

Finally, the global similarity, usim, is simply an average of ρ[0,1], eqgender ,
rn diffage and rn diffpu

. However, we have the problem of virtual users, who
do not have ages, genders, personalities, or ratings. If either user is a virtual user,
we simply take usim to be the mid-point of the similarity range. Empirically,
this is 0.6. This means that there is neither an advantage nor a disadvantage
to being matched with a virtual user and, since everyone must be paired with
someone, this seems appropriate.

While this completes the definition of gsim(G,G′, f), it assumes that we give
it a particular bijection, f , which pairs members of G with members of G′. But,
for the similarity, we want to consider every such bijection and settle on the best
one, the one that gives the best alignment between the group members (their
ages, genders, personalities, ratings). We must compute usim for each bijection.
Let B(A,B) denote all bijections between equal-sized sets A and B. For example,
if A is {a, b, c} and B is {x, y, z}, then one bijection is {a �→ x, b �→ y, c �→ z},
another is {a �→ y, b �→ x, c �→ z}, and so on. Our definition of the similarity of
group G and G′ is based on finding the bijection, out of all the possible bijections,
that maximizes the similarity between users, usim, Eq. 3.

gsim(G,G′) =̂ max
f∈B(G,G′)

gsim(G,G′, f) (4)

Think of this as finding the pairing that maximizes similarity between users so
that we get the correct matching between users that play similar roles in groups.
Note that as this is a bijection each user u in Ga will be pair to a different user
v in Gc.

Now that we have retrieved the most similar group to Ga along with its trust
distribution graph T and we have a set of tuples < u, v > that match each user
in Ga to its corresponding user in Cgrp (which is the one that played the most
similar role). We assign to each pair of users (u1, u2) in Ga that have a missing
trust value (tu1,u2), the trust value between their corresponding users (v1, v2) in
Cgrp according to the set of tuples < u, v >, that is tv1,v2 (see Fig. 1). This way
we are able to address the problem of the missing trust values when introducing
unprofiled users in the group configuration.

3.3 Modelling Hierarchical Relationships

Users inside different social environments behave differently [3]. As we have said
before, this is a fact that our SRM did not contemplate when computing the
different social factors that model users’ social behaviour (limitation (2)). There
is evidence that people’s personality (understood as how cooperative or easily
influenced they are) and trust (understood as how much others can influence
them) vary depending on their social environment. This evidence can be found
in several studies [23] and in several personal statements: “I find that I often
adapt my personality to certain people. It’s like with each individual (co-workers,
friends, family) I develop a certain image or personality that fits with that
person” [21].

Modelling Hierarchical Relationships in Group Recommender Systems 329

There are different social theories that identify and formalize the hierarchi-
cal behaviour in a group. For example, the social dominance theory (SDT) is
a theory of group relations that focuses on the maintenance and stability of
group-based social hierarchies [20]. SDT begins with the empirical observation
that social systems have a threefold group-based hierarchy structure: age-based,
gender-based and arbitrary set-based. Age-based hierarchies invariably give more
power to adults and middle-age people than children and younger adults, and
gender-based hierarchies invariably grant more power to one gender over other,
but arbitrary-set hierarchies are truly arbitrary and group dependent. This kind
of social behaviour is also referred as “power relationships” [8]. Although this
term is usually applied to the relation of superiors with respect to subordinates
and related to the concept of authority, it can be also applied to social groups.
According to the social psychologists French and Raven [6], power is that state
of affairs which holds in a given relationship, A-B, such that a given influence
attempt by A over B makes A’s desired change in B more likely. Another theory
that tries to explain this social behaviour is Game Theory [5]. Therefore, there
are different social theories that define from different points of view the rela-
tionships that influence the outcome of a decision within a group. Leaving aside
the discussion about the correct term to define this type of relationship, in this
paper we introduce this factor in our model named as dominance factor. This
new social factor, both static (family, friendship, etc.) or situation-dependent
(celebrations, events, etc.), is included in our SRM to provide better group rec-
ommendations. In order to define this new social factor we have followed Leavitt
[10] that suggested that there are certain “hierarchical relations”, which are
useful in predicting human behaviour:

– Equality. This relationship represents that users treat each other as equals.
When applied in roles inside groups it can represent children of the same age
and adults of the same/similar age, that is brothers/sisters and friends.

– Dominant. This relationship represents higher priority and necessities. When
applied in roles inside groups it can represent children towards adults, elderly
towards others or guests (celebrations, birthdays) towards others.

– Submissive. This relationship represents lower priority and necessities. When
applied in roles inside groups it can represent adults towards children, others
towards elderly or others towards guests (celebrations, birthdays).

Asking users to manually indicate their social hierarchical relations and
behaviour inside each group every time they ask for a recommendation or that
the group configuration varies is unaffordable. Also, to our knowledge, there
are no personality tests or tie strength prediction tests that extract this type
of information. Hence, this type of problem suggests addressing it with a CBR
solution that allows us to retrieve from the case base CBgrp of groups, their
social hierarchical patterns and adapt the previously computed social factors of
the requesting active group Ga to the patterns retrieved in the most similar case
Cgrp. To do so we can extend our CBR system for trust inference and include the
dominance relationship in the representation of the solution: Sgrp = 〈V, T,D〉

330 L. Quijano-Sánchez et al.

Fig. 2. Group retrieval: Retrieve behaviour pattern roles from the most similar user +
example of the social hierarchical patterns in a family composed by two adults of age
45 and two children of age 15 and 6 respectively.

being V and T equally defined as in the previous version of the CBR system
CBgrp explained in Sect. 3.2 and D = {〈v, v′, dv,v′〉} ∀v, v′ ∈ V .

This extension includes the social hierarchical pattern distribution of each
group represented as the dominance graph D = {〈v, v′, dv,v′〉}. Hence, dv,v′ is a
tuple that represents the type of relationship and a degree,
< [equality|dominant|submissive], δ >. This dominance factor labels the type
of hierarchical relationship between two users in a group and modifies their pv
and tv,v′ according to it making them now dynamic social factors. The degree
factor δ in dv,v′ measures the difference between age ranges. That is, for example
in the case of an adult v of age 45 having a submissive relationship with a child
v′ of age 6, the difference in their age range is of 4 and hence this would be
the degree value δ in the dominance tuple (see Fig. 2 for a complete graphical
example). Note that dv,v′
= dv,v′ , but that they are complementary.

In order to compute the dominance factor (du,u′), we retrieve it as a label
in the edge that connects two users/nodes. This is done in the same way we
retrieved the missing tu,u′ values for the unprofiled users. That is, we retrieve
the most similar group Gc ε CBg to Ga along with its social behaviour pattern
distribution D and the set of tuples < u, v > that match each user in Ga to its
corresponding user in Cgrp (which is the one that played the most similar role).
We assign to each pair of users (u1, u2) in Ga their dominance factor du1,u2 as
the dominance value between their corresponding users (v1, v2) in Gc according
to the set of tuples < u, v >, that is dv1,v2 (see Fig. 2).

Once we have all the social factors for Ga: pu, tu,u′ and du,u′ , we update pu
and tu,u according to the label and degree indicated in du,u′ as follows: pu =
pu + αδ; pv = pv − αδ; tu,u′ = tu,u′ + αδ; tu′,u = tu′,u − αδ; here the α weight
depends on the type of dominance relationship7:
7 We have empirically assigned a value of ±1 to α in order to have a moderate impact

of the dominance factor.

Modelling Hierarchical Relationships in Group Recommender Systems 331

– If du,u′=< equality, 0 > then α = 0 and the social factors stay fixed.
– If du,u′=< Dominant, degree >. Then α = 0.1. Which represents that if

user u has a dominant behaviour over user u′ s/he will be less likely to give
in and be therefore more assertive and s/he will be less likely to trust u′’s
preferences. As we have said that du,u′ is complimentary to du′,u then u′ will
have a submissive behaviour as explained next.

– If du,u′=< Submissive, degree >. Then α = −0.1. Which represents that if
user u has a submissive behaviour over user u′ s/he will be more likely to give
in and be therefore more cooperative and s/he will be more likely to trust u′’s
preferences.

Summing up, with these two approaches of including unprofiled users and
including hierarchical relationships we are now able to represent groups with
members without social network profiles and make better group recommenda-
tions to them by better modelling their group social behaviour (limitations (1)
and (2)). In our previous experiments [16–18] users inside groups belonged to
the same age range, and therefore, we were only able to recommend to groups
of friends. Now, we have increased HappyMovie’s usability and are able to rec-
ommend not only to groups of friends but also to families too. Next, we will
prove through a case study that by including our new social factor du,u′ and
hence making our previous social factors pu and tu,u′ adaptive to the group
composition we improve the results of the recommendations. Note that due to
the existing problems in obtaining a real and big enough case base that repre-
sents enough types of users and group configurations, we have opted for using
prototypical group configurations and social behaviour patterns. Therefore, in
order to build our case base CBg of “prototypical” groups we have asked 10
“prototypical” families with different configurations (size 3 with 2 adults and a
kid, size 3 with 1 adult and 2 kids of the same age range, size 3 with 1 adult
and 2 kids of different age range, size 4 with 2 adults and 2 kids of the same age
range, etc.) to indicate their configuration related to the trust and dominance
social factors. This is done to represent different family outings and established
prototypical behaviours that represent both of our graphs, the trust distribu-
tion graph T (Fig. 1) and the dominance distribution graph D (Fig. 2) for their
different configurations. Also note that for now we have focused on representing
family configurations and that we leave for future work representing different
“hierarchical relations” in friend outings, like events with birthdays, etc.

4 Case Study

We have evaluated the performance of our new social factor du,u′ that models
users’ social behaviour patterns inside different group configurations by compar-
ing the performance of our SRM with and without this factor. Our goal with
this experiment has been to prove that by including the dominance factor we
are able to better model users social dynamics inside a group. To do so we have
focused on the concrete case of recommending to a family that wants to go to

332 L. Quijano-Sánchez et al.

the movies. We have gathered 17 real families of sizes 6, 5, 4 and 3 where 30
adults and 33 kids have participated. Note that this set is different from the set
that belongs to both our case bases Cusr and Cgrp. Next:

1. For each family we ask the adults to use HappyMovie and answer its two
compulsory tests, the personality and preferences test. This provides us with
the pu, ru,i and tu,u′ factors (note that tu,u′ is automatically inferred from
users’ profiles in Facebook) as well as the demographic information of all users
in the group that have a Facebook account.

2. For each family we ask how many, the age and gender of their group members
do not have Facebook accounts (this includes mostly the kids). For these
members we have used our including unprofiled users technique (Sects. 3.1
and 3.2) to infer the missing factors that our SRM needs.

3. We provide each family with the current movie listing (20 movies) and ask
them to debate between themselves and provide an ordered list of the 3 movies
that they would like to go to watch together as a family, Gm.

4. We run our SRM with and without the dominance factor for two social meth-
ods DBR and IBR [16,18] and also a method with no social factors at all.
Therefore, we compare a traditional group recommendation approach (Non
Social), two of our original SRM methods (DBR and IBR) and a modifi-
cation of them by including the dominance factor introduced in this paper
(DBR+Dominance and IBR+Dominance). Each recommender presents the
top k′ = 3 movies from the 20 candidates. Then, let R be the set of recom-
mendations made by a particular recommender, we compare R with Gm (the
ordered set of movies that the families provided). We compute total success@n
for n = 1, 2, 3, where success@n = 1 if ∃i, i ∈ R ∧ i ∈ Gm and is 0 otherwise.
For example, when using success@2, we score 1 each time there is at least one
recommended movie in the top two positions of Gm. We also compute total
precision@n for n = 1, 2, 3, where precision@n =̂ |{i : i ∈ R∧ i ∈ Gm}|/n. For
example, if no recommended movie is in the top two positions in Gm, then
precision@2 = 0; if one recommended movie is in the top two positions in E,
then precision@2 = 0.5.

Results (Fig. 3) show that for all the different measures, the inclusion of social
factors improves the traditional group recommendation approach (Non Social)
and that all the recommenders that also include the dominance factor obtain
better (or equal in the case of success@3) results than our original SRM methods
without it (DBR and IBR). We have performed the non-parametric Kruskal-
Wallis H Test which does not require the assumption of normality and that
measures if two results are statistically different or not and have confirmed that
the difference between the Non Social results and the rest of the recommenders
is significative. Besides, the difference between our original methods DBR and
IBR and the improved ones with the dominance factor DBR+Dominance and
IBR+Dominance is also significative (for all measures save for the success@3
where we can easily see that they are very similar). However, the difference
between both methods DBR and IBR with or without the dominance factor has

Modelling Hierarchical Relationships in Group Recommender Systems 333

Fig. 3. Analysis of our algorithms for different evaluation metrics.

not been proven to be significative. This experimentation allows us to conclude
that we have improved our SRM by better modelling users’ social dynamics
inside different group configurations.

We have performed an additional experiment in order to check the viability
of our prototypes. To do so, we have asked the unprofiled users in our experiment
to fullfil an offline version of HappyMovie’s tests, providing us with their real pu
and ru,i values. Next, we have compared these values with the ones used in the
prototypes that represented them in the case study (step 2). Results have shown
a MAE of 0.98, which means that we rate correctly each users’ values with a
precision of ±1. This allows us to conclude that the prototype users can indeed
be used in the presence of unprofiled users as the error in the estimated values
is affordable and does not affect the recommendation results.

5 Conclusions and Future Work

SRM is a validated model that simulates people’s decision-making behaviour in
groups based on the influence of social relationships between individuals [16,18].
In this paper we have identified two limitations of our model and have proposed
two solutions to them: (1) Related to represent users that have no social network
profiles, our first solution is based on prototypes that are retrieved and reused in
a CBR manner. (2) Related to the study of “hierarchical relations” inside groups,
our second solution extends the use in SRM of our previously fixed social factor
values to dynamic social factor values that adapt depending on users’ different
behaviour patterns in different social environments and group compositions. We
have modelled the “hierarchical relations” that emerge in any group decision-
making process through a new social factor, dominance du,u′ . In order to prove
the benefits of including du,u′ we have run an experiment using a case study with
HappyMovie where we have modelled families. Results of these experiments have
allowed us to: (1) validate the designed user prototypes, that have been proved

334 L. Quijano-Sánchez et al.

to be accurate with a 0.98 MAE error. And hence, increase the population inside
our application and its usability. (2) validate the success of including our new
social factor du,u′ that improves the results of the previous SRM methods and
allows us to better model users social behaviour and dynamics inside groups.

As future work, related to our dominance factor and different dynamics inside
the same group, we could extend our study of “hierarchical relations” inside
SRM to the groups’ context dependency. This is, a group of friends may not
have the same behaviour one day or another. Whether because it is someone’s
birthday in which case the preferences of this group member may have more
weight or because of the groups’ general emotional state, where members could
point out that they are not in a good mood and feel like watching a comedy for
example.

References

1. Baccigalupo, C., Plaza, E.: Case-based sequential ordering of songs for playlist
recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.)
ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 286–300. Springer, Heidelberg (2006)

2. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowl. Eng. Rev. 20(3), 315–320 (2006)

3. Christakis, N.A., Fowler, J.H.: Social contagion theory: examining dynamic social
networks and human behavior. CoRR (2011)

4. Dong, R., Schaal, M., O’Mahony, M.P., McCarthy, K., Smyth, B.: Opinionated
product recommendation. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS,
vol. 7969, pp. 44–58. Springer, Heidelberg (2013)

5. Dowding, K.M.: Power. Concepts in the Social Sciences. Open University Press,
Buckingham (1996)

6. French, J.R.P., Raven, B.: The Bases of Social Power. In: Research and Theory on
Group Dynamcis, New York, pp. 607–623 (1959)

7. Gilbert, E., Karahalios, K.: Predicting tie strength with social media. In: CHI 2009,
pp. 211–220. ACM, New York (2009)

8. Greiner, L.E., Schein, V.E.: Power and Organization Development: Mobilizing
Power to Implement Change. Addison-Wesley OD Series. Addison-Wesley, Reading
(1988)

9. Herlocker, J.L.: Understanding and improving automated collaborative filtering
systems. Ph.D. thesis, University of Minnesota (2000)

10. Leavitt, H.: Managerial Psychology. University of Chicago Press, Chicago (1972)
11. Lorenzi, F., Ricci, F.: Case-based recommender systems: a unifying view. In:

Mobasher, B., Anand, S.S. (eds.) ITWP 2003. LNCS (LNAI), vol. 3169, pp. 89–113.
Springer, Heidelberg (2005)

12. Masthoff, J.: Group modeling: selecting a sequence of television items to suit a
group of viewers. User Model. User-Adap. Interact. 14(1), 37–85 (2004)

13. Masthoff, J., Gatt, A.: In pursuit of satisfaction and the prevention of embar-
rassment: affective state in group recommender systems. User Model. User-Adap.
Interact. 16(3–4), 281–319 (2006)

14. Quijano-Sánchez, L., Bridge, D., Dı́az-Agudo, B., Recio-Garćıa, J.A.: Case-based
aggregation of preferences for group recommenders. In: Agudo, B.D., Watson, I.
(eds.) ICCBR 2012. LNCS, vol. 7466, pp. 327–341. Springer, Heidelberg (2012)

Modelling Hierarchical Relationships in Group Recommender Systems 335

15. Quijano-Sánchez, L., Bridge, D., Dı́az-Agudo, B., Recio-Garćıa, J.A.: A case-based
solution to the cold-start problem in group recommenders. In: Agudo, B.D., Wat-
son, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 342–356. Springer, Heidelberg
(2012)

16. Quijano-Sánchez, L., Recio-Garćıa, J.A., Dı́az-Agudo, B.: An architecture for
developing group recommender systems enhanced by social elements. Appl. Intell.
40(4), 732–748 (2014)

17. Quijano-Sánchez, L., Recio-Garćıa, J.A., Dı́az-Agudo, B.: Development of a group
recommender application in a social network. Knowl.-Based Syst. 71, 72–85 (2014).
Special Issue on Knowledge-Bases for Cognitive Infocommmunications, KBS

18. Quijano-Sánchez, L., Recio-Garćıa, J.A., Dı́az-Agudo, B., Jiménez-Dı́az, G.: Social
factors in group recommender systems. ACM TIST 4(1), 8 (2013)

19. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Ricci, F., et al. (eds.) Recommender Systems Handbook, pp. 1–35. Springer,
New York (2011)

20. Sidanius, J., Pratto, F.: Social Dominance: An Intergroup Theory of Social Hier-
archy and Oppression. Cambirdge University Press, New York (2001)

21. SocialPhobiaWorld. Behaving differently around different people/groups (2013).
http://www.socialphobiaworld.com/behaving-differently-around-different-people-
groups-57798/

22. Thomas, K.W., Kilmann, R.H.: Thomas-Kilmann Conflict Mode Instrument.
Xicom, Tuxedo (1974)

23. Turniansky, B., Hare, A.P.: Individuals and Groups in Organizations. SAGE Pub-
lications, London (1998)

http://www.socialphobiaworld.com/behaving-differently-around-different-people-groups-57798/
http://www.socialphobiaworld.com/behaving-differently-around-different-people-groups-57798/

Semi-automatic Knowledge Extraction
from Semi-structured and Unstructured Data

Within the OMAHA Project

Pascal Reuss1,2(B), Klaus-Dieter Althoff1,2, Wolfram Henkel3,
Matthias Pfeiffer3, Oliver Hankel4, and Roland Pick4

1 German Research Center for Artificial Intelligence, Kaiserslautern, Germany
pascal.reuss@dfki.de

http://www.dfki.de

http://www.uni-hildesheim.de
2 Intelligent Information Systems Lab, Institute of Computer Science,

University of Hildesheim, Hildesheim, Germany
3 Airbus, Kreetslag 10, 21129 Hamburg, Germany

4 Lufthansa Industry Solutions, Norderstedt, Germany

Abstract. This paper describes a workflow for semi-automatic knowl-
edge extraction for case-based diagnosis in the aircraft domain. There are
different types of data sources: structured, semi-structured and unstruc-
tured source. Because of the high number of data sources available and
necessary, a semi-automatic extraction and transformation of the knowl-
edge is required to support the knowledge engineers. This support shall
be performed by a part of our multi-agent system for aircraft diagno-
sis. First we describe our multi-agent system to show the context of the
knowledge extraction. Then we describe our idea of the workflow with
its single tasks and substeps. At last the current implementation, and
evaluation of our system is described.

1 Introduction

This paper describes the concept of a semi-automatic knowledge extraction work-
flow, which is developed for a distributed decision support system for aircraft
diagnosis. The system will be realized as a multi-agent-system. It is based on
the SEASALT architecture and includes several case-based agents for various
tasks. The knowledge extraction workflow will be realized using several agents
within the decision support system. In the next section we give an overview of
the OMAHA (Overall Management Architecture For Health Analysis) project,
the SEASALT architecture and the application domain. In Sect. 3.1 we describe
the instantiation of our decision support system based on SEASALT. Section 3.2
contains the initial concept for the knowledge extraction workflow, while 3.3
describes the current implementation status of the workflow. The Sect. 3.4 shows
the evaluation setup and the evaluation results and Sect. 4 contains the related
work. Finally, Sect. 5 gives a short summary of the paper and an outlook on
future work.
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 336–350, 2015.
DOI: 10.1007/978-3-319-24586-7 23

Semi-automatic Knowledge Extraction 337

2 OMAHA Project

The OMAHA project is supported by the Federal Ministry of Economy and
Technology in the context of the fifth civilian aeronautics research program [6].
The high-level goal of the OMAHA project is to develop an integrated over-
all architecture for health management of civilian aircraft. The project covers
several topics like diagnosis and prognosis of flight control systems, innovative
maintenance concepts and effective methods of data processing and transmis-
sion. A special challenge of the OMAHA project is to outreach the aircraft and
its subsystems and integrating systems and processes in the ground segment
like manufacturers, maintenance facilities, and service partners. Several enter-
prises and academic and industrial research institutes take part in the OMAHA
project: the aircraft manufacturer Airbus (Airbus Operations, Airbus Defense
& Space, Airbus Group Innovations), the system and equipment manufacturers
Diehl Aerospace and Nord-Micro, the aviation software solutions provider Linova
and IT service provider Lufthansa Systems as well as the German Research Cen-
ter for Artificial Intelligence and the German Center for Aviation and Space. In
addition, several universities are included as subcontractors.

The OMAHA project has several different sub-projects. Our work focuses
on a sub-project to develop a cross-system integrated system health monitoring
(ISHM). The main goal is to improve the existing diagnostic approach with a
multi-agent system (MAS) with several case-based agents to integrate experience
into the diagnostic process and provide more precise diagnoses and maintenance
suggestions.

2.1 SEASALT

The SEASALT (Shared Experience using an Agent-based System Architecture
Layout) architecture is a domain-independent architecture for extracting, ana-
lyzing, sharing, and providing experiences [4]. The architecture is based on the
Collaborative Multi-Expert-System approach [1,2] and combines several software
engineering and artificial intelligence technologies to identify relevant informa-
tion, process the experience and provide them via an user interface. The knowl-
edge modularization allows the compilation of comprehensive solutions and offers
the ability of reusing partial case information in form of snippets. Figure 1 gives
an overview over the SEASALT architecture.

The SEASALT architecture consists of five components: the knowledge
sources, the knowledge formalization, the knowledge provision, the knowledge
representation, and the individualized knowledge. The knowledge sources com-
ponent is responsible for extracting knowledge from external knowledge sources
like databases or web pages and especially Web 2.0 platforms, like forums and
social media platforms. These knowledge sources are analyzed by so-called Col-
lector Agents, which are assigned to specific Topic Agents. The Collector Agents
collect all contributions that are relevant for the respective Topic Agent’s topic
[4]. The knowledge formalization component is responsible for formalizing the

338 P. Reuss et al.

Fig. 1. Overview of the SEASALT architecture

extracted knowledge from the Collector Agents into a modular, structural rep-
resentation. This formalization is done by a knowledge engineer with the help
of a so-called Apprentice Agent. This agent is trained by the knowledge engi-
neer and can reduce the workload for the knowledge engineer [4]. The knowledge
provision component contains the so called Knowledge Line. The basic idea is
a modularization of knowledge analogous to the modularization of software in
product lines. The modularization is done among the individual topics that are
represented within the knowledge domain. In this component a Coordination
Agent is responsible for dividing a given query into several sub queries and pass
them to the according Topic Agent. The agent combines the individual solutions
to an overall solution, which is presented to the user. The Topic Agents can be
any kind of information system or service. If a Topic Agent has a CBR system
as knowledge source, the SEASALT architecture provides a Case Factory for
the individual case maintenance [3,4]. The knowledge representation component
contains the underlying knowledge models of the different agents and knowledge

Semi-automatic Knowledge Extraction 339

sources. The synchronization and matching of the individualized knowledge mod-
els improves the knowledge maintenance and the interoperability between the
components. The individualized knowledge component contains the web-based
user interfaces to enter a query and present the solution to the user [4].

2.2 Application Domain

The domain of our application is aircraft fault diagnostic. An aircraft is a highly
complex machine and an occurring fault cannot be easily tracked to its root
cause. The smallest unit, which can cause a fault, is called Line Replacement Unit
(LRU). While a fault can be caused by a single LRU, it also can be caused by the
interaction of several LRUs or by the communication line between the LRUs.
The data about the fault is in some cases very well structured (e.g., aircraft
type, ATA chapter), but in other cases semi-structured (e.g., displayed fault
message, references) or unstructured (e.g., fault description, electronic logbook
entries, recommendations). These data have to be transformed into vocabulary,
similarity measures, and cases.

The application is a first prototype demonstrator with several CBR systems.
The systems represent different data sources and subsystems of an aircraft. The
data sources are service information letters (SIL) and in-service reports (ISR)
and we focus on the subsystems hydraulic and ventilation system. Service infor-
mation letters contain exceptions to the usual maintenance procedure. These
exceptions are described with information like the aircraft type and model, fail-
ure code, ATA chapter, displayed message, fault description, recommendations,
actual work performed, and references to manuals. In-service reports are failure
reports from airlines and contain partially overlapping information with the SIL
like aircraft type, ATA chapter, fault description, but contain additional infor-
mation like starting and landing airport, engine type, and the flight phase in
which the fault occurred.

3 Semi-automatic Knowledge Extraction

In this section the instantiation of the SEASALT architecture within the OMAHA
project is described. The focus is set on the component knowledge formalization
to show the idea behind the automatic vocabulary building. The current imple-
mentation of the knowledge formalization is described as well as the evaluation
of the formalization work flow.

3.1 OMAHA Multi-agent System

For the multi-agent demonstrator we will instantiate every component of the
SEASALT architecture. The core components are the knowledge provision and
the knowledge formalization, but the other components will be instantiated, too.
The individualized knowledge component contains two interfaces for receiving a
query and sending the solution. The first interface is a website to send a query

340 P. Reuss et al.

to the multi-agent system and to present the retrieved diagnosis. In addition,
a user can browse the entire case base, insert new cases or edit existing cases.
The second interface communicates with a data warehouse, which contains data
about Post Flight Reports (PFR), aircraft configuration data, and operational
parameters. A PFR contains the data about the occurred faults during a flight
and is the main query for our system. If additional information is required that
is not provided by the data warehouse, it can be added via the website. Figure 2
shows the instantiation of the multi-agent system.

The knowledge provision component contains all agents for the diagnos-
tic process. We defined several agent classes for the required tasks during the
process: interface agent, output agent, composition agent, analyzer agent, coor-
dination agent, solution agent, and topic agent. Each agent class is instantiated
through one or more agents. A PFR and additional data is received by the data
warehouse agent and/or the webinterface agent. A PFR contains several items
that represent occurred faults. The PFR and the additional data are sent to
the composition agent, which correlates the additional data with the individual
PFR items. The correlated data are sent to the query analyzer agent and the
coordination agent in parallel. The query analyzer agent is responsible for check-
ing the correlated data for new concepts, which are not in the vocabulary, and
sending a maintenance request to the Case Factory. The Case Factory checks the
maintenance request, derives the required maintenance actions and executes the
required actions after confirmation from a knowledge engineer. The coordination
agent has two main tasks: sending a correlated PFR item to the right solution
agent and integrating the returned diagnoses to an overall diagnosis. To deter-
mine the right solution agent, the coordination agent uses a so-called Knowledge
Map that contains information about the existing solution and topic agents and
their dependencies. The Knowledge Map tasks can be outsourced to an addi-
tional agent, the knowledge map agent, to provide more parallel processing. The
knowledge map agent has access to the general Knowledge Map and to a CBR
system that contains individual retrieval paths from past requests. The knowl-
edge map agent uses the CBR system to determine the required topic agents
for solving the query from successful past retrieval paths. After determining
the required agents, the coordination agents sends the query to the correspond-
ing solution agents. For each aircraft type (e.g., A320, A350, A380, etc.) an own
agent team exists to process the query and retrieve a diagnosis. Each agent team
consists of several agents: the solution agent receives the query, decomposes it,
and sends the query parts to the required topic agents. One topic agent is used
to process the configuration data and determine the configuration class of an air-
craft. Because the occurrence of many faults depends on the hard- and software
configuration of an aircraft, the configuration class can be used to reduce the
number of cases in the retrieval process. The other topic agents are distinguished
by the content of the case base and the ATA chapters. We derived cases from
SIL and ISR for our prototype, but additional data sources are available. The
ATA chapter decomposes an aircraft into several subsystems. By distinguishing
the CBR systems this way, we get several smaller CBR systems, which have a

Semi-automatic Knowledge Extraction 341

smaller case structure and are easier to maintain. Each topic agent performs a
retrieval on the underlying CBR systems and sends the solutions to the solution
agent. The solution agent ranks the individual solutions and sends a ranked list
back to the coordination agent and forwarded to the output agent. Each indi-
vidual solution represents a possible diagnosis for the occurred fault described
in the query. Therefore a combination of solutions is not appropriate. All found
solutions above a given threshold have to be displayed to the user. The output
agent passes the diagnoses to the web interface and the data warehouse.

The knowledge formalization component is responsible for transforming the
structured, semi-structured, and unstructured data into structured information
for the vocabularies, the similarity measures, and the cases itself of the CBR
systems. The required maintenance actions for the CBR systems are performed
by the Case Factory. For the CBR systems a structural CBR approach was cho-
sen, because almost half of the provided data has the form of attribute value
pairs. The other part of the data has to be transformed to be represented as
attribute value pairs. The analysis and transformation of the data is done by a
so-called case base input analyzer agent. This agent reads the data from different
data sources like excel sheets, database result sets, or text documents. Then sev-
eral information extraction techniques are used to extract keywords and phrases
and to find synonyms and hypernyms. In addition, the data is analyzed to find
associations within the allowed values of an attribute as well as across different
attributes. This way we want to extract Completion rules1 for query enrichment.
The next step in the process is to add the found keywords, their synonyms and
phrases to the vocabulary and set an initial similarity between a keyword and
its synonyms. Furthermore, taxonomies can be generated or extended using the
keywords and their hypernyms. After the vocabulary extension, the cases are
generated and stored in the case bases. The last step is the generation or adap-
tation of the relevance matrices2 to set or improve the weighting for the problem
description attributes. The idea and the top level algorithm of this tool chain and
the current implementation status is described in more detail in the following
sections.

In the knowledge sources component a collector agent is responsible for find-
ing new data in the data warehouse, via web services or in the existing knowledge
source of Airbus. New data in the data warehouse could be new configuration
data or operational parameters, which have to be integrated into the vocabulary.
Web services could be used to update the synonym and hypernym database and
from the existing knowledge sources of Airbus new cases can be derived.

The knowledge representation component contains the generated vocabulary,
the similarity measures and taxonomies, the extracted completion rules, and
constraints of the systems to be provided for all agents and CBR systems.
1 Completion rules derive attribute values with a certainty factor if the respective

condition is fulfilled (a set of attribute values).
2 A relevance matrix describes the relevance of available attributes concerning avail-

able diagnoses (e.g., [9]).

342 P. Reuss et al.

3.2 Initial Concept for Semi-automatic Knowledge Extraction

There are more than 100.000 documents and data sets with fault descriptions
and exceptions within the Airbus data sources. Every document or data set
could contain useful information for our case-based diagnosis or even represent a
complete case. This amount of data cannot be reasonably analyzed manually, but
semi-automatedly with the help of software agents. The result of the analysis and
the transformation has to be checked by a knowledge engineer to get feedback.
This feedback can be used to improve the analysis and transformation process.

We designed a workflow with ten tasks for processing the data, extracting
the knowledge, extending the knowledge containers, and importing cases. Each
task consists of several steps. Figure 3 shows the workflow tasks and the asso-
ciated steps. The input for the workflow is a set of documents with SIL or ISR
content and a mapping document. This can be excel sheets, database result sets,
or free text documents. The mapping document contains information to which
attributes of a case structure the content of the document should be mapped.

The first task in the workflow is the extraction of keywords. Based on the type
of the input document, the individual columns and rows or the entire text are
processed. This task starts with the steps stopword elimination and stemming
of the remaining words. The next step is to replace all abbreviations with the
long form of the word. Therefore a list of used abbreviations within the aircraft
domain is used to identify abbreviations. The result of this task is a list of
keywords extracted from the document.

The second task in the workflow is to find synonyms and hypernyms for each
keyword on the list. For the search we use a synonym database from Wordnet
extended with technical terms from the avionics domain. For each found syn-
onym and hypernym a search loop for additional synonyms and hypernyms is
performed, too. This loop is repeated until no more new synonyms are found.
Duplicate synonyms and hypernyms are eliminated and the remaining words are
added to the keyword list.

The third task is to identify collocations in addition to the single keywords
in the document. While collocations are based on frequently occurring words,
the collocation extraction is enhanced by using a vocabulary of technical terms
provided by Airbus. This way collocations can be identified even if they occur
only a few times, but are relevant to the content. Based on the given technical
terms, extracted collocations have a maximum length of five words. All identified
collocations are added to a phrase list, while duplicate collocations are removed.

In the next task, all keywords and collocations are added to the vocabulary.
The first step is to check the collocations against the keywords, to find combina-
tions of keywords that occurred only as collocation in the given data. The idea
is that keywords that do not occur as an individual keyword or as a part of a
collocation, but only in the combination of the collocation, will not be added to
the vocabulary. This way the growth of the vocabulary can be slowed down.

The fifth task in the workflow contains the setting of initial similarity values
between keywords and their synonyms. Due to the fact that words are similar to

Semi-automatic Knowledge Extraction 343

Fig. 2. Instantiation of the SEASALT components within OMAHA

their synonyms, an initial similarity value of 0.83 can be assumed between a word
and its synonym. The keywords and synonyms are organized in a matrix. Then
the found synonyms and hypernyms are used to build taxonomies for similarity
assessments. The hypernyms serve as inner nodes, while the keywords and the
synonyms are the leaf nodes. Keywords and their synonyms are sibling nodes if
they have the same hypernym. Between sibling nodes a similarity of 0.8 can be
3 Assuming, here and the further occurrences, that the similarity measures can take

values from the [0;1] interval.

344 P. Reuss et al.

assumed. This way existing taxonomies can be extended or new taxonomies can
be generated.

Task six is responsible for finding associations between keywords and phrases
within a text or between different columns. The idea is to define completion
rules based on these associations. An association between keywords or phrases
exists, if the combined occurrence frequency exceeds a given threshold. This
threshold defines the minimum occurrence of the combination over all analyzed
documents and data sets. For example, a combination between two keywords
that occurs in more than 70 percent of all analyzed documents, may be used
as a completion rule with an appropriate certainty factor. In addition to the
occurrence threshold, a threshold for the minimum number of documents to be
analyzed during this task has to be defined. This second threshold is required to
avoid the generation of rules by analyzing only few documents, but to generate
rules with a high significance. Therefore, the second threshold should be more
than 1000 documents or data sets. The higher both thresholds are, the more a
generated rule is assumed to be significant.

The seventh task is to generate cases from the given documents. The first step
uses the mapping document to map the content of the document to a given case
structure. The data from the documents are transformed into values for given
attributes to fit the structural approach. The generated cases are not added to a
single case base, but assigned to several case bases using a cluster algorithm. The
idea behind the clustering strategy is to test the scalability of our approach. The
idea is to split the cases based on problem description attributes to get smaller
case bases for maintenance. Based on the historical data stored at Airbus, a single
case base will contain many thousand cases anyway. Generating an abstract case
for each case base, a given query can be compared to the abstract cases and this
way a preselection of the required case bases is possible.

We assume a homogenous case structure for all cases generated from the
documents. The first case is added to a new case base. For the next case, the
similarity to the case in the first case base is computed. If the similarity is below a
given threshold, a new case base is created and the new case is added. Otherwise
the case is added to the existing case base. Each following case is processed in
the same way. The similarity to all cases in the case bases is computed and the
new case is added into the case base that contains the case with the highest
similarity. If the similarity is below the threshold, a new case base is generated.
This step is repeated until all generated cases are added to a case base. While
the order of the cases has an impact on the clustering, the dimension of the
impact has to be cleared.

Task eight uses sensitivity analysis to determine the weights of the problem
description attributes, depending on the content of the cases. This sensitivity
analysis is processed for every case base created in the task before. As a result
initial relevance matrices are created with the diagnoses as rows and the problem
description aka symptoms as columns. These relevance matrices will be used to
compute the global similarity during a retrieval.

Semi-automatic Knowledge Extraction 345

Task nine contains a consistency check of the vocabulary, similarity measures,
and cases by a knowledge engineer to confirm or revise the changes made during
the workflow. The feedback from the knowledge engineer is used in task ten to
improve the individual tasks and steps within the workflow. The task nine and
ten should be processed in periodic intervals and during each workflow execution.

This workflow is designed to be executed beside the CBR cycle as a mainte-
nance workflow. Therefore the before mentioned Case Factory is responsible for
the changes to the knowledge containers of a CBR system. This way the work-
flow is distributed to the knowledge formalization component and the knowledge
provision component of the SEASALT architecture. One or more agents in the
knowledge formalization component are responsible for the analysis tasks and
steps and agents in the Case Factory performing the maintenance actions based
on the analysis. But the workflow cannot only be used for maintenance beside
the CBR cycle, but also within the CBR cycle. During the retrieval step, a query,
especially a natural language query, could be analyzed in the same way as a new
case. Therefore a “lighter” version of the workflow could be used, only containing
tasks one to six and tasks nine and ten.

3.3 Current Implementation

This section describes the current implementation of our workflow for semi-
automated knowledge extraction. We implemented the workflow in Java, because
the used CBR tool and the agent framework are Java based, too. Different import
mechanisms are implemented to process data from CSV files, text files, and result
sets from a database. Because of the different content and data structures of the
documents, the data is processed differently for each document type. CSV files
and result sets are processed row-wise, while text documents are processed in the
whole. The mapping file is written in XML format and contains the information

Fig. 3. Workflow for semi-automated knowledge extraction

346 P. Reuss et al.

which column in a CSV file or result set should be mapped to which attribute
in the case structure. The following code is an excerpt from the mapping file:

<mapping>
<part>problem</part>
<column>AC Type</column>
<attribute>ac_Type</attribute>
</mapping>

The keyword extraction is implemented using Apache Lucene and a part-of-
speech tagger from the Stanford NLP group. Lucene provides several functions
for text analysis, like stopword elimination and stemming and is combined with
the Maxent part-of-speech tagger. At first a given input string is tagged with the
Maxent tagger and then stopwords are eliminated based on a extended list of
English stopwords. This extended list contains all stopwords from the common
list of Lucene and some additional words from Airbus’ simplified english docu-
ment. After the elimination of the stopwords, for the remaining words stemming
is performed. The result of this step is a list of stemmed keywords. This list is
searched for abbreviations based on the Airbus document of used abbreviations
in the aircraft domain. All found abbreviations are replaced with the appropriate
long word. At last duplicate keywords are removed from the list.

The second task of the workflow is implemented using Wordnet, which pro-
vides a large database of synonyms and hypernyms for the English language.
For each keyword from the result list of Task 1 the synonyms are determined
via Wordnet database and the found synonyms are stored. After searching for
synonyms for the given keywords, an additional search is performed based on
the found synonyms. This additional search is repeated until the returned syn-
onyms from the Wordnet database contain only already known synonyms. Based
on this list of keywords and synonyms, the Wordnet database is requested for
hypernyms and for single worded hypernyms a synonym search is performed.
The result of this implemented task is a list of keywords with their synonyms
and hypernyms in form of a multiple linked list.

In the third task, collocations are identified based on the raw data with the
help of the Dragon toolkit. This toolkit provides a phrase extractor based on the
frequent occurrence of collocations and a given set of technical terms provided
by Airbus. Before using the extractor the abbreviations in the input string are
replaced to match the technical terms. The found collocations are stored in a
list.

The next task is implemented using the open source tool myCBR. This tool is
used to model the case structure, vocabulary, and similarity measures of our CBR
systems. It also provides an API to interact with our workflow. This API is used
to add all keywords, synonyms, hypernyms, and collocations to the vocabulary
of our CBR systems. The mapping information is used to distribute the added
words and phrases to the appropriate attributes in the case structure.

The fifth task is only implemented partially at this time. For the added
keywords and their synonyms initial similarity values are set in a symmetric

Semi-automatic Knowledge Extraction 347

similarity matrix. Each keyword has a similarity value of 0.8 to each synonym.
This relationship is bidirectional. Additional content-based similarity values have
to be assigned manually. The taxonomy creation is not implemented yet.

After extending the vocabulary and setting the similarity values, cases are
generated based on the rows of CSV files or database result sets. For each case
a retrieval is performed with the problem description of the case as query using
the API of myCBR. If the computed similarity is below 80 percent, a new case
base is created and the case is added, otherwise the case is added to the case
base with the case that has the highest similarity to the query. This process is
repeated until all generated cases are added to a case base. If more than one case
base has to be considered for adding a case, the case base with the first found
case is enlarged.

3.4 Evaluation Setup and Results

This section describes the evaluation setup of the current implementation of
our workflow and the diagnosis retrieval. The workflow was used to analyze
and process 670 data sets with SIL context and 120 data sets with ISR con-
text. From each data set a case was generated. During the first and third task
872 keywords and 76 collocations were extracted. The second task produced
2862 synonyms and 213 hypernyms. In the first evaluation scenario the raw
data and the extracted keywords, synonyms, and hypernyms are compared by
maintenance experts from Airbus and Lufthansa. In the second evaluation sce-
nario 50 queries are performed on the system with ten cases as retrieval result.
These retrieval results are checked by the maintenance experts from Airbus and
Lufthansa Systems for appropriate diagnoses to the given queries.

As a result from the first evaluation scenario the experts rated 628 keywords
as correct (ca. 72 percent). From the remaining 244 keywords, 98 keywords
are wrongly extracted because of false abbreviation replacement or stemming
problems, while 146 keywords are false because of an inappropriate word sense.
This means there is an overhead of 27 percent from word sense problems. 62
collocation are rated correctly (82 percent), while 14 collocations are wrong,
because of false abbreviation replacement. The synonyms and hypernyms have
a similar success rate. 2260 synonyms were rated correct and useful, while 602
synonyms were wrong because of inappropriate word sense. Only 124 hypernyms
were rated correct, while the remaining 89 hypernyms are wrong as a consequence
of the inappropriate synonym word sense.

The result of the second evaluation scenario is that an average of 78 percent
of the retrieved cases have an appropriate diagnosis. For each query this number
differs slightly. For some queries all retrieved cases were appropriate, for other
queries only a few cases were appropriate. Not only the cases itself were checked,
but also the ranking of the cases. An average of 18 percent of the retrieved cases
were ranked wrong from an expert point of view.

The evaluation shows that the initial version of our workflow produces good
result, but there is still potential for improvement. The results from the workflow
are good enough to perform a meaningful retrieval, while the number of correct

348 P. Reuss et al.

diagnoses has to be improved. The main problem in both scenarios is the word
sense of keywords and synonyms that is in many cases not compatible with the
aircraft domain. This problem has to be addressed to identify the useful word
senses. Another problem is the missing similarity measures for attribute values,
which are not synonyms.

4 Related Work

There is a lot of related work on CBR and information extraction, association
rule mining, processing textual data in CBR and text mining. This section con-
tains a selection of related work from these topics. Bach et al. describe in their
paper an approach for extraction knowledge from vehicle in-service reports. This
approach is also based on the SEASALT architecture like our approach, but uses
only automated keyword extraction to process the reports. As an additional step
the extracted keywords are classified. Then the extracted keywords are reviewed
by experts and inserted manually into the vocabulary [5]. Our approach still
has the review process of an expert or knowledge engineer, but aims on a more
detailed text processing workflow with phrases, synonyms and hypernyms. We
try to create a more automated workflow to populate the vocabulary and initial
similarity measures.

In their article about knowledge extraction from web communities, Sauer and
Roth-Berghofer describe the KEWo Workbench and the mechanisms provided
by this workbench to extract knowledge from semi-structured texts. The KEWo
workbench is able to create taxonomies from extracted keywords and phrases
based on the relative frequency of the occurrence [11]. In our approach we will
generate the taxonomies not from the relative frequency, but from found hyper-
nyms and synonyms from the Wordnet database and useful technical terms from
the aircraft domain vocabulary.

Many systems with textual knowledge use the textual CBR approach, like
[7,10,12]. The data sources available for our project are mainly structured data,
therefore we choose a structural CBR approach. But the most important infor-
mation about an occurred fault can be found in fault descriptions and logbook
entries, which are free text. We decided to use a hybrid approach with the combi-
nation of structural CBR and textual CBR techniques, to integrated all available
information.

[8] describes an approach for enriching the retrieval using associations. They
use the Apriori algorithm to extract relevant cases for correlation between cases.
We will use algorithm like Apriori or FP-Growth to extract associations between
attribute values in a case. This aims on generating completion rules to enrich a
query by setting attribute values automatically based on the completion rules.

5 Summary and Outlook

In this paper we described the idea of a semi-automatic knowledge extraction
workflow for a decision support system within the aircraft domain. We give an

Semi-automatic Knowledge Extraction 349

overview over the decision support system and the tasks and substeps of the
workflow. In addition, we show our current implementation of the workflow and
the evaluation results, based on the current implementation.

As the evaluation shows there is potential for improvement of the individual
tasks of the workflow as well as for the complete workflow. The main problem
of the inappropriate word sense, that causes the overhead of the vocabulary
and the similarity measures, will be addressed by the extend use of an aircraft
domain vocabulary provide by Airbus and Lufthansa Systems. Another idea for
solving this problem is to restrict the adding of keywords, based on the relative
occurrence frequency. In addition to the enhancement of implemented tasks, the
next steps will be the implementation of the tasks for taxonomy creation, the
sensitivity analysis and association extraction.

References

1. Althoff, K.D.: Collaborative multi-expert-systems. In: Proceedings of the 16th UK
Workshop on Case-Based Reasoning (UKCBR-2012), located at SGAI Interna-
tional Conference on Artificial Intelligence, Cambride, UK, 13 December, pp. 1–1
(2012)

2. Althoff, K.D., Bach, K., Deutsch, J.O., Hanft, A., Mänz, J., Müller, T., Newo, R.,
Reichle, M., Schaaf, M., Weis, K.H.: Collaborative multi-expert-systems - realizing
knowledge-product-lines with case factories and distributed learning systems. In:
Baumeister, J., Seipel, D. (eds.) KESE @ KI 2007, Osnabrück, September 2007

3. Althoff, K.D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent based maintenance
for modularised case bases in collaborative mulit-expert systems. In: Proceedings
of the AI2007, 12th UK Workshop on Case-Based Reasoning (2007)

4. Bach, K.: Knowledge acquisition for case-based reasoning systems. Ph.D. thesis,
University of Hildesheim (2013). Dr. Hut Verlag Mnchen

5. Bach, K., Althoff, K.-D., Newo, R., Stahl, A.: A case-based reasoning approach
for providing machine diagnosis from service reports. In: Ram, A., Wiratunga, N.
(eds.) ICCBR 2011. LNCS, vol. 6880, pp. 363–377. Springer, Heidelberg (2011)

6. BMWI: Luftfahrtforschungsprogramms v (2013). www.bmwi.de/BMWi/Reda-
ktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,
bereich=bmwi2012,sprache=de,rwb=true.pdf

7. Ceausu, V., Desprès, S.: A semantic case-based reasoning framework for text cat-
egorization. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 736–749.
Springer, Heidelberg (2007)

8. Mote, A., Ingle, M.: Enriching retrieval process for case based reasoning by using
certical association knowledge with correlation. Int. J. Recent Innov. Trends Com-
put. Commun. 2, 4114–4117 (2015)

9. Richter, M., Wess, S.: Similarity, uncertainty and case-based reasoning in PAT-
DEX. In: Boyer, R.S. (ed.) Automated Reasoning - Essays in Honor of Woody
Bledsoe, vol. 1, pp. 249–265. Kluwer Academic Publishers, Dordrecht (1991)

10. Rodrigues, L., Antunes, B., Gomes, P., Santos, A., Carvalho, R.: Using textual
CBR for e-learning content categorization and retrieval. In: Proceedings of Inter-
national Conference on Case-Based Reasoning (2007)

www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf

350 P. Reuss et al.

11. Sauer, C.S., Roth-Berghofer, T.: Extracting knowledge from web communities and
linked data for case-based reasoning systems. Expert Syst. Spec. Issue Innov. Tech.
Appl. Artif. Intell. 31, 448–456 (2013)

12. Weber, R., Aha, D., Sandhu, N., Munoz-Avila, H.: A textual case-based reasoning
framework for knowledge management applications. In: Proceedings of the Ninth
German Workshop on Case-Based Reasoning, pp. 244–253 (2001)

Evidence-Driven Retrieval in Textual CBR:
Bridging the Gap Between Retrieval and Reuse

Gleb Sizov(B), Pinar Öztürk, and Agnar Aamodt

Department of Computer Science, Norwegian University of Science and Technology,
Trondheim, Norway

{sizov,pinar,agnar.aamodt}@idi.ntnu.no

Abstract. The most similar case may not always be the most appro-
priate one to guide a problem-solving process. It is often important that
a retrieved past case can be easily adapted to a target problem. The
presented work deals with the retrieval and adaptation in textual case-
based reasoning (TCBR) where cases are described textually. In TCBR,
it is common to use similarity-based retrieval methods from information
retrieval where adaptability of the retrieved cases is not considered. In
this paper we introduce a novel case retrieval method called evidence-
driven retrieval (EDR). It uses the notion of evidence to determine which
parts of the new problem text have been useful in the past solutions and
will be used in the adaptation to a new problem. This allows EDR to
retrieve cases that are not only similar but also adaptable. We evaluated
EDR as part of our TCBR approach that aims to support human experts
in root cause analysis of transportation incidents. This approach relies on
causal knowledge automatically extracted from incident reports from the
Transportation Safety Board of Canada, which are used as textual cases
in our experiments. The results for EDR are compared with information
retrieval methods traditionally applied in TCBR.

Keywords: Textual CBR · Incident analysis · Causal relations ·
Adaptation-guided retrieval · Adaptation

1 Introduction

The fundamental assumption in CBR is that similar problems have similar solu-
tions. Therefore, case retrieval in CBR is often based on the similarity between
a new problem description and cases in the casebase. Sometimes, however, the
most similar case is not the best one to guide the problem-solving process. As
argued by Smyth and Keane [19], for many types of applications it is also nec-
essary to consider whether a case can be easily adapted to a target problem.
They proposed the adaptation-guided retrieval method that uses adaptation
knowledge to retrieve adaptable cases. In TCBR, where cases are described
textually, case retrieval is often accomplished using methods from information
retrieval (IR) [20]. These methods are similarity-based and do not account for
adaptability.
c© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 351–365, 2015.
DOI: 10.1007/978-3-319-24586-7 24

352 G. Sizov et al.

In the current paper we propose a novel case retrieval method for TCBR
that aims to retrieve adaptable cases, called evidence-driven retrieval (EDR).
This method was developed as part of our work on TCBR for automated incident
analysis using reports from the Transportation Safety Board of Canada as textual
cases. The focus of our previous work was on the representation and adaptation
of textual cases while for case retrieval we used a standard IR method [18].
Experimental evaluation revealed that this IR-based retrieval method was the
bottleneck for the whole system because many of the retrieved cases, despite
reasonable similarity to the new case, could not be adapted to a new problem.
This intensified our motivation to develop EDR, which brings together retrieval
and reuse of textual cases.

EDR, as well the rest of our TCBR approach, is based on the Text Rea-
soning Graph (TRG) representation, which we first proposed in [18] and have
further improved in the current paper. This representation is designed to cap-
ture the so-called reasoning knowledge contained in text, which is automatically
extracted from textual reports by our system. Imagine a detective investigat-
ing a criminal case where she needs to identify evidences, connect the facts and
make conclusions about what might have happened and who is involved. The
knowledge used by the detective is often of a relational nature connecting pieces
of information together in a coherent reasoning chain. This type of knowledge
is essential for complex problems that do not have an immediate answer but
require to be analysed in order to be solved. The resultant analysis constitutes
the case solution.

EDR uses the notion of evidence, which can be defined as a piece of infor-
mation in the problem description that is instrumental for the analysis. EDR
automatically identifies which snippets in the new problem text may be con-
veying an evidence and assesses their informativeness. The decision of which
information in the new problem can be considered as evidence is done in the
context of a certain past case. The retrieval mechanism selects the past case
that includes most number of evidences with high informativeness. The ratio-
nale behind EDR is that information that was important in the analysis in the
past can have the same value for the new problem as well. In this way, EDR
acts as a feature selection method. Since evidences are starting points in the
adaptation process, EDR is biased towards retrieving an adaptable case than
merely a similar case.

The rest of the paper is organised as follows. Section 2 explains the incident
analysis task. Sections 3 and 4 describe the TRG representation and the pro-
cedure for automatic acquisition of it from text. The overview of our TCBR
approach is provided in Sect. 5. Section 6 describes EDR together with the adap-
tation procedure. In Sect. 7 we evaluate EDR and compare it with IR methods.
Related work is reviewed in Sect. 8 followed by a discussion of future work and
concluding remarks in Sect. 9.

Evidence-Driven Retrieval in Textual CBR 353

2 Incident Analysis

Complex problems such as diagnosing a patient, investigating an accident or
predicting the outcome of a legal case need to be analysed in order to be solved.
It is a non-trivial task even for human experts so we are investigating methods
to support them in such tasks. The type of the analysis we are aiming for is
closely related to root cause analysis (RCA) [15] used by human analysts to
answer why a certain problem occurred in the first place [16]. A problem is char-
acterised by an undesired outcome such as a failure, accident, defect, dangerous
situation, etc. Causes are the events or conditions that lead to the undesired
outcome, removal of which would prevent the occurrence of that outcome. RCA
goes beyond causes that immediately precede the outcome and aims to identify
causal chains reaching the root causes of the problem. These causes are of vital
importance for the prevention of the same problems to occur in the future.

We study this analysis task in the transportation domain because incident
reports are easily available in this domain. The Transportation Safety Board
of Canada (TSBC) provides open access to aviation, marine and rail incident
reports between 1990 and the present day1. These reports are semi-structured
in the sense that they commonly contain sections that can be attributed to one
of the parts:

1. Summary provides a brief description of an incident.
2. Factual information describes the details.
3. Analysis documents the reasoning of the analysts
4. Conclusion enumerates root causes and contributing factors for the incident.

Most governments impose companies to write such analysis reports. Regard-
less of that, these reports are important for the companies from a knowledge
management perspective; companies find such reports beneficial because they
constitute an important source for revision of the companies’ safety regula-
tions. Furthermore, they are important for sharing the experiences and reasoning
knowledge of the analysts, to be put to use when analysing a new incident. Our
overarching goal is to automate parts of this analysis task, and support the
report writing process after an incident has been analysed.

3 Representation of Reasoning Knowledge

In our work, we aim to use incident reports as cases for CBR-based incident
analysis. Textual representation makes effective case retrieval and adaptation
very challenging. One way to overcome this problem, is to convert the text to
a semi-structured representation with a well defined semantics. For the analy-
sis task we need a representation that is able to capture the line of reasoning
embedded in the analysis text. For this purpose we introduced a representation,
coined Text Reasoning Graph (TRG) [18]. To illustrate the idea behind TRG
consider the following excerpt from an aviation incident report:
1 Reports from Transportation Safety board of Canada are available from http://
www.tsb.gc.ca/eng/rapports-reports.

http://www.tsb.gc.ca/eng/rapports-reports
http://www.tsb.gc.ca/eng/rapports-reports

354 G. Sizov et al.

the oil that burned away
did not return to the tank
(a06q0091, analysis, 6.71)

the oil level became very
low
(a06q0091, analysis, 2.81)

the engine oil pump to
cavitate
(a06q0091, analysis, 9.50)

the engine oil pressure to
fluctuate
(a06q0091, problem , 5.96)

the oil temperature did not change ,
or at least not significantly
(a06q0091, analysis, 5.24)

the pilot falsely deduced that the engine oil pressure
gauge was displaying an incorrect indication
(a06q0091, conclusion, 19.40)

cause

cause

cause

entail

cause

the oil did not return to
the tank
(a06q0091, analysis, 3.63)

cause

Fig. 1. Example of the text reasoning graph representation with metadata in the fol-
lowing format: (report id, part of the report, informativeness)

The oil that burned away did not return to the tank and, after a short
time, the oil level became very low, causing the engine oil pump to
cavitate and the engine oil pressure to fluctuate. Furthermore, since the
oil did not return to the tank, the oil temperature did not change, or at
least not significantly, and the pilot falsely deduced that the engine oil
pressure gauge was displaying an incorrect indication.

This excerpt captures reasoning of the expert about the incident, what we
call reasoning knowledge, which reflects how the analyst put together the pieces
of information in order to make a sense out of it. Phrases and sentences in
this excerpt are connected through causal relations making the whole excerpt
logically coherent. The TRG shown in Fig. 1 makes these relations explicit by
collecting them in one graph and adding entailment relations between nodes
when it applies. A TRG representation enables automatic inference, e.g. given
the TRG in Fig. 1, from the node “the engine oil pressure to fluctuate”, through
abduction we can infer the explanation “the oil that burned away did not return
to the tank”, and by deduction the conclusion “the pilot falsely deduced that
the engine oil pressure gauge was displaying an incorrect indication”.

In addition to a phrase or a sentence, each node in TRG also contains the
following metadata:

1. The report id that the node is extracted from.
2. Part of the report containing the same information as the node, e.g. summary,

analysis and conclusion.
3. Informativeness of the node, i.e. more specific nodes such as “the oil that

burned away did not return to the tank” has higher informativeness than
general node such as “the oil did not return to the tank”.

Evidence-Driven Retrieval in Textual CBR 355

4 Acquistion of Reasoning Knowledge from Text

TRG is automatically acquired from text of the incident reports using natural
language processing. This process can roughly be divided into two phases: pre-
processing and graph construction. In the preprocessing phase, a report in the
html format is converted into a structured text annotated with syntactic and
semantic information. This information is then used in the graph construction
phase to generate a TRG.

Steps in the preprocessing phase are as follows:

1. Extract text and sections from the report in html format.
2. Split the report into summary, analysis and conclusion parts based on section

titles, e.g. a section with the title containing the words “findings” or “causes”
is assigned to the conclusion part. Similar lexical patterns were constructed
for each part.

3. Text of the report is preprocessed with the CoreNLP [13] pipeline that
includes tokenization, sentence splitting, part-of-speech tagging, syntactic
parsing and co-reference resolution.

4. Causal relations are extracted from text of the report as described in Sect. 4.1.

The graph construction phase includes the following steps:

1. Causal relations are collected in one graph with arguments as nodes and rela-
tions as edges. Causal relations are the bare bones of the TRG representation.

2. Nodes that are not arguments of the same causal relation are connected by
entailment relations. The longest common paraphrase technique, described in
Sect. 4.2, is used for this purpose. This step is necessary to make the graph
more connected.

3. Nodes that are paraphrases of each other are merged into one node, preserving
the corresponding entailment and causal relations. This makes the graph more
compact by eliminating redundant nodes.

4. Nodes with low informativeness are removed from the graph as described in
Sect. 4.3, e.g. the phrase “after a short time” does not carry enough concrete
information by itself and is considered uninformative.

All the steps in the described process are fully automated, eliminating case
acquisition costs. Most of the steps are the same as described in our previous
work [18]. Two improvements are the use of co-reference resolution to replace
pronouns in text with corresponding references, e.g. “he” is replaced by “pilot”,
and the use of the longest common paraphrase instead of textual entailment and
paraphrase recognition, which facilitates EDR as described in Sect. 6.

4.1 Causal Relation Extraction

Causal relations are used in the generation of the TRG representation. To extract
them from text of the report we implemented the pattern matching algorithm
proposed by Khoo [8]. Khoo manually constructed 651 patterns and 352 sub-
patterns for causal relation extraction. The algorithm matches these patterns to

356 G. Sizov et al.

sentences in the incident report. If matching succeeds, phrases corresponding to
cause and effect arguments are extracted according to the applied pattern, e.g.

pattern: because of [cause], [effect]
source: Because of the durability of the coverings, it would be extremely difficult

for a survivor with hand or arm injuries to open the survival kit.
cause: the durability of the coverings
effect: it would be extremely difficult for a survivor with hand or arm injuries to

open the survival kit.

4.2 Longest Common Paraphrase

Longest common paraphrase (LCP) is the technique we introduce in the current
work to connect causal relations into a connected graph. It is also used in the
retrieval to identify evidences as described in Sect. 6. LCP identifies the longest
pair of phrases in two text fragments that are paraphrases of each other, e.g.

arg1 The minimum required radar separation in this airspace was 5 nautical
miles laterally or 1000 ft vertically.

arg2 No alternate to radar separation minima was in place during the time that
communication with the two aircraft was not available.

lcp1 minimum required radar separation in this airspace
lcp2 radar separation minima.

Two arguments are linked through the longest paraphrase e.g. arg2 entail−−−−→
lcp1 entail←−−−− arg2. To find the longest paraphrases, LCP iterates over all pairs
of phrases (S, NP and VP nodes in the syntax tree) starting with the longest
ones and stops when paraphrases are found. The paraphrase identification com-
ponent is based on a semantic text similarity measures. First, it obtains simi-
larity values between each pair of words inside the phrases using the Leacock
and Chodorow (LCH) similarity measure [12], which is based on the shortest
path between words through WordNet with all senses considered. Then, each
word in one phrase is assigned to a similar word in another phrase using the
Hungarian algorithm [10]. It makes sure that no two words from one phrase are
assigned to the same word in another phrase and the sum of similarities between
the assigned words is maximized. Stop words like articles and prepositions are
ignored. The text similarity value is obtained by normalizing this sum by the
number of words in both phrases. Phrases with a similarity value above 0.7 are
considered paraphrases.

4.3 Node Informativeness

Nodes in TRG contain phrases and sentences of various sizes. Informativeness of
a phrase measures how much concrete information it contains. In our approach,
this measure is used to remove uninformative nodes from TRG as well as to
assess the quality of evidences in the retrieval as described in Sect. 6.

Evidence-Driven Retrieval in Textual CBR 357

Many different approaches exist to measure text or term informativeness [9].
For our task, we use the informativeness measure based on the inverse document
frequency (IDF), computed as follows:

Info(node) =
∑

word∈node

log
|CaseBase|

|{case | word ∈ case ∧ case ∈ CaseBase}| (1)

It measures the informativeness of a node as the sum of informativeness of
the contained words, which are inversely proportional to their occurrence in the
case base. A node is considered informative if its informativeness is higher than
1.0. In addition it should contain at least two, non-stop words and have a direct
or indirect connection to a node from the conclusion part of the report.

5 Textual CBR for Incident Analysis

The overview of our TCBR approach for incident analysis is shown in Fig. 2.
It follows the classical CBR cycle with retrieve, reuse, revise and retain steps
[1]. The case base is a collection of CaseGraphs, where a CaseGraph is a TRG
automatically extracted from an incident report which represents an analysis
of the incident. Unlike a traditional case representations with separate problem
description and solution parts, a CaseGraph contains both of them together in
one graph. Nodes in a TRG include the metadata that indicates which part of
the report the information in the node is contained in (see example in Fig. 1).
Problem nodes correspond to the problem description part of a case and analysis
with conclusion nodes to the solution part.

Case base

Textual
problem

description
Retrieval

(1)

Reuse
(2)

Revise
(3)

Retain
(4)

CaseGraphs

ReuseGraph

CaseGraph

ReviseGraph

NLPTextual
cases

Fig. 2. Textual CBR cycle for incident analysis

358 G. Sizov et al.

In addition to a CaseGraph, our cycle contains a ReuseGaph and a Revise-
Graph, that are also TRGs generated at different steps of the CBR cycle. The
cycle starts with the textual description of a new problem. In the retrieval step,
this description is used to retrieve a CaseGraph from the case base. This Case-
Graph is then adapted to the new problem generating a ReuseGraph, which
represents the adapted solution. The ReuseGraph is then validated and modi-
fied by a human expert in the revise step resulting in the ReviseGraph, which is
then stored in the case base for future use.

6 Retrieval and Adaptation

The general idea behind evidence-driven retrieval (EDR) is to assess whether
the analysis of a previous problem can be adapted for solving a new problem.
As described in Sect. 5, a case in our system is represented by a CaseGraph,
which captures an incident analysis by means of causal and entailment relations,
while a new problem is described textually. The EDR process matches each
CaseGraph in the case base with the new problem description to find the most
relevant and adaptable past case. To assess the adaptability, EDR identifies
so-called evidences in the new problem text in the context of each past case
separately. An evidence is a phrase in the new problem description that carries
information that was proven to be instrumental in the analysis of a previous
problem. Identification of evidences acts as a method for feature selection where
features are selected based on their usefulness in analysing a past problem. In
addition to finding evidences, EDR assesses their informativeness so that more
informative evidences contribute more to the ranking of cases in the retrieval
process.

Evidences also play an important role in adaptation because they serve as
the starting points for the analysis generated during the adaptation process.
The result of this analysis is a ReuseGraph like the one shown in Fig. 3, which
we will use to illustrate how EDR works. This graph contains two evidence
nodes: “pilot applied carburettor heat” and “engine abruptly lost all power”. The
information contained in these phrases have previously been used in the analysis
of another incident, e.g. “pilot applied carburettor heat” is entailed by “the
pilot applied carburettor heat, but noted engine resulted in a further decrease in
engine power and selected the carburettor heat off” from the CaseGraph. The
two evidences are also contained in sentences of the new problem description,
e.g. “pilot applied carburettor heat” is entailed by “pilot applied carburettor
heat and attempted to restart the engine, but heat did not respond” from the
problem description. These evidence phrases were identified automatically by the
longest common paraphrase method described in Sect. 4.2, which is applied for
all combinations of problem description sentences and nodes in the CaseGraph.
Then, the informativeness of each evidence phrase is calculated with the IDF-
based measure described in Sect. 4.3. The informativeness of evidence nodes in
Fig. 3 (shown in parenthesis) is 5.67 and 4.04, resulting in total informativeness
of 9.71. This value is used to rank cases in the case base, taking the top one as
the retrieved case.

Evidence-Driven Retrieval in Textual CBR 359

Fig. 3. Part of the ReuseGraph.

Formally, the described process of finding and measuring informativeness of
evidences can be formulated as follows:

Infoe(Sp, CaseGraph) =
∑
s∈Sp

∑
n∈CaseGraph

Info(LCP (s, n))

where Sp is the set of all sentences in the new problem description text, n is a
node in the CaseGraph from the case base, Info is the informativeness measure,
and LCP is the longest common paraphrase described in Sect. 4.2.

The result of the retrieval process is the CaseGraph with the most infor-
mative evidences for the target problem. This CaseGraph together with the
evidences is further used in the adaptation process that was first proposed in
our previous work [18]. The main idea of this process is to find reasoning chains
through the CaseGraph connecting evidences to conclusion nodes. Conclusion
nodes are nodes in the CaseGraph that were extracted from the conclusion part
of the corresponding report as described in Sect. 2. A reasoning chain is a short-
est path through the CaseGraph from an evidence node to a conclusion node.
One example of a reasoning chain in Fig. 3 is “engine abruptly lost all power”
entail←−−−− “carburettor icing, which caused the engine to lose power” cause←−−− “ambi-

ent temperature and dew point conditions during the flight most likely resulted

360 G. Sizov et al.

in carburettor icing”. The adaptation process attempts to find a reasoning chain
for every evidence and conclusion pair. The shortest path algorithm doesn’t
consider the direction or weights of edges in the graph. All the reasoning chains
are combined in one graph, called ReuseGraph, which is the final result of the
adaptation process.

In the described adaptation approach, only one case is reused to solve a target
problem meaning that only evidences for the currently retrieved past case are
considered. Evidences not used in the retrieved case but possibly used in other
past cases may also be important for the new case. For our future work, we are
considering a compositional adaptation approach that combines evidences and
CaseGraphs from multiple cases.

7 Evaluation

The goal of our evaluation is to investigate the effect of EDR on the performance
of the TCBR system for incident analysis. In particular we compare performance
of EDR with the bag-of-words and semantic indexing models.

7.1 Dataset and Preprocessing

In our work we use incident investigation reports from the Transportation Safety
Board of Canada (TSBC). Compared to other incident report datasets such as
The United States Aviation Safety Reporting System (ASRS) dataset used in
previous works on incident analysis [2,14,21], TSBC reports are more detailed
with extensive analysis sections. A fairly consistent structure of the reports
makes it easier to accomplish automatic evaluation. Another advantage of the
TSBC dataset is that it contains collections from several different transporta-
tion domains which enables us to validate the domain-independent nature of our
approach.

Three of TSBC collections were used for evaluation: 922 aviation reports,
375 marine reports, 298 rail reports. Each report is a text document 5–10 pages
long that describes an incident and provides textual analysis of the causes and
contributing factors as described in Sect. 2. For evaluation, we randomly split
each collection into a test and a training set, which contain 20 % and 80 % of the
reports, respectively, with no overlap.

7.2 Evaluation Procedure

CBR methods are evaluated based on the quality of the produced solution given a
problem description. In our approach, problem description is a textual summary
from the test report that briefly describes the incident. Given this summary, the
system generates a solution in a form of a ReuseGraph as described in Sect. 2.
Four scores are computed in our evaluation: adaptability, precision, recall and
f-score. Adaptability is a binary score indicating whether the adaptation is possi-
ble (1) or not (0), which is determined by whether any evidences can be identified
in the problem description given the retrieved case.

Evidence-Driven Retrieval in Textual CBR 361

Adaptability does not evaluate the results of adaptation, which is the role of
precision, recall and f-score. Our implementation of these measures is different
from IR and is based on the similarity between conclusion nodes in the Reuse-
Graph and conclusion sentences in the test report. These conclusion sentences
were written by human experts and enumerate actual causes for the incident,
e.g. “During the auto-rotation, the helicopter was not levelled at the time of
the landing, which resulted in a hard landing.” We use the same text similarity
measure as described in Sect. 4.2. Each conclusion node is assigned to a similar
conclusion sentence such that no two nodes are assigned to the same sentence
and the sum of similarities is maximized. It is the instance of the assignment
problem solved by the Hungarian algorithm [10]. Given this sum (referred to as
Similarity), precision, recall and f-score are computed as follows:

Similarity = Assignment(ConclusionNodes, ConclusionSentences)
Precision = Similarity/|ConclusionNodes|

Recall = Similarity/|ConclusionSentences|
F -score = 2 · Precision · Recall

Precision + Recall

where precision indicates the correctness of the proposed conclusions and recall
shows to what extent the proposed conclusions cover actual conclusions. As in
IR, it is important to consider these measures together, which is reflected in the
f-score.

7.3 Baselines

Two baseline retrieval methods were implemented to compare with EDR. The
first one is TFIDF we used in our previous work [18]. It is based on the BOW
model where cases are represented as vectors with words as dimensions and term
frequency - inverse document frequency (tf-idf) weights as values. The similarity
is computed as the cosine between vectors representing textual problem descrip-
tions for a new and previous problems. The most similar case is retrieved and
it’s CaseGraph is then used in adaptation.

The second baseline retrieval method is based on Latent Semantic Indexing
(LSI) [6]. It is a well-known semantic indexing method which applies singu-
lar value decomposition to a term-document matrix with tf-idf weights. Term
dimensions in this matrix are transformed to maximize the variance between
documents. In the transformed coordinates, similar terms become closer while
distant terms become further from each other. The dimensions are also ranked
by a so-called singular value which indicates the discriminative power of the
dimension. With LSI, it is common to take a certain number of dimensions with
the highest singular values. We tried different number of dimensions (50, 150,
300, 600) to maximise the results for the LSI baseline. The best results shown
in Table 1 were obtained for 300 dimension.

For both baselines we attempted to use the whole report instead of the prob-
lem description part from the previous case when computing similarity. Intu-
itively, it makes sense because other parts of the report contain information not

362 G. Sizov et al.

Table 1. Score means in % obtained when evaluated on the complete test set.

Dataset Measure TFIDF LSI EVIDENCE

Aviation Adaptability 47.46 21.47 100.00

Precision 8.73 3.77 14.04

Recall 6.04 1.78 17.45

F-score 5.93 2.03 12.56

Marine Adaptability 40.79 19.74 100.00

Precision 7.19 3.62 16.50

Recall 5.58 1.29 12.91

F-score 5.58 1.73 12.49

Rail Adaptability 37.50 25.00 100.00

Precision 6.71 4.34 11.62

Recall 4.81 2.93 19.98

F-score 4.84 2.97 13.41

available in the problem description which might result in a more precise simi-
larity assessment. In addition, EDR makes use of other parts of previous reports
captured by a CaseGraph so it is fair that the baseline methods can utilize these
parts as well. However, experimental results showed that including other parts
of a report in the retrieval decreases the performance of the baselines. There-
fore, the results presented in Sect. 7.4 were obtained when baselines use only the
problem description part.

7.4 Results and Analysis

Table 1 shows the results obtained by our system on three datasets. Three dif-
ferent retrieval components were used: TFIDF, LSI and EVIDENCE. The first
two are the baselines described in Sect. 7.3 and EVIDENCE is the implementa-
tion of EDR described in Sect. 6. These components are evaluated as part of the
complete system following the evaluation procedure described in Sect. 7.2.

The results show significantly higher performance of the evidence-based
retrieval. It has 100 % adaptability scores indicating that cases retrieved with
EVIDENCE can always be adapted to a new problem. It is the consequence of
the idea that the retrieval mechanism in the EDR is designed to facilitate the
following adaptation process. In contrast, our baseline retrieval methods, TFIDF
and LSI, are not aware of the adaptation process and as a result most of the
cases they retrieve can not be adapted to the target problem. While adaptabil-
ity is a binary score that indicates whether a retrieved case can be adapted,
precision, recall and f-scores reflect the quality of the adapted solution. As with
adaptability, these scores are significantly higher for EVIDENCE compared to
TFIDF and LSI.

Evidence-Driven Retrieval in Textual CBR 363

For all datasets, LSI demonstrated poor results, worse than a more primi-
tive TFIDF baseline. Possible explanation for this is that the analysis task is
driven by specific details rather than conceptual topics captured by LSI. Inci-
dent reports in the same domain cover very similar topics and mostly use the
same vocabulary, which makes semantic indexing less useful. In addition, inci-
dent report collections we use for the experiments are relatively small in size,
which might not be enough to learn a robust semantic representation.

8 Related Work

The idea of retrieving adaptable cases was proposed and thoroughly investi-
gated by Smyth and Keane [19] in their work on adaptation-guided retrieval
(AGR). They showed that similarity alone might not be enough to retrieve the
most appropriate case to guide the problem solving process. AGR uses adap-
tation knowledge that provides the link between problem and solution features
and allows to asses the importance of matches between features based on their
influence on adaptation. AGR and similar approaches have been successfully
used in several CBR systems for different tasks including plant-control soft-
ware, example-based machine translation, and property-valuation [4,7,19]. EDR
is based on the same general idea as AGR with reasoning chains providing
explicit mapping between problem and solution features. However, unlike AGR,
adaptation knowledge in EDR is not explicitly represented.

EDR is also inspired by explanation-based learning (EBL), where the rele-
vance of features is determined by explaining their contribution to an example’s
solution [3]. Like in EBL, EDR uses solutions from previous cases to judge the
relevance of features in the new problem description. These features become
parts of the reasoning chains generated during adaptation, which can be viewed
as the explanations. The major difference, however, is that EBL relies on high-
quality domain knowledge to generate explanations while reasoning chains in
our approach are generated from causal and entailment relations extracted from
text.

Most of the systems using AGR and EBR approaches use cases and knowledge
represented in structured form with a well-defined meaning. In contrast, EDR
is designed for TCBR where knowledge is in textual form. Compared to struc-
tured representation, natural language has a much more complex and ambiguous
semantics. It makes adaptation a very challenging task. Many adaptation meth-
ods are limited to substitution of textual units in the solution text such as in [11]
where email responses are retrieved and adapted to new request. Although adapt-
ability of cases is not considered in the retrieval process, there is an explicit link
between a problem and solution spaces in a form of word associations. Problem-
solution associations between larger textual units such as phrases and sentences
have been also investigated in [17]. To enable more sophisticated forms of adap-
tation it is often necessary to convert textual cases to a structured form. A recent
example of this approach is the work on extraction and adaptation of cooking
workflows [5]. The possibility for AGR is briefly discussed but not implemented
in their work.

364 G. Sizov et al.

9 Conclusion

In this paper we presented evidence-based retrieval (EDR), a case retrieval
method for TCBR that aims to retrieve adaptable cases. EDR is based on
the text reasoning graph representation which automatically captures reason-
ing knowledge contained in textual cases. EDR identifies evidence phrases in the
textual problem description that serve as the starting points for adaptation. The
cases are then ranked by the informativeness of these evidences.

We evaluated EDR on the incident analysis task in three domains (aviation,
marine and railway) using incident reports from the Transportation Safety Board
of Canada. Experimental results show significantly higher performance of EDR
compared to commonly used IR methods. 100 % of cases retrieved with EDR are
adaptable, while IR methods had adaptability below 50 %.

EDR is the latest addition to our TCBR approach for automated analysis.
Previously we developed the representation and the adaptation technique specif-
ically designed for this task. With EDR all the components in our approach are
task-specific and well integrated with each other, which results in better perfor-
mance. Still, there are many directions for future work. For instance, we plan
to investigate the possibility for capturing textual context in the TRG repre-
sentation. Currently, phrases contained in TRG nodes loose their context when
extracted from text. A phrase without context can be ambiguous which reduces
the accuracy of the textual similarity component used for generation of the rep-
resentation, retrieval and adaptation. Another promising direction for future
research is the development of a natural language generation component that
could produce textual analysis from ReuseGraphs.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

2. Abedin, M.A.U., Ng, V., Khan, L.: Cause identification from aviation safety inci-
dent reports via weakly supervised semantic lexicon construction. J. Artif. Intell.
Res. 38(1), 569–631 (2010)

3. Cain, T., Pazzani, M.J., Silverstein, G.: Using domain knowledge to influence sim-
ilarity judgements. In: Proceedings of the Case-Based Reasoning Workshop, pp.
191–198 (1991)

4. Collins, B., Cunningham, P.: Adaptation-guided retrieval in EBMT: a case-based
approach to machine translation. In: Smith, I., Faltings, Boi V. (eds.) EWCBR
1996. LNCS, vol. 1168, pp. 91–104. Springer, Heidelberg (1996)

5. Dufour-Lussier, V.: Reasoning with qualitative spatial and temporal textual cases.
Ph.D. thesis, Université de Lorraine (2014)

6. Dumais, S., Furnas, G., Landauer, T., Deerwester, S., Deerwester, S., et al.: Latent
semantic indexing. In: Proceedings of the Text Retrieval Conference (1995)

7. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith,
I., Faltings, Boi V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer,
Heidelberg (1996)

Evidence-Driven Retrieval in Textual CBR 365

8. Khoo, C.S.G.: Automatic identification of causal relations in text and their use
for improving precision in information retrieval. Ph.D. thesis, The University of
Arizona (1995)

9. Kireyev, K.: Semantic-based estimation of term informativeness. In: Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 530–538.
Association for Computational Linguistics (2009)

10. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2(1–2), 83–97 (1955)

11. Lamontagne, L., Lee, H.-H.: Textual reuse for email response. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp.
242–256. Springer, Heidelberg (2004)

12. Leacock, C., Miller, G.A., Chodorow, M.: Using corpus statistics and WordNet
relations for sense identification. Comput. Linguist. 24(1), 147–165 (1998)

13. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 55–60 (2014)

14. Posse, C., Matzke, B., Anderson, C., Brothers, A., Matzke, M., Ferryman, T.:
Extracting information from narratives: an application to aviation safety reports.
In: 2005 IEEE Aerospace Conference, pp. 3678–3690. IEEE (2005)

15. Rooney, J.J., Heuvel, L.N.V.: Root cause analysis for beginners. Qual. Prog. 37(7),
45–56 (2004)

16. Shokouhi, S.V., Aamodt, A., Skalle, P., Sørmo, F.: Determining root causes
of drilling problems by combining cases and general knowledge. In: McGinty,
L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 509–523. Springer,
Heidelberg (2009)

17. Sizov, G., Öztürk, P.: Query-focused association rule mining for information
retrieval. In: SCAI, pp. 245–254 (2013)

18. Sizov, G., Öztürk, P., Štyrák, J.: Acquisition and reuse of reasoning knowledge
from textual cases for automated analysis. In: Lamontagne, L., Plaza, E. (eds.)
ICCBR 2014. LNCS, vol. 8765, pp. 465–479. Springer, Heidelberg (2014)

19. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity
assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

20. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. Knowl.
Eng. Rev. 20(3), 255–260 (2005)

21. Wilson, D.C., Carthy, J., Abbey, K., Sheppard, J., Dunnion, J., Drummond, A.,
Wang, R.: Textual CBR for incident report retrieval. In: Kumar, Vipin, Gavrilova,
Marina L., Tan, CJKenneth, L’Ecuyer, Pierre (eds.) ICCSA 2003, Part I. LNCS,
vol. 2667, pp. 358–367. Springer, Heidelberg (2003)

Maintaining and Analyzing Production Process Definitions
Using a Tree-Based Similarity Measure

Reinhard Stumptner1(✉), Christian Lettner1, Bernhard Freudenthaler1,
Josef Pichler1, Wilhelm Kirchmayr2, and Ewald Draxler2

1 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
{reinhard.stumptner,christian.lettner,

bernhard.freudenthaler,josef.pichler}@scch.at
2 Voestalpine Stahl GmbH, Linz, Austria

{wilhelm.kirchmayr,ewald.draxler}@voestalpine.com

Abstract. In this work a Case-Based reasoning system for managing production
processes, declarative production process definitions in particular, with main
focus on analysis and maintenance is introduced whereby each process task is
represented by a case. A single process task definition includes among other
elements, formulas, represented by fragmental program code. To get a meaningful
similarity function among such cases, a new fuzzy tree edit distance metric on
the formulas’ abstract syntax tree has been developed. The fuzzy tree edit distance
addresses two aspects of similarity – similarity in terms of similar structure and
similarity in terms of similar wording. As such, the proposed method represents
a multidisciplinary approach to production process maintenance that includes
methods from Case-Based reasoning and code clone detection.

Keywords: Case base maintenance · Similarity measure · Tree edit distance ·
Code clone detection · Abstract syntax tree · Hierarchical clustering

1 Introduction

Production processes define the sequence of tasks that must be executed to produce a
product in a required quality. In general, the quality of a final product is ensured by
continuously monitoring particular quality parameters. If a quality divergence is
detected, the production process will have to be adjusted, e.g. adding additional tasks
that perform corrective actions.

If many product types with varying quality requirements are produced, then this leads
to a large amount of different production processes. Often these production processes
are similar in large part, especially if the final products distinguish themselves only in
some special quality requirements.

Modern workflow management systems [13, 14] face this diversity by introducing
inheritance or customizable process model definitions. Nevertheless, in industry there
are many production process management systems in use that provide no such concepts.

© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 366–380, 2015.
DOI: 10.1007/978-3-319-24586-7_25

Investigating the use case presented in this work showed that especially maintaining
such diverse production process definitions is rather challenging. Some maintenance
related questions regularly emerge in practice are:

• I have to define (a part of) a production process. Does a similar and possibly matching
one already exist?

• Is a change I have to apply also relevant for other, similar process task definitions?
• Where can I find duplicate or similar parts in the production process definitions that

could be merged?
• For quality control, find all groups of similar process task definitions. Maybe the

definitions differ by mistake?

The production process management system we analyzed in the context of this work
allows the definition of task sequences, whereby every task contains a set of parameters
that describe target values and actual values. Moreover, the calculation of these values
is specified within the parameter definition using formulas, which are implemented using
PL/SQL source code fragments. If these fragments are implemented as so-called
modules, they can be re-used within other process definitions. Unlike the term “module”
in general has a slightly different meaning, in the scope of the underlying process
management tool and consequently in the scope of this contribution it just marks a task
as being re-usable (as a “task” within the process management tool cannot be re-used
in different processes).

The decision to implement a process task specifically for a certain process or as a
module is not always certain and easy. Individual implementations typically are clearer and
easier to read, while modules that consider differences in processes tend to produce deeply
nested if-then-else rules in the parameter value calculation formula. But, if there are only
minor differences between formulas, it is advisable to create a module. Using a module,
commonalties and differences are documented at a central point, which is a main
advantage. But, if differences increase and exception handling consequently gets compli‐
cated, an individual implementation may be more feasible. But of course this can change
over time, as a big number of individual implementations would lead to infeasible change
management and high maintenance costs. Continuous changes and optimizations of the
production process from the maintenance point of view require both, integrating indi‐
vidual tasks into modules as well as extracting individual tasks from modules.

To answer the questions from above a Case-Based reasoning (CBR) system was
applied. The CBR system consists of two modules as shown in Fig. 1. The first module
represents a classical CBR application to retrieve answers for questions of the analyst, like
where to find similar process definitions. The second module implements a case base
maintenance methodology to generate a cluster map of similar process task definitions.
Obviously, there are many parallels between the above described modularization and case
base maintenance concepts. The cluster map can be used by the analyst to get a general
overview of the process definitions and to get support in deciding where modules should
be built. As already mentioned, this map is used to create groups of similar cases as a basis
for case base maintenance, thus reducing the number of cases stored in the case base, with
the goal of improving the quality and performance of the CBR application. The focus of
this work is on measuring the similarity between formulas and on case base maintenance.

Maintaining and Analyzing Production Process Definitions 367

Fig. 1. Overview of the CBR system

Case grouping is based on hierarchical clustering which is to find duplicate and
similar process tasks. Each process task along with its parameters is represented by a
case. Case base maintenance [18], more precisely prototyping, is used to group similar
cases into one representative case, to ensure a uniform distribution of cases across the
feature space, which is very important for Case-Based reasoning systems [17].

In this work, case base maintenance is performed in the context of a certain similarity
function. The characteristic of process tasks heavily depends on the formulas that calcu‐
late process parameter values for the task. To be able to calculate similarities between
formulas, a special distance metric was developed, which is based on a tree edit distance
between abstract syntax tree representations of formulas.

This paper is structured as follows. After giving a short overview of related re-search,
background information to the investigated production process management system is
provided, followed by an introduction into the approach applied for process definition
maintenance and analysis. Section 4 outlines the developed fuzzy tree edit distance to
compare process definitions. Finally, Sect. 5 gives an outline of results and experience
of the approach as it is applied in industry.

2 Related Work

Whenever a case contains any kind of graphs, an effective is needed in order to compute
case similarities in a suitable way and in reasonable time. This topic is investigated in
CBR for a long period of time, like in [4] for instance.

Generally, the success of CBR systems highly depends on the quality of the case
base, respectively, the quality of the cases stored in the case base. The retrieval process
can become very time-consuming if the case base gets very large. Therefore, the case
base necessarily has to be maintained.

Smyth et al. [18] presents in his paper how modeling the performance characteristics
of a case base can provide a basis for automatic maintenance in CBR. He shows how
performance models can be used for deletion of redundant cases from a case base to
optimize the system performance. Furthermore, the presented models can be used for
the detection of potential inconsistencies within a case base, the guidance of case authors
during case acquisition and as an organizational framework for the construction of
distributed case bases.

368 R. Stumptner et al.

Smiti et al. [17] gives an overview of maintenance strategies for CBR systems. They
classify case base maintenance algorithms in three classes. The first class follows a
partitioning policy that builds an elaborate case base structure and maintains it contin‐
uously. The second class follows selection based data reduction methods that start with
an empty set, select a subset of instances from the original set and add it into the new
one. And finally the third class which follows a deletion policy based on cases’ compe‐
tence to optimize the case base. They remark that the most recently explicit algorithmic
model of competence for CBR systems was suggested by Smyth et al. [19] by defining
the two key fundamental concepts of coverage and reachability. Wilson et al. [21] cate‐
gorizes the maintenance policies in terms of data collections which explain how to gather
data relevant to maintenance, how to trigger maintenance, available types of mainte‐
nance operations and how selected maintenance operations are executed. Moreover,
Pan et al. [11] classified Case-Based maintenance policies in search direction, order
sensibility and evaluation criteria. All other research mainly relied on the deletion and
the revision of irrelevant and redundant cases.

A more recent approach is presented by Jalali et al. [5]. The authors suggest an
adaptation-guided case base maintenance approach which exploits the ability to dynam‐
ically generate new adaptation knowledge from cases. Case retention decisions are based
both on cases’ value as base cases for solving problems and on their value for generating
new adaptation rules.

myCBR is an open-source CBR software tool which comes along with a workbench
and a Software Development Kit (SDK). Implementing CBR applications from scratch
remains a time consuming software engineering process and requires a lot of specific
experience beyond pure programming skills. myCBR supports this process and is one
of only few CBR software tools for supporting the development process. The workbench
is used to design a knowledge model, which consists of concepts, cases and similarity
functions, while the SDK can be used to incorporate the knowledge model into custom
applications (see e.g. [1, 15, 20]).

Code clones are the origin of maintenance problems, to be solved by the approach
presented in this paper. Code clones are well investigated by research community
resulting in well understanding why source code contains code clones, types of code
clones, and different techniques for detection of code clones. Researchers (e.g. Bellon
et al. [3]) distinguish the following types of clones: Type 1 is an exact copy without
modifications (except for white space and comments), Type 2 is a syntactically identical
copy; only variable, type, or function identifiers were changed; Type 3 is a copy with
further modifications, statements were changed, added, or removed. The system
presented in this work is able to detect type 3 clones, as changed, added, or removed
statements cause differences on subtree-level and can be handled accordingly. Techni‐
ques for code clone detection are based on text, tokens, metrics, abstract syntax trees
(AST), or program dependency graphs (PDG).

Our CBR-based technique is based on the abstract syntax tree and, therefore, related
to AST-based code clone detection. One of the first AST-based detection was proposed
by Baxter et al. [2]. The proposed technique requires full parsing of the program source
code and creating an abstract syntax tree. Subtrees of the abstract syntax tree are then
partitioned based on a hash function; subtrees in the same partition are then compared

Maintaining and Analyzing Production Process Definitions 369

through tree matching. Near-miss clones fails when the hash function includes every
node of the AST. In order to mitigate this problem, leave nodes of the trees (e.g. iden‐
tifiers) are ignored by the hash functions. Rather than comparing trees for exact equality,
Baxter et al. compare instead for similarity using a few parameters such as number of
nodes in subtrees. The similarity threshold parameter allows the user to specify how
similar two subtrees should be. Small pieces of code (e.g. identifiers or small expres‐
sions) can be ignored in that way. Jiang et al. [6] present an efficient algorithm for
identifying similar subtrees and apply it to AST representation of source code. The
algorithm calculates numerical vectors in the Euclidean space for every subtree of the
AST and clusters these vectors with respect to the Euclidean distance metric. Subtrees
with vectors in one cluster are considered similar.

The majority of techniques detect code clones in source code without taking the
structure of the software system into account. Clone pairs may be detected in source
code of single function block or in source code of different modules of a software system.
The problem setting of our work is a different one, because we are interested in duplicate
or similar code formulas, however not in code pairs within a single formula. Method-
level clone detection (e.g. [7, 10, 16]) fix the granularity to function or method level.
Function/method clones are simply clones that are restricted to refer to entire function
or method. Kodhai et al. [7] combines textual analysis and metrics for the detection of
syntactic and semantic clones. CLAN [10] uses metric-based clone detection techniques
for method-level granularity. CLAN gathers different metrics for code fragments and
compares these metric vectors instead of comparing the code directly. An allowable
distance (e.g. Euclidean distance) for these metric vectors can be used as a hint for similar
code. NICAD [16] is multi-pass approach which is parser-based and language-specific
but reasonably lightweight, using simple text line rather than subtree comparison to
achieve good time and space complexity. Experiments indicate that the method is
capable of finding near-miss clones with high precision and recall, and with reasonable
performance.

3 Production Process Analysis and Maintenance

3.1 Background

As briefly introduced in Sect. 1, the investigated production process management
system makes use of process task definitions that consist of multiple parameters.
Figure 2 illustrates the underlying data structure. A task consists of several attrib‐
utes like the name of the task (“taskName”), the product it produces (“product‐
Name”), on which type of machine it may be executed (“machineType”), a flag
which specifies if the task is defined as a module (“isModule”), the version of the
task (“version”), as well as the list of parameters the task contains (“parameter‐
List”). Moreover, a parameter is defined by a name (“parameterName”), a sequence
number which determines the order of evaluation of the formulas (“seqNumber”), a
flag which defines weather the parameter is active (“isActive”), and finally the
formula which calculates the value of the parameter (“formula”).

370 R. Stumptner et al.

Fig. 2. Structure of a process task

The main part of every task definition is the formula for the parameter definitions.
These formulas are responsible to calculate the actual value of the parameter and are
implemented as PL/SQL code fragments. Predefined access paths are provided to read
and write parameter values within formulas from other parameters formulas. The
following example shows a formula that checks whether a value is within a predefined
boundary:

[Example PL/SQL formula that evaluates the boundaries of a value]
The access path “cx.getParam(parameterName)” returns the value of the provided

parameter name, while “cx.value” references the value of the actual parameter which
the formula is defined for.

3.2 Preprocessing and Analysis Approach for Production Process Maintenance

This section describes the case base maintenance methodology we applied to
support production process maintenance. The main steps are described in Fig. 3. For
all formulas defined in the process task definitions the abstract syntax tree (AST) is
generated using a PL/SQL parser. A part of the AST from the formula in Sect. 3.1
is shown in Fig. 4. The open source software myCBR is used to define the simi‐
larity function between process tasks. The GUI based environment allows a flexible
definition of similarity functions, where analysts can design tailor-fit similarity
functions.

The similarity function is defined in the myCBR Workbench. For the global simi‐
larity function (similarity function on case-level) of tasks we used a weighted Euclidian
distance on all attributes. For the attribute in the parameter class, which contains the
AST of the parameter formula, a fuzzy tree edit distance (in particular a normalized
fuzzy tree edit similarity measure is used, which means sim = 1 for identical objects and
sim = 0 for totally different objects) is used. This measure is described in detail in Sect. 4.

Maintaining and Analyzing Production Process Definitions 371

Fig. 4. AST from example code fragment

After the AST of the formulas are generated, hierarchical clustering is performed on
all process tasks. We used a hierarchical clustering algorithm to get a topological map
of all cases stored in the case base which is expressive and at the same time easily to
understand by analysts and technicians.

Figure 5 shows an example hierarchical clustering result for five tasks, P1-T to P5-
T, and eight references to modules, P6-M to P13-M. The distance between the clusters
is shown in circles. The tasks P2-T and P3-T show a distance of 0, meaning P2-T and
P3-T represent duplicate task definitions. The same applies to the tasks P4-T and P5-T,
while P1-T apparently represents a unique task. Accordingly the example contains two
different module definitions, P6-M to P9-M and P10-M to P13-M.

Fig. 3. Case base maintenance workflow

372 R. Stumptner et al.

Fig. 5. Hierarchical clustering on tasks and modules

The resulting hierarchical cluster heavily depends on the chosen similarity function.
Changing and adopting similarity functions gives analyst the possibility to switch the
analysis focus to different aspects in production process maintenance. Last, the resulting
hierarchical cluster is split and visualized based on a user specified distance threshold.
If the distance between two sub-clusters is above this threshold, the two sub-clusters are
split up to two separate clusters. In the example shown in Fig. 5, a threshold of 0.05
would lead to segmentation into three clusters. Finally, as a result of the case base main‐
tenance process, for every sub-cluster a representative case is nominated (if the distance
between cases within the cluster is reasonably low), which is called the prototype case.
It seems reasonable to assume that the best prototype case is the case with minimal
distance to all other cases. In graph theory this is also called the absolute median of a
graph [9]. It is given by the vertex in an -vertex graph if the sum of all distances
between and every point in the graph is minimal:

(1)

The prototype case, i.e. the best case representing the sub-cluster, therefore is .

4 A New Fuzzy Tree Edit Distance – A Similarity Measure for
Process Definitions Represented by Abstract Syntax Trees

The Fuzzy Tree Edit Distance (FTED) is based on the “Robust Tree Edit Distance”
(RTED) algorithm published by Pawlik et al. in 2011 [12]. RTED was chosen as a basis
for FTED, because “RTED is robust to different tree shapes and always performs
well” [12].

The distance function d(F, G) in terms of RTED is defined as the minimum cost to
turn F into G, while cost correspond to the according sequence of node edit operations

Maintaining and Analyzing Production Process Definitions 373

that transforms F into G, whereby forests F and G are graphs in which each connected
component is a tree (in difference to a forest a tree must only have a single root). The
elements w and v are arbitrary but not identical nodes of a tree or forest. Fv is the subtree
of F with the root v.

According to [12], the distance function, is defined as

(2)

(3)

(4)
if F is not a tree or G is not a tree:

(5)

if F is a tree and G is a tree:

(6)

For the FTED let us take a closer look at the replacement cost cr. Normally these
costs are (statically) predefined (e.g. cd = ci = cr = 1), but in our cast we want to
calculate cr dynamically corresponding to the string similarity of the labels of the
according tree nodes.

Thus, in case of substitution the FTED algorithm takes into account the similar‐
ities between the according nodes. Subsequently, in terms of FTED it makes a differ‐
ence if two nodes which have to be replaced have similar labels (similar in terms of
string similarity, semantic and so on) or not. This shall be expressed by substitution
costs. So, if the labels of the nodes are similar then the substitution or replacement
costs are low, otherwise these costs are high. For expressing the (generalized)
distance ([0, 1]) between the labels of nodes in this use case the Levenshtein
Distance [8] was used. But this is not necessarily required. Meaning that also other
algorithms could be used to express the substitution-costs between two nodes
(numerical distances or even semantic measures by means of ontologies for
instance). This can be varied depending on the use case. But in the scope of this
contribution, let us stick to the Levenshtein Distance.

The Levenshtein Distance [8] between two strings a and b is defined by the
following matrix D.

374 R. Stumptner et al.

(7)

After the matrix is fully calculated the Levenshtein Distance is in the last cell (D|a|, |

b|). To make the Levenshtein Distance usable for FTED it has to be normalized to [0, 1],
which can be done easily by as the distance between two
strings cannot be larger than their maximum length.

The following example shall demonstrate the FTED approach. The first example
uses the original tree edit distance algorithm; the second one applies the FTED.

Figure 6 shows the two trees for which the distance should be calculated. The calcu‐
lation algorithm and the final result are shown in Fig. 7. First, node “X” is deleted from
the left tree. Second, node “Y” in the left tree is replaced by node “C”. And the left tree
has already been transformed into the right tree. Consequently their edit distance d = 2.

Fig. 6. Example 1: Problem

Fig. 7. Example 1: RTED Result

Maintaining and Analyzing Production Process Definitions 375

To get a normalized measure for the distance between the trees, d is divided by the
maximum distance between the trees which corresponds to the maximum number of
nodes (tree1, tree2), which is 6 in our case.

The second example illustrates the calculation of the FTED. In Fig. 8 there are two
trees again (tree1, tree2). Figure 9 shows the results of the FTED.

Fig. 8. Example 2: Problem

Fig. 9. Example 2: FTED Result

First, node “X” gets deleted like in the first example. But in case of replacing “Test-
Node”, its label is compared with the labels of the nodes in tree2, with “Test-Node1” in
particular, which results in a value of 0.1 as replacement costs.

(8)

Taking this into account, the normalized edit distance d between tree1 and tree2 is
d = 0.18. As one can see, the measure addresses both aspects very well – similarity in
the sense of similar structure and similarity in the sense of similar wording. Of course,
regarding runtime this extension of the RTED is comparably expensive – depending on

376 R. Stumptner et al.

the costs of the local similarity measure. So it is advisable to do this extended calculation
of replacement costs only if necessary. In the use case presented in this contribution the
nodes could be divided into different classes and only for certain classes the extended
calculation of replacement costs made sense (e.g. made sense for variable names, proce‐
dure names; not for any key words).

5 Results

Applying the approach presented in this paper to all available process task definitions
of the investigated system, gives a cluster map as shown in Fig. 10. Every sub-cluster
(represented by the respective “bubble” in the below figure) contains similar process
tasks, whose maximal allowed distance is determined by the cluster splitting threshold
(as described in Sect. 3.2).

Fig. 10. Cluster map of process tasks

This map serves as a point of reference for the current situation of process definitions
in the maintenance point of view and for the current situation of case distribution from
a case base maintenance point of view (e.g. combination of cases to reduce the size of
the case base without losing much information). The main benefits of this approach when
deployed in practice are:

Maintaining and Analyzing Production Process Definitions 377

• Gives an awareness and overview to the current production process definitions, i.e.
where are commonalities vs. where are differences and special treatments, compared
to other processes

• Enables a continuously performed consolidation of process definitions in a controlled
fashion. Naturally grown process definitions, especially duplicate definitions can be
found and modularized easily

• Provides support for change management, especially if changes lead to tasks moving
away from previously very similar tasks and approaching other task definitions

• A well maintained case base increases the diversity of answers returned by the
retrieve module. Otherwise, almost duplicate results are omitted, leading to a more
manifold and diverse result list

The following, two examples shall illustrate how the approach is applied and used
in practice. Figure 11 shows an example where the task P9-T requires an additional
“Quality Information” parameter. Having this information, the user has to decide, if
this for instance is because task P9-T has higher quality requirements or if that
parameter is missing in tasks P5-T to P8-T.

Fig. 11. Task with additional parameter example

The second example shown in Fig. 12 illustrates how production processes use
different module versions. While processes 1 and 2 use the “Measure Temperature”
module in version 7, processes 3 and 4 make use of the newer version 9. Applying the
case base maintenance results on the case base, every of the 58 sub-clusters found in
Fig. 10 will be substituted by a single representative case that best stands for the sub-
cluster. Queries to the retrieve module now respond with a more versatile result list.

378 R. Stumptner et al.

Fig. 12. Processes using different module versions

6 Conclusion

In this work we applied Case-Based reasoning to a production process maintenance use
case. It represents a multidisciplinary approach including methods from Case-Based
reasoning and code clone detection.

The presented work represents a bottom-up approach that provides an overview on
difficulties in maintaining production process definitions and suggests a CBR based
solution. It allows continuous consolidations and optimizations and to keep track on
changes performed on production process definitions. AST-based techniques (as also
text-based techniques), as used in conjunction with the fuzzy tree edit distance, have
turned out to be effective in detecting near-miss clones [3]. The fuzzy tree edit distance
addresses two aspects of similarity – similarity in terms of similar structure and similarity
in terms of similar wording. For the presented use case it delivered good results and
future investigations for instance will focus on exploring the combination of structural
and semantical similarity in terms of FTED.

Nevertheless, the approach analyses each process task in isolation, neglecting pred‐
ecessor and successor tasks. But especially the position of tasks in the overall process
reveals valuable information for process definition maintenance. For this reason, future
work will focus on extending the presented approach in the direction of analyzing
sequences of process tasks, thus finding similarities between task chains.

Acknowledgements. This work has been supported by the COMET-Program of the Austrian
Research Promotion Agency (FFG)

References

1. Bach, K. et al.: Knowledge modeling with the open source tool myCBR. In: Proceedings of
10th Workshop on Knowledge Engineering and Software Engineering (KESE10) Co-located
with 21st European Conference on Artificial Intelligence (ECAI 2014), Prague, Czech
Republic, 19 August 2014

Maintaining and Analyzing Production Process Definitions 379

2. Baxter, I.D., et al.: Clone detection using abstract syntax trees. In: Proceedings., International
Conference on Software Maintenance, 1998, pp. 368–377. IEEE (1998)

3. Bellon, S., et al.: Comparison and evaluation of clone detection tools. IEEE Trans. Softw.
Eng. 33(9), 577–591 (2007)

4. Bunke, H., Messmer, B.T.: Similarity measures for structured representations. In: Wess, S.,
Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837. Springer, Heidelberg
(1994)

5. Jalali, V., Leake, D.: Adaptation-Guided case base maintenance. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27–31, 2014, pp. 1875–1881. Québec
City (2014)

6. Jiang, L., et al.: Deckard: scalable and accurate tree-based detection of code clones. In:
Proceedings of the 29th International Conference on Software Engineering, pp. 96–105. IEEE
Computer Society (2007)

7. Kodhai, E., Kanmani, S.: Method-level code clone detection through LWH (Light Weight
Hybrid) approach. J. Softw. Eng. Res. Dev. 2(1), 1–29 (2014)

8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Sov.
Phys. Dokl. 10, 707 (1966)

9. Marianov, V., Serra, D.: Median problems in networks. Available at SSRN: 1428362 (2009)
10. Mayrand, J., et al.: Experiment on the automatic detection of function clones in a software

system using metrics. In: Proceedings of International Conference on Software Maintenance
1996, pp. 244–253. IEEE (1996)

11. Pan, R., et al.: Mining competent case bases for case-based reasoning. Artif. Intell. 171
(16–17), 1039–1068 (2007)

12. Pawlik, M., Augsten, N.: RTED: a robust algorithm for the tree edit distance. Proc. VLDB
Endow. 5(4), 334–345 (2011)

13. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems:
Challenges, Methods. Technologies. Springer, Heidelberg (2012)

14. Rosa, M.L., et al.: Business process variability modeling: a survey. ACM Comput. Surv.
(2013)

15. Roth-Berghofer, T., et al.: Building case-based reasoning applications with myCBR and
COLIBRI studio. In: Proceedings of the UKCBR 2012 Workshop on Case-Based Reasoning,
pp. 71–82 (2012)

16. Roy, C.K., Cordy, J.R.: NICAD: accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization. In: The 16th IEEE International Conference
on Program Comprehension, 2008 (ICPC 2008), pp. 172–181. IEEE (2008)

17. Smiti, A., Elouedi, Z.: Article: overview of maintenance for case based reasoning systems.
Int. J. Comput. Appl. 32(2), 49–56 (2011)

18. Smyth, B.: Case-base maintenance. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE
1998. LNCS, vol. 1416. Springer, Heidelberg (1998)

19. Smyth, B., McKenna, E.: Modelling the competence of case-bases. In: Smyth, B.,
Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 208–220. Springer,
Heidelberg (1998)

20. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of CBR applications with the open source
tool myCBR. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008.
LNCS (LNAI), vol. 5239, pp. 615–629. Springer, Heidelberg (2008)

21. Wilson, D.C., Leake, D.B.: Maintaining case-based reasoners: dimensions and directions.
Comput. Intell. 17(2), 196–213 (2001)

380 R. Stumptner et al.

Case-Based Plan Recognition Under Imperfect
Observability

Swaroop S. Vattam1(✉) and David W. Aha2

1 NRC Postdoctoral Fellow, Naval Research Laboratory (Code 5514), Washington, DC, USA
swaroop.vattam.ctr.in@nrl.navy.mil

2 Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory (Code 5514), Washington, DC, USA

david.aha@nrl.navy.mil

Abstract. SET-PR is a novel case-based recognizer that is robust to three kinds
of input errors arising from imperfect observability, namely missing, mislabeled
and extraneous actions. We extend our previous work on SET-PR by empirically
studying its efficacy on three plan recognition datasets. We found that in the
presence of higher input error rates, SET-PR significantly outperforms alternative
approaches, which perform similarly to or outperform SET-PR in the presence of
no input errors.

Keywords: Case-based reasoning · Plan recognition · Imperfect observability ·
Graph representation · Plan matching

1 Introduction

A plan recognizer observes the actions executed by an actor and attempts to infer the
actor’s plan. A plan recognizer typically receives its input observations (of actions) from
a lower-level action recognition system that can be noisy. A sophisticated plan recog‐
nizer therefore needs to relax the assumption of perfect observability and expect at least
three kinds of input errors: a mislabeled action occurs in an input when an actor’s true
action is recognized as some other action; a missing action occurs when a true action is
unrecognized (i.e., classified as a non-action); and an extraneous action occurs when a
non-action is classified as some valid action.

Single-Agent Error-Tolerant Plan Recognizer (SET-PR) is a novel case-based plan
recognizer that has shown promise in tolerating these kinds of input errors. We previ‐
ously introduced SET-PR and highlighted its representation and reasoning techniques
(Vattam, Aha, & Floyd 2014). This paper extends our preliminary empirical study of
SET-PR, which was limited to just one dataset (the Blocks World domain) (Vattam,
Aha, & Floyd 2015). Here we conduct a more comprehensive empirical investigation
of SET-PR by (1) expanding the scope of the investigation to three datasets (Blocks
World, Linux, and Monroe), (2) adopting a wider range of plan-recognition performance
metrics, and (3) comparing the performance of SET-PR to baseline algorithms.

© Springer International Publishing Switzerland 2015
E. Hüllermeier and M. Minor (Eds.): ICCBR 2015, LNAI 9343, pp. 381–395, 2015.
DOI: 10.1007/978-3-319-24586-7_26

This paper is organized as follows. Section 2 describes related work on plan recog‐
nition. Section 3 gives an overview of SET-PR including its novel plan representation
and retrieval mechanism. Section 4 presents our more comprehensive study of SET-PR,
including the hypotheses we address, data used, evaluation method, empirical results,
and their analysis. In this investigation, we found that SET-PR significantly outper‐
formed the baseline algorithms in the presence of higher levels of input error, although
the baselines performed similar to or outperformed SET-PR in the presence of no input
errors. We conclude and discuss future research plans in Sect. 5.

2 Related Research

Early work on plan recognition (e.g., Kautz & Allen, 1986) assumed that the observed
actor’s actions follow a hierarchical plan structure, requiring the plan recognizer to infer
plans and sub-plans at multiple abstraction levels. However, it assumed perfect observ‐
ability, which is unrealistic. Since then, a number of important probabilistic (e.g.,
Charniak & Goldman, 1993; Bauer, 1994; van Beek, 1996) and statistical parsing
approaches (e.g., Pynadath & Wellman, 1995; Geib & Goldman, 2009) have been
proposed that address issues of uncertainty. They frame plan recognition as a problem
of probabilistic inference in a stochastic process that models the actor’s action execution.
While this offers a general and coherent framework for modeling different sources of
uncertainty, they have not focused on problems due to imperfect observability. In
contrast, activity recognition (Duong et al., 2005) algorithms, which apply signal
processing techniques to discretize sensor information into coherent actions, have
addressed imperfect observability issues. Bridging the gap between low-level, often
noisy activity models and higher-level plans remains a research challenge.

Recently Ramirez and Geffner (2010) proposed a novel approach to plan recognition
by formulating it in terms of plan synthesis and solving it using off-the-shelf planners.
They extended their approach to perform plan recognition in POMDP settings (Ramirez
& Geffner 2011), which they claim can tolertae different kinds of input errors. They
demonstrated that it tolerates one kind of input error, namely missing actions (i.e.,
incomplete observations). However, like most plan recognition approaches theirs is
“model-heavy”; they require accurate models of an actor’s possible actions and how
those actions interact to accomplish different goals. Engineering these models is difficult
and time consuming. Furthermore, these plan recognizers perform poorly when
confronted with novel situations and are brittle when the operating conditions deviate
from model parameters.

SET-PR exemplifies case-based plan recognition (CBPR), a model-lite, lesser
studied approach to plan recognition. Existing CBPR approaches (e.g., Cox & Kerkez,
2006; Tecuci & Porter, 2009) eschew generalized models and instead use plan libraries
that contain plan instances that can be gathered from experience. CBPR algorithms can
respond to novel inputs outside the scope of their plan library using plan adaptation
techniques. However, to our knowledge they have not been designed for imperfect
observability, which is the unique focus of SET-PR.

Cox and Kerkez (2006) proposed a novel representation for storing and organizing
plans in a plan library, modeled as action-state pairs and abstract states, which counts

382 S.S. Vattam and D.W. Aha

the number of instances of each type of generalized state predicate. SET-PR uses a
similar representation, but stores and processes plans in an action-sequence graph. Our
encoding was inspired by planning encoding graphs (Serina, 2010). These are syntac‐
tically similar to our graphs but encode a planning problem while ours instead encode
a solution (i.e., a grounded plan).

Plan retrieval is an important step in CBPR algorithms and presents an efficiency
bottleneck. Our previous contribution presented an algorithm for speeding plan retrieval
in SET-PR that uses plan projection and clustering (Maynord, Vattam, & Aha 2015).
Sánchez-Ruiz and Ontañón (2014) use Least Common Subsumer Trees for the same
purpose, but they are not applicable to our representation.

3 SET-PR

3.1 Representation

SET-PR learns to recognize plans from a given plan library (i.e., a set of cases). Each
case is a tuple , where is a known plan (the problem part), and is its corre‐
sponding goal (the solution part).

3.1.1 Action state sequences
Each case’s plan is modeled as an action state sequence ,
where each action is a ground operator in the planning domain, and is a ground state
obtained by executing in , with the caveat that is an initial state, is null, and is
a goal state. An action in is a ground literal , where
(a finite set of predicate symbols), (a finite set of objects), and is an instance of
(e.g., stack(block:A, block:B)). A state in is a set of ground literals (e.g.,
{on(block:A,block:B), on(block:B,substrate:TABLE)}).

Inputs to SET-PR consist of sequences (observed parts of a plan). An input to SET-
PR is also modeled as an action state sequence. However, unlike a plan, and
in need not be initial and goal states, and need not be null.

Each case’s goal is modeled as a task to be achieved (using the HTN vocabulary)
or as a state to be achieved depending on the domain. This reduces a goal to an instance
of a task (is an) or a state (is a) respectively. The representation of a goal can
be flexible because it is the solution part of a case and does not participate in matching
during retrieval.

3.1.2 Action Sequence Graphs
An action sequence graph is a graphical representation of an action state sequence, which
is propositional. This graph preserves the topology of the sequence it encodes (including
the order of the propositions and their arguments). We mentioned that plans are modeled
as action state sequences. SET-PR does not store the propositional representation of an
action state sequence . Instead, is encoded as an action sequence graph and stored

Case-Based Plan Recognition Under Imperfect Observability 383

in . Similarly an input sequence is also encoded as an action sequence graph
 and used in retrieval.

A labeled directed graph is a 3-tuple , where is a set of vertices,
 is a set of edges, and assigns labels to vertices and edges. Here,

an edge is directed from to , where is the edge’s source node and is
the target node. Also, is a finite set of symbolic labels and is a set of all the multisets
on ; this permits multiple non-unique labels for a node or edge.

The union of two graphs and is the graph
, where , , and

Definition: Given ground atom representing an action or a fact of state in the
action-state pair , a predicate encoding graph is a labeled directed graph

 where:

 for

Interpretation: Suppose we have a ground literal . Depending
on whether represents an action or a state fact, the first node of the predicate encoding
graph is either or (labeled or . Suppose it is an action predicate.

 is then connected to the second node of this graph, the object node (labeled

, through the edge (labeled). Next, is connected to the third node

384 S.S. Vattam and D.W. Aha

 (labeled through the edge (labeled), then to the fourth node

(labeled through the edge (labeled), and so on. Suppose also the

third node is connected to through , to through , with appropriate labels,
and so on.

Example: Suppose predicate appears in the fifth
() action-state pair of an observed sequence of actions. The nodes of this predicate
are , , , and . The edges are and , with respec‐

tive labels , , , and . The predicate encoding graph for is
shown in Fig. 1.

Fig. 1. A predicate encoding graph corresponding to

Definition: An action sequence graph of an action state sequence is a labeled directed
graph , a union of the predicate encoding graphs of the
action and state facts in .

Figure 2 shows an example of a sample action state sequence and its corresponding
action sequence graph.

Fig. 2. An example action-state sequence and corresponding action sequence graph

Case-Based Plan Recognition Under Imperfect Observability 385

3.2 Retrieval

Case retrieval requires a similarity metric. Because we represent the input and the stored
plans as graphs, our metric uses graph matching; this can be formulated as the task of
computing the maximum common subgraph (MCS) of two graphs. Computing the MCS
between two or more graphs is an NP-Complete problem, restricting applicability to
only small plan recognition problems. Alternatively, a plethora of approximate graph
similarity measures exist. For example, similarity metrics that compute graph degree
sequences have been used successfully to match chemical structures (Raymond &
Willett, 2002).

In SET-PR, we use one of the degree sequence similarity metrics called Johnson’s
similarity metric (Johnson, 1985). This metric, denoted as , computes the similarity
between plans based on the approximate structural similarity of their graph representa‐
tions. Previously, we tried alternative degree sequence metrics and found that Johnson’s
metric performed the best (Vattam, Aha & Maynord, 2015).

Let and be the two action-sequence graphs. To compute their similarity, we first
separate the set of vertices in each graph into partitions by label type, and then sort them
in a non-increasing total order by degree (of a vertex is the number of edges that touch).
Let and denote the sorted degree sequences of a partition in the action-sequence
graphs and , respectively. An upper bound on the number of vertices and
edges of the MCS of these two graphs can then be computed as:

where

and

where denotes the th vertex of the sorted degree sequence, and denotes

the set of edges connected to . Johnson’s similarity metric is given by:

Two plans that are similar in structure can differ drastically in semantics. For
instance, a plan to travel to a grocery store to buy milk might coincidentally be

386 S.S. Vattam and D.W. Aha

structurally similar to a plan to travel to the airport to receive a visitor. To mitigate
this issue, we use a weighted combination of structural and semantic similarity,
denoted as , as our final similarity metric:

where is the Jaccard coefficient of the set of (grounded) objects

in and , and governs the weights for and .
SET-PR matches an input action-sequence graph with each case in

 using , and retrieves the top-ranked matching case. This case’s plan is
output as the recognized plan and its goal is output as the recognized goal.

SET-PR keeps track of its most recent previous prediction and uses it to resolve
ambiguity if multiple cases are retrieved with nearly similar scores. In other words,
selection preference favors a case that maintains continuity in plan prediction. If none
of the cases in that set match the previous prediction, then one of them is selected
randomly.

Table 1. Datasets used in this empirical study

Dataset #Plans Average plan length #Plan classes State information

Blocks 125 12.48 actions 5 Yes

Minroe 5000 9.6 actions 10 No

Linux 457 6.1 actions 20 No

3.3 Error Tolerance

The ability of SET-PR to tolerate input errors is a direct benefit of its representation and
retrieval mechanism. By adding state information to plan representation, SET-PR
reduces the overreliance on action information (which causes poor performance when
they are error-prone) and increases the total amount of information that is used for
recognition. SET-PR’s graph representation of plans permits inexact matching, trading
off higher recall for lower precision. We claim that this tradeoff allows SET-PR to
generalize better in the presence of input errors compared to other approaches that favor
propositional representations and symbol matching, and test this in Sect. 4.

4 Empirical Evaluation

We empirically test the following claim: for the task of plan recognition, SET-PR’s
approach, which employs a graph-based representation and similarity metric, offers
more robustness to input errors compared to alternative CBPR approaches that use
propositional representation and symbol matching. We test this claim by subjecting the
approaches to increasing levels of input errors. At each level, we measure and compare

Case-Based Plan Recognition Under Imperfect Observability 387

their plan recognition performance. We perform this experiment across three different
plan recognition datasets and note if similar performance trends emerge.

In the following sections we describe the approaches tested, performance metrics,
datasets used, methodology, the results and their analysis.

4.1 Compared CBPR Approaches

1. SET-PR: This approach uses action sequence graph representation and Johnson’s
similarity metric for performing plan recognition as described above.

2. EDIT: This approach uses propositional representation and an ordered symbolic
similarity metric for performing plan recognition. It treats inputs and plans as symbol
sequences and computes their Edit distance (Levenshtein 1966).

3. JACC: This approach uses propositional representation and an unordered symbolic
similarity metric for performing plan recognition. It treats inputs and plans as a set
of action propositions (and) and computes their Jaccard distance

.

Table 2. A sample convergence matrix

4. RAND: This is the baseline condition. It performs plan recognition by randomly
selecting a plan from the plan library in response to its inputs.

4.2 Datasets Used

In this study we used three datasets (Table 1). We repeated our evaluation method
described below in all three datasets. Blocks World is a synthetic dataset that we gener‐
ated using the HTN planner SHOP2 (Nau et al., 2003), which we modified to capture
state information in the generated plans. Monroe (Blaylock & Allen, 2005) and Linux
(Blaylock & Allen, 2004) are two datasets that are commonly used to assess plan recog‐
nizers. Monroe is also a synthetic dataset generated using SHOP2, while Linux is a
corpus of plans collected from human users performing assigned tasks. Because the
plans in these latter two datasets contain no state information, SET-PR’s plans also
contain only action information. This reduces the size of the encoding of the plans in
these two datasets.

388 S.S. Vattam and D.W. Aha

4.3 Evaluation Method

For each dataset, we developed an error simulator that takes as input a plan (), an error-
type (), and an error-percentage (). It outputs , which contains errors of type
. The values for include mislabeled (MLAB), missing (MSNG), extraneous (EXTR),

and mixed (MXD). For MLAB, a specified percentage of actions was randomly chosen,
and each was replaced with another action randomly chosen from the domain. For
MSNG, a percentage of actions was randomly chosen, and each was replaced with an
unidentified marker ‘*’. For EXTR, a percentage of randomly chosen actions from the
domain were introduced at random locations in the plan. For MXD, a uniform distribu‐
tion of all three types of errors was introduced.

For each dataset , we obtained a set of datasets that combine = {MLAB,
MSNG, EXTR, MXD} and = {0, 0.15, 0.3, 0.45, 0.6}. For example,
is a Monroe version containing plans with 60 % mixed error.

For each , we tested our compared conditions (SET-PR, EDIT, JACC, and
RAND) using five-fold cross-validation (with shuffle). That is, for each plan in the test
set, we incrementally queried the training set to predict a plan. For example, if a test
plan had four actions { }, the evaluator performed 4 queries , ,

, and { } to obtain a predicted plan after observing each action
in succession. For a prediction to be correct, the plan class of the predicted plan must
match the plan class of the test plan.

Table 3. Confusion matrix

For each compared condition for each , the results of the cross validation was
tabulated in a convergence matrix (example in Table 2). The rows in matrix are plan
indices and columns are action indices. After observing the action of the plan in
the test set, cellij registers (1) the predicted value (the goal class), and (2) a Boolean
value indicating a correct or incorrect prediction. We maintain two additional columns,
total number of actions (#acts) per row and correct predictions (#correct) per row.

From the convergence matrix, we derive a confusion matrix (Table 3) by counting
the instances where the predicted plan class agrees or disagrees with the actual class.

4.4 Performance Metrics

We defined the following four plan recognition performance metrics from the conver‐
gence matrix depicted in Table 2:

Case-Based Plan Recognition Under Imperfect Observability 389

Percent convergence: Convergence indicates whether the final prediction in each row
was correct. For each condition, the percentage of True values is computed.

Convergence point: If a prediction converged, the convergence point (CP) is the point
in the input that the recognizer starts to output only the correct prediction. A smaller
value for this metric indicates a better performance. For each condition, we also compute
the average convergence point.

r-Accuracy: We can compute row-wise prediction accuracy as the ratio of the total
number of correct predictions in a row versus the total number of actions observed in
that row (#correct/#acts). We compute r-Accuracy as the average of this value for each
test plan. It has often been referred to as “precision” (e.g., Blaylock & Allen 2006) in
plan recognition literature, which differs from the traditional meaning of precision in
the general classification literature. Table 3 displays the traditionally-defined precision
and recall values from the confusion matrix.

c-Accuracy: We calculate column-wise prediction accuracy as the ratio of the total
number of or correct predictions in a column versus its total number of plans (#correct
in col/#plans in col). c-Accuracy is the average of these values.

% Convergence Convergence point
B
L
O
C
K
S

M
O
N
R
O
E

L
I
N
U
X

Fig. 3. Percent Convergence and Convergence-point vs. Error level for the 3 datasets

390 S.S. Vattam and D.W. Aha

From the confusion matrix depicted in Table 3, we define a final performance metric,
F1-Score, which is the harmonic mean of average precision and recall.

4.5 Results

Figure 3 shows the plots for percent convergence and convergence point of SET-PR,
EDIT, JACC, and RAND at varying levels of input errors of type MXD (mixed error)
for the three datasets. These are mean values obtained using five-fold cross validation.
Similarly, Fig. 4 shows the plots for mean r-Accuracy and c-Accuracy, and Fig. 5 shows
plots for the mean F1-Score. Due to space restrictions, we do not show the plots and
other significance test results for other error types. However, we note that the trends
observed in MXD hold for other error conditions as well. We highlight MXD because
it contains a uniform distribution of the three kinds of errors (we chose uniform distri‐
bution because we currently lack domain-specific error models).

B
L
O
C
K
S

M
O
N
R
O
E

L
I
N
U
X

r-Acccuracy c-Accurracy

Fig. 4. Mean r-Accuracy and c-Accuracy vs. Error level for the 3 datasets

Case-Based Plan Recognition Under Imperfect Observability 391

4.6 Analysis

At 0 % error level, the plots in Figs. 3, 4 and 5 indicate the following. (1) For Blocks:
with the exception of one metric, EDIT and SET-PR perform comparably, but JACC
performs poorly, closer to RAND. (2) For Monroe: with the exception of one metric, all
three perform comparably. (3) For Linux: SET-PR shows performance advantage in 3
out of 5 metrics, while EDIT and JACC perform comparably with each other. Overall,
for 0 % error, in majority of the experiments, SET-PR’s performance is comparable to
EDIT, JACC or both.

At 15 % error level, we see small to negligible performance declines for SET-PR, but
more declines for EDIT and JACC. Finally, at higher levels of error, we see moderate
declines in performance for SET-PR, but steep declines for EDIT and JACC. This trend can
be observed across datasets and across different error types in a majority of experiments.

To assess the impact of the two independent factors (CBPR approach and error level)
on the value of a performance metric, we compared the means of the performance metric
values across these two factors. For each dataset and for each error type, we subjected
this two factor data to a two-way ANOVA test to measure the statistical significance of
the outcomes of the comparison, amounting to a total of 60 tests. In all 60 tests, there
was a statistically significant effect observed for both factors as well as for their inter‐
action (p < 0.05 for all tests; for error level, F(4,59) ranged between 650 and 2229; for
CBPR approach, F(3,59) ranged between 1042 and 17654; and their interaction factor,
F(12,59) ranged between 100 and 409).

From these results we can conclude that SET-PR has a significantly higher tolerance
for the three kinds of input errors compared to EDIT and JACC although the latter two
can perform similarly to or outperform SET-PR in the 0 % error condition.

BLOCKS

LINUX

MONROE

Fig. 5. Mean F1-Score vs. Error level for the 3 datasets

392 S.S. Vattam and D.W. Aha

5 Discussion

In Sect. 3.3 we argued that the superior performance of SET-PR under imperfect observ‐
ability can be attributed to two factors: (1) the content of the plans, which includes action
and state information, and (2) the graph representation of the plans, which permits
inexact matching. Our evaluation lends support to (2) because only SET-PR uses graph
representations. Regarding (1), in our earlier pilot studies with Blocks world (Vattam,
Aha, & Floyd 2015), we compared SET-PR with and without state information, keeping
all else constant. There, we found preliminary evidence to support (1), but our current
investigation does not focus on (1) because no state information is included in SET-PR
for the Monroe and Linux plan libraries.

One of the limitations of our study is that we do not compare SET-PR with other
state-of-the-art plan recognizers. In the future, we plan to obtain and run these experi‐
ments with other well-known plan recognizers.

Given that graph matching is generally considered a hard problem, what can we say
about the computational efficiency of SET-PR’s matching process? Using its degree
sequence metric, others showed that the similarity between two graphs can be computed
in time, where (Raymond & Willett, 2002).

Without efficient indexing techniques, plan retrieval time scales linearly with the
size of SET-PR’s library . This can be prohibitively expensive for online plan recog‐
nition. Thus, we use Plan Projection Clustering (PPC), a method to increase the plan
retrieval speed of SET-PR (Maynord, Vattam, & Aha 2015). PPC is a domain-general
approach for organizing SET-PR’s plans in a hierarchy. It employs a metric (e.g.,
Johnson’s similarity metric) that measures distances among plans. PPC computes

 for each pair of plans to produce a distance matrix . PPC then
projects into -dimensional Euclidean space by applying multi-dimensional scaling
(Kruskal, 1964). All cases are placed into a single group constituting the top level of a
hierarchy. We then recursively apply a clustering algorithm to these cases until the
desired depth of the hierarchy, , is reached. Hyper-parameters , , , and can be
tuned for optimal performance.

PPC processes a query by recursively matching it down the hierarchy. At each
level, is used to determine the distance between and the case closest to each candi‐
date cluster center. At each step, is matched to a cluster for which this distance is
smallest. Once a leaf is reached, ’s nearest neighbor is retrieved.

Our pilot study (Maynord, Vattam, & Aha 2015) indicated that PPC can reduce
retrieval time by up to 72 % while sacrificing only a small amount in retrieval accuracy
(approximately 4 %), because queries are partial (rather than complete) plans.

6 Conclusions and Future Work

We described SET-PR, a case-based plan recognition algorithm that represents plans as
action sequence graphs. Unlike most prior algorithms, we designed SET-PR to be
tolerant of input errors in the observed actions (i.e., missing, mislabeled, or extra action
labels). We use Johnson’s (1985) similarity metric for plan retrieval in SET-PR because

Case-Based Plan Recognition Under Imperfect Observability 393

it is an approximation of the maximal common subgraph function for matching graphs.
In our empirical studies on plan recognition tasks involving three data sets, which we
modified by adding input errors, we compared the performance of SET-PR with alter‐
native approaches that use propositional representation and similarity functions for plan
retrieval. We found that SET-PR’s use of a graph representation for plans contributed
to its superior performance when error rates are high. This complements our earlier work
(Vattam, Aha, & Floyd 2015), in which we showed the incorporation of state information
in its plan representation is another positive contributing factor.

In our future work, we will compare the performance of SET-PR versus other state-
of-the-art plan recognition algorithms. We also plan to investigate more sophisticated
graph similarity functions (e.g., graph kernels) and compare them versus SET-PR’s
current similarity function. Current plan recognizers, including SET-PR, assume that
the observed actor’s plans remains static during plan recognition. We will relax this
assumption and extend SET-PR to tolerate dynamic changes to an actor’s plans. Finally,
we plan to integrate SET-PR with sensory perceptual systems on simulated and real
robotic platforms so that we can study its performance on the ground in real time.

Acknowledgements. Thanks to OSD ASD (R&E) for sponsoring this research. Swaroop Vattam
performed this work while an NRC post-doctoral research associate at NRL. Thanks also to the
reviewers for their comments. The views and opinions contained in this paper are those of the
authors and should not be interpreted as representing the official views or policies of NRL or OSD.

References

Bauer, M.: Integrating probabilistic reasoning into plan recognition. Proceedings of the Eleventh
European Conference on Artificial Intelligence, pp. 620–624. Wiley & Sons, Amsterdam, The
Netherlands (1994)

Blaylock, N., Allen, J.: Statistical goal parameter recognition. In: Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling, pp. 297–304. Whistler, BC,
Canada (2004)

Blaylock, N., Allen, J.: Generating Artificial Corpora for Plan Recognition. In: Ardissono, L.,
Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 179–188. Springer,
Heidelberg (2005)

Blaylock, N., Allen, J.: Hierarchical instantiated goal recognition. In: Kaminka, G., Pynadath, D.,
Geib, C. (eds.) Modeling Others from Observations: Papers from the AAAI Workshop
(Technical Report WS-06-13). AAAI Press, Boston, MA (2006)

Charniak, E., Goldman, R.P.: A bayesian model of plan recognition. Artif. Intell. 64(1), 53–79
(1993)

Cox, M.T., Kerkez, B.: Case-based plan recognition with novel input. Control Intell. Syst. 34(2),
96–104 (2006)

Duong, T.V., Bui, H.H., Phung, D.Q., Venkatesh, S.: Activity recognition and abnormality
detection with the switching hidden semi-Markov model. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 838–845.
IEEE Press, San Diego, CA (2005)

Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree
grammars. Artif. Intell. 173(11), 1101–1132 (2009)

394 S.S. Vattam and D.W. Aha

Johnson, M.: Relating metrics, lines and variables defined on graphs to problems in medicinal
chemistry. Wiley, New York (1985)

Kautz, H., Allen, J.F.: Generalized plan recognition. In: Proceedings of the Fifth National
Conference on Artificial Intelligence, pp. 32–37. AAAI Press, Philadelphia, PA (1986)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov.
Phys. Dokl. 10(8), 707–710 (1966)

Maynord, M., Vattam, S., Aha, D.W.: Increasing the runtime speed of case-based plan recognition.
In: Proceedings of the Twenty-Eighth Florida Artificial Intelligence Research Society
Conference. AAAI Press, Hollywood, FL (2015, to appear)

Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: an HTN
planning system. J. Artif. Intell. Res. 20, 379–404 (2003)

Pynadath, D.V., Wellman, M.P.: Accounting for context in plan recognition with application to
traffic monitoring. In: Proceedings of Uncertainty in Artificial Intelligence, pp. 472–481.
Morgan Kaufmann, Montreal, Quebec (1995)

Ramirez, M., Geffner, H.: Probabilistic plan recognition using off-the-shelf classical planners. In:
Proceedings of the Conference of the Association for the Advancement of Artificial
Intelligence. AAAI Press, Atlanta, GA (2010)

Ramirez, M., Geffner, H.: Goal recognition over POMDPs: inferring the intention of a POMDP
agent. In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence, pp. 2009–2014. AAAI Press, Barcelona, Spain (2011)

Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. J. Comput. Aided Mol. Des. 16, 521–533 (2002)

Sánchez-Ruiz, A.A., Ontañón, S.: Least Common Subsumer Trees for Plan Retrieval. In:
Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 405–419. Springer,
Heidelberg (2014)

Serina, I.: Kernel functions for case-based planning. Artif. Intell. 174(16), 1369–1406 (2010)
Tecuci, D., Porter, B.W.: Memory based goal schema recognition. In: Proceedings of the Twenty-

Second International Florida Artificial Intelligence Research Society Conference. AAAI Press,
Sanibel Island, FL (2009)

van Beek, P.: An investigation of probabilistic interpretations of heuristics in plan recognition.
In: Proceedings of the Fifth International Conference on User Modeling, pp. 113–120 (1996)

Vattam, S.S., Aha, D.W., Floyd, M.: Case-Based Plan Recognition Using Action Sequence
Graphs. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 495–510.
Springer, Heidelberg (2014)

Vattam, S., Aha, D.W., Floyd, M.: Error tolerant plan recognition: an empirical investigation. In:
Proceedings of the Twenty-Eighth Florida Artificial Intelligence Research Society
Conference. AAAI Press, Hollywood, FL (2015, to appear)

Case-Based Plan Recognition Under Imperfect Observability 395

Author Index

Aamodt, Agnar 351
Abdel-Aziz, Amira 1
Aha, David W. 15, 30, 134, 381
Akgun, Baris 119
Alford, Ron 30
Althoff, Klaus-Dieter 336
Apker, Thomas 15
Aufaure, Marie-Aude 228
Auslander, Bryan 15

Bergmann, Ralph 259
Borck, Hayley 30

Ceci, Flávio 44
Chen, Yoke Yie 60
Craw, Susan 73

Dannenhauer, Dustin 88
Díaz-Agudo, Belén 197, 320
Draxler, Ewald 366
Drinkwater, Michael 134
Dufour-Lussier, Valmi 104

Ferrer, Xavier 60
Fitzgerald, Tesca 119
Floyd, Michael W. 15, 30, 134
Freudenthaler, Bernhard 366
Funk, Peter 275

Gabel, Thomas 149
Gaillard, Emmanuelle 165
Godehardt, Eicke 149
Goel, Ashok 119
Gonçalves, Alexandre L. 44

Hankel, Oliver 336
Henkel, Wolfram 336
Holst, Anders 275
Horsburgh, Ben 73
Hüllermeier, Eyke 1

Iwaszko, Thomas 228

Jalali, Vahid 181
Johnson, Benjamin 15
Jorro-Aragoneses, Jose L. 197

Källström, Elisabeth 275
Karneeb, Justin 30
Kirchmayr, Wilhelm 366

Lawlor, Aonghus 244
Leake, David 181, 212
Lettner, Christian 366
Lieber, Jean 104, 165

Malherbe, Emmanuel 228
Martel, Jacques 306
Massie, Stewart 73
McGreggor, Keith 119
Muhammad, Khalil 244
Müller, Gilbert 259
Muñoz-Avila, Héctor 88

Nauer, Emmanuel 165

Olsson, Tomas 275
Ontañón, Santiago 290
Öztürk, Pinar 351

Pacheco, Roberto C.S. 44
Pfeiffer, Matthias 336
Pichler, Josef 366
Pick, Roland 336
Platon, Radu 306
Plaza, Enric 60, 290

Quijano-Sánchez, Lara 320

Rafter, Rachael 244
Recio-García, Juan A. 197, 320

Reuss, Pascal 336
Roberts, Mark 15

Schack, Brian 212
Sizov, Gleb 351
Smyth, Barry 244
Stumptner, Reinhard 366

Thomaz, Andrea 119

Vattam, Swaroop S. 381

Weber, Rosina O. 44
Wiratunga, Nirmalie 60

Xiong, Ning 275

Zhu, Jichen 290
Zoghlami, Kaiser 306

398 Author Index

	Preface
	Organization
	Contents
	Case Base Maintenance in Preference-Based CBR
	1 Introduction
	2 Related Work
	3 Preference-Based CBR in a Nutshell
	3.1 Basic Setting and Notation
	3.2 Case-Based Inference
	3.3 CBR as Preference-Guided Search

	4 Case Base Maintenance for Pref-CBR
	4.1 Noise and Redundancy in Pref-CBR
	4.2 Maintenance Strategies
	4.3 Method

	5 Case Study
	5.1 Setting
	5.2 Experiment

	6 Summary and Outlook
	References

	Learning to Estimate: A Case-Based Approach to Task Execution Prediction
	Abstract
	1 Introduction
	2 Related Work
	3 Humanitarian Assistance/Disaster Relief Operations
	4 Situated Decision Process
	5 Case-Based Performance Estimation
	5.1 Case Representation
	5.2 Case Similarity
	5.3 Performance Estimation Algorithm

	6 Empirical Study
	6.1 Empirical Method
	6.2 Algorithms and Baselines Tested
	6.3 Results and Analysis

	7 Discussion
	8 Conclusion
	References

	Case-Based Policy and Goal Recognition
	1 Introduction
	2 Related Work
	3 Tactical Battle Manager
	4 Policy and Goal Recognition for BVR Combat
	4.1 Case Representation
	4.2 Similarity and Retrieval
	4.3 Pruning Strategy
	4.4 Using PaGR in BVR Mission Scenarios

	5 Empirical Study
	5.1 Scenarios
	5.2 Empirical Method
	5.3 Results

	6 Future Work
	7 Conclusions
	References

	Adapting Sentiments with Context
	1 Introduction and Background
	2 Related Work
	3 Case-Based Sentiment Analysis
	3.1 Text Processing
	3.2 Generating a New Tree
	3.3 Similarity Assessment, Retrieval, and Reuse
	3.4 Contextual Polarity Assessment

	4 Experimental Design
	4.1 Data
	4.2 Evaluation and Metrics
	4.3 Methods for Comparison
	4.4 Studies
	4.5 Discussion

	5 Negation
	6 Conclusions, Limitations, and Future Work
	References

	Aspect Selection for Social Recommender Systems
	1 Introduction
	2 Related Works
	3 Review Based Product Recommendation
	3.1 Aspect Extraction from Product Reviews
	3.2 Aspect Selection
	3.3 Aspect Sentiment Scoring

	4 Evaluation
	4.1 Amazon Datasets
	4.2 Evaluation Metrics
	4.3 Ranking Strategies
	4.4 Recommendation Performance Using IG
	4.5 Comparison of Feature Selection Techniques
	4.6 Similarity of Product Families
	4.7 Transferability of Aspects

	5 Conclusion
	References

	Music Recommendation: Audio Neighbourhoods to Discover Music in the Long Tail
	1 Introduction
	2 Related Work
	3 Music Collection
	4 Hybrid Recommenders
	4.1 Learning Pseudo-Tags
	4.2 Augmenting Tags with Pseudo-Tags

	5 User Evaluation
	5.1 Design of User Evaluation
	5.2 User Participation
	5.3 Results for Recommendation Quality
	5.4 Results for Discovery with Quality

	6 Evaluation Using Last.fm User Data
	7 Conclusions
	References

	Goal-Driven Autonomy with Semantically-Annotated Hierarchical Cases
	1 Introduction
	2 Example
	3 Goal Driven Autonomy
	4 Representation Formalism and Semantics of h-plans
	5 A Hierarchical Case-Based GDA System
	5.1 Basic Overview of LUiGi-H's Components
	5.2 Planner
	5.3 Ontology
	5.4 Discussion

	6 Empirical Evaluation
	7 Related Work
	8 Conclusion
	References

	Evaluating a Textual Adaptation System
	1 Introduction
	2 Adapting Textual Cases
	2.1 Principles
	2.2 Evaluation

	3 Adapting Procedural Cases
	3.1 Principles
	3.2 Evaluation

	4 CRAQPOT
	4.1 Case Acquisition
	4.2 Retrieval
	4.3 Case Adaptation
	4.4 Text Adaptation

	5 Simulating Domain Knowledge
	6 Evaluation Framework
	6.1 Interface
	6.2 Presentation of the Adaptation Methods
	6.3 Evaluation Questions

	7 Results
	8 Conclusion
	References

	Visual Case Retrieval for Interpreting Skill Demonstrations
	1 Introduction
	2 Background
	3 Problem Characterization
	4 Algorithms
	4.1 Fractal Method
	4.2 SIFT Feature-Matching
	4.3 SIFT Feature-Transformation

	5 Experiment
	6 Experimental Results
	6.1 Detailed Analysis
	6.2 Discussion

	7 Conclusion
	References

	Improving Trust-Guided Behavior Adaptation Using Operator Feedback
	1 Introduction
	2 Trust-Based Behavior Adaptation
	3 Related Work
	4 Operator Feedback
	5 Feedback Model
	5.1 Learning the Feedback Model
	5.2 Using the Feedback Model

	6 Evaluation
	6.1 eBotworks Simulator
	6.2 Experimental Conditions
	6.3 Results
	6.4 Discussion

	7 Conclusions
	References

	Top-Down Induction of Similarity Measures Using Similarity Clouds
	1 Introduction
	2 Neural Similarity Measures
	2.1 Multi-layer Perceptron Neural Networks
	2.2 Supervised Training of Neural Net-Based Similarity Functions
	2.3 Exemplary Results
	2.4 Related Work on and Discussion of Neural Similarities

	3 Similarity Measure Induction with Similarity Clouds
	3.1 The Local-Global Principle
	3.2 Similarity Clouds
	3.3 Feature Weighting Using Similarity Clouds
	3.4 Induction of Local Similarity Measures Using Similarity Clouds
	3.5 Exemplary Results
	3.6 Related Work on Feature Weighting and Similarity Learning

	4 Experimental Results
	5 Conclusion
	References

	Improving Case Retrieval Using Typicality
	1 Introduction
	2 Context and Motivation
	2.1 The TAAABLE Use-Case
	2.2 Motivation

	3 State of the Art
	3.1 Concept and Classification Models Based on Typicality
	3.2 Typicality in CBR

	4 Refining the Ontology According to Typicality
	4.1 Computing the Class Typicality
	4.2 Refinement of the Ontology by Taking into Account Typicality
	4.3 Example of TAAABLE Results with and Without Taking into Account Typicality

	5 Evaluation Methodology
	5.1 Acquiring Evaluations About TAAABLE Results
	5.2 Parameters of the Systems

	6 Results and Discussion
	6.1 Validating (H): The Global User Satisfaction
	6.2 Validating (H1) and (H2): User Satisfaction Related to the Adaptation Type

	7 Conclusion
	References

	CBR Meets Big Data: A Case Study of Large-Scale Adaptation Rule Generation
	1 Introduction
	2 Scaling CBR to Big Data
	3 Foundations of the Proposed Method
	3.1 The EAR Family of Methods
	3.2 Locality Sensitive Hashing
	3.3 MapReduce

	4 BEAR: A General Approach to Applying EAR Family Methods to Big Data
	4.1 Overview
	4.2 BEAR's Architecture

	5 Evaluation
	5.1 Experimental Design
	5.2 Experimental Results
	5.3 Overall Perspective: Scale-Up, Time, Space, and Accuracy

	6 Conclusion and Future Directions
	References

	Addressing the Cold-Start Problem in Facial Expression Recognition
	1 Introduction
	2 Related Work
	3 PhotoMood: A CBR Approach to Face Emotion Recognition
	3.1 Previous Results

	4 Generic Case Bases as a Solution to the Cold Start Problem
	4.1 Applying PhotoMood CBR to Reference Datasets
	4.2 Comparison of PhotoMood with Other FER Approaches

	5 Use of Semantic Case Bases
	5.1 Experimental Results

	6 Conclusions
	References

	Flexible Feature Deletion: Compacting Case Bases by Selectively Compressing Case Contents
	1 Introduction
	2 When Feature Deletion is Appropriate
	2.1 When to Apply Feature Deletion to Indices
	2.2 When to Apply Feature Deletion to Solutions

	3 Bundling Features for Deletion
	4 Evaluation
	4.1 Test Data
	4.2 Indexing and Similarity Criteria
	4.3 Hybrid Strategies
	4.4 Evaluation Procedure
	4.5 Experimental Results
	4.6 Retrieval Speed

	5 Related Work
	6 Future Research Questions for Feature Deletion
	7 Conclusion
	References

	A Case-Based Approach for Easing Schema Semantic Mapping
	1 Introduction
	2 Industrial Context
	3 Related Work
	4 Formalizing the Problem of Schema Mapping
	4.1 Prerequisites: Tools for Representing Textual Documents
	4.2 Representation of Schemas and Items
	4.3 Formal Problem Statement

	5 Instantiating the CBR Process to Schema Mapping
	5.1 The Retrieve Step
	5.2 The Reuse Step
	5.3 The Revise Step: Ranking Suggestions to the User

	6 Review of the First Results
	6.1 Experimental Data-Set
	6.2 Performance Criteria
	6.3 Evaluation of the First Results

	7 System Improvements and Extensive Benchmarking
	7.1 Alternative Inter-problem Similarity
	7.2 Alternative Score Function
	7.3 Overall Evaluation

	8 Conclusions
	References

	Great Explanations: Opinionated Explanations for Recommendations
	1 Introduction
	2 Related Work
	3 Mining Experiential Cases
	3.1 Opinion Mining
	3.2 The Recommendation Engine

	4 Generating Opinionated Explanations
	4.1 A Basic Explanation Structure
	4.2 Personalised Explanations
	4.3 Compelling Explanations
	4.4 Using Explanations to Rank Recommendations
	4.5 Presenting Explanations to the User

	5 Evaluation
	5.1 Data and Methodology
	5.2 Pros vs. Cons, Better vs. Worse
	5.3 Using Explanations to Rank Recommendations

	6 Discussion and Limitations
	7 Conclusions
	References

	Learning and Applying Adaptation Operators in Process-Oriented Case-Based Reasoning
	1 Introduction
	2 Foundations
	2.1 Workflows
	2.2 Block-Oriented Workflows
	2.3 Semantic Workflow Similarity
	2.4 Partial Workflows and Streamlets

	3 Workflow Adaptation Operators
	3.1 Definition of Workflow Adaptation Operators
	3.2 Details of the Operator Application

	4 Automatic Learning of Workflow Adaptation Operators
	5 Workflow Adaptation Using Adaptation Operators
	5.1 Change Request
	5.2 Adaptation Procedure

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Experimental Evaluation and Results

	7 Conclusions and Related Work
	References

	Fault Diagnosis via Fusion of Information from a Case Stream
	1 Introduction
	2 Background
	3 Diagnostic Framework
	3.1 Local Anomaly Detection and Stream Anomaly Detection
	3.2 Stream Classification with Case Fusion

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References

	Argument-Based Case Revision in CBR for Story Generation
	1 Introduction
	2 Background
	2.1 Amalgam-Based Case Reuse
	2.2 Argumentation

	3 Automatic Story Generation
	4 Argument-Based Revision
	4.1 Arguments and Attacks
	4.2 Argument-Based Revision Algorithm

	5 Experimental Evaluation
	5.1 Dataset
	5.2 Experimental Setup
	5.3 Results

	6 Related Work
	7 Discussion and Future Work
	References

	CBR Model for Predicting a Building’s Electricity Use: On-Line Implementation in the Absence of Hist ...
	Abstract
	1 Introduction
	1.1 Objective and Approach
	1.2 Literature Survey

	2 Building Data
	2.1 Selection of Modelling Inputs
	2.2 Working and Non-working Hours

	3 CBR Model
	4 On-Line Model Implementation and Performance
	5 Future Work
	5.1 Hybrid Predictive Approach
	5.2 CBR Model Weights
	5.3 On-Line Data Preprocessing

	6 Conclusion
	References

	Modelling Hierarchical Relationships in Group Recommender Systems
	1 Introduction
	2 Social Recommendation Model
	3 Limitations of Our SRM
	3.1 Representation of unprofiled users
	3.2 Inferring Interpersonal Trust for Unprofiled Users
	3.3 Modelling Hierarchical Relationships

	4 Case Study
	5 Conclusions and Future Work
	References

	Semi-automatic Knowledge Extraction from Semi-structured and Unstructured Data Within the OMAHA Project
	1 Introduction
	2 OMAHA Project
	2.1 SEASALT
	2.2 Application Domain

	3 Semi-automatic Knowledge Extraction
	3.1 OMAHA Multi-agent System
	3.2 Initial Concept for Semi-automatic Knowledge Extraction
	3.3 Current Implementation
	3.4 Evaluation Setup and Results

	4 Related Work
	5 Summary and Outlook
	References

	Evidence-Driven Retrieval in Textual CBR: Bridging the Gap Between Retrieval and Reuse
	1 Introduction
	2 Incident Analysis
	3 Representation of Reasoning Knowledge
	4 Acquistion of Reasoning Knowledge from Text
	4.1 Causal Relation Extraction
	4.2 Longest Common Paraphrase
	4.3 Node Informativeness

	5 Textual CBR for Incident Analysis
	6 Retrieval and Adaptation
	7 Evaluation
	7.1 Dataset and Preprocessing
	7.2 Evaluation Procedure
	7.3 Baselines
	7.4 Results and Analysis

	8 Related Work
	9 Conclusion
	References

	Maintaining and Analyzing Production Process Definitions Using a Tree-Based Similarity Measure
	Abstract
	1 Introduction
	2 Related Work
	3 Production Process Analysis and Maintenance
	3.1 Background
	3.2 Preprocessing and Analysis Approach for Production Process Maintenance

	4 A New Fuzzy Tree Edit Distance – A Similarity Measure for Process Definitions Represented by Abstr ...
	5 Results
	6 Conclusion
	References

	Case-Based Plan Recognition Under Imperfect Observability
	Abstract
	1 Introduction
	2 Related Research
	3 SET-PR
	3.1 Representation
	3.1.1 Action state sequences
	3.1.2 Action Sequence Graphs

	3.2 Retrieval
	3.3 Error Tolerance

	4 Empirical Evaluation
	4.1 Compared CBPR Approaches
	4.2 Datasets Used
	4.3 Evaluation Method
	4.4 Performance Metrics
	4.5 Results
	4.6 Analysis

	5 Discussion
	6 Conclusions and Future Work
	References

	Author Index

