Object-UOBM: An Ontological Benchmark
for Object-Oriented Access

Martin Ledvinka®) and Petr Kiemen

Czech Technical University in Prague, Prague, Czech Republic
{martin.ledvinka,petr.kremen}@fel.cvut.cz

Abstract. Although many applications built on top of market-ready
ontology storages are generic and lack dependence on the particular
application domain, most users prefer applications tailored to their par-
ticular task. Such applications are typically built using object-oriented
paradigm that accesses data differently than generic applications. In this
paper, we define a benchmark consisting of an ontology and ontological
queries tailored for testing suitability of ontological storages for object-
oriented access. We present results of experiments on several state-of-
the-art ontological storages and discuss their suitability for the purpose
of object-oriented application access.

Keywords: Ontological storage - Benchmark - Object-oriented
applications

1 Introduction

Although many applications built on top of market-ready ontology storages are
generic and lack dependence on the particular application domain, most users
prefer applications tailored to their particular task. Such applications are typ-
ically built using object-oriented paradigm, which sticks to particular entities
and their relationships in the domain, see [11].

In order to construct/store an object model expressed in the given applica-
tion language (e.g. Java), specific types of ontological queries are posed to the
underlying storage. Different frameworks for object-oriented access to OWL [17]
ontologies use different access techniques to the underlying ontology stores,
including custom interface or SPARQL [9] queries. To unify these ontology stor-
age access techniques, OntoDriver was introduced in [14] as a layer for stor-
ing object models into ontological storages. OntoDriver defines an API to be
used by an application access layer, like the JOPA framework [12], [13]. The
API defines optimized ontological methods that are suitable for object-oriented
access, allowing CRUD! operations, transactional support, multiple contexts,
SPARQL queries, as well as integrity constraints checking.

1 Create, Retrieve, Update, Delete.

© Springer International Publishing Switzerland 2015
P. Klinov and D. Mouromtsev (Eds.): KESW 2015, CCIS 518, pp. 132-146, 2015.
DOI: 10.1007/978-3-319-24543-0_10

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 133

In this paper, we contribute to this story by comparing the actual perfor-
mance of various ontological queries tailored for object-oriented access to ontol-
ogy storages. As a side-effect, we experimentally justify the OntoDriver design.
For this purpose we define a benchmark consisting of an ontology and ontological
queries. Next we perform experiments on several state-of-the-art storages and
discuss their suitability for the purpose of object-oriented application access.

Section 2 shows the relationship of our work to the state-of-art research.
Section 3 reviews the JOPA architecture, and the OntoDriver API in particular,
together with a running example used in benchmark queries. Section 4 defines
the benchmark based on existing datasets. Section 5 presents experiments on
existing ontological storages and discusses their suitability for object-oriented
applications. The paper is concluded in Section 6.

2 Related Work

Interoperability benchmarking for semantic web is discussed in [5]. More inter-
esting for our purposes are various ontological benchmarks combining expressive
power of ontological languages with the medium-to-large dataset size. We con-
sider the following two benchmarks.

LUBM [8] was one of the first OWL [18] benchmarks, featuring support
for extensional queries, data scaling and moderate ontology size. It contains
fourteen generic queries and a data generator allowing to produce randomly
created datasets in the university domain. The generation is parametrized by
the requested number of universities, producing around 100k triples for each
university. The complexity of the ontological schema is significantly below OWL
expressiveness, lacking nominals, number restrictions, or negation.

UOBM [16] is an extension of LUBM aimed at leveraging expressiveness
towards OWL-DL by augmenting LUBM schema with the missing constructs
(see Section 4.1). The dataset contains around 250k triples for each university.

For SPARQL benchmarking, the Berlin SPARQL benchmark (BSBM) [2]
has been defined. This benchmark is purely RDF-oriented, focusing at SPARQL
queries without ontological inference.

Neither of these benchmarks, however, is tailored to the scenario of object-
oriented access to ontological knowledge.

3 Background

The main motivation for our benchmark is finding out how some of the most
advanced ontology storages are suitable for access by object-oriented applica-
tions. Such applications often use frameworks providing object-ontological map-
ping (OOM) to facilitate working with the data. OOM is a technique for mapping
ontological classes to classes in object-oriented paradigm, individuals to object
instances and properties to instance attributes. Such object representation is
arguably easier to use for application programmers. Examples of frameworks
providing, among other features, OOM are Empire [7], AliBaba? and JOPA.

2 https://bitbucket.org/openrdf/alibaba, accessed 07-14-2015.

https://bitbucket.org/openrdf/alibaba

134 M. Ledvinka and P. Kiemen

3.1 JOPA

JOPA (Java OWL Persistence API) is a Java persistence API and provider for
applications working with ontological data. It tries to present API resembling
JPA 2 [10], with which Java developers are familiar. In addition to the compiled
object model present also in other OOM frameworks, JOPA provides access to
properties not mapped by the object model, capturing thus also the dynamic
nature of the underlying knowledge [12].

3.2 OntoDriver

In order to provide access to various ontology storages without committing to
a vendor-specific API of the storage, we proposed the concept of OntoDriver
as a software layer which separates the object-ontological mapping performed
by JOPA and the actual ontology access [13]. We designed the OntoDriver API
to provide a single API for object-oriented access to different storages as well
as enough margin for vendor-specific optimizations of the operations performed
by OntoDriver. In its nature, OntoDriver is very similar to standard JDBC?
drivers used for accessing relational databases, although instead of being based
on statements written in query and data definition language (SQL in case of
JDBC), we defined specialized CRUD operations.

When one examines the operations required by JOPA or any other object-
ontological mapping performing framework, it turns out that their set is rather
small. Object-ontological mapping does not require any complex queries consist-
ing of joins over multiple properties or selecting data with unbound subject and
object variables. On the contrary, typical operations required by JOPA consist
of selecting values of beforehand known set of properties of a single individual
or retracting and asserting values of such properties.

3.3 Example Object Model

The queries used in our benchmark are based on a relatively simple object model,
which we will now describe. The object model, however, exercises a wide range
of possible property usage, including single and multi-valued data and object
properties, types specification or unmapped properties [13].

Since our benchmark is based on the LUBM and UOBM datasets, the object
model is also built upon the university and students domain. A class diagram
of the domain model can be seen in Figure 1. Besides simple data properties
like name, email and telephone, the model also contains a number of object
properties. Most notable of them are

— hasSameHome Town With, which is a transitive and symmetric property and
occurs only in UOBM datasets,

— isFriendOf, which is a symmetric property and occurs only in UOBM
datasets,

3 Java Database Connectivity.

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 135

hasSameHomeTownWith worlsFor Organlzatlan
isFriendOf
hasDegreeFrD Unwerslty
Person hasA\umnus

- firstName : Strir ot
- lastName : Stringg publicationAuthor Publication

- emallAddress : String - name : String
- telephore : String

—

_ sAdvisedBy] iypes: Sef<String>
Q rstudent | takesCourse I Course

Professor UndergraduateStudent I GraduateStudent
El I | %
L 1

Fig. 1. Object model used as a base for the benchmark queries. The properties are from
UOBM, most of them having LUBM equivalents, although sometimes with different
names.

— hasAlumnus, which is an inverse of hasDegreeFrom and is never used explic-
itly in the datasets, therefore always requiring reasoning to return results,
— hasDegreeFrom, which has a number of sub-properties.

4 Benchmark

In this section we describe the benchmark set up, namely the datasets and
queries used, storages that we evaluated and the chosen metrics. Let us begin
with description of the datasets.

4.1 Datasets

The proposed benchmark reuses parts of existing OWL benchmark datasets —
LUBM and UOBM.

LUBM (Lehigh University Benchmark) is an ontology and benchmark developed
to evaluate semantic web knowledge base systems [8]. The ontology concerns uni-
versity domain and contains basic OWL constructs like concept and property

136 M. Ledvinka and P. Kiemen

hierarchies and inverse properties, domains and ranges. A simple dataset gener-
ator is provided, enabling creation of datasets of various sizes and structure. The
generator creates synthetic datasets with the specified number of universities,
where each university contains approximately 100k triples.

The generated datasets were split in files by departments, where each uni-
versity contained in average 15 departments. This lead in the largest server case
to loading the data from approximately 16 000 files.

UOBM (University Ontology Benchmark) is an ontology benchmark built upon
LUBM [16]. The ontology itself is based on the LUBM ontology, but uses different
names for some of the properties and, in addition, contains several more complex
OWTL constructs. UOBM ontology exists in two versions - a less expressive OWL-
Lite version and a more expressive OWL-DL version. We used the OWL-DL
version, which adds constructs like transitive properties, equivalent properties,
class instance enumeration and cardinality restrictions. UOBM as a benchmark
contains a pre-defined set of datasets, but the number of these datasets is rather
low, because only three datasets (containing 1, 5 and 10 universities) for each
version exist. Fortunately, a data generator was developed at the University of
Oxford [21]. This generator creates datasets for the more expressive OWL-DL
version and each generated university contains approximately 250k triples.

In contrast to the LUBM datasets, data generated for UOBM were split in
files by universities.

4.2 Queries

Both of the benchmarks that we decided to utilize contain their own sets of
SPARQL queries that are used to evaluate the storage systems. These queries are
general-purpose statements containing joins, unbound subjects and/or objects.
Such queries are tailored for reasoner benchmarking, trying to capture complex
data structure. Most of the time, applications using object model require a rather
narrow set of operations used for creating, retrieving, updating and deleting data.
These operations are in case of JOPA exposed through the OntoDriver API and
are described in greater detail in [14].

For the purpose of evaluating ontology storages in terms of efficiency for
object-oriented application access, we have defined a set of eight SPARQL and
SPARQL Update [6] queries, which correspond to a major subset of the opera-
tions declared in OntoDriver API. Let us now briefly describe each query.

Qs1 selects all statements with the given individual as subject. This query cor-
responds to a retrieve operation, which loads an entity instance from the
storage. In this case the entity attributes either cover most of the individ-
ual’s properties so that it is more efficient to ask for them in a single query
instead of asking for each property separately (see query Qg2), or the entity
contains a field which holds all the unmapped property values (see [14]).
A single query with bound subject and unbound property and object is also
used to load entities in Empire.

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 137

Qg2 is similar to query Qg1, it represents the same entity retrieval operation.
However, in this instance the required properties are enumerated and the
whole query is thus a union of triple patterns with bound subject and
predicate. Such a query would be used in case the entity contained several
attributes, but the ontological individual had multiple other properties con-
nected to it. As in case of Qg1, it is the responsibility of the OOM provider
to map the returned values to entity attributes.

Qgo0prr is a variation of QQgo, only in this case using SPARQL’s OPTIONAL
operator instead of UNION. Although the properties of @ go0rr do not seem
to be very suitable for the OOM case (it returns the result as a cartesian
product of the matching values for multiple variables), we keep it in the
comparison for the sake of completeness of our study.

(Qs3 represents a find all operation — it returns attributes of all individuals of the
specified class. This operation is actually not defined in the OntoDriver API,
but retrieval of all instances of a certain type is a very common operation
in object-oriented applications. Therefore, we decided to add such a query
into the benchmark. In addition, given the structure of the datasets, this
query returns a large amount of results (hundreds of thousands for larger
datasets), so we also used it to see how the evaluated storages were able to
handle such situations.

Qs4 retrieves values of a single property for the given individual. This query
can be viewed as an attempt to load values of a single attribute and in
JOPA such operation is used to provide lazily loaded attributes* for entity
instances. Moreover, this query requires reasoning to take place to return
any results, because it looks for values of the hasAlumnus property, which
is never explicitly used in the dataset. This type of query is also used by
AliBaba, which loads entities by querying attributes one by one.

Qus removes values of several properties of the given individual and then inserts
new values for those properties. Thus it corresponds to an entity attribute
update. In the general case of ontological storages, this cannot be achieved
by updating the values in-place, but the old values have to removed and new
inserted.

Q16 inserts assertion about individual’s type(s) and property values into the
ontology. Such query represents a persist operation, when new entity instance
is saved into the storage.

Qp7 deletes property assertions about the given individual. JOPA performs
epistemic remove [14], in which only values of properties known to the object
model are removed. Thus the query deletes statements by specifying triple
patterns with bound subject and property, instead of simply removing every-
thing concerning the removed individual.

The queries themselves are written in full in our technical report [15],
appendix A. The aforementioned queries represent the core operations defined
in the OntoDriver API and used by JOPA. Other methods defined in the API,

4 Attributes loaded only when actually accessed.

138 M. Ledvinka and P. Kiemen

e.g. getTypes, updateTypes, are simply variations of the core methods. The key
difference between our queries and the queries in LUBM and UOBM is that our
queries do not require any joins and most of them use bound subject. LUBM and
UOBM queries, on the other hand, always have variable in the subject position.
In addition, neither LUBM nor UOBM contain SPARQL Update queries, which
are crucial for application access.

It is worth mentioning that the current experimental prototype of OntoDriver
uses dedicated methods of the storage access framework (Sesame API [3] in
this case) instead of relying on generation of SPARQL queries. However, the
OntoDriver implementations are not restricted to either approach. Also, we are
using SPARQL queries in our benchmark because the same queries can be used
over various storages without any modifications.

4.3 Storages

Following our theoretical study of OntoDriver operations complexity for stor-
ages GraphDB and Stardog in [14], we decided to experimentally verify our
conclusions. Another reason for choosing GraphDB and Stardog is that they
represent two complementing approaches to reasoning — the former performing
total materialization using forward chaining, the latter executing inference at
real time without any materialization.

GraphDB. GraphDB, formerly known as OWLIM [1], is a storage implement-
ing Sesame’s storage and inference layer (SAIL) paradigm. Thus, it can be
accessed through the Sesame API in the same way as any other SAIL-compliant
storage.

GraphDB performs reasoning by materializing all possible inferred knowl-
edge on insertion. This theoretically leads to very fast query answering, but
slower updates. Especially statement retraction can have detrimental effect on
performance, since GraphDB employs a combination of forward and backward
chaining in order to identify inferred knowledge that is no longer backed by any
explicit statement.

GraphDB’s inference engine is rule-based. Therefore, besides pre-defined rule-
sets for various OWL and OWL 2 profiles, it provides the possibility to define
user’s own inference rules. The rule-based inference, however, represents a restric-
tion on expressiveness, since some OWL constructs, e.g. full logical negation,
cannot be expressed using rules.

Stardog. Stardog® is an RDF database with its own proprietary API, but
providing bridges for Jena [4] and Sesame APT as well. Stardog does no materi-
alization. Instead, it performs real time model checking, inferring knowledge at
query time. This has obviously impact on query performance, however it also
results in smaller repository size and theoretically faster updates.

5 http://www.stardog.com, accessed 05-14-2015.

http://www.stardog.com

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 139

Stardog uses Pellet [20] as its reasoner and thus supports full OWL 2 DL
reasoning over TBox. Queries involving ABox can use reasoning in profiles
OWL 2 EL, OWL 2 QL, OWL 2 RL [18] and a combination of them (called
in Stardog’s documentation SL).

4.4 Benchmark Metrics

To thoroughly evaluate performance of tested storages, we have used the follow-
ing metrics:

— Dataset load time — first task when running the benchmark was always
loading the dataset. We measured how long it took the storages to fully load
the data,

— Repository size — we measured the size of the resulting repository (in state-
ments) to determine what effect has materialization on space consumption,

— Query execution time — the most obvious criterion, which tells us how
fast can the storage perform a query and return results for it. For easier
interpretation, we express the results in a more read-friendly queries per
second measure,

— Query completeness and soundness — since reasoning was involved in
some of the queries, we also verified soundness and completeness of the
results.

Benchmark Application. We developed a small application which served as
benchmark runner. Its task was to load the queries, run them against a given
SPARQL endpoint, collect results and measure the execution time of the queries.
The application itself was written in Java and is very similar to the benchmark
application used by BSBM |[2].

5 Experiments

In this section we present results we obtained by running the benchmark against
both GraphDB and Stardog.

5.1 Experiment Setup
The following versions of the storages were used in the benchmark:

— GraphDB-SE 6.1 SP1,
— Stardog 3.0.

Both storages were evaluated in two modes, one with no reasoning and the
other with maximum supported expressiveness, in case of Stardog, we thus used
the SL reasoning level. In case of GraphDB, we used the OWL-Mazx rule set,
which corresponds to the maximum subset of OWL that can be captured using
rules.

140 M. Ledvinka and P. Kiemen

Table 1. Parameters of machines that were used to run the benchmark.

PC Server

e Linux Mint 17 64-bit e Linux Debian 3.2.65 64-bit

e CPU Intel i5 2.67 GHz (4 cores)| ¢ CPU Intel Xeon E3-1271 3.60 GHz (8 cores)
e 8 GB RAM e 32 GB RAM

e 500 GB SATA HDD e 100 GB SSD HDD

e Java 8ud(, -Xmsbg -Xmx6g e Java 8u40, -Xms20g -Xmx20g

e Apache Tomcat 8.20 e Apache Tomcat 8.20

The experiments were run by our benchmark application in two batches, the
first containing all the select queries, the second containing the update queries.
The queries were run in rounds in which all the queries were executed sequen-
tially. We ran 20 warm-up rounds without measuring anything and then 500
rounds, from which the results were computed.

The experiments were run in two environments, one being a regular PC with
a SATA hard drive, the other a server with an SSD drive. Setup of the machines
can be seen in Table 1.

We used datasets of varying size, starting with one university up to 100
universities for the PC, amounting to approximately 13 million statements in
case of the UOBM dataset, and 600 universities for the server (around 153 million
statements for the UOBM dataset).

Please note that due to space restrictions, we present here only some of the
results we measured. Tables with all recorded data can be found in the technical
report [15], appendices B, C, D, E and F.

5.2 Dataset Loading

Dataset loading was conducted using bulk loaders provided by both storages. In
case of Stardog, this meant specifying files to load on repository creation.

Bulk loading on GraphDB was a more complicated matter, because since
GraphDB does materialization on insertion, it is necessary to specify inference
level (ruleset) before creating the repository. In addition, to perform better,
GraphDB asks the user to specify the expected size of the storage, including the
inferred statements. Therefore, we first had to load the datasets without measur-
ing the performance and feed the resulting repository size to the configuration
of the actual benchmark repository.

Stardog is in all cases able to load the datasets significantly faster than
GraphDB. We expected Stardog to outperform GraphDB with the OWL-Max
ruleset, because of the inference taking place in GraphDB during insertion. How-
ever, even for an empty ruleset, where no materialization occurs, Stardog per-
formed much better than GraphDB. It is also interesting to note that in case
of the more expressive UOBM datasets, the size of the GraphDB storage with
inferred statements is more than twice the size of the loaded data.

Figure 2 shows a chart of dataset loading times on the server. It is clear
that GraphDB, performing materialization, is significantly slower than Stardog.

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 141

UOBM Datasets Loading

10:48:00
09:36:00
08:24:00
07:12:00
06:00:00
04:48:00
03:36:00
02:24:00
01:12:00
00:00:00 kaui—u

1 5 10 20 40 80 100 200 400 600

== Stardog
=== GraphDB(OWL-Max)
GraphDB

Loading time

of Universities

Fig. 2. Loading times for the UOBM datasets, executed on the server.

For the largest dataset the loading time in GraphDB almost reaches 9 hours and
30 minutes, while Stardog loads it in 7 minutes and 10 seconds.

Table 2 shows the loading times in numbers plus resulting sizes of the
datasets. Notice that for the largest dataset and the OWL-Max ruleset, we
were unable to determine repository size, because GraphDB kept failing with
exceptions for any queries we issued to the storage through its SPARQL end-
point. Therefore, we cannot even be certain that the storage was able to load
the whole dataset and perform all materialization.

Table 2. Loading of the UOBM datasets on the server. #U is the number of universities
in dataset, T is the loading time, S is the size of the resulting repository in triples. * It
is not certain that the dataset was fully loaded, because the storage failed to process all
queries.

#U TStcL'rdog ngpelblgaz TGraphDB SSta'rdog SngZthfDJ\éaz SG'raphDB
1 1s 22s 2s 258370 542312 258370
5 3s 121s 8s| 1355941| 2832003| 1355941
10 4s 229s 15s| 2509169 5242259 2509169
20 10s 493 s 32s| 5183092| 10829617 5183092
40 20s 970s 93s| 10212049 21339224| 10212049
80 42s 2212s 280s| 20286 983| 42390542| 20286983
100 53s 2892s 419s| 25478086 53239768| 25478 086
200 124 s 6770s 1854 s| 51110402| 106 795 361| 51110402
400 293 s 17371s 57605|102224 372 -1102224 372
600 430s 30758s*| 104145s(153 178000 -1153 178 000

142 M. Ledvinka and P. Kiemen

5.3 Benchmark Results for PC

Experiments undertaken on the PC confirm theoretical expectations in case of
select queries. Indeed, GraphDB with materialized inference provides faster exe-
cution times than Stardog with reasoning at query time. The difference is actu-
ally very significant, as can be seen for example in Figure 3. The difference
between GraphDB with and without inference can be easily explained by the
fact that in case of storage with inference, the repository size is more than twice
the size of the repository without inference.

More surprising is the fact that GraphDB actually performs better even in
case of update queries. Theoretical expectations in this case favour Stardog,
because it does not have to perform any inference during updates. However,
Figure 4 shows that GraphDB not only performs better without inference, but
even with inference it is able to execute more queries per second than Stardog.
The fact that Stardog shows virtually the same performance with and without
reasoning is no surprise, because in fact for these update queries no reasoning
occurs. The situation is radically different only in case of @ p7, where GraphDB
with enabled inference performs by far worst, most likely due to the fact that a
combination of forward and backward chaining occurs in order to find out which
inferred statements should be removed as well [1].

UOBM Query 2 (PC)

300 e~
T - o P
280 o O - - - e - °- - _---" I
______ on - S e e

260 —|
o .
240 g o....
220 | ‘o
SO
200 e
180 — .
‘o
160 - — Stardog SL
P - = Stardog
S GraphDB OWL-MAX
140 - GraphDB
120 o
100 —
80 |
60 —|
40 o
20 |
o4
T T T T T T T
1 University 5 Universities 10 Uni 20 Ur 40 Ur 80U 100 Universities

Dataset

Fig. 3. Plot of storage performance for Qs2 on UOBM datasets. QPS represents the
number of queries executed per second, higher is better. While Stardog without rea-
soning performs the best, it clearly looses when inference is required.

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 143

UOBM Query 5 (PC)

160 —

140 —

120 —

100 —

—— Stardog SL
- - Stardog
GraphDB OWL-MAX
GraphDB

QPs

80 —

60 —

40 —

2 | L ET - TR PN

o T T T T T T
1 University 5 Uni 10 Uni itis 20 Ur itis 40 Uni 80 Unit itie 100 Ur

Dataset

Fig. 4. Plot of storage performance for Qus on UOBM datasets. GraphDB outperforms
Stardog even in update operation, although the difference for repository with inference
is not so large.

5.4 Benchmark Results for Server

Evaluation on the server confirmed our observation from experiments on the PC
only partially. For select queries, the order is the same as on the PC — Stardog
without reasoning being the fastest, Stardog with reasoning being by far the
slowest. The only exception in this situation is @ g3, which returns a very large
number of results, with which both storages struggle and for the larger datasets
the query takes seconds to execute (see Figure 5).

However, the situation is very peculiar for the update queries. For query
Qp7 Stardog now outperformed GraphDB in both inference settings, while on
PC it was the case only for GraphDB with inference enabled. The situation
becomes even more complicated for queries Qs and ()76, where considerable
fluctuations in performance appear in Stardog. Because of these fluctuations,
it is very difficult to discover any trends in its performance. We can see from
the results, that the differences between Stardog and GraphDB are smaller than
on the PC and sometimes Stardog even comes on top of the comparison, but
the pattern is not steady. The fluctuations are clearly visible in Figure 6. After
computing standard deviation for the Stardog results, it turned out that while
for queries Qg1, @s2 and Qg3 the standard deviation was around 1 % of the
average query execution time, for query Qg4 it grows to 27 % in average and
for the update queries Qus, Q¢ and Qpr7 it rises to 46 % in average. The
performance of Stardog in these cases appears to be highly unpredictable.

144 M. Ledvinka and P. Kiemen

UOBM Query 3 (Server)

— Stardog SL
L - - Stardog
& GraphDB OWL-MAX
GraphDB
g
T T T T T T
1 University 5 Universities 20 Universities 80 Universities 200 Universities 600 Universities

Dataset

Fig.5. Plot of storage performance for (Js3 on UOBM datasets. Large number of
results has a significant impact on performance of the storages.

UOBM Query 5 (Server)

300 — —— Stardog SL.
- - Stardo,

GraphDB OWL-MAX
GraphDB

280

260 —

240 —

220 —

200 —

180 —

160 —

QPs

140 —
120
100 o
80
60 4 o

40 | e

20 - --ov.......v.om

0 e

T T T T T T
1 University 5 Universities 20 Universities 80 Universities 200 Universities 600 Universities

Dataset

Fig. 6. Plot of storage performance for Qus on UOBM datasets. Considerable fluctu-
ations appear in performance of Stardog.

Object-UOBM: An Ontological Benchmark for Object-Oriented Access 145

It is also worth noting that Stardog was not able to handle the dataset with
800 LUBM universities and kept crashing on queries. GraphDB, on the other
hand, failed to work with the UOBM 600 universities dataset (using the OWL-
Max ruleset), throwing exceptions when queries were sent to it.

6 Conclusion

We have designed a benchmark for evaluating suitability of ontology storages for
object-oriented applications and used it to test two of the most advanced con-
temporary storage engines. Both storages showed extremely good performance
in case of select queries without reasoning. Our theoretical expectations about
materialization being slow on bulk insert and real time reasoning at query time
were also confirmed. More surprising was the fact that GraphDB, using total
materialization, did in most cases outperform Stardog even for update opera-
tions, for which Stardog should be theoretically more suitable. Overall, GraphDB
appears to be more suitable for the object-oriented application access scenario,
in which frequent data updates are expected, because it provides satisfiable per-
formance even for large datasets. Stardog clearly outperforms GraphDB only in
case of select queries without reasoning.

However, GraphDB (and storages performing materialization in general) has
amajor disadvantage in that the user has to specify inference level before actually
inserting data into the storages. Real time reasoning, on the other hand, lets the
user choose reasoning level for every query he executes.

In the future, we would like to more closely investigate the performance fluc-
tuations of Stardog in the server environment. They appear without any obvious
reason and cause the performance of the storage to be extremely unpredictable.
Also, based on the benchmark results and the characteristics of the storages, we
will research possible optimizations for OntoDriver implementations, for exam-
ple the results indicate that when loading an entity, it is more favourable to
use only bound subject in the queries (Qgs1), instead of doing a union of triple
patterns based on properties (Qg2). @go0rr has worse performance than Qga,
which is not surprising, given that QJg2 uses only UNION and thus has PTIME
complexity, whereas Qgo0rr with OPTIONAL is PSPACE-complete [19].

Acknowledgment. This work was supported by grants No. SGS13/204/0OHK3/3T/13
Effective solving of engineering problems using semantic technologies of the Czech
Technical University in Prague and No. TA04030465 Research and development of
progressive methods for measuring aviation organizations safety performance of the
Technology Agency of the Czech Republic.

References

1. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: A family of scalable semantic repositories. Semantic Web - Interoper-
ability, Usability, Applicability (2010)

146

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Ledvinka and P. Kiemen

Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International Journal On
Semantic Web and Information Systems (2009)

Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, 1., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the 13th
International World Wide Web conference (Alternate Track Papers & Posters), pp.
74-83 (2004)

Garcia-Castro, R.: Benchmarking semantic web technology. Studies on the Seman-
tic Web. IOS Press, Amsterdam (2009)

Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. Tech. rep., W3C (2013)
Grove, M.: Empire: RDF & SPARQL Meet JPA. semanticweb.com, April 2010.
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617

Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics 3(2-3), 158-182 (2005). http://dx.doi.org/
10.1016/j.websem.2005.06.005, http://www.bibsonomy.org/bibtex/2924e60509d7
elb45c6f38eaef9abc6bb/gromgull

. Harris, S., Seaborne, A.: SPARQL 1.1 query language. Tech. rep., W3C (2013)

JCP: JSR 317: Java™ Persistence API, Version 2.0 (2009)

Kfemen, P.: Building Ontology-Based Information Systems. Ph.D. thesis, Czech
Technical University, Prague (2012)

Kiemen, P., Kouba, Z.: Ontology-driven information system design. IEEE Trans-
actions on Systems, Man, and Cybernetics: Part C 42(3), 334-344 (2012).
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6011704

Ledvinka, M., Kfemen, P.: JOPA: developing ontology-based information systems.
In: Proceedings of the 13th Annual Conference Znalosti 2014 (2014)

Ledvinka, M., Kfemen, P.: JOPA: accessing ontologies in an object-oriented way.
In: Proceedings of the 17th International Conference on Enterprise Information
Systems (2015)

Ledvinka, M., Kfemen, P.: Object-UOBM: An Ontological Benchmark for Object-
oriented Access. Tech. rep., Czech Technical University in Prague (2015)

Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete
OWL ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 125-139. Springer, Heidelberg (2006)

Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax. W3C recommendation, W3C,
October 2009. http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
Patel-Schneider, P.F.,; Motik, B., Grau, B.C.. OWL 2 Web Ontology Language
Direct Semantics. W3C recommendation, W3C, October 2009. http://www.w3.
org/TR/2009/REC-owl2-direct-semantics-20091027/

Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization.
In: Proceedings of the 13th International Conference on Database Theory, ICDT
2010, pp. 4-33. ACM, New York (2010)

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web
5(2), June 2007

Zhou, Y., Grau, B.C., Horrocks, 1., Wu, Z., Banerjee, J.: Making the most of your
triple store: query answering in OWL 2 using an RL reasoner. In: Proceedings of
the 22nd International Conference on World Wide Web (2013)

http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://www.bibsonomy.org/bibtex/2924e60509d7e1b45c6f38eaef9a5c6bb/gromgull
http://www.bibsonomy.org/bibtex/2924e60509d7e1b45c6f38eaef9a5c6bb/gromgull
http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6011704
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

	Object-UOBM: An Ontological Benchmark for Object-Oriented Access
	1 Introduction
	2 Related Work
	3 Background
	3.1 JOPA
	3.2 OntoDriver
	3.3 Example Object Model

	4 Benchmark
	4.1 Datasets
	4.2 Queries
	4.3 Storages
	4.4 Benchmark Metrics

	5 Experiments
	5.1 Experiment Setup
	5.2 Dataset Loading
	5.3 Benchmark Results for PC
	5.4 Benchmark Results for Server

	6 Conclusion
	References

