Chapter 33 Cerebellar Circuits: Biochemistry, Neurotransmitters and Neuromodulators

Cannabinoids as Modulators in the Cerebellum

Gary J. Stephens

Abstract Cannabinoid CB₁ receptors (CB₁Rs) are the most widespread G-proteincoupled receptors (GPCRs) in the mammalian CNS. CB₁Rs are present on inhibitory and excitatory presynaptic terminals supplying Purkinje cells (PCs), the sole output of the cerebellar cortex, where CB₁R activation suppresses transmitter release. CB₁Rs are part of the endocannabinoid (eCB) system, activated by the lipid mediator 2-arachidonoyl glycerol (2-AG) via retrograde transmission within the cerebellum. CB₁Rs also mediate synaptic plasticities to modulate cerebellar learning. This review will discuss the latest knowledge regarding CB₁R circuitry and signalling and their potential modulation.

Keywords CB₁ receptor • Endocannabinoid • Purkinje cells

33.1 Introduction

The release of excitatory glutamate, from parallel fibres (PF) and climbing fibres (CF), and inhibitory GABA, predominantly from basket cell interneurons (INs), onto output PCs, is intimately controlled by CB_1Rs in the cerebellar cortex (Stephens 2009). CB_1Rs are activated by eCBs and may be modulated by exogenous synthetic cannabinoids and plant-derived phytocannabinoids (Pertwee et al. 2010; Hill et al. 2012). The major effect of presynaptic CB_1R activation is suppression of neurotransmitter release (Kano et al. 2009). Cannabinoids also activate CB_2 receptors, expressed predominantly in microglia within the CNS, and potentially GPR55 receptors (Pertwee et al. 2010). However, key known effects of cannabinoids on synaptic function are mediated via presynaptic CB_1Rs (see Hoffmann and Lupia 2013).

G.J. Stephens (🖂)

School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK e-mail: g.j.stephens@reading.ac.uk

[©] Springer International Publishing Switzerland 2016

D.L. Gruol et al. (eds.), *Essentials of Cerebellum and Cerebellar Disorders*, DOI 10.1007/978-3-319-24551-5_33

33.2 CB₁R Expression Within the Cerebellum

CB₁Rs are expressed at presynaptic terminals onto PCs, the principal neurons of the cerebellar cortex, which provide inhibitory innervation of deep cerebellar nuclei. Thus, CB₁Rs are uniquely positioned to control cerebellar function and, in particular, modulation of fine motor co-ordination. CB₁Rs are expressed on perisynaptic PF membranes, with lower expression at CF inputs onto dendritic shafts (Kawamura et al. 2006). CB₁Rs are expressed at higher levels on inhibitory IN presynaptic terminals, predominantly on basket cells, which form specialized 'pinceau' regions surrounding the PC axon initial segment (Rodríguez-Cueto et al. 2014). In the cerebellar cortex, CB₁Rs are activated preferentially by 2-AG (Szabo et al. 2006), over the other major brain eCB, arachidonylethanolamide (anandamide). The 2-AG biosynthetic enzyme diacylglycerol lipase- α (DAGL α) is localized to PC somatodendritic regions, with a subcellular distribution at the base of postsynaptic spines (Yoshida et al. 2006). The 2-AG degrading enzyme monoacylglycerol lipase (MGL) is localised to PF terminals (Tanimura et al. 2012). CB₁R expression has also been reported on microglial and astrocytes within the cerebellar cortex (Rodríguez-Cueto et al. 2014); the role of the CB₁R at such tripartite synapses will be of clear future interest.

In PC postsynaptic dendritic spines, 2-AG is synthesised by DAGL α from DAG (produced from phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC)) in turn activated by $G\alpha_{q/11}$ GPCRs. 2-AG is released retrogradely to act on presynaptic CB₁Rs at excitatory PF and inhibitory IN terminals to suppress release of glutamate (Glu) or GABA, respectively. Astrocytes and microglial also express CB₁Rs. CB₁Rs are predominantly coupled to $G\alpha_{i/o}$ to inhibit VGCCs (via G $\beta\gamma$) and/ or activate K⁺ channels (via AC inhibition and subsequent reduction in cAMP). 2-AG is catabolised by MGL produced by PF terminals.

33.3 CB₁R Signalling in the Cerebellum

During retrograde transmission, 2-AG is synthesised *de novo* from diacylglycerol (DAG) by DAGL α and released 'on-demand' from postsynaptic somatodendritic PC regions to act on presynaptic CB₁Rs (Urbanski et al. 2010; see Fig. 33.1). Release of 2-AG, by not yet fully resolved pathways, is triggered predominantly by increases in postsynaptic Ca²⁺ concentration via depolarization-induced opening of voltage-gated Ca²⁺ channels (VGCCs) and/or synaptically-driven activation of iono-tropic AMPA receptors and certain G $\alpha_{q/11}$ -coupled GPCRs (Ohno-Shosaku and Kano 2014). Presynaptic CB₁Rs couple predominantly to G $\alpha_{i/o}$ subunits, which inhibit adenylyl cyclase (AC)-mediated generation of cyclic adenosine monophosphate (cAMP) and liberate G $\beta\gamma$ subunits (Pertwee et al. 2010). CB₁Rs activation causes pertussis toxin-sensitive inhibition of VGCCs and activation of inwardly rectifier K⁺ channels (Guo and Ikeda 2004), CB₁Rs can also link directly to the vesicular release machinery; these effects are mediated by G $\beta\gamma$ subunits (Stephens 2009).

Fig. 33.1 2-AG is fundamental to cannabinoid signalling in the cerebellar cortex

CB₁Rs activation by synthetic agonists such as WIN55212-2 (WIN55) and CP55940, inhibits action potential-evoked, and spontaneous, inhibitory postsynaptic currents (IPSCs) at IN-PC synapses or excitatory postsynaptic currents (EPSCs) at PF-PC and CF-PC synapses; CB₁Rs activation also reduces frequency of 'miniature' IPSCs (mIPSCs) at IN-PC synapses (Takahashi and Linden 2000). CB₁R antagonists/inverse agonists increase mIPSCs (Ma et al. 2008); such effects are consistent with the presence of a strong, modulatable eCB tone in the cerebellum (Kreitzer et al. 2002).

Release of 2-AG causes short-term or long-term modulation of neurotransmitter release, offering the potential to fine-tune motor learning in the cerebellum. A prominent form of short-term modulation is the suppression of inhibitory GABA release from IN terminals (depolarization-induced suppression of inhibition, DSI) or suppression of excitatory glutamate release (depolarization-induced suppression of excitation, DSE) (Kreitzer and Regehr 2001). A major presynaptic effect in DSE is inhibition of VGCCs (Brown et al. 2004). eCBs also mediate long-term synaptic plasticity, due to repeated stimulation of synaptic inputs, but also in response to prolonged postsynaptic activity, and requiring additional activity to augment CB₁R effects (Ohno-Shosaku and Kano 2014). Both long-term depression and potentiation are modulated by CB₁R at PF-PC synapses, the balance of effects is proposed to underlie cerebellar learning (Vogt and Canepari 2010).

33.4 Association of CB₁Rs with Cerebellar Dysfunction

Disruption of cerebellar circuitry is commonly associated with ataxia, a spectrum of diseases associated with motor co-ordination deficits. Whilst animals lacking CB_1R have no gross deformities, they have deficits in eyeblink conditioning, suggesting that CB_1Rs control discrete cerebellar-dependent, motor learning processes

(Kishimoto and Kano 2006). In fact, CB₁R agonists cause severe motor incoordination and can be used to induce ataxia (Patel and Hillard 2001). We have shown that du^{2J} 'ducky' ataxic mouse mutants exhibit irregular PC firing and disrupted CB₁Rmediated signalling that could contribute to disease phenotype (Wang et al. 2013). In post-mortem spinocerebellar ataxia brain tissue, CB₁R expression was increased in glial and PCs (Rodríguez-Cueto et al. 2014); therefore, up-regulated CB₁R could be useful disease marker and/or may serve a neuroprotective function (Stephens 2016).

CB₁R antagonists/inverse agonists have been shown to increase inhibitory neurotransmission at IN-PC synapses (Ma et al. 2008). Such agents have potential to dampen cerebellar excitability. These agents included rimonabant; however, rimonabant withdrawal as a therapeutic anti-obesity agent, due to fears of increased suicide and depression, has curtailed several related drug development programmes. Potential alternatives are CB₁R negative allosteric antagonists, such as Org-27569 and PSNCBAM-1 (Ross 2007). These agents, somewhat paradoxically, increase binding of orthosteric ligands, but decrease their efficacy; this occurs in a liganddependent fashion (Baillie et al. 2013). We have shown such 'functional selectivity' for PSNCBAM-1 at IN-PC synapses (Wang et al. 2011). Moreover, unlike CB₁R antagonists/inverse agonists, PSNCBAM-1 had no intrinsic effects on inhibitory transmission. These studies indicate that negative allosteric antagonists offer potential advantages including reduced side effects and toxicity and present future potential for selective manipulation of the eCB system within the cerebellar cortex.

References

- Baillie GL, Horswill JG, Anavi-Goffer S et al (2013) CB₁ receptor allosteric modulators display both agonist and signaling pathway specificity. Mol Pharmacol 83:322–338
- Brown SP, Safo PK, Regehr WG (2004) Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 24:5623–5631
- Guo J, Ikeda SR (2004) Endocannabinoids modulate N-type calcium channels and G-proteincoupled inwardly rectifying potassium channels via CB₁ cannabinoid receptors heterologously expressed in mammalian neurons. Mol Pharmacol 65:665–674
- Hill AJ, Williams CM, Whalley BJ, Stephens GJ (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 133:79–97
- Hoffman AF, Lupica CR (2013) Synaptic targets of Δ⁹-tetrahydrocannabinol in the central nervous system. Cold Spring Harb Perspect Med 3 pii: a012237.
- Kano M, Ohno-Shosaku T, Hashimotodani Y et al (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380
- Kawamura Y, Fukaya M, Maejima T et al (2006) CB₁ is the major cannabinoid receptor at excitatory presynaptic site in the hippocampus and cerebellum. J Neurosci 26:2991–3001
- Kishimoto Y, Kano M (2006) Endogenous cannabinoid signaling through the CB₁ receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 26:8829–8837
- Kreitzer AC, Regehr WG (2001) Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21:RC174

- Kreitzer AC, Carter AG, Regehr WG (2002) Inhibition of interneuron firing extends the spread of endocannabinoid signaling in the cerebellum. Neuron 34:787–796
- Ma YL, Weston SE, Whalley BJ, Stephens GJ (2008) The phytocannabinoid Δ^{9} -tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum. Br J Pharmacol 154:204–215
- Ohno-Shosaku T, Kano M (2014) Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 29:1–8
- Patel S, Hillard CJ (2001) Cannabinoid CB₁ receptor agonists produce cerebellar dysfunction in mice. J Pharmacol Exp Ther 297:629–637
- Pertwee RG, Howlett AC, Abood ME et al (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 62:588–631
- Rodríguez-Cueto C, Benito C, Fernández-Ruiz J et al (2014) Changes in CB1 and CB2 receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. Br J Pharmacol 171:1472–1489
- Ross RA (2007) Allosterism and cannabinoid CB_1 receptors: the shape of things to come. Trends Pharmacol Sci 11:567–572
- Stephens GJ (2009) G-protein-coupled-receptor-mediated presynaptic inhibition in the cerebellum. Trends Pharmacol Sci 8:421–430
- Stephens GJ (2016) Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia? J Physiol [Epub ahead of print Mar 11]
- Szabo B, Urbanski MJ, Bisogno T et al (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577:263–280
- Takahashi KA, Linden DJ (2000) Cannabinoid receptor modulation of synapses received by cerebellar Purkinje cells. J Neurophysiol 83:1167–1180
- Tanimura A, Uchigashima M, Yamazaki M et al (2012) Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc Natl Acad Sci U S A 109:12195–12200
- Urbanski MJ, Kovacs FE, Szabo B (2010) Endocannabinoid-mediated synaptically evoked suppression of GABAergic transmission in the cerebellar cortex. Neuroscience 169:1268–1278
- Vogt KE, Canepari M (2010) On the induction of postsynaptic granule cell-Purkinje neuron LTP and LTD. Cerebellum 9:284–290
- Wang X, Horswill JG, Whalley BJ, Stephens GJ (2011) Effects of the allosteric antagonist 1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea (PSNCBAM-1) on CB1 receptor modulation in the cerebellum. Mol Pharmacol 79:758–767
- Wang X, Whalley BJ, Stephens GJ (2013) The du^{2J} mouse model of ataxia and absence epilepsy has deficient cannabinoid CB₁ receptor-mediated signalling. J Physiol 591:3919–3933
- Yoshida T, Fukaya M, Uchigashima M et al (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB₁ receptor. J Neurosci 26:4740–4751