Computational system for strategy design and
match simulation in team sports

Leonardo Lamas®, Guilherme Otranto?, and Junior Barrera?

! University of Brasilia, Faculty of Physical Education,
Campus Darcy Ribeiro, Brasilia, Brazil
2 University of Sdo Paulo, Institute of Mathematics and Statistics,
Rua do Matao, n.1010, Cidade Universitaria, Sao Paulo, Brazil

Abstract. The goal of the present work was to create a computational
system that supports the design of strategies and the match simulation
based on those strategies. A formal model of team strategy and match
dynamics supported the specification of the computational system. In
this model, team strategy was defined as a discrete dynamic system.
The specification of individual action rules enables the team players to
organize the collective action in every state of the system. A play is
modelled by a sequence of compatible pairs of states. The system im-
plementation encompasses a designing tool, whose resultant strategies
are used as the input in a simulator capable of recognizing match states
and applying the defined strategy to plan actions. Besides the inherent
contribution to the investigation of team sports performance features,
the presented framework may be helpful in other scientific areas, such as
those that investigate cooperative actions in competitive environments
and to the design of video-games with a greater realism, approximating
them to real match simulators.

Key-words: dynamical system, action rule, planning, artificial intelligence

1 Introduction

In team sports, the set of specifications conceived by the coaching staff to sup-
port the collective action of the players define the concept of strategy [3]. Even
though in many circumstances of the match the execution of the team strategy
should be modified due to the spatio-temporal constraints mutually imposed by
the adversaries, it greatly influences the tactical patterns observed in the con-
front [5].

The empirical observation of a match leads to the conjecture that, in most of the
cases, the more collectively a team plays the greater should be its performance.
Hence, the success of a team appears to be related both to the features of the
designed strategy and to the team efficiency to execute them in the match. Com-
putational systems that support the design of team strategies and simulate their
execution may contribute to the scientific investigation of the several elements
involved in this complex context. However, in the present moment, interactive
computational environments for strategy design (i.e. environments that can cor-
rect and improve the human planning) and team sports simulators, analogous to

© Springer International Publishing Switzerland 2016 69
P. Chung et al. (eds.), Proceedings of the 10th International Symposium

on Computer Science in Sports (ISCSS), Advances in Intelligent Systems

and Computing 392, DOI 10.1007/978-3-319-24560-7_9

70 L. Lamas et al.

those in existent for improving car races’ strategies [6] and for training the pilots
in the designed strategies, are not available. Interestingly, in computer science,
several algorithms have been systematically improved to reproduce more pre-
cisely the competition features of team sports in video games [7,2], indicating
an eminent common research field for scientists from this area and sport sciences.
Based on this inter-disciplinary approach, the goal of the present work was to
create a computational system that supports the design of strategies and, based
on the designed strategies, simulate the match in team sports.

2 Methods

2.1 Specification of the computational system

A model of the team strategy and the match dynamics [4] supported the develop-
ment of both modules of the computational system, the team strategy designer
(TSD) and the match simulator.

The team strategy model was defined through the following elements: i) con-
trol of a player actions by strategy specifications; ii) organization of cooperative
relations between team players in each strategy state; iii) graph representation
of sequences of states [4]. Additionally, strategies of the adversary teams were
inputs to the match dynamics [4].

The most fundamental element of the model is the action rule, a conditional
statement of the form if <condition>, then <action> (e.g. in basketball defense,
if <an attacker overcomes my teammate>, then <I should help defending his
attacker>). An action rule formalizes the logical control of the players dynamics
through the action choice of the players in a given context. Players’ action rules
provide the specifications for creating small cooperative groups of team players,
defined as strategic units (SUs), which should perform a coordinated action to
achieve a certain strategic goal in a state.

A strategy state is composed by the following constitutive elements: i) play-
ers in the match field; ii) a region for each player, represented by an equivalence
class for positioning that encompasses all points in the match field with similar
meaning for a player in a given state; iii) players dynamics; iv) whether the team
has ball possession (i.e. offense or defense); v) the ball dynamics. A state transi-
tion specifies the roles of the team players (i.e. trajectory in the match field and
respective technical skills performed) and their dynamics. To design a consistent
sequence of states, two subsequent states must be compatible. Thus, the output
of the first state should be identical to the input of the second state. A team
strategy is composed of a finite set of states and connections between pairs of
compatible states. A play is modelled by a sequence of compatible pairs of states
and two or more plays may be originated in a common state. Thus, every team
strategy can be represented by a directed graph. The graph enables the identifi-
cation of the general structure of the strategy and provides easy visualization of
specific sequences of states (i.e. plays) in the context of the complete strategy.

In a match, during the interval between two subsequent interruptions, the
confrontation is continuous and both teams try to make adjustments on their

Computational System for Strategy Design ... 71

performance to approximate to the specifications of the strategy states. Hence,
each modification that emerges from the confront, originated from the interac-
tion between the two teams, generates information that is confronted through
feedback, with the planned state from the team strategy. This input leads to
the comparison between the match state and the closest state specified in the
strategy of each of the teams. Based on the result of the comparison, the next
goal of the strategy is defined, considering the alternatives presented by the team
strategy (Figure 1).

End
/2
N
Planning
TeamA Yes
() No
"' AEIEg Confront
Start Planning Interruption?
Team B

Fig. 1. Match dynamics, where: circles represent the start and the end of the flux;
rectangles represent processes; diamonds with a cross and empty diamonds represent,
respectively, a flux integration and a Boolean test; arrows indicate the direction of the
control signal.

2.2 System design

The framework of the computational system was divided into two separate mod-
ules, the team strategy designer (T'SD) and the match simulator. The T'SD mod-
ule allows an user to specify a team’s strategy, according to the formalism of the
strategy model (see Section 2.1), and creates a file to represent it. The designed
strategies for two teams can also be loaded into the match simulator to create a
virtual match. The simulation cycle is composed of 3 main processes, the collec-
tive planning, the individual interference and a confront. A confront is simulated
until the calculated plans cease to be valid, for instance, if a crucial action fails
or ends, triggering another round of planning.

The high level collective planner uses the team strategy and the current
match state as input. The objective of the planner is to find a path in the
team strategy that is both applicable in the current situation and beneficial to
the team if successfully navigated. The plan is then modified on an individual
scale to introduce automatic individual behaviours (e.g., players can adjust their
speed of displacement based on level of fatigue). The planned actions are then
simulated until the next round of planning becomes necessary. This cycle is
illustrated in Figure 2.

72 L. Lamas et al.

The framework of the computational system can be customized for different
team sports. In the present work, the applications were made in the context of

basketball.
User defined
& \—> Strateey Mode!
User
Match Simulator N
Strategy
model
A
Collective % | Collective :
planner i — Individual planner
Strategy
model
B ﬂ
Match state <:’ [Confront '(_ Individual
decisions
~ J
Fig. 2. System overview and match simulator main cycle
3 Results

3.1 Simulation input

The TSD generates a XML file output with the complete description of the
specified strategy. Also in the TSD environment, the XML file is represented
through a graph (Figure 3A), where the nodes are strategy states (Figures 3B
and 3D) and the edges are states transitions (Figure 3C). Then, it provides
immediate visualization of the general structure of the designed strategy. In a
state, the TSD supports the specification of the players label, players’ areas (i.e.,
equivalence classes for positioning), and ball possession (a small orange circle
represents the ball). In the case of the defensive players, their body rotations
are also considered due to its relevance for defensive displacements (Figures 3B
and 3D). For the purpose of the simulation, two previously specified strategies
should be available.

3.2 Planning, Matching and Simulation

In the TSD, the user can describe complex strategies in a small state space due
to its use of equivalence classes. This allows the description of many similar

Computational System for Strategy Design ... 73

Fig. 3. Top-down visualization of a team strategy: 3A - graph of a complete strategy;
3B - previous state; 3C - states transition; 3D - subsequent state. Outer orange ellipses
indicate equivalence classes for positioning.

situations in a single strategy state and greatly reduces the strategy graph ex-
plored when a plan is calculated. Figure 4 presents an integrative perspective of
planning, matching and simulation.

The actual planning problem can be solved using traditional planning algo-
rithms such as the Real-time dynamic programming (RTDP)[1] with one major
distinction: the state representation. The planning problem is defined as follows:

1. A state space S: the nodes of the strategy graph;

2. An initial state Sy € S: the node returned by a matching algorithm;

3. A subset of goal states G C S: the terminal states on the graph. A terminal
state is any state where a player is in the position to finish the play (i.e., score);

4. A set of actions A, and a transition function f(s,a) — S, with s € S and
a € A(s): the edges of the graph;

5. A function to assign cost to the actions c(a,s) € RT. This function repre-
sents the risk of a transition and is currently assigned by the user when generating
the strategy graph.

A new matching layer must be added to the classical planning algorithms
(RTDP) to account for the gap between a match state and the states available
in the team strategy. The new layer assigns a match state to the strategy state
that best represents it. This assignment can be a perfect fit or an approximation.

A metric to compare a match state to a strategy state was devised to allow
the matching layer to function regardless of the match state. Thus, the layer will
always return a matched strategy state, even if there is no perfect fit (Figure
5). The metric currently in use is the sum of the quadratic distances between
all players in the match state and their counterparts in the strategy state. Since
many allocations of players can be used, the one that minimizes the sum is
chosen.

The metric considers the distance between a match state player and his
counterpart in the strategy state to be zero when the match player is inside the
equivalence class for positioning of his counterpart (e.g., players A, C and E in
Figure 5). Otherwise the distance considered is the squared Euclidean distance
between his position and the closest point to it in the equivalence class for
positioning (e.g., players D and B in Figure 5).

74 L. Lamas et al.

Strategic é Collective planner h
model
A < Active strategic
BT |:> model state
Strategic |
model
B |::> Strategic path
|
Applicati Collective
Game state RRICACCT -
AN vy

Fig. 4. The collective planner execution: Matching provides an initial state; Navigation
implements a classical planner; Application adapts the plan to the current match state.

The correct strategy state is then calculated by locating the state which
minimizes the sum of the metrics for all players. This calculation also yields the
allocation of each player (i.e., his strategy state counterpart).

Fig. 5. A match state (left), with players assigned in blue, and its counterpart in the
strategy (right), with players assigned in orange. The metric 3.5 is the sum of the square
distances between players A to E positioning in the match state and their counterparts’
equivalence classes for positioning in the strategy state.

The planner extracts a high-level course of action (i.e., a path on the strategy
model) using the matched state as an initial node. This is an approximation of
the ideal solution, which means it is compatible but not an exact fit for the
current match state.

An application process is used to adapt the plan to a specific match state
by setting parameters to the actions to be executed. These actions are simple
behaviours used by the simulation to execute a plan. An action describes a

Computational System for Strategy Design ... 75

behaviour (e.g., run, pass, throw, steal) that can be parametrized to be performed
exactly as anticipated by the plan.

Once a plan is calculated and adapted, the simulator creates, assigns and
executes actions for each player. Some actions have a probabilistic result that
can be randomized during the execution (e.g., a score attempt, pass). If one
of these action fails, the plan is discarded and another round of planning is
triggered. Figure 6 illustrates the simulation environment.

Time scale: 0% [+7] Show feedback [Prant |

O

Fig. 6. Simulation environment: offensive team (black), defensive team (blue), arrows
on the court indicate players’ trajectories.

4 Conclusion

The main contribution of this study was to develop a computational system
that enables the design of team strategies and uses these strategies as input for
simulating the match in team sports. This system may support the enhance-
ment of the knowledge about team sports through testing possible features of
efficient strategies design and respective consequences for real matches through
simulation procedures. This framework may be helpful for coaches and players
to improve their capacity to plan the collective performance, interpret the oppo-
sition constraints and act more efficiently. Both strategies design and simulation
procedures have been conducted in the context of basketball. Nonetheless, the
coverage of the model that provides theoretical support for the system enables
its customization to a large range of team sports.

These results may have positive impact in other scientific areas as well. For in-
stance, it is possible that the planning and matching structure based on a model

76 L. Lamas et al.

for representing strategies and the match dynamics contribute to the design of
video-games with a greater realism than the observed in the present games, ap-
proximating them to real match simulators. Additionally, it may contribute to
solve problems in some branches of artificial intelligence, such as modelling of
the collective action in competitive environments, for instance in robot soccer
tournaments.

Acknowledgments: LL was supported by Fundacao de Amparo & Pesquisa
do Distrito Federal. JB is supported by Conselho Nacional de Pesquisa, grant:
306442/2011-6.

References

1. Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time dy-
namic programming. In: Proceedings of the Thirtheenth International Conference
on Automated Planning and Scheduling (2003)

2. Chan, B., Denzinger, J., Gates, D., Loose, K.: Evolutionary behavior testing of com-
mercial computer games. In: Proceedings of the Congress on Evolutionary Compu-
tation (2004)

3. Grehaigne, J., Godbout, P., Bouthier, D.: The foundations of tactics and strategy
in team sports. Journal of Teaching in Physical Education 18, 159-174 (1999)

4. Lamas, L., Barrera, J., Otranto, G., Ugrinowitsch, C.: Invasionteamsports: strategy
and match modeling. International Journal of Performance Analysis in Sports 14,
307-329 (2014)

5. Lamas, L., Santana, F., Otranto, G., Barrera, J.: Inference of team sports strategies
based on a library of states: application to basketball. In: Proceedings of the 2014
KDD Workshop on Large-Scale Sports Analytics (2014)

6. Wloch, K., Bentley, P.: Optimising the performance of a formula one car using a
genetic algorithm. In: Proceedings of the 8th International Conference of Parallel
Problem Solving from Nature (2004)

7. Xiao, G., Southey, F., Holte, R.: Software testing by active learning for commercial
games. In: Proceedings of the Congress of the American Association for Artificial
Intelligence (2005)

	9
Computational system for strategy design and match simulation in team sports
	1 Introduction
	2 Methods
	2.1 Specification of the computational system
	2.2 System design

	3 Results
	3.1 Simulation input
	3.2 Planning, Matching and Simulation

	4 Conclusion
	Acknowledgments
	References

