
 123

LN
CS

 9
32

8

9th International Workshop, RP 2015
Warsaw, Poland, September 21–23, 2015
Proceedings

Reachability Problems

Mikołaj Bojanczyk
Sławomir Lasota
Igor Potapov (Eds.)

Lecture Notes in Computer Science 9328

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Mikołaj Bojańczyk • Sławomir Lasota
Igor Potapov (Eds.)

Reachability Problems
9th International Workshop, RP 2015
Warsaw, Poland, September 21–23, 2015
Proceedings

123

Editors
Mikołaj Bojańczyk
The Institute of Informatics
University of Warsaw
Warsaw
Poland

Sławomir Lasota
The Institute of Informatics
University of Warsaw
Warsaw
Poland

Igor Potapov
University of Liverpool
Liverpool
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24536-2 ISBN 978-3-319-24537-9 (eBook)
DOI 10.1007/978-3-319-24537-9

Library of Congress Control Number: 2015949282

LNCS Sublibrary: SL1 Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 9th International Workshop on
Reachability Problems (RP) held on September 21–23, 2015, at the University of
Warsaw. Previous workshops in the series were located at: the University of Oxford
(2014), Uppsala University (2013), the University of Bordeaux (2012), the University
of Genoa (2011), Masaryk University Brno (2010), École Polytechnique (2009), the
University of Liverpool (2008), and Turku University (2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modelling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to): reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri-nets;
computational aspects of semigroups, groups, and rings; reachability in dynamical and
hybrid systems; frontiers between decidable and undecidable reachability problems;
complexity and decidability aspects; predictability in iterative maps, and new com-
putational paradigms.

The invited speakers at the 2015 workshop were:

– Christel Baier, Technische Universität Dresden, Germany;
– Alessandro D’Innocenzo, Università degli Studi dell’Aquila, Italy;
– Jerome Leroux, LaBRI, University of Bordeaux, France;
– Peter Bro Miltersen, Aarhus University, Denmark;
– Andrey Rybalchenko, Microsoft Research, USA;
– James Worrell, University of Oxford, UK

There were 23 submissions. Each submission was reviewed by at least three Pro-
gram Committee (PC) members. The members of the PC and the list of external
reviewers can be found on the next two pages. The PC is grateful for the highly
appreciated and high-quality work produced by these external reviewers. Based on
these reviews, the PC decided to accept 14 papers, in addition to the six invited talks.
The workshop also provided the opportunity to researchers to give informal presen-
tations, prepared very shortly before the event, informing the participants about current
research and work in progress.

We gratefully acknowledge the help of Eryk Kopczyński, Marlena Nowińska, and
Wojciech Czerwiński in organizing the event, as well as the Warsaw Center for
Mathematics and Computer Science for financial support.

It is also a pleasure to thank the team behind the EasyChair system and the Lecture
Notes in Computer Science team at Springer, who together made the production of this

volume possible in time for the workshop. Finally, we thank all the authors for their
high-quality contributions, and the participants for making this edition of RP 2015 a
success.

September 2015 Mikołaj Bojańczyk
Sławomir Lasota

Igor Potapov

VI Preface

Organization

Program Committee

Mikolaj Bojanczyk Warsaw University, Poland
Tomas Brazdil Masaryk University, Czech Republic
Thomas Brihaye Université de Mons, Belgium
Krishnendu Chatterjee Institute of Science and Technology, Austria
Lorenzo Clemente LaBRI, University of Bordeaux I, France
Javier Esparza Technische Universität München, Germany
Kousha Etessami University of Edinburgh, UK
Stefan Göller LSV, ENS Cachan & CNRS, France
Christoph Haase LSV, ENS Cachan & CNRS, France
Tero Harju University of Turku, Finland
Raphaël Jungers The University of Leuven, Belgium
Sławomir Lasota Warsaw University, Poland
Richard Mayr University of Edinburgh, UK
Pierre Mckenzie Université de Montréal, Canada
Joel Ouaknine Oxford University, UK
Giovanni Pighizzini Università degli Studi di Milano, Italy
Igor Potapov University of Liverpool, UK
Alexander Rabinovich Tel Aviv University, Israel
Sylvain Salvati Inria, France
Sylvain Schmitz LSV, ENS Cachan & CNRS, France
Olivier Serre LIAFA, CNRS & Université Paris Diderot - Paris 7,

France

Additional Reviewers

Althoff, Matthias
Blondin, Michael
Bozzelli, Laura
Carayol, Arnaud
Fijalkow, Nathanael
Frehse, Goran
Gentilini, Raffaella
Hunter, Paul
Kiefer, Stefan

Mahata, Pritha
Meyer, Philipp J.
Novotný, Petr
Porreca, Antonio E.
Sakai, Masahiko
Sangnier, Arnaud
Sankur, Ocan
Totzke, Patrick
Velner, Yaron

Abstracts of Invited Talks

Modeling and Co-design of Control Tasks Over
Wireless Networking Protocols: State

of the Art and Challenges

Alessandro D’Innocenzo

Department of Information Engineering, Computer Science and Mathematics
Center of Excellence DEWS, University of L’Aquila, Italy

alessandro.dinnocenzo@univaq.it

Wireless networked control systems are the integration of physical processes with
wireless networked computing units. The co-design of control policies and network
configuration must take into account the joint dynamics of operating systems, com-
munication protocols/media and physical devices/processes. In this talk we first give a
brief overview of the state-of-the-art on wireless networked control systems. Then we
present some recent advances in the co-design of control tasks over wireless net-
working protocols subject to long term (e.g. failures, malicious attacks, etc) and short
term (e.g. dynamic routing, packet drops) networking non-idealities.

Regarding long term networking non-idealities, we address the co-design problem
of controller and communication protocol when the physical plant is a MIMO LTI
system and the communication nodes are subject to failures and/or malicious attacks.
We first characterize by means of necessary and sufficient conditions the set of network
configurations that invalidate controllability and observability of the plant. Then, we
investigate the problem of detecting and isolating communication nodes affected by
failures and/or malicious attacks and provide necessary and sufficient conditions for the
solvability of this problem.

Regarding short term networking non-idealities, we investigate the exploitation of
redundancy when routing actuation data to a LTI system connected to the controller via
a wireless network. We first consider the modeling, stability analysis and controller
design problems when the actuation signal is subject to switching propagation delays
due to dynamic routing. We show how to model these systems as pure switching linear
systems and provide an algorithm for robust stability analysis. We show that the
stability analysis problem is NP-hard in general and provide an algorithm that com-
putes in a finite number of steps the look-ahead knowledge of the dynamic routing
policy necessary to achieve controllability and stabilizability. Finally, we consider the
case when actuation packets can be delivered from the controller to the actuator via
multiple paths, each associated with a delay and a packet loss probability: we show that
the joint optimal co-design of controller gain, routing and coding parameters can
tremendously improve the control performance.

Vector Addition Systems Howto

Jérôme Leroux

University of Bordeaux and CNRS, LaBRI, UMR 5800, Talence, France

Vector addition systems or equivalently Petri nets are one of the most popular formal
models for the representation and the analysis of parallel processes. Many known
problems for vector addition systems are shown to be decidable thanks to the theory of
well-structured transition systems. Indeed, vector addition systems with configurations
equipped with the classical point-wise ordering are well-structured transition systems.
Based on this observation, problems like the coverability or the termination are shown
to be decidable. However, the well-structured transition systems theory cannot explain
the decidability of the reachability problem. In this presentation, we show that runs of
vector addition systems can be equipped with a well quasi-order that satisfies an
amalgamation property. This observation provides a unifying way for solving many
problems for vector addition systems including the central reachability problem.

Recent Results on Concurrent
Reachability Games

Peter Bro Miltersen

Aarhus University, Denmark

A finite-state concurrent reachability game G is a finitely presented two-player game of
potentially infinite duration, played between Player 1, the reachability player, and
Player 2, the safety player. The arena of the game consists of a finite set of positions
0; 1; 2; . . .;N. When play begins, a pebble rests at position 1, the “start position”. At
each stage of play, with the pebble resting at a particular “current” position k, Player 1
chooses an action i 2 f1; 2; . . .;mg while Player 2 concurrently, and without knowl-
edge of the choice of Player 1 similarly chooses an action j 2 f1; 2; . . .;mg. A fixed
and commonly known transition function p : f1; 2; . . .;Ng � f1; 2; . . .;mg2 !
f0; 1; 2; . . .;Ng determines the next position of the pebble, namely pðk; i; jÞ. If the
pebble ever reaches 0 (the “goal position”), play ends, and Player 1 wins the game. If
the pebble never reaches the goal position, Player 2 wins.

Concurrent reachability games (or slightly more general models) were studied by
the game theory community since the 1950s [3]. They were introduced to the computer
science community in the seminal paper by de Alfaro, Henzinger and Kupferman [2],
first appearing at FOCS’98. The last decade saw numerous new results on quantitative
aspects of near-optimal strategies for playing concurrent reachability games, new
algorithms and complexity results for finding such strategies, and new applications
areas for the algorithms. In this talk, we survey some of these results [1, 4, 5, 6, 7, 8, 9]
and present some of the open problems that remain.

References

1. Chatterjee, K., Hansen, K.A., Ibsen-Jensen, R.: Strategy complexity of concurrent stochastic
games with safety and reachability objectives. CoRR, abs/1506.02434 (2015)

2. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor.
Comput. Sci. 386(3), 188–217 (2007)

3. Everett, H.: Recursive games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the
Theory of Games, Vol. III, volume 39 of Annals of Mathematical Studies. Princeton Uni-
versity Press (1957)

P.B. Miltersen—The author acknowledges support from The Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish
Center for the Theory of Interactive Computation and from the Center for research in the Foundations
of Electronic Markets (CFEM), supported by the Danish Strategic Research Council.

4. Frederiksen, S.K.S., Miltersen, P.B.: Approximating the value of a concurrent reachability
game in the polynomial time hierarchy. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algo-
rithms and Computation. LNCS, vol. 8283, pp. 457–467. Springer, Heidelberg (2013)

5. Frederiksen, S.K.S., Miltersen, P.B.: Monomial strategies for concurrent reachability games
and other stochastic games. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169,
pp. 122–134. Springer, Heidelberg (2013)

6. Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The complexity of solving reachability
games using value and strategy iteration. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011.
LNCS, vol. 6651, pp. 77–90. Springer, Heidelberg (2011)

7. Hansen, K.A., Koucký, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.P.: Exact algorithms
for solving stochastic games: extended abstract. In: 43rd ACM Symposium on Theory of
Computing, (STOC 2011), pp. 205–214 (2011)

8. Hansen, K.A., Koucky, M., Miltersen, P.B.: Winning concurrent reachability games requires
doubly exponential patience. In: 24th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS 2009), pp. 332–341. IEEE (2009)

9. Miltersen, P.B., Sørensen, T.B.: A near-optimal strategy for a heads-up no-limit texas hold’em
poker tournament. In: 6th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2007) (2007)

XIV P.B. Miltersen

Horn Constraints with Quantifiers
and Cardinalities

Andrey Rybalchenko

Microsoft Research

In this talk we look at verification of parameterized programs from the constraint
solving perspective. We show how Horn constraints enhanced with universal quanti-
fication and cardinality operators 1) can be used to specify verification conditions, and
2) can be solved automatically.
Joint work with Nikolaj Bjørner and Klaus v. Gleissenthall.

Reachability Problems for Continuous Linear
Dynamical Systems

James Worrell

Department of Computer Science, University of Oxford
Parks Road, Oxford OX1 3QD, UK
james.worrell@cs.ox.ac.uk

It is well understood that the interaction between discrete and continuous dynamics
makes hybrid automata difficult to analyse algorithmically. However many natural
verification questions concerning only the continuous dynamics of such systems are
already extremely challenging. This is so even for linear dynamical systems, such as
linear hybrid automata and continuous-time Markov chains, whose evolution is
determined by linear differential equations. For example, one can ask to decide whether
it is possible to escape a particular location of a linear hybrid automaton given initial
values of the continuous variables. Likewise one can ask whether a given set of
probability distributions is reachable during the evolution of continuous-time Markov
chain.

This talk focusses on reachability problems for solutions of linear differential
equations. A central decision problem in this area is the Continuous Skolem Problem,
which asks whether a real-valued function satisfying an ordinary linear differential
equation has a zero. This can be seen as a continuous analog of the Skolem Problem for
linear recurrence sequences, which asks whether the sequence satisfying a given
recurrence has a zero term. For both the discrete and continuous versions of the Skolem
Problem, decidability is open.

We show that the Continuous Skolem Problem lies at the heart of many natural
verification questions on linear dynamical systems. We describe some recent work,
done in collaboration with Chonev and Ouaknine, that uses results in transcendence
theory, Diophantine approximation, and real algebraic geometry to obtain decidability
for certain variants of the problem. In particular, we consider a bounded version of the
Continuous Skolem Problem, corresponding to time-bounded reachability. We prove
decidability of the bounded problem assuming Schanuel’s conjecture, one of the main
conjectures in transcendence theory. We describe some partial decidability results in
the unbounded case and discuss mathematical obstacles to proving decidability of the
Continuous Skolem Problem in full generality.

Reasoning About Cost-Utility Constraints
in Probabilistic Models

Christel Baier

Faculty of Computer Science
Technische Universität Dresden

Dresden, Germany
Christel.Baier@tu-dresden.de

Various types of automata models with weights attached to the states and/or transitions
have been introduced to model and analyze the resource-awareness and other quanti-
tative phenomena of systems. In this context, weight accumulation appears as a natural
concept to reason about cost and utility measures. The accumulation of non-negative
weights can, for instance, serve to formalize the total energy consumption of a given
task schedule or the total penalty to be paid for missed deadlines. Weight functions
with negative and positive values can be used to model the energy level in
battery-operated devices or the total win or loss of a share at the stock market over one
day. The conceptual similarity between accumulated weights and counter machines
causes the undecidability of many verification problems for multi-weighted models and
temporal logics with weight accumulation over finite paths of unbounded length.
However, decidability can be achieved for verification tasks in specialized structures,
such as energy games or models with non-negative weight functions. Likewise,
decidability results have been established for temporal logics with restricted forms of
weight accumulation, such as modalities for weight accumulation along finite windows
or limit-average properties.

This extended abstract summarizes results on algorithmic problems for a cost-utility
analysis in weighted Markov chains and weighted Markov decision processes.

C. Baier—The author is supported by the DFG through the collaborative research centre HAEC (SFB
912), the Excellence Initiative by the German Federal and State Governments (cluster of excellence
cfAED and Institutional Strategy) and the EU-FP-7 grant MEALS (295261).

Contents

Reasoning About Cost-Utility Constraints in Probabilistic Models 1
Christel Baier

Integer-Complete Synthesis for Bounded Parametric Timed Automata 7
Étienne André, Didier Lime, and Olivier H. Roux

Polynomial Interrupt Timed Automata . 20
Béatrice Bérard, Serge Haddad, Claudine Picaronny,
Mohab Safey El Din, and Mathieu Sassolas

Irregular Behaviours for Probabilistic Automata . 33
Nathanaël Fijalkow and Michał Skrzypczak

Reachability in Succinct One-Counter Games . 37
Paul Hunter

On Reachability-Related Games on Vector Addition Systems with States 50
Petr Jančar

A Topological Method for Finding Invariant Sets of Continuous Systems . . . 63
Laurent Fribourg, Eric Goubault, Sameh Mohamed, Marian Mrozek,
and Sylvie Putot

The Ideal View on Rackoff’s Coverability Technique 76
Ranko Lazić and Sylvain Schmitz

Synthesis Problems for One-Counter Automata . 89
Antonia Lechner

On Boundedness Problems for Pushdown Vector Addition Systems 101
Jérôme Leroux, Grégoire Sutre, and Patrick Totzke

Multithreaded-Cartesian Abstract Interpretation of Multithreaded Recursive
Programs is Polynomial . 114

Alexander Malkis

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 128
Nirina Andrianarivelo and Pierre Réty

Reducing Bounded Realizability Analysis to Reachability Checking 140
Masaya Shimakawa, Shigeki Hagihara, and Naoki Yonezaki

Rearranging Two Dimensional Arrays by Prefix Reversals 153
Akihiro Yamamura

The Emptiness Problem for Valence Automata or: Another Decidable
Extension of Petri Nets . 166

Georg Zetzsche

Author Index . 179

XX Contents

Reasoning About Cost-Utility Constraints
in Probabilistic Models

Christel Baier(B)

Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
Christel.Baier@tu-dresden.de

Various types of automata models with weights attached to the states and/or
transitions have been introduced to model and analyze the resource-awareness
and other quantitative phenomena of systems. In this context, weight accumu-
lation appears as a natural concept to reason about cost and utility measures.
The accumulation of non-negative weights can, for instance, serve to formalize
the total energy consumption of a given task schedule or the total penalty to be
paid for missed deadlines. Weight functions with negative and positive values can
be used to model the energy level in battery-operated devices or the total win
or loss of a share at the stock market over one day. The conceptual similarity
between accumulated weights and counter machines causes the undecidability
of many verification problems for multi-weighted models and temporal logics
with weight accumulation over finite paths of unbounded length [5,4,3,11]. How-
ever, decidability can be achieved for verification tasks in specialized structures,
such as energy games [9,10,19,25] or models with non-negative weight functions
[1,21,3]. Likewise, decidability results have been established for temporal log-
ics with restricted forms of weight accumulation, such as modalities for weight
accumulation along finite windows [11,3] or limit-average properties [14,5,23].

This extended abstract summarizes results on algorithmic problems for a
cost-utility analysis in weighted Markov chains and weighted Markov decision
processes. The first part relies on the paper [3] and reports on results for lin-
ear temporal specifications with weight assertions. The second part addresses
computation schemes for optimal weight parameters in probabilistic reachabil-
ity constraints. It relies on the papers [24,2,20].

Linear Temporal Logic with Weight Assertions. In the approach of [3],
linear temporal logic (LTL) has been extended by weight assertions of the form

A(ϕ1;wconstr;ϕ2) where A is a deterministic finite automaton (called weight
monitor), ϕ1 and ϕ2 are formulas (called pre- and postcondition) and wconstr is
a linear constraint on the accumulated values of one or more weight functions.

The author is supported by the DFG through the collaborative research centre HAEC
(SFB 912), the Excellence Initiative by the German Federal and State Governments
(cluster of excellence cfAED and Institutional Strategy) and the EU-FP-7 grant
MEALS (295261).

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 1–6, 2015.
DOI: 10.1007/978-3-319-24537-9 1

2 C. Baier

The weight monitor A serves to specify the windows of paths where the weights
are accumulated. The semantics of weight assertions is defined over pairs (π, j)
consisting of an infinite path π in a weighted Markovian model M and a position
j ∈ N and given by (π, j) |= A(ϕ1;wconstr;ϕ2) iff there exist positions k ∈ N,
k > j, such that (i) the path fragment π[j . . . k] from position j to k satisfies the
weight constraint wconstr as well as the regular constraint imposed by the weight
monitor A and (ii) the precondition holds for the current position j, while the
postcondition holds for position k, i.e., (π, j) |= ϕ1 and (π, k) |= ϕ2. Pure weight
constraints have the form A(true;wconstr; true), briefly written as A wconstr.
For example, with A being a weight monitor specifying the successful processing
of a request, the formulas

�(request → A((utility � u) ∧ (cost � c)))

�(request → A(utility/cost � r))

provide cost-utility guarantees for the processing of each request. Here, u, c, r
are constants and utility and cost are symbols for (the accumulated values of)
weight functions. Assuming that all cost values are positive, the ratio constraint
utility/cost � r can be rephrased as a linear constraint utility−r ·cost � 0, which
meets the syntax of weight constraints.

When dealing with the full class of deterministic finite automata as weight
monitors, the model-checking problem for LTL extended by weight assertions is
undecidable. This even holds for Boolean combination of pure weight assertions.
However, decidability results can be established for LTL extended by weight
assertions over acyclic weight monitors. In this case, the maximal probability
for a formula to hold in a given weighted Markov decision process can be com-
puted using a reduction to the probabilistic model-checking problem for standard
LTL and unweighted Markov decision processes (MDP). Although the trans-
formation of the weighted MDP into an unweighted MDP is exponential, the
well-known 2EXPTIME-completeness result [13] still holds for LTL extended by
weight assertions over acyclic weight monitors. A similar reduction technique is
applicable for LTL extended by simple weight assertions interpreted over MDPs
with non-negative weight functions, called reward functions. In this context, sim-
ple weight assertions have the form A((wgt1 ��1 c1)∧ . . .∧ (wgtn ��n cn)) where
A is an arbitrary (possibly cyclic) weight monitor and wgt1, . . . ,wgtn are sym-
bols for the reward functions in the given MDP. The symbols ��1, . . . , ��n stand
for comparison operators, while c1, . . . cn are constants.

Optimal Weight and Ratio Bounds. Although the parameter synthesis
problem for LTL extended by modalities with parametric step bounds and
Markov chains is undecidable [8], several algorithms have been proposed to
compute optimal weight bounds for specific parametric formulas. The work on
quantiles for probabilistic reachability constraints in Markov chains and MDPs
with non-negative weight (i.e., reward) functions [24,2] can be seen as special

Reasoning About Cost-Utility Constraintsin Probabilistic Models 3

instances of the parameter synthesis problem. For example, the quantiles

r∃ = min
{

r ∈ N : Prmax
M,s(♦�rgoal) > q

}

r∀ = min
{

r ∈ N : Prmin
M,s(♦�rgoal) > q

}

for state s of an MDP M with a reward function and a distinguished goal state
can be interpreted as the minimal cost required to ensure that the goal state will
be reached from s with probability larger than q under some scheduler for M
resp. for all schedulers for M.1 Quantiles with upper probability bounds “< q”
or non-strict probability bounds “� q” or “� q” are defined accordingly. For
qualitative probability bounds (i.e., for the cases where q ∈ {0, 1}) polynomially
time-bounded computation schemes have been presented in [24] using variants
of Dijkstra’s shortest path algorithm. Given the EXPTIME-completeness result
by [18] for checking whether ps,r

def= Prmax
M,s(♦�rgoal) > q when M, s, r and q are

given, no polynomially time-bounded algorithms can be expected for the general
case (i.e., for q ∈]0, 1[). The idea to compute r∃ is a two-step approach. In the
first step, we check the existence of some r satisfying ps,r > q. For this, we
can apply standard linear-programming techniques for computing the maximal
probabilities ps = Prmax

M,s(♦goal) for reaching the goal from s without reward
constraints. Note that thanks to the monotonicity of accumulated rewards along
the prefixes of infinite paths we have ps = supr∈N ps,r. If ps � q then there
is no r with ps,r > q, and therefore r∃ = ∞. Otherwise, we proceed with the
second step, where we successively consider all candidates r = 0, 1, 2, . . . and
compute the values pt,r for all states t until ps,r > q. The values pt,r for all
states t and fixed reward bound r are obtained by solving a linear program with
one variable per state and reusing the values pt,r′ for 0 � r′ < r computed
in previous iterations. This yields an exponentially time-bounded computation
scheme for the existential quantile r∃. The universal quantile r∀ can be computed
analogously.

When switching from reward to weight functions that might have positive and
negative values, we cannot longer rely on the monotonicity of the accumulated
weights along the prefixes of infinite paths. For single-weighted Markov chains
and qualitative probability bounds, a polynomially time-bounded approach has
been presented in [20]. It uses a binary search and polynomial-time decision
procedures for checking qualitative probability constraints for weight assertions
of the form �(wgt > c). The latter relies on computation of the expected long-
run average weight in bottom strongly connected components and variants of
shortest-path algorithms. More challenging are quantiles for assertions on cost-
utility ratios, e.g., of the form

ropt def= sup
{

r ∈ Q : PrM,s(�(ratio > r)) > 0
}

where ratio = utility/cost is the quotient of two positive weight functions of a
Markov chain M. A polynomial-time algorithm for computing ropt has been
1 The notations Prmax

M,s(ϕ) and Prmax
M,s(ϕ) are used to denote the supremum resp. infi-

mum of the probabilities for the event ϕ, when ranging over all schedulers. For the
events considered here, optimal schedulers exists.

4 C. Baier

presented in [20] using the observation that ropt ∈ R where R consists of the
long-run ratios of the bottom strongly connected components of M and the
ratios ratio(σ) = utility(σ)/cost(σ) along the simple finite paths σ starting in s
as well as the ratios of all simple cycles that are accessible from s.2 As R is a
finite subset of Q, ropt is rational. The straight-forward approach to compute
max{r ∈ R : PrM,s(�(ratio > r)) > 0} by inspecting all elements r ∈ R
has exponential time complexity. However, the continued-fraction method (see
e.g. [17]) yields a polynomial-time computation scheme for ropt . The continued-
fraction method requires polynomial-time algorithms to compute a bound N
for the denominator of ropt (i.e., ropt ∈ {a/b : a ∈ Z, b ∈ {1, . . . , N}}) and an
approximation of ropt up to precision ε = 1/(2N2). Such a bound N can be
derived in polynomial time from the local cost values and the long-run ratios of
the bottom strongly connected components. An ε-approximation of ropt can be
obtained by a binary search in the interval [0, rmax] where rmax is the quotient
of the maximal local utility value and the minimal local cost value.

Conclusion. The material summarized in this extended abstract is in the line
of recent work by various research groups on temporal logics and algorithms
for analyzing the tradeoff of different objectives in Markovian models. Besides
the related work mentioned at the beginning of this article, there are various
approaches that deal with multi-weighted models and multiple probability and
expectation objectives (see e.g. [16,6,22]) or related synthesis problems (see e.g.
[26,7,15,12]). The list of open problems in these research directions is still long
and covers, e.g., a better understanding of the gaps between decidability and
undecidability of model-checking problems for temporal logics with weight asser-
tions in multi-weighted Markovian models, parameter synthesis algorithms for
more complex parametric weight assertions, and algorithms to reason about
quantiles with quantitative probability constraints in weighted MDPs or stochas-
tic two-player game structures.

Acknowledgments. The presented material relies on joint work with Marcus Daum,
Clemens Dubslaff, Joachim Klein, Daniel Krähmann, Sascha Klüppelholz, Jana Schu-
bert, Michael Ummels and Sascha Wunderlich.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

2. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299.
Springer, Heidelberg (2014)

2 A path is called simple if each state occurs at most once. Likewise, a simple cycle
means a cycle that visits each state at most once, except that its first state equals
its last state.

Reasoning About Cost-Utility Constraintsin Probabilistic Models 5

3. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear
temporal logic: complexity and decidability. In: 23rd Conference on Computer Sci-
ence Logic and the 29th Symposium on Logic In Computer Science (CSL-LICS),
pp. 11:1–11:10. ACM (2014)

4. Bauer, S.S., Juhl, L., Larsen, K.G., Srba, J., Legay, A.: A logic for accumulated-
weight reasoning on multiweighted modal automata. In: 6th International Sympo-
sium on Theoretical Aspects of Software Engineering (TASE), pp. 77–84. IEEE
Computer Society (2012)

5. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications
with accumulative values. In: 26th Annual IEEE Symposium on Logic in Computer
Science (LICS), pp. 43–52. IEEE Computer Society (2011)

6. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Multiple mean-
payoff objectives in Markov decision processes. Logical Methods in Computer Sci-
ence 10(1) (2014)

7. Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations with
guarantees: Beyond worst-case synthesis in quantitative games. In: 31st Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 25, pp. 199–213. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

8. Chakraborty, S., Katoen, J.-P.: Parametric LTL on markov chains. In: Diaz, J.,
Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 207–221. Springer,
Heidelberg (2014)

9. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity markov decision pro-
cesses. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
206–218. Springer, Heidelberg (2011)

10. Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science
458, 49–60 (2012)

11. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and
total-payoff through windows. Information and Computation 242, 25–52 (2015)

12. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthe-
sizing systems in probabilistic environments. Journal of the ACM 62(1), 9:1–9:34
(2015)

13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

14. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University, Department of Computer Science (1997)

15. Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 531–546. Springer, Heidelberg (2014)

16. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logical Methods in Computer Science
4(4) (2008)

17. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer (1993)

18. Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–246.
Springer, Heidelberg (2015)

19. Juhl, L., Guldstrand Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted
and parametrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories
of Programming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer,
Heidelberg (2013)

6 C. Baier

20. Krähmann, D., Schubert, J., Baier, C., Dubslaff, C.: Ratio and weight quantiles.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9234, pp. 344–356. Springer, Heidelberg (2015)

21. Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer,
Heidelberg (2005)

22. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 123–139. Springer, Heidelberg (2015)

23. Tomita, T., Hiura, S., Hagihara, S., Yonezaki, N.: A temporal logic with mean-
payoff constraints. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635,
pp. 249–265. Springer, Heidelberg (2012)

24. Ummels, M., Baier, C.: Computing quantiles in markov reward models. In:
Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 353–368.
Springer, Heidelberg (2013)

25. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M.,
Raskin, J.-F.: The complexity of multi-mean-payoff and multi-energy games. Infor-
mation and Computation 241, 177–196 (2015)

26. von Essen, C., Jobstmann, B.: Synthesizing efficient controllers. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 428–444. Springer,
Heidelberg (2012)

Integer-Complete Synthesis for Bounded
Parametric Timed Automata

Étienne André1(B), Didier Lime2, and Olivier H. Roux2

1 LIPN, CNRS, UMR 7030, Université Paris 13, Sorbonne Paris Cité,
Villetaneuse, France

Etenne.Andre@lipn.fr
2 IRCCyN, CNRS, UMR 6597, École Centrale de Nantes, Nantes, France

Abstract. Ensuring the correctness of critical real-time systems, involv-
ing concurrent behaviors and timing requirements, is crucial. Parame-
ter synthesis aims at computing dense sets of valuations for the timing
requirements, guaranteeing a good behavior. However, in most cases, the
emptiness problem for reachability (i.e., whether there exists at least
one parameter valuation for which some state is reachable) is undecid-
able and, as a consequence, synthesis procedures do not terminate in
general, even for bounded parameters. In this paper, we introduce a
parametric extrapolation, that allows us to derive an underapproxima-
tion in the form of linear constraints containing all the integer points
ensuring reachability or unavoidability, and all the (non-necessarily inte-
ger) convex combinations of these integer points, for general PTA with a
bounded parameter domain. Our algorithms terminate and can output
constraints arbitrarily close to the complete result.

1 Introduction

The verification of systems mixing time and concurrency is a notoriously dif-
ficult problem. Timed automata (TA) [1] are a powerful formalism for which
many interesting problems (including the reachability of a location) are decid-
able. However, the classical definition of TA is not tailored to verify systems
only partially specified, especially when the value of some timing constants is
not yet known. Parametric timed automata (PTA) [2] leverage this problem by
allowing the specification and the verification of systems where some of the tim-
ing constants are parametric. This expressive power comes at the price of the
undecidability of most interesting problems.

Related Work. Parametric Timed Automata were introduced in [2]. The simple
problem of the existence of a parameter valuation such that some location is
reachable is undecidable in both discrete and dense-time even with only three
parametric clocks (i.e., clocks compared to a parameter) [7,17], and even with
only strict constraints [11]. It is decidable for a single parametric clock in dis-
crete and dense time [2], and in discrete time with two parametric clocks and

This work is partially supported by the ANR national research program “PACS”
(ANR-2014).

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 7–19, 2015.
DOI: 10.1007/978-3-319-24537-9 2

8 É. André at al.

one parameter (and arbitrarily many non-parametric clocks) [10], or for a sin-
gle parametric clock (with arbitrarily many non-parametric clocks) [7]. More
complex properties expressed in parametric TCTL have been studied in [9,18].
PTA subclasses have been studied, most notably L/U-automata, for which the
problem is decidable [13], but no synthesis algorithm is provided, and there are
indeed practical difficulties in proposing one [14]. When further restricting to
L- or U-automata, the integer-valued parameters can be synthesized however
[8]. The trace preservation problem (i.e., given a reference parameter valuation
whether there exists another valuation for which the discrete behavior is the
same) is undecidable for both general PTA and L/U-PTA [4].

In [14], we focus on integer-valued bounded parameters (but still considering
dense-time), for which many problems are obviously decidable, and we provide
symbolic algorithms to compute the set of correct integer parameter values ensur-
ing a reachability (“IEF”) or unavoidability (“IAF”) property. A drawback is that
returning only integer points prevents designers to use the synthesized constraint
to study the robustness or implementability of their system (see, e.g., [16]).

Contribution. We propose terminating algorithms that compute a dense under-
approximation of the set of parameter values ensuring reachability or unavoid-
ability in bounded PTA (i.e., PTA with a bounded parameter domain). These
under-approximations are “integer-complete” in the sense that they are guar-
anteed to contain at least all the correct integer values given in the form of a
finite union of polyhedra; they are also “almost-complete” in the sense that the
only points that may not be included in the result are non-integer (rational)
points beyond the last integer point in a convex polyhedron. To the best of our
knowledge, these algorithms are the first synthesis algorithms that return an
almost-complete result for a subclass of PTA (namely bounded PTA) for which
the corresponding emptiness problems are undecidable; in fact, with the excep-
tion of two subclasses of L/U-PTA (namely L-PTA and U-PTA) considered over
discrete parameter valuations [8], we are not aware of any terminating synthe-
sis algorithm deriving a complete or an almost-complete result. Our algorithms
also quantify the “size” of the resulting constraint, i.e., they return all valuations
except possibly some non-integer points beyond the “last” integer points.

While of great practical interest, our algorithms are in essence quite similar
to those of [14]. We however demonstrate that while the algorithms from [14] also
return a symbolic representation of the “good” integer parameter values, inter-
preting the result of the IAF algorithm as dense is not correct in the sense that
some non-integer parameter values in that result may not ensure the unavoid-
ability property. Furthermore, since we produce real-valued parameter values, we
cannot use anymore the result from [14] ensuring termination of the algorithms,
which allows to derive a bound on clock values but relies on the parameters being
bounded integers. The main technical contribution of this paper is therefore the
derivation of a maximum-constant-based parametric extrapolation operator for
bounded PTA that ensures termination of our algorithms. To the best of our
knowledge this operator is the first of its kind.

Integer-Complete Synthesis for BoundedParametric Timed Automata 9

Finally, we have implemented the two algorithms and briefly report on them.

Outline. We first recall the necessary definitions in Section 2. We present our
parametric extrapolation in Section 3. We then introduce our terminating algo-
rithms (namely RIEF, RIAF) in Section 4. We conclude in Section 5.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R+. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
We write X = 0 for

∧
1≤i≤H xi = 0. Given d ∈ R+, w + d denotes the valuation

such that (w + d)(x) = w(x) + d, for all x ∈ X.
We assume a set P = {p1, . . . , pM} of parameters, i.e., unknown constants.

A parameter valuation v is a function v : P → Q+. We identify a valuation v
with the point (v(p1), . . . , v(pM)). An integer parameter valuation is a valuation
v : P → N.

In the following, we assume ∼ ∈ {<,≤,≥, >}. A constraint C (i.e., a convex
polyhedron) over X ∪P is a conjunction of inequalities of the form lt ∼ 0, where
lt denotes a linear term over X∪P of the form

∑
1≤i≤H αixi+

∑
1≤j≤M βjpj +d,

with αi, βj , d ∈ Z. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation w, w(v(C)) denotes the expression obtained by replacing each
clock x in v(C) with w(x). We say that v satisfies C, denoted by v |= C, if the
set of clock valuations satisfying v(C) is nonempty. Given a parameter valuation
v and a clock valuation w, we denote by w|v the valuation over X ∪P such that
for all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use
the notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that
C is satisfiable if ∃w, v s.t. w|v |= C. An integer point is w|v, where w is an
integer clock valuation, and v is an integer parameter valuation. We define the
time elapsing of C, denoted by C↗, as the constraint over X and P obtained
from C by delaying all clocks by an arbitrary amount of time. We define the
past of C, denoted by C↙, as the constraint over X and P obtained from C
by letting time pass backward by an arbitrary amount of time (see [14]). Given
R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint obtained
from C by resetting the clocks in R, and keeping the other clocks unchanged.
We denote by C↓P the projection of C onto P , i.e., obtained by eliminating the
clock variables.

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ∼ z, where z is either a parameter or a constant in Z. Let plt denote a
parametric linear term over P , that is a linear term without clocks (αi = 0 for
all i). A zone C is a constraint over X ∪ P defined by inequalities of the form
xi − xj ∼ plt , where xi, xj ∈ X ∪ {x0}, where x0 is the zero-clock always equal
to 0.

10 É. André at al.

A parametric constraint K is a constraint over P defined by inequalities of
the form plt ∼ 0. We denote by � (resp. ⊥) the parametric constraint that cor-
responds to the set of all possible (resp. the empty set of) parameter valuations.

2.2 Parametric Timed Automata

Parametric timed automata (PTA) extend timed automata with parameters
within guards and invariants in place of integer constants [2].

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P, I, E), where: i) Σ is
a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial
location, iv) X is a set of clocks, v) P is a set of parameters, vi) I is the invariant,
assigning to every l ∈ L a guard I(l), vii) E is a set of edges e = (l, g, a,R, l′)
where l, l′ ∈ L are the source and destination locations, a ∈ Σ, R ⊆ X is a set
of clocks to be reset, and g is a guard.

Given a parameter valuation v, we denote by v(A) the non-parametric timed
automaton where all occurrences of a parameter pi have been replaced by v(pi).

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0,X, P, I, E),
and a parameter valuation v, the concrete semantics of v(A) is given by the
timed transition system (Q, q0,⇒), with Q = {(l, w) ∈ L × R

H
+ | v|w |= I(l)},

q0 = (l0,X = 0), ((l, w), e, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w) e→ (l′, w′′) d→ (l′, w′),
with: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ Q, there exists e = (l, g, a,R, l′) ∈ E,
w′ = [w]R, and v|w |= g; and (l, w) d→ (l, w + d), with d ∈ R+, if ∀d′ ∈
[0, d], (l, w + d′) ∈ Q.

We refer to states of a TA as concrete states. A concrete run of a TA is an
alternating sequence of (concrete) states of Q and edges of the form s0

e0⇒ s1
e1⇒

· · · em−1⇒ sm, such that for all i = 0, . . . , m − 1, ei ∈ E, and (si, ei, si+1) ∈ ⇒.
Given a state s = (l, w), we say that s is reachable (or that v(A) reaches s) if s
belongs to a run of v(A).

Symbolic States. We now recall the symbolic semantics of PTA: A symbolic
state of a PTA A is a pair (l, C) where l ∈ L is a location, and C its associated
zone. A state s = (l, C) is v-compatible if v |= C. The initial state of A is s0 =
(l0, (X = 0)↗∧I(l0)). The symbolic semantics relies on the Succ operation. Given
a symbolic state s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′),
with C ′ =

(
[(C ∧ g)]R

)↗ ∩ I(l′).
A symbolic run of a PTA is an alternating sequence of symbolic states and

edges of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm, such that for all i = 0, . . . , m − 1,
ei ∈ E, and si+1 belongs to Succ(si, e). Given a state s, we say that s is reachable
if s belongs to a run of A. A maximal run is a run that is either infinite, or that
cannot be extended.

Given a PTA A and a parameter valuation v, given a concrete state (l, w)
of v(A) and a symbolic state (l′, C) of A, we write (l, w) ∈ v((l′, C)) if l = l′ and
w |= v(C).

Integer-Complete Synthesis for BoundedParametric Timed Automata 11

In this paper, we will consider bounded PTA. A bounded parameter domain
assigns to each parameter a minimum integer bound and a maximum integer
bound. That is, each parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N.
Hence, a bounded parameter domain is a hyperrectangle in M dimensions.

Integer Hulls. We briefly recall some definitions from [14]. Let C be a convex
polyhedron. C is topologically closed if it can be defined using only non-strict
inequalities.1 The integer hull of a topologically closed polyhedron, denoted by
IH(C), is defined as the convex hull of the integer vectors of C, i.e., IH(C) =
Conv(IV(C)), where Conv denotes the convex hull, and IV the set of vectors with
integer coordinates.

We treat integer hulls for finite unions of convex polyhedra in a manner
similar to [14]: given a (possibly non-convex) finite union of convex polyhedra⋃

i Ci, we write IH(
⋃

i Ci) for the set
⋃

i(IH(Ci)). Given a symbolic state s =
(l, C), we often write IH(s) for (l, IH(C)).

Decision and Computation Problems. Given a class of decision problems P
(reachability, unavoidability, etc.), we consider the problem of synthesizing the
set (or part of it) of parameter valuations v such that v(A) satisfies φ.

Here, we mainly focus on reachability (i.e., does there exist a run that goes
through some goal locations) called here EF, and unavoidability (i.e., do all
maximal runs go through some goal locations) called here AF.

3 Parametric Extrapolation

In this section, we present an extrapolation based on the classical k-extrapolation
used for the zone-abstraction for timed automata, but this time in a parametric
setting.

l1 l2

l3l4

x = 1
x := 0

x ≥ 1
∧ y = 0

y = 1
y := 0

y ≤ p
y := 0

Fig. 1. Motivating PTA

First, let us motivate the use of an extrapolation.
Consider the PTA in Fig. 1. After a number n of
times through the loop, we get constraints in l1 of
the form 0 ≤ x−y ≤ n×p, with n growing without
bound. Even if the parameter p is bounded (e.g.,
in [0, 1]), the time necessary to reach location l4 is
unbounded. This was not the case in [14] due to the
fact that parameters were integers. Hence, on this
PTA, we cannot just apply the integer hull (as in
[14]) to ensure termination of our algorithms.

Now, we will show that the union for all values of the parameters of the
classical k-extrapolation used for the zone-abstraction for timed automata leads

1 We only define here the integer hull of a topologically closed polyhedron. In fact,
any non-closed polyhedron can be represented by a closed polyhedron with one extra
dimension [12]. Direct handling of not-necessarily-closed (NNC) polyhedra raises no
theoretical issue but would impair the readability of this paper (see [14]).

12 É. André at al.

to a non-convex polyhedron. Let us consider the PTA in Fig. 2a with a parameter
p such that 0 ≤ p ≤ 1. By taking n times the loop we obtain:

0 ≤ x ≤ p ∧ 0 ≤ y − x ≤ (n + 1) × p ∧ 0 ≤ p ≤ 1

The greatest constant of the model is k = 1. After one loop, y can be greater
than 1. Then, for each value of p, we can apply the classical k-extrapolation used
for timed automata (as recalled in [6]) of the corresponding zone. The union for
all values of p of these extrapolations, projected to the plan (y, p) is depicted by
the plain blue part (light and dark blue) of Fig. 2b. The obtained polyhedron is
non-convex.

Assume : 0 ≤ p ≤ 1

l0 l1

x ≤ p

x := 0

y > 1

(a) PTA

y

p

0 1 2 3

0

1

(b) Extrapolation

Fig. 2. Example illustrating the non-convex parametric extrapolation

Let us now introduce our concept of (M,X)-extrapolation.
For any zone C and variable x, we denote by Cylx(C) the cylindrifica-

tion of C along variable x, i.e., Cylx(C) = {w | ∃w′ ∈ C,∀x′ �= x,w′(x′) =
w(x′) and w(x) ≥ 0}. This is a usual operation that consists in unconstraining
variable x.

Definition 3 ((M,x)-extrapolation). Let C be a polyhedron. Let M be a
non-negative integer constant and x be a clock. The (M,x)-extrapolation of C,
denoted by ExtMx (C), is defined as:

ExtMx (C) =
(
C ∩ (x ≤ M)

) ∪ Cylx
(
C ∩ (x > M)

) ∩ (x > M).

Given s = (l, C), we write ExtMx (s) for ExtMx
(
C

)
.

To illustrate the (M,X)-extrapolation, we go back to the example of Fig. 2a
after one loop. C is the polyhedron for n = 1. Ext1y(C) is depicted in Fig. 2b by
the plain blue part as follows:

(
C ∩ (y ≤ 1)

)
is in light blue and Cyly

(
C ∩ (y >

1)
) ∩ (y > 1) is in dark blue. Note that for this example the (1, y)-extrapolation

gives the same result as the union for all values of the parameter p of the classical
extrapolation for timed automata. Lemma 1 follows from Definition 3.

Lemma 1. For all polyhedra C, integers M ≥ 0 and clock variables x and x′,
we have ExtMx

(
ExtMx′ (C)

)
= ExtMx′

(
ExtMx (C)

)
.

Integer-Complete Synthesis for BoundedParametric Timed Automata 13

Proof (sketch). The result comes from the following facts:

1. Cylx
(
Cylx′(C)

)
= Cylx′

(
Cylx(C)

)
;

2. for x �= x′,Cylx(C) ∩ (x′ ∼ M) = Cylx
(
C ∩ (x′ ∼ M)

)
for ∼ ∈ {<,≤,≥, >}.

We can now consistently define the (M,X)-extrapolation operator:

Definition 4 ((M,X)-extrapolation). Let M be a non-negative integer con-
stant and X be a set of clocks. The (M,X)-extrapolation operator ExtMX is defined
as the composition (in any order) of all ExtMx , for all x ∈ X. When clear from
the context we omit X and only write M -extrapolation or ExtM .

In the rest of this section, we prove most results on the extrapolation first
on ExtMx . It is then straightforward to adapt them to ExtMX using Lemma 1.

Crucially, extrapolation preserves the projection onto P :

Lemma 2. Let C be a constraint over X ∪ P . Then C↓P = ExtMx (C)↓P .

For the preservation of behaviors, following [6], we use a notion of simulation:

Definition 5 (Simulation [6]). Let A = (Σ,L, l0,X, I, E) be a TA and � a
relation on L × R

H
+ . Relation � is a (location-based) simulation if:

– if (l1, w1) � (l2, w2) then l1 = l2,
– if (l1, w1) � (l2, w2) and (l1, w1)

a→ (l′1, w
′
1), then there exists (l′2, w

′
2) such

that (l2, w2)
a→ (l′2, w

′
2) and (l′1, w

′
1) � (l′2, w

′
2),

– if (l1, w1) � (l2, w2) and (l1, w1)
d→ (l1, w1+d), then there exists d′ such that

(l2, w2) → (l2, w2 + d′) and (l1, w1 + d) � (l2, w2 + d′).

If �−1 is also a simulation relation then � is called a bisimulation.
State s1 simulates s2 if there exists a simulation � such that s2 � s1. If �

is a bisimulation, then the two states are said bisimilar.

Lemma 3 ([6, Lemma 1]). Let M be a non-negative integer constant greater
or equal to the maximum constant occurring in the time constraints of the TA.
Let ≡M be the relation defined as w ≡M w′ iff ∀x ∈ X: either w(x) = w′(x) or
(w(x) > M and w′(x) > M). The relation R = {((l, w), (l, w′))|w ≡M w′} is a
bisimulation relation.

Lemma 4. For all parameter valuation v, non-negative integer constants M ,
clocks x and valuation set C, v(ExtMx (C)) = ExtMx (v(C)).

We use the bounds on parameters to compute the maximum constant M
appearing in all the guards and invariants of the PTA. When those constraints
are parametric expressions, we compute the maximum value that the expression
can take for all the bounded parameter values (it is unique since expressions are
linear): e.g., if a guard is x ≤ 2p1 − p2 + 1 and p1 ∈ [2, 5], and p2 ∈ [3, 4] then
the maximum constant corresponding to this constraint is 2 × 5 − 3 + 1 = 8.

14 É. André at al.

Also note that bounding the parameter domain of PTA is not a strong restric-
tion in practice – especially since the bounds can be arbitrarily large.

Lemmas 5 and 6 are instrumental in proving the preservation of all correct
integer parameter values in the algorithms of Section 4, while Lemma 7 is the
key to proving their termination.

Lemma 5. Let A be a PTA, s be a symbolic state of A, and M a non-negative
integer constant greater than the maximal constant occurring in the PTA (includ-
ing the bounds of parameters). Let x be a clock, v be a parameter valuation, and
(l, w) ∈ v(ExtMx (s))) be a concrete state. There exists a state (l, w′) ∈ v(s) such
that (l, w) and (l, w′) are bisimilar.

Extrapolation and Integer Hulls. Here, for the sake of simplicity, and similarly to
[14], we consider that all polyhedra are topologically closed and, to avoid confu-
sion, we equivalently (provided that M is (strictly) greater than the maximal con-
stant in the PTA) define ExtMx (s) as (s∩(x ≤ M))∪Cylx(s∩(x ≥ M))∩(x ≥ M).

Lemma 6. For all integer parameter valuations v, all non-negative integer con-
stants M , and all reachable symbolic states s = (l, C), v(IH(ExtMX (C))) =
v(ExtMX (C)).

Lemma 7. In a bounded PTA, the set of constraints IH(ExtMX (C)) over the set
of symbolic reachable states (l, C) is finite.

4 Integer-Complete Dense Parametric Algorithms

In this section, we describe two parameter synthesis algorithms that always
terminate for bounded PTA, and return not only all the integer points solution
of the problem (à la [14]) but also all real-valued points in between integer points;
that is, these algorithms return a list of convex combinations of integer points,
and all rational-valued points contained in each such convex combination are
also solution of the problem.

4.1 Parametric Reachability: RIEF

The goal of RIEF given in Algorithm 1 (“R” stands for robust, and “I” for
integer hull) is to synthesize parameter valuations solution to the EF-synthesis
problem, i.e., the valuations for which there exists a run eventually reaching a
location in G. It is inspired by the algorithms EF and IEF introduced in [14]
that both address the same problem; however EF does not terminate in general,
and IEF can only output integer valuations. In fact, if we replace all occurrences
of IH(C) in Algorithm RIEF by C, we obtain Algorithm EF from [14]. RIEF
proceeds as a post-order traversal of the symbolic reachability tree, and collects
all parametric constraints associated with the target locations G. In contrast
to EF, it stores in S the integer hulls of the states, which ensures termination
due to the finite number of possible integer hulls of k-extrapolations; however,

Integer-Complete Synthesis for BoundedParametric Timed Automata 15

Algorithm 1. RIEF(A, s,G, S)
input : A PTA A, a symbolic state s = (l, C), a set of target locations G, a

set S of passed states on the current path
output: Constraint K over the parameters

1 if l ∈ G then K ← C↓P ;
2 else
3 K ← ⊥;

4 if IH(ExtMX (s)) 	∈ S then
5 for each outgoing e from l in A do
6 K ← K ∪ RIEF(A, Succ(s, e), G, S ∪ {IH(ExtMX (s))});

in contrast to IEF, RIEF returns the actual states (instead of their integer hull),
which yields a larger result than IEF.

As a direct consequence of Lemma 7, it is clear that RIEF explore only a
finite number a symbolic states. Therefore, we have the following theorem:

Theorem 1. For any bounded PTA A, the computation of RIEF(A, Init(A), G, ∅)
terminates.

Theorem 2. Upon termination of RIEF, we have:

1. Soundness: If v ∈ RIEF(A, Init(A), G, ∅) then G is reachable in v(A);
2. Integer completeness: If v is an integer parameter valuation, and G is reach-

able in v(A) then v ∈ RIEF(A, Init(A), G, ∅).

Example 1. Consider the simple PTA with a unique transition from the initial
location l0 to l1 with guard 1 ≤ x ≤ 2a. To ensure the EF{l1} property, we just
need to be able to go through the transition from l0 to l1. The parametric zone
C1 obtained in l1 is 1 ≤ x ∧ 1 ≤ 2a, which implies a ≥ 1

2 . The integer hull of C1

is 1 ≤ x ∧ 1 ≤ a, which implies a ≥ 1.
Algorithm IEF gives the result a ≥ 1 ∧ a ∈ N, while algorithm RIEF gives

(here) the exact result a ≥ 1
2 .

4.2 Parametric Unavoidability: RIAF

RIAF (given in Algorithm 2) synthesizes parameter valuations solution to the AF-
synthesis problem. It is inspired by the algorithms AF and IAF introduced in [14];
however AF may not terminate, and IAF can only output integer valuations.
Note also, as shown in Example 2 below, that interpreting the result of IAF as a
dense set is incorrect in general, since it may contain non-integer values that do
not ensure unavoidability. RIAF works as a post-order traversal of the symbolic
reachability tree, keeping valuations that permit to go into branches reaching G
and cutting off branches leading to a deadlock or looping without any occurrence
of G. More precisely, RIAF uses three sets of valuations: i) KGood contains the

16 É. André at al.

Algorithm 2. RIAF(A, s,G, S)
input : A PTA A, a symbolic state (l, C), a set of target locations G, a set S

of passed states on the current path
output: Constraint K over the parameters

1 if l ∈ G then K ← C↓P ;
2 else
3 if (l, IH(ExtMX (C))) ∈ S then K ← ⊥ ;
4 else
5 K ← � ; KLive ← ⊥;
6 for each outgoing e = (l, g, a, R, l′) from l in A do
7 S′ ← Succ((l, C), e);

8 KGood ← RIAF(A, S′, G, S ∪ {(l, IH(ExtMX (C)))});
9 KBlock ← � \ S′↓P ;

10 K ← K ∩ (KGood ∪ KBlock);

11 KLive ← KLive ∪ (C ∩ g)↙;

12 K ← K \ (RX∪P \ KLive)↓P ;

set of valuations that indeed satisfy AF, recursively computed by calling RIAF;
ii) KBlock allows to cut off branches leading to deadlock or looping, by keeping
only valuations in the complement of the first state in that branch; iii) KLive

is necessary to forbid reaching states from which no transition can be taken for
any e, even after some delay.

The main difference between AF and RIAF is that we use the convergence
condition of IAF, which operates on integer hulls instead of symbolic states,
hence ensuring termination with the same reasoning as RIEF.

We state below the soundness and integer completeness of RIAF. The proofs
are easily adapted from those of AF in [14], by using the additional arguments
provided in the proof of RIEF, and in particular Lemma 7.

Theorem 3. Upon termination of RIAF, we have:

1. Soundness: If v ∈ RIAF(A, Init(A), G, ∅) then G is inevitable in v(A);
2. Integer completeness: If v is an integer parameter valuation, and G is

inevitable in v(A) then v ∈ RIAF(A, Init(A), G, ∅).

l0l1 l2
x ≥ 0 1 ≤ x ≤ 2a

Fig. 3. Counter-example to the density of the result of IAF.

Example 2. Consider the PTA in Fig. 3. To ensure the AF{l1} property, we
need to cut the transition from l0 to l2. The parametric zone C2 obtained in l2
is 1 ≤ x ∧ 1 ≤ 2a, which implies a ≥ 1

2 . The integer hull of C2 is 1 ≤ x ∧ 1 ≤ a,
which implies a ≥ 1. In order to block the path to l2 in l0, we intersect with the

Integer-Complete Synthesis for BoundedParametric Timed Automata 17

complement of projection on parameters of IH(C2), i.e., a < 1. Since there is no
constraint on the transition from l0 to l1 the final result of our former algorithm
IAF is actually a < 1. For integer parameters this means a = 0, which is correct.
But if we interpret the result for real parameters, we obtain that, for instance,
a = 1

2 should be a valuation ensuring the property, while it is obviously not.
On the same example, RIAF gives (here) the exact result a < 1

2 .

4.3 Implementation in Romo

The algorithms have been implemented in the tool Romo [15]; polyhedra oper-
ations (both convex and non-convex) are handled by the PPL library [5]. To
illustrate this, we refer the reader to the scheduling example of [14]. It consists
in three tasks τ1, τ2, τ3 scheduled using static priorities (τ1 > τ2 > τ3) in a non-
preemptive manner. Task τ1 is periodic with period a and a non-deterministic
duration in [10, b], where a and b are parameters. Task τ2 only has a minimal
activation time of 2a and has a non-deterministic duration in [18, 28] and finally
τ3 is periodic with period 3a and a non-deterministic duration in [20, 28]. Each
task is subject to a deadline equal to its period so that it must only have one
instance active at all times. We ask for the parameter values that ensure that
the system does not reach a deadline violation.2 Algorithm IEF produces the
constraint a ≥ 34, b ≥ 10, a− b ≥ 24 in 7.4 s on a Core i7/Linux computer, while
algorithm RIEF produces the constraint a > 562

17 , b ≥ 10, a − b > 392
17 in 12.7 s.

As illustrated here, the results are indeed a bit more precise but the main
improvement is of course the guaranteed density of the result. Also, RIEF is
generally slower than IEF and profiling shows that this is due to a decreased effi-
ciency in computing the integer hull: we start each time from the whole symbolic
state instead of starting from the successor of an already computed integer hull.
This could maybe be mitigated using a cache for the constraints generated in
computing the integer hulls.

5 Conclusion

Summary. We introduced here an extrapolation for symbolic states that contains
not only clocks but also parameters. We then proposed algorithms that always
terminate for PTA with bounded parameters, and output symbolic constraints
that define dense sets of parameter valuations that are guaranteed to be correct
and containing at least all integer points.

Synthesizing not only the integer points but also the real-valued points is
of utmost importance for the robustness or implementability of the system. In
fact, one can even consider any degree of precision instead of integers (e.g., a
degree of precision of 1

10) by appropriately resizing the constants of the PTA
(e.g., by multiplying all constants and all parameter bounds by 10). This makes
possible the synthesis of an underapproximated result arbitrarily close to the
actual solution.
2 The result is therefore the complement of the result given by IEF and therefore an

over-approximation containing no incorrect integer value.

18 É. André at al.

Future Works. We proposed a first attempt to define a k-extrapolation for PTA;
this can serve as a basis for further developments, e.g., using better extrap-
olation operators such as L/U, local-L/U or local-diagonal-L/U abstractions.
The approach we propose is fairly generic and could probably be adapted to
more complex properties, expressed in LTL or CTL and their parametric vari-
ants. Moreover, we would like to extend in a similar manner the inverse method
proposed in [3], hence ensuring termination of this algorithm with an almost-
complete result. Furthermore, we use here the integer hull as an underapprox-
imation of the result; in contrast, we could use an overapproximation using a
notion (yet to be defined) of “external integer hull”, and then combine both hulls
to obtain two sets of “good” and “bad” parameter valuations separated by an
arbitrarily small set of unknown valuations.

Acknowledgment. We would like to thank anonymous reviewers for their useful

comments, especially for a meaningful remark on a preliminary version of this paper

together with the suggestion of the example in Fig. 1.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(5), 819–836 (2009)

4. André, É., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Heidelberg (2015)

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

6. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)

7. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015)

8. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2), 121–151 (2009)

9. Bruyère, V., Raskin, J.-F.: Real-time model-checking: Parameters everywhere. Log-
ical Methods in Computer Science 3(1:7) (2007)

10. Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 123–134. Springer, Heidelberg (2014)

11. Doyen, L.: Robust parametric reachability for timed automata. Information Pro-
cessing Letters 102(5), 208–213 (2007)

Integer-Complete Synthesis for BoundedParametric Timed Automata 19

12. Halbwachs, N., Proy, Y., Raymond, P.: Veriffcation of linear hybrid systems
by means of convex approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS,
vol. 864. Springer, Heidelberg (1994)

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming 52–53,
183–220 (2002)

14. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Transactions on Software Engineering 41(5), 445–461 (2015)

15. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)

16. Markey, N.: Robustness in real-time systems. In: SIES, pp. 28–34. IEEE Computer
Society Press (2011)

17. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

18. Wang, F.: Parametric timing analysis for real-time systems. Information and Com-
putation 130(2), 131–150 (1996)

Polynomial Interrupt Timed Automata

Béatrice Bérard1,4, Serge Haddad2,4,5(B), Claudine Picaronny2,4,5,
Mohab Safey El Din1,4,5, and Mathieu Sassolas3

1 Sorbonne Université, Université P. & M. Curie, LIP6, ParaSol Project, UMR 7606,
Paris, France

2 École Normale Supérieure de Cachan, LSV, UMR 8643, INRIA, Cachan, France
3 Université Paris-Est, LACL, Créteil, France

4 CNRS, Paris, France
5 INRIA, Paris-Rocquencourt Center, PolSys Project, Paris, France

haddad@lsv.ems-cachan.fr

Abstract. Interrupt Timed Automata (ITA) form a subclass of stop-
watch automata where reachability and some variants of timed model
checking are decidable even in presence of parameters. They are well
suited to model and analyze real-time operating systems. Here we extend
ITA with polynomial guards and updates, leading to the class of poly-
nomial ITA (polITA). We prove that reachability is decidable in 2EXP-
TIME on polITA, using an adaptation of the cylindrical decomposi-
tion method for the first-order theory of reals. Compared to previous
approaches, our procedure handles parameters and clocks in a unified
way. We also obtain decidability for the model checking of a timed ver-
sion of CTL and for reachability in several extensions of polITA.

1 Introduction

Hybrid Automata. Hybrid systems [14] combine continuous evolution of vari-
ables according to flow functions (described by differential inclusions) in con-
trol nodes, and discrete jumps between these nodes, where the variables can be
tested by guards and updated. This class of models is very expressive and all
relevant verification questions (e.g. reachability) are undecidable. For the last
twenty years, a large amount of research was devoted to identifying subclasses
with decidable properties, by restricting the continuous dynamics and/or the
discrete behavior of the systems. Among these classes lie the well known Timed
Automata (TA) [3], where all variables are clocks evolving with rate 1 w.r.t.
to global time, guards are comparisons of clocks with rational constants, and
updates are resets. It is proved in [15] that reachability becomes undecidable
when adding one stopwatch, i.e., a clock whose rate is either 0 or 1 depend-
ing on the state, to timed automata. Decidability results were also obtained for
larger classes (see [2,4,5,15,17]), usually by building from the associated tran-
sition system (with uncountable state space) a finite abstraction preserving a
specific class of properties, like reachability or those expressed by temporal logic
formulas. In all these abstractions, a state is a pair composed of a control node
and a polyhedron of variable values [15,17].

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 20–32, 2015.
DOI: 10.1007/978-3-319-24537-9 3

Polynomial Interrupt Timed Automata 21

Interrupt Timed Automata. The class of Interrupt Timed Automata (ITA),
incomparable with TA, was introduced in [8,10] as another subclass of hybrid
automata with a (time-abstract) bisimulation providing a finite quotient, thus
leading to decidability of reachability and some variants of timed model checking.
In a basic n-dimensional ITA, control nodes are organized along n levels, with
n stopwatches (also called clocks hereafter), one per level. At a given level, the
associated clock is active, while clocks from lower levels are frozen and clocks
from higher levels are irrelevant. Guards are linear constraints and the clocks
can be updated by linear expressions (using only clocks from lower levels). The
hierarchical structure of ITA makes them particularly well suited for modeling
systems with interruptions, like real-time operating systems. ITA were extended
with parameters in [9], while preserving decidability.

Contribution. We define the class PolITA, of polynomial ITA, where linear
expressions on clocks are replaced by polynomials with rational coefficients both
for guards and updates. For instance, a guard at level 2 with clock x2 can be of the
form P1(x1)x2

2 +P2(x1) ≥ 0, where P1 and P2 are polynomials with single variable
x1, the clock of level 1. Thus, guards are more expressive than in the whole class of
linear hybrid automata and classical polyhedron-based abstractions [1,12] are not
sufficient to deal with these constraints. Since linear constraints are not always suf-
ficient for modeling purposes, such guards can be useful. In addition, such guards
can simulate irrational (algebraic) constraints, a case that becomes undecidable in
the setting of timed automata [19]. Similar polynomials of variables for programs
were considered in [20], although in an untimed setting.

We establish that reachability is decidable in 2EXPTIME for PolITA by
adapting the cylindrical decomposition [6,13] related to the first order theory of
reals. Observe however that not any decision procedure would be appropriate
for our goal. Indeed this decomposition produces a finite partition of the state
space, which is the basis for the construction of a finite bisimulation quotient.
The first order theory of reals has already been used in several works on hybrid
automata [4,17] but it was restricted to the dynamical part, with discrete jumps
that must reinitialize the variables. Our adaptation consists in an on-the-fly
construction avoiding to build the whole decomposition.

The construction can also be adapted to model checking of a timed extension
of CTL. From an expressiveness point of view, we show that (contrary to ITA)
PolITA are incomparable with stopwatch automata (SWA). We also prove
that the decidability result still holds with several extensions: adding auxiliary
clocks and parameters, and enriching the possible updates. In particular, para-
metric ITA [9] can be seen as a subclass of PolITA, and the complexity of our
reachability algorithm is better than [9] (2EXPSPACE).

Outline. We describe the model of polynomial ITA in Section 2, with an example
and thepresentationof theverificationproblems. InSection3we informallypresent
the cylindrical decomposition and the decision procedures for PolITA. Then in
section 4, we detail these constructions with a special focus on the data structures
and algorithmic schemes. Finally, we discuss expressiveness, describe extensions
and conclude in Section 5.Allmissing proofs and constructions can be found in [11].

22 B. Bérard et al.

2 Polynomial ITA

We denote respectively by N, Z, Q and R the sets of natural numbers, integers,
rational and real numbers, with R≥0 for the set of non negative real numbers.
Let X = {x1, . . . , xn} be a finite set of n variables called clocks. We write
Q[x1, . . . , xn] for the set of polynomials with n variables and rational coefficients.

A polynomial constraint is a conjunction of constraints of the form P �� 0
where P ∈ Q[x1, . . . , xn] and ��∈ {<,≤,=,≥, >}, and we denote by C(X) the
set of polynomial constraints. We also define U(X), the set of polynomial updates
over X, by: U(X) = {∧x∈Xx := Px | ∀x Px ∈ Q[x1, . . . , xn]}.

A valuation for X is a mapping v ∈ R
X , also identified to the n-dimensional

vector (v(x1), . . . , v(xn)) ∈ R
n. The valuation where v(x) = 0 for all x ∈ X is

denoted by 0. For P ∈ Q[x1, . . . , xn] and v a valuation, the value of P at v is
P (v) = P (v(x1), . . . , v(xn)). A valuation v satisfies the constraint P �� 0, written
v |= P �� 0, if P (v) �� 0. The notation is extended to a polynomial constraint:
v |= ϕ with ϕ =

∧
i Pi ��i 0 if v |= Pi ��i 0 for every i.

An update of valuation v by u = ∧x∈Xx := Px in U(X) is the valuation
v[u] defined by v[u](x) = Px(v) for each x ∈ X. Hence an update is atomic in
the sense that all variables are assigned simultaneously. For valuation v, delay
d ∈ R≥0 and k ∈ [1..n], the valuation v′ = v+k d, corresponding to time elapsing
of d for xk, is defined by v′(xk) = v(xk) + d and v′(x) = v(x) for x �= xk.

Definition 1 (PolITA). A polynomial interrupt timed automaton (PolITA)
is a tuple A = 〈Σ,Q, q0, F,X, λ,Δ〉, where:

– Σ is a finite alphabet, with ε the empty word in Σ∗, the set of words over Σ;
– Q is a finite set of states, q0 is the initial state, F ⊆ Q is the set of final

states;
– X = {x1, . . . , xn} consists of n interrupt clocks;
– the mapping λ : Q → {1, . . . , n} associates with each state its level and xλ(q)

is called the active clock in state q;
– Δ ⊆ Q×C(X)×(Σ∪{ε})×U(X)×Q is the set of transitions. Let q

ϕ,a,u−−−→ q′ in
Δ be a transition with k = λ(q) and k′ = λ(q′). The guard ϕ is a conjunction
of constraints P �� 0 with P ∈ Q[x1, . . . , xk] (P is a polynomial over clocks
from levels less than or equal to k). The update u is of the form ∧n

i=1xi := Ci

with:
• if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′,

Ci = xi and for i > k′, Ci = 0;
• if k ≤ k′ then for 1 ≤ i < k, Ci = xi, Ck = P for some P ∈

Q[x1, . . . , xk−1] or Ck = xk, and for i > k, Ci = 0.

Example 1. PolITA A0 of Fig. 1a has alphabet {a, a′, b, c}, two levels, with q0
at level 1 and q1, q2 at level 2. The single final state is q2. At level 1, only x1

appears in guards and updates (here the only update is the reset of x1 by action
a′), while at level 2 guards use polynomials in both x1 and x2. In the sequel, the
polynomials of A0 are denoted by A = x2

1 − x1 − 1, B = (2x1 − 1)x2
2 − 1 and

C = x2 + x2
1 − 5.

Polynomial Interrupt Timed Automata 23

q0, 1

q1, 2 q2, 2

x2
1 ≤ x1 + 1, a

x2
1 > x1 + 1, a′, x1 := 0

(2x1 − 1)x2
2 > 1, b

x2 ≤ 5 − x2
1, c

(a) A sample PolITA A0.

x1

x2

(2x1 − 1)x2
2 − 1 = 0

x2 + x2
1 − 5 = 0

x2
1 − x1 − 1 = 0

a

b

b

b

c

c

c0
c1
c2

c3

c4
c5

c6
c7

c8 c9
c10

c11

c5,−3

c5,−2

c5,−1

c5,1

c5,2

c5,3

c5,4

c5,5

(b) Sample trajectory of A0 in R
2.

The axes are not orthonormal.

Fig. 1. A PolITA and an example of a trajectory.

A configuration (q, v) of A consists of a state q and a clock valuation v.

Definition 2. The semantics of a PolITA A is defined by the (timed) tran-
sition system TA = (S, s0,→), where S =

{
(q, v) | q ∈ Q, v ∈ R

X
}

is the set
of configurations, with initial configuration s0 = (q0,0). The relation → on S
consists of two types of steps:
Time steps: Only the active clock in a state can evolve, all other clocks are
frozen. For a state q with active clock xλ(q), a time step of duration d ∈ R≥0 is

defined by (q, v) d−→ (q, v′) with v′ = v +λ(q) d.
Discrete steps: There is a discrete step (q, v) a−→ (q′, v′) if there exists a tran-
sition q

ϕ,a,u−−−→ q′ in Δ such that v |= ϕ and v′ = v[u].

A run of a PolITA A is a path in the graph TA alternating time and discrete
steps. For a given run ρ, the trace of ρ is the sequence of letters (or word)
appearing in the path and the timed word of ρ is the sequence of letters along
with the absolute time of the occurrence, i.e. the sum of all delays appearing
before the letter. A run is accepting if it ends in a state of F . The language (resp.
timed language) of A is the set of traces (resp. timed words) of accepting runs.

Example 2. In A0, the transition from q0 to q1 can only be fired before (or when)
x1 reaches 1+

√
5

2 , i.e. at the point labeled c6 on Fig. 1b. Then, transition b from
q1 to q2 can only be taken once x2 reaches the grey areas. Transition c cannot
be taken once the green curve has been crossed. Hence the loop bc can occur as
long as the clock values remain in the dark gray area c5,3, or on the green curve
c5,4. In the sequel, we show how to symbolically compute these sets, called cells.
Since q2 ∈ F , the run depicted in Fig. 1b is accepted by A. The associated timed
word (resp. trace) is (a, 1.2)(b, 2.3)(c, 2.6)(b, 3.3)(c, 3.9)(b, 5.1) (resp. abcbcb).

24 B. Bérard et al.

Given a PolITA A, the reachability problem asks, given a state q, whether
there exists a valuation v and a path from (q0,0) to (q, v) in TA.

The reachability procedure given in Section 3 relies on a finite abstraction
of TA. This abstraction needs to be refined enough to capture time elapsing,
discrete jumps through the crossing of a transition, and keep constant the truth
value of constraints P �� 0. In the resulting model, a state will consist of an
automaton state coupled with a cell of an appropriate cylindrical decomposition.

3 Cylindrical Decomposition and Reachability

3.1 Definition

The cylindrical decomposition is the basis of the first elementary decision pro-
cedure (more precisely 2EXPTIME) for the satisfiability of the first-order logic
over reals [13]1. A cylindrical decomposition of Rn consists of finite partitions
of R,R2, . . . ,Rn into cells such that the cells for R are open intervals or points
and cells of Rk+1 are obtained by lifting cells of Rk on the k + 1th axis and then
partitioning this axis with intervals and points in a “similar” way for all the
points of the original cell.

Example 3. Fig. 1b partly depicts a cylindrical decomposition of R2. The cells
of R≥0 are denoted by c0, . . . , c11 (those of the negative part of the x1 axis are
not represented). The lifting of cell c5 is c5 × R and is partitioned into cells
c5,−3, c5,−2, . . . , c5,5. Given any z ∈ c5, {z}×R is partitioned in an open interval
c5,−3∩{z}×R followed by a point c5,−2∩{z}×R, etc. Observe that the mapping
z �→ c5,−2 ∩ {z} × R is continuous.

Definition 3. A cell of level k is a subset of Rk inductively defined as follows.

– When k = 1, it is either a point or an open interval.
– A cell C of level k + 1 is based on a cell C ′ of level k. It has one of the

following shapes.
1. C = {(x, f(x)) | x ∈ C ′} with f a continuous function from C ′ to R;
2. C = {(x, y) | x ∈ C ′ ∧ l(x) < y < u(x)} with l < u continuous functions

from C ′ to R, possibly with l = −∞ and/or u = +∞.

We are interested in a cylindrical decomposition adapted to finite families of
polynomials P = {P1, . . . ,Pn} with Pk ⊆ Q[x1, . . . , xk]: in a cell of level k, the
sign (−, 0,+) of each polynomial in Pk is constant. Due to the definition of cells,
a cylindrical decomposition is appropriately represented by a tree.

Definition 4. A cylindrical decomposition of Rn adapted to P = {Pk}k≤n such
that Pk ⊆ Q[x1, . . . , xk], is a tree of cells inductively defined as follows:

– The root of the tree is the only cell of level 0, that is R
0;

1 Later on, an EXPSPACE procedure was proposed in [7].

Polynomial Interrupt Timed Automata 25

– Let C be a cell of level k < n in the tree. There exists some r ∈ N and
continuous functions fi, for 1 ≤ i ≤ r, with −∞ = f0 < f1 < . . . <
fr < fr+1 = +∞, such that the (ordered) children of C at level k + 1 in
the tree are the cells C0 = {(x, y) | x ∈ C ∧ f0(x) < y < f1(x)}, C1 =
{(x, f1(x)) | x ∈ C}, C2 = {(x, y) | x ∈ C ∧ f1(x) < y < f2(x)}, . . . ,
C2r = {(x, y) | x ∈ C ∧ fr(x) < y < fr+1(x)}.
For all P ∈ Pk+1, for all i ∈ {0, . . . , 2r}, for all z, z′ ∈ Ci, sign(P (z)) =
sign(P (z′)).

Example 4. For the PolITA of Fig. 1a, the relevant polynomials in Q[x1] are
those related to level 1: the clock x1 itself and the polynomial A = x2

1 − x1 − 1
used in both guards from q0, hence P1 = {x1, A}. The relevant polynomials in
Q[x1, x2] are those from level 2: x2 and B = (2x1 − 1)x2

2 − 1, C = x2 + x2
1 − 5

associated with the guards from q1 and q2, so P2 = {x2, B,C}. For the cells of
level 1, c4, c8, c10 correspond to intersection points of graphs B = 0 and C = 0
projected on the x1 axis, while c2 corresponds to 1

2 , the root of the coefficient
2x1 − 1 of B. Other cells like c1, c3 correspond to intervals between roots. In cell
c5,3 of level 2, the guards of the transitions between q1 and q2 are satisfied.

The main elements for the effective construction of a cylindrical decomposi-
tion are given in Section 4. For the moment, we recall the result of [13]:

Theorem 1 ([13]). For any family P = {Pk}k≤n such that Pk is a finite subset
of Q[x1, . . . , xk], one can build a cylindrical decomposition of Rn adapted to P
in 2EXPTIME, more precisely in (|P| · d)2

O(n)
where d is the maximal degree of

a polynomial of P.

3.2 Reachability for PolITA

We now use this decomposition to build a finite abstraction of the set of configu-
rations of a PolITA, which leads to the decidability of the reachability problem.

Theorem 2. Reachability for PolITA is decidable in time (d|A|)2O(n)
where n

is the number of clocks in A and d the maximal degree of polynomials appearing
in A; thus in polynomial time when the number of clocks is fixed.

Let A = 〈Σ,Q, q0, F,X, λ,Δ〉 be a PolITA with X = {x1, . . . , xn}. We
define Poly(A) as the set of all polynomials appearing in guards and updates of
A (including all clocks) as follows: P belongs to Poly(A) iff (1) P is a clock, (2)
P occurs in a guard P �� 0, or (3) P = xi − Pi where xi := Pi is an update.

We denote by DA a cylindrical decomposition adapted to Poly(A), with
D1

A, . . . ,Dn
A for the set of cells at the respective levels 1, . . . , n so that for

1 ≤ k ≤ n, Dk
A is a decomposition of R{x1,...,xk}.

We define a finite transition system RA with states in Q × DA. The states
can also be partitioned according to levels as

⋃n
k=1 λ−1(k) × Dk

A. Indeed, given
a configuration (q, v) with λ(q) = k, the clocks of level i > k are irrelevant and

26 B. Bérard et al.

so v can be identified as a point in R
{x1,...,xk}. We now define the transitions of

RA as follows.

Time Successors. Let succ /∈ Σ be a letter representing time elapsing. Let
(q, C) be a state of RA, with λ(q) = k, and let C ∈ Dk−1

A be the projection of
C onto R

k−1 and −∞ = f0 < · · · < fr+1 = +∞ be the functions dividing C as
in Definition 4. The succ transitions are defined as follows:

– if C = {(x, fi(x)) | x ∈ C} for some i ∈ {1, . . . , r}, then there is a transition
(q, C) succ−−−→ (q, C ′) where C ′ = {(x, y) | x ∈ C, fi(x) < y < fi+1(x)};

– if C = {(x, y) | x ∈ C, fi−1(x) < y < fi(x)} for some i ∈ {1, . . . , r}, then
there is a transition (q, C) succ−−−→ (q, C ′) where C ′ = {(x, fi(x)) | x ∈ C};

– otherwise, C = {(x, y) | x ∈ C, fr(x) < y < fr+1(x)}, and there is a self-loop
labeled by succ: (q, C) succ−−−→ (q, C).

In all the above cases, C ′ is called the time successor of C (in the last case, C
is its own time successor). Since the decomposition is cylindrical, time elapsing
according to the current clock corresponds to moving to the “next” cell.

Proposition 1 (Correctness w.r.t. Time Elapsing). Let v be a valuation
belonging to a cell C of level k.

– There exists d > 0 such that the elapsing of d time units for xk yields a
valuation v +k d ∈ C ′, the time successor of C.

– For any 0 < d′ < d, the elapsing of d′ time units for xk yields a valuation
v +k d that is either in C or in C ′.

Discrete Successors. Since DA is adapted to Poly(A) which contains all guards
and updates we can write C |= ϕ whenever v |= ϕ for some v ∈ C and C[u]
for the unique cell C ′ ∈ Dk

A such that for any valuation v ∈ C, v[u] ∈ C ′.
Discrete transitions of A are translated as follows into RA: if (q, ϕ, a, u, q′) ∈ Δ

and C |= ϕ, there is a transition (q, C) a−→ (q′, C[u]). Since the decomposition
provides sign-invariant cells with respect to the polynomials of A, we have:

Proposition 2 (Correctness w.r.t. Discrete Steps).

– If (q, v) a−→ (q′, v′) ∈ TA, then (q, C) a−→ (q′, C ′) ∈ RA with v ∈ C and
v′ ∈ C ′.

– If (q, C) a−→ (q′, C ′) ∈ RA then for all v ∈ C there exists v′ ∈ C ′ such that
(q, v) a−→ (q′, v′) ∈ TA.

Since the number of cells in a cylindrical decomposition is doubly exponential
in the number of clocks and polynomial in the number and maximal degree
of polynomials to which it is adapted [6], we obtain the complexity stated in
Theorem 2. By setting {(q, C) | q ∈ F} as the set of final states of RA,ψ, this
construction establishes that the untimed language of a PolITA is regular.

Polynomial Interrupt Timed Automata 27

4 Effective Construction and on-the-fly Algorithm

4.1 Construction of a Cylindrical Decomposition

Building a cylindrical decomposition consists in two stages: the elimination stage
that enlarges P and the lifting stage that builds the cylindrical decomposition
using symbolic representations of sample points (one per cell).

Elimination Stage. Starting from a cell C at level k, in order to get a parti-
tion at level k + 1 adapted to Pk+1, any two points z, z′ ∈ C should trigger a
similar bevahiour for polynomials of Pk+1, that we consider for our discussion as
univariate polynomials of Q[x1, . . . , xk][xk+1] with variable xk+1. More precisely,
the properties we are looking for are:

– For all P ∈ Pk+1 and for all z, z′ in C, the number of real roots (counted
with multiplicities) of the polynomials P (z) and P (z′) in R[xk+1] are equal
(say μP). For 1 ≤ i ≤ μP and z ∈ C, we denote by rP,i(z) the ith real root
of polynomial P (z) (in increasing order) ;

– For all P,Q ∈ Pk+1, for all 1 ≤ i ≤ μP and 1 ≤ j ≤ μQ, for all z, z′ in C,
rP,i(z) ≤ rQ,j(z) implies rP,i(z′) ≤ rQ,j(z′).

These properties are analytical and do not provide insights on how to
ensure them. Fortunately, it turns out that a simple effective sufficient con-
dition exists: there is a finite subset of polynomials of Q[x1, . . . , xk] denoted
by Elimxk+1(Pk+1) such that if z, z′ satisfy sign(R(z)) = sign(R(z′)) for all
R ∈ Elimxk+1(Pk+1), then the above properties are satisfied.

To define Elimxk+1(Pk+1), we need some notations. For P =
∑

i≤p aix
i
k+1

with ai ∈ Q[x1, . . . , xk] for all i, lcof(P) denotes the leading coefficient ap.
Since this leading coefficient is a polynomial and could be null for some
P (z), the set of truncations of P contains the possible “realizations” of P :
Tru(P) = {∑i≤h aix

i
k+1 | ∀i > h ai /∈ R \ {0} ∧ ah �= 0}. For instance, if

P = x1x
3
2+(3x1+1)x2

2+5x2−2, then Tru(P) = {P, (3x1+1)x2
2+5x2−2, 5x2−2}.

Given another polynomial, Q =
∑

i≤q bix
i
k+1 ∈ Q[x1, . . . , xk][xk+1], the sub-

resultants (sResi(P,Q))i≤max(p,q) are polynomials of Q[x1, . . . , xk] obtained as
determinants of matrices whose items are coefficients of P and Q (see [6,11] for
a formal definition of subresultants, a polynomial time computation and their
properties).

Definition 5. Let Pk be a finite subset of Q[x1, . . . , xk−1][xk] for k > 1. Then
Elimxk

(Pk) is the subset of Q[x1, . . . , xk−1] defined for all P,Q ∈ Pk, R ∈
Tru(P), T ∈ Tru(Q) by:

– If lcof(R) does not belong to Q then lcof(R) ∈ Elimxk
(Pk);

– If deg(R) ≥ 2 then for all sResj(R, ∂R
∂xk

) that are defined and do not belong
to Q, sResj(R, ∂R

∂xk
) ∈ Elimxk

(Pk);
– for all sResj(R, T) that are defined and do not belong to Q, sResj(R, T) ∈

Elimxk
(P).

28 B. Bérard et al.

Using the properties of subresultants, one gets the following theorem whose
implementation is the elimination stage of the cylindrical decomposition. Due to
the quadratic blow up at each level of elimination the final number of polynomials
is doubly exponential w.r.t. the original number.

Theorem 3. Let P = {Pk}k≤n be a family of finite set of polynomials such that
Pk ⊆ Q[x1, . . . , xk]. Define Qn = Pn and inductively Qk−1 = Pk−1∪Elimxk

(Qk)
for k > 1. Then there exists a cylindrical decomposition adapted to Q (and thus
to P).

Example 5. Consider again the polynomials B = (2x1 − 1)x2
2 − 1 and C =

x2 + x2
1 − 5 from the PolITA of Fig. 1a. Their subresultant of index 0 is F =

−2x5
1+x4

1+20x3
1−10x2

1−50x1+26 which has precisely three real roots c4, c8, c10:
the x1-coordinates of intersection points of graphs B = 0 and C = 0 mentioned
previously.

Lifting Stage. The starting point of the lifting stage is the family P appropri-
ately enlarged by the elimination stage. In the cylindrical decomposition that
we build, every cell C of level k is represented by a sample point inside the cell
and the values of signs of all polynomials of set Pk on this point.

We consider representations of real subrings of the form D = Q[α1, . . . , αk]
where the αi’s are algebraic numbers, i.e., roots of polynomials in Q[x]. Any
real algebraic number α can be represented by a pair (n, P) where P is a non
null polynomial in Q[x] such that P (α) = 0 and n is the index of α in the
ordered set of real roots of P . This representation is extended for real algebraic
points (α1, . . . , αk) with the notion of triangular systems: α1 is the nth

1 root of
P1 ∈ Q[x1], α2 is the nth

2 root of P2(α1) with P2 ∈ Q[x1][x2], etc.

Definition 6 (Triangular System). For k ≥ 1, let (α1, . . . , αk) be a sequence
of reals and let {(ni, Pi)}k

i=1 be such that for all i, ni is a positive integer and
Pi ∈ Q[x1, . . . , xi−1][xi]. Then {(ni, Pi)}k

i=1 is a triangular system of level k for
(α1, . . . , αk) if:

– P1 is non null and α1 is its nth
1 real root;

– For 1 ≤ i < k, Pi+1(α1, . . . , αi) is a non null polynomial of
Q[α1, . . . , αi][xi+1] and αi+1 is its nth

i+1 real root.

Example 6. Let us consider the point (α1, α2) depicted as a circle in Fig. 1b. This
point is represented by the triangular system ((2, A), (2, B)) where A = x2

1−x1−2
and B = (2x1 − 1)x2

2 − 1. This means that α1 is the 2nd root of A and α2 is the
2nd root of B(α1).

The interest of such a representation is its effectiveness: in a ring D =
Q[α1, . . . , αk] associated with a triangular system one can compute (1) the sign
of an item of Q[α1, . . . , αk], (2) the number of real roots of P (α1, . . . , αk) with
P ∈ Q[x1, . . . , xk][xk+1], (3) the sign realizations of a polynomial Q(α1, . . . , αk)
on the real roots of a polynomial P (α1, . . . , αk), and one can order (with merge)

Polynomial Interrupt Timed Automata 29

the roots of P (α1, . . . , αk) and Q(α1, . . . , αk). All these procedures are performed
in polynomial time (see for instance [11]).

The tree corresponding to the cylindrical decomposition is built top-down so
that a triangular system is associated with a sample point of every cell and its
sign realizations on the appropriate polynomials. Let us describe how, given a
sample point (α1, . . . , αk), the partition over axis xk+1 can be built w.r.t. Pk+1.
First for all P ∈ Pk+1, the number of roots of P (α1, . . . , αk) is determined. Then
the roots of these polynomials are sorted and merged; their triangular system is
the one associated with (α1, . . . , αk) extended by the polynomial for which they
are roots. Then the open intervals between these roots or beyond these roots must
be specified, to yield the completed line partitioning. Let (r, P) and (s,Q) be the
borders of an open interval, then one selects as sample point, a root of ∂(PQ)

∂xk+1

located in the interval. Let (r, P) and +∞ (resp. −∞ and (1, P)) be the borders
of the last (resp. first) open interval, then one selects (r, P [xk+1 := xk+1 − 1])
(resp. (r, P [xk+1 := xk+1 + 1])) as sample point. To achieve this step it remains
to compute the sign realizations of P (α1, . . . , αk) for all P ∈ Pk+1 on these
sample points. Theorem 1 results from these two construction steps.

4.2 On-the-fly Algorithm

The abstraction from Section 3 provides decidability of the reachability problem,
by the algorithm that builds the finite graph RA. However, building the complete
graph is not efficient in practice, since it requires to build the set of all cells
beforehand, even though usually most of them are unreachable. In the sequel,
we show an on-the-fly construction of RA that reduces complexity in practice.

The key to the on-the-fly algorithm is to store only the part of the tree corre-
sponding to the current sample point and its time successors. This construction
relies on executing the lifting phase only when the level is increased and then
only for the current sample point. As an illustration, in Fig. 1b, only the lift-
ing for x2 above c5 has been represented, since it is the only relevant one with
respect to the given trajectory. Note that liftings over sample points c0 to c6
have to be computed in order to build the reachable part of RA0 . On the other
hand, liftings over c7 to c11 and over unrepresented cells to the left of c0, need
not, since level 2 is not reachable from these cells. As a result, we do not keep
the whole tree but only part of it.

We show that this information is sufficient to compute the successors through
time elapsing and transition firing. Although this pruning yields better per-
formances in practice, the computational complexity in the worst case is not
improved.

Definition 7 (Pruned Tree). Let {Pk}k≤n be the polynomials obtained by the
elimination phase. The pruned tree for sample point (α1, . . . , αk) is the sequence
of completed line partitionings for sample points {(α1, . . . , αi)}1≤i≤k. The pruned
tree for the empty sample point (k = 0) is the line partitioning at level 1.

A valuation (v1, . . . , vk, 0, . . . , 0) at level k is represented by a sample point
(α1, . . . , αk), or, equivalently, by a pruned tree for sample point (α1, . . . , αk−1)

30 B. Bérard et al.

and the index m of αk in the line partitioning for (α1, . . . , αk−1). In this rep-
resentation, computing the time successors of (α1, . . . , αk) is simply done by
incrementing m (if it is not the maximal index in the line partitioning).

The set of enabled discrete transitions can be generated by computing the
signs of polynomials appearing in guards. When a discrete transition q

g,a,u−−−→ q′

is chosen, there are three cases w.r.t. the level of states q and q′.

– The level decreases, i.e. λ(q′) < λ(q). Then the pruned tree corresponding
to the new configuration is the truncation of the original pruned tree up to
height λ(q′). Otherwise said, we “forget” line partitionings for levels above
λ(q′); however, the partitionings are kept in memory to avoid redundant
computations. The new index is the index of αλ(q′) in the partitioned line
for this level.

– The level is unchanged, i.e. λ(q′) = λ(q) = k. The only possible change of
clock values is through an update xk := P with P ∈ Q[x1, . . . , xk−1]. The
polynomial of degree 1 R = xk − P was added to Poly(A) and its unique
root α′

k appears in the line partitioning of level k. Note that in the triangular
system representing (α1, . . . , α

′
k) it may appear as ((n1, P1), . . . , (nk, Pk))

with (nk, Pk) �= (1, R). Hence to determine the index in the partitioned line
the algorithm must actually determine the sign of R for all sample points of
the line until 0 is found.

– The level increases, i.e. λ(q′) > λ(q). If there is an update of xk, the same
computations as above must be performed in order to find the new sample
point corresponding to the valuation of clocks up to λ(q). Then the pruned
tree of height λ(q′) has to be computed (or retrieved). This is done by λ(q′)−
λ(q) lifting steps. These lifting steps are applied on sample points of the form
(α1, . . . , αλ(q), 0, . . . , 0), since all clocks are null for levels above λ(q).

The on-the-fly algorithm builds the reachable part of RA as follows: the
elimination phase is computed and the line for x1 is partitioned. It starts with a
queue containing q0 with index corresponding to the root of x1 (i.e. 0). Then until
the queue is empty, it computes all (new) successors through time and discrete
transitions, building the pruned tree as described above. As noted above, a line
partitioning only needs to be computed once. In addition, and this also holds for
the complete construction of RA, the triangular structure of triangular systems
enables a sharing of line partitioning at lower levels.

5 Conclusion and Discussion

We extend ITA with polynomial expressions on clocks, and prove that reach-
ability is decidable using the cylindrical decomposition. We also show that an
on-the-fly construction of a class automaton is possible during the lifting phase
of this decomposition.

We now mention several additional results proved in [11] but omitted here.
The first one concerns the decidability of the model checking of TCTLint, a
variant of TCTL [1], where only local clocks can be used in the formulas.

Polynomial Interrupt Timed Automata 31

The PolITA is equipped with atomic propositions that hold in states. Another
direction was to investigate the expressive power of the model and try to extend
it while keeping decidability of reachability. We first established that stopwatch
automata and PolITA are incomparable. Then we proved that reachability
is still decidable when including parameters in the expressions of guards and
updates, with a better complexity than obtained in [9] (2EXPSPACE). We also
extend the model by adding at each level i, a set of auxiliary clocks Yi in addi-
tion to the main clock xi. With several restrictions, we still obtain a decidability
result for reachability. A last extension allows updates for clocks of levels lower
than the current one. Again with some restrictions, decidability for reachability
is preserved via a translation into a basic PolITA, similarly to [10] for ITA.
Finally, as also presented in [10] for ITA, it is possible to extend the model of
PolITA by adding timed automata at a lower level 0, producing a class that is
stricly more expressive than timed automata.

An implementation is in progress to experiment the practical efficiency of the
decision procedures. Since the construction still suffers from the doubly exponen-
tial complexity of the cylindrical decomposition, we plan to investigate if recent
methods [16] with a lower complexity could be used to achieve reachability, pos-
sibly for a restricted version of PolITA. Another direction would be to enlarge
the class of functions (like those studied in [18]) labelling guards and updates,
still ensuring a finite bisimulation quotient.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Informa-
tion and Computation 104, 2–34 (1993)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS
138, 3–34 (1995)

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of

hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)
5. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-

ing piecewise-constant derivatives. TCS 138(1), 35–65 (1995)
6. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer

(2006)
7. Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and geom-

etry. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, STOC 1984, pp. 457–464. ACM (1984)

8. Bérard, B., Haddad, S.: Interrupt timed automata. In: de Alfaro, L. (ed.) FOSSACS
2009. LNCS, vol. 5504, pp. 197–211. Springer, Heidelberg (2009)

9. Bérard, B., Haddad, S., Jovanović, A., Lime, D.: Parametric interrupt timed
automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169,
pp. 59–69. Springer, Heidelberg (2013)

10. Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: Verification and
expressiveness. Formal Methods in System Design 40(1), 41–87 (2012)

11. Bérard, B., Haddad, S., Picaronny, C., Safey El Din, M., Sassolas, M.: Polynomial
interrupt timed automata. CoRR abs/1504.04541, April 2015

32 B. Bérard et al.

12. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages
2nd GI Conference, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

14. Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.): HS 1991 and HS 1992.
LNCS, vol. 736. Springer, Heidelberg (1993)

15. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

16. Hong, H., Din, M.S.E.: Variant quantifier elimination. Journal of Symbolic Com-
putation 47(7), 883–901 (2012)

17. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. MCSS 13(1),
1–21 (2000)

18. Miller, D.J.: Constructing o-minimal structures with decidable theories using
generic families of functions from quasianalytic classes. ArXiv e-prints 1008.2575,
August 2010

19. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

20. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

Irregular Behaviours for Probabilistic Automata

Nathanaël Fijalkow1,2 and Micha�l Skrzypczak1,2(B)

1 LIAFA, Université Denis Diderot - Paris 7, Paris, France
2 University of Warsaw, Warsaw, Poland

mskrzypczak@mimuw.edu.pl

Abstract. We consider probabilistic automata over finite words. Such
an automaton defines the language consisting of the set of words accepted
with probability greater than a given threshold. We show the existence
of a universally non-regular probabilistic automaton, i.e. an automaton
such that the language it defines is non-regular for every threshold. As
a corollary, we obtain an alternative and very simple proof of the unde-
cidability of determining whether such a language is regular.

1 Introduction

Rabin introduced probabilistic automata in 1963 [Rab63]. They have been stud-
ied ever since, with applications to different areas, such as Computational Lin-
guistics and Biology. Despite its simplicity, this computational model is very
powerful, and many decision problems for probabilistic automata are known to
be undecidable.

A probabilistic automaton defines a probabilistic language through a thresh-
old semantics, as defined by Rabin [Rab63]. The algorithmic properties of these
languages are well-understood; we refer to the book of Paz [Paz71] and the survey
of Condon [Con01] for a wealth of results about them.

The class of probabilistic languages strictly subsumes the class of regu-
lar languages; in this paper, we consider the decision problem of determining
whether a probabilistic language is regular. This problem has been considered
by Bertoni [Ber74], and proved undecidable. The aim of this paper is to give a
different and simple proof of this result.

2 Preliminaries

Let Q be a finite set of states. A distribution over Q is a function δ : Q → [0, 1]
such that

∑
q∈Q δ(q) = 1. We denote D(Q) the set of distributions over Q.

Definition 1 (Probabilistic Automaton). A probabilistic automaton A is
given by a finite set of states Q, a transition function φ : A → (Q → D(Q)), an
initial state q0 ∈ Q, and a set of final states F ⊆ Q.

The Research Leading to These Results Has Received Funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) Under Grant Agreement
259454 (GALE).

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 33–36, 2015.
DOI: 10.1007/978-3-319-24537-9 4

34 N. Fijalkow and M. Skrzypczak

All the numbers in the transition function of a probabilistic automaton are
assumed to be rational numbers.

In a transition function φ, the quantity φ(a)(s, t) is the probability to go from
the state s ∈ Q to the state t ∈ Q reading the letter a. A transition function
naturally induces a morphism φ : A∗ → (Q → D(Q)). We denote PA(s w−→ t)
the probability to go from a state s to a state t reading w on the automaton A,
i.e. φ(w)(s, t).

The acceptance probability of a word w ∈ A∗ by A is
∑

t∈F φ(w)(q0, t), which
we denote PA(w).

The following threshold semantics was introduced by Rabin [Rab63].

Definition 2 (Probabilistic Language). Let A be a probabilistic automaton
and x ∈ (0, 1). This induces the probabilistic language

L>x(A) = {w ∈ A∗ | PA(w) > x}.

The emptiness problem was considered by Rabin: given a probabilistic
automaton A, determine whether L> 1

2 (A) is non-empty, i.e. whether there exists
a word w such that PA(w) > 1

2 .

Theorem 1 ([Paz71]). The emptiness problem is undecidable.

A simple undecidability proof was given by Gimbert and Oualhadj in [GO10].

3 A Universally Non-regular Probabilistic Automaton

Theorem 2. There is a probabilistic automaton C such that for every number
x in (0, 1), the language L>x(C) is non-regular.

Fig. 1. A universally non-regular probabilistic automaton.

In the original paper introducing probabilistic automata, Rabin [Rab63] gave
an example of a probabilistic automaton A such that L>x(A) is non-regular, for
all irrational numbers x. The alphabet of the Rabin’s automaton A is {0, 1}.
The automaton A computes the binary decomposition function denoted bin, i.e.
PA(u) = bin(u), defined by bin(a1 · · · an) = a1

2n + · · · + an

21 . We show that adding

Irregular Behaviours for Probabilistic Automata 35

one letter and one transition to this probabilistic automaton makes it universally
non-regular.

The automaton C is represented in Figure 1. The alphabet is C = {0, 1, �}.
The only difference between the automaton A proposed by Rabin [Rab63] and
this one is the only transition over �. As observed by Rabin, a simple induction
shows that for u in {0, 1}∗, we have PC(u) = bin(u).

We show that for all numbers x in (0, 1), the language L>x(C) is non-regular.
Let u, v in {0, 1}∗, observe that PC(u · � · v) = bin(u) · bin(v).

Fix x in (0, 1). For every u, v in {0, 1}∗ such that bin(u) < bin(v) < x, there
exists w in {0, 1}∗ such that u · � ·w ∈ L>x(C) and v · � ·w /∈ L>x(C); it suffices to
choose w such that bin(w) is in

(
x

bin(v) ,
x

bin(u)

)
. It follows that the left quotients

u−1 · L>x(C) and v−1 · L>x(C) are distinct, so L>x(C) has an infinite number of
pairwise distinct left quotients, hence it is not regular.

4 Main Result

Theorem 3. (Undecidability of the regularity problem) The regularity problem
is undecidable for probabilistic automata.

This result was originally proved in [Ber74].
Roughly speaking, the idea is to use the universally non-regular automaton

given in Section 3 to “amplify” an irregular behaviour.

Proof. We construct a reduction from the emptiness problem to the regularity
problem. Then, undecidability of the latter follows from Theorem 1.

Let A be a probabilistic automaton over an alphabet A. We construct a
probabilistic automaton B such that:

L> 1
2 (A) is empty if and only if L> 1

2 (B) is regular.

The automaton B is over the alphabet B = A � C where C = {0, 1, �}, and
uses the automaton C from Section 3. It is obtained as the sequential composition
of A and C: it starts in A and from every final state of A moves by � to the initial
state of C. The initial state of B is the initial state of A, the only final state of
B is the final state of C.

For u ∈ A∗ and v ∈ C∗, we have PB(u · � · v) = PA(u) · PC(v). A word which
is not in A∗ · � · C∗ has no accepting run, so is accepted with probability 0.

– Assume that L> 1
2 (A) is empty. Thanks to the above observation we have

that L> 1
2 (B) is empty, so in particular it is regular.

– Conversely, assume that L> 1
2 (A) is non-empty. Let u be a word such that

PA(u) > 1
2 . Observe that L> 1

2 (B)∩(u·�·C∗) = u·�·L>x(C), where x = 1
2·PA(u)

is in (0, 1). By Theorem 2, the language L>x(C) is non-regular, hence so is
u · � · L>x(C), implying that L> 1

2 (B) is also non-regular.

36 N. Fijalkow and M. Skrzypczak

References

[Ber74] Bertoni, A.: Mathematical methods of the theory of stochastic automata. In:
Blikle, A. (ed.) Mathematical Foundations of Computer Science. IFMBE Pro-
ceedings, vol. 28, pp. 9–22. Springer, Heidelberg (1974)

[Con01] Condon, A.: Bounded error probabilistic finite state automata, chapter 1. In:
Handbook on Randomized Computing, vol. II, pp. 509–532. Kluwer (2001)

[GO10] Gimbert, Hugo, Oualhadj, Youssouf: Probabilistic automata on finite words:
decidable and undecidable problems. In: Abramsky, Samson, Gavoille, Cyril,
Kirchner, Claude, Meyer auf der Heide, Friedhelm, Spirakis, Paul G. (eds.)
ICALP 2010. LNCS, vol. 6199, pp. 527–538. Springer, Heidelberg (2010)

[Paz71] Paz, A.: Introduction to Probabilistic Automata. Academic Press (1971)
[Rab63] Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245

(1963)

Reachability in Succinct One-Counter Games

Paul Hunter(B)

Département d’Informatique, Université Libre de Bruxelles (U.L.B.),
Brussels, Belgium

paul.hunter@ulb.ac.be

Abstract. We consider two-player games with reachability objectives
played on transition systems of succinct one-counter machines, that is,
machines where the counter is incremented or decremented by a value
given in binary. We show that the winner-determination problem is
EXPSPACE-complete regardless of whether transitions are guarded by con-
straints on the counter or if the counter is restricted to non-negative
values.

1 Introduction

Transition graphs of one-counter machines are some of the most simple infi-
nite state systems, and have been extensively studied [1,3,5,6,8–10,13,14], often
under the guise of more general formalisms such as pushdown automata, Petri
nets, and vector addition systems with states. A one-counter system consists of
a finite state machine equipped with an integer-valued counter that can be incre-
mented or decremented thereby adding functionality, for example by enabling
certain transitions when the counter is within a certain range. Common char-
acteristics for differentiating classes of one-counter systems include: whether
the counter is incremented/decremented by 1 or if it can be changed by larger
amounts (called “short-range” and “long-range” dynamics in [13]); whether the
counter can take negative values or is restricted to the non-negative integers;
and the scope of counter-based constraints that can be placed on transitions.

Two player games are a natural tool for modelling interaction-based pro-
cesses. They are commonly used in Computer Science to represent interactions
such as System vs Environment, or Model vs Specification. Such games played
on one-counter systems are particularly useful for modelling the behaviour of
resource-based systems, or for model-checking simple, but infinite, state systems.

In this paper we consider two player games on one-counter systems where
the objective of one of the players (Eve) is to reach a particular configuration (or
a particular counter value). Many variations of this reachability problem have
been studied: most closely, the reachability problem for VASS [3,13]; but also
the reachability problem for one-counter automata (which can be seen as single
player games) [5,9]; countdown games [11] and robot games [2] (which can be
seen as restrictions of our problem); and the closely related problems of parity
games on one-counter systems [14], and CTL [8] model checking.

This work was supported by the ERC inVEST (279499) project.

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 37–49, 2015.
DOI: 10.1007/978-3-319-24537-9 5

38 P. Hunter

Unlike the majority of the previous work, we consider both integer and non-
negative integer counter systems, as well as systems with counter-constrained
transitions and minimally constrained systems – the two player analogue of
one-counter nets [1]. In some cases, however, we can establish some complex-
ity bounds based on previous work. It was shown in [3,13] that the reachabil-
ity problem for one-dimensional VASS was PSPACE-complete, and the counter
reachability problem is in PTIME. Our work differs from [3] and [13] in that we
consider one-counter systems where the counter is updated by adding integer
constants (given in binary) rather than simple incrementing and decrementing
by 1, however their results imply an EXPSPACE upper bound for some cases of
our problem (namely, minimally constrained integer and non-negative integer
counter systems). The games we consider also generalize the games considered
in [2,11] giving us an EXPTIME-hard lower bound for all cases.

Our Contribution. We consider the winner determination problem for reach-
ability and counter reachability games on several classes of succinct one-counter
systems. As mentioned, the related work establish an EXPTIME-hardness lower
bound (for some classes) and an EXPSPACE upper bound (for some classes). We
show that the problems are equivalent for all classes (in contrast to the non-
succinct case) and that they are EXPSPACE-complete. As a side-effect of our
work, we also obtain an EXPSPACE-completeness result for the winner determi-
nation problem for Büchi games on one-counter systems where the Büchi con-
dition is applied to configurations rather than states as in [14] (and implicitly
in [8]).

2 Preliminaries

2.1 Arenas, Plays, and Strategies

The two-player games we are interested in for this paper are played on an arena
– a (possibly infinite) directed graph with vertices partitioned into two sets, one
set belonging to Eve and one to Adam. The two players move a token around
the graph, the player that owns the location of the token choosing a successor to
move to. In this way, the two players generate a (possibly infinite) path in the
graph, and we use this path to determine the winner (see Section 2.3).

More formally, an arena is a tuple (V, V∃, E, vI) where (V,E) is a directed
graph, vI ∈ V is the initial vertex, and V∃ ⊆ V is the set of vertices belonging to
Eve. For convenience, we often write V∀ for V \ V∃, the set of vertices belonging
to Adam. In the sequel when depicting arenas, we use squares for vertices in V∃
and circles for vertices in V∀ (diamonds represent arbitrary vertices).

A play (from v ∈ V) in an arena is a (possibly infinite) sequence of vertices
v0, v1, . . . where v0 = v and for all i, (vi, vi+1) ∈ E. If the starting vertex of a
play is omitted it is assumed to be vI . A strategy for Eve (Adam) is a function
σ : V ∗V∃ → V (τ : V ∗V∀ → V) satisfying (v, σ(w)) ∈ E ((v, τ(w)) ∈ E) for all

Reachability in Succinct One-Counter Games 39

finite plays w ending in v. A play v0, v1, . . . is consistent with a strategy σ for
Eve (Adam) if for all i such that vi ∈ V∃ (vi ∈ V∀) we have σ(v0v1 . . . vi) = vi+1.

A winning condition (see Section 2.3) defines a set of plays which are winning
for Eve, any other play is winning for Adam. We assume that a player loses if
they cannot move, so a winning condition includes all finite plays ending in a
vertex in V∀ with no outgoing edges, and excludes all finite plays ending in a
vertex in V∃ with no outgoing edges. A game is given by an arena and a winning
condition. A strategy for a player is winning if all plays consistent with the
strategy are winning for that player, and a player wins a game if they have a
winning strategy.

2.2 One-Counter Systems

A one-counter system is a finite presentation of an infinite arena. It is given by
a finite arena with weights and guards on the transitions (for clarity in figures,
edges with no given weight are assumed to have weight 0, and edges with no given
guard are assumed to have guard true). Intuitively, the game is played as before,
with the two players moving a token around the vertices, but in addition there
is an (integer-valued) counter which constrains the transitions available. The
weights indicate how much the counter is incremented/decremented at each step
and the guards, which define a set of counter values, indicate which transitions
are available for the current counter value.

Formally, a succinct one-counter system (with counter values in Z) [SOCSZ]
is a tuple (V, V∃, E, vI , w, γ) where

– (V, V∃, E, vI) is an arena with V a finite set;
– w : E → Z is the weight function; and
– γ is a function that maps each edge to a guard – a conjunction of counter

constraints of the form (c ∼ M), biti(c) and biti(c) where M, i ∈ Z, i ≥ 0
and ∼∈ {=, �=, <,≤, >,≥}.

The numerical values appearing in w and λ are assumed to be given in binary,
with the exception of the subscripts in the bit and bit predicates, which are
given in unary. Note, a counter value c ∈ Z satisfies biti(c) (biti(c)) if and only
if the i-th bit of |c| is 1 (0).

Remark 1. In the literature the guard constraints are typically more restrictive,
for example the counter inequalities may only involve 0 (sign-testing), or just =
and 0 (zero-testing), and the bit-predicate is not included. In the next section
we will show that even the more expressive constraints considered here can be
simulated by games without constraints, so for convenience we adopt the more
expressive form. Note also that by using multiple transitions one can obtain a
disjunction of the guarding conditions, so having conjunctions of constraints is
sufficient to obtain any1 Boolean combination of constraints.
1 In order to avoid an exponential blow-up, rather than converting an arbitrary

Boolean combination to DNF one should adopt a more direct approach using inter-
mediate nodes and the antagonism of the players (e.g. Eve = ∨, Adam = ∧).

40 P. Hunter

A SOCSZ, G = (V, V∃, E, vI , w, γ), defines an arena AG = (V ′, V ′
∃, E′, v′

I)
where V ′ = V × Z, V ′

∃ = V∃ × Z, v′
I = (vI , 0), and

(
(v, c), (v′, c′)

) ∈ E′ iff
e = (v, v′) ∈ E, c′ = c + w(e) and γ(e) is true at c = c.

A succinct one-counter process (with counter values in Z) [SOCPZ] is a SOCSZ
where γ(e) = true for all e ∈ E. A succinct one-counter system (with counter
values in N) [SOCSN] is a SOCSZ where the positivity constraint (c ≥ −w(e)) is
included in γ(e) for all e ∈ E, and a succinct one-counter process (with counter
values in N) [SOCPN] is a SOCSN where the positivity constraint is the only
constraint in γ(e). Note that the positivity constraint ensures the counter value
never goes below 0 (assuming it starts on 0), so the arena associated with a
SOCSN (or SOCPN) can be restricted to V × N.

2.3 Winning Conditions

Reachability Conditions. In this paper we focus on reachability games, that
is, games where the winning condition consists of all plays that contain at least
one vertex from a given set of vertices. We are particularly interested in two
problems: the reachability problem – Can Eve reach a particular vertex (or any
of a set of vertices) with a particular counter value?; and the counter reachability
problem – Can Eve reach a particular counter value (in any vertex)? Without
loss of generality we can assume that 0 is the target counter value in both prob-
lems.2 To avoid trivialities we assume the counter reachability problem applies
to all vertices except the initial vertex. We do not consider the third natural
reachability problem, state reachability (Can Eve reach a particular vertex with
any counter value?) – as observed in [9] this problem is easily seen to be log-space
equivalent to the reachability problem.

More formally, we define the problem Reach(SOCSZ) as: Given a SOCSZ, G =
(V, V∃, E, vI , w, γ), and a target set of vertices T ⊆ V , does Eve have a strategy
(in AG) to ensure that all consistent plays contain a vertex in T × {0}? That is,
does Eve win the one-counter reachability game defined by (G, T)? The problem
C-Reach(SOCSZ) is the same as Reach(SOCSZ) with the target set T = V \
{vI}. The problems Reach(∗) and C-Reach(∗) for ∗ ∈ {SOCPZ, SOCSN, SOCPN}
are defined similarly.

In the sequel, when depicting a one-counter reachability game, we use a
double border for vertices in the target set T .

Remark 2. Without loss of generality, we can assume T ⊆ V∃: for any vertex
v ∈ T ∩V∀ we can add a new vertex v′ ∈ V∃ and an edge (v′, v) with weight 0 and
replace all edges (u, v) by (u, v′) (with the same weight and guard conditions).
We observe there is a natural correspondence between (winning) plays in this
new game and (winning) plays in the original game, and replacing v with v′ in
T does not change this correspondence.

2 It is straightforward to modify a SOCSZ to change the target counter value. For the
other models it is less clear, but it follows from the equivalences we establish in the
next section.

Reachability in Succinct One-Counter Games 41

Büchi Conditions. We are also interested in an analogue of reachability
extended to infinite plays, the Büchi condition. This is also specified by a target
set T ⊆ V∃ and an (infinite) play is winning for Eve if there is some vertex v ∈ T
which occurs infinitely often in the play. In the case of one-counter games there
are two variants: the Büchi condition, where only some vertex in T needs to be
visited infinitely often – that is, the counter value is irrelevant for the winning
condition (formally, some v ∈ T occurs infinitely often as a first component in
the play in AG); and the strong Büchi condition where the vertex has to be
visited infinitely often with a particular counter value, again, assumed without
loss of generality to be 0 (formally, for some v ∈ T , (v, 0) occurs infinitely often
in the play in AG). Note that unlike the state reachability and reachability prob-
lems, it is not immediately clear that these problems are equivalent. We denote
by Büchi(∗) (StBüc(∗)) for ∗ ∈ {SOCSZ, SOCPZ, SOCSN, SOCPN} the decision
problem: given a one-counter system G of type ∗, and T ⊆ V∃, does Eve win the
(strong) one-counter Büchi game given by (G, T)?

3 Equivalence of Models and Problems

In this section we establish the following result:

Theorem 1. The problems Reach(SOCSZ), Reach(SOCPZ), Reach(SOCSN),
Reach(SOCPN), C-Reach(SOCSZ), C-Reach(SOCPZ), C-Reach(SOCSN), and
C-Reach(SOCPN) are all equivalent under log-space reductions.

As a consequence of our constructions, we obtain a similar result for strong
Büchi games.

Corollary 1. The problems StBüc(SOCSZ), StBüc(SOCPZ), StBüc(SOCSN),
and StBüc(SOCPN) are equivalent under log-space reductions.

These results follow from Lemmas 2, 4, and 5, established in the remainder
of this section.

3.1 Removing the Guards

In this section we demonstrate how we can remove the guarding conditions,
showing that reachability games on one-counter systems are equivalent to games
on one-counter processes. For this section we focus only on the reachability
condition.

We first observe that because the counter takes on integral values, we can
assume the inequality constraints are of the form c ∼ M where ∼∈ {≤,≥, �=}.
The idea of the construction is given in Figure 1. We replace each guarding
condition with a series of gadgets (see Figures 2 and 3) which collectively check
the condition. The opponent of the player that can choose the original transition
controls whether these condition gadgets are entered, and therefore acts as the
Verifier – if the transition is taken and the guard not satisfied, Verifier can
move to the appropriate gadget and win; if the guard is satisfied, then any such

42 P. Hunter

u v

c ≥ 0

c ≤ 4

bit3(c)

w

(a) Construction for u ∈ V∃

u v

c ≤ −1

c ≥ 5

bit3(c)

w

(b) Construction for u ∈ V∀

Fig. 1. Constructions for the edge (u, v) with guard (0 ≤ c < 5) ∧ bit3(c) and
weight w

move by Verifier will be losing and so the token ends up at the original vertex
corresponding to the end of the original transition. Note that although the bit
and bit gadgets (Figure 3) contain guarded transitions, they are only inequality
constraints and can be replaced in a similar manner.

−M

+1

(a) Gadget for c ≤ M

−M

−1

(b) Gadget for c ≥ M

−M

−1

+1

−1

+1

(c) Gadget for c �= M

Fig. 2. Gadgets for inequality guards (Eve’s perspective)

c ≥ 0

c < 0

+X

−X

0 ≤ c < 2i

−2i < c ≤ 0

−2i+1

+2i+1

−1

+1

Fig. 3. Gadget for biti(c) (X = 2i) and biti(c) (X = 0) guards

Key to the correctness of the construction is the following easily checked
result:

Lemma 1. Suppose a token is at the diamond vertex in each gadget in Figures 2
and 3 and the counter has value c. Then

Reachability in Succinct One-Counter Games 43

– Eve wins the gadget in Figure 2 (a) iff c ≤ M ;
– Eve wins the gadget in Figure 2 (b) iff c ≥ M ;
– Eve wins the gadget in Figure 2 (c) iff c �= M ;
– If X = 2i then Eve wins the gadget in Figure 3 iff biti(c); and
– If X = 0 then Eve wins the gadget in Figure 3 iff biti(c).

We observe that in Figures 2 and 3 the “name” of the gadget corresponds to
the condition necessary and sufficient for Eve to win. Thus when Eve is Verifier
in the construction (e.g. Figure 1 (b)) we need to use the gadgets corresponding
to the complements of the guarding conjuncts – that is, we use the gadgets for
the constraints that would make the guarding condition false.

This construction gives a reduction from Reach(SOCSZ) to Reach(SOCPZ)
and from Reach(SOCSN) to Reach(SOCPN), and it is straightforward to check
that the reduction is in log-space. As reductions in the other direction are trivial:

Lemma 2. We have the following log-space equivalences:

– Reach(SOCSZ) ≡L Reach(SOCPZ), and
– Reach(SOCSN) ≡L Reach(SOCPN)

3.2 Removing Negative Counter Values

In this section we show how to simulate negative counter values with a counter
than only takes non-negative values. We use a similar idea to the construction
in [13] for the same problem on non-succinct one-counter games: storing the
negation in the state space of the arena. That is, we duplicate the one-counter
system, using one copy (with its weights and inequality constraints negated) to
represent the behaviour with a negative counter value. The main difficulty with
this construction is in the transition between the copies. In the non-succinct
case this step was relatively straightforward because there is only counter value
(0) where the counter changes from non-negative values to negative values. In
the succinct case there are potentially exponentially many such points so we
have to be more careful. The solution is to store the current counter value in a
sufficiently high bit range so that we can perform the necessary arithmetic to set
the correct counter value for the “negative” side. To do this, we use the gadget
in Figure 4.

More precisely, given a SOCSZ, G = (V, V∃, E, vI , w, γ), we transform it into
a SOCSN, Ĝ, as follows:

1. Let G′ = (V ′, V ′
∃, E′, v′

I , w
′, γ′) be a disjoint copy of G where w′(e′) = −w(e)

and constraints in γ of the form (c ∼ M) are replaced in γ′ with (−M ∼ c).
2. For every edge (u, v) ∈ E with weight w, add the gadget of Figure 4, where N

is such that −w < 2N , between u ∈ V and v′, the vertex in V ′ corresponding
to v. Likewise for every edge (u, v) ∈ E′.

3. For every edge (u, v) with weight w add the constraint (c ≥ −w).

The main result for establishing correctness of this construction is the
following:

44 P. Hunter

u

...

...

v′c < −w

bit0(c) bit0(c)

2N − 1

bit1(c) bit1(c)

2N+1 − 2

−w

bitN (c) bitN (c)

−2N − 1

bitN+1(c) bitN+1(c)

−2N+1 − 2

Fig. 4. Gadget for reduction from SOCSZ to SOCSN

Lemma 3. Suppose a token is on the vertex labelled u in Figure 4 with (non-
negative) counter value c < −w < 2N . Then the token can reach v′ with counter
value −(c + w), without having a negative counter value.

Following Lemma 3, it is easy to see that a reachability game on G specified
by T ⊆ V∃ reduces to a reachability game on Ĝ specified by T ∪T ′, where T ′ ⊆ V ′

∃
is the set of vertices in V ′ which correspond to vertices in T . Furthermore, this
reduction holds for the counter reachability problem. As the reverse reductions
are trivial:

Lemma 4. We have the following log-space equivalences:

– Reach(SOCSZ) ≡L Reach(SOCSN); and
– C-Reach(SOCSZ) ≡L C-Reach(SOCSN).

3.3 From Reachability to Counter Reachability

For the final step toward Theorem 1, we reduce the reachability problem to the
counter reachability problem. Our reduction utilizes the “long-range” property
of succinct one-counter systems and is consequently not valid in the non-succinct
case3 and therefore does not contradict the separation established in [3].

Given a SOCSZ (or SOCPZ, SOCSN, SOCPN) G = (V, V∃, E, vI , w, γ) and a
target set T ⊆ V∃, we construct a SOCSZ (SOCPZ, SOCSN, SOCPN, respectively)
G′ as follows:

– Replace all bit and bit predicates with the gadgets from Section 3.1;
– Double the weights of the edges in G;

3 We note that the reduction does work with transition systems with unary-encoded
weights, but not to the more restrictive “short-range” semantics of non-succinct
systems which only permit transitions of weight 0,±1.

Reachability in Succinct One-Counter Games 45

– Replace all constraints of the form (c ∼ M) with (c ∼ 2M + 1);
– Add a new initial vertex v′

I and a new sink (with 0-weighted loops) v′
f ;

– Add an edge of weight +1 from v′
I to vI ; and

– Add edges of weight −1 from T to v′
f .

Due to parity arguments the counter in G′ can only have value 0 at v′
I and v′

f .
There is a natural one-to-one correspondence between plays in G and plays in
G′ that have not reached v′

f , and the counter in G has value c if and only if the
corresponding counter value in G′ is 2c + 1. It follows that v′

f can be reached
with counter value 0 in G′ if and only if the target set T can be reached with
counter value 0 in G. Thus Eve wins the counter reachability game on G’ if and
only if she has a winning strategy in the original reachability game. Again, as
the reverse reduction is trivial:

Lemma 5. We have the following log-space equivalences:

– Reach(SOCSZ) ≡L C-Reach(SOCSZ);
– Reach(SOCPZ) ≡L C-Reach(SOCPZ);
– Reach(SOCSN) ≡L C-Reach(SOCSN); and
– Reach(SOCPN) ≡L C-Reach(SOCPN).

4 EXPSPACE-completeness of Succinct One-Counter
Games

In this section we establish the tight complexity bounds for the one-counter
reachability and Büchi games. That is,

Theorem 2. For ∗ ∈ {SOCSZ, SOCPZ, SOCSN, SOCPN} the problems Reach(∗),
C-Reach(∗) and StBüc(∗) are EXPSPACE-complete.

The upper bound is established in Lemma 8, and the matching lower bound
is established in Lemma 11.

4.1 Upper Bound

Critical to the EXPSPACE membership of the reachability problems is the fol-
lowing result which follows almost directly from [14] and [8].

Theorem 3 ([8,14]). Büchi(SOCPN) is EXPSPACE-complete.

To establish the upper bound for reachability games, we have the following
log-space reduction:

Lemma 6. Reach(SOCPN) ≤L Büchi(SOCPN).

Proof. Given a SOCPN and a target set T ⊆ V∃, we add to each vertex v ∈ T the
gadget in Figure 5. The target set for the Büchi condition consists of the new
target vertices occurring in these gadgets. It is straightforward that in a SOCSN
the gadget allows Eve to reach a target vertex (and remain there indefinitely)
if and only if the counter value at v is 0. Thus Eve wins the new game with a
Büchi condition if and only if she wins the original reachability game.

46 P. Hunter

v

−1

Fig. 5. Gadget for reduction from Reach(SOCPN) to Büchi(SOCPN)

For strong Büchi games we use the following log-space equivalence:

Lemma 7. StBüc(SOCSN) ≡L Reach(SOCSN).

Proof. We give the proof for StBüc(SOCSN) ≤L Reach(SOCSN) as the reverse
reduction is trivial. Given a SOCSN, G = (V, V∃,, with target set T ⊆ V∃, we
construct a new one-counter reachability game as follows:

– The SOCSN consists of |T | + 1 copies of G with a (c = 0)-guarded edge from
(v, i) to (v, i + 1) for all v ∈ T and 1 ≤ i ≤ |T |,

– The initial vertex is (v0, 1), and
– The target set is {(v, |T | + 1) : v ∈ T}.

Clearly Eve wins this game if and only if in the original game she can reach T
with counter value 0 |T | + 1 times. Hence if she wins the Büchi game she has
a winning strategy in the reachability game. We now show the converse, that
is if she can reach T |T | + 1 times then she can reach some vertex in Y with
counter value 0 infinitely often. More precisely we will show how to defeat any
positional (w.r.t. the current state and counter value) strategy for Adam in the
original Büchi game. It is well known [15] that such strategies are sufficient for
winning strategies, thus this is sufficient for our result. Such a strategy has a
natural interpretation in the reachability game, so Eve has a counterstrategy to
ensure T is visited with counter value 0 |T | + 1 times against this strategy. By
the pigeon-hole principle there is some vertex v ∈ T visited at least twice in
the play. Hence Eve has a strategy (against Adam’s strategy) to reach v with
counter value 0 from both v0 and v itself. Hence Eve can visit v with counter
value 0 infinitely often in the original Büchi game.

These results, together with Theorem 1 and Corollary 1 establish the upper
bounds for the reachability and strong Büchi conditions.

Lemma 8. For ∗ ∈ {SOCSZ, SOCPZ, SOCSN, SOCPN} the problems Reach(∗),
C-Reach(∗) and StBüc(∗) are in EXPSPACE.

4.2 Lower Bounds

For the lower bound it would appear that we could use Theorem 3 together with
a reduction similar to Lemma 7. Unfortunately, it is not clear how to do this
without an exponential blow-up – it is not difficult to construct examples where

Reachability in Succinct One-Counter Games 47

a vertex cannot be reached in fewer than a super-exponential number of steps,
so counting the number of times the target set is visited is not practical. Instead,
we revisit the hardness proof given in [8] and adapt it for reachability games.
In fact, it follows from [8] that it is sufficient to give gadgets for computing
the mod operator (where the arguments are stored in the counter value), and
for simulating a polynomial-space bounded Turing Machine. We establish these
results for SOCSN in the next two lemmas.

...

...

bit0(c) bit0(c)

−2e

bitd−1(c) bitd−1(c)

−2e+d−1

c < 2d+e

bitd(c) bitd(c)

−2e

bitd+1(c) bitd+1(c)

−2e+1

c < 2e

−1

Fig. 6. Gadget for the mod operator

Lemma 9. Suppose a token is at the diamond vertex in the gadget of Figure 6
with counter value c = M + 2d.C + 2e.B where M < 2d, C < 2e−d and C < M .
Then Eve wins the gadget iff C ≡ B (mod M).

The next result follows directly from the standard reduction of space-bounded
Turing Machines to one-counter machines (see e.g. [7]).

Lemma 10. Let M be an (Alternating) Turing Machine which uses at most
q(n) space on any input of size n for some polynomial q. Then, for any n ∈ N

there exists a reachability game Gn, constructible in log-space, such that Eve wins
with initial counter value c < 2n if and only if M accepts c.

With these gadgets we can use a similar argument to [8] to give a reduction
from any language in EXPSPACE to the reachability problem on SOCSN.

Corollary 2. Reach(SOCSN) is EXPSPACE-hard.

Combining Theorem 1, Corollaries 1 and 2, and Lemma 7 gives us the nec-
essary lower bound:

Lemma 11. For ∗ ∈ {SOCSZ, SOCPZ, SOCSN, SOCPN} the problems Reach(∗),
C-Reach(∗) and StBüc(∗) are EXPSPACE-hard.

48 P. Hunter

5 Conclusion and Further Work

We have shown the reachability problem for succinct one-counter systems is
EXPSPACE-complete. This result is independent of whether the counter can take
any integer value or just non-negative values, and whether transitions include
counter constraints or not. We have also shown the counter reachability prob-
lem is EXPSPACE-complete under the same conditions, in contrast to the non-
succinct case. In addition, we established EXPSPACE-completeness for Büchi
games on one-counter systems when the Büchi condition is applied to configu-
rations rather than states.

In this paper we considered SOCSN with blocking semantics – that is, tran-
sitions that would make the counter negative are forbidden. Another class to
consider are SOCSN with non-blocking semantics: transitions that would make
the counter negative are permitted, but the counter is set to 0. Such games are
closely related to energy games [4]. The pseudo-polynomial time algorithm of
that paper shows that the reachability problem for such one-counter systems is in
EXPTIME, but it appears the complexity is much lower. Indeed, it is not difficult
to show that Adam requires only memoryless, counter-free strategies, however
this does not immediately yield a polynomial certificate for coNP-membership,
as the single-player complexity is not known.

References

1. Abdulla, P.A., Cerans, K.: Simulation is decidable for one-counter nets (extended
abstract). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 253–268. Springer, Heidelberg (1998)

2. Arul, A., Reichert, J.: The complexity of robot games on the integer line. In: QAPL,
pp. 132–148 (2013)

3. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition
systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

4. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

5. Demri, S., Gascon, R.: The effects of bounding syntactic resources on presburger
LTL. In: TIME, pp. 94–104 (2007)

6. Demri, S., Lazić, R., Sangnier, A.: Model checking freeze LTL over one-counter
automata. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 490–504.
Springer, Heidelberg (2008)

7. Fearnley, J., Jurdziński, M.: Reachability in two-clock timed automata Is PSPACE-
complete. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 212–223. Springer, Heidelberg (2013)

8. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and
parametric one-counter automata. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS,
vol. 6199, pp. 575–586. Springer, Heidelberg (2010)

Reachability in Succinct One-Counter Games 49

9. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

10. Jančar, P., Kučera, A., Moller, F.: Simulation and bisimulation over one-counter
processes. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770,
pp. 334–345. Springer, Heidelberg (2000)

11. Jurdzinski, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed
automata with one or two clocks. Logical Methods in Computer Science 4(3) (2008)

12. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

13. Reichert, J.: On the complexity of counter reachability games. In: Abdulla, P.A.,
Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 196–208. Springer, Heidelberg
(2013)

14. Serre, O.: Parity games played on transition graphs of one-counter processes. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351.
Springer, Heidelberg (2006)

15. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)

On Reachability-Related Games on Vector
Addition Systems with States

Petr Jančar(B)

Department Computer Science, FEI, Technical University of Ostrava (VŠB-TUO),
17. Listopadu 15, 70833 Ostrava, Czech Republic

petr.jancar@vsb.cz

http://www.cs.vsb.cz/jancar

Abstract. A new research result in this paper shows the decidability,
and the TOWER upper bound on complexity, of solving parity multi-
energy games (with given initial credit) in the framework of extended vec-
tor addition systems with states (where some components in the change
vectors are not fixed but can be made arbitrarily large). The result is
not deep w.r.t. the state-of-the-art, since it can be shown by a simple
reduction to the version without the parity condition that was solved by
Brázdil, Jančar, and Kučera (ICALP 2010). Besides giving the reduc-
tion, the main aim of the paper is to highlight the crucial ideas of a
direct (self-contained) proof of the result; a particular novelty here is a
natural attractor construction that seems to have not been used in this
context so far.

1 Introduction

We deal with certain two-player turn-based games on vector addition systems
with states (VASSs), which is a well-known structure (tightly related to classical
place/transition Petri nets) that occurs in various contexts in computer science.
We aim at highlighting the crucial ideas that lead to an algorithm solving a
particular type of these games, namely the parity multi-energy games in the
framework of extended VASSs. This yields a new research result, though surely
not a deep one w.r.t. the state-of-the-art; the main aim is to explain the used
techniques, which includes a natural attractor construction that seems to have
not been used in this context so far.

Fig. 1 shows a 3-dimensional VASS M, with 5 control states and 12 transi-
tions; in fact, it is an extended VASS, an eVASS, in the sense of [8], since we
also use ω (which can be instantiated by any nonnegative integer) in the change
vectors. A d-dimensional eVASS is viewed as operating on d integer counters; it
generates a transition system on the set of configurations Conf = Q × Z

d, as
well as its restriction to the set Conf+ = Q × N

d of nonnegative configurations
(where Z, N are the sets of integers and of nonnegative integers, respectively).

The standard reachability problem asks if there is a path inside Conf+
from one given configuration to another. (Referring to Fig. 1, we have,

Supported by the Grant Agency of the Czech Rep., project GAČR:15-13784S.

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 50–62, 2015.
DOI: 10.1007/978-3-319-24537-9 6

On Reachability-Related Games on Vector Addition Systems with States 51

Fig. 1. Example of a 3-dim eVASS game M

e.g., p1(4, 8, 12) t2�→ p2(5, 7, 9) t4�→ p1(6, 6, 9) t1�→ p2(6, 6, 9).) This is an intriguing
decidable problem that is still not sufficiently understood; it is a subject of an ongo-
ing research as testified by, e.g., the recent papers [4,19] and the references therein.

In the contexts like controller synthesis, a natural model is two-player turn-
based games, played by System and Environment (or Adam and Eve, or P0 and
P1, etc.); here we refer to Player � (or just �, she), and to Player ♦ (or just
♦, he), similarly as in [8]. In this case we have a partition Q = Q♦ � Q� of the
set of control states (Q♦ = {p1, p4} and Q� = {p2, p3, p5} in our example). The
players create a play, i.e. an infinite path, from a given configuration pu so that
in the current configuration qv Player ♦ chooses the next transition if q ∈ Q♦
and Player � chooses it if q ∈ Q�. (We assume that each control state has at
least one outgoing transition.)

In this setting, the “alternating reachability problem”, or the two-player game
with a reachability objective, where Player ♦ tries to force reaching (an element
of) a given set of target configurations while � tries to keep the play outside
this (“dangerous”) set forever, is undecidable in general; i.e., the problem ask-
ing which of the players has a winning strategy from a given configuration is
undecidable. This follows from the fact that we can easily construct a game in
which Player � can force Player ♦ to correctly simulate a given Minsky machine.
We can refer to [1] where the authors studied a general framework of monotonic
games of which eVASS-games are examples. We note that [1] belongs to the
works that deal with a general framework of well structured transition systems.
The paper [15] is another example, where also the natural completions with limits
are studied; here we will use a standard example of such a completion, namely
the set of symbolic configurations SConf = Q × (Z ∪ {ω})d.

There are natural variants of VASS-games that are decidable though they
do not belong to the decidable fragment shown in [1]; we can name [21] as an
example. The most relevant for us here are so called multi-energy games where
we ask if � can maintain the counters nonnegative, i.e., if she can force moving
inside Conf+ forever, when starting from a given configuration pu ∈ Conf+.

52 P. Jančar

The complementary question asks if ♦ can force reaching an element of the set
of configurations in which at least one counter is negative (i.e., the respective
“type of energy” has been exhausted and is missing). In the terms of energy
games we speak about the given initial credit (GIC) problem when starting from
a concrete pu; the arbitrary initial credit (AIC) problem asks for a given p ∈ Q
if there is an initial credit u ∈ N

d such that Player � wins from pu.
An algorithm solving the GIC problem (for extended VASSs) was given in [8];

solving the AIC problem served as the basic case. The problem was shown to
belong to TOWER (the “smallest” nonelementary complexity class); it was
shown, in principle, to be solvable in d-exponential time for dimension d.

There is now a row of papers in the literature that deal with various
variants of multi-energy games and/or related multi-min-payoff games and/or
related issues; we can name [2,3,6,7,10–12,14,16,22], without any claim on
the completeness of this list. The most recent, and indeed remarkable, result
has been achieved by Jurdziński, Lazić, and Schmitz [17], who have shown the
pseudo-polynomiality of multi-energy games when the dimension is fixed, and
2-ExpTime-completeness in general (in the framework of standard VASSs). We
can mention that a first step in the “pseudo-polynomiality direction” was pre-
sented at the Workshop on Reachability Problems by Chaloupka in 2010 [9].

It would be surely useful to have an exposition of the main research ideas in
the above (and related) papers; as usual, the same ideas are often hidden in the
various technical formalisms, they recur in various contexts, etc. Nevertheless,
to give such a survey would be a difficult task. This paper is meant just as
an attempt to make a modest step in this direction, by highlighting the crucial
ideas that lead to an algorithm solving a problem in this area. The shown result
is new, though not deep w.r.t. the state-of-the-art; it serves us mainly for an
illustration.

Concretely, we show an algorithm for solving the GIC problem on eVASS
games where the �-objective is extended by a parity condition. Each control
state q ∈ Q has an attached rank rank(q) ∈ N. The objective of � is not only
to keep the play in Conf+ but, moreover, to guarantee that the least rank of
control states visited infinitely often is even. In [10] the problem was studied for
the dimension 1; this version belongs to a class of problems that are known to be
in NP and co-NP but for which the question of polynomiality is open. The AIC
problem for (general) parity-VASS games was studied in [11]; the decidability of
this problem was then used in [3] to show the decidability of the respective GIC
problem. The concluding remarks of [17] make clear that the new approach has
not been so far applied to the case with the parity condition; the authors only
mention that a TOWER upper bound could be derived.

The authors of [17] also mention that they improve the complexity results
of [8] for VASS-games, not mentioning the case of eVASS-games. Here, in
Section 2, we show that the GIC problem for eVASS-games extended with the
parity condition, the GIC-parity-eVASS problem, can be easily reduced to the
normal (“non-parity”) GIC-eVASS problem; the possibility of using ω (i.e., an
arbitrary nonnegative value) for a counter-change is especially convenient in this

On Reachability-Related Games on Vector Addition Systems with States 53

reduction, even when we start with standard VASSs. This easy reduction thus
also yields a (more general) alternative to the decidability proof in [3]; more-
over, the result of [8] then immediately puts the GIC-parity-eVASS problem
in TOWER. (We can also note the opposite direction, namely that the GIC-
eVASS problem is easily reducible to the GIC-parity-VASS problem: to arrange
that � can add an arbitrarily large value to a counter, we add an appropriate
odd-ranked control state that has a loop that increments the counter.)

For the sake of highlighting several research ideas and techniques, in Section 3
we give a direct proof yielding the mentioned TOWER membership. The section
has three subsections, roughly corresponding to three main ideas.

Section 3.1 highlights the notion of mixing two �-strategies (the game-
strategies of Player �) in the context of (VASS- or) eVASS-games. This also
underpins an inductive proof of a crucial fact of pruning, saying that for each
q ∈ Q♦ that is universally ♦-winning (i.e., ♦ has a winning strategy from every
configuration qu) we can fix just one outgoing transition (and prune away the
others) without changing Win♦, where Win♦ ⊆ Conf is the set of configurations
for which ♦ has winning strategies.

Section 3.2 recalls some standard results on detecting nonnegative cycles in
VASSs (and eVASSs), and on exponential bounds on the lengths of such shortest
cycles. The results entail that deciding if a given q ∈ Q is universally ♦-winning
(which is the complement of the AIC problem) is in NP; it is NP-complete, in
fact, for which we can refer to [22]. The strategy-mixing from Section 3.1 then
yields an exponentially bounded initial credit that suffices for �-winning in any
given q ∈ Q if q is not universally ♦-winning.

Section 3.3 then describes an algorithm for solving the GIC-parity-eVASS
problem, based on solving the AIC problem and on attractor constructions.
This natural use of (alternating-reachability) attractors does not seem to have
appeared in the literature in this context so far (while some methods of forward
analysis or of bounded counters have been used instead).

1.1 Strategies, Winning Strategies, Winning Regions Win�, Win♦

We make some notions and notation more formal, to the extent that should
suffice for avoiding possible confusions; we refer to Fig. 1 when giving concrete
examples. In particular we make precise the (standard) notion of strategies of
the players, in the form that is technically convenient for our reasoning.

A d-dim eVASS game M is given by a finite directed multigraph (Q,T)
where the nodes p ∈ Q are also called the control states and the edges t ∈ T are
called the transitions; moreover, we have a partition Q = Q♦ � Q�, and each
t ∈ T has an associated change-vector Δ(t) ∈ Z

d
ω, where Z

d
ω = (Z ∪ {ω})d (e.g.,

Δ(t12) = (−2, ω, 238)). More precisely, we allow ω only in Δ(t) for �-transitions
t, which are the transitions outgoing from �-states, i.e., from the control states
q ∈ Q�; for ♦-transitions t we have Δ(t) ∈ Z

d. We also require that each control
state q ∈ Q has at least one outgoing transition; we would add a loop t on q with
Δ(t) = 0 otherwise, where 0 stands for the d-dimensional zero vector.

54 P. Jančar

An instantiated path (in a d-dim eVASS game M) is a (finite or infinite) path

q0
(t1,δ1)−→ q1

(t2,δ2)−→ q2
(t3,δ3)−→ . . . (1)

where q0
t1−→ q1

t2−→ q2
t3−→ . . . is a path in the graph of M (or a “walk”, since

we allow qi = qj for i �= j) and δi is an instance of Δ(ti), i.e., δi ∈ Z
d arises from

Δ(ti) by replacing each ω with a nonnegative integer. (We have δi = Δ(ti) when
Δ(ti) ∈ Z

d, which is always the case when qi−1 ∈ Q♦.) Each control state q ∈ Q
is also viewed as a zero-length path (from q to q).

A ♦-strategy is a function that attaches, to each finite instantiated path

q0
(t1,δ1)−→ q1

(t2,δ2)−→ q2 · · · (tm,δm)−→ qm (2)

where qm ∈ Q♦, the pair (t,Δ(t)) for an outgoing transition t of qm. A �-strategy
attaches, to each path (2) where qm ∈ Q�, a pair (t, δ) where t is an outgoing
transition of qm and δ is an instance of Δ(t).

An infinite instantiated path of the form (1) is also called a play, or a play
from q0 ; the play is consistent with a ♦-strategy (a �-strategy) σ if for any

qi ∈ Q♦ (qi ∈ Q�) we have (ti+1, δi+1) = σ(q0
(t1,δ1)−→ q1

(t2,δ2)−→ q2 · · · (ti,δi)−→ qi). A
play from a configuration q0u is a play from q0.

We consider the parity eVASS games, where we also have rank : Q → N.
A �-strategy σ is winning from q0u if any play (1) that is consistent with σ

satisfies the �-objective, i.e.: u +
∑i

j=1 δj is nonnegative for all i ∈ N and the
least rank(qi) visited infinitely often is even. We observe that if a �-strategy
σ is winning from q0u then it is winning from every q0v where u ≤ v (where
≤ is taken component-wise). Hence the set Win� of configurations for which �
has winning strategies is upward closed, when pu ≤ qv is defined as p = q and
u ≤ v. Therefore Win� is the upward closure of Min�, the set of its minimal
elements, which is finite by Dickson’s Lemma.

Similarly, Win♦ is the downward closure of Max♦ in the completion SConf =
Q × Z

d
ω of symbolic configurations; we include pu ∈ SConf in Win� iff there is

an instance pv of pu (where v arises from u by replacing all ω’s with some non-
negative integers) such that pv ∈ Win�; otherwise pu is in Win♦. By standard
determinacy results we have SConf = Win♦ � Win�.

E.g., the symbolic configurations inside the nodes of the graph in Fig. 2
(which will be discussed later) constitute Max♦ for M in Fig. 1, when assuming
rank(p1) = 0 and rank(pi) = i for all i ∈ {2, 3, 4, 5}. We can check that the
♦-strategy described as “if the last performed transition was t4, then perform t3;
if the last performed transition was t5, then perform t2; perform t10 in p4 (and
otherwise do whatever)” is winning from p2(2, 2, x) for any x ∈ Z.

The result that we will show can be formulated as follows:

Theorem 1. There is an algorithm that, given a parity eVASS game M, con-
structs Min�, Max♦, and a description of (finite-memory) strategies winning
for Player � and Player ♦ in Win� and Win♦, respectively. The complexity of
the algorithm can be bounded by the function tower, defined by tower(0) = 1
and tower(n+1) = 2tower(n).

On Reachability-Related Games on Vector Addition Systems with States 55

2 Reducing GIC-parity-eVASS to GIC-eVASS

Using the results from [8], Theorem 1 in principle follows from the next lemma.

Lemma 1. The GIC-parity-eVASS problem is polynomial-time reducible to the
GIC-eVASS problem.

The lemma constitutes a natural case for applying the general method of encod-
ing a parity condition into a safety condition. An instance of this method was
used in [11] in the context of the AIC-problem for VASSs but the general method
was already used in some previous works, as is also indicated in [11].

We now describe a relevant reduction, which conveniently uses the possibility
of ω’s in Δ(t) of �-transitions. For an instance M, p0u of the GIC-parity-eVASS
problem we construct an instance M′, p′

0u
′ of the GIC-eVASS problem as follows:

1. Starting with M, for each odd rank r (where rank(q) = r for some q ∈ Q)
we add a new counter cr, and modify the change-vectors Δ(t) of transitions
so that each entering q with rank(q) = r entails decrementing cr.

2. We add a fresh control state p′
0 in Q� and a transition p′

0
t−→ p0 where the

vector Δ(t) has ω in the components corresponding to all above counters cr,
and 0 in the other components. The new initial configuration will be p′

0u
′

where u′ arises from u by filling zeros in all cr. (Hence Player � can put any
nonnegative numbers in all cr in the first step.)

3. For each q with an even rank(q) we add a fresh state q′ ∈ Q� and the
transition q′ t′−→ q where Δ(t′) has ω in the components corresponding to all
cr with r > rank(q) and 0 elsewhere; all original transitions leading to q
are redirected to q′. (When entering an even-rank state q, Player � gets a
possibility to increase the counters cr for all odd ranks r bigger than rank(q).)

The construction thus increases the dimension: if M is a d-dim parity-eVASS
game with � odd ranks, then M′ is a (d+�)-dim eVASS game. Before proving
the correctness of the reduction we note a general fact that any winning strategy
of � can be made “cycle-free” as explained below.

We say that an instantiated path π of the form (2) is a good cycle if m ≥ 1,
q0 = qm, Δ(π) =

∑m
i=1 δi ≥ 0, and the least rank(qi) (for i ∈ {0, 1, . . . ,m})

is even. If an instantiated path π of the form (2) contains a good cycle, then

by trim(π) we mean the path π1π3 where π = π1π2π3 and π2 = qi
(ti+1,δi+1)−→

qi+1 · · · (tj ,δj)−→ qj is the first good cycle in π (for the least j primarily and the
least i secondarily). Generally by π1π2 we refer to the natural concatenation of
paths, which assumes that the end-state of π1 and the start-state of π2 are the
same. (Recall that we also allow the trivial zero-length paths of the form q.) If
π does not contain a good cycle, then trim(π) = π.

A �-strategy σ is cycle-free if for any π ∈ dom(σ) we have σ(π) =
σ(trim(π)). We have already noted that if a �-strategy wins from qu, then
it wins from qv for any v ≥ u. We can thus derive that for any configuration
q0u ∈ Win� there is a cycle-free �-strategy winning from q0u.

56 P. Jančar

Now we show the correctness of the above reduction:

a/ Suppose that � has a winning strategy in the (parity) game given by M and
p0u; let σ be such a cycle-free strategy. By Dickson’s Lemma (and the finite
branching of ♦’s choices) there is � ∈ N that bounds the lengths of the prefixes
with no good cycles in the plays from p0 that are consistent with σ. Hence
� can use the analogous strategy in the “non-parity” game M′ from p′

0u
′,

while always adding �+1, say, to the respective counters cr when performing
the cr-increasing transitions; she thus keeps all counters nonnegative.

b/ If ♦ has a winning strategy σ in the game M from p0u, then any play
consistent with σ either enters a configuration with a negative counter (i.e.,
in the respective play u +

∑i
j=1 δj has a negative component for some i)

or the least rank visited infinitely often is odd. The analogous ♦-strategy
is then winning in the “non-parity” game M′ from p′

0u
′, since in this case

any consistent play obviously enters a configuration with a negative counter
(which might be cr for some odd rank r).

3 A Direct Proof of Theorem 1

We now give a self-contained proof that can be viewed as based on three main
ideas, explained in the following three subsections. We do not describe all tech-
nical details when the respective proof steps should be clear.

3.1 Mixing �-Strategies, and Pruning ♦-Transitions

An important step for constructing Max♦ (which naturally entails construct-
ing Min�) is to decide which states q ∈ Q are ♦-universal, i.e., which satisfy
q(ω, . . . , ω) ∈ Win♦. We will base our reasoning on an induction on the number
D of ♦’s choices, defined as D = |{t | t is a ♦-transition}| − |Q♦|; hence D = 0
iff each q ∈ Q♦ has exactly one outgoing transition.

Consider a parity-eVASS game M and a control state qs ∈ Q♦ (the super-
script s refers to “splitting”) with two different outgoing transitions ts1, t

s
2 (and

maybe some others). Let M1 arise from M by removing ts2, and let M2 arise
from M be removing ts1. We now suggest a way how to combine two �-strategies,
σ1 for M1 and σ2 for M2, to yield a strategy σ = mix(σ1, σ2) for M.

This combination of strategies is based on the fact that any (finite or infinite)
path π = q0

t1−→ q1
t2−→ · · · in (the graph of) M can be naturally viewed as a

merge of a path from q0 in M1 and a path from qs in M2.
E.g., if in Fig. 1 we put qs = p1, ts1 = t2, ts2 = t3, then the path

π = p2
t6−→ p3

t8−→ p1
t3−→ p2

t6−→ p3
t8−→ p1

t3−→ p2
t6−→ p3

t8−→ p1
t2−→ p2

can be split into the path π1 = p2
t6−→ p3

t8−→p1
t2−→ p2 in M1 and the path π2 =

p1
t3−→ p2

t6−→ p3
t8−→ p1

t3−→ p2
t6−→ p3

t8−→p1 in M2. We have shown in boldface
the first occurrence of a transition that is not present in M1, then after it the
first occurrence of a transition that is not present in M2, and we would continue
in this alternation if π was longer. We now formalize this intuitive idea.

On Reachability-Related Games on Vector Addition Systems with States 57

Fig. 2. A 3-dim eVASS game S (♦-Strategy) related to M from Fig. 1

Consider a path π = q0
t1−→ q1

t2−→ · · · in M, and a path π2 in M2 that
finishes in qs; we can have that π2 is just qs (a trivial path from qs to qs). We
transform the pair (π, π2) to Trans(π, π2) = (π′, π′

2) as follows:

1. If ts2 does not occur in π, then Trans(π, π2) = (π, π2). (Hence (π, π2) is a
fixpoint of the mapping Trans.)

2. If π = ρ1ρ2 where ρ2 = qs ts2−→ . . . starts with the first occurrence of ts2 in π,
then:
a) if ρ2 does not contain ts1, then Trans(π, π2) = (ρ1, π2ρ2), and (ρ1, π2ρ2)

is defined as a fixpoint of Trans;
b) if ρ2 = ρ′

2ρ
′′
2 where ρ′′

2 = qs ts1−→ . . . starts with the first occurrence of ts1
in ρ2, then Trans(π, π2) = (ρ1ρ′′

2 , π2ρ
′
2).

For a (finite or infinite) path π in M, we put split(π) = (π1, π2) where (π1, π2)
is the fixpoint of Trans reached when repeatedly applying Trans to the pair
(π, qs). The fixpoint is “reached” after infinitely many iterations when π is infi-
nite and contains infinitely many occurrences of both ts1 and ts2. We note that
π1 is path in M1 and π2 is a path in M2 starting in qs. The function split(π)

is naturally extended to the instantiated paths π = q0
(t1,δ1)−→ q1

(t2,δ2)−→ · · · (by
simply ignoring δi).

Now we define the mixed �-strategy σ = mix(σ1, σ2) in M as follows:
For an instantiated path π finishing in some q ∈ Q� we consider split(π) =
(π1, π2); if π1 finishes in q (and thus π2 in qs, where q �= qs since q ∈ Q� and
qs ∈ Q♦), then we put σ(π) = σ1(π1); if π2 finishes with q (and thus π1 with
qs), then we put σ(π) = σ2(π2).

We note that any (infinite) play consistent with σ is a merge of two plays
consistent with σ1 and σ2, respectively; more precisely, it is a merge of a play with

58 P. Jančar

a prefix of another play (which might be finite). The nature of the �-objective,
including the parity condition, is such that merging two plays satisfying the
objective yields a play that also satisfies the objective, on condition that each
play operates on its “own” counter values (that are summed up in the combined
play). We thus easily observe:

Lemma 2. If σ1 is a �-strategy in M1 that is winning from q0u, and σ2 is a
�-strategy in M2 that is winning from qsv, then σ = mix(σ1, σ2) is a �-strategy
in M that is winning from q0(u+v); if, moreover, q0 = qs, then σ is winning
from qs(u+v).

This also entails that if qs is ♦-universal (i.e., qs(ω, . . . , ω) ∈ Win♦), then qs

must be ♦-universal in at least one of M1, M2. In this case at least one of the
transitions ts1, t

s
2 can be removed from M so that Win♦ (and thus also Win�)

does not change. We thus get:

Lemma 3. (Pruning Lemma.) For each q ∈ Q♦ that is ♦-universal there is
one outgoing transition t of q such that Win♦ does not change when we remove
(“prune away”) the other outgoing transitions of q.

After such pruning at each ♦-universal q ∈ Q♦, the set QD-univ = {q ∈ Q |
q(ω, . . . , ω) ∈ Win♦} is “transition-closed”, i.e., there is no transition q

t−→ q′

where q ∈ QD-univ and q′ �∈ QD-univ. (In our example, QD-univ = {p4, p5}.)

3.2 Detecting Nonnegative Cycles, and Their (Exponential)
Lengths

The question if q ∈ QD-univ is complementary to the question if the answer to the
AIC problem for q is positive. Lemma 3 and the fact that QD-univ is transition-
closed after the respective pruning show that there is a restriction of M arising
by removing all but one outgoing transition for each q ∈ Q♦ such that QD-univ

remains unchanged (though Win♦ might shrink for non-♦-universal states).
This suggests to start with considering the basic case, where ♦ has no choice,

i.e., D = |{t | t is a ♦-transition}|− |Q♦| = 0. This is equivalent to the case with
Q♦ = ∅, i.e., to the one-player game where Player � freely constructs a play. In
this case a sufficient initial credit for a given control state q0 exists iff there is a
path from q0 to some q which is on a nonnegative cycle q

t1−→ q1
t2−→ q2 · · · tm−→ qm,

where m ≥ 1, qm = q, and
∑m

i=1 Δ(ti) ≥ 0 (we put z + ω = ω + z = ω + ω = ω
for any z ∈ Z), and, moreover, the least rank(qi), i ∈ {1, 2, . . . ,m}, is even.

The existence and the structure of such cycles can be found in polynomial
time, by using linear programming (LP). Let us recall the idea from [18]. We
introduce a (nonnegative real) variable xt for each transition t, and the linear
constraints xt ≥ 0,

∑
t∈T xt ≥ 1,

∑
t∈T xt · Δ(t) ≥ 0, and the “Kirchhoff’s

Law” constraint
∑

t,target(t)=p xt =
∑

t,source(t)=p xt for each control state p.
The Parikh image of a nonnegative cycle C = t1t2 . . . tm (i.e. the vector of
dimension |T | where the component corresponding to t gives the number of
occurrences of t in C) is obviously an integer solution (of our set of constraints).

On Reachability-Related Games on Vector Addition Systems with States 59

On the other hand, a polynomial time algorithm for linear programming finds
a rational solution, if there is one, which easily yields an integer solution (by
multiplying with a common denominator). We aim at getting an Eulerian path
but the transitions t with positive xt (in the solution) can create a nonnegative
multicycle (a set of separated cycles in the graph of M) instead of one cycle. By
a repeated use we can compute all transitions that can appear in a nonnegative
multicycle. On the graph restricted to such transitions we solve the problem for
each connected component separately.

The possible presence of ω’s in Δ(t) can be handled easily; moreover, we can
also easily concentrate on the cycles where the least visited rank is even. Hence
already the existence of a polynomial-time algorithm solving LP entails that the
lengths of such shortest cycles can be written in polynomial space, w.r.t. the size
of M, denoted ||M||, where the numbers are presented in binary; the lengths
are thus exponential in ||M||. We can thus easily derive:

Lemma 4. 1. The problem asking if q(ω, . . . , ω) ∈ Win♦ for a given parity-
eVASS game M and a control state q is in NP.
2. For a parity-eVASS game M there is a (polynomially computable) bound
B0 ∈ N, exponential in ||M||, such that for any control state q we have that
q(ω, . . . , ω) ∈ Win� implies q(B0, . . . , B0) ∈ Win�.

Proof. (Sketch.)
1. We guess a restriction of M with just one outgoing transition for each p ∈ Q♦,
and then verify (in polynomial-time) that no respective cycle is reachable from
the given q. (The idea to combine the analogue of Lemma 3 in [8] with the cycle
detecting in [18] to get the NP-membership first appeared in the FSTTCS’10
publication mentioned at [22]; also NP-hardness was shown there.)
2. As already discussed, we have such an exponential bound B′

0 in the case with no
♦-choice, i.e. with D = |{t | t is a ♦-transition}| − |Q♦| = 0. In the general case it
suffices to put B0 = 2D · B′

0, as can be verified by a repeated use of Lemma 2. �
Remark. By Rackoff’s approach [20] concentrating on the effects of simple cycles,
and by the bounds from [5], it is straightforward to show that the lengths of our
shortest nonnegative cycles are pseudopolynomial when the dimension is fixed.
It is the multiplication by 2D that had to be circumvented in [17].

3.3 Attractor-Based Algorithm for the GIC-parity-eVASS Problem

Assume a d-dim parity-eVASS game M. We aim to give an algorithm con-
structing Max♦, the set of maximal elements in Win♦ ⊆ SConf = Q × Z

d
ω,

and a description of a (generalized) ♦-strategy winning in Win♦. (A descrip-
tion relevant to M in Fig. 1 is depicted in Fig. 2.) By pu, qv, etc. we further
refer to the symbolic configurations (elements of SConf). By u� we refer to
the �-th component of u, and we define the support of pu as supp(pu) = {� ∈
{1, 2, . . . , d} | u� �= ω}. The algorithm uses a “program variable” Solved con-
taining the (stepwise increasing) set of the symbolic configurations that have

60 P. Jančar

been already shown to belong to the set Win♦ (which is downward closed);
initially we have Solved = ∅.

Algorithm (whose input is a d-dim parity-eVASS game M):

1. Process the support ∅, i.e., divide the set C∅ = {p(ω, . . . , ω) | p ∈ Q} between
Win♦ and Win�, while also fixing one appropriate outgoing transition for
each p ∈ Q♦ where p(ω, . . . , ω) ∈ Win♦ (which can done by Lemma 4(1) and
its proof). Add (the downward closure of) all p(ω, . . . , ω) ∈ Win♦ to Solved.

2. If all supports have been processed, then halt. Otherwise choose an unpro-
cessed support sp ⊆ {1, 2, . . . , d} such that all inclusion-lesser supports
sp′ ⊂ sp have been processed. Let Csp = {pu | supp(pu) = sp}.
Some of pu ∈ Csp can be already in Solved, since bounded by lesser-support
elements of Win♦; in the case |sp| = 1 we add all pu ∈ Csp whose single
non-ω component is negative to Solved.
The construction maintains the invariant that replacing any finite component
in pu ∈ Csp �Solved with ω yields an already established element of Win�.

i. Apply the standard attractor-construction on Csp, constructing the sub-
set C ′ ⊆ Csp � Solved from which ♦ can force reaching Solved; in this
construction we ignore the ω-components (outside sp), i.e., each transi-
tion leaves ω-components unchanged.
(Start with C ′ = ∅ and keep extending C ′ with unsolved pu for which
p ∈ Q♦ and pu �→ qv ∈ C ′ ∪ Solved, in which case fix the respective
transition for pu, or for which p ∈ Q� and qv ∈ C ′ ∪ Solved for all
pu �→ qv. The construction is finite due to the above invariant.)

ii. Extend Solved with C ′, and let C be the set of the minimal currently
unsolved elements of Csp; let Csp � Solved = C � Above. By another
attractor-construction (now from the �-viewpoint) construct D ⊆ C from
where � can force reaching Above.

iii. If D = C, then finish processing sp (claiming that Csp�Solved ⊆ Win�)
and go to 2. Otherwise (if D ⊂ C) consider the respective (d−|sp|)-dim
parity-eVASS game (with the counters outside sp), where C � D serves
as the set of control states.
(In our example, at some moment we might have sp = {1, 2} and con-
sider the 1-dim game with control states p1(1, 3, ω), p1(2, 2, ω), p1(3, 1, ω),
p2(2, 2, ω), where all these control states happen to be ♦-universal.)
Find ♦-universal states in this (d−|sp|)-dim game. If there are some, then
add the respective symbolic configurations to Solved (which is obviously
sound), and go to i.; otherwise finish processing sp, and go to 2.

To show the termination and the correctness of the algorithm (which includes
showing the mentioned invariant), we need to show that at the end of processing
sp we have Csp � Solved ⊆ Win�. This surely holds for sp = ∅; thus also the
invariant holds when |sp| = 1. For the sake of contradiction, suppose that at
the end of processing sp (for which the invariant holds) there is some (minimal
unsolved) pu ∈ C that belongs to Win♦. Hence pu ≤ pv for some pv ∈ Max♦,
where supp(pv) = supp(pu) = sp. We can verify that there is a ♦-strategy

On Reachability-Related Games on Vector Addition Systems with States 61

σ that is winning from every instance of pv (imagine that ω’s outside sp are
replaced with very large integers) and the respective consistent plays never visit
an instance of pv′ where supp(pv′) = sp and v′ > v (which means v′ ≥ v and
v′ �= v). But the same strategy σ is winning from all instances of pu as well;
the consistent plays then never visit an instance of (a symbolic configuration
in) {pw | supp(pw) = sp,w > u} ⊆ Above. If a consistent play from an
instance of pu visits an instance of {qw | supp(qw) = sp,w ≥ v} for another
qv ∈ C, then there is a ♦-strategy winning from all instances of qv that avoids
visiting instances of both {pw | supp(pw) = sp,w > u} ⊆ Above and {qw |
supp(qw) = sp,w > v} ⊆ Above. By continuing this reasoning we deduce that
there is a ♦-strategy winning from all instances of some p′u′ ∈ C that avoids
visiting Above; this contradicts with the condition that D = C or that the
(d−|sp|)-dim game with the control states C � D has no ♦-universal states.

Using the bound B0 from Lemma 4(2) iteratively (also for bounding the pos-
sible numbers |C �D| of control states in the (d−|sp|)-dim games), it is a routine
to derive a d-exponential upper bound on the complexity of our algorithm.

We leave implicit the produced presentations of (finite-memory) ♦-strategies
winning in Win♦, in the form of (large) finite automata given as eVASS-games
where the control states are some symbolic configurations and each ♦-state has
just one outgoing transition (which is exemplified by Fig. 2 when we remove t11).
Similarly we leave implicit the presentations of the (finite-memory) �-strategies.

Remark. In any VASS game where ♦ has no choice, the GIC problem is equiv-
alent to the nontermination problem in VASSs, which is ExpSpace-complete,
similarly as the coverability and boundedness problems, as follows from the
classical results by Lipton and Rackoff (cf. [20] and, e.g., the survey [13]). Hence
AltExpSpace-completeness, i.e., 2-ExpTime-completeness, in the case of two-
player games, which was shown in [17], looks natural, but it requires a (much)
deeper insight for analysing the complexity of the above algorithm.

Acknowledgment. I thank the anonymous reviewers for helpful comments.

References

1. Abdulla, P., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games.
Journal of Logic and Computation 18(1), 153–169 (2008). (a preliminary version
appeared at CSL/KGC 2003)

2. Abdulla, P.A., Atig, M.F., Hofman, P., Mayr, R., Kumar, K.N., Totzke, P.: Infinite-
state energy games. In: Proc. of CSL-LICS 2014, pp. 7:1–7:10. ACM Press (2014)

3. Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on integer
vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency
Theory. LNCS, vol. 8052, pp. 106–120. Springer, Heidelberg (2013)

4. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In: Proc. of
LICS 2015. ACM Press (2015)

5. Borosh, I., Flahive, M., Treybig, B.: Small solutions of linear Diophantine equa-
tions. Discrete Mathematics 58, 215–220 (1986)

62 P. Jančar

6. Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis for
consumption games with multiple resource types. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)

7. Brázdil, T., Kiefer, S., Kučera, A., Novotný, P., Katoen, J.P.: Zero-reachability in
probabilistic multi-counter automata. In: Proc. of CSL-LICS 2014, pp. 22:1–22:10.
ACM Press (2014)

8. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

9. Chaloupka, J.: Z-reachability problem for games on 2-dimensional vector addition
systems with states is in P. Fundam. Inform. 123(1), 15–42 (2013). (a preliminary
version appeared at the Workshop on Reachability Problems 2010)

10. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60
(2012). (a preliminary version appeared at ICALP 2010)

11. Chatterjee, K., Randour, M., Raskin, J.: Strategy synthesis for multi-dimensional
quantitative objectives. Acta Inf. 51(3–4), 129–163 (2014). (a preliminary version
appeared at CONCUR 2012)

12. Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 220–231. Springer, Heidelberg (2014)

13. Esparza, J.: Decidability and complexity of Petri net problems - an introduction.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

14. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

15. Finkel, A., Goubault-Larrecq, J.: The theory of WSTS: the case of complete WSTS.
In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 3–31.
Springer, Heidelberg (2012)

16. Juhl, L., Guldstrand Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted
and parametrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories
of Programming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer,
Heidelberg (2013)

17. Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are
in pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer,
Heidelberg (2015)

18. Kosaraju, S., Sullivan, G.: Detecting cycles in dynamic graphs in polynomial time.
In: Proceedings of STOC 1988, pp. 398–406. ACM Press (1988)

19. Leroux, J., Schmitz, S.: Reachability in vector addition systems demystified. In:
Proc. of LICS 2015. ACM Press (2015)

20. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6, 223–231 (1978)

21. Raskin, J., Samuelides, M., van Begin, L.: Games for counting abstractions. Electr.
Notes Theor. Comput. Sci. 128(6), 69–85 (2005)

22. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M.,
Raskin, J.: The complexity of multi-mean-payoff and multi-energy games. Inf.
Comput. 241, 177–196 (2015). (based on versions appearing at FSTTCS 2010
and FoSSaCS 2011)

A Topological Method for Finding Invariant
Sets of Continuous Systems

Laurent Fribourg2, Eric Goubault1(B), Sameh Mohamed1,2,
Marian Mrozek3, and Sylvie Putot1

1 LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
{goubault,putot}@lix.polytechnique.fr

2 LSV, ENS Cachan and CNRS, Cachan, France
{fribourg,mohamed}@lsv.ens-cachan.fr

3 Division of Computational Mathematics, Jagiellonian University,
Kraków, Poland

marian.mrozek@uj.edu.pl

Abstract. A usual way to find positive invariant sets of ordinary differ-
ential equations is to restrict the search to predefined finitely generated
shapes, such as linear templates, or ellipsoids as in classical quadratic
Lyapunov function based approaches. One then looks for generators or
parameters for which the corresponding shape has the property that the
flow of the ODE goes inwards on its border. But for non-linear systems,
where the structure of invariant sets may be very complicated, such sim-
ple predefined shapes are generally not well suited. The present work pro-
poses a more general approach based on a topological property, namely
Ważewski’s property. Even for complicated non-linear dynamics, it is
possible to successfully restrict the search for isolating blocks of simple
shapes, that are bound to contain non-empty invariant sets. This app-
roach generalizes the Lyapunov-like approaches, by allowing for inwards
and outwards flow on the boundary of these shapes, with extra topolog-
ical conditions. We developed and implemented an algorithm based on
Ważewski’s property, SOS optimization and some extra combinatorial
and algebraic properties, that shows very nice results on a number of
classical polynomial dynamical systems.

1 Introduction

This paper describes a new method for proving the existence of a positive invari-
ant set (generally called invariant set in computer science - we will stick to the
former terminology, classical in the dynamical systems community) of a dynam-
ical system, inside some region of the state space. Positive invariant sets are
central to control theory and to validation of systems, such as programs (when
considering discrete dynamical systems), physical systems (considering contin-
uous dynamical systems), or hybrid systems. In this paper, we are focusing on
continuous dynamical systems, but part of the method described here makes
sense in a discrete setting - in particular, Conley’s index theory [20] can be
developed for discrete systems, only the differential conditions we are giving in
c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 63–75, 2015.
DOI: 10.1007/978-3-319-24537-9 7

64 L. Fribourg et al.

this paper have to be replaced by different conditions, which will be developed
elsewhere.

Let us consider an autonomous polynomial differential equation, for the rest
of this article :

dx

dt
= f(x) (1)

where x is a vector (x1, . . . , xn) of R
n and f is a vector of n polynomials in

x1, . . . , xn, e.g. for all i = 1, . . . , n, fi ∈ R[x1, . . . , xn], the multivariate poly-
nomial ring on n variables. As a polynomial function is locally Lipschitz, we
know by the Cauchy-Lipschitz theorem that the vector field f generates a flow
ϕ : U → R

n, where U is an open subset of R×R
n in such a way that t �→ ϕ(x, t)

is a solution of the differential equation.
A positive invariant set is a subset of the state-space such that if the initial

state of the system belongs to this set, then the state of the system remains inside
the set for all future time instances. An invariant set is a subset of the state-
space which is positively invariant under the flow, and positively invariant under
the opposite flow (i.e. it is also negatively invariant). The classical approach to
find positive invariant sets of dynamical systems is through the determination of
a Lyapunov function, generally polynomial, which decreases along trajectories
of the dynamical system, positive in a neighborhood of the equilibrium point
(the only point on which its value is zero). This approach is particularly well-
suited to linear dynamical systems, where quadratic Lyapunov functions prove
to be the right class of functions, but in the case of non-linear systems [15,30]
the shape of the invariant set itself may be very complicated, in fact, far too
complicated to be easily found in general by polynomial Lyapunov functions.
Some authors, including the authors of the present article, have shown how to
find, in some cases, rational functions [30], and even functions in the differential
field extension of rational functions by some logarithms and exponentials, which
could be candidate Lyapunov functions [11]. This is of course highly costly in
computational power.

Recently, some authors have proposed to use piecewise linear [24] or piece-
wise quadratic [2] Lyapunov functions inspired both by abstract interpretation
of programs [25] and recent results in hybrid systems theory, most notably in
switched systems theory [3,26]. If these methods, based on “templates”, are com-
putationally tractable, they are limited by the fact that they can only find very
specific shaped positive invariant sets ; they must be in particular convex, which
is not always the case, even for simple classical systems.

We propose in this paper a method that also builds on templates. But instead
of considering more complicated Lyapunov functions (or shapes of candidate
invariant sets) as in [11], we relax the classical condition that, for a template
(given by a piecewise linear, quadratic, and even more general polynomial Lya-
punov function) to be positively invariant, the flow of the differential system
must go inwards, condition that can be expressed as a negativity condition on
a certain Lie derivative (a notion defined in Section 3). We relax this classical
condition by asking only some parts of the boundary of the template to have
inwards flows, relying on some simple techniques of Conley’s index theory [8],

A Topological Method for Finding Invariant Sets of Continuous Systems 65

and in particular Ważewski’s property, to show the existence of a positive invari-
ant set within this template. The positive invariant set itself may be very com-
plicated, but we do not need to precisely describe it ; the template serves as an
outer approximation of this positive invariant set.

Let us for instance consider the case of Example 1, which will be our running
example throughout this paper.

Example 1. (Ex 2.8 of [20]): ẋ = y, ẏ = y + (x2 − 1)
(
x + 1

2

)
. This system has

several invariant sets in B = [−2, 2] × [−2, 2] ⊂ R
2 : there are in particular 3

fixed points (−1, 0),
(− 1

2 , 0
)

and (1, 0) for this system within this box. On this
system, it would be difficult to find a linear template on which we can prove
the inward flows property (in fact, there is a “natural” degree 4 polynomial
Lyapunov function, see [20]), whereas we will see that boxes such as B can be
easily shown to contain a positive invariant set, using our approach.

Claims and Contents of this Article. The main idea of our article is that even
though invariant sets for nonlinear dynamics may be very complicated to rep-
resent, and thus to find (e.g. by an explicit Lyapunov function), there exist
topological criteria to deduce that there exists a non-empty positive invariant set
inside some region of the state space. Note that not all positive invariant sets
contain a point onto which the dynamical system converges. There might be a
limit cycle, or a more complicated recurrent sets, for instance. For more compli-
cated asymptotic behaviours, within invariant sets, we rely on notions from the
Conley index theory [20], which we quickly state in Section 2. The key useful
notions here, are that of an isolating block and the Ważewski’s theorem, which
gives a sufficient condition to the existence of a non-empty (positive) invariant
set within an isolating block.

Several approaches have been developed over the years to algorithmically
compute such isolating sets and index pairs, but most of them have been derived
for discrete time dynamical systems [21,29]. Most approaches for continuous-
time systems reduce the problem to the discrete-time setting by constructing
rigorous outer approximations of a map for the flow, which of course involves
approximating the solution of the ordinary differential equation which describes
the system.

In this work, we generalize the template based approach of [24], designed orig-
inally for linear systems, to derive some algebraic conditions for a template to be
an isolating block. This is done in Section 3, in which we give a sufficient condition
for a polynomial template to be an isolating block, expressed as conditions on the
Lie derivatives of the polynomial functions involved, on the faces of the template,
that generalize the conditions given in [28]. The main difficulty is in fact of a topo-
logical nature : most of Section 3 is concerned with proving that the so-called exit
set on the template, under the flow given by Equation 1, i.e. the set of states leav-
ing the template, on its faces, is closed. This is necessary for the template to be
an isolating block. Note that our templatized isolating blocks are particular C∞

isolating-block-with-corners of [14], that are as powerful as (generalized) Lyapunov
functions for finding invariant sets (Theorem 2.4 of [14]); but these isolating blocks

66 L. Fribourg et al.

are “robust”: they are still isolating blocks for nearby flows (Theorem 3.5 of [14]),
which make them more robust numerically. They are also close to the polyfacial
sets of [23] attributed there to the original paper of Ważewski [31].

We remark then, that the conditions we gave for a template to be an iso-
lating block can be solved, in particular, by Sum of Squares programming [17]
using Stengle’s nichtnegativstellensatz and even, most often, just Putinar’s posi-
tivstellensatz [22], which is computationally tractable using a SdP (Semi Definite
Programming) relaxation. This makes a second major difference with [28] where
an interval-based method is used instead. Finally, an isolating block may only
contain an empty invariant set, unless the conditions for Ważewski’s principle are
satisfied. For the purpose of this paper, we use a simpler condition, of a purely
combinatorial nature, in Section 4. We end up by discussing the algorithm on
simple examples from the literature, in Section 5. The first simple experiments
obtained with our Matlab implementation are still quite costly, but we propose
in the conclusion a number of possible algorithmical improvements.

2 Some Basics of Dynamical Systems Theory

The following definitions come from Conley index theory, and the qualitative
description of nonlinear dynamics [20]. Let us call ϕ : R × R

n → R
n the flow

function, such that ϕ(., x1, . . . , xn) is the unique solution to the differential equa-
tion system (1) starting, at time 0, at state (x1, . . . , xn) ∈ R

n, meaning that
ϕ(0, x1, . . . , xn) = (x1, . . . , xn) and dϕ

dt (t, x1, . . . , xn) = f ◦ϕ(t, x1, . . . , xn). (Pos-
itive) invariant sets are invariant under the flow ϕ, for all (resp. positive) times,
i.e. they are sets S such that (resp. ϕ(R+, S) ⊂ S) ϕ(R, S) ⊂ S.

A subtle point is that the method is designed to find invariant sets S within a
compact set N , but not quite positive invariant sets. But in fact, it is well-known
that when we have one, we will have the other [5,23].

For non-linear dynamics, the shape of invariant sets can be very complicated.
A central notion to our method is that of isolating block, that isolates invariant
sets, meaning that invariant sets therein, if ever they exist, are necessarily in the
interior of isolating blocks.

Definition 1. (Isolating Block). A compact set B is an isolating block if

(a) B− = {x ∈ B | ϕ([0, T), x) �⊆ B,∀T > 0} is closed
(b) ∀T > 0, {x ∈ B | ϕ([−T, T], x) ⊆ B} ⊆ intB

Condition (a) imposes that the exit set B−, i.e. the set of states of B which
leave B under flow ϕ, is closed in the topology of R

n. When condition (b) is
satisfied, B is called an isolating neighborhood. The combination of (a) and (b)
guarantees that no trajectory is inner tangential to the boundary ∂B of B. A
fundamental difficulty in computational topological dynamics is that isolating
neighborhoods are generally much easier to construct than isolating blocks.

A Topological Method for Finding Invariant Sets of Continuous Systems 67

Fig. 1. The three fixed points and the exit set (in red) of the system of Example 1.

Example 2. For Example 1, we will see that for B = [−2, 2] × [−2, 2] the box of
Figure 2, B− is the set of four red segments, one on each face, on the same Figure,
and we will prove (Example 5.) that B− is closed, so that B is an isolating block
for this system. Note that this is a robust notion : all B = [−a, a] × [−b, b] with
a > 1 and b > 1, in particular, are isolating blocks.

Still, isolating blocks may not contain interesting (meaning non-empty)
invariant sets. There is a simple topological condition on isolating blocks that
implies the existence of a non empty invariant set therein.

Theorem 1. (Ważewski Property [20]). If B is an isolating block and B− is
not a deformation retract of B then there exists a not-empty invariant set S in
the interior of B.

We will not define formally a deformation retract, for the sake of simplicity.
Let us just say that a deformation retract of a topological space B is a subspace
which is an “elastic” deformation of it, so that it retains its essential topological
features. For the method we are developing here, we will content ourselves with
the much weaker statement that among the topological features that are retained
in a deformation retract, is the number of connected components.

Example 3. We saw in Example 2 that we had a square B with closed exit set
B− made of two connected components. Clearly B− is not a deformation retract
of B, as B− is made of two connected components, and B of only one.

3 Isolating Blocks: Algebraic Conditions

We are now giving a simple criterion for a compact set B, given as a general
polynomial template, to be an isolating block for the dynamics given by Equa-
tion 1. Note that although the method can be defined for general polynomial
templates, which is what we describe here, isolating blocks are robust properties

68 L. Fribourg et al.

that permit the use of very simple templates in general, which will be the case
in the experiments presented here. The set B ⊆ R

n is defined, for some vector
c = (c1, . . . , cm) ∈ R

m, by the m polynomial inequalities :

(P)

⎧
⎨

⎩

p1(x1, . . . , xn) ≤ c1
. . .

pm(x1, . . . , xn) ≤ cm

We call P c
i the face of template B given by {(x1, . . . , xn)|pi(x1, . . . , xn) = ci}∩B

which might be proper (non-empty) or not. In what follows, we suppose that
each face of B is proper.

We call minimal polynomial templates, the templates B whose border ∂B is
equal (and not just included as would be generally the case) to

⋃s
i=1{x|pi(x) =

ci, pj(x) ≤ cj ∀j �= i}. For x ∈ ∂B, we note I(x) the non-empty and maximal
set of indices in 1, . . . , m such that for all i ∈ I(x), pi(x) = ci.

Let us now define Lie derivatives, that we will use hereafter.

Definition 2. (Lie Derivative and Higher-order Lie Derivatives). The Lie
derivative of h ∈ R[x] along the vector field f = (f1, . . . , fn) is defined by

Lf (h) =
n∑

i=1

∂h

∂xi
fi = 〈f,∇h〉

Higher-order derivatives are defined by Lk+1
f (h) = Lf (L(k)

f (h)) with L0
f (h) = h.

For polynomial dynamical systems, only a finite number of Lie deriva-
tives are necessary to generate all higher-order Lie derivatives. Indeed, let
h ∈ R[x1, . . . , xn], we recursively construct an ascending chain of ideals of
R[x1, . . . , xn] by appending successive Lie derivatives of h to the list of gen-
erators:

< h >⊆< h,L1
f (h) >⊆ · · · ⊆< h,L1

f (h), . . . ,L(N)
f (h) >

Since the ring R[x] is Noetherian [16], this increasing chain of ideals has neces-
sarily a finite length: the maximal ideal is called the differential radical ideal of
h and will be noted L√< h >. Its order is the smallest N such that:

L(N)
f (h) ∈< h,L(1)

f (h), . . . ,L(N−1)
f (h) > (2)

Not surprisingly, this is a notion that has already been used to characterize
algebraic positive invariant sets of dynamical systems [10].

This N is computationally tractable. If we note Ni the order of the differ-
ential radical ideal L√< pi >, then for face i we should compute the succes-
sive Lie derivatives until Ni. This can be done by testing if the Gröbner basis
spanned by the derivatives changes. Indeed, two ideals are equal if they have the
same reduced Gröbner basis (usually a Gröbner basis software produces reduced
bases) [1]. If we denote by G({g1, · · · , gn}) the Gröbner basis of {g1, · · · , gn}, the
first n s.t. G({L(0)

f (pi), · · · ,L(n)
f (pi)}) = G({L(1)

f (pi), · · · ,L(n+1)
f (pi)}) is equal to

Ni. It can be observed that upper bounds for Ni could be used instead of com-
puting Gröbner bases in some cases, see [27].

A Topological Method for Finding Invariant Sets of Continuous Systems 69

Example 4. If we take the first face P c
1 of the template {p1 = −x, p2 = x, p3 =

−y, p4 = y} with {c1 = 2, c2 = 2, c3 = 2, c4 = 2} i.e P c
1 = {−x = 2, x ≤

2,−y ≤ 2, y ≤ 2} then L(1)
f (p1) = −y, G({L(0)

f (p1),L(1)
f (p1)}) = {−x,−y} ;

L(2)
f (p1) = −y − (x2 − 1)

(
x + 1

2

)
, G({L(0)

f (p1),L(1)
f (p1),L(2)

f (p1)}) = 1. We can
already deduce from this that N1 = 3.

Now, in order to find isolating blocks, we need to find and prove some topo-
logical properties on the exit sets, see Definition 1. For polynomial templates,
we rely on Lemma 1:

Lemma 1. Let x0 be a point on the border ∂B of a minimal polynomial template
B. Then x0 is in the exit set B− of B if and only if, for some i0 ∈ I(x),

∃k0 > 0 such L(k0)
f (pi0) > 0 and ∀0 < k < k0 L(k)

f (pi0) = 0

For a template B to be an isolating block, we know from Definition 1 that
we need to check first that the exit set B− is closed :

Lemma 2. Let B be a compact minimal polynomial template defined by the set
of inequalities (P) and let Ni be the order of the differential radical ideal L√< pi >
(i.e. the index defined by Equation 2) for the dynamical system of Equation 1.

If for each face P c
i of template B, for all k ∈ {1, · · · , Ni − 2},

(Hi
k) :

{
{x ∈ P c

i | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,

L(k+1)
f (pi)(x) < 0} = ∅

then B− is closed and is equal to
⋃m

i=1{x ∈ P c
i | L(1)

f (pi)(x) ≥ 0}.
Proof. We begin to show that if for each face P c

i of template B, for all k ∈
{1, · · · , Ni − 2}, we have {x ∈ P c

i | L(1)
f (pi)(x) = 0, · · · , L(Ni−1)

f (pi)(x) =
0} = ∅ as well as (Hi

k) as above, then B− is closed and is equal to
⋃m

i=1{x ∈
P c

i | L(1)
f (pi)(x) ≥ 0}. If we set, for k = 0, . . . , Ni − 1:

Pk = {x | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,L(k+1)
f (pi)(x) ≥ 0}

Qk = {x | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,L(k+1)
f (pi)(x) > 0}

Rk = {x | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,L(k+1)
f (pi)(x) < 0}

We then have, for k = 1, . . . , Ni −2, Pk = Qk ∪Pk+1∪Rk+1. Given that Ni is the
index of the differential ideal L√< pi >, we know that QNi−1 = ∅, RNi−1 = ∅,
since L(1)

f (pi)(x) = 0, · · · , L(Ni−1)
f (pi)(x) = 0 implies L(Ni)

f (pi)(x) = 0. Given
the hypotheses, we know also that for all k = 1, . . . , Ni−2, Rk = ∅, and PNi−1 =
∅. This means that Pk =

⋃Ni−2
i=k Qi.

By Lemma 1, x is in B− ∩P c
i if and only if it is in ∪∞

i=0Qi∪ = ∪Ni−2
i=0 Qi. This

last set is, by the equation above, equal to P0, which is the inverse image by a con-
tinuous function (the higher Lie derivative) of the closed set [0,max L(1)

f (pi)(B)]
(since B is compact in R

n).

70 L. Fribourg et al.

We can then notice that the exit set B− is the union of B− ∩ P c
i , for all

i = 1, . . . , m, each one of which is closed, hence is closed.
Note now that pi = c∧L1

f (pi) . . . LNi−1
f (pi) = 0 is equivalent to saying that

all solutions to the ODE are constant on face pi. This implies that the face P c
i is

not an exit set, and the exit set relative to P c
i is trivially closed (since empty).

This means that, to check that a template is an isolating block, we only need to
check that for all k ∈ {1, · · · , Ni − 2}, :

pi = ci ∧(pj ≤ cj)j �=i ∧L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0, ⇒ L(k+1)
f (pi)(x)≥ 0

Note that the criterion used in [28] strictly implies all (Hi
k).

Finally, for B a polynomial template to be an isolating block, we need to
show (see Definition 1) that there is no inner tangential flow within it. It is easy
to see that not having any inner tangential flow is equivalent to asking that
for each of its faces P c

i , for all k ∈ {0, · · · , Ni − 1}, no x ∈ P c
i can satisfy the

following set of equalities and inequalities :

L(1)
f (pi)(x) = 0, · · · , L(2k−1)

f (pi)(x) = 0, L(2k)
f (pi)(x) < 0 (3)

This is clearly satisfied when the condition of Lemma 2 is satisfied.
The algorithm we are going to develop now thus relies on checking the con-

dition of Lemma 2. This can be checked using Sum of Squares optimization [17]
and Stengle’s nichtnegativstellensatz, for increasing k from 1 to Ni − 2, for each
face i of the template. This is done as follows. We determine polynomials αj

(j = 0, . . . , k), SoS polynomials βS,μ (S ⊆ {1, . . . , i − 1, i + 1, . . . , m}, μ ∈ {0, 1})
and an integer l, such that

k∑

j=0

αjL(j)
f +

∑

S⊂{1,...,i−1,i+1,...,m}
βS,μGS,μ +

(
L(k+1)

f

)2l

= 0 (4)

where GS,μ = (−L(k+1)
f)μΠs∈S(cs − ps) for any S ⊆ {1, . . . , i − 1, i + 1, . . . , m}

and μ ∈ {0, 1} and the convention that L0
f (pi) = ci − pi. Practically speaking,

this is done by bounding the degrees of the polynomials αj and βS,μ we are
looking for, and taking low values for l (in all our examples, we took l = 1).
Hence we get the following Proposition, at the heart of our algorithm :

Proposition 1. For each face P c
i , if for all k = 1, . . . , Ni − 2, there exist

polynomials αj (j ∈ {0, . . . , k}) and sum-of-squares polynomials βS,μ (S ⊆
{1, . . . , i − 1, i + 1, . . . , m} and μ ∈ {0, 1}) such that Equation 4 holds, then
the template P c

i is an isolating block.

To provide for faster results, in most cases, we begin, for a given k (and i),
instead of solving (Hi

k) by Equation 4, by solving the simpler property pi =
ci ∧ (pj ≤ cj)j �=i ∧ L(1)

f (pi)(x) = 0, · · · , L(k)
f (pi)(x) = 0, ⇒ L(k+1)

f (pi)(x) > 0.
If so, we can stop testing (Hi

k) for higher values of k since they are then trivially
satisfied. We can test whether this equation above is true using Putinar’s posi-
tivstellensatz [22] which is much less computationally demanding than Stengle’s

A Topological Method for Finding Invariant Sets of Continuous Systems 71

nichtnegativstellensatz, and which also stops the algorithm potentially before
reaching k = Ni − 2. A sufficient condition for this to be true is to find polyno-
mials αl (l = 1, . . . , k), γi and sum-of-squares polynomials βj j = 1, . . . , m, j �= i

such that L(k+1)
f (pi) =

∑k
j=1 αjL(j)

f (pi)+β0 +
∑m

j=1,j �=i βj(cj −pj)+γi(pi − ci).
For each fixed integer D > 0, which we choose as a bound on the degree of
polynomials αl, γi and βj , this can be tested by semidefinite programming (see
[18] and the improvement of [19] for a discussion on the maximal degree for these
problems).

Example 5. We take again the face P c
1 , and try to prove (H1

1) for example. A
sufficient condition is to find polynomials α, γ (for equality conditions) and
sum-of-squares polynomials β0, β1, β2, β3 (for inequality conditions) such that

L(2)
f (p1) = αL(1)

f (p1) + β0 + β1(c2 − p2) + β2(c3 − p3) + β3(c4 − p4) + γ(p1 − c1)

which is trivially satisfied with α = 1, β0 = 9
2 , β1 = β2 = β3 = 0 and

γ =
((

1
2 + x

)
(2 − x) − 3

)
. Using SOSTools with the SdP solver SeDuMi under

Matlab gives more complicated solutions.

4 A Simple Combinatorial Condition for Proving the
Existence of (Non-empty) Invariant Sets

Even though we found a compact minimal polynomial template B with closed
exit set, i.e. an isolating block, it can be the case that the inner invariant set is
empty. We use Ważewski’s property, Theorem 1, to ensure that it is not empty.

It is difficult, in general, to test whether B− is a deformation retract of B
or not. We will use sufficient conditions to guarantee that B− is not a defor-
mation retract of B, in the simpler case where B is contractible (i.e. there is a
deformation retract of B onto any of its points).

Using Lemma 2, we know that exit sets on each of the faces P c
i is given as

the set of points x on P c
i such that L(1)

f (pi)(x) ≥ 0. Define G as the graph whose
nodes are the P c

i for which P c
i ∩ B− is non-empty and whose edges are given

by pairs P c
i , P c

j of faces of B, such that L(1)
f (pi)(x) ≥ 0 ∧ L(1)

f (pj)(x) ≥ 0 is
satisfiable on P c

i ∩ P c
j (when non-empty).

If G is not connected, then the exit set B− is trivially not connected either,
because G has a number of components less or equal than that of B− (this can
be stricly less if some P c

i ∩ B− is not connected). But B is connected because
it is in particular contractible. Thus B− cannot be a deformation retract of B.
This is what we used in Example 3 to prove that there is a positive invariant
set within B. Note that we can do the same for the complement of the exit
set (i.e. the entrance set), combined, and that, by Alexander duality [13], these
two connectedness tests are rather fine tests : the connected components of the
entrance set give information on the first cohomology group of the exit set in
dimension n = 3.

This leads to Proposition 2, that uses positivstellensatz once again as an
algorithmic method to determine connectivity of (an abstraction of) graph G.

72 L. Fribourg et al.

Proposition 2. Let G� be the graph whose nodes are given by the faces P c
i of the

template considered such that there exists an x with pi(x) = ci and L(1)
f (pi)(x) =

β0 +
∑m

k=1,k �=i βk(ck −pk)+γi(ci −pi) (where β0, βk are SoS polynomials and γi

is any polynomial), and whose edges are given by pair of faces (P c
i , P c

j) such that

there exists an x with pi(x) = ci, pj(x) = cj, and −L(1)
f (pi)(x) × L(1)

f (pj)(x) =
β′
0 +

∑m
k=1,k �=i,k �=j β′

k(ck − pk) + γi(ci − pi) + γj(cj − pj) (where β′
0, β′

k are
SoS polynomials and γi is any polynomial). Then if G� is disconnected and the
template is an isolating block then its invariant subset is non-empty.

Algorithmically, on top of the classical SdP relaxation for solving positivstel-
lensatz, we use a simple depth-first traversal of the graph to compute the set of
connected components of G�.

Example 6. We consider again Example 1. Each of the four faces of B is a
node in G�. The faces are respectively given by {(−2, y)| − 2 ≤ y ≤ 2} (face
P c
1), {(2, y)| − 2 ≤ y ≤ 2} (face P c

2), {(x,−2)| − 2 ≤ x ≤ 2} (face P c
3) and

{(x, 2)|−2 ≤ x ≤ 2} (face P c
4). We thus have non-empty intersections P c

1 ∩P c
3 =

{(−2,−2)}, P c
1 ∩ P c

4 = {(−2, 2)}, P c
2 ∩ P c

3 = {(2,−2)} and P c
3 ∩ P c

4 = {(2, 2)}.
Therefore we have an edge from P c

1 to P c
3 if and only if L(1)

f (p1)(−2,−2) = 2

and L(1)
f (p3)(−2,−2) = 13

2 are both positive - which is true ; we have an edge

from P c
1 to P c

4 if and only if L(1)
f (p1)(−2, 2) = −2 and L(1)

f (p4)(−2, 2) = 5
2 are

both positive - which is false ; and similarly, we obtain that there is no edge
between P c

2 and P c
3 , and there is an edge between P c

2 and P c
4 .

We conclude that B− has (at least) two connected components, and that
there is a non empty invariant set within the square B.

5 Experiments

The algorithm was implemented in Matlab, with the Symbolic Math Toolbox to
compute the Lie derivatives, and MuPaD for Gröbner basis manipulations. Sum
of square problems are solved with the semi-definite programs solver SeDumi.
Timings of the execution of our algorithm on classical examples are given for a
MacBook Air (Processor) 1,3 GHz Intel Core i5 , (Memory) 4 GB 1600 MHz
DDR3 and expressed in seconds as follows : t Gröbner is the time needed to
find the order of the differential radical for a given face, t SoS optim is the time
taken to solve the SoS optimization problems for each face. We also indicate in
Figure 2 the order of the differential radical in column “Ni” and the maximal
degree of polynomials in the corresponding Gröbner base.

Example A. It is our running example, Example 1 from Section 1. Just as a
matter of comparison, if we had applied directly Stengle’s nichtnegativstellen-
satz, the time it would have taken to prove closedness of the exit set, for each
face, would have been around 130 seconds, in sharp contrast with the 4 seconds,
using Putinar’s positivstellensatz.

A Topological Method for Finding Invariant Sets of Continuous Systems 73

Example B. It is defined by
(
ẋ = y, ẏ = −y − x + 1

3x3
)

(Example 4 of [7],
with a quadratic Lyapunov function), with as template, the box defined by
c = (2.4, 2.4, 2.4, 2.4)t. We are able to show, using the method of Proposition 2,
that this box contains a non-trivial invariant.

Example C. It is defined by
(
ẋ = − 1

10x + y − x3, ẏ = −x − 1
10y, ż = 5z

)
(Exam-

ple 4.1, page 21, of [28]). There are three fixed points p0 = (−1, 0, 0), p1 =
(1, 0, 0), and p2 = (0, 1,−1), and rather complicated dynamics between neigh-
borhoods of these points. The only face we are considering is the sphere of radius
1
5 centered at p2, which is defined by the template x2 + (y − 1)2 + (z + 1)2 = 1

25 .
The exit set can be shown to have two connected components, but Proposition 2
fails to see that, because we have only one face. This can be solved by considering
the two hemispheres, one with z ≥ −1, the other with z ≤ −1. Our method then
finds one connected component in one of the hemispheres and the other in the
opposite one : G� is disconnected, hence contains a non-empty invariant. Note
that the direct SoS approach seems to find only degree ≥3 polynomials [28].

Ex. Face t Gröbner do G-base Ni t SoS optim

Example A Face 1 (−x) 0.39 3 3 4.7
Face 2 (x) 0.43 3 3 4.67
Face 3 (−y) 0.45 3 3 5.01
Face 4 (y) 0.45 3 3 5.07

Example B Face 1 (x) 0.38 2 3 4.8
Face 2 (−x) 0.43 2 3 4.7
Face 3 (y) 0.36 2 3 4.9
Face 4 (−y) 0.39 2 3 5.0

Example C Face 1 0.51 3 4 14.6

Example D Face 1 1.83 7 4 158.42

Fig. 2. Some benchmarks

Example D. It is the same as Example C (i.e. Example 4.1 of [28]), but using as
template a 4-norm ellipsoid centered at the point (0, 1

2 ,− 1
2) whose principal axes

are pointing in the coordinate directions x, y, and z and have lengths 3
2 , 1, and

1, respectively. This is described by the only face
(
2
3x

)4 +
(
y − 1

2

)4 +
(
z + 1

2

)4 =
1. The exit set is connected but is not simply connected : this can be seen
by noticing that the entrance set has two components. But as for Example C,
Proposition 2 cannot help distinguish them right away as we have encoded the
template by just one face.

6 Conclusion and Future Work

This paper is a first step towards more involved criteria for finding (positive)
invariant sets. First, this can be generalized to switched systems, a particular

74 L. Fribourg et al.

class of hybrid systems which have regained recent interest in the control com-
munity. Also, the nature of the invariant sets isolated by our method can be
more precisely characterized, using further the Conley index theory, making for
instance the difference between a stable point or a limit cycle. We can also gener-
alize the combinatorial criterion of Section 4 : we used the first step of a general
nerve lemma [32], there might be an interest in going one step further.

Another direction of improvement concerns the choice of templates. For
instance, classical linear templates are quite hard to use for Van der Pol’s equa-
tion, but the results of [6] seem to indicate that refining them should be possible.

There are also numerous algorithmic improvements over the costly Gröbner
base and SoS computations. Instead of SoS methods, we could think of using
simpler but still precise inner [12] and outer [9] approximations of the image of a
polynomial function on a box. Some quantifier elimination methods might also
been useful, using Cylindrical Algebraic Decomposition [4].

Finally, turning the SoS problems that we used for finding solutions to some
polynomial inequalities into real optimization problems will provide a way to find
the vector c defining the faces of a template isolating block, instead of merely
checking the property for a given c. For finite or regular control problems, a
finite set of parameters defining a stabilizing control may also be found this way.

Acknowledgments. The authors were partially supported by Digiteo Project SIMS
2013-0544D, by ANR projects CAFEIN, ANR-12-INSE-0007 and MALTHY, ANR-13-
INSE-0003, by iCODE and by the academic chair “Complex Systems Engineering” of
École polytechnique-ENSTA-Télécom-Thalès-Dassault Aviation-DCNS-DGA-FX-Fon-
dation ParisTech-FDO ENSTA.

References

1. Adams, W.W., Loustaunau, P.: American mathematical society. An introduction
to Grobner bases, Graduate studies in mathematics (1994)

2. Adjé, A., Garoche, P.-L.: Automatic synthesis of piecewise linear quadratic invari-
ants for programs. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 99–116. Springer, Heidelberg (2015)

3. Bacciotti, A., Mazzi, L.: Stability of dynamical polysystems via families of Lya-
punov functions. Jour. Nonlin. Analysis (2007)

4. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer
(2006)

5. Bhatia, N.P., Hájek, O.: Local Semi-dynamical Systems, vol. 90. Lecture Notes in
Mathematics. Springer (1969)

6. Boczko, E., Kalies, W.D., Mischaikow, K.: Polygonal approximation of flows.
Topology and its Applications 154 (2007)

7. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of paramet-
ric barrier functions for dynamical systems using interval analysis. In: IEEE CDC
2014 (2014)

8. Conley, C.: Isolated invariant sets and the Morse index. Amer. Math. Soc., CBMS
Regional Conf. Series Math. 38 (1978)

9. Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems
using the Bernstein expansion. Reliable Computing 17, 128–152 (2012)

A Topological Method for Finding Invariant Sets of Continuous Systems 75

10. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical
invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 279–294. Springer, Heidelberg (2014)

11. Goubault, E., Jourdan, J.-H., Putot, S., Sankaranarayanan, S.: Finding non-
polynomial positive invariants and Lyapunov functions for polynomial systems
through Darboux polynomials. In: American Control Conference (2014)

12. Goubault, E., Mullier, O., Putot, S., Kieffer, M.: Inner approximated reachability
analysis. In: HSCC, pp. 163–172 (2014)

13. Hazewinkel, M.: Alexander duality. Encyclopaedia of Mathematics (2002)
14. Wesley Wilson Jr., F., Yorke, J.A.: Lyapunov functions and isolating blocks. Jour-

nal of Differential Equations (1973)
15. Khali, H.K.: Nonlinear Systems. Prentice Hall (2002)
16. Lang, S.: Algebra. Graduate Texts in Mathematics. Springer, New York (2002)
17. Lasserre, J.-B.: Moments, positive polynomials and their applications, vol. 1. World

Scientific (2009)
18. Lombardi, H.: Une borne sur les degrés pour le theorème des zéros rééls effectifs. In

Real Algebraic Geometry, vol. 1524. Lecture Notes in Mathematics, pp. 323–345.
Springer (1992)

19. Lombardi, H., Perrucci, D., Roy, M.-F.: An elementary recursive bound for effective
positivstellensatz and Hilbert 17th problem (2014)

20. Mischaikow, K., Mrozek, M.: Conley index theory. In: Fiedler, B. (ed.) Handbook
of Dynamical Systems II: Towards Applications, North-Holland (2002)

21. Mrozek, M.: Index pairs algorithms. Foundations of Computational Mathematics
6(4), 457–493 (2006)

22. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univer-
sity Mathematics Journal 42(3), 969–984 (1993)

23. Srzednicki, R.: Ważewski Method and Conley Index (2004)
24. Sankaranarayanan, S., Dang, T., Ivančić, F.: A policy iteration technique for time

elapse over template polyhedra. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008.
LNCS, vol. 4981, pp. 654–657. Springer, Heidelberg (2008)

25. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear sys-
tems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

26. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for
switched and hybrid systems. SIAM Rev. 49(4), 545–592

27. Guillermo Moreno Soćıas: Length of polynomial ascending chains and primitive
recursiveness. 71, 181–205 (1992)

28. Stephens, T., Wanner, T.: Rigorous validation of isolating blocks for flows and
their Conley indices. Technical report, IMA Preprint Series #2424 (May 2014)

29. Szymczak, A.: A combinatorial procedure for finding isolating neighbourhoods and
index pairs. Proceedings of the Royal Society of Edinburgh: Section A Mathematics
127, 1075–1088 (1997)

30. Vidyasagar, M.: Nonlinear Systems Analysis, Networks Series. Prentice-Hall (1978)
31. Ważewski, T.: Sur un principe topologique de l’examen de l’allure asymptotique des

intégrales des équations différentielles ordinaires. Ann. Soc. Polon. Math. 10(25),
279–313 (1947)

32. Welker, V., Ziegler, G.M., Živaljević, R.T.: Homotopy colimits - comparison lem-
mas for combinatorial applications. J. Reine Angew. Math. 509, 117–149 (1999)

The Ideal View on Rackoff’s Coverability
Technique

Ranko Lazić1 and Sylvain Schmitz1,2(B)

1 DIMAP, Department of Computer Science, University of Warwick, Coventry, UK
2 LSV, ENS Cachan and CNRS and INRIA, Cachan, France

schmitz@lsv.ens-cachan.fr

Abstract. Rackoff’s small witness property for the coverability problem
is the standard means to prove tight upper bounds in vector addition
systems (VAS) and many extensions. We show how to derive the same
bounds directly on the computations of the VAS instantiation of the
generic backward coverability algorithm. This relies on a dual view of the
algorithm using ideal decompositions of downwards-closed sets, which
exhibits a key structural invariant in the VAS case. The same reasoning
readily generalises to several VAS extensions.

1 Introduction

Checking safety properties in infinite transition systems can often be reduced to
coverability checks. The coverability problem asks, given a transition system and
two configurations x and y and a quasi-ordering ≤ over configurations, whether
x might cover y, i.e. reach some configuration y′ ≥ y in finitely many steps. The
problem is decidable for the large class of (effective) well-structured transition sys-
tems (WSTS) where ≤ is a well-quasi-ordering (wqo) compatible with the tran-
sition relation [1,9]. The algorithm to that end is a generic backward coverability
procedure, which computes successively the sets of configurations that can cover
y in at most 0, 1, 2, . . . steps. Those sets are upwards-closed and since ≤ is a wqo
they can be represented through their finitely many minimal elements.

Nevertheless, the naive complexity upper bounds one can extract directly
from the termination argument of the backward coverability algorithm—which
also relies on ≤ being a wqo—are sometimes very far from the optimal ones. A
striking illustration is provided by vector addition systems (VAS): the complexity
bounds offered e.g. by [8] are in Ackermann, whereas coverability in VAS has
long been known to be ExpSpace-complete thanks to a lower bound by Lipton
[14] and an upper bound by Racko [16].

Work funded in part by the Leverhulme Trust Visiting Professorship VP1-2014-041,
and the EPSRC grant EP/M011801/1.

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 76–88, 2015.
DOI: 10.1007/978-3-319-24537-9 8

The Ideal View on Rackoff’s Coverability Technique 77

Rackoff’s Technique is essentially combinatorial in nature: he shows by induc-
tion on the dimension of the VAS that, if x can reach one such y′ ≥ y, then
there exists a small (doubly-exponential) run in the VAS witnessing this fact.
A non-deterministic algorithm can then simply look for such a witness using
only exponential space. The same general technique has since been extended to
prove tight complexity upper bounds for coverability in numerous extensions of
VASs [3,6,7,12,13]. It is however less clear how to adapt the technique for more
general systems, where for instance the notion of dimension is absent or more
involved.

Remarkably, Bozzelli and Ganty [5] showed that Rackoff’s small witness prop-
erty can be applied to the backward coverability algorithm for VAS to obtain
a 2ExpTime upper bound.1 However, their proof uses Rackoff’s analysis as a
black box, and does not work directly with the structures manipulated by the
backward coverability algorithm. As such, it is again unclear how this result
could be translated to further classes of well-structured transition systems.

Contributions. In this paper, we revisit the backward coverability algorithm for
VAS, and extract directly a 2ExpTime upper bound for its running time. We
take for this in Sec. 3 a dual view on the backward coverability algorithm, by
considering successively the sets of configurations that do not cover y in 0, 1, 2,
. . . or fewer steps. Such sets are downwards-closed, and enjoy a (usually effective)
canonical representation as finite unions of ideals [4,10,11]. We show in Sec. 4
that, in the case of VAS, this dual view exhibits an additional structural property
of ω-monotonicity, which allows to derive the desired doubly-exponential bound.

Our purpose is above all pedagogical, as we hope to see this type of reasoning
applied more broadly where the simple proof argument of Rackoff fails. As illus-
trations of the versatility of the framework, we consider in the full version of the
paper (available from https:// hal. inria. fr/ hal-01176755) the top-down and
bottom-up coverability problems in alternating branching VAS. In each case, we
provide an instance of the generic backward algorithm that solves the problem,
and show that its running time matches the known optimal complexities [6,7,13].

We start with some preliminaries on WSTS and ideals in Sec. 2.

2 Preliminaries

We first recall the necessary background on well-quasi-orders, well-structured
transition systems, and ideal decompositions, while illustrating systematically
the definitions on VAS and reset VAS.

2.1 Well-Structured Transition Systems

A well-quasi-order (wqo) (X,≤) is a set X equipped with a transitive reflexive
relation ≤ such that, along any infinite sequence x0, x1, . . . of elements from X,
1 In the same spirit, Majumdar and Wang [15] show that the ‘expand, enlarge, and

check’ algorithm for bottom-up coverability in branching VASs runs in 2ExpTime,
using the combinatorial analysis of Demri et al. [7].

https://hal.inria.fr/hal-01176755

78 R. Lazić and S. Schmitz

one can find two indices i < j such that xi ≤ xj . A finite or infinite sequence
without such pair of indices is bad, and necessarily finite over a wqo. See for
instance [18] for more background on wqos.

Example 2.1 (Dickson’s Lemma). The set N
d of d-dimensional vectors of natural

numbers forms a wqo when endowed with the product ordering �, defined by
u � v if u(i) ≤ v(i) for all 1 ≤ i ≤ d.

A well-structured transition system (WSTS) [1,9] is a triple (X,→,≤) where
X is a set of configurations, → ⊆ X × X is a transition relation, and (X,≤)
is a wqo with the following compatibility condition: if x ≤ x′ and x → y, then
there exists y′ ≥ y with x′ → y′. In other words, ≤ is a simulation relation on
the transition system (X,→). We write as usual →≤0 def= {(x, x) | x ∈ X} and
→≤k+1 def= →≤k ∪ {(x, y) | ∃z ∈ X . x → z →≤k y} for the reachability relation
in at most k steps, and →∗ def=

⋃
k →≤k for the reflexive transitive closure of →.

Example 2.2 (VAS are WSTS). A d-dimensional vector addition system (VAS) is
a finite set A of vectors in Z

d. It defines a WSTS (Nd,→,�) with configurations
space N

d and u → u + a for all u in N
d and a in A such that u + a is in N

d.
For instance, the 2-dimensional VAS A÷2 = {(−2, 1)} can be seen as weakly

computing the halving function: from any configuration (n, 0), it can reach
(n mod 2,
n/2�) and all its reachable configurations (n′,m) satisfy m ≤ n/2.

Example 2.3 (Reset VAS are WSTS). A d-dimensional reset VAS is a finite
subset A of Z

d × P({1, . . . , d}). Given R ⊆ {1, . . . , d} and a vector u, we define
the vector R(u) by R(u)(i) = 0 if i ∈ R, and R(u)(i) = u(i) otherwise. A reset
VAS defines a WSTS (Nd,→,�) where u → R(u + a) if there exists (a, R) in
A such that u + a is in N

d.
For instance, the 5-dimensional reset VAS

Alog =
{

(0, 0,−2, 1, 0, ∅), (0, 0, 1,−1, 0, ∅),
(−1, 1,−2, 1, 0, {3}), (1,−1, 1,−1, 1, {4})

}

is a weak computer for the logarithm function: from any configuration of the
form (1, 0, 2n, 0, 0), it can reach (1, 0, 1, 0, n), and all its reachable configurations
of the form (1, 0, n′,m, l) satisfy l ≤ n.

2.2 Ideal Decompositions

The downward-closure of a subset S ⊆ X over a wqo (X,≤) is ↓X
def= {x ∈ X |

∃s ∈ S . x ≤ s}. A subset D ⊆ X is downwards-closed if ↓D = D. We write ↓x
for the downward-closure of the singleton set {x}. Well-quasi-orders can also be
characterised by the descending chain condition: a quasi-order (X,≤) is a wqo if
and only if every descending sequence D0 � D1 � D2 � · · · of downwards-closed
subsets Di ⊆ X is finite.

An ideal of X is a non-empty downwards-closed subset I ⊆ X, which is
directed : if x, x′ are two elements of I, then there exists y in I with x ≤ y and

The Ideal View on Rackoff’s Coverability Technique 79

x′ ≤ y. Over a wqo (X,≤), any downwards-closed set D ⊆ X has a unique
decomposition as a finite union of ideals D = I1 ∪ · · · ∪ In, where the Ij ’s are
mutually incomparable for inclusion [4,10]. Alternatively, ideals are characterised
as irreducible downwards-closed sets: an ideal is a non-empty downwards-closed
set I with the property that, if I ⊆ D1 ∪ D2 for two downwards-closed sets D1

and D2, then I ⊆ D1 or I ⊆ D2.

Example 2.4 (Vector Ideals). Over (Nd,�), observe that ↓u is an ideal for every
u in N

d. Those are however not the only ideals, e.g. I
def= {(0, n, 0) | n ∈ N} is

also an ideal. Write Nω
def= N � {ω} where ω is a new top element; the product

ordering � extends naturally to N
d
ω. Then the ideals of (Nd,�) are exactly the

downward-closures ↓u inside N
d of vectors u from N

d
ω. For the previous example,

↓(0, ω, 0) = I.

Although ideals provide finite representations for manipulating downwards-
closed sets, some additional effectiveness assumptions are necessary to employ
them in algorithms. In this paper, we will say that a wqo (X,≤) has effective
ideal representations [see 10,11, for more stringent requisites] if every ideal can
be represented, and there are algorithms on those representations:

(CI) to check I ⊆ I ′ for two ideals I and I ′,
(II) to compute the ideal decomposition of I ∩ I ′ for two ideals I and I ′,
(CU’) to compute the ideal decomposition of the residual X/x

def= {x′ ∈ X |
x �≤ x′} for any x in X.

Example 2.5 (Effective Representations of Vector Ideals). We shall use vectors
in N

d
ω as representations. For (CI), given two vectors u and v in N

d
ω, ↓u ⊆

↓v if and only if u � v. Furthermore, for (II), ↓u ∩ ↓v = ↓w where w(i) def=
min≤(u(i),v(i)) for all 1 ≤ i ≤ d. Finally, for (CU’), if u is in N

d, then N
d/u =

⋃
1≤j≤d |u(j)>0 ↓u/j where u/j(i) = ω if i �= j and u/j(j)

def= u(j) − 1 otherwise.

Crucially for the applicability of our approach, effective ideal representations
exist for most wqos of interest [10,11].

3 Backward Coverability

Let us recall in this section the generic backward coverability algorithm for well-
structured transition systems [1,9]. We take a dual view on this algorithm, by
considering downwards-closed sets represented through their ideal decomposi-
tions, instead of the usual view using upwards-closed sets represented through
their minimal elements. We present the generic algorithm, but will illustrate all
the notions using the case of VAS and reset VAS in Sec. 3.2, and derive naive
upper bounds for both in Sec. 3.3—which will turn out optimal for reset VAS.

80 R. Lazić and S. Schmitz

3.1 Generic Algorithm

Consider a WSTS (X,→,≤) and a target configuration y from X to be covered.
Define D∗

def= {x ∈ X | ∀y′ ≥ y . x��→∗ y′} as the set of configurations that do
not cover y. The purpose of the backward coverability algorithm is to compute
D∗; solving a coverability instance with source configuration x0 then amounts
to checking whether x0 belongs to D∗. The idea of the algorithm is to compute
successively for every k the set Dk of configurations that do not cover y in k
steps or fewer:

D∗ =
⋂

k

Dk , Dk
def= {x ∈ X | ∀y′ ≥ y . x���→≤k y′} . (1)

These over-approximations Dk can be computed inductively on k by

D0 = X/y , Dk+1 = Dk ∩ Pre∀(Dk) , (2)

where for any set S ⊆ X,

Pre∀(S) def= {x ∈ X | ∀z ∈ X . (x → z =⇒ z ∈ S)} . (3)

The algorithm terminates as soon as Dk ⊆ Dk+1 (and thus Dk+j = Dk = D∗ for
all j). This is guaranteed to arise eventually by the descending chain condition,
since otherwise we would have an infinite descending chain of downwards-closed
sets D0 � D1 � D2 � · · · .
Correctness. The correctness of the algorithm hinges on the following claim:
Claim 3.1 (Correctness). Equations (1) and (2) define the same Dk.

Proof. By induction on k. For the base case, x ���→≤0 y′ for all y′ ≥ y, if and
only if x �≥ y, i.e. if and only if x is in X/y. For the induction step and for all
y′ ≥ y, x����→≤k+1 y′ if and only if x���→≤k y′ and there does not exist any z with
x → z and z →≤k y′. The former is equivalent to x belonging to Dk by induction
hypothesis. The latter occurs if and only if for all z in X, if x → z then z���→≤k y′,
i.e. if and only if x belongs to Pre∀(Dk) by induction hypothesis. ��
Effective Ideal Representations. The algorithm as presented above relies on the
effectiveness of Eq. (2). We are going to use effective representations of the ideal
decompositions of the Dk to this end. Let us first check that we are indeed
dealing with downwards-closed sets:
Claim 3.2 (Downward-closure). For all k, Dk is downwards-closed.
Proof. By induction on k. For the base case, D0 = X/y is downwards-closed. For
the induction step, first observe that, if D is downwards-closed, then Pre∀(D)
is also downwards-closed. Indeed, let x ≤ x′ for some x′ in Pre∀(D). Consider
any z such that x → z. Then by WSTS compatibility, there exists z′ ≥ z
such that x′ → z′. Since x′ belongs to Pre∀(D), z′ belongs to D. Because D is
downwards-closed, z also belongs to D. This shows x in Pre∀(D) as desired. We
conclude by noting that downwards-closed sets are closed under intersection,
hence Dk+1 = Dk ∩ Pre∀(Dk) is downwards-closed by applying the induction
hypothesis to Dk. ��

The Ideal View on Rackoff’s Coverability Technique 81

The only additional effectiveness assumption we make is that:

(Pre) the ideal decomposition of Pre∀(D) is computable for all downwards-
closed D.

This is sufficient to compute the ideal decompositions of all the Dk. Indeed,
initially D0 is computed using (CU’). Later, Pre∀(Dk) is computable by (Pre),
and its intersection with Dk is also computable by (II). Finally, recall that, by
ideal irreducibility, I1∪· · ·∪In ⊆ J1∪· · ·∪Jm for ideals I1, . . . , In and downwards-
closed J1, . . . , Jm if and only if for all 1 ≤ i ≤ n there exists 1 ≤ j ≤ m such
that Ii ⊆ Jj . Therefore, the termination check Dk ⊆ Dk+1 is effective by (CI).

3.2 Coverability for VAS and Reset VAS

In order to instantiate the backward coverability algorithm for VAS and reset
VAS, we merely need to prove that they also satisfy the (Pre) effectiveness
assumption: given a downwards-closed D = ↓u1 ∪· · ·∪↓um for some u1, . . . ,um

in N
d
ω, compute a finite set of vectors v1, . . . ,vn from N

d
ω such that Pre∀(D) =

↓v1 ∪ · · · ∪ ↓vn. Using (CI) we can then select the maximal such vj to obtain
incomparable ideals.

Universal Predecessors in VAS. Thanks to (II) and the fact that A is finite
(VAS are finitely branching), we start by reducing our computation to that of
predecessors along a specific action a from A: Pre∀(D) =

⋂
a∈A Prea(D) where

Prea(D) def= {v ∈ N
d | v + a ∈ N

d =⇒ v + a ∈ D} (4)

= {v ∈ N
d | v + a �∈ N

d} ∪ {v ∈ N
d | v + a ∈ D} (5)

= N
d/θ(a) ∪ {v ∈ N

d | v + a ∈ D} , (6)

where θ(a) def= min�{v ∈ N
d | v + a ∈ N

d} is called the threshold of a and can
be computed for all 1 ≤ i ≤ d by

θ(a)(i) =

{
0 if a(i) ≥ 0
−a(i) otherwise.

(7)

Thus by (CU’) it only remains to compute a representation for the decomposition
of {v ∈ N

d | v + a ∈ D} =
⋃

1≤j≤m{v ∈ N
d | v + a ∈ ↓uj}. For each ideal ↓uj

in the decomposition of D, {v ∈ N
d | v + a ∈ ↓uj} is either the empty set if

uj �� θ(−a), or ↓(u − a) otherwise, where addition is extended with ω + z = ω
for all z in Z.

Example 3.3. Recall the VAS A÷2 = {(−2, 1)} from Example 2.2. Setting
D0 = ↓(ω, 4), the backward coverability algorithm computes the set of all con-
figurations from which A÷2 cannot compute at least 5 in its second component;
see Fig. 1.

82 R. Lazić and S. Schmitz

D0 = ↓(ω, 4) D1 = ↓(1, 4) ∪ ↓(ω, 3) D2 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(ω, 2)

D3 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(5, 2) ∪ ↓(ω, 1)

D4 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(5, 2) ∪ ↓(7, 1) ∪ ↓(ω, 0)

D∗ =D5 = ↓(1, 4)∪↓(3, 3)∪
↓(5, 2) ∪ ↓(7, 1) ∪ ↓(9, 0)

Fig. 1. The successive Dk for A÷2 with target t = (0, 5).

Universal Predecessors in Reset VAS. The same reasoning holds for reset VAS as
for VAS: Pre∀(D) =

⋂
(a,R)∈A

(
N

d/θ(a) ∪ ⋃
1≤j≤m{v ∈ N

d | R(v + a) ∈ ↓uj}
)
.

In order to compute a representation for this last set, given a vector v in N
d
ω and

R ⊆ {1, . . . , d}, define vR as the vector in N
d
ω with ω’s in the components of R:

vR(i) def=

{
ω if i ∈ R

v(i) otherwise.
(8)

Then {v ∈ N
d | R(v + a) ∈ ↓uj} (where R(v + a) is defined as in Example 2.4)

is either the empty set if uj
R �� θ(−a), or ↓ (

uj
R − a

)
otherwise.

Example 3.4. Recall the reset VAS Alog from Example 2.3, in which the first
two vector components are used to encode two control states. Setting

D0 = ↓(1, 0, ω, ω, 1) ∪ ↓(0, 1, ω, ω, 0) ,

the backward coverability algorithm computes as follows the set of all configura-
tions from which Alog cannot compute in its last component either at least 2 in
state (1, 0) or at least 1 in state (0, 1). The interesting part of the computation
for the subsequent discussion occurs from k = 2 to k = 4:

D2 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, ω, 1) ∪ ↓(1, 0, ω, ω, 0) ∪
↓(0, 1, ω, 0, 0) ∪ ↓(0, 1, 0, ω, 0) ,

D3 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, ω, ω, 0) ∪
↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) ,

D4 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, 1, ω, 0) ∪
↓(1, 0, ω, 0, 0) ∪ ↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) .

The Ideal View on Rackoff’s Coverability Technique 83

3.3 Ackermann Upper Bounds

Let us finally show how to bound the running time of the backward coverability
algorithm on VAS and reset VAS. The main ingredient to that end is a combi-
natorial statement on the length of controlled descending chains of downwards-
closed sets.

Controlled Descending Chains. Consider some set X with a norm ‖.‖: X → N.
Given a monotone control function g: N → N and an initial norm n ∈ N, we say
that a sequence x0, x1, . . . of elements from X is (g, n)-controlled if ‖xi‖ ≤ gi(n)
the ith iterate of g applied to n. In particular, ‖x0‖ ≤ n initially.

This notion can be applied to the descending chain D0 � D1 � · · · con-
structed by the backward coverability algorithm for a d-dimensional VAS or
reset VAS A and target vector t ∈ N

d. We define for this ‖.‖ as the infinity
norm on elements and finite subsets of Z

d
ω

def= (Z�{ω})d, i.e. the maximum abso-
lute value of any occurring integer. For instance, ‖{(1, ω, 5), (0, ω, ω)}‖ = 5, and
in Example 2.2 ‖A÷2‖ = 2. When considering a downwards-closed set D with
decomposition ↓u1 ∪ · · · ∪ ↓um, we define ‖D‖ def= ‖{u1, . . . ,um}‖. Hence what
is controlled in a descending chain D0 � D1 � · · · is its ideal representation.

Claim 3.5 (Control for VAS and Reset VAS). The descending chain D0 � D1 �

· · · is (g, n)-controlled for g(x) def= x + ‖A‖ and n
def= ‖t‖.

Proof. The fact that ‖D0‖ ≤ ‖t‖ follows from (CU’). Regarding the control func-
tion g, observe that taking unions and intersections of ideals using (II) cannot
increase the norm. Hence it suffices to show that ‖Pre∀(D)‖ ≤ ‖D‖+‖A‖ for all
D = ↓u1 ∪ · · · ∪ ↓um. Note that for reset VAS, ‖uj

R −a‖ ≤ ‖uj −a‖. Hence for
both VAS and reset VAS, ‖Pre∀(D)‖ ≤ maxa max1≤j≤m(‖N

d/θ(a)‖, ‖uj − a‖).
We conclude by observing that ‖N

d/θ(a)‖ ≤ ‖a‖ ≤ ‖A‖ by (CU’) and
‖uj − a‖ ≤ ‖uj‖ + ‖a‖ ≤ ‖D‖ + ‖A‖. ��

Upper Bound. Consider a computation D0 � D1 � · · · � D� = D�+1 of the
backward coverability algorithm for a VAS or a reset VAS. At each step 0 ≤
k ≤ �, the cost of computing Dk+1 from Dk and of checking for termination is
polynomial in ‖A‖ and ‖Dk‖. The difficulty is to evaluate how large � can be.

The idea here is that, at every step 0 ≤ k < �, there is at least one proper
ideal ↓vk: an ideal appearing in the representation of Dk but not in that of Dk+1;
then ↓vk ⊆ Dk but ↓vk �⊆ Dk+1. Note that for all 0 ≤ j < k < �, vj �� vk,
since the contrary would entail ↓vj ⊆ ↓vk ⊆ Dk ⊆ Dj+1. Hence the sequence
(vk)0≤k<� is a bad sequence, which is also controlled by (g, n) according to Claim
3.5. Using the combinatorial results from [18, Cor. 2.25 and Thm. 2.34] on such
bad sequences, we obtain (see the full paper for details):

Theorem 3.6. (Length Function Theorem for Descending Chains). Let
n > 0. Any (g, n)-controlled descending chain D0 � D1 � · · · of downwards-
closed subsets of N

d is of length at most hωd+1(n · d!), where h(x) def= d · g(x).

84 R. Lazić and S. Schmitz

Here hα for an ordinal α and base function h denotes the αth Cichoń func-
tion [18]. Each of the � steps of computation can furthermore be performed in
time polynomial in g�(n).

Since g is primitive-recursive according to Claim 3.5, the overall complexity
for an instance of size n is bounded by ackermann(p(n)) for some primitive-
recursive function p, which lies within the complexity class Ackermann [17].
Such an upper bound is overly pessimistic for VAS, but is actually tight for reset
VAS: coverability for reset VAS is indeed complete for Ackermann [18,19].

4 Complexity for VAS

We know from Bozzelli and Ganty’s 2ExpTime upper bound [5] for the back-
ward coverability algorithm that the Ackermann upper bound from the pre-
vious section is far from tight in the case of VAS. We show in this section that
the descending chains D0 � D1 � · · · computed by the backward coverability
algorithm for VAS enjoy a structural invariant, which we dub ω-monotonicity,
and which is absent from the chains computed for reset VAS. In turn, we show
in Example 4.4, that controlled decreasing chains that are ω-monotone are much
shorter, allowing us to derive the desired 2ExpTime bound in Cor. 4.6.

4.1 Transitions Between Proper Ideals

The proof of ω-monotonicity in the case of VAS can be shown directly, but
reflects a more general proper transition sequence property of the generic back-
ward coverability algorithm, which we are going to show in the general setting.

Let us first lift the transition relation → of a WSTS (X,→,≤) to work over
ideals. Define for any ideal I of X

Post∃(I) def= {z ∈ X | ∃x ∈ I . x → z} . (9)

Then ↓Post∃(I) is downwards-closed with a unique decomposition into maximal
ideals. We follow Blondin et al. [2] and write ‘I → J ’ if J is an ideal from the
decomposition of ↓Post∃(I).

Example 4.1 (Transitions over Vector Ideals). In the case of a VAS A, observe
that, if v is a vector from N

d
ω, then Post∃(↓v) =

⋃
a∈A ↓(v + a). Each such

↓(v + a) is already an ideal. In the case of a reset VAS A, we have similarly
Post∃(↓v) =

⋃
(a,R)∈A ↓R(v + a).

We can now state the result that motivates this subsection:

Claim 4.2 (Proper Transition Sequence). If Ik+1 is a proper ideal of Dk+1, then
there exist an ideal J and a proper ideal Ik of Dk such that Ik+1 → J ⊆ Ik.

Proof. An ideal is proper in Dk if and only if it intersects the set of elements
excluded between steps k and k + 1: by basic set operations, first observe that
(2) is equivalent to

Dk+1 = Dk \ {x ∈ Dk | ∃z �∈ Dk . x → z} . (10)

The Ideal View on Rackoff’s Coverability Technique 85

Moreover, noting D−1
def= X, z in (10) must belong to Dk−1, or x would have

already been excluded before step k. We have therefore Dk+1 = Dk \ Ek where

E−1
def= {x ∈ X | x ≥ y} , Ek

def= {x ∈ Dk | ∃z ∈ Ek−1 . x → z} . (11)

Consider now a proper ideal Ik+1 of Dk+1: this means Ik+1 ∩Ek+1 �= ∅. This
implies in turn ↓Post∃(Ik+1) ∩ Ek �= ∅ by (11), thus there exists J such that
Ik+1 → J and J ∩ Ek �= ∅.

Since Ik+1 ⊆ Dk+1 ⊆ Pre∀(Dk) by (2), we also know that Post∃(Ik+1) ⊆
Dk. By ideal irreducibility, it means that J ⊆ Ik for some ideal Ik from the
decomposition of Dk. Observe finally that Ik ∩Ek �= ∅, i.e. that Ik is proper. ��

4.2 ω-Monotonicity

For u in N
d
ω, its ω-set is the subset ω(u) of {1, . . . , d} such that u(i) = ω if

and only if i ∈ ω(u). We say that a descending chain D0 � D1 � · · · � D� of
downwards-closed subsets of N

d is ω-monotone if for all 0 ≤ k < � − 1 and all
proper ideals ↓vk+1 in the decomposition of Dk+1, there exists a proper ideal
↓vk in the decomposition of Dk such that ω(vk+1) ⊆ ω(vk).

Claim 4.3 (VAS Descending Chains are ω-Monotone). The descending chains
computed by the backward coverability algorithm for VAS are ω-monotone.

Proof. Let D0 � D1 � · · · � D� be the descending chain computed for a VAS
A. Suppose 0 ≤ k < � − 1 and ↓vk+1 is a proper ideal in the decomposition of
Dk+1. By Claim 4.2, there exists a proper ideal ↓vk in the decomposition of Dk

such that vk+1 + a � vk. We conclude that ω(vk+1) ⊆ ω(vk). ��
As we can see with Example 3.4 however, the descending chains computed for

reset VAS are in general not ω-monotone: (1, 0, ω, ω, 0) is proper in D3 and has
a proper transition to (0, 1, 0, ω, 0) in D2 using (−1, 1,−2, 1, 0, {3}) from Alog,
but no ideal with {3, 4} as ω-set is proper in D2.

4.3 Upper Bound

We are now in position to state a refinement of Thm. 3.6 for ω-monotone con-
trolled descending chains. For a control function g: N → N, define the function
g̃: N2 → N by induction on its first argument:

g̃(0, n) def= 1 , g̃(m + 1, n) def= g̃(m,n) + (gg̃(m,n)(n) + 1)m+1 . (12)

Theorem 4.4 (Length Function Theorem for ω-Monotone Descending
Chains). Any (g, n)-controlled ω-monotone descending chain D0 � D1 � · · ·
of downwards-closed subsets of N

d is of length at most g̃(d, n).

86 R. Lazić and S. Schmitz

Proof. Note that D� the last element of the chain has the distinction of not
having any proper ideal, hence it suffices to bound the index k of the last set
Dk with a proper ideal ↓vk, and add one to get a bound on �. We are going to
establish by induction on d − |I| that if ↓vk is a proper ideal from the decom-
position of Dk and its ω-set is I, then k < g̃(d − |I|, n), which by monotonicity
of g̃ in its first argument entails k < g̃(d, n) as desired.

For the base case, |I| = d implies that vk is the vector with ω’s in every
coordinate, which can only occur in D0. The inductive step is handled by the
following claim, when setting k < g̃(d − |I| − 1, n) by induction hypothesis for
the last index with a proper ideal whose ω-set strictly includes I:

Claim 4.5. Let I and k < k′ be such that:

(i) for all j ∈ {k + 1, . . . , k′ − 1}, the decomposition of Dj does not contain a
proper ideal whose ω-set strictly includes I;

(ii) the decomposition of Dk′ contains a proper ideal whose ω-set is I.

Then we have k′ − k ≤ (‖Dk+1‖ + 1)(d−|I|).

For a proof, from assumption (ii), by applying the ω-monotonicity for j = k′ −
1, k′ − 2, . . . , k + 1 and due to assumption (i), there exists a proper ideal ↓vj in
the decomposition of Dj and such that ω(vj) = I for all j ∈ {k + 1, . . . , k′}.
Since they are proper, those k′ − k vectors are mutually distinct.

Consider any such vj . Since Dk+1 ⊇ Dj , by ideal irreducibility there exists a
vector uj in the decomposition of Dk+1 such that vj � uj . We have that ω(uj) =
I, since otherwise uj would be proper at Dj′ for some j′ ∈ {k + 1, . . . , j − 1},
which would contradict assumption (i). Hence ‖vj‖ ≤ ‖uj‖ ≤ ‖Dk+1‖.

To conclude, note that there can be at most (‖Dk+1‖ + 1)(d−|I|) mutually
distinct vectors in N

d
ω with I as ω-set and norm bounded by ‖Dk+1‖. ��

Finally, putting together Claim 3.5 (control for VAS), Claim 4.3
(ω-monotonicity), and Thm. 4.4 (lengths of controlled ω-monotone descending
chains), we obtain that the backward coverability algorithm for VAS runs in
2ExpTime, and in pseudo-polynomial time if d is fixed.

Corollary 4.6. For any d-dimensional VAS A and target vector t, the backward
coverability algorithm terminates after at most ((‖A‖ + 1)(‖t‖ + 2))(d+1)! steps.

Proof. Let h(m,n) = g̃(m,n)(‖A‖ + 1)(n + 2) where g(x) = x + ‖A‖. We have
h(m+1, n) ≤ (h(m,n))m+2, so g̃(m,n) ≤ h(m,n) ≤ ((‖A‖+1)(n+2))(m+1)!. ��

5 Concluding Remarks

Rackoff’s technique has successfully been employed to prove tight upper bounds
for the coverability problem in VAS and extensions [3,6,7,12,13]. However, the
technique does not readily generalise to more complex classes of well-structured
transition systems, e.g. where configurations are not vectors of natural numbers.

The Ideal View on Rackoff’s Coverability Technique 87

We have shown that the same complexity bounds can be extracted in a prin-
cipled way, by considering the ideal view of the backward coverability algorithm
for VAS, and by noticing a structural invariant on its computations. Essentially
the same arguments suffice to re-prove several recent upper bounds [6,7,13].

This paves the way for future investigations on coverability problems with
large complexity gaps (where different structural invariants will need to be
found).

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inform. and Comput. 160(1/2), 109–127
(2000)

2. Blondin, M., Finkel, A., McKenzie, P.: Handling infinitely branching WSTS. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part
II. LNCS, vol. 8573, pp. 13–25. Springer, Heidelberg (2014)

3. Bonnet, R., Finkel, A., Praveen, M.: Extending the Rackoff technique to affine
nets. FSTTCS 2012. LIPIcs, vol. 18, pp. 301–312. LZI (2012)

4. Bonnet, R.: On the cardinality of the set of initial intervals of a partially ordered
set. Infinite and finite sets: to Paul Erdős on his 60th birthday, vol. 1, pp. 189–198.
Coll. Math. Soc. János Bolyai, North-Holland (1975)

5. Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algorithm
for VASS. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp.
96–109. Springer, Heidelberg (2011)

6. Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 220–231. Springer, Heidelberg (2014)

7. Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38
(2013)

8. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. In: LICS 2011, pp. 269–278.
IEEE Computer Society (2011)

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

10. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions.
In: Proc. STACS 2009. LIPIcs, vol. 3, pp. 433–444. LZI (2009)

11. Goubault-Larrecq, J., Karandikar, P., Narayan Kumar, K., Schnoebelen, P.: The
ideal approach to computing closed subsets in well-quasi-orderings (in preparation)
(2015)

12. Kochems, J., Ong, C.H.L.: Decidable models of recursive asynchronous concurrency
(2015) (preprint) http://arxiv.org/abs/1410.8852

13. Lazić, R., Schmitz, S.: Non-elementary complexities for branching VASS, MELL,
and extensions. ACM Trans. Comput. Logic 16(3:20), 1–30 (2015)

14. Lipton, R.: The reachability problem requires exponential space. Tech. Rep. 62,
Yale University (1976)

15. Majumdar, R., Wang, Z.: Expand, Enlarge, and Check for Branching Vector Addi-
tion Systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concur-
rency Theory. LNCS, vol. 8052, pp. 152–166. Springer, Heidelberg (2013)

http://arxiv.org/abs/http://arxiv.org/abs/1410.8852

88 R. Lazić and S. Schmitz

16. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

17. Schmitz, S.: Complexity hierarchies beyond Elementary (2013) (preprint)
http://arxiv.org/abs/1312.5686

18. Schmitz, S., Schnoebelen, P.: Algorithmic aspects of WQO theory. Lecture notes
(2012). http://cel.archives-ouvertes.fr/cel-00727025

19. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

http://arxiv.org/abs/1312.5686
http://cel.archives-ouvertes.fr/cel-00727025

Synthesis Problems for One-Counter Automata

Antonia Lechner(B)

Department of Computer Science, University of Oxford, Oxford, UK
antonia.lechner@cs.ox.ac.uk

Abstract. We consider the LTL synthesis problem for one-counter
automata with integer-valued parameters, where counter values range
over the nonnegative integers and counter updates are encoded in binary.
This problem asks whether for a given parametric one-counter automa-
ton and LTL formula there exist values for the parameters such that
all computations from the initial configuration satisfy the formula. We
show that LTL synthesis is decidable by translating it to a formula of a
decidable fragment of Presburger arithmetic with divisibility.

1 Introduction

Counter automata are an important type of infinite-state computing device with
applications especially in formal verification. They are often used as computa-
tional models for infinite-state systems, and in general they are equivalent to
Turing machines [15]. However, various problems have been shown to be decid-
able for some special classes of counter automata, for example reversal-bounded
counter automata [10] and one-counter automata. Many applications have been
found for one-counter automata, ranging from modelling resource-bounded sys-
tems and programs with lists to XML query evaluation, see e.g. [2,4].

Generally, counter automata can be considered as acceptors with a read-
only input tape [8]. In a similar vein one can consider counter automata with
parameters (or read-only input registers) and ask for which parameter values a
given automaton has an accepting computation [9]. In particular, linear time and
branching time model checking problems for parametric one-counter automata
were studied in [5]. These model checking problems treat the parameters univer-
sally : one asks that a specification be satisfied for all parameter values. In other
words, one asks for correctness in all contexts.

The equivalent synthesis problems, where parameters are treated existen-
tially, were shown to be undecidable in the case of computation tree logic, and
stated as an open problem in the case of linear time logic in [5]. In the present
paper, we study these LTL synthesis problems and obtain decidability with an
upper complexity bound of 3NEXPTIME for the general problem of deciding
whether there exist parameter values in a given automaton such that all infinite
computations from the initial configuration satisfy a given LTL specification,
by reduction to a decidable fragment of Presburger arithmetic with divisibility.
Intuitively, LTL synthesis generalises a variety of situations where an infinite-
state system is only partly given, and we wish to complete it to ensure that it
is guaranteed to satisfy certain requirements.
c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 89–100, 2015.
DOI: 10.1007/978-3-319-24537-9 9

90 A. Lechner

Presburger arithmetic with divisibility (PAD) is the first-order logic over
the integers with an addition operation and ordering and divisibility relations.
PAD has been shown to be undecidable [16], even when restricted to at most
one quantifier alternation [13]. However, several decidable subsets have been
identified, which have proved to be important tools to encode various computa-
tional problems and establish complexity bounds for them. In particular, several
decidability results for model checking parametric counter machines have been
obtained by reduction to the existential fragment of PAD. The latter was shown
to be decidable in [12] and an upper bound of NEXPTIME was shown in [11].

For the synthesis problems considered in this paper the relevant fragment
of PAD is the set of formulas of the form ∀z∃xϕ(x,z), where the only vari-
ables allowed to occur on the left side of a divisibility in the quantifier-free
formula ϕ are z. We will call this language ∀∃RPAD. Using similar meth-
ods to those described in [3], we will show that this language is decidable in
co-2NEXPTIME.

This result will then be used to show decidability of linear time synthesis
problems for parametric one-counter automata. The basic synthesis problem
we consider, which we call Büchi synthesis, is whether there exist parameter
values for a given one-counter automaton such that all infinite computations
that start from the initial configuration satisfy a Büchi acceptance condition.
We give a 3NEXPTIME bound for this problem by translating its negation to
an equivalent ∀∃RPAD formula.1

The translation is based on a symbolic encoding of computations of the
automaton, following the idea from [7] of representing any given computation
by a constant number of flows in a network, which serve as polynomial-size
certificates of reachability. Intuitively, in the negation of the Büchi synthesis
problem (is it true that for all possible values of the parameters, there is at
least one computation that visits each accepting state only finitely often), the
integer-valued parameters in the automaton correspond to universally quantified
variables in the resulting ∀∃RPAD formula, and the existence of a computation
with the desired property is encoded via existential quantifiers. We derive the
same upper bound for the synthesis problem for LTL specifications by reducing
it to Büchi synthesis. We also prove NPNP-hardness of Büchi synthesis using a
reduction from a generalised version of the subset sum problem.

2 Complexity of ∀∃RPAD

Presburger arithmetic (PA) is the first-order logic over 〈Z,+, <, 0, 1〉, where +
and < are the standard addition and ordering of integers. Presburger arithmetic
with divisibility (PAD) is an extension of PA which also includes a binary division
symbol |, i.e., it is the first-order logic over 〈Z,+, |, <, 0, 1〉. The full language of
PAD is undecidable [16], and so is the subset of PAD which is restricted to at
1 The reason why we chose to encode the negation of the Büchi synthesis problem,

rather than the problem in its positive form, is that the details of the calculations
are somewhat simpler and easier to follow.

Synthesis Problems for One-Counter Automata 91

most one quantifier alternation [13], but the purely existential subset (∃PAD)
is known to be decidable [12] and in NEXPTIME [11]. Correspondingly, the
purely universal subset (∀PAD) is in co-NEXPTIME.

In this section, we establish an upper bound for the decision problem for a
logic which we call ∀∃RPAD. This language extends ∀PAD by augmenting it
with a restricted form of existential quantification. We will later use this bound
to derive upper bounds for the Büchi synthesis problem and the more general
problem of LTL synthesis.

The quantifier elimination procedure in this section follows the ideas from
[3], where decidability of a more general family of languages was shown, but an
upper complexity bound was not given for the language of interest in this paper.
For clarity, it is worth going through the main steps of the elimination again
here, to use the precise form of the resulting formula to obtain an upper bound
for the decision problem for ∀∃RPAD using the new result from [11] of ∀PAD
being in co-NEXPTIME. We will also need a different encoding of greatest
common divisors than the one detailed in [3], introducing only new universally
quantified variables.

We denote the greatest common divisor of a and b as (a, b), and we write a|b
to express that a divides b. A result that we will need for the following translation
is a generalised version of the Chinese Remainder Theorem:

Theorem 1 (Generalised Chinese Remainder Theorem (CRT), [14]).
For any mi ∈ N, ai, ri ∈ Z, where i ∈ {1, 2, . . . , n},

∃x

n∧

i=1

mi|(aix − ri) ←→
∧

1≤i<j≤n

(aimj , ajmi)|(airj − ajri) ∧
n∧

i=1

(ai,mi)|ri.

The solution for x is unique modulo lcm(m′
1, . . . , m

′
n), where m′

i = mi

(ai,mi)
.

We define the language ∀∃RPAD to be the set of formulas of the form

∀z1 . . . ∀zn∃x1 . . . ∃xmϕ(x,z) (1)

where ϕ is a quantifier-free PAD formula and all divisibilities are of the form
f(z)|g(x,z) for some linear terms f and g, i.e., the existentially quantified vari-
ables x do not appear on the left side of any divisibility. The aim is to eliminate
all the existential quantifiers to obtain a formula in ∀PAD.

W.l.o.g. we can assume that all divisibilities in ϕ are positive, since every
negated divisibility ¬f |g can be rewritten as the equivalent formula

(f = 0 ∧ ¬(g = 0)) ∨ ∃x∃y
(
(g = x + y) ∧ (f | x)

∧ ((1 ≤ y ≤ f − 1) ∨ (1 ≤ y ≤ −f − 1))
)
,

which introduces new existentially quantified variables which only occur on the
right side of divisibilities.

92 A. Lechner

Every formula of type (1) can then be written in the form

∀z∃x
N∨

i=1

⎛

⎝
Mi∧

j=1

fij(z) | gij(x,z) ∧
Ti∧

j=1

ϕij(x,z)

⎞

⎠ (2)

where the fij and gij are linear terms and the ϕij are Presburger formulas.
W.l.o.g. we assume that each ϕij is of the form ∃yij (yij ≥ 0∧hij(x,z)+yij = 0)
for some linear term hij . The first step is to eliminate x from all the Presburger
conjuncts. Suppose some term hij is of the form axm + kij(x,z), where a = 0
and kij does not depend on xm. Then we multiply all coefficients in all other
equalities and divisibilities in the i-th disjunct by a, replace every occurrence
of axm with −kij − yij , and delete the equality hij(x,z) + yij = 0. This can
be repeated until all the remaining equalities depend only on y and z, and by
rewriting them as inequalities we can ensure that they depend only on z. The
formula is then of the form

∀z
N∨

i=1

∃x∃y
⎛

⎝
Mi∧

j=1

fij(z)|gij(x,y,z) ∧
Ti∧

j=1

hij(z) ≥ 0 ∧
∧

yj∈y

yj ≥ 0

⎞

⎠ . (3)

Note that the existentially quantified variables x and y can be written to
the right of the disjunction. We can now eliminate these variables by applying
Theorem 1 (CRT) to each of them in turn, while regarding all other variables
as fixed. The CRT states that if a system of congruences has a solution, then
the set of solutions forms an arithmetic progression containing infinitely many
(positive and negative) integers, which means that the inequalities yj ≥ 0 can
be omitted. As a result we get a formula of the form

∀z
N∨

i=1

⎛

⎝
Mi∧

j=1

({fijk(z)}Pij

k=1) | gij(z) ∧
Ti∧

j=1

hij(z) ≥ 0

⎞

⎠ . (4)

Every subformula ({fk(z)}P
k=1)|g(z) involving the gcd of P linear terms can be

replaced with the equivalent formula ∀d
(∧P

k=1 d|fk(z)
)

→ d|g(z). The resulting
formula is in the universal fragment of PAD.

Given a ∀∃RPAD formula ϕ of the form (1), in general, converting it to (2)
will cause an exponential blow-up in the size of the formula. Eliminating x and
y from the Presburger conjuncts could lead to one squaring operation on coef-
ficients per variable in the worst case. When applying the CRT to eliminate x
and y from the divisibility conjuncts, each elimination of a variable leads to a
quadratic blow-up of the size of the formula. So the running time of eliminating
m existential quantifiers, as well as the size of the resulting formula, is O(2|ϕ|2m

).
The final step of translating the gcd relations to PAD does not cause any addi-
tional complexity, as we just replace divisibilities involving P functions on the
left side by P divisibilities involving one function each. So the quantifier elim-
ination algorithm takes overall doubly exponential time. Combining this with

Synthesis Problems for One-Counter Automata 93

the result from [11] that every quantifier-free PAD formula that has a solution
has one of size at most exponential in the number of variables and polynomial
in the size of the formula (and hence ∀PAD is in co-NEXPTIME), we obtain
our first new result:

Proposition 1. The language ∀∃RPAD is in co-2NEXPTIME.

A lower bound of co-NEXPTIME follows from [6], where it was shown
that ∀∃PA, the subset of Presburger arithmetic (without divisibilities) with one
quantifier alternation is co-NEXPTIME-complete.

3 Decidable Properties of One-Counter Automata

3.1 Weighted Graphs and Flow Networks

A weighted graph is a tuple G = (V,E,w), where V is a finite set of vertices,
E ⊆ V × V is a set of directed edges, and w : E → Z assigns an integer
weight to each edge. For s, t ∈ V , a path π from s to t is a sequence of vertices
π = v0v1 . . . vn with v0 = s, vn = t and (vi, vi+1) ∈ E for 0 ≤ i ≤ n − 1. Such a
path is a cycle if s = t. The weight of a path π, denoted weight(π), is the sum
of the weights of the edges that make up π. A path π is said to be positive if
weight(π) > 0 and negative if weight(π) < 0.

Given a weighted graph G = (V,E,w) and vertices s, t ∈ V , a flow from s to
t is a function f : E → N satisfying the flow conservation condition

∑

(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v)

for all u ∈ V \{s, t}. The value |f | of a given s-t flow f is defined as

|f | =
∑

(s,u)∈E

f(s, u) −
∑

(u,s)∈E

f(u, s).

The weight of a flow f is ∑

e∈E

f(e)w(e).

The support of a flow f is Ef = {e ∈ E : f(e) > 0}.
Every s-t path π induces an s-t flow fπ: for each edge e ∈ E, fπ(e) is the

number of times that e is taken in π. A flow is called a path flow if it corresponds
to a path in such a way. It is easy to see, by a variation of the Euler path theorem,
that an s-t flow f is a path flow if and only if |f | = 1 and the subgraph induced
by the set of edges Ef ∪ {(t, s)} is strongly connected. If π is the sequential
composition of π1 and π2, then the flow corresponding to π is the sum of the
flows corresponding to π1 and π2: fπ(e) = fπ1(e) + fπ2(e) for all e ∈ E.

94 A. Lechner

3.2 One-Counter Automata

A one-counter automaton (1-CA) is a finite automaton with an associated
counter that can store a single value. Every transition can perform a read or
write operation on the counter. We consider 1-CA whose counter ranges over
the nonnegative integers, with the counter values and updates encoded in binary,
and with each transition being an addition of an integer or integer variable to
the counter, or a zero test on the current counter value.

Formally, a parametric one-counter automaton is a tuple C = (V,E,X, λ),
where V is a finite set of states, E ⊆ V ×V is a set of transitions between states,
X is a set of integer parameters, and λ : E → Op labels each transition with an
operation on the counter, where Op = {zero?} ∪ {add(a), add(ax) : a ∈ Z, x ∈
X}. A transition labelled zero? can only be taken if the current counter value is
zero, and it leaves the counter value unchanged. A transition labelled add(a) (or
add(ax)) adds a (or ax) to the counter and can only be taken if the resulting
value is nonnegative. Substituting integer values for the parameters results in a
succinct one-counter automaton.

A configuration of a 1-CA C is a pair (v, c), for some v ∈ V and c ∈ N.
After substituting integer values for all the parameters, the transition relation E
between states induces an unlabelled transition relation between configurations:
every transition v → v′ with label zero? corresponds to the transition (v, 0) →
(v′, 0), and every transition v → v′ with label add(a) corresponds to the set of
transitions {(v, c) → (v′, c′) | c, c′ ≥ 0, c′ − c = a}.

A computation π of C is a (finite or infinite) sequence of transitions between
configurations π = (v0, c0) → (v1, c1) → (v2, c2) → · · · .

The reachability problem for parametric 1-CA asks, given a 1-CA C and
two configurations (v, c) and (v′, c′), if there are values for the parameters such
that there is a computation from (v, c) to (v′, c′) in C. The Büchi synthesis
problem for parametric 1-CA asks, given a 1-CA C with a set of accepting states
VAcc ⊆ V and an initial configuration (v, c), if there are parameter values for
which on all infinite computations starting from (v, c), some state in VAcc is
visited infinitely often. Finally, the LTL synthesis problem for parametric 1-CA
is to decide, for a given 1-CA C with initial configuration (v, c) and a set Vp ⊆ V
for each atomic proposition p ∈ P , and for an LTL formula ϕ over the set of
propositions P , whether there exist parameter values for which ϕ holds on all
infinite computations from (v, c).

Reductions in both directions between reachability for parametric 1-CA and
the decision problem for ∃PAD have been shown in [7]. The outline of how to
translate an instance of reachability to a ∃PAD formula omits some details and
does not address the complexity of the procedure, so we will go through a more
precise explanation including a detailed complexity assessment in this paper,
making use of a symbolic encoding of the Bellman-Ford algorithm to improve
the resulting complexity. For reasons of space, we will leave this detailed analysis
for the appendix and only give the general idea in the following section.

Synthesis Problems for One-Counter Automata 95

3.3 Reachability for Parametric 1-CA

Our analysis relies on a symbolic representation of computations in terms of
reachability certificates, developed in [7]. We first recall the definition and then
give a symbolic encoding of these certificates in PAD.

Any parametric 1-CA C without zero tests is syntactically equivalent to a
parametric weighted graph GC , where a transition labelled add(a) (or add(ax))
is seen as having weight a (or ax).

Given a path π = v0v1 . . . vn in GC , the vertex vk is the minimum of π if
π′ = v0v1 . . . vk has minimal weight among all the prefixes of π. In this case we
define drop(π) = weight(π′). Then π corresponds to a valid computation from
(v0, c) to (vn, c′) if and only if weight(π) = c′ − c and drop(π) ≥ −c.

For a path π from v to v′ in GC , if there is a computation over π from (v, c)
to (v′, c′) in C, we say that π can be taken from (v, c) and taken to (v′, c′) in
C. Note that when compared to paths in a weighted graph, computations in a
1-CA are more restricted in the sense that transitions can only be taken if the
counter value remains nonnegative.

Let f be a flow in the weighted graph GC . A cycle in f is a cycle l in GC such
that every edge of l lies in the support of f . A flow f is a reachability certificate
for two configurations (v, c) and (v′, c′) if there is a computation from (v, c)
to (v′, c′) over a path π such that f = fπ and one of the following conditions
holds: (i) f has no positive cycles, (ii) f has no negative cycles, (iii) there exists
a positive cycle l that can be taken from (v, c) and a negative cycle l′ that
can be taken to (v′, c′). We will call the three cases type-1, type-2 and type-3
reachability certificates, respectively.

Proposition 2 ([7]). If (v′, c′) is reachable from (v, c) in C, then there is a
computation π = π1 · π2 · π3 that starts in (v, c) and ends in (v′, c′), where π1,
π2 and π3 each yield a polynomial size (in |C| and the bit lengths of c and c′)
reachability certificate, of type 1, 3 and 2, respectively.

The first step in the translation of reachability to the decision problem for
∃PAD is to encode the existence of each type of reachability certificate as a ∃PAD
formula. We will call these formulas Type1, Type2 and Type3, respectively.

The main idea for all three translations is the same: for a reachability cer-
tificate f from (v, c) to (v′, c′) we need to encode the fact that f is a path flow
from v to v′, which we can do using linear constraints corresponding to flow
conservation properties and setting |f | to 1. It makes sense to encode f as a
vector of variables y, with one variable for each transition in the automaton.
We further need to express that weight(f) = c′ − c and that drop(πf) ≥ −c,
where πf is the path that corresponds to f . The main difficulty here is that a
formula representing weight(f) will generally contain products of variables. One
way to deal with this problem is to make a change of variables and introduce
divisibilities to express these products. Finally, we need to express the existence
or non-existence of positive or negative cycles. Existence can be handled simply
by using a nondeterministic algorithm. For non-existence, we can use a symbolic

96 A. Lechner

encoding of the Bellman-Ford algorithm, which checks for negative cycles in a
weighted graph.

Once we have formulas for reachability certificates, we can use these to define
formulas Reach notest(v, c, v′, c′,x), expressing that (v′, c′) is reachable from
(v, c) without taking any zero tests, Reach test(v, c, v′, c′,x), expressing reacha-
bility via at least one zero test, and Reach(v, c, v′, c′,x), which is general reach-
ability in 1-CA, where the variables x encode the parameters of the automaton.
The details of all the constructions can be found in the appendix. The main
result is the following:

Proposition 3. Reachability without zero tests, reachability via zero tests, and
general reachability in 1-CA can all be encoded in nondeterministic polynomial
time as formulas of ∃PAD with free variables x corresponding to the parameters
of the 1-CA, where x are the only variables that occur on the left side of any
divisibilities.

3.4 Translating Büchi and LTL Synthesis to ∀∃RPAD

The negation of the Büchi synthesis problem asks whether for all possible param-
eter values, there is some infinite computation starting in (v, c) that visits every
accepting state only finitely often. This can be expressed in terms of the reach-
ability formulas from the previous section.

To be precise, we need a formula Reach which, as above, expresses general
reachability in the whole given 1-CA C, as well as formulas Reach notest ′ and
Reach test ′, which express reachability without zero tests and via zero tests,
respectively, in the sub-CA of C with state set V \VAcc. Using these formulas,
we can express that it is possible to reach some configuration (u, k) from (v, c),
where u is not accepting, and from where a cycle traversing only non-accepting
states can be taken back to u infinitely times. We need to distinguish between
two cases: either the cycle contains a zero test, or it does not. In the first case it
needs to return to the exact configuration of (u, k), to guarantee that the zero
test(s) could be taken again infinitely many times. In the second case it suffices
to assert that the cycle is not negative so it can be taken infinitely many times
without the counter ever becoming negative. Quantifying over all parameter
values, we get the following formula for the negation of Büchi synthesis:

∀x∃k∃k′ ∨

u∈V \VAcc

(k ≤ k′) ∧ Reach(v, c, u, k,x)

∧(Reach test ′(u, k, u, k,x) ∨ Reach notest ′(u, k, u, k′,x)) (5)

Since the reachability formulas have no universally quantified variables, and
the universally quantified variables x are the only ones that occur on the left
side of any divisibilities, it follows that (5) is in ∀∃RPAD.

It is well known that every LTL formula can be translated in polynomial space
to an equivalent (finite-state) Büchi automaton of size exponential in the size of
the formula, see e.g. [18]. Similarly to standard LTL model checking algorithms

Synthesis Problems for One-Counter Automata 97

for Kripke structures, we can solve the LTL synthesis problem for a given LTL
formula ϕ and 1-CA C by constructing a Büchi automaton Cϕ equivalent to ϕ,
and a 1-CA with a set of accepting states obtained by constructing the product
of C and Cϕ, and then solving the Büchi synthesis problem for this product
automaton.

3.5 Complexity

All flow supports and zero tests in Section A.1 can be guessed in polynomial
time in the size of C and the bit length of c and c′, so the full construction
of Reach, Reach test and Reach notest is in nondeterministic polynomial time.
Note that the reachability problem itself asks if there exist parameter values for
which (v′, c′) is reachable from (v, c), which we can write as the ∃PAD formula
∃xReach(v, c, v′, c′,x). Since the decision problem for ∃PAD was shown to be
in NEXPTIME in [11], our reduction shows that reachability for parametric
1-CA is in NEXPTIME. In fact, [7] also provides a proof of NP-hardness of
reachability by reducing ∃PAD to it in nondeterministic polynomial time, so
we can conclude that reachability in parametric 1-CA and the decision problem
for ∃PAD are equivalent in terms of complexity, meaning that any improved
complexity bounds for one problem would give us the same bounds for the other.

The negation of the Büchi synthesis problem can be expressed in terms of
Reach, Reach test and Reach notest , which results in a formula in ∀∃RPAD.
Since the reachability formulas can be deterministically constructed in exponen-
tial time, it follows that the Büchi synthesis problem is in 3NEXPTIME. For
the LTL synthesis problem, the Büchi automaton Cϕ which is equivalent to a
given LTL formula ϕ has exponential size in the size of ϕ in the worst case, but
the product of Cϕ and a 1-CA C still has the same number of parameters as C,
which is the same as the number of variables in the resulting ∀∃RPAD formula.
Since in the NEXPTIME upper bound for the decision problem for ∃PAD, the
exponential depends only on the number of variables, we get a 3NEXPTIME
upper bound for LTL synthesis as a main result of this paper.

Theorem 2. The LTL synthesis problem for 1-CA is decidable in 3NEXP-
TIME.

4 A Lower Bound for Büchi Synthesis

In this section we will establish a NPNP lower complexity bound for the Büchi
synthesis problem by a reduction from a generalisation of subset sum, which
takes as input two sets of integers A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn},
as well as an integer goal g. The problem is to decide whether the following
statement holds:

∃S ⊆ A∀T ⊆ B

(
∑

s∈S

s +
∑

t∈T

t = g

)

. (6)

This problem is known to be NPNP-complete [1].

98 A. Lechner

We need to construct a 1-CA C = (V,E,X, λ) with a set of parameters
X = {x1, x2, . . . , xm} and an accepting subset of states Vacc ⊆ V such that (6)
holds if and only if there is a way of substituting integer values for the parameters
that forces all computations from the initial configuration to always stay in Vacc.
The parameters X encode the choice of elements in the set S, while the elements
in T will be represented by paths that can be taken in the automaton.

If for any 1 ≤ i ≤ m, xi is not either 0 or ai, there is a path from the
initial configuration (v0, 0) to a “bad cycle”, i.e., a cycle that only contains non-
accepting states. So for all computations to be guaranteed to never enter such a
cycle, the parameters need to be assigned values such that each xi is either 0 or
ai. Intuitively xi = ai means that the element ai is included in the set S.

W.l.o.g. we can assume that the elements of the sets A and B are sorted in
decreasing order, and that g ≥ 0. Let {a1, a2, . . . , ak} be the positive elements of
A, and let {b1, b2, . . . , bl} be the positive elements of B. For simplicity, in graphs
we will write +x for add(x), −x for add(−x), etc.

Fig. 1. The sub-automaton Ci for positive ai. One of ui and u′
i is reachable from

(vi−1, 0) iff xi �= 0 and xi �= ai.

Figure 1 shows a sub-automaton that allows a computation from (vi−1, 0) to
one of the states ui and u′

i if and only if xi = 0 and xi = ai, assuming ai is
positive. If xi ≤ 0, it can take the first downwards transition, and only if xi < 0
it can take the second transition to u′

i. If xi ≥ 0 then the transition to the right
can be taken, storing the value of xi as the new counter value. The following
two downwards transitions can only be taken if xi > 0. From here, some positive
integer is either added or subtracted to reach the value ai. Clearly, if xi = ai

then the zero test to ui can never be taken. We will call this sub-automaton Ci. If
ai is negative, then we can simply reverse the sign of the labels of the transitions
involving xi and ai to obtain an automaton with the same effect.

The next step is to put these m automata in series, as shown in Figure 2. On
the path v0 . . . vm, as the initial configuration was (v0, 0), the counter value will
be 0 in each state vi for 0 ≤ i ≤ m.

From (vm, 0), there is a series of k transitions that load the sum of the xi

that correspond to positive elements of A onto the counter. As can be seen

Synthesis Problems for One-Counter Automata 99

Fig. 2. The series of automata C1, . . . , Cm.

Fig. 3. Adding positive and negative values to the counter.

Fig. 4. The final “decision part” of the automaton.

in Figure 3, this is followed by l triangle shaped sub-automata that allow the
options of either adding bi or 0, for 1 ≤ i ≤ l. This pattern is repeated for the
negative values in A and B. The state v− has a series of two transitions to u0.
Finally, we complete the 1-CA by adding a loop labelled add(0) on every state.
For the two states in each Ci that already have a loop, we add an additional
add(0) transition from them to a new state with a add(0) loop.

We now set Vacc = V \{u0, u1, . . . , um, u′
1, . . . , u

′
m}. If any of the xi are

assigned a value different from 0 and ai, one of the bad states ui and u′
i is

reachable from (v0, 0). If every xi is either 0 or ai, then the only bad state that
could still be reached is u0. This will happen if for some subset T ⊆ B, the sum
of all the xi and all the elements of T equals g.

5 Conclusion

The decidability of the LTL synthesis problem for one-counter automata was
stated as an open problem in [5]. The same paper includes a proof that the cor-
responding synthesis problem for CTL is undecidable. The proof is by reduction
from Hilbert’s Tenth Problem and relies on the branching structure of CTL. The
fact that this problem turned out to be decidable for LTL but undecidable for
CTL confirms the general observation from [17] that synthesis problems tend to
be harder for branching time than for linear time logic.

A lower bound of PSPACE for the LTL synthesis problem immediately fol-
lows from the fact that LTL model checking for Kripke structures is PSPACE-
complete. An interesting open problem would be to improve this lower bound.

100 A. Lechner

Following the reductions in this paper, the upper bound of both the LTL and the
more restricted Büchi synthesis problem crucially depends on the upper bound
for the decision problem of ∃PAD, whose precise complexity has been an open
problem for decades and which was recently shown to be in NEXPTIME [11].

References

1. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. In:
Apostolico, A., Hein, J. (eds.) CPM 1997. LNCS, vol. 1264, pp. 40–51. Springer,
Heidelberg (1997)

2. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

3. Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibil-
ity. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer,
Heidelberg (2005)

4. Chitic, C., Rosu, D.: On validation of XML streams using finite state machines.
In: WEBDB 2004, pp. 85–90. ACM Press (2004)

5. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and
parametric one-counter automata. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199,
pp. 575–586. Springer, Heidelberg (2010)

6. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In:
Proceedings of CSL-LICS, pp. 47–56. ACM (2014)

7. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

8. Ibarra, O.H., Dang, Z.: On two-way finite automata with monotonic counters and
quadratic Diophantine equations. Theor. Comput. Sci. 312(2–3), 359–378 (2004)

9. Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-
way counter machines and applications. In: Lingas, A., Karlsson, R., Carlsson, S.
(eds) ICALP 1993. LNCS, vol. 700. Springer, Heidelberg (1993)

10. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.A.: Counter machines and
verification problems. Theor. Comput. Sci. 289(1), 165–189 (2002)

11. Lechner, A., Ouaknine, J., Worrell, J.: On the complexity of linear arithmetic with
divisibility. In: Proceedings of LICS (2015)

12. Lipshitz, L.: The Diophantine problem for addition and divisibility. Transactions
of the American Mathematical Society 235, 271–283 (1976)

13. Lipshitz, L.: Some remarks on the Diophantine problem for addition and divisibil-
ity. Bull. Soc. Math. Belg. Sér. B 33(1), 41–52 (1981)

14. Mahler, K.: On the Chinese remainder theorem. Math. Nach. 18, 120–122 (1958)
15. Minsky, M.: Recursive unsolvability of Post’s problem of “tag” and other topics in

theory of Turing machines. Annals of Mathematics 74, 437–455 (1961)
16. Robinson, J.: Definability and decision problems in arithmetic. Journal of Symbolic

Logic 14(2), 98–114 (1949)
17. Vardi, M.Y.: Branching vs. Linear time: final showdown. In: Margaria, T., Yi, W.

(eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)
18. Wolper, P.: Constructing automata from temporal logic formulas: a tutorial. In:

Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA
2000. LNCS, vol. 2090, pp. 261–277. Springer, Heidelberg (2001)

On Boundedness Problems for Pushdown Vector
Addition Systems

Jérôme Leroux1, Grégoire Sutre1(B), and Patrick Totzke2

1 University of Bordeaux and CNRS, LaBRI, UMR 5800, Talence, France
gregoire.sutre@labri.fr

2 Department of Computer Science, University of Warwick, Coventry, UK

Abstract. We study pushdown vector addition systems, which are syn-
chronized products of pushdown automata with vector addition systems.
The question of the boundedness of the reachability set for this model can
be refined into two decision problems that ask if infinitely many counter
values or stack configurations are reachable, respectively. Counter bound-
edness seems to be the more intricate problem. We show decidability in
exponential time for one-dimensional systems. The proof is via a small
witness property derived from an analysis of derivation trees of grammar-
controlled vector addition systems.

1 Introduction

Pushdown vector addition systems are finite automata that can independently
manipulate a pushdown stack and several counters. They are defined as syn-
chronized products of vector addition systems with pushdown automata. Vector
addition systems, shortly VAS, are a classical model for concurrent systems and
are computationally equivalent to Petri nets. Formally, a k-dimensional vector
addition system is a finite set A ⊆ Z

k of vectors called actions. Each action
a ∈ A induces a binary relation a−−→ over N

k, defined by c
a−−→ d if d = c + a.

A k-dimensional pushdown vector addition system, shortly PVAS, is a tuple
(Q,Γ, qinit , cinit , winit ,Δ) where Q is a finite set of states, Γ is a finite stack
alphabet, qinit ∈ Q is an initial state, cinit ∈ N

k is an initial assignment of the
counters, winit ∈ Γ∗ is an initial stack content, and Δ ⊆ Q×Z

k ×Op(Γ)×Q is a
finite set of transitions where Op(Γ) def= {push(γ), pop(γ), nop | γ ∈ Γ} is the set
of stack operations. The size of VAS, PVAS (and GVAS introduced later) are
defined as expected with numbers encoded in binary.

Example 1.1. Consider the program on the left of Figure 1, that doubles the
value of the global variable x. The � expression non-deterministically evaluates
to a Boolean, as it is often the case in abstraction of programs [1]. On the right
is a 1-dimensional PVAS that models this procedure: states correspond to lines
in the program code, operations on the variable x are directly applied, and the
call stack is reflected on the pushdown stack. ��

This work was partially supported by ANR project ReacHard (ANR-11-BS02-001).

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 101–113, 2015.
DOI: 10.1007/978-3-319-24537-9 10

102 J. Leroux et al.

1: x ← n
2: procedure DoubleX
3: if (� ∧ x > 0) then
4: x ← (x − 1)
5: DoubleX
6: end if
7: x ← (x + 2)
8: end procedure

2start

3

5

6

7

8

−1

push(A)

+2

pop(A)

Fig. 1. A PVAS modeling a recursive program.

The semantics of PVAS is defined as follows. A configuration is a triple
(q, c, w) ∈ Q × N

k × Γ∗ consisting of a state, a vector of natural numbers, and
a stack content. The binary step relation → over configurations is defined by
(p, c, u) → (q,d, v) if there is a transition (p, op,a, q) ∈ Δ such that c

a−−→ d
and one of the following conditions holds: either op = push(γ) and v = uγ, or
op = pop(γ) and u = vγ, or op = nop and u = v. The reflexive and transitive
closure of → is denoted by ∗−→.

The reachability set of a PVAS is the set of configurations (q, c, w) such that
(qinit , cinit , winit)

∗−→ (q, c, w). The reachability problem asks if a given configu-
ration (q, c, w) is in the reachability set of a given PVAS. The decidability of
this problem is open. Notice that for vector addition systems, even though the
reachability problem is decidable [6,12], no primitive upper bound of complexity
is known (see [9] for a first upper bound). However, a variant called the cover-
ability problem is known to be ExpSpace-complete [11,13]. Adapted to PVAS,
the coverability problem takes as input a PVAS and a state q ∈ Q and asks
if there exists a reachable configuration of the form (q, c, w) for some c and w.
The decidability of the coverability problem for PVAS is also open. In fact, cov-
erability and reachability are inter-reducible (in logspace) for this class [7,10]. In
dimension one, we recently proved that coverability is decidable [10].

Both coverability and reachability are clearly decidable for PVAS with finite
reachability sets. These PVAS are said to be bounded. In [8], this class is proved
to be recursive, i.e. the boundedness problem for PVAS is decidable. The com-
plexity of this problem is known to be Tower-hard [7]. The decidability is
obtained by observing that if the reachability set of a PVAS is finite, its car-
dinality is at most hyper-Ackermannian in the size of the PVAS. Even though
this bound is tight [8], the exact complexity of the boundedness problem is still
open. Indeed, it is possible that there exist small certificates that witness infi-
nite reachability sets. For instance, in the VAS case, the reachability set can be
finite and Ackermannian. But when it is infinite, there exist small witnesses of
this fact [13]. This yields an optimal [11] exponential-space algorithm for the
VAS boundedness problem. Extending this technique to PVAS is a challenging
problem.

The boundedness problem for PVAS can be refined in two different ways.
In fact, the infiniteness of the reachability set may come from the stack or the

On Boundedness Problems for Pushdown Vector Addition Systems 103

counters. We say that a PVAS is counter-bounded if the set of vectors c ∈ N
k

such that (q, c, w) is reachable for some q and w, is finite. Symmetrically, a PVAS
is called stack-bounded if the set of words w ∈ Γ∗ such that (q, c, w) is reachable
for some q and c, is finite. The following lemma shows that the two associated
decision problems are at least as hard as the boundedness problem.

Lemma 1.2. The boundedness problem is reducible in logarithmic space to the
counter-boundedness problem and to the stack-boundedness problem (the dimen-
sion k is unchanged by the reduction).

The stack-boundedness problem can be solved by adapting the algorithm
introduced in [8] for the PVAS boundedness problem. Informally, this algorithm
explores the reachability tree and stops as soon as it detects a cycle of transitions
whose iteration produces infinitely many reachable configurations. If this cycle
increases the stack, we can immediately conclude stack-unboundedness. Other-
wise, at least one counter can be increased to an arbitrary large number. By
replacing the value of this counter by ω and then resuming the computation of
the tree from the new (extended) configuration, we obtain a Karp&Miller-like
algorithm [5] deciding the stack-boundedness problem. We deduce the following
result.

Lemma 1.3. The stack-boundedness problem for PVAS is decidable.

Concerning the counter-boundedness problem, adapting the algorithm intro-
duced in [8] in a similar way seems to be more involved. Indeed, if we detect
a cycle that only increases the stack, we can iterate it and represent its effect
with a regular language. However, we do not know how to effectively truncate the
resulting tree to obtain an algorithm deciding the counter-boundedness problem.

Contributions. In this paper we solve the counter-boundedness problem for
the special case of dimension one. We show that in a grammar setting, PVAS
counter-boundedness corresponds to the boundedness problem for prefix-closed,
grammar-controlled vector addition systems. We show that in dimension one,
this problem is decidable in exponential time. Our proof is based on the exis-
tence of small witnesses exhibiting the unboundedness property. This complexity
result improves the best known upper bound for the classical boundedness prob-
lem for PVAS in dimension one. In fact, as shown by the following Example 1.4,
the reachability set of a bounded 1-dimensional PVAS can be Ackermannian
large. In particular, the worst-case running time of the algorithm introduced
in [8] for solving the boundedness problem is at least Ackermannian even in
dimension one.

Example 1.4. The Ackermann functions Am : N → N, for m ∈ N, are defined by
induction for every n ∈ N by:

Am(n) def=

{
n + 1 if m = 0
An+1

m−1(1) if m > 0

104 J. Leroux et al.

⊥

0

m1

pop(γ0) 1

pop(γ1)

1

push(γ0)

pop(γm)

1

push(γm−1)
push(γ0)

−1
push(γm−1)

−1

Fig. 2. One-dimensional PVAS that weakly compute Ackermann functions.

These functions are weakly computable by the (family of) PVAS depicted in
Figure 2, in the sense that:

Am(n) = max{c | (⊥, n, γm) ∗−→ (⊥, c, ε)} (1)

for every m,n ∈ N. Indeed, an immediate induction on k ∈ {0, . . . , m} shows
that (⊥, c, γk) ∗−→ (⊥, Ak(c), ε) for every c ∈ N. For the converse inequality, let
us introduce, for each configuration (⊥, c, w), the number θ(c, w) defined by

θ(c, γi1 · · · γik) def= Ai1 ◦ · · · ◦ Aik(c)

An immediate induction on the number of times a run come back to the state
⊥ shows that (⊥, c, w) ∗−→ (⊥, c′, w′) implies θ(c, w) ≥ θ(c′, w′). Since θ(c, ε) = c,
we derive that Am(n) ≥ c for every c such that (⊥, n, γm) ∗−→ (⊥, c, ε). This
concludes the proof of Equation 1.

Notice that the reachability set of this PVAS is finite for any initial config-
uration. Indeed, (⊥, c, w) ∗−→ (⊥, c′, w′) implies θ(c, w) ≥ θ(c′, w′) ≥ c′ + |w′|.
Therefore, there are only finitely many reachable configurations in state ⊥. It
follows that the same property holds for the other states. ��

Outline. We recall some necessary notations about context-free grammars and
parse trees in the next section. In Section 3, we present the model of grammar-
controlled vector addition systems (GVAS) as previously introduced in [10], and
reduce the counter boundedness problem for PVAS to the boundedness problem
for the subclass of prefix-closed GVAS. We show in Section 4 that unbounded
systems exhibit certificates of a certain form. Section 5 proves a technical lemma
used later on and finally, in section 6, we bound the size of minimal certificates
and derive the claimed exponential-time upper bound.

2 Preliminaries

We let Z def= Z∪{−∞,+∞} denote the extended integers, and we use the standard
extensions of + and ≤ to Z. Recall that (Z,≤) is a complete lattice.

On Boundedness Problems for Pushdown Vector Addition Systems 105

Words. Let A∗ be the set of all finite words over the alphabet A. The empty word
is denoted by ε. We write |w| for the length of a word w in A∗ and wk def= ww · · · w
for its k-fold concatenation. The prefix partial order over words is defined by
u v if v = uw for some word w. We write u ≺ v if u is a proper prefix of v. A
language is a subset L ⊆ A∗. A language L is said to be prefix-closed if u v
and v ∈ L implies u ∈ L.

Trees. A tree T is a finite, non-empty, prefix-closed subset of N∗ satisfying the
property that if tj is in T then ti in T for all i < j. Elements of T are called
nodes. Its root is the empty word ε. An ancestor of a node t is a prefix s t. A
child of a node t in T is a node tj in T with j in N. A node is called a leaf if
it has no child (i.e., t0 �∈ T), and is said to be internal otherwise. The size of a
tree T is its cardinal |T |, its height is the maximal length |t| of its nodes t ∈ T .
We let lex denote the lexicographic order on words in N

∗.

Context-free Grammars. A context-free grammar is a quadruple G = (V,A,R, S),
where V and A are disjoint finite sets of nonterminal and terminal symbols,
S ∈ V is a start symbol, and R ⊆ V × (V ∪ A)∗ is a finite set of production rules.
We write

X � α1 | α2 | . . . | αk

to denote that (X,α1), . . . , (X,αk) ∈ R. For all words w,w′ ∈ (V ∪ A)∗, the
grammar admits a derivation step w ==⇒ w′ if there exist two words u, v in
(V ∪ A)∗ and a production rule (X,α) in R such that w = uXv and w′ = uαv.
Let ∗==⇒ denote the reflexive and transitive closure of ==⇒. The language of a
word w in (V ∪ A)∗ is the set LG

w
def= {z ∈ A∗ | w

∗==⇒ z}. The language of
G is defined as LG

S , and it is denoted by LG. A nonterminal X ∈ V is called
productive if LG

X �= ∅. A context-free grammar G = (V,A,R, S) is in Chomsky
normal form1 if, for every production rule (X,α) in R, either (X,α) = (S, ε) or
α ∈ V 2 ∪ A.

Parse Trees. A parse tree for a context-free grammar G = (V,A,R, S) is a
tree T equipped with a labeling function sym : T → (V ∪ A ∪ {ε}) such that
the root is labeled by sym(ε) = S and R contains the production rule sym(t) �
sym(t0) · · · sym(tk) for every internal node t with children t0, . . . , tk. In addition,
each leaf t �= ε with sym(t) = ε is the only child of its parent. Notice that
sym(t) ∈ V for every internal node t. A parse tree is called complete when
sym(t) ∈ (A∪{ε}) for every leaf t. The yield of a parse tree (T, sym) is the word
sym(t1) · · · sym(t�) where t1, . . . , t� are the leaves of T in lexicographic order
(informally, from left to right). Observe that for every word w in (V ∪ A)∗, it
holds that S

∗==⇒ w if, and only if, w is the yield of some parse tree.

1 To simplify the presentation, we consider a weaker normal form than the classical
one, as we allow to reuse the start symbol.

106 J. Leroux et al.

3 Grammar-Controlled Vector Addition Systems

In this section we recall the notion of GVAS from [10] and show that the bound-
edness problem for the subclass of prefix-closed GVAS is inter-reducible to the
counter-boundedness problem for pushdown vector addition systems.

Definition 3.1 (GVAS). A k-dimensional grammar-controlled vector addi-
tion system (shortly, GVAS) is a tuple G = (V,A, R, S, cinit) where (V,A, R, S)
is a context-free grammar, A ⊆ Z

k is a VAS, and cinit ∈ N
k is an initial vector.

The semantics of GVAS is given by extending the relations a−−→ of ordinary
VAS to words over V ∪ A as follows. Define ε−−→ to be the identity on N

k and
let za−−→ def= a−−→ ◦ z−−→ for z ∈ A∗ and a ∈ A. Finally, let w−−→ def=

⋃
z∈LG

w

z−−→ for
w ∈ (V ∪ A)∗. For a word z = a1a2 · · ·an ∈ A∗ over the terminals, we shortly
write

∑
z for the sum

∑n
i=1 ai. Observe that c

z−−→ d implies d − c =
∑

z.

Ultimately, we are interested in the relation S−−→, that describes the reacha-
bility relation via sequences of actions in LG

S , i.e., those that are derivable from
the starting symbol S in the underlying grammar. A vector d ∈ N

k is called
reachable from a vector c ∈ N

k if c S−−→ d. The reachability set of a GVAS is the
set of vectors reachable from cinit .

A GVAS is said to be bounded if its reachability set is finite. The associated
boundedness problem for GVAS is challenging since the coverability problem
for PVAS, whose decidability is still open, is logspace reducible to it. However,
the various boundedness properties that we investigate on PVAS (see Section 1)
consider all reachable configurations, without any acceptance condition. So they
intrinsically correspond to context-free languages that are prefix-closed. It is
therefore natural to consider the same restriction for GVAS. Formally, we call
a GVAS G = (V,A, R, S, cinit) prefix-closed when the language LG

S is prefix-
closed. Concerning the counter-boundedness problem for PVAS, the following
lemma shows that it is sufficient to consider the special case of prefix-closed
GVAS.

Lemma 3.2. The counter-boundedness problem for PVAS is logspace inter-
reducible with the prefix-closed GVAS boundedness problem (the dimension k
is unchanged by both reductions).

In this paper, we focus on the counter-boundedness problem for PVAS of
dimension one. We show that this problem is decidable in exponential time. The
proof is by reduction, using Lemma 3.2, to the boundedness problem for prefix-
closed 1-dimensional GVAS. Our main technical contribution is the following
result.

Theorem 3.3. The prefix-closed 1-dimensional GVAS boundedness problem is
decidable in exponential time.

For the remainder of the paper, we restrict our attention to the dimension
one, and shortly write GVAS instead of 1-dimensional GVAS.

On Boundedness Problems for Pushdown Vector Addition Systems 107

Example 3.4. Consider again the Ackermann functions Am introduced in Exam-
ple 1.4. These can be expressed by the GVAS with nonterminals X0, . . . , Xm

and with production rules X0 � 1 and Xi � −1 Xi Xi−1 | 1Xi−1 for 1 ≤ i ≤ m.
It is routinely checked that max{d | c

Xm−−→ d} = Am(c) for all c ∈ N. ��
Every GVAS can be effectively normalized, in logarithmic space, by replac-

ing terminals a ∈ Z by words over the alphabet {−1, 0, 1} and then putting
the resulting grammar into Chomsky normal form. In addition, non-productive
nonterminals, and production rules in which they occur, can be removed. So in
order to simplify our proofs, we consider w.l.o.g. only GVAS of this simpler form.

Assumption. We restrict our attention to GVAS G = (V,A,R, S, cinit) in Chom-
sky normal form and where A = {−1, 0, 1} and every X ∈ V is productive.

The rest of the paper is devoted to the proof of Theorem 3.3. Before delv-
ing into its technical details, we give a high-level description the proof. In the
next section, we characterize unboundedness in terms of certificates, which are
complete parse trees whose nodes are labeled by natural numbers (or −∞).
These certificates contain a growing pattern that can be pumped to produce
infinitely many reachable (1-dimensional) vectors, thereby witnessing unbound-
edness. We then prove that certificates need not be too large. To do so, we first
show in Section 5 how to bound the size of growing patterns. Then, we bound
the height and labels of “minimal” certificates in Section 6. Both bounds are
singly-exponential in the size of the GVAS. Thus, the existence of a certificate
can be checked by an alternating Turing machine running in polynomial space.
This entails the desired ExpTime upper-bound stated in Theorem 3.3.

4 Certificates of Unboundedness

Following our previous work on the GVAS coverability problem [10], we annotate
parse trees in a way that is consistent with the VAS semantics. A flow tree for a
GVAS G = (V,A,R, S, cinit) is a complete2 parse tree (T, sym) for G equipped
with two functions in, out : T → N ∪ {−∞}, assigning an input and an output
value to each node, with in(ε) = cinit , and satisfying, for every node t ∈ T , the
following flow conditions:

1. If t is internal with children t0, . . . , tk, then in(t0) ≤ in(t), out(t) ≤ out(tk),
and in(t(j + 1)) ≤ out(tj) for every j = 0, . . . , k − 1.

2. If t is a leaf, then out(t) ≤ in(t) + a if sym(t) = a ∈ A, and out(t) ≤ in(t) if
sym(t) = ε.

We shortly write t : c#d to mean that (in(t), sym(t), out(t)) = (c,#, d). The
size of a flow tree is the size of its underlying parse tree. Figure 3 (left) shows
a flow tree for the GVAS of Example 3.4, with start symbol X1 and initial
(1-dimensional) vector cinit = 5.
2 Compared to [10] where flow trees are built on arbitrary parse trees, the flow trees

that we consider here are always built on complete parse trees.

108 J. Leroux et al.

Remark 4.1. The flow conditions enforce the VAS semantics along a depth-first
pre-order traversal of the complete parse tree. But, as in [10], we only require
inequalities instead of equalities. This corresponds to a lossy VAS semantics,
where the counter can be non-deterministically decreased [2]. The use of inequal-
ities in our flow conditions simplifies the presentation and allows for certificates
of unboundedness with smaller input/output values. Note that equalities would
be required to get certificates of reachability, but the latter problem is out of the
scope of this paper.

Lemma 4.2. For all d with cinit
S−−→ d, there exists a flow tree with out(ε) = d.

Our main ingredient to prove Theorem 3.3 is a small model property. First, we
show in this section that unboundedness can always be witnessed by a flow tree of
a particular form, called a certificate (see Definition 4.5 and Figure 3). Then, we
will provide in Theorem 6.10 exponential bounds on the height and input/output
values of “minimal” certificates. This will entail the desired ExpTime upper-
bound for the prefix-closed GVAS boundedness problem.

We start by bounding the size of flow trees that do not contain an iterable
pattern, i.e., a nonterminal that repeats, below it, with a larger or equal input
value. Formally, a flow tree (T, sym, in, out) is called good if it contains a node t
and a proper ancestor s ≺ t such that sym(s) = sym(t) and in(s) ≤ in(t). It is
called bad otherwise. We bound the size of bad flow trees by (a) translating them
into bad nested sequences, and (b) using a bound given in [8] on the length of
bad nested sequences. Let us first recall some notions and results from [8]. Our
presentation is deliberately simplified and limited to our setting.

Let (S,, ‖·‖) be the normed quasi-ordered set defined by S
def= V × N,

(X,m) (Y, n) def⇔ X = Y ∧ m ≤ n, and ‖(X,m)‖ = m. A nested sequence
is a finite sequence (s1, h1), . . . , (s�, h�) of elements in S × N satisfying h1 = 0
and hj+1 ∈ hj + {−1, 0, 1} for every index j < � of the sequence. A nested
sequence (s1, h1), . . . , (s�, h�) is called good if there exists i < j such that si sj

and hi ≤ hi+1, . . . , hj . A bad nested sequence is one that is not good. A nested
sequence (s1, h1), . . . , (s�, h�) is called n-controlled, where n ∈ N, if ‖sj‖ < n + j
for every index j of the sequence.

Theorem 4.3 ([8, TheoremVI.1]). Let n ∈ N with n ≥ 2. Every n-controlled
bad nested sequence has length at most Fω.|V |(n).

The function Fω.|V | : N → N used in the theorem is part of the fast-growing
hierarchy. Its precise definition (see, e.g., [8]) is not important for the rest of
the paper. The following lemma provides a bound on the size of bad flow trees.
Notice that this lemma applies to arbitrary GVAS (not necessarily prefix-closed).

Lemma 4.4. Every bad flow tree has at most Fω.|V |(cinit + 2) nodes.

A good flow tree contains an iterable pattern that can be “pumped”. However,
the existence of such a pattern does not guarantee unboundedness. For that, we
need stronger requirements on the input and output values, as defined below.

On Boundedness Problems for Pushdown Vector Addition Systems 109

X15 −∞

−15 4 X14 5

13 4 X04 5

14 5

X05 −∞

1−∞ −∞

Sε: cinit −∞

Xs: in(s) out(s)

Xt: in(t) out(t)

x u w v y

Fig. 3. Left: a flow tree for the GVAS of Example 3.4 with cinit = 5. Input and
output values are indicated in red and blue, respectively. Right: A certificate with
sym(t) = sym(s) = X and yield xuwvy ∈ A∗. It must hold that either in(s) < in(t) or
in(s) = in(t) and out(t) < out(s).

Definition 4.5 (Certificates). A certificate for a given GVAS is a flow tree
(T, sym, in, out) equipped with two nodes s ≺ t in T such that

sym(s) = sym(t) and in(s) ≤ in(t) and in(s) < in(t) or out(t) < out(s)

We now present the main result of this section, which shows that unbound-
edness can always be witnessed by a certificate.

Theorem 4.6. A prefix-closed GVAS G is unbounded if, and only if, there exists
a certificate for G.

5 Growing Patterns

Certificates depicted on Figure 3 (right) introduce words u ∈ A∗ satisfying a
sign constraint

∑
u > 0 or

∑
u = 0. These words are derivable from words of

non-terminal symbols S1 . . . Sk corresponding to the left children of the nodes
between s and t. In order to obtain small certificates, in this section, we provide
bounds on the minimal length of words u′ ∈ A∗ that can also be derived from
S1 . . . Sk and that satisfy the same sign constraint as u.

Let us first introduce the displacement of a GVAS G as the “best shift”
achievable by a word in LG and defined by the following equality3:

ΔG def= sup{∑ z | z ∈ LG}
When the displacement is finite, the following Lemma 5.1 shows that it is

achievable by a complete elementary parse tree. We say that a parse tree T is
3 Notice that ΔG may be negative.

110 J. Leroux et al.

elementary if for every s t such that sym(s) = sym(t), we have s = t. Notice
that the size of an elementary parse tree is bounded by 2|V |+1.

Lemma 5.1. Every GVAS G admits a complete elementary parse with a yield
w such that ΔG ∈ {∑ w,+∞}.

Given a non-terminal symbol X, we denote by G[X] the context-free grammar
obtained from G by replacing the start symbol by X. We are now ready to state
the main observation of this section.

Theorem 5.2. For every sequence S1, . . . , Sk of non-terminal symbols of a
GVAS G there exists a sequence T1, . . . , Tk of complete parse trees Tj for
Gj

def= G[Sj] with a yield zj such that |T1| + · · · + |Tk| ≤ 3k4|V |+1, and such that∑
z1 . . . zk > 0 if ΔG1+· · ·+ΔGk > 0, and

∑
z1 . . . zk = 0 if ΔG1+· · ·+ΔGk = 0.

We first provide bounds on complete parse trees that witness the following
properties ΔG = +∞ and X is derivable. Formally, a nonterminal X is said to
be derivable if there exists w ∈ (A∪V)∗ that contains X and such that S

∗==⇒ w.

Lemma 5.3. If ΔG = +∞, there exists a parse tree for G[X] where X is a non-
terminal symbol derivable from the start symbol S with a yield uXv satisfying
u, v ∈ A∗,

∑
uv > 0, and a number of nodes bounded by 4|V |+1.

Lemma 5.4. For every derivable non-terminal symbol X, there exists a parse
tree with a yield in A∗XA∗ and a number of nodes bounded by 4|V |+1.

Proof (of Theorem 5.2). We can assume that k ≥ 1 since otherwise the proof is
trivial. Observe that if ΔG1 + · · · + ΔGk < +∞ then ΔGj < +∞ for every j. It
follows from Lemma 5.1 that there exists a complete parse tree Tj for G[Sj] with a
yield wj satisfying ΔGj =

∑
wj and a number of nodes bounded by 2|V |+1. Thus

|T1|+ · · ·+ |Tk| ≤ k2|V |+1 and
∑

w1 . . . wk = ΔG1 + · · ·+ΔGk . So, in this special
case the theorem is proved. Now, let us assume that ΔG1 + · · · + ΔGk = +∞.
There exists p ∈ {1, . . . , k} such that ΔGp = +∞. Lemma 5.3 shows that there
exists a variable for X derivable from Sp and a parse tree T+ for G[X] with a
yield uXv satisfying u, v ∈ A∗,

∑
uv > 0, and such that |T+| ≤ 4|V |+1. Since Sj

is productive, there exists a complete elementary parse tree Tj for G[Sj] with a
yield wj ∈ A∗. For the same reason, there exists a complete elementary parse
tree T for G[X] with a yield w ∈ A∗. As X is derivable from S, Lemma 5.4
shows that there exists a parse tree T ′ for G with a yield labeled by a word
in u′Xv′ with u′, v′ ∈ A∗, and a number of nodes bounded by 4|V |+1. Notice
that for any n ∈ N, we deduce a complete parse tree Tp for G[Sp] with a yield
wp = u′unwvnv′ by inserting in T ′ many (n) copies of T+ and one copy of
T . Observe that

∑
w1 . . . wk ≥ −|w1 . . . wp−1wp+1 . . . wk| − |u′wv′| + n

∑
uv ≥

−k2|V |+1−4|V |+1+n. Let us fix n to 2k4|V |+1−2. It follows that
∑

w1 . . . wp > 0.
Moreover, we have |Tp| ≤ |T |−1+n(|T+|−1)+|T ′| ≤ 2|V |+1+n4|V |+1+4|V |+1 ≤
(n+2)4|V |+1 ≤ 2k4|V |+1. We derive |T1|+ · · ·+ |Tk| ≤ (k−1)2|V |+1+2k4|V |+1 ≤
3k4|V |+1. We have proved Theorem 5.2. ��

On Boundedness Problems for Pushdown Vector Addition Systems 111

6 Small Certificates

We provide in this section exponential bounds on the height and input/output
values of minimal certificates in the following sense. Let the rank of a flow tree
(T, sym, in, out) be the pair

(

|Tin | + |Tout | ,
∑

t∈Tin

in(t) +
∑

t∈Tout

out(t))

)

where Tin = {t ∈ T | in(t) > −∞} and Tout = {t ∈ T | out(t) > −∞}. Notice
that Tout ⊆ Tin . We compare ranks using the lexicographic order lex over N

2

and let the rank of a certificate (T , s, t) be the rank of its flow tree T .

Consider a prefix-closed GVAS G = (V,A,R, S, cinit) that is unbounded. By
Theorem 4.6, there exists a certificate for G. Pick a certificate (T , s, t) among
those of least rank. Our goal is to bound the height and input/output values
of T . Based on its assumed minimality, we observe a series of facts about our
chosen certificate.

First, we observe that some input/output values in T must be −∞, because
higher values would be useless in the sense that they can be set to −∞ without
breaking the flow conditions nor the conditions on s and t. This observation is
formalized in the two following facts.

Fact 6.1. It holds that out(p) = −∞ for every proper ancestor p ≺ s. Moreover,
in(p) = out(p) = −∞ for every node p ∈ T such that s ≺lex p and p � s.

Fact 6.2. Assume that in(s) < in(t). It holds that out(p) = −∞ for every
ancestor p t. Moreover, in(p) = out(p) = −∞ for all p ∈ T with t ≺lex p.

Next, we observe that the main branch, that contains s and t, must be short.

Fact 6.3. It holds that |s| ≤ |V | and |t| ≤ |s| + |V | + 1.

The next two facts provide relative bounds on input and output values for
nodes that are not on the main branch.

Fact 6.4. It holds that in(p) ≤ out(p) + 2|V | for every node p ∈ T with p � t.

Fact 6.5. Let q ∈ T and let p be the parent of q. If p = t or p � t, then
out(q) ≤ out(p) + 2|V |. If moreover sym(p) = sym(q), then out(q) < out(p).

The following facts provide absolute bounds on the input/output values of
nodes s and t. The proofs of the facts below crucially rely on Section 5. Consider
the subtrees on the left and on the right of the branch from s to t. The main
idea of the proofs is to replace these subtrees by small ones using Theorem 5.2.

Fact 6.6. It holds that out(t) ≤ out(s) ≤ 6|V | · 4|V |+1.

Fact 6.7. It holds that in(s) ≤ in(t) ≤ 7|V | · 4|V |+1.

112 J. Leroux et al.

Now we derive absolute bounds for the input/output values of the remaining
nodes on the main branch. These are derived from Facts 6.6 and 6.7, using
Facts 6.4 and 6.5 about the way in/output values propagate and the Fact 6.3
that the intermediate path between nodes s and t is short.

Fact 6.8. It holds that out(p) ≤ 42(|V |+1) for every ancestor p t.

Fact 6.9. It holds that in(p) ≤ 42(|V |+1) for every ancestor ε ≺ p t.

We are now ready to derive bounds on the rank of our minimal certificate.
Notice that it remains only to bound the depth and the input/output values on
branches different from the main branch.

Consider therefore a node q outside the main branch, i.e., q � t. Let p be the
least prefix of q such that p = t or p � t. We first show that out(p) ≤ 42(|V |+1). If
p = t then the claim follows from Fact 6.8. Otherwise, the parent r of p satisfies
r ≺ t. Observe that the other child p̄ of r satisfies p̄ t. The flow conditions
together with the minimality of (T , s, t) guarantee that

• if p = r1 then out(p) = out(r), hence, out(p) ≤ 42(|V |+1) by Fact 6.8, and
• if p = r0 then out(p) = in(r1), hence, out(p) ≤ 42(|V |+1) by Fact 6.9.

According to Fact 6.5, the output values on the branch from p down to q may
only increase when visiting a new symbol. Moreover, this increase is bounded
by 2|V |. It follows that out(r) ≤ out(p) + |V |2|V | for every node r such that
p ≺ r q. Fact 6.4 entails that in(r) ≤ out(p) + (|V | + 1)2|V |. We obtain that
max{in(r), out(r)} < 43(|V |+1) for every node r with p ≺ r q. Fact 6.5 also
forbids the same nonterminal from appearing twice with the same output value,
so |r| ≤ |p| + |V | · 43(|V |+1) + 1. Observe that |p| ≤ |t|. We derive from Fact 6.3
that |r| ≤ 44(|V |+1). This concludes the proof of the following theorem.

Theorem 6.10. A prefix-closed GVAS (V,A,R, S, cinit) is unbounded if, and
only if, it admits a certificate with height and all input/output values bounded by
cinit + 44(|V |+1).

Proof (of Theorem 3.3). By Theorem 6.10, a certificate for unboundedness is a
flow tree of exponential height and with all input and output labels exponen-
tially bounded. An alternating Turing machine can thus guess and verify all
branches of such a flow tree, storing intermediate input/output values as well as
the remaining length of a branch in polynomial space. The claim then follows
from the fact that alternating polynomial space equals exponential time. ��

7 Conclusion

We discussed different boundedness problems for pushdown vector addition sys-
tems [7,8], which are a known, and very expressive computational model that
features nondeterminism, a pushdown stack and several counters. These systems
may be equivalently interpreted, in the context of regulated rewriting [3], as vec-
tor addition systems with context-free control languages.

On Boundedness Problems for Pushdown Vector Addition Systems 113

We observe that boundedness is reducible to both counter- and stack-
boundedness. The stack boundedness problem can be shown to be decidable (with
hyper-Ackermannian complexity) by adjusting the algorithm presented in [8].

Here, we single out the special case of the counter-boundedness problem for
one-dimensional systems and propose an exponential-time algorithm that solves
it. This also improves the best previously known Ackermannian upper bound for
boundedness in dimension one.

Currently, the best lower bound for this problem is NP, which can be
seen by reduction from the subset sum problem. For dimension two, PSpace-
hardness follows by reduction from the state-reachability of bounded one-counter
automata with succinct counter updates [4]. For arbitrary dimensions, Tower-
hardness is known already for the boundedness problem [7,8] but the decidability
of counter-boundedness for PVAS remains open.

Acknowledgments. The authors wish to thank M. Praveen for insightful discussions.
We also thank the anonymous referees for their useful comments and suggestions.

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI, pp. 203–213 (2001)

2. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In: Meinel, C.,
Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 323–333. Springer, Heidelberg
(1999)

3. Dassow, J., Pun, G., Salomaa, A.: Grammars with controlled derivations. In: Hand-
book of Formal Languages, pp. 101–154 (1997)

4. Fearnley, J., Jurdziński, M.: Reachability in two-clock timed automata is PSPACE-
complete. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 212–223. Springer, Heidelberg (2013)

5. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

6. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC, pp. 267–281 (1982)

7. Lazic, R.: The reachability problem for vector addition systems with a stack is not
elementary. CoRR abs/1310.1767 (2013)

8. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown
vector addition systems. In: CSL/LICS (2014)

9. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
LICS (2015)

10. Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown vector
addition systems in one dimension. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 324–336. Springer,
Heidelberg (2015)

11. Lipton, R.J.: The reachability problem requires exponential space. Tech. Rep. 63,
Yale University (January 1976)

12. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: STOC.
pp. 238–246 (1981)

13. Rackoff, C.: The covering and boundedness problems for vector addition systems.
TCS 6(2), 223–231 (1978)

Multithreaded-Cartesian Abstract
Interpretation of Multithreaded Recursive

Programs Is Polynomial

Alexander Malkis(B)

Technische Universität München, Munich, Germany

Abstract. Undecidability is the scourge of verification for many pro-
gram classes. We consider the class of shared-memory multithreaded
programs in the interleaving semantics such that the number of threads
is finite and constant throughout all executions, each thread has an
unbounded stack, and the shared memory and the stack-frame memory
are finite. Verifying that a given program state does not occur in exe-
cutions of such a program is undecidable. We show that the complexity
of verification drops to polynomial time under multithreaded-Cartesian
abstraction. Furthermore, we demonstrate that multithreaded-Cartesian
abstract interpretation generates an inductive invariant which is a regular
language. Under logarithmic cost measure, both proving non-reachability
and creating a finite automaton can be attained in O(n log2 n) time in
the number of threads n and in polynomial time in all other quantities.

1 Introduction

Verification of multithreaded programs is hard. In the presence of recursive pro-
cedures, the problem of membership in the strongest inductive invariant is unde-
cidable: given a two-threaded program with a stack per thread, one can simulate
a Turing tape. However, if the stack depth is the only unbounded quantity, there
might be interesting inductive invariants of special forms such that membership
in such invariants is decidable. In other words, one might circumvent undecid-
ability by considering specially-formed overapproximations of the set of program
states that are reachable from the initial ones.

We now briefly sketch one such interesting form. Let a program state be an
(n+1)-tuple in which one component contains a valuation of the shared vari-
ables and each of the remaining n components contains a valuation of the local
variables (including the control flow) of a distinct thread. Let us say that two
program states are equivalent if they have the same shared-variables entry. We
define a set of states to be of the multithreaded-Cartesian form if each equiva-
lence class is an (n+1)-dimensional Cartesian product. (A rigorous definition will
appear in § 4.) The multithreaded-Cartesian inductive invariants of a program
constitute a Moore family.

The author greatly acknowledges useful comments and suggestions from Neil Deaton
Jones.

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 114–127, 2015.
DOI: 10.1007/978-3-319-24537-9 11

Multithreaded-Cartesian Abstract Interpretation 115

It is known that in the finite-state case the membership problem for the
strongest multithreaded-Cartesian inductive invariant is in PTIME [16]. We
extend this result to programs in which each thread has a potentially unbounded
stack. Moreover, we show that the strongest multithreaded-Cartesian inductive
invariant is a regular language when viewed as a formal language of strings.
Computing a corresponding finite automaton as well as solving the member-
ship problem for the strongest multithreaded-Cartesian inductive invariant can
be accomplished in time O(n log2 n), where n is the number of threads, and in
polynomial time in all the other quantities.

The presentation will proceed as follows.
− After an overview of related work, we rigorously define our program class in

§ 3 and formulate the problem of determining the strongest multithreaded-
Cartesian inductive invariant in the abstract interpretation framework in § 4.

− Next, in § 5, we present a new inference system, which we call TMR, which
constructs n automata such that the ith automaton describes an overapprox-
imation of the set of pairs (shared state, stack word of the ith thread) that
occur in the computations of the multithreaded program.

− Based on the computation result of TMR, we show how to create an automa-
ton that describes the strongest multithreaded-Cartesian inductive invariant.

− Then, we determine the asymptotic worst-case running times of TMR and
the automaton construction under logarithmic cost measure [17].

− In §§ 6–7, we conclude with the proof of correctness of our construction.
We make sure that if some or all of the input quantities (the number of threads,
the number of shared states, and the number of different stack frames) are infi-
nite, TMR still leads to a logically valid (but not necessarily executable) descrip-
tion of the multithreaded-Cartesian abstract interpretation. This opens way to
using constraint solvers in the infinite case. We will impose finiteness restrictions
only when presenting low-level algorithms and computing the running times.

Due to restricted space, most computations and proofs are found in [15].

2 Related Work

There is a large body of work on the analysis of concurrent programs with
recursion; we discuss next only the literature which is, subjectively, most related
to our work.

The roots of multithreaded-Cartesian abstraction date back to the Owicki-
Gries proof method [20], followed by thread-modular reasoning of C. B. Jones
[12], and the Flanagan-Qadeer model-checking method for nonrecursive pro-
grams [10]. The basic versions of these methods (without auxiliary vari-
ables) exhibit the same strength. This strength is precisely characterized by
multithreaded-Cartesian abstract interpretation, which was first discovered by
R. Cousot [9] and later rediscovered in [14,16].

Flanagan and Qadeer [10] introduce also a method for recursive multi-
threaded programs, for which they claim an O(n2) upper bound on the worst-
case running time. Their analysis, which predates TMR, simultaneously com-
putes procedure summaries and distributes the changes of the shared states

116 A. Malkis

between the threads. Where their algorithm is only summarization-based, our
TMR is an explicit automaton construction. Our program model is slightly differ-
ent compared to [10]. First, to simplify our presentation, we remove the concept
of a local store: while in practice there may be different kinds of local stores
(static-storage function-scope variables in the sense of the C programming lan-
guage, the registers of a processor, . . .), every program can be modified to per-
form all thread-local computations on the stack. Second, we allow changing the
shared state when a stack grows or shrinks to permit richer program models;
whenever possible, we also allow infinite-size sets.

An alternative approach to prove polynomial time of multithreaded-
Cartesian abstract interpretation could be to apply Horn clauses as done in [19]
for some other problems. That way would not reveal regularity or connections
to the algorithms of Flanagan and Qadeer; it will also just give a running-time
bound for the unit cost measure, whereas we count more precisely in the loga-
rithmic cost measure. We will not discuss it here.

Outside multithreaded-Cartesian abstract interpretation there are many
other methods for analyzing concurrent recursive programs.

If the interplay between communication and recursion is restricted, decidable
fragments can be identified; we will mention just a few. If only one thread has a
stack and the other threads are finite-state, then one can construct the product of
the threads and model-check a large class of properties [7,24]. Alternatively, one
can allow certain forks and joins but restrict communication only to threads that
do not have ongoing procedure calls [5]. In the synchronous execution model, one
may restrict the threads to perform all the calls synchronously and also perform
all returns synchronously [1]. Alternatively, one may restrict pop operations to
be performed only on the first nonempty stack [3].

Without restrictions on the interplay between communication and recursion,
one may allow non-termination of the analysis [21] or be satisfied with an approx-
imate analysis, which can be sound [4] or complete [13,22] (for every choice of
parameters), but never both. If shared-memory communication is replaced by
rendezvous, verification is still undecidable [23].

The summarization idea behind TMR dates back to the works of Büchi [6].
Since then, it has been developed further in numerous variants for computing
the exact semantics, e.g., for two-way deterministic pushdown automata with
a write-once-read-many store [18], for imperative stack-manipulating programs
with a rich set of operations on the stack [2], and in implementations of partial
evaluators [11].

3 Programs

Now we introduce notation and our model of recursive multithreaded programs.
Let N0 (resp. N+) be the sets of natural numbers with (resp. without) zero.

We write X∗ (resp. X+) for the set of finite (resp. finite nonempty) words over
an alphabet X, ε for the empty word, and |w| for the length of a word w ∈ X∗.

Multithreaded-Cartesian Abstract Interpretation 117

An n-threaded recursive program (from now on, simply a program) is a tuple

(Glob,Frame, init, (�� t, �-t, �� t)t<n)

such that the following conditions hold:
− Glob and Frame are arbitrary sets such that, without loss of generality,

(Glob×Frame) ∩ Glob = ∅. (We think of Glob as the set of shared states,
e.g., the set of valuations of shared variables. We think of Frame as the set of
stack frames, where a stack frame is, e.g., a valuation of procedure-local vari-
ables and the control-flow counter. The necessity of the disjointness condition
will get clear later on.)

− n is an arbitrary ordinal. (For our convenience, we think of n as both the
number of threads and the set of thread identifiers. E.g., we view (Frame+)n

as the set of maps n→Frame+, and, in the finite case, n as {0, 1, . . . , n−1}.
Real programs are usually modeled by finite n or n=ω, and we allow arbitrary
n.)

− init ⊆ Glob×(Frame+)n is such that ∀ (g, l) ∈ init, t∈n : |lt| = 1. (By lt = l(t)
we indicate the tth component of l ∈ (Frame+)n. We think of init as of the
set of initial states. The depth of the stacks of the threads is 1 in every initial
state.)

− For each t∈n, the transition relation of thread t is given by sets �� t ⊆ (Glob×
Frame) × (Glob×Frame×Frame), �-t ⊆ (Glob×Frame)2, and �� t ⊆ (Glob×
Frame×Frame) × (Glob×Frame). (These are sets of push, internal, and pop
transitions of thread t, respectively.)

We denote by Loc=Frame+ the set of local states of each thread; the elements
of Glob×Loc are called thread states. The operational semantics of each thread
t<n is given by the relation �t ⊆ (Glob×Loc)2, which is defined by

(g, w) �t (g′, w′) def⇐⇒
(
(∃ a, b, c ∈ Frame, u ∈ Frame∗ : w = au ∧ w′ = bcu ∧ ((g, a), (g′, b, c)) ∈ �� t)
∨ (∃ a, b ∈ Frame, u ∈ Frame∗ : w = au ∧ w′ = bu ∧ ((g, a), (g′, b)) ∈ �-t)

∨ (∃ a, b, c ∈ Frame, u ∈ Frame∗ : w = abu ∧ w′ = cu ∧ ((g, a, b), (g′, c)) ∈ �� t)
)

for g, g′ ∈ Glob and w,w′ ∈ Loc. Notice that the stacks are always kept
nonempty. Let the set of program states be

State = Glob × Locn .

The operational semantics of the whole program is given by the concrete domain

D = P(State) ,

which is the power set of the set of program states, and the successor map

post : D → D ,
Q �→ {(g′, l′) | ∃ t∈n, (g, l) ∈ Q : (g, lt) �t (g′, l′t) ∧ ∀ s ∈ n\{t} : ls = l′s} .

118 A. Malkis

Broadly speaking, program analyses compute or approximate the so-called col-
lecting semantics, which is the strongest inductive invariant (lfp = least fixpoint)

lfp(λ S ∈ D. init ∪ post(S)) .

This set can become rather complex, loosely speaking, due to subtle interplay
between concurrency and recursion. A nontrivial example is presented by the
following control-flow graph of a two-threaded program over a shared variable g:

Procedures f and h execute in parallel. Roughly speaking, the left thread
announces how it builds its stack by changing g from 0 to 1 or 2, and the
right thread follows the stack operations of the left thread, confirming that it
proceeds by resetting g to 0. Setting g to 3 initiates reduction of the stacks.
For simplification, we assume that the thread transitions between each pair of
named consecutive control flow locations (A to B, A to C, A to D, B to E, C to
E, D to E) are atomic.

We model this program by Glob = {0,1,2,3}, Frame = {A,B,C,D} (E does
not occur in computations), n=2, init = {(0, (A,A))}, �� 0 = {((0,A), (1,A,B)),
((0,A), (2,A,C))}, �-0 = {((0,A), (3,D))}, �� 0 = {((g,y,z), (g,z)) | g∈Glob ∧ y ∈
{B,C,D} ∧ z∈Frame}, �� 1 = {((1,A), (0,A,B)), ((2,A), (0,A,C))}, �-1 = {((3,A),
(0,D))}, and �� 1 = {((g,y,z), (g,z)) | g∈Glob ∧ y ∈ {B,C,D} ∧ z∈Frame}.

One can show that the strongest inductive invariant is

{0} ×

⎛

⎜
⎜
⎝

{(Ay,Ay), (Dy,Dy) | y ∈ {B,C}∗}
∪ {(Dy, z) | y, z ∈ {B,C}+ ∧ z is a suffix of y}
∪ {(y,Dz) | y, z ∈ {B,C}+ ∧ y is a suffix of z}
∪ {(y, z) | y, z ∈ {B,C}+ ∧ (y is a suffix of z ∨ z is a suffix of y)}

⎞

⎟
⎟
⎠

∪ {1} × {(ABy,Ay) | y ∈ {B,C}∗}
∪ {2} × {(ACy,Ay) | y ∈ {B,C}∗}
∪ {3} ×

({(Dy,Ay) | y ∈ {B,C}∗}
∪ {(y,Az) | y, z ∈ {B,C}+ ∧ y is a suffix of z}

)
.

This set, viewed as a formal language over Glob, Frame, and some special symbol
separating the stacks, is not context-free.

Multithreaded-Cartesian Abstract Interpretation 119

Notice that g ∈ {0, 3} is a valid postcondition of the considered program. In
the next section we will see what multithreaded-Cartesian abstract interpretation
is and how it helps proving this postcondition.

4 Multithreaded-Cartesian Abstract Interpretation

Now we are going to describe an approximation operator on the concrete domain
of states of a program, essentially recapitulating the key points of [14]. Loosely
speaking, the definition of the approximation will not depend on the internal
structure of Loc and post.

The multithreaded-Cartesian approximation is the map

ρmc : D → D, S �→ {(g, l) ∈ State | ∀ t∈n∃ l̂∈Locn : (g, l̂) ∈ S ∧ lt = l̂t} ,

which, intuitively, given a set of states, partitions it into blocks according to the
shared state, and approximates each block by its Cartesian hull.

One can show that ρmc is an upper closure operator on (D,⊆).
We define the multithreaded-Cartesian (collecting) semantics as the least

fixpoint
lfp(λ S ∈ D. ρmc(init ∪ post(S))) .

For our running example, for any S ⊆ State we have

ρmc(S) = {(g, (l0, l1)) | (∃ l̄1∈Loc: (g, (l0, l̄1)) ∈ S)∧ (∃ l̄0∈Loc: (g, (l̄0, l1)) ∈ S)}.

The multithreaded-Cartesian semantics of our running example is
⎛

⎜
⎜
⎝

{0} × ({Ax,Dx | x∈{B,C}∗} ∪ {B,C}+)
∪ {1} × {ABx | x ∈ {B,C}∗}
∪ {2} × {ACx | x ∈ {B,C}∗}
∪ {3} × ({Dx | x ∈ {B,C}∗} ∪ {B,C}+)

⎞

⎟
⎟
⎠×({Ax,Dx | x∈{B,C}∗}∪{B,C}+) .

This set, viewed as a formal language, is regular; a corresponding regular expres-
sion is

(
0(A|B|C|D)(B|C)∗ | 1AB(B|C)∗ | 2AC(B|C)∗ | 3(B|C|D)(B|C)∗) †

(A|B|C|D)(B|C)∗, where †/∈Frame is a fresh symbol separating the local parts.
Notice that the postcondition g ∈ {0, 3} holds also in this abstract semantics.

5 Model-Checking Recursive Multithreaded Programs

Now we develop an efficient algorithm to compute the input program’s
multithreaded-Cartesian semantics. First we show the inference system TMR,
then we show how its output is interpreted as multithreaded-Cartesian seman-
tics, and finally we turn to computational issues.

120 A. Malkis

5.1 Inference System TMR

Given an n-threaded program as described in § 3, our algorithm generates n
automata that describe an overapproximation of the set of stack words of the
threads that occur in computations.

Fix some “fresh” element f /∈ Glob ∪̇ (Glob×Frame). Let

V = Glob ∪̇ {(g′, b) | ∃ g∈Glob, a,c ∈ Frame, t∈n : ((g, a), (g′, b, c)) ∈ �� t} ∪̇ {f} .

We now define binary relations Gt ⊆ Glob2 and ternary relations −→
t

⊆
V ×Frame×V for all t∈n by the following inference system.

(tmr init)
(g, l) ∈ init

g
lt−→
t

f
t∈n (tmr step)

((g, a), (g′, b)) ∈ �-t g
a−→
t

v

g′ b−→
t

v (g, g′) ∈ Gt

t∈n

(tmr push)
g

a−→
t

v ((g, a), (g′, b, c)) ∈ �� t

g′ b−→
t

(g′, b) c−→
t

v (g, g′) ∈ Gt

(tmr pop)
g

a−→
t

v
b−→
t

v̄ ((g, a, b), (g′, c)) ∈ �� t

g′ c−→
t

v̄ (g, g′) ∈ Gt

(tmr env)
(g, g′) ∈ Gt g

a−→s v

g′ a−→s v
t �=s are in n

tmr init gathers stack contents of the initial states. tmr step, tmr push,
and tmr pop create an automaton describing thread states that occur in com-
putations of the threads in isolation; the stacks are obtained from the upper
labels of certain walks. Moreover, the three rules collect information about how
the shared state is altered. The rule tmr env transfers shared-state changes
between the threads.

For our program from page 118, the automata constructed by TMR are in
Fig. 1.

5.2 Interpretation of the Output of TMR

Now we define the set of states that the inference system represents.
For that, we extend → to words of stack frames in a standard way. For each

t∈n, consider the quaternary relation −→
t

⊆ V ×Frame∗×N0×V (slightly abusing
notation, we employ the same symbol as for the ternary relation from § 5.1)
defined by the following inference system:

v
ε−→
t
0 v

i∈N0 a∈Frame y∈Frame∗ v
a−→
t

v̂
y−→
t

i v̄

v
ay−→
t

i+1 v̄

For each t∈n, we define −→
t

∗ ⊆ V ×Frame∗×V by −→
t

∗ =
⋃

i∈N0
−→
t

i and Lg,t =
{w | g

w−→
t

∗ f} (g∈Glob).

Multithreaded-Cartesian Abstract Interpretation 121

Fig. 1. Automata constructed by TMR for our example. Each arrow on the left carries
the lower index 0; each arrow on the right carries the lower index 1.

Informally, a walk g
w−→
t

∗ f means that the state (g, w) of thread t occurrs
in the approximate semantics, and g

w−→
t

∗ (g′, b) means that a procedure call
starting with thread state (g′, b) can reach (g, w) in thread t in the approximate
semantics.

The inference system TMR represents the set
⋃

g∈Glob

{g} ×
∏

t∈n

Lg,t . (1)

5.3 Computing Multithreaded-Cartesian Semantics

For actual computations, which we discuss now, let us assume finite n, Glob,
and Frame till the end of § 5.3.

If we are just interested in checking non-reachability of thread states, exe-
cuting TMR suffices: if a local state l is not in Lg,t, then the thread state (g, l)
of the tth thread does not occur in computations of the program (g∈Glob,
l∈Loc, t∈n). If we are interested in checking non-reachability of single pro-
gram states, executing TMR also suffices: for (g, l̄) ∈ State, if (g, l̄t) /∈ Lg,t

for some t∈n, then the state (g, l) is unreachable from the initial ones. Exe-
cuting TMR on a RAM with logarithmic-cost measure can be achieved in
O(

n(|init| + |Glob|4|Frame|5)(L(|init|) + L(n) + L(|Glob|) + L(|Frame|))) time,
where L(x) is the length of the binary representation of x∈N0. With rigorous
definitions of the input the running time is O((input length)2L(input length)).

If we wish to prove more general invariants, we construct a finite automaton
for (1) as follows. First, we make the state spaces of the automata accepting
Lg,t disjoint ((g, t) ∈ Glob×Loc), obtaining automata Ãg,t ((g, t) ∈ Glob×Loc).
If we wish to obtain a deterministic automaton at the end, we additionally
determinize all Ãg,t ((g, t) ∈ Glob×Loc). Second, for each g∈Glob, chain Ãg,t

for t<n to accept exactly the words of the form w0† . . . †wn−1 over Frame∪̇{†}
(where †/∈Frame is a fresh symbol separating the local parts) such that (wt)t<n ∈∏

t<n Lg,t. Third, introduce a single initial state that dispatches different g to

122 A. Malkis

Ãg,0 (g∈Glob). Thus, (1) can be viewed as a regular language. The nondeter-
ministic, ε-free automaton can be constructed (including executing TMR) in the
same O(

n(|init| + |Glob|4|Frame|5)(L(|init|) + L(n) + L(|Glob|) + L(|Frame|)))
asymptotic time.

For our running example, we transform the left automaton from Fig. 1 into
four automata Ã0,0–Ã3,0 accepting L0,0–L3,0 and the right automaton into four
automata Ã0,1–Ã3,1 accepting L0,1–L3,1. We combine them into a nondetermin-
istic finite automaton for (1) as follows (only the reachable part is shown):

In this graphical representation, the disjoint copies carry the same node labels,
and the final states of Ã0,1–Ã3,1 have been merged to a unique accepting state.
(Certainly, much more minimization is possible, mimicking sharing in BDDs—
which is an interesting topic by itself but not our goal here.)

Theorem 1. The inference system TMR is equivalent to multithreaded Carte-
sian abstract interpretation. Formally:

lfp(λ S ∈ D. ρmc(init ∪ post(S))) =
⋃

g∈Glob

{g} ×
∏

t∈n

Lg,t .

Indeed, in our running example, the multithreaded-Cartesian collecting seman-
tics corresponds to the language accepted by the above automaton.

The following §§ 6–7 will be devoted to proving Theorem 1.

Multithreaded-Cartesian Abstract Interpretation 123

6 Model-Checking General Multithreaded Programs

As an intermediate step in proving equivalence of multithreaded Cartesian
abstract interpretation and TMR we are going to show another, simpler
inference-system for proving properties of multithreaded programs. This infer-
ence system (up to names of variables and sets) is due to Flanagan and Qadeer
[10]. Its definition does not depend on the internal structure of Loc and �t

(t∈n).
Let us define sets R̃t ⊆ Glob×Loc and G̃t ⊆ Glob2 for all t∈n by the following

inference system FQ:

(fq init)
(g, l) ∈ init

(g, lt) ∈ R̃t

t∈n (fq step)
(g, l) ∈ R̃t (g, l) �t (g′, l′)

(g′, l′) ∈ R̃t (g, g′) ∈ G̃t

t∈n

(fq env)
(g, g′) ∈ G̃t (g, l) ∈ R̃s

(g′, l) ∈ R̃s

s�=t are in n

For finite-state programs, the families R̃ and G̃ can be generated in polynomial
time. The algorithm is sound independently of finiteness, e.g., also for recursive
programs.

One can show, roughly speaking, that multithreaded-Cartesian abstract
interpreration is equivalent to FQ. We will use FQ intermediately, showing FQ
≈ TMR.

7 Proof of Theorem 1

We show a semi-formal, high-level proof outline; rigorous details are found in
[15].

We start by defining

Rt = {(g, w) ∈ Glob×Loc | g
w−→
t

∗ f} (t ∈ n).

Informally, the set Rt contains exactly the thread states of the thread t in the
invariant denoted by TMR (t<n).

Now let G = (Gt)t∈n ∈ (P(Glob2))n and R = (Rt)t∈n ∈ (P(Glob×Loc))n.
For our running example,

R0 =

({0} × ({Ax,Dx | x∈{B,C}∗} ∪ {B,C}+) ∪ {1} × {ABx | x∈{B,C}∗}
∪ {3} × ({Dx | x∈{B,C}∗} ∪ {B,C}+) ∪ {2} × {ACx | x∈{B,C}∗}

)
= R̃0

G0 = {(0, 1), (0, 2), (0, 3), (0, 0), (3, 3)} = G̃0

R1 = {0, 1, 2, 3} × ({Ax,Dx | x∈{B,C}∗} ∪ {B,C}+) = R̃1

G1 = {(1, 0), (2, 0), (3, 0), (0, 0), (1, 1), (2, 2), (3, 3)} = G̃1

The equality between the sets generated by TMR and the sets generated by FQ
is striking. We will show that it is not by coincidence, essentially proving

(result of FQ =) (R̃, G̃) = (R,G) (= result of TMR). (2)

124 A. Malkis

This equality will directly imply Thm. 1.
So let � be the componentwise partial order on (P(Glob×Loc))n ×

(P(Glob2))n:

(R̂, Ĝ) � (R̂′, Ĝ′) def⇐⇒ ∀ t<n : R̂t ⊆R̂′
t ∧ Ĝt ⊆Ĝ′

t .

Intuitively, we prove (2) by separating the equality into two componentwise
inclusions: soundness (if a safety property holds according to TMR, then the
strongest multithreaded-Cartesian invariant implies this property) and complete-
ness (every safety property implied by the strongest multithreaded-Cartesian
invariant can be proven by TMR).

The soundness proof will be conceptually short and the completeness proof a
bit more intricate, building on ideas from post-saturation of pushdown systems.

7.1 Soundness: Left Componentwise Inclusion in (2)

The crucial step is showing that the result of TMR is closed under FQ:

(result of FQ =) (R̃, G̃) � (R,G) (= result of TMR) .

More precisely, the proof goes by applying FQ once to (R,G), thereby obtaining
(Ř, Ǧ), and showing (Ř, Ǧ) � (R,G) componentwise. Internally, it amounts to
checking that elements in (Ř, Ǧ) produced by FQ can also be produced by TMR.

7.2 Completeness: Right Componentswise Inclusion in (2)

For each thread t we define its operational semantics with FQ-context as the
transition relation of thread t in which the thread can additionally change the
shared state according to the guarantees defined by FQ:

˜G�t := �t ∪ {((g, w), (g′, w)) | w ∈ Loc ∧ ∃ s ∈ n\{t} : (g, g′) ∈ G̃s} (t < n) .

Let
˜G�∗

t , the bigstep operational semantics with FQ-context, be the reflexive-

transitive closure of
˜G�t on the set of thread states (t < n).

Now we examine the system TMR. We view the relation (edge set) → defined
by TMR as an element of (P(V ×Frame×V))n (where v

a−→
t

v′ means (v, a, v′) ∈
→(t)).

One can obtain G and → inductively by generating iterates ((−→
t i)t<n,

(Gt,i)t<n) of the derivation operator of TMR for i∈N0 (the right index i meaning
the iterate number). More precisely, we start with empty sets Gt,0 and −→

t 0 for
all t<n and obtain Gt,i+1 and −→

t i+1 for all t<n by applying the rules of TMR
exactly once to Gt,i and −→

t i for all t<n. The described sequence of iterates is
ascending, and each element derived by TMR has a derivation tree of some finite
depth i:

−→
t

=
⋃

i∈N0

−→
t i and Gt =

⋃

i∈N0

Gt,i (t < n).

Multithreaded-Cartesian Abstract Interpretation 125

Sloppily speaking, the derivation operator of TMR produces graphs on V ,
and larger iterates contain larger graphs. Given a walk in an edge set −→

t i, it in
general has some “new” edges not present in the prior iterate i−1. Different walks
connecting the same pair of nodes and carrying the same word label may have
a different number of new edges. We let tr(t, i, v, v̄, w) be the minimal number
of new edges in iterate i in walks labeled by w from v to v̄ in the edge set −→

t i.
After these preparations, we create a connection between FQ and TMR.

Informally, we show: (i) stack words accepted by the automata created by TMR,
together with the corresponding shared state, lie in the sets defined by FQ;
(ii) prefixes of such words correspond to ongoing procedure calls as specified by
the bigstep operational semantics with FQ-context; (iii) the shared state changes
defined by TMR are also defined by FQ.

These claims are proven together by nested induction on the iterate num-
ber (outer induction) and the number of new edges tr(. . .) (inner induction).
Formally, we show:

Lemma 2. For all i ∈ N0 and all j ∈ N0 we have:
(i) ∀ g∈Glob, t∈n,w∈Frame∗ : tr(t, i, g, f, w) = j ⇒ (g, w) ∈ R̃t,
(ii) ∀g,ḡ∈Glob, t∈n, b∈Frame, w∈Frame∗ :

tr(t, i, g, (ḡ,b), w)=j ⇒ (ḡ,b)
˜G�∗

t (g,w),
(iii) ∀ t ∈ n : Gt,i ⊆ G̃t.

The formal proof proceeds by double induction on (i, j).
Parts (i) and (iii) directly imply that the result of FQ is closed under TMR:

(result of FQ =) (R̃, G̃) � (R,G) (= result of TMR) .

7.3 Combining the Left and Right Inclusions

FQ describes the abstract semantics exactly, whence we obtain:

lfp(λ S ∈ D. ρmc(init ∪ post(S))) =
⋃

g∈Glob

{g} ×
∏

t∈n

Lg,t ,

where “⊆” follows from § 7.1, and “⊇” follows from § 7.2.

8 Conclusion

We considered the multithreaded-Cartesian approximation, which is a succinct
description of the accuracy of the thread-modular approaches of Owicki and
Gries, C. Jones, and Flanagan and Qadeer (without auxiliary variables). We
applied it to multithreaded programs with recursion, presenting an algorithm
for discovering a representation of the multithreaded-Cartesian collecting seman-
tics. The algorithm creates a finite automaton whose language coincides with the
multithreaded-Cartesian collecting semantics. In particular, the involved induc-
tive invariant is shown to be a regular language. The algorithm uses ideas from

126 A. Malkis

a seminal algorithm of Flanagan and Qadeer and works in time O(n log2 n) in
the number of threads n and polynomial in other quantities. We remark that,
in contrast, the model-checking problem (without abstraction) is known to be
undecidable.

While multithreaded programs with recursion occur rarely in practice, the
models may contain both concurrency and recursion [8]. For example, in cer-
tain cases it is possible to model integer variables as stacks. But even for multi-
threaded programs whose procedures are nonrecursive, our algorithm TMR offers
compact representation of stack contents, which depends only on the number of
threads as well as on the sizes of shared states and frames, but not on the stack
depth. A useful consequence of equivalence between FQ and TMR is that one
may choose inlining procedures or creating an automaton depending on the costs
of constructing and running an analysis, well knowing that its precision will not
change. This opens way to potential time and space savings without changing
the strength of an analysis.

Acknowledgment. Besides Neil Deaton Jones, I acknowledge comments and sugges-

tions from Laurent Mauborgne and Xiuna Zhu. Part of this work was executed while at

IMDEA Software, Spain. I also acknowledge the financial support of the projects of the

German Federal Ministry for Education and Research, IDs 01IS11035 and 01IS13020.

Furthermore, I acknowledge additional typesetting support of Springer-Verlag.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory
of Computing, pp. 202–211. ACM (2004)

2. Andersen, N., Jones, N.D.: Generalizing Cook’s transformation to imperative stack
programs. In: Karhumäki, J., Rozenberg, G., Maurer, H.A. (eds.) Results and
Trends in Theoretical Computer Science. LNCS, vol. 812, pp. 1–18. Springer, Hei-
delberg (1994)

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of Multi-pushdown Automata Is
2ETIME-Complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 121–133. Springer, Heidelberg (2008)

4. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. International Journal of Foundations of
Computer Science 14(4), 551–582 (2003)

5. Bozzelli, L., La Torre, S., Peron, A.: Verification of well-formed communicating
recursive state machines. Theoretical Computer Science 203(2-3), 382–405 (2008)

6. Büchi, J.R.: Regular canonical systems. Archiv für mathematische Logik und
Grundlagenforschung 6, 91–111 (1962/1963)

7. Burkart, O., Steffen, B.: Pushdown processes: parallel composition and model
checking. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp.
98–113. Springer, Heidelberg (1994)

8. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying Concurrent Message-
Passing C Programs with Recursive Calls. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

Multithreaded-Cartesian Abstract Interpretation 127

9. Cousot, R.: Fondements des méthodes de preuve d’invariance et de fatalité de
programmes paralléles. Ph.D. thesis, Institut national polytechnique de Lorraine,
pp. 4–118(4–119), pp. 4–120, 1985. §4.3.2.4.3

10. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

11. Hansen, T.A., Nikolajsen, T., Träff, J.L., Jones, N.D.: Experiments with imple-
mentations of two theoretical constructions. In: Meyer, A.R., Taitslin, M.A. (eds.)
Logic at Botik 1989. LNCS, vol. 363, pp. 119–133. Springer, Heidelberg (1989)

12. Jones, C. B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

13. La Torre, S., Napoli, M., Parlato, G.: A Unifying Approach for Multistack Push-
down Automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014, Part I. LNCS, vol. 8634, pp. 377–389. Springer, Heidelberg (2014)

14. Malkis, A.: Cartesian abstraction and verification of multithreaded programs.
Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (2010)

15. Malkis, A.: Multithreaded-Cartesian abstract interpretation of multithreaded
recursive programsis polynomial. Technical report (2015). http://www4.in.tum.
de/malkis/Malkis-MultCartAbstIntOfMultRecProgIsPoly techrep.pdf

16. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-Modular Verification Is Carte-
sian Abstract Interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)
ICTAC 2006. LNCS, vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

17. Mehlhorn, K.: Data structures and algorithms 1: sorting and searching. In: EATCS
Monographs in Theoretical Computer Science, vol. 1. Springer (1984)

18. Mogensen, T.Æ.: WORM-2DPDAs: An extension to 2DPDAs that can be simu-
lated in linear time. Inf. Process. Lett. 52(1), 15–22 (1994)

19. Nielson, F., Nielson, R.H., Seidl, H.: Normalizable Horn Clauses, Strongly Recog-
nizable Relations, and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002.
LNCS, vol. 2477, pp. 20–35. Springer, Heidelberg (2002)

20. Owicki, S.S.: Axiomatic proof techniques for parallel programs. Ph.D. thesis, Cor-
nell University, department of computer science, TR 75–251, July 1975

21. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-
grams. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 245–255. ACM, New York (2004)

22. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

23. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

24. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis, Technische Univer-
sität München, June 2002

http://www4.in.tum.de/ malkis/ Malkis-MultCartAbstIntOfMultRecProgIsPoly_techrep.pdf
http://www4.in.tum.de/ malkis/ Malkis-MultCartAbstIntOfMultRecProgIsPoly_techrep.pdf

Over-Approximating Terms Reachable
by Context-Sensitive Rewriting

Nirina Andrianarivelo and Pierre Réty(B)

LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans Cedex 2, France
{Nirina.Andrianarivelo,Pierre.Rety}@univ-orleans.fr

Abstract. For any left-linear context-sensitive term rewrite system and
any regular language of ground terms I, we build a finite tree automa-
ton that recognizes a superset of the descendants of I, i.e. of the terms
reachable from I by context-sensitive rewriting.

1 Introduction

There is an increasing need for reliable methods to check security protocols and
computer programs (see [4,5] for a survey). Such verification problems can often
be encoded with rewrite rules, and reduced to reachability problems [3]. Given
a set of rewrite rules R, a set of ground terms I, and a set of undesirable ground
terms BAD, it consists in computing the set (denoted R∗(I)) of ground terms
that are reachable from I by R, and checking that R∗(I) ∩ BAD = ∅.
Example 1. Let R = {f(x) → f(f(x)), a → b, c → a}, I = {f(a)}, BAD = {c}.
Then R∗(I) = {f+(a), f+(b)}, where f+ denotes several occurrences of f (at
least one). Here the elements of BAD are not reachable, i.e. R∗(I) ∩ BAD = ∅.
Several methods have been proposed to compute R∗(I) exactly, or to over-
approximate it (see [11] for a survey). However, ordinary term rewriting is not
always powerful enough. Indeed, the operational semantics of functional pro-
grams can be expressed using Context-Sensitive Term Rewrite Systems (CS-
TRS), as described in [9,16]. In this framework, a set of argument numbers
μ(f) is associated to each function symbol f , which indicates the arguments
of f allowed to be reduced by rewriting. For instance, consider Example 1
again and let μ(f) = ∅. In this case, for each term of the form t = f(. . .), it
is forbidden to rewrite the strict subterms of t. Thus, using context-sensitive
rewriting, R∗

μ(I) = {f+(a)}. Now consider that the set of undesirable terms is
BAD′ = {f+(b)}, then R∗

μ(I) ∩ BAD′ = ∅ whereas R∗(I) ∩ BAD′ �= ∅.
In this paper, we compute an over-approximation (say App) of R∗

μ(I), using a
finite tree automaton (i.e. a regular language), assuming that R is left-linear and I
is regular. Thus, if App ∩BAD = ∅, we are sure that R∗

μ(I) ∩BAD = ∅. Our work
is both an extension of [15], where R∗

μ(I) is computed in an exact way assuming
stronger restrictions (R is linear and right-shallow1), and an extension of the com-
pletion of tree automata [10], in order to takeμ into account and to avoid computing
descendants forbidden by μ (as much as possible).
1 I.e. in the rewrite rule right-hand-sides, every variable occurs at depth at most 1.

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 128–139, 2015.
DOI: 10.1007/978-3-319-24537-9 12

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 129

Let us outline the main idea, using Example 1 again. Roughly2:
1. Our starting point is composed of the tree automaton

A = (Σ,Q,Qf ,Δ) s.t. Σ = {f, a, b, c}, Q = {qa, q} (states), Qf = {q} (final
state), Δ = {a → qa, f(qa) → q} (transitions), which recognizes I = {f(a)},
and the rewrite system R = {f(x) → f(f(x)), a → b, c → a}.

2. Initialization. We transform Δ by using the fact that μ(f) = ∅. For this,
we mark positions forbidden by μ, using a a prime mark (priming). A prime
means that no rewrite step should be applied at this position. No prime
means that a rewrite step (if any) is allowed. Thus we replace the transition
f(qa) → q by f(q′

a) → q, and add the transition a → q′
a so that the language

recognized by the automaton is unchanged.
Now Δ = {a → qa, a → q′

a, f(q′
a) → q}, and we create Q′ = {q′

a}.
3. Completion. To get descendants, we compute (so-called) critical pairs

between transitions u → s ∈ Δ and rewrite rules of R, only if s ∈ Q. If
s ∈ Q′, i.e. s has a prime, no critical pair is computed since no rewrite step
is allowed at this position.
Computing a critical pair between a → qa and a → b generates the transition
b → qa, which is added into Δ.

4. Computing a critical pair between f(q′
a) → q and f(x) → f(f(x)) generates

the transition f(f(q′
a)) → q. However, f(f(q′

a)) is not shallow. Then we
normalize3 this transition into f(q′

1) → q, f(q′
a) → q′

1, which are added into
Δ. The new state q′

1 has a prime since it occurs at a position forbidden by μ.
Now the automaton also recognizes f(f(a)), and does not recognize f(f(b)),
which is not a context-sensitive descendant.

5. There are some more critical pairs, which add some more transitions into Δ.
Finally, the completion process stops with Δ = {a → qa, a → q′

a, f(q′
a) →

q, b → qa, f(q′
1) → q, f(q′

a) → q′
1, f(q′

1) → q′
1} Now the current automaton

recognizes {f+(a)}, i.e.R∗
μ(I), and does not recognize the elements of {f+(b)},

which are not context-sensitive descendants.

The paper is organized as follows. The formal preliminary notions are given in
Section 2. Our method for over-approximating context-sensitive descendants is
detailed in Section 3, and full examples are given in Section 4. Then Section 5
speaks about related work, and some ideas for further work are discussed in
Section 6. All proofs are in [1].

2 Preliminaries

Consider a finite ranked alphabet Σ and a set of variables Var. Each symbol f ∈ Σ
has a unique arity, denoted by ar(f). The notions of first-order term, position and

2 Some unnecessary transitions of the current automaton are missing.
3 It consists in flattening the left-hand-side of the transition by using intermediate
states.

130 N. Andrianarivelo and P. Réty

substitution are defined as usual. Given σ and σ′ two substitutions, σ ◦ σ′ denotes
the substitution such that for any variable x, σ ◦ σ′(x) = σ(σ′(x)). TΣ denotes
the set of ground terms (without variables) over Σ. For a term t, Var(t) is the set
of variables of t, Pos(t) is the set of positions of t, and ε is the root position. For
p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at position p in t, and t|p is
the subterm of t at position p. For p, p′ ∈ Pos(t), p < p′ means that p occurs in t
strictly above p′. The term t is linear if each variable of t occurs only once in t. The
term t[t′]p is obtained from t by replacing the subterm at position p by t′.

A rewrite rule is an oriented pair of terms, written l → r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite set of
rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite
relation →R is defined as follows: t →R t′ if there exist a non-variable position
p ∈ Pos(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ = t[θ(r)]p
(also denoted t →p

R t′). →∗
R denotes the reflexive-transitive closure of →R. t′

is a descendant of t if t →∗
R t′. If I is a set of ground terms, R∗(I) denotes the

set of descendants of elements of I. The rewrite rule l → r is left (resp. right)
linear if l (resp. r) is linear. R is left (resp. right) linear if all its rewrite rules
are left (resp. right) linear. R is linear if R is both left and right linear. l → r is
right-shallow if r is shallow, i.e. every variable of r occurs at depth at most 1.

A context-sensitive rewrite relation is a sub-relation of the ordinary rewrite
relation in which rewritable positions are indicated by specifying arguments of
function symbols. A mapping μ : Σ → P (IN) is said to be a replacement map (or
Σ-map) if μ(f) ⊆ {1, ..., ar(f)} for all f ∈ Σ. A context-sensitive term rewriting
system (CS-TRS) is a pair R = (R,μ) composed of a TRS and a replacement
map. The set of μ-replacing positions4 Posμ(t) (⊆ Pos(t)) is recursively defined:
Posμ(t) = {ε} if t is a constant or a variable, otherwise Posμ(f(t1, . . . , tn)) =
{ε} ∪ {i.p | i ∈ μ(f), p ∈ Posμ(ti)}. The rewrite relation induced by a CS-TRS
R is defined: t ↪→R t′ if t →p

R t′ for some p ∈ Posμ(t). The set of descendants of
I by context-rewriting according to the CS-TRS R = (R,μ) is denoted R∗

μ(I).
A (bottom-up) finite tree automaton is a quadruple A = (Σ,Q,Qf ,Δ) where

Q is the set of states, Qf ⊆ Q is the set of final states, and Δ is a set of transitions
of the form t → q where t ∈ TΣ∪Q and q ∈ Q. A transition is normalized if it is
of the form f(q1, . . . , qn) → q where f ∈ Σ and q1, . . . , qn, q ∈ Q, or of the form
q1 → q (empty transition, also called epsilon transition). A is normalized if all
transitions in Δ are normalized. Sets of states will be denoted by letters Q,S,D,
and states by q, s, d.

The rewrite relation induced by Δ is denoted by →Δ or →A. A ground term
t is recognized by A into q if t →∗

Δ q. Let L(A, q) = {t ∈ TΣ | t →∗
Δ q}. The

language recognized by A is L(A) = ∪q∈Qf
L(A, q). A set I of ground terms is

regular if there exists a finite automaton A s.t. I = L(A). A Q-substitution σ is
a substitution s.t. ∀x ∈ Dom(σ), σ(x) ∈ Q.

4 Also called positions allowed by µ.

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 131

3 Computing Context-Sensitive Descendants

3.1 Closure Under Context-Sensitive Rewriting

The main idea is: given a context-sensitive rewrite system (R,μ), we consider a
set of states Q to recognize subterms at positions allowed by μ (i.e. rewritable
positions), and another set Q′ for those forbidden by μ. To compute context-
sensitive descendants, rewrite steps will be applied to (sub)-terms recognized
into states of Q, and not on those recognized into states of Q′.

Definition 1. A context-sensitive automaton A = (Σ,Q ∪ Q′, Qf ,Δ, rm′) is
composed of a tree automaton and a mapping rm′ such that Q∩Q′ = ∅, Qf ⊆ Q,
and rm′ : Q′ → Q is an injective mapping. rm′ stands for ‘remove primes’.

We will often use q, q1, q2, . . . for elements of Q, and q′, q′
1, q

′
2, . . . for elements

Q′, and we will write rm′(q′) = q and rm′(q′
i) = qi.

Definition 2. We extend rm′ to terms, so that rm′ : TΣ∪Q∪Q′ → TΣ∪Q∪Q′ , by:
- rm′(q) = q if q ∈ Q,

- and rm′(f(t′1, . . . , t
′
n)) = f(t1, . . . , tn) such that ∀i

ti = rm′(t′i) if i ∈ μ(f)
ti = t′i otherwise

Note that rm′ does not remove all primes. Actually, rm′ removes primes (if
any) from states occurring at positions allowed by μ, so that rewrite steps are
computed. For example, if μ(f) = {1}, then rm′(f(q′

1, q
′
2)) = f(q1, q′

2).
For computing context-sensitive descendants, a context-sensitive automaton

should satisfy a compatibility property (with μ).

Definition 3. Let A = (Σ,Q ∪ Q′, Qf ,Δ, rm′) be a context-sensitive automa-
ton. A is μ-compatible if ∀(t → s) ∈ Δ, (rm′(t) → rm′(s)) ∈ Δ.

Example 2. let Q = {qa, qf}, Q′ = {q′
a}, Qf = {qf}, Δ = {a → q′

a, f(q′
a) →

qf}, and assume that rm′(q′
a) = qa and μ(f) = {1}. This automaton is not

μ-compatible because a → qa and f(qa) → qf are missing in Δ.

Lemma 1. If A is μ-compatible,
∀t ∈ TΣ∪Q∪Q′ ,∀s ∈ Q ∪ Q′, (t →∗

Δ s =⇒ rm′(t) →∗
Δ rm′(s))

The notion of critical pair is at the heart of the technique. A critical pair is
a way to detect a possible rewrite step issued from a term t ∈ L(A, q), by a
rewrite rule l → r. To check that this rewrite step is allowed by μ, we suppose
that q ∈ Q, i.e. q �∈ Q′. A convergent critical pair means that the rewrite step
is already handled i.e. if t →l→r s then s ∈ L(A, q). Consequently, the language
of a normalized automaton having only convergent critical pairs is closed under
rewriting.

Definition 4. Let l → r be a rewrite rule and σ be a (Q∪Q′)-substitution such
that σl →∗

Δ q and q ∈ Q. Then (rm′(σr), q) is called critical-pair (CP for short).
The critical pair is said convergent if rm′(σr) →∗

Δ q.

132 N. Andrianarivelo and P. Réty

Example 3. Consider Example 2 again, and the rewrite rule f(x) → g(x) with
μ(g) = {1}. Then (g(qa), qf) is a critical pair, which is not convergent. Note that
L(A) is not closed by context-sensitive rewriting since f(a) ∈ L(A) whereas
g(a) �∈ L(A).

The use of rm′ in Definition 4 is crucial if a position forbidden by μ becomes
allowed after a rewrite step. For instance, consider the rewrite system
{h(x) → i(x), c → d} with μ(h) = ∅ and μ(i) = {1}. Then h(c) → i(c) → i(d)
whereas ¬(h(c) → h(d)). So, within h(c), c should be recognized into a state of
Q′ (say q′

c), whereas within i(c), c should be recognized into a state of Q (say
qc). The migration of q′

c into qc is achieved thanks to rm′.
To get closure under context-sensitive rewriting, the automaton should be μ-

compatible to take μ into account, and normalized. Indeed, if it is not normalized,
we may have for example h(σl) →∗

Δ q whereas ¬(∃q1 ∈ Q, σl →∗
Δ q1), i.e. there

is no critical pair to take the rewrite step by l → r into account.

Theorem 1. Let (R,μ) be a left-linear context-sensitive rewrite system, and A
be a μ-compatible normalized automaton.
If all critical pairs are convergent, then L(A) is closed by context-sensitive rewrit-
ing, i.e. (t ∈ L(A) ∧ t ↪→∗

(R,μ) t′) =⇒ t′ ∈ L(A).

Example 4. Consider Example 2 again, and the rewrite rule a → b. All critical
pairs are convergent since there are no critical pairs. However f(a) ∈ L(A) and
f(a) ↪→(R,μ) f(b), whereas f(b) �∈ L(A). This comes from the fact that A is not
μ-compatible.
Now, if Δ is replaced by Δ′ = {a → q′

a, a → qa, b → qa, f(qa) → qf}, the
automaton is μ-compatible. Considering the rewrite rule a → b, there is one
critical pair : (b, qa), which is convergent. Thus f(a) ∈ L(A), f(a) ↪→(R,μ) f(b),
and f(b) ∈ L(A).

3.2 Normalization

Consider a non-convergent critical pair (t, q). If we add the transition t → q into
Δ, the critical pair becomes convergent. Unfortunately, the transition t → q is
not necessarily normalized.

Example 5. Consider R = {f(x) → g(h(x)), a → b}, μ(f) = {1}, μ(g) = ∅,
μ(h) = {1}, and an automaton defined by Q = {qa, qf}, Qf = {qf}, and Δ =
{a → qa, f(qa) → qf}. Note that L(A) = {f(a)}. From the transition f(qa) → qf

and the rewrite rule f(x) → g(h(x)), we get the critical pair (g(h(qa)), qf). The
corresponding transition g(h(qa)) → qf is not normalized.

To get closure under rewriting, all transitions should be normalized. We give an
algorithm to transform a pair (t, s) into normalized transitions. Note that if t is
a state, the algorithm will return empty transitions (which are normalized).

Input : a pair (t, s) s.t t ∈ TΣ∪Q∪Q′ and s ∈ Q ∪ Q′

Output : a set of normalized transitions

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 133

function NormA(t, s)

1. If the transition t → s is normalized, return {t → s} ∪ {rm′(t) → rm′(s)}
2. else let t = f(t1, . . . , tn), and J = {j ∈ {1, . . . , n} | tj �∈ Q ∪ Q′}
2.1. for each i ∈ {1, . . . , n}, let si be a state defined by
2.1.1. if ti ∈ Q ∪ Q′ then si = ti
2.1.2. else

i) if s ∈ Q and i ∈ μ(f)
ii) then either choose si ∈ Q, or si is a new state and add si to Q
iii) else either choose si ∈ Q′, or si (and qi) are new states s.t.

rm′(si) = qi and add si to Q′ (and qi to Q)
2.2. return
{f(s1, . . . , sn) → s}∪{rm′(f(s1, . . . , sn)) → rm′(s))}∪{∪j∈JNormA(tj , sj)}

In the previous algorithm, whenever a transition is generated, a transition
obtained by applying rm′ on both sides is also generated. This is for preserving
the μ-compatibility of the automaton. On the other hand, the non-determinism
of the algorithm (Items ii and iii) is ”don’t care”, i.e. only one choice has to
be achieved. For any choice, the normalization algorithm terminates. However,
introducing new states may create new critical pairs, whose normalization may
also create new states and new critical pairs, and the global completion pro-
cess may not terminate. This is why choosing si among the existing states is
sometimes necessary to make completion terminate. But it may lead to a strict
over-approximation of the descendants.

Example 6. Consider Example 5 again with the critical pair (g(h(qa)), qf). Recall
that μ(g) = ∅, μ(h) = {1}.
Running NormA(g(h(qa)), qf) goes through the case iii), and two new states q′

1,
q1 are created s.t. rm′(q′

1) = q1. Moreover q′
1 is added to Q′ whereas q1 is added

to Q. Then NormA(g(h(qa)), qf) returns (note that rm′(g(q′
1)) = g(q′

1)):

{g(q′
1) → qf} ∪ {g(q′

1) → qf} ∪ NormA(h(qa), q′
1)

Since the transition h(qa) → q′
1 is already normalized, NormA(h(qa), q′

1) returns:

{h(qa) → q′
1} ∪ {h(qa) → q1}

Finally we get the set of transitions {g(q′
1) → qf , h(qa) → q′

1, h(qa) → q1}.
Lemma 2. t →∗

NormA(t,s) s, i.e. the pair (t, s) is convergent.

3.3 Initialization

As in [15],wefirst introduce non-final states and transitions to recognize the ground
subterms of the rewrite rule right-hand-sides. For a term t, let PosG(t) = {p ∈
Pos(t) | p �= ε ∧ V ar(t|p) = ∅}. Let PosGout(t) be the outermost elements of
PosG(t), i.e. PosGout(t) = {p ∈ PosG(t) | ¬(∃p′ ∈ PosG(t), p′ < p)}.

134 N. Andrianarivelo and P. Réty

Given (R,μ), we introduce the set of states QR = {qr,p | l → r ∈ R ∧
p ∈ PosG(r)} and Q′

R = {q′
r,p | l → r ∈ R ∧ p ∈ PosG(r)} s.t. rm′(q′

r,p) =
qr,p, and the transitions ΔR = ∪l→r∈R ∪p∈PosG(r) {r(p)(q′

r,p.1, . . . , q
′
r,p.n) → q′

r,p,
rm′(r(p)(q′

r,p.1, . . . , q
′
r,p.n)) → qr,p}. Note that the transitions with rm′ are for

ensuring μ-compatibility.
From a normalized automaton A0 = (Σ,Q0, Qf ,Δ0) and a left-linear

context-sensitive rewrite system (R,μ), a μ−compatible normalized context-
sensitive automaton A = (Σ,Q ∪ Q′, Qf ,Δ, rm′) that recognizes the same lan-
guage as A0, is built as follows:

function Init(R,μ)(A0)

1. for each q ∈ Q0, a new state q′ (also denoted add′(q)) is created, and let
rm′(q′) = q

2. extend add′ to trees of TΣ∪Q0 : add′(f(t1, . . . , tn)) = f(add′(t1), . . . , add′(tn))
3. let Q = Q0 ∪ QR and Q′ = {add′(q) | q ∈ Q0} ∪ Q′

R
4. let Δ = ∪(t→q)∈Δ0({add′(t) → add′(q)} ∪ {rm′(add′(t)) → q}) ∪ ΔR

5. return A = (Σ, Q ∪ Q′, Qf , Δ, rm′)

In Step 4, {rm′(add′(t)) → q} is for ensuring μ-compatibility (note that q =
rm′(add′(q))).

Example 7. Let R = {f(x) → g(x)} and μ(f) = ∅, μ(h) = {1}. Note that
QR = Q′

R = ΔR = ∅.
Let A0 s.t. Q0 = {qa, qf}, Qf = {qf}, Δ0 = {a → qa, f(qa) → qf , h(qa) → qf}.
The language recognized by A0 is L(A0) = {f(a), h(a)}.
Then Init(R,μ)(A0) returns the automaton A s.t. Q = {qa, qf}, Q′ = {q′

a, q′
f},

rm′(q′
a) = qa, rm′(q′

f) = qf , and Δ = {a → q′
a, a → qa, f(q′

a) → q′
f , f(q′

a) →
qf , h(q′

a) → q′
f , h(qa) → qf}. Note that L(A) = {f(a), h(a)} = L(A0).

Lemma 3. A is μ-compatible and L(A0) ⊆ L(A).

Lemma 4. ∀t ∈ TΣ , ∀s ∈ (Q ∪ Q′)\(QR ∪ Q′
R), (t →∗

Δ s =⇒ t →∗
Δ0

rm′(s)).
Consequently L(A) ⊆ L(A0).

3.4 Simplification

Roughly, the simplification step consists in replacing each outermost ground
subterm of a given rewrite rule right-hand-side r, by its corresponding state in
QR or Q′

R. Actually, a simplification step simplifies a critical pair.

function Simplify(rm′(σr), q)

1. let us write PosGout(r) = {p1, . . . , pn}
2. then return (rm′(σ(r)[q′

r,p1
]p1 · · · [q′

r,pn
]pn

), q)

Example 8. R = {h(x) → r=f(x, g(a))}, μ(f) = {1, 2}, μ(g) = {1}. The initial-
ization gives ΔR = {a → q′

r,2.1, a → qr,2.1, g(q′
r,2.1) → q′

r,2, g(qr,2.1) → qr,2}.
Let σ = (x/q1). So Simplify(σ(r), q) = Simplify(f(q1, g(a)), q) returns the pair
(f(q1, qr,2), q), and one has g(a) →∗

ΔR
qr,2. Note that the corresponding transi-

tion f(q1, qr,2) → q is normalized.

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 135

More generally, if r is shallow and let (t, q) = Simplify(rm′(σr), q), then the
transition t → q is normalized. On the other hand, if PosGout(r) = ∅, then
Simplify(rm′(σr), q) = (rm′(σr), q).

3.5 Reduction

Le (t, s) be a pair, whose corresponding transition t → s is not normalized, and
suppose that t is reducible into u by non-empty transitions of the automaton.
Since the size of u is less than the size of t, it is easier to normalize the pair (u, s)
instead of (t, s). The replacement of (t, s) by (u, s) is called reduction.
function ReduceA(t, s)

1. if t → s is not normalized
and there exists a non-empty transition (t1 → s1) ∈ Δ s.t. t →[p, t1→s1] u
and [(p ∈ Posμ(t) ∧ s1 ∈ Q) ∨ (p �∈ Posμ(t) ∧ s1 ∈ Q′)]

2. then return ReduceA(u, s)
3. else return (t, s)

In Step 1, if there exist several transitions like t1 → s1 that allow to reduce t,
then one of them is chosen arbitrarily.

Example 9. Δ = {s(q1) → q2, g(q2, q3) → q4}, μ(f) = μ(s) = {1}, μ(g) = {1, 2}.
Then ReduceA(f(g(s(q1), q3)), q) = (f(q4), q).

3.6 Completion

The main algorithm of our method is presented here.

Input: a normalized automaton A0 = (Σ,Q0, Qf ,Δ0) and a left-linear context-
sensitive rewrite system (R,μ).
Output: a context-sensitive automaton A such that R∗

μ(L(A0)) ⊆ L(A).

The main two steps of the algorithm are:

1. A = Init(R,μ)(A0). Let us write A = (Σ,Q ∪ Q′, Qf ,Δ, rm′).
2. while there exists a non-convergent critical pair (cpl, cpr) in A do
2.1. Δ = Δ ∪ NormA(ReduceA(Simplify(cpl, cpr)))

Theorem 2. Let (R,μ) be a left-linear context-sensitive rewrite system, and
A0 be a normalized automaton. When the algorithm stops, L(A) is closed by
context-sensitive rewriting and R∗

μ(L(A0)) ⊆ L(A).

Note that it is always possible to make completion terminate, for example by
fixing a bound for the number of states. And if this bound is reached, NormA
should re-use existing states instead of creating new ones.

However, if the rewrite system is right-shallow, the transition obtained after
applying Simplify is already normalized (see Section 3.4). Then ReduceA and
NormA do nothing, and no new states are introduced. Therefore, the completion
algorithm will stop and generate an automaton similar to that of [15]. Conse-
quently, using the result of [15] we get:

136 N. Andrianarivelo and P. Réty

Corollary 1. If the context-sensitive rewrite system is linear and right-shallow,
then the completion algorithm stops and generates the context-sensitive descen-
dants in an exact way.

4 Examples

The following example shows the role of the states with primes, and of the
simplification step.

Example 10. R = {h(x) → r=f(x, h(b))}, μ(h) = μ(f) = μ(s) = ∅.
Let A0 be the automaton defined by Q0 = {qa, qf}, Qf = {qf}, and Δ0 =
{a → qa, s(qa) → qa, h(qa) → qf}. Note that L(A0) = {h(sn(a)) | n ∈ IN} and
R∗

μ(L(A0)) = {h(sn(a)), f(sn(a), h(b)) | n ∈ IN} where sn denotes n occurrences
of s.

The initialization step gives:
QR = {qr,2, qr,2.1}, Q′

R = {q′
r,2, q

′
r,2.1}, rm′(q′

r,2.1) = qr,2.1, rm′(q′
r,2) = qr,2,

ΔR = {b → q′
r,2.1, b → qr,2.1, h(q′

r,2.1) → q′
r,2, h(q′

r,2.1) → qr,2},
Q′ = {q′

a, q′
f}, rm′(q′

a) = qa, rm′(q′
f) = qf ,

Δ = {a → q′
a, a → qa, s(q′

a) → q′
a, s(q′

a) → qa, h(q′
a) → q′

f , h(q′
a) → qf} ∪ ΔR.

With h(q′
a) → qf and the rewrite rule, we get the critical pair (f(q′

a, h(b)), qf).
Then Simplify (f(q′

a, h(b)), qf) = (f(q′
a, q′

r,2), qf), and the normalization will add
the transition f(q′

a, q′
r,2) → qf to Δ.

h(q′
r,2.1) → qr,2 and the rewrite rule generate the critical pair

(f(q′
r,2.1, h(b)), qr,2). Then Simplify(f(q′

r,2.1, h(b)), qr,2) = (f(q′
r,2.1, q

′
r,2), qr,2),

and the normalization will add the transition f(q′
r,2.1, q

′
r,2) → qr,2 to Δ.

There is no other critical pair. The process stops and the automaton generates
{h(sn(a)), f(sn(a), h(b)) | n ∈ IN} = R∗

μ(L(A0)). Note that f(a, f(b, h(b))) ∈
R∗(L(A0)) whereas f(a, f(b, h(b))) �∈ R∗

μ(L(A0)), i.e. R∗
μ(L(A0)) �= R∗(L(A0)),

and notice that the automaton generates only the elements of R∗
μ(L(A0)).

In this example, R is right-shallow, and our completion computes an automa-
ton similar to that of [15]5.

The following rewrite system is not right-shallow, and shows the role of the
reduction step.

Example 11. R = {f(x) → s(f(x))}, μ(f) = μ(s) = {1}. Let A0 be the automa-
ton defined by Q0 = {qa, qf}, Qf = {qf}, and Δ0 = {a → qa, f(qa) → qf}. Note
that L(A0) = {f(a)} and R∗

μ(L(A0)) = {sn(f(a)) | n ∈ IN} where sn denotes n
occurrences of s.

The initialization step gives QR = Q′
R = ΔR = ∅, Q′ = {q′

a, q′
f}, rm′(q′

a) =
qa, rm′(q′

f) = qf , Δ = {a → q′
a, a → qa, f(q′

a) → q′
f , f(qa) → qf}.

With f(qa) →Δ qf and f(qa) →R s(f(qa)), we get the critical pair (s(f(qa)), qf).
However s(f(qa)) →Δ s(qf), i.e. ReduceA(s(f(qa)), qf) = (s(qf), qf), and the
normalized transition s(qf) → qf is added to Δ. No more critical pairs are

5 In [15], a tilde is used instead of a prime, but tilde over a state means that a rewrite
step is allowed, whereas in our approach a prime means that rewriting is forbidden.

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 137

detected, and the algorithm stops. Now the automaton generates {sn(f(a)) |
n ∈ IN} = R∗

μ(L(A0)).
If ReduceA were not applied, then the critical pair (s(f(qa)), qf) would be

normalized into the transitions s(q1) → qf , f(qa) → q1. But there would be one
more critical pair due to f(qa) → q1, which would add some more transitions,
and so on. In this case, if the normalization process always introduces new states,
the completion process would not terminate.

The following rewrite system is not right-shallow, and shows what happens
when a subterm forbidden by μ becomes allowed by μ after applying a rewrite step.

Example 12.
Let R = {f(x, y) → h(s(x), s(y))}, with μ(f) = ∅, μ(h) = {1}, μ(s) = {1}.
Let A0 defined by Q0 = {q}, Qf = {q}, and Δ0 = {a → q, f(q, q) →
q}. Thus L(A0) = {a, f(a, a), f(f(a, a), a), f(a, f(a, a)), f(f(a, a), f(a, a)) . . .}.
R∗

μ(L(A0)) is obtained from the terms of L(A0), by replacing some occur-
rences of f by the pattern h(s(), s()) along the left branch, starting
from the root. For example h(s(a), s(a)), h(s(f(a, a)), s(a)), h(s(h(s(a), s(a))),
s(a)), h(s(f(a, a)), s(f(a, a))) are in R∗

μ(L(A0)), whereas h(s(a), h(s(a), s(a))) is
not in R∗

μ(L(A0)).
The initialization step gives QR = Q′

R = ΔR = ∅, and
Q′ = {q′}, rm′(q′) = q, and

Δ = {a → q′, a → q, f(q′, q′) → q′, f(q′, q′) → q}.
Using f(q′, q′) → q and f(x, y) → h(s(x), s(y)), we get the critical pair
(rm′(h(s(q′), s(q′))), q) = (h(s(q), s(q′)), q). This critical pair is not convergent,
and cannot be simplified nor reduced. It is not normalized. Then NormA creates
the transitions h(q1, q′

1) → q, s(q) → q1, s(q′) → q′
1, and add them to Δ.

No more critical pair is detected, then the algorithm stops with Δ =

{a→q′, a→q, f(q′, q′) → q′, f(q′, q′) → q, h(q1, q′
1) → q, s(q) → q1, s(q′) → q′

1}
Now, one can see that L(A) = R∗

μ(L(A0)).

In the previous examples L(A) = R∗
μ(L(A0)). However, one may have L(A) ⊃

R∗
μ(L(A0)), i.e. a strict over-approximation.

Example 13. Let I = {f(a, b)} and R = {f(x, y) → f(s(x), p(y)), b → c}, with
μ(f) = μ(s) = μ(p) = ∅. Then R∗

μ(I) = {f(sn(a), pn(b)) | n ∈ IN} is not a
regular tree language and then it cannot be expressed by a tree automaton. So
completion will necessarily lead to a strict over-approximation, by losing the
link between the number of s and the number of p. Nevertheless, the elements
of {f(sn(a), pn(c))}, which are in R∗(I) but not in R∗

μ(I), will not be generated.

5 Related Work

To the best of our knowledge, the only method to express descendants by
regular languages in the framework of context-sensitive rewriting, is that of

138 N. Andrianarivelo and P. Réty

Sakai et al. [15]. This method returns a tree automaton that recognizes the set
of descendants in an exact way (it is not an over-approximation), assuming that
the rewrite system is linear and right-shallow. This is why this method cannot
deal with Examples 11 and 12, whose rewrite systems are not right-shallow.

Genet et al. compute an over-approximation of the descendants without
strategy [10], or according to the innermost strategy [13]. They do not consider
context-sensitive rewriting.

Some results of Falke et al. [6,8] also deal with context-sensitive rewriting,
but they do not study reachability problems. They study termination problems
and propose a method for proving inductive theorems. The termination problems
are based on dependency pairs, and the inductive theorem prover is based on
the inference system of Reddy [7].

6 Further Work

With our method, and more generally with every method based on the comple-
tion of tree automata, the quality of the approximation highly depends on the
way the completion is achieved. When normalizing critical pairs, existing states
may be used instead of introducing new ones. This helps to make completion ter-
minate. However, the choice of the states to be re-used is crucial for the quality of
the approximation. Some heuristics have been developed for ordinary rewriting.
Recently, an heuristic using a set of equations E has been presented [12], and an
upper-bound for the approximation is given, which allows to estimate the quality
of the approximation. We intend to extend these heuristics to context-sensitive
completion, so that they could be used within our method.

Another interesting problem to study is: does our method take the map μ into
account in a perfect way? In other words, may our method generate descendants
that are not context-sensitive descendants? If the re-use of existing states in
the normalization process is allowed, we get an over-approximation, and wrong
context-sensitive descendants (that are ordinary descendants) may be generated.
What about if the re-use of existing states is forbidden?

When considering ordinary rewriting, the set of descendants of a set of terms
I is not a regular tree language, even if I is, except if strong restrictions are
assumed over the rewrite system. It is the same when considering context-
sensitive rewriting. This is why we cannot compute the descendants in an exact
way, except for some particular cases. The use of tree languages more expressive
than the regular ones, could lead to more precise computations. It has already
been studied for ordinary rewriting [2,14], but not for context-sensitive rewriting.

References

1. Andrianarivelo, N., Réty, P.: Over-Approximating Terms Reachable by Context-
Sensitive Rewriting (full version). Technical Report RR-2015-02, LIFO, Université
d’Orléans (2015)

Over-Approximating Terms Reachable by Context-Sensitive Rewriting 139

2. Boichut, Y., Chabin, J., Réty, P.: Over-approximating descendants by synchro-
nized tree languages. In: Proceedings of the International Conference RTA. LIPIcs,
vol. 21, pp. 128–142 (2013)

3. Boichut, Y., Genet, T., Jensen, T., Le Roux, L.: Rewriting approximations for fast
prototyping of static analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)

4. Cortier, V., Delaune, S., Lafourcade, P.: A Survey of Algebraic Properties Used in
Cryptographic Protocols. Journal of Computer Security 14(1), 1–43 (2006)

5. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques
for Formal Software Verification. IEEE Transactions Computer-Aided Design of
Integrated Circuits and Systems 27(7), 1165–1178 (2008)

6. Falke, S., Kapur, D.: Dependency Pairs for rewriting with non-free constructors.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 426–442. Springer,
Heidelberg (2007)

7. Falke, S., Kapur, D.: Inductive decidability using implicit induction. In:
Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 45–59.
Springer, Heidelberg (2006)

8. Falke, S., Kapur, D.: Termination of context-sensitive rewriting with built-in num-
bers and collection data structures. In: Escobar, S. (ed.) WFLP 2009. LNCS, vol.
5979, pp. 44–61. Springer, Heidelberg (2010)

9. Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2.
In: Proceedings of the International Symposium POPL, pp. 52–66 (1985)

10. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer,
Heidelberg (1998)

11. Genet, T.: Reachability Analysis of Rewriting for Software Verification. Université
de Rennes 1 (2009), Habilitation document. http://www.irisa.fr/celtique/genet/
publications.html

12. Genet, T., Rusu, V.: Equational Approximations for Tree Automata Completion.
Journal of Symbolic Computation 45(5), 574–597 (2010)

13. Genet, T., Salmon, Y.: Reachability analysis of innermost rewriting. In: Proceed-
ings of the International Conference RTA. LIPIcs, vol. 36, pp. 177–193 (2015)

14. Kochems, J., Ong, C.-H.L.: Improved functional flow and reachability analyses
using indexed linear tree grammars. In: Proceedings of the International Conference
RTA. LIPIcs, vol. 10, pp. 187–202 (2011)

15. Kojima, Y., Sakai, M.: Innermost reachability and context sensitive reachabil-
ity properties are decidable for linear right-shallow term rewriting systems. In:
Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 187–201. Springer, Heidelberg
(2008)

16. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming 1998(1), January 1998

http://www.irisa.fr/celtique/genet/publications.html
http://www.irisa.fr/celtique/genet/publications.html

Reducing Bounded Realizability Analysis
to Reachability Checking

Masaya Shimakawa1(B), Shigeki Hagihara1, and Naoki Yonezaki2

1 Department of Computer Science, Graduate School of Information Science
and Engineering, Tokyo Institute of Technology, Tokyo, Japan

masaya@fmx.cs.titech.ac.jp
2 The Open University of Japan, Chiba, Japan

Abstract. Realizability verification of reactive system specifications can
detect dangerous situations that can arise, which were not expected while
drawing the specifications. However, such verification typically involves
complex, intricate analyses. The complexity of the realizability problem
is 2EXPTIME-complete. To avoid this difficulty, Schewe et al. introduced
the notion of bounded realizability. While realizability is the property
that a model of a reactive system exists that satisfies a given specifi-
cation, bounded realizability requires the existence of a model of size k
that satisfies the given specification. They presented a method based on
satisfiability modulo theories (SMT) for bounded realizability checking.
Here, we present a more efficient method for checking bounded realizabil-
ity. Our method reduces bounded realizability checking to satisfiability
(SAT)-based reachability checking and is faster because in many cases,
the result is obtained by reachability checking of small steps. We show the
complexity of a bounded realizability problem for linear temporal logic
(LTL) specifications is NEXPTIME-complete, in which the upper bound
is derived from our SAT-encoding technique. We also report experimen-
tal results that show the effectiveness of our method.

1 Introduction

Many safety-critical systems are considered reactive systems, and they interact
with their environment. Such systems should be designed to respond appropriately
to any request from the environment at any time.Verifying this property during the
specification phase is important for reducing their development costs. This prop-
erty of specifications is known as realizability[19][1], or the property that a system
model exists that satisfies a given specification in all cases.Realizability verification
can detect dangerous cases, and a system model can be synthesized if the specifica-
tion is realizable[19]. However, such verification typically involves complex, intri-
cate analyses. Therefore, it can only be applied at a limited scale.

To avoid this difficulty, Schewe et al. introduced the bounded property of real-
izability in [21][13], and presented a method based on satisfiability modulo theories
(SMT) in [13] 1. They restricted the size of witnesses (models of correct systems) or
1 The method is also for distributed systems.

c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 140–152, 2015.
DOI: 10.1007/978-3-319-24537-9 13

Reducing Bounded Realizability Analysis To Reachability Checking 141

counterexamples (models of oppositional environments) to a given k. The advan-
tage of bounded (un-)realizability checking is the ability to check the existence
of a small witness (counterexample) efficiently. In our experience, many practical
unrealizable specifications have a small counterexample. This approach can detect
it at low cost.

This paper presents a more efficient method for bounded realizability, and
considers the complexity of the bounded realizability problem based on this
method.

Our method constructs a universal co-Büchi tree automaton that accepts
models of a system (environment) that satisfy (do not satisfy) the specifications
in all cases. Then, we check bounded nonemptiness for the automaton. We reduce
the bounded nonemptiness checking to satisfiability (SAT)-based reachability
checking. In many cases, the result is obtained via the reachability checking of
small steps. Therefore, our method can check at lower cost.

Based on our method, we show that the bounded realizability problem for
specifications described in linear temporal logic (LTL) is NEXPTIME-complete.
The upper bound of the complexity is derived from our SAT-encoding tech-
nique. The lower bound is proved by a reduction from an EXP-square tiling
problem, which is NEXPTIME-complete, to a bounded realizability problem. In
the reduction, we use only G (Globally) and X (neXt) operators. Therefore, it
is shown that the bounded realizability problem remains NEXPTIME-complete
even when the specification language is the fragment LTL(G, X), where only G
and X operators are allowed.

2 Realizability and Bounded Realizability

2.1 Reactive Systems and Environments

A reactive system is a system that responds to requests from an environment in
a timely fashion.

Definition 1. A reactive system is a reaction function f : (2X)∗ → 2Y , where
X is a set of events caused by the environment, Y is a set of events caused by
the system. An environment is a reaction function g : (2Y)+ → 2X .

We refer to events caused by the environment as ‘input events,’ and those
caused by the system as ‘output events.’ The reaction function f(resp., g) relates
sequences of sets of previously occurring input events (resp., output events) to
a set of current output events (resp., input events).

2.2 Reactive System Specifications

The timing of input and output events is an essential element of reactive systems.
LTL is a suitable language for describing the timing of events. In this paper, we
use LTL to describe the specifications of reactive systems. In LTL, in addition
to the operators ∧,∨,⊕,→,¬, � and ⊥, we can use the temporal operators X,

142 M. Shimakawa et al.

G, F and U. We treat input events and output events as atomic propositions.
Behavior σ is an infinite sequence of sets of events. σ |=bhv ϕ represents that σ
satisfies ϕ, which is defined as usual.

2.3 Realizability

It is important for reactive system specifications to satisfy realizability. Realiz-
ability requires the existence of a reactive system such that for any input events
with any timing, the system produces output events such that the specification
holds.

Definition 2. A specification Spec is realizable if there exists a reactive system
f such that f |=sys Spec, where f |=sys Spec is defined as ∀a0, a1, a2, . . . ∈
2X .((f(ε) ∪ a0)(f(a0) ∪ a1)(f(a0a1) ∪ a2) . . . |=bhv Spec).

We also define unrealizability in the same manner.

Definition 3. A specification Spec is unrealizable if there exists an environment
g such that g |=env ¬Spec, where g |=env ¬Spec is defined as ∀b0, b1, . . . ∈ 2Y .(b0∪
g(b0))(b1 ∪ g(b0b1)) . . . |=bhv ¬Spec).
Note that a specification Spec is not realizable if and only if Spec is unrealiz-
able, when the specification is described in LTL (or ω-regular expression, finite
automata for ω-word).

2.4 Bounded Realizability

In bounded (un-)realizability, we restrict the size of the witness or counterexam-
ple to some k, that is, we consider only witnesses or counterexamples that are
represented by a transition machine of size k.
Transition machine is a tuple T = (Σ,D, S, sI , η, o) where Σ is an alphabet,
D is a finite set of directions, S is a finite set of states, sI is an initial state,
η : S × D → S is a transition function, and o : S → Σ is a labeling function. We
define ζ : D∗ → S as follows:ζ(ε) = sI , ζ(x · c) = η(ζ(x), c). The size |T | of T
is defined as |T | = |S|. A transition machine T = (2Y , 2X , S, sI , η, o) represents
a reactive system fT such that for all ā ∈ (2X)∗, fT (ā) = o(ζ(ā)). In addition,
a transition machine T = (2X , 2Y , S, sI , η, o) represents an environment gT such
that for all b̄ ∈ (2Y)+, gT (b̄) = o(ζ(b̄)).

Definition 4. Let Spec be a specification; k ∈ N. Spec is k-realizable if there
exists a transition machine T such that fT |=sys Spec and |T | = k. Spec is
k-unrealizable if there exists T such that gT |=env ¬Spec and |T | = k.

Note that in a bounded setting, the fact that a specification Spec is not
k-realizable does not imply that Spec is k-unrealizable. By definition, it is obvi-
ous that if Spec is k-realizable, Spec is also realizable. Moreover, in the case that
Spec is described in LTL (or ω-regular expression, finite automata for ω-word),
if Spec is realizable, Spec is k-realizable for some k.

Reducing Bounded Realizability Analysis To Reachability Checking 143

2.5 Procedure for Bounded Realizability Checking

This subsection outlines a procedure for checking bounded realizability using
ω-automata, which is presented in [13]. Bounded unrealizability also can be
checked in the same way.

1. We obtain a universal co-Büchi word automaton Abhv such that L(Abhv) =
{σ | σ |=bhv Spec}.

2. From Abhv , we construct a universal co-Büchi tree automaton Asys such that
L(Asys) = {T | fT |=sys Spec}.

3. We check whether there exists a transition system T of size k such that
T ∈ L(Asys) (k-nonempty). If it is k-nonempty, we conclude that Spec is
k-realizable. Otherwise, we conclude that Spec is not k-realizable.

In [13], an SMT-based method of bounded nonemptiness checking for a universal
co-Büchi tree automaton (UCT) is given.2 Here, we reduce bounded nonempti-
ness checking for UCT to a reachability problem, and solve the problem using a
SAT solver. Our method is more efficient, as described in Sect. 5.

3 Reachability-Based Bounded Nonemptiness Checking
for UCT

In this section, we present a reachability-based method of bounded nonemptiness
checking for UCT, which is based on that of bounded universality checking for
NBA in [24][25].

3.1 Universal co-Büchi Tree Automata(UCT)

We define the syntax and semantics for UCT.

Syntax : The UCT is a tuple A = (Σ,D,Q, qI , δ, F) where Σ is an alphabet, D
is a finite set of directions, Q is a finite set of locations, qI is an initial location,
δ ⊆ Q × Σ × D × Q is a transition relation, and F ⊆ Q is a set of accepting
location.

Semantics for Transition Machines : Using run graph, we define the semantics of
UCT for transition machines. For a UCT A = (Σ,D,Q, qI , δ, F) and a transition
machine T = (Σ,D, S, si, η, o), the run graph G = (V, vI , E,C) is defined as
follows: V := Q × S (the set of nodes), vI := (qI , sI) (the initial node), E :=
{((q, s), (q′, s′)) | (q, o(s), c, q′) ∈ δ, s′ = η(s, c)} (the set of edges), and C :=
{(q, s) | q ∈ F, s ∈ S} (the set of accepting nodes). We say A accepts T , if for
all paths from the initial node in the run graph for A and T , the number of
occurrences of accepting nodes in the path is finite.

2 The method is also for distributed systems.

144 M. Shimakawa et al.

3.2 Characterization for Transition Machines of Size k Accepted by
UCT

Here, we characterize transition machines of size k that are accepted by UCT.
The number of accepting nodes in a run graph is bounded. From this, the

following result is derived. 3

Lemma 1. If for all paths ṽ in a run graph G from a node v, the number of
occurrences of accepting nodes in ṽ is finite, then for all paths ṽ from v in G,
accepting nodes occur at most |C| times in ṽ.

The property that “for all paths ṽ from v, the number of occurrences of accepting
nodes is at most j”(denoted by AtMost(v, j)) is characterized as follows: For
v ∈ V \ C (for v ∈ C), AtMost(v, j) holds if and only if for all successors
v′ ∈ vE, AtMost(v′, j) holds (AtMost(v′, j −1) holds). In addition, for all v ∈ C,
AtMost(v, 0) does not hold. Based on this idea, the following result is derived:

Theorem 1 ([25]). Let G = (V, vI , E,C) be a run graph and d ∈ N. For all
paths ṽ from vI in G, accepting nodes occur at most d times if and only if there
exist a sequence V0, V1, . . . , Vd of sets of nodes such that the following are true:
1. The following condition (denoted by I(V0)) holds:
v ∈ V0 ⇐⇒ (if v ∈ V \ C then ∀v′ ∈ vE. v′ ∈ V0 else ⊥)
2. For all 0 ≤ j < d, the following condition (denoted by T (Vj , Vj+1)) holds:
v ∈ Vj+1 ⇐⇒ (if v ∈ V \ C then ∀v′ ∈ vE. v′ ∈ Vj+1 else ∀v′ ∈ vE. v′ ∈ Vj)
3. vI ∈ Vd holds (denoted by F (Vd)).

From the above theorem, the following is derived.

Theorem 2. Let A = (Σ,D,Q, qI , δ, F) be a UCT and k ∈ N. For all d ∈ N,
(2) implies (1), and for d ≥ k · |F |, (1) implies (2), where (1) and (2) are as
follows:
(1) There exists a transition machine of size k that is accepted by A.
(2) There exists a transition machine T of size k such that for some sequence
V0, V1, . . . , Vd of sets of nodes of the run graph G for A and T , I(V0) ∧∧

0≤j<d

T (Vj , Vj+1) ∧ F (Vd) holds.

3.3 SAT Encoding

We present a reduction to a SAT problem based on Theorem 2. That is, for a
UCT A and k, we give a construction of a Boolean formula |[acc(A, k, d)]| such
that condition (2) of Theorem 2 holds iff |[acc(A, k, d)]| is satisfiable.

Variables: We use the following variables (assuming Σ = 2Y), to represent
a transition machine of size k (where S = {1, 2, . . . k}), and V0, V1, . . . , Vd. (a)yi
for y ∈ Y , 1 ≤ i ≤ k, which indicate whether y ∈ o(i) holds, (b) tr(i,c,i′) for

3 If the number of occurrences of accepting nodes in a path exceeds |C|, then there
exists an accepting node vc that occurs at least twice, which implies the existence
of a path on which the accepting node vc occurs infinitely often.

Reducing Bounded Realizability Analysis To Reachability Checking 145

Table 1. The definition of |[I(A, k)]|0, |[T (A, k)]|j,j+1 and |[F (A, k)]|d

|[I(A, k)]|0
∧

q∈Q\F,1≤i≤k

(

v0
(q,i) ↔ ∧

(q,b,c,q′)∈δ,1≤i′≤k((|[b]|i ∧ tr(i,c,i′)) → v0
(q′,i′))

)

∧
∧

q∈F,1≤i≤k

(

¬v0
(q,i)

)

|[T (A, k)]|j,j+1

∧

q∈Q\F ,1≤i≤k

(

vj+1
(q,i) ↔ ∧

(q,b,c,q′)∈δ,1≤i′≤k((|[b]|i ∧ tr(i,c,i′)) → vj+1
(q′,i′))

)

∧
∧

q∈F ,1≤i≤k

(

vj+1
(q,i) ↔ ∧

(q,b,c,q′)∈δ,1≤i′≤k((|[b]|i ∧ tr(i,c,i′)) → vj

(q′,i′))
)

|[F (A, k)]|d vd
(qI ,0)

1 ≤ i ≤ k, c ∈ D, 1 ≤ i′ ≤ k, which indicate whether η(i, c) = i′ holds, (c)v j
(q,i)

for q ∈ Q, 1 ≤ i ≤ k, 0 ≤ j ≤ d, which indicate whether (q, i) ∈ Vj holds.

Constraints: To represent “be a transition machine correctly,” we prepare the
formula |[det(k)]| :=

∧
1≤i≤k,c∈D

∨
1≤i′≤k tr(i,c,i′) ∧ ∧

1≤i≤k,c∈D

∧
1≤i′≤k,i′′
=i′

(tr(i,c,i′) → ¬tr(i,c,i′′)). We define the formulas |[I(A, k)]|0, |[T (A, k)]|j,j+1 and
|[F (A, k)]|d, which indicate that I(V0), T (Vi, Vi+1) and F (Vd) hold, respectively.
The definitions are in Table 1, where |[b]|i is the formula

∧
y∈b yi ∧ ∧

y
∈b ¬yi,
indicating that the label of state i is b.

We define the formula |[acc(A, k, d)]| by |[acc(A, k, d)]| := |[det(k)]| ∧ |[I(A,
k)]|0 ∧ ∧

0≤j<d |[T (A, k)]|j,j+1 ∧ |[F (A, k)]|d.
Theorem 3. Let A = (2Y ,D,Q, qI , δ, F) and k ∈ N. For all d ∈ N, (2) implies
(1), and for d ≥ k · |F |, (1) implies (2), where (1) and (2) are as follows:
(1) There exists a transition machine of size k that is accepted by A.
(2) |[acc(A, k, d)]| is satisfiable.

Theorem 4. Let A = (2Y ,D,Q, qI , δ, F) and k, d ∈ N. The size of |[acc(A, k,
d)]| is O(k3 · D + k2 · d · |Y | · |δ|). Checking that A is k-nonempty can be reduced
to the SAT problem for a formula of size O(k3 · D + k3 · |F | · |Y | · |δ|).
3.4 Incremental Checking

If |[acc(A, k, d)]| is satisfiable, even for small d, then there exists a transition
machine of size k that is accepted by A. The smaller the value of d is, the
smaller the size of |[acc(A, k, d)]| and the lower the checking cost. Therefore, it
is effective to check whether |[acc(A, k, d)]| is satisfiable incrementally for d =
0, 1, . . . , dmax(= k · |F |). An incremental approach reduces the cost of finding
a witness. Furthermore, using the induction technique for incremental SAT-
based unbounded reachability checking in [22][3], at the stage at which d is
less than k · |F |, we judge that A is not k-nonempty. Because we characterize
transition machines of size k that are accepted by UCT, using reachability, it
is straightforward to apply the induction technique described in [22][3] to our
method. These are advantages of our approach based on reachability checking.

4 Complexity of Bounded Realizability Problem

In this section, we show that the bounded realizability problem for a specifica-
tion described in LTL and a non-negative integer k encoded in binary (i.e., we

146 M. Shimakawa et al.

consider the size of k to be �log k�+1) is NEXPTIME-complete. That is, we show
(1) the bounded realizability problem is in NEXPTIME (the class of problems
solvable in O(2p(n)) time by a non-deterministic Turing machine, where p(n)
is a polynomial function of the input size n) and (2) the bounded realizability
problem is NEXPTIME-hard. Moreover, we show that the bounded realizability
problem remains NEXPTIME-complete even when the specification language is
the fragment LTL(G, X) where only G and X operators are allowed.

4.1 Upper Bound

Theorem 5. The bounded realizability problem for a specification described in
LTL and a non-negative integer k encoded in binary is in NEXPTIME.

Proof. We prove that the procedure in Sect. 2.5 is accomplished in O(2p(n)) time
using a non-deterministic Turing machine. Abhv and Asys can be constructed
within O(2|Spec|) time, even by a deterministic Turing machine, and the size
of Abhv and Asys is also O(2|Spec|)[27][15] , where |Spec| is the length of Spec.
From Theorem 4, the bounded nonemptiness problem for a UCT and a non-
negative integer k encoded in unary is in NP. Then, Step 3 is accomplished
within O(p(|Asys | + k)) time by a non-deterministic Turing machine. Therefore,
we can solve the bounded realizability problem in O(2p(|Spec|+(�log k�+1))) time
using a non-deterministic Turing machine.

4.2 Lower Bound

Here, we show that the bounded realizability problem is NEXPTIME-hard,
by providing polynomial time reduction from the EXP-square tiling problem
(see, e.g., [7][5]) to the bounded realizability problem. The tiling problem is
NEXPTIME-complete.

Definition 5. The EXP-square tiling problem is as follows: For a given
(T,H, V, tinit , tfinal ,m), where T is a finite set of tile types, H,V ⊆ T×T are hor-
izontal and vertical adjacency constraints, tinit ∈ T is the initial tile type, tfinal ∈
T is the final tile type, and m is a natural number encoded in unary, determine
whether there exists an assignment function f : [0, (2m − 1)] × [0, (2m − 1)] → T
such that the following conditions are satisfied:
1. f(0, 0) = tinit
2. f((2m − 1), (2m − 1)) = tfinal
3. for any 0 ≤ j ≤ 2m − 1, 0 ≤ i < 2m − 1, (f(i, j), f(i + 1, j)) ∈ H holds.
4. for any 0 ≤ i ≤ 2m − 1, 0 ≤ j < 2m − 1, (f(i, j), f(i, j + 1)) ∈ V holds.

As shown in Fig. 1, the tiling grid has 2m × 2m points. Intuitively, this leads
to the following question: “For a given tiling grid, can a tile be assigned to each
point (i, j) for which 0 ≤ i < 2m and 0 ≤ j < 2m, satisfying conditions 1–4?”
Condition 1 is the condition for the initial tile, and states that the tile of type
tinit is assigned to the leftmost, uppermost point. Condition 2 is the analogous
condition for the final tile. Condition 3 is the condition for horizontal lines,

Reducing Bounded Realizability Analysis To Reachability Checking 147

Fig. 1. The EXP-square tiling problem

2m-1,00, 0

2m-1,2m-10,2m-1 1,2m-1

1,10,1

1, 0

2m-1,1

Fig. 2. The representation of a tiling by a
transition machine

and states that horizontally neighboring tiles satisfy the horizontal adjacency
constraint H. Condition 4 is the analogous condition for vertical lines.

Theorem 6. The bounded realizability problem for a specification written in
LTL and a non-negative integer k encoded in binary is NEXPTIME-hard.

Proof. We provide a polynomial time reduction from the EXP-square tiling
problem to the bounded realizability problem. That is, for the EXP-square
tiling problem (T,H, V, tinit , tfinal ,m), we construct a formula ϕtiling and a non-
negative integer ktiling such that ϕtiling is ktiling -realizable if and only if the
answer to the tiling problem (T,H, V, tfinal , tfinal ,m) is affirmative.

In our reduction, a tiling assignment is represented by a transition machine
that has 2m × 2m states, illustrated in Fig. 2. A state of the transition machine
corresponds to a grid point. The transition machine has horizontal and vertical
directions, and the horizontal (vertical) successor of a state corresponds to the
point to the right of it (beneath it). The horizontal (vertical) successor of a
rightmost (lowermost) state is the leftmost state of the same row (column).
Moreover, the tile type of each point of the grid is represented by a label of each
state.

We introduce the following input event. dirx: If this event is caused, the
direction is horizontal. Otherwise, the direction is vertical. We also introduce the
following output event. (a) x0, . . . , xm−1: These are used to identify a column,
by keeping track of the number of horizontal transitions. (b) y0, . . . , ym−1: These
are used to identify a row, by keeping track of the number of vertical transitions.
(c) tilet for t ∈ T : “the tile of type t is placed on a point” is related to “the event
tilet is caused on the state s corresponding to the point (tilet ∈ o(s)).”

The formula ϕtiling is the conjunction of the formulas (A)–(H) in Table 2.
Here, we use the following abbreviations: (x = 2m − 1) ≡ ∧

0≤i<m xi, (y =
2m − 1) ≡ ∧

0≤i<m yi. Formula (C) represents the statement “the horizontal
successor of the state corresponding to a point (x, y) is the state corresponding
to the point (x+1 mod 2m), y).” Formula (D) is the vertical version of the above.
Formula (F) represents the statement “the final tile of type tfinal is placed on

148 M. Shimakawa et al.

Table 2. The definition of formulas (A)–(H)

(A)Single assignment of tile types: G
(

(∨

t∈T tilet

) ∧∧t∈T

(

tilet → ∧

t′ �=t ¬tilet′
))

(B)The constraint for the initial state:
∧

0≤i<m ¬xi ∧ ∧

0≤i<m ¬yi

(C)The constraint for horizontal transitions:

G
(

dirx → ∧

0≤i<m

(

(xi ⊕∧0≤j<i xj) ↔ Xxi

))

∧ G
(

dirx → ∧

0≤i<m(yi ↔ Xyi)
)

(D)The constraint for vertical transitions:

G
(

¬dirx → ∧

0≤i<m

(

(yi ⊕∧0≤j<i yj) ↔ Xyi

))

∧ G
(

¬dirx → ∧

0≤i<m (xi ↔ Xxi)
)

(E)The constraint for condition 1: tiletinit
(F)The constraint for condition 2: G((x = 2m − 1 ∧ y = 2m − 1) → tiletfinal

)

(G)The constraint for condition 3: G
(

(x
= 2m − 1 ∧ dirx) → ∨

(t,t′)∈H(tilet ∧ Xtilet′)
)

(H)The constraint for condition 4: G
(

(y
= 2m − 1 ∧ ¬dirx) → ∨

(t,t′)∈V (tilet ∧ Xtilet′)
)

the point (2m−1, 2m−1).” Formula (G) represents the statement “if the current
point is not in the (2m−1)-th column (i.e., a point exists to the right of it), the tile
at the current point and the tile at the point to the right of it, which corresponds
to the horizontal successor, satisfy horizontal adjacency constraints.” Formula
(H) is the vertical version of that of condition 3.

We define ktiling = 2m × 2m (encoded as 2m + 1 bits). Because the bound
2m × 2m, formula (C) and (D), states of the transition machine and points of
the tiling grid are in one-to-one correspondence.

Observe that in the reduction to EXP-square tiling problem, only G and
X operators are used. From this, the following is derived. Therefore, even for
LTL(G,X) specifications, the bounded realizability problem is NEXPTIME-
complete.

Theorem 7. Even when a specification is written in LTL(G,X), the bounded
realizability problem for the specification and a non-negative integer k encoded
in binary is NEXPTIME-hard.

4.3 Discussion

We discuss the complexity of the bounded realizability problem in relation to
that of the satisfiability problem, the strong satisfiability problem[17], and the
unbounded realizability problem. Strong satisfiability is the property that no
path-like counterexample exists in the specification. The satisfiability problem
for a specification in LTL is PSPACE-complete[26], the strong satisfiability prob-
lem is EXPSPACE-complete[23], and the realizability problem is 2EXPTIME-
complete[20]. Because PSPACE ⊆ NEXPTIME ⊆ EXPSPACE ⊆ 2EXPTIME
holds, the bounded realizability problem is more difficult than, or of equal diffi-
culty to, the satisfiable problem, and is easier than, or of equal difficulty to, the
strong satisfiability problem and the realizability problem.

Reducing Bounded Realizability Analysis To Reachability Checking 149

Table 3. The checking time (in seconds) of bounded and unbounded (un-)realizablity

bounded (un-)realizability unbounded
SMT

k judgement our method yices MathSAT Acacia+ Unbeast

elereal2 6 no 121.89 T/O 384.63 0.88 0.06
7 yes 230.87 T/O 1007.38

lbreal2 5 no 0.16 0.59 0.88 0.08 0.43
6 yes 0.13 10.14 2.62

lbreal3 5 no 3.62 906.08 116.16 0.14 0.46
6 yes 0.33 T/O 649.77

arbreal2 3 no 0.86 3.79 8.37 1.37 T/O
4 no 11.39 59.70 107.71
5 no 252.71 T/O 719.82

sareal
5 4 no 0.81 1.94 1017.53 0.17 1.27

5 yes 12.3 646.10 T/O

sareal
6 5 no 44.97 66.73 T/O 0.55 3.59

6 yes 627,2 T/O T/O

eleunreal2 1 yes 0.12 0.40 0.42 9.59 0.47

eleunreal3 1 yes 0.85 T/O T/O T/O T/O

lbunreal5 1 no 1.34 5.72 5.15 6.25 T/O
2 yes 1.91 187.77 46.13

lbunreal6 1 no 20.41 92.90 43.77 102.07 T/O
2 yes 24.55 T/O T/O

arbunreal4 1 no 19.76 T/O T/O 1165.77 T/O
2 yes 2.06 T/O T/O

arbunreal5 1 no 819.58 T/O T/O T/O T/O
2 yes 25.62 T/O T/O

5 Experiments

We implemented our method, and compared the execution time with the SMT-
based method in [13] and unbounded realizability checkers.4 The implementation
of our method is as follows: The construction of the UCT in Steps 1 and 2 of
the procedure in Sect. 2.5 is based on [16]. The k-nonemptiness checking of Step
3 is accomplished incrementally for d = 0, 1, . . ., as explained in Sect. 3.4. We
use MiniSat 2.2[10] as the SAT solver. In the implementation of the SMT-based
method in [13], we check k-nonemptiness using Yices 2.3.1[9] or MathSAT 5[8] as
the SMT solver. As an unbounded realizability checker, we use Unbeast 0.6b[11]
and Acacia+ 2.3[6].

The upper columns in Table 3 show the total checking time of (un-)bounded
realizability for realizable specifications elerealn , lbrealn , arbrealn and sarealn . elerealn

is the n-floor elevator specification[2] with the fairness assumption. lbrealn is a
realizable version of the n-process load balancer specification in [11]5. arbrealn is
the n-process arbiter specification in [18]. sarealn is the n-process simple arbiter
specification which equals the UCT specification in [13]. The notation “T/O”
corresponds to a calculation that required more than 1200s. The lower columns in
Table 3 show the total checking time of (un-)bounded unrealizability for unreal-
izable specifications eleunrealn , lbunrealn and arbunrealn . eleunrealn is the n-floor elevator
4 The environment was OS:Ubuntu 12.04, CPU:Core2duo 3.0GHz, 6 GB memory.
5 Here, we use the specification (6) ∧ (7) ∧ (10) → (1) ∧ (2) ∧ (5) ∧ (8) ∧ (9) in [11].

150 M. Shimakawa et al.

specification[2] without the fairness assumption. lbunrealn is an unrealizable ver-
sion of n-process load balancer specification in [11]6. arbunrealn is an unrealizable
version of arbrealn .

Our Method vs. Unbounded Realizability Checker: The results indicate that in
the cases that there is no small witness or counterexample, the unbounded real-
izability checkers can detect a witness or counterexample faster. This is because
the bounded realizability problem is NEXPTIME for k in binary, i.e., NP for
k in unary. In comparison, when there is a small witness or counterexample,
our method can detect it faster. In our experience, many practical unrealizable
specifications have a small counterexample. Our method shines at detecting it.
Our Method vs. SMT-based Method: In many cases, our method is faster than
SMT-based methods because we reduce bounded nonemptiness checking for
UCT to d-step reachability checking, and the result is obtained by reachabil-
ity checking of small steps. In the verification of eleunrealn on k = 1, lbunrealn on
k = 2 and arbunrealn on k = 2, our method can detect a counterexample at stage
on d = 0, d = 1 and d = 1, respectively. In the SMT-based method, the number
of occurrences of an accepting node is treated as integer. The value of d in our
method is considered a bound of it. Because in many cases the result is obtained
when the bound is small, our method can check the existence of a witness or
counterexample more quickly.

6 Related Works

Checking Realizability and Synthesizing Reactive Systems: Generally, when
checking the realizability of a specification written in LTL, specifications are
converted into deterministic ω-automata. In a naive procedure for checking real-
izability, Safra’s construction is used for the determinization of ω-automata,
although Safra’s construction is complex and difficult to implement. Therefore,
procedures in which Safra’s construction is not used are proposed in [15] and
[12]. The procedure in [12] is a refinement of the procedure in [15]. In the pro-
cedure in [12], the acceptance condition of automata is bounded, as with our
method. That is, the condition that the number of occurrences of accepting
states is “at most d,” instead of “finite” is used as an acceptance condition of
the automata. An incremental approach is also taken. A point of difference with
our method is that the number of witnesses or counterexamples is not bounded
in the approach. Several tools have been proposed for checking the realizabil-
ity of specifications written in LTL, including Lily[14], Acacia+[6], Unbeast[11].
These tools are based on the above method.

SAT-Based or SMT-Based Verification Methods: SAT techniques are used
widely in formal verification. The most famous method is bounded model check-
ing (BMC) (see [4]). In BMC, we check whether there exists counter-traces of a
size k. Bounded realizability checking[21], which is the focus of this work, is a
representative example the field of verification for reactive system specification.
6 Here, we use the specification (6) ∧ (7) → (1) ∧ (2) ∧ (4) ∧ (5) in [11].

Reducing Bounded Realizability Analysis To Reachability Checking 151

The bounded checking methods for necessary (of sufficient) conditions of real-
izability were also studied. In [24][25], a method that detects a counterexample
represented by a loop of size k was presented.

7 Conclusion

This paper presents an efficient method for bounded realizability checking.
We showed that the complexity of the bounded realizability problem is
NEXPTIME-complete. In our method, we reduce bounded nonemptiness check-
ing for UCT to SAT-based reachability checking. In many cases in which there
exists a small witness or counterexample, the result is obtained by reachability
checking of small steps. We implemented our method and demonstrated that
it can check the existence of small witnesses or counterexamples efficiently. We
believe that our method is of practical use in the requirement analysis phase
when developing safety critical systems.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
15K15969.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.)
Automata, Languages and Programming. LNCS, vol. 372, pp. 1–17. Springer,
Heidelberg (1989)

2. Aoshima, T., Yonezaki, N.: Verification of reactive system specifications with outer
event conditional formula. In: Proc. International Symposium on Principles of Soft-
ware Evolution, pp. 189–193 (2000)

3. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.: SAT-
based induction for temporal safety properties. Electr. Notes Theor. Comput. Sci.
119(2), 3–16 (2005)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

5. Boas, P.V.E.: The convenience of tilings. In: Complexity, Logic, and Recursion
Theory. Lecture Notes in Pure and Applied Mathematics, vol. 187, pp. 331–363
(1997)

6. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 652–657. Springer, Heidelberg (2012)

7. Chlebus, B.S.: From domino tilings to a new model of computation. In: Skowron,
A. (ed.) Computation Theory. LNCS, vol. 208, pp. 24–33. Springer, Heidelberg
(1985)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

152 M. Shimakawa et al.

9. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

12. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

13. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Proc.
Second Workshop on Automated Formal Methods, pp. 69–76 (2007)

14. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Proc. FMCAD,
pp. 117–124 (2006)

15. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. FOCS,
pp. 531–542 (2005)

16. Mochizuki, S., Shimakawa, M., Hagihara, S., Yonezaki, N.: Fast translation from
LTL to Büchi automata via non-transition-based automata. In: Merz, S., Pang, J.
(eds.) ICFEM 2014. LNCS, vol. 8829, pp. 364–379. Springer, Heidelberg (2014)

17. Mori, R., Yonezaki, N.: Several realizability concepts in reactive objects. In: Proc.
Information Modeling and Knowledge Bases IV: Concepts, Methods and Systems,
pp. 407–424 (1993)

18. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. POPL,
pp. 179–190 (1989)

20. Rosner, R.: Modular Synthesis of Reactive Systmes. Ph.D. thesis, Weizmann Insti-
tute of Science (1992)

21. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

22. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr, W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

23. Shimakawa, M., Hagihara, S., Yonezaki, N.: Complexity of strong satisfiability
problems for reactive system specifications. IEICE Trans. Inf. & Syst. E96–D(10),
2187–2193 (2013)

24. Shimakawa, M., Hagihara, S., Yonezaki, N.: SAT–based bounded strong satis-
fiability checking of reactive system specifications. In: Mustofa, K., Neuhold,
E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804,
pp. 60–70. Springer, Heidelberg (2013)

25. Shimakawa, M., Hagihara, S., Yonezaki, N.: Bounded strong satisfiability checking
of reactive system specifications. IEICE Trans. Inf. & Syst. E97–D(7), 1746–1755
(2014)

26. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

27. Tauriainen, H.: On translating linear temporal logic into alternating and nonde-
terministic automata. Research Report A83, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, Espoo, Finland (2003)

Rearranging Two Dimensional Arrays by Prefix
Reversals

Akihiro Yamamura(B)

Department of Computer Science and Engineering, Akita University, 1-1,
Tegata-Gakuenmachi, Akita, Japan

yamamura@ie.akita-u.ac.jp

Abstract. Generalizing the pancake sorting problem, we consider a
reachability problem which asks whether an arbitrary two dimensional
array can be obtained from an initial array by prefix reversals. In the
case of the pancake sorting problem, sorting is always possible, whereas,
it is not clear whether a rearrangement of two dimensional arrays is
always possible. We shall prove any array is reachable from the initial
array by prefix reversals unless the numbers of both rows and columns
are divisible by 4. Using group theory, we also give a necessary and suf-
ficient condition that an array is reachable from the initial array in such
a case. We also give upper bounds on the number of prefix reversals to
rearrange.

Keywords: Pancake sorting problem · Prefix reversals · Rearrangement

1 Introduction

The problem of rearranging by prefix reversals, as known as the pancake sorting
problem, is to sort randomly piled pancakes of different size. A prefix reversal is
an operation of reversing elements in the list including the beginning element.
The minimum number of prefix reversals to sort a given list of integers into an
ascending order was asked by Gates and Papadimitriou and an upper bound 5

3n
for sorting a list of length n was given in [6]. They conjectured that 19

16n is required,
however, it is disproved in [7]. A better bound 18

11n was given in [4]. On the other
hand, the pancake sorting problem is shown to be NP-hard in [3]. A similar prob-
lem of sorting a permutation by reversals, which is related to genomes evolving
by inversions, is studied by many authors (e.g. [1,2]). Another variant called the
burnt pancake problem is studied many authors (e.g. [5,8]).

In this paper we introduce a two dimensional variant of the unburnt pan-
cake sorting problem. We consider a two dimensional array instead of a list.
Given an n × m array filled with integers of different size, we ask whether every
permutation of the integers on the array is reachable from an initial array by
prefix reversals. A prefix reversal in this setting consists in inserting a spatula
vertically or horizontally into the array and rotating a lefthand part or an upper
part 180 degree. As we will see, a rearrangement is not always reachable from
the initial array. We shall show the reachability depends on the numbers of rows
and columns of arrays and on the permutations operated on entries of arrays.
c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 153–165, 2015.
DOI: 10.1007/978-3-319-24537-9 14

154 A. Yamamura

2 Rearrangement of Two Dimensional Arrays

2.1 Prefix Reversals

We formulate a rearrangement of a two dimensional array by prefix reversals. Sup-
pose A is an n × m array. Then A comprises of n × m cells. We denote the entry
in the (i, j) position of A by aij (see Fig 1). We employ the standard matrix rep-
resentation (aij) to denote an array A. The standard array En×m of size n × m is
defined to be (eij) where eij is the integer (i − 1) × m + j (see Fig. 2). We denote

A = A1
A2

if A comprises of an upper block A1 and a lower block A2, or A = A3|A4 if
A comprises of a left block A3 and a right block A4. For an n×m array A = (aij),
the reversal of A is the n × m array (bij) such that bij = an−i+1,m−j+1 for every
(i, j). We denote it by R(A) (see Fig. 3).

Suppose A is an n × m array. The transformation A1
A2

⇒ R(A1)
A2

is called a
horizontal prefix reversal and denoted by hr(1, i) if A1 has i rows. The trans-
formation A3|A4 ⇒ R(A3)|A4 is called a vertical prefix reversal and denoted by
vr(1, j) if A3 has j columns. The horizontal suffix reversal A1

A2
⇒ A1

R(A2)
and the

vertical suffix reversal A3|A4 ⇒ A3|R(A4) are obtained by compositions of prefix
reversals hr(1, n) ◦ hr(1, n − i) ◦ hr(1, n) and vr(1,m) ◦ vr(1,m − j) ◦ vr(1,m),
respectively. We denote them by hr(i + 1,m) and vr(j + 1, n).

a11 a12 · · · a1m−1 a1m

a21 a22 · · · a2m−1 a2m

...
...

...
...

...

an1 an2 · · · anm−1 anm

Fig. 1. n×m array A

1 2 · · · m

m+ 1 m+ 2 · · · 2m

2m+ 1 2m+ 2 · · · 3m
...

...
...

...

(n− 1)m+ 1 · · · · · · nm

Fig. 2. n×m standard array En×m

anm anm−1 · · · an2 an1

...
...

...
...

...

a2m a2m−1 · · · a22 a21

a1m a1m−1 · · · a12 a11

Fig. 3. R(A)

Let us see a concrete example. Suppose A is a 2 × 3 array
[
3 6 5
2 4 1

]
. We can

obtain E2×3(=
[
1 2 3
4 5 6

]
) from A by operating compositions of prefix reversals

vr(1, 1) ◦ hr(1, 2) ◦ hr(1, 1) ◦ hr(1, 2) ◦ vr(1, 2) ◦ hr(1, 1);
[
3 6 5
2 4 1

]
⇒

[
5 6 3
2 4 1

]
⇒

[
4 2 3
6 5 1

]
⇒

[
1 5 6
3 2 4

]
⇒

[
6 5 1
3 2 4

]
⇒

[
4 2 3
1 5 6

]
⇒

[
1 2 3
4 5 6

]

We should note that hr(1, 2) and vr(1, 3) are the same operation. There are
numerous ways to reach E2×3 from A.

Rearranging Two Dimensional Arrays by Prefix Reversals 155

2.2 Reachability Problem

We denote the symmetric group of n elements by Sn as usual. It is known
that |Sn| = n! and every element of Sn is a product of transpositions, that is,
2-cycles. A permutation σ in Sn is called even if σ can be written as a product
of an even number of transpositions, otherwise σ is called odd. The alternating
group of degree n, denoted by An, is the subgroup of Sn consisting of all even
permutations. It is known that An is a proper normal subgroup of Sn for every

n > 1 and has the order
n!
2

(see [9]).

Let A be an n × m array in which an integer in {1, 2, 3, . . . , nm} is placed
on each position such that no two distinct positions possess the same number.
Suppose that σ is a permutation on the set {1, 2, 3, . . . , nm}. The n × m array
obtained from A by operating σ on each number placed on A is called a rear-
rangement of A by σ, and denoted by σ(A). The reachability problem of two
dimensional arrays is to ask whether a given n×m array σ(En×m), where σ is a
permutation of the set {1, 2, 3, . . . , nm}, can be rearranged to the standard array
En×m by vertical and horizontal prefix reversals. If it is reachable, we also ask
the minimum number of prefix reversals for all rearrangements. Note that the
pancake sorting problem is a reachability problem for 1 × m arrays and always
possible to rearrange. Unlike the pancake sorting problem, it is not trivial to
decide whether an arbitrary array is reachable from the standard array by prefix
reversals.

Let us recall the example above. Let A be the array
[
3 6 5
2 4 1

]
. Then we have

A =
[
σ(1) σ(2) σ(3)
σ(4) σ(5) σ(6)

]
= σ(E2×3), where σ is the permutation (1 3 5 4 2 6).

As we saw above, the standard array E2×3 is reachable from A by 6 prefix
reversals. In fact we have the following theorem.

Theorem 1. Let n and m be positive integers.
(1) Suppose either n �≡ 0 (mod 4) or m �≡ 0 (mod 4) holds. Given σ in Snm,
the standard array En×m is reachable from the array σ(En×m) by prefix reversals.
(2) Suppose n ≡ m ≡ 0 (mod 4). Given σ in Snm, the standard array En×m is
reachable from the array σ(En×m) by prefix reversals if and only if σ is even.

We shall give a sketch of the proof of Theorem 1 in the subsequent sections.
We classify the proof into four cases according to the parameter n: (Case 1)
n = 2 (or m = 2), (Case 2) n ≡ 1, 3 (mod 4), n > 2 and m > 2, (Case 3)
n ≡ 2 (mod 4), n > 2 and m > 2, (Case 4) n ≡ 0 (mod 4) and m ≡ 0 (mod 4).
We shall show an arbitrary array is reachable from the standard array unless
the number of rows is divisible by 4.

Note that we use horizontal and vertical prefix reversals and so row operations
and column operations are symmetrical in the sense that if a rearrangement with
respect to rows can be realized then a similar rearrangement with respect to
columns can be realized and vice versa provided that the conditions on n and m
are same. Thus, we omit the row-column dual cases in this paper for the sake of
simplicity.

156 A. Yamamura

We discuss the first three cases in Section 3 and the fourth case in Section 4.
We also give upper bounds on necessary prefix reversals to rearrange when it is
reachable in the last section.

2.3 Elementary Operations

We introduce elementary operations on arrays used frequently in the subsequent
sections. We suppose A is an n × m array throughout this section. It is easy to see
that if the composition hr(1, i) ◦ hr(1, 1) ◦ hr(1, i) is operated to A, we obtain an
array that coincides with A except for the ith row is reversed. Such an operation
is called a row reversal and denoted by rr(i). For example, we see the composition
hr(1, 2) ◦ hr(1, 1) ◦ hr(1, 2) reverses the second row of the array E4,4 as follows.

⎡

⎢
⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

8 7 6 5
4 3 2 1
9 10 11 12
13 14 15 16

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

5 6 7 8
4 3 2 1
9 10 11 12
13 14 15 16

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 2 3 4
8 7 6 5
9 10 11 12
13 14 15 16

⎤

⎥
⎥
⎦

Similarly, the composition vr(1, j) ◦ vr(1, 1) ◦ vr(1, j) reverses the jth column of
A and called the column reversal and denoted by cr(j).

Now we operate the composition hr(n, n) ◦ vr(1, 1) ◦ hr(n, n) ◦ hr(1, 1) ◦
vr(1, 1)◦hr(1, 1) to A. The resulting array is obtained from A by exchanging the
four corners diagonally. For example, we see the composition hr(4, 4) ◦ vr(1, 1) ◦
hr(4, 4) ◦ hr(1, 1) ◦ vr(1, 1) ◦ hr(1, 1) exchanges the four corners of E4,4 diago-
nally, that is, 1 and 16 are exchanged and 4 and 13 are exchanged, respectively.
We call this operation a corner exchanging and denote it by ce.

⎡

⎢
⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

4 3 2 1
5 6 7 8
9 10 11 12
13 14 15 16

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

13 3 2 1
9 6 7 8
5 10 11 12
4 14 15 16

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 2 3 13
9 6 7 8
5 10 11 12
4 14 15 16

⎤

⎥
⎥
⎦

→

⎡

⎢
⎢
⎣

1 2 3 13
9 6 7 8
5 10 11 12
16 15 14 4

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

16 2 3 13
5 6 7 8
9 10 11 12
1 15 14 4

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

16 2 3 13
5 6 7 8
9 10 11 12
4 14 15 1

⎤

⎥
⎥
⎦

We consider certain even permutations on the entries of A. We consider entries
on the (i, k), (i, l), (j, k), and (j, l) positions of A (i �= j and k �= l). These four
positions are the intersections of the ith and jth rows and kth and lth columns. The
permutations (ai,k, aj,k)(ai,l, aj,l), (ai,k, ai,l)(aj,k, aj,l) and (ai,k, aj,l)(ai,l, aj,k) of
entries of A are called a twin transposition along column, a twin transposition along
row and a twin transposition along diagonal, respectively. These permutations play
an important role in the proof of Theorem 1.
⎡

⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · ·
· · · ai,k · · · ai,l · · ·
· · · · · · · · · · · · · · ·
· · · aj,k · · · aj,l · · ·
· · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · ·
· · · aj,k · · · aj,l · · ·
· · · · · · · · · · · · · · ·
· · · ai,k · · · ai,l · · ·
· · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦

(Twin transposition along column)

Rearranging Two Dimensional Arrays by Prefix Reversals 157

⎡

⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · ·
· · · ai,k · · · ai,l · · ·
· · · · · · · · · · · · · · ·
· · · aj,k · · · aj,l · · ·
· · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · ·
· · · ai,l · · · ai,k · · ·
· · · · · · · · · · · · · · ·
· · · aj,l · · · aj,k · · ·
· · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦

(Twin transposition along row)

⎡

⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · ·
· · · ai,k · · · ai,l · · ·
· · · · · · · · · · · · · · ·
· · · aj,k · · · aj,l · · ·
· · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦
→

⎡

⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · ·
· · · aj,l · · · aj,k · · ·
· · · · · · · · · · · · · · ·
· · · ai,l · · · ai,k · · ·
· · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦

(Twin transposition along diagonal)

Note that the twin transposition (ai,k, aj,k)(ai,l, aj,l) along column is realized
by hr(j, n) ◦hr(1, i) ◦ vr(m− k +1,m) ◦ vr(1,m− l +1) ◦hr(1, 1) ◦ ce ◦hr(1, 1) ◦
vr(m−k +1,m)◦ vr(1,m− l +1)◦hr(j, n)◦hr(1, i). It is denoted by tt((i, k) ↔
(j, k), (i, l) ↔ (j, l)).

Let us see how the transposition (7 17)(9 19) is realized in a 5×5 array. First
we reverse the first two rows and the last two rows by hr(4, 5)◦hr(1, 2). Second,
we reverse the first two columns and the last two columns by vr(4, 5) ◦ vr(1, 2).
Then we reverse the first row by hr(1, 1). Now we operate a corner exchanging
ce. After the corner exchanging, we operate the same operations above in the
reverse order, that is, hr(4, 5) ◦ hr(1, 2) ◦ vr(4, 5) ◦ vr(1, 2) ◦ hr(1, 1). By these
operations, the twin transposition along column (7 17)(9 19) is realized.

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
6 7 8 9© 10
11 12 13 14 15
16 17 18 19© 20
21 22 23 24 25

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

10 9© 8 7 6
5 4 3 2 1
11 12 13 14 15
25 24 23 22 21
20 19© 18 17 16

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

19© 20 8 16 17
24 25 3 21 22
12 11 13 15 14
4 5 23 1 2
9© 10 18 6 7

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

17 16 8 20 19©
24 25 3 21 22
12 11 13 15 14
4 5 23 1 2
9© 10 18 6 7

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

7 16 8 20 9©
24 25 3 21 22
12 11 13 15 14
4 5 23 1 2
19© 10 18 6 17

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

9© 20 8 16 7
24 25 3 21 22
12 11 13 15 14
4 5 23 1 2
19© 10 18 6 17

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

10 19© 8 17 6
5 4 3 2 1
11 12 13 14 15
25 24 23 22 21
20 9© 18 7 16

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
6 17 8 19© 10
11 12 13 14 15
16 7 18 9© 20
21 22 23 24 25

⎤

⎥
⎥
⎥
⎥
⎦

Similarly, the twin transposition along row (ai,k, ai,l)(aj,k, aj,l) is realized by
hr(j, n)◦hr(1, i)◦vr(m−k+1,m)◦vr(1,m−l+1)◦vr(1, 1)◦ce◦vr(1, 1)◦vr(m−k+
1,m)◦vr(1,m−l+1)◦hr(j, n)◦hr(1, i), and the twin transposition along diagonal
(ai,k, aj,l)(ai,l, aj,k) is realized by hr(j, n)◦hr(1, i)◦vr(m−k+1,m)◦vr(1,m−l+
1)◦ce◦vr(m−k+1,m)◦vr(1,m−l+1)◦hr(j, n)◦hr(1, i). The twin transpositions

158 A. Yamamura

along row and diagonal are denoted by tt((i, k) ↔ (i, l), (j, k) ↔ (j, l)) and
tt((i, k) ↔ (j, l), (i, l) ↔ (j, k)), respectively.

3 Reachable Arrays

If n = 1 or m = 1, the reachability problem of n × m arrays is equivalent to the
pancake sorting problem and so it is always possible. In this case, rearrangement
requires at most 18

11n horizontal prefix reversals for an n × 1 array and at most
18
11m vertical prefix reversals for a 1×m array, respectively, by [4]. Thus, we may
assume n > 1 and m > 1. In Section 3.1, we examine the case of n = 2. The case
of m = 2 can be shown similarly. Then we consider the cases n ≡ 1, 2, 3 (mod 4)
assuming n > 2 and m > 2 after Section 3.1.

We recall that row operations and column operations are symmetrical in
the sense that if a rearrangement with respect to rows can be realized then a
similar rearrangement with respect to columns can be realized and vice versa
provided that the conditions on n and m are same. Therefore the cases that
m ≡ 1, 2, 3 (mod 4) can be shown similarly and we will not discuss these cases.

3.1 n = 2

We shall show how to rearrange a 2 × m array A (m ≥ 2) to the standard
array E2×m by prefix reversals. First, we show how to exchange two entries on
the (1, p) and (1, q) positions (p < q). We operate hr(2, 2) ◦ vr(1, 1) ◦ vr(q,m) ◦
vr(1, p) to A. Then two entries on the (1, p) and (1, q) positions are moved to
the (1, 1) and (2, 1) positions. Then we operate vr(1, 1). After that we operate
vr(1, p) ◦ vr(q,m) ◦ vr(1, 1) ◦ hr(2, 2). Then we realize the transposition of two
entries on the (1, p) and (1, q) positions.

Let us see a concrete example, where we exchange 2 and 4.

[
1 2© 3 4 5 6
7 8 9 10 11 12

]
→

[
8 7 3 12 11 10
2© 1 9 6 5 4

]
→

[
2© 7 3 12 11 10
8 1 9 6 5 4

]
→

[
2© 7 3 12 11 10
4 5 6 9 1 8

]
→

[
4 7 3 12 11 10
2© 5 6 9 1 8

]
→

[
4 7 3 12 11 10
8 1 9 6 5 2©

]
→

[
8 7 3 12 11 10
4 1 9 6 5 2©

]
→

[
1 4 3 2© 5 6
7 8 9 10 11 12

]

It is easy to see that we can similarly exchange when two entries are on
different rows. Therefore we can realize any transposition by prefix reversals.
Since every permutation is a composition of transpositions, we can realize any
permutation by prefix reversals. Consequently, every array is reachable from any
other in this case.

We remark that we do not use any twin transpositions in this case although
we will see we use considerable number of twin transpositions in the other cases.

Rearranging Two Dimensional Arrays by Prefix Reversals 159

3.2 n ≡ 1, 3 (mod 4)

We have n = 2k+1 for some positive integer k. We shall show any transposition
is realized by prefix reversals.

Horizontal Transposition of (k+1, 1) and (k+1, 2) Entries. Let us call
a permutation exchanging two elements on a certain row (on a certain column)
a horizontal transposition (vertical transposition, respectively).

We shall show how to realize a horizontal transposition of entries on the
(k+1, 1) and (k+1, 2) positions in a (2k+1)×m array A. There are 2k rows except
for the k + 1 row in A. First, we operate k twin transpositions along diagonal
tt((i, 1) ↔ (n− i+1, 2), (i, 2) ↔ (n− i+1, 1)) for every i = 1, 2, 3, . . . , k. Second,
we operate vr(1, 2). The resulting array is obtained from A by transposing the
entries of (k + 1, 1) and (k + 1, 2) positions.

Let us see a concrete example. We realize a transposition (7 8) in a 5 × m
array below. So k = 2 in this case. First, we operate 2 twin transpositions
along diagonal; tt((1, 1) ↔ (5, 2), (1, 2) ↔ (5, 1)) and tt((2, 1) ↔ (4, 2), (2, 2) ↔
(4, 1)). Second, we operate vr(1, 2) and the desired transposition (7 8) is realized.
Colored prints below indicate the positions where the twin transpositions are
carried out.

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 · · ·
4 5 6 · · ·
7© 8© 9 · · ·
10 11 12 · · ·
13 14 15 · · ·

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

14 13 3 · · ·
4 5 6 · · ·
7© 8© 9 · · ·
10 11 12 · · ·
2 1 15 · · ·

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

14 13 3 · · ·
11 10 6 · · ·
7© 8© 9 · · ·
5 4 12 · · ·
2 1 15 · · ·

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 · · ·
4 5 6 · · ·
8© 7© 9 · · ·
10 11 12 · · ·
13 14 15 · · ·

⎤

⎥
⎥
⎥
⎥
⎦

Transposition of Entries on Arbitrary Positions. We show how to
exchange two entries on arbitrary positions (i, p) and (j, q). We move the entries
to the (k + 1, 1) and (k + 1, 2), respectively using twin transpositions. If (i, p)
is (k + 1, 1) or (k + 1, 2) then we do not have to operate any permutation to
move. Likewise, if (j, q) is (k + 1, 1) or (k + 1, 2) then we do not have to operate
any permutation to move. So we suppose that both are neither (k + 1, 1) nor
(k + 1, 2).

Suppose that k + 1 �= i and 1 �= p. We operate the twin transposition tt((k +
1, 1) ↔ (i, p), (i, 1) ↔ (k + 1, p)) along diagonal. Suppose that k + 1 = i and
1 �= p, that is (i, p) = (k+1, p). We choose any row 1 ≤ h ≤ n such that h �= k+1.
Then we operate the twin transposition tt((k+1, 1) ↔ (k+1, p), (h, 1) ↔ (h, p))
along row. Next suppose that k + 1 �= i and 1 = p, that is, (i, p) = (i, 1). We
choose any column 1 ≤ g ≤ m such that g �= 1 nor g �= 2. Then we operate the
twin transposition tt((k + 1, 1) ↔ (i, 1), (k + 1, g) ↔ (i, g)) along column. The
entry on the (i, p) position is exchanged with the entry on the (k +1, 1) position
in any case.

Suppose that k +1 �= j and 2 �= q. We operate the twin transposition tt((k +
1, 2) ↔ (j, q), (j, 2) ↔ (k+1, q)) along diagonal. Suppose that k+1 = j and 2 �= q,
that is (j, q) = (k + 1, 2). We choose any row 1 ≤ h ≤ n such that h �= k + 1.

160 A. Yamamura

Then we operate the twin transposition tt((k + 1, 2) ↔ (j, q), (h, 2) ↔ (h, q))
along row. Next suppose that k + 1 �= j and 2 = q, that is, (j, q) = (j, 2). We
choose any column 1 ≤ g ≤ m such that g �= 1 nor g �= 2. Then we operate the
twin transposition tt((k + 1, 2) ↔ (j, q), (k + 1, g) ↔ (j, g)) along column. The
entry on the (j, q) position is exchanged with the entry on the (k +1, 2) position
in any case.

After the two twin transpositions above, we exchange the entries on (k+1, 1)
and (k + 1, 2) positions by the operation above. Then we operate the same two
twin transpositions in the reverse order. Now we realize the transposition of the
entries of (i, p) and (j, q) positions. Note that we move several entries other than
(k+1, 1), (k+1, 2), (i, p) and (j, q) positions in the course of operations, however,
the other entries stay the same position after all the operations are carried out
because we operate the same operations twice in the reverse order.

See how the operations transform the array and exchange ai,p and aj,q when
k + 1 �= i, p �= 1, 2, k + 1 �= j and q �= 1, 2. Colored print letters indicate
the corresponding twin transpositions. It is routine to see the other cases, e.g.
k + 1 = i or p = 1, also work using twin transpositions along rows and columns.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · · · · ·
ai,1 · · · · · · ai,p · · · · · ·
· · · · · · · · · · · · · · · · · ·

ak+1,1 ak+1,2 · · · ak+1,p · · · ak+1,q

· · · · · · · · · · · · · · · · · ·
· · · aj,2 · · · · · · · · · aj,q

· · · · · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · · · · ·
ak+1,p · · · · · · ak+1,1 · · · · · ·

· · · · · · · · · · · · · · · · · ·
ai,p aj,q · · · ai,1 · · · aj,2

· · · · · · · · · · · · · · · · · ·
· · · ak+1,q · · · · · · · · · ak+1,2

· · · · · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · · · · ·
ak+1,p · · · · · · ak+1,1 · · · · · ·

· · · · · · · · · · · · · · · · · ·
aj,q ai,p · · · ai,1 · · · aj,2

· · · · · · · · · · · · · · · · · ·
· · · ak+1,q · · · · · · · · · ak+1,2

· · · · · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· · · · · · · · · · · · · · · · · ·
ai,1 · · · · · · aj,q · · · · · ·
· · · · · · · · · · · · · · · · · ·

ak+1,1 ak+1,2 · · · ak+1,p · · · ak+1,q

· · · · · · · · · · · · · · · · · ·
· · · aj,2 · · · · · · · · · ai,p

· · · · · · · · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3.3 n ≡ 2 (mod 4)

We have n = 4k+2 for some positive integer k. We shall show any transposition
is realized by prefix reversals.

Vertical Transposition of (2k + 1, 1) and (2k + 2, 1) Entries. We show
how to realize a vertical transposition of entries on the (2k +1, 1) and (2k +2, 1)
positions in a (4k + 2,m) array. We assume that the size m is larger than 2,
otherwise the transposition can be realized by prefix reversals as we saw in
Section 3.1.

Rearranging Two Dimensional Arrays by Prefix Reversals 161

We operate vr(1, 1) to exchange entries on the (2k+1, 1) and (2k+2, 1) posi-
tions, however, this operation also moves the other entries on the first column.
We restore the entries on the first column except for (2k + 1, 1) and (2k + 2, 1)
positions by iterating the following operations for every 1 ≤ i ≤ k. The basic
idea is to exchange the entries on the (2i, 1) and (4k − 2i + 3, 1) positions and
(2i−1, 1) and (4k−2i+4, 1) positions, respectively by moving these four entries
in positions for a twin transposition and then exchange couples of these entries,
simultaneously.

First, we operate rr(4k−2i+3)◦rr(2i). Second, we operate tt((2i,m−1) ↔
(2i−1,m−1), (2i,m) ↔ (2i−1,m))◦ tt((4k −2i+3,m−1) ↔ (4k −2i+4,m−
1), (4k − 2i + 3,m) ↔ (4k − 2i + 4,m)). These two operations move the entries
on the (2i, 1) and (4k − 2i + 3, 1) positions and (2i − 1, 1) and (4k − 2i + 4, 1)
positions in positions for a twin transposition. Third, we operate tt((2i−1, 1) ↔
(4k−2i+4, 1), (2i−1,m) ↔ (4k−2i+4,m)). This operation realizes the exchange
of targeted entries. Fourth, we carry out the same operations in the reverse order,
that is, we operate tt((2i,m−1) ↔ (2i−1,m−1), (2i,m) ↔ (2i−1,m))◦tt((4k−
2i+3,m− 1) ↔ (4k − 2i+4,m− 1), (4k − 2i+3,m) ↔ (4k − 2i+4,m)). Lastly
we operate rr(4k − 2i + 3) ◦ rr(2i). Then the transposition (a2k+1,1 a2k+2,1) is
realized. In the iteration process, entries other than the targeted entries are not
replaced because we operate the same operation twice.

Let us see an example. We consider 6×4 array (the case of k = 1) below and
aim at transposing 9 and 13, where 9 is on the (2k+1, 1) position and 13 is on the
(2k + 2, 1) position. The other elements on the first column are 1, 5, 17 and 21.
First, we reverse the first column and then relocate 1, 5, 17 and 21 in the positions
where we can use a twin transposition to exchange each other. We reverse the
second and the fifth row, and carry out two twin transpositions (3 6)(4 17) and
(18 23)(5 24). Then we carry out the twin transposition (1 21)(5 17). After
that, we carry out the same operations in the reverse order and we realized the
transposition (9 13).

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4
5 6 7 8
9© 10 11 12
13© 14 15 16
17 18 19 20
21 22 23 24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

21 2 3 4
17 6 7 8
13© 10 11 12
9© 14 15 16
5 18 19 20
1 22 23 24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

21 2 3 4
8 7 6 17
13© 10 11 12
9© 14 15 16
20 19 18 5
1 22 23 24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

21 2 6 17
8 7 3 4
13© 10 11 12
9© 14 15 16
20 19 23 24
1 22 18 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 6 5
8 7 3 4
13© 10 11 12
9© 14 15 16
20 19 23 24
21 22 18 17

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4
8 7 6 5
13© 10 11 12
9© 14 15 16
20 19 18 17
21 22 23 24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4
5 6 7 8
13© 10 11 12
9© 14 15 16
17 18 19 20
21 22 23 24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Transposition of Entries of Arbitrary Positions. We can move entries on
any positions to the (2k + 1, 1) and (2k + 2, 1) positions, respectively, using two

162 A. Yamamura

twin transpositions by an argument similar to the one in Section 3.2. Then we
carry out the transposition of the entries on the (2k+1, 1) and (2k+2, 1) positions
as we described above. After that we operate the same twin transpositions in the
reverse order. Then we can exchange the targeted two entries without affecting
positions of the other entries and so we can realize an arbitrary transposition.

Remark 1. We exclude the case that n = 2 (the case of k = 0) from this section
and considered it in Section 3.1. Our proof of rearrangement in this section relies
on moving two entries at arbitrary positions to the (2k + 1, 1) and (2k + 2, 1)
positions using twin transpositions. Since we do not have enough rows to employ
twin transpositions in the case of n = 2, it is impossible to move two entries to
the (2k + 1, 1) and (2k + 2, 1) positions simultaneously by twin transpositions.
On the other hand, we can directly replace two entries at arbitrary positions on
the (1, 1) and (2, 1) positions using prefix reversals in Section 3.1.

4 Unreachable Arrays

In this section, we discuss unreachability of an n×m array when n ≡ 0 (mod 4)
and m ≡ 0 (mod 4). We shall show that for a given permutation σ the standard
array E4k×4h is reachable from the array σ(E4k×4h) by prefix reversals if and
only if σ is even. We suppose A is an n × m array, where n = 4h and m = 4k
for some positive integers h, k in this section.

4.1 Unreachability of σ(E4h×4k) for Any Odd Permutation σ

We shall show that a permutation realized by prefix reversals is always even.
We consider the horizontal prefix reversal hr(1, p) for an arbitrary 1 ≤ p ≤ 4k.
The sub-array operated by hr(1, p) is shown below:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,2h a1,2h+1 · · · a1,4h−1 a1,4h

a2,1 a2,2 · · · a2,2h a2,2h+1 · · · a2,4h−1 a2,4h

...
...

...
...

...
...

...
...

ap−1,1 ap−1,2 · · · ap−1,2h ap−1,2h+1 · · · ap−1,4h−1 ap−1,4h

ap,1 ap,2 · · · ap,2h ap,2h+1 · · · ap,4h−1 ap,4h

⎤

⎥
⎥
⎥
⎥
⎥
⎦

After operating hr(1, p) to A, the upper p rows of A turns out to be
⎡

⎢
⎢
⎢
⎢
⎢
⎣

ap,4h ap,4h−1 · · · ap,2h+1 ap,2h · · · ap,2 ap,1

ap−1,4h ap−1,4h−1 · · · ap−1,2h+1 ap−1,2h · · · ap−1,2 ap−1,1

...
...

...
...

...
...

...
...

a2,4h a2,4h−1 · · · a2,2h+1 a2,2h · · · a2,2 a2,1

a1,4h a1,4h−1 · · · a1,2h+1 a1,2h · · · a1,2 a1,1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Rearranging Two Dimensional Arrays by Prefix Reversals 163

It is a routine to see that hr(1, p) generates a permutation which is a product
of disjoint transpositions (aw,x, ay,z) where 1 ≤ w, y ≤ p, 1 ≤ x ≤ 2h, and
2h + 1 ≤ z ≤ 4h satisfying w + y = p + 1 and x + z = 4h + 1. Note that there
are p × 2h elements aw,x satisfying 1 ≤ w ≤ p and 1 ≤ x ≤ 2h, and also there
are p × 2h elements ay,z satisfying 1 ≤ y ≤ p and 2h + 1 ≤ z ≤ 4h. Hence, the
permutation realized by hr(1, p) is a product of p × 2h disjoint transpositions
and so it is even.

Similarly a permutation realized by any vertical prefix reversal vr(1, q) is
even. Therefore every permutation realized by prefix reversals is a product of
even permutations, and so, it is contained in the alternating group A16ij which
is a proper subgroup of the symmetric group S16ij . Consequently, prefix reversals
cannot realize any odd permutation on the entries of a 4h × 4k array.

4.2 Reachability of σ(E4h×4k) for Any Even Permutation σ

In Section 4.1, we have shown that prefix reversals can realize only even permu-
tations. We now ask whether any even permutation σ can be realized by prefix
reversals. We shall answer this question affirmatively in this section.

Suppose σ is factored as τ1τ2 · · · τ2r where τi (1 ≤ i ≤ 2r) is a transposition.
If we could prove that E4h×4k is reachable from the array ρ(E4h×4k), where
ρ = τ1τ2 and τ1 and τ2 are transpositions, by prefix reversals, then the general
case can be obtained by induction. Therefore, we consider the case that σ = τ1τ2,
where τ1 and τ2 are transposition. There are two cases to be considered: (1) τ1
and τ2 are disjoint and (2) τ1 and τ2 are not disjoint.

Suppose τ1 and τ2 are not disjoint, that is the case (2). We have ρ = τ1τ2 =
τ1δδτ2 for any transposition δ because the inverse of a transposition is itself. In
particular, we may take any transposition δ that is disjoint both from τ1 and
from τ2. Then both τ1δ and δτ2 fall in the case (1). Therefore, it suffices to
consider only the case (1). Consequently, we shall show that E4h×4k is reachable
from ρ(E4h×4k) by prefix reversals if the permutation ρ factors as τ1τ2, where
τ1 and τ2 are disjoint transpositions.

Suppose that ρ = τ1τ2, τ1 = (a, b), τ2 = (c, d) and a, b, c, d are distinct from
each other (see the array transition below). We suppose that x is placed on the
same column as a and the same row as d and that y is placed on the same
column as d and on the same row as a. Then we operate two twin transpositions
along row, column or diagonal to exchange b and y, and c and x, respectively.
Note that since we use twin transpositions, there are other entries replaced.
Next we operate twin transpositions (a b)(c d) to exchange a and b and c and
d, respectively. After that we operate the same twin transpositions above in the
reverse order. Note that any entries except for a, b, c, d stay the same position
because the operations are carried out twice. Therefore, ρ is realized by prefix
reversals. It follows that E4h×4k is reachable from an array σ(E4h×4k) by prefix
reversals if σ is even.

164 A. Yamamura

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· ·
· · · a · · · · · · · · · y · · ·
· ·
· · · · · · · · · · · · b · · · · · ·
· ·
· · · · · · c · · · · · · · · · · · ·
· ·
· · · x · · · · · · · · · d · · ·
· ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· ·
· · · a · · · · · · · · · b · · ·
· ·
· · · · · · · · · · · · y · · · · · ·
· ·
· · · · · · x · · · · · · · · · · · ·
· ·
· · · c · · · · · · · · · d · · ·
· ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· ·
· · · b · · · · · · · · · a · · ·
· ·
· · · · · · · · · · · · y · · · · · ·
· ·
· · · · · · x · · · · · · · · · · · ·
· ·
· · · d · · · · · · · · · c · · ·
· ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· ·
· · · b · · · · · · · · · y · · ·
· ·
· · · · · · · · · · · · a · · · · · ·
· ·
· · · · · · d · · · · · · · · · · · ·
· ·
· · · x · · · · · · · · · c · · ·
· ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We only considered the case that a, b, c, d are on different rows and columns.
Similarly we can show that any composition of disjoint transpositions is realized
by twin transpositions as well. It follows that prefix reversals realize all the even
permutations. Consequently, the rearranging problem is reachable if and only if
σ is even in the case that n ≡ 0 (mod 4) and m ≡ 0 (mod 4).

5 Upper Bound of Prefix Reversals

We give upper bounds on the number of prefix reversals to rearrange.

Theorem 2. Upper bounds on the number of prefix reversals to rearrange the
array σ(En×m) to En×m (n ≥ 2) is given as follows.

(1) For n = 2 and any m, an upper bound is given by 34m − 17.
(2) For n ≡ 1, 3 (mod 4), n > 2 and m > 2, an upper bound is given by

(13n + 100) × (nm − 1).
(3) For n ≡ 2 (mod 4), n > 2 and m > 2, an upper bound is given by

(38n + 37) × (nm − 1).
(4) For n ≡ 0 (mod 4), m ≡ 0 (mod 4) and an even permutation σ, an

upper bound is given by 280 × (nm − 1).

We omit the proof of Theorem 2 due to lack of space. We note that 18
11m

vertical prefix reversals is required in the case of n = 1, that is, for a 1×m array
by the result in [4].

Rearranging Two Dimensional Arrays by Prefix Reversals 165

Remark 2. Our estimation is based on our proof of Theorem 1 and the obtained
upper bounds are not tight. For example, only 6 prefix reversals are enough to
rearrange the example in Section 2.1:

[
3 6 5
2 4 1

]
⇒

[
5 6 3
2 4 1

]
⇒

[
4 2 3
6 5 1

]
⇒

[
1 5 6
3 2 4

]
⇒

[
6 5 1
3 2 4

]
⇒

[
4 2 3
1 5 6

]
⇒

[
1 2 3
4 5 6

]

While the upper bound we give is 34 × 3 − 17 = 85. Therefore, our upper
bound seems much larger than a plausible upper bound. As a matter of fact, our
estimation of upper bound is very gross. We use numerous twin transpositions
to prove reachability because it makes proofs shorter and clearer. However, twin
transpositions consume many prefix reversals. We did not employ any elaborate
counting argument, while there are several methods to avoid using twin transpo-
sitions. Furthermore, we did not classify the parameter m like the parameter n.
There is plenty room for reducing the number of prefix reversals if we consider
more cases depending on not only n but also m.

Acknowledgments. The author would like to thank anonymous referees whose com-
ments have led to a clearer presentation and improved the paper substantially.

References

1. Berman, P., Karpinski, M.: On some tighter inapproximability results. In:
Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol.
1644, pp. 200–209. Springer, Heidelberg (1999)

2. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sort-
ing by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp.
200–210. Springer, Heidelberg (2002)

3. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone, V.,
Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer, Heidelberg
(2012)

4. Chitturi, B., Fahle, W., Meng, Z., Morales, L., Shields, C.O., Sudborough, I.H.,
Voit, W.: An (18/11)n upper bound for rearranging by prefix reversals. Theoretical
Computer Science 410(36), 3372–3390 (2009)

5. Cohen, D.S., Blum, M.: On the problem of rearranging burnt pancakes. Discrete
Applied Mathematics 61(2), 105–120 (1995)

6. Gates, W., Papadimitriou, C.: Bounds for Sorting by Prefix Reversal. Discrete Math-
ematics 79, 47–57 (1979)

7. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J. Algo-
rithms 25(1), 67–94 (1997)

8. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed
permutations by reversals. In: ACM-SIAM SODA 1997, pp. 178–187 (1997)

9. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer (1994)

The Emptiness Problem for Valence Automata
or: Another Decidable Extension of Petri Nets

Georg Zetzsche(B)

Concurrency Theory Group, Fachbereich Informatik,
Technische Universität Kaiserslautern, Kaiserslautern, Germany

zetzsche@cs.uni-kl.de

Abstract. This work studies which storage mechanisms in automata
permit decidability of the reachability problem. The question is for-
malized using valence automata, an abstract model that generalizes
automata with storage. For each of a variety of storage mechanisms, one
can choose a (typically infinite) monoid M such that valence automata
over M are equivalent to (one-way) automata with this type of storage.

In fact, many interesting storage mechanisms can be realized by
monoids defined by finite graphs, called graph monoids. Hence, we study
for which graph monoids the emptiness problem for valence automata is
decidable. A particular model realized by graph monoids is that of Petri
nets with a pushdown stack. For these, decidability is a long-standing
open question and we do not answer it here.

However, if one excludes subgraphs corresponding to this model, a
characterization can be achieved. This characterization yields a new
extension of Petri nets with a decidable reachability problem. Moreover,
we provide a description of those storage mechanisms for which decid-
ability remains open. This leads to a natural model that generalizes both
pushdown Petri nets and priority multicounter machines.

1 Introduction

For each storage mechanism in one-way automata, it is an important question
whether the reachability problem is decidable. It therefore seems prudent to aim
for general insights into which properties of storage mechanisms are responsible
for decidability or undecidability.

Our approach to obtain such insights is the model of valence automata. These
consist of a finite-state control and a (typically infinite) monoid that represents
a storage mechanisms. The edge inscriptions consist of an input word and an ele-
ment of the monoid. Then, a computation is accepting if it arrives in a final state
and composing the encountered monoid elements yields the neutral element. This
way, by choosing a suitable monoid, one can realize a variety of storage mech-
anisms as valence automata. Hence, our question becomes: For which monoids
M is the emptiness problem for valence automata over M decidable?

We address this question for a class of monoids that was introduced in [12]
and accommodates a number of storage mechanisms that have been studied in
c© Springer International Publishing Switzerland 2015
M. Bojańczyk et al. (Eds.): RP 2015, LNCS 9328, pp. 166–178, 2015.
DOI: 10.1007/978-3-319-24537-9 15

The Emptiness Problem for Valence Automata 167

automata theory. Examples include pushdown stacks, partially blind counters
(which behave like Petri net places), and blind counters (which may attain neg-
ative values; these are in most situations interchangeable with reversal-bounded
counters), and combinations thereof. These monoids are defined by graphs and
thus called graph monoids1.

A particular type of storage mechanism that can be realized by graph
monoids are partially blind counters that can be used simultaneously with a
pushdown stack. Automata with such a storage are equivalent to pushdown Petri
nets (PPN), i.e. Petri nets where the transitions can also operate on a pushdown
stack. This means, a complete characterization of graph monoids with a decidable
emptiness problem would entail an answer to the long-standing open question
of whether reachability is decidable for this Petri net extension [8].

Contribution. While this work does not answer this open question concerning
PPN, it does provide a characterization among all graph monoids that avoid this
elusive storage type. More precisely, we identify a set of graphs, ‘PPN-graphs’,
each of which corresponds precisely to PPN. Then, among all graphs Γ avoiding
PPN-graphs as induced subgraphs, we characterize those for which the graph
monoid MΓ results in a decidable emptiness problem. Furthermore, we provide a
simple, more mechanical (as opposed to algebraic) description of (i) the storage
mechanism emerging as the most general decidable case and (ii) a mechanism
subsuming the cases we leave open. The model (i) is a new extension of partially
blind counter automata (i.e. Petri nets). While the decidability proof employs a
reduction to Reinhardt’s priority multicounter machines [8], the model (i) seems
to be expressively incomparable to Reinhardt’s model. The model (ii) is a class
of mechanisms whose simplest instance are the pushdown Petri nets and which
also subsumes priority multicounter machines.

Hence, although the results here essentially combine previous work, the per-
spective of valence automata allows us to identify two natural storage mecha-
nisms that (i) push the frontier of decidable reachability and (ii) let us interpret
PPN and priority multicounter machines as special cases of a more powerful
model that might enjoy decidability, respectively.

2 Preliminaries

A monoid is a set M together with a binary associative operation such that
M contains a neutral element. Unless the monoid at hand warrants a different
notation, we will denote the neutral element by 1 and the product of x, y ∈ M
by xy. If X is a set of symbols, X∗ denoted the set of words over X. An alphabet
is a finite set of symbols. The empty word is denoted by ε ∈ X∗.

1 They are not to be confused with the closely related, but different concept of trace
monoids [2], i.e. monoids of Mazurkiewicz traces, which some authors also call graph
monoids.

168 G. Zetzsche

(a) C4 (b) P4

Fig. 1. Graphs C4 and P4.

Valence Automata. As a framework for studying which storage mechanisms
permit decidability of the reachability problem, we employ valence automata.
They feature a monoid that dictates which computations are valid. Hence, by
an appropriate choice of the monoid, valence automata can be instantiated to
be equivalent to a concrete automata model with storage. For the purposes of
this work, equivalent is meant with respect to accepted languages. Therefore, we
regard valence automata as language accepting devices.

Let M be a monoid and X an alphabet. A valence automaton over M is a
tuple A = (Q,X,M,E, q0, F), in which (i) Q is a finite set of states, (ii) E is a
finite subset of Q×X∗ ×M ×Q, called the set of edges, (iii) q0 ∈ Q is the initial
state, and (iv) F ⊆ Q is the set of final states. For q, q′ ∈ Q, w,w′ ∈ X∗, and
m,m′ ∈ M , we write (q, w,m) →A (q′, w′,m′) if there is an edge (q, v, n, q′) ∈ E
such that w′ = wv and m′ = mn. The language accepted by A is then

L(A) = {w ∈ X∗ | (q0, ε, 1) →∗
A (f, w, 1) for some f ∈ F}.

The class of languages accepted by valence automata over M is denoted by
VA(M). If M is a class of monoids, we write VA(M) for

⋃
M∈M VA(M).

Graphs. A graph is a pair Γ = (V,E) where V is a finite set and E is a subset
of {S ⊆ V | 1 ≤ |S| ≤ 2}. The elements of V are called vertices and those of
E are called edges. Vertices v, w ∈ V are adjacent if {v, w} ∈ E. If {v} ∈ E for
some v ∈ V , then v is called a looped vertex, otherwise it is unlooped. A subgraph
of Γ is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Such a subgraph is called
induced (by V ′) if E′ = {S ∈ E | S ⊆ V ′}, i.e. E′ contains all edges from E
incident to vertices in V ′. By Γ \ {v}, for v ∈ V , we denote the subgraph of Γ
induced by V \{v}. By C4 (P4), we denote a graph that is a cycle (path) on four
vertices; see figs. 1a and 1b. Moreover, a clique is a loop-free graph in which any
two distinct vertices are adjacent. Finally, Γ− denotes the graph obtained from
Γ by deleting all loops: We have Γ− = (V,E−), where E− = {S ∈ E | |S| = 2}.

Graph Monoids. Let A be a (not necessarily finite) set of symbols and R be
a subset of A∗ × A∗. The pair (A,R) is called a (monoid) presentation. The
smallest congruence of A∗ containing R is denoted by ≡R and we will write [w]R
for the congruence class of w ∈ A∗. The monoid presented by (A,R) is defined
as A∗/≡R. Note that since we did not impose a finiteness restriction on A, up to
isomorphism, every monoid has a presentation. Furthermore, for monoids M1,
M2 we can find presentations (A1, R1) and (A2, R2) such that A1 ∩ A2 = ∅.
We define the free product M1 ∗ M2 to be presented by (A1 ∪ A2, R1 ∪ R2).

The Emptiness Problem for Valence Automata 169

Note that M1 ∗ M2 is well-defined up to isomorphism. In analogy to the n-fold
direct product, we write M (n) for the n-fold free product of M .

A presentation (A,R) in which A is a finite alphabet is a Thue system. To
each graph Γ = (V,E), we associate the Thue system TΓ = (XΓ , RΓ) over the
alphabet XΓ = {av, āv | v ∈ V }. RΓ is defined as

RΓ = {(avāv, ε) | v ∈ V } ∪ {(xy, yx) | x ∈ {av, āv}, y ∈ {aw, āw}, {v, w} ∈ E}.

In particular, we have (avāv, āvav) ∈ RΓ whenever {v} ∈ E. To simplify nota-
tion, the congruence ≡RΓ

is then also denoted by ≡Γ . We are now ready to
define graph monoids. To each graph Γ , we associate the monoid

MΓ = X∗
Γ /≡Γ .

The monoids of the form MΓ are called graph monoids.
Let us briefly discuss how to realize storage mechanisms by graph monoids.

First, suppose Γ0 and Γ1 are disjoint graphs. If Γ is the union of Γ0 and Γ1,
then MΓ ∼= MΓ0 ∗ MΓ1 by definition. Moreover, if Γ is obtained from Γ0 and
Γ1 by drawing an edge between each vertex of Γ0 and each vertex of Γ1, then
MΓ ∼= MΓ0 × MΓ1.

If Γ consists of one vertex v and has no edges, the only rule in the Thue
system is (avāv, ε). In this case, MΓ is also denoted as B and we will refer to it
as the bicyclic monoid. The generators av and āv are then also written a and ā,
respectively. It is not hard to see that B corresponds to a partially blind counter,
i.e. one that attains only non-negative values and has to be zero at the end
of the computation. Moreover, if Γ consists of one looped vertex, then MΓ is
isomorphic to Z and thus realizes a blind counter, which can go below zero and
also zero-tested in the end.

If one storage mechanism is realized by a monoid M , then the monoid B ∗M
corresponds to the mechanism that builds stacks: A configuration of this new
mechanism consists of a sequence c0ac1 · · · acn, where c0, . . . , cn are configu-
rations of the mechanism realized by M . We interpret this as a stack with the
entries c0, . . . , cn. One can open a new stack entry on top (by multiplying a ∈ B),
remove the topmost entry if empty (by multiplying ā ∈ B) and operate on the
topmost entry using the old mechanism (by multiplying elements from M). In
particular, B ∗ B describes a pushdown stack with two stack symbols. See [12]
for details and more examples.

As a final example, note that if Γ is one edge short of being a clique, then
MΓ ∼= B

(2) × B
n−2, where n is the number of vertices in Γ . Then, by the

observations above, valence automata over MΓ are equivalent to Petri nets with
n unbounded places and access to a pushdown stack. Hence, for our purposes, a
pushdown Petri net is a valence automaton over B

(2) × B
n for some n ∈ N.

3 Results

As a first step, we exhibit graphs Γ for which VA(MΓ) includes the recursively
enumerable languages. Unfortunately, the space restrictions do not permit an
inclusion of a proof for the following theorem.

170 G. Zetzsche

Theorem 1. Let Γ be a graph such that Γ− contains C4 or P4 as an induced
subgraph. Then VA(MΓ) is the class of recursively enumerable languages. In
particular, the emptiness problem is undecidable for valence automata over MΓ .

This unifies and slightly strengthens a few undecidability results concerning
valence automata over graph monoids. The case that all vertices are looped
was shown by Lohrey and Steinberg [7] (see also the discussion of theorem 4).
Another case appeared in [12].

It is not clear whether theorem 1 describes all Γ for which VA(MΓ) exhausts
the recursively enumerable languages. For example, as mentioned above, if Γ
is one edge short of being a clique, then valence automata over MΓ are push-
down Petri nets. In particular, the emptiness problem for valence automata is
equivalent to the reachability problem of this model, for which decidability is a
long-standing open question [8]. In fact, it is already open whether reachability
is decidable in the case of B(2) ×B, although Leroux, Sutre, and Totzke [5] have
recently made progress on this case [5]. Therefore, characterizing those Γ with
a decidable emptiness problem for valence automata over MΓ would very likely
settle these open questions2.

However, we will show that if we steer clear of pushdown Petri nets, we can
achieve a characterization. More precisely, we will present a set of graphs that
entail the behavior of pushdown Petri nets. Then, we show that among those
graphs that do not contain these as induced subgraphs, the absence of P4 and
C4 already characterizes decidability.

PPN-graphs. A graph Γ is said to be a PPN-graph if it is isomorphic to one of
the following three graphs:

We say that the graph Γ is PPN-free if it has no PPN-graph as an induced
subgraph. Observe that a graph Γ is PPN-free if and only if in the neighborhood
of each unlooped vertex, any two vertices are adjacent.

Of course, the abbreviation ‘PPN’ refers to ‘pushdown Petri nets’. This is
justified by the following fact.

Proposition 2. If Γ is a PPN-graph, then VA(MΓ) = VA(B(2) × B).

Transitive forests. In order to exploit the absence of P4 and C4 as induced
subgraphs, we will employ a characterization of such graphs as transitive forests.
The comparability graph of a tree t is a simple graph with the same vertices as
t, but has an edge between two vertices whenever one is a descendent of the
other in t. A simple graph is a transitive forest if it is the disjoint union of
comparability graphs of trees. For an example of a transitive forest, see fig. 2.

Let DEC denote the smallest isomorphism-closed class of monoids such that

2 Technically, it is conceivable that there is a decision procedure for each B
(2) × B

n,
but no uniform one that works for all n. However, this seems unlikely.

The Emptiness Problem for Valence Automata 171

Fig. 2. Example of a transitive forest. The solid edges are part of the trees whose
comparability graphs make up the graph.

1. for each n ≥ 0, we have B
n ∈ DEC and

2. for M,N ∈ DEC, we also have M ∗ N ∈ DEC and M × Z ∈ DEC.

Our main result characterizes those PPN-free Γ for which valence automata
over MΓ have a decidable emptiness problem.

Theorem 3. Let Γ be PPN-free. Then the following conditions are equivalent:

1. Emptiness is decidable for valence automata over MΓ .
2. Γ− contains neither C4 nor P4 as an induced subgraph.
3. Γ− is a transitive forest.
4. MΓ ∈ DEC.

Note that this generalizes the fact that emptiness is decidable for pushdown
automata (i.e. graphs with no edges) and partially blind multicounter automata
(i.e. cliques), or equivalently, reachability in Petri nets.

Note that if Γ has a loop on every vertex, then MΓ is a group. Groups
that arise in this way are called graph groups. In general, if a monoid M is a
group, then emptiness for valence automata over M is decidable if and only if the
rational subset membership problem is decidable for M [4]. The latter problem
asks, given a rational set R over M and an element m ∈ M , whether m ∈ R;
see [6] for more information. Therefore, 3 extends the following result of Lohrey
and Steinberg [7], which characterizes those graph groups for which the rational
subset membership problem is decidable.

Theorem 4 (Lohrey and Steinberg [7]). Let Γ be a graph in which every
vertex is looped. Then the rational subset membership problem for the group MΓ
is decidable if and only if Γ− is a transitive forest.

Lohrey and Steinberg show decidability by essentially proving that VA(MΓ) is
semilinear in their case. Here, we extend this argument by showing that in the
equivalent cases of theorem 3, the Parikh images of VA(MΓ) are those of lan-
guages accepted by priority multicounter machines. The latter were introduced
and shown to have a decidable reachability problem by Reinhardt [8].

172 G. Zetzsche

Intuition for Decidable Cases. In order to provide an intuition for those storage
mechanisms (not containing a pushdown Petri net) with a decidable emptiness
problem, we present an equally expressive class of monoids for which the cor-
responding storage mechanisms are easier to grasp. Let SC± be the smallest
isomorphism-closed class of monoids with

1. for each n ∈ N, we have B
n ∈ SC±,

2. for each M ∈ SC±, we also have B ∗ M ∈ SC± and M × Z ∈ SC±.

Thus, SC± realizes those storage mechanisms that can be constructed from a
finite set of partially blind counters (Bn) by building stacks (M → B ∗ M) and
adding blind counters (M → M ×Z). Then, in fact, the monoids in SC± produce
the same languages as those in DEC.

Proposition 5. VA(DEC) = VA(SC±).

While our decidability proof for SC± is a reduction to priority multicounter
machines, it should be stressed that the mechanisms realized by SC± are quite
different from priority counters and very likely not subsumed by them in terms of
accepted languages. For example, SC± contains pushdown stacks (B ∗B)—if the
priority multicounter machines could accept all context-free languages (or even
just the semi-Dyck language over two pairs of parentheses), this would easily
imply decidability for pushdown Petri nets. Indeed, SC± can even realize stacks
where each entry consists of n partially blind counters (since B ∗ (Bn) ∈ SC±).
On the other hand, priority multicounter machines do not seem to be subsumed
by SC± either: After building stacks once, SC± only allows adding blind counters
(and building stacks again). It therefore seems unlikely that a mechanism in SC±

can accept the languages even of a priority 2-counter machine.

Intuition for Open Cases. We also want to provide an intuition for the remaining
storage mechanisms, i.e. those defined by monoids MΓ about which theorems 1
and 3 make no statement. To this end, we describe a class of monoids that are
expressively equivalent to these remaining cases. The remaining cases are given
by those graphs Γ where Γ− does not contain C4 or P4, but Γ contains a PPN-
graph. Let REM denote the class of monoids MΓ , where Γ is such a graph. Let
SC+ be the smallest isomorphism-closed class of monoids with

1. B
(2) × B ∈ SC+ and

2. for each M ∈ SC+, we also have B ∗ M ∈ SC+ and M × B ∈ SC+.

This means, SC+ realizes those storage mechanisms that are obtained from a
pushdown stack, together with one partially blind counter (B(2)×B) by the trans-
formations of building stacks (M → B ∗ M) and adding partially blind counters
(M → M × B).

Proposition 6. VA(REM) = VA(SC+).

Of course, SC+ generalizes pushdown Petri nets, which correspond to monoids
B
(2)×B

n for n ∈ N. Moreover, SC+ also subsumes priority multicounter machines

The Emptiness Problem for Valence Automata 173

(see p. 175): Every time we build stacks, we can use the new pop operation to
realize a zero test on all the counters we have added so far. Let M0 = 1 and
Mk+1 = B ∗ (Mk ×B). Then, priority k-counter machines correspond to valence
automata over Mk where the stack heights never exceed 1.

4 Proof of the Characterization

First, we mention existing results that are ingredients to our proofs. A class
of languages is a collection of languages that contains at least one non-empty
language. If C is a language class such that for languages L ⊆ X∗ in C, homomor-
phisms h : X∗ → Y ∗, g : Z∗ → X∗, and regular sets R ⊆ X∗, we have h(L) ∈ C,
g−1(L) ∈ C, and L ∩ R ∈ C, we call C a full trio.

Let C be a class of languages. A C-grammar is a quadruple G = (N,T, P, S)
where N and T are disjoint alphabets and S ∈ N . P is a finite set of pairs (A,M)
with A ∈ N and M ⊆ (N ∪ T)∗, M ∈ C. We write x ⇒G y if x = uAv and
y = uwv for some u, v, w ∈ (N ∪T)∗ and (A,M) ∈ P with w ∈ M . The language
generated by G is L(G) = {w ∈ T ∗ | S ⇒∗

G w}. The class of all languages that
are generated by C-grammars is denoted Alg(C).

The well-known theorem of Chomsky and Schützenberger [1], expressed in
terms of valence automata, states that VA(Z ∗ Z) is the class of context-free
languages. This formulation, along with a new proof, is due to Kambites [3]. Let
Reg and CF denote the class of regular and context-free languages, respectively.
Then we have Reg = VA(1) and CF = Alg(Reg). Here, 1 denotes the trivial
monoid {1}. Since furthermore valence automata over B ∗ B are equivalent to
pushdown automata, we have in summary:

CF = VA(B ∗ B) = Alg(VA(1)) = Alg(CF) = VA(Z ∗ Z).

In order to work with general free products, we use the following result, which
expresses the languages in VA(M0 ∗ M1) in terms of VA(M0) and VA(M1).

Proposition 7 ([12]). Let M0 and M1 be monoids. Then VA(M0 ∗ M1) is
included in Alg(VA(M0) ∪ VA(M1)).

As a partial converse to theorem 7, we have the following. For a monoid M ,
we define R1(M) = {x ∈ M | ∃y ∈ M : xy = 1}. Observe that the set R1(M)
can be thought of as the storage contents that can be reset.

Proposition 8 ([11]). For every monoid M , VA(B ∗ B ∗ M) = Alg(VA(M)).
Moreover, if R1(M) �= {1}, then VA(B ∗ M) = Alg(VA(M)).

Since valence automata over B ∗B are essentially pushdown automata and since
Alg(VA(1)) = Alg(Reg), the equality VA(B ∗ B ∗ M) = Alg(VA(M)) generalizes
the equivalence between pushdown automata and context-free grammars.

We will also use the fact that if VA(Mi) ⊆ VA(Ni) for i ∈ {0, 1}, then
VA(M0 × M1) ⊆ VA(N0 × N1). This can be deduced from a characterization of
VA(M0 × M1) in terms of VA(M0) and VA(M1) by Kambites [3].

174 G. Zetzsche

Proof (theorem 2). By definition, we have MΓ ∼= B× (M0 ∗ M1), where Mi
∼= B

or Mi
∼= Z for i ∈ {0, 1}. We show that VA(M0 ∗ M1) = VA(B ∗ B) in any case.

This suffices, since it clearly implies VA(MΓ) = VA(B(2) × B). If M0
∼= M1

∼= B,
the equality VA(M0 ∗ M1) = VA(B ∗ B) is trivial, so we may assume M0

∼= Z.
If M1

∼= Z, then M0 ∗ M1
∼= Z ∗Z, meaning that VA(M0 ∗ M1) is the class of

context-free languages and thus VA(M0 ∗ M1) = VA(B ∗ B).
If M1

∼= B, then VA(Z ∗ B) = Alg(VA(Z)) by theorem 8. Since VA(Z) is
included in the context-free languages, we have Alg(VA(Z)) = VA(B ∗ B). ��

We shall now prove theorem 3. Note that the implication “1 ⇒ 2” immedi-
ately follows from theorem 1. The implication “2 ⇒ 3” is an old graph-theoretic
result of Wolk.

Theorem 9 (Wolk) [10]). A simple graph Γ is a transitive forest if and only
if Γ does not contain C4 or P4 as an induced subgraph.

The implication “3 ⇒ 4” is a simple combinatorial observation. An analogous
fact is part of Lohrey and Steinberg’s proof of theorem 4.

Lemma 10. If Γ is PPN-free and Γ− is a transitive forest, then MΓ ∈ DEC.

Proof. Let Γ = (V,E). We proceed by induction on |V |. Observe that by theo-
rem 9, every induced subgraph of a transitive forest is again a transitive forest.
Since furthermore every induced proper subgraph Δ of Γ is again PPN-free, our
induction hypothesis implies MΔ ∈ DEC for such graphs. If Γ is empty, then
MΓ ∼= 1 ∼= B

0 ∈ DEC. Hence, we assume that Γ is non-empty. If Γ is not con-
nected, then Γ is the disjoint union of graphs Γ1, Γ2, for which MΓ1,MΓ2 ∈ DEC
by induction. Hence, MΓ ∼= MΓ1 ∗ MΓ2 ∈ DEC.

Suppose Γ is connected. Since Γ− is a transitive forest, there is a vertex
v ∈ V that is adjacent to every vertex in V \ {v}. We distinguish two cases.

• If v is a looped vertex, then MΓ ∼= Z × M(Γ \ v), and M(Γ \ v) ∈ DEC by
induction.

• If v is an unlooped vertex, then Γ being PPN-free means that in Γ \ v, any
two distinct vertices are adjacent. Hence, MΓ ∼= B

m×Z
n, where m and n are

the number of unlooped and looped vertices in Γ , respectively. Therefore,
MΓ ∈ DEC. ��
In light of theorems 1, 9 and 10, it remains to be shown that emptiness is

decidable for valence automata over monoids in DEC. This will involve two facts
(theorem 11 and theorem 12) about the languages arising from monoids in DEC.

The following generalization of Parikh’s theorem by van Leeuwen will allow
us to exploit our description of free products by algebraic extensions. If X is
an alphabet, X⊕ denotes the set of maps α : X → N. The elements of X⊕ are
called multisets. The Parikh map is the map Ψ : X∗ → X⊕ where Ψ(w)(x) is the
number of occurrences of x in w. By P(S), we denote the power set of the set
S. A substitution is a map σ : X → P(Y ∗) and given L ⊆ X∗, we write σ(L) for
the set of all words v1 · · · vn, where vi ∈ σ(xi), 1 ≤ i ≤ n, for x1 · · · xn ∈ L and

The Emptiness Problem for Valence Automata 175

x1, . . . , xn ∈ X. If σ(x) belongs to C for each x ∈ X, then σ is a C-substitution.
The class C is said to be substitution closed if σ(L) ∈ C for every member L of
C and every C-substitution σ.

Theorem 11 (van Leeuwen [9]). For each substitution closed full trio C, we
have Ψ(Alg(C)) = Ψ(C).

For α, β ∈ X⊕, let α + β ∈ X⊕ be defined by (α + β)(x) = α(x) + β(x).
With this operation, X⊕ is a monoid. For a subset S ⊆ X⊕, we write S⊕ for
the smallest submonoid of X⊕ containing S. A subset of the form μ + F⊕ for
μ ∈ X⊕ and a finite F ⊆ X⊕ is called linear. A finite union of linear sets is
called semilinear. By SLI(C) we denote the class of languages h(L ∩ Ψ−1(S)),
where h : X∗ → Y ∗ is a morphism, L belongs to C, and S ⊆ X⊕ is semilinear.

Proposition 12 ([11]). For each monoid M , SLI(VA(M)) =
⋃

i≥0 VA(M×Z
n).

We will prove decidability for DEC by reducing the problem to the reach-
ability problem of priority multicounter machines, whose decidability has been
established by Reinhardt [8]. Priority multicounter machines are an extension of
Petri nets with one inhibitor arc. Intuitively, a priority multicounter machine is a
partially blind multicounter machine with the additional capability of restricted
zero tests: The counters are numbered from 1 to k and for each 	 ∈ {1, . . . , k},
there is a zero test instruction that checks whether counters 1 through 	 are zero.
Let us define priority multicounter machines formally.

A priority k-counter machine is a tuple A = (Q,X,E, q0, F), where (i) X
is an alphabet, (ii) Q is a finite set of states, (iii) E is a finite subset of Q ×
X∗ × {0, . . . , k} × Z

k × Q, and its elements are called edges or transitions, (iv)
q0 ∈ Q is the initial state, and (v) F ⊆ Q is the set of final states. For triples
(q, u, μ) and (q′, u′, μ′) with q, q′ ∈ Q and μ, μ′ ∈ N

k, with μ = (m1, . . . , mk),
we write (q, u, μ) →A (q′, u′, μ′) if for some (q, x, 	, ν, q′) ∈ E, we have u′ = ux,
μ′ = μ + ν, and mi = 0 for 1 ≤ i ≤ 	. The language accepted by A is defined as

L(A) = {w ∈ X∗ | (q0, ε, 0) →∗
A (f, w, 0) for some f ∈ F}.

A priority multicounter machine is a priority k-counter machine for some k ∈ N.
The class of languages accepted by priority multicounter machines is denoted by
Prio. Reinhardt has shown that the reachability problem for priority multicounter
machines is decidable [8], which can be reformulated as follows.

Theorem 13 (Reinhardt [8]). Emptiness is decidable for priority multi-
counter machines.

The idea of the proof of “4 ⇒ 1” is, given a valence automaton over some
M ∈ DEC, to construct a Parikh-equivalent priority multicounter machine. This
construction makes use of the following simple fact. A full trio C is said to be
Presburger closed if SLI(C) ⊆ C.

Lemma 14. Prio is a Presburger closed full trio and closed under substitutions.

176 G. Zetzsche

Proof. The fact that Prio is a full trio can be shown by standard automata
constructions. Given a priority multicounter machine A and a semilinear set
S ⊆ X⊕, we add |X| counters to A that ensure that the input is contained in
L(A) ∩ Ψ−1(S). This proves that Prio is Presburger closed.

Suppose σ : X → P(Y ∗) is a Prio-substitution. Furthermore, let A be a pri-
ority k-counter machine and let σ(x) be given by a priority 	-counter machine
for each x ∈ X. We construct a priority (+ k)-counter machine B from A by
adding 	 counters. B simulates A on counters 	+1, . . . , 	+k. Whenever A reads
x, B uses the first 	 counters to simulate the priority 	-counter machine for σ(x).
Using the zero test on the first 	 counters, it makes sure that the machine for
σ(x) indeed ends up in a final configuration. Then clearly L(B) = σ(L(A)). ��

In order to show that every L ∈ VA(M) for M ∈ DEC has a Parikh equivalent
in Prio, we use theorem 12 and theorem 7. By induction with respect to the
definition of DEC, it suffices to prove that

Ψ(VA(M)), Ψ(VA(N)) ⊆ Ψ(Prio) implies Ψ(VA(M × Z)) ⊆ Ψ(Prio) and
Ψ(VA(M ∗ N)) ⊆ Ψ(Prio).

According to theorem 12 and theorem 7, this boils down to showing that we have
Ψ(SLI(Prio)) ⊆ Ψ(Prio) and Ψ(Alg(Prio)) ⊆ Ψ(Prio). The former is a consequence
of theorem 14 and the latter is an instance of theorem 11.

Lemma 15. We have the effective inclusion Ψ(VA(DEC)) ⊆ Ψ(Prio). More pre-
cisely, given M ∈ DEC and L ∈ VA(M), one can construct an L′ ∈ Prio with
Ψ(L′) = Ψ(L).

Proof. We proceed by induction with respect to the definition of DEC. In the
case M = B

n, we have VA(M) ⊆ Prio, because priority multicounter machines
generalize partially blind multicounter machines.

Suppose M = N × Z and Ψ(VA(N)) ⊆ Ψ(Prio) and let L ∈ VA(M). By
theorem 12, we have L = h(K ∩ Ψ−1(S)) for some semilinear set S, a morphism
h, and K ∈ VA(N). Hence, there is a K̄ ∈ Prio with Ψ(K̄) = Ψ(K). With this,
we have Ψ(L) = Ψ(h(K̄ ∩ Ψ−1(S))) and since Prio is Presburger closed, we have
h(K̄ ∩ Ψ−1(S)) ∈ Prio and thus Ψ(L) ∈ Ψ(Prio).

Suppose M = M0 ∗ M1 and Ψ(VA(Mi)) ⊆ Ψ(Prio) for i ∈ {0, 1}. Let L
be a member of VA(M). According to theorem 7, this means L belongs to
Alg(VA(M0) ∪ VA(M1)). Since Ψ(VA(M0) ∪ VA(M1)) ⊆ Ψ(Prio), we can con-
struct a Prio-grammar G with Ψ(L(G)) = Ψ(L). By theorem 11 and theorem 14,
this implies Ψ(L) ∈ Ψ(Prio). ��

The following theorem is a direct consequence of theorem 15 and theorem 13:
Given a valence automaton over M with M ∈ DEC, we construct a priority
multicounter machine accepting a Parikh-equivalent language. The latter can
then be checked for emptiness.

Lemma 16. For each M ∈ DEC, the emptiness problem for valence automata
over M is decidable.

The Emptiness Problem for Valence Automata 177

This completes the proof of theorem 3. Let us now prove the expressive
equivalences, theorems 5 and 6.

Proof (theorem 5). Since SC± ⊆ DEC, the inclusion “⊇” is immediate. We show
by induction with respect to the definition of DEC that for each M ∈ DEC, there
is an M ′ ∈ SC± with VA(M) ⊆ VA(M ′). This is trivial if M = B

n, so suppose
VA(M) ⊆ VA(M ′) and VA(N) ⊆ VA(N ′) for M,N ∈ DEC and M ′, N ′ ∈ SC±.
Observe that by induction on the definition of SC±, one can show that there is
a common P ∈ SC± with VA(M ′) ⊆ VA(P) and VA(N ′) ⊆ VA(P). Of course, we
may assume that R1(P) �= {1}. Then we have

VA(M ∗ N) ⊆ Alg(VA(M) ∪ VA(N)) ⊆ Alg(VA(M ′) ∪ VA(N ′))
⊆ Alg(VA(P)) = VA(B ∗ P),

in which the first inclusion is due to theorem 7 and the equality in the end is
provided by theorem 8. Since B ∗ P ∈ SC±, this completes the proof for M ∗ N .
Moreover, VA(M) ⊆ VA(M ′) implies VA(M × Z) ⊆ VA(M ′ × Z) and we have
M ′ × Z ∈ SC±. ��
Proof (theorem 6). By induction, it is easy to see that each M ∈ SC+ is iso-
morphic to some MΓ where Γ contains a PPN-graph and Γ− is a transitive
forest. By theorem 9, this means Γ− contains neither C4 nor P4. This proves the
inclusion “⊇”.

Because of theorem 9, for the inclusion “⊆”, it suffices to show that if Γ−

is a transitive forest, then there is some M ∈ SC+ with VA(MΓ) ⊆ VA(M). We
prove this by induction on the number of vertices in Γ = (V,E). As in the proof
of theorem 10, we may assume that for every induced proper subgraph Δ of Γ ,
we find an M ∈ SC+ with VA(MΓ) ⊆ VA(M). If Γ is empty, then MΓ ∼= 1 and
VA(MΓ) ⊆ VA(B(2) × B). Hence, we may assume that Γ is non-empty.

If Γ is not connected, then Γ = Γ1 � Γ2 with graphs Γ1, Γ2 such that there
are M1,M2 ∈ SC+ with VA(MΓi) ⊆ VA(Mi) for i ∈ {1, 2}. By induction with
respect to the definition of SC+, one can show that there is a common N ∈ SC+

with VA(Mi) ⊆ VA(N) for i ∈ {1, 2}. Since then R1(N) �= {1}, we have

VA(MΓ) = VA(MΓ1 ∗ MΓ2) ⊆ Alg(VA(MΓ1) ∪ VA(MΓ2))
⊆ Alg(VA(M1) ∪ VA(M2)) ⊆ Alg(VA(N)) = VA(B ∗ N)

and B ∗ N ∈ SC+ as in the proof of theorem 5.
Suppose Γ is connected. Since Γ− is a transitive forest, there is a vertex

v ∈ V that is adjacent to every vertex in V \ {v}. By induction, there is an
M ∈ SC+ with VA(M(Γ \ v)) ⊆ VA(M). Depending on whether v is looped or
not, we have MΓ ∼= M(Γ \v)×Z or MΓ ∼= M(Γ \v)×B. Since VA(Z) ⊆ VA(B×B)
(one blind counter can easily be simulated by two partially blind counters), this
yields VA(MΓ) ⊆ VA(M(Γ \ v) × B × B) ⊆ VA(M × B × B) and the fact that
M × B × B ∈ SC+ completes the proof. ��

178 G. Zetzsche

Conclusion. Of course, an intriguing open question is whether the storage mech-
anisms corresponding to SC+ have a decidable reachability problem. First, since
their simplest instance are pushdown Petri nets, this extends the open question
concerning the latter’s reachability. Second, they subsume the priority multi-
counter machines of Reinhardt. This makes them a candidate for being a quite
powerful model for which reachability might be decidable.

Observe that if these storage mechanisms turn out to exhibit decidability, this
would mean that Lohrey and Steinberg’s characterization (theorem 4) remains
true for all graph monoids. This can be interpreted as evidence for decidability.

Acknowledgments. The author is grateful to the anonymous referees, whose helpful
comments improved the presentation of this work.

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)
2. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore

(1995)
3. Kambites, M.: Formal Languages and Groups as Memory. Commun. Algebra 37,

193–208 (2009)
4. Kambites, M., Silva, P.V., Steinberg, B.: On the rational subset problem for groups.

J. Algebra 309, 622–639 (2007)
5. Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown vector

addition systems in one dimension. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 324–336. Springer,
Heidelberg (2015)

6. Lohrey, M.: The rational subset membership problem for groups: A survey
(to appear)

7. Lohrey, M., Steinberg, B.: The submonoid and rational subset membership prob-
lems for graph groups. J. Algebra 320(2), 728–755 (2008)

8. Reinhardt, K.: Reachability in petri nets with inhibitor arcs. In: Proc. of RP 2008
(2008)

9. van Leeuwen, J.: A generalisation of Parikh’s theorem in formal language theory.
In: Loeckx, J. (ed.) Automata, Languages and Programming. LNCS, vol. 14, pp.
17–26. Springer, Heidelberg (1974)

10. Wolk, E.S.: A Note on ‘The Comparability Graph of a Tree’. P. Am. Math. Soc.
16(1), 17–20 (1965)

11. Zetzsche, G.: Computing downward closures for stacked counter automata. In:
Proc. of STACS 2015 (2015)

12. Zetzsche, G.: Silent transitions in automata with storage. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS,
vol. 7966, pp. 434–445. Springer, Heidelberg (2013)

Author Index

André, Étienne 7
Andrianarivelo, Nirina 128

Baier, Christel 1
Bérard, Béatrice 20

El Din, Mohab Safey 20

Fijalkow, Nathanaël 33
Fribourg, Laurent 63

Goubault, Eric 63

Haddad, Serge 20
Hagihara, Shigeki 140
Hunter, Paul 37

Jančar, Petr 50

Lazić, Ranko 76
Lechner, Antonia 89
Leroux, Jérôme 101
Lime, Didier 7

Malkis, Alexander 114
Mohamed, Sameh 63
Mrozek, Marian 63

Picaronny, Claudine 20
Putot, Sylvie 63

Réty, Pierre 128
Roux, Olivier H. 7

Sassolas, Mathieu 20
Schmitz, Sylvain 76
Shimakawa, Masaya 140
Skrzypczak, Michał 33
Sutre, Grégoire 101

Totzke, Patrick 101

Yamamura, Akihiro 153
Yonezaki, Naoki 140

Zetzsche, Georg 166

	Preface
	Organization
	Abstracts of Invited Talks
	Modeling and Co-design of Control Tasks OverWireless Networking Protocols: Stateof the Art and Challenges
	Vector Addition Systems Howto
	Recent Results on ConcurrentReachability Games
	Horn Constraints with Quantifiersand Cardinalities
	Reachability Problems for Continuous LinearDynamical Systems
	Reasoning About Cost-Utility Constraintsin Probabilistic Models
	Contents
	Reasoning About Cost-Utility Constraints in Probabilistic Models
	References

	Integer-Complete Synthesis for Bounded Parametric Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Clocks, Parameters and Constraints
	2.2 Parametric Timed Automata

	3 Parametric Extrapolation
	4 Integer-Complete Dense Parametric Algorithms
	4.1 Parametric Reachability: RIEF
	4.2 Parametric Unavoidability: RIAF
	4.3 Implementation in Romo

	5 Conclusion
	References

	Polynomial Interrupt Timed Automata
	1 Introduction
	2 Polynomial ITA
	3 Cylindrical Decomposition and Reachability
	3.1 Definition
	3.2 Reachability for PolITA

	4 Effective Construction and on-the-fly Algorithm
	4.1 Construction of a Cylindrical Decomposition
	4.2 On-the-fly Algorithm

	5 Conclusion and Discussion
	References

	Irregular Behaviours for Probabilistic Automata
	1 Introduction
	2 Preliminaries
	3 A Universally Non-regular Probabilistic Automaton
	4 Main Result
	References

	Reachability in Succinct One-Counter Games
	1 Introduction
	2 Preliminaries
	2.1 Arenas, Plays, and Strategies
	2.2 One-Counter Systems
	2.3 Winning Conditions

	3 Equivalence of Models and Problems
	3.1 Removing the Guards
	3.2 Removing Negative Counter Values
	3.3 From Reachability to Counter Reachability

	4 EXPSPACE-completeness of Succinct One-Counter Games
	4.1 Upper Bound
	4.2 Lower Bounds

	5 Conclusion and Further Work
	References

	On Reachability-Related Games on Vector Addition Systems with States
	1 Introduction
	1.1 Strategies, Winning Strategies, Winning Regions Win, Win

	2 Reducing GIC-parity-eVASS to GIC-eVASS
	3 A Direct Proof of Theorem 1
	3.1 Mixing -Strategies, and Pruning -Transitions
	3.2 Detecting Nonnegative Cycles, and Their (Exponential) Lengths
	3.3 Attractor-Based Algorithm for the GIC-parity-eVASS Problem

	References

	A Topological Method for Finding Invariant Sets of Continuous Systems
	1 Introduction
	2 Some Basics of Dynamical Systems Theory
	3 Isolating Blocks: Algebraic Conditions
	4 A Simple Combinatorial Condition for Proving the Existence of (Non-empty) Invariant Sets
	5 Experiments
	6 Conclusion and Future Work
	References

	The Ideal View on Rackoff's Coverability Technique
	1 Introduction
	2 Preliminaries
	2.1 Well-Structured Transition Systems
	2.2 Ideal Decompositions

	3 Backward Coverability
	3.1 Generic Algorithm
	3.2 Coverability for VAS and Reset VAS
	3.3 Ackermann Upper Bounds

	4 Complexity for VAS
	4.1 Transitions Between Proper Ideals
	4.2 omega-Monotonicity
	4.3 Upper Bound

	5 Concluding Remarks
	References

	Synthesis Problems for One-Counter Automata
	1 Introduction
	2 Complexity of RPAD
	3 Decidable Properties of One-Counter Automata
	3.1 Weighted Graphs and Flow Networks
	3.2 One-Counter Automata
	3.3 Reachability for Parametric 1-CA
	3.4 Translating Büchi and LTL Synthesis to RPAD
	3.5 Complexity

	4 A Lower Bound for Büchi Synthesis
	5 Conclusion
	References

	On Boundedness Problems for Pushdown Vector Addition Systems
	1 Introduction
	2 Preliminaries
	3 Grammar-Controlled Vector Addition Systems
	4 Certificates of Unboundedness
	5 Growing Patterns
	6 Small Certificates
	7 Conclusion
	References

	Multithreaded-Cartesian Abstract Interpretation of Multithreaded Recursive Programs Is Polynomial
	1 Introduction
	2 Related Work
	3 Programs
	4 Multithreaded-Cartesian Abstract Interpretation
	5 Model-Checking Recursive Multithreaded Programs
	5.1 Inference System TMR
	5.2 Interpretation of the Output of TMR
	5.3 Computing Multithreaded-Cartesian Semantics

	6 Model-Checking General Multithreaded Programs
	7 Proof of Theorem 1
	7.1 Soundness: Left Componentwise Inclusion in (2)
	7.2 Completeness: Right Componentswise Inclusion in (2)
	7.3 Combining the Left and Right Inclusions

	8 Conclusion
	References

	Over-Approximating Terms Reachable by Context-Sensitive Rewriting
	1 Introduction
	2 Preliminaries
	3 Computing Context-Sensitive Descendants
	3.1 Closure Under Context-Sensitive Rewriting
	3.2 Normalization
	3.3 Initialization
	3.4 Simplification
	3.5 Reduction
	3.6 Completion

	4 Examples
	5 Related Work
	6 Further Work
	References

	Reducing Bounded Realizability Analysis to Reachability Checking
	1 Introduction
	2 Realizability and Bounded Realizability
	2.1 Reactive Systems and Environments
	2.2 Reactive System Specifications
	2.3 Realizability
	2.4 Bounded Realizability
	2.5 Procedure for Bounded Realizability Checking

	3 Reachability-Based Bounded Nonemptiness Checking for UCT
	3.1 Universal co-Büchi Tree Automata(UCT)
	3.2 Characterization for Transition Machines of Size k Accepted by UCT
	3.3 SAT Encoding
	3.4 Incremental Checking

	4 Complexity of Bounded Realizability Problem
	4.1 Upper Bound
	4.2 Lower Bound
	4.3 Discussion

	5 Experiments
	6 Related Works
	7 Conclusion
	References

	Rearranging Two Dimensional Arrays by Prefix Reversals
	1 Introduction
	2 Rearrangement of Two Dimensional Arrays
	2.1 Prefix Reversals
	2.2 Reachability Problem
	2.3 Elementary Operations

	3 Reachable Arrays
	3.1 n = 2
	3.2 n ≡ 1,3 (mod 4)
	Horizontal Transposition of (k+1, 1) and (k+1, 2) Entries.
	Transposition of Entries on Arbitrary Positions.

	3.3 n ≡ 2 (mod 4)
	Vertical Transposition of (2k+1, 1) and (2k+2, 1) Entries.
	Transposition of Entries of Arbitrary Positions.

	4 Unreachable Arrays
	4.1 Unreachability of (E4h4k) for Any Odd Permutation
	4.2 Reachability of (E4h4k) for Any Even Permutation

	5 Upper Bound of Prefix Reversals
	References

	The Emptiness Problem for Valence Automata Or: Another Decidable Extension of Petri Nets
	1 Introduction
	2 Preliminaries
	3 Results
	4 Proof of the Characterization
	References

	Author Index

