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Abstract. Undecidability is the scourge of verification for many pro-
gram classes. We consider the class of shared-memory multithreaded
programs in the interleaving semantics such that the number of threads
is finite and constant throughout all executions, each thread has an
unbounded stack, and the shared memory and the stack-frame memory
are finite. Verifying that a given program state does not occur in exe-
cutions of such a program is undecidable. We show that the complexity
of verification drops to polynomial time under multithreaded-Cartesian
abstraction. Furthermore, we demonstrate that multithreaded-Cartesian
abstract interpretation generates an inductive invariant which is a regular
language. Under logarithmic cost measure, both proving non-reachability
and creating a finite automaton can be attained in O(n log2 n) time in
the number of threads n and in polynomial time in all other quantities.

1 Introduction

Verification of multithreaded programs is hard. In the presence of recursive pro-
cedures, the problem of membership in the strongest inductive invariant is unde-
cidable: given a two-threaded program with a stack per thread, one can simulate
a Turing tape. However, if the stack depth is the only unbounded quantity, there
might be interesting inductive invariants of special forms such that membership
in such invariants is decidable. In other words, one might circumvent undecid-
ability by considering specially-formed overapproximations of the set of program
states that are reachable from the initial ones.

We now briefly sketch one such interesting form. Let a program state be an
(n+1)-tuple in which one component contains a valuation of the shared vari-
ables and each of the remaining n components contains a valuation of the local
variables (including the control flow) of a distinct thread. Let us say that two
program states are equivalent if they have the same shared-variables entry. We
define a set of states to be of the multithreaded-Cartesian form if each equiva-
lence class is an (n+1)-dimensional Cartesian product. (A rigorous definition will
appear in § 4.) The multithreaded-Cartesian inductive invariants of a program
constitute a Moore family.
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It is known that in the finite-state case the membership problem for the
strongest multithreaded-Cartesian inductive invariant is in PTIME [16]. We
extend this result to programs in which each thread has a potentially unbounded
stack. Moreover, we show that the strongest multithreaded-Cartesian inductive
invariant is a regular language when viewed as a formal language of strings.
Computing a corresponding finite automaton as well as solving the member-
ship problem for the strongest multithreaded-Cartesian inductive invariant can
be accomplished in time O(n log2 n), where n is the number of threads, and in
polynomial time in all the other quantities.

The presentation will proceed as follows.
− After an overview of related work, we rigorously define our program class in

§ 3 and formulate the problem of determining the strongest multithreaded-
Cartesian inductive invariant in the abstract interpretation framework in § 4.

− Next, in § 5, we present a new inference system, which we call TMR, which
constructs n automata such that the ith automaton describes an overapprox-
imation of the set of pairs (shared state, stack word of the ith thread) that
occur in the computations of the multithreaded program.

− Based on the computation result of TMR, we show how to create an automa-
ton that describes the strongest multithreaded-Cartesian inductive invariant.

− Then, we determine the asymptotic worst-case running times of TMR and
the automaton construction under logarithmic cost measure [17].

− In §§ 6–7, we conclude with the proof of correctness of our construction.
We make sure that if some or all of the input quantities (the number of threads,
the number of shared states, and the number of different stack frames) are infi-
nite, TMR still leads to a logically valid (but not necessarily executable) descrip-
tion of the multithreaded-Cartesian abstract interpretation. This opens way to
using constraint solvers in the infinite case. We will impose finiteness restrictions
only when presenting low-level algorithms and computing the running times.

Due to restricted space, most computations and proofs are found in [15].

2 Related Work

There is a large body of work on the analysis of concurrent programs with
recursion; we discuss next only the literature which is, subjectively, most related
to our work.

The roots of multithreaded-Cartesian abstraction date back to the Owicki-
Gries proof method [20], followed by thread-modular reasoning of C. B. Jones
[12], and the Flanagan-Qadeer model-checking method for nonrecursive pro-
grams [10]. The basic versions of these methods (without auxiliary vari-
ables) exhibit the same strength. This strength is precisely characterized by
multithreaded-Cartesian abstract interpretation, which was first discovered by
R. Cousot [9] and later rediscovered in [14,16].

Flanagan and Qadeer [10] introduce also a method for recursive multi-
threaded programs, for which they claim an O(n2) upper bound on the worst-
case running time. Their analysis, which predates TMR, simultaneously com-
putes procedure summaries and distributes the changes of the shared states
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between the threads. Where their algorithm is only summarization-based, our
TMR is an explicit automaton construction. Our program model is slightly differ-
ent compared to [10]. First, to simplify our presentation, we remove the concept
of a local store: while in practice there may be different kinds of local stores
(static-storage function-scope variables in the sense of the C programming lan-
guage, the registers of a processor, . . . ), every program can be modified to per-
form all thread-local computations on the stack. Second, we allow changing the
shared state when a stack grows or shrinks to permit richer program models;
whenever possible, we also allow infinite-size sets.

An alternative approach to prove polynomial time of multithreaded-
Cartesian abstract interpretation could be to apply Horn clauses as done in [19]
for some other problems. That way would not reveal regularity or connections
to the algorithms of Flanagan and Qadeer; it will also just give a running-time
bound for the unit cost measure, whereas we count more precisely in the loga-
rithmic cost measure. We will not discuss it here.

Outside multithreaded-Cartesian abstract interpretation there are many
other methods for analyzing concurrent recursive programs.

If the interplay between communication and recursion is restricted, decidable
fragments can be identified; we will mention just a few. If only one thread has a
stack and the other threads are finite-state, then one can construct the product of
the threads and model-check a large class of properties [7,24]. Alternatively, one
can allow certain forks and joins but restrict communication only to threads that
do not have ongoing procedure calls [5]. In the synchronous execution model, one
may restrict the threads to perform all the calls synchronously and also perform
all returns synchronously [1]. Alternatively, one may restrict pop operations to
be performed only on the first nonempty stack [3].

Without restrictions on the interplay between communication and recursion,
one may allow non-termination of the analysis [21] or be satisfied with an approx-
imate analysis, which can be sound [4] or complete [13,22] (for every choice of
parameters), but never both. If shared-memory communication is replaced by
rendezvous, verification is still undecidable [23].

The summarization idea behind TMR dates back to the works of Büchi [6].
Since then, it has been developed further in numerous variants for computing
the exact semantics, e.g., for two-way deterministic pushdown automata with
a write-once-read-many store [18], for imperative stack-manipulating programs
with a rich set of operations on the stack [2], and in implementations of partial
evaluators [11].

3 Programs

Now we introduce notation and our model of recursive multithreaded programs.
Let N0 (resp. N+) be the sets of natural numbers with (resp. without) zero.

We write X∗ (resp. X+) for the set of finite (resp. finite nonempty) words over
an alphabet X, ε for the empty word, and |w| for the length of a word w ∈ X∗.
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An n-threaded recursive program (from now on, simply a program) is a tuple

(Glob,Frame, init, ( �� t, �-t, �� t)t<n)

such that the following conditions hold:
− Glob and Frame are arbitrary sets such that, without loss of generality,

(Glob×Frame) ∩ Glob = ∅. (We think of Glob as the set of shared states,
e.g., the set of valuations of shared variables. We think of Frame as the set of
stack frames, where a stack frame is, e.g., a valuation of procedure-local vari-
ables and the control-flow counter. The necessity of the disjointness condition
will get clear later on.)

− n is an arbitrary ordinal. (For our convenience, we think of n as both the
number of threads and the set of thread identifiers. E.g., we view (Frame+)n

as the set of maps n→Frame+, and, in the finite case, n as {0, 1, . . . , n−1}.
Real programs are usually modeled by finite n or n=ω, and we allow arbitrary
n.)

− init ⊆ Glob×(Frame+)n is such that ∀ (g, l) ∈ init, t∈n : |lt| = 1. (By lt = l(t)
we indicate the tth component of l ∈ (Frame+)n. We think of init as of the
set of initial states. The depth of the stacks of the threads is 1 in every initial
state.)

− For each t∈n, the transition relation of thread t is given by sets �� t ⊆ (Glob×
Frame) × (Glob×Frame×Frame), �-t ⊆ (Glob×Frame)2, and �� t ⊆ (Glob×
Frame×Frame) × (Glob×Frame). (These are sets of push, internal, and pop
transitions of thread t, respectively.)

We denote by Loc=Frame+ the set of local states of each thread; the elements
of Glob×Loc are called thread states. The operational semantics of each thread
t<n is given by the relation �t ⊆ (Glob×Loc)2, which is defined by

(g, w) �t (g′, w′) def⇐⇒
(
(∃ a, b, c ∈ Frame, u ∈ Frame∗ : w = au ∧ w′ = bcu ∧ ((g, a), (g′, b, c)) ∈ �� t)
∨ (∃ a, b ∈ Frame, u ∈ Frame∗ : w = au ∧ w′ = bu ∧ ((g, a), (g′, b)) ∈ �-t)

∨ (∃ a, b, c ∈ Frame, u ∈ Frame∗ : w = abu ∧ w′ = cu ∧ ((g, a, b), (g′, c)) ∈ �� t)
)

for g, g′ ∈ Glob and w,w′ ∈ Loc. Notice that the stacks are always kept
nonempty. Let the set of program states be

State = Glob × Locn .

The operational semantics of the whole program is given by the concrete domain

D = P(State) ,

which is the power set of the set of program states, and the successor map

post : D → D ,
Q �→ {(g′, l′) | ∃ t∈n, (g, l) ∈ Q : (g, lt) �t (g′, l′t) ∧ ∀ s ∈ n\{t} : ls = l′s} .
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Broadly speaking, program analyses compute or approximate the so-called col-
lecting semantics, which is the strongest inductive invariant (lfp = least fixpoint)

lfp(λS ∈ D. init ∪ post(S)) .

This set can become rather complex, loosely speaking, due to subtle interplay
between concurrency and recursion. A nontrivial example is presented by the
following control-flow graph of a two-threaded program over a shared variable g:

Procedures f and h execute in parallel. Roughly speaking, the left thread
announces how it builds its stack by changing g from 0 to 1 or 2, and the
right thread follows the stack operations of the left thread, confirming that it
proceeds by resetting g to 0. Setting g to 3 initiates reduction of the stacks.
For simplification, we assume that the thread transitions between each pair of
named consecutive control flow locations (A to B, A to C, A to D, B to E, C to
E, D to E) are atomic.

We model this program by Glob = {0,1,2,3}, Frame = {A,B,C,D} (E does
not occur in computations), n=2, init = {(0, (A,A))}, �� 0 = {((0,A), (1,A,B)),
((0,A), (2,A,C))}, �-0 = {((0,A), (3,D))}, �� 0 = {((g,y,z), (g,z)) | g∈Glob ∧ y ∈
{B,C,D} ∧ z∈Frame}, �� 1 = {((1,A), (0,A,B)), ((2,A), (0,A,C))}, �-1 = {((3,A),
(0,D))}, and �� 1 = {((g,y,z), (g,z)) | g∈Glob ∧ y ∈ {B,C,D} ∧ z∈Frame}.

One can show that the strongest inductive invariant is

{0} ×

⎛

⎜
⎜
⎝

{(Ay,Ay), (Dy,Dy) | y ∈ {B,C}∗}
∪ {(Dy, z) | y, z ∈ {B,C}+ ∧ z is a suffix of y}
∪ {(y,Dz) | y, z ∈ {B,C}+ ∧ y is a suffix of z}
∪ {(y, z) | y, z ∈ {B,C}+ ∧ (y is a suffix of z ∨ z is a suffix of y)}

⎞

⎟
⎟
⎠

∪ {1} × {(ABy,Ay) | y ∈ {B,C}∗}
∪ {2} × {(ACy,Ay) | y ∈ {B,C}∗}
∪ {3} ×

( {(Dy,Ay) | y ∈ {B,C}∗}
∪ {(y,Az) | y, z ∈ {B,C}+ ∧ y is a suffix of z}

)
.

This set, viewed as a formal language over Glob, Frame, and some special symbol
separating the stacks, is not context-free.
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Notice that g ∈ {0, 3} is a valid postcondition of the considered program. In
the next section we will see what multithreaded-Cartesian abstract interpretation
is and how it helps proving this postcondition.

4 Multithreaded-Cartesian Abstract Interpretation

Now we are going to describe an approximation operator on the concrete domain
of states of a program, essentially recapitulating the key points of [14]. Loosely
speaking, the definition of the approximation will not depend on the internal
structure of Loc and post.

The multithreaded-Cartesian approximation is the map

ρmc : D → D, S �→ {(g, l) ∈ State | ∀ t∈n∃ l̂∈Locn : (g, l̂) ∈ S ∧ lt = l̂t} ,

which, intuitively, given a set of states, partitions it into blocks according to the
shared state, and approximates each block by its Cartesian hull.

One can show that ρmc is an upper closure operator on (D,⊆).
We define the multithreaded-Cartesian (collecting) semantics as the least

fixpoint
lfp(λS ∈ D. ρmc(init ∪ post(S))) .

For our running example, for any S ⊆ State we have

ρmc(S) = {(g, (l0, l1)) | (∃ l̄1∈Loc: (g, (l0, l̄1)) ∈ S)∧ (∃ l̄0∈Loc: (g, (l̄0, l1)) ∈ S)}.

The multithreaded-Cartesian semantics of our running example is
⎛

⎜
⎜
⎝

{0} × ({Ax,Dx | x∈{B,C}∗} ∪ {B,C}+)
∪ {1} × {ABx | x ∈ {B,C}∗}
∪ {2} × {ACx | x ∈ {B,C}∗}
∪ {3} × ({Dx | x ∈ {B,C}∗} ∪ {B,C}+)

⎞

⎟
⎟
⎠×({Ax,Dx | x∈{B,C}∗}∪{B,C}+) .

This set, viewed as a formal language, is regular; a corresponding regular expres-
sion is

(
0(A|B|C|D)(B|C)∗ | 1AB(B|C)∗ | 2AC(B|C)∗ | 3(B|C|D)(B|C)∗) †

(A|B|C|D)(B|C)∗, where †/∈Frame is a fresh symbol separating the local parts.
Notice that the postcondition g ∈ {0, 3} holds also in this abstract semantics.

5 Model-Checking Recursive Multithreaded Programs

Now we develop an efficient algorithm to compute the input program’s
multithreaded-Cartesian semantics. First we show the inference system TMR,
then we show how its output is interpreted as multithreaded-Cartesian seman-
tics, and finally we turn to computational issues.
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5.1 Inference System TMR

Given an n-threaded program as described in § 3, our algorithm generates n
automata that describe an overapproximation of the set of stack words of the
threads that occur in computations.

Fix some “fresh” element f /∈ Glob ∪̇ (Glob×Frame). Let

V = Glob ∪̇ {(g′, b) | ∃ g∈Glob, a,c ∈ Frame, t∈n : ((g, a), (g′, b, c)) ∈ �� t} ∪̇ {f} .

We now define binary relations Gt ⊆ Glob2 and ternary relations −→
t

⊆
V ×Frame×V for all t∈n by the following inference system.

(tmr init)
(g, l) ∈ init

g
lt−→
t

f
t∈n (tmr step)

((g, a), (g′, b)) ∈ �-t g
a−→
t

v

g′ b−→
t

v (g, g′) ∈ Gt

t∈n

(tmr push)
g

a−→
t

v ((g, a), (g′, b, c)) ∈ �� t

g′ b−→
t

(g′, b) c−→
t

v (g, g′) ∈ Gt

(tmr pop)
g

a−→
t

v
b−→
t

v̄ ((g, a, b), (g′, c)) ∈ �� t

g′ c−→
t

v̄ (g, g′) ∈ Gt

(tmr env)
(g, g′) ∈ Gt g

a−→s v

g′ a−→s v
t �=s are in n

tmr init gathers stack contents of the initial states. tmr step, tmr push,
and tmr pop create an automaton describing thread states that occur in com-
putations of the threads in isolation; the stacks are obtained from the upper
labels of certain walks. Moreover, the three rules collect information about how
the shared state is altered. The rule tmr env transfers shared-state changes
between the threads.

For our program from page 118, the automata constructed by TMR are in
Fig. 1.

5.2 Interpretation of the Output of TMR

Now we define the set of states that the inference system represents.
For that, we extend → to words of stack frames in a standard way. For each

t∈n, consider the quaternary relation −→
t

⊆ V ×Frame∗×N0×V (slightly abusing
notation, we employ the same symbol as for the ternary relation from § 5.1)
defined by the following inference system:

v
ε−→
t
0 v

i∈N0 a∈Frame y∈Frame∗ v
a−→
t

v̂
y−→
t

i v̄

v
ay−→
t

i+1 v̄

For each t∈n, we define −→
t

∗ ⊆ V ×Frame∗×V by −→
t

∗ =
⋃

i∈N0
−→
t

i and Lg,t =
{w | g

w−→
t

∗ f} (g∈Glob).
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Fig. 1. Automata constructed by TMR for our example. Each arrow on the left carries
the lower index 0; each arrow on the right carries the lower index 1.

Informally, a walk g
w−→
t

∗ f means that the state (g, w) of thread t occurrs
in the approximate semantics, and g

w−→
t

∗ (g′, b) means that a procedure call
starting with thread state (g′, b) can reach (g, w) in thread t in the approximate
semantics.

The inference system TMR represents the set
⋃

g∈Glob

{g} ×
∏

t∈n

Lg,t . (1)

5.3 Computing Multithreaded-Cartesian Semantics

For actual computations, which we discuss now, let us assume finite n, Glob,
and Frame till the end of § 5.3.

If we are just interested in checking non-reachability of thread states, exe-
cuting TMR suffices: if a local state l is not in Lg,t, then the thread state (g, l)
of the tth thread does not occur in computations of the program (g∈Glob,
l∈Loc, t∈n). If we are interested in checking non-reachability of single pro-
gram states, executing TMR also suffices: for (g, l̄) ∈ State, if (g, l̄t) /∈ Lg,t

for some t∈n, then the state (g, l) is unreachable from the initial ones. Exe-
cuting TMR on a RAM with logarithmic-cost measure can be achieved in
O(

n(|init| + |Glob|4|Frame|5)(L(|init|) + L(n) + L(|Glob|) + L(|Frame|))) time,
where L(x) is the length of the binary representation of x∈N0. With rigorous
definitions of the input the running time is O((input length)2L(input length)).

If we wish to prove more general invariants, we construct a finite automaton
for (1) as follows. First, we make the state spaces of the automata accepting
Lg,t disjoint ((g, t) ∈ Glob×Loc), obtaining automata Ãg,t ((g, t) ∈ Glob×Loc).
If we wish to obtain a deterministic automaton at the end, we additionally
determinize all Ãg,t ((g, t) ∈ Glob×Loc). Second, for each g∈Glob, chain Ãg,t

for t<n to accept exactly the words of the form w0† . . . †wn−1 over Frame∪̇{†}
(where †/∈Frame is a fresh symbol separating the local parts) such that (wt)t<n ∈∏

t<n Lg,t. Third, introduce a single initial state that dispatches different g to



122 A. Malkis

Ãg,0 (g∈Glob). Thus, (1) can be viewed as a regular language. The nondeter-
ministic, ε-free automaton can be constructed (including executing TMR) in the
same O(

n(|init| + |Glob|4|Frame|5)(L(|init|) + L(n) + L(|Glob|) + L(|Frame|)))
asymptotic time.

For our running example, we transform the left automaton from Fig. 1 into
four automata Ã0,0–Ã3,0 accepting L0,0–L3,0 and the right automaton into four
automata Ã0,1–Ã3,1 accepting L0,1–L3,1. We combine them into a nondetermin-
istic finite automaton for (1) as follows (only the reachable part is shown):

In this graphical representation, the disjoint copies carry the same node labels,
and the final states of Ã0,1–Ã3,1 have been merged to a unique accepting state.
(Certainly, much more minimization is possible, mimicking sharing in BDDs—
which is an interesting topic by itself but not our goal here.)

Theorem 1. The inference system TMR is equivalent to multithreaded Carte-
sian abstract interpretation. Formally:

lfp(λS ∈ D. ρmc(init ∪ post(S))) =
⋃

g∈Glob

{g} ×
∏

t∈n

Lg,t .

Indeed, in our running example, the multithreaded-Cartesian collecting seman-
tics corresponds to the language accepted by the above automaton.

The following §§ 6–7 will be devoted to proving Theorem 1.
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6 Model-Checking General Multithreaded Programs

As an intermediate step in proving equivalence of multithreaded Cartesian
abstract interpretation and TMR we are going to show another, simpler
inference-system for proving properties of multithreaded programs. This infer-
ence system (up to names of variables and sets) is due to Flanagan and Qadeer
[10]. Its definition does not depend on the internal structure of Loc and �t

(t∈n).
Let us define sets R̃t ⊆ Glob×Loc and G̃t ⊆ Glob2 for all t∈n by the following

inference system FQ:

(fq init)
(g, l) ∈ init

(g, lt) ∈ R̃t

t∈n (fq step)
(g, l) ∈ R̃t (g, l) �t (g′, l′)

(g′, l′) ∈ R̃t (g, g′) ∈ G̃t

t∈n

(fq env)
(g, g′) ∈ G̃t (g, l) ∈ R̃s

(g′, l) ∈ R̃s

s�=t are in n

For finite-state programs, the families R̃ and G̃ can be generated in polynomial
time. The algorithm is sound independently of finiteness, e.g., also for recursive
programs.

One can show, roughly speaking, that multithreaded-Cartesian abstract
interpreration is equivalent to FQ. We will use FQ intermediately, showing FQ
≈ TMR.

7 Proof of Theorem 1

We show a semi-formal, high-level proof outline; rigorous details are found in
[15].

We start by defining

Rt = {(g, w) ∈ Glob×Loc | g
w−→
t

∗ f} (t ∈ n).

Informally, the set Rt contains exactly the thread states of the thread t in the
invariant denoted by TMR (t<n).

Now let G = (Gt)t∈n ∈ (P(Glob2))n and R = (Rt)t∈n ∈ (P(Glob×Loc))n.
For our running example,

R0 =

( {0} × ({Ax,Dx | x∈{B,C}∗} ∪ {B,C}+) ∪ {1} × {ABx | x∈{B,C}∗}
∪ {3} × ({Dx | x∈{B,C}∗} ∪ {B,C}+) ∪ {2} × {ACx | x∈{B,C}∗}

)
= R̃0

G0 = {(0, 1), (0, 2), (0, 3), (0, 0), (3, 3)} = G̃0

R1 = {0, 1, 2, 3} × ({Ax,Dx | x∈{B,C}∗} ∪ {B,C}+) = R̃1

G1 = {(1, 0), (2, 0), (3, 0), (0, 0), (1, 1), (2, 2), (3, 3)} = G̃1

The equality between the sets generated by TMR and the sets generated by FQ
is striking. We will show that it is not by coincidence, essentially proving

(result of FQ =) (R̃, G̃) = (R,G) (= result of TMR). (2)
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This equality will directly imply Thm. 1.
So let � be the componentwise partial order on (P(Glob×Loc))n ×

(P(Glob2))n:

(R̂, Ĝ) � (R̂′, Ĝ′) def⇐⇒ ∀ t<n : R̂t ⊆R̂′
t ∧ Ĝt ⊆Ĝ′

t .

Intuitively, we prove (2) by separating the equality into two componentwise
inclusions: soundness (if a safety property holds according to TMR, then the
strongest multithreaded-Cartesian invariant implies this property) and complete-
ness (every safety property implied by the strongest multithreaded-Cartesian
invariant can be proven by TMR).

The soundness proof will be conceptually short and the completeness proof a
bit more intricate, building on ideas from post-saturation of pushdown systems.

7.1 Soundness: Left Componentwise Inclusion in (2)

The crucial step is showing that the result of TMR is closed under FQ:

(result of FQ =) (R̃, G̃) � (R,G) (= result of TMR) .

More precisely, the proof goes by applying FQ once to (R,G), thereby obtaining
(Ř, Ǧ), and showing (Ř, Ǧ) � (R,G) componentwise. Internally, it amounts to
checking that elements in (Ř, Ǧ) produced by FQ can also be produced by TMR.

7.2 Completeness: Right Componentswise Inclusion in (2)

For each thread t we define its operational semantics with FQ-context as the
transition relation of thread t in which the thread can additionally change the
shared state according to the guarantees defined by FQ:

˜G�t := �t ∪ {((g, w), (g′, w)) | w ∈ Loc ∧ ∃ s ∈ n\{t} : (g, g′) ∈ G̃s} (t < n) .

Let
˜G�∗

t , the bigstep operational semantics with FQ-context, be the reflexive-

transitive closure of
˜G�t on the set of thread states (t < n).

Now we examine the system TMR. We view the relation (edge set) → defined
by TMR as an element of (P(V ×Frame×V ))n (where v

a−→
t

v′ means (v, a, v′) ∈
→(t)).

One can obtain G and → inductively by generating iterates ((−→
t i)t<n,

(Gt,i)t<n) of the derivation operator of TMR for i∈N0 (the right index i meaning
the iterate number). More precisely, we start with empty sets Gt,0 and −→

t 0 for
all t<n and obtain Gt,i+1 and −→

t i+1 for all t<n by applying the rules of TMR
exactly once to Gt,i and −→

t i for all t<n. The described sequence of iterates is
ascending, and each element derived by TMR has a derivation tree of some finite
depth i:

−→
t

=
⋃

i∈N0

−→
t i and Gt =

⋃

i∈N0

Gt,i (t < n).
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Sloppily speaking, the derivation operator of TMR produces graphs on V ,
and larger iterates contain larger graphs. Given a walk in an edge set −→

t i, it in
general has some “new” edges not present in the prior iterate i−1. Different walks
connecting the same pair of nodes and carrying the same word label may have
a different number of new edges. We let tr(t, i, v, v̄, w) be the minimal number
of new edges in iterate i in walks labeled by w from v to v̄ in the edge set −→

t i.
After these preparations, we create a connection between FQ and TMR.

Informally, we show: (i) stack words accepted by the automata created by TMR,
together with the corresponding shared state, lie in the sets defined by FQ;
(ii) prefixes of such words correspond to ongoing procedure calls as specified by
the bigstep operational semantics with FQ-context; (iii) the shared state changes
defined by TMR are also defined by FQ.

These claims are proven together by nested induction on the iterate num-
ber (outer induction) and the number of new edges tr(. . . ) (inner induction).
Formally, we show:

Lemma 2. For all i ∈ N0 and all j ∈ N0 we have:
(i) ∀ g∈Glob, t∈n,w∈Frame∗ : tr(t, i, g, f, w) = j ⇒ (g, w) ∈ R̃t,
(ii) ∀g,ḡ∈Glob, t∈n, b∈Frame, w∈Frame∗ :

tr(t, i, g, (ḡ,b), w)=j ⇒ (ḡ,b)
˜G�∗

t (g,w),
(iii) ∀ t ∈ n : Gt,i ⊆ G̃t.

The formal proof proceeds by double induction on (i, j).
Parts (i) and (iii) directly imply that the result of FQ is closed under TMR:

(result of FQ =) (R̃, G̃) � (R,G) (= result of TMR) .

7.3 Combining the Left and Right Inclusions

FQ describes the abstract semantics exactly, whence we obtain:

lfp(λS ∈ D. ρmc(init ∪ post(S))) =
⋃

g∈Glob

{g} ×
∏

t∈n

Lg,t ,

where “⊆” follows from § 7.1, and “⊇” follows from § 7.2.

8 Conclusion

We considered the multithreaded-Cartesian approximation, which is a succinct
description of the accuracy of the thread-modular approaches of Owicki and
Gries, C. Jones, and Flanagan and Qadeer (without auxiliary variables). We
applied it to multithreaded programs with recursion, presenting an algorithm
for discovering a representation of the multithreaded-Cartesian collecting seman-
tics. The algorithm creates a finite automaton whose language coincides with the
multithreaded-Cartesian collecting semantics. In particular, the involved induc-
tive invariant is shown to be a regular language. The algorithm uses ideas from
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a seminal algorithm of Flanagan and Qadeer and works in time O(n log2 n) in
the number of threads n and polynomial in other quantities. We remark that,
in contrast, the model-checking problem (without abstraction) is known to be
undecidable.

While multithreaded programs with recursion occur rarely in practice, the
models may contain both concurrency and recursion [8]. For example, in cer-
tain cases it is possible to model integer variables as stacks. But even for multi-
threaded programs whose procedures are nonrecursive, our algorithm TMR offers
compact representation of stack contents, which depends only on the number of
threads as well as on the sizes of shared states and frames, but not on the stack
depth. A useful consequence of equivalence between FQ and TMR is that one
may choose inlining procedures or creating an automaton depending on the costs
of constructing and running an analysis, well knowing that its precision will not
change. This opens way to potential time and space savings without changing
the strength of an analysis.
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