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Abstract. The segmentation of pelvic organs from CT images is an es-
sential step for prostate radiation therapy. However, due to low tissue
contrast and large anatomical variations, it is still challenging to accu-
rately segment these organs from CT images. Among various existing
methods, deformable models gain popularity as it is easy to incorporate
shape priors to regularize the final segmentation. Despite this advantage,
the sensitivity to the initialization is often a pain for deformable models.
In this paper, we propose a novel way to guide deformable segmentation,
which could greatly alleviate the problem caused by poor initialization.
Specifically, random forest is adopted to jointly learn image regressor and
classifier for each organ. The image regressor predicts the 3D displace-
ment from any image voxel to the organ boundary based on the local
appearance of this voxel. It is used as an external force to drive each ver-
tex of deformable model (3D mesh) towards the target organ boundary.
Once the deformable model is close to the boundary, the organ likeli-
hood map, provided by the learned classifier, is used to further refine the
segmentation. In the experiments, we applied our method to segmenting
prostate, bladder and rectum from planning CT images. Experimental
results show that our method can achieve competitive performance over
existing methods, even with very rough initialization.

1 Introduction

Prostate cancer is the second leading cause of cancer death in American men.
External beam radiation therapy (EBRT) is an effective treatment option to
control prostate cancer. In the planning stage of EBRT, a planning CT image
is acquired. Physicians need to segment major structures such as the prostate,
bladder and rectum from this CT image to design a radiation treatment plan.
The efficacy of EBRT depends heavily on the quality of segmentation. As man-
ual segmentation is time-consuming and often suffers from large inter-observer
variability, it is clinically desirable to develop accurate automatic methods for
segmenting CT pelvic organs.

Among various existing methods, deformable models have gained the most
popularity, as it is easy to impose shape regularization. For example, Lay et al.
[1] adopted the active shape model with boundary detectors to segment pelvic
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Fig. 1. (a) Two planning CTs and their segmentations of prostate (red), bladder (blue)
and rectum (green). The 1st, 2nd, and 3rd columns show sagittal CT slices, the same
slices overlaid with segmentations, and 3D views of segmentations, respectively. (b) 3D
displacements (cyan arrows) to the organ boundary, where green boxes indicate the
local patches of voxels.

organs from CT images. Chen et al. [2] used a Bayesian framework that integrates
anatomical constraints from pelvic bones to segment the prostate and rectum.
Costa et al. [3] proposed coupled deformable models to segment the prostate and
bladder. Despite the popularity, deformable models are known to be sensitive to
the initialization. If the initial shape model (e.g., 3D mesh) is not close to the
target boundary, deformable models are likely to fail.

However, it is difficult to robustly initialize the shape model for CT pelvic
organ segmentation due to two reasons: 1) pelvic organs show poor contrast
(Fig. 1(a)), especially on their touching boundaries, and 2) the shape variations
of pelvic organs are large across patients. These two factors hinder robust ini-
tialization, hence limiting the segmentation accuracy of deformable models.

In this paper, we propose a novel way to guide deformable models by jointly
learning image regressor and classifier, which can greatly alleviate the prob-
lem caused by poor initialization. In the conventional learning-based deformable
models, classifier is often used to guide deformable segmentation by producing
an organ likelihood map, based on which each vertex of deformable model locally
deforms along its normal direction to the position with the maximum boundary
response. If the shape model is initialized far away from the true boundary, the
conventional deformable models could suffer, as the local search will not be able
to find the target boundary. To address this issue, in addition to classifier, we
utilize random forest to jointly learn an image regressor. The image regressor
predicts the 3D displacement from each image voxel to its nearest point on the
organ boundary based on the local image appearance (Fig. 1(b)). It is used to
drive each vertex of the deformable model towards the target boundary, thus
relieving the problem caused by poor initialization. Once the deformable model
is close to the boundary, the conventional local search strategy can be used to
further refine the segmentation based on the organ likelihood map produced by
the learned classifier. Validated on a CT dataset, experimental results show the
robustness of our deformable model to the initialization as well as the effective-
ness of our method in CT pelvic organ segmentation.
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2 Method

2.1 Joint Learning of Image Regressor and Classifier

Random forest has been widely used in medical image analysis [1,5] due to
its efficiency and effectiveness. In this paper, we use random forest to learn
image regressor and classifier for each organ. The image regressor predicts the
3D displacement from any image voxel to its nearest point on the target organ
boundary. The image classifier predicts the class label of each image voxel (i.e.,
target organ versus background). Both the image regressor and classifier make
predictions according to the local appearance of image voxel. Considering that
3D displacement of a voxel is often correlated with its label, we propose to use
random forest to learn image regressor and classifier jointly.

Joint Regression and Classification. Since both continuous variables (3D
displacement) and discrete label need to be predicted together, we consider joint
learning to be a joint regression and classification problem. Motivated by [5], we
modify the objective function of random forest to consider both regression and
classification in the tree optimization:
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where f and t are a feature and threshold, respectively. Here, 3D Haar-like
features [4] are used to represent the local appearance of each voxel. v, e and N
denote average variance, entropy and the number of training samples arriving at
one node, respectively. The superscript j € {L, R} indicates the measurements
computed after being split into the left or right child node. The first term of Eq. 1
computes variance reduction for regression, which is different from the differential
entropy used in [5]. The second term of Eq. 1 computes entropy reduction for
classification. Since the magnitudes of variance and entropy reductions are not of
the same scale, we normalize both magnitudes by dividing the average variance
and entropy at the root node (Z, and Z.), respectively.

Iterative Auto-Context Refinement. With the above modification, random
forest can be learned to jointly predict the 3D displacement and class label for
each voxel in the image. However, since both the displacement and label of each
voxel are predicted independently from those of nearby voxels, the obtained 3D
displacement field and label likelihood map are often spatially inconsistent, as
shown in the first row of Fig. 2. To ensure the spatial consistency, it is nec-
essary to consider the predictions of neighboring voxels during the voxel-wise
displacement and label estimation.

Auto-context [6] is an iterative scheme that can incorporate the neighboring
prediction information to compensate for the limitation of the independent voxel-
wise estimation. The first iteration of training in the auto-context is the same as
the conventional voxel-wise estimation method, which trains a prediction model
according to local appearance features (e.g., Haar-like features) extracted from
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Fig. 2. Illustration of iterative auto-context refinement for prostate. Cold and warm
colors in the color maps denote small and large distance values, respectively.
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each voxel. In the second iteration, the model, learned in the previous iteration,
is first applied to estimate the prediction maps (e.g., likelihood and displacement
maps) for each training image. Additional features can be extracted at these pre-
diction maps for each voxel. These features are named “context features” in the
auto-context. Different from the traditional auto-context, which uses radiation-
like context features, we extract Haar-like context features, which shows better
performance. By combining appearance features from intensity image and con-
text features from prediction maps, a new prediction model can be trained to
update the prediction maps in the previous iteration. Following the same man-
ner, a sequence of prediction models can be trained to iteratively update the
prediction maps. Fig. 2 illustrates the testing stage of the auto-context.

Context features, which are extracted from local patches in previous prediction
maps, capture the neighboring prediction information for a voxel, making this
a significant area for improvement. As the predictions of neighboring voxels are
highly correlated, the inclusion of context features in the prediction model could
exploit this neighborhood correlation, which will improve the spatial consistency
of prediction maps.

2.2 Deformable Segmentation with Regressor and Classifier

For each voxel in the image, the jointly learned image regressor and classifier can
be used to estimate 3D displacement to the target organ boundary and organ
likelihood. As introduced previously, the conventional learning-based deformable
models use only the estimated organ likelihoods of voxels and rely on local search
to drive deformable models onto the target organ boundary, causing them to be
sensitive to model initialization. To overcome this problem, we utilize both image
regressor and classifier to guide deformable models. Specifically, our deformable
segmentation consists of two steps, as detailed below:

Pose Adjustment by Image Regressor. Considering that the deformable
model may be initialized far from the target organ boundary, we first utilize
image regressor to pull deformable model towards the boundary. Specifically, for
each vertex of the deformable model, image regressor is used to estimate the 3D
displacement of the vertex to the nearest point on the target organ boundary.
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The estimated displacement is used as an external force to deform the shape
model by sequentially adjusting its position, orientation and scale. Initially, the
shape model is only allowed to translate under the guidance of image regressor.
Once it is well positioned, we estimate its orientation by allowing it to rigidly de-
form. Finally, the deformation is relaxed to the affine transformation to estimate
the scaling and shearing parameters of the shape model.

Boundary Refinement by Image Classifier. Once the shape model is close
to the target organ boundary after pose adjustment, the conventional local search
strategy can be used to refine the shape model based on the organ likelihood
map provided by the image classifier. Specifically, in the refinement step, each
vertex of deformable model locally searches along its normal direction to find
its new position with the maximum likelihood gradient. After every vertex has
deformed for one step, the entire shape model (3D mesh) is then smoothened
prior to the next round of deformation. The vertex-wise deformation and mesh
smoothing are iterated until convergence.

To increase the efficiency of our deformable model, we implement our model in
multi-resolution. A joint image regressor and classifier is trained independently
at two resolutions, such as coarse resolution and fine resolution. In the coarse
resolution, the testing image is down-sampled by a factor of 4, which allows
fast computation of rough segmentation. In the fine resolution, we need to com-
pute only the 3D displacement field and organ likelihood map near the rough
segmentation, which significantly reduces the computation time.

3 Experimental Results

Our dataset consists of 29 prostate cancer patients, each with one planning CT
scan available. The prostate, bladder and rectum in all CT scans have been man-
ually segmented by a physician, and serve as ground truth for our segmentation
method. The image size is 512 x 512 x (400 ~ 500), and the image spacing is
1.172x1.172x 1 mm3. Three-fold cross validation is used to evaluate our method.
In random forest training, we prevent overfitting by stopping node splitting if
the number of training samples arriving at one node is below 8. We do not limit
the tree depth. The number of trees in the forest is 10. Three iterations are used
in the auto-context.

Model Initialization. To demonstrate the robustness of our deformable model
to the initialization, we initialize mean shape model at the center of every testing
image. As shown in Fig. 3(a), the initialized shape model may be far away from
the target organ. In such case, the conventional deformable models could fail, as
the local search would not be able to find the interested organ boundary. In con-
trast, with the guidance from image regressor (Fig. 3(b)), the poorly initialized
shape model could be effectively driven towards the target organ (Fig. 3(d)),
which alleviates the dependency of deformable models on good initialization.

Auto-Context and Joint Model. Fig. 4 shows the magnitude of 3D dis-
placement fields estimated by separately- and jointly- learned image regressors,
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Fig. 3. (a-d) CT prostate segmentation. (a) Model initialization (yellow contour). (b-c)
Direction and magnitude of 3D displacement field estimated in the coarse resolution.
(d) Final segmentation. (e-f) Bladder displacement magnitude maps and prostate like-
lihood maps obtained by separate (upper) and joint (lower) models, respectively. Cold
and warm colors in (¢) and (e) denote small and large distances, respectively. Yellow
contour in (d) denotes the automatic segmentation, and red contours in (d) and (f)
denote ground truths.

without and with auto-context, respectively. We can see from Fig. 4(b-c) that
the estimated 3D displacement field is noisy without auto-context, which makes
it unreliable for guiding deformable models. We tested our method without
auto-context, and found it failed in most cases. In contrast, with the help of
auto-context, the quality of estimated 3D displacement significantly improves.
Moreover, by comparing Fig. 4(d) and (e), we noticed that jointly-learned im-
age regressor often obtains better displacement maps than separately-learned
image regressor. In several cases (Fig. 3e), the displacement field estimated by
separately-learned regressor may not necessarily form a closed surface (2nd row),
due to inaccurate predictions for a small region. In such case, the pose adjust-
ment will fail. In contrast, with evidence from classification, the jointly-learned
regressor can effectively overcome this problem (3rd row), leading to better seg-
mentation than separately-learned regressor (Table 1).

On the other hand, classification also benefits from regression. Fig. 3(f) gives
one example of the prostate. Compared with separately-learned classifier (1st
row), the jointly-learned classifier (2nd row) obtains better classification results
on the boundary. This boundary difference also contributes to better segmenta-
tion accuracy of joint models compared to separated models (Table 1).

Table 2 (left) compares the traditional radiation-like context features with
our Haar-like context features, which shows the superiority of Haar-like context
features in the auto-context model.

Comparisons with Other Methods. Table 2 (right) compares our pose ad-
justment strategy with two other methods for model initialization. “Mass” uses
the classification mass center from the coarse resolution, and “Box” uses the
anatomy bounding box detection method [8]. The performances were obtained
by replacing the pose adjustment strategy with respective initialization tech-
niques. By comparing their results with ours in Table 1, we can conclude that
the pose adjustment strategy is more effective in initializing deformable models
of CT pelvic organs.
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Fig. 4. Displacement magnitude maps of bladder obtained by different strategies.
(b-c) Separately- and jointly- learned image regressors without auto-context. (d-e)
Separately- and jointly- learned image regressors with auto-context.

Table 1. Quantitative comparison between separately-learned image regressor and
classifier (Separate), and jointly-learned image regressor and classifier (Joint). Both
of them use auto-context. DSC: Dice Similarity Coefficient for measuring overlap ra-
tio. ASD: average surface distance for measuring boundary difference. Bold numbers
indicate the best performance.

Organ Prostate Bladder Rectum
Resolution Coarse Fine Coarse Fine Coarse Fine
DSC(%) 72.7 £11.3 84.8 £3.97 79.0 £15.3 92.1 £13.3 70.9 £7.05 84.3 *6.25
Separate

ASD(mm) 4.19 +1.60 2.28 to.55 4.15 +2.12 1.38 £1.02 3.23 to0.69 1.97 fo0.97

DSC(%) 73.0 8.99 85.2 +3.74 82.7 +5.74 94.9 +1.62 69.3 +7.52 84.7 +5.22

Joint ASD(mm) 4.20 £1.32 2.23 +0.53 3.78 £1.26 1.15 +o.29 3.51 £o0.82 1.97 £o.92

Table 3 quantitatively compares our method with other existing segmentation
methods. Since different methods use different metrics to measure their perfor-
mance, we separate the comparisons into two tables. We can see from Table
3 that our method achieves better accuracy than the existing methods under
comparison. It is worth noting that most previous works use either sophisticated
methods for model initialization [1,3,7], or rely on shape priors to regularize the
segmentation [1,2,3,7]. In contrast, our method uses a fairly simple initialization
method (i.e., initialize the mean shape model at image center), and does not
rely on shape priors (e.g., PCA shape analysis, or sparse shape model [9]). It is
interesting to observe that even with this setup, our method still results in more
competitive results, when compared to previous methods. This demonstrates the
robustness of our method in the initialization and effectiveness of our method
for CT pelvic organ segmentation.

Table 2. Quantitative comparisons (left) between radiation-like (RADI) and Haar-like
(Haar) context features in the auto-context, and (right) between different deformable
initialization methods, where “Mass” uses the classification mass center from the coarse
resolution to initialize deformable models.

DSC(%) Prostate Bladder Rectum DSC (%) Prostate Bladder Rectum
RADI 84.5+4.4 94.0+6.1 82.7+8.5 Mass 81.5+12.0 82.9+18.1 46.0+26.8
Haar 85.243.7 94.9+1.6 84.3+6.2 Box[8] T4.4+21.2 71.7+26.0 66.4+20.3
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Table 3. Comparisons of our method with other existing works. Left panel shows the
comparison based on average surface distance (ASD). Right panel shows the comparison
based on sensitivity (Sen) and positive predictive value (PPV). Good segmentation
results have small ASD, and large Sen and PPV.

Prostate Bladder  Rectum Prostate Bladder Rectum

Mean+Std ASD(mm) ASD(mm) ASD(mm) Median Sen PPV Sen PPV Sen PPV
Lay [1]  3.57£2.01 2.59£1.70 4.36%£1.70 Costa [3] 0.79 0.86 0.87 0.93 N/A N/A
Lu [7]  2.374£0.89 2.81+1.86 4.23+1.46 Chen [2] 0.84 0.87 N/A N/A 0.71 0.76
Proposed 2.23+0.53 1.15+0.29 1.97+0.92 Proposed 0.82 0.91 0.94 0.97 0.88 0.84

4 Conclusion

In this paper, we propose a novel way to guide deformable segmentation by
jointly learning image regressor and classifier for each organ. The image regressor
is used to initially drive deformable model towards the organ boundary, while the
image classifier is used to refine the segmentation once the pose (i.e., position,
orientation and scale) of the deformable model has been adjusted by image
regressor. Experimental results, based on a CT pelvic dataset, demonstrate the
robustness of our deformable model to initialization, as well as the competitive
performance of our method to other existing methods.
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