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Abstract. Registration of Diffusion Weighted Images (DWI) is chal-
lenging as the data, in contrast to scalar-valued images, is a composition
of both directional and intensity information. The DWI signal is known
to be influenced by noise and a wide range of artifacts. Therefore, it is
attractive to use similarity measures with invariance properties, such as
Mutual Information. However, density estimation from DWI is compli-
cated by directional information. We address this problem by extending
Locally Orderless Registration (LOR), a density estimation framework
for image similarity, to include directional information. We construct a
spatio-directional scale-space formulation of marginal and joint density
distributions between two DWI, that takes the projective nature of the
directional information into account. This accounts for orientation and
magnitude and enables us to use a wide range of similarity measures from
the LOR framework. Using Mutual Information, we examine the prop-
erties of the scale-space induced by the choice of kernels and illustrate
the approach by affine registration.

1 Introduction

The registration of Diffusion Weighted Images (DWI) is interesting as it contains
information about the fibrous micro-architecture otherwise invisible to structural
MRI. Registration of these structures enables us to compare connectivity within
and across subjects. However, registration is challenging due to the inherent
geometry of DWI; notably high-angular resolution diffusion imaging (HARDI)
which models more complex displacement profiles. We extend the Locally Order-
less Registration (LOR) [2] density estimation framework for image similarity
from scalar-valued images to DWI. The LOR is a scale-space framework for
image density estimation that allows us to employ a wide range of similarity
measures for registration, including MI. By introducing a spatio-directional ker-
nel, thus including the space of gradient directions, we model the relationship
between direction and measurements as histograms. The histograms are mapped
to probability density estimates by normalization and marginalization over the
deformed space.

Our contribution is a full LOR scale-space formulation for DWI, offering ex-
plicitly control of orientation, image, intensity and integration scale. We examine
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the effects of the scale-space and illustrate the application of the density estimate
by affine image registration of DWI data using Mutual Information.

2 Previous Work and Background

Locally Orderless Images (LOI) [6] is a scale-space representation of intensity
distributions in images modeling three inherent scales: the image scale (i.e. im-
age smoothing), the integration scale (local histogram), and the intensity scale
(soft bin width). The first mention of LOI in the context of image registration
was in by Hermosillo et al. [4] where a variational approach to image registration
was presented. The LOR framework [2], an extension of [1], generalized a range
of similarity measures as linear and non-linear functions of density estimates
for scalar-valued images. One such non-linear similarity measure is Mutual In-
formation (MI) [13]. MI is one of the most frequently used similarity measures
in image registration and was introduced as a multi-modal similarity measure.
MI is frequently used in MRI due to its invariance properties with respect to
intensity values and is associated with scalar-valued images. It is used in the
context of DWI for distortion-correction [9] on e.g. b0 or individual DWI direc-
tions. Van Hecke et al. [12] used MI for non-rigid registration of DWI. Under
an assumption of alignment, each gradient direction was evaluated separately
as well as in a pooled fashion to form a joint density distribution. Interpolation
of directional information in DWI was introduced by Tao and Miller [10] for
affine registration using SSD and extended by Duarte-Carvajalino et al. [3] to
non-rigid B-spline registration. The angular interpolation was extended with a
Watson distribution by Rathi et al. [8]. Raffelt et al. [7] used SSD after spher-
ical deconvolution for fiber modeling (FODs), while others, like Yap et al. [14],
compared the coefficients of the spherical harmonics.

Image registration is the process of spatially aligning (two) images (I and J)
under some transformation Φ given some regularity condition S(Φ) and similarity
F(I ◦ Φ, J) such that M(I, J, Φ) is minimized

M(I, J, Φ) = F(I ◦ Φ, J) + S(Φ) (1)

In this paper we address the estimation of F of single shell DWI as an extension
of LOR with application to MI. DWI MR attenuation signals at location x,
for a gradient direction v, are modeled by S(x,v) = S0(x)e

−bI(x,v) [10] and

apparent diffusion coefficients volumes are given by I(x,v) = − 1
b log

S(x,v)
S0(x)

.

Gradient directions v are taken on the unit sphere S
2 although diffusion are

orientation-free and have I(x,v) ≈ I(x,−v), i.e., with antipodal symmetry. Such
a symmetric function I(x,−) on the sphere can be represented by a function on
the projective space P

2 of directions of R3, P2 � S
2/{±1}.

We start by defining the type of transformation considered for the LOR den-
sity estimates for single shell DWI presented in this paper. For any transforma-
tion φ of a point x, we consider only diffeomorphic mappings φ(x) : R3 → R

3.
Under this assumption, φ is invertible and its differential, or Jacobian dxφ at
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x, gives naturally rise to a projective transformation on P
2: tv �→ tdxφ(v), t ∈

R\{0}. We drop x and simply write dφ. Its representation over S2 is v ∈ S
2 �→

± dφ(v)
|dφ(v)| . This term appears within a spherical kernel Γκ with antipodal sym-

metry, making the sign irrelevant. Setting ψ(v) = dφ(v)
|dφ(v)| , it corresponds to the

transformation proposed by [10]. We therefore extend our transformation to
Φ̃ : (x,v) �→ (

φ(x), ψ(v)
)
. This type of transformation is also argued in [7],

although neither [10] nor [7] did consider its projective nature. We proceed to
describe the LOR.

The LOR framework defines the similarity over three scales: The image scale
σ, the intensity scale β, and the integration scale α. In registration, for a trans-
formation φ, we get

hβασ(i, j|φ,x) =
∫

Ω

Pβ(Iσ(φ(x)) − i)Pβ(Jσ(x)− j)Wα(τ − x)dτ (2)

pβασ(i, j|φ,x) � hβασ(i, j|φ,x)∫
Λ2 hβασ(k, l|φ,x)dk dl

(3)

where i, j ∈ [a1, a2] are values in the image intensity range, Iσ(φ(x)) = (I ∗
Kσ)(φ(x)) and Jσ(x) = (J ∗Kσ)(x) are images convolved with the kernel Kσ

with standard deviation σ, Pβ is a Parzen-window of scale β, and Wα is a
Gaussian integration window of scale α. The marginals are trivial and obtained
by integration over the appropriate variable. The LOR-approach to similarity
lets us use a set of generalized similarity measures, the linear and non-linear

Flin =

∫

Λ2

f(i, j)p(i, j)di dj Fnon−lin =

∫

Λ2

f(p(i, j))di dj (4)

where the linear measure f(i, j) includes e.g. sum of squared differences and
Huber, and the non-linear f(p(i, j)) includes e.g. MI, NMI, see [2] for details.

3 Locally Orderless DWI

To extend the density estimates of LOR to include directional information, we
introducing a kernel on the sphere to account for directional smoothing. With
that in mind, we extend spatial smoothing to be spatio-directional, where the
directional smoothing preserves this symmetry, and thus the projective structure,
via a symmetric kernel Γκ(ν,v) on S

2. We define the smoothed signal Iσ,κ at
scales (σ, κ) by

Iσκ(x,v) =

∫

S2

(∫

Ω

I(τ ,ν)Kσ(τ − x)dτ

)
Γκ(ν,v)dν = (I ∗ (Kσ ⊗ Γκ))(x,v)

(5)

whereKσ(x) is a Gaussian kernel with σ standard deviation. We use a symmetric
Watson distribution [5] as Γκ(ν,v) for directional smoothing on S

2, given by

Γκ(ν,v) = Ceκ(〈ν,v〉)
2

, C = M(
1

2
,
1

d
, κ) =

∑

i=0...∞

κn

(32 )
nn!

(6)
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where M is the Kummer function for a d-dimensional unit vector ν, (in this case
d = 3), ±v the center of the distribution, and κ the concentration parameter,
which is roughly inverse proportional to the variance on the sphere. As one
alternative, a symmetrized von Mises-Fisher [5] distribution could be considered.

In order to use the similarity measures provided by the LOR framework,
we extend the LOR formulation from scalar-valued images to DWI. The joint
histogram, that is, the contribution to h(i, j) : Λ2 → R+ of the joint histogram
and normalization can be written as

hβασκ(i, j|x) =
∫

Ω×S2

Pβ(Iσκ(x,v)− i)Pβ(Jσκ(x,v)− j)Wα(τ − x)dx× dv

(7)

pβασκ(i, j|x) = hβασκ(i, j|x)∫
Λ2 hβασκ(k, l|x)dk dl

(8)

where Iσκ(x,v) and Jσκ(x,v) are defined as in Equation (5), P is a Gaussian
Parzen-window with standard deviation β, andW a Gaussian window of integra-
tion around x with standard deviation α. The marginals are trivial and obtained
by integration over the appropriate variable. The joint and marginal probability
densities allow us to apply the generalized similarity measures in Equation (4).
In this paper, we use the non-linear MI.

4 Image Registration

We write the joint histogram and density for similarity in image registration as

hβασκ(i, j|Φ̃,x) = (9)
∫

Ω×S2

Pβ(Iσκ(φ(x), ψ(v)) − i)Pβ(Jσκ(x,v)− j)Wα(τ − x)dτ × dv

pβασκ(i, j|Φ̃,x) = hβασκ(i, j|Φ̃,x)∫
Λ2 hβασκ(i, j|Φ̃,x)dl dk

(10)

Most similarity measures are global measures, including MI. To make the density
estimate global, we let α → ∞ such that W becomes constant. The first-order
structure of the similarity (1) is derived following the approach of [2], denoting
differentials as dg = Dg(x)dx, where D is the partial derivative operator and
dx a vector of differentials. We seek dM, the derivative of (1), ignoring the
regularization term and omitting irrelevant parameters in the notation. The
derivative of MI with respect to h(i, j) is found in [2]. Thus, we seek dh(i, j)

dh(i, j) =

∫
Ω×S2

dPβ(Iσκ(φ(x), ψ(v))− i)Pβ(Jσκ(x,v)− j)Wα(τ − x)dτ × dv (11)

with dPβ(Iσκ(φ(x), ψ(v))− i) = DPβ(Iσκ(φ(x), ψ(v))− i)dIσκ(φ(x), ψ(v))
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DPβ(Iσκ(φ(x), ψ(v)) − i) can be found in [1, 2]. Inserting (5), we get

dIσκ(φ(x), ψ(v)) = d

∫

S2

(∫

Ω

I(τ ,ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν. (12)

and using the Leibniz integration rule and the product rule, we get

dIσκ(φ(x), ψ(v)) =

∫

S2

(
d

∫

Ω

I(τ ,ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν+

∫

S2

(∫

Ω

I(τ ,ν)Kσ(τ − φ(x))τ

)
dΓκ(ν, ψ(v))dν (13)

We consider each of the terms on the sum separately. Using Leibniz integration
rule on the first term of the sum, we get

∫

S2

(∫

Ω

I(τ ,ν)dKσ(τ − φ(x))τ

)
Γκ(ν, ψ(v))dν (14)

where dKσ(τ − φ(x)) = DKσ(τ − φ(x))dφ(x) which is trivial in the context of
registration. From the second term we get dΓκ(ν, ψ(v)) = DΓκ(ν, ψ(v))dψ(v)
and specifying Γκ(ν, ψ(v)) as a Watson distribution gives

DΓκ(ν, ψ(v)) = Ceκ(〈ν,ψ(v)〉)22κ〈ν, ψ(v)〉dψ(v) (15)

which leaves dφ(x) and dψ(v). The first term dφ is the Jacobian of φ and classical
in registration literature. The first-order information on spherical reorientation

dψ(v) is more complicated, as with our definition of ψ(v) as dφ(v
|dφ(v)| , this leads

to second-order information of φ, which is complex but trivial.

5 Experiments and Results

A series of experiments was conducted to illustrate the scales introduced (spatial,
intensity, and directional) with respect to MI. We computed the MI between
two subjects and plotted the MI as a function of global rotation and translation
(Figure 1) as well as local rotation of three random patches of 10×10×10 voxels
(Figure 2). In addition, we performed a few affine registrations of DWI data using
the proposed extension of LOR to DWI and MI. We used data from the Human
Connectome Project (HCP) database, release Q3, structurally aligned to the
MNI-152 template [11], with 90 gradient directions and a b-value of 3000.

The locally orderless structure introduces four explicit scales on DWI: Image
Kσ, intensity Pβ , and integration Wα, as well as the extension to orientation Γκ.
To examine the effect of the scales (ignoring integration scale Wα, i.e. α → ∞),
we use Mutual Information, which in itself is a complicated measure. Mutual
Information of two observations A,B can be interpreted as the capability of A
to encode B. We use this notion of MI to examine the properties of the proposed
extension of density estimation to DWI. As a first observation from Figure 1
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(a) Image smoothing
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(b) Image smoothing
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(c) Directional smoothing
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(d) Directional smoothing

−5 −3 −1 1 3 5

0.5

0.55

0.6

0.65

0.7

Translation along the x−axis

M
ut

ua
l I

nf
or

m
at

io
n

Varied gaussian smoothing of histogram

 

 

σ = 0.2
σ = 0.5
σ = 1
σ = 2
σ = 4

(e) Magnitude smoothing
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(f) Magnitude smoothing

Fig. 1. MI as a function of translation and rotation at different scales. As shown,
smoothing in R

3 (a & b) moves the optima, while the change in the angular or diffusion
scale (c & d) preserves the MI, despite increased the angular information. This is a
good indication of a substantial information in the directions. Smoothing of diffusion
magnitudes (e & f) has a similar effect to that observed for scalar-valued images.
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(a) Patch 1
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(b) Patch 2

−100 −60 −20 20 60 100

0.1

0.2

0.3

0.4

0.5

Rotation around the x−axis (degrees)

M
ut

ua
l I

nf
or

m
at

io
n

Varied spherical interpolation support

 

 

κ = 0
κ = 1
κ = 5
κ = 10
κ = 20
κ = 30

(c) Patch 3

Fig. 2. We computed the MI between to DWI volumes within three random patches
of 10× 10× 10 voxels as a function of rotation and directional smoothing. This clearly
illustrates the change in optima as a function of the directional scale. As the images
are reasonably well-aligned, this is a strong indication that directional information is
required for proper local alignment

it is clear that the DWI optima does not correspond to the structural optima of
the registration (to MNI) provided by the HCP. This is illustrated by the fact
that the maxima of Figure 1 are not at 0.
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(a) Original (b) Affine (c) Target (d) Original (e) Affine (f) Target

Fig. 3. Two DWI images registered using affine transformation and MI for DWI. (left)
b=0 gradient images. (Right) T1-weighted images.

The Image Scale influences the MI significantly. Smoothing in the individual
directions increases the MI (Figures 1(a) and 1(b)). This increase is not surpris-
ing as this smoothing of the intensities will transform the distribution of observed
intensities towards the mean of the image. The Intensity Scale (i.e. Parzen-
window) behaves as reported in [2] where the optima displaces with increased
kernel size (Figures 1(e) and 1(f)). Increasing the size of the Parzen-window cor-
responds to reducing the number of bins. The Orientation Scale has an effect
similar to image smoothing (Figures 1(c) and 1(d)). We observe that smoothing
results in increased Mutual Information as the diffusion measurements of all 90
directions converge towards the rotation-invariant mean diffusivity for κ → 0.
Note that the corresponding curves of MI using small kernels, i.e. higher angu-
lar resolution, only results in a small decrease in the MI. Figures 1(c) and 1(d)
shows preservation of the slope of MI towards the optima is observed, revealing
a well-defined optima. Locally, Figure 2, we observe a dramatic shift in optima
from mean diffusivity κ = 0 to high directional resolution κ = 30. As illustrated,
the local optima shifts 30-40 degrees as a function of scale, which justify the need
for our proper scale-space formulation for similarity of DWI. To Illustrate the
LOR for DWI with MI, we performed a few affine registrations using MI, κ = 30,
a cubic B-spline Parzen-window with 200 bins, and B-Spline image interpolation.
A registration can be seen in Figure 3.

6 Discussion and Conclusion

The LOR for DWI includes directional information and so first-order informa-
tion of the deformation is required. We therefore restrict the deformation model
to diffeomorphisms to ensure well-defined derivatives. For gradient-based opti-
mization, this implies that the second-order information of the deformation is
required, which severely complicates any implementation. We have chosen the
Watson distribution for its simplicity compared to e.g. a symmetrized von Mises-
Fisher kernel or symmetrized geodesic distances.

We have presented an extension of the Locally Orderless Registration for DWI
by introducing a scale-space which accounts for the projective nature of DWI in
a theoretically sound manner. Our experiments show that directional resolution
is important in order to obtain proper local alignment in registration. Our for-
mulation allows us to directly control the scales of the information from which we
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estimate the similarity. By extending the LOR framework, we can easily apply a
wide range of similarity measures. We provided the first-order information of the
densities, briefly reviewed the effects of the scales, and illustrated the approach
by affine registration of DWI using Mutual Information.
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