
UIMA2LOD: Integrating UIMA Text
Annotations into the Linked Open Data Cloud

Claudia Bretschneider1,2(B), Heiner Oberkampf2, and Sonja Zillner2,3

1 Center for Information and Language Processing, University Munich,
Munich, Germany

claudia.bretschneider.ext@siemens.com
2 Siemens AG, Corporate Technology, Munich, Germany

3 School of International Business and Entrepreneurship, Steinbeis University,
Berlin, Germany

Abstract. The LOD cloud is becoming the de-facto standard for sharing
and connecting pieces of data, information and knowledge on the Web.
As of today, means for the seamless integration of structured data into
the LOD cloud are available. However, algorithms for integrating infor-
mation enclosed in unstructured text sources are missing. In order to
foster the (re)use of the high percentage of unstructured text, automatic
means for the integration of their content are needed. We address this
issue by proposing an approach for conceptual representation of textual
annotations which distinguishes linguistic from semantic annotations and
their integration. Additionally, we implement a generic UIMA pipeline
that automatically creates a LOD graph from texts that (1) implements
the proposed conceptual representation, (2) extracts semantically classi-
fied entities, (3) links to existing LOD datasets and (4) generates RDF
graphs from the extracted information. We show the application and
benefits of the approach in a case study on a medical corpus.

1 Semantic Web and Unstructured Data Sources

The LOD (Linked Open Data) cloud is a resource that uses Semantic Web
technology to gather and interconnect all kinds of useful publicly available web
information from any domain. In particular, the LOD cloud is a very valuable
knowledge resource for reuse in any kind of data-based applications, such as
analytics, search, etc. However, as of today, the integration of text content as
triples into the LOD clouds often relies on human interaction. The integration
of data from previously already structured sources can be realized by means of
schema transformation, but the content enclosed in texts cannot be automati-
cally integrated into the LOD cloud, thus, remains concealed in string objects.

Therefore, in this work we propose an approach that automatically extracts
semantically classified entities and relations between them from unstructured
text and subsequently creates a LOD graph (as illustrated in Figure 1). This
resulting graph contains the triplified representation of information enclosed in
the processed text, which is already linked to existing LOD resources. Compared
c© Springer International Publishing Switzerland 2015
P. Klinov and D. Mouromtsev (Eds.): KESW 2015, CCIS 518, pp. 16–31, 2015.
DOI: 10.1007/978-3-319-24543-0 2

UIMA2LOD: Integrating UIMA Text Annotations 17

to so far chosen representations of text in LOD datasets as string objects, which
conceal the text content, we are now able to reference the structured text content
by URIs and include it into the LOD cloud.

:Report123

text

From
unstructured

text to
linked

entities in
LOD graph

:Report123

:Sentence456
contains

:Term789 icd:lymphoma
aboutcontains

”enlarged
lymph node”

label

rid:enlarged
lymph node

annotates

Fig. 1. Simplified illustration of target transformation from unstructured text to LOD
graph of linked entities

There are several scenarios that can benefit from the resulting extended LOD
cloud: For instance, a mechanism that allows the seamless integration of unstruc-
tured content into the LOD cloud drives its growth and enriches this knowledge
resource. Furthermore, by enhancing information extraction algorithms with
domain knowledge from the LOD cloud, a more holistic semantic understanding,
and thus, interpretation of text documents becomes possible.

A first attempt to satisfy the request for structured representation of unstruc-
tured text is done by text analytics frameworks such as UIMA, whose usage
became a de-facto standard and which already deliver modules for the triplifi-
cation of their proprietary annotation structures. However, in most cases, their
approaches only deliver incomplete solutions that fail to integrate the resulting
annotations in the LOD cloud. For UIMA, the currently existing solution oper-
ates with data loss and needs intensive refactoring for correct and full creation
of RDF graphs, hence, is currently not valuable for the integration task.

Therefore, the contribution of this paper is threefold: First, in Section 2 we
introduce our approach for conceptual representation based on three dimensions
of the textual annotations. Second, in Section 3 we describe which components
with corresponding features have to be implemented in a UIMA pipeline to
extract the relevant entities and relations and to create the LOD graph. Third,
we evaluate the benefits of this approach in a study on extraction of a LOD
dataset from medical texts (see Section 4), which is finally integrated into a
semantic model for further data analytics.

2 Conceptual Representation of Text Annotations

2.1 Distinction of Three Dimensions of Annotation Types

We propose a general approach for the creation of new LOD datasets
from unstructured text sources. This includes both a pipeline to fulfill the

18 C. Bretschneider et al.

requirements posed to the creation of RDF triples and an approach to represent
the annotations created as metadata from the textual content. The conceptual
representation acts as common vocabulary and agreed standard. Analyzing the
results from text analytics pipelines, we identify three dimensions of annotations
that are able to cover the variety:

1. Linguistic Annotations that reflect the basic linguistic units in the texts
2. Semantic Annotations that represent useful information of the target domain
3. Structural Annotations that interconnect the linguistic and the semantic

world of the text annotations

Following the concept of separation of concerns, we identify the linguistic and
semantic annotations as being semantically independent, but within a textual
context they have a structural relation.

2.2 Representation of Linguistic Annotations
Employing the NIF Ontology

For representation of the linguistic annotations and their relations, we draw on
the NLP Interchange Format (NIF) ontology, which was created as core compo-
nent in the context of the NIF project [4], [11] We only reuse a subset of classes
and properties from the NIF ontology to represent the linguistic units in texts
(see Figure 2), which is relevant for representing the semantic annotations. The

String

anchorOf
beginIndex

endIndex
stem Structure

Context

Word

Sentence

subClassOf subClassOf

word
firstWord
lastWord

sentence

nextSentence
previousSentence

nextWord
previousWord

superString

subString

subClassOf

referenceContext

Fig. 2. (Partial) NIF ontology for representation of linguistic annotations.

main class of the model is nif:String, which is “the class of all words over the
alphabet of Unicode characters” [4]. We model textual reports as nif:Context,
which hold all other linguistic units via nif:referenceContext. nif:Sentence
and nif:Word are used to model the sentence structure and its containing tokens.
We also use the nif:Word class to model subtokens of compound terms.

We use the NIF ontology, since it satisfies our requirement for distinct rep-
resentation of the linguistic information in a given text. Other models such as
lemon1 already leverage Semantic Web concepts, but rather target to model the
1 http://lemon-model.net/lemon#

http://lemon-model.net/lemon#

UIMA2LOD: Integrating UIMA Text Annotations 19

linguistic representation of lexicons or dictionaries from LOD resources than the
content in (domain-specific) texts.

2.3 Representation of Semantic Annotations

We describe the annotations resulting from the semantic analysis of the text
(Section 3) using the term Semantic Annotations. We subsume two types of
annotations under this term:

1. In the original sense of the term, we include annotations that are built based
on ontology vocabulary. The details of this step are described within the
named entity recognition pipeline step (Section 3.2.3). There is no dedicated
representation model for ontology-based semantic annotations necessary; we
employ the concepts included in the Open Annotation (OA) data model.
(Details are outlined in Section 2.4)

2. We also use the term Semantic Annotation to reference annotations that
are specific to the use case tackled. An example of an application-specific
annotation is a measurement annotation (shown in Figure 3 in triplified
format), which is a metadatum annotated to any sequence of strings that is
semantically interpreted as measurement.

@prefix ex: <http://example.org/stuff/1.0/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema/> .

<http://example.org/stuff/1.0/MeasurementAnnotation124112>
ex:begin 20; ex:end 26;
ex:text "1.5 cm"^^xsd:string;
ex:measures 1.5;
ex:unit "cm"^^xsd:string .

Fig. 3. Example RDF resource for application-specific annotation type
MeasurementAnnotation

2.4 Representation of Structural Annotations Employing the Open
Annotation (OA) Ontology

We claim, the interconnection of linguistic and semantic annotations has to
be explicitly modeled to show how the semantics is mapped to the linguistic
entities and to support the backtracking of the sources of semantic information
in the text. We employ the Open Annotation (OA) ontology [3] for modeling
this structural relationship. The basic elements body, target and annotation of
the ontology enable a generic content annotation approach.

We use the target to represent the linguistic entity of the text. The body is
the part to represent the semantic annotations. The annotation is the part that
connects the body and target, thus, holds the semantics of which linguistic part
in the text is annotated by which semantic concept. For illustrating the seman-
tic annotation of linguistic elements in text, we identify two (OA) annotation

20 C. Bretschneider et al.

types: On the one hand, we model the case that a single target is annotated
as simple annotation model as illustrated in Figure 4. On the other hand, we
also model annotations that associate a sequence of multiple consecutive tokens
(a phrase) with a multi-target annotation. As illustrated in Figure 5, we use the
composite element of the OA ontology to model the multitude of tokens, because
the order of the tokens is not of importance. As seen in the example, no matter
whether the text sequence is axillary lymph node or lymph node axillary,
it is annotated using the same body (radlex:RID1517).

Body Target

Annotation

:Anno205

oa:Annotation

radlex:

RID205

oa:hasBody

owl:Class

’kidney’

oa:hasTarget

nif:String

Fig. 4. Simple Annotation Model
based on OA ontology. 2

Body Target

Annotation

:Anno1517

oa:Annotation

radlex:

RID1517

oa:hasBody

owl:Class
:Com

oa:hasTarget

oa:Composite

’axillary’

’lymph

node’

oa:item

nif:String

Fig. 5. Multi-target Annotation Model based on
OA ontology. Multiplicity of targets is illustrated
with oa:Composite element. 2

3 UIMA-Based Implementation for Automated Creation
of LOD Datasets from Unstructured Data Sources

Besides the high-level conceptual modeling of the target LOD dataset, we also
present an end-to-end UIMA pipeline that includes all kinds of modules required
to (1) extract recognized information pieces and their relations, (2) support our
conceptual representation of text annotations and (3) create a serialization in
RDF format. At the same time, the pipeline fulfills all requirements posed to
new LOD datasets. The pipeline is configurable, so that texts of any domain can
be used as input and the pipeline outputs a RDF graph that is at the same time
already a LOD dataset that can be published as a part of the LOD cloud.

3.1 The UIMA Framework and Fundamental Components

For implementation of an end-to-end pipeline we build on the Unstruc-
tured Information Management Architecture (UIMA) framework, which han-
dles unstructured resources, such as text, and facilitates their annotation and
2 Undefined edges denote rdf:type relations. For reasons of simplicity, the ellipses
representing linguistic resources are referenced by their labels.

UIMA2LOD: Integrating UIMA Text Annotations 21

extraction of structured information. The core components of the framework
are analysis engines (or annotators) that extract defined entity types from the
input texts as annotations. The framework includes an internal UIMA anno-
tation index, the Common Analysis Structure (CAS), that stores the annota-
tion instances created. In the UIMA framework, the structure of annotations is
defined in type systems, where each type of annotation gets assigned a list of
features, whose values can be specified using three different data types:

1. Features with primitive data types (such as numeric and alphanumeric), for
which an owl:DataProperty is created during triplification.

2. Features with complex data types that reference other annotation types,
thus enable the relation between annotation instances, and for which an
owl:ObjectProperty is created during triplification.

3. Features with arrays of primitive or complex data types, which can hold mul-
tiple instances (which are not created as owl:FunctionalProperty unlike
the other feature types).

Within the UIMA framework, the architectural component that is responsible
for integration of resulting annotations to external resources is defined as con-
sumer. It extracts the annotation information from the CAS and persists selected
information to resources such as search engine indexes, relational databases, or
(as in our case) triple stores.

3.2 Description of the UIMA Pipeline’s Modules

In order to fulfill the requirements towards correct conceptual and structural rep-
resentation of the resulting RDF graph, our pipeline requires five functional pro-
cessing steps: (1) Linguistic Preprocessing (2) Information Extraction (3) Named
Entity Recognition (4) Open Annotation (OA) Creation and (5) Triplification.
The correlating functionalities are implemented in one or more UIMA annota-
tors. The steps of the pipeline are designed in a way so that the resulting RDF
graph will be already a valid LOD dataset, which can be integrated into the
cloud without further postprocessing. Thus, all pipeline’s modules fulfill the four
requirements imposed by the fundamental Linked Data principles formulated by
Tim Berners-Lee[2] (marked in boldface):

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names

During the Triplification step each annotation instance gets assigned a
unique ID represented as HTTP URI, so that the first two requirements
are fulfilled.

3. When someone looks up a URI, provide useful information, using
the standards (RDF, SPARQL)
For extraction of useful information we included a number of steps (Linguis-
tic Preprocessing, Information Extraction, Open Annotation (OA) Creation),
which at the same time support the envisioned conceptual representation.
Again here, for the correct structural representation of the resulting triples,
the Triplification step is implemented to use the defined standards.

22 C. Bretschneider et al.

4. Include links to other URIs, so that they can discover more things.
Finally, to enhance the LOD cloud with additional information entities that
are also interconnected with existing datasets, we included the Named Entity
Recognition step.

3.2.1 Linguistic Preprocessing
As first step in the pipeline, we conduct the basic linguistic analyses, such as sen-
tence splitting and tokenization. In addition, we conduct a compound splitting
step (to instantiate the object properties nif:subString and nif:superString)
and add three annotators in order to resolve the object properties representing
the linguistic relations (e.g. nif:word and nif:sentence). We describe details
on the sentence splitting and semantic compound splitting in [7]. The underlying
UIMA type system adapts the subset of NIF concepts as shown in Figure 2 and
the annotation types are organized analogous to the rdfs:subClassOf hierarchy
of the NIF ontology. We map the ontology classes to UIMA annotation types to
have the implementation independent from the ontology, and thus, are able to
support the adaptation of existing UIMA annotators for the respective task –
not only annotators designed specifically for this task.

3.2.2 Information Extraction
The information extraction step targets the annotation of domain-specific
semantic annotations. The information pieces resulting from this step are
descibed by Berners-Lee as useful information. However, what useful informa-
tion is and how it is modeled depends on the context of the application or the
domain addressed. Therefore, the domain respectively the use case defines the
annotators necessary. Depending on the type of information to be extracted,
the implemented annotators make use of the multitude of NLP algorithms to
identify and annotate the respective information in the text.

One example annotator implemented for the case study is an annotator that
recognizes strings interpreted as measurements (MeasurementAnnotator) with
the attributes illustrated in Figure 3. The underlying algorithm is based on pre-
compiled regular expressions or list of entities (for the measurement units) and
are also able to recognize other medical semantic types, such as diseases (based on
typical suffixes), dates (regular expressions), abbreviations and negations (lists).

3.2.3 Named Entity Recognition (NER)
The second type of semantic annotations – ontology-based semantic annotations
– are created during this processing step. Hence, this step satisfies two purposes:
First, it serves the need for identification of domain-specific semantically clas-
sified concepts in the text and subsequently interconnect the knowledge in the
ontology to the textual information. Second, this step satisfies the requirement
to link to other, existing LOD datasets, since the resulting LOD dataset needs
to link to existing entities (LOD principle #4). Thus, this implies that at least
one of the employed ontologies for NER has to be published as resource in the
LOD cloud.

UIMA2LOD: Integrating UIMA Text Annotations 23

The realization of ontology-based semantic annotations is based on the UIMA
Concept Mapper3. To recognize ontology concepts it employs a previously cre-
ated XML dictionary that contains the vocabulary to match and the metadata to
annotate. For our case study, we transform the RadLex vocabulary into a dictio-
nary that is Concept Mapper-compatible. Each ontology concept is transformed
into a UIMA token (example shown in Figure 6) with its URI and preferred
name as attributes. Additionally, each synonym and non-English variants are
added as UIMA variants, which are used during the annotation process. The
Concept Mapper creates annotations by mapping the stemmed UIMA variants
from the XML dictionary to the text’s tokens. If matches are found, an anno-
tation is created that encloses the URI of the matching ontology concept. The
Concept Mapper creates annotations for phrases if each of the tokens in a dic-
tionary phrase can be mapped to a token within a sentence. The URI is the only
information necessary to be annotated, since its semantics is already defined in
the source ontology.

<token RID="RID1301" URI="http://www.owl-ontologies.com/Ontology1392225293.owl#RID1301"
pn="lung" semanticClass="anatomical">
<variant base="lung"/>
<variant base="Lunge"/>
<variant base="pulmo"/>

</token>

Fig. 6. Sample entry from UIMA Concept Mapper-compatible dictionary

3.2.4 Creating Open Annotations (OA)
The final step to reach the targeted conceptual representation model of the
annotations is this transformation step to create the OA annotations shown in
Figures 4 and 5. Simple annotations are created if single tokens in a sentence
are annotated. Multi-target annotations are created if a semantic annotation
needs to reference multiple linguistic entities for full semantic coverage. Within
the created OA annotations, the respective linguistic and semantic annotations
are just referenced by their URIs, since they already have been created in the
proceeding steps.

3.2.5 Triplification
The main objective of this step is the correct representation of the annotations
created in the steps before. Analyzing the data structure-wise, how existing
modules triplify text annotations and where their shortcomings lie, we found
five aspects to consider when creating RDF triples from text annotations. We
conducted the analysis with strong influence from the existing UIMA RDF con-
sumer4 from the UIMA framework. As a result from this analysis, we developed
3 https://uima.apache.org/downloads/sandbox/ConceptMapperAnnotator
UserGuide/ConceptMapperAnnotatorUserGuide.html

4 UIMA CAS2RDF consumer http://uima.apache.org/downloads/sandbox/RDF CC/
RDFCASConsumerUserGuide.html

https://uima.apache.org/downloads/sandbox/ConceptMapperAnnotatorUserGuide/ConceptMapperAnnotatorUserGuide.html
https://uima.apache.org/downloads/sandbox/ConceptMapperAnnotatorUserGuide/ConceptMapperAnnotatorUserGuide.html
http://uima.apache.org/downloads/sandbox/RDF_CC/RDFCASConsumerUserGuide.html
http://uima.apache.org/downloads/sandbox/RDF_CC/RDFCASConsumerUserGuide.html

24 C. Bretschneider et al.

a module to transform the CAS into a RDF graph, which is intended to work
for any kind of annotation types. It builds on the existing RDF consumer, but
addresses the following limitations. This is the most important component for
translating the structural requirements for LOD datasets into technical imple-
mentation.

1. Declarative modeling of data properties (primitive data type fea-
tures). In the graph that the existing RDF consumer produces, each anno-
tation feature that is triplified to owl:DataProperty is assigned a resource
with two literals representing the feature name and feature value, so that
each feature needs three triples for being represented. For us, this represen-
tation is not intuitive and not easy to process subsequently. Since this is more
convenient and intuitive, we prefer a representation where the feature value
corresponds to the literal’s lexical form and the feature name corresponds to
the edge label, which also avoids unnecessarily large numbers of triples.

2. Typed literals instead of plain piterals. The problem with triples, whose
objects are defined as plain literals, is that they cannot be interpreted with
their correct data type but rather have per default a string type assigned.
This hinders the automated analysis of the data. As each feature is defined
with a distinct data type in the UIMA type system, it is easy to access this
information and reuse it for triplification of the annotations. Therefore, we
define each literal as typed literal, which has a lexical form and an additional
data type URI.

3. Resolution of ambiguities with unique IDs. In the RDF graph, each
resource is identified by its URI. However, if the ID is not unique, because
the calculation of the URI is not correct, this ambiguity leads to wrong
representation of the annotations created. As a resolution, we calculate a
hashcode for each text annotation that combines all available (primitive)
feature names and values of each annotation instance in order to resolve this
ambiguity and deliver a unique numeric identifier. This hashcode is combined
with the annotation type name and an application-defined HTTP path to the
final URI of a resource (example shown in Figure 3). A (desired) side effect
of this calculation is that there is only a single instance of an annotation
created, which subsequently can be referenced multiple times.

4. Triplification of object properties (references between annota-
tions). The serialization of owl:ObjectProperty from features with com-
plex data types requires a more sophisticated handling. The existing con-
sumer does not resolve the objects attached to object properties, but rather
triplifies the referenced annotation to its full string representation. This rep-
resentation loses the link between the annotation instances. To prevent this
loss, we implement a mechanism that considers the complex data type of the
feature, triplifies the object property (if not already done) and maintains the
reference.

5. Triplification of non-functional properties (multi-value annotation
features). Per default all annotation features are defined as functional
properties. If a feature allows multiple instances (for which the cardinal-

UIMA2LOD: Integrating UIMA Text Annotations 25

ity restriction of functional properties do not apply), each value needs to
be triplified separately. This applies for feature values that are triplified to
owl:DataProperties and owl:ObjectProperties, respectively. The exist-
ing consumer loses this information, since it represents the whole set using
the string ‘FSArray’.

If the aspects just mentioned are not considered, this causes the effects of data
loss, which leads to misinterpretation of the annotation values. Therefore, our
implementation of a UIMA2LOD UIMA consumer builds upon the existing con-
sumer functionality, but resolves the listed issues and now integrates more infor-
mation – and even shows a more intuitive and leaner representation. At the same
time, the resulting graph already represents a valid LOD dataset that can be
published as part of the LOD cloud without any further postprocessing.

4 Case Study on Integrating RDF Annotations
into the Model for Clinical Information (MCI)

4.1 General Goal and How the Approach Fits

Using our approach on representing and triplifying textual annotations, we want
to show how structured information can be extracted from an example text and
how it can be subsequently transformed into a LOD dataset. Also, we want to
demonstrate how the graph can be used in Semantic Web applications for reason-
ing on the information enclosed in the texts. Therefore, we use a medical corpus
and show how the pipeline operates and which output it produces. In a fur-
ther step, this output is integrated in a semantic Model for Clinical Information
(MCI) that integrates clinical information in a patient-centric way.

4.2 Resources Used in the Case Study

Corpus of Medical Reports. One of the core resources applied in our case study
is a medical corpus containing 2,713 German radiology reports that describe
the health status of lymphoma patients. The texts are provided by our clinical
partner, the University Hospital Erlangen.

RadLex Ontology. To satisfy the requirements for creating links to existing LOD
datasets and since the its vocabulary matches the vocabulary of the corpus, we
employ the RadLex ontology [9]. RadLex is a medical ontology for the radiology
domain and aims to unify the domain’s vocabulary for the purpose of organi-
zation, indexing and retrieval of radiology resources, such as textual radiology
reports. The current version of Radlex 3.12 (11/2014) contains 74,875 terms.
RadLex is also published as LOD dataset bioportal-rid.

26 C. Bretschneider et al.

Model for Clinical Information (MCI). The MCI [8] provides the basis for data
integration and knowledge exploration . It defines the most important structural
concepts (classes and relations) for the representation of clinical data. This is,
in the first place structured data about the patient like diagnoses and findings,
as well as provided examinations, procedures and therapies. The MCI is based
on selected upper- and midlevel ontologies from the OBO library and reuses
established schemas like the Dublin Core. It is used in combination with large
reference terminologies such as RadLex or the Foundational Model of Anatomy
(FMA) to represent clinical findings from unstructured data resources.

4.3 Creation of Text Annotations and the RDF Graph

For illustrating the outcome of the process and how it can be used for further pro-
cessing, we use the sentence Axillary lymph node with diameter 1.5 cm.,
which is representative for the corpus given. Following the process steps and
iterating the UIMA pipeline, several annotations are created (see Figure 7).

Fig. 7. Example illustrating a subset of annotations created from the sentence
Axillary lymph node with diameter 1.5 cm. (left-hand side) and their transforma-
tion into the clinical model MCI (right-hand side).5

5 Undefined edges denote rdf:type relations.

UIMA2LOD: Integrating UIMA Text Annotations 27

The linguistic annotators produce one sentence annotation, six token annota-
tions and the respective relations defined in NIF schema. As domain-specific
annotation type a measurement annotation with measure 1.5 and unit cm is
identified. As results from the RadLex-based NER step, two possible anatomi-
cal entities are annotated in the sentence: axilla and axillary lymph node.
Finally, the structural relations between the linguistic and the semantic anno-
tations are generated as OA annotations. After being processed by the pipeline
the semantic text content triplified to RDF and can be used for further analysis.

4.4 Transformation of Text Annotation RDF Graph into MCI

In general, the annotations from radiology reports represent clinical information,
such as the observations made and the findings discovered. However, in the con-
text of medical information, the textual information from examination reports
are just one single piece to the holistic information describing the current and
past health status of a patient. For clinical decision making this data however
needs to be linked and interpreted to gain a holistic view on the patient data. In
order to gain such a holistic representation, we employ the MCI. The process to
transform the structured annotation data to the schema and semantics of MCI
requires several steps:

Transformation of RDF Graph into the MCI Schema. Since the annotations are
already represented in RDF format, we can simply use SPARQL queries to facil-
itate the required schema transformation. Once established, the transformation
of the RDF graph to the MCI schema can be conducted automatically.

Transformation and Normalization of Measurement Annotations. The provided
piece of measurement information is directly transformed to a size finding. There-
fore, an instance of a length measurement datum, which describes a length qual-
ity, is created. We map the unit (represented in the annotation as a string) to
an entity of the Units Ontology (UO) and normalize the value to centimeters (if
necessary) to obtain a representation as shown in Figure 7.

Disambiguation of Anatomical Entities. Finally the correct relation to the
described anatomical entity has to be created. We use the disambiguation algo-
rithm described in [7] to determine the correct anatomical entity from the anno-
tated ones (axilla and axillary lymph node), which is the latter.

Inference. Now, the MCI is combined with RadLex to link findings about same
or similar anatomical entities from consecutive examinations, e.g. for treatment
evaluation. Additionally, formalized medical knowledge about normal size spec-
ifications is used to infer that the finding represents an abnormally enlarged
axillary lymph node, since normal size lymph nodes typically measure up to 1
cm. In a further diagnostic process this finding can be interpreted in the context
of diseases: An enlarged lymph node is an abnormality caused by the immune
system and related to specific types of cancer, such as lymphoma.

28 C. Bretschneider et al.

Finally, we point out that this information can be only inferred, because two
information resources are combined: text and LOD knowledge. Since this clinical
information is only reported as text, it requires our textual annotation and trans-
formation process to link the enclosed information with clinical LOD knowledge.

4.5 Evaluation

4.5.1 Quantitative Comparison of UIMA2LOD Consumer
For a quantitative evaluation of the strength of the proposed approach, we com-
pare the RDF graphs resulting from the triplification substep using a UIMA
pipeline that integrates either the CAS2RDF consumer or our new triplification
component UIMA2LOD but with the same annotator components (c.f. Table 1).

Table 1. Qualitative comparison of the RDF graph from annotation pipelines inte-
grating either the CAS2RDF or the UIMA2LOD consumer

CAS2RDF UIMA2LOD

NIF Annotations 1,506,029
Semantic Annotations 416,251
OA Annotations 486,425

Triples 144,215,917 47,700,368

Triples with wrong serialization of
Non-Functional Properties 681,745 –
Object Properties 8,302,645 –

Runtime of Annotation Pipeline 24h 9 min
for 180 docs for all 2713 docs

indent Given the medical corpus with 2,713 texts as input, 2,408,705 text anno-
tations are created. The graph resulting from the UIMA2LOD consumer only
needs a third of the triples compared to the graph resulting from the CAS2RDF
consumer. The difference is due to the simplified representation of annotation
features with name and values. However, a more detailed analysis of the delta
is not possible because the numbers are blurred by the wrong serialization of
non-functional and object properties by the CAS2RDF consumer. This irregular
triplification leads to data loss which can not be corrected by post processing
either. Also, the existing process is highly resource intense. It leads to an extrap-
olated time of 2 weeks for the serialization of the whole corpus. (We stopped the
process after 24h with 180 reports triplified.) The reason is the attempt to seri-
alize object properties (and all of their subsequent object properties) as string
representations. Because of this limitation, we only recommend the usage of the
CAS2RDF module for creating RDF representation of un-linked text annota-
tions. Whereas, the usage of the UIMA2LOD component, which addresses those
limitations, is recommended for highly linked graphs, which are intented to be

UIMA2LOD: Integrating UIMA Text Annotations 29

integrated into the LOD cloud as datasets. Finally, only our pipeline is able to
automatically create a valid LOD dataset from unstructured text, in a reasonable
time. The CAS2RDF consumer does not create a valid LOD dataset, because it
fails to comply to two core requirements: First, it does not create URIs as unique
IDs, but rather IDs in an own format. Second, it fails to create links to existing
datasets, thus does not add to the creation of a larger linked data cloud.

4.5.2 Comparison with Other Text2Semantic Web Systems
Only in the recent years the question of how to integrate results from NLP
pipelines and the Semantic Web has become of importance. However, numerous
information extraction pipelines for unstructured text can be found that take
the first step to transform their outcomes into RDF triples. While taking a
further step, they also succeed in extracting entities from the text that are part
of LOD resources, such as MeSH for biomedical texts [10], plant information [5]
or general information from DBpedia [1]. Thus, while their primary goal in terms
of information extraction is the identification of existing entities, they focus on
supporting the discovery of so far undiscovered relations between these entities.

Another field of research is the population of existing ontologies. Kawamura
et al. [5] extract newly explored plant information from text. The resulting RDF
representation is a requirement for their integration. Just recently, Augenstein et
al. [1] propose a domain-independent approach for information that transforms
the results into RDF without predefined schema. The main limitation from these
existing systems is their lack in the ability to support the creation of new LOD
datasets, either because of the missing link of the RDF graphs to existing LOD
datasets or because they fail to generate new information from the given textual
resource, while they just recognize existing LOD instances.

4.6 Future Work

We plan to fully integrate the UIMA pipeline into the Semantic Web context
by automating the initial step of transforming a semantic model into the UIMA
type system, which we currently conduct manually. First such attempts have
been made by Lui [6] and Verspoor [12]. They also show how the resulting
graph can be used within reasoning applications. Further, we regard the applied
medical corpus as medium-size. We aim to extract information from corpora of
Big Data size (which is text from about 10,000 patient from examinations over
up to 30 years time). Additionally, we will evaluate the individual steps of the
pipeline, in particular the quality of the information extraction and NER steps.

5 Conclusion

In this work we present an automatic approach for creating LOD datasets from
entities and relations extracted from unstructured texts, whose content has been
concealed so far. On the one hand, we propose an approach to conceptual repre-
sentation that separates linguistic, semantic and integrating annotation. On the

30 C. Bretschneider et al.

other hand, we introduce a (reusable) UIMA pipeline, that extracts and serializes
the structured annotation information from the input text. Compared to existing
annotation systems our pipeline is advantageous, because we are able to create
new LOD datasets from unstructured data sources in an automated manner. Our
pipeline creates a full representation of text annotations without data loss and
reuses URIs from existing LOD resources for seamless integration. The resulting
RDF graph can be published as-is as a LOD dataset, since it fulfills all necessary
requirements imposed. This results in the availability of semantic information
from so far unexplored data sources for a subsequent data analysis. At the same
time, also existing LOD datasets can benefit from this integration effort, since
it is also applicable for unstructured text enclosed. In a case study we show the
advantages of our approach: We decrease the number of triples necessary to a
third, while preventing data loss from wrong serialization of object and non-
functional properties. The subsequent data analysis reveals so far undiscovered
knowledge, because the content in unstructured texts can now be integrated with
LOD resources.

Acknowledgments. This research has been supported by the KDI project funded
by the German Federal Ministry of Economics and Technology under grant number
01MT14001 and by the EU FP7 Diachron project (GA 601043).

References

1. Augenstein, I., Padó, S., Rudolph, S.: LODifier: generating linked data from unstruc-
tured text. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V.
(eds.) ESWC 2012. LNCS, vol. 7295, pp. 210–224. Springer, Heidelberg (2012).
http://dblp.uni-trier.de/db/conf/esws/eswc2012.html#AugensteinPR12

2. Berners-Lee, T.: Linked Data - Design Issues, July 2006. http://www.w3.org/
DesignIssues/LinkedData.html

3. Ciccarese, P., Ocana, M., Garcia-Castro, L.J., Das, S., Clark, T.: An open annota-
tion ontology for science on web 3.0. J. Biomedical Semantics 2(S–2), S4 (2011).
http://dblp.uni-trier.de/db/journals/biomedsem/biomedsem2S.html#Ciccarese
OGDC11

4. Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked
data. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 98–113.
Springer, Heidelberg (2013). http://svn.aksw.org/papers/2013/ISWC NIF/
public.pdf

5. Kawamura, T., Ohsuga, A.: Toward an ecosystem of LOD in the field: LOD con-
tent generation and its consuming service. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012, Part II. LNCS, vol. 7650, pp. 98–113. Springer, Heidelberg (2012).
http://dblp.uni-trier.de/db/conf/semweb/iswc2012-2.html#KawamuraO12

6. Liu, H., Wu, S.T.I., Tao, C., Chute, C.G.: Modeling UIMA type system using
web ontology language - towards interoperability among UIMA-based NLP tools.
In: Proceedings of Workshop on Managing Interoperability and compleXity in
Health Systems (MIX-HS), pp. 31–36 (2012). http://dblp.uni-trier.de/db/conf/
cikm/mixhs2012.html#LiuWTC12

http://dblp.uni-trier.de/db/conf/esws/eswc2012.html#AugensteinPR12
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://dblp.uni-trier.de/db/journals/biomedsem/biomedsem2S.html#CiccareseOGDC11
http://dblp.uni-trier.de/db/journals/biomedsem/biomedsem2S.html#CiccareseOGDC11
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
http://dblp.uni-trier.de/db/conf/semweb/iswc2012-2.html#KawamuraO12
http://dblp.uni-trier.de/db/conf/cikm/mixhs2012.html#LiuWTC12
http://dblp.uni-trier.de/db/conf/cikm/mixhs2012.html#LiuWTC12

UIMA2LOD: Integrating UIMA Text Annotations 31

7. Oberkampf, H., Bretschneider, C., Zillner, S., Bauer, B., Hammon, M.: Knowledge-
based extraction of measurement-entity relations from german radiology reports.
In: IEEE International Conference on Healthcare Informatics (ICHI) (2013)

8. Oberkampf, H., Zillner, S., Bauer, B., Hammon, M.: An OGMS-based model for
clinical information (MCI). In: Proceedings of International Conference on Biomed-
ical Ontology, pp. 97–100 (2013). http://www2.unb.ca/csas/data/ws/icbo2013/
papers/ec/icbo2013 submission 56.pdf

9. Radiological Society of North America: Radlex (2012). http://rsna.org/RadLex.
aspx

10. Ramakrishnan, C., Kochut, K.J., Sheth, A.P.: A framework for schema-driven rela-
tionship discovery from unstructured text. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 583–596. Springer, Heidelberg (2006). http://dx.doi.org/
10.1007/11926078 42

11. Rizzo, G., Troncy, R., Hellmann, S., Brümmer, M.: In: Workshop on Linked Data
on the Web (LDOW), Lyon, France

12. Verspoor, K., Baumgartner Jr., W., Roeder, C., Hunter, L.: Abstracting the types
away from a UIMA type system. From Form to Meaning: Processing Texts Auto-
matically, 249–256 (2009)

http://www2.unb.ca/csas/data/ws/icbo2013/papers/ec/icbo2013_submission_56.pdf
http://www2.unb.ca/csas/data/ws/icbo2013/papers/ec/icbo2013_submission_56.pdf
http://rsna.org/RadLex.aspx
http://rsna.org/RadLex.aspx
http://dx.doi.org/10.1007/11926078_42
http://dx.doi.org/10.1007/11926078_42

	UIMA2LOD: Integrating UIMA Text Annotations into the Linked Open Data Cloud
	1 Semantic Web and Unstructured Data Sources
	2 Conceptual Representation of Text Annotations
	2.1 Distinction of Three Dimensions of Annotation Types
	2.2 Representation of Linguistic Annotations Employing the NIF Ontology
	2.3 Representation of Semantic Annotations
	2.4 Representation of Structural Annotations Employing the Open Annotation (OA) Ontology

	3 UIMA-Based Implementation for Automated Creation of LOD Datasets from Unstructured Data Sources
	3.1 The UIMA Framework and Fundamental Components
	3.2 Description of the UIMA Pipeline's Modules
	3.2.1 Linguistic Preprocessing
	3.2.2 Information Extraction
	3.2.3 Named Entity Recognition (NER)
	3.2.4 Creating Open Annotations (OA)
	3.2.5 Triplification

	4 Case Study on Integrating RDF Annotations into the Model for Clinical Information (MCI)
	4.1 General Goal and How the Approach Fits
	4.2 Resources Used in the Case Study
	4.3 Creation of Text Annotations and the RDF Graph
	4.4 Transformation of Text Annotation RDF Graph into MCI
	4.5 Evaluation
	4.5.1 Quantitative Comparison of UIMA2LOD Consumer
	4.5.2 Comparison with Other Text2Semantic Web Systems

	4.6 Future Work

	5 Conclusion
	References

